
CMU-ITC-87-060

Administrative Cells:

Proposal for Cooperative Andrew File Systems

Edward R. Zayas

InformationTechnology Center

Carnegie Mellon University

25 June 1987

[412] 268-6798



Table of Contents
1. Introduction 1

1.1. Objectives 1
1.2. Organization 1

2, Authentication 2
2.1. Current Mechanisms 2
2.2. Cellular Operation 2

3. Volume Location and Management 4
3.1. Current Mechanisms 4
3.2. Cellular Operation 5

4. Database of Services 6
4.1. The ARPA Internet Domain System 6
4.2. Advantages to the Domain System 7
4.3. Local Fallback 8

5. Monitoring 8
6. Unresolved Issues 8

6.1. Mapping uids 9
6.2. Delegation of Responsibility 9

7. Implementation Strategy 9
8, Conclusion 10
9. Acknowledgements 10



1. Introduction

1.1. Objectives

There are several sites currentlyrunningthe Andrew distributed personal computingenvironment,
includingthe ITC, the CMU ComputerScience Department,the PsychologyDepartment,SUPA, the SEI
and GSIA. It wouldbe highlybeneficialfor these sitesto share in a singlefile name space composedof
the unionof their individualfile systems. The mostobviousbenefit is transparentaccessto the remote
file systems, freeing users from having to issue explicit file transfers. While such transparencyis
attractive,it must not result in the lossof administrativecontrolfor the individualsites or "cells" of the

greaterAndrewcommunity. Each cell mustretainthe exclusiveabilityto add and delete users, manage
protectionand volume locationdatabases and configurefile servers to best suit its needs. Also, the

management costs of this united system must be kept reasonable. Noticeable degradationof local
servicedue to overheadsin maintainingthe imageof a commonfile name space certainlyoutweighsthe

advantages of such an arrangement.

This paper proposesa set of changesto the Andrewenvironmentto allow individualinstallationsto

participate in such a global partnershipwithout sacrificingadministrativeautonomy. Affected are the
Venus workstation cache managers, the System Control Machines (SCMs) and various support
programs. The changes are reasonablystraightforward,attemptingto arrive at the needed functionality
with minimal disturbanceto systemcode and maximalutilizationof existing,proven algorithms.Very few
of these changes are visible at the user level, allowingAndrewusers to adaptquicklyto the expanded
environment.

1.2. Organization

This proposalbegins by describinghow authenticationis performedinthis cellularsystem,with Section

2 also introducingthe notionsof primary identity and additive authentication. Similarly, Section 3
discusses volumelocationresolutioninthis expanded environment,includingthe use of ce// mount points.
Naming issues in the cooperativeenvironmentare addressed in Section4, which presents policiesand
mechanismsfor handlingserviceresolution. Section5 proposesa simple extensionto the vopcon facility
to allow global monitoringof the extended Andrew system. Some unresolved issues currently under
considerationare highlighted in Section6. Finally,Section7 presentsthe suggestedset of steps though
whichCellularAndrewcan be implemented,tested and distributed.

It is assumed that the reader is familiar with the basic Andrew structure and organization, but not

necessarilyto have detailedknowledgeof system internals.



2

2. Authentication

2.1. Current Mechanisms

Each user of the current Andrew environment identifies himself to the system by engaging in an
authentication protocol. This procedure is first carried out via the Iogin program at the start of the user's
session. Authentication may take place several more times during the same session using the su or log
programs, allowing the user to change his identity. After the user supplies his name and password, Iogin
(for example) attempts to contact an available AuthServer to verify this information. A list of machines
hosting AuthServers is kept in/etc/vstab, the same file Venus uses to determine the set of FileServers to
contact. If none of these machines responds in a reasonable amount of time, the SCM is used. The

AuthServer that is eventually reached checks to see if the given password matches the name. If so, it
sets up and retums clear and secret tokens which serve to identify the user in its dealings with the
FileServers. These tokens contain not only the user's central VicelD1, but also expiration information to

prevent processes belonging to deleted users from accessing the file system indefinitely. Login proceeds
to pass these tokens to Venus, which acts as the user's agent for file manipulation. If all of the

AuthServers are down, or if the tokens cannot be handed to Venus, a "local Iogin" is performed, where
the user may still access files on his own local disk/f his password matches the one cached in the local
password file.

An Andrew user can be logged in as several different people at once. This option is due to the fact that

each user process belongs to exactly one process authentication group (PAG). PAGs are guaranteed to
be unique for all processes on a machine until a reboot occurs. User tokens are associated with the

corresponding PAG, so Venus can select the right set when a process asks it to interact with the
FileServers. Thus, different processes controlled by a user can be tied to different accounts. Note,
however, that a single process can only be authenticated as one user at any one time.

2.2. Cellular Operation

In the cellular Andrew environment, users have the option of specifying.the site they wish to be
authenticated in when invoking Iogin and its brethren. Every workstation associates itself with the
administrative cell it physically resides in, as determined by the contents of the/etc/HomeCell file. By
default, the local set of AuthServers will be contacted as before. If the user explicitly names a remote cell,
a service database will be queried to determine the set of machines advertised as hosting AuthServers for
that site. Discussion of the organization and management of this database is deferred until Section 4.
The AuthServer for the chosen cell is therefore contacted directly, and returns tokens which can only be
properly decoded by agents in that domain. These tokens are stored in Venus as before, and are
presented as proof of identity when accessing files that reside in that cell. The structure of a VicelD is

expanded to include the user's 32-bit cell ID to preserve uniqueness in the expanded environment. Since
VicelDs appear in tokens, cell information is automatically embedded in them.

VicelDs do not necessarily correspond with the local uid, although they currently tend to match.



3

Users may authenticate themselves in several cells at once, but are restricted to a single identity in any
one cell. Tokens returned from each cell as a result of each authentication transaction accumulate in

Venus, providing additive authentication. This is a very useful feature, allowing a single operation to
access files in several domains. Take the example where a protected file needs to be copied from the erz
account in the CMU CSD domain into the ITC's eczaccount. If a process is authenticated as both parties,
the standard cp works correctly. Without multiple authentication, two separate processes are needed.

The CSD process may choose to deposit the file in some intermediate location made accessible to it (say,
_trap on the local workstation disk), whereupon the ITC erz process moves it to its final home.

Alternatively, a pipe may be set up between the two, with the first echoing the CSD file and the second
writing to the proper ITC file. In order to restrict user processes to a single identity in any one cell, Venus
only saves the last set of tokens received for that cell. This is necessary to prevent situations where the
proper identity cannot be automatically selected. To illustrate, let us assume that this restriction did not
hold and that an editor process held ITC tokens for both erz and mikew. It is impossible to determine a
file's correct owner if it is saved into a directory wrifable by both people.

As stated above, Venus automatically selects the proper token to present to a FileServer in a particular

domain. If no token exists for a cell, Venus uses an unauthenticated connection when performing a file
operation, effectively reducing the client's rights to those of the Anonymous user in that domain. The

automatic rights reduction performed when crossing into a protection domain in which the client has not
identified himself is imperative if system security and autonomy are to be maintained.

While several identities are possible at any given instant, one of them must be selected as the primary

identity, unique across all cells. Many programs need to ask "Who am I?" in order to operate properly.
The prime example of such a need is Messages, a facility that provides a common framework for
performing such related tasks as reading electronic bulletin boards and personal mail. When it comes up,
it must determine who it is operating on behalf of to select the proper set of directories on which to base
its activities. If a person is authenticated in several cells, there is no way to unambiguously discover
which mailbox to operate on in an automatic way. The getuidO family of routines are no help, since they

only operate on local password files and cannot even handle the simple case of a user who simply logs in
remotely and wishes to take on that identity.

Primary identities are established during authentication by the use of switches in the command lines of
the Iogin family of programs. Venus marks the given identity as primary when it stores it. Primary

identities are obtainable by providing counterparts to the getuid0 routines. For example, getvuidO
contacts Venus and gets the stored information. This change to a global, unique naming system (that is

still controlled locally) not based on password files has already been considered by groups in the ITC in
other contexts than cellular operation. This project serves as the ideal catalyst to implement such a
facility.

This new authentication scheme has many positive characteristics, and is much more attractive than an
attempt to maintain global protection files:

1. The structure currently used for protection databases, the method by which protection
information propagates within a cell and all operations in existence for user additions and
deletions are completely unchanged. As far as these items are concerned, there has not
been anychange in Andrew.

2. A cell's protection database is completely independent of both the number of cells in the
community and the corresponding sizes of their files. A global protection database may



4

result in files with unworkable sizes, and will grow with the number of cells represented.
Password files in the ITC are already large enough to require a separate index.

3. Maintaining reasonably consistent copies of a global protection database requires much
more communication among the cells. The only information that must be kept current in the
proposed strategy is the list of AuthServers for each protection domain. These lists are not
expected to change very often. In addition, a global approachrequiresthat sensitive
information be transmitted across the network.

4. An error in protection database updates by one cell could corrupt other cells if a global
approach were used. To avoid this, each domain must expend energy on carrying out
consistency checks on any new information received before merging it in. No such
corruption is possible in the proposed system, as updates never cross protection
boundaries.

5. User names in the proposed system do not need to be unique in the global community,
rather only within a cell.

6. Remote authentication activity does not raise the load on local servers, since the remote
agents are contacted directly.

7. Special privileges within a cell do not automatically carry over to other cells, maintaining
security and exclusivity. For example, a user with System:Administrator rights in cell A
cannot delete users in cell B unless he is also authenticated there as a person with those
same rights. Automatic rights reductions insure that remote users who do not have
accounts in another cell or have chosen not to identify themselves as that person are
treated as the Anonymous user. However, an authenticated administrator for cell B can still
carry out his full range of activities there even if he logs in on a workstation that belongs to
cell A.

3. Volume Location and Management

3.1. Current Mechanisms

The Andrew volume conceptis a centralone. Volumesare containersfor a hierarchyof files, and are

the basic unitsof data moved between Fi/eServers. The currentAndrew file system is composed of a
collectionof system and user volumes,joined together at mount points2 in such a way as to present the
image of a single,seamtess file tree. Fi/eServers may be instructed to clone read-onlyvolumesfrom the
read-write versions and replicate them amongst themselves for greater availability and reduced per-
server demand. Mechanisms exist where administratorsmay create, delete, back up, replicate and
relocate volumes. Complete informationon the status of all Andrew volumes is kept in the Volume
Location Data Base (VLDB) file on the SCM and replicated at each Fi/eServer. As volume operations
take place, the individual Fi/eServers keep track of the changes to the volumes they host. Periodically,

the SCM polls each FileServer machine and collects these changes, merging them back into a new VLDB
and redistributing it.

Volumes are identified either by name or by number, both guaranteed to be unique in the Andrew
environment. Volume numbers are 32-bit values whose top 8 bits identify the FileServer on which it was

2Mount points are Andrew file system objects that have no real connection with Unix file system mount points. Instead, they
indicatewhere a particular volume is to appear inthe file system tree.



created. Volume names tend to be of the form subclass.id, where subclass identifies the general group to
which it belongs. For example, user.erz belongs to the set of user volumes, and holds the files
associated with the author's account. Similarly, volume ibmO32.bin holds executable images specific to

the IBM RT. This naming structure is not enforced by the system, but makes it easier to identify and
locate volumes based on the purpose they serve.

The Venus workstation cache manager, in interpreting path names for its client, asks the FileServers

for volume location information. Since all FileServers keep a copy of the VLDB, any of them can answer
such requests. Once the site(s) a volume resides on is(are) determined, Venus can access the files in
the volume to the full extent of the permissions held by its client. The list of hosts in the/etc/vstab file
(discussed in Section 2.1) is also used by Venusto choose the FileServers to contact for volume location
information. When Venus first comes up, it learns the name of the root volume for the entire Andrew file

system via the RViceGetRootVolume facility. Once informed about the root volume, Venus is capable of
processing all path names presented by its user, even across mount points leading to different volumes.
Venus caches volume information, and uses a lightweight daemon process to check its mappings
between volume names and numbers every two hours.

3.2. Cellular Operation

In the cooperative Andrew environment, foreign file systems are rooted at cell mount points. This new
construct resembles the standard mount point in most ways, and contains additional information
concerning the cell hosting the represented file system. When Venus first encounters a cell mount point
while resolving a path name, it consults the service database to determine the set of hosts providing
volume location information for that cell. The root volume for the remote cell is then determined by
directing an RViceGetRootVolume transaction to one of these remote machines. Because the 32-bit
volume numbers are no longer guaranteed to be unique across cells, Venus indexes its cached volume
information on both the cell number and the volume number. In general, volume location requests
generated when crossing standard mount points are directed to the set of servers associated with the
latest cell mount point encountered in the path. If no such construct has been crossed, then these
requests are delivered to the local server set.

This scheme has the same set of advantages as the new approach to accessing authentication
services. These include the basic preservation of the existing mechanisms, independence of VLDBs,
preservation of workable file sizes, avoidance of intra-cell communication needed to support a global
VLDB, compartmentalization of errors, direct application of remote volume location workload to remote

servers and automatic rights reductions across protection boundaries. In addition, the proposed system
has two favorable characteristics:

1. Local file servers are completely unaffected by the file traffic generated when its
workstations access remote files. The only parties involved in inter-cell file transfers are the
remote FileServers hosting the data and the individual workstations performing the
accesses.

2. The cell mount point construct allows remote file systems to be rooted anywhere in the local
cell's file system. This allows a cell's administrators to shape their view of the file space to
suit their own purposes.

While volumes may still be shuttled back and forth as they have always been between FileServers in



6

the same cell, they must not be allowed to move between cells. Each administrative domain has full
control of its volumes, and is completely responsible for their housing and backup. The only difficulty with
this restriction is in handling the natural movement of users between sites. Transferring a user from the
ITC cell to the CMU CS cell can still be accomplished in spite of this limitation. A dump is taken of the
user's ITC volume, and the volume itself is destroyed. The dump file is copied to the CS cell, where it is
restored to a new volume belonging to that site. This operation must be carried out as a cooperative
effort between the maintainers of both cells.

4. Database of Services

Sections 2 and 3 assume the existence of a service database in the Cellular Andrew system capable of
providing up-to-date listings of the set of hosts in any given cell which provide certain essential services.

These services presently consist of authentication and volume location. In this proposal, the ARPA
Internet domain system is used as the primary mechanism to implement this database. The domain
system is described at a high level, along with the changes needed to use it to manage information
concerning the above services. The advantages of this facility are then examined, followed by a
presentation of the fallback techniques to use in cases where the primary database is unavailable.

4.1. The ARPA Internet Domain System

This description of the ARPA Internet domain system presents its basic features and operation.
Readers wishing moredetailedinformationare referredto a set of RFCs (Request For Comments)on the
subject, available from the Network Information Center (NIC): 973, 883 and 8823. The following
description is in fact based mostly on the contents of RFC 882.

The ARPA domain system was proposed in 1983, responding to the desire to create a consistent and
practical database for naming resources in the heterogeneous Internet environment. Because of the

frequent updates from its rapidly growing constituency, the existing centralized database was becoming
unmanageable. The chosen distributed, scalable solution for keeping such things as host-to-address
mappings and mailbox locations has three major components:

1. Domain Name Space: This is a specification for a tree-structured name space, with each
node and leaf housing information about that region. The domain name spice.cs.cmu.edu,
for example, refers to the region allocated to the SPICEMax (spice), a subdomain of the
Computer Science Department (cs), in turn a subdomain of Carnegie Mellon University
(cmu), again in turn a subdomain of the portion of the ARPANet dedicated to educational
institutions (edu). Query operations specify the domain name of interest and the type of
information desired. Replies typically return one or more records containing the desired
information.

2. Name Servers: These server programs house the information held in the domain tree,
which includes structure data about the tree itself. Each name server is said to cover a
particular zone, composed of the parts of the domain tree in which it is an authority. Name
servers are free to cache information about other zones and respond to queries about them,
but only the authoritative name server for a zone has the complete and up-to-date picture

3TheseandotherRFCsarealsoavailableattheITC,residingon-lineindirectory/cmu/common/rfc.Therfc-index.txtfilein that
directoryistheindexofavailabledocuments,andRFCnnnlivesinfilerfcnnn.txt.Furthermore,filesnamedn99.txtcontainshort
descriptionsofallRFCsnumberednOO.txtton99.txt.



for that zone.

3. Resolvers: These are programs that serve as an interface between a user application and
the set of domain name servers. Resolvers must be able to access at least one name
server. Given a user query, a resolver attempts to satisfy the request through interaction
with its known server(s), including follow-ups to responses that do not answer the query
directly but rather refer to other, better-informed name servers. The records obtained by
resolvers have timeouts associated with them, ranging anywhere from a second to several
years. Set by the name server, this insures that cached copies of these records will
eventually be flushed at the desired rate. As an implementation note, many resolvers are
simply implemented as user-callable routines.

4.2. Advantages to the Domain System

The Internetdomain systemappears tailor-madeas the primaryvehicle for managingand accessing
the greaterAndrew community'sauthenticationand volume locationinformation. Among its advantages
for the task are:

• Control'. Cell administratorshave completecontrolover their zone. Specifically,they have
the exclusive right to set and reset the list of machines they wish to associatewith each
service, determine the granularityof updates by choosing how long informationextracted
from their zone is valid, and implementthe name servers and resolversto their taste. For
systemadministratorswho do notcare for such hands-onresponsibilityinthis area, any or all
of these things may be transparentlydelegated to entitieshigher up in the domain tree.

• Scalability: As a system specifically designed to scale gracefully, the domain approach
meshes well with Andrew's goal of supporting a large user population. Not only will the
information demands of a large number of workstations inside of a single cell be met, but the
chosen system can support large numbers of Andrew cells.

• Service Speed: The time needed to ascertain the needed information about authentication
or volume information for a remote cell is reasonable. In a demonstration of the system
provided by Craig Everhart, transactions with distant name servers consistently took on the
order of a small number of seconds. Since the scheme allows for the local system to run
caching servers, commonly-accessed information is often discovered locally, cutting the
latency considerably. This response time is perfectly acceptable for several reasons. This
type of information is only needed the firsttime a pathname crosses into a particular remote
cell. Venus caches the names of the servers it discovers on a per-cell basis, and reuses
them until their timeout periods expire. Thus, the frequency of interaction with the domain
system is expected to be low, especially if reasonable timeouts on the information are
provided.

• Adaptability:. New domains may be easily created, allowing the quick incorporation of new
Andrew cells. In addition, existing domains may be reorganized to suit any changes in the
internal structure of a particular cell. A parent zone may spawn as many subzones as it
wishes, giving each the exact set of rights and responsibilities it chooses.

• Extensibility. While authentication and volume location are the two services needed for the
current system, there is no reason why other cell information cannot be advertised in this
way. The domain approach was designed to easily add new service types, allowing the
same system to store data concerning a wide variety of things.

• Track Record: The domain system is a working, proven facility already in wide use, and
continuing to expand. As mentioned above, it is already in place here at the ITC to perform
mail routing. It is the result of a lot of work by networking authorities across the nation, and
provides a standardized solution to a very difficult problem. It would not be prudent to
"reinvent the wheel" by designing and coding a localized scheme to tackle the same
problem. In fact, the competing (and most likely incompatible) mechanism produced might



put off potential Andrew sites wishing to stay with the mainstream.

4.3. Local Fallback

There is a good dealof redundancyinthe domainsystem. Name sewers for a zone maybe replicated,
providing continued service as long as at least one is operational. Even if a_lauthoritative sewers are

down simultaneously, other name sewers and local caching servers may have accumulated a good deal
of the zone's information. In this case, these agents will continue to provide (non-authoritative) service
while the stricken zone repairs itself. However, it is still reasonable to provide a backup system for the
services required for the cellular Andrew community.

It is proposed that a backup file, (/etc/domain.backup), be maintained both in each cell's Vice file
system and on each workstation's local disk. This file, used only when the domain system cannot provide
any information about a service request, contains lists of service machines for the most popular cells.
These files are not expected to be completely up to date, but rather to provide hints for a last-ditch
attempt to contact a remote cell. The centralized copy of the file stored in Vice may be updated manually,

or by a periodic sewer which performs the queries needed to refresh the mappings. The workstation
copy of the file can be either be updated manually or by the package facility, as is done now with the
/etc/passwordfile. It is not expected that this facility will ever be heavily used, since the domain system is
relatively stable and reliable. However, the low maintenance required to support this backup scheme
makes it cost-effective, especially in the rare occasions when total zone failure occurs and persists long
enough to time out entries cached elsewhere.

5. Monitoring

The SCM for a cell performs a valuable performance monitoring service. Each FileServer maintains
statistics on its own operation, and the SCM periodically gathers and consolidates this information. Using

vopcon, the status of the entire cell can easily be monitored from any location in the cell. It is simple to
extend this service to allow performance monitoring to be available for the entire Andrew community. A

trivial program could be written to poll the SCM for each cell and produce a meta-collection of timing and
capacity statistics, FileServeravailability, and so on. Once again, it is also possible to rely on the domain
system to advertise per-cell monitoring services.

6. Unresolved Issues

Internal ITC evaluations along with design review meetings involving representatives of the various
Carnegie Mellon University departments have exposed two unresolved issues in the current proposal.
Work is now underway to arrive at reasonable solutions for mapping uids returned across cell boundaries
to their proper string equivalents and for allowing certain sites to sacrifice some autonomy so that other
cells may perform selected services on their behalf.



9

6.1. Mapping uids
Such programs as /s (fist directory) perform mappings from internal uids to string names suitable for

humanconsumption. Althoughthese mappingswill stillbe performedcorrectlyby the proposed cellular

system inthe localcase, they willproduceerroneousresultsfor files anddirectoriesin remotecells. The
problem lies in the fact that uids are no longer unique across the entire communityand that the
standardized block of informationused in this operationdoesn't have room to carry correspondingcell

identities. Proper translationrequiresthat the correspondingcell for each uid be availableso that the
matchingdatabase (an/etc/passwd file orWhite Pages) can be used.

Several solutions (and non-solutions)are being considered. If it is decided that providingaccurate
tranlationsof remote uids is not necessaryor too difficult,then foreign uids can be tagged as such by

creatinga specialRemoteUser accountinall cellsand havingVenus automaticallyreplaceall remote uids
with this value. Some "real" solutionsinvolveusing non-standardinformationblocks that includethe
necessary cell ID or using unassigned high-order bits in the uid itself to encode site information.

6.2. Delegation of Responsibility
Some cells maywish to trade a portionof their autonomyin returnfor certainserviceswhich it cannot

or chooses not to provide for itself. The specific case broughtto our attentionwas volume backup.
Smaller sites may not havethe properstagingandtape backupequipmentnecessaryto save and restore
its own volumes. The current proposalmakes it somewhat awkward to delegate this (or any other)
responsibilityto a foreign cell. While remote sitesmay access files in other cells,they do not have the
right to perform volume operationsthere directly. The general questionof whether such piecemeal
controlover cellularautonomyis feasible inthe proposedsystemmust be studied. If methodsare found
to accomplishthis goal within the establishedframework, they maythen be applied to the stated backup

problem.

7. Implementation Strategy

Implementingand testing these proposedchanges is not expectedto be a very complex matter. The
brunt of the changes are borne by Venus, with the rest of the load shouldered by the programs

performing authenticationtransactions for users, The new Andrew system capable of joiningcellular
relationshipswill be fullycompatiblewith existing Andrew implementations- any programrunningon the
old system will also run on the new one without changes, ignorant of the added possibilities. The
followingis the suggestedprocedurefor introducingthe new cellularfile system structure:

1. Rewrite the software mentioned above (Venus), Iogin, log, su, etc) to implement the
proposed changes. This includes adapting existing name servers and resolvers to interface
with Venus and creating the authentication and volume location service databases.

2. Create a "test cell" running the new Cellular Andrew software, and put it through the
standard validation routine to make sure correct local operation has been preserved. In
particular, a new SCM and at least one FileServer need to be brought up for the cell.

3. Create a second test cell and attach both entities to the proper cell mount points. Test the
remote authentication and volume location resolution by executing test suites containing the
different operations now possible (remote Iogins, additive authentication, attempts to
perform illegal accesses, editing remote files directly, etc).



10

4. Test the backup mechanism for domain naming by simulating network failures, falling back
on the/etc/dornain.backup file.

5. Write the global performance-monitoring software, and get it to run on the baby community.

6. Begin the upgrade of standard programs to use the new mechanisms. A real-world acid
test for the new system is the conversion of the Messages program. It exercises all the
cellular mechanisms, and is a good candidate to take advantage of transparent access to
remote files (mail can be deposited directly into mailboxes without stripping formatting
information as now required by SMTP).

7. Begin distribution to real sites, forming the basis for the cooperative Andrew community.

8. Conclusion

The proposed design for a cellular Andrew environment allows several sites to cooperate in providing a
unified file name space without sacrificing administrative autonomy. The fact that each cell manages its
own protection and volume databases in an exclusive fashion minimizes the network communication

between cells, compartmentalizes errors and allows an arbitrary number of cells to enter the community
without causing undue local disturbance. Each process in the cellular system can still be properly
identified, and automatic rights reductions assure the community's integrity. It is expected that the
convenience of transparent access to files across protection boundaries will greatly enhance Andrew's
usefulness and attractiveness.

9. Acknowledgements

Many ideas have been incorporated into this document from a variety of people. Bob Sidebotham

came up with the cell mount point concept, preventing incompatible changes from having to be made to
the volume subsystem as originally contemplated. Craig Everhart introduced the author to the ARPA
Internet domain world and pointed out its applicability to service resolution. Several people, including

David Nichols and Mike Kazar, prompted the author to rethink the inclusion of multiple identities for
access purposes as embodied in additive authentication. Nathaniel Borenstein made many good

observations from the point of view of an applications programmer, leading to the discovery of the need
for a primary identity. All of the ITC's File Systems Group (Mike Kazar, SherdMenees, Bob Sidebotham
and headed by Mike West) contributed in some form or other through their comments and observations
on earlier drafts of this proposal.


