
Examining DCSP Coordination

Tradeoffs

Michael Benisch and Norman Sadeh

December 2005
CMU-ISRI-05-140

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

The research that lead to the development of the software described in this document has been funded
by the National Science Foundation under ITR Grant 0205435 and under IGERT grant 9972762.

Keywords: Distributed Constraint Satisfaction, Multi-Agent Coordination, Multi-Agent
Systems

Abstract

Distributed Constraint Satisfaction Problems (DCSPs) provide a model to capture a broad
range of cooperative multi-agent problem solving settings. Researchers have generally pro-
posed two different sets of approaches for solving DCSPs, backtracking based approaches,
such as Asynchronous Backtracking (ABT), and mediation based approaches, such as Asyn-
chronous Partial Overlay (APO). These sets of approaches differ in the levels of coordination
employed during conflict resolution. While the computational and communication complex-
ity of the backtracking based approaches is well understood, the tradeoffs in complexity
involved in moving toward mediation based approaches are not. In this paper we com-
prehensively reexamine the space of mediation based approaches for DCSP and fill gaps
in existing frameworks with new strategies. We present different mediation session selec-
tion rules, including a rule that favors smaller mediation sessions, and different mediation
strategies, including a decentralized hybrid strategy based on ABT. We present empirical re-
sults on solvable 3-coloring and random binary DCSP problems, that accurately capture the
computational and communication tradeoffs between ABT and various mediation based ap-
proaches. Our results confirm that under some circumstances the newly presented strategies
dominate previously proposed techniques.

1 Introduction

Distributed Constraint Satisfaction Problems (DCSPs) provide a formalism for representing
problems where different agents are each responsible for instantiating different sets of vari-
ables subject to constraints. The agents aim to assign values to their variables, such that
all constraints are satisfied. Many real-world scenarios can be modeled as DCSPs, such as
supply chain coordination [10], product co-design, and distributed meeting scheduling [8].

There have been several distributed algorithms developed for solving DCSPs, each with
particular strengths and weaknesses. The DCSP algorithm that has received the most at-
tention is an asynchronous version of Constraint Backtracking (CBT), called Asynchronous
Backtracking (ABT) [12]. The original proposal for ABT has seen several improvements [3,
2, 14], and is considered one of the most effective techniques for solving DCSPs.

Recently the multi-agent systems community has become interested in DCSP algorithms
for modeling agent coordination tasks. This idea was introduced by Mailler and Lesser
in the context of an algorithm called Asynchronous Partial Overlay (APO) [5]. In APO
agents involved in a conflict select a mediator to solve a centralized version of a sub-problem
capturing key elements of that conflict.

APO has been shown to involve significantly less communication than backtracking based
techniques, such as ABT, by reducing the amount of unsuccessful instantiation attempts that
repeatedly violate the same constraints (thrashing) [5]. On the other hand, in contrast with
ABT, current versions of mediation based techniques have failed to fully exploit opportunities
for concurrent processing. This tradeoff has not been explicitly identified in prior experi-
mental investigations due to somewhat coarse computational complexity measurements.

In this paper we measure computational complexity based on a finer metric recently
proposed by Meisels et. al. [6], that involves counting non-concurrent constraint checks.
Comprehensive testing based on this finer metric reveals tradeoffs that had not been cap-
tured previously. Our results involve solvable 3-coloring problems, as well as random binary
DCSPs. These results have motivated us to develop a hybrid technique that reconciles the
tradeoffs we have identified. The basic intuition of our hybrid technique is to avoid thrashing
on solvable problems through coordinated mediation, while maximizing concurrent work in
the mediation process itself.

In Section 2 we introduce the DCSP formally, and discuss previous work on measuring
problem solving complexity of DCSP algorithms. In Section 3 we discuss ABT and APO,
along with new variations including our decentralized hybrid. Experimental results are
presented and discussed in Section 5, and concluding remarks are provided in Section 6.

1

2 Background

2.1 DCSP Definition

The distributed constraint satisfaction problem was first discussed by Sycara et. al. and
Yokoo et.al. as a way of formalizing Cooperative Distributed Problem Solving [12, 10]. A
DCSP is formally defined as a constraint satisfaction problem (CSP) of the following form:

• a set of n variables, V = {x1, . . . , xn}

• a set of discrete finite domains for each variable, D = {D1, . . . , Dn}

• a set of constraints R = {R1, . . . , Rm} where each Ri(di1, . . . , dij) is a predicate on the
Cartesian product of the domains of all the variables referenced by that constraint.
The constraint is said to be satisfied if the assignments of each referenced variable
satisfy the constraint.

An agent, i, is said to know about a particular set of variables, Vi, and constraints, Ci. We
will call the group of agents that agent i is connected to by constraints i’s neighborhood, Ni.
The goal of the agents is to instantiate their variables so that all constraints are satisfied.
As in other work, for the sake of simplicity, we restrict our presentation to situations where
each agent controls (“owns”) a single variable and knows about all the constraints that refer
to that variable. We further limit our discussion to binary constraints (constraints between
two variables). It has been shown that more general problems can be reduced to problems
that conform to these restrictions. In Section 6 we briefly discuss why the trends observed
in this study should extend to these more complex classes of DCSPs.

2.2 Related Work

The original descriptions of ABT and APO appear in [12] and [5] respectively. In empirical
studies of APO and backtracking based algorithms, such as ABT and Asynchronous Weak
Commitment [11] (AWC), computational complexity measurements were often based on
somewhat coarse performance metrics. In particular, these experiments typically did not
differentiate between steps that required significantly different amounts of computation, e.g.
equally counting as a single step a consistency check in AWC and a full backtracking search
in a mediation session. Because they also focused primarily on solvable 3-coloring problems
these experiments also raised the question of whether they were representative of other
problem classes. In this paper we revisit the coordination tradeoffs involved in solving
DCSPs using finer computational metrics and a more extensive class of problem instances
- both solvable 3-coloring problems and random binary DCSPs. Our experiments reveal a
richer set of performance tradeoffs than had been reported earlier. In addition, we present
novel search configurations that aim to reconcile these tradeoffs.

2

Our empirical analysis uses a metric introduced by Meisels et.al. [6] that records the
number of non-concurrent constraint checks (NCCCs) associated with different distributed
search procedures. This metric distinguishes between complex computational steps involving
multiple constraint checks, and much simpler ones. Constraint checks are the preferred com-
putational unit used to measure performance of centralized constraint processing algorithms
(see for example [9]). By counting non-concurrent checks the NCCCs metric is akin to the
notion of a make-span or throughput measurement in scheduling [4].

The results presented in this paper build on our preliminary work comparing different
mediation session selection rules for APO [1].

3 Basic Backtracking and Mediation Algorithms

This section outlines key features of ABT and APO, focusing on elements that impact
computation and communication complexity.

3.1 Asynchronous Backtracking

ABT is an asynchronous implementation of the traditional backtracking search approach to
solving centralized CSPs.

A summary of the procedures involved in the original description of ABT is shown in
Figure 1. The algorithm begins with an initialization process, during which each agent i is
given a static priority, pi (typically based on lexicographic order). Agent i then arbitrarily
assigns a value, di, to its variable, xi, and broadcasts it to all lower priority neighbors. When
agent i receives an assignment message from another agent, j, it stores the assignment as a
tuple in the set called its agentview. Agent i then checks the consistency of its agentview and
its own assignment. When it finds that its own assignment violates a constraint it tries to
assign a value to its variable that resolves consistency. If it cannot find such an assignment
it begins the backtrack process, and informs a higher priority agent that its agentview is
nogood (leads to an unsatisfiable situation for the agent)1. The algorithm proceeds until all
of the agents have variable assignments consistent with their agentviews, or one of the agents
discovers that the problem is infeasible. For a full description of the ABT algorithm along
with proofs of completeness and correctness, the reader is directed to its original description
in [12].

An agent executing ABT uses constraint checks2 to determine the consistency of its
variable assignment. Because the agent knows only about the assignments of higher priority
agents (as defined in its agentview), this amounts to checking each constraint with a higher

1We are aware that an agent can potentially resolve the subset of its agentview that resulted in the
conflict. However, this has been shown to provide little benefit.

2Note that this refers to constraint checks in general, whether or not these checks are concurrent.

3

procedure init()

calculate priority, pi (usually lexicographic order);
choose di ∈ Di arbitrarily; set xi ← di;
agent viewi ← ∅;
broadcast();

when received ok?(j, dj)

update agent view(j, dj);
check agent view();

procedure update agent view(j, dj)

if agent viewi contains assignment for j then

remove assignment of j from agent viewi;
end if

agent viewi ← agent viewi ∪ {〈j, dj〉};

procedure check agent view()

if ¬consistent(agent viewi ∪ {〈i, xi〉}, Ci) then

if choose value() then

broadcast();
else

resolve conflict();
end if

end if

procedure broadcast()

for agent j ∈ Ni | pj < pi do

send ok?(i, xi) to agent j;
end for

procedure choose value()

for di ∈ Di do

if consistent(agent viewi ∪ {〈i, di〉}, Ci) then

xi ← di; return >;
end if

end for

return ⊥;

procedure resolve conflict()

if agent viewi 6= ∅ then

find agent j ∈ agent viewi with lowest priority, pj ;
send nogood(i, agent viewi) to agent j;

else

No solution!

end if

when received nogood(j,agent viewj)

for agent k in agent viewj and not in agent viewi do

let dk be the value of agent k in agent viewj;
update agent view(k, dk);
request that k add i to Nk;

end for

let cj be the constraint that agent viewj is nogood;
Ci ← Ci ∪ {cj};
check agent view();

Figure 1: Procedures Defining the Behavior of an ABT Agent i

4

when received ok?(j, dj)

update agent view(j, dj);
prune stale nogoods();
check agent view();

procedure prune stale nogoods()

for nogood constraint cng ∈ Ci do

let agent viewc be the agentview that created cng;
if agent viewc * agent viewi ∪ {〈i, xi〉} then

Ci ← Ci \ {c
ng};

end if

end for

when received nogood(j,agent viewj)

for agent k in agent viewj and not in agent viewi

do

let dk be the value of agent k in agent viewj;
update agent view(k, dk);
request that k add i to Nk;

end for

if agent viewj ⊆ agent viewi ∪ {〈i, xi〉} then

let cj be the constraint that agent viewj is no-
good;
Ci ← Ci ∪ {cj};
check agent view();

end if

Figure 2: Revisions to ABT for Nogood Pruning

priority agent. Notice that the original description of ABT involves recording each received
nogood as a constraint (see “when received nogood” in Figure 1). As a result, each learned
nogood is among the set of constraints that must be checked for consistency. Since the
storage of nogoods can grow exponentially on harder problem instances, checking nogoods as
constraints can significantly increase the number of NCCCs used by ABT. It has been shown,
however, that agents can avoid much of the constraint checking work associated with nogoods
by eliminating them from storage once they become stale (they refer to a branch of the search
tree that has already been discarded) [2]. The necessary revisions to ABT for pruning stale
nogoods are given in Figure 3.1. When measuring the computational requirements of this
revised version of ABT, it is important to take into account the additional checks that
have been introduced to determine whether or not a nogood is stale. However, because the
number of stale nogoods tends to grow exponentially, the savings typically far outweigh this
additional computational cost. We would like to note additionally, that this improvement
cannot be used in A WC because priorities are assigned dynamically and stale nogoods may
become relevant again. This makes AWC less competitive when measuring computational
requirements based on consistency checks. For this reason we do not report experiments
with AWC in this paper.

Another configuration of ABT involves having agents read all queued messages before
trying to re-assign their variables. In contrast to checking consistency after each incoming
assignment update or nogood, agents processes all the information they have received be-
fore performing their next consistency check (“procedure check agent view”). This small
variation has recently been reported to provide significant improvements [13].

5

procedure broadcast()

for all agents j ∈ Ni do

send ok?(i, xi) to agent j;
end for

procedure resolve conflict()

acceptedi← ∅;
for agent j ∈ Ni do

send invitation(i) to agent j;
rsvpi ← rsvpi ∪ {j};

end for

when received I : {invitation(j1),...,invitation(jn)}

/* I is a set of n invitations received at the same time */
if agent i is already involved in a mediation session then

send reject invitation(i) to all inviting agents;
else

find invitation(jk) ∈ I specified by selection rule, R≺;
send accept invitation(i) to agent jk;
send reject invitation(i) to all other inviting agents;

end if

when received accept invitation(j)

acceptedi← acceptedi ∪ {j};
rsvpi ← rsvpi \ {j};
if is empty(rsvpi) then

mediate(acceptedi);
end if

when received reject invitation(j)

rsvpi ← rsvpi \ {j};
if is empty(rsvpi) then

mediate(acceptedi);
end if

Figure 3: Mediation DCSP Algorithm Framework (procedures not redefined are given in
Figure 1)

3.2 Asynchronous Partial Overlay

A summary of the procedures involved in a basic mediation framework for DCSPs is given
in Figure 3. Procedures that are not redefined are assumed to be identical to the description
in Figure 1. The initialization process of a mediation based algorithm proceeds the same
way as in ABT. However, when agent i broadcasts its value assignment, it does not consider
priority and sends the assignment to all its neighbors. When agent i receives an assignment
message it proceeds in the same fashion as ABT to update its agentview and check the
consistency of relevant constraints. If agent i detects a conflict and cannot resolve it locally
by changing the value of its variable it initiates a conflict resolution process. In a mediation
based algorithm the this involves agent i inviting all of its neighbors to join a mediation
session - the size of the mediation session is defined by agent i’s neighborhood. Once all of
agent i’s neighbors have each either accepted or rejected the invitation, a mediation session
begins. A mediation session only involves the agents that have accepted the invitation. An
agent can only accept to participate in one mediation session at a time. Agents choose which

6

invitation to accept according to a mediation session selection rule, which we denote R≺.
Additional details of the APO algorithm, a specific mediation based implementation, can be
found in [5].

In the following Section we review different possible mediation session selection rules and
mediation procedures, and discuss their constraint checking requirements. Independently of
the mediation session selection rule and mediation procedure, mediation based agents use
constraint checks to determine the consistency of their variable assignments.

4 Mapping Mediation Dimensions

The space of possible mediation strategies has been the subject of limited investigation. In
this paper we focus on two mediation dimensions that we have found to have a significant
impact on the performance of mediation based algorithms, namely mediation session selection
rules and mediation procedures themselves.

4.1 Mediation Session Selection Rules

The mediation session selection rule described in the original APO algorithm is biased to-
ward the selection of larger mediation sessions. Preliminary work reported in [1] presented a
computational model along with initial results suggesting that, under certain circumstances,
focusing first on smaller sessions can yield significant performance improvements. Intuitively,
because mediation sessions may involve full backtrack search, the complexity of large me-
diation sessions will tend to dominate that of smaller sessions. Accordingly, focusing first
on large sessions will lead to unnecessary computational efforts, when smaller sessions are
sufficient. In this study we explore the performance impact of mediation session size by
examining the following two mediation session selection rules.

• R
APO
≺

: this mediation session selection rule was suggested in the original definition of
APO. Agents evaluate invitations based on the size of the mediation session they would
lead to, and pick the invitation corresponding to the largest one.

• R
IAPO
≺

: this mediation session selection rule is the inverse of the original selection rule.
It instructs agents to choose the smallest mediation session.

These two rules can be implemented by including the size of the inviting agent’s neigh-
borhood in each invitation. For all practical purposes the computational complexity of
evaluating mediation session invitations using these two rules can be ignored. The evalua-
tion can be performed by each agent in time linear in the number of invitations, which does
not exceed the size of the agent’s neighborhood. This computation is typically dominated
by the computation performed as part of the mediation procedure itself.

7

when received accept invitationBB(j,Cj,Dj, Lj)

acceptedi← acceptedi ∪ {〈j, Cj , Dj , Lj〉};
. . .

when received accept invitationBT(j,Cj , Dj)

acceptedi← acceptedi ∪ {〈j, Cj , Dj〉};
. . .

when received accept invitationABT(j)

acceptedi← acceptedi ∪ {j};
. . .

Figure 4: Information Collected by Mediation Strategies

4.2 Mediation Procedures

The mediation procedure originally proposed with APO involved a mediator (the agent that
sent the invitations) centralizing the sub-problem defined by the agents in the session, and
solving it locally. The mediator used a branch and bound search to find a solution that min-
imized conflicts with agents outside of the session. In this Section we describe the original
APO branch and bound mediation procedure, and propose two new mediation procedures
(summarized in Figure 5). We introduce a backtrack search mediation procedure to ex-
plore the performance tradeoffs involved in finding a conflict minimizing solution. We also
introduce a novel hybrid procedure where mediation is performed in a distributed fashion
using ABT. This hybrid algorithm helps us explore the performance tradeoffs between con-
currency and coordination. The different mediation procedures we examine require different
information to accompany accept invitation messages. The requirements are summarized
in Figure 4 and described in detail along with the procedures below.

Branch and Bound (APO-BB): The branch and bound mediation strategy was the
method originally proposed with APO. When using this mediation strategy, a mediator must
gather all of the information about the local sub-problems of agents involved in the session
(the agents that accepted the invitation) including:

• the set of constraints, Cj , that apply to agent j’s variable,

• the entire domain of agent j’s variable, Dj ,

• and a label function defined on agent j’s domain that indicates all of the agents known
to be in conflict with each of j’s values,
Lj : dj → {k1, . . . , kn | agent ki will be conflicted with dj}

This information is used by the mediator to perform a branch and bound search. This
search finds a feasible solution, if one exists, to the sub-problem pertaining to agents that

8

procedure mediateBB(acceptedi)

for 〈j, Cj , Dj, Lj〉 ∈ acceptedi do

C ← C ∪ {Cj}; D ← D ∪ {Dj}; L← L ∪ {Lj};
end for

〈P ∗, b∗〉 ← b&b(〈∅, 0〉 , 〈∅,∞〉 , 1, C, D, L)
broadcast-solution(P ∗)

procedure mediateBT(acceptedi)

for 〈j, Cj , Dj〉 ∈ acceptedi do

C ← C ∪ {Cj}; D ← D ∪ {Dj};
end for

P ∗ ← cbt(∅, 1, C, D);
broadcast-solution(P ∗)

procedure mediateABT(acceptedi)

let I be the sub-DCSP defined by agents in acceptedi

init() ABT on I (as described in Section 3.1);

procedure broadcast-solution(P)

if P 6= ∅ then

for 〈j, dj〉 ∈ P do

send accept value(dj) to agent j;
end for

else

No solution!

end if

when received accept value(d)

xi ← d;
check agent view();

procedure b&b(〈P, b〉 , 〈P ∗, b∗〉 , i, C, D, L)

if |P | = |D| then

return 〈P ∗, b∗〉
end if

for d ∈ Di do

〈Pd, bd〉 ← 〈∅,∞〉
P ′ ← P ∪ {〈i, d〉}; b′ ← b + |Li(d)|
if b′ < b∗ ∧ consistent(P ′, Ci) then

〈Pd, bd〉 ← b&b(〈P ′, b′〉 , 〈P ∗, b∗〉 , i + 1, C, D, L)

end if

if bd < b∗ then

b∗ ← bd; P
∗ ← Pd;

end if

end for

return 〈P ∗, b∗〉

procedure cbt(P, i, C, D)

if |P | = |D| then

return P

end if

for d ∈ Di do

P ′ ← P ∪ {〈i, d〉};
if consistent(P ′, Ci) then

P ∗ ← cbt(P ′, i + 1, C, D)

if P ∗ 6= ∅ then

return P ∗

end if

end if

end for

return ∅

Figure 5: Summary of Mediation Procedures

9

are part of the mediation session. The solution minimizes the number of constraints violated
for agents outside of the session, which can be determined using the label functions. In
terms of measuring computation, the branch and bound procedure uses constraint checks
as it proceeds to construct all solutions that cannot be ruled out by bounding. However, it
does not use constraint checks to determine how many external violations a partial or full
solution results in. The number of external violations is simply the size of the set returned
by the label function.

Backtracking (APO-BT): This mediation procedure proceeds exactly as the BB vari-
ant, except that the mediator attempts to find any feasible solution. The solution may not
minimize conflicts with out-of-session agents. Using this mediation procedure, agents need
not send fully labeled domains to the mediator3. In terms of measuring computation, the
backtracking mediation process uses constraint checks in the same fashion as the branch and
bound process, except it short-circuits computation as soon as a feasible solution is found.

Asynchronous Backtracking (APO-ABT): We introduce this mediation procedure
as a novel hybrid between APO and ABT where mediations are performed using the ABT
protocol. This mediation strategy downplays the importance of the mediator, who no longer
needs to collect local constraint information from the other agents involved. Because agents
can be involved in one session at a time APO-ABT synchronizes the overall problem solving
process, while exploiting opportunities for concurrency at the lower level. The ABT media-
tion process uses constraint checks as described in 3.1.

Any of these three mediation strategies can be used with either of the mediation session
selection rules, making for a total of six proposed configurations. Also, each of the mediation
procedures uses the values of agents at the time of the mediation as arbitrary starting values.
This was suggested in the original specification of APO and helps to respect work done during
earlier sessions.

5 Empirical Evaluation

5.1 Empirical Setup

The experiments in this paper are intended to compare the performance of the six mediation
configurations outlined in the previous section (five of which represent novel configurations),
and ABT. We present results from two different sets of experiments, one involving random
solvable distributed 3-coloring (D3C) problems and another on random binary DCSP in-

3Agents may, however, need to inform the mediator of a conflict after assignments have been dictated.
This allows the mediator to add an out-of-session agent to its neighborhood to ensure completeness.

10

stances. A D3C problem involves each agent choosing one of three colors. The problem is
satisfied if no two agents connected by a constraint share the same color. A random binary
DCSP problem involves arbitrary random constraints between pairs of agents. In all of our
experiments all of the algorithms were provided with the same instances and initial random
values for variables.

Random binary CSP instances are typically characterized by the number of variables, n,
the number of values in each variable’s domain, k, the density of the constraint graph, p1,
and the tightness of the constraints, p2 [9]. Our random DCSP experiments use n = 10,
and k = 10. p1 specifies the probability that a constraint exists between any two agents.
In this paper we fix p1 = 0.7, a relatively high density value, behaviors on problems with
different values of p1 result in similar observations. We vary p2 = 0.1 to p2 = 0.9, which
specifies the probability that two values in constrained agent’s domains are in conflict. We
draw at least 100 instances for each value of p2, and about 500 instances near the phase
transition where p2 ∈ [0.4, 0.6]. The “phase transition” refers to an area of the problem
parameters where problems transition from being under-constrained, and thus easy to solve,
to over-constrained but still difficult to prove infeasible [9].

The D3C instances are characterized by two parameters, the number of agents involved,
n, and the number of constraints per agent m. Since we are looking at solvable D3C problems
with no phase transition effects, we do not see a need to vary problem density and instead
fix m = 2.7 (typically considered high density). We vary the number of agents from n = 15
to n = 60 in increments of 9 (these values must be multiples of 3 to properly guarantee
solvable instances). With these instances we examine how the algorithms scale to larger
problems that are guaranteed to be solvable. We draw at least 100 instances for each value
of n (although some algorithms are removed as they become incapable of scaling based on
a 5 minute cpu-time cutoff per instance) according to the method provided in [7], for some
larger values of n we draw up to 500 instances to ensure the statistical significance of our
results.

The results presented indicate the mean number of messages and non-concurrent con-
straint checks (NCCCs) used by each algorithm across the different simulations. The NCCCs
are measured using the techniques described in Sections 3 and 4, and [6]. We provide 95%
confidence intervals when necessary, results missing intervals can be assumed to be signifi-
cant.

5.2 Results on Random CSP Instances

The NCCC results on random CSP instances are shown in Figures 6(a) and 6(c). Examining
these results, we can see that the phase transition is clearly accentuated when p2 = 0.5 for
all the algorithms. Before this point problems are relatively easy to solve and there is little
difference observed. When p2 = 0.5 we can see that ABT, with the improvements described
in Section 3.1, uses about 30,000 NCCCs on average, which is consistent with results reported

11

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 0.2 0.4 0.6 0.8 1

N
on

-C
on

cu
rr

en
t C

on
st

ra
in

t C
he

ck
s

(N
C

C
C

s)

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(a) Mean NCCCs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 M

es
sa

ge
s

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(b) Mean Messages

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

N
on

-C
on

cu
rr

en
t C

on
st

ra
in

t C
he

ck
s

(N
C

C
C

s)

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(c) Mean NCCCs with 95% confidence intervals
(zoomed from Figure 6(a), p2 = 0.4 to p2 = 0.6)

 0

 200

 400

 600

 800

 1000

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

N
um

be
r

of
 M

es
sa

ge
s

Problem Tightness (p2)

Random CSP Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(d) Mean Messages with 95% confidence intervals
(zoomed from Figure 6(b), p2 = 0.4 to p2 = 0.6)

Figure 6: Performance on Random DCSP Instances, (n = 10, k = 10, p1 = 0.7)

12

in [13]. In addition the APO-ABT and IAPO-ABT hybrids both use about the same amount
of NCCCs as ABT itself (see Figure 6(c)). This is not surprising, since about half of the
problems in this area require a mediation of the entire network to prove infeasibility, and the
hybrid algorithms reduce to running ABT on the whole problem at that point. The branch
and bound based algorithms, APO-BB and IAPO-BB, perform poorly during the phase
transition, requiring about 200 times more NCCCs than ABT. This is due to the fact that
many of these problems must be fully centralized with these procedures to prove infeasibility,
and finding the solution that minimizes external conflicts amounts to exploring nearly the
entire search tree during each mediation. The backtracking based mediation algorithms,
APO-BT and IAPO-BT, require nearly 100 times fewer NCCCs than the branch and bound
algorithms, showing that finding external conflict minimizing solutions costs a significant
number of NCCCs and provides far less less benefit on random problems. However, the
ABT based algorithms use significantly fewer NCCCs than the backtracking ones, showing
the cost of centralizing the problem solving effort.

The performance in terms of communication requirements on random instances is shown
in Figures 6(b) and 6(d). These results are basically a mirror image of the NCCC results, with
ABT and the ABT based mediation algorithms requiring on average about 30 times more
messages than the other algorithms (again this is consistent with results reported for ABT
in [13] and [5]). Additionally we can see from the results in Figure 6(d) that the mediation
techniques with the IAPO preference rule use about twice as many messages as those with
the APO preference rule. This is not surprising considering that the IAPO preference rule
chooses smaller sessions and therefore needs more of them.

5.3 Results on Solvable D3C Instances

The NCCC results for solvable D3C instances are shown in Figure 7(a). These results provide
some very interesting contrasts with the random CSP NCCC results. The algorithm that
performs best on the solvable D3C instances by a large margin is our IAPO-BB algorithm.
This algorithm was the only one capable of solving 60 agent problems within an allotted
5 cpu-minutes per instance, and it was able to solve smaller instances orders of magnitude
faster than the other algorithms. Recall that on the random CSP instances the branch
and bound based algorithms performed nearly 200 times worse than the other algorithms,
yet on the high density solvable instances our IAPO-BB scales extremely well. What we are
seeing is that on high-density solvable instances the benefit of finding solutions that minimize
conflicts outside of a mediation session far outweighs the extra work necessary to do so.

Another interesting result on the solvable D3C instances is the benefit of the IAPO selec-
tion rule over the APO selection rule. All of the variants with our IAPO selection rule used
significantly fewer NCCCs than their APO-based counterparts. Favoring smaller mediation
sessions over larger ones, as IAPO does, helps mediators avoid solving unnecessarily large
problems until absolutely needed. Our results suggest that on solvable D3C instances it is

13

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 10 20 30 40 50 60

N
on

-C
on

cu
rr

en
t C

on
st

ra
in

t C
he

ck
s

(N
C

C
C

s)

Number of Agents (n)

Solvable D3C Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(a) Mean NCCCs with 95% confidence intervals

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 10 20 30 40 50 60

N
um

be
r

of
 M

es
sa

ge
s

Number of Agents (n)

Solvable D3C Instances

APO-BT
IAPO-BT

APO-ABT
IAPO-ABT

APO-BB
IAPO-BB

ABT

(b) Mean Messages

Figure 7: Performance on Solvable D3C Instances, (m = 2.7)

often not necessary to mediate over larger groups, and consequently IAPO avoids some of
the unnecessary computation of APO. These findings are consistent with preliminary results
we had reported in [1].

When we look at the handful of algorithms that were able to solve 51 agent instances we
can see that only the ABT-based algorithms remain along with IAPO-BB. Among the ABT-
based algorithms it is interesting to note that both our APO-ABT and IAPO-ABT hybrid
algorithms require much fewer NCCCs than ABT itself on average (the IAPO-ABT algorithm
requiring significantly fewer). This begins to show the benefits of partially synchronizing
problem solving efforts on solvable D3C instances to cut back on the amount of backtracking
in ABT. The fact that all three of these algorithms perform significantly better than the BT-
based algorithms shows the benefit of distributing work load on larger problem instances.

When we look at the performance in terms of communication requirements for solvable
D3C instances in Figure 7(b), it is not surprising to find that all of the centralized approaches
use significantly fewer messages than the decentralized ones. What is interesting is the fact
that our APO-ABT and IAPO-ABT hybrid algorithms both used fewer messages than ABT
itself (recall these two used fewer NCCCs as well). Not only that, but the IAPO variant,
IAPO-ABT, used fewer messages than the APO variant, whereas on the random instances
the opposite was true. Both of these observations are due to the fact that the mediation based
techniques required less backtracking than ABT and among the mediation based techniques,
the IAPO variant required less backtracking than the APO variant. On the solvable D3C
instances the decrease in backtracking during problem solving led to less communication as
well.

14

6 Conclusion

In this paper we provided a comprehensive abstraction for the space of DCSP mediation
based approaches. In the process we identified gaps in existing frameworks, and proposed
new effective strategies to fill them. The new strategies include a mediation session selection
rule that favors smaller mediation sessions, a centralized mediation approach that short-
cuts a significant amount of excess computation on random instances, and a decentralized
asynchronous mediation strategy based on ABT.

Our empirical results represent the first truly comprehensive view of the tradeoffs be-
tween backtracking and mediation based approaches for DCSPs. We tested the different
algorithms on solvable 3-coloring and random binary DCSPs. Our results confirmed that
our newly proposed strategies in this paper dominate previous techniques under some cir-
cumstances. Specifically, our mediator selection rule that favors smaller sessions, IAPO,
dominates the previously used rule that favors larger ones, APO, in computational complex-
ity across all instances. IAPO also dominates APO in communication complexity on solvable
D3C instances. Additionally, our hybrid decentralized mediation strategy based on ABT is
as good as ABT in communication and computation on random instances, and strictly better
in both areas on solvable D3C instances. This suggests that the benefits of synchronization
for DCSPs reported elsewhere [5, 13] may exist primarily on hard solvable instances.

7 Acknowledgements

The research reported in this paper has been funded by the National Science Foundation
under ITR Grant 0205435. The authors would also like to thank Roie Zivan and Amnon
Meisels for their help calibrating the NCCC metric.

References

[1] M. Benisch and N. Sadeh. How (not) to choose mediators for distributed constraint
satisfaction. In Proceedings of LSMAS at AAMAS’05, 2005.

[2] C. Bessiere, A. Maestre, and P. Messeguer. Distributed dynamic backtracking. In
Proceedings of DCR Workshop at IJCAI’01, 2001.

[3] Y. Hamadi. Distributed interleaved parallel and cooperative search in constraint satis-
faction networks.

[4] L. Lamport. The parallel execution of do loops. Commun. ACM, 17(2):83–93, 1974.

15

[5] R. Mailler and V. Lesser. Using Cooperative Mediation to Solve Distributed Constraint
Satisfaction Problems. In Proceedings of Third International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS 2004), volume 1, pages 446–453,
New York, 2004. IEEE Computer Society.

[6] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of dis-
tributed constraints processing algorithms. In Proceedings of DCR Workshop at AA-
MAS’02, 2002.

[7] S. Minton, M. D. Johnston, A. B. Phillips, and P. Laird. Minimizing conflicts: A
heuristic repair method for constraint satisfaction problems. Artificial Intelligence, 58(1-
3):161–205, 1992.

[8] P. J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A personal assistant agent for
calendar management. In Agent Oriented Information Systems, (AOIS) 2004, 2004.

[9] B. M. Smith and M. E. Dyer. Locating the phase transition in binary constraint satis-
faction problems. Artif. Intell., 81(1-2):155–181, 1996.

[10] K. Sycara, S. F. Roth, N. Sadeh, and M. S. Fox. Distributed constrained heuristic
search. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1446–1461, De-
cember 1991.

[11] M. Yokoo. Asynchronous weak-commitment search for solving distributed constraint
satisfaction problems. In Proceedings of the First International Conference on Principles
and Practice of Constraint Programming, pages 88–102, 1995.

[12] M. Yokoo and E. H. Durfee. Distributed constraint satisfaction for formalizing dis-
tributed problem solving. In 12th IEEE International Conference on Distributed Com-
puting Systems, pages 614–621, 1992.

[13] R. Zivan and A. Meisels. Synchronous vs asynchronous search on DisCSPs. In Proceed-
ings of the First European Workshop on Multi-Agent Systems (EUMA), 2003.

[14] R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on discsps.
In Proceedings of CP’05, 2005.

16

