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Abstract

Medications designed for a general population do not work the same for each individual.

Similarly, patterns observed from naturally occurring disease outbreaks do not necessarily de-

scribe outbreaks of purposeful disease outbreaks (e.g. bioterrorism). To tackle challenges posed

by individual differences, my thesis introduces data-driven paradigms that predict a particular

case will have the outcome of interest. My insight is to accommodate individual differences

by coherently leveraging information from complementary perspectives (e.g., temporal depen-

dency, relational correlation, feature similarity, and estimation uncertainty) to provide more

reliable predictions than possible with existing cohort-based approaches.

Specifically, I carefully investigated two representative problems, bioterrorism-related dis-

ease outbreak and personalized clinical decision support, for which previous research does

not provide satisfactory solutions. I developed a Temporal Maximum Margin Markov Net-

work framework to consider the temporal correlation concurrently with relational dependency

in bioterrorism-related diseases’ outbreaks. This framework reduces the ambiguity in estimat-

ing outcome variables from noisy manifestations by considering complementary information.

It outperformed state-of the-art models with synthetic and real world datasets, and improved

average state prediction accuracy in predicting simulated biohazards. Regarding personalized

clinical decision support, I focused on an important but little-studied measurement “calibra-

tion,” which stratifies how outcomes affect various genetic population groups within a patient-

diagnosis population. I designed joint optimization framework to combine discrimination and

calibration, and demonstrated models (DP-SVM, SIO and AC-LR) developed under this multi-

targeted framework perform better on both metrics than single-targeted models. I conducted

various real data experiments including Hospital Discharge Error, Myocardial Infarction and

Breast Cancer Gene Expression Data to verify the efficacy of my joint optimization framework.
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Chapter 1

Introduction

Modern biology and medicine are strongly influenced by advancements in computer science, which have

significantly increased computational power and improved the feasibility of collecting data [158, 167, 169].

The merging of computer science and biomedicine makes biomedical informatics a complex interdisci-

plinary research field [102, 122, 126, 144, 167, 191], which often involves analyzing complex, mutually

coupled and intensive health-related data.

Along with these advancements, many challenges have arisen [20, 95, 102, 105, 119, 126, 191]. For

example in many biomedical applications, it is difficult to access the absolute risk of adverse events in a

timely manner. This is largely because of the discrepancy between the huge amount of information and

human experts’ limited time to review it [29, 127, 143, 199]. Thus, automated tools that reliably predict

outcomes are highly appreciated [74, 85, 115, 173, 193, 196, 201], as foreseeing potential emergencies

obviously benefit decision makers for public policy and patient care services from early estimation of the

risk of adverse events to reach informed decisions. For example, if primary care providers have enough

awareness, they could reduce prescription errors occurring during hospital discharge, and saving patients

from temporary harm or hospitalization [2, 28, 86]. Similarly, policy makers can respond to emergencies,

such as a bioterrorism attack, more effectively with the help of prediction systems that forecast the attack

and estimate its impact [131, 154, 190].

However, predictions for biomedical decision support are non-trivial tasks because they have to ac-

commodate individual differences in an abundance of observations. For example, medications designed

for a general population do not work the same for each individual. Similarly, patterns observed from nat-
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urally occurring disease outbreaks do not necessarily describe outbreaks of purposeful disease outbreaks

(e.g. bioterrorism). To tackle these challenges, my thesis introduces data-driven paradigms that predict a

particular case will have the outcome of interest. My insight is to accommodate individual differences by

coherently leveraging information from complementary perspectives (e.g., temporal dependency, relational

correlation, feature similarity, and estimation uncertainty) to provide more reliable predictions than possible

with existing cohort-based approaches.

Specifically, I carefully investigated bioterrorism-related disease outbreaks and personalized clinical de-

cision support, for which previous research does not provide satisfactory solutions. Figure 1.1 illustrates

both problems. Due to differences in their backgrounds, the manifestations of these prediction problems are

not the same but both ones need to be examined in a fine granularity to accommodate individual differences

for the best performance.

Figure 1.1: Biomedical decision support needs target-specific predictions.

I developed a structured predictive framework, the Temporal Maximum Margin Markov Network (TM3N),

to co-estimate multiple correlated variables. As opposed to traditional approaches that predict outcome vari-
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ables’ states independently, my framework considers semantic correlations of heterogeneous variables and

observations of individual variables globally. The global optimization strategy reduces the ambiguity in

estimating outcome variables, which is otherwise difficult to handle if outcome variables are considered

independently. Thus, the TM3N framework can learn from temporal and relational correlated noisy data,

automatically adapt to new conditions, and learn correlated hidden states simultaneously with tractable in-

ference.

Regarding personalized clinical decision support, I focused on calibrating biomedical decision systems

to identify the parameters of unique genetic populations. Previous theories were based on a diagnosis popu-

lation; that is, if a patient has a disease, the predictive model is constructed for various treatments of patients

with the same diagnosis. We know now, however, that medication that is right for one member of this diag-

nosis population might not work the same for all members. I believe that predictions should be tailored and

targeted to benefit patients in specific genetic groups based on detailed patient information. Toward this end,

I studied an important but little-studied quality measurement for probabilistic predictive models, called “cal-

ibration,” which stratifies how outcomes affect various genetic population groups within a patient-diagnosis

population. I designed a unified framework that combines two families of model quality measurements,

discrimination and calibration. I demonstrated that models developed under this multi-targeted framework

perform better on both quality measurements than single-targeted models.

To demonstrate the effectiveness of the methods developed in this thesis, I conducted experiments using

public data from UCI’s Machine Learning Repository and clinically related datasets. These clinical datasets

are: 1. BioWar Simulation data, which were obtained from the BioWar simulation engine developed by

the CASOS lab at Carnegie Mellon University, and which contain aggregated demographics and medical-

related information at city level; 2. breast cancer gene expression data, which contain the gene expressions

of 541 patients, each with a total feature size of 247,965; 3. myocardial infarction data, which correspond to

patients’ records collected from emergency rooms in Sheffield, England and Edinburgh, Scotland (the total

number of patients’ records is 1,853 and their feature size is 48); and 4. hospital discharge error data, which

contain 3,833 patients’ records with demographic and cultural information collected in a retrospective study

of a teaching hospital in Boston, MA.

Given the focus of the thesis, I expect readers from both machine learning and biomedical informat-

ics backgrounds will find it useful. In order to accommodate different readers, I decided to utilize both

mathematical models and their intuition. I explain why the problems are important, how my models are
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developed, and the evaluation criteria used. To this end, I inserted “interpretation” below the equations to

assist biomedical readers in understanding the formulations aimed at machine learning readers.

1.1 Overview

Predictive models are important for risk assessment in biomedical informatics [102, 104, 122, 126, 144, 194].

In many cases, policy makers or care providers can think carefully about the consequences of their decisions,

and thus act effectively, when they are better informed. For example, the detection of early stage disease

could make a big difference to the treatment of patients [13, 29, 85, 126, 143, 167, 209]; similarly, the

prediction of major catastrophes may save thousands of lives in a bioterrorism attack [24, 46, 47, 114, 131,

137, 154].

One type of the diagnosis error, the failure to follow up on test results in a timely manner, can lead

to significant delays in diagnosis and treatment, resulting in patient morbidity and mortality [2, 28, 86].

In healthcare settings with well-developed computerized information systems, a post-discharge test result

follow-up process could be automated and tracked. However, many hospitals and clinics in the U.S. have

not adopted electronic health records. While laboratory systems can often identify culture results that show

the growth of an organism, these results are usually linked to the ordering provider. By the time the results

return, the provider responsible for the patient may have changed, or the patient may have left the hospital. In

these scenarios, the test results pending at the time of discharge from the hospital often need to be followed

up manually in order to reduce errors and improve patient care. However, it is not possible to conduct

follow-ups with everyone due to insufficient staff time and resources. Thus, a practical approach to reduce

hospital discharge error is to track patients based on their risks from high to low, which can be estimated by

dedicated predictive models.

Similar systems could also assist in another clinical problem, that of providing preventative treatment to

myocardial infarction patients [53, 157, 183, 188, 209]. It is important for caregivers to estimate the risk

of myocardial infarction in patients because the risk factor assessment requires a substantial amount of staff

time and expensive lab tests. Indeed, not every patient would be appropriate for the preventive treatment of

the condition. Thus, to better utilize the limited resources, it would be beneficial for caregivers to screen and

prioritize the assessment of patients most likely to benefit from the treatment. The estimation is therefore

critical, and allows caregivers to rank their parents and select those for whom the preventative treatment will
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be suitable.

The predictive power of state-of-the-art machine learners could also address the problems related to a

potential bioterrorism response [19, 24, 46, 114, 154]. In the event of bioterrorism attacks, hospital and clin-

ical services might receive unreliable local claims, so their collaboration with public safety organizations on

information aggregation and interpretation is crucial to the success of their response [131, 137]. However,

due to the gap between explosive information and the little time available for responding to the situation,

human experts cannot grasp the big picture in a timely manner, and their responses are limited by possessing

only partial knowledge of the situation. Obviously, these supports are not sufficient to make an informed

decision. The success of hazard prevention and control hinges on the ability of synthesizing locally informa-

tion quickly, and foreseeing the consequences of the decision [131]. Ideally, if an advanced predictive model

reliably predicts the probability and trends of an outbreak, healthcare facilities can implement prevention

and control measures rapidly, and policy makers can establish appropriate interventions such as resource al-

location, vaccinations, quarantines, and school closures. Furthermore, the government can then activate the

network of communication effectively. The implementation of these vital emergency response procedures

relies on efficient and accurate predictive models.

The situations outlined above show that the predictive model could improve the decision-making process.

Recent breakthroughs in clinical research have shown that applying machine learning techniques can assist

physicians in diagnosing and treating conditions [15, 49, 64, 74, 85, 115, 173, 192, 193, 196]. However,

developing predictive models for the biomedical decision-making process is different [13, 15] due to its

focus on improving the prediction reliability of individuals, and difficulties associated with biased labeling

[21, 138] and mutual coupling of outcome variables [133]. For example, it is very common in biomedical

applications to use only a small number of positive labeled cases, and large numbers of unlabeled cases,

to predict a future event. Multiple correlated factors must also be taken into account simultaneously over

time to compensate for the ambiguity of the observed information. These differences mean that traditional

machine learning techniques developed based on theories from cohort studies have been difficult to apply.

To this end, I will present new ideas to close the gap and develop methods to address these real world

challenges.
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1.2 Outline of Thesis

My thesis is organized as follows:

• Chapter 2 describes the biomedical data that motivated my research and used to validate the predictive

methods I developed in this thesis.

• Chapter 3 provides an background overview of relevant research in structured model and two major

families of probabilistic model evaluation metrics.

• Chapter 4 focuses on bioterrorism related diseases outbreak prediction and introduces a novel ap-

proach, Temporal Maximum Margin Markov Network, to estimate temporal and relational correlated

hidden states.

• Chapter 5 recaps relationship between discrimination and calibration, and develops a unified frame-

work that enables global considerations of both objective. I also implemented a model called Doubly

Penalized Support Vector Machine (DP-SVM) based on this framework to demonstrate the perfor-

mance improvement due to joint optimization.

• Chapter 6 and 7 develops advanced methods which extend the framework in Chapter 5 to further

improve the discrimination and calibration abilities of probabilistic models.

• Chapter 8 discusses the data scalability impact to model’s performance. I compare multiple ap-

proaches including those developed in my thesis and methods that are popular. Using various clinical

related data, I demonstrated that methods developed in this thesis adapted as well as, if not better than,

state of the art approaches at various scales of the training set.

• Chapter 9 analyzes another common but important problem in biomedical informatics: biased label-

ing. I develop a Structured Biased Support Vector Machine (SB-SVM) approach to handle this issue

and demonstrate its efficacy on synthetic and biomedical datasets.

• Chapter 10 demonstrates the cross-data applicability of developed methods. I also introduces a web

platform, WEBCALIBSIS, that I developed as a first step to access probabilistic model ubiquitously.

• Chapter 11 reviews this thesis and discusses its contributions, limitations and future works.
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1.3 High Level Results

This thesis aims to develop predictive models that would support biomedical decision-making process.

Specifically, I investigated two representative biomedical problems: bioterrorism related outbreak predic-

tion, and calibration models for personalized medicine. Although goals of, and motivations behind, these

problems differ, they encounter similar difficulties in modeling more detailed information on an individ-

ual level. It is widely recognized that medication right for one member of a diagnosis population may not

be generally appropriate. Similarly, disease patterns observed over the past decades might not be able to

account for an unexpected bioterrorism related outbreak. Unfortunately, traditional approaches developed

under cohort study theory tend to ignore individual characteristics. They are also insufficient for effective

capture of temporal and relational dependencies from noisy observations.

To tackle these problems, I developed a range of data driven approaches based on “tailored” information

of targeted factors. With more detailed global models, I can maximize the likelihood of observations and

provide more reliable estimates of latent factors of interest.

Regarding my first motivational problem, bioterrorism related outbreak prediction, I designed an en-

coding technique (SAX+) that maps numerical measurements of different manifestations to human inter-

pretable states, and have developed approaches to model temporal and relational factors concurrently, com-

bining these techniques in a global optimization framework – Temporal Maximum Margin Markov Network

(TM3N). In other words, instead of predicting individual factors like "death rate" in the next time tick, my

approach predicts a network of outcome variables considering their mutual dependencies over time. The

complementary nature of temporal and relational information helps TM3N to achieve better accuracy and

reliability. To verify the efficacy of my approach, I used synthetic data generated from a linear dynamic

system, where synthesized temporal and relational factors are controlled by a trade-off parameter α. TM3N

demonstrated superior performance at various levels of the trade-off parameter from 0.1 - 0.8. The results

confirmed that combining complementary information helps to reduce the ambiguity exists in any single

perspective. I then applied TM3N models to predict multiple states of correlated outcome variables in the

BioWar simulation data. TM3N led the accuracy (69%) followed by Hidden Markov Model (65%), Maxi-

mum Margin Markov Network (58%) and Conditional Random Fields (57%). The performance advantage of

TM3N and its applicability are confirmed by the results of another real world experiment for building occu-

pancy detection. Again, TM3N outperformed Hidden Markov Model, Maximum Margin Markov Network
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and Conditional Random Fields and their average accuracies are 70%, 37%, 49% and 50%, respectively. Fi-

nally, I compared TM3N with Hidden Markov Model, Maximum Margin Markov Network and Conditional

Random Fields using the BioWar-II data, which contains multiple five-year simulation periods of various

sized agents (10% − 100%). The results showed TM3N scales well at increasing amount of training data

and outperformed the other models.

For the second problem, personalized medicine relies on reliable prediction on individual’s risk of getting

sick [13, 16, 87, 112, 145, 148, 155, 194]. I focused on calibrating biomedical decision systems to identify

the parameters of unique genetic populations. I studied an important but less-studied quality measurement

for probabilistic predictive models, called “calibration”, which stratifies how outcomes affect various genetic

population groups within a patient-diagnosis population. I investigated the relationship between two major

components of model quality (i.e. discrimination and calibration) and showed that considering calibra-

tion concurrently with discrimination can improve conventional single-target probabilistic models. Under

a unified framework for considering both metrics, I implemented Smooth Isotonic Regression (SIO) and

Adaptively Calibration for Logistic Regression (AC-LR). The SIO method introduced a smooth projection

function to alleviate the problem of overfitting in Isotonic Regression, which is a state of the art calibration

model. The AC-LR approach pushed the boundaries further with adaptive binning based on input-specific

information. To verify the usefulness of both approaches, I compared them with a popular probabilistic

model, Logistic Regression (LR) and existing calibration methods like Platt Scaling for Logistic Regres-

sion (LR-PS) and Isotonic Regression for Logistic Regression (LR-IS). The experiments using synthetic

data showed that SIO has superior calibration ability without decreasing the discrimination power. The

real data experiments for SIO used a set of eight different data including Breast Cancer Gene Expression,

Hospital Discharge Error and Pima Indian Diabetes. In general, SIO model demonstrated better calibration

performance comparing to LR, LR-PS and LR-IR under Hosmer-Lemeshow goodness-of-fit test.

The efficacy of AC-LR was verified in a similar way. I showed intuitively how AC-LR is superior to

existing approaches using made up examples, in which I visualized 1D and 2D non-linear separable cases,

which be handled by AC-LR but not the others. Then I conducted real data experiments using Hospital

Discharge Error, Myocardial Infarction and Breast Cancer Gene Expression Data. In Hospital Discharge

Experiment, AC-LR passed HL-test at 0.05 significance level with a p-value of 0.349 while all the other

methods failed. In addition, AC-LR even improved AUC from 0.704 (the best of previous approaches) to

0.717 showing joint optimization of calibration and discrimination improved single-target models in both
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perspectives. For the Myocardial Infarction dataset, AC-LR demonstrated its performance advantage over

conventional methods again. AC-LR passed HL-test at 0.05 significance level with p-values of 0.645 and

0.246 for Sheffield data and Edinburgh data while LR, LR-PS and LR-IS failed. Improvements for discrim-

ination are also prominent, AC-LR achieved an AUC of 0.880 and 0.863 comparing to 0.876 and 0.845 of

LR, LR-PS and LR-IS for Sheffield data and Edinburgh data, respectively. Similarly, the performance of

AC-LR led the competition of discrimination and calibration in the Breast Cancer Gene Expression data.

Besides these general evaluation, I also looked at data scalability impacts, biased labeling influences

and model applicability issues. I used data from various sources and divided training and testing sets with

different ratios to evaluate models developed in this thesis. Chapter 8, 9 and 10 compared different models

under various situations and demonstrated performance advantages of methods developed in this thesis.
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Chapter 2

Data Description

My research focused on real world biomedical challenges: bioterrorism related disease outbreaks and cali-

bration for personalized clinical decision support. The following datasets corresponding to these problems

essentially motivated my research in this area. I used several other datasets to verify methods developed

in later chapters but they are not as relevant as the four described in this chapter 1. Specifically, the first

related to bioterrorism related disease outbreaks while the others are related to personalized clinical decision

support. The following sections describe these data.

2.1 BioWar-I, II Data

These datasets, including BioWar-I and BioWar-II, were generated using the BioWar simulation engine,

developed by CASOS lab at CMU ( www.casos.cs.cmu.edu/projects/biowar/ ).

BioWar is a single integrated engine that simulates the impact of a bio-terrorist attack in a U. S. city.

The model combines state-of-the-art computational models of social networks, communication media, and

disease transmission with demographically resolved agent models, urban spatial models, weather models,

and a diagnostic error model; unlike traditional models that look at hypothetical cities, BioWar is configured

to represent real cities by incorporating census data, school district boundaries, and other publicly available

information [31]. This engine focuses on bio-terrorist attacks, but its structure is applicable to emergent and

familiar diseases as well.
1All the data for my thesis is accessible from the following URL: http://scholar.privacy.cs.cmu.edu/thesis/

data/
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Although BioWar-I and BioWar-II are both simulated data, their reliability and faithfulness are well

acknowledged by a number of scientific publications [30, 31, 32, 36, 38]. Because no bio-terrorism related

attacks have been reported in U.S., I decided to treat BioWar-I and BioWar-II as my pseudo-truth for the

model construction. The simulated data consist of the following city-scale bio-attacks. 1) BioWar-I data

consist of a one-year-period of observations in the city of Pittsburgh, PA, from 9/1/2002 to 8/31/2003. The

total number of simulated agents are 306,181. There was one outbreak of airborne diseases (avian influenza)

during the simulation period. 2) BioWar-II data contain multiple five-year-period observations from 9/1/2002

to 8/30/2007. The number of simulated agents are set to vary from 153,090 to 1,224,726 at an approximately

equal scale (150k); namely, the number of simulated agents varies from 10% (153,090) to 100% (1,224,726).

The city of simulation is Norfolk, VA. There was one outbreak of airborne diseases for every year during the

simulated period.

For both data, the simulated agents interact and transmit airborne diseases (avian influenza) over time.

The statistics of activity are aggregated in a window of every 4 hours and thus there are six time ticks

everyday, that is, 365 ∗ 6 time ticks for each year. For BioWar II, I requested that simulations be performed

on ten five-year periods rather than one single 50-year period to avoid factors like birth and aging that would

interfere with the disease impact on the mortality, work absence and doctor visit rates. Table 2.1 summarizes

BioWar-I inputs (one-year-period of Pittsburgh), because BioWar II inputs are similar, they are not shown.

Table 2.1: Summary of the “BioWar-I” data. Data were generated by the BioWar simulation engine.

File Summary
Activity.csv The activities of 79,497 kids and 226,684 adults within a period of

2,189 time ticks, each time tick corresponds to 4 hours.
Actual_incidence.csv The incidence of 52 diseases is the rate at which new cases occur in

a population during a specified period.
Actual_symptom_incidence.csv The prevalence of 52 diseases is the proportion of a population that

are cases at a point in time.
Deaths.csv Actual death of the population at time ticks, reported in every 4

hours.
Deaths_day.csv Actual death of the population aggregated over days.
Infected_agents_sample.csv Ids of the infected agents and their corresponding ailments over

time.
Social_network_sample.tsv A snapshot of the social network indicating the agent social

relationships.

An important mechanism in BioWar simulation is utilizing social network information to estimate agents’

activities and their disease spreading pattern. This mechanism provides "autonomy" to simulated agents and
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allows more flexibility in using the model. The mortality and demographics of the infected population are

obtained by simulating the behaviors of agents that interact and transmit diseases.

Table 2.2: Outcome variables in BioWar-I and BioWar-II datasets.

adults_at_home is-restaurant gender is-home
kids_at_home is-doctor death rate is-theater

at-work is-university insurance demographics
Weblookup is-pharmacy emergency visits in-hospital

medcalls is-stadium Doctor visit is-work
adults-at-home is-store kids-at-home num-exchanges

Table 2.3: Summary of the co-variates and output variables for BioWar-I data.

tick dayOfWeek month day dead is.er
Min. : 0.0 Fri:312 Aug : 186 Min. : 1.00 Min. : 0.000 Min. : 0

1st Qu.: 547.2 Mon:312 Dec : 186 1st Qu.: 8.00 1st Qu.: 0.000 1st Qu.: 0
Median :1094.5 Sat:312 Jan : 186 Median :16.00 Median : 0.000 Median : 7

Mean :1094.5 Sun:318 Jul : 186 Mean :15.72 Mean : 4.338 Mean : 696
3rd Qu.:1641.8 Thu:312 Mar : 186 3rd Qu.:23.00 3rd Qu.: 0.000 3rd Qu.: 13

Max. :2189.0 Tue:312 May : 186 Max. :31.00 Max. :97.000 Max. :19401
Wed:312 (Other):1074

kidsAtHome adultsAtHome at.work weblookup medcalls num.exchanges
Min. :20959 Min. : 37447 Min. : 0 Min. : 0.0 Min. : 0 Min. : 0.0

1st Qu.:31566 1st Qu.: 86910 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0
Median :78695 Median :217960 Median : 0 Median : 8.0 Median : 0 Median : 0.0

Mean :59889 Mean :151609 Mean : 41487 Mean : 695.9 Mean : 18867 Mean : 101.9
3rd Qu.:78701 3rd Qu.:217985 3rd Qu.: 0 3rd Qu.: 15.0 3rd Qu.: 0 3rd Qu.: 0.0

Max. :79497 Max. :226684 Max. :187787 Max. :19043.0 Max. :141408 Max. :11438.0

in.hospital is.home is.work is.school is.pharmacy is.doctor
Min. : 0 Min. : 58563 Min. :0 Min. : 0 Min. : 0.0 Min. : 0.0

1st Qu.: 0 1st Qu.:118408 1st Qu.:0 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0
Median : 7 Median :296655 Median :0 Median : 0 Median : 0.0 Median : 0.0
Mean : 696 Mean :211498 Mean :0 Mean : 9277 Mean : 557.6 Mean : 125.9
3rd Qu.: 13 3rd Qu.:296683 3rd Qu.:0 3rd Qu.: 0 3rd Qu.: 13.0 3rd Qu.: 3.0

Max. :19401 Max. :306181 Max. :0 Max. :58370 Max. :25178.0 Max. :10315.0

is.stadium is.theater is.store is.restaurant is.university is.military
Min. : 0 Min. : 0 Min. :0 Min. : 0 Min. :0 Min. :0

1st Qu.: 0 1st Qu.: 0 1st Qu.:0 1st Qu.: 0 1st Qu.:0 1st Qu.:0
Median : 0 Median : 0 Median :0 Median : 0 Median :0 Median :0

Mean :1437 Mean : 3997 Mean :0 Mean : 31342 Mean :0 Mean :0
3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.:0

Max. :7408 Max. :20286 Max. :0 Max. :157115 Max. :0 Max. :0
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Table 2.2 lists the outcome variables of the simulated disease outbreaks. The names are mostly self-

explanatory.

Table 2.4: Summary of the co-variates and output variables for BioWar-II data.

tick dayOfWeek month day dead is.er
Min. : 0 Fri:1560 Dec : 930 Min. : 1.00 Min. :0 Min. : 0.00

1st Qu.: 2737 Mon:1566 Jan : 930 1st Qu.: 8.00 1st Qu.:0 1st Qu.: 0.00
Median : 5474 Sat:1560 Jul : 930 Median :16.00 Median :0 Median : 36.00

Mean : 5474 Sun:1566 Mar : 930 Mean :15.72 Mean :0 Mean : 38.94
3rd Qu.: 8212 Thu:1566 May : 930 3rd Qu.:23.00 3rd Qu.:0 3rd Qu.: 49.00
Max. :10949 Tue:1566 Oct : 930 Max. :31.00 Max. :0 Max. :368.00

Wed:1566 (Other):5370

kidsAtHome adultsAtHome at.work weblookup medcalls num.exchanges
Min. : 85069 Min. :154198 Min. : 0 Min. : 0.00 Min. : 0 Min. : 0.0000

1st Qu.:126708 1st Qu.:362493 1st Qu.: 0 1st Qu.: 0.00 1st Qu.: 0 1st Qu.: 0.0000
Median :316864 Median :907737 Median : 0 Median : 42.00 Median : 0 Median : 0.0000

Mean :240999 Mean :622832 Mean :175130 Mean : 45.76 Mean :102464 Mean : 0.8463
3rd Qu.:316867 3rd Qu.:907859 3rd Qu.: 0 3rd Qu.: 57.00 3rd Qu.: 0 3rd Qu.: 1.0000

Max. :316867 Max. :907859 Max. :753630 Max. :375.00 Max. :595796 Max. :46.0000

in.hospital is.home is.work is.school is.pharmacy is.doctor
Min. : 0.00 Min. : 239387 Min. :0 Min. : 0 Min. : 0.00 Min. : 0.000

1st Qu.: 0.00 1st Qu.: 489130 1st Qu.:0 1st Qu.: 0 1st Qu.: 0.00 1st Qu.: 0.000
Median : 36.00 Median :1224600 Median :0 Median : 0 Median : 0.00 Median : 0.000

Mean : 38.94 Mean : 863832 Mean :0 Mean : 37529 Mean : 37.51 Mean : 9.815
3rd Qu.: 49.00 3rd Qu.:1224726 3rd Qu.:0 3rd Qu.: 0 3rd Qu.: 56.00 3rd Qu.: 15.000
Max. :368.00 Max. :1224726 Max. :0 Max. :231797 Max. :542.00 Max. :237.000

is.stadium is.theater is.store is.restaurant is.university is.military
Min. : 0 Min. : 0 Min. :0 Min. : 0 Min. :0 Min. :0

1st Qu.: 0 1st Qu.: 0 1st Qu.:0 1st Qu.: 0 1st Qu.:0 1st Qu.:0
Median : 0 Median : 0 Median :0 Median : 0 Median :0 Median :0

Mean : 4988 Mean :15666 Mean :0 Mean :127495 Mean :0 Mean :0
3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.:0

Max. :25269 Max. :78581 Max. :0 Max. :634041 Max. :0 Max. :0

Table 2.3 and Table 2.4 summarize the basic statistics (e.g., mean, min, max, and median) of outcome

variables in BioWar-I and BioWar-II, respectively. I used boxplots to illustrate the basic statistics of these

outcome variables. I plotted one subfigure for each outcome variable because if outcome variables are

plotted together, most outcome would be overwhelmed by a few outcome variables with high values. Please

refer to Figure 2.1. Note that outcome variables "day of week" and "month" cannot be plotted because their

contents are strings rather than numerical values.
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Figure 2.1: Variable boxplots of BioWar-I and BioWar-II data.
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The boxplots describe basic statistics of these outcome variables but cannot illustrate the distribution of

these variables. To see more details, I used matrix plots to illustrate the distribution of individual outcome

variables as well as their pairwise co-occurrence, as indicated in Figure 2.2. Although the subplots are tiny,

Figure 2.2 shows that a strong relational dependency exists between various outcome variables.

(a) BioWar I data.

(b) BioWar II data.

Figure 2.2: Matrix plots for BioWar-I and BioWar-II data.
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In addition to relational dependency, the data demonstrate interest in temporal correlations. For example,

I plotted the outcome variable "death" against "days in a year" of BioWar-I in Figure 2.3. A single peak

of death outbreak due to avian influenza is observed. The unimodal pattern of "death" is consistent with

previous observations showing a strong time dependency of the outbreak.

Figure 2.3: Daily aggregated measurements of co-variable deaths. There is an outbreak of the avian influenza
between day 100 and day 200, when a large amount of mortality occurs. It can be observed that the death rate
is highly correlated to the readings in the previous time tick. The data show a unimodal but non-stationary
pattern because the mean of the distribution is not “locally constant”.

Although most outcome variables demonstrate time correlation, many of them show how patterns that

are more complex than the outcome variable "death". The following figure shows the outcome variable

"adult_at_home" in BioWar-I has three distinct patterns of working hours, off-work hours, and weekends.
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Figure 2.4: Daily aggregated measurements of co-variable “Adults_at_home”. The X axis corresponds
to the time tick and the Y axis corresponds to the number of adults at home. Obviously, there are three
different patterns, which corresponds to the number of adults at home on working hours, weekends and
nights, respectively.

2.2 Breast Cancer Gene Expression Data

The second data set, denoted as Breast Cancer, is obtained from the NCBI Gene Expression Omnibus (GEO).

The three individual data downloaded were previously studied by Wang et al. (GSE2034) [187], Sotiriou

et al. (GSE2990) [166], and Miller et al. (GSE3494) [128], respectively. I studied this dataset because

gene expression is a good resource for personal medicine. New opportunities are available to treat patients

differently for better performance based on more detailed information (Gene Expression) on individuals.

To make my data comparable with previous studies, I followed the criteria in [140] to select patients,

who did not receive any treatment and had negative lymph node status. Among these pre-selected candidates,

only patients with extreme outcomes, either poor outcomes (recurrence or metastasis within five years) or

good outcomes (neither recurrence nor metastasis within eight years) were selected. The number of samples

after filtering were: 209 for GSE2034 (114 good/95 poor), 90 for GSE2990 (60 good/30 poor), and 242 for

GSE2034 (224 good/18 poor).
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I also apply a split to divide GSE3494 into two groups, as suggested by [140], GSE3494-A and GSE3494-

B, according to the sample’s Affymetrix platform. Thus, the breast cancer data-set has four separate data.

All of these data have a feature size of 247,965, which corresponds to the gene expression results obtained

from micro-array experiments. They were preprocessed to keep only the top 15 features ranked using a t-test

(see [140] for details). Figure 2.5 shows the boxplot of these selected gene features. It can be observed in

the figures below that effective gene features are different from each other in different population groups.
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Figure 2.5: Boxplots of Breast Cancer Gene Expression data. Each column corresponds to one feature
vector, and the last column indicates the outcome variable.
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(a) GSE_2034 (b) GSE_2990

(c) GSE3494_U133A (d) GSE3494_U133B

Figure 2.6: Matrix plots of Breast Cancer Gene Expression data. Each subfigure corresponds to a matrix
plot of one data set.

I also plotted the co-variable occurrence of breast cancer data in Figure 2.6 to investigate feature corre-

lations visually.

2.3 Myocardial Infarction Data

The third dataset, Myocardial Infarction, corresponds to clinical Myocardial infarction (MI) patient records.

I obtained the data from the authors of [98]. The goal of this study was to determine which, and how many

data items are required to construct a decision support algorithm for early diagnosis of acute myocardial

infarction using clinical and electrocardiographic data available at presentation [98].

These data were collected from patients admitted and discharged on a regimen. The data contains patient

records of two medical centers in the Great Britain; among these, 500 patients admitted to the emergency

department with chest pain were observed in Sheffield, England, and 1,353 patients with the same symptoms

were observed in Edinburgh, Scotland.
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Table 2.5: Description for the Myocardial Infarction variables.

ID Abbreviation Clinical Explainations
1-7 age Age in years (under 30, 30-39, 40-49, 50-59, 60-69, 70-79, 80 and over)

8 Smokes Smoker
9 Exsmoker Ex-smoker

10 Fhistory Family history of ischaemic heart disease
11 Diebetes Diabetes mellitus
12 BP Hypertension
13 Lipids Hyperlipidaemia
14 CPmajorSymp Is chest pain the major symptom?
15 Restrostern Central chest pain
16 Lchest Pain in left side of chest
17 Rchest Pain in right side of chest
18 Back Pain radiates to back
19 Larm Pain radiates to left arm, neck or jaw
20 Rarm Pain radiates to right arm
21 breath Worse on inspiration
22 postural Pain related to posture
23 Cwtender Chest wall tenderness
24 Sharp Pain described as sharp or stabbing
25 Tight Pain described as tight, heavy, gripping or crushing
26 Sweating Sweating
27 SOB Short of breath
28 Nausea Nausea
29 Vomiting Vomiting
30 Syncope Syncope
31 Episodic Episodic pain

32-36 Worsening Hours since 1st symptom (0-5, 6-10, 11-20, 21-40, over 40)
37-42 Duration Hours of pain at presentation (0-5, 6-10, 11-20, 21-40, 41-80, over 80)

43 prev-ang History of angina
44 Prev-MI Previous myocardial infarction
45 Worse Worse than usual angina/similar to previous acute myocardial infarction
46 Crackles Fine crackles suggestive of pulmonary oedema
47 Added-HS Added heart sounds
48 Hypoperfusion Signs of hypoperfusion
49 Stelve New ST-segment elevation
50 NewQ New pathological Q waves
51 STorT-abnorm ST segment or T-wave changes suggestive of ischaemia
52 LBBBorRBBB Bundle branch block
53 Old-MI Old electrocardiogram features of myocardial infarction
54 Old-isch Electrocardiogram signs of ischaemia known to be old

The total number of patients is 1,853, the feature size is 54 and the target is a binary variable indicating

whether a patient has myocardial infarction (MI). Table 2.5 summarizes the feature variables and their clin-

ical meanings. Note that the last six features (49 − 54) correspond to electrocardiograph readings that are
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Table 2.6: Statistics of variables for the Edinburgh data.

Abbreviation
age min: 13.0 median:59 mean:57.6 max: 92

Smoker 0: 785 1: 468
Exsmoker 0: 959 1: 294

Fhistory 0: 967 1: 286
Diabetes 0: 1165 1: 88

BP 0: 1053 1: 200
Lipids 0: 1215 1: 38

CPmajorSymp 0: 62 1: 1191
Restrostern 0: 331 1: 922

Lchest 0: 907 1: 346
Rchest 0: 1109 1: 144

Back 0: 1122 1: 131
Larm 0: 670 1: 583
Rarm 0: 1042 1: 211

breath 0: 1031 1: 222
postural 0: 1017 1: 236

Cwtender 0: 1201 1: 52
Sharp 0: 1208 1: 45
Tight 0: 572 1: 681

Sweating 0: 739 1: 514
SOB 0: 731 1: 522

Nausea 0: 1124 1: 129
Vomiting 0: 1124 1: 129
Syncope 0: 1208 1: 45
Episodic 0: 1161 1: 92

Worsening min: 0.0 median: 4.0 mean: 17.4 max: 168
Duration min: 0.0 median: 3.0 mean: 8.84 max: 168
prev-ang 0: 699 1: 554
prev-MI 0: 836 1: 361

Worse 0: 892 1: 361
Crackles 0: 1106 1: 147

Added-HS 0: 1247 1: 6
Hypoperfusion 0: 1203 1: 50

Stelve 0: 1199 1: 54
NewQ 0: 1240 1: 13

STorT-abnorm 0: 1240 1: 13
LBBBorRBBB 0: 1203 1: 50

Old-MI 0: 1101 0: 152
Old-isch 0: 1141 1: 112

MI 0: 979 1: 274
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Table 2.7: Statistics of variables for the Sheffield data.

Abbreviation
age min: 17.0 median:61 mean:59.9 max: 91

Smoker 0: 318 1: 182
Exsmoker 0: 388 1: 112

Fhistory 0: 373 1: 127
Diabetes 0: 451 1: 49

BP 0: 403 1: 97
Lipids 0: 482 1: 18

CPmajorSymp 0: 37 1: 463
Restrostern 0: 110 1: 390

Lchest 0: 373 1: 127
Rchest 0: 438 1: 62

Back 0: 426 1: 74
Larm 0: 237 1: 263
Rarm 0: 418 1: 82

breath 0: 422 1: 78
postural 0: 455 1: 45

Cwtender 0: 491 1: 9
Sharp 0: 400 1: 100
Tight 0: 246 1: 254

Sweating 0: 235 1: 265
SOB 0: 281 1: 219

Nausea 0: 341 1: 159
Vomiting 0: 449 1: 51
Syncope 0: 467 1: 33
Episodic 0: 417 1: 83

Worsening min: 0.0 median: 6.0 mean: 50.37 max: 1000
Duration min: 0.0 median: 4.0 mean: 12.34 max: 1000
prev-ang 0: 281 1: 219
prev-MI 0: 377 1: 123

Worse 0: 338 1: 162
Crackles 0: 373 1: 127

Added-HS 0: 476 1: 24
Hypoperfusion 0: 441 1: 59

Stelve 0: 403 1: 97
NewQ 0: 470 1: 30

STorT-abnorm 0: 403 1: 97
LBBBorRBBB 0: 474 1: 26

Old-MI 0: 454 1: 46
Old-isch 0: 473 1: 27

MI 0: 346 1: 154
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highly correlated to the target, so should not be included for prediction. I represent every categorical feature

by a set of binary features in order for it to be applicable to learning algorithms.
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(a) Edinburgh MI data.
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Figure 2.7: Boxplots of Myocardial Infarction data.
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2.4 Hospital Discharge Error Data

The last dataset, Hospital Discharge Error data, involves 77,348 patient records related to a real world Mi-

crobiology Culture Follow-up Errors study. The dataset was created through a retrospective analysis of all

microbiology cultures preformed at an academic hospital in Boston, MA in 2007.

Figure 2.8 overviews the data, where the number of patients involved in every stage of the clinical

decision are listed. Of 77, 348 inpatient culture results, 4819 (6%) are returned post-discharge.

Figure 2.8: Overview of the hospital discharge error data.

Of all post-discharged patients, 369 were clinically important and untreated at discharge; among 100

manually-reviewed cases, 51% potentially required a change in therapy [59]. Urine cultures were more

likely to potentially require change in therapy than non-urine cultures (Odds Ratio: 2.9, 95% Confidence

Interval: 1.2 − 7.2; p=0.02); in addition, 73% of 26 results from surgical services potentially required a

therapy change, compared to 57% of 30 results from general medicine, 38% of 16 results from oncology,

and 33% of 27 results from medical sub-specialties. Overall, 3.9% of post-discharge cultures potentially
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necessitated an antibiotic change [59].

Regarding patient demographics, this data contains age, gender, race and insurance. Regarding the hos-

pital encounter, the dataset contains the visit type (admission, emergency room, procedure or outpatient)

and admitting service, if applicable. Related to the microbiology result, the dataset contains the specimen

type (blood, urine, sputum and cerebral spinal fluid), the hospital day number that the specimen was col-

lected, whether the result was pending at the time of discharge from the hospital, whether the specimen was

collected on a weekend, whether the preliminary results (for blood cultures) were reported on a weekend,

and whether the final results were reported on a weekend. In addition to the data pulled directly from the

hospital computer system, this dataset contains an additional outcome variable, which indicates whether the

case represents a potential post-discharge follow-up error using experts’ knowledge. This variable is true

if the following three criteria are met: (1) the result is considered clinically relevant; (2) the results return

after the patient is discharged from the hospital; and (3) there is no antibiotic on the discharge medication

list to which the organism is sensitive based on the microbiology results. The features thus consisted of are

thus consisted of eight categorical variables and two numerical variables. The target is a Boolean variable

(Pot_error) indicating the potential error.

Table 2.8: Description of variables in hospital discharge error data. Eight out of ten explanatory variables
are categorical and two variables are numerical.

Name Details
Features

Specimens: 0=blood, 1=urine, 2=sputum, 3=csf
Spec_days: Number of days between admission date and specimen

collection date.
Collect_week: 0=specimen collected on Weekday, 1=specimen collected on

Weekend
Final_week: 0=final result on Weekday, 1=final result on Weekend
Vistyp: 1=admission, 0=non-admission
Svc: 0=<blank> (patient not admitted), 1=ONC, 2=MED,

3=Medical Sub-specialties, 4=Surgery and Surgical
Sub-specialties, 5=Other

Age: Age in years
Female: 0=male, 1=female
Race: 0=white, 1=black, 2=Asian, 3=Hispanic, 4=other,

5=unknown/declined
Insurance: 0=medicare, 1=medicaid, 2=commercial, 3=other

Target Variable
Pot_error: 0=not a potential follow-up error, 1=a potential follow-up error
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Table 2.8 summarizes both feature variables and the target variable. To handle the categorical features,

I explicitly express each categorical variable as a set of Boolean variables. For example, specimens are

replaced by three Boolean variables. The fully expanded feature set thus has 20 dimensions.

Figure 2.9: Histograms of variables in hospital discharge error data.

In the thesis, I focus on the prediction of 369 clinically important and highly suspicious observations out

of 4,819 returned post-discharge observations. Figure 2.9 illustrates the distribution of these variables. It

is easy to observe that there is a significant data unbalance between suspicious observations and unlabeled

observations.

I also illustrated the co-variate occurrence pattern in Figure 2.10 using matrix plots.
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Figure 2.10: Matrix plots of hospital discharge error data.

In this chapter, I described four datasets, which directly motivated this thesis. These datasets represent

two typical types of of biomedical problems: the large scale co-estimation problem and the calibration

for personalized medicine problem. I preserved the description of other datasets used to verify models in

separate chapters.
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2.5 Comparison

A summary comparison of the basics of the four datasets, e.g., feature size, outcome variable type and

number of subjects, is shown in Table 2.9. BioWar-I, II data have a large amount of subjects (~1e5) and

a relatively smaller number of co-variables. In contrast, Breast Cancer Gene Expression data have a small

number of subjects but a large number of co-variables (~1e5). Other datasets like Myocardial Infarction

and Hospital Discharge Error have intermediate sizes of both the number of subjects and the number of

co-variables.

The main differences between these datasets are: 1) the type of their outcome variables; 2) the number

of outcome variables of interest. For example, regarding BioWar-I, II data, I am interested in predicting

multiple outcome variables of discrete values while with the other data, my aim is to predict a single binary

outcome. These differences are due to the nature of the problem of interest.

Table 2.9: Comparison of four datasets.

Dataset
Number of
Subjects

Number of
Co-

Variables

Number of
Outcome
Variables

Type of
Outcome
Variable

BioWar BioWar-I 306,181 25 25 Discrete value
BioWar-II 1,224,726 25 25 Discrete value

Breast Cancer GSE2034 209 247,965 1 Binary
GSE2990 90 247,965 1 Binary

GSE3494-A 242 247,965 1 Binary
GSE34394-B 242 247,965 1 Binary

Myocardial Infarction Sheffield 1,353 54 1 Binary
Edinburgh 500 54 1 Binary

Hospital Discharge Error 4819 20 1 Binary

The BioWar-I and II data encode relational dependencies between outcome variables over time. These

data are compounded by manifestations from different sources related to the same disease outbreak event.

The decision of whether or not to intervene requires more comprehensive information about the current situ-

ation. Thus, a useful prediction model has to jointly consider multiple latent factors (states) implied by these

manifestations. To this end, BioWar simulation data are treated as a dynamic system with multiple correlated

outcome variables that evolves over time. Because decision makers are interested in interpretable results,

my goal is to predict the hidden states (discrete values) of continuous measurements for manifestations. For

this purpose, prediction accuracy is the most important metric for evaluating the performance.

The datasets, Breast Cancer, Myocardial Infarction and Hospital Discharge Error are different from
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BioWar-I, II. These data correspond to patient records with dichotomous outcomes, e.g. having a breast

cancer or not. The motivation of this study is not to improve the accuracy of existing models but increase the

reliability of predictions. Concretely, reliability (alternative known as the "calibration") is reflected in how

the outputs represent the true probability of the class membership [33]. For this reason, the data of interest

are those with a single binary outcome variable, which is essential for calculating the class membership.

Because these data are significantly different, I developed a specific model to handle each of them.

Otherwise, models that provide reliable estimates of binary class memberships cannot reveal the multiclass

hidden states of a disease outbreak, and models designed to estimate temporal and relational correlated latent

factors cannot offer a calibrated inference of class memberships of novel co-variates.

2.6 Limitation

I investigated four different datasets in this chapter. These datasets correspond to two problems: a) bioter-

rorism related disease outbreak and b) calibration for personalized medicine, which motivated my research

in biomedical informatics.

The data were collected from different sources and cover a range of typical biomedical applications,

including bioterrorism related disease outbreak, Breast Cancer Gene Expression, Myocardial Infarction and

Hospital Discharge Error. The first one is about public health and the rest correspond to clinically relevant

personalized medicine. Despite the variety of motivations, these data have a number of common character-

istics, e.g., the type of their outcome variable and the co-variable patterns. Both BioWar-I and BioWar-II

have multiple outcome variables, while Breast Cancer Gene Expression, Myocardial Infraction and Hospital

Discharge Error data shared a common bond: a single dichotomous outcome variable. The commonalities

offered by these data provide compelling support for a deep exploration of a generalized prediction model

for decision making support.

The characteristics of these data also limit the scope of my thesis. Because datasets are significantly

different, I have to develop specific models to handle each of them, e.g., one model deals with multiple

relational correlated hidden states over time, the other model focuses on providing reliable predictions of

class membership. The BioWar-I and BioWar-II data imply a dynamic system with multiple correlated

outcome variables that evolves over time. Due to computational complexity and noisy observation, I had

to consider the mutual coupling effect of various factors over time concurrently, thus narrowing the search
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space for feasible solutions in a discriminative manner. Regarding the other data related to calibration for

personalized medicine, they all have a single binary outcome variable, by which the class memberships

are estimated. Such data characteristics limited my exploration for calibration to be in accordance with

single outcome probabilistic models. Despite these limitations, these data serve well to illustrate prominent

biomedical problems, motivate meaningful research, and provide compelling support for evaluation.
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Chapter 3

Background

This thesis aims to develop prediction models to support biomedical decision making. To understand the

techniques described in the following chapters, it is necessary to introduce the basics about models and eval-

uation metrics that are relevant. One particular type of models that need to be discussed is called "structured

learning model", which involve optimizing dependent states in addition to modeling individual manifesta-

tions. These models include a broad range of popular methods, including Hidden Markov Model, Kalman

filter, Conditional Random Fields and Maximum Margin Markov Networks. They are also basics of the

framework I developed for modeling bioterrorism-related disease outbreaks. Thus, I decided to use the first

half of this chapter to provide necessary backgrounds of structured models.

The second half of this chapter discusses two major components of the model performance evaluation.

They are the basis for accessing the probabilistic model’s validity and reliability, and for understanding the

insufficiency of existing approaches. The first metric is discrimination ability, which indicates the model’s

ability to rank various patients correctly. This metric is the goal of most cohort studies; however, it is not

sufficient to support decision making at a personal level. Thus, I introduced another important but less

studied metric called calibration, which stratifies how outcomes affect various genetic population groups

within a patient-diagnosis population. Specifically, this metric indicates how well predicted values represent

observed outcomes.
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3.1 Structured Learning Frameworks

This section provides an overview of the popular structured learning frameworks for the temporal model

and the relational model. Specifically, I cover models including the Hidden Markov Model (HMM) [152],

Kalman Filter (KF) [96], Conditional Random fields (CRFs) [107] and Maximum Margin Markov Networks

(M3N) [172]. These models are closely related to my models developed in later chapters.

3.1.1 Temporal Models

The basic temporal model is Dynamic Systems (LDS) with Gaussian noise [72]. I denote states as Y =

[y1, . . . , yp] as a k-dimension hidden state vectors; X = [x1, . . . , xp] as p-dimension feature vectors.

In most scenarios, the states Y cannot be observed directly. However, the models assume that hidden

states can be summarized by k-dimension state variables (k � p). At each time step, an observable feature

set, the p-dimension X generated by the system use underlying states, is non-observable.

The state Y evolves with a simple first-order Markov dynamic. Note such evolution is hidden and the

observations are corrupted by an additive Gaussian noise. For both continuous valued and discrete valued

state variable Y , the basic generative model can be written as:

Yt+1 = AYt + w, , w ∼ N (0, Q), (3.1)

Xt = CYt + v, , v ∼ N (0, R), (3.2)

where A is the k × k state transition matrix and C is the p× k observation measurement matrix.

Interpretation: The LDS model specifies a linear relationship between state conse-

quences using a Markov chain. The observations X are sampled from a distribution of

states Y .

The k-dimension vector w and p-dimension vector v correspond to random variables representing state

evolutions and observation noises, respectively. The noises are time independent and Gaussian distributed

with zero mean and covariance matrices, Q and R. These nosies are essential to the system. Without the

noise w, the state Yt would always either shrink exponentially to zero or blow up exponentially. Similarly, in

the absence of the observation noise v the state would no longer be hidden. Figure 3.1 illustrates this basic
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Figure 3.1: Generative model of the linear dynamical system. The −1 block is a unit delay. The covariance
matrix of the input noise w is Q and the covariance matrix of the output noise v is R.

model.

The assumption made by Equation 3.1 is that the hidden state sequence Yt should be an informative

lower dimensional projection of more complicated observations Xt. With linear dynamics and noises, these

states should summarize driving factors of observations more compactly. Thus, LDS models work with low

dimensional states rather than high dimensional observables (k � p).

Two most popular methods in temporal LDS are the Kalman filter [96] and Hidden Markov Model [152],

which usually assume Gaussian inputs. The popularity of linear Gaussian models comes from two useful

analytical properties: first, the sum of two independent Gaussian distributed quantities is also Gaussian

distributed; second, the output of a linear system whose input is Gaussian distributed is again Gaussian

distributed. Accordingly, if Y1 ∼ N (µ1, Q1), then all future states Yt and observations Xt will also be

Gaussian distributed, where t indicates a time tick. The explicit formula for the conditional expectations of

the states and observables can be written as:

P (Yt+1|Yt) = N (AYt, Q)|Yt+1 ,

P (Xt|Yt) = N (CYt, R)|Xt
.

The joint probability of a sequence of states and outputs can be written as,

P ({X1, . . . , XT }, {Y1, . . . , YT }) = P (Y1)

T−1∏
t=1

P (Yt+1|Pt)
T−1∏
t=1

P (Xt|Yt),

where T is the total period of training. The negative log probability is just the sum of matrix quadratic forms,
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− 2 logP ({X1, . . . , XT }, {Y1, . . . , YT })

=

T∑
t=1

[(Xt − CYt)
′
R−1(Xt − CYt) + log |R|] +

T−1∑
t=1

[(Yt+1 −AYt)
′
Q−1(Yt+1 −AYt) + log |Q|]

+(Y1 − µ1)Q−1
1 (Y1 − µ1) + log |Q1|+ T (p+ k) log 2π. (3.3)

Interpretation: The objective function takes the log-likelihood form rather than the

productions for two reasons: 1) it helps to alleviate a floating point error due to the

proximity of tiny numbers of production; 2) it offers a more convenient operation to

factorize the model.

Given fixed model parameters {A,C,Q,R, µ1, Q1}, a very basic task is to estimate the total likelihood

of an observation sequence,

p({X1 . . . XT ) =

ˆ
∀{Y1...YT }

P ({X1, . . . , XT }, {Y1, . . . , YT })d({Y1, . . . , YT }, (3.4)

the marginalization of which requires an efficient way of integrating the joint probability (results of Equation

3.3) over all possible configurations. With this integral, it is simple to compute the conditional distribution

for a proposed hidden state sequence given the observations by dividing the joint probability by the total

likelihood of the observations,

P ({Y1, . . . , YT }|{X1, . . . , XT }) =
P ({X1, . . . , XT }, {Y1, . . . , YT })

P ({X1, . . . , XT })
. (3.5)

Interpretation: The conditional probability is closely related to Equation 3.4 and

often is the intermediate value of a recursive method such as the Viterbi algorithm.

Most discriminative structured learning models optimize the same objective but with

different regularization criteria.

The next problem is about learning: given the observed sequence (or perhaps several sequences) of out-

puts {X1, . . . , XT }, the question is how to find the parameters {A,C,Q,R, µ1, Q1} that maximize the like-

lihood of the observations? One approach is to use the expectation-maximization (EM) algorithm originally
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proposed by Shumway et al. [163], and extended by Ghahramani et al. [75]. The objective of the algorithm

is to maximize the likelihood of the observation in the presence of hidden variables. Let Y = {Y1, . . . , YT },

X = {X1, . . . , XT } and denote parameters as θ. Hence, maximizing the likelihood as a function of θ is

equivalent to maximizing the following log-likelihood:

L(θ) = logP (Y|θ) = log

ˆ
X

p(X,Y|θ)dX.

I can obtain a lower bound on L use any distribution Q over hidden variables,

log

ˆ
X

P (Y,X|θ)dX = log

ˆ
X

Q(X)
P (Y,X|θ)
Q(X)

dX

≥
ˆ
X

Q(X) log
P (Y,X|θ)
Q(X)

dX (3.6)

=

ˆ
X

Q(X) logP (Y,X|θ)dX−
ˆ
X

Q(X) logQ(X)dX (3.7)

= F(Q, θ), (3.8)

where Equation 3.6, is known as Jensen’s inequality.

Interpretation: Equation 3.6 provides a lower bound of the log-likelihood function,

which is not factorizable. Maximizing this lower bound encourages a maximization of

the loglikelihood objective.

The EM algorithm alternates between maximizingF with respect to the distributionQ and the parameter

θ, respectively, keeping the other fixed. Starting from some initial parameters θ0,

E - step : Qk+1 ← argmaxQF(Q, θk), (3.9)

M - step : θk+1 ← argmaxθF(Qk+1, θ). (3.10)

The maximum in the E-step results is when Q is exactly the conditional distribution of X is Qk+1(X) =

P (X|Y, θk), at which point the bound becomes an equality: F(Qk+1, θk) = L(θk).
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Interpretation: Equation 3.9 and Equation 3.10 take alternative steps to maximize

a non-convex function. By fixing one objective at a time, the EM algorithm reaches a

local optimal of the objective (Equation 3.6) quickly.

The maximum of the M-step is obtained by maximizing the first term in Equation 3.7, because the

entropy of Q does not depend on θ,

M - step : θk+1 ← argmaxθ

ˆ
X

P (X|Y, θk) logP (Y,X|θ)d, (3.11)

since at the beginning of each M-stepF(Qk+1, θk) = L(θk) and E-step does not change θ, the EM algorithm

is guaranteed not to decrease the likelihood at each iteration.

3.1.1.1 Kalman Filter

For continuous time series data, temporal ordering is critical. The state evaluation dynamics, which provide

the only aspect of temporal ordering, thus should not be ignored. Such models have traditionally been the

focus of the control community and received a lot of attention from the power industry as well.

A popular model, described by Equation 3.14 and Equation 3.13, is called Kalman filter [96].

Yt+1 = AYt + w, , w ∼ N (0, Q), (3.12)

Xt = CYt + v, , v ∼ N (0, R), (3.13)

where A is no longer the state transition matrix as before. The k-dimension vector w and the p-dimension

vector v are temporally white and spatially Gaussian distributed noises independent of each other.

Interpretation: Kalman filter is a typical Linear Dynamic System. The states are

modeled by a Markov chain, and its observations are assumed to be induced by the

hidden states.

Kalman [96] proposed an efficient recursive solution to the inference problem. The learning problem

(estimating model parameters) was later studied by Ghahramani et al. [75] and Digalakis et al. [57].

In the process of imaging in the state-space, the points are embedded by a sphere (described by Q). The

embedding sphere is stretched into a ellipsoid in the observation space by C. This ellipsoid is convolved
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with the observation noise covariance (described by R). The center of the state-space ball moves over time,

and its location is determined by eigenvalues and eigenvectors of the matrix A. The center is moved to a

new point according to this flow field (induced by eigenvalues and eigenvectors of A); then it relocates to

pick a new state. From the new state, it moves to a new point and iterates. If A is an identity matrix (not the

zero matrix), the “flow” does not move but evolves according to a random walk of the noise set by Q.

3.1.1.2 Hidden Markov Model

The Hidden Markov Model (HMM) can be obtained by some simple modifications to the previous continu-

ous state model. The HMM specifies the state at any time with a discrete value. Many processes, especially

those with distinct modes of operation, are better described by internal states that are non-continuous.

The HMM state evolution is still a first-order Markovian, and the observation process is a linear process

with an additive Gaussian noise. The difference between HMM and the Kalman filter is the use of the

winner-take-it-all operation WTA(·), which is defined as a unity vector X in the position of the largest

coordinate of HMM but as zeros in all other positions. The HMM model is:

Yt+1 = WTA(AYt + w), , w ∼ N (0, Q), (3.14)

Xt = CYt + v, , v ∼ N (0, R), (3.15)

where A is a matrix, but it is no longer called the state transition matrix. Like the Kalman filter, the k-

dimension vector w and p-dimension vector v are independent white noises.

Interpretation: The Hidden Markov Model uses the same LDS formulation of

Kalman Filter, but its states take discrete values rather than continuous values.

The initial state Y1 is generated as the following,

Y1 = WTA(N (µ1, Q1)). (3.16)

The difference between the HMM and the Kalman filter models is the WTA operation. Indeed, I can

construct an equivalence transformation from Equation 3.14 to Equation 3.12 by mapping WTA(A) to a

state transition matrix T , where Tij = P (Yt+1 = ej |Yt = ei). T can be computed easily given A and Q:
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Figure 3.2: Graphical model of CRFs and M3N. X and Y correspond to local observations and their corre-
sponding labels. The circles [X5, Y5] and [Y1,Y2] represent a unary feature and a pairwise Markovian feature.

Tij is the probability assigned by the Gaussian whose mean is the i-th column of A (with covariance Q) to

the region of k-space in which the j-th coordinate is larger than all the others. For any transition matrix T

(whose rows sum to unity), there exist matrices A and Q such that the dynamics are equivalent. Similarly,

the initial probability mass function for Y1 can be computed from µ1 and Q1 .

For any noise covariance Q, the means in columns of A can be chosen to be any equivalent transition

probabilities Tij . I thus restrict Q to be the identity matrix and use only the means in columns of A to set

probabilities. Equivalently, I can restrict Q1 = I and use only the mean µ1 to set the probabilities for the

initial state Y1.

For HMM, the likelihood estimation and inference are performed with the forward (alpha) recursions;

learning is conducted with the forward-backward (alpha-beta) recursions. The EM algorithm for learning is

the exact well known Baum-Welch re-estimation procedure [18].

3.1.2 Relational Models

On the other hand, structural priors play crucial roles in many vision and natural language processing tasks,

e.g. optical character recognition [151], object detection [52], and scene understanding [78]. Although

the basic idea is to recognize an entity, the algorithm should consider beyond local observations and take

the context into consideration. Please refers to Figure 3.2. Markov Random Fields (MRFs) have been
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considered a natural model for incorporating such priors, however, it is trained in a generative way, which

involves expensive computation.

Recent development in discriminative training techniques show prominent advantages over generative

training approaches. For example, in Conditional Random Fields (CRFs) [107], relaxing the independence

assumption by being conditionally trained gives significant performance improvement to discriminative

models. Another state-of-the-art method, Maximum Margin Markov Networks (M3N) [172] incorporates

large margin mechanisms into MRFs, making them very appealing. Theoretically, CRFs and M3N differ

only in their loss functions. Both methods can be formulated in the same framework: structured linear

discriminant function.

Let (X,Y ∗) denote a pair of the local observation and its label. The goal of discriminative structure

prediction can be thought of learning a W -parametrized linear discriminant function,

F (W,X, Y ) =< W,φ(X,Y ) >, (3.17)

where φ(·) maps the pattern (X,Y ) from the input space D = [X × Y] to a feature vector φ(X,Y ) ∈ RQ;

W is the weight vector in RQ. The definition of the feature representation φ depends on the application.

With the discriminative function 3.17, the prediction rule is determined by,

Y ∗ = f(W,X) = argmaxY ∈G(X)F (W,X, Y ), (3.18)

where G(X) enumerates various label configuration candidates for input X; the value of F (W,X, Y ) can

be understood as a score evaluating the compatibility between the pair: X and Y .

Interpretation: The objective above takes unary feature and pairwise state co-

occurance into consideration, concurrently. The global optimization synthesized in-

formation from both perspectives to reduce ambiguities due to noisy observations.

The output not only labels individual entity but also explores meaningful internal structures within Y .

Both Conditional Random Fields and Maximum Margin Markov Network are instances of such discrimina-

tive structured prediction framework.
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3.1.2.1 Conditional Random Fields

CRFs first defines a conditional distribution over labels with function F (W,X, Y ),

p(Y |X,W ) =
1

Z(W,X)
exp{F (W,X, Y )}, (3.19)

whereZ(W,X) =
∑
y∈G(X) exp{F (W,X, Y )} is called the partition function. Given training set {Xi, Y

∗
i }|Ni=1,

the parameters W can be learned by minimizing the following regularized log-loss,

W∗ = argminW

N∑
i=1

lcrf (i) +
λ

2
||W ||2, (3.20)

where lcrf (i) = − log p(Yi|Xi,W ) and λ is a constant determining the trade-off between empirical risk and

model complexity.

Interpretation: Conditional Random Field implements the joint optimization frame-

work (Equation 3.17) using a maximum likelihood criteria.

3.1.2.2 Maximum Margin Markov Network

The Maximum Margin Markov Network is a model of Support Vector Machines with structured output.

Learning parameter W amounts to solving the following constraint quadratic optimization problem,

argminW

N∑
i=1

ξi +
λ

2
||W ||2 (3.21)

s.t. 〈W,Φ(Xi, Y )〉 ≥ ei(Y, Y ∗i )− ξi,∀Y ∈ G(Xi),

where Φ(Xi, Y ) = φ(Xi, Y
∗
i )−φ(Xi, Y ) and ei(Y, Y ∗i ) is the hamming distance between the configuration

Y and the true label Y ∗i . The hinge loss of M3N can be written as:

lm3n(i) = max
Y ∈G(Xi)

[ei(Y, Y
∗
i )− 〈W,Φ(Xi, Y )〉]. (3.22)

Hence, the constrained optimization in Equation 3.21 can be written as:
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W∗ = argminW

N∑
i=1

lm3n(i) +
λ

2
||W ||2. (3.23)

Comparing Equation 3.20 and 3.23, it is easy to see that CRFs and M3N differ only in their loss func-

tions. Both models have a regularization term, which is understood as Bayesian parameter estimation with

Gaussian prior for CRFs and as large margins for M3N.

Interpretation: Maximum Margin Markov Network implements the joint optimiza-

tion framework (Equation 3.17) using a maximum margin criteria.

3.2 Evaluation Metrics

Predictive models are developed to assist clinicians to decide on treatment options and follow-up manage-

ment [170]. Accurate prediction is critical so that treatment can be given to those individuals who are most

likely to develop the disease [80]. In personalized medicine, the utility of predictive models is dependent on

three parameters: sensitivity, specificity and reliability of predicted values.

Specificity and sensitivity are about drawing a decision boundary between positive and negative cases.

Good specificity means superior performance of identifying sick individuals while specificity indicates the

percentage of healthy people who are correctly identified as not having the condition. A reciprocal rela-

tionship exists between sensitivity and specificity. Thus, successful model should be highly specific without

sacrificing sensitivity. While sensitivity and specificity are widely known measures for discrimination, the

area under the ROC curve is used more frequently, as a one-number summary of discrimination [83]. Histor-

ically, supervised classifiers (e.g., Support Vector Machines and Decision Trees) were designed to provide

a mapping between features and the outcome (represented by 0/1 class membership in many cases). These

classifiers aimed to optimize the ranking of their outputs in a cohort study so that positive samples ranked

higher than negative samples.

This objective is known as discrimination, which defines how well the predictive model can distinguish

between two or more classes [12, 129, 168, 179]. A classifier with good discrimination ability, e.g. a

large Area Under the ROC Curve (AUC) [83, 123], suffices to handle many learning tasks that require only

decision boundary. However, it is not necessarily a good probabilistic model as it is not “calibrated”. The

63



term “calibration” indicates how close the system estimates is to the “true” probability of a disease [37, 111,

176]. For example, Support Vector Machine defines a decision boundary to maximize the discrimination

performance but its outputs are not calibrated, thus cannot be used as estimations of the “true probability”.

Due to the difficulty of defining what exactly constitutes the true probability in predictive models, cal-

ibration measures have received less attention than discrimination. Nevertheless, it is imperative that pre-

dicted probabilities reflect the true probability of disease as closely as possible [117], because only then

can these predictions be used for individual risk assessment, which is a critical component to personalized

clinical decision support. More importantly, each patient i should have his or her own probability parameter

πi, and not the probability parameter of the cohort π. Inconsistency between a model’s outputs and true

probability could significantly reduce the model’s reliability for decision makers.

(a) A made-up medical profile.

(b) Output from the NHLBI’s risk assessment
web-tool.

(c) Risk estimated by the American Heart
Association’s online tool.

Figure 3.3: Lack of calibration can cause inconsistent risk predictions. The same patient got different risk
scores from different online tools due to lack of calibration.

Figure 3.3 demonstrated a case in which the same made-up patient record got different heart attack risk
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scores from different online risk estimation systems. The inconsistency provides yet another motivation for

calibrating probabilistic outputs.

Ideally, a predictive model for supporting clinical decision making requires outputs to be indistinguish-

able from "true probability" of an individual patient being diagnosed. That is, predictions useful in sup-

porting clinical decisions should be "calibrated". We all know now that diagnosis or treatment good for a

population in general might not work for individual patients in this diagnostic group. In terms of personal-

ized clinical decisions, it is important to count what matters the most for individual patients to estimate their

own risks. However, this is a nontrivial task.

A few difficulties complicate the investigation of "ideal" probabilistic models: first, there is no clear

definition of what constitutes "true probability"; second, we need a good measurement of how well a prob-

abilistic model "calibrates" [111]. Unfortunately, there is no one number summary of a model’s calibration

ability such as AUC for discrimination.

Recent research in machine learning has shown the benefits of calibrating predictive models, which be-

comes especially important when probability estimates are used for clinical decision making [140, 147, 205,

206]. In summary, the quality of probabilistic predictive models depends on two major indices: discrimina-

tion and calibration. Importantly, the success of personalized clinical decision support systems depends on

a comprehensive consideration of both metrics.

3.2.1 Discrimination

Discrimination (also known as resolution or refinement) is the ability of the probabilistic model to correctly

separate co-variate vectors into two sets corresponding to observed outcomes, which take dichotomous out-

come values of 0 or 1.

One popular discrimination measurement is a receiver operating characteristic (ROC) curve, which is a

graphical plot of sensitivity (true positive rate) vs. 1-specificity (false positive rate) [108]. The ROC curve

was first developed under the signal detection theory for a binary classifier system where its discrimination

threshold is varied. The curve compares two operating characteristic (True Positive Rate vs. False Positive

Rate).

Every point on a ROC curve corresponds to a unique pair of True Positive Rate (TPR) and False Positive

Rate (FPR), as indicated by Figure 3.4. The Area Under the ROC Curve (AUC) [83, 181] provides a one

number summary to evaluate a probabilistic model’s ability to discriminate between positive and negative
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co-variate vectors at various discriminative thresholds. Concretely, the AUC can be expressed by integrating

TPR over FPR:

AUC =

ˆ n

0

(TPR) d(FPR)

=
1

nm

∑
X∈{+}

∑
O∈{−}

(P (X) > P (O)),

where P (X) and P (O) correspond to the posterior probability of a positive sampleX and a negative sample

O, respectively. The values {+} and {−} indicate the positive and negative observations, respectively. The

quantities m and n correspond to the cardinality of the positive and negative classes. Figure 3.4 illustrates

the relationships between ROC, AUC and its calculation.

(a) ROC

1-specificity

se
ns

iti
vi

ty

0 1

0
1

0 1

(b) AUC

1-specificity

se
ns

iti
vi

ty

0 1

0
1

AUC

(c) AUC is computed as the fraction of discordant pairs out of total number of instance pairs.
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0 1
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Figure 3.4: ROC, AUC and the calculation.
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Combined ROC curve for relevant using BayesNet, SVM and Logistic Regression

Average false positive rate
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Figure 3.5: Demo plots of ROC curve for different models: Bayes Net, Logistic Regression and Support
Vector Machine. Models are trained using synthetic data to illustrate the curves for illustration purposes.

A random classifier corresponds to an AUC of 0.5; a model that perfectly separates two classes of co-

variate vectors corresponds to an AUC of 1. For illustration purpose, I plotted ROC curves for three different

models: Bayes Net, Logistic Regression and Support Vector Machine in Figure 3.5. AUCs are shown in the

legend next to their names.

Interpretation: The area under the ROC curve (AUC) evaluates model discrimina-

tion by calculating the probability that among all possible pairs of individuals with two

different outcomes, the predicted value for the one with positive outcome is higher than

for the one with negative outcome. [41]

However, this index is a global measure. Recent research in biomedical informatics has shown the

insufficiency of this metric [12, 176]. With numerical simulations, Pepe et al. [146] demonstrated the

relation between association (measured in odds ratios) and classification, depicted by AUC, and concluded

that the statistical significance in association with itself does not characterize the discriminatory capacity.

3.2.2 Calibration

Supervised learning often concentrates on a learning problem to infer a function that separates given in-

stances to discrete categories they belong to. However, it is often desirable to output the probability of an
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instance belonging to a particular class. Ideally, these probabilities estimate converge to the true underlying

probability distribution, namely, the proportion of events in a group of cases that have an estimate of p is

exactly p. If a model predicts that it is going to rain on a particular day with 10% probability, then users

should expect that there is genuinely a 10% chance that it is going to rain.

For a binary outcome case, that is, whenever a classifier outputs a probability estimates of instance s,

the fraction of times this instance in question is positive is roundly s. This problem is often know as “cal-

ibration”, another important probabilistic model evaluation criteria in addition to “discrimination”. Well-

calibrated probabilities are useful whenever users want to make not just classification, but actions. Intu-

itively, calibrated probability estimates can be interpreted as genuine frequency-based estimates.

More formally, calibration (also called reliability) is how well probabilistic outputs numerically cor-

respond to the observed outcomes. Let us, for example, denote a probabilistic classifier that assigns a

probability p to every sample i. That is:

y = class label, p = estimated probability.

Mathematically, this intuition can be can be defined as follows:

ρεN (p) =

∑N
i=1 ytI[pi ∈ (p− ε, p+ ε)]∑N
i=1 I[pi ∈ (p− ε, p+ ε)]

, (3.24)

(I[·] is the indicator function.) In other words, ρεN (p) is the empirical frequency of the outcome on just the rounds

when the predictions were "roughly" p. This frequency is expected to be close to p. Thus, a forecaster is

calibrated if every p and every ε,

lim sup
N→∞

|ρεN (p)− p| ≤ ε.

holds.

Interpretation: Calibration (Equation 3.24) counts the frequency of outcomes when

its values is “roughly” p.

In practice, when there are not many samples with the same estimated probabilities, samples with similar

estimated probabilities ρεi(p) are grouped for evaluation by partitioning the sample set into groups (or bins).

To estimate the unknown true probabilities, I divided the prediction space is into a number of bins. These

can be determined by fixed thresholds (e.g., cases with predicted value between 0 and 0.1 fall in the first

bin and between 0.1 and 0.2 in the second bin.), or by percentiles (e.g., deciles). For each bin, the mean
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predicted probability is plotted against the observed fraction of positive cases. If the model is well calibrated,

the points fall near the diagonal line. This kind of plot is known as a reliability diagram [33], as shown in

Figure 3.6.

(a) Platt Scaling (b) Isotonic Regression

Figure 3.6: Reliability diagrams for two calibration approaches. Subfigure (a) corresponds to Platt Scaling
and the subfigure (b) corresponds to Isotonic Regression. The blue circles are connected to help visualiza-
tion; the red dotted lines are the results for the calibration algorithms. A perfectly calibrated classifier must
generate predictions that lie on the 45 degree diagonal line.

Statistically, calibration is also defined synonymously to goodness of fit. Such accessing goodness of

fit can be conducted in checking model assumptions. A widely used goodness-of-fit statistic is the Hosmer-

Lemeshow test (HL-test) [90, 103]. Although HL-test has important limitations, few alternatives have been

proposed. In addition, most of these alternatives are model-specific calibration measurements, which makes

them unattractive for evaluating probabilistic outputs across different models. For this reason, I decided to

use the HL-test as my calibration evaluation measurement in this thesis.

The HL-test statistic can be written as: H =
∑10
g=1

(Og−Eg)2

Ngπg(1−πg) , where Og , Eg , Ng and πg correspond

to observed positive events, expected positive events, number of total observations, and predicted risk for

the gth risk deciles, respectively. H is called the Hosmer-Lemeshow H test statistic if deciles are defined as

equal-length subgroups of fitted risk values; otherwise, H is called the Hosmer-Lemeshow C test statistic

if deciles are defined as equal-size subgroups of fitted risk values. The distribution of the statistics H

is approximated by a chi-square with eight degrees of freedom. Figure 3.7 illustrates the relationship of

reliability diagram and two types of HL-test.
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(a) Reliability diagram provides a visual evidence of goodness-of-fit. The averaged point to line distance
roughly indicates how well a model is calibrated.
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Figure 3.7: Reliability diagrams and two types of HL-test.
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Chapter 4

Co-Estimating Hidden States in

Predicting Bio-terrorism Related

Outbreaks

1Bioterrorism related outbreak prediction is receiving more and more attentions since the 9/11 attack [34, 97,

134, 184, 190]. Since then, the country channeled enormous financial resources in bioterrorism research: in

2001, for example, the annual budget for the National Institute of Allergy and Infectious Disease (NIAID) in

Bethesda, Maryland— the division of the National Institutes of Health that carries biodefence and infectious-

disease research — was $42 million. By 2002, it had escalated to $187 million, a 345% increase [97].

Despite many efforts devoted to fuse the public health information and social networks [99], our abilities to

successfully detect, monitor and foresee bioterrorism-related disease outbreaks are not yet sufficient.

The ability to foresee bioterrorism attacks and their impact on the public is necessary to ensure the

efficacy of responding from the planning and preparation perspectives [46, 114, 154, 190]. To tackle this

problem, the first step is to determine the manifestation process of large scale disease spread. Predictive

models can be developed on the basis of the manifestations of the disease, to assist in the decision making

process of responding to and controlling it.

A widely applied epidemiological forecasting method called susceptible-infected-recovered (SIR) mod-

1A version of this chapter has been published in ECML’10 and Lecture Notes in Computer Science [92].
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Figure 4.1: Infectious disease spreads through human networks over time.

els manifestations of disease process and suggests response strategies [43, 77, 161, 175, 208]. The model

categorizes the entire population into three groups – susceptible, infected, and recovered. Individuals in

each group are assumed to have the same states and SIR uses predefined transition probability to model the

disease progression.

However, a “population-based” disease progression processes model like SIR assumes a homogeneous

mixing of individuals. Its prediction over a network assumes that contacts between individuals are fixed, at

least for the duration of an outbreak, however, in reality, contact patterns may be quite fluid, with individuals

frequently making and breaking social or sexual relationships [182]. We also know that symptoms or mani-

festations for one member of a diagnosis population might not be the same for all members. SIR model thus

lacks the ability to adequately capture disease transmission on dynamic networks in which each individual

has a characteristic while identities of their contacts change in time [39].

Recent studies of aviation influenza have confirmed that large-scale diseases quickly spread over a net-
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Figure 4.2: BioWar simulation engine.

work of people [48, 76, 149, 150], as illustrated in Figure 4.1 Actually, the spread of disease is a complex

process involving multiple aspects of social life, i.e., social networks, communication media, demographic

information, urban spatial structure, and weather conditions. Recently, a more sophisticated agent-based

simulation engine was developed to take into account of above mentioned aspects concurrently with an ad-

vanced diagnostic model to determine the disease process at a much finer scale than SIR. This engine, known

as BioWar, was developed by CASOS lab at CMU ( www.casos.cs.cmu.edu/projects/biowar/

) to provide a single integrated interface that simulates the impact of a bio-terrorist attack in a U. S. city.

As opposed to traditional methods that model hypothetical cites, the BioWar engine used real city data like

census, school track, and other public available sources to output various manifestations of the disease as

the simulated agents go about their lives, as illustrated in Figure 4.2. These manifestations include daily

observations like doctor visit rate, school attendance, and weblookup rate. The validity of the simulation

model has been successfully confirmed by a number of previously published articles [30, 31, 32, 38].

In traditional supervised learning methods, the goals are to separate instances into discrete categories.

These methods aim to optimize the 0/1 loss function so that the empirical mistakes on the training set

minimized. Among these approaches, Support Vector Machine (SVMs) [180] has demonstrated impressive
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success on a broad range applications such as image segmentation [89, 202], text mining [55, 109, 210] and

many more. These successes have been achieved to a large extent on the ability of the kernels [17, 159],

which can map low-dimensional inputs to a very high dimensional space where the separations become

easier. In addition to many empirical success, SVMs have strong generalization guarantees, derived from

the margin-maximizing properties of the learning algorithm [25, 56, 63].

However, many supervised learning applications contains rich contextual information in addition to indi-

vidual manifestations. These contextual information are usual reflected in relationships with time and space.

For example, it might be easier to label a set of correlated instances such as optical character recognition,

part of speech tagging and video segmentation, which involves labeling an entire sequences of instances

into discrete non-exclusive categories. An easy solution, which is often conducted in practice, is to treat

this sequence of labeling tasks as a group of independent tasks, handling each of them separately. This

approach, however, fails to exploit significant correlation information, and is often insufficient to meet the

performance requirements. Typical approaches include Hidden Markov Network [152] that learns temporal

correlated states and Conditional Random Fields [107] that learn relational dependent states. These ap-

proaches use probabilistic inference algorithms, i.e. Balm-Welch’s backward and forward, to jointly assign

manifestations with their most likely states. That is, they are capable of modeling correlations between

different labels, often outperforms ad-hoc methods that classify instances separately. Unfortunately, these

probabilistic models are not generalizable to more complex situations where both temporal and relational

dependency are involved. Moreover, graphical models cannot provide generalization bounds that maximum-

margin classifiers could offer.

The above discussion is closely related to the bioterrorism-related disease outbreak problem, which

involves observing manifestations of different sources over a continuous period. The objective is to estimate

hidden states that drive these manifestations to assist decision makers in emergency response and disaster

preparedness.
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Figure 4.3: An example of using co-estimated variables to support emergency responses of disease out-
breaks.

Figure 4.3 illustrates an example of using co-estimated states to support emergency responses. Interven-

tions are suggested by not a single state but a set of estimated states together. Obviously, the effectiveness of

interventions relies on how accuracy the state estimation is. Unfortunately, neither modeling manifestations

from a single perspective over time (HMM model [152]) nor modeling all manifestations at one time tick

(CRFs [107]) can provide highly accurate state predictions in bioterrorism-related disease outbreaks. Com-

bining manipulations over temporal and spatial aspects could offer a more comprehensive understanding of

the disease processes by reducing the ambiguity in individual instances if they are considered separately.

However, a direct solution of this joint optimization problems could be computationally infeasible (i.e., ex-
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ponentially more expensive than that of the individual optimization). To this end, I focused on developing

tractable temporal and relational prediction frameworks to model manifestations of simulated avian influenza

using the BioWar engine. The new framework called Temporal Maximum Margin Markov Network to con-

sider factorizable temporal dependency and relational correlation concurrently for better performance.

4.1 Motivation

The public fear of potential Bio-terrorism attack draws our attention to an old problem: predicting the

spread of infectious diseases on a large scale [19, 24, 46]. Accurate prediction of manifestations of the

disease process helps the policy makers to intervene in a more timely and appropriate manner in various

situation, e.g., resource allocation, vaccination, and school closures. For example, if a reliable prediction

model indicates that the hospital inpatient rate will increase sharply, health officials can devote more attention

and resources to get better prepared [46].

Intuitively, when people people interact closely, their chances of becoming infected by a contagious

disease increases. However, the spread of diseases, especially the airborne ones, is linked with multiple

environmental factors, and it is difficult to predict future disease outbreaks due to the evolving nature of

threats and vulnerabilities [3]. On a city scale, individuals interact with one another with a large degree of

randomness. Diseases spread through the social and activity networks over time, which further complicate

the modeling process.

To model the complex nature of disease outbreak more faithfully, I developed a more comprehensive

approach. As opposed to the traditional single-target modeling (e.g., number of people at work, number

of doctor visits, web look up rates and inpatient rates), my approach provides a concurrent prediction of

multiple hidden factors that are linked to the same disease outbreak. The benefit of introducing concurrent

co-estimation is twofold: improving the overall prediction accuracy by leveraging mutual correlations among

various hidden factors and predicting the ranking of the hierarchy of contributing factors.

The first benefit is obvious as it provides early detection, which helps decision makers. The latter is useful

to the human experts in generating "profiles" of different disease outbreak stages. The main contributions of

this study are:

• I propose a novel symbolic representation (SAX+ coding) to model different but correlated continuous

outcome variables.
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The approach aims at finding the best trade-off between quantitative methods that are precise and formally

rigorous and qualitative methods that are intuitive and easy to understand. My approach maps various

sources of continuous observations to discrete-valued states (symbolic representation) at comparable scales,

and thus makes semantic correlations among heterogeneous observations more meaningful and provides an

intuitive interface to watch concept drifts that relate to adverse events.

• I improve the overall prediction accuracy by inferring a relational network of the states, concurrently.

My approach differs from previous studies that predict individual states. I advocate predicting relational-

related states simultaneously to best utilize mutual correlations between different perspectives of collected

observations. For example, a sharp increase of flu-related keywords on Weblookup indicates a potential

flu outbreak, which increases the probability of doctor visiting rates. Predictions of the latter state (doc-

tor_visit_rate), if predicted together with the former state (Weblookup rate), could be improved over those

on its own time series.

Because no bio-terrorism related attacks have been observed in U.S., I will use simulated data from the

BioWar engine to validate my model. Please refer to Chapter 2 for the details about the data and BioWar

simulation engine. The rest of this chapter is organized as follows: Section 4.2 describes the data; Section

4.3 discusses the related works; Section 4.4 conducts preliminary data analysis and describes my novel

state representation approach; Section 4.5 discusses my machine learning model including the learning and

prediction algorithms; Section 4.7 presents the result of using synthetic data and two simulated BioWar data-

sets. I also evaluate the generalization ability of the ML-Model in this section. Finally, I conclude the this

chapter.

4.2 Data

I use BioWar-I simulation data in this chapter. The data contain multiple outcome variables collected over

a continuous period of time. The data incorporate both relational and temporal information. Please refer to

Chapter 2 for the origin of this data. The following table summarizes outcome variables and their statistics.
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Table 4.1: BioWar-I summary: min, mean, median, and max for each variable.

tick dayOfWeek month day dead is.er
Min. : 0.0 Fri:312 Aug : 186 Min. : 1.00 Min. : 0.000 Min. : 0

1st Qu.: 547.2 Mon:312 Dec : 186 1st Qu.: 8.00 1st Qu.: 0.000 1st Qu.: 0
Median :1094.5 Sat:312 Jan : 186 Median :16.00 Median : 0.000 Median : 7

Mean :1094.5 Sun:318 Jul : 186 Mean :15.72 Mean : 4.338 Mean : 696
3rd Qu.:1641.8 Thu:312 Mar : 186 3rd Qu.:23.00 3rd Qu.: 0.000 3rd Qu.: 13

Max. :2189.0 Tue:312 May : 186 Max. :31.00 Max. :97.000 Max. :19401
Wed:312 (Other):1074

kidsAtHome adultsAtHome at.work weblookup medcalls num.exchanges
Min. :20959 Min. : 37447 Min. : 0 Min. : 0.0 Min. : 0 Min. : 0.0

1st Qu.:31566 1st Qu.: 86910 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0
Median :78695 Median :217960 Median : 0 Median : 8.0 Median : 0 Median : 0.0

Mean :59889 Mean :151609 Mean : 41487 Mean : 695.9 Mean : 18867 Mean : 101.9
3rd Qu.:78701 3rd Qu.:217985 3rd Qu.: 0 3rd Qu.: 15.0 3rd Qu.: 0 3rd Qu.: 0.0

Max. :79497 Max. :226684 Max. :187787 Max. :19043.0 Max. :141408 Max. :11438.0

in.hospital is.home is.work is.school is.pharmacy is.doctor
Min. : 0 Min. : 58563 Min. :0 Min. : 0 Min. : 0.0 Min. : 0.0

1st Qu.: 0 1st Qu.:118408 1st Qu.:0 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0
Median : 7 Median :296655 Median :0 Median : 0 Median : 0.0 Median : 0.0
Mean : 696 Mean :211498 Mean :0 Mean : 9277 Mean : 557.6 Mean : 125.9
3rd Qu.: 13 3rd Qu.:296683 3rd Qu.:0 3rd Qu.: 0 3rd Qu.: 13.0 3rd Qu.: 3.0

Max. :19401 Max. :306181 Max. :0 Max. :58370 Max. :25178.0 Max. :10315.0

is.stadium is.theater is.store is.restaurant is.university is.military
Min. : 0 Min. : 0 Min. :0 Min. : 0 Min. :0 Min. :0

1st Qu.: 0 1st Qu.: 0 1st Qu.:0 1st Qu.: 0 1st Qu.:0 1st Qu.:0
Median : 0 Median : 0 Median :0 Median : 0 Median :0 Median :0

Mean :1437 Mean : 3997 Mean :0 Mean : 31342 Mean :0 Mean :0
3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.:0

Max. :7408 Max. :20286 Max. :0 Max. :157115 Max. :0 Max. :0

Most outcome variables are self-explanatory. To see how they are distributed, I used histograms of these

variables to illustrate their distribution in Figure 4.4.

The following figure shows 20 outcome variables. It is easy to see that most clinical related outcome

variables like death, adults_at_home and is-pharmacy have an outbreak during the observation period.
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Figure 4.4: Histograms of outcome variables in the BioWar-I data.

To get a better understanding of the interaction between these outcome variables, I plotted co-variable

occurrence in Figure 4.5 using matrix plot. The diagonal cells of this matrix lists variable names, and the

other cells demonstrate the co-occurrence. Several variables demonstrate strong correlations, as indicated in

the Figure 4.4 above.

To explore these correlations, I chose a few pairs from outcome variables to plot their grouped probability

79



density functions (PDFs), as indicated in Figure 4.6.

Figure 4.5: BioWar-I matrix plot.

Figure 4.6 shows four pairs of grouped PDFs. There are obvious correlations between these variables.

However, some correlations occur across various levels, and others are prominent only in a few levels of the

outcome variable “dead”.

Alternatively, I plotted the histogram of pairwise co-variables aggregated in time for a better under-

standing of outcome variable correlations over time. The following four figures demonstrate the temporal

correlations among pairwise co-variables. This dataset shows strong feature correlations over time, and thus
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Figure 4.6: Grouped density plot for various output variables of BioWar-I. For these sub-figures, I plot
probability density function of “is.pharmacy”, “num.exchange”, “in.hospital” and “is.doctor” at 98 levels
the outcome variable “dead.”
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becomes a good fit to test the model developed in this chapter, which is capable of co-estimating multiple

variables over time.
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Figure 4.7: Grouped histograms for two outcome variables “dead” V.S. “in.pharmacy”. I aggregate monthly
observations to plot twelve figures of histograms.
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Figure 4.8: Grouped histograms for two outcome variables “dead” V.S. “num.exchanges”. I aggregate
monthly observations to plot twelve figures of histograms.
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Figure 4.9: Grouped histograms for two outcome variables “dead” V.S. “in.hospital”. I aggregate monthly
observations to plot twelve figures of histograms.
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Figure 4.10: Grouped histograms for two outcome variables “dead” V.S. “in.hospital”. I aggregate monthly
observations to plot twelve figures of histograms.

4.3 Related Works

Traditional predicting models focus on either the spatial dependence or the temporal correlation. Lafferty

et al. [107] developed a statistical framework, Conditional Random Fields (CRFs), which accounts for
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spatial dependence, in addition to the explanatory variables (observations). Later, Taskar [172] extended

the Support Vector Machine (SVM) to the Maximum Margin Markov Network (M3N), which has the same

modeling capacity of the CRFs but can be computed more efficiently. Similar models considering spatial

dependence include the structured SVM [177] and the Maximum Margin Training [156]. All these models

aim to combine spatial dependence and the information from observations for a single end task, multivariate

classification. They have been successfully applied to problems like optical character recognition [151],

object detection [52] and scene understanding [78]. However, these models overlook the state correlations

over time, and hence, are insufficient to handle data with strong temporal pattern.

Figure 4.11: Graphical model of CRFs and M3N. Xi and Yi correspond to the local observations and their
labels. The two dashed ovals encompass [X5, Y5] and [Y1,Y2], which correspond to a unary feature and a
pairwise Markovian spatial feature, respectively.

On the other hand, temporal correlated models such as Kalman filter [96], HMM [189] have been devel-

oped over decades and have been carefully studied by the optimization and control community. Successful

applications include time series forecasting [65], speech recognition [152] and behavior classification [178].

These models are well known for their capability of capturing hidden temporal correlations; modeling the

unknown state process from observations made in noisy environments. However, they ignore the structural

correlations in the environment, which oftentimes hurt their performance.

Clearly, both temporal correlated models and spatial dependent models have limitations. An innovative
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work [139] advocated a variational inference method for switching Linear Dynamical system (SLDS) that

learns different dynamical processes at various time ticks; [113] extended this work to combine HMM and

LDS with tractable computation. However, these methods treat temporal and spatial (structural) information

one at a time; they fail to provide a comprehensive interface to model the temporal and spatial correlated

real-world scenarios.

To close the gap, I propose a novel model that considers spatial correlations aggregated over time for

tractable inference. The model has advantages over models concentrating on either aspect, as the temporal

and structural information are oftentimes complementary. I intend to provide a principled approach that

accounts for spatial dependence and temporal correlations, simultaneously.

4.4 Data Representation

Representing and managing uncertainty is central to understanding and supporting biomedical decision mak-

ing. However, implementing effective decision models for practical applications presents a dilemma: on the

one hand, informal and qualitative representations of uncertainty may be natural for people to understand

but they often lack formal rigour; on the other hand formal approaches based on probability theory are pre-

cise but can be awkward and non-intuitive to use [68]. To balance these approaches, I suggest a principled

data representation method to convert multiple sources of continuous observations to discrete states that are

statistical comparable yet easy for people to interpret.

In decision support tasks, people are more interested in states of raw observations, e.g., “normal,” “alarm

level,” and “outbreak” instead of the actual values of these observations. While there are many techniques

for converting a continuous-valued time series to a discrete-valued state sequence, decision makers need

one approach that can map multiple continuous observations to comparative scales; thus their relational

dependence can be taken into consideration.
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Figure 4.12: The SAX+ maps a continuous time series to 20 discretized symbols. The “death” time series
in the figure is aggregated on a daily basis; then normalized into the (0,1) interval. A normal distribution
was calculated to its right figure. The blue curve corresponds to a continuous time series; the red lines
indicate its mean levels of every 18 days (thus, 20 periods for a year). These mean levels are discretized by
calculating how many standard deviations away from the mean of the calculated normal distribution; and
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Figure 4.13: The SAX+ maps a continuous time series to 40 discretized symbols. The window size can be
adjusted to achieve a finer granularity. In this new representation, I set the total periods to be 40, which
reduces the window size to nine days. I thus obtained a longer sequence of symbols at a finer scale.
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Inspired by [116], I develop an improved coding technique (SAX+) to map continuous time series data

into discrete-valued states. The following figures (4.12, 4.13) illustrate two examples of applying SAX+

technique to the raw observation of “death” in the BioWar I.

My SAX+ approach takes a real-value time series Y = {Y1, . . . , Yt, . . . } and divides it into equal-sized

intervals. The mean level of each interval is obtained. Each mean level is assigned a symbolic state (letter or

alphabetic order) by calculating its distance from the mean. Thus, SAX+ generates a reduced dimensional

piecewise-constant approximation of the raw continuous-valued observation. Figure 4.13 shows the “death”

time series converted into a sequence of states: “a. . . abbedba. . . .a”.

My major improvement to [116] is the followings: 1) I fit a normalized time series to a Gaussian dis-

tribution; 2) I assign discrete valued states use an equal-deviation criteria as opposed to the equal-probable

criteria. Due to these improvements, the converted states using SAX+ have transferable “implications”.

For example, letter “c” means observations are three standard deviations away from the mean and are more

likely to be an unusual situation; letter “b”, at two standard deviations away from the mean, may represent

an alarm level; and letter “a” corresponds to a normal situation. Algorithm 1 describes the details of SAX+

state representation technique.

Algorithm 1 SAX+ state representation algorithm.
Input: Raw observation of continuous variables X1, . . . , Xt . . . XT , where Xt = {x1

t , . . . x
m
t } are the

co-variate vector at time t.
Output: State representation Y1, . . . , Y t′ . . . YT ′ , where Yt′ = {y1

t′ , . . . y
m
t′ } are the state representation of

the corresponding co-variate patterns of X1, . . . , Xt . . . XT .
Parameters: Length of the state period: z.

1: Fit each co-variable xi∗ using a Gaussian distribution.
2: Calculate the fitted statistic and for each.
3: Calculate the average of , where |z| is the length of the period.

4: Assign each yi
′

t′ = (
|x̄i

i∈z−µxi
∗
|

σxi
∗

).

4.5 Methodology

In this section, I introduce a new machine learning framework to co-estimate multiple unknown states by

exploiting their mutual interactions. The idea is to consider temporal and relational correlations globally. I

start with notation and some background, followed by model details and algorithmic analysis.
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4.5.1 Notation

The notations for this section are defined in the following table.

Table 4.2: Notation for Temporal Maximum Margin Markov Network.

Variables Summary

Xk,i,t
The k dimensional feature
at site i in time tick t.

Yi,t
The discrete valued state at
site i in time tick t.

Yt = (Y1,t, . . . , Yn,t)
′ The estimated states at

time tick t.

Y∗t = (Y ∗1,t, . . . , Y
∗
n,t)

′ The ground-truth states at
time tick t.

θ1
k, θ

2
ij,t and θ3

it,t−1

The unary, spatial and
temporal regression
coefficients.

ϕ(·) The feature function.
`t(Yt) The loss at time t.

hθ(Xt)
The state estimation
function.

4.5.2 Backgrounds

I summarize the framework that encompasses relational dependent models on a regular or irregular lattice.

I define s1, . . . , sn as the sites on a relational lattice. For notational convenience, let j ∈ Ni, where Ni={j:

sj is a neighbor of si} defines the neighbors of the site si. Let Y1, . . . , Yn denote hidden states on the lattice,

where Yi = Y (si) ∈ (1, . . . , C), and C is the number of classes.

The joint distribution of Y = (Y1, . . . , Yn)′ can be formulated as:

pθ(X,Y) ∝ exp


n∑
i=1

p∑
k=1

θkϕ(Xk,i, Yi) +
∑
j∈Ni

θijϕ(Yi, Yj)

 , (4.1)

pθ(Y|X) =
e

{∑n
i=1

∑p
k=1 θkϕ(Xk,i,Yi)+

∑
j∈Ni

θijϕ(Yi,Yj)
}

Zθ(X)
, (4.2)

where

Zθ(X) =
∑
Y

exp{
n∑
i=1

p∑
k=1

θkϕ(Xk,i, Yi) +
∑
j∈Ni

θijϕ(Yi, Yj)} (4.3)
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is called the partition function;Xk,i = Xk(si) denotes the k-th explanatory variable at site si; θk denotes the

k-th regression coefficients correspond to the feature function ϕ(Xk,i, Yi), with k = 1, . . . , p; θij denotes

the relational dependent regression coefficients for the i-th and j-th sites so that θij = θji and θij ≥ 0 if

j ∈ Ni.

Interpretation: The joint optimization framework integrates unary potential of fea-

tures and pairwise potential between states for a global optimization.

This model relates a discrete valued response variable to a hidden state by two regression components;

and it is capable of estimating the probability of hidden states at a given site and predicting a certain outcome

at an unsampled site. However, this formulation ignores the fact that observations are oftentimes made

repeatedly over time, and past states on the same relational lattice may contribute to the states in future time

ticks. That is, for a given site si at a given time tick t, the state is Y (si, t) = Yi,t⊥ (Yi,t−1 ∪ {Yj,t}j∈Ni
),

where i = 1, . . . , n and t = 1, 2, . . . . To close the gap, I extend the model to include temporal correlations.

4.5.3 Spatial-Temporal Structured Model

I generalize the previous framework to include an additional temporal component. With the additional

regression term, the new framework is capable of modeling information carried by observations, spatial

dependence at fixed time tick, and temporal correlations of the hidden states.
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(a) Structural Model (b) Temporal Model

(c) Temporal-Structural Model

Figure 4.14: Graphical models for three structured learning frameworks. (a) Typical relational dependent
model - first order Markov network: φi(Yi) = exp {∑n

i=1

∑p
k=1 θkϕ(Xk,i, Yi)} correspond to node poten-

tials, φi,i+1(Yi, Yi+1) = exp
{∑

j∈Ni
θijϕ(Yi, Yj)

}
correspond to relational edge potentials. (b) Typical

temporal correlated model - first order Markov chain: φi(Yi) = exp {∑n
i=1

∑p
k=1 θkϕ(Xk,i, Yi)} corre-

spond to node potentials, φt−1,t(Yi) = exp
{∑n

i=1 θ
3
it,t−1ϕ

3(Yi,t, Yi,t−1)
}

correspond to temporal edge
potentials. (c) I propose a new framework that generalizes both relational dependent models and temporal
correlated models. For illustration purposes, I only show correlated states of two consequent time ticks, but
the framework indeed depicts a gigantic network over time. Thus, traditional approaches such as CRFs and
M3N fail to solve it with tractable computation.
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Consider a discrete valued spatial-temporal process {Yi,t : i = 1, . . . , n, t = 1, 2, . . . }, where Yi,t =

Y (si, t) ∈ (1, . . . , C) corresponds to the i-th site si at the time tick t; i = 1, . . . , n and t = 1, 2, . . . . For

a given time tick t, let Yt = (Y1,t, . . . , Yn,t)
′ denote the discrete valued hidden states on a graph structure

{(si), (si × sj)} |ni,j=1. I model {Yt : t = 1, 2, . . . } by a n-dimensional Markov chain with the following

transition probability:

pθ(Yt|Yt−1) = q(Yt|Yt−1)/GX. (4.4)

Here GX is a normalization constant and,

q(Yt|Yt−1) = exp

{
n∑
i=1

p∑
k=1

θ1
kϕ

1(Xk,i,t, Yi,t)+

∑
j∈Ni

θ2
ij,tϕ

2(Yi,t, Yj,t) +

n∑
i=1

θ3
it,t−1ϕ

3(Yi,t, Yi,t−1)

 , (4.5)

where Xk,i,t = Xk(si, t) denotes the k-th explanatory variable at site si and time tick t; θk is the linear

regression coefficient corresponding to explanatory feature ϕ1(Xk,i,t, Yi,t), k = 1, . . . , p; θ2
ij,t, which rep-

resents the relational regression coefficients. The difference between the Equation 4.5 and the Equation 4.2

is the additional parameters θ3
it,t−1 that represent the temporal coefficients. When θit,t−1 = 0, there is no

correlation over time and the Markov network of {Yt} reduces to a sequence of independent random vec-

tors, and each represents a set of relational dependent observations at a given time tick. Clearly, the new

framework incorporates the one previous described in Section 4.5 as pθ(Yt|Yt−1) reduces to pθ(Yt).

Interpretation: The new framework represents two different pairwise potentials, re-

lational dependency and temporal correspondence, which joinly reduce the ambiguity

in noisy and limited observations.

On the other hand, when θit,t−1 6= 0, the framework considers state correlations over time; the mag-

nitude of θit,t−1 is related to the mean difference between two consecutive time ticks of the same site. To

simplify the representations, I abbreviate the model parameters by θ =
(
{θ1}, {θ2}, {θ3}

)′
; model features

by ψ(Xt,Yt,Yt−1) =
(
{ϕ1(Xk,i,t, Yi,t)}, {ϕ2(Yi,t, Yj,t)}, {ϕ3(Yi,t, Yi,t−1)}

)′
; and observations from T

time points by Y1, . . . ,YT , where Yt = (Y1,t, . . . , Yn,t)
′
, t = 1, . . . , T .
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The equation 4.5 represents a general framework by considering relational-temporal correlations, which

generalizes both temporal correlated models and relational dependent models, as indicated by Figure 4.14.

However, there are more states to be considered together in the new framework due to the relational and

temporal coupling. Thus, traditional solutions such as constructing a gigantic CRFs network would be

computationally intractable.

4.5.4 Temporal Maximum Margin Markov Network

There are two typical tasks in a machine learning problem like Equation 4.5: learning and predicting. For

learning, I want to estimate parameters θ so that

hθ(Xt) = argmaxYθ
′ψ(Xt,Y,Y∗t−1) ≈ Y∗t ,∀t, (4.6)

where Ŷt is the ground-truth states. For predicting, I would like to infer the most likely states

Y∗t+1 = argmaxYθ
′ψ(Xt+1,Y,Y∗t ), (4.7)

given the parameter θ and the novel observation Xt+1 and past states Y∗t . I will now describe a convex

instantiation of the spatial-temporal correlated framework to handle both tasks.

First, I need to measure the error of the approximation h(·) using a loss function `. Here I use a Ham-

ming distance error measurement `t(Yt) to indicate the number of variables predicted incorrectly, which

essentially measures the loss on the label sequences,

`t(Yt) =
∑
i

∆(Yi,t, Ŷi,t) and ∆(Yi,t, Ŷi,t) =


1 Yi,t 6= Ŷi,t

0 Yi,t = Ŷi,t

.

I adapt the hinge upper bound ¯̀(hθ(Xt)) on the loss function for structured classification inspired by

max-margin criterion:
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¯̀
t(hθ(Xt)) = max

Yt

[
θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)

]
(4.8)

− θ′ψ(Xt,Y
∗
t ,Y

∗
t−1))

≥ `t(hθ(Xt)),

where ¯̀
t(hθ(Xt)) = ¯̀(hθ(Xt),Y

∗
t ) and `t(hθ(Xt)) = `(hθ(Xt),Y

∗
t ).

Interpretation: I optimize the lower bound of a maximization problem. The max-

imization of its lower bound encourages the maximization of the NP-hard objective

induced by Equation 4.8.

With this upper bound, the min-max formulation for the structured classification problem is analogous

to SVM,

min
θ,Yt

λ

2
||θ||2 +

1

T

T∑
t=1

ξt (4.9)

s.t.
〈
θ,Φ(Xt,Yt,Y

∗
t−1,Y

∗
t )
〉
≥ ¯̀(Yt,Y

∗
t )− ξt,∀t,∀Yt, (4.10)

where Φ(Xt,Yt,Y
∗
t−1,Y

∗
t ) = ψ(Xt,Y

∗
t ,Y

∗
t−1)− ψ(Xt,Yt,Y

∗
t−1).

Interpretation: The final formulation of TM3N is similar to the structured Support

Vector Machine, but TM3N extends it to consider state correlations from different

perspectives jointly.

This formulation incorporates the “maximum margin” criteria. The following formulation indicates the

margin of the state configuration Y∗t over another state configuration Yt.

M =
1

||θ||
〈
θ,Φ(Xt,Yt,Y

∗
t−1,Y

∗
t )
〉

(4.11)

Assuming ξi are all zeros (because λ is very small), the constraints enforce,

θ′
(
ψ(Xt,Y

∗
t ,Y

∗
t−1)− ψ(Xt,Yt,Y

∗
t−1)

)
≥ ¯̀(Yt,Y

∗
t ), (4.12)
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so minimizing ||θ||2 essentially maximizes the smallest of such margins, scaled by the loss `i(Yt,Y
∗
t ). The

above formulation is a standard QP and can be solved using optimization packages, but it is exponential

in the size and computation is generally prohibitive. Another way to express this problem is the following

representation,

min
θ,Yt

λ

2
||θ||2 +

1

T

T∑
t=1

ξt (4.13)

s.t.θ′ψ(Xt,Y
∗
t ,Y

∗
t−1) + ξt ≥

max
Yt

[
θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)

]
,∀t,

which is a convex quadratic program in θ, since

max
Yt

[
θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)

]
, (4.14)

is convex in θ.

Interpretation: The global optimization induced by Equation 4.13 is a convex func-

tion and can be optimized if the embedded maximization problem is solved in polyno-

mial time. However, the intermediate value of maxYt

[
θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)

]
is obtained through a non-convex optimization, which is introduced later.

It might be easier to interpret Equation 4.13 in its alternative representation Equation 4.15 by eliminating

the constraints,

min
θ,Yt

λ

2
||θ||2 +

1

T

T∑
i=1

{
max
Yt

[
θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)

]
(4.15)

−θ′ψ(Xt,Y
∗
t ,Y

∗
t−1)

}
. (4.16)

Careful readers might notice that θ′ψ(Xt,Y
∗
t ,Y

∗
t−1) is invariant to Yt and I can run the algorithm in

two separate steps: first, fix θ and optimize maxYt

[
θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)

]
; second, fix Yt obtained

in the first step to calculate θ that minimize Equation 4.15. The procedure is similar to the Expectation-
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Maximization algorithm and I are guaranteed not to increase the objective function at each step.

4.5.4.1 Learning

Recalling the objective in Equation 4.15 is a convex function, an intuitive way to estimate its parameters θ

is to use a gradient descent approach. In this case, the gradients only depends on the most violated state

configuration,

Y∗t = argmaxYt

(
θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)

)
, (4.17)

which can be computed as:

g(θ) = λθ +
1

T

T∑
i=1

(
ψ(Xt,Y

∗
t ,Y

∗
t−1)− ψ(Xt,Y

∗
t ,Y

∗
t−1)

)
. (4.18)

Interpretation: The equation above is a subgradient of the objective in Equation

4.15. Since this objective function is convex, its optimality can be obtained by tracing

its subgradient direction stepwise.

The following algorithm thus summarizes the procedure of gradient optimization,

Algorithm 2 Sub-gradient Optimization
Input: training data D = {(Xt,Yt)}|Tt=1, regularization parameter λ, step size σ, tolerance ε, number of
iterations T
Output: parameter vector θ

1: Initialize θ ← 0, t← 1
2: repeat
3: for t = 1 to T do
4: Set violation function H(Yt) = θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)− θ′ψ(Xt,Y

∗
t ,Y

∗
t−1)

5: Find most violated label for (Xt,Yt) : Y∗t = arg maxYt
H(Yt)

6: end for
7: Compute g(θ), update θ(t) ← θ(t−1) − σg(θ).
8: Update t← t+ 1
9: until t ≥ T or MSE(||θ(t)|| − ||θ(t−1)||) ≤ ε

A critical step of Algorithm 2 is to compute the most violated constraint at each time step efficiently.

The exact inference of this step is usually intractable as irregular lattices often involve loops that cannot

be handled by deterministic algorithms in polynomial time. To this end, I leverage on a well established

approximation algorithm, loopy belief propagation (LBP) [132] to solve this problem. To use LBP, I define

the following potentials:
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• Unary potentials represent the impact of local observation in Xt to the states Yt, this potential

function at each site si takes the form,

exp

(
p∑
k=1

θ1
kϕ

1(Xk,i,t, Yi,t) + `t(Yi,t)

)
,∀i, (4.19)

• Environmental potentials represent the influence between states and over time, these potential func-

tions take the form,

exp
(
θ2
ij,tϕ

2(Yi,t, Yj,t)
)
,∀i, j ∼ i, Structural Potential, (4.20)

exp
(
θ3
it,t−1ϕ

3(Yi,t, Yi,t−1)
)
,∀i, Temporal Potential. (4.21)

4.5.4.2 Predicting

Now I will introduce my linear integer programming interface for predicting. The goal is to predict a hidden

state as the most likely configuration:

ŶT+1 = argmaxYT+1
(θ′ψ(XT+1,YT+1,Y

∗
T )) . (4.22)

Denote Zt = ({zti}|ni=1, {ztij}|n,j∼ii=1 , {zt,t−1
i }|ni=1) as indicator variables at time t so that: zi(m) = 1

indicates i-th site takes statem, zij(m,n) indicates i and j-th sites take statesm and n, and zt,t−1
i (m,n) = 1

indicates i-th site take states m and n at time t and t − 1, respectively. If I factorize Equation 4.22, the

following linear integer programming interface defines an exact mapping,
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max
Zt

∑
i,m

zti(m)
[
θ1

(·)ϕ
1(X(·),i,t,m)

]
+ (4.23)

∑
i,j,m,n

ztij(m,n)
[
θ2
ij,tϕ

2(m,n)
]

+

∑
i

[
θ3
it,t−1ϕ

3(m,Y ∗i,t−1)
]
,

s.t. zti(m) ∈ {0, 1}, ztij(m,n) ∈ {0, 1}, (4.24)∑
m

zti(m) = 1, (4.25)∑
n

ztij(m,n) = zti(m), (4.26)∑
m

ztij(m,n) = ztj(n). (4.27)

Interpretation: I used binary indicator functions to encode the variables to state cor-

relations over time. Ideally, this would give the optimal solution of objective function

(Equation 4.22). However, this linear integer programming is NP-hard to solve, so I

have to use some approximation.

The constraint Equation 4.25 enforces only one state allocated for each site si; the constraint equation

4.26 enforces the structural consistency. Note that I assign zt,t−1
i (m,Y ∗i,t−1) = 1,∀i so that Yi,t is influ-

enced by its previous state Y ∗i,t−1of the same site si. The above linear integer programming is an intractable

combinatorial problem, but I can obtain an approximated solution by relaxing the binary constraint in Equa-

tion 4.24 to be zti(m) ≥ 0, ztij(m,n) ≥ 0. A threshold χ, usually equals to 0.5, is used to discretize the

final outputs Zt for predicting the states.

4.6 Model Complexity

The computational cost of TM3N is the complexity of maxYt(θ
′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)) because the

search space of Y is exponentially large. The computation of Y is intractable if computed brutal force,

which costs O(K(N−1)) time and O
(
(N − 1)KC

)
space. Here C is the max clique size, K is the number

of states and N is the number of nodes in the graph G. Dynamic algorithms, on the other hand, trade space

for time. Viterbi and forward-backward algorithms can do exact inference if the underlying structure is a
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chordal graph.

1. For a chain structure, forward-backward algorithms can compute maxYt
(θ′ψ(Xt,Yt,Y

∗
t−1))+`t(Yt))

in O
(
(N − 1)K2

)
.

2. On a tree structure, exact inference is possible through belief propagation. It computes all N marginals

in 2 passes over graph and the computational cost is still O
(
(N − 1)K2

)
. In general, the exact

inference algorithm for singly-connected networks and the beliefs converge to the correct marginals

in a number of iterations equal to the diameter of the graph [132].

3. Exact inference in any graphical model is made by converting to a tree and running BP. The resulting

Junction Tree has nodes with O(Kw+1) states, so inference time is bounded by O
(
(N − 1)K2w+2

)
[w=clique size of triangulated graph], which states that:

(a) Complexity of BP is exponential in the size of the nodes in the maximum clique.

(b) In most real world applications, node size in equivalent triangulated tree is huge.

4. Another option is to apply Linear Programming to the original graph in O
(
(N − 1)K2

)
time. 2.

I decided to use Linear Programming strategy for optimizing the maxYt
(θ′ψ(Xt,Yt,Y

∗
t−1)) + `t(Yt)) for

generalization purpose.

4.7 Experiments

4.7.1 Synthetic Results

I use the following temporal-spatial correlated Linear Dynamic System (LDS) to generate the simulation.

This system specifies the hidden state Y it , which depends temporally on the previous state Y it−1 and corre-

lates spatially with the states of the neighboring sites Y jt , j ∈ N i.

2This is empirically successful but results are approximations to the exact solution.
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Y it = αY it−1 + (1− α)
∑
j∈N i

βjY jt + e1, (4.28)

Xi
t = AY it + e2, (4.29)

e1 ∼ N(0, σ2
e1), (4.30)

e2 ∼ N(0, σ2
e2), (4.31)

where N i corresponds to the neighboring sites of i but excludes i; A is a projection vector that maps

hidden states to the observations; Xi
t corresponds to the observations at site i, time tick t; e1 and e2 are

the environmental Gaussian noises;α represents the temporal/relational trade-off parameter. If α is set to

zero, the system considers no time dependence. Otherwise, if α is set to one, the system ignores relational

correlations.

Interpretation: The linear dynamic systems induced by Equation 4.28 and Equation

4.29 are temporal and relational dependant. The outputs are generated by states with

slight perturbation.

I initialized Y it ∼ Uniform(0, 1), βj ∼ Uniform(0, 1) ; set total sites numberN equals to four; specified

the error term e1 ∼ N(0, 0.05) and el ∼ N(0, 1); and let the projection matrix be A = [10; 20]. To simulate

the hidden states, I used an approach similar to Gibbs sampling that iteratively samples Y it until the system

converges. These simulated states were rounded to real valued states and the simulated observations were

calculated using Equation 4.29.

In the experiment, I varied the temporal/spatial trade-off parameter α from 0.1 to 0.8 at an interval of 0.1

to evaluate the performances of four different models: HMM, M3N, CRF and TM3N. For every α value, I

ran the experiment 50 times to calculate the averaged accuracy. The results are demonstrated in Figure 4.15,

where the blue curve corresponds to the accuracy of TM3N model at various α values. Obviously, TM3N

shows superior performance compared to HMM, CRF and M3N.
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Figure 4.15: Structured learning model comparison using synthetic temporal-relational correlated data. The
X axis corresponds to the Alpha (temporal/relational trade-off parameter) value and Y axis represents the
accuracy in percentage. HMM’s performance increases as the temporal influence becomes larger while
CRFs/M3N’s accuracy decreases at the same time. TM3N outperforms all other models and demonstrates
its efficacy.

Table 4.3: Averaged accuracy of four different methods using synthetic LDS data with various α value. The
number in each cell indicates the averaged accuracy.

Value of α
Models 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
HMM 0.01 0.11 0.21 0.25 0.33 0.38 0.45 0.51
CRFs 0.66 0.54 0.52 0.38 0.34 0.29 0.2 0.23
M3N 0.68 0.54 0.47 0.4 0.35 0.39 0.34 0.23
TM3N 0.68 0.64 0.59 0.58 0.59 0.6 0.58 0.63

Interpretation: The results of applying TM3N to synthetic linear dynamic system

outputs indicates the model’s superior performance over the other methods in compar-

ison, including CRF, M3N and HMM. This indicates the benefit of joint optimization

and verifies my earlier assertion that information from complementary perspectives

helps to resolve ambiguities.
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4.7.2 BioWar Hidden States Co-Estimation

4.7.2.1 Data Processing

We use a period P = 52 to divide an entire year of BioWar-I, II into 52 week-long periods and apply the

SAX+ State coding technique to obtain discrete valued states, which is illustrated in Table 4.4

Table 4.4: Discrete-valued states obtained using the SAX+ approach.

 

Generally, a larger letter indicates more severity of the corresponding observations, e.g., Weblookup

peaks in the week of Jan. 5, 2003 with a state “e”, which indicates the observation is standard deviations

from the normal situation (mean). I can therefore speculate that the situation could be very severe. However,

there are a few exceptions when Gaussian model does not handle the pattern well, for example, kids_at_home

and is_school shows significant pattern changes from Jun. 1, 2008, which is not because of disease outbreak

but due to the fact of summer vacation. Although concept drifts of these converted states can still be observed

during disease outbreak, a better scaling would be achieved with Gaussian Mixture Models (GMM).
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(a) Original probability density functions.
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(b) Probability density functions after SAX+.
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(c) Boxplot for original co-variables.
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(d) Boxplot for SAX+ encoded co-variables.

Figure 4.16: Probability density functions and box plots before and after SAX+ encoding. The states gener-
ated after SAX+ encoding are more comparable than their raw values, which makes co-prediction of multiple
factors meaningful.

Figure 4.16 illustrates the probability density function of the observation variables before and after apply-
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ing our proposed SAX+ algorithm. The figures on the right column indicate that the scale of these variables

are closer.

4.7.2.2 Results

Given the symbolic representation introduced in Section 4.7.2.1, I convert raw observations as the syn-

chronized states over time. In this representation, I denote Y 1 as death rates, Y 2 as infection rates, Y 3 as

absenteeism from work and school. Let Y = {Y 1, Y 2, Y 3, Y 4, Y 5, . . . , Y 15} be the states in the period z.

We also denote the features as observations in the previous period X = {X1, X2, X3, X4, X5, . . . , X15},

where each Xi contains a continuous period of observations from the previous time tick. The prediction of

M3N are compared with three other models: HMM, CRF and M3N.

Table 4.5: Accuracy of state estimation, TM3N vs. CRF, HMM and M3N.

HMM CRF M3N TM3N
Accuracy 0.65 0.57 0.58 0.69

Our evaluation standard is the overall state estimation accuracy Accuracy = F1

F1+F2
, where F1 is the

number of correctly classified states and F2 is the number of misclassified states. Table 4.5 summarizes the

performance of various models. Obviously, TM3N outperforms the rest models in comparison by combining

temporal and relational information into consideration, simultaneously.

Interpretation: TM3N demonstrates its efficacy on the BioWar-I data, which em-

perically confirms the advantage of this global optimization framework over existing

approaches.
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(a) Ground-truth weekly states

(b) TM3N predicted weekly states

(c) Legend for both sub-figures a and b.

Figure 4.17: Radar diagram of original and M3N predicted states. It can be observed that the ordering
of peaks is consistent between the ground-truth states and the predicted states: num_exchange>is_doctor≥
is_pharmacy>in_hospital>medcalls>death.
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Interpretation: I can aggregate predictions over time to obtain a reduced form of

the BioWar-I model, which is generated by the Biowar simulation engine. The re-

duced form provides quick interpretation of observations and assists decision makers

for efficient responses.

Figure 4.17 illustrates both a) ground-truth states and b) predicted states over the period of a year. It

can be seen that an outbreak of avian influenza occurred during the period from Dec. 2002 to Jan. 2003,

as a few random variables deviates more than 3 standard deviations away from their normal patterns. I

verified the relative peaking time of predicted state variables matches various sources of raw observations,

e.g., num_exchange>is_doctor≥ is_pharmacy>in_hospital>medcalls>death.

4.8 Discussion

Historically, manifestations of the disease process and response strategies are modeled by the susceptible-

infected-recovered (SIR) model[39]. This model categorizes the entire population into three groups of sus-

ceptible, infected, and recovered. Individuals in each group are assumed to have the same states, and SIR

uses predefined transition probability to model the disease progression. However, the “population-based”

disease progression processes model assuming a homogeneous mixing of individuals has limited capability

of modeling disease spreading at a finer granularity.

This chapter presents a methodology for predicting large-scale disease outbreaks using observations gen-

erated by a next-generation disease spreading simulation engine: BioWar. The simulation engine simulates

the agent-level impact of a bio-terrorist attack in a U. S. city using social networks. As opposed to traditional

methods that model hypothetical cites, the BioWar engine uses real city data like census, school track, and

other public available sources to output various manifestations of the disease as the simulated agents go

about their lives.

To make the prediction tractable and meaningful, I developed a discrete-valued state representation

method, SAX+, which balances quantitative methods that are formally rigorous and qualitative methods that

are intuitive and easy to understand. By mapping various sources of continuous observations to discrete-

valued states (symbolic representation) at comparable scales, SAX+ provides an intuitive interface to watch

concept drifts that might relate to adverse events. On top of the state representation, I developed a framework

to estimate relational-correlated hidden states. As opposed to traditional approaches that focus on a single

107



outcome, my framework models semantic correlations among heterogeneous observations in addition to an

individual state. My framework demonstrated superior performance over existing approaches by considering

temporal and relational correlations globally.

If all predictions over time are aggregated, I obtain a reduced form of the BioWar model. Thus, the

same technique can be applied to other high fidelity models to assess how they are the same or different;

i.e., do their reduced form versions look the same or different in terms of their outcome metric. The state

representation approach has limitations in modeling a time series that demonstrates multiple patterns. But

this can be improved by a more sophisticated Gaussian Mixture Model (GMM) at the cost of increasing

computational complexity. On the other hand, my structured prediction framework offers discrimination

against states but cannot be used to generate new samples due to its discriminative modeling assumption.

Although not comprehensive, the framework serves many decision support purposes. Finally, results on both

synthetic data and BioWar simulation data indicate the framework’s applicability and efficacy in modeling

large-scale disease outbreaks and encourage more efforts in the same direction.

4.9 Conclusion

In this chapter, I revealed that considering information from different sources concurrently could improve

the prediction accuracy. I designed a state coding technique, SAX+, to discretize continuous observations

into human interpretable values. Together with TM3N, a new framework developed in this chapter, I op-

timized temporal coherence together with relational dependence with tractable computation. As opposed

to traditional approaches that predict states of outcome variables independently, my framework described

semantic correlations of heterogeneous variables and observations of individual variables in a global man-

ner. The joint optimization reduced the ambiguity in estimating multiple outcome variables independently.

In addition, this approach seamlessly integrated state-of-the-art maximum margin based kernel methods de-

veloped for classifying independent instances with the rich description ability of graphical model that can

exploit the contextual structure of complex data.

In summary, TM3N framework offers flexibility in modeling complex systems; and it can be easily gen-

eralized to other dynamic systems involving temporal, spatial, and relational dependencies. The framework

can be applied to cases involving multiple dependent manifestations, which are time correlated. For exam-

ple, ICU patients management, multiple speaker speech tagging and object tracking in video sequences are
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good candidates for applying TM3N framework. More specifically, inputs to TM3N can be any features

(continuous or categorical) from a set of instances while the outputs are some or all of their corresponding

states. Note these states must be discrete values as TM3N is a discriminative model that cares about the

accuracy of predictions.

However, it has its own limitations. Due to the adoption of maximum margin criteria, the framework

inherited discriminative power of SVMS but loosing the generative ability of graphical models. That is, it

cannot simulate novel data with learned parameters. This is a tradeoff between classification performance

and modeling capacity, I preferred former as it is most critical to decision support in emergency response. To

verify the efficacy, I conducted experiments using both synthetic and BioWar simulation data. The synthetic

experiments using linear dynamic systems simulated outputs demonstrated TM3N constantly outperformed

HMM, CRF and M3N at various temporal and relational impact ratios. The BioWar experiment indicated

that TM3N again led the competition with 69% of accuracy, outperforming CRF (57%), M3N (58%), and

HMM (65%).
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Chapter 5

A Unified View of Discrimination and

Calibration

Psychologically, people can make more informed decisions when they are aware of the progression of the

events and the consequences of their actions [51, 204]. To assist the decision making process, a common

strategy is to use a predictive model to determine the class membership of novel observations based on

empirical evidences of the same event [10, 11, 79].

Given a reasonably large amount of observations and their labels, the prediction task is often general-

ized to supervised learning problems, which provide a mapping between features and outcomes (usually

represented by the 0/1 class membership). Discrimination and calibration are two major families of mea-

surements in the evaluation of model performance [12, 42, 54, 124]. In clinical predictions, discrimination

measures the ability of a model to separate patients with different outcomes; in the case of a binary out-

come, good discrimination indicates adequate distinction in the distributions of predicted values, based on

the model, between the two classes, defined by the binary outcome [41]. On the other hand, calibration

measures the similarity between the predicted values and the observed outcomes. To increase the quality for

classification model in clinical research, it would be more proper to calculate discrimination and calibration

concurrently [42].

Oftentimes, good calibration tends to correspond to good discrimination; however, a successful classi-

fier in terms of discrimination ability or Area Under ROC Curve (AUC) is not necessarily calibrated. For
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instance, a model that predicts all positive outcomes to occur with probability 0.51 and all negative outcomes

to occur with probability 0.49 has perfect discrimination but bad calibration. Figure 5.1 gives another ex-

ample of such conflict.

# 1 2 3 4 5 6 7 8 9 10

C p p n p p p n n p n

P .9 .8 .7 .6 .55 .54 .53 .52 .51 .505

# 11 12 13 14 15 16 17 18 19 20

C p n p p n n p n p n

P .4 .39 .38 .37 .36 .35 .34 .33 .3 .1

(1) Probabilistic Classifier A

1 2 3 4 5 6 7 8 9 10

p p n p p p n n p n

.09 .08 .07 .06 .055 .054 .053 .052 .051 .0505

11 12 13 14 15 16 17 18 19 20

p n p p n n p n p n

.04 .039 .038 .037 .036 .035 .034 .033 .03 .01

(2) Probabilistic Classifier B
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(a) ROC curve for two probabilistic models (1) and (2). Notice the two figures have the same AUC except the thresholds are different

Figure 5.1: Probabilistic classifier outputs and their ROC curve. In sub-figure (1) and (2), the number
indicates the sample, C corresponds to class membership and P represents the probabilistic output. In sub-
figure (c), each red circle corresponds to a threshold value. Note the probabilistic classifier B has the same
AUC as the probabilistic classifier A, yet it is uncalibrated.

Readers can easily observe that the probabilistic classifier A and the probabilistic classifier B have the

same AUC. But probabilistic outputs of classifier B is ten times smaller that of classifier A, and thus ob-

viously uncalibrated. Of course, a classifier that assigns sample #1 to the positive class with a likelihood

estimate of 0.09 is useless to any decision maker. Figure 5.1 also reveals that models with indistinguish-

able AUCs can differ significantly in terms of calibration, which is also indicated that traditional supervised

learning algorithms developed under cohort study theory are not suitable for personalized clinical decision
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even with a good AUC. For instance, a classifier can draw a perfect decision boundary but fails to estimate

the true risk about individual patients.

As personalized medicine is inevitable [145], for the best performance of diagnostic and treatment for

individuals, physicians usually conduct individualized lab tests to determine diseases or conditions of their

patients instead of relying on their knowledge of diagnostic groups at large. Analogously for the risk esti-

mation problem, careproviders need personalized risk scores rather than the risk of a group to make more

informed decisions regarding individual patients. That is, if careproviders can determine the risk of their

patients in developing a disease or condition individually, they can treat them with respect to their own

situation to improve the quality of their services.

Unfortunately, traditional supervised learning algorithms have focused on models’ discriminative ability

and ignored their calibration performance. For instance, Decision Trees (DT) and Support Vector Machine

(SVM) provide a decision boundary for a cohort study, but their outputs do not closely represent the “true”

probability of adverse events, as indicated in Figure 5.2.

Figure 5.2: Traditional learning approaches are not appropriate for personalized medicine as global risks
make little sense to individuals.
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In order to evaluate different courses of actions, it is useful to obtain accurate likelihood estimates of the

alternatives [45]. This calibration aspect of models is crucial to biomedical decision making tasks, because

only “calibrated” outputs can be used for individual risk assessment and further combined with other pieces

of information in a consistent manner for personalized clinical decision making.

Clinically, risk assessment tools such as Cox proportional hazard model, logistic regression model, and

other machine-learning based predictive models are widely used in patient diagnosis, prognosis, and clinical

studies. Accurate calibration of these models is important if the outputs are going to be applied to cohorts

other than those the model was initially built upon [45, 160].

One example is the Gail model, a prediction model of a woman’s risk of developing invasive breast

cancer. However, the Gail model is reported to underestimate the risk among women over 50 years old and

high-risk populations such as patients with family history or atypical hyperplasia. The calibrated model

found more patient that would benefit from chemoprevention than the original model [5, 160].

Another example is the Framingham Heart Study model, a gender-specific coronary heart disease (CHD)

prediction functions to assess the risk of developing incident CHD in a white middle-class population. While

the original model overestimated the risk of 5-year CHD events among Japanese American men, Hispanic

men and Native American women, the re-calibrated risk score based on the new cohort’s own average

incidence rate performed well [50].

In summary, calibration is fundamental to achieving consistency of measurement [27]. Thus, methods

have to provide a reliable estimate of the “true probability” of the class membership for application to many

clinical decision making problems.

To face this challenge, this chapter is dedicated to investigating the possibility of providing an integrated

framework that concurrently bears both discrimination and calibration criteria. However, this is a non-

trivial task, as Habbema and his colleagues denoted: “We would like to devise a statistic which reflects

discriminatory ability and reliability (calibration) at the same time, the two ingredients being mixed in

justifiable proportions. But we have not been able to do so. Nor are we able to prove that it cannot be done

[81].”

Through careful investigation of probabilistic method’s reliability and validity, I revealed insufficiency

of state-of-the-art calibration approaches (e.g., Platt Scaling (PS) [147] and Isotonic Regression (IR) [9])

and why they could have poor performance in various situations. As opposed to these methods using a post-

processing step to “recalibrate” probabilistic outputs [37, 176, 205, 206], I developed a unified framework
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that synthesized both model optimization objectives as a global optimization problem. I derived a simple

formulation that accounts for the joint optimization problem. My framework incorporates, extends and

improves state-of-the-art calibration approaches (e.g., Platt Scalingand Isotonic Regression). I showed both

approaches are degenerated instances of my framework under parametric and nonparametric assumptions,

respectively.

I also implemented a generalized method under this integrated framework, which extends traditional

Support Vector Machines to consider a calibration-related loss function in addition to a discriminative hinge

loss function. The new model is called “Doubly Penalized Support Vector Machine”, as it is regularized

by two rather than one loss functions. Finally, I evaluated my approach using clinical related data and

demonstrated improved performance.

5.1 Data

In additional to simulated data, I used a clinical dataset, Breast Cancer Gene Expression, to evaluate the

efficacy of my approach in this chapter. Specifically, this dataset contains GSE2034 and GSE2990, which are

both gene expression data related to breast cancer. The dataset was obtained from the NCBI Gene Expression

Omnibus (GEO). Two individual data downloaded were previously studied by Wang et al. (GSE2034) [187]

and Sotiriou et al. (GSE2990) [166], respectively.

To make my data comparable to the previous studies, I follow the criteria in [140] to select patients, who

did not receive any treatment and had negative lymph node status. Among these pre-selected candidates,

only patients with extreme outcomes, either poor outcomes (recurrence or metastasis within five years) or

very good outcomes (neither recurrence nor metastasis within eight years) were selected. The number of

samples after filtering are: 209 for GSE2034 (114 good/95 poor), 90 for GSE2990 (60 good/30 poor).

Both data have a feature size of 247,965, corresponds to the gene expression results obtained from micro-

array experiments. They were preprocessed to keep only the top 15 features ranked using a t-test (see [140]

for details). I showed boxplots and matrix plots for both data in Figure 5.3 and Figure 5.4, respectively.
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Figure 5.3: Boxplots of Breast Cancer Gene Expression Data. Each column corresponds to one feature
vector, and the last column indicates the outcome variable.
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(a) GSE_2034

(b) GSE_2990

Figure 5.4: Matrix plots of Breast Cancer Gene Expression Data. Each subfigure corresponds to a matrix
plot of one data set.
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5.2 Related Works

Classifier calibration is the process of converting classifier scores into reliable probability estimates [62].

Various procedures for calibrating classifiers have been proposed in different contexts: in forecasting the

I/O response time of large storage arrays [45], in pattern classification [60, 136] and in game theory [67].

In general, existing calibration methods are mostly post-processing steps that applies to a probabilistic

model by “rectifying” their outputs. Among calibration approaches have been proposed, there are two main

streams: the parametric models and non-parametric models. Platt suggested transforming SVM predictions

to posterior probabilities by passing them through a sigmoid function P (yi =′ +′|ŷi) = 1
1+exp(Aŷi+B) ,

where yi corresponds to the class label, ŷi is the prediction probability and A,B are the model parameters

[147]. The idea is to use a sigmoid function to map model predictions to posterior probabilities that minimize

the errors to the ground-truth. The parameters of the sigmoid function can be efficiently estimated by the

gradient descent algorithm. However, it is problematic when the outputs cannot be fitted with a sigmoid

function; in this case, approximations could result in poor calibration results.

Recently, a calibration technique based on Isotonic Regression has gained attention within machine

learning as a flexible and effective way to calibrate classifiers [207]. This non-parametric model aims to find

a weighted least square fit with the following form: min
∑
i wi(xi − yi)k subject to xi ≥ xj ,∀i > j. Note

that k is the order of the norm, wi corresponds to the weight, yi is the binomial class label and xi is the

calibrated estimation variable. The formula is subject to a set of monotonicity constraints giving a simple or

partial order over the variables. When k = 2, there is an efficient pair-adjacent violators (PAV) algorithm

to solve this problem [26]. However, the result of the calibration is not continuous and the result could be

easily over-fitting.

Interpretation: If classification is the goal, it is generally recommended to choose a

model with good discrimination over one with good calibration. If a predictive model

has poor discrimination, no adjustment or calibration can correct the model. On the

other hand, if discrimination is good, but calibration is poor, the model can be re-

calibrated without sacrificing the discrimination. [41]

Figure 5.5 illustrates both calibration approaches using a made-up example. The blue circles correspond

to un-calibrated probability estimates and the red dashed curves represent the calibrate transformations. The

Platt Scaling calibration is more smooth but does not represent the underlying pattern sufficiently while the
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Figure 5.5: State-of-the-art calibration approaches.

Isotonic Regression seems quite zigzag and tends to over-fit.

Figure 5.6: Existing approaches of calibration. These methods take place in probabilistic outputs of "un-
calibrated" classifiers. They are executed in a sequential manner, that is, they first optimize a model that
maximize discrimination and its outputs are calibrated by these "rescue" methods.

Interpretation: Existing calibration approaches apply monotonic mapping func-

tions on outputs of probabilistic models that maximize AUC in a sequantial manner.

However, their capabilities are limited by two things: 1) the monotonic constraints; 2)

the seperated considerations of calibration and discrimination.

Although many empirical results have demonstrated benefits of calibration, the proposed models Platt

Scaling and Isotonic Regression are both post-processing methods that work with outputs of other discrimi-

native classifiers as a separate step rather than taking calibration into account concurrently with discrimina-

tion at the very beginning.

A theoretical foundation for joint optimization was still missing, and it was unclear if a global maxi-

mization of discrimination and calibration could impact the models in a positive way. This chapter aims
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to address the joint optimization of discrimination and calibration in a principled way and suggest novel

approaches for implementing this framework.

5.3 Preliminaries

I briefly review discrimination (AUC) and calibration before introducing the methodology details. Figure

5.7 demonstrates both evaluations metrics with a simple example.

P=0 P=1

.2
.5

.6

.7

Figure 5.7: Illustration of discrimination and calibration measures on a made-up example. The “X” repre-
sents positive-labeled observations and “O” corresponds to negative-labeled observations. There are two dis-
cordant pairs out of four, thus AUC = 0.5 and the L-1 calibration error equals to 0.5+0.6+|0.2−1|+|0.7−1|

4 =
0.55.

Interpretation: The seemingly unrelated model evaluation metrics: discrimination

and calibration are indeed correlated. Generally, good calibration encourages good

discrimination and vice versa.
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5.3.1 Area Under Curve (AUC)

Area Under ROC Curve (AUC) is often used as a measure of quality of a probabilistic classifier, e.g., a

random classifier like a coin toss has an AUC of 0.5; a correct classifier has 1. Every point on a ROC curve

corresponds to a unique pair of True Positive Rate (TPR), and False Positive Rate (FPR); please refer to

Figure 5.1(c). I can thus express this area as the following integration of TPR over FPR:

AUC =

ˆ 1

0

TP

P
d
FP

N

=
1

mn

ˆ n

0

TPdFP

=
1

mn

∑
X∈{+}

∑
O∈{−}

(P (X) > P (O)) , (5.1)

where P (X) and P (O) correspond to the posterior probability of positive sample X and negative sample

O, respectively. m and n correspond to the cardinality of the positive and negative classes. The last line of

Eq. 5.1 can be interpreted as the count of concordant pairs out of all positive and negative sample pairs. For

example, if all the positive samples are ranked higher than any of the negative samples, the AUC equals to

1; conversely, if none of the positive samples is ranked higher than any of the negative samples, the AUC

equals to 0.

Obviously, AUC concerns the relative ordering of the estimated probabilities rather than their actual

values. I can divide the probabilities of a classifier A by 10 without affecting AUC at all, as indicated by

Figure 5.1. This operation, however, makes the probabilistic predictions unreliable as
∑
X∈{+} P (X) �

m
m+n and

∑
O∈{−} P (O)� n

m+n . I now introduce the concept of calibration.

5.3.2 Calibration

Calibration is a standard to evaluate whether a probabilistic classifier is suitable. Recall that a probabilistic

classifier assigns a probability pi to each sample i; a well calibrated classifier is that a fraction of about pi of

the events with predicted probability pi actually occurs. Expressed with a parametric definition,

yi = true probability, pi = predicted probability
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When there are not many samples with the same probability, samples with similar probabilities are

grouped by partitioning the range of predictions into sub-segments (or bins). To estimate the unknown true

probabilities for many real problems, the prediction space is divided into ten bins. Cases with a predicted

value between 0 and 0.1 fall in the first bin, between 0.1 and 0.2 in the second bin, and so on. For each bin,

the mean predicted value is plotted against the true fraction of positive cases. If the model is well calibrated

the points will fall near the diagonal line. This plot is known as the reliability diagram, as indicated by

Figure 5.5.

I accessed the calibration with the goodness-of-fit-test: Hosmer-Lemeshow (HL) [90, 103], which ver-

ifies whether the model of interest represents the truth labels with a high statistical significance under a χ2

test.

5.4 Methodology

I believe that discrimination and calibration are not independent perspectives of a probabilistic model. Thus,

previous models that adopt sequential processing cannot offer the best of both. My exploration indicated

that better models could benefit from considering calibration and discrimination together. The following

subsection introduces the integrated framework.

5.4.1 An Integrated Framework

Assume there are m positive cases and n negative cases. Let us denote x = P (X) as the probability

prediction of an instance X ∈ {+} of the positive cases, and o = P (O) as the prediction probability of

another instance O ∈ {−} of the negative cases. Every pair (x, o) resides in a space of X × O. Note the

cardinality of |X | = m and |O| = n. Consider the following formulation:

∑
(x,o)

(
e(x)

n
+
e(o)

m
+ f(x, o)

)
= mn, (5.2)

which is equivalent to:
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∑
(x,o)

(
(
e(x)

n
+
e(o)

m
)/mn

)
+
∑
(x,o)

f(x, o)

mn
= 1, (5.3)

where e(x) = |x− 1| and e(o) = |o| denote the prediction errors. Notice that I divide the errors by the size

of the opponent class size to weight their contributions.

Interpretation: I constrained the sum of discrimination and calibration metrics to

be mn, the total number of sample pairs. The goal is to find the tradeoff between these

two metric within the simplex.

Let IErr =
(∑

(x,o)
e(x)
n + e(o)

m

)
/mn, since the errors are calculated pairwise, I can rewrite it as

IErr =

∑
(x,o)

e(x)

n
+
e(o)

m

 /mn

=

∑
x∈X e(x) +

∑
o∈O e(o)

mn
, (5.4)

which corresponds to the normalized calibration error under L1 norm of the finest granularity, refers to

Section 5.3.2.

I define another function called compliment AUC:

CAUC =
∑
(x,o)

I(x < o)

mn
= 1− IAUC , (5.5)

where I(x < o) =


1 x < o

0 otherwise

and IAUC denotes the area under curve.

Now assume that the function f(x, o) can be decomposed so that f(x, o) = I(x < 0) + ε(x, o). I can

plug Equation 5.4 and Equation 5.5 into Equation 5.3 to obtain:

IErr + IAUC +
∑
(x,o)

ε(x, o)

mn
= 1, (5.6)
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after re-organizing it, I obtain

∑
(x,o)

ε(x, o)

mn
= 1− IErr − CAUC ,

= IAUC − IErr, (5.7)

which is the function that depicts the trade-off between calibration and discrimination. Ideally, I want larger

AUC (discrimination power) and smaller normalized calibration error, which is exactly the procedure for

maximizing
∑

(x,o)
ε(x,o)
mn .

Interpretation: Equation 5.7 implies that discrimination and calibration are inter-

dependent and thus their optimum values can be obtained simultaneously.

Assume that a probabilistic classifier outputs near-optimal IAUC , in order to increase the objective in

Equation 5.7, I want to transform the probability by keeping this IAUC but reduce the IErr as much as

possible at the same time. In order word, I am seeking a transformation function t(·) to minimize IErr while

keeping the partial orders so that if x < o, then t(x) < t(o) and vice versa.

max
t

∑
(x,o)

ε (t(x), t(o)) . (5.8)

It is easy to prove that any monotonic function preserves the partial ordering and thus keeps the IAUC . In

this case, the optimization problem of Equation 5.8 is reduced to the Isotonic Regression. I can also address

it with a parametric treatment using a sigmoid function. The problem induced by Equation 5.8 becomes

the Platt Scaling method. Obviously, both Platt Scaling and Isotonic Regression are the AUC-preserving

instantiations under the integrated framework. The Isotonic Regression, as a non-parametric model, gives

the optimal solution on the training data under the monotonicity constraints. It usually has a performance

advantage over the Platt Scaling on testing samples as well because it offers a higher degree of freedom to

fit the data.
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Figure 5.8: The integrated framework for joint optimization. The framework enforces maximization of both
AUC and Calibration in a global manner.

Interpretation: Good probabilities = good calibration + good discrimination. As

these two aspects are complementary, they should be taken together to ensure good

probabilities.

5.4.2 A Joint Optimization Implementation

To validate my framework, I implemented an instance of the framework to show the benefits of considering

calibration and discrimination simultaneously. My model extended the Support Vector Machine to incorpo-

rate the calibration-related loss in addition to the discrimination-related loss. To understand the technique,

I briefly review the Support Vector Machine model developed by Vanpik et al. [180] before introducing the

details of my model.

5.4.2.1 Support Vector Machine

Suppose there is a training data D = {(X1, Y1), . . . , (XN , YN )} ⊂ X × R, where X denotes the space of

input patterns (e.g. X = Rd). Yi ∈ {−1, 1}. The label “1” indicates a positive case and “-1” indicates

a negative case. A natural way of representing a maximum margin classification optimization led to the
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following format:

min
1

2
||W ||22 + C

∑
i

L(sign(WTXi + b), Yi) (5.9)

Here L(sign(WTXi + b), Yi) is the 0/1 loss while ||W ||22 is the penalty term that specifies the maximum

margin between two classes of data. C trades off between model bias and variance. Unfortunately, Equation

5.9 is not convex. A relaxation of the problem leads to the using of a hinge loss function to approximate

the 0/1 loss. This result is known as the Support Vector Machine (SVM), whose objective function is

f(X) = WTX + b. The function thus optimizes solutions that deviate least from the ground-truth Y . It has

the following form:

min
W,b,ξ,ξ∗

1

2
WTW + C

N∑
i=1

ξi (5.10)

s.t. Yi ∗ (WTXi + b) ≥ 1− ξi

ξi ≥ 0,∀i,

where ξi is the loss for the i-th data point Xi; W and b are the weight parameters; and C is a penalty

parameter to weight the loss. I reorganize the Equation 5.11 by absorbing the constraints to the target

function as follows:

min
W,b,ξ,ξ∗

1

2
||W ||2 + C

N∑
i=1

max(1− Yi ∗ (WTXi + b), 0). (5.11)

Interpretation: The Support Vector Machine trade off model between model

smoothness and misclassification errors.

The first term 1
2 ||W ||2 is responsible for the model complexity while the second term max(1 − Yi ∗

(WTXi+b), 0), known as the hinge loss, penalizes the model for its mis-classifications. SVM expects label

“1” cases to be f(X) > 0 and label “0” cases to be f(X) < 0. The final output of this optimization is a

vector of weight parameters W , which forms the decision function maximizing the margin between positive

and negative samples. Figure 5.9 illustrates the separating hyperplane and maximum margin optimization.
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|f(x)| / ||w||

f(x) = w·x – γ = 0

f(x) > 1

f(x) < -1

m = 1 / ||w||
m

Figure 5.9: The separating hyperplane that maximizes the margin. (“o” is a positive data point, i.e., f(”o”) >
0, and “+” is a negative data point, i.e., f(” + ”) < 0.

5.4.2.2 Doubly Penalized Support Vector Machine

Thanks to the hinge loss function that directly optimizes the discrimination ability, SVM suffices in many

tasks the mission of which is to provide good classification. However, SVM does not offer reliable outputs

that can be trusted as good approximations of the "true probability" of an event. The model concentrates

discrimination ability separately from the consideration of calibration. That is, it does not penalize a correct

case even if the predicted value is far from its label.

Platt et al. proposed transformation P (Yi =′ +′|Ŷi) = 1
1+exp(AŶi+B)

to rectify these “uncalibrated”

outputs Ŷi = WTXi + b, where Yi corresponds to the true class label, and A,B are the model parameters

[147]. Essentially, this approach refits SVM outputs to a one-dimensional Logistic Regression model that

optimizes the log-loss function. Nevertheless, such an ad-hoc approach does not always work because the

monotonicity constraint of a sigmoid function limits the calibration ability it offers.

To address this insufficiency, I developed a hybrid model that concurrently optimizes loss functions

of two different kinds: the hinge loss and the regression loss. I illustrated three typical machine learning

loss functions in Figure 5.10 with their semantic meaning to help readers to understand the idea of this
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combination.

Figure 5.10: Illustration of three different loss functions. The red curve corresponds to the log-loss function
(logistic regression), the green curve corresponds to the squared loss function (ridge regression) and the blue
curve corresponds to the hinge loss function (SVM).

Different loss functions bear different optimization principles. For example, optimizing hinge loss means

predicting the conditional median of unknown states Y ; optimizing log-loss means minimizing the descrip-

tion length of Y ; and optimizing squared loss means predicting the conditional mean of Y . The log-loss is

implemented in Logistic Regression, in which the best hypothesis for a given set of data is what leads to

the best compression of the data. The squared loss can be implemented in ridge regression, which is closely

related to a calibration measurement: the Brier Score. Finally, the hinge loss function is implemented in the

Support Vector Machine model to maximize the discrimination ability. Understanding these differences, I

intentionally combine loss functions with discrimination and calibration semantics for a global optimiza-

tion. The following model combines two different loss function: hinge loss and squared loss. The first is

responsible for optimizing AUC and the latter is responsible for minimizing the Brier score:
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min
w,b,ξ,ξ∗

1

2
WTW + C1

N∑
i=1

ξi + C2

N∑
i=1

(WTXi + b− Yi)2 (5.12)

s.t. Yi ∗ (WTXi + b) ≥ 1− ξi

ξi ≥ 0,∀i.

Interpretation: The doubly penalized Support Vector Machine combines two loss

functions: one for calibration and the other for discrimination. The model optimizes

both objectives concurrently.

The DP-SVM model extends SVM by considering calibration-related square loss. On one hand, com-

putational learning theory ensures its sound generalizability to the marginal maximization property. On the

other hand, thanks to the regression loss objective, the new model offers calibration ability that SVM cannot

provide. The parameters C1 and C2 control the weights of calibration and discrimination impacts in build-

ing the model. To solve this quadratic programming objective (Equation 5.12), I developed the following

algorithm to use subgradient descent optimization approach.

Algorithm 3 Parameter learning for DP-SVM using subgradient descent algorithm.
Input: Raw observations Xi where Xi = {x1

i , . . . x
m
i } are the co-variate vector at time i.

Output: Learned Weight Parameters W.
Parameters: The penalty parameter for hinge loss C1, the penalty parameters for ridge regression loss C2

and step size η
1: Reorginize objective function to get rid of the constraints:

1
2WTW + C1

∑N
i=1 max 0, 1− Yi ∗ (WTXi + b) + C2

∑N
i=1(WTXi + b− Yi)2,

2: Calculate the derivative of the above objective, which can be written as
G(W) = W + C1 ∗

∑
i max(1− YiXi, 0) + 2 ∗ C2 ∗

∑
i WXi.

3: Initialize W0 = 0.
4: repeat
5: Wt = Wt−1 − η ∗G(Wt−1) the derivative of W
6: until W converges

5.5 Experiments

I evaluated the approaches using: (GSE2034) [187], Sotiriou et al. (GSE2990) [166] from the Breast_Cancer

clinical dataset, which were collected from NCBI Gene Expression Omnibus (GEO). Please refer to Chapter
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2 for details. The experiments are carried out on a 2.00 Ghz laptop with 2GB memory. Both data-sets have

been preprocessed to keep only the top 15 features, see [140] for details. The data-sets are summarized in

Table 5.1.

Table 5.1: Split of the training and test data for GSE2034 and GSE2990.

#ATTR TRAIN SIZE TEST SIZE %POS
GSE2034 15 125 84 54%
GSE2990 15 54 36 67%

I qualitatively examined the calibration and discrimination of the Logistic Regression, SVM and Doubly

Penalized Support Vector Machine. For both data, I trained on the 60% of the random samples. Table 5.2

and 5.3 show the performance of three models in comparison.

Table 5.2: Model performance comparison of GSE2034.

LR SVM DP-SVM
AUC 0.716247 0.70595 0.737986

AUC s.d. 0.05539 0.056137 0.053685
AUC c.i. (upper) 0.607684 0.595923 0.632766
AUC c.i. (lower) 0.82481 0.815976 0.843206

F-score 0.692308 0.675 0.675
Sensitivity 0.586957 0.586957 0.586957
Specificity 0.868421 0.815789 0.815789

Type1 Error 0.413043 0.413043 0.413043
Brier Score 0.25163 0.241392 0.236004

P-value HL-H test 0 1.33E-15 1.19E-06
P-value HL-C test 0 0 1.74E-07

Table 5.3: Model performance comparison of GSE2990.

LR SVM DP-SVM
AUC 0.772569 0.822917 0.861111

AUC s.d. 0.078327 0.069061 0.060775
AUC c.i. (upper) 0.619052 0.68756 0.741994
AUC c.i. (lower) 0.926087 0.958273 0.980228

F-score 0.833333 0.818182 0.808511
Sensitivity 0.833333 0.75 0.791667
Specificity 0.666667 0.833333 0.666667

Type1 Error 0.166667 0.25 0.208333
Brier Score 0.194454 0.17017 0.14737

P-value HL-H test 0 0.161298 0.278179
P-value HL-C test 0 0 0.204817
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The DP-SVM model outperformd other methods in both indices and demonstrated its advantage.

5.6 Discussion

Discrimination and calibration are two major families of measurements in the evaluation of model per-

formance. In clinical predictions, discrimination measures the ability of a model to separate patients with

different outcomes. In the case of a binary outcome, good discrimination indicates adequate distinction in

the distributions of predicted values, based on the model, between the two classes, defined by the binary

outcome [41]. On the other hand, calibration measures the similarity between the predicted values and

the observed outcomes. Usually, good calibration tends to correspond to good discrimination. However, a

successful classifier in terms of discrimination ability or Area Under ROC Curve (AUC) is not necessarily

calibrated. Calibration is crucial to biomedical decision making tasks, because only “calibrated” outputs can

be used for individual risk assessment and further combined with other pieces of information in a consistent

manner for personalized clinical decision making. Unfortunately, traditional supervised learning algorithms

developed under the theory for a cohort study do not provide reliable individualized risk prediction to assist

the caregivers.

Recent research in machine learning has advocated using a post-processing step to “recalibrate” uncal-

ibrated models for better performance. However, both approaches are not sufficient. For example, Platt

Scaling does not always fit the inputs; thus, approximation under such situations may lead to bad calibra-

tion. On the other hand, Isotonic Regression has another problem: it could easily over-fit training data due

to the absence of a regularization term. In summary, both Platt Scaling and Isotonic Regression are post-

steps applied to the outputs of a probabilistic model without considering the input space, which limits their

performances.

Furthermore, a theoretical foundation for joint optimization was still missing and it is unclear if a global

maximization of discrimination and calibration could impact the models in a positive way. After carefully

analyzing the relations between these metrics, I suggested an integrated framework that combines calibra-

tion and discrimination under a global optimization objective. The framework incorporates, extends and

improves existing approaches such as Platt Scaling and Isotonic Regression.

I also developed a novel technique, Doubly Penalized Support Vector Machine (DP-SVM), which in-

stantiates the unified framework to provide more comprehensive joint optimization than previous methods
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do. However, there is a limitation of this approach in which it requires additional steps to control the relative

impact of discrimination and calibration. The user has to tune parameters, e.g., the trade-off factor, by cross

validation.

Thus, although DP-SVM demonstrated good performance, it is not fully automatic and might not be prac-

tically attractive to clinicians. To minimize human intervention, I developed other calibration approaches

that utilize model specific characteristics to improve calibration performance. The following chapters will

discuss and demonstrate two alternative methods.

5.7 Conclusion

Empirical experiments in previous studies have demonstrated the benefits of calibrating probabilistic mod-

els for more effective individualized inspection. However, a theoretical foundation for understanding the

relationship between calibration and a more traditional optimization criteria, discrimination, is still not

available. It remained unclear whether the joint consideration of both could improve or harm the model

performance. To address these issues, I investigated further in the direction of global optimization methods

for both metrics.

I developed a systematic framework for discrimination and calibration. In a principled way, I integrated

two important components of the probabilistic model: discrimination and calibration, which are tradition-

ally considered separately. Through my investigation, I found that these two seemingly unrelated metrics

are connected, and a well designed joint maximization algorithm can offer the best of both if they are opti-

mized independently. This joint optimization using a combined objective function guards against learning

degenerated model that performs well in one aspect but poorly in the other aspect.

My framework incorporates, extends, and improves state-of-the-art calibration approaches such as Platt

Scaling (PS) and Isotonic Regression (IR). I also implemented a more generalized method under this in-

tegrated framework, which extends traditional Support Vector Machines to consider a calibration-related

loss function in addition to a discriminative hinge loss function. The model is generalizable, and can be

applied to any binary outcome prediction problem where a probabilistic outputs is preferred over a decision

rule. Due to the joint contribution of discrimination and calibration specific loss function, it is capable of

producing more accurate probabilities than models that consider a single aspect. I evaluated my approach

using clinical related data and demonstrated improved performance.
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Chapter 6

Smooth Isotonic Regression

1The diagnosis of human disease has witnessed steady improvement in the past few centuries has been in

steady increase. Once considered a single entity, many diseases have been divided into finer categories

based on the response to treatment (e.g., I type and type II diabetes), genetic (such as familial polyposis

and non-familial), histology (such as small cell lung cancer) and the recent transcriptional profiling (such as

leukemia, lymphoma) [80]. The next frontier in medicine seems to be the patient type, not the disease, i.e.

disease X in person of type Y. This is also called “Personalized Medicine”, which aims to predict the type

of individual, along with the therapy that is most likely to benefit him or her. That is, personalized medicine

needs “calibrated” probabilistic estimates about individuals.

Unfortunately, most popular supervised learning models focus on model discrimination ability while

neglecting the calibration ability [12]. In the last chapter, I introduced a few recent attempts to address the

calibration issue. However, they are not sufficiently developed to meet the needs of personalized clinical

decision making [87]. For example, Devised by Platt [147], Platt scaling may lead to poor calibration when

outputs cannot fit a sigmoid function. Isotonic Regression calibration approach, proposed by Zadrozny

[207], suffers from monotonicity constraints and its results tend to overfit the training data. To this end, I

developed a novel model DP-SVM to synthesizes both discrimination and calibration objectives for a global

maximization. The method has not only demonstrated superior calibration and discrimination performance

but also introduced additional parameters to be determined by users. This additional burden on users, most

likely caregivers, makes the method unlikely to gain much attraction in the biomedical community.

1A version of this chapter is under review at 2010 AMIA Summit on Clinical Research Informatics [94].
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To avoid human intervention and provide a useful calibration tool, I investigated an alternative approach

to achieve both discrimination and calibration goals in an automatic manner. After a careful analysis of

existing parametric and non-parametric models, my investigation indicated that these aspects could be com-

plementary to each other. Specifically, I used outputs of isotonic function as inputs to a smoothing function

minimized over the space of natural cubic splines with knots at the design points. Finally, I estimated un-

known parameters of this Piecewise Cubic Hermite Interpolation Polynomial. The new regression function

utilizes non-parametric outputs in a parametric way. The results are thus non decreasing in the whole domain

and also has enough smoothness. Synthetic and real world experiments suggested my model performs well.

6.1 Data

To verify the efficacy of the developed method, I compared different calibration methods on eight binary

classification problems. The datasets used in this chapter are: GSE2034, GSE2990, HOSPITAL, ADULT,

BANKRUPTCY, HEIGHT_WEIGHT, MNISTALL, PIMATR. The first three data were introduced in Chap-

ter 2. The other data were downloaded from UCI Repository [69]. The data are summarized in Table 6.1.

The percentage of positive cases varied from 8% to 67%.

Table 6.1: Datasets for evaluating smooth Isotonic Regression. % POS indicates the percentage of positive cases.

# Train Test %
Data Attr size size POS

GSE2034 15 125 84 54
GSE2990 15 54 36 67

ADULT 14 4,000 41,222 25
BANKRUPTCY 2 40 26 48

HEIGHT_WEIGHT 7 126 84 64
HOSPITAL 22 2,891 1,927 8
MNISTALL 784 42,000 28,000 9.8

PIMATR 8 120 80 33

6.1.1 Breast Cancer Gene Expression data

GSE2034 and GSE2990 are gene expression datasets related to breast cancer. The data were obtained from

the NCBI Gene Expression Omnibus (GEO). The three individual downloaded datasets were previously

studied by Wang et al. (GSE2034) [185] and Sotiriou et al. (GSE2990) [166], respectively.

To make my data comparable to the previous studies, I followed the criteria in [140] to select patient who
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did not receive any treatment and had negative lymph node status. Among these pre-selected candidates, only

patients with extreme outcomes, either poor outcomes (recurrence or metastasis within five years) or very

good outcomes (neither recurrence nor metastasis within eight years) were selected. The number of samples

after filtering are: 209 for GSE2034 (114 good/95 poor), and 90 for GSE2990 (60 good/30 poor).Both data

have a feature size of 247,965, which corresponds to the gene expression results obtained from micro-array

experiments. They were preprocessed to keep only the top 15 features ranked using t-test (see [140] for

details). I showed boxplots and matrix plots for both data in Figure 6.1 and Figure 6.2, respectively.
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Figure 6.1: Boxplots of Breast Cancer Gene Expression Data. Each column corresponds to one feature
vector and the last column indicates the outcome variable.
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(a) GSE_2034

(b) GSE_2990

Figure 6.2: Matrix plots of Breast Cancer Gene Expression Data. Each subfigure corresponds to a matrix
plot of one dataset.
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6.1.2 Hospital data

The HOSPITAL data set consists of microbiology cultures and other variables related to hospital discharge

errors [59]. For patient demographic data, this data contains age, gender, race, and insurance. Related to the

hospital encounter, the dataset contains the visit type (admission, emergency room, procedure or outpatient)

and admitting service, if applicable. Related to the microbiology result, the dataset contains the specimen

type (blood, urine, sputum and cerebral spinal fluid), the hospital day number that the specimen was col-

lected, whether the result was pending at the time of discharge from the hospital, whether the specimen was

collected on a weekend, whether the preliminary results (for blood cultures) were reported on a weekend,

and whether the final results were reported on a weekend. In addition to the data pulled directly from the

hospital computer system, this dataset contains an additional outcome variable that indicates whether the

case represents a potential post-discharge follow-up error using experts’ knowledge. This variable is true if

the following three criteria are met: 1) the result is considered clinically relevant; 2) the results return after

the patient is discharged from the hospital; and 3) there is no antibiotic on the discharge medication list to

which the organism is sensitive based on the microbiology results. The features are thus comprised of eight

categorical variables and two numerical variables. The target is a Boolean variable (Pot_error) indicating

the potential error.

The following table summarizes features and outcome variable with their descriptional statistic, i.e., min,

1st Qu., median, 3rd Qu. ,max. The clinical meaning for each column was explained in Chapter 2.

Table 6.2: Descriptional statistic for hospital discharge error data.

specimen speciman days collect week final week visit type svc
0: 233 1 :1245 0:3755 0:3583 1:4818 1: 665
1:2564 0 :1030 1:1063 1:1235 2:1287
2:1467 2 : 682 3:1217
3: 554 3 : 391 4:1608

4 : 327 5: 41
5 : 227

(Other): 916

age female race insurance pot error
Min. : 0.00 0:2252 0:3360 0:1996 0:4449

1st Qu.:43.28 1:2566 1: 577 1: 554 1: 369
Median :57.76 2: 110 2:2152

Mean :56.51 3: 405 3: 116
3rd Qu.:71.24 4: 55

Max. :99.71 5: 311
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There are 369 clinically important but highly suspicious observations out of 4819 returned post-discharge

observations, which makes the data highly unbalanced and a challenge to calibrate.

I also drew the XY plot for various pairs of co-variates to show their co-occurrence patterns, as indicated

by Figure 6.3.

Figure 6.3: XY plots for hospital discharge error data.

6.1.3 Height and Weight data

The HEIGHT_WEIGHT data were downloaded from UCI Repository [69]. The data contain physiological

measurements of different genders. The subjects are 213 students of an academic university. Seventy-three

students are female and 140 are male. The data have the following features: height, weight, GPA, left arm

length, right arm length, left foot size, and right foot size. These co-variates are self-explanatory by their

names.
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Table 6.3: Descriptional statistic for the HEIGHT_WEIGHT data.

Sex Height Weight GPA
0: 73 Min. :55.00 Min. : 95.0 Min. :1.240

1: 140 1st Qu.:64.00 1st Qu.:125.0 1st Qu.:2.670
Median :67.00 Median :140.0 Median :3.000

Mean :67.31 Mean :145.5 Mean :3.004
3rd Qu.:70.50 3rd Qu.:160.0 3rd Qu.:3.400

Max. :79.00 Max. :280.0 Max. :3.910

LArm RArm LFoot RFoot
Min. :20.50 Min. :20.50 Min. :19.50 Min. :20.00

1st Qu.:24.00 1st Qu.:24.00 1st Qu.:23.40 1st Qu.:23.00
Median :25.00 Median :25.00 Median :24.70 Median :25.00

Mean :25.17 Mean :25.31 Mean :25.16 Mean :25.20
3rd Qu.:26.50 3rd Qu.:27.00 3rd Qu.:27.00 3rd Qu.:27.00

Max. :31.00 Max. :31.00 Max. :32.00 Max. :32.00

To see these statistic variables visually, I box plotted 7 co-variables along with the outcome variable in

Figure 6.4.
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Figure 6.4: Boxplots for HEIGHT_WEIGHT data.

I also included XY plots for various co-variables for this data. The following figure contains 56 subplots,

each indicates the co-occurrence of two variables. The diagonal cell corresponds to names of these variables.
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Figure 6.5: XY plots for the HEIGHT_WEIGHT data set.

6.1.4 Adult Census data

The extraction of the ADULT_CENSUS data was conducted by Barry Becker from the 1994 Census database.

A set of reasonably clean records was extracted and the prediction task is to determine whether a person earns

over 50K a year [101].

This data contains 14 co-variables and a binary outcome variable “income.” The following table sum-

marizes the basis statistics of these co-variables and the outcome variable.
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Table 6.4: Descriptional statistic for the ADULT_CENSUS data.

age workclass fnlwgt education education num
Min. :17.00 Private :22696 Min. : 12285 HS-grad :10501 Min. : 1.00

1st Qu.:28.00 Self-emp-not-inc: 2541 1st Qu.: 117827 Some-college: 7291 1st Qu.: 9.00
Median :37.00 Local-gov : 2093 Median : 178356 Bachelors : 5355 Median :10.00

Mean :38.58 ? : 1836 Mean : 189778 Masters : 1723 Mean :10.08
3rd Qu.:48.00 State-gov : 1298 3rd Qu.: 237051 Assoc-voc : 1382 3rd Qu.:12.00

Max. :90.00 Self-emp-inc : 1116 Max. :1484705 11th : 1175 Max. :16.00
NA (Other) : 981 (Other) : 5134

marital.status occupation relationship race sex
Divorced : 4443 Prof-specialty :4140 Husband :13193 Amer-Indian-Eskimo: 311 Female:10771
Married-AF : 23 Craft-repair :4099 Not-in-family : 8305 Asian-Pac-Islander: 1039 Male :21790

Married-civ :14976 Exec-managerial:4066 Other-relative: 981 Black : 3124
Married-absent: 418 Adm-clerical :3770 Own-child : 5068 Other : 271

Never-married :10683 Sales :3650 Unmarried : 3446 White :27816
Separated : 1025 Other-service :3295 Wife : 1568

Widowed : 993 (Other) :9541

capital.gain capital.loss hours.per.week native.country income
Min. : 0 Min. : 0.0 Min. : 1.00 United-States:29170 <=50K:24720

1st Qu.: 0 1st Qu.: 0.0 1st Qu.:40.00 Mexico : 643 >50K : 7841
Median : 0 Median : 0.0 Median :40.00 ? : 583

Mean : 1078 Mean : 87.3 Mean :40.44 Philippines : 198
3rd Qu.: 0 3rd Qu.: 0.0 3rd Qu.:45.00 Germany : 137

Max. : 99999 Max. :4356.0 Max. :99.00 Canada : 121
(Other) : 1709

Figure 6.6: The co-variates are grouped by the outcome variable, Income.

To visually demonstrate the distribution of each variable, I plotted histograms for each of the 14 co-
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variables grouped by the outcome variable in Figure 6.6. I also included XY plots for these co-variables

to show their co-occurrence patterns. The following figure contains 110 subplots and each indicates the

co-occurrence of two variables. The diagonal cell corresponds to variable names.

Figure 6.7: XY plots for the ADULT_CENSUS data.

6.1.5 Bankruptcy data

Bankruptcy data were also downloaded from UCI Repository [69]. The data contain two features: Return

and EBIT (earnings before interest and taxes). The outcome variable “Bankruptcy” is binary. There are

66 samples in this data, where 33 samples correspond to observed bankruptcy and the others do not. The

following table summarizes the co-variates and outcome variables with their description statistics, i.e., min,

1st Qu., median, 3rd Qu. ,max.
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Table 6.5: Descriptional statistic for the BANKRUPTCY data.

Return EBIT Bankruptcy
Min. :-308.90 Min. :-280.000 0:33

1st Qu.: -39.05 1st Qu.: -17.675 1:33
Median : 7.85 Median : 4.100
Mean : -13.63 Mean : -8.226
3rd Qu.: 35.75 3rd Qu.: 14.400

Max. : 68.60 Max. : 34.100
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Figure 6.8: Boxplots for the BANKRUPTCY data set.

To visually demonstrate the distribution of each variable, I box plotted these variables in Figure 6.6. In

addition, I included XY plots for co-variables and outcome variables to illustrate the co-occurrence patterns.

The following figure contains 6 subplots, each indicates the co-occurrence of two variables. The diagonal

cell corresponds to variable names.

Figure 6.9: XY plot for the BANKRUPTCY data set.
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6.1.6 Pimatr Indian Women data

The Pimatr Indian Women data were also downloaded from UCI Repository [69]. In this data, a population

of women who were at least 21 years old, of Pima Indian heritage and living near Phoenix, Arizona, was

tested for diabetes according to World Health Organization criteria. The data contains the 532 complete

records after dropping the (mainly missing) data on serum insulin.

The data have the following co-variables: ’npreg’ number of pregnancies; ’glu’ plasma glucose con-

centration in an oral glucose tolerance test; ’bp’ diastolic blood pressure (mm Hg); ’skin’ triceps skin fold

thickness (mm); ’bmi’ body mass index (weight in kg/(height in m)2); ’ped’ diabetes pedigree function;

’age’ age in years; finally, the outcome variable ’type’ 1 indicates ’Yes’ and 0 indicates ’No’, for diabetic

according to WHO criteria.

The following table summarizes the co-variates and outcome variables with their description statistics,

i.e., min, 1st Qu., median, 3rd Qu. ,max for this data.

Table 6.6: Descriptional statistic for the PIMATR data.

obs npreg glu bp
Min. : 1.00 Min. : 0.00 Min. : 56.0 Min. : 38.00

1st Qu.: 50.75 1st Qu.: 1.00 1st Qu.:100.0 1st Qu.: 64.00
Median :100.50 Median : 2.00 Median :120.5 Median : 70.00

Mean :100.50 Mean : 3.57 Mean :124.0 Mean : 71.26
3rd Qu.:150.25 3rd Qu.: 6.00 3rd Qu.:144.0 3rd Qu.: 78.00

Max. :200.00 Max. :14.00 Max. :199.0 Max. :110.00

skin bmi pedigree age type
Min. : 7.00 Min. :18.20 Min. :0.0900 Min. :21.00 0: 132

1st Qu.:20.75 1st Qu.:27.57 1st Qu.:0.2500 1st Qu.:23.00 1: 68
Median :29.00 Median :32.80 Median :0.3700 Median :28.00

Mean :29.21 Mean :32.31 Mean :0.4613 Mean :32.11
3rd Qu.:36.00 3rd Qu.:36.50 3rd Qu.:0.6200 3rd Qu.:39.25

Max. :99.00 Max. :47.90 Max. :2.2900 Max. :63.00

To visually demonstrate the distribution of each variable, I box plotted these variables in Figure 6.10.
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Figure 6.10: Boxplots for the Pimatr Indian Women data.

Figure 6.11: XY plots for the Pimatr Indian Women data.
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Figure 6.12: Image plot for the MNIST data. The size of the matrix is 784x70,000. Each row corresponds
to one pixel and its values of all 70,000 samples and each column represents an extrapolated 28x28 image.

I also included XY plots for co-variables and the outcome variable to illustrate the co-occurrence pat-

terns. The figure above contains 72 subplots, each indicates the co-occurrence of two variables. The diagonal

cell corresponds to variable names.

6.1.7 MNISTALL data

MNISTALL data contain 70,000 handwritten numbers . Each character is represented by a black and white

(bi-level) image, whose label is a number from ’0-9’. The images were centered in a 28×28 image, and thus

have a feature size of 784. I convert the multi-categorical prediction problem into a binary one by labeling

all digits ’0’ as positive and others as negative. This conversion yields a very unbalanced set, which is a

challenge to calibration models.

Due to the size of the data, I cannot display the boxplots or histograms for each co-variable as well

as the matrix plot between them. In addition, the raw pixel feature does not has any semantic meaning.
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Instead, I plotted an image of this gigantic 784×70,000 matrix in Figure 6.12. More detailed explanation

and motivation for this data can be found at http://yann.lecun.com/exdb/mnist/.

6.2 Related Work

Two different approaches directly motivated my research in this chapter. One of them is a parametric method

and the other is a non-parametric approach.

The parametric method is the Platt scaling developed by Platt [147], which suggested using a sigmoid

function P (ci = {+}|pi) + 1
1+exp(Api+B) to transform outputs of a "uncalibrated" model to probabilistic

outputs. Here, ci corresponds to the class label, pi is the prediction probability and A,B are the model

parameters. The parameters of the sigmoid function can be efficiently estimated by maximum likelihood

criteria. The method was first developed to transform the score of Support Vector Machines to probabilis-

tic outputs for decision support systems. But this approach is widely generalizable to any classifier that

generates a score value to co-variate patterns. The advantage of using a model based approach to recal-

ibrate outputs of non-probabilistic or uncalibrated models are expected to be smooth. However, this is a

double-bladed sword that limits the model’s flexibility of modeling more complex patterns. The Platt scal-

ing approach cannot improve calibration when the inputs are non-monotonic or the inputs concentrate on

narrow regions. In the first case, the method is not suitable because sigmoid function are strictly monotonic

and continuous. In the later case, Platt scaling extrapolates outside the input dense regions with low confi-

dence. Figure 6.13 illustrates the Platt Scaling Mapping Function together with “uncalibrated” scores of the

Naive Bayes classifier. This is essentially a Sigmoid function with optimized parameters learned to fit the

dichotomous class labels of training data.
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Figure 6.13: Illustration of Platt Scaling Mapping Function. The function is plotted along with “uncali-
brated” scores of the Naive Bayes classifier.

The non-parametric method Isotonic Regression is not new to biomedical informatics [9, 130, 135, 203].

However, it was first used by Zadrozny et al. for calibration purpose. Their paper [206] applied Isotonic

Regression to recalibrate scores of Naive Bayes and Support Vector Machine, which demonstrated good

performance. The objective of Isotonic Regression is a least squares minimization to observed dichotomous

class labels. It can be formulated as follows: min
∑
i wi(pi − yi)k subject to pi ≥ pj ,∀(i, j). Note the k

is the order of the norm, wi corresponds to the weight, yi is the class label and pi is the probability after

calibration. The users assign the weights if they have prior information; otherwise, wi = 1,∀i. The formula

is subject to a set of monotonicity constraints imposing simple or partial order over the variables. When

k = 2, there is an efficient pair-adjacent violators (PAV) algorithm to solve the problem [197]. There are no

regularization terms in this non-parametric recalibration approach, and its results tend to overfit the training

data [186].
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Figure 6.14: Illustration of Isotonic Regression Mapping Function. The mapping function is plotted along
with “uncalibrated” scores of the Naive Bayes classifier.

Figure 6.14 illustrates the Isotonic Regression Mapping Function together with “uncalibrated” scores of

the Naive Bayes classifier. The function minimized the least squares error between probabilistic outputs and

observed dichotomous class labels, which resulted in a zigzag shape of the mapping function. The approach

is non-parametric, that is data-driven, and provides more flexibility in modeling complex input pattens than

Platt Scaling. However, there is no smoothing term in Isotonic Regression that could helps to improve the

generalizability of method. As opposed to Platt Scaling, Isotonic Regression has much higher flexibility but

limited generalizability as the method often overfits the training data.

6.3 Smooth Isotonic Regression

As neither the parametric model nor the non-parametric model provided satisfactory solution to the cali-

bration problem, I investigated the possibilities of combining merits of both models to develop a smooth

non-parametric method to avoid the over-fitting problem.

Coincidentally, Wang and Li conducted a similar but different research [186]. Their approach, called the
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monotone smoothing spline estimator, aims to find a non-decreasing function t() that minimizes:

∑
i

(yi − t(pi))2 = λ

ˆ b

a

t(k)(z) dz, (6.1)

where λ is a fixed smoothing parameter. The first term measures the fit to the data, and the second term

controls the smoothness of the fitted function, where k = 1 corresponds to a piece-wise linear estimator,

and k = 2 suggests a smoother monotone estimator. Unfortunately, minimizing Equation 6.1 when k = 2

over all smooth monotone functions is a difficult nonlinear optimization problem. The authors of [186]

proposed a second-order cone programming (SOCP) approximation algorithm, which has an empirical loss

of approximately 30%.

I observed that Isotonic Regression is a non-parametric method that collapses raw predictions into larger

deciles; thus it uses only a few representative values. With only a finite number of these “representative” val-

ues, a parametric function can be used to smooth the model predictions. To maintain the AUC, I must ensure

that such parametric function G() is monotonically increasing, so that t∗() = G(I()) is also monotonically

increasing, where I() is the isotonic regression function.

I develop a novel approximation to the optimal smooth function t∗() that minimizes Equation 6.1, in

two steps. First, I apply isotonic regression to obtain a monotone non-parametric function t that minimizes∑
i(yi − t(pi))2. Second, I constructed a monotone smoothing spline to interpolate knots sampled from t to

obtain a smoothed approximation (Algorithm 4).

Algorithm 4 Smooth Isotonic Regression.
Input: Original prediction probability P = p1, . . . , pn, True and class labels Y = y1, . . . , yn.
Output: Smoothed isotonic regression function H .
Parameters: α: number of samples at each iteration, k: dimension of hidden topics, N : an scale factor.

1: Obtain I = argmaxi
∑
i (yi − I(pi))

2, subject to I(pi) ≤ I(pi+1)∀i (Isotonic Regression).
2: Sample S knots from I(p), p ∈ (0, 1), one knot at the median of each step in I(). Denote these samples
P+, their corresponding class labels Y +.

3: Construct a Piecewise Cubic Hermite Interpolating Polynomial with P+, Y + to obtain a monotone
smoothing spline H .

I leverage a special parametric model named Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

[70], which interpolates between the S knots pi monotonically using cubic splines.
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H(p) =



H1(p) if p1 ≤ p ≤ P2

H2(p) if p2 ≤ p ≤ P3

. . . . . .

HN−1(p) if pN−1 ≤ p ≤ PN

, (6.2)

Hi(p) = ai + bi(p− pi) + ci(p− pi)2 + di(p− pi)2(p− pi+1). (6.3)

The PCHIP function above interpolates the values at intermediate points, such that:

1. On each subinterval pi ≤ p ≤ pi+1, Cubic Spline interpolate the values in between these endpoints;

2. H(p) interpolates y, i.e. H(pi) = yi, and the first derivative H ′ is continuous;

3. The slopes at pj are chosen to respect monotonicity, which means that, on intervals where the data are

monotonic, so is H(p); at points where the data have a local extreme, so does H(p).

Interpretation: Smooth Isotonic Regression interpolates Isotonic Regression (IR)

monotonically so that outputs preserve the ranking induced by IR but is spread more

smoothly.

Figure 6.15 gives an example of using both Isotonic Regression and Smooth Isotonic Regression to

calibrate the same probabilistic model. The figures indicates that Isotonic Regression tends to overfit as

it collapse multiple inputs to the same output value while Smooth Isotonic Regression does not have such

problem.
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(a) Isotonic Regression maps multiple inputs to the same value, and the model tends to overfit.

(b) Smooth Isotonic Regression maps every input get mapped to a unique output. The smoothness reduces overfitting.

Figure 6.15: Comparing Isotonic Regression with Smooth Isotonic Regression.

6.4 Experiments

I evaluated the method’s performance using both synthetic and real world datasets. In both experiments, I

used AUC [83] and HL-C test [90] as my evaluation metrics.

6.4.1 Synthetic Data

Random samples (n = 1000) were drawn from two Gaussian distributions with varied difference in means

but fixed variances. The distance between µ1 and µ2 (shift) is set to increase from 0.5 to 2.0 at an interval

of 0.5; Σ1 = 2.0,Σ2 = 1.0, respectively. The samples have features X and their class memberships are

used as the ground-truth labels. The Logistic Regression (LR) model was fit on Y over X , where X is the

sampled value Y is its class memberships, Y , the ground-truth label. I then compare the calibration of three
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different recalibration models (sigmoid fitting, isotonic regression, and smooth isotonic regression) along

with the calibration of the raw prediction probabilities of the LR model, as indicated in Figure 6.16. I use

80% of the data for training, and test on the remaining 20% for all models.
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Figure 6.16: Comparison of different calibration methods. From rows one to five are 1) histograms of the
original predicted probabilities (blue bars for class "1", red bars for class "0"), and reliability diagrams for
2) the original probabilities, 3) sigmoid fitting, 4) isotonic regression, and 5) smooth isotonic regression.

The blue circles are the original predicted probability on these reliability diagrams. The red dotted

line corresponds to the transformations. While sigmoid fitting does not improve the calibration in all four

cases, both isotonic regression and smooth isotonic regression follow the data pattern closely; the smooth

version has less oscillation and shows P > 0.05 on the H-L test, indicating that the models are reasonably
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well calibrated. As I observe in Figure 6.16, isotonic regression tends to over-fit, while smooth isotonic

regression provides a continuous transformation and the highest p-values for the HL-test in most cases.

6.4.2 Real World Experiment

I quantitatively examined the calibration and discrimination using various methods. For each model, I

built models on 60% random samples and tested on the remaining 40%, with the exception of the ADULT

data-set, where I followed the split used in [136].
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Figure 6.17: Comparison of different calibration methods on real world data. From rows one to five are (1)
histograms of the original predicted values (no color discrimination for classes is used this time), and reli-
ability diagrams for the (2) original predictions, (3) sigmoid fitting, (4) isotonic regression, and (5) smooth
isotonic regression.
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Figure 6.17 shows histograms of the predicted values (top row) and reliability diagrams for logistic

regression, sigmoid fitting, isotonic regression, and smooth isotonic regression on all eight test sets used

neither for training nor calibration. None of the calibration methods ever decreases the AUC, since the

monotonic transformation functions preserve the orderings. Isotonic regression sometimes shows an increase

in AUC because it introduces more ties into the ranking.

An interesting observation gathered from the reliability diagrams is that they seldom display a sigmoid

shape for these problems, thus discouraging the use of a sigmoid to transform predictions into probabilities

(see third row). The reliability diagrams in the fourth row of the figure show results for isotonic regression,

which are not smooth and are unrealistically sharp at the corners. The reliability diagrams at the bottom of

the figure show the functions fitted with my smooth isotonic regression, which has better performance than

sigmoid fitting and less oscillation than isotonic regression. In all cases, smooth isotonic regression gives

the highest p-value for the HL-test, suggesting a better fit than the sigmoid approach and less over-fit when

compared to isotonic regression.

6.5 Discussion

There is an increasing interest to improve the calibration ability of predictive models, especially given

their potential in personalized medicine. While discrimination is often optimized, calibration is sometimes

neglected, potentially leading to models that are not adequate for use in practice. However, recent research

in machine learning has shown the benefits of calibrating predictive models, especially in support decisions.

Unfortunately, existing approaches like Platt Scaling and Isotonic Regression are limited in their capabilities

to calibrate outputs of probabilistic models. The former method does not always fit observations, especially

when the non-monotonic pattern presents. On the other hand, the latter method tends to over-fit training data

and may lead to bad performance on testing.

To provide tools with an integrated calibration ability without human intervention, I investigated pos-

sibilities of achieving both discrimination and calibration. I carefully analyzed pros and cons of existing

parametric model and non-parametric model. My investigation indicated that these two can be comple-

mentary to each other and save themselves from their own limitations. By extending the Isotonic Regres-

sion for recalibration to obtain a smoother fit in reliability diagrams, I developed a novel method, Smooth

Isotonic Regression (SIR), which combines parametric and non-parametric approaches and utilizes non-

155



parametric outputs of Isotonic Regression in a parametric way. The method calibrates probabilistic outputs

more smoothly than Isotonic Regression and showed better generalization ability than its ancestors (i.e., IR).

However, there is a major limitation of SIR that it is still a monotonic function. This constraint limits

SIR’s capability of rectifying probabilistic outputs. That is, SIR has to keep partial orderings of original

probabilistic outputs, in which case only translation, rotation, and stretching operations are allowed. When

there are a large number of observations, there is usually little degree-of-freedom to adjust outputs of a

probabilistic model. To overcome this limitation, I considered alternative approaches that are capable of

going beyond monotonicity but still optimizing the integrated framework (Equation 5.7). To achieve that,

I decided to narrow the space of function so that specific model-based characteristics can be utilized. The

next chapter introduces adaptive calibration for logistic regression (AC-LR) as another automated calibration

approach.

6.6 Conclusion

I carefully analyzed a state-of-the-art calibration approach, Isotonic Regression. Under a monotonic trans-

formation constraint, the objective function of Isotonic Regression is optimal for the calibration task. How-

ever, a major drawback of this approach is its inability to provide a smooth transformation function for

calibrating probabilistic output, and its results tend to overfit the training data.

To alleviate such non-smoothness but preserve other merits of Isotonic Regression, I developed a new

method, Smooth Isotonic Regression, that utilizes non-parametric outputs of Isotonic Regression in a para-

metric way. The method used Piecewise Cubic Hermite Interpolation Polynomials (PCHIP) to interpolate

representative outcomes of Isotonic Regression. The PCHIP function is smooth and monotonic, thus provid-

ing the smoothness while retaining the shape constraints of Isotonic Regression. The method demonstrated

better generalization ability than its ancestors (Isotonic Regression) in simulated and real world biomedical

datasets. In the synthetic data experiments, SIR demonstrated superior performance over the rest model

in comparison. Specifically, it calibrated raw inputs of logistic regression in all four cases while Isotonic

Regression succeed two times and Platt Scaling failed in all cases. For the real world data, SIR also demon-

strated better performance than IR and PS. SIR calibrated six out of a total of eight cases while IR and

PS only succeeded in five cases and one case, respectively. Both experiments indicated that SIR are more

preferable than existing approaches in calibration. In addition, the new model has good generalization abil-
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ity. It can be directly used in calibrating outputs of binary outcomes from "uncalibrated" models like logistic

regression, support vector machine and decision tree. SIR provides a better fitted model than PS and less

overfitted results comparing to IR in most cases thanks to the consideration of model smoothness. It is

capable of producing more reliable risk probabilities than existing approaches.

157



158



Chapter 7

Adaptive Calibration for Logistic

Regression

1Most binary classifiers are used to provide not just class labels but also instance-based scores, which are

often used in interpretation of the confidence the classifier has about its estimation, usually, the higher the

score, the more likely an instance is assigned positive. In many situations, scores generated by classifiers

are used to estimate the posterior class membership probabilities. These scores are necessary when the

classifier is used for cost-sensitive applications, in which precise judgments about the cost of errors must be

made [62]. However, raw scores are not always good estimates of true probabilities. Some model classes

are notoriously poor at producing accurate estimates [136], so before using scores as posterior probability

estimates, they must be calibrated.

In the previous chapter, I introduced a Smooth Isotonic Regression method for calibration. The method

demonstrated superior performance than Platt Scaling and Isotonic Regression in a few synthetic and real

world data. In addition, it does not need human intervention to adjust parameters. As a hybrid of non-

parametric and parametric model, the method is applicable to cases where previous using Isotonic Regression

to recalibrate the probabilistic outputs. However, there is a limitation of this approach, which is inherited

by Isotonic Regression method. Smooth Isotonic Regression enforces smoothness using a Piecewise Cubic

Hermite Interpolating Polynomials (PCHIP) to the calibrate outputs of Isotonic Regression (IR). Because

1A version of this chapter is under review at Nature Biotechnology. [93].
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both functions (PCHIP, IR) are monotonic, the combined mapping function are still monotonic. The results

are largely constrained by the objective of Isotonic Regression. However, in many real world cases, the

probabilistic outputs do not necessarily have monotonicity and Smooth Isotonic Regression fails to fit these

cases. In addition, Smooth Isotonic Regression cannot improve models’ discrimination performance because

monotonic functions do not change the partial ranking of the observed cases.

A well calibrated probabilistic classifier produces outputs that represent "true probability" of underlying

events (class membership). To optimize both aspects of a probabilistic model: discrimination and calibra-

tion, I have to break the global monotonic constraints, but instead, calibrate probabilistic outputs adaptively.

The reason for this is "true probability" of underlying events are unknown but may be estimated by class

membership of similar patterns. That is, from a frequentist perspective, a reliable estimator of the "true

probability" is the fraction of positive labeled cases of statistically similar cases. A key insight is that good

calibration should be performed locally as opposed to that good discrimination can be examined globally.

In this chapter, I focused on a specific model: Logistic Regression because it is popular and widely

used in various biomedical tasks [14, 71, 110, 133, 142, 165]. But my method can be easily extended to

any probabilistic models that output confidence interval of predictions. As opposed to previous approaches

that are input irrelevant, my method adaptively includes model-specific input information. The method is

data-driven and only relevant information are considered for each prediction.

7.1 Data

In this chapter, I used three clinical data: hospital discharge error (HOSPITAL), Myocardial_Infarction

(MI) and Breast Cancer (BREAST_CANCER). All these data have binary outputs, thus I can test model’s

discrimination and calibration ability against the ground-truth.

7.1.1 Hospital data

The HOSPITAL data set consists of microbiology cultures and other variables related to hospital discharge

errors [59]. For patient demographic data, this data contains age, gender, race and insurance. Related to the

hospital encounter, the dataset contains the visit type (admission, emergency room, procedure or outpatient)

and admitting service, if applicable. Related to the microbiology result, the dataset contains the specimen

type (blood, urine, sputum and cerebral spinal fluid), the hospital day number that the specimen was col-
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lected, whether the result was pending at the time of discharge from the hospital, whether the specimen was

collected on a weekend, whether the preliminary results (for blood cultures) were reported on a weekend,

and whether the final results were reported on a weekend. In addition to the data pulled directly from the

hospital computer system, this dataset contains an additional outcome variable, which indicates whether the

case represents a potential post-discharge follow-up error using expert’s knowledge. This variable is true if

the following three criteria are met: (1) the result is considered clinically relevant; (2) the results return after

the patient is discharged from the hospital; and (3) there is not an antibiotic on the discharge medication list

to which the organism is sensitive based on the microbiology results. The features are thus consisted of eight

categorical variables and two numerical variables. The target is a Boolean variable (Pot_error) indicating

the potential error.

The following table defines various features and outcome variables for this data.

Table 7.1: Details of co-variables and the target variable in the hospital discharge error data. Eight out of ten
explanatory variables are categorical and two are numerical.

Name Details
Features

Specimen: 0=blood, 1=urine, 2=sputum, 3=csf
Spec_days: Number of days between admission date and specimen

collection date.
Collect_week: 0=specimen collected on weekday, 1=specimen collected on

weekend
Final_week: 0=final result on weekday, 1=final result on weekend
Vistyp: 1=admission, 0=non-admission
Svc: 0=<blank> (patient not admitted), 1=ONC, 2=MED,

3=Medical Sub-specialties, 4=Surgery and Surgical
Sub-specialties, 5=Other

Age: Age in years
Female: 0=male, 1=female
Race: 0=white, 1=black, 2=Asian, 3=Hispanic, 4=other,

5=unknown/declined
Insurance: 0=medicare, 1=medicaid, 2=commercial, 3=other

Target Variable
Pot_error: 0=not a potential follow-up error, 1=a potential follow-up error

I also summarized co-variables and the outcome variable with their description statistic, i.e., min, 1st

Qu., median, 3rd Qu. ,max.
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Table 7.2: Descriptional statistic for the hospital discharge error data set.

spec spec dayssinceadm collect we final we vistype svc
0.161806 Min. : 0.000 2.607639 2.488194 3.3875 0.503472
1.822222 1st Qu.: 1.000 0.779861 0.899306 0.977083
1.102083 Median : 2.000 0.970139
0.509722 Mean : 4.355 1.283333

3rd Qu.: 4.000 5:41
Max. :195.000

age female race insurance pot error
Min. : 0.00 1.563889 2.333333 1.386111 3.089583

1st Qu.:43.28 1.823611 0.442361 0.426389 0.297917
Median :57.76 0.159722 1.577778

Mean :56.51 0.40625 0.205556
3rd Qu.:71.24 4:55

Max. :99.71 0.424306
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Figure 7.1: Boxplots for ten co-variates of the hospital discharge error data.

To see these visually, I box plotted the co-variates in Figure 7.1. It is easy to observe that there are two

numerical co-variables and eight categorical ones in hospital discharge error data. I expressly represented

each categorical co-variable with a set of binary co-variables. The total number of expanded co-variables
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are 20.

There are 369 clinically important but highly suspicious observations out of 4819 returned post-discharge

observations, which makes the data highly unbalanced and challenge to calibrate. More details about this

data can be found in Chapter 2.

7.1.2 Myocardial Infarction data

Myocardial Infarction data contain clinical Myocardial infarction (MI) patient records[98]. The goal of this

study is to determine which, and how many data items are required to construct a decision support algorithm

for early diagnosis of acute myocardial infarction using clinical and electrocardiographic data available at

presentation [98].

These data are collected from patients admitted and discharged on a regimen. The data contains patient

records of two medical centers in the Great Britain; among these, 500 patients admitted to the emergency

department with chest pain are observed in Sheffield, England, and 1,353 patients with the same symptoms

are observed in Edinburgh, Scotland.

The total number of the patients is 1,853, the feature size is 54 and the target is a binary variable indicat-

ing whether a patient has myocardial infarction (MI). Table 7.3 summarizes co-variables and their clinical

meanings. Note the last six features (49 − 54) correspond to electrocardiograph readings that are highly

correlated to the target, should not be included for prediction. I represent every categorical feature by a set

of binary features to preserve the categorical information, in order to be applicable to some machine learning

algorithms.
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Table 7.3: Explanations for different variables of the Myocardial_Infarction data.

ID Abbreviation Clinical Explainations
1-7 age Age in years (under 30, 30-39, 40-49, 50-59, 60-69, 70-79, 80 and over)

8 Smokes Smoker
9 Exsmoker Ex-smoker

10 Fhistory Family history of ischaemic heart disease
11 Diebetes Diabetes mellitus
12 BP Hypertension
13 Lipids Hyperlipidaemia
14 CPmajorSymp Is chest pain the major symptom?
15 Restrostern Central chest pain
16 Lchest Pain in left side of chest
17 Rchest Pain in right side of chest
18 Back Pain radiates to back
19 Larm Pain radiates to left arm, neck or jaw
20 Rarm Pain radiates to right arm
21 breath Worse on inspiration
22 postural Pain related to posture
23 Cwtender Chest wall tenderness
24 Sharp Pain described as sharp or stabbing
25 Tight Pain described as tight, heavy, gripping or crushing
26 Sweating Sweating
27 SOB Short of breath
28 Nausea Nausea
29 Vomiting Vomiting
30 Syncope Syncope
31 Episodic Episodic pain

32-36 Worsening Hours since 1st symptom (0-5, 6-10, 11-20, 21-40, over 40)
37-42 Duration Hours of pain at presentation (0-5, 6-10, 11-20, 21-40, 41-80, over 80)

43 prev-ang History of angina
44 Prev-MI Previous myocardial infarction
45 Worse Worse than usual angina/similar to previous acute myocardial infarction
46 Crackles Fine crackles suggestive of pulmonary oedema
47 Added-HS Added heart sounds
48 Hypoperfusion Signs of hypoperfusion
49 Stelve New ST-segment elevation
50 NewQ New pathological Q waves
51 STorT-abnorm ST segment or T-wave changes suggestive of ischaemia
52 LBBBorRBBB Bundle branch block
53 Old-MI Old electrocardiogram features of myocardial infarction
54 Old-isch Electrocardiogram signs of ischaemia known to be old

The tables below list the descriptional statistics of Edinburgh and Sheffield datasets. I also included

boxplots of these datasets to illustrates their co-variables’ distribution visually.
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Table 7.4: Descriptional statistic for the Edinburgh data.

Abbreviation
age min: 13.0 median:59 mean:57.6 max: 92

Smokes 0: 785 1: 468
Exsmoker 0: 959 1: 294

Fhistory 0: 967 1: 286
Diebetes 0: 1165 1: 88

BP 0: 1053 1: 200
Lipids 0: 1215 1: 38

CPmajorSymp 0: 62 1: 1191
Restrostern 0: 331 1: 922

Lchest 0: 907 1: 346
Rchest 0: 1109 1: 144

Back 0: 1122 1: 131
Larm 0: 670 1: 583
Rarm 0: 1042 1: 211

breath 0: 1031 1: 222
postural 0: 1017 1: 236

Cwtender 0: 1201 1: 52
Sharp 0: 1208 1: 45
Tight 0: 572 1: 681

Sweating 0: 739 1: 514
SOB 0: 731 1: 522

Nausea 0: 1124 1: 129
Vomiting 0: 1124 1: 129
Syncope 0: 1208 1: 45
Episodic 0: 1161 1: 92

Worsening min: 0.0 median: 4.0 mean: 17.4 max: 168
Duration min: 0.0 median: 3.0 mean: 8.84 max: 168
prev-ang 0: 699 1: 554
prev-MI 0: 836 1: 361

Worse 0: 892 1: 361
Crackles 0: 1106 1: 147

Added-HS 0: 1247 1: 6
Hypoperfusion 0: 1203 1: 50

Stelve 0: 1199 1: 54
NewQ 0: 1240 1: 13

STorT-abnorm 0: 1240 1: 13
LBBBorRBBB 0: 1203 1: 50

Old-MI 0: 1101 0: 152
Old-isch 0: 1141 1: 112

MI 0: 979 1: 274
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Table 7.5: Descriptional statistic for the Sheffield data.

Abbreviation
age min: 17.0 median:61 mean:59.9 max: 91

Smokes 0: 318 1: 182
Exsmoker 0: 388 1: 112

Fhistory 0: 373 1: 127
Diebetes 0: 451 1: 49

BP 0: 403 1: 97
Lipids 0: 482 1: 18

CPmajorSymp 0: 37 1: 463
Restrostern 0: 110 1: 390

Lchest 0: 373 1: 127
Rchest 0: 438 1: 62

Back 0: 426 1: 74
Larm 0: 237 1: 263
Rarm 0: 418 1: 82

breath 0: 422 1: 78
postural 0: 455 1: 45

Cwtender 0: 491 1: 9
Sharp 0: 400 1: 100
Tight 0: 246 1: 254

Sweating 0: 235 1: 265
SOB 0: 281 1: 219

Nausea 0: 341 1: 159
Vomiting 0: 449 1: 51
Syncope 0: 467 1: 33
Episodic 0: 417 1: 83

Worsening min: 0.0 median: 6.0 mean: 50.37 max: 1000
Duration min: 0.0 median: 4.0 mean: 12.34 max: 1000
prev-ang 0: 281 1: 219
prev-MI 0: 377 1: 123

Worse 0: 338 1: 162
Crackles 0: 373 1: 127

Added-HS 0: 476 1: 24
Hypoperfusion 0: 441 1: 59

Stelve 0: 403 1: 97
NewQ 0: 470 1: 30

STorT-abnorm 0: 403 1: 97
LBBBorRBBB 0: 474 1: 26

Old-MI 0: 454 1: 46
Old-isch 0: 473 1: 27

MI 0: 346 1: 154
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(a) Edinburgh MI data.
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(b) Sheffield MI data.

Figure 7.2: Boxplots of Myocardial Infarction data.
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7.1.3 Breast Cancer Gene Expression data

The Breast Cancer Gene Expression data were obtained from the NCBI Gene Expression Omnibus (GEO).

Three individual data downloaded are previously studied by Wang et al. (GSE2034) [187], Sotiriou et al.

(GSE2990) [166], and Miller et al. (GSE3494) [128], respectively.

To make my data comparable to the previous studies, I followed the criteria in [140] to select patients,

who did not receive any treatment and had negative lymph node status. Among these pre-selected candidates,

only patients with extreme outcomes, either poor outcomes (recurrence or metastasis within five years) or

good outcomes (neither recurrence nor metastasis within eight years) are selected. The number of samples

after filtering are: 209 for GSE2034 (114 good/95 poor), 90 for GSE2990 (60 good/30 poor), and 242 for

GSE2034 (224 good/18 poor).
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Figure 7.3: Boxplots of GSE_2034, GSE_2990 and GSE_3493. Each column corresponds to one feature
vector and the last column indicates the outcome variable.
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I applied a split to divide GSE3494 into two groups, as suggested by [140], GSE3494-A and GSE3493-

B, according to the sample’s Affymetrix platform. Thus, the breast cancer data-set has four separate data:

GSE2034, GSE2990, GSE3494-A and GSE3494-B. All of these data have a feature size of 247, 965, cor-

responds to the gene expression results obtained from micro-array experiments. They were preprocessed to

keep only the top 15 features ranked using t-test (see [140] for details). Figure 7.3 shows boxplots of these

selected gene features. It can be observed in figures below that effective gene feature are different from each

other in different population groups.

(a) GSE_2034 (b) GSE_2990

(c) GSE3494_U133A (d) GSE3494_U133B

Figure 7.4: Matrix plots of GSE_2034, GSE_2990 and GSE_3493. Each subfigure corresponds a matrix
plot of one data set.

I also plotted co-variable occurrence of breast cancer data in Figure 7.4 to investigate feature correlations

visually.
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7.2 Background

A well calibrated probabilistic classifier produces outputs that represent the true probability of underlying

events (class membership). Oftentimes, the outputs of classifiers are combined with other sources of in-

formation, e.g. domain knowledge, mis-classification cost. Probabilistic models for classification aim to

maximize the likelihood of observing the training data and assign to each test case a continuous output be-

tween 0 and 1, which are interpreted as class membership probability estimates. It is well know that the

results of several machine learning approaches, e.g. naive Bayes and decision trees, are not well-calibrated

[58], and thus may not always be reliably trusted as a proxy for the absolute risk in clinical decision making.

To address this problem, several calibration methods have been independently proposed to adjust the outputs

of popular machine learning models [45, 205, 206, 207].

These calibration methods can be generally divided into two main categories: parametric methods and

non-parametric methods. Platt suggested a parametric approach that transforms the probabilistic outputs

into posterior probabilities [147] by re-fitting these outputs to a sigmoid function. Thus, the KL-divergence

from post-processed outputs to true class labels is minimized. The parameters of the sigmoid function are

estimated using maximum likelihood estimation (MLE). Essentially, this approach adjusts the outputs of

any probabilistic model (including LR) by an independent one-dimension logistic function. However, this

approach may have difficulties when the outputs cannot be sufficiently modeled by a sigmoid function (e.g.,

patterns that demonstrate non-monotonicity); in those cases, the MLE can lead to poor calibration results.

Zadrozny and Elkan [206] proposed a non-parametric approach that utilizes Isotonic Regression (IR),

which involves finding a weighted least square fit with the following form: min
∑
i(ŷi − yi)

p subject to

ŷi ≥ ŷj ,∀(i, j), where p is the order of the norm, yi is the binomial class label and ŷi is the “calibrated”

output. The formula is subject to a set of monotonicity constraints that enforces a partial order over the

variables. When p = 2, there is an efficient pair-adjacent violators (PAV) algorithm to solve it [26]. However,

the result of the calibration is non-continuous and tends to over-fit [186].

Osl et al. [141] suggested a novel approach to improve calibration of logistic regression models by

including additional information from the input space. The idea is to adjust outputs of a fitted logistic

regression model within local regions in the input space. These local regions are determined in a pre-

processing step using Gaussian Mixture Models. This approach improved previous methods that only focus

on the output space. However, this approach requires an additional pre-processing step to cluster cases in the
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input space, and the user has to tune more parameters, e.g., number of clusters and threshold used to exclude

outliers.

In contrast to the approaches listed above, I showed that including model-specific input information helps

to improve calibration without increasing the modeling complexity, or introducing new parameters.

My approach extends Logistic Regression model in a non-parametric way. I calibrate the outputs of a

logistic regression locally by using model-specific confidence intervals (C.I.) for each individual prediction.

Intuitively, I use a smaller neighborhood to calibrate the outputs when the region (“locality”) of a test point

is dense and I use a larger neighborhood to calibrate the outputs when the region (“locality”) of a test point

is sparse. In addition, my method is capable of handling non-linear separable patterns and offering increased

discrimination ability. I introduce my method in the next Section 7.3. In Section 7.4, I evaluate my method

on both synthetic and real medical data; finally, I conclude my findings in Section 7.5.

7.3 Method

In this section, I started with a review of the Logistic Regression model, followed by the estimation of

logistic regression parameters and the estimation of confidence intervals (C.I.) for each prediction. Finally,

I introduced my adaptive calibration approach.

7.3.1 Logistic Regression Review

Logistic Regression (LR) aims to learn a function of the form f : X → Y , or P (Y |X), where Y ∈ {0, 1} is

the true class label, and X =< x1, . . . , xn > is a vector of discrete or continuous values. Let X = {X l}Ll=1

indicates the corpus of features and Y = {Y l}Ll=1, where l represents the index of data points and L is

the size of training samples. The model assumes a parametric form for the distribution P (Y |X), whose

parameters can be estimated from the training data. Let’s denote ”1” as the event Y = 1|X and ”0” as the

event Y = 0|X . The parametric model of Logistic Regression is thus defined as:

P (”1”) =
1

1 + exp(w0 +
∑n
i=1 wixi)

, (7.1)

P (”0”) =
exp(w0 +

∑n
i=1 wixi)

1 + exp(w0 +
∑n
i=1 wixi)

, (7.2)
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which can be also written as:

Logit(P ) = w0 +

n∑
i=1

wiXi, (7.3)

where Logit(P ) = ln( P
1−P ).

Interpretation: Logistic Regression is also known as a linked function of General-

ized Linear Model because it links a Logit function to a linear function.

7.3.2 Parameter Estimation

Before discussing how to infer the confidence interval for each prediction, I introduce estimation procedures

for mean and standard deviation of model parameters W .

7.3.2.1 Mean of the Weight Parameters

The parameters W of a LR model is optimized using maximum likelihood estimation (MLE):

W ← argmaxW
∏
l

P (Y l|X l,W ), (7.4)

where W =< w0, w1, . . . , wn > is the vector of parameters to be estimated, X l and Y l represent the l-th

training example and class label, respectively. Because the nature logarithm does not change the parameters

of the objective function (Equation 7.4) at its optimal, it is more convenient to work with the log-sum

(Equation 7.5) instead of the products in Equation 7.4.

W ← argmaxW
∑
l

lnP (Y l|X l,W ). (7.5)

Interpretation: Log-likelihood objectives are optimized rather than the original like-

lihood function for two reasons: 1. it alliviates the problem of floating point error due

to the production of tiny probabilities; 2. it induces factorizable objective function

which can be optimized easily.
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I can explicitly expand the log-likelihood l(W ) as,

l(W ) =
∑
l

Y l lnP (Y l = 1|X l,W )+

+ (1− Y l) lnP (Y l = 0|X l,W ),

which can be rewritten as:

l(W ) =
∑
l

Y l(w0 +

n∑
i=1

wix
l
i)

− ln(1 + exp(w0 +

n∑
i=1

wix
l
i)), (7.6)

where xli indicates the i-th feature of the l-th training point.

Interpretation: Logistic Regression got its “ambiguous” name “regression” for

some historic reasons. But it is a discriminative classification method for binary out-

comes.

I briefly review how to use maximum likelihood criteria in estimating the model parameters. As the

closed form of W cannot be obtained from Equation 7.6, I work with the gradient, which is the partial

derivative of W . Note the i-th component of this partial derivative has the following form:

∂l(W )

∂wi
=
∑
l

xli(Y
l − P̂ (Y l = 1|X l,W )), (7.7)

where P̂ (Y l = 1|X l,W ) is the Logistic Regression prediction with the old W value. To consider w0 (e.g.,

the intercept of a linear model in two-dimension) in the derivatives, I include an illusory X0 = 1 for all data

instancel. As the log-likelihood function 7.6 is concave, it is guaranteed to obtain an optimal value if I keep

moving W towards the direction of the gradients:
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wi ← wi+

η
∑
l

xli(Y
l − P̂ (Y l = 1|X l,W )), (7.8)

where η is constant step size.

Interpretation: There is no closed form solution to weight parameters W . A com-

mon approach to obtain W is to use gradient descent algorithm.

7.3.2.2 Standard Deviation of the Weight Parameters

I can calculate the second derivative of the likelihood to get the Hessian matrix H ,

Hij =
∂l(W )

∂wi∂wj
= XTVX, (7.9)

where V is a L×L diagonal matrix of weights with l-th element P̂ (Y l = 1|X l,W )(1−P̂ (Y l = 1|X l,W )).

Under the delta method and asymptotic efficiency theory, I can approximate the parameter covariance matrix

by the inversion of the Hessian,

Σ ≈
1

EW (−∂2l(W )
∂W 2 )

= −H−1, (7.10)

where EW (−∂
2l(W )
∂W 2 ) is also known as the fisher information matrix; the standard errors of each wi are thus

estimated by the square root of the diagonal elements,

s.e. =
√
Diag(Σ). (7.11)

Interpretation: Standard deviation of the weight parameters can be approximated

using the second derivative of the likelihood.
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7.3.3 Confidence Interval of the Estimate Prediction

Given the mean and standard deviation of weight parameters, I can estimate the confidence interval for each

prediction. Let’s rewrite LR in an alternative way as a general linear model (GLM) that is linked to an

inverse logit function:

ln(
PX

1− PX
) = w0 +

n∑
i=1

wixi, (7.12)

where PX is the estimated probability of data point X . Let X0 = 1, so that

Z(PX) = ln(
PX

1− PX
) =

n∑
i=0

wixi. (7.13)

I can estimate the variance of Z(PX) first, and then use the Delta method to estimate the true variance of

P. If I treat W as random variables and Xi as the fixed value, its standard deviation is estimated in Equation

7.11:

var (Z(PX)) = var(

n∑
i=0

wixi)

= (Σ
1
2 )′X2(Σ

1
2 ), (7.14)

where Σ corresponds to the covariance (Equation 7.10) of the W and Σ = (Σ1/2)′(Σ1/2).

Interpretation: The variance of each prediction can be calculated by wrapping the

variance of weight parameters to the outputs.

BecauseZ(PX) ∼ N(·, (Σ 1
2 )′X2(Σ

1
2 )) andPX = h(Z) = eZ

1+eZ
, I can easily verifyPX ∼ N(·, var(Z) (h′(Z))

2
).

I explicitly write var(PX) = var(Z) (h′(Z))
2, where h′(Z) = eZ

(1+eZ)2
, as follows:

var(PX) =
(

(Σ
1
2 )′X2(Σ

1
2 )
)

∗
(
P 2
X(1− PX)2

)
. (7.15)
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Figure 7.5: Logistic regression predictions and associated estimated confidence intervals. Data are sampled
from two Gaussian distributions N(0, 1) and N(0.5, 1); the former is labeled as class 0 points (bottom) and
the later labeled as class 1 points (top).

The confidence interval (CI) of PX is PX ± 1.96 ∗
√
var(PX). Figure 7.5 illustrates the predictions

and their 95% confidence intervals on a simulated data-set. As indicated by this figure, the dense regions are

associated with narrow Confidence Intervals, and vice verse.

7.3.4 Adaptive Calibration

It is believed that calibrated estimations p(X) are smooth, in other words, data points that are close should

have approximately the same probability [4]. Ideally, if I want to estimate p(X∗) for a novel data point X∗,

I should select a neighborhood of X∗ and calibrate the raw probabilistic output of X∗ as if the data point

were actually a sample taken in this neighborhood. An intuitive estimator is thus:

p(X∗) =
1

|N (X∗)|
∑

Xj∈N (X∗)

Y j , (7.16)
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where Xj and Y j correspond to a neighboring point of X∗ and its class label, respectively. Here N (X∗)

denotes the neighborhood of X∗. Depending on the construction criteria for this neighborhood, Equation

7.16 could be a nearest neighbor estimator if I select a fixed number of K points; or a Parzen window

estimator if I choose a fixed bandwidth ε ≥ max(|X∗ −Xj |) s.t. ∀Xj ∈ N (X∗). Given a reasonable K or

ε, the estimator induced by Equation 7.16 represents a local fraction of positives.

However, it is non-trivial to select the best K or ε. First, computational complexity could be demanding

because these estimators need to find the neighborhood for every novel X∗ at run-time. Furthermore, there

might be no single K or ε that works best for all the testing data points. Thus, I propose a new approach,

Adaptive Calibration for Logistic Regression (AC-LR), to close the performance gap.

My method adaptively calibrates LR (indicated in Figure 7.6) with a varying bandwidth (Equation 7.17)

as follows:

p(X∗) =
1

|CI(X∗)⊗ r(P )|
∑

X:P (X)∈CI(P∗)⊗r(P)

Y j , (7.17)

where CI(X∗) corresponds to the confidence interval of a prediction for a novel data point X∗, r(P) =

|max(P) − min(P)| indicates the range of the training predictions, where P = {P : X ∈ D}, D is the

training data corpus.

Interpretation: The adaptive calibration approach induced by Equation 7.17 uses

a smaller bandwidth (fewer samples) when Logistic Regression predicts with a high

confidence and a wider bandwidth (more points) when Logistic Regression is less con-

fident.

Although 0 ≤ r(P) ≤ 1, this scaling factor is typically close to 1 when the size of training date is large

enough. P (X) represents the prediction probability of some training data point within the bandwidth of

CI(X∗)⊗ r(P ), where ⊗ denotes the Kronecker product. Note |CI(X∗)⊗ r(P )| indicates the cardinality

of the P ∗ induced neighborhood (number of samples within this locality) instead of a fixed bandwidth.
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Figure 7.6: Each sub-figure illustrates a test point, its neighborhood convex hull and confidence interval of
proposed AC-LR approach for calibration.

This adaptive range incorporates the feature correlations induced in the input space to guide local cal-

ibration. The probability of each test case is adjusted locally using training cases with similar probability.

As a result, the AC-LR model is capable of handling many nonlinear separable cases where the original LR

model fails. Figure 7.7 gives an example.
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Figure 7.7: Visual comparison of AC-LR and LR models on a simulated 2D data. In the first row, the blue
crosses correspond to negative cases, the red diamonds correspond to the positive cases. The black dotted
lines indicates the decision boundaries of LR and AC-LR models at threshold p=0.5. In the second row, the
surface plots indicate the probability values indicated by both models.

The adaptive calibration approach uses a smaller bandwidth (fewer points) to calibrate the output when

LR is sure about a certain prediction p(X∗) and a wider bandwidth (more points) to calibrate the output when

LR is less confident. Equation 7.17 suggests a local method that takes both LR predictions and associated

confidence intervals into consideration. The method is thus capable of choosing, for each novel testing point

X∗, an adaptive bandwidth ε∗ that maximizes the likelihood. As this calibration process takes place in one

dimension, it can be optimized in time complexity O(1) using a hash function.

179



7.4 Results

I evaluate the performance of various models on synthetic and clinical-related data. For the comparison, I

use two metrics, the Area Under the ROC Curve (AUC) [83] and the Hosmer-Lemeshow (HL) goodness

of fit test [90]. These two are independent measurements of a probabilistic model’s performance. AUC

is a one number summary of a model’s discrimination. It can be expressed by the following integration:

AUC =
´ 1

0
TP
posd

FP
neg where TP and FP correspond to the true positive rate and the false positive rate,

respectively. pos and neg corresponds to the cardinality of the positive and negative data points. Thus, AUC

counts the concordant pairs out of all positive/negative pairs.

The Hosmer-Lemeshow goodness-of-fit statistic measures the calibration of a probabilistic model. It can

be written as: H =
∑10
g=1

(Og−Eg)2

Ngπg(1−πg) , where Og , Eg , Ng and πg correspond to observed positive events,

expected positive events, number of total observations and predicted risk for the gth risk deciles, respectively.

H is called the Hosmer-Lemeshow H test statistic if deciles are defined as equal-length subgroups of fitted

risk values; otherwise, H is called the Hosmer-Lemeshow C test statistic if deciles are defined as equal-

size subgroups of fitted risk values. I use the latter definition in our experiments. The distribution of the

statistics H is approximated by a chi-square with 8 degrees of freedom. I set σ = 0.05 to be the significant

level to reject null hypothesis that predictions are calibrated. At extreme cases, H statistic could be infinity

when πg = 0 or πg = 1 and Hosmer-Lemeshow goodness-of-fit test cannot handle such cases. In the

following sections, I compare four different approaches: Logistic Regression (LR), LR+Platt Scaling (LR-

PS), LR+Isotonic Regression (LR-IR), Adaptive Calibration for Logistic Regression (AC-LR).

7.4.1 Synthetic Data-set

I first use synthetic data-set to verify our concept in the previous section. For illustration purpose, I sample

one-dimensional data so that the probabilistic outputs of all four different approaches (LR, LR-PS, LR-IR,

AC-LR) can be demonstrated in figures. The first data-set is generated by sampling from two Gaussian

distributions with unit variance but different means X0 ∈ N(0, 1) , X1 ∈ N(3, 1) and X = X1 ∪ X0,

where X1 and X0 correspond to data with class label “1” and “0”. The results are illustrated in Figure 7.8.
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(d) AC-LR calibration

Figure 7.8: In this data, LR and LR-PS does not pass the calibration test at 0.05 significance level. LR-IR
and AC-LR are both able to calibrate the outputs but the latter has a higher AUC.
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Figure 7.9: This data is linearly non-separable. LR, LR-PS and LR-IR failed in the calibration test and have
poor AUC. AC-LR is the only approach generates a well-calibrated probabilistic outputs with a large AUC.
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For the first data-set, both LR and the LR-PS do not pass the HL-test at significance level α = 0.05. LR-

IR and AC-LR generate calibrated outputs but AC-LR has a higher AUC. The second data-set is generated to

be extreme linearly non-separable, such that X0 ∈ N (−3, 1)∪N (3, 1), X1 ∈ N (0, 1) and X = X1 ∪X0.

Figure 7.9 shows the results of various methods. LR and sigmoid fitting have AUCs around 0.5, which are

close to the performance of a random classifier. The Isotonic Regression calibrates the output but does not

perform well in terms of the AUC. AC-LR demonstrates superior performance, indicating it is capable of

handling linear non-separable data (higher AUC) while it calibrates the output (p > 0.760). Note LR-IR in

Figure 7.9 has thicken decision boundaries due to the presence of multiple testing points at the threshold.

7.4.2 Clinical Related Experiments

7.4.2.1 Hospital Discharge Data

This experiment is conducted on a data used for predicting follow up errors on microbiology cultures. The

data-set was created through a retrospective analysis of microbiology cultures performed at Brigham and

Women’s Hospital in 2007. Specifically, the features consisted of eight categorical variables and two nu-

merical variables.

The target is a Boolean variable indicating the potential error. Table 2.8 explains the clinical meaning of

the features. Figure 2.9 illustrates the distribution of each feature variable and the target variable. From a

total number of 4,819 hospital discharged cases, 369 are considered as “potential errors” by experts.

To train a LR model properly, I explicitly expressed each categorical variable as a set of Boolean variables

so that different categories are treated fairly, e.g., “sputum=2” does not impact the target more than that of

“blood=0” by default. Thus, spec was replaced by three Boolean variables. The fully expanded feature space

has 22 dimensions. As in the synthetic experiment, I apply different calibration models to compare their

performance. To generate fair comparison, I randomly split the data into training (66%) and testing (34%)

for evaluation. The results are listed in Table 7.6.

Table 7.6: Performance of LR, LR-PS, LR-IR and AC-LR using hospital discharge error data.

Model AUC P-value (HL test)
LR 0.704 0.003

LR-PS 0.704 0.000
LR-IR 0.704 0.000
AC-LR 0.717 0.349
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(a) LR-PS calibration method.
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(b) LR-PS rectified outputs.
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(c) LR-PS calibration method.
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(d) LR-PS rectified outputs.
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(e) AC-LR calibration method.
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(f) AC-LR rectified outputs.

Figure 7.10: Visual results of various calibration methods being applied to the hospital discharge data.
Left: the blue dots indicate the outputs of LR model, aggregated in deciles; the red curve corresponds to
calibration functions. Right: rectified outputs.
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As it is easy to see, LR, LR-PS and LR-IR failed to generate calibrated outputs. AC-LR was the only

approach that calibrates LR outputs, and even improves the AUC. As indicated in Figure 7.10, the calibrate

transformation function (the red curve in (e)) of our model is adaptive; as opposed to LR-PS and LR-IR that

enforce a global monotonicity constraint, AC-LR calibrates the outputs locally and adaptively.

7.4.2.2 Myocardial Infarction Data

The Myocardial Infarction (MI) data correspond to results of patient with and without Myocardial Infarction

[98]. The original motivation of this study is to determine which, and how many, data items are required to

construct a decision support algorithm for early diagnosis of acute myocardial infarction using clinical and

electrocardiograph data available at presentation. These data items were collected from patients who were

admitted and patients who were discharged. The data contain patient records from two medical centers in

Britain; among these, 600 patients attending at the emergency room (ER) with chest pain are observed in

Sheffield, England, and 1, 253 patients with the same symptoms are observed in Edinburgh, Scotland.

The total number of patients is 1, 853, the feature size is 48 and the target is a binary variable indicating

whether or not a patient has MI. Note that I represent every categorical feature by a number of binary ones

to preserve the categorical information.

I use a random split to divide the Edinburgh data into training (60%) and testing (40%). Similarly,

Sheffield is divided into (60%) and (40%) for training and testing, respectively.

Table 7.7: AUC and HL-test of various calibration methods using Myocardial Infarction (MI) data.

Data Edinburgh Sheffield
AUC P-value AUC P-value

LR 0.876 0.002 0.845 0.023
LR-PS 0.876 0.002 0.845 0.000
LR-IR 0.876 0.000 0.845 0.002
AC-LR 0.880 0.645 0.863 0.246

In this experiment, none of the previous methods: LR-PS and LR-IR, is capable of calibrating the raw

LR outputs, as indicated in Table 7.7. AC-LR does a good job on both data and demonstrated superior

calibration and AUC. I visually compared these approaches in Figure 7.11 and Figure 7.12 to show the

difference.
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(a) LR outputs in deciles and the LR-PS calibration function.
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(b) LR-PS rectified outputs in deciles.
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(c) LR outputs in deciles and the LR-IR calibration function.
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(d) LR-IR rectified outputs in deciles.
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(e) LR outputs in deciles and the AC-LR calibration function.
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(f) AC-LR rectified outputs in deciles.

Figure 7.11: Visual results of various calibration approaches being applied to the Sheffield data. One can
see easily that LR, LR-PS, LR-IR outputs deviate from the perfect calibration line. AC-LR method provides
the best calibration yet the highest AUC among all three approaches.
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(a) LR outputs in deciles and the LR-IR calibration function.
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(b) LR-IR rectified outputs in deciles.
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(c) LR outputs in deciles and the LR-IR calibration function.
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(d) LR-IR rectified outputs in deciles.
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(e) LR outputs in deciles and the AC-LR calibration function.
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(f) AC-LR rectified outputs in deciles.

Figure 7.12: Visual results of various calibration approaches being applied to the Edinburgh data. Similar to
results of the Sheffield data, the outputs of LR, LR-PS and LR-IR deviate from the perfect calibration line.
AC-LR method provides the best calibration yet the highest AUC among all three approaches.
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7.4.2.3 Breast Cancer Gene Expression Data

This experiment was conducted on four data sets (GSE2034, GSE2990, GSE3494A/B) obtained from the

NCBI Gene Expression Omnibus (GEO). The number of samples in the data sets are: 209 for GSE2034 (114

good/95 poor), 90 for GSE2990 (60 good/30 poor), and 242 for GSE2034 (224 good/18 poor). All these

data-sets have a feature size of 247, 965, which is formidable for most machine learning algorithms.

Table 7.8: Performance comparison of different models using the Breast Cancer Gene Expression Data.

(a) 5-CV result in GSE2034: AUC and HL-test of various calibration methods.

AUC P-value (HL test)
Folders #1 #2 #3 #4 #5 #1 #2 #3 #4 #5

LR 0.87 0.86 0.85 0.73 0.72 0.01 0.00 0.02 0.00 0.00
LR-PS 0.87 0.86 0.85 0.73 0.72 0.00 0.00 0.00 0.13 0.94
LR-IR 0.87 0.86 0.85 0.73 0.72 0.04 0.00 0.16 0.00 0.00
AC-LR 0.87 0.85 0.85 0.75 0.69 0.12 0.01 0.30 0.06 0.21

(b) 5-CV result in GSE2990: AUC and HL-test of various calibration methods.

AUC P-value (HL test)
Folders #1 #2 #3 #4 #5 #1 #2 #3 #4 #5

LR 0.76 0.88 0.98 0.72 0.66 0.00 0.00 0.99 0.00 0.00
LR-PS 0.76 0.88 0.98 0.72 0.66 0.99 0.74 0.00 0.36 0.52
LR-IR 0.76 0.88 0.98 0.72 0.66 0.00 0.01 0.99 0.00 0.00
AC-LR 0.83 0.87 0.99 0.74 0.72 0.07 0.30 0.46 0.06 0.08

(c) 5-CV result in GSE3494_u133A: AUC and HL-test of various methods.

AUC P-value (HL test)
Folders #1 #2 #3 #4 #5 #1 #2 #3 #4 #5

LR 1 1 1 0.97 0.95 1 1 1 0.00 0.00
LR-PS 1 1 1 0.97 0.95 0.03 0.08 0.03 0.37 0.31
LR-IR 1 1 1 0.97 0.95 1 1 1 1 1
AC-LR 1 1 1 0.93 0.98 1 1 1 0.99 1

(d) 5-CV result in GSE3494_u133B: AUC and HL-test of various methods.

AUC P-value (HL test)
Folders #1 #2 #3 #4 #5 #1 #2 #3 #4 #5

LR 1 1 0.97 0.82 1 0.00 1 0.00 0.00 0.00
LR-PS 1 1 0.97 0.82 1 0.17 0.02 0.17 0.13 0.34
LR-IR 0.97 1 0.97 0.82 1 1 1 1 1 1
AC-LR 1 1 0.97 0.83 1 0.98 1 0.98 0.85 0.96

To be compatible with other models, I apply a feature selection pre-process via Student’s t-test, refer

to [140] for more details. The P-value was used to select the most relevant features. I used the top 15
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features from each data-set. The final evaluation is conducted on a 5-fold cross-validation to compare the

AUC (discrimination) and the P-value of the HL test (calibration) on LR, LR-PS, LR-IR and AC-LR.

Table 7.8 displays the results. Note the red numbers corresponds to when AC-LR, the proposed model,

achieves the best AUC among the calibration models, the blue numbers represents when AC-LR passes the

HL test at 0.05 significant level. The proposed AC-LR outperforms the other calibration approaches in this

data-set.

7.5 Discussion

To obtain two achievements of probabilistic models: discrimination and calibration concurrently, I broke

the global monotonic constraints, but instead, calibrate probabilistic outputs adaptively. The reason for this

is "true probability" of underlying events are unknown but may be estimated by class membership of similar

patterns. That is, from a frequentist perspective, a reliable estimator of the "true probability" is the fraction of

positive labeled cases of statistically similar cases. An important lesson I learned through my investigation is

that good calibration should be performed locally as opposed to that good discrimination can be examined

globally. Thus previous approaches tend to adjust probability irrelevant of inputs and model characteristics

do not achieve good calibration.

To this end, I developed an approach that considers model-specific information to calibrate the logistic re-

gression predictions locally. Without increasing computational complexity, my approach shows performance

advantage on various synthetic. For these synthetic data experiments, I showed intuitively how AC-LR is

superior to existing approaches. I visualized 1D and 2D non-linear separable cases, which be handled by

AC-LR but not the others. Furthermore, the method went even beyond the capability of linear classifiers to

handle linear non-separable situations thanks to its adaptive nature.

I also conducted real world experiments using Hospital Discharge Error, Myocardial Infarction and

Breast Cancer Gene Expression Data. In Hospital Discharge Experiment, AC-LR passed HL-test at 0.05

significance level with a p-value of 0.349 while all the other methods failed. In addition, AC-LR even im-

proved AUC from 0.704 (the best of other methods in comparison) to 0.717 showing joint optimization of

calibration and discrimination improved single-target models in both perspectives. For the Myocardial In-

farction dataset, AC-LR demonstrated its performance advantage over conventional methods again. AC-LR

passed HL-test at 0.05 significance level with p-values of 0.645 and 0.246 for Sheffield data and Edin-
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burgh data while LR, LR-PS and LR-IS failed. Improvements for discrimination are also prominent, AC-LR

achieved an AUC of 0.880 and 0.863 comparing to 0.876 and 0.845 of LR, LR-PS and LR-IS for Sheffield

data and Edinburgh data, respectively. Similarly, the performance of AC-LR led the competition of dis-

crimination and calibration in the Breast Cancer Gene Expression data. Finally, I evaluated model using the

Breast Cancer Gene Expression data. Results of five cross-validation of four different Gene data consistently

demonstrated the performance advantage of AC-LR.

In conclusion, AC-LR is an automatic method that calibrates probabilistic outputs of Logistic Regression

adaptively but its formulation can be easily extended to other machine learning algorithm. The synthetic

experiments and clinical related evaluations confirmed my assertion that calibration should be computed

locally, including only relevant information.

7.6 Conclusion

In this chapter, I developed a new calibration approach, Adaptive Calibration for Logistics Regression (AC-

LR), a completely automatic tool which bridges a widely used learning model (Logistic Regression) to

calibration for personalized medicine. Note that Logistic Regression was developed under theories for

cohort studies but AC-LR went beyond its capacity.

The AC-LR approach is tailored and targeted to benefit individuals in more specific groups, based on

more relevant information. As opposed to conventional methods constructed on the entire population of

patients, my model used confidence intervals for individual predictions to construct a dynamic neighbor-

hood for each patient. That is, the predictions are based on more relevant information about the patient.

Experiments on multiple clinical data demonstrated improved calibration and discrimination ability of this

new model. Yet another advantage of AC-LR is that its computational cost is much lower compared to other

methods considering using dynamic neighborhood. This data-driven approach has demonstrated significant

improvement to previous methods like Platt Scaling and Isotonic Regression in experiments using synthetic

data and clinically related data.

The AC-LR model is ready for other cases where a probabilistic outputs is preferred over a decision rule.

The model can be directly applied to calibrate probabilistic estimates of binary outcomes. Thanks to the

joint consideration of input characteristics and output values, AC-LR produces more reliable probabilities of

positive events than existing approaches.
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Chapter 8

Data Scalability Issue

The data scalability issue is common in biomedical informatics and is often used as a touchstone for the

applicability of machine learning models in the real world. The performance of a simple model can dete-

riorate when the amount of data increases as the number of little errors accumulate. On the other hand, a

sophisticated model might retain its performance at the cost of exponential growth in computational com-

plexity. Both situations might indicate that the particular predictive model is not appropriate for a large scale

dataset even if it is theoretically sound. In addition, the affects of data scalability impacts are also useful in

determining which and how many data are required to construct reliable decision support predictive models.

This chapter is dedicated to investigating the impact of data scalability on models developed in the thesis.

Specifically, I used data from various sources to compare different models, including existing approaches

and these developed in this thesis. At increasing ratios of training data size vs. testing data size, I evaluated

these models’ performance in terms of discrimination, calibration and computational cost. The results

indicated that model developed in this thesis, i.e., Smooth Isotonic Regression, Adaptive Calibration for

Logistic Regression and Temporal Maximum Margin Markov Network fit well to large datasets as their

performances are superior to existing models. In addition, their computational complexity at increasing size

of the data is growing at a comparable rate to the computational complexity of previous approaches.

Because models developed for large-scale disease outbreak prediction are different from those designed

to improve personalized clinical risk estimation, I used different data to evaluate these two categories of

models. The chapter is thus divided into two parts: the first part concentrates on evaluating the scalability

of models developed for predicting a single target variable; the second part focuses on the scalability of the
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multiple variable co-prediction problem.

8.1 Data

I gathered a broad range of real world data to evaluate the scalability impact on different models. Among

these real world data, I used data with binary outcomes to evaluate models developed to improve person-

alized clinical risk estimation. The datasets included the following: HOSPITAL, MI, HEIGHT_WEIGHT,

ADULT_CENSUS, BREAST_CANCER and BANKRUPTCY. Regarding the multiple variable co-estimation

model I developed for large scale disease outbreak prediction, I used BioWar-II, which contains a set of cor-

related manifestations.

8.1.1 Hospital Discharge Error data

The HOSPITAL data set consists of microbiology cultures and other variables related to hospital discharge

errors [59]. The following table defines various features and outcome variables for this data.

Table 8.1: Details of co-variates and the outcome variables in the hospital discharge error data. Eight out of
ten explanatory variables are categorical and two are numerical.

Name Details
Features

Specimen: 0=blood, 1=urine, 2=sputum, 3=csf
Spec_days: Number of days between admission date and specimen

collection date.
Collect_week: 0=specimen collected on weekday, 1=specimen collected on

weekend
Final_week: 0=final result on weekday, 1=final result on weekend
Vistyp: 1=admission, 0=non-admission
Svc: 0=<blank> (patient not admitted), 1=ONC, 2=MED,

3=Medical Sub-specialties, 4=Surgery and Surgical
Sub-specialties, 5=Other

Age: Age in years
Female: 0=male, 1=female
Race: 0=white, 1=black, 2=Asian, 3=Hispanic, 4=other,

5=unknown/declined
Insurance: 0=medicare, 1=medicaid, 2=commercial, 3=other

Target Variable
Pot_error: 0=not a potential follow-up error, 1=a potential follow-up error

I also summarize features and the outcome variable by their description statistics, i.e., min, 1st Qu.,
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median, 3rd Qu. , and max. The clinical meaning for each column was explained in Chapter 2.

Table 8.2: Descriptional statistics for the hospital discharge error data.

specimen specimen days collect week final week visit type svc
0: 233 1 :1245 0:3755 0:3583 1:4818 1: 665
1:2564 0 :1030 1:1063 1:1235 2:1287
2:1467 2 : 682 3:1217
3: 554 3 : 391 4:1608

4 : 327 5: 41
5 : 227

(Other): 916

age female race insurance pot error
Min. : 0.00 0:2252 0:3360 0:1996 0:4449

1st Qu.:43.28 1:2566 1: 577 1: 554 1: 369
Median :57.76 2: 110 2:2152

Mean :56.51 3: 405 3: 116
3rd Qu.:71.24 4: 55

Max. :99.71 5: 311

There are 369 clinically important but highly suspicious observations out of 4819 returned post-discharge

observations, which makes the data highly unbalanced and a challenge to calibrate.
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8.1.2 Myocardial Infarction data

Table 8.3: Descriptional statistic for the Edinburgh data set.

Abbreviation
age min: 13.0 median:59 mean:57.6 max: 92

Smokes 0: 785 1: 468
Exsmoker 0: 959 1: 294

Fhistory 0: 967 1: 286
Diebetes 0: 1165 1: 88

BP 0: 1053 1: 200
Lipids 0: 1215 1: 38

CPmajorSymp 0: 62 1: 1191
Restrostern 0: 331 1: 922

Lchest 0: 907 1: 346
Rchest 0: 1109 1: 144

Back 0: 1122 1: 131
Larm 0: 670 1: 583
Rarm 0: 1042 1: 211

breath 0: 1031 1: 222
postural 0: 1017 1: 236

Cwtender 0: 1201 1: 52
Sharp 0: 1208 1: 45
Tight 0: 572 1: 681

Sweating 0: 739 1: 514
SOB 0: 731 1: 522

Nausea 0: 1124 1: 129
Vomiting 0: 1124 1: 129
Syncope 0: 1208 1: 45
Episodic 0: 1161 1: 92

Worsening min: 0.0 median: 4.0 mean: 17.4 max: 168
Duration min: 0.0 median: 3.0 mean: 8.84 max: 168
prev-ang 0: 699 1: 554
prev-MI 0: 836 1: 361

Worse 0: 892 1: 361
Crackles 0: 1106 1: 147

Added-HS 0: 1247 1: 6
Hypoperfusion 0: 1203 1: 50

Stelve 0: 1199 1: 54
NewQ 0: 1240 1: 13

STorT-abnorm 0: 1240 1: 13
LBBBorRBBB 0: 1203 1: 50

Old-MI 0: 1101 0: 152
Old-isch 0: 1141 1: 112

MI 0: 979 1: 274
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Table 8.4: Descriptional statistics for the Sheffield data set.

Abbreviation
age min: 17.0 median:61 mean:59.9 max: 91

Smokes 0: 318 1: 182
Exsmoker 0: 388 1: 112

Fhistory 0: 373 1: 127
Diebetes 0: 451 1: 49

BP 0: 403 1: 97
Lipids 0: 482 1: 18

CPmajorSymp 0: 37 1: 463
Restrostern 0: 110 1: 390

Lchest 0: 373 1: 127
Rchest 0: 438 1: 62

Back 0: 426 1: 74
Larm 0: 237 1: 263
Rarm 0: 418 1: 82

breath 0: 422 1: 78
postural 0: 455 1: 45

Cwtender 0: 491 1: 9
Sharp 0: 400 1: 100
Tight 0: 246 1: 254

Sweating 0: 235 1: 265
SOB 0: 281 1: 219

Nausea 0: 341 1: 159
Vomiting 0: 449 1: 51
Syncope 0: 467 1: 33
Episodic 0: 417 1: 83

Worsening min: 0.0 median: 6.0 mean: 50.37 max: 1000
Duration min: 0.0 median: 4.0 mean: 12.34 max: 1000
prev-ang 0: 281 1: 219
prev-MI 0: 377 1: 123

Worse 0: 338 1: 162
Crackles 0: 373 1: 127

Added-HS 0: 476 1: 24
Hypoperfusion 0: 441 1: 59

Stelve 0: 403 1: 97
NewQ 0: 470 1: 30

STorT-abnorm 0: 403 1: 97
LBBBorRBBB 0: 474 1: 26

Old-MI 0: 454 1: 46
Old-isch 0: 473 1: 27

MI 0: 346 1: 154

The Myocardial Infarction (MI) data correspond to results of patients with and without Myocardial Infarction

who were observed at emergency department in UK [98]. The data contain patient records from two medical
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centers in Britain; among these, 600 patients attending at the emergency room (ER) with chest pain were

observed in Sheffield, England, and 1, 253 patients with the same symptoms were observed in Edinburgh,

Scotland. The following tables summarize feature and outcome variables for both Sheffield and Edinburgh

data. More details about the MI data set were provided in Chapter 2.

8.1.3 Height and Weight data

The date for height and weight pertained to groups of both men and women. The subjects are 213 students

of an academic university. Of these students, 73 were female and 140 were male. The data contains the

following features: height, weight, GPA, left arm length, right arm length, left foot size, and right foot size.

Table 8.5: Descriptional statistics for the HEIGHT_WEIGHT dataset.

Sex Height Weight GPA
0: 73 Min. :55.00 Min. : 95.0 Min. :1.240

1: 140 1st Qu.:64.00 1st Qu.:125.0 1st Qu.:2.670
Median :67.00 Median :140.0 Median :3.000

Mean :67.31 Mean :145.5 Mean :3.004
3rd Qu.:70.50 3rd Qu.:160.0 3rd Qu.:3.400

Max. :79.00 Max. :280.0 Max. :3.910

LArm RArm LFoot RFoot
Min. :20.50 Min. :20.50 Min. :19.50 Min. :20.00

1st Qu.:24.00 1st Qu.:24.00 1st Qu.:23.40 1st Qu.:23.00
Median :25.00 Median :25.00 Median :24.70 Median :25.00

Mean :25.17 Mean :25.31 Mean :25.16 Mean :25.20
3rd Qu.:26.50 3rd Qu.:27.00 3rd Qu.:27.00 3rd Qu.:27.00

Max. :31.00 Max. :31.00 Max. :32.00 Max. :32.00

8.1.4 AdultCensus data

The extraction of this ADULT_CENSUS data was conducted by Barry Becker from the 1994 Census

database. A set of reasonably clean records was extracted and the prediction task was to determine whether

a person earns over 50K a year [101]. This data contained 14 explanatory variables and a binary outcome

variable “income.”
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Table 8.6: Descriptional statistics for the ADULT_CENSUS data set.

age workclass fnlwgt education education num
Min. :17.00 Private :22696 Min. : 12285 HS-grad :10501 Min. : 1.00

1st Qu.:28.00 Self-emp-not-inc: 2541 1st Qu.: 117827 Some-college: 7291 1st Qu.: 9.00
Median :37.00 Local-gov : 2093 Median : 178356 Bachelors : 5355 Median :10.00

Mean :38.58 ? : 1836 Mean : 189778 Masters : 1723 Mean :10.08
3rd Qu.:48.00 State-gov : 1298 3rd Qu.: 237051 Assoc-voc : 1382 3rd Qu.:12.00

Max. :90.00 Self-emp-inc : 1116 Max. :1484705 11th : 1175 Max. :16.00
NA (Other) : 981 (Other) : 5134

marital.status occupation relationship race sex
Divorced : 4443 Prof-specialty :4140 Husband :13193 Amer-Indian-Eskimo: 311 Female:10771
Married-AF : 23 Craft-repair :4099 Not-in-family : 8305 Asian-Pac-Islander: 1039 Male :21790

Married-civ :14976 Exec-managerial:4066 Other-relative: 981 Black : 3124
Married-absent: 418 Adm-clerical :3770 Own-child : 5068 Other : 271

Never-married :10683 Sales :3650 Unmarried : 3446 White :27816
Separated : 1025 Other-service :3295 Wife : 1568

Widowed : 993 (Other) :9541

capital.gain capital.loss hours.per.week native.country income
Min. : 0 Min. : 0.0 Min. : 1.00 United-States:29170 <=50K:24720

1st Qu.: 0 1st Qu.: 0.0 1st Qu.:40.00 Mexico : 643 >50K : 7841
Median : 0 Median : 0.0 Median :40.00 ? : 583

Mean : 1078 Mean : 87.3 Mean :40.44 Philippines : 198
3rd Qu.: 0 3rd Qu.: 0.0 3rd Qu.:45.00 Germany : 137

Max. : 99999 Max. :4356.0 Max. :99.00 Canada : 121
(Other) : 1709

8.1.5 Breast Cancer Gene Expression data

These data were obtained from the NCBI Gene Expression Omnibus (GEO). Three individual data that were

downloaded were previously studied by Wang et al. (GSE2034) [185], Sotiriou et al. (GSE2990) [166], and

Miller et al. (GSE3494) [128], respectively.

To make my data compatible with previous studies, I followed the criteria in [140] to select patients who

did not receive any treatment and had negative lymph node status. Among these pre-selected candidates,

only patients with extreme outcomes, either poor outcomes (recurrence or metastasis within five years) or

very good outcomes (neither recurrence nor metastasis within eight years) were selected. The number of

samples after filtering were: 209 for GSE2034 (114 good/95 poor), 90 for GSE2990 (60 good/30 poor), and

242 for GSE2034 (224 good/18 poor).
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I also applied a split to divide GSE3494 into two groups, as suggested by [140], GSE3494-A and

GSE3493-B, according to the sample’s Affymetrix platform. Thus, the breast cancer data-set has four sep-

arate data. All these data have a feature size of 247,965, which corresponds to the gene expression results

obtained from micro-array experiments.

8.1.6 Bankruptcy data

The Bankruptcy data contain two features: Return and EBIT (earnings before interest and taxes). The

outcome variable “Bankruptcy” is binary. There are 66 samples in this data, where 33 samples correspond

to observed bankruptcy and the others do not. The following table summarizes their description statistics,

i.e., min, 1st Qu., median, 3rd Qu., and max.

Table 8.7: Descriptional statistics for the BANKRUPTCY data set.

Return EBIT Bankruptcy
Min. :-308.90 Min. :-280.000 0:33

1st Qu.: -39.05 1st Qu.: -17.675 1:33
Median : 7.85 Median : 4.100
Mean : -13.63 Mean : -8.226
3rd Qu.: 35.75 3rd Qu.: 14.400

Max. : 68.60 Max. : 34.100

8.1.7 BioWar II data

The BioWar II data contain multiple five-year-period observations from 9/1/2002 to 8/30/2007. The number

of simulated agents are set to vary from 153,090 to 1,224,726, at an approximately equal scale (150k);

specifically, the number of simulated agents varies from 10% (153,090) to 100% (1,224,726). The city of

simulation is Norfolk, VA. There was one outbreak of airborne diseases for every year during the simulated

period. The data incorporate both relational and temporal information.

In this data, the simulated agents interact and transmit airborne diseases (avian influenza) over time.

There are six time ticks everyday; thus 365∗6 time ticks are observed for each year. I used BioWar simulation

engine to generate ten five-year periods rather than a single 50-year period to avoid the birth and death

factors to impact the disease modeling. The following table summarizes features and outcome variables

of all 1,224,736 agents that are simulated. More details and motivation about this data were introduced in

Chapter 2.
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Table 8.8: Descriptional statistics for BioWar II.

tick dayOfWeek month day dead is.er
Min. : 0 Fri:1560 Dec : 930 Min. : 1.00 Min. :0 Min. : 0.00

1st Qu.: 2737 Mon:1566 Jan : 930 1st Qu.: 8.00 1st Qu.:0 1st Qu.: 0.00
Median : 5474 Sat:1560 Jul : 930 Median :16.00 Median :0 Median : 36.00

Mean : 5474 Sun:1566 Mar : 930 Mean :15.72 Mean :0 Mean : 38.94
3rd Qu.: 8212 Thu:1566 May : 930 3rd Qu.:23.00 3rd Qu.:0 3rd Qu.: 49.00
Max. :10949 Tue:1566 Oct : 930 Max. :31.00 Max. :0 Max. :368.00

Wed:1566 (Other):5370

kidsAtHome adultsAtHome at.work weblookup medcalls num.exchanges
Min. : 85069 Min. :154198 Min. : 0 Min. : 0.00 Min. : 0 Min. : 0.0000

1st Qu.:126708 1st Qu.:362493 1st Qu.: 0 1st Qu.: 0.00 1st Qu.: 0 1st Qu.: 0.0000
Median :316864 Median :907737 Median : 0 Median : 42.00 Median : 0 Median : 0.0000

Mean :240999 Mean :622832 Mean :175130 Mean : 45.76 Mean :102464 Mean : 0.8463
3rd Qu.:316867 3rd Qu.:907859 3rd Qu.: 0 3rd Qu.: 57.00 3rd Qu.: 0 3rd Qu.: 1.0000

Max. :316867 Max. :907859 Max. :753630 Max. :375.00 Max. :595796 Max. :46.0000

in.hospital is.home is.work is.school is.pharmacy is.doctor
Min. : 0.00 Min. : 239387 Min. :0 Min. : 0 Min. : 0.00 Min. : 0.000

1st Qu.: 0.00 1st Qu.: 489130 1st Qu.:0 1st Qu.: 0 1st Qu.: 0.00 1st Qu.: 0.000
Median : 36.00 Median :1224600 Median :0 Median : 0 Median : 0.00 Median : 0.000

Mean : 38.94 Mean : 863832 Mean :0 Mean : 37529 Mean : 37.51 Mean : 9.815
3rd Qu.: 49.00 3rd Qu.:1224726 3rd Qu.:0 3rd Qu.: 0 3rd Qu.: 56.00 3rd Qu.: 15.000
Max. :368.00 Max. :1224726 Max. :0 Max. :231797 Max. :542.00 Max. :237.000

is.stadium is.theater is.store is.restaurant is.university is.military
Min. : 0 Min. : 0 Min. :0 Min. : 0 Min. :0 Min. :0

1st Qu.: 0 1st Qu.: 0 1st Qu.:0 1st Qu.: 0 1st Qu.:0 1st Qu.:0
Median : 0 Median : 0 Median :0 Median : 0 Median :0 Median :0

Mean : 4988 Mean :15666 Mean :0 Mean :127495 Mean :0 Mean :0
3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.:0

Max. :25269 Max. :78581 Max. :0 Max. :634041 Max. :0 Max. :0

8.2 Single Target Variable Prediction Models

In this section, I evaluate the impact of varying data size to the performance of various models, including Lo-

gistic Regression, Platt Scaling, Isotonic Regression, Smooth Isotonic Regression and Adaptive Calibrated

Logistic Regression. The first three models were proposed by previous papers and the latter two are models

I developed.

The data used to access the model’s performances are: Breast Cancer Gene Expression Data (GSE2034,

GSE2990, GSE3494), Myocardial_Infarction (Edin, Shef), Hospital_discharge and three additional UCI
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machine learning repository data (Bankruptcy, PIMATR and HeightWeight) [69]. All data are randomly

split into training and testing according to a ratio factor that varies from 0.3 to 0.7.

8.2.1 Discrimination and Computational Cost

To evaluate the performance at increasing amount of training data more systematically, I sample the data of

the ten training/testing ratios (from 0.1 to 0.9) for 60 time and demonstrate the model’s discrimination v.s.

training data size and computational cost v.s. training data size use all nine data sets. The models accessed

are Logistic Regression reliability diagram (LR), Platt Scaling reliability diagram (PLATT), Isotonic Regres-

sion reliability diagram (IR), Smooth Isotonic Regression reliability diagram (SIR) and Adaptive Calibrated

Logistic Regression reliability diagram (ACLR), respectively.

For each of the following figures, the AUC and time cost (in seconds) are computed as the average of the

60 random experiments.
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Figure 8.1: Scalability performance evaluation for GSE2034. Left: Discrimination vs. increased train-
ing/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio.
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Figure 8.2: Scalability performance evaluation for GSE2990. Left: Discrimination vs. increased train-
ing/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio.
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Figure 8.3: Scalability performance evaluation for GSE3494. Left: Discrimination vs. increased train-
ing/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio.
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Figure 8.4: Scalability performance evaluation for BANKRUPTCY. Left: Discrimination vs. increased
training/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio.
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Figure 8.5: Scalability performance evaluation for EDINBURGH. Left: Discrimination vs. increased train-
ing/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio.
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Figure 8.6: Scalability performance evaluation for HEIGHTWEIGHT. Left: Discrimination vs. increased
training/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio.

0.3 0.4 0.5 0.6 0.7

0.67

0.68

0.69

0.7

0.71

0.72

HOSPITAL -- AUC

 

 

LOGISTIC
PLATT
ISO
SISO
ACLR

0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

HOSPITAL -- HL
c
test

 

 

LOGISTIC
PLATT
ISO
SISO
ACLR

0.3 0.4 0.5 0.6 0.7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
HOSPITAL -- Time Cost (s)

 

 

LOGISTIC
PLATT
ISO
SISO
ACLR

Figure 8.7: Scalability performance evaluation for HOSPITAL_DISCHARGE. Left: Discrimination vs.
increased training/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the
60 random experiments, Right: Computational cost vs. increased training/testing data ratio .
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Figure 8.8: Scalability performance evaluation for PIMATR. Left: Discrimination vs. increased train-
ing/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio .
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Figure 8.9: Scalability performance evaluation for SHEFFIELD. Left: Discrimination vs. increased train-
ing/testing data ratio, Middle: How many times the model’s outputs pass a HL-test out of the 60 random
experiments, Right: Computational cost vs. increased training/testing data ratio.

Figures from 8.1 to 8.9 demonstrated models’ discrimination and calibration at increasing amount of

training data size. In most cases, the AUC starts at a low value (due to under-fit) and keeps increasing

until a saddle point is hit, and then the performance goes down or stay flat. The reason of such decreasing

in discrimination is due to over-fitting the training data. A reasonable trade-off between performance and

computational cost lies in the training/testing ratio 6:4, where the performance tends to stabilize and the

computational cost has not increased tremendously.

In general, AC-LR and SISO demonstrated superior performance in term of calibration. For most cases,

these two approaches take the lead in the total number of models that pass the HL-test. The last column

demonstrated the computational cost of these models, indicating that SISO did not increase the computa-

tional cost exponentially, and AC-LR is often faster than ISO and Platt approaches.
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8.3 Multiple Target Variable Co-Estimation Models

Next, I evaluate the impact of data scale to structured models that predict multiple variables. I include follow-

ing models: Hidden Markov Model (HMM), Conditional Random Field (CRF), Maximum Margin Markov

Network (M3N), Temporal Maximum Margin Markov Network (TM3N) for performance assessment.

All four models are evaluated at an increasing amount of simulated agents, generated by the BioWar sim-

ulation engine. The simulation data are multiple five-year-period observations from 9/1/2002 to 8/30/2007.

The number of simulated agents are set to vary from 153,090 to 1,224,726 at approximately equal scales

(150k), specifically, the number of simulated agents varies from 10% to 100% . Please refer to Chapter 2

for details of the variables.

Figure 8.10 illustrates the accuracy of HMM, CRF, M3N and TM3N. All four models stabilize around the

scale of 80%. TM3N’s accuracy increases 10%, which outperforms HMM(6%), CRF(2%) and M3N(4%).
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Figure 8.10: Model comparison using BioWar-II results. The X axis corresponds to the scale of agents at
ten different levels (10%-100%); and Y axis represents the accuracy. The HMM is not able to capture the
feature correlations, which performs poorly due to the ignorance of the context. Both M3N and CRF have
fairly good generalization at increasing scales. TM3N model’s accuracy begins with 0.5865 at the 10%
scale, which is quite close to 0.5701 and 0.5431 of CRF and M3N, respectively. But TM3N’s performance
increases much rapidly than the other models in comparison with more observations.
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Interpretation: The scalability experiment on TM3N method using BioWar-II data

confirmed model’s ability to handle large amount of training data. The results indicated

TM3N led the averaged accuracy at various scales of training data, and the model

scaled well.

8.4 Discussion

The data scalability issue is critical to biomedical informatics, and is often used as a touchstone for evaluating

the applicability of machine learning models in the real worlds. There is a common dilemma for performance

deterioration and computational complexity. That is, the performance of simple model can deteriorate when

the size of data grow up as the little errors due to assumption violations are accumulated quickly. On the other

hand, a sophisticated model might retain its performance at the cost of exponential growth in computational

complexity. Both situations might indicate that the particular predictive model is not appropriate for large

scale dataset even if it is theoretically sound. In addition, the data scalability impacts are also useful in

determining which and how many data are required to construct reliable decision support predictive models.

This chapter investigated the impact of data scalability on models developed in the thesis. I used data

from different sources to compare different models, including existing approaches and methods developed

in this thesis. At increasing ratios of training data to testing data, I evaluated these models’ performance in

terms of discrimination, calibration and computational cost. The results indicated that the models developed

in this thesis, i.e., Smooth Isotonic Regression (SIR), Adaptive Calibration for Logistic Regression (AC-LR)

and Temporal Maximum Margin Markov Network (TM3N) fits well to large datasets.

Specifically, SIR and AC-LR demonstrated better calibration ability comparing to the other methods

without sacrificing their discrimination ability. In terms of computational cost, all methods are scalable

but SIR is slightly more expensive because it inserted an additional smoothing procedure LR-IR approach.

The second and third most expensive methods are LR-IR and LR-PS, respectively. Interestingly, the most

balanced method, AC-LR turned out to be the least computational expensive. TM3N, on the other hand, was

evaluated on simulated BioWar-II data with an increasing amount of training data. The model demonstrated

superior performance (averaged prediction accuracy) to existing models at different scales of simulated

agents. Furthermore, its computational complexity at an increasing amount of the data grows at a comparable

rate to the computational complexity of other state-of-the-art approaches.
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8.5 Conclusion

We all know that data scalability could have a significant impact on the reliability and feasibility to machine

learning methods developed for solving specific problems. Because my purpose is to provide generalized

prediction methods for clinical decision support, I decided to verify such impacts to models developed in this

thesis. Although the available data do not support exhaustive study of various aspects of biomedical research,

I intended to make my evaluation comprehensive. To this end, I included data from different sources to

compare models, including existing approaches and methods developed in this thesis. At increasing ratios

of training data against testing data, I evaluated these models’ performance in terms of discrimination,

calibration and computational cost. The results indicated that the models developed in this thesis, i.e.,

Smooth Isotonic Regression (SIR), Adaptive Calibration for Logistic Regression (AC-LR) and Temporal

Maximum Margin Markov Network (TM3N) scale well to large datasets.
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Chapter 9

Data Unbalance Issue

I discussed the data scalability issue to prediction in biomedical learning. This issue is not unique to biomed-

ical research. Thus most methods, including those developed earlier, demonstrated reasonable addictiveness

in increasing amounts of the data.

However, another difficult issue in biomedical learning is class imbalance[21, 44, 195, 211, 212], which

is not common in other machine learning tasks. In typical biomedical applications, e.g., classification and

knowledge discovery in protein databases [153], it is hard to obtain enough labels of observations to train a

reliable probabilistic model. The labeling procedure requires the experts’ knowledge, staff time, and even

expensive laboratory test. Oftentimes, the care providers confirm a tiny fraction of the highly suspicious

observations (positive) and leave a large amount of observations unlabeled. The lack of negative labeled

samples makes it difficult to apply traditional supervised learning approaches. Usually, they require a large

amount of dichotomy training samples. On one hand, there is a very limited amount of usable labeled data

that supervised learning algorithms can use. On the other hand, the unlabeled samples are many but cannot

be leveraged by these supervised learning algorithms.

To handle a situation of a tiny amount of positive labeled data and a large amount of unlabeled data,

I developed a method, called Structured Biased Support Vector Machine (SB-SVM), by considering: 1)

the sample unbalance between labeled and unlabeled observations; 2) the feature correlation embedded in

unlabeled observations. This additional information offer more granularity to model data faithfully. To

show the usefulness of my model, I evaluate its performance with simulation data and a real clinical data for

hospital discharge errors prediction. Both experiments demonstrate the advantage of the method.
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9.1 Data

9.1.1 Hospital Discharge Error Data

To verify my model, I used HOSPITAL data, which was introduced earlier, and is highly unbalanced. The

data consist of microbiology cultures and other variables related to hospital discharge errors [59]. There are

369 clinically important but highly suspicious observations out of 4819 returned post-discharge observations.

The following table defines various features and outcome variables for this data.

Table 9.1: Details of co-variables and the outcome variable in the hospital discharge error data. Eight out of
ten explanatory variables are categorical and two are numerical.

Name Details
Features

Specimen: 0=blood, 1=urine, 2=sputum, 3=csf
Spec_days: Number of days between admission date and specimen

collection date.
Collect_week: 0=specimen collected on weekday, 1=specimen collected on

weekend
Final_week: 0=final result on weekday, 1=final result on weekend
Vistyp: 1=admission, 0=non-admission
Svc: 0=<blank> (patient not admitted), 1=ONC, 2=MED,

3=Medical Sub-specialties, 4=Surgery and Surgical
Sub-specialties, 5=Other

Age: Age in years
Female: 0=male, 1=female
Race: 0=white, 1=black, 2=Asian, 3=Hispanic, 4=other,

5=unknown/declined
Insurance: 0=medicare, 1=medicaid, 2=commercial, 3=other

Target Variable
Pot_error: 0=not a potential follow-up error, 1=a potential follow-up error

I also summarize features and the outcome variable by their description statistics, i.e., min, 1st Qu.,

median, 3rd Qu., and max. The clinical meaning for each column was explained in Chapter 2.
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Table 9.2: Descriptional statistics for the hospital discharge error dataset.

spec spec dayssinceadm collect we final we vistype svc
0.161806 Min. : 0.000 2.607639 2.488194 3.3875 0.503472
1.822222 1st Qu.: 1.000 0.779861 0.899306 0.977083
1.102083 Median : 2.000 0.970139
0.509722 Mean : 4.355 1.283333

3rd Qu.: 4.000 5:41
Max. :195.000

age female race insurance pot error
Min. : 0.00 1.563889 2.333333 1.386111 3.089583

1st Qu.:43.28 1.823611 0.442361 0.426389 0.297917
Median :57.76 0.159722 1.577778

Mean :56.51 0.40625 0.205556
3rd Qu.:71.24 4:55

Max. :99.71 0.424306

9.1.2 Breast Cancer Gene Expression Data

The second data I used is the Breast Cancer Gene Expression (GSE3494), which was obtained from the

NCBI Gene Expression Omnibus (GEO) and studied by Miller et al. [128]. To make my data comparable

to previous studies, I followed the criteria in [140] to select patients who did not receive any treatment and

had negative lymph node status. Among these pre-selected candidates, only patients with extreme outcomes,

either poor outcomes (recurrence or metastasis within five years) or good outcomes (neither recurrence nor

metastasis within eight years) are selected. The final data is highly biased because there are 224 good and

18 poor out of a total 242 samples. The data have a feature size of 247,965, which corresponds to the gene

expression results obtained from micro-array experiments. They were preprocessed to keep only the top 15

features ranked using t-test (see [140] for details). Figure 9.1 shows boxplots of these selected gene features.

It can be observed in the figure below that effective gene features are different from each other in different

population groups.
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Figure 9.1: Boxplots of Breast Cancer Gene Expression Data. Each column corresponds to one feature
vector and the last column indicates the outcome variable.

9.2 Motivation

Probabilistic models are important to many tasks in biomedical informatics. Early detection and accurate

prediction help decision makers to interpret observations quickly and come up with more informed responses

to potential adverse events. However, a major difficulty lies in the fact that traditional machine learning ap-

proaches require a reasonable number of labels from both positive and negative observations, which are often

hard to obtain. Because the labeling of observations requires experts’ knowledge, staff time, and expensive

laboratory test. Oftentimes, the care providers label a small fraction of highly suspicious observations and

leave the rest unlabeled.

My own motivation to investigate this problem comes from a clinical decision support problem. In one

type of the diagnosis error, failure to follow-up on test results in a timely fashion can lead to significant

delays in diagnosis and treatment, and may causes patient morbidity and mortality. In health-care settings

with well-developed computerized information systems, a post-discharge test result follow-up process could

be automated and tracked. However, many hospitals and clinics in the U.S. have not adopted electronic health

records. While laboratory systems can often identify culture results that show the growth of an organism,
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these results are usually associated with the ordering provider. By the time the results return, the provider

responsible for the patient may have changed or the patient may have left the hospital. In these settings,

the test results pending at the time of discharge from the hospital often need to be followed up manually.

Typically, this responsibility is placed on the individual provider or team that cared for the patient in the

hospital. By assigning staff to track these results, adverse events could be avoided. The cost of hospital staff

required to follow-up post-discharge results could be reduced by allowing them to focus on high-risk results

estimated by some effective predictive model. The difficulty is exactly what I have discussed earlier: only a

small amount of positive observations are confirmed while most are left unlabeled.

For both observations, the dilemma for traditional supervised learning approaches is the tiny number

of positive-labeled observations are not sufficient to train a model but the abundant number of unlabeled

observations cannot be effectively utilized. To face these challenges, I suggest a novel approach, Structured

Biased Support Vector Machine (BSVM), to exact additional information from different perspectives: 1)

the sample unbalance factor between labeled and unlabeled observations; 2) the feature correlation from

unlabeled observations. This information, which offers additional granularity to model the data faithfully, is

not considered in earlier works.

9.3 Previous Work

Traditional approaches to dealing with class-imbalanced biomedical data use "under-sampling" or "over-

sampling" of the majority class or the minority class, respectively [7, 40, 195, 198]. These methods are

based on assumptions about cohort studies that testing data follow the same distribution as the observed

data. However, their performance on individual tests, which depends on the randomness of sampling, are

not consistent. Recently, more sophisticated methods [8, 88, 100, 171, 174] have been developed to tackle

this challenge, but the problem remains to be an open question.

The problem that is the focus of this chapter is slightly different from the typical class-imbalanced

challenge where training data contains both positive and negative labels. In this problem, the available data

for training are an incomplete subset of positive observations and a set of unlabeled observations, which

makes the problem more challenging and less studied. Among the few studies that exist, there are generally

two categories of models that aim to address this problem.

The first category is is comprised of one-class models that do not consider the unlabeled data [73, 84, 91,
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120, 121]. A representative model is the one-class Support Vector Machine (OC-SVM), which aims to find

the smallest possible kernel ball that encompasses all the positive observations but does not overfit them. The

trade-off factor here is the radius of the ball and the mistake that is made in excluding observations outside it.

These models cannot always convince the users because the models completely ignore the abundant number

of unlabeled observations in training.

The second category of models considers both positive and unlabeled observations. An early approach

proposed by Yu et al. [200] built Support Vector Machines (SVMs) with smaller subsets of observations

at each iteration with the expectation of converging to some "nature boundary" between labeled positive

observations and the “hidden” negative observations. This heuristic approach could be very slow and often

ends up with local optimal. Another study by Liu and his colleagues [118] applied unbalanced weights to

positive and unlabeled observations under a maximum margin framework. This approach doubly penalized

a SVM and demonstrated good empirical performance. A more recently paper [61] discussed an alternative

Bayesian approach to learning a classifier from only positive and unlabeled observations.

Unfortunately, all these methods concentrated on the very limited positive labels and failed to exploit the

structural information embedded in the abundant unlabeled data. I suggested a disciplined approach to learn

transferable knowledge (feature correlations) from unlabeled observations to build a more comprehensive

model.

9.4 Methodology

I first overview the Biased Support Vector Machine (BSVM), an approach closely related to ours, followed

by detailed discussion of my method.

9.4.1 Biased Support Vector Machine

A natural way of representing a maximum margin classification optimization led to the following format:

min
1

2
||W ||22 + C

∑
i

L(sign(WTXi + b), Yi) (9.1)

Here L(sign(WTXi+b), Yi) is the 0/1 loss while ||W ||22 is the penalty term specifies the maximum margin

between two classes of data. C tradeoffs between model bias and variance. Unfortunately, Equation 9.1 is
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not convex. A relaxation of the problem leads to the using of a Hinge loss function to approximate the 0/1

loss. This result is known as the famous norm-2 SVM. It is equivalent to fitting a model that:

min
1

2
||W ||2 + C

∑
i

εi (9.2)

s.t.Yi(W
TXi + b) ≥ 1− εi, εi ≥ 0,∀i

Reorganizing the above equation by plugging in the constraints to the objective function, we get the follow-

ing,

min
||W ||2

2
+ C

∑
i

max(0, Y i(WTXi + b)), (9.3)

where max(0, 1 −X) is known as the hinge loss function and ||W ||2 is called ridge penalty function. The

function f(X) = WTX + b represents a linear decision boundary, which maximizes the margin between

positive and negative cases. Figure 9.2 illustrates the separating hyperplane and the idea of maximum margin

optimization.

|f(x)| / ||w||

f(x) = w·x – γ = 0

f(x) > 1

f(x) < -1

m = 1 / ||w||
m

Figure 9.2: The separating hyperplane that maximizes the margin. (“o” is a positive data point, i.e. f(”o”) >
0, and “+” is a negative data point, i.e. f(” + ”) < 0.
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The ridge penalty term controls the smoothness or the complexity of the model while the loss function

minimizes the bias. It is well known that the ridge penalty has the effect of controlling the variance of

W [213]. In its dual format in Equation 9.4, the model shrinks the fitted coefficients αi towards zero and

uses only a small portion of the given data to construct margin hyper-planes.

max

n∑
i=1

αi −
1

2

∑
i,j

αiαjcicjX
T
i Xj , (9.4)

s.t.αi ≥ 0,

n∑
i=1

αici = 0,

Computational learning theory and statistical function estimation have associated good performances of

SVM in low data dimension p and large data size n to its marginal maximization property. However, many

data have p � n and the features embed sparsity, e.g., genetic data often have hundreds and thousands

of genetic markers (features) investigated on a small number of patients. The authors of [118] suggested a

weighted soft-margin Support Vector Machine model and reported superior performance than other heuristic

models in identifying negative examples. The model looks like:

min
1

2
||W ||2 + C1

∑
i∈P

εi + C2

∑
i∈U

εi (9.5)

s.t. yi(W
TXi + b) ≥ 1− εi,

εi ≥ 0,∀i,

where each sample i is associated with a p-dimensional feature Xi = [x1, x2, . . . , xp]
T , a binary class label

yi and a hinge loss εi ≥ 0. P stands for the positive observations and U represents the unlabeled observa-

tions; C1 and C2 represent the penalty parameters for positive and unlabeled observations, respectively. W

corresponds to the weights of the feature Xi and b is a constant factor.

Interpretation: The doubly penalized Support Vector Machine applies different

penalties to positive labeled observations and unlabeled observations so that impor-

tant expert labeled data are treated more favorably.

To make losses on P be penalized more heavily than losses on U , C1 is usually set much higher than C2.

The value of these parameters is usually determined by cross validation. This method, called Biased Support
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Vector Machine (BSVM), demonstrates the state-of-the-art performance for learning from only positive and

unlabeled documents. Thanks to the maximum margin criteria, it can be easily kernelized to introduce

non-linearity. My model extends BSVM and incorporates additional granularity for improved performance.

9.4.2 Structured Biased Support Vector Machine

9.4.2.1 The Model

My approach extends the Bias Support Vector Machine framework of classification:

argminW,b C1

∑
i∈P

L(yi,W
TXi + b)) + C2

∑
i∈U

L(yi,W
TXi + b)) +WTΣ−1

s W, (9.6)

where L(x, y) = 1 − xy indicates a hinge loss function. Like BSVM, the confirmed positive observations

are penalized much heavier than the unlabeled observations at misclassificaiton.

Interpretation: I utilized the structural information implied in unlabeled data to en-

hance the quality of classification model based on limited data.

The difference between the Structured Biased Support Vector Machine (SB-SVM) and BSVM is in the

last term of the above equation WTΣ−1
s W , where an additional matrix Σs is included. By introducing Σs,

the feature correlations estimated from unlabeled observations, I intend to regularize the SB-SVM model

with an imposed prior. Intuitively, correlated features should receive weights in a similar way. With the

guidance of a prior, labeled observations contribute more informed to the decision boundary and thus less of

them would be sufficient. These feature correlations, as useful information embedded in abundant unlabeled

observations, are neglected in the previous research.

If I let Σs be an identity matrix I, the termWT I−1W = WTW corresponds to a L2 norm regularization,

which is default to the BSVM. In this case, Equation 9.6 is equivalent to Equation 9.5. From a Bayesian

perspective, I can interpret Σ−1
s = I−1 as imposing a Gaussian prior with zero means and an identity

correlation matrix. In other word, the identity correlation matrix indicates not sufficient knowledge or un-

reluctant to explore the feature space information.

By some simple algebra, I can project Equation 9.6 into the standard BSVM formulation and solve the

following equation accordingly.
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argminW̃ ,b C1

∑
i∈P

L(yli, W̃
T X̃i + b) +

∑
i∈U

L(yli, W̃
T X̃i + b) + W̃T W̃ , (9.7)

where W = Σ
1
2 W̃ and Xi = Σ−

1
2 X̃i.

Interpretation: The variable substitution makes the structured biased Support Vec-

tor Machine compatible with existing biased Support Vector Machine solvers, and can

be optimized without additional computational overhead.

I can thus transfer my estimated feature correlations computed offline to regulate the classification task

in an efficient and scalable manner. Next, I introduce how to estimate the feature correlations from unlabeled

observations.

9.4.2.2 Learning Structural Feature Correlations

Estimating semantic feature correlation as an alternative way to gain from unlabeled observations is proposed

by Zhang et al. [210]. I extend this idea to handle training data that contains only positive and unlabeled

Data.

Dimensions reduction methods such as principle components analysis [162] or latent topic models [22]

extract a higher level summary (lower dimension “topics”) from the raw feature through a mapping process

as follows:

X = AZ, (9.8)

whereX = [x1, x2, . . . , xp]
T is the p dimensional feature vector of an unlabeled observation,Z = [z1,z2, . . . , zk]

is the k dimensional topics. A is a p× k matrix, representing the latent structure that projects “topics” onto

the raw feature.

Equation 9.8 describes how a vector of raw feature X can be represented by a latent k-dimensional topic

distribution and a distribution of p features in k latent topics. Different observations have different topic

distributions Z, thus different feature distributions. But A is invariant across various observations. I can

consider this A as the semantic implication that is transferable. Each column vector of A has an observation

in the p dimensional feature space, corresponding to the semantic roles of the features in this topic. Given a

large number of |k| observations, I can build the following semantic covariance,
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covs(Xi, Xj) =
1

k

k∑
t=1

(ait − ā(i,))(ajt − ā(i,))

=
1

k

k∑
t=1

aitait − ā(i,)ā(j,), (9.9)

where ait represents an element of matrixA, while ā(i,) represents the average of the ith row in A.

Interpretation: Semantic covariances are consistent and are transferable across

datasets.

I can calculate the semantic correlations as:

corrs(Xi, Xj) =
covs(Xi, Xj)√

covs(Xi,Xi)covs(Xj , Xj)

Consider a set of n unlabeled observations Du = {Xi ∈ X, i = 1, . . . , n}, I can thus learn the trans-

ferable knowledge (semantic feature correlations) from the unlabeled observations with Algorithm 5 to give

SB-SVM a good prior.

Algorithm 5 Learning semantic feature correlations through bootstrap.
Input: Unlabeled observations Du, latent variable model PCA
Output: Semantic feature correlation matrix Σs
Parameters: α: number of samples at each iteration, k: dimension of hidden topics, N : an scale factor.

1: V← ∅
2: repeat
3: Dsamp ← Sampling(Du, α)
4: {(Z1,a(,1)), (Z2,a(,2)), . . . , (Zk,a(,k))} ← PCA(k,Dsamp)
5: V← V ∪ {a(,1),a(,2), . . . ,a(,k)}
6: until |V| ≥ kN
7: Σs : Σs(i, j)← corrs(Vi, Vj)

In Algorithm 5, I estimated the semantic feature correlations using the principle component analysis

(PCA) by extracting a large number (kN ) of eigenvectors. However, obtaining a large set of diverse and

meaningful eigenvectors is hard since the number of representative eigenvectors for the entire dataset are

usually small. As a re-sampling technique, I used bootstrap to estimate reliable semantic feature correlations.

The algorithm takes unlabeled observations Du as inputs and outputs a correlation matrix Σs. I need to set

three parameters α,K,N , correspond to the sampling rate, dimension of hidden topics and the number

of iterations, respectively. The model repeats N times until large enough number of eigenvectors V is
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collected. Finally, I calculated the correlation between these eigenvectors (Vi, Vj) to fill the semantic feature

correlation matrix Σs(i, j).

9.5 Experiments

I evaluate the performance of the my model on both synthetic data and real clinical data. Unfortunately,

I cannot use widely accepted F score for the measurement because F = 2pr
(p+r) involves the precision (p)

and the recall (r) but I do not have negative labels to compute p. I thus adopt a pseudo-F score proposed

by Liu and his colleagues in [118], F ∗ = r2

Pr[f(X)=1] , where Pr[f(X) = 1] is the probability that an

observation is classified as positive; r can be estimated using the positive examples in the validation set and

Pr[f(X) = 1] can be estimated from the whole validation set. The authors claim the pseudo-F score works

in a similar behavior to the F score in the sense that it is larger when both p and r are larger and is small if

either p or r is small. The Structured Biased Support Vector Machine (SB-SVM) model is compared to other

BSVMs with various kernels: linear, poly2 and XOR. The linear kernel uses the raw feature X to compute

an equal-dimension weight W ; the poly2 kernel is built with the original feature set X plus and its squares:

X∗ = [X,X2]. The XOR kernel consists of the original feature set X and all the pairwise XOR features

X∗ = [X,Z], Z = {xi ⊕ xj , ∀xi, xj ∼ B}, where B indicates the family of binary features.

9.5.1 Synthetic Data

I generate the synthetic data by sampling the positive observations and unlabeled observations from the

following Gaussian Mixture Models (GMM):

Xp ∼ αN(µp, σ1) + (1− α)N(µp, σ2),

Xu ∼ αN(µu, σ1) + (1− α)N(µu, σ2),

where α = 0.6, µp = [0.5, 3.5], µu = [−0.5, 0.5], σ1 =

 1.1 0

0 2.9

 and σ2 =

 1.3 0

0 2.7

.
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Figure 9.3: Visual comparison of different models for the “Biased Labeling” task. From left to right are:
BSVM with linear kernel, BSVM with XOR kernel, BSVM with polynomial kernel and SB-SVM with
polynomial kernel. Rows of these figures correspond to increasing amount of data samples, from 1050 to
6050. The number below each figure indicates the pseudo-F score.

I fix the size of |Xp| to be 50 and increase the size of |Xu| from 1, 000 to 6, 000 to create highly
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unbalanced observations, as indicated in Figure 9.3. I plot the positive observations in green and the rest

of the unlabeled observations in blue. The region of positive observations overlaps with the unlabeled

observations. Figure 9.3 illustrates the performance of four different models that handle training data with

only positive and unlabeled observations. My model, BS-SVM, outperforms the others in terms of the

pseudo-F scores, which can be interpreted as having a larger precision and recall.

9.5.2 Hospital Discharge Data-set

I evaluated models using a real world clinical data: Hospital_Discharge_Error. Please refer to Chapter 2 for

details.

9.5.2.1 Predicting use traditional models

I first demonstrate how traditional models perform on this dataset. In specific, I use Naive Bayes, Logistic

Regression and Support Vector Machine (SVM). The first two models are implemented in Weka [82] and the

last one is available in LibSVM [35]. I use a linear kernel for SVM here so that all three models have a linear

separation plane. Due to the lack of negative training observations, I have to use unlabeled observations as

negative training samples in order to use these off-the-shelf supervised learning models. In the following

experiment, all three models are evaluated on the entire data using a 10-cross-validation method.

Figure 9.4: Performance evaluations of off-the-shelf machine learning tools using the hospital discharge
error data.

Figure 9.4 demonstrates the performance of these models. I have to note that the AUC value is merely
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an approximation to the truth, which does not reflect the performance of the models. As I do not have

“real” negative labeled observations, the averaged False Positive Rate (FPR∗) is calculated as FPR∗ =

UP
|Unlabeled| to approximate FPR = FP

FP+TN , where UP indicates an unknown observation predicted as

positive, FP corresponds to false positive and TN corresponds to true negatives. Even if the approximated

AUC of these models are not bad, I will be very disappointed at a second look at the recall ( TP
TP+FN ), where

FN indicates false negatives. All three models have very small recalls, which indicates they have missed

almost every confirmed positive observation. Such performance makes these off-the-shelf models useless in

my case because the positive observations are what really matters.

9.5.2.2 Predicting use SB-SVM

I have observed that existing supervised learning models are insufficient to handle only positive and unla-

beled data. Next, I will evaluate how well my model and several BSVMs would perform. The following

Table 9.3 summarizes the performance of various models . As in the synthetic data experiment, I include

BSVM (linear), BSVM (Poly2) and BSVM (XOR) to be compared with their corresponding structured ver-

sion. Obviously, the model SB-SVM does much better than BSVM in terms of both F ∗ score and recall. The

SB-SVM (XOR) demonstrate the best performance in terms of both pseudo-F score and the recall because

most raw features are binary or categorical.

Table 9.3: Performance comparison of SB-SVM and several BSVM models with different kernels

Model F ∗ score Recall
BSVM (Linear) 1.038 0.396

SB-SVM (Linear) 1.042 0.422
BSVM (Poly2) 1.185 0.444

SB-SVM (Poly2) 1.197 0.474
BSVM (XOR) 1.205 0.615

SB-SVM (XOR) 1.370 0.673

The metrics listed in Table 9.3 demonstrates the advantage of including semantic feature correlations to

build models with only positive and unlabeled data.

9.5.3 Breast Cancer Gene Expression Data

The next experiment is conducted on real clinical gene expression data: GSE_3934 [128]. These data do

not contain unlabeled observations but are highly unbalanced (224 good/18 poor). Unfortunately, traditional
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machine learning algorithms do not work well even with the negative training labels available due to data

unbalance. They tend to ignore the impact of the minor negative class for the sake of a higher overall

discrimination. I divided the data into five folds and computed various models in terms of their average F

score and recall using their best parameters. The F score is 2∗Precision∗Recall
Precision+Recall , whereRecall = TP

TP+FN and

Precision = TP
TP+FP . Note I calculate the true F score instead of a pseudo one as true labeling is available

for this data. In this experiment, I include SVM, BSVM (linear) and BSVM (Poly2) to be compared with

the SB-SVM that I developed in this chapter.

Table 9.4: Performance comparison of SB-SVM and several other models.

Model F score Recall
SVM 0.824 0.778

BSVM (Linear) 0.735 1.000
SB-SVM (Linear) 0.750 1.000

BSVM (Poly2) 1.000 1.000
SB-SVM (Poly2) 1.000 1.000

Table 9.4 again demonstrates the performance advantage of Structured Biased Models against previous

approaches. Compared with SVM, SB-SVMs consider more important positive data and achieve higher

recalls. On the other hand, SB-SVM outperforms BSVM in the F score by incorporating useful semantic

feature correlations in the model construction. Figure 9.5 illustrates a Graphical User Interface I designed.

Figure 9.5: Graphical User Interface for interacting with Biased Support Vector Machine.
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9.6 Discussion

Learning a predictive model for bias labeled data, e.g., only positive and unlabeled data, is a problem of

great importance in biomedical informatics. In many cases, there are abundant unlabeled observations while

it is only affordable to manually review and label the class membership of a few cases. Such limitation is

largely due to the cost of additional follow-up, extra staff time, and expensive lab tests.

Traditional supervised learning algorithms usually both positive and negative labeled inputs to determine

a decision boundary between their co-variate patterns. However, bias labeled data do not have negative la-

beled samples, and there traditional supervised learning approaches find it difficult to handle them. Actually,

this dilemma is twofold: on one hand, there is a very limited amount of labeled data that supervised learning

algorithms can use; on the other hand, the number of unlabeled samples are tremendous, but supervised

learning algorithms cannot extract useful information from them.

To tackle this challenge, I decided to construct a model that can synthesize labeling information and

structural knowledge from data. Specifically, I reformulated the Biased Support Vector Machine framework

to incorporate semantic correlations, which are estimated from unlabeled data. This semantic correlation

serves as a structural prior that regulates my model towards the narrowed feasible regions of optimization.

Thus, the method jointly optimizes information from different perspectives: class membership and semantic

feature correlations to minimize the ambiguity in either perspective, if considered separately.

9.7 Conclusion

Biomedical applications often involve constructing models with only positive and unlabeled samples. Tra-

ditional supervised learning algorithms require training samples of both class memberships, thus having

difficulties in handling such a situation. In contrast, I developed a method to jointly consider the labeling

information and the structural knowledge from bias-labeled data. I reformulated Biased Support Vector Ma-

chine to consider semantic correlations. The semantic correlation are estimated from unlabeled data, and

provided a prior that structurally regulates my model towards narrower feasible regions of optimization.

That is, the joint optimization of two complementary perspectives, class membership and semantic feature

correlations, offers modeling advantages over methods that consider these perspectives independently. This

data-driven approach has demonstrated performance advantage over previous methods like Support Vector

Machine and Biased Support Vector Machine using both synthetic data and clinically related data.
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Chapter 10

Applicability Across Different Data

Frequently, machine learning models developed for specific tasks involve context specific assumptions and

their generalizability to a different setting or applications is limited. However, useful approaches should

capture the transferable knowledge of problems they study while not overfitting them with problem specific

assumptions. Successful machine learning models (e.g., Logistic Regression, Support Vector Machines, De-

cision Trees and et al.) follow the law of succinctness, that is, models should be kept as simple as possible,

but no simpler, to tackle the problem. Along the same lines of thought, I developed learning models to

assist biomedical decision making processes with minimum assumptions about particular problems of in-

terest. The models developed in this thesis, including TM3N, SIO and AC-LR, are essentially data-driven

approaches to learning and understanding observations from different sources. The models make only nec-

essary constraints about the properties of the data to be applied but not the situation and the particular context

to be applied.

For personalized clinical decision support systems, I require only the outcome variable to be a single

dichotomous variable so that my classifiers can use these labels to estimate the "true probability" of events.

There are no limitations on the co-variants, and they can be categorical, binary, and numerical. I also made

no assumptions about the co-variant occurrence patterns, but the models can learn such information from

data. The outputs of these models are calibrated probabilistic values for each co-variable pattern.

For large-scale disease outbreak prediction, I need measurements and states of multiple correlated out-

come variables as models’ inputs. Note that this implies that these inputs should be provided together rather

than separately. The correlations of these variables can be of different types, including temporal dependence,
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spatial correlation, and relational correlation. I relaxed the values of these outcome variables to multi-class

labels instead of dichotomous values. Finally, the outputs of these models are simultaneously estimated class

labels for correlated outcome variables.

To verify the generalizability, I applied models developed in previous chapters to a variety of data. The

following table summarizes the model V.S. data used in this chapter.

Table 10.1: Summary of models applied to various data to demonstrate model generalizability.

Algorithm
Breast
Cancer

Myocardial
Infarction

Hospital
Discharge

Bankruptcy PIMATR HeightWeight

LR x x x x x x
LR-PS x x x x x x
LR-IR x x x x x x
LR-SIR x x x x x x
AC-LR x x x x x x

Synthetic
LDS

BioWar I BioWar II
Building

Occupancy
HMM x x x x
CRFs x x x x
M3N x x x x
TM3N x x x x

Specifically, data included for evaluating model generalizability are: Breast Cancer Gene Expression

data (GSE2034, GSE2990, GSE3494), Myocardial_Infarction data (Edinburgh, Sheffield), Hospital Dis-

charge Error Prediction data (HOSPITAL), three UCI machine learning data (Bankruptcy, PIMATR and

HeightWeight) [69], BioWar I,II simulation data (BioWar-I,II) and Building Occupancy Detection data (OC-

CUPANCY). I compared various approaches with above mentioned data using standard calibration (HL test)

and discrimination (AUC, accuracy) metrics.

10.1 Data

I used various data to test my model’s generalizability. For single target variable prediction models, I used

data with binary output variables, i.e., BREAST_CANCER, PIMATR, HOSPITAL, MI, HEIGHT_WEIGHT,

BREAST_CANCER and BANKRUPTCY. For multiple target co-estimation models, I used data that contain

correlated sources of observation which is recorded over time, i.e., BioWar-I, II and OCCUPANCY data.
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10.1.1 Breast Cancer Gene Expression data

These data were obtained from the NCBI Gene Expression Omnibus (GEO). Three individual data down-

loaded were previously studied by Wang et al. (GSE2034) [185], Sotiriou et al. (GSE2990) [166], and Miller

et al. (GSE3494) [128], respectively.

To make my data compatible with previous studies, I followed the criteria in [140] to select patients, who

did not receive any treatment and had negative lymph node status. Among these pre-selected candidates, only

patients with extreme outcomes, either poor outcomes (recurrence or metastasis within five years) or very

good outcomes (neither recurrence nor metastasis within eight years) are selected. The number of samples

after filtering are: 209 for GSE2034 (114 good/95 poor), 90 for GSE2990 (60 good/30 poor), and 242 for

GSE2034 (224 good/18 poor).

I also applied a split to divide GSE3494 into two groups, as suggested by [140], GSE3494-A and

GSE3493-B, according to the sample’s Affymetrix platform. Thus, the breast cancer dataset has four sep-

arate data. All these data have a feature size of 247,965, which corresponds to the gene expression results

obtained from micro-array experiments.

10.1.2 Pimatr data

A population of women who were at least 21 years old, of Pima Indian heritage and living near Phoenix,

Arizona, was tested for diabetes according to World Health Organization (WHO) criteria. The data contains

the 532 complete records after dropping the (mainly missing) data on serum insulin.
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Table 10.2: Descriptional statistic for the PIMATR data set.

obs npreg glu bp
Min. : 1.00 Min. : 0.00 Min. : 56.0 Min. : 38.00

1st Qu.: 50.75 1st Qu.: 1.00 1st Qu.:100.0 1st Qu.: 64.00
Median :100.50 Median : 2.00 Median :120.5 Median : 70.00

Mean :100.50 Mean : 3.57 Mean :124.0 Mean : 71.26
3rd Qu.:150.25 3rd Qu.: 6.00 3rd Qu.:144.0 3rd Qu.: 78.00

Max. :200.00 Max. :14.00 Max. :199.0 Max. :110.00

skin bmi pedigree age type
Min. : 7.00 Min. :18.20 Min. :0.0900 Min. :21.00 0: 132

1st Qu.:20.75 1st Qu.:27.57 1st Qu.:0.2500 1st Qu.:23.00 1: 68
Median :29.00 Median :32.80 Median :0.3700 Median :28.00

Mean :29.21 Mean :32.31 Mean :0.4613 Mean :32.11
3rd Qu.:36.00 3rd Qu.:36.50 3rd Qu.:0.6200 3rd Qu.:39.25

Max. :99.00 Max. :47.90 Max. :2.2900 Max. :63.00

The data contain the following columns: ’npreg’ number of pregnancies; ’glu’ plasma glucose concen-

tration in an oral glucose tolerance test; ’bp’ diastolic blood pressure (mm Hg); ’skin’ triceps skin fold

thickness (mm); ’bmi’ body mass index (weight in kg/(height in m)2); ’ped’ diabetes pedigree function;

’age’ age in years; finally, ’type’ 1 for ’Yes’ or 0 for ’No’, for diabetic according to WHO criteria.

10.1.3 Hospital Discharge Error data

The “hospital discharge error” data consist of microbiology cultures and other variables related to hospital

discharge errors [59]. The following table defines various features and outcome variables for these data.
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Table 10.3: Details of the co-variables and the outcome variable in the hospital discharge error data. Eight
out of ten explanatory variables are categorical and two are numerical.

Name Details
Features

Specimen: 0=blood, 1=urine, 2=sputum, 3=csf
Spec_days: Number of days between admission date and specimen

collection date.
Collect_week: 0=specimen collected on weekday, 1=specimen collected on

weekend
Final_week: 0=final result on weekday, 1=final result on weekend
Vistyp: 1=admission, 0=non-admission
Svc: 0=<blank> (patient not admitted), 1=ONC, 2=MED,

3=Medical Sub-specialties, 4=Surgery and Surgical
Sub-specialties, 5=Other

Age: Age in years
Female: 0=male, 1=female
Race: 0=white, 1=black, 2=Asian, 3=Hispanic, 4=other,

5=unknown/declined
Insurance: 0=medicare, 1=medicaid, 2=commercial, 3=other

Target Variable
Pot_error: 0=not a potential follow-up error, 1=a potential follow-up error

I also summarized features and the outcome variable by their description statistic in the table below. The

clinical meaning for each column was explained in Chapter 2.There are 369 clinically important but highly

suspicious observations out of 4,819 returned post-discharge observations, which makes the data highly

unbalanced and challenge to calibrate.

Table 10.4: Descriptional statistics for the hospital discharge error data set.

specimen specimen days collect week final week vistype svc
0: 233 1 :1245 0:3755 0:3583 1:4818 1: 665
1:2564 0 :1030 1:1063 1:1235 2:1287
2:1467 2 : 682 3:1217
3: 554 3 : 391 4:1608

4 : 327 5: 41
5 : 227

(Other): 916

age female race insurance pot error
Min. : 0.00 0:2252 0:3360 0:1996 0:4449

1st Qu.:43.28 1:2566 1: 577 1: 554 1: 369
Median :57.76 2: 110 2:2152

Mean :56.51 3: 405 3: 116
3rd Qu.:71.24 4: 55

Max. :99.71 5: 311
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10.1.4 Myocardial Infarction data

Figure 10.1: Descriptional statistics for the Edinburgh data set

Abbreviation
age min: 13.0 median:59 mean:57.6 max: 92

Smokes 0: 785 1: 468
Exsmoker 0: 959 1: 294

Fhistory 0: 967 1: 286
Diebetes 0: 1165 1: 88

BP 0: 1053 1: 200
Lipids 0: 1215 1: 38

CPmajorSymp 0: 62 1: 1191
Restrostern 0: 331 1: 922

Lchest 0: 907 1: 346
Rchest 0: 1109 1: 144

Back 0: 1122 1: 131
Larm 0: 670 1: 583
Rarm 0: 1042 1: 211

breath 0: 1031 1: 222
postural 0: 1017 1: 236

Cwtender 0: 1201 1: 52
Sharp 0: 1208 1: 45
Tight 0: 572 1: 681

Sweating 0: 739 1: 514
SOB 0: 731 1: 522

Nausea 0: 1124 1: 129
Vomiting 0: 1124 1: 129
Syncope 0: 1208 1: 45
Episodic 0: 1161 1: 92

Worsening min: 0.0 median: 4.0 mean: 17.4 max: 168
Duration min: 0.0 median: 3.0 mean: 8.84 max: 168
prev-ang 0: 699 1: 554
prev-MI 0: 836 1: 361

Worse 0: 892 1: 361
Crackles 0: 1106 1: 147

Added-HS 0: 1247 1: 6
Hypoperfusion 0: 1203 1: 50

Stelve 0: 1199 1: 54
NewQ 0: 1240 1: 13

STorT-abnorm 0: 1240 1: 13
LBBBorRBBB 0: 1203 1: 50

Old-MI 0: 1101 0: 152
Old-isch 0: 1141 1: 112

MI 0: 979 1: 274
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Figure 10.2: Descriptional statistics for the Sheffield data set

Abbreviation
age min: 17.0 median:61 mean:59.9 max: 91

Smokes 0: 318 1: 182
Exsmoker 0: 388 1: 112

Fhistory 0: 373 1: 127
Diebetes 0: 451 1: 49

BP 0: 403 1: 97
Lipids 0: 482 1: 18

CPmajorSymp 0: 37 1: 463
Restrostern 0: 110 1: 390

Lchest 0: 373 1: 127
Rchest 0: 438 1: 62

Back 0: 426 1: 74
Larm 0: 237 1: 263
Rarm 0: 418 1: 82

breath 0: 422 1: 78
postural 0: 455 1: 45

Cwtender 0: 491 1: 9
Sharp 0: 400 1: 100
Tight 0: 246 1: 254

Sweating 0: 235 1: 265
SOB 0: 281 1: 219

Nausea 0: 341 1: 159
Vomiting 0: 449 1: 51
Syncope 0: 467 1: 33
Episodic 0: 417 1: 83

Worsening min: 0.0 median: 6.0 mean: 50.37 max: 1000
Duration min: 0.0 median: 4.0 mean: 12.34 max: 1000
prev-ang 0: 281 1: 219
prev-MI 0: 377 1: 123

Worse 0: 338 1: 162
Crackles 0: 373 1: 127

Added-HS 0: 476 1: 24
Hypoperfusion 0: 441 1: 59

Stelve 0: 403 1: 97
NewQ 0: 470 1: 30

STorT-abnorm 0: 403 1: 97
LBBBorRBBB 0: 474 1: 26

Old-MI 0: 454 1: 46
Old-isch 0: 473 1: 27

MI 0: 346 1: 154

The Myocardial Infarction (MI) data correspond to results of patient both with and without myocardial

infarction which were observed at emergency department in UK [98]. The data contain patient records from
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two medical centers in Britain; among these, 600 patients attending at the emergency room (ER) with chest

pain that were observed in Sheffield, England, and 1,253 patients with the same symptoms were observed in

Edinburgh, Scotland. More details about the MI data set were provided in Chapter 2.

10.1.5 Height and Weight data

These data are on height vs weight for two groups: men and women. The subjects are 213 students of

an academic University. There are 73 females and 140 males. The data contains the following features:

height, weight, GPA, left arm length, right arm length, left foot size and right foot size. The following table

summarized descriptional statistic of this data.

Table 10.5: Descriptional statistic for the HEIGHT_WEIGHT data set.

Sex Height Weight GPA
0: 73 Min. :55.00 Min. : 95.0 Min. :1.240

1: 140 1st Qu.:64.00 1st Qu.:125.0 1st Qu.:2.670
Median :67.00 Median :140.0 Median :3.000

Mean :67.31 Mean :145.5 Mean :3.004
3rd Qu.:70.50 3rd Qu.:160.0 3rd Qu.:3.400

Max. :79.00 Max. :280.0 Max. :3.910

LArm RArm LFoot RFoot
Min. :20.50 Min. :20.50 Min. :19.50 Min. :20.00

1st Qu.:24.00 1st Qu.:24.00 1st Qu.:23.40 1st Qu.:23.00
Median :25.00 Median :25.00 Median :24.70 Median :25.00

Mean :25.17 Mean :25.31 Mean :25.16 Mean :25.20
3rd Qu.:26.50 3rd Qu.:27.00 3rd Qu.:27.00 3rd Qu.:27.00

Max. :31.00 Max. :31.00 Max. :32.00 Max. :32.00

10.1.6 Breast Cancer Gene Expression data

This data were obtained from the NCBI Gene Expression Omnibus (GEO). Three individual data were

previously studied by Wang et al. (GSE2034) [185], Sotiriou et al. (GSE2990) [166], and Miller et al.

(GSE3494) [128], respectively.

To make my data compatible with previous studies, I followed the criteria in [140] to select patients, who

did not receive any treatment and had negative lymph node status. Among these pre-selected candidates, only

patients with extreme outcomes, either poor outcomes (recurrence or metastasis within five years) or very

good outcomes (neither recurrence nor metastasis within eight years) were selected. The number of samples

232



after filtering were: 209 for GSE2034 (114 good/95 poor), 90 for GSE2990 (60 good/30 poor), and 242 for

GSE2034 (224 good/18 poor).

I also applied a split to divide GSE3494 into two groups, as suggested by [140], GSE3494-A and

GSE3493-B, according to the sample’s Affymetrix platform. Thus, the breast cancer data-set has four sep-

arate data. All of these data have a feature size of 247, 965, corresponds to the gene expression results

obtained from micro-array experiments.

10.1.7 Bankruptcy data

The Bankruptcy data contain two features: Return and EBIT (earnings before interest and taxes). The

outcome variable “Bankruptcy” is binary. There are 66 samples in this data, where 33 samples correspond to

observed bankruptcy and the others do not. The following table summarizes their description statistic, i.e.,

min, 1st Qu., median, 3rd Qu. ,max.

Table 10.6: Descriptional statistics for the BANKRUPTCY data set.

Return EBIT Bankruptcy
Min. :-308.90 Min. :-280.000 0:33

1st Qu.: -39.05 1st Qu.: -17.675 1:33
Median : 7.85 Median : 4.100
Mean : -13.63 Mean : -8.226
3rd Qu.: 35.75 3rd Qu.: 14.400

Max. : 68.60 Max. : 34.100

10.1.8 BioWar-I data

The BioWar-I data contain one-year-period observations in the city of Pittsburgh, PA, from 9/1/2002 to

8/31/2003. The total number of simulated agents are 306,181. There is one outbreak of airborne diseases

(avian influenza) during the simulation period. The data incorporate both relational and temporal informa-

tion.

In this data, the simulated agents interact and transmit airborne diseases (avian influenza) over time.

There are six time ticks everyday; thus 365 ∗ 6 time ticks are observed for each year. The following table

summarizes features and outcome variables of all 306,181 agents that are simulated. More details and

motivation about this data were introduced in Chapter 2.
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Table 10.7: Descriptional statistics for BioWar-I.

tick dayOfWeek month day dead is.er
Min. : 0.0 Fri:312 Aug : 186 Min. : 1.00 Min. : 0.000 Min. : 0

1st Qu.: 547.2 Mon:312 Dec : 186 1st Qu.: 8.00 1st Qu.: 0.000 1st Qu.: 0
Median :1094.5 Sat:312 Jan : 186 Median :16.00 Median : 0.000 Median : 7

Mean :1094.5 Sun:318 Jul : 186 Mean :15.72 Mean : 4.338 Mean : 696
3rd Qu.:1641.8 Thu:312 Mar : 186 3rd Qu.:23.00 3rd Qu.: 0.000 3rd Qu.: 13

Max. :2189.0 Tue:312 May : 186 Max. :31.00 Max. :97.000 Max. :19401
Wed:312 (Other):1074

kidsAtHome adultsAtHome at.work weblookup medcalls num.exchanges
Min. :20959 Min. : 37447 Min. : 0 Min. : 0.0 Min. : 0 Min. : 0.0

1st Qu.:31566 1st Qu.: 86910 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0 1st Qu.: 0.0
Median :78695 Median :217960 Median : 0 Median : 8.0 Median : 0 Median : 0.0

Mean :59889 Mean :151609 Mean : 41487 Mean : 695.9 Mean : 18867 Mean : 101.9
3rd Qu.:78701 3rd Qu.:217985 3rd Qu.: 0 3rd Qu.: 15.0 3rd Qu.: 0 3rd Qu.: 0.0

Max. :79497 Max. :226684 Max. :187787 Max. :19043.0 Max. :141408 Max. :11438.0

in.hospital is.home is.work is.school is.pharmacy is.doctor
Min. : 0 Min. : 58563 Min. :0 Min. : 0 Min. : 0.0 Min. : 0.0

1st Qu.: 0 1st Qu.:118408 1st Qu.:0 1st Qu.: 0 1st Qu.: 0.0 1st Qu.: 0.0
Median : 7 Median :296655 Median :0 Median : 0 Median : 0.0 Median : 0.0
Mean : 696 Mean :211498 Mean :0 Mean : 9277 Mean : 557.6 Mean : 125.9
3rd Qu.: 13 3rd Qu.:296683 3rd Qu.:0 3rd Qu.: 0 3rd Qu.: 13.0 3rd Qu.: 3.0

Max. :19401 Max. :306181 Max. :0 Max. :58370 Max. :25178.0 Max. :10315.0

is.stadium is.theater is.store is.restaurant is.university is.military
Min. : 0 Min. : 0 Min. :0 Min. : 0 Min. :0 Min. :0

1st Qu.: 0 1st Qu.: 0 1st Qu.:0 1st Qu.: 0 1st Qu.:0 1st Qu.:0
Median : 0 Median : 0 Median :0 Median : 0 Median :0 Median :0

Mean :1437 Mean : 3997 Mean :0 Mean : 31342 Mean :0 Mean :0
3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.:0

Max. :7408 Max. :20286 Max. :0 Max. :157115 Max. :0 Max. :0

10.1.9 BioWar-II data

The BioWar-II data contain multiple five-year-period observations from 9/1/2002 to 8/30/2007. The number

of simulated agents are set to vary from 153,090 to 1,224,726, at an approximately equal scale (150k);

specifically, the number of simulated agents vary from 10% (153,090) to 100% (1,224,726). The city of

simulation is Norfolk, VA. There ws one outbreak of airborne diseases for every year during the simulated

period. The data incorporate both relational and temporal information.

In this data, the simulated agents interact and transmit airborne diseases (avian influenza) over time.
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There are six time ticks everyday; thus 365 ∗ 6 time ticks are observed for each year. I used the BioWar

simulation engine to generate ten five-year periods rather than a single 50-year period to avoid the impact of

birth and death factors on the disease modeling. The following table summarizes features and outcome vari-

ables of all 1,224,736 agents that are simulated. More details and motivation about this data were introduced

in Chapter 2.

Table 10.8: Descriptional statistic for BioWar-II.

tick dayOfWeek month day dead is.er
Min. : 0 Fri:1560 Dec : 930 Min. : 1.00 Min. :0 Min. : 0.00

1st Qu.: 2737 Mon:1566 Jan : 930 1st Qu.: 8.00 1st Qu.:0 1st Qu.: 0.00
Median : 5474 Sat:1560 Jul : 930 Median :16.00 Median :0 Median : 36.00

Mean : 5474 Sun:1566 Mar : 930 Mean :15.72 Mean :0 Mean : 38.94
3rd Qu.: 8212 Thu:1566 May : 930 3rd Qu.:23.00 3rd Qu.:0 3rd Qu.: 49.00
Max. :10949 Tue:1566 Oct : 930 Max. :31.00 Max. :0 Max. :368.00

Wed:1566 (Other):5370

kidsAtHome adultsAtHome at.work weblookup medcalls num.exchanges
Min. : 85069 Min. :154198 Min. : 0 Min. : 0.00 Min. : 0 Min. : 0.0000

1st Qu.:126708 1st Qu.:362493 1st Qu.: 0 1st Qu.: 0.00 1st Qu.: 0 1st Qu.: 0.0000
Median :316864 Median :907737 Median : 0 Median : 42.00 Median : 0 Median : 0.0000

Mean :240999 Mean :622832 Mean :175130 Mean : 45.76 Mean :102464 Mean : 0.8463
3rd Qu.:316867 3rd Qu.:907859 3rd Qu.: 0 3rd Qu.: 57.00 3rd Qu.: 0 3rd Qu.: 1.0000

Max. :316867 Max. :907859 Max. :753630 Max. :375.00 Max. :595796 Max. :46.0000

in.hospital is.home is.work is.school is.pharmacy is.doctor
Min. : 0.00 Min. : 239387 Min. :0 Min. : 0 Min. : 0.00 Min. : 0.000

1st Qu.: 0.00 1st Qu.: 489130 1st Qu.:0 1st Qu.: 0 1st Qu.: 0.00 1st Qu.: 0.000
Median : 36.00 Median :1224600 Median :0 Median : 0 Median : 0.00 Median : 0.000

Mean : 38.94 Mean : 863832 Mean :0 Mean : 37529 Mean : 37.51 Mean : 9.815
3rd Qu.: 49.00 3rd Qu.:1224726 3rd Qu.:0 3rd Qu.: 0 3rd Qu.: 56.00 3rd Qu.: 15.000
Max. :368.00 Max. :1224726 Max. :0 Max. :231797 Max. :542.00 Max. :237.000

is.stadium is.theater is.store is.restaurant is.university is.military
Min. : 0 Min. : 0 Min. :0 Min. : 0 Min. :0 Min. :0

1st Qu.: 0 1st Qu.: 0 1st Qu.:0 1st Qu.: 0 1st Qu.:0 1st Qu.:0
Median : 0 Median : 0 Median :0 Median : 0 Median :0 Median :0

Mean : 4988 Mean :15666 Mean :0 Mean :127495 Mean :0 Mean :0
3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.: 0 3rd Qu.:0 3rd Qu.:0

Max. :25269 Max. :78581 Max. :0 Max. :634041 Max. :0 Max. :0
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10.1.10 Occupancy data

The OCCUPANCY data were collected by the School of Architecture, Carnegie Mellon University, for the

cost-efficient operation and better understanding of occupancy behavior in buildings. The sensor network is

setup in an open plan office space with six rooms and one kitchen/printer room, as indicated in Figure 10.3.

Office 4

Kitchen

Office 3

Office 1Office 2

Office 5Office 6

Common Area 1

Common Area 

2

Common Area 3

CO2 Sensor

Occupancy

Transition Route

Printer

Figure 10.3: Geometric flat view of the office area testbed

The physical sensor network includes a wired CO2 network and a data server. One CO2 sensor is

installed in the center of each office at the nose level (1.1m) above the ground. Data collection for this

experiment was for one continuous period, with a sampling rate of every one minutes, capturing CO2 mea-

surements and the number of occupants in four offices. The time period was three weeks from March 17th,

2008 to April 4th, 2008 excluding weekends. Occupancy data was recorded from 8:00am to 8:00pm from

the four offices (2, 3, 4 and 5). Office 2 and 5 have four Ph.D. students; office 4 has two graduate students ;

and office 3 has 1 faculty. I synchronized the measurements from all sensors; and aggregated measurements

for every 10 minutes to predict the averaged occupant numbers in a ten-minute window. The truth occupancy

information is collected use a network of commercial cameras. The following table summarizes the features

and outcome variables for the OCCUPANCY data.
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Table 10.9: Summary of outcome variables for the building occupancy data.

nodeID linkQuality batteryVoltage tSensorAvg
office 2:10815 Min. :60.00 Min. :3.288 Min. :19.49
office 3:10747 1st Qu.:70.00 1st Qu.:3.293 1st Qu.:23.07
office 4:10763 Median :74.00 Median :3.294 Median :23.93
office 5:11163 Mean :73.99 Mean :3.307 Mean :24.08

3rd Qu.:77.00 3rd Qu.:3.299 3rd Qu.:25.06
Max. :92.00 Max. :3.343 Max. :28.36

tSensorOutlier hSensorAvg hSensorOutlier iSensorAvg
Min. :19.59 Min. : 6.435 Min. : 0.00 Min. : -0.3644

1st Qu.:23.26 1st Qu.:19.636 1st Qu.:19.84 1st Qu.:116.3161
Median :24.13 Median :22.708 Median :22.90 Median :117.2441

Mean :24.26 Mean :25.107 Mean :25.29 Mean :107.9557
3rd Qu.:25.16 3rd Qu.:30.102 3rd Qu.:30.28 3rd Qu.:118.0678

Max. :28.55 Max. :44.709 Max. :44.99 Max. :119.9538

iSensorOutlier pSensorAvg pSensorOutlier aSensorAvg
Min. : -0.4047 Min. : -5.80226 Min. :-5.081e+00 Min. : -0.9299

1st Qu.:116.4016 1st Qu.: -0.00099 1st Qu.:-3.094e-04 1st Qu.: 2.1183
Median :117.3187 Median : 0.16477 Median : 2.482e+00 Median : 3.6830

Mean :108.0394 Mean : 7.40846 Mean : 8.631e+00 Mean : 3.5792
3rd Qu.:118.1897 3rd Qu.: 0.76869 3rd Qu.: 2.494e+00 3rd Qu.: 4.6513

Max. :120.0339 Max. :375.12995 Max. : 9.778e+02 Max. :105.8745

aSensorOutlier CO2 CO2outside total
Min. : -1.164 Min. : -1.0 Min. : -1.0 No Obervation:12918

1st Qu.: 4.070 1st Qu.: 451.0 1st Qu.:355.0 0 occupant :11200
Median : 5.721 Median : 511.0 Median :377.0 1 occupant :10397

Mean : 8.349 Mean : 491.9 Mean :368.5 2 occupants: 6863
3rd Qu.: 8.579 3rd Qu.: 570.0 3rd Qu.:401.0 3 occupants: 1372
Max. :262.026 Max. :1127.0 Max. :534.0 4 occupants: 733

5 occupants: 5

10.2 Single Target Variable Prediction Models

All data described in the previous section are randomly split into training and testing at a ratio factor that

varies from 0.1 to 0.9. Figure 10.4 to 10.12 illustrate the performance of the models; each figure corresponds

to one particular training/testing split. Each column of these figures corresponds to one specific data, from

the top row to the bottom row, I plot the distribution of probabilistic outputs, Logistic Regression reliability

diagram (LR), Platt Scaling reliability diagram (PS), Isotonic Regression reliability diagram (IR), Smooth
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Isotonic Regression reliability diagram (SIR) and Adaptive Calibrated Logistic Regression reliability dia-

gram (ACLR), respectively. The first three were existing models in the literature and the last two are models

that I developed in this thesis.
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Figure 10.4: Model generalizability evaluation: training/testing ratio 1:9.

I evaluated all five models (LR, PS, IR, SIR and ACLR) using a small fraction of all nine datasets. I

plotted histograms of the original predicted probabilities (blue bars for class "1", red bars for class "0"), the

reliability diagrams for all five models (blue circles) and their corresponding calibration mapping function

(red curves). LR failed to pass the HL-test at significance level 0.05 for all cases. Platt Scaling failed in
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most cases showing its insufficiency to handle complex real world scenarios. Even though IR demonstrates

better calibration, its calibration mapping functions are not smooth and are unrealistically sharp at the

corners. The SIR methods had slighted worse calibration than IR, which indicates smoothness might not be

a useful objective when observations are limited. Finally, ACLR demonstrated comparable performance to

IR approach in terms of both AUC and HL-test performance .

GSE2034

AUC=0.67,p=0.00

AUC=0.67,p=0.05

AUC=0.67,p=1.00

AUC=0.67,p=0.00

AUC=0.67,p=0.00

GSE2990

AUC=0.61,p=0.00

AUC=0.61,p=1.00

AUC=0.63,p=1.00

AUC=0.61,p=1.00

AUC=0.63,p=1.00

GSE3494

AUC=0.92,p=0.00

AUC=0.92,p=0.00

AUC=0.88,p=1.00

AUC=0.92,p=1.00

AUC=0.92,p=1.00

BANKRUPTCY

AUC=0.99,p=0.00

AUC=0.99,p=0.00

AUC=0.94,p=1.00

AUC=0.94,p=0.00

AUC=0.94,p=1.00

EDIN

AUC=0.85,p=0.00

AUC=0.85,p=0.00

AUC=0.84,p=0.00

AUC=0.85,p=0.00

AUC=0.89,p=0.00

HEIGHTWEIGHT

AUC=0.94,p=0.00

AUC=0.94,p=0.00

AUC=0.92,p=0.00

AUC=0.94,p=0.00

AUC=0.93,p=0.00

HOSPITAL

AUC=0.66,p=0.00

AUC=0.66,p=0.00

AUC=0.66,p=0.00

AUC=0.66,p=0.00

AUC=0.67,p=0.00

PIMATR

AUC=0.71,p=0.00

AUC=0.71,p=0.38

AUC=0.68,p=0.00

AUC=0.70,p=0.00

AUC=0.71,p=0.00

SHEF

AUC=0.69,p=0.00

AUC=0.69,p=0.00

AUC=0.69,p=1.00

AUC=0.69,p=1.00

AUC=0.69,p=0.00

Figure 10.5: Model generalizability evaluation: training/testing ratio 2:8

Next, I increased the training/test ratio to 2:8 for all nine datasets. Similar to the previous experiment,

LR failed in all HL-test at significance level at 0.05. Again, PS failed in 6 out of 9 datasets, thus showing
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its limitation in calibrating. IR retained its calibration ability, and SIR demonstrated similar calibration

performance but with a smoother mapping function. Finally, ACLR showed slightly worse calibration but

better AUC in most cases. The results so far indicated that all these methods, including existing approaches

and these developed in this thesis, generalized well to different data with consistent performance.
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Figure 10.6: Model generalizability evaluation: training/testing ratio 3:7
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As before, I increased the training/testing ratio to 3:7 so that more data are used to train models. LR

still failed in the HL-tests and PS showed poor calibration ability, i.e. only 3 out of 9 cases are calibrated.

IR, SIR and ACLR demonstrated similar performance and good generalizability across data from different

sources.
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Figure 10.7: Model generalizability evaluation: training/testing ratio 4:6
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I further increased the training/testing ratio to 4:6. At increased training samples, LR still failed in all

HL-test while PS did not do well in calibration. IR and SIR showed similar performance in both AUC and

HL-test. ACLR outperformed the rest methods in comparison, in which it calibrated 5 out of 9 cases and

demonstrated superior AUC values.
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Figure 10.8: Model generalizability evaluation: training/testing ratio 5:5
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At training/testing ratio of 5:5, I trained all five models and compared their performance. LR and PS

continued to demonstrate poor performance, which indicates that both are not appropriate methods for cali-

bration. IR and SIR retained their performance in calibration. ACLR again outperformed both approaches

and led the performance with 7 out of 9 success in its calibration.
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Figure 10.9: Model generalizability evaluation: training/testing ratio 6:4
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With an increased training/testing ratio of 6:4, I compared five models’ AUC and their calibration ability

in terms of HL-test. While LR showed poor performance again, PS showed increased calibration ability

with more training data. It passed three out of nine HL-tests and indicated that PS could benefit from having

more training data. Similarly, ACLR showed increased calibration ability with more observations. In this

experiment, ACLR passed seven out of nine HL-tests at significance level 0.05, which outperformed both IR

and SIR. Specifically, SIR and IR passed two out of nine and three out of nine HL-tests, respectively.
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Figure 10.10: Model generalizability evaluation: training/testing ratio 7:3

Similar to the previous case, at a training/testing ratio of 7:3, LR failed in HL-tests. PS passed 3 out of
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9 tests, which is a significant improvement compared with its previous performance with less training data.

ACLR still led the competition of calibration, followed by IR and SIR. The latter two approaches tied in

their performance.
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Figure 10.11: Model generalizability evaluation: training/testing ratio 8:2

With an increased the training/testing ratio of 8:2, I compared five models’ AUC and their calibration
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ability in terms of HL-test. As before, LR did not do well with its raw probabilistic outputs and needed to

be rectified. Interestingly, PS, IR, SIR and ACLR tried in their calibration performance, which seems to

indicate that all calibration models benefit from increasing the amount of training data, regardless of their

model assumptions.
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Figure 10.12: Model generalizability evaluation: training/testing ratio 9:1

The last experiment used a training/testing ratio of 9:1. That is, most sample data enters the training to

build the models. LR did not pass any HL-test, which indicated raw outputs of LR need calibration. PS

demonstrated increased performance with more training data. It passed 5 out of 9 tests, which is comparable
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to that of IR, SIR and ACLR. The result indicated PS, IR, SIR and ACLR could all have good calibration

performance with abundant training data.

All these examples demonstrated the generalizability of SIR and AC-LR approaches developed in this

thesis. In most cases, these two are the leading methods in terms of calibration and their performance is

consistent across different sources of data and various ratios of the training/test sample size.

10.3 Multiple Target Variables Co-Estimation Models

I apply my multi-variable prediction model (TM3N) to simulated LDS data, BioWa- I, II and OCCUPANCY

to show its applicability across different data. Along with my model TM3N, I test CRFs, M3N and HMM

models.

The synthetic Linear Dynamic System (LDS) data is generated using formula introduced in Chapter 4.

The equations below simulate a temporal and spatial dependent linear system, which specifies the hidden

state Y it that depends temporally on the previous state Y it−1 and correlates spatially with the states of the

neighboring sites Y jt , j ∈ N i.

Y it = αY it−1 + (1− α)
∑
j∈N i

βjY jt + e1, (10.1)

Xi
t = AY it + e2, (10.2)

e1 ∼ N(0, σ2
e1), (10.3)

e2 ∼ N(0, σ2
e2), (10.4)

where N i corresponds to the neighboring sites of i but excludes i; A is a projection vector that maps

hidden states to the observations; Xi
t corresponds to the observations at site i, time tick t; e1 and e2 are

the environmental Gaussian noises;α represents the temporal/relational trade-off parameter. If α is set to be

zero, the system considers no time dependence. Otherwise, if α is set as one, the system ignores relational

correlations. The following table lists the average accuracy of applying four methods to synthetic LDS data

with various α value.
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Table 10.10: Averaged accuracy of four different methods using synthetic LDS data with various α value.
The number in each cell indicates the averaged accuracy.

Value of α
Models 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
HMM 0.01 0.11 0.21 0.25 0.33 0.38 0.45 0.51
CRFs 0.66 0.54 0.52 0.38 0.34 0.29 0.2 0.23
M3N 0.68 0.54 0.47 0.4 0.35 0.39 0.34 0.23
TM3N 0.68 0.64 0.59 0.58 0.59 0.6 0.58 0.63

Table 10.11: Comparison of the average accuracy for the OCCUPANCY data.

OCCUPANCY
Algorithm Accuracy
HMM 36.5%
CRFs 49.81%
M3N 49.05%
TM3N 69.76%

Table 10.12: Comparison of the average accuracy for BioWar-I data.

BioWar I
Algorithm Accuracy

HMM 65%
CRFs 57%
M3N 58%

TM3N 69%

Table 10.11 summarizes the comparison results of the four different methods applied to the OCCUPA-

TION data. For this task, the HMM model gives an average accuracy of 36.5% when temporal correlations

are considered. Clearly, the first order Markov model over time is not sufficient to capture system dynamics.

On the other hand, relational models such as CRFs and M3N show similar results. Although slightly better

than HMM, are still unsatisfactory. A significant improvement in average accuracy was observed when I

combined both temporal and structural influence into a unified model, TM3N. The results indicated that the

temporal and relational aspects complement each other, and joint optimization reduces the ambiguity when

single aspect is considered separately.

Regarding the BioWar-I data, a similar pattern of improvements can be observed in Figure 10.12. How-

ever, temporal correlations dominate the system dynamics of this data. As a result, HMM showed a better

performance than its relational counterparts M3N and CRFs. TM3N, which synthesized both information,

achieved best average accuracy at 69%, outperforming the rest in comparison.

Both improvements in predictions using OCCUPANCY and BioWar-I data own a big part of their success
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to the global modeling of both temporal and structural perspectives, which offers a more comprehensive

description to complicated yet noisy observations of the unknown system dynamics.

Finally, all four methods are evaluated using BioWar II. Figure 10.13 illustrates the accuracies, where

all four methods stabilize around the scale of 80%. TM3N’s accuracy increases 10%, which outperforms

HMM(6%), CRF(2%) and M3N(4%).
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Figure 10.13: Model generalizability evaluation using BioWar II data. The X axis corresponds to the scale
of agents at ten different levels (10%-100%); and Y axis represents the accuracy. The figure shows TM3N
generalize to various scales of BioWar data with a better performance than conventional methods in com-
parison.

10.4 A Universal Model Access Platform

To make the research in calibration and discrimination more useful and applicable across various data

and different models, I developed a free web-service, WEBCALIBSIS, to provide evaluation of perfor-

mance for any probabilistic predictive models. It investigates calibration and discrimination using statistical

and graphical standard measures and tools, and is capable of comparing various models. WEBCALIB-

SIS integrates a simple upload interface, flexible PHP and Java-scripts, and a powerful computational en-

gine in a three-layer structure capable of processing multiple requests efficiently. This tool is available at
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http://128.2.219.203/webcalibsis, and can be used under the terms of GNU general public

license as published by the Free Software Foundation.

As opposed to other applications that focus on ROC analysis (Table 10.13), I provided a more compre-

hensive evaluation of a classifier. My tool also allows statistical comparison of classifiers. Furthermore,

WEBCALIBSIS offers easy and simple access via an intuitive web interface that can evaluate different

models across platform. Figure 10.14 illustrated a made-up example that WEBCALIBSIS evaluated four

different models (Logistic Regression, Naive Bayes, Support Vector Machine and Adaptive Calibration for

Logistic Regression) using the same simulation data.

Figure 10.14: A made-up example that uses WEBCALIBSIS to evaluate various models.

To show the difference between WEBCALIBSIS and other existing applications, the following table

lists various models (AccuROC [181], ROCR [164], Analyse-It [6], Web-based ROC [1], MedCalc [125],

LABMRMC [106]), and their capabilities.
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Table 10.13: Comparison of existing applications for the assessment of the quality of predictive models.
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AccuROC x x
ROCR x x x x x

Analyse-It x x x
Web-based ROC x x x

MedCalc x x
LABMRMC x x x
Webcalibsis x x x x x x

A simple way to assess the calibration of a predictive model is to plot the average estimate for groups

representing either (a) pre-defined ranges of the classifier estimates, or (b) percentiles of estimated risk

against (c) the proportion of positive cases in that group. Such calibration plots constitute a useful subjective

visualization tool, but lack quantitative evidence. A global assessment of calibration is represented by

the Brier score [23], which measures the average squared error (where error corresponds to the difference

between the estimate and the observed outcome. The well-known Hosmer-Lemeshow (HL) goodness-of-fit

statistic [90] for logistic regression models provides a quantitative calibration index by measuring to what

extent an estimate for a case approximates the relative frequency for a group of cases that have similar

estimates. Here, too, groups of cases are represented either by pre-defined ranges of the estimates (HL-

H) or percentiles of estimated risks (HL-C). In addition to calibration analysis, WEBCALIBSIS presents

standard measures for assessing the discrimination of classifiers in terms of the ROC curve, the area under

the ROC curve (AUC), the AUC’s standard deviation and confidence interval, as well as the ROC cut-off

point maximizing the Youden index [66].

WEBCALIBSIS is organized in a three-layer structure. The front-end for the user is a simple upload in-

terface that accepts plain text files. The format of the input files is defined in the way that each row consists

of probabilistic estimates for a case and the case’s associated class label, e.g., the first N − 1 columns repre-

sent outputs from one or more probabilistic models and the last column contains the binary coded presence

(“1”) or absence (“0”) of an event. In the mid-layer, WEBCALIBSIS utilizes Java-script and PHP to link the

inputs from the front-end to local databases, one folder for each requesting IP address. Thus, requests can
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be processed in parallel without interfering with one another. The computational engine, the bottom layer

of the three-layer structure, calculates and provides visualization of the statistics. Finally, WEBCALIBSIS

generates a report summarizing the evaluation, as illustrated in Figure 10.15. I used Wisconsin Diagnostic

Breast Cancer (WDBC) data [69], which contains 569 observations of cell nuclei (212 malignant and 357

benign), for my illustration. I display the comparison of two predictive models (Model 1: Logistic Regres-

sion; Model 2: Support Vector Machine), both constructed with 32 variables obtained from images of fine

needle aspiration (FNA) of breast masses.

Discrimination 　 Calibration

　

Statistical significance of the difference between two AUCs t=0.0000

Predictive Model 1

Discrimination 
at large

Discrimination at 
optimal cut-off point

(red circle in plot) is at threshold t = 0.2600
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AUC = 0.989 F-Score = 0.924 　 Brier Score = 0.04

STD = 0.006 Sensitivity = 0.957
　

　

Goodness of Fit Test : Hosmer-Lemeshow Hosmer-Lemeshow

C.I. = (0.977, 1.000) Specificity = 0.935
 P-value

C-Test H-Test
　 Type I error =0.043 0.95 0.31

Predictive Model 2

Discrimination 
at large

Discrimination at 
optimal cut-off point

(red circle in plot) is at threshold t = 0.3940

　 Calibration 

AUC = 0.978 F-Score = 0.894 　 Brier Score = 0.05

STD = 0.008 Sensitivity = 0.902
　

　

Goodness of Fit Test : Hosmer-Lemeshow Hosmer-Lemeshow

C.I. = (0.961, 0.994) Specificity = 0.935
 P-value

C-Test H-Test
　 Type I error =0.098 0.55 0.03

2010/9/3 Your Report

128.2.219.203/webcalibsis/…/index.html 1/1

Figure 10.15: Sample output of Webcalibsis. On the left column, I plot the ROC and show the discrimination
at large as well as at the optimal cut-off point; on the right column, I illustrate the calibration of the model
in terms of its reliability diagram, Brier score and HL-test p-values.
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10.5 Discussion

The generalizability of a learning model is important because it allows it to be used in related studies without

having to rebuilt it. It is also a necessary condition for the system to be versatile. This chapter investigated

the cross-data and cross-platform performance of models developed in this thesis. For this purpose, I used

data from various sources, e.g., clinically related ones and more general machine learning benchmarks for

measuring the performance of different models, including existing approaches (Platt Scaling, Isotonic Re-

gression) and Smooth Isotonic Regression (SIR), Adaptive Calibration for Logistic Regression (AC-LR) and

Temporal Maximum Margin Markov Networks (TM3N) developed in this thesis.

The results demonstrated consistent and comparable results of these models developed in the thesis.

Specifically, SIR and AC-LR showed improved calibration ability compared with the other methods while

retaining their discriminative power. The SIR and AC-LR outperforms the others in terms of the calibration

measurement using Hosmer and Lemeshow goodness-of-fit test. The discrimination abilities of these models

are close. Actually, Platt Scaling, Isotonic Regression and Smooth Isotonic Regression were at the same

level. AC-LR did slightly better in discriminating between positive and negative cases thanks to its adaptive

nature. For multiple variables co-estimation problem, TM3N demonstrated superior performance across

various experiments involving data generated by a Linear Dynamic System, simulated by the BioWar disease

outbreak engine and collected for building occupancy detection. All these experiments indicated that models

developed in the thesis are generalizable to other data besides motivational examples.

10.6 Conclusion

In this chapter, I accessed the generalizability of the models by evaluating them using a wide range of

datasets. Comparison of the models included both state-of-the-art approaches (Platt Scaling, Isotonic Re-

gression, Conditional Random Fields and Hidden Markov Model) and those developed in the thesis, e.g.,

Smooth Isotonic Regression (SIR), Adaptive Calibration for Logistic Regression (AC-LR) and Temporal

Maximum Margin Markov Networks (TM3N). The variety of experiences provided empirical evidence of

models’ applicability across different data. I evaluated the Area Under Curve (AUC) and HL test p-value of

approaches that predict the probability of dichotomous outcomes, and recorded average accuracy of methods

that predict multiple hidden states. The results indicated that models developed in the thesis are generaliz-

able to other data besides motivational examples. SIR and AC-LR demonstrated better calibration ability
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compared to the other methods. AC-LR also showed better discrimination ability in linearly non-separable

cases. In variable co-estimation tasks, TM3N constantly outperformed other models in various experiments.

In summary, TM3N framework offers enough flexibility in modeling complex systems; and it can be

easily generalized to other dynamic systems involving temporal, spatial and relational dependencies. The

framework can be applied to cases involving multiple dependent manifestations, which are time correlated.

For example, ICU patients management and object tracking in video sequences are good candidates for ap-

plying TM3N framework. More specifically, inputs to TM3N can be any features (continuous or categorical)

from a set of instances while the outputs are some or all of their corresponding states. Note these states must

be discrete values as TM3N is a discriminative model that cares about the accuracy of predictions. On the

other hand, SIO model has good generalization ability. It can be directly used in calibrating outputs of binary

outcomes from "uncalibrated" models like logistic regression, support vector machine and decision tree. SIR

provides a better fitted model than PS while less overfitted results comparing to IR in most cases. Thanks

to the consideration of model smoothness, it is capable of producing more reliable risk probabilities than

existing approaches. The last model, AC-LR model can be easily generalized to other cases where a proba-

bilistic outputs is preferred over a decision rule. The model can be directly applied to calibrate probabilistic

estimates of binary outcomes. The model demonstrated best overall performance across various data from

different sources. It owns a large amount of its success to the adaptive bandwidth selection using confidence

intervals of predictions, which was merely studied by previous investigators.

The chapter ended up by demonstrating a dedicated online evaluation system, WEBCALIBSIS, to access

the quality of predictive models across platforms.
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Chapter 11

Contributions and Limitations

11.1 Summary

Recent progress in biomedicine and explosion in personal information have significantly increased the need

for advanced biomedical informatics research. The next frontier in bioanalytical and detection science is

developing predictive tools to support the decision system for emergency response.

Among the most important problems, bioterrorism related outbreak prediction and calibration for per-

sonalized medicine are two problems that are highly valued to the public and are heavily discussed. Accurate

prediction can help decision makers in both problems to respond quickly and effectively. However, previous

research cannot provide satisfactory solutions to these problems.

The first problem, bioterrorism related outbreak prediction, focuses on city-level predictions of disease

outbreaks, which assists decision makers in responding more effectively. The major difficulty here is the

mutual coupling between the temporal and relational factors. The second problem is about personalized

medicine, which concentrates on individualized patient medicine and services so that caregivers can provide

more specific diagnoses and therapies for patients. The difficulties in this problem are compounded by

the accuracy of ranking and the reliability of probabilistic outputs. After briefly reviewing the relevant

backgrounds, I started investigating the above-mentioned problems and developed solutions.

To model bioterrorism related outbreaks more faithfully, I exploited the temporal correlation concur-

rently with the relational dependency in simulated BioWar data. To this end, I developed a structured pre-

diction model, Temporal Maximum Margin Markov Network (TM3N), to co-estimate multiple correlated
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variables over time as a global optimization problem. That is, instead of predicting individual factors like

"death rate" in the next time tick, TM3N predicts a network of outcome variables considering their mutual

dependency over time. The complementary nature of temporal and relational information helps TM3N to

achieve better accuracy and reliability in predicting bioterrorism related outbreaks. Furthermore, TM3N

handles more general cases of learning noisy time series, can automatically adapt to new conditions, and can

be achieved with tractable computational complexity.

For the calibration for personalized medicine problem, I focused on calibrating biomedical decision

systems to identify the parameters of unique genetic populations. Previous theories were based on patient-

diagnosis populations, i.e., if a patient has a Myocardial infarction (MI), the predictive model is then con-

structed for various treatments of patients with the same diagnosis. We know now, however, that medication

right for one member of this diagnosis population may not work the same for all members. I believe predic-

tions should be tailored and targeted to benefit patients in specific genetic groups, based on more detailed

patient information. To this end, I studied an important but less-studied quality measurement for the prob-

abilistic predictive model “calibration”, which stratifies how outcomes affect various genetic population

groups within a patient-diagnosis population. I designed a unified framework that combined two families

of model quality measurements (i.e. discrimination and calibration). I demonstrated that models developed

under this multi-targeted framework can achieve better performance of both quality measurements compared

with single-targeted models.

Although formulations look different, my approaches to address both problems were data driven and

based on more detailed information of targeted factors. With more detailed global models, my approaches

maximized the likelihood of observed measurements and provided more reliable estimates of latent factors

of interest.

Next, I evaluated the generalizability of developed methods. In most cases, training with larger numbers

of samples may improve learning an algorithm’s performance in testing when training data are representa-

tives of the population. But too much training data could also hurt the testing performance due to overfitting

and significantly increase the computational cost. Knowing the data scalability impact to methods developed

in this thesis is useful in determining which, and how many data are required to construct reliable decision

support predictive models.

Another difficulty in learning with the biomedical data that I investigated was biased labeling, i.e., a

tiny number of confirmed hospital discharge errors vs. a large number of unconfirmed cases. This issue
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is quite common in biomedical studies because the labeling procedure requires the expert’s knowledge,

staff time and even expensive laboratory test. Traditional approaches developed under supervised learning

theory cannot handle data with biased labeling well due to the missing information of negative labels and

extreme data unbalance. My study revealed that major deficiencies of previous approaches lies in their

incapability of synthesizing information from different perspectives. To this end, I developed a structured

biased Support Vector Machine model using feature correlations from abundant unlabeled cases concurrently

with the positively labeled cases as a global optimization algorithm. Experiments on both synthetic and real

datasets show performance advantages over conventional methods.

Finally, I demonstrated models’ applicability across different databases. Specifically, two calibration

methods, Smooth Isotonic Regression (SIO) and Adaptive Calibration for Logistic Regression (ACLR) were

applied to nine different datasets while the structured inference approach, TM3N was evaluated on three

temporal and relational correlated datasets.

11.2 Major Results

Through these investigations, I learned some points that are important to data-driven approaches. First of all,

synthesizing information from different perspectives helps to reduce the ambiguity in estimating multiple

outcome variables simultaneously. I developed the TM3N model to combine the power of methods based

on only temporal correlation (HMM) and methods based on only relational dependency (CRF).

To verify the efficacy of TM3N, I first used synthetic data generated from a linear dynamic system, where

synthesized temporal and relational factors were controlled by a trade-off parameter α. TM3N demonstrated

superior performance at various levels of the trade-off parameter from 0.1 - 0.8. The results confirmed that

combining complementary information helps to reduce the ambiguity existing in the individual perspective.

I thus applied TM3N models to predict multiple states of correlated outcome variables in the BioWar sim-

ulation data. TM3N led the accuracy (69%) followed by HMM (65%), M3N (58%) and CRF (57%). The

performance advantage of TM3N and its applicability were confirmed by the results of another real world

experiment for building occupancy detection. Again, TM3N outperformed HMM, M3N and CRF and their

average accuracies are 70%, 37%, 49% and 50%. Finally, I compared TM3N with HMM, M3N and CRF

using the BioWar II data, which contained multiple five-year simulation periods of various sized agents (10%

- 100%). The results showed TM3N scales well at increasing amount of training data and outperformed the
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other models.

Another important finding is that considering calibration concurrently with discrimination can improve

conventional single-target probabilistic models. Under a unified framework developed in Chapter 5, I im-

plemented Smooth Isotonic Regression (SIO) and Adaptively Calibration for Logistic Regression (AC-LR).

The SIO method introduced a smooth projection function to alleviate the problem of overfitting in Isotonic

Regression, which is a state of the art calibration model. The AC-LR approach pushed the boundaries even

further with the concept of adaptive binning based on input-specific information.

To verify the usefulness of both approaches, I compared them with a popular probabilistic model, Logis-

tic Regression (LR) and existing calibration methods like Platt Scaling for Logistic Regression (LR-PS) and

Isotonic Regression for Logistic Regression (LR-IS). The experiments using synthetic data showed that SIO

has a superior calibration ability without decreasing the discrimination power. The real data experiments for

SIO used a set of eight different data including Breast Cancer Gene Expression, Hospital Discharge Error

and Pima Indian Diabetes. In general, SIO model demonstrated better calibration performance compared

with LR, LR-PS and LR-IR in the Hosmer-Lemeshow goodness-of-fit test.

I conducted verification experiments for AC-LR in a similar way. For the synthetic data experiments,

I showed intuitively how AC-LR is superior to existing approaches. I visualized 1D and 2D non-linear

separable cases, which can be handled by AC-LR but not by the others. I conducted real data experiments

using Hospital Discharge Error, Myocardial Infarction and Breast Cancer Gene Expression data. In the

hospital discharge experiment, AC-LR passed HL-test at 0.05 significance level with a p-value of 0.349

while all the other methods failed. In addition, AC-LR even improved AUC from 0.704 (the best of previous

approaches) to 0.717 showing joint optimization of calibration and discrimination improved single-target

models in both perspectives. For the Myocardial Infarction dataset, AC-LR demonstrated its performance

advantage over conventional methods again. AC-LR passed HL-test at 0.05 significance level with p-values

of 0.645 and 0.246 for Sheffield data and Edinburgh data while LR, LR-PS and LR-IS failed. Improvements

for discrimination were also prominent; AC-LR achieved an AUC of 0.880 and 0.863 comparing to 0.876

and 0.845 of LR, LR-PS and LR-IS for Sheffield data and Edinburgh data, respectively. Similarly, the

performance of AC-LR led the competition of discrimination and calibration in the Breast Cancer Gene

Expression data.

In terms of scalability, I tested LR-SIR and AC-LR along with LR, LR-PS and LR-IR at varying scales

of training data, which included Breast Cancer Gene Expression Data (GSE2034, GSE2990, GSE3494),
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Myocardial Infarction (Edinburgh, Sheffield), Hospital discharge Errors and three additional UCI machine

learning repository data (Bankruptcy, PIMATR and HeightWeight) [69]. The variety of datasets provided

empirical evidence of model’s applicability across different data. I evaluated AUC, HL test p-value and time

costs of all five approaches at ten different scales of training size. In general, LR-SIR and AC-LR demon-

strated better calibration ability compared with the other methods without sacrificing their discrimination

ability. In terms of computational cost, all methods are scalable, but LR-SIR is most expensive because it

inserted an additional smoothing procedure to the LR-IR approach. The second and third expensive methods

are LR-IR and LR-PS, respectively. Interestingly, the most balanced method, AC-LR turned out to be the

least expensive.

11.3 Contributions

The goal of my thesis was to establish a coherent connection from machine learning techniques to life-saving

biomedical applications, which often involve analyzing complex, expensive, and intensive health and clinical

data in a timely manner. To this end, I developed new frameworks and implemented data-driven approaches

to provide quick interpretation of observations, predict the consequence with high reliability and support the

decision makers to respond effectively.

Specifically, I investigated two representative problems, the prediction of large-scale disease outbreaks

(BioWar) and personalized clinical decision support (calibration), which cannot be well handled by con-

ventional machine learning theory, which overlooks their biomedical characteristics. Although formulations

look differently for these problems, my approaches to address both problems are data-driven based on more

detailed information of targeted factors. With more detailed global models, my approaches maximize the

likelihood of observed measurements and provide more reliable estimates of latent factors of interest.

I revealed that considering information from different sources simultaneously could improve the predic-

tion accuracy of conventional time series models. I developed a new framework TM3N to optimize temporal

coherence concurrently with relational dependence with tractable computation. As opposed to traditional

approaches that predict states of outcome variables independently, my framework describes semantic cor-

relations of heterogeneous variables and observations of individual variables in a global manner. The joint

optimization reduces the ambiguity in estimating multiple outcome variables independently.

Furthermore, my framework offers more flexibility in modeling complex systems like disease outbreaks
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and building occupancy; and it can be easily generalized to other dynamic systems involving temporal, spa-

tial and relational dependencies. Synthetic experiments and real-world applications demonstrated TM3N’s

superior performance and wide adaptability.

Another contribution of my thesis is the development of a systematic framework for discrimination and

calibration. In a principled way, I integrated two important model quality measurements: discrimination

and calibration, which are traditionally considered separately. Through my investigation, I found that these

two seemingly unrelated metrics are connected, and a well designed joint maximization algorithm can offer

the best of both if they are optimized independently. This joint optimization using a combined objective

function guards against learning degenerated model that performs well in one aspect but poorly in the other

aspect.

Additionally, I found that the joint optimization can even improve discrimination performance without

decreasing its calibration ability. This is because including a calibration term to conventional discrimi-

nation-based model brings an additional set of informative constraints that are not available to standard

discrimination-based model. In many cases, such constraints effectively reduce the feasibility space and

leave the solution with much fewer possibilities, i.e., min(|ya|+ |1− yb|+ |yc|) would significantly restrict

the set of possible values for yb, which satisfies ya < yb < yc.

I developed an approach, Adaptive Calibration for Logistics Regression (AC-LR), to close the gap be-

tween traditional population learning theory and personalized medicine. That is, medication that is right for

one member of a diagnosis population may not work the same for all members. In contrast, my AC-LR

approach is tailored and targeted to benefit patients in specific genetic groups, based on more relevant pa-

tient information. As opposed to conventional methods constructed on the entire population of patients, my

model used confidence intervals for individual predictions to construct a dynamic neighborhood for each

patient. Thus, the predictions are based on more relevant information about the patient. Experiments on

multiple clinical data demonstrated improved calibration and discrimination ability of this new model. Yet

another advantage of AC-LR is that its computational cost is much lower compared to other methods that

consider using a dynamic neighborhood.

I also investigated the "biased labeling" common to biomedical data, i.e., a tiny number of positively

labeled cases vs. a large number of unlabeled cases, which gives difficulty to traditional supervised learning

algorithms. My research showed that major deficiencies of previous approaches lies in their incapability

of synthesizing information from different perspectives. I developed a structured biased Support Vector
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Machine model using feature correlations from abundant unlabeled cases concurrently with the positively

labeled cases as a global optimization algorithm. The method alleviates the underfitting problem with limited

labels to a large extent by using alternative feature correlation constraints to regulate my model. Experiments

on both synthetic and real datasets show performance advantages over conventional methods.

Through these investigations, I learned that model must be constructed from relevant information with

consideration of different aspects of the observations simultaneously. First of all, global model must be

targeted to fit the needs of prediction; second, multifaceted observations should be considered concurrently

rather than independently.

11.4 Limitations

There are a few topics that I did not expect to make a major contribution of this thesis. The following are

limitations of my works. Most of these limitations were indeed choices made to ensure the integrity of the

thesis and interpretability of the results.

My experiments often involve large dataset, and carefully designed parallel computing could potentially

improve the efficiency of my algorithm. For example, TM3N involves iterative steps of estimating most

violated constraints and subgradient descent optimization that could be factorized into a series of parallel

tasks. However, it is not trivial to design reliable paralleling, and the engineering overhead is very high. In

addition, the parallel design may decrease the reproducibility of TM3N because it is already a very complex

model. Considering these trade-offs, I decided not to include parallelization as a part of the thesis.

I developed discriminative models instead of generative ones for this thesis. I intended to design discrim-

inative models because both disease outbreak and the calibration problems are related to decision making

rather than the generation process for the observation. That is, these models tend to discriminate better

with limited data but they cannot generate synthetic data or null hypothesis. I believe this compromise was

necessary to ensure the focus of the thesis and its major contribution.

I limited my quantitative measurements to only a few metrics like accuracy, Area Under ROC Curve and

Hosmer-Lemeshow goodness-of-the-fit test. They are measurements to access the model’s prediction perfor-

mance but there are more of these (e.g., R^2, F-test, Refinement and Resolution) in the statistical literature.

The reason that I used only the most well known metrics was not to distract readers from understanding the

fundamental aspects of main ideas by making aimless comparisons. Both AUC and the Hosmer-Lemeshow
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test provided a simple one number summary of the probabilistic model under assessment.

The calibration for personalized medicine essentially involves constructing a model for each patient

using the most relevant information, which had the potential to single out patterns of individual or small

groups for analysis and evaluation. Although I used deidentified data with IRB approval and public records,

I still think there could be important ethical and policy questions related to individualized prediction models.

However, I decided to exclude the privacy question to maintain the integrity of the thesis.

Despite these limitations, the contribution of this thesis still holds, which is to provide useful learning

tools to support decision systems for emergency response. I demonstrated various successful applications of

the models developed in this thesis. An important insight gained from these studies is that models must be

constructed from relevant information with consideration of different aspects of the observations simultane-

ously.

The main message is twofold: first, a global model must be tailored to fit the needs of prediction; second,

it is risky to make an assumption independent of multifaceted observations. Thus, information of different

perspectives should be synthesized rather than treated independently.

11.5 Future Works

The challenges in biomedical problems addressed in this thesis, present interesting extensions for future

research.

Structured learning that synthesizing multifaceted information has received limited attention in many

biomedical applications, e.g., in real time ICU risk estimation and long-term care for elderly. This thesis

demonstrated the successful application of co-estimation of multiple outcome variables of interest in bio-

terrorism related diseases outbreaks. However, the potential of co-estimation for generally addressing tem-

poral and relational dependent problems in biomedical research has yet to be realized. A reality gap between

the techniques and the applications is belief in the ability of capturing long-range correlations over time

and across regions. It is often infeasible for computer scientists to exhaustively search for the best solution

within the entire feasible space while clinicians have no idea how to guide the algorithm towards meaning-

ful optimization. This problem is largely due to the lack of consideration of domain-specific knowledge

and infeasibility of including it in today’s biomedical learning algorithm. The combination of co-estimation

techniques with domain-specific priors is a promising direction for future research.
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Regarding predictions in personalized medicine, a major dilemma is what to include and what not to

include. Including too little information would cause model underfitting while including more but irrelevant

information leads to overfitted models. The ideal solution would be testing every possible combinations of

the observations in model construction, which is unfortunately not computationally feasible. This is an open

problem and different applications might need different heuristics for determining the "relevancy." I demon-

strated the success of an adaptive learning model, AC-LR, that tailors predictions towards more individual

levels in clinical applications like hospital discharge error prediction. There are more to explore along this

direction. One possible extension of my approach would be measuring distances between pairs of samples

using meaningful kernels, and outputs predictions along with confidence intervals. Such non-parametric

methods, providing reliability in addition to probability of individuals, have the potential to outperform their

parametric counterparts and better address the prediction problems in personalized medicine. Another possi-

ble direction of research is to explore the sparsity pattern of individual patients based on more comprehensive

information including genotype-phenotype correlation, social network profiles, and family disease history.

A major challenge of modeling these apparently different areas of information is the ability to synthesize

them meaningfully while not overfitting the data.
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