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AbstratClients of reative systems often hange their priorities. For example, a human user of an email viewer mayattempt to display a message while a large attahment is downloading. To the user, an email viewer thatdelayed display of the message would exhibit a failure similar to priority inversion in real-time systems.We propose a new quality attribute, attentiveness, that provides a uni�ed way to model the formsof rediretion o�ered by appliation-level reative systems to aommodate the hanging priorities of theirlients, whih may be either humans or system omponents. Modeling attentiveness as a quality attributeprovides systems designers with a single oneptual framework for poliy and arhitetural deisions toaddress trade-o�s among riteria suh as responsiveness, overall performane, behavioral preditability, andstate onsisteny.At the poliy level, the framework models diverse rediretion options inluding anel, undo, defer,hekpoint, and ignore. At the arhitetural level, the framework inludes onepts suh as: distinguishing�short� operations (e.g., an event noti�ation) from �long� operations (e.g., unbounded data transfer over anetwork); enapsulating long operations to prevent interferene with rediretion; enabling use of light-weighthekpoints to support rediretion while exeuting �long� operations; and onsolidating responsibility forrediretion to a small group of omponents in the system. Poliy and arhiteture ome together in theform of a set of positive and negative patterns for realizing attentive systems. These patterns are derivedfrom ase studies of attentiveness failures and suesses, several of whih are presented and evaluated in thispaper.The value of the framework has been tested through experiments involving both new development andre-engineering existing projets. We present two of these experiments in this paper, inluding both human-system interation in a doument editor and system-system interation in a lient-server appliation. Theseexperiments illustrate that our modeling framework an guide inremental attentiveness improvements inexisting reative systems.
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Chapter 1IntrodutionSoftware systems oasionally fail to respond to their �lients,� either human users or other systems. Forexample, a user attempting to plae a all with a touh sreen ellular phone ould enounter several problems.The phone ould:� Ignore some of the user's interations with the touh sreen� Display buttons that appear to be held after the user has released them� Display a blak sreen for many seonds, refusing to aept input� Display information irrelevant to the user's ativity, suh as a new e-mail noti�ationAll of the problems mentioned above an be observed when plaing a all with a HTC Droid Eris runningAndroid 2.1 software, and delay the proess of making a all for one minute. In addition, these problems haveseondary e�ets, inluding inreased error rates [10℄, inreased state anxiety [48℄, and dereased satisfationwith the overall system [92℄. Similar failures an be observed in systems as diverse as hand-held devies,desktop appliations, and servers.In this work we propose a quality attribute alled attentiveness that desribes the ability of some systemsto avoid these problems by hanging their omputational trajetory in response to requests from their lients.Attentiveness desribes the relationship between requests and the system's responses in terms of promptnessand onsisteny. On a phone, users reate requests by touhing the phone's sreen. The phone respondsboth by updating the sreen and also by onneting and disonneting alls. Promptness assesses the delaybetween the touh and the phone's response. Consisteny assesses both the preditability of the phone'sresponses and also the phone's ability to preserve the user's prior work. Therefore, the phone exhibits aonsisteny failure if it hanges a button just as the user is touhing it. For example, on the phone desribedabove, the �End Call� button beomes the �Call� button when a all ends, as shown in Figure 1.1. If theuser were to press this button just as the other party hangs up, he would aidentally plae a new all.In addition, the phone would exhibit a onsisteny failure if it were to rash while the user was dialing anumber. To avoid rashing the phone must maintain harmony among elements of its internal state whileresponding to new requests.Attentiveness failures are not on�ned to systems that interat diretly with users. Attentiveness failuresour on servers when lients disonnet after submitting long running requests. For example, when a userinitiates a searh in Thunderbird [99℄, a popular email lient, Thunderbird forwards the searh to the IMAPserver that holds the user's messages. While the searh is happening the user may deide to hange thesearh terms. The IMAP protool does not support interruption of searh requests. Therefore, Thunderbirdis fored to submit a seond searh request to the IMAP server. The seond searh will ompete with theinitial, now unwanted, searh for resoures on the IMAP server, as shown in Figure 1.2. As a result, the1



Figure 1.1: On some ellular phones the �End Call� button transforms into a �Call� button when the otherparty hangs up. A user attempting to use the button may reestablish a all with the other party by mistake.

Figure 1.2: The IMAP protool provides no way to anel searh requests. Therefore, if a user hangessearh terms while a searh is in progress the e-mail lient will send a seond searh to the IMAP server.The IMAP server divides its disk bandwidth between the searhes. As a result, both searhes are delayed.2



user's searh is delayed.Attentiveness draws on insights from four areas of researh:� Human-omputer interation ontributes knowledge of the relationship between response times andhuman satisfation with systems. Attentiveness is most losely related to diret manipulation [94℄.� Software arhiteture both ontributes arhitetural patterns suh as model-view-ontroller [63℄ andalso has identi�ed the phenomenon of arhitetural mismath [39℄ that makes attentive systems di�ultto onstrut.� Systems software ontributes knowledge of the problems of onurreny, onepts for reasoning aboutonurreny suh as the happens-before relationship [66℄, and approahes to maintaining onsistenyin the presene of onurreny suh as transations [42, 56℄.� Software monitoring, espeially prior work in heking for data raes [86℄, provides tehniques forobserving software as it exeutes, and also provides tehniques to ontrol the system's exeution topreserve onsisteny [83℄.In this work we present: a framework for reating requirements for attentiveness, diretives that desribeattentiveness in terms of implementation, a design pattern for attentive systems, and the design of tworuntime systems to support attentiveness.1.1 Coneptual ontributionsWe propose the following onepts to address attentiveness in a systemati and general way:� Requests relate the ativity of a system to inputs from its lient. In threaded systems eah thread isassoiated with a request. Designers are able to identify on�iting requests that must not exeuteonurrently due to the system's ontrat with its users. For example, Thunderbird must not attemptto display the ontents of two messages in the same message pane.� Behaviors�suh as anel, pause, and interrupt�de�ne general approahes that lients an useto rediret systems. For example, a user of an email lient may pause a download to free networkbandwidth in order to display a high priority message.� A alulus of short and long operations allows developers to reason about promptness qualita-tively.� Diretives allow arhitets and developers to represent knowledge that annot be inferred from thesystem's implementation. For example, diretives identify regions�parts of the system's state thatmust be treated as a unit from the perspetive of onsisteny. Developers and runtime systems anuse this knowledge to improve the attentiveness of systems.� Trusted exeution uses knowledge provided by diretives to provide servies that rediret threads.Unlike existing approahes to redireting threads, the servies are able to rediret threads promptlywhile preserving the system's onsisteny. Developers an utilize these servies to simplify the imple-mentation of the behaviors mentioned above. In addition, trusted exeution identi�es dependeniesamong requests. Dependenies are reated when requests aess regions. The runtime system traksdependenies to avoid introduing hek-then-at errors when it redirets threads. It aomplishes thisby using the dependenies to identify the group of threads that have observed the ativity of the threadbeing redireted, and then redireting every thread in the group. Developers an redue the size ofthese groups by introduing additional diretives in the system, allowing them to trade o� developmente�ort for greater e�ieny.� Arhitetural strutures, shown in Figure 1.3, trak requests in the system, allow developers tomanage the assignment of resoures to requests, and on�ne the responsibility for implementing be-3



Figure 1.3: Arhitetural strutures for attentiveness1 writer opaque FILE * fopen(borrowed_ro const char * filename,2 borrowed_ro const char * mode);4 reader int feof(opaque FILE * fp);6 independent transparent void * memcpy(borrowed_rw void * dstpp,7 borrowed_ro const void * srcpp,8 size_t len);Listing 1.1: Partial tollgate for the C runtime library. The tollgate is de�ned by the modi�ers shown in boldtype. haviors to a small number of omponents.� Cheked exeution monitors the system as it exeutes, ensuring that its behavior is onsistentwith the information provided by diretives. During heked exeution, threads gain and releasepermissions to read and write regions. Cheked exeution replaes the threads in the system with�laments. Like threads, all of the �laments in a system share a ommon address spae. Unlikethreads, �laments have unique sets of permissions that are granted and revoked by diretives.� Attentive protools allow lients to rediret requests submitted to servers and allow servers to detetlient failures promptly.� Tollgates allow developers to attah additional information at the interfae between the system andthird-party modules that do not ontain diretives, as shown in Listing 1.1. Trusted exeution uses theinformation provided by tollgates to manage dependenies among requests that aess the modules.Cheked exeution veri�es that the information provided by tollgates is aurate.1.2 Impat on pratieThe key onepts of attentiveness a�et four stages of software development:In interfae design, whih inludes both human-system interfaes and system-system interfaes, behav-iors provide standard patterns for redireting requests. Behaviors point to tradeo�s that designers shouldonsider when reating requirements for the system. In addition, they allow designers to provide onise,unambiguous requirements to developers.Software arhitetures that inorporate our design pattern both provide a entral loation for trakingrequests and also enapsulate responsibility for implementing behaviors to a small olletion of omponents.As a result, arhitets do not need to onsider attentiveness when designing other parts of the system. Inaddition, diretives, desribed in Chapter 3, allow arhitets to speify onstraints on the implementation of4



Figure 1.4: Diretives improve the e�ieny of software monitoring. This graph ompares heked exeutionto Helgrind [89℄. Both systems are dynami hekers that detet data raes. Cheked exeution is faster bya fator of 300.the system that an be enfored through heked exeution.Developers bene�t from the knowledge onveyed by the diretives spei�ed by arhitets. In addition,the enapsulation of attentiveness onerns into a small number of arhitetural elements allows developersto ignore attentiveness when implementing most of the funtionality in their systems. Finally, the runtimesystem greatly simpli�es the task of redireting requests. In urrent pratie, developers are fored to rediretrequests using either operations that interrupt threads promptly without preserving onsisteny or operationsthat preserve onsisteny but may take an unbounded amount of time to interrupt a thread. The runtimesupport desribed in Chapter 5 provides operations that are both prompt and also preserve onsisteny.Miro-benhmarks, also desribed in Chapter 5, indiate that rediretion an be prompt given the de�nitionof promptness used by many interative systems.Finally, software monitoring allows developers to quikly identify inaurate diretives and also ouldallow detailed failure reports to be submitted from deployed systems. Without software monitoring, devel-opers would often have to work bakward from a system failure to identify one or more inaurate diretives,a proess that is often both tedious and error prone. Software monitoring also bene�ts from the preseneof diretives. Sine the diretives predit the system's future behavior, the software monitor is able to behighly e�ient when ompared to software monitors that do not rely on diretives, as shown in Figure 1.4.In addition, the presene of diretives allows the software monitor to avoid generating false positives.1.3 Sienti� onlusionsThe prinipal hypothesis of this work is that, from the standpoint of both requirements and arhiteture,attentiveness an be addressed in a systemati fashion. We �rst propose a design pattern that addresses5



properties of requests that are diretly related to attentiveness. Next, we de�ne diretives that desribeimportant properties of the design pattern that must be preserved by implementations. Finally, we de�neruntime support that assists developers when developing attentive systems. We evaluate four aspets of thishypothesis in this work:Chapter 3 evaluates the diretives to determine if they an desribe the regions of third-party systemsby applying diretives to six benhmarks taken from the PARSEC 2.0 benhmark suite [13℄. One of thebenhmarks employs data raes as part of its design and annot be modeled with diretives. The other �vebenhmarks an be modeled with diretives. However, limitations in our urrent implementation of hekedexeution make it impossible to verify the auray of the diretives in two of the benhmarks.In Chapter 4 we evaluate our design pattern to determine if it resolves attentiveness failures. We apply thedesign pattern to a Java lient and server onneted with the Remote Method Invoation [96℄ ommuniationprotool. The design pattern resolves a reproduible attentiveness failure in this system with a runtimeoverhead of 5%.In Chapter 5 we test the runtime system to verify that heked exeution an be implemented e�iently.We use the PARSEC benhmarks desribed above in this test, observing the memory onsumption andexeution time of the benhmarks. In the worst ase the exeution time of the benhmarks inreases by afator of 3 under heked exeution, and the memory overhead inreases by a fator of 2. As a result, it ispossible to use additional ores to overome the overhead of heked exeution.In Chapter 5 we desribe miro-benhmarks to verify that the overhead of trusted exeution would beaeptable. These miro-benhmarks indiate that the operations needed to maintain onsisteny an belong for large regions, but omplete in approximately one seond in the worst ase. Systems using ourproposed design pattern will remain attentive in the presene of these operations.1.4 SopeThis work does not exhaustively over all aspets of attentiveness. There are a number of opportunities forfurther development of the ideas outlined in this work:The approah desribed in this doument does not guarantee that a system will be free ofattentiveness failuresThere is no guarantee that systems onstruted with the tehniques desribed in this doument will beattentive. These tehniques allow developers to inrementally improve the attentiveness of systems, use thirdparty ode without analysis, and use non-deterministi resoures suh as networks and disks. Tehniquesused for hard real time system development, suh as worst ase exeution time analysis, would providestronger guarantees of the behavior of the system, but would require more up-front development e�ort.System alls and attentivenessAn attentive system may need to rediret requests that are engaged in system alls. It may be possible torediret these requests by reating a mediator to manage the e�ets of the alls. The design and implemen-tation of system all mediators is not within the sope of this researh.6



Handling irreversible hangesIt may not be possible to reverse all of the hanges made by a request when it is redireted. The de�nitionof attentiveness spei�es that any remaining hanges must be ommuniated to the lient when a request isredireted. The urrent design does not provide a way to detet these hanges and ommuniate them tothe lient.Implementation and evaluation of the overhead of trusted exeutionThis work provides a detailed design of trusted exeution, inluding the algorithms that are needed to managedependenies. However, we have not implemented this system and have not evaluated the overhead imposedby our tehniques.Improving the e�ieny of heked exeutionThere are several tehniques that ould improve the e�ieny of heked exeution both in terms of memoryonsumption and also in terms of exeution time.Evaluation of behaviors in the ontext of interfae designWe have not onduted studies to ensure that designers an employ our behaviors when designing systemsor to assess the e�et of behaviors on the quality and omplexity of system designs.Addressing attentiveness in systems that are not request-orientedSome lasses of systems, inluding simulators, respond to input from their lients but are not easily modeledin terms of disrete requests. We have not attempted to assess these systems in terms of attentiveness.Inreasing ertainty that we have the right set of diretivesWe have not attempted to verify that our list of diretives is omplete. There are some indiations thatnew types of diretives may be useful. For example, it may be helpful to use diretives to trak the rightto dealloate memory in systems that use expliit memory management. In addition, it may be helpful toprovide diretives to doument aliasing assumptions in systems.Reduing developer e�ort when introduing diretives into systemsIntroduing diretives into systems requires onsiderable developer e�ort. There are several approahes thatould redue the e�ort of introduing diretives, inluding stati analysis. It would also be useful to have ananalysis that would identify ontraditory diretives.Advie for onstruting new protools that support attentivenessInter-appliation ommuniation protools an support attentiveness by expliitly supporting the behaviorsdesribed in this researh. However, it may be possible to further improve the attentiveness of protools byhanging the way that state hanges are ommuniated between lients and servers. Setion 4.1.4 identi�es7



several problems in the IMAP protool related to state management. The desription of a solution to theproblems of state management is beyond the sope of this researh.Reverse tollgatesTollgates assume that the aller will have diretives and the ode being alled will not have diretives.However, in systems that exhibit inversion of ontrol, the ode without diretives may at as the aller,reating a reverse tollgate. The diretives desribed in this doument are likely to be appliable to reversetollgates. However, the implementation of the tollgate is likely to be somewhat di�erent.1.5 RoadmapA detailed disussion of attentiveness is ontained in Chapter 2 through Chapter 5. The disussion starts atthe level of requirements in Chapter 2, gradually moving to the level of detailed implementation in Chapter 5.Chapter 2 disusses the onept of attentiveness at the level of requirements. It begins by providing adetailed desription of promptness and onsisteny. Next, it desribes rediretion in terms of attributes ofrequests, inluding on�iting requests and priorities. Then it desribes the onept of dependenies. Finally,it desribes a series of hallenging problems that must be addressed by attentive systems. The key oneptsovered in Chapter 2 inlude: requests, behaviors, on�iting requests, priorities, and the alulus of shortand long operations.Chapter 3 desribes the onept of diretives. First, it desribes diretives relating to onsisteny, inlud-ing the diretives that de�ne regions and ontrol a thread's permissions to aess regions. Next it desribesdiretives related to promptness, inluding diretives that allow developers to identify short bloks of odethat will exeute to ompletion in the event of rediretion. Then it disusses diretives that identify requests,ontrol dependenies among requests, and assoiate requests with threads. Finally, the hapter desribes toll-gates and their relationship to module interfaes. The key onepts overed in Chapter 3 inlude: diretives,regions, permissions, dependenies, and tollgates.Chapter 4 desribes the relationship between attentiveness and the design of systems. It starts byassessing the designs of six third party systems in terms of attentiveness, relating the designs to observationsof the runtime behavior of the systems. Next the hapter proposes arhitetural omponents that an beadded to systems to improve their attentiveness. It onludes by applying these arhitetural omponents toa small system, demonstrating that they lead to an improvement in attentiveness. The key onepts overedin Chapter 4 are the arhitetural strutures for attentiveness and the onept of attentive protools.Chapter 5 desribes the design and implementation of runtime systems to support attentiveness. First thehapter desribes the design of a runtime system to support trusted exeution. Next the hapter desribesthe design and implementation of a runtime system that supports heked exeution, verifying the aurayof the diretives related to onsisteny. The key onepts overed in Chapter 5 inlude: trusted exeution,heked exeution, �laments, and tollgates.
8



Chapter 2AttentivenessMany systems are not responsive to their lients, delaying their work. For example, a user of Thunderbird 2.0,an email program, may want to �nd the loation of a meeting that will begin at 10:00AM. Therefore, at9:55AM the user starts Thunderbird, identi�es the email ontaining the invitation, and asks Thunderbirdto display the message. However Thunderbird noties a large number of new messages in the user's Inbox.It automatially begins to download the new messages to san them for junk mail without a request fromthe user. Normally, this behavior is bene�ial: Thunderbird is able to remove junk messages so that theydo not distrat the user. However, in this situation Thunderbird's sanning of junk messages delays themessage view requests for more than 5 minutes, ausing the user to be late for the meeting. The ost ofthese delays to human users an be ampli�ed by inreased error rates by human operators [10℄ and inreasedstate anxiety [48℄.The delay introdued in this senario is similar to the priority inversions that an be enountered indefetive real-time systems. The user's request to display the invitation was a high-priority task and shouldhave preempted the junk mail sanner. In this hapter we propose a new quality attribute alled attentivenessthat desribes funtionality that an resolve this problem. An attentive system would have addressed thissenario by either:� Automatially prioritizing requests. For example, the system ould identify every ViewMessage requestas a high priority task, giving ViewMessage requests preedene over the junk mail sanner� Allowing the user to prioritize the task by both providing an overview of work in progress and alsoallowing the user to rediret the systemSimilar funtionality ould improve a wide variety of systems, inluding both interative appliations, wherethe lients are humans, and also servers, where the lients are other systems. Some systems both send andreeive requests. For example, an email program like Thunderbird reeives requests from its users and alsosends requests to the IMAP server that holds the user's messages. In this situation the design of the IMAPprotool may limit the email program's attentiveness as disussed in Chapter 4. For larity, the majorityof the examples in this hapter will disuss an email program interating with a human user and an IMAPserver.In this hapter we disuss attentiveness inrementally, starting with aspets of attentiveness that arediretly observable and gradually moving to onstraints on the system's implementation. In Setion 2.1we propose an abstrat model of the ommuniation between lients and systems. The model representsommuniation in terms of disrete requests generated by the lient and the system's responses to theserequests. Clients do not have to wait for the system to omplete prior requests before submitting new ones.The system's behavior is preditable when lients and systems agree on two properties of requests developedin this setion: on�its and priorities. 9



The model of requests, responses, on�its, and priorities draws extensively on several areas of priorwork. In Setion 2.2 we disuss four areas that have in�uened the model, both desribing ideas that wehave adapted and also ontrasting attentiveness with problems addressed in this work. The areas inlude:� User interfae design� Computer supported ollaborative work (CSCW)� Transations, inluding databases and transational memory� Real-time system designIn Setion 2.3 we disuss the aspets of the system's ommuniation that are diretly related to time.Promptness refers to a system's ability to respond to requests within a period of time that is aeptableto its lients. Systems may both send multiple responses for a request and also proess multiple requests inparallel. Therefore, we de�ne multiple measurements to assess the promptness of individual requests.In Setion 2.4 we address promptness in the ontext of sequenes of requests. Systems an improve theirpromptness by redireting some of the requests in the sequene. We de�ne general patterns of rediretion,alled behaviors, that apply to many systems. Systems employ behaviors when it is not possible to run allof the requests submitted by lients in parallel and the system must rediret work in progress to admit ahigh priority request. System designers and lients hoose the behaviors to invoke, while the system hoosesthe requests to rediret based on on�its and priorities.In Setion 2.5 we onsider problems that lients may enounter when redireting systems. Clients shouldbe able to rediret systems without either losing aess to the system or losing work. We desribe a prop-erty alled onsisteny that desribes two aspets of systems from a lient's point of view. In addition,onsisteny has impliations for the implementation of the system. Externally, the system must ontinue toprovide preditable responses to requests submitted by its lients. In addition, the system must preserveompleted work, as muh of the work in progress as possible, and the future work done by the lient. Toaomplish this, the system must maintain both the invariants of its data strutures and also the invariantsthat govern its ommuniation with other systems.In Setion 2.6 we expand the model of requests to desribe the implementation of systems in generalterms. The model ontains four operations that ontrol requests: start(), stop(), continue(), and undo().These operations are su�ient to implement the behaviors mentioned in Setion 2.4.The model assumes that one or more threads in the systems proess requests. It assumes that threadsan observe the partially ompleted hanges made by threads proessing other requests. It models theseobservations as dependenies among requests. To avoid hek-then-at failures, the model spei�es thatalling undo() on a request will roll bak any other request that has observed its hanges.Finally, the model employs a qualitative approah to reasoning about promptness: a alulus of shortand long operations. This alulus applies to the operations exeuted by threads as they exeute requests.The goal of the model is to ensure that the threads responsible for making prompt responses to threads arenot bloked for unbounded amounts of time.The model disussed in this hapter forms the basis for the hapters whih follow. In Chapter 3 we disussdiretives, an approah to heking the onformane of a system's implementation to the model. In Chapter 4we desribe arhitetural elements that implement the model by providing a mapping between threads andrequests, traking resoures in the system, and isolating ertain threads from long operations. In Chapter 5we desribe the design and implementation of runtime support that aids developers in implementing the
start(), stop(), continue(), and undo() operations.In Setion 2.7 we desribe requirements for the implementation of attentive systems.
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2.1 Desribing requests: on�its and prioritiesOur model assumes that ommuniation between a system and its lients is haraterized by a series ofdisrete requests. Clients do not have to wait for the system to omplete prior requests before submittingnew ones. This module desribes many systems, inluding:� Servers, where lients an use multiple onnetions to send requests� Handheld devies, where users an initiate requests by touhing the sreen and pressing buttons� Interative appliations, where users an initiate requests by interating with ontrols on the sreenSome systems do not follow this model. For example, simulators and embedded sensors are often implementedwith yli exeutives [8℄, where the system gathers input and proesses the input at pre-de�ned intervals.The requests in our model have two attributes that are relevant to the ommuniation between the systemand its lients: on�its and priorities. Con�its de�ne pairs of requests that would not produe preditableresults if they were exeuted onurrently. As a result, systems are fored to hoose one of the on�itingrequests to exeute �rst. Priorities govern the system's hoie of requests. Assuming that resoures areavailable, the system will always exeute the request with the highest priority. If resoures are available,it may also exeute additional requests with lower priorities that do not on�it with the highest priorityrequest.2.1.1 Con�itsCon�its speify that ertain ombinations of requests annot exeute simultaneously beause doing so wouldmake their e�ets, as de�ned by the system's interfae, unpreditable. For example, in an email lient arequest to move all of the messages from FolderA to FolderB would on�it with a seond request to movemessages from FolderC to FolderA.If the system were to exeute these requests simultaneously, the system ould divide the messages initiallyontained in FolderC between FolderA and FolderB depending on the relative progress of the requests. Thesewould not be true for two requests where the destination folders do not overlap the soure folders. Forexample, a move of messages from FolderA to FolderB an safely exeute in parallel with a move of messagesfrom FolderC to FolderD.Systems annot automatially detet on�iting requests. Therefore, designers must speify whih re-quests, if any, in the system's interfae on�it. As in this example, on�its among requests may beonditional, depending on the parameters of the requests.2.1.2 PrioritiesDesigners attah priorities to requests to ontrol the system's behavior when it annot exeute every requestsubmitted by its lients. Designers should hoose priorities to minimize the need for lients to rediretsystems. For example, in an email program a user may attempt to display a message while a download of anattahment is in progress. In this situation it is most likely that the user intends for the attempt to displaythe message to interrupt the download of the attahment. Therefore, the designers should attah a highpriority to message view requests and a lower priority to attahment downloads.No set of priorities an be perfet. For example, the download of the attahment may be urgent. Theuser may be reading messages only beause the attahment is not available, but may not want this ativityto delay the download of the attahment. In these situations, the user will need to override the prioritiesspei�ed by designers by invoking one or more of the behaviors desribed in Setion 2.4.11



2.2 Prior work related to attentivenessOur model of requests, behaviors, and priorities draws on several areas of related work, inluding: userinterfae design, omputer supported ollaborative work (CSCW), transational databases, and real-timesystem design. Eah of these ontexts ontributes onepts that we employ in our approah to attentivesystems. However, the problems enountered in designing attentive systems are subtly di�erent than theproblems enountered in these systems.2.2.1 User interfae designUser interfae designers have de�ned many of the behaviors in our model and have pointed to the need foronsistent and prompt rediretion. For example, a user may print a doument and then deide to anel theprintout. Interfae designers will speify that the system should o�er a anel button both to allow the userto regain ontrol of the system and to stop the printout promptly. They note that systems rarely implementthese features well [21℄. For example, many systems forwarded multiple pages to the printer before the anelbutton is pressed. When the ommuniation protool between the system and the printer does not supportrediretion, pages will ontinue to emerge from the printer after the user has aneled the printout.We build on the work done by interfae designers, exploring the e�ets that these behaviors have bothon the arhiteture of systems and also on protool designs. Software arhitets have long realized thatsenarios like the one desribed above have impliations for software arhiteture [11℄. We build on this work,onsidering the impliations of behaviors on system implementation and protool design. In the proess ofdoing this work we identify a series of design deisions that should be addressed by system designers. Theonepts of requests, priorities, and on�its allow us to do this in general terms, moving beyond priorapproahes that onsidered the design of the system's interfae in system-spei� terms [53℄.2.2.2 Computer supported ollaborative work (CSCW)The ommuniation patterns of an attentive system are partially asynhronous: lients are able to submitnew requests while the system is busy. Some of the new requests submitted by the lient may hange oroverride prior requests. In this respet an attentive system is muh like a CSCW system proessing requestsfrom multiple users. The �eld of omputer supported ollaborative work has de�ned formal approahes toanalyzing requests, inluding a alulus that an be used to identify and in some ases resolve on�its amongrequests [22℄.The approahes developed for CSCW are losely related to the proess of hoosing behaviors and identify-ing on�its among requests. We do not explore this proess in detail as a part of this work. However, manyof the approahes outlined in CSCW reason about requests in terms of priorities and on�its. Therefore, weassume that interfae designers will provide two funtions as part of their spei�ation. One funtion, �(r)aepts a request and returns the request's priority. A seond funtion, �(r1; r2) aepts two requests andreturns true if the requests on�it. In the spam sanning example the following relationship would hold:�(ViewMessage(m)) > �(JunkMailSan(f))In the message opy example the following rule would speify that MoveMessage requests with overlappingfolders on�it: ((f1 = f4) _ (f2 = f3)) =) �(MoveMessages(f1; f2);MoveMessages(f3; f4))The implementation of the system must ensure that � is false for all possible pairings of requests inthe system. In addition, the request with the highest priority, as returned by �, must be running. The12



designs and implementations that we propose in this work have these properties. We note that, while thenotation given above is preise, it may not be the optimal representation to use for apturing the system'srequirements and onveying them to developers.2.2.3 TransationsThe onepts of on�iting and prioritized requests outlined above may remind the reader of transationalsystems. Indeed, transations have been used to solve similar problems in database systems [42℄, sharedmemory multi-threading [56℄, and distributed systems [87℄. Transations o�er two onepts that are espeiallyinteresting from the perspetive of attentive systems: isolation and rollbak.Many systems isolate transations, preventing one transation from seeing the partially ompleted hangesof another transation. Therefore, when viewed by its lients, the system will behave as if it had proessedthe requests submitted to it in some serial order. This serial order does not neessarily have to math theorder in whih the requests arrived [72℄.Isolation has two advantages. First, it simpli�es the onurreny model for lients, sine they an beon�dent that the system's state will not hange in the middle of a transation. In addition, lients knowthat their transations will either sueed or fail with no hange to the system's state. As a result, lientswill not enounter hek-then-at failures when using transations. The abstrat model provided by trans-ations allows systems to exlude these errors without knowledge of the appliation-spei� semantis of thetransation [64℄. Seond, isolation avoids the problem of asading rollbaks, where a transation that rollsbak auses other transations that have observed its hanges to also roll bak.However, isolation is not free. Designers of relational databases are aware of a tradeo� between thelevel of isolation provided to onurrent transations and the performane of the database [12℄, and haveresponded by implementing more modest forms of isolation that exhange some degree of onsisteny forimproved performane [43℄.Other aspets of attentive systems make isolation less desirable:� Rollbaks are likely to be rare and would not a�et a large number of requests even in the presene ofa asading rollbak� Attentive systems may rely on non-transational subsystems that do not o�er rollbaks, suh as IMAPservers� Attentive systems may need to inform lients of the progress of their requests. This feedbak wouldneed to be treated as a speial ase from the perspetive of isolation� Attentive systems may use multiple ommuniation hannels, some of whih may not honor isolationThe presene of multiple ommuniation hannels leads to a phenomenon alled arhitetural mismath. Inone ase arhitetural mismath ourred when lients ommuniated both through a shared, transationalsystem and also diretly [39℄. The lients disovered that isolation aused the state of the shared system todi�er depending on the ommuniation hannel used. In addition, they were often unable to make progresson requests due to loking imposed by the transational system.Therefore, in the approah desribed in this doument we both adopt the onept of rollbak and alsotrak dependenies among requests to avoid hek-then-at errors when requests roll bak. However, we allowdevelopers of the system to deide on the level of isolation that is appropriate for their systems. If developersdesire isolation, they an ahieve it in our system by adopting two phase loking [43℄. Developers may alsobe able to modify the layout of data and loking protools to improve performane, using tehniques similarto ones being proposed for database systems [95℄.Our approah to the problems of loking and rollbak is very similar to the onept of open-nestedtransations that has been developed for software transational memory [17, 75℄. However, by default the13



runtime system takes responsibility for rolling bak the hanges of redireted requests as neessary. We willdisuss the details of our approah in Chapter 5.2.2.4 Real-time system designThe onept of promptness is losely related to the timing requirements for real-time reative systems.Approahes for onstruting these systems highlight the need for preditable, timely responses to externalevents. In addition, prior work in real-time systems has dealt with the problems of alloating resoures,inluding the proessor, to a stream of prioritized requests.However, there are several key di�erenes between attentive systems and real-time systems. First, atten-tive systems often work on time sales that are an order of magnitude larger than the time sales typiallyaddressed in real-time systems. As a result, we propose taking a qualitative approah to exeution timesrather than setting a quantitative limit, as is typially done in real-time systems. These assumptions areembodied in a alulus of short and long operations that is similar to the O() notation used when disussingalgorithmi omplexity. We give details of this alulus in Setion 2.6.1. This alulus allows us to avoidworst-ase exeution time analysis [28℄, whih would be di�ult to apply given the properties of attentivesystems.Seond, in attentive systems the proessing times for many requests may not be bounded. Therefore,attentive systems make a distintion between the system's initial response to a request, whih is oftenbounded, and the system's �nal response to a request, whih is often not bounded. As a result, the design ofattentive systems must arefully segregate the threads and resoures used to identify and rediret requestsfrom other parts of the system, as disussed in Chapter 4.Third, the designers of attentive systems may not have knowledge of the level of resoures that will beavailable to the system when it runs. The availability of some of the resoures, suh as network bandwidth,may vary as the system exeutes.Finally, unlike real-time systems, attentive systems may depend on subsystems that provide servies thatare essential to proessing their requests. When these subsystems do not diretly support attentiveness, itis di�ult for the attentive system to make strong guarantees about the proessing times of requests. Forexample, a designer of an email program annot bound the time to display a message when there is noupper bound on the time that it will take an IMAP server to send the message to the program. Given theseonstraints, it makes sense for designers to invest in features that will allow the system's lient to rediretthe system based on its knowledge of resoure availability.We adopt two approahes from real-time system design. First, our metris for promptness losely followthose reated for real-time systems [32℄. Seond, we adopt the priority inheritane protool [90℄ to raise thepriority of bloked ativities in systems to avoid priority inversion. For example, in an email program wemay raise the priority of an ongoing message download that was initiated by the junk mail sanner whenthe user submits a request to view the same message.2.3 PromptnessPromptness is one of two major omponents of attentiveness. Promptness is a measurement of the time-liness of the system's responses to requests submitted by its lients. Many systems allow lients to submitnew requests at any time, even while the system is proessing prior requests. In addition, many systemssend multiple responses to eah request submitted by their lients. Therefore, we de�ne three di�erent mea-surements that assess the system's responses for eah request: aknowledgment time, proessing time, andlateny. In some systems lients may be able to detet wait time, the time that the system holds a requestwithout proessing it. In other systems wait times are part of proessing time. Figure 2.1 is a sketh of how14
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Request acknowledged }Figure 2.1: Measures of promptness. The times in this �gure are spei� to a single request. The lient isfree to submit other requests before the request shown is omplete.these times are measured for a single request. We will disuss eah measurement in detail below.Aknowledgment time measures the delay between the system reeiving a request from the lient andthe system's �rst, but not neessarily �nal, response to the request. Clients are sensitive to aknowledgmenttimes beause the initial response assures them that the system has reeived their request. For example,interative GUI systems should typially respond to inputs, suh as liks of mouse buttons or key presses,within roughly 100 ms [93℄. Systems an aknowledge requests by �ashing a button, displaying a dialog,or losing a menu. If the system takes longer to respond, the user may assume that the system did notnotie the input and repeat it, potentially issuing an unwanted seond request. In typial systems themaximum aeptable aknowledgment time is governed by harateristis of the system's lients. Therefore,the aknowledgment times for all types of requests are often idential.Proessing time measures the amount of time that a system spends proessing a request. Developersmay not be able to bound the proessing time for some requests. For example, typial doument editorsan manipulate douments of arbitrary omplexity. Therefore, some requests, suh as pasting the ontentsof the lipboard, an involve an unbounded number of operations. While bounding the proessing timefor rediretion requests is highly desirable, developers may hoose to permit unbounded rediretion times toahieve greater e�ieny. Unbounded rediretion times may also re�et fators that are beyond the ontrol ofthe system's developers, suh as ommuniation failures or the presene of inattentive ollaborating systems.In many systems the proessing time will inlude some amount of wait time. Wait time measures theamount of time that the system holds a request without proessing, generally beause it would on�it withor onsume resoures dediated to a request with higher priority. It is often di�ult for lients to distinguishbetween proessing time and wait time.Lateny measures the overall delay between the system reeiving a request from the lient and thesystem's �nal response. Assuming that ommuniation delay between the system and the lient is not asigni�ant fator, the lateny is the sum of the aknowledgment time and proessing times.The de�nitions for promptness also apply to sequenes of requests. The sequene shown in Table 2.1 ismade up of requests and responses between a user and an email program with a folder list, a thread pane,and a message pane. The message pane shows the text of the urrently seleted message, and the threadpane shows one-line summaries for all of the messages in the urrent folder. Users an hange folders byliking on the folder list.Table 2.1 shows a sequene of request: R1, R2, and R3. R1 and R2 display two di�erent messages, M1and M2 respetively, in the message pane. R3 hanges to a di�erent folder, updating both the thread paneand the message pane. The bottom of Table 2.1 shows the values for aknowledgment time, lateny, andproessing time that would apply if the email program were to exeute the requests sequentially.15



Time Ator AtionT0 User Issues R1: ViewMessage M1T1 System Highlights M1 in the thread paneT2 System Begins to display M1T3 User Issues R2: ViewMessage M2T4 System Highlights M2 in the thread paneT5 User Issues R3: ChangeToFolder F2T6 System Displays M1 in the message paneT7 System Displays M2 in the message paneT8 System Swithes to folder F2Request Ak. time Pro. time LatenyR1 T0�T1 T1�T6 T0�T6R2 T3�T4 T4�T7 T3�T7R3 T5�T8 T8�T8 T5�T8Table 2.1: This sequene of requests and responsesdemonstrates the behavior of an inattentive maillient. Measurements of promptness for eah requestare given at the bottom of the table.

Time Ator AtionT0 User Issues R1: ViewMessage M1T1 System Highlights M1 in the thread paneT2 System Begins to display M1T3 User Issues R2: ViewMessage M2T4 System Highlights M2 in the thread paneT5 User Issues R3: ChangeToFolder F2T6 System Swithes to folder F2Request Ak. time Pro. time LatenyR1 T0�T1 T1-T3 N.A.R2 T3�T4 T4�T5 N.A.R3 T5�T6 T6�T6 T5�T6Table 2.2: This sequene of requests and responsesdemonstrates the behavior of an attentive maillient. Measurements of promptness are given atthe bottom of the table, where appliable. N.A. inthe lateny olumn indiates that the request wasredireted before ompleting.2.4 Behaviors: patterns of rediretionSystems are able to optimize sequenes of requests by applying patterns of rediretion, alled behaviors.Optimization relies on both the arrival times of the requests and also knowledge of the request's semantis.An example of a behavior alled replae is shown in Table 2.2, whih is an optimized version of the sequeneshown in Table 2.1. In both tables R2 arrives while R1 is still being proessed. This pattern of requestsould our if the user was sanning the thread pane and a large number of messages were displayed. Afterseleting M1, the user noties M2, a higher priority message. Finally, the user noties M3, not shown in therequest stream, whih requires him to searh for a message in F2.The arrival of R3, the request to display the ontents of F2, makes R1 and R2 obsolete. Their user-visible hanges will be undone by the proessing of R3. The email program an detet this situation andabandon proessing of R1 and R2 when R3 arrives, applying a tehnique often used in ollaborative doumenteditors [82℄.In this setion we propose a atalog of possible rediretions by making several assumptions about thenature of the requests submitted to an attentive system. First, we assume that the system is able to identifytwo sets of requests: those that are urrently ative and those that have been submitted but are not yetative. Seond, we assume that eah part of the system's ativity an be attributed to exatly one request. Insome systems this latter assumption is not realisti. For example, in systems that employ garbage olletionthe ativity of the garbage olletor is due to the sum total of all of the requests, not any individual request.This situation an be handled by assigning a virtual request to these ativities.In an attentive system, rediretion begins when a lient submits a new request. Table 2.3 de�nes anattentive system's response to an arriving request in terms of on�its and priorities. When a requestarrives, the system heks it against eah of the urrently ative requests for on�its. If no on�its exist,the system admits the request, allowing it to begin proessing. The system must not admit a low priorityrequest if it would on�it with one or more high priority requests already in the system. Instead, the system16



Priority ofPriority of BehaBehavior aBehavior applied thavior applied to

Incoming request Conflicting request Incoming requestng request ConflictiConflicting requests

Low or high None ADMIT No change

BLOCK No change

Low All low priority oror

ADMIT REDIRECT

Low Some high priority BLOCK No change

High All low priority ADMIT REDIRECT

BLOCK No change

High Some high priority oror

ADMIT REDIRECTTable 2.3: The behavior of the system is determined by the priorities of requests. When a request arrives,the system onstruts a set of on�iting requests. It then hooses an ation by omparing the request'spriority to the highest priority in the on�iting set. In ases where the priorities are equal, the systemhas two options, illustrated with the arrows. N.C. indiates that there is no hange to the running request.Rediret indiates that the system should apply one of the behaviors desribed in Setion 2.4.should blok the request, delaying it until the on�iting high priority requests omplete.When a high priority request arrives and on�its with one or more low-priority requests that are alreadyin the system, the system should rediret the low priority requests and admit the high priority request.For example, in most email programs sanning for junk mail is a low priority request1 while displaying amessage is a high priority request. If the system reeives a ViewMessage request that on�its with the junkmail sanner, the system should rediret the junk mail sanner and admit the ViewMessage request.Finally, designers must onsider ases where the requests with idential priorities on�it. The designersmust deide what to do by onsidering both the system-spei� semantis of the requests and also expe-tations of the system's lients. As mentioned above, a typial email program will treat all ViewMessagerequests oming from its user as high priority requests. If a new ViewMessage request arrives while anotherone is being proessed, it is reasonable for the program to rediret the older ViewMessage request toproess the new one immediately. This is justi�ed beause the user may have made a mistake when issuingthe �rst request or may no longer be interested in the �rst message. However, if a doument editor is busyinserting a harater when its user enters a seond harater, the doument editor should blok the seondinsertion until the �rst harater ompletes.When a request arrives, designers an hoose one of the following behaviors:Admit allows the new request to begin exeuting immediately without a�eting the other requests inthe system. It is appropriate when resoures are available and there is no on�it among the inomingrequests and the requests already in the system. For example, an email program doing junk mail sanningmay hoose to admit a request to ompose a new message.1Here we use the term request quite loosely. The user has on�gured the email lient to detet junk mail, but has probablynot issued an expliit request to start sanning. For simpliity in the disussion we are modeling this bakground task as animpliit low priority request. 17



Suspend fores one of the requests urrently in the system to stop. The lient is able to suspendrequests to override the system's assignment of priorities to requests. For example, a user may suspendthe junk mail sanner in an email program to reover network bandwidth for another system that sharesthe network. Systems may also suspend one or more requests to implement the other behaviors desribedbelow.Resume allows a suspended request to ontinue proessing. Like suspend, resume may be initiated byeither the lient or the system. For example, a user of an email program may resume the junk mail sannerwhen network bandwidth is no longer needed by other systems sharing the network.Replae fores one or more of the requests in the system to stop exeuting and allows the inomingrequest to exeute immediately. For example, an email program would be likely to replae an older ViewMes-sage request with an inoming ViewMessage request when it annot display both messages at one. Thisbehavior allows users to reover from slips, suh as liking on the wrong message in the thread pane, withminimal e�ort.Interrupt temporarily suspends a request to allow an inoming request of higher priority to exeute.Systems use interrupt when either resoures are not available to run both requests simultaneously or therequests on�it. First, the system suspends the low priority request and admits the higher priority request.One the high-priority request has been admitted, the system resumes the low priority request. In somesystems lients may be able to invoke interrupt diretly, in e�et overriding the priorities that the systemattahes to requests.Canel stops further proessing of a request and attempts to undo its e�ets. It is the equivalent ofissuing a suspend followed by an Undo request. For example, a user may begin to do a global SearhAn-dReplae of a string in while editing the body of an email. While the SearhAndReplae is running, the usermay disover a typo in the replaement string. Canel allows the user to reover by halting the Replaeand restoring the original data. In some ases the e�ets of an operation may not be ompletely reversible.For example, if a user issues a ommand to begin writing to write-one media and then anels the write,the media will be unusable. In this ase, the system must send a �nal response to the anel request thatinforms its lient of the remaining e�ets of the aneled request.Interfae designers speify whih of the behaviors desribed above should be applied to partiular se-quenes of requests. They may want to apply approahes developed for distributed group-ware while doingthis work [78℄. Their deisions must ensure that the onsisteny of the interfae is preserved from the lient'spoint of view.2.5 ConsistenyWhile rediretion an improve the promptness of systems, lients may be hesitant to rediret systems if itould lead to a system failure. A system failure ould our immediately, ausing lients to either lose aessto the system or lose prior work done with the system. Failures ould also be delayed, reating the risk thatone or more lients ould lose future work done with the system. For example, aneling a SearhAndReplaewhile editing a message in an email program ould orrupt the internal data strutures of the system, makingit impossible for the lient to send the message.In this setion we desribe a property alled onsisteny that desribes a system's ability to providereliable servie. Consisteny is simple from the lient's point of view: any the system that provides preditableresponses to requests and preserves the lient's work is onsistent. However, onsistent systems are di�ultto build: developers must preserve the relationships shown in Figure 2.2 to implement a onsistent system.The system must preserve relationships among its internal state, its ommuniation with lients, and itsommuniation with ollaborating systems. We will disuss eah of the forms of onsisteny below, referringto the labels in the diagram that over four aspets of onsisteny: C1, C2, C3, and C4.18



Figure 2.2: Attentive systems must maintain four forms of onsisteny while redireting requests.C1: Consisteny of lient ommuniationClient ommuniation an beome inonsistent when the system's responses to a request do not math thelient's expetations. For example, in many interative systems the user ommuniates with the system bysending low-level events, suh as key presses and button liks. The system proesses the events and reates arequest. In some ases the system's interpretation of the events may not onform to the user's expetations.For example, Android ellular phones allow users to disonnet alls by pressing an �End Call� button onthe phone's touh sreen. Unfortunately, the �End Call� button transforms into the �Call� button whenthe other party hangs up. If other party hangs up just as the user is pressing the button, the phone willinterpret the press as a request to initiate a new all. In other ases the user an reate spurious requests.For example, a user may double lik on a link in a browser. Well designed interfaes should ignore spuriousrequests wherever possible.Systems an also onfuse lients by sending spurious responses�responses for requests that have eitherompleted or been redireted by the lient. In the example given in Table 2.1, the email program ould senda spurious response. In this example the user sends three requests: �Display message M1,� �Display messageM2,� and �Selet folder F2.� An attentive system may aknowledge the third request by highlighting F2 in thefolder list. However, if the system is unable to rediret one of the �rst two requests, it may display messageM1 or message M2 in the message pane. The user, seeing the update, ould be onfused, assuming thatthe displayed message is in the highlighted folder. The attentive version of this example shown in Table 2.2avoids this problem by redireting the display message requests as soon as the hange folder request arrives.To avoid this failure interfae designers must onsider the ontrat between the system and its lientwhen hoosing behaviors. In addition, developers may need to reate mehanisms to suppress updates fromredireted requests to avoid onfusing the user.C2: Consisteny with ollaborating systemsCollaborating systems may be onfused if a system redirets and breaks some invariant of the ommuniationprotool. For example, an attentive system that redirets while ommuniating with a ollaborating system19



may transmit a partial request. If the system sends a seond request after redireting, the ollaboratingsystem ould easily see a malformed request made up of parts of the �rst and seond request.In addition, attentive systems often must ope with ommuniation protools that do not allow requeststo be redireted after they are submitted. For example, the IMAP protool both ontains long-runningrequests and also does not allow requests to be redireted. If a user anels a long-running request, suh asa request to move a large number of messages from one folder to another, the email program will be unableto rediret the request promptly.Many of these problems an be addressed by inserting mediators between an attentive system and ol-laborating systems to handle rediretion. The protool between the mediator and the attentive system hasexpliit support for rediretion. Mediators avoid partial requests by bu�ering eah request as it is sent,forwarding it to the ollaborating system only when the request is omplete. The mediator lears the bu�erif the system sending the request redirets before the request is omplete.Mediators an often simulate redireting of the ollaborating system for the bene�t of the attentivesystem by modifying the attentive system's requests. In the ase of moving a large number of messages, themediator ould transform the move into the following sequene:1. Mark the messages to be moved with a unique �ag2. Copy the messages from the soure mailbox to the destination mailbox. The opy operation willpreserve the �ag3. Mark the messages in the soure mailbox with the deleted �ag4. Issue the expunge ommand to delete the marked messages from the soure folder5. Remove the unique �ag from the messages in the destination folderThe mediator an anel this move operation at any point before step 5. In addition, it an use the unique�ag to simulate the e�ets of aneling the operation while it is still undoing the move on the server.However, it is important to note that mediators are not a perfet solution. Other systems that onnetdiretly to the IMAP server will be able to observe intermediate states of the opy, inluding the presene ofthe unique �ag. Some systems, inluding transational databases, avoid these problems by isolating partiallyomplete operations. However, this approah has proven to be problemati when applied to interativesystems [39℄.C3 and C4: The system's internal stateThe system's internal state is made up of both the state within eah of the system's omponents and also therelationships among omponents. Intra-omponent onsisteny desribes the state of eah omponent, andan be evaluated against the expliit and impliit invariants of the omponents. When all of the invariantshold, the entire system has intra-omponent onsisteny. In multithreaded attentive systems intra-omponentonsisteny an be lost, even in the absene of rediretion, due to data raes and failures to adhere to theontrat spei�ed in the omponent's interfae. For example, it is illegal to modify a Map, one of the Javaolletions, while using an iterator to aess its members. If the implementation detets that the system hasviolated this rule it will throw a ConcurrentModificationException.Rediretion, if not arefully oordinated, an also a system to lose intra-omponent onsisteny beausepartially ompleted hanges may be left behind by one of the redireted threads. In many systems, developersannot be expeted to reover the onsisteny of the system's state after rediretion. This senario is disussedin greater detail in Appendix A.Inter-omponent onsisteny desribes the relationships that bind system omponents together. Theserelationships are may not be expliitly stated [30℄, but are often present. For example, in an email pro-20



Notation Length DesriptionS S Short operationL L Long operationS + S S Sequene of two short operationsS + L L Sequene of two mixed operationsb � S S Bounded sequene of short operationsu � S L Unbounded sequene of operationsTable 2.4: Proposed alulus of short and long operations. Short operations are represented with S, longoperations are represented by L.gram omponents may assume that message identi�ers are unambiguous and that a message exists for eahidenti�er mentioned in a folder. The presene of these relationships means that responsibility for preserv-ing and restoring the system's onsisteny annot be delegated to the individual omponents that make upthe system. Instead, the design proposed in this work models requests and delegates the responsibility forpreserving onsisteny to the request. This design is disussed in greater detail in Chapter 4.2.6 Implementing attentivenessThe model that we disussed in Setion 2.1 addressed attentiveness from the lient's point of view. In thiswork we adopt a similar model when reasoning about the implementations of systems. However, we expandthe model of requests to desribe the implementation of systems in general terms. The model ontains fouroperations that ontrol requests: start(), stop(), continue(), and undo(). These operations are su�ient toimplement the behaviors mentioned in Setion 2.4. In addition, we model dependenies: relationships thatform among requests as they exeute. Unlike on�its, dependenies are not apparent in the semantis of therequests. Instead, they are reated by implementation deisions that ause requests to share state. Initially,we propose a alulus of short and long operations that allows us to reason about promptness in qualitativeterms.2.6.1 The alulus of short and long: a qualitative approah to promptnessPlaing an upper limit on the aknowledgment times of a system may suggest to the reader that all attentivesystems are real-time systems. While suh an approah is fully ompatible with our de�nition of attentiveness,we believe that developers often �nd both that this approah is too restritive for their system and also thata more approximate bound on the aknowledgment times is aeptable.When this is the ase, the requirements for promptness an be de�ned approximately. For example, inhuman-system interation aknowledgment times on the order of 100 ms are often aeptable, while responsesof over 1 s an introdue delays that in�uene the overall task e�etiveness of the user [16℄. In addition,users may tolerate oasional responses that exeed these limits, espeially when doing so gives them greater�exibility in using the system.We propose a qualitative approah that an be used to reason about promptness: a alulus of shortand long operations. This approah assumes that is possible to omplete a very large number of low-level operations, suh as alloating memory and �oating point arithmeti, during the maximum aeptableaknowledgment time for a request. The alulus is desribed in Table 2.4. In this table, the low-leveloperations are short. For example, individual memory fethes take a fration of a miroseond, makingindividual fethes insigni�ant relative to a 100 ms aknowledgment time. While a hard real-time systemwould need to onsider the potential ost of a page fault, whih ould raise the memory aess time to 1msor more, most attentive systems are able to assume that page faults will rarely happen.21



By applying the alulus, we an determine that entire funtions are short as long as they involve abounded number of short steps, either individual operations or alls to other short funtions. For the qsort()funtion involves a bounded number of operations when the size of the list to be sorted is bounded, and istherefore short. However, the number of operations involved in a qsort() of an unbounded list is unbounded,making qsort() long. If developers are unable to determine a bound for the list, they must assert that thefuntion may involve an unlimited number of operations and treat qsort() as a long funtion.It is theoretially possible to ahieve attentiveness by onstruting a system using only short funtions.In pratie, this is often not possible: many systems ontain low-level operations and funtions that are notshort. For example, systems may use network protools, suh as TCP, that have error reovery mehanismsthat an blok operations for long periods of time. As a result, any methods that invoke operations relatedto TCP, either diretly or by alling other funtions, are long. Developers must �nd some way to �ontain�the e�ets of these operations so that the system an hek for new requests from its lient. While otheroptions exist, suh as onverting the system to use asynhronous versions of the operations, we suggest designpatterns that employ threading to enapsulate long operations.In some ases it is not possible to determine the length of an operation. In most ases, operations withunknown length an be treated as long operations in attentive systems. However, the loking operations usedto oordinate the exeution of multiple threads are a speial ase. A thread engaged in a short operation mayneed to aess state that is shared with other threads, some of whih may be engaged in long operations.To preserve the system's onsisteny the threads may deide to obtain a lok before aessing the state.However, if threads were to hold the lok while exeuting long operations the operation to obtain aess tothe lok would also be long.It is possible to avoid this problem by attahing additional information to the lok to assert that everythread may engage only in short operations while holding the lok. It is reasonable to infer that anythread attempting to aquire aess will be bloked only for a short period of time.2 As a result, it ispossible to desribe a design pattern that will isolate the onerns of attentiveness from most of the system'simplementation. We desribe this pattern in more detail in Chapter 4.The distintion that we draw between short and long operations is well-preedented in GUI toolkits.As we will desribe in detail in Chapter 3, the interfae between an appliation and its toolkit is oftenomplex, involving inversion of ontrol, reentrany, and in some ases reursion between the appliationand the toolkit's event dispath system. Sine the toolkit is responsible for aknowledging requests, it mustregain ontrol within the maximum aknowledgment time spei�ed for the system's requests. However, therequests often involve potentially unbounded omputation.While threading an be used to resolve this problem, prior experiene has indiated that deadloks ourdue to reentrant alls when threading is employed within GUI toolkits [52℄. In addition, some of the reentrantalls made by the appliation ould a�et the proessing of future requests.Most GUI toolkits designate a single thread to proess events and detet requests. To protet theonsisteny of their internal state, they require most alls to the toolkit to be made on this thread. As aresult, updates to the internal state are serialized, eliminating the risk of raes without inurring the risk ofdeadloks assoiated with loking. To ensure promptness, the toolkit spei�es in its doumentation that allallbaks from the toolkit to the appliation must be short. Most developers respond by writing allbaksthat assign the long tasks assoiated with requests to other threads and make any updates needed in thetoolkit before returning.
2A rigorous proof would require two additional assumptions: the lok is fair when granting aess to threads and there area �nite number of threads ontending for the lok. 22



2.6.2 Operations for redireting requestsTo simplify the implementation of the system, we map all of the behaviors mentioned in Setion 2.4 to asmall number of per-request operations. An arhitetural element alled a sheduler uses these operations toimplement the behaviors. As a result, a deision on the part of designers to hange a behavior for a senariowill not a�et most of the system's implementation. In addition, designers are free to invent new behaviorsthat rely on the same set of operations. The operations inlude:
start() signals a request to begin proessing immediately. This proessing generally happens on anotherthread, whih may be reated during the start() all.
stop() signals the request, requiring it to stop proessing within a short period of time. The request mustrestore the onsisteny of the system's state before stopping. Some requests may stop by rolling bak someor all of their partially ompleted work.
continue() signals a request, telling it to ontinue proessing. One again, the proessing happens on adi�erent thread than the thread making the all.
undo() signals a request, telling it to undo as many of its hanges to the system's state as possible.The stop() and undo() operations are asynhronous, returning ontrol to the aller before the opera-tion has ompleted. In Chapter 4 we propose a signaling mehanisms that requests an use to signal theompletion of these operations.2.6.3 DependeniesA dependeny is a one-way relationship between two requests. Our onept of dependeny is very similarto the one developed for distributed transation systems [87℄. A dependeny between two requests indiatesthat the �rst request's proessing depends in some way on the ompletion of the seond request. The oneptof a dependeny between two requests is similar to, but distint from, a on�it between the same requests.While an attentive system should always avoid onurrent exeution of on�iting requests, it may allowdependenies to form among requests as they exeute. In some ases dependenies may be introdued bythird-party omponents without the knowledge of the system's designers. These dependenies are detetedand handled by the runtime system desribed in Chapter 5. Designers of attentive systems must also onsiderdependenies. In the event of rediretion, requests with dependenies must be redireted as a unit, ausinga asading rediretion that is analogous to a asading rollbak in database systems. This an greatlyinrease the ost of rediretion. Additionally, designers must determine how muh to invest in di�erentiatingon�its and dependenies. While a lear di�erentiation an lead to optimizations that greatly redue thetotal exeution time of sequenes of requests, these optimizations ome at the expense of oding requestsemantis into the on�it detetion system.2.7 New requirements introdued by rediretionIn the hapters that follow we will de�ne arhitetural strutures and runtime support to help developers toaddress the following requirements:The system shall detet and examine inoming requests promptly at all times.All of the behaviors rediret a system while it is doing other omputational work. By default, many systemsadopt one of two approahes to requests that arrive while the system is busy: queuing the requests forlater proessing or dropping requests that arrive while the system is busy. Attentive systems annot use23



these approahes. Instead, they must examine requests as they arrive, possibly redireting one or more of therequests within the system in response to the new request. Systems an implement this approah by assigninga thread to examine inoming requests. This thread will then delegate the proessing of the requests to otherthreads in the system. Many toolkit-based appliations already use this approah. Experiene has indiatedthat developers both struggle to ensure that the delegation is orret [97℄ and also enounter data raes inthe implementation of these systems [46℄.The system shall be able to rediret any request promptly at any time.Systems must be able to omplete behaviors promptly. Some behaviors, inluding Stop and anel,speify that the system terminate one or more of the requests that are ative when they arrive. Databasemanagement systems often o�er an administrative interfae to kill running transations. However, thisfuntionality is rarely available in existing systems. POSIX threads and Java threads urrently o�er APIsthat either interrupt threads promptly without preserving onsisteny or APIs that preserve onsisteny butmay take an unbounded amount of time to interrupt a thread.The system shall always be able to make progress on inoming requests.The interrupt, stop, and suspend behaviors ause their target requests to stop exeuting without undoingtheir work. When requests have been suspended while they have exlusive, non-preemptible aess to ashared resoure it is easy for the system to enounter deadlok onditions. For example, stop ould suspenda thread while it is downloading a message from the IMAP server. A seond request that attempted toaess the same message has three options:� Download a seond opy of the message, wasting network resoures� Wait for the �rst request to restart and omplete the download, potentially bloking for an unboundedamount of time� Resuming the �rst request, potentially raising its priority until the download is ompleteWe have adopted the third option. This approah is very similar to the priority inheritane protool [90℄used to resolve inversion of ontrol in real-time systems.The system shall predit resoure ompetition.Admit spei�es that the system should allow multiple requests to run onurrently. However, there is arisk that onurrent requests ould ause promptness failures by ompeting for resoures. For example,a ViewMessage request in an email program may ompete with an attahment download for network re-soures. However, developers may be unaware of this fat beause the email lient was implemented with aommuniation library that hides the network onnetions. In addition, the system may enounter resoureompetition from other systems sharing a ommon network. Attentive systems should, as muh as possible,predit internal resoure ompetition and rediret requests based on their priorities to avoid over-subsribinglimited resoures. This redues the need for lients to manage the system by rediret requests. However,lients must generally resolve external resoure ompetition manually by rediret requests.The system shall not admit on�iting requests.When a system admits multiple requests, it must ensure that its lients an predit the e�et of proessingthese requests in parallel. For example, word proessors that allow haraters to be inserted into a doumentwhile the same doument is being printed in the bakground generally ensure that the hanges will not be24



re�eted in the opy of the doument being printed. At a lower level, the UNIX �lesystems allow �les tobe deleted while they are open, while Windows �lesystems return errors. Designers, in onsultation withthe system's lients, must deide on the desired behavior for their systems. These deisions will a�et thedesign of the system's internal state. In addition, implementers may need to ope with on�its reated bythird-party omponents.The system shall maintain onsisteny when examining inoming requests while other requestsare ative.All behaviors represent some risk to onsisteny beause they require the system to examine requests at alltimes. We believe that this risk an be greatly redued by arefully on�ning the state of the threads thathandle inoming requests and request sheduling, ensuring that it is separate from the state used by thesystem to proess the requests. Separating the state allows the thread evaluating new requests to exeutewithout synhronizing with other threads in the system. This approah is well preedented: GUI toolkitsalso use thread-on�ned state to avoid onsisteny problems. Stati analysis [97℄ is now available to verifythat implementations onform to this pattern. In addition, we propose runtime heking in Setion 5.2 thatan verify the separation of state.The system shall restore onsisteny after terminating requests.Canel and stop represent a risk to onsisteny beause they interrupt requests in progress. This issimilar to the problems that transational systems enounter when they abort transations. However, mosttransational systems bene�t from the ability to isolate transations. We explain why we do not believethat this design is appropriate for attentive systems in Setion 2.6.3. Developers of attentive systems mustalso ope with onsisteny problems that arise when redireting requests urrently exeuting in third-partyomponents. For example, a user may anel a request to sort a spreadsheet, and the sorting funtionmay be provided by a third-party omponent that does not have anel funtionality. We believe thatthe appropriate response is to use hekpointing as a default implementation, allowing developers to reatespeialized reovery shemes for spei� appliations. We disuss our approah in detail in Setion 5.1. Thisis similar to the approah taken in open-nested transational memory [75℄.2.8 ConlusionThe fous of this hapter has been providing a de�nition of attentiveness, in terms of promptness andonsisteny, that is testable. Spei�ally, the de�nition an be used to evaluate a system's responses to aseries of requests to determine if the system's responses were attentive. We have done this by de�ning theonept of a request and enumerating some of the attributes of requests that allow us to generate a atalogof behaviors that systems an use to improve their attentiveness. To make our de�nitions onrete, we haveexamined several examples of requests and responses, ontrasting the behavior of attentive and inattentivesystems. We have tied our de�nition to onepts, inluding short and long operations that an be mappedto ode. Finally, we have enumerated problems that developers enounter when building attentive systems.Later hapters build on the de�nition of attentiveness given here and explain in greater detail how itmotivates the design and implementation of systems. This disussion happens in three parts. In Chapter 3,we de�ne the onept of a diretive, a onstrut that ties the implementation of a system to its design bymaking spei�, often testable, assertions about the system's future behavior. In Chapter 3 we also de�nea number of diretives that an be used in the design and implementation of attentive systems. Whilediretives may be appliable to other problems, our fous in Chapter 3 is on de�ning diretives that allowus to reason about a system's design and implementation in terms of promptness and onsisteny. We do25



this by showing how diretives an be applied to spei� attentive systems.In Chapter 4 we �rst assess the design of multiple systems in terms of attentiveness. We point tospei� design features that either support or hinder ahieving attentiveness in these systems. Next, wedesribe a design template that would, in theory, reate a highly attentive system. Then we desribe aseries of experiments where we applied parts of this design to the examples given earlier, assessing themodi�ed systems in terms of attentiveness. We onlude by pointing to issues�rediretion of requests,interations with ollaborating systems, deteting dependenies among requests, and heking the aurayof diretives�that point to the need for runtime support.In Chapter 5 we disuss the implementation of two di�erent runtime systems that we developed to supportour experiments. The �rst runtime system trusts its diretives and provides diret support for rediretingrequests in single-threaded systems. The seond runtime system supports multi-threaded exeution andheks diretives, but does not provide diret support for redireting requests. We disuss the implementationdeisions that we made when onstruting these runtime systems and assess the systems in terms of e�ienyand omplexity of their ode.

26



Chapter 3Diretives for attentivenessAttentiveness desribes the relationship between the requests reeived by a system and the system's responsesin terms of promptness and onsisteny. To implement an attentive system, developers must onsider prompt-ness and onsisteny both at the level of design and also at the level of implementation. In this hapter,we propose a lass of exeutable statements alled diretives that allow developers to represent onstraintsrelated to promptness and onsisteny. Diretives onvey information about multiple aspets of the system'sdesign and its future behavior, suh as:� The relationship between requests and the threads in the system� Information about regions. Regions are partitions of the system's in-memory state that are assignedto threads as a unit. Regions were �rst developed for stati analysis of onurreny [45℄, and reduethe e�ort of reasoning about onsisteny of systems.� The relationship between threads and regions, expressed in terms the of permissions that threadsobtain and relinquish to aess regions� Dependenies among requests� The maximum aeptable exeution time of bloks of ode, in terms of the alulus of short and longdisussed in Setion 2.6.1� Constraints on rediretion imposed by ertain piees of odeThe diretives desribed in this hapter do not address all of the state of the system. State that residesoutside of the system's memory spae and the system's ommuniation with ollaborating systems must bemanaged with system-spei� strategies. The runtime system desribed in Chapter 5 provides a frameworkto address this state.Some of the information provided by diretives is assertional, desribing the system's future behavior. Asa result, there is a risk that the information provided by diretives will not aurately desribe the system'sbehavior. While some of the information provided by diretives an be heked statially [50, 97℄, in thiswork we hek diretives dynamially with the approah outlined in Chapter 5.Conventional representations of assertional information, suh as assertions and invariants, are not wellsuited to attentive systems. These representations are enfored only at spei� program points, suh asfuntion alls and returns. Attentive systems rely on onstraints that must be enfored between programpoints to hek �universal� properties, suh as �threads will modify region R only while holding lok L.�Diretives, like assertions, apply only to a single thread. The sope of a diretive an be de�ned inabstrat terms by using the weak form of the until operator [58℄ in some linear temporal logis. Conretely,a diretive is in fore from the time that a thread exeutes the diretive until the thread exeutes a seond27



diretive that overrides it. If the thread never exeutes suh a diretive, the �rst diretive remains in forefor the lifetime of the thread. A list of all of the diretives disussed in this hapter is given in Table 3.1.Diretives provide information both to the runtime system and also to developers. We disuss twovariants of the runtime system brie�y here and in more detail in Chapter 5: a runtime system implementingtrusted exeution and a runtime system implementing heked exeution. Both runtime systems provideimplementations of the four operations needed to support rediretion that are desribed Setion 2.6.2: start(),
stop(), continue(), and undo(). During trusted exeution, the runtime system assumes that the diretives inthe system's ode aurately desribe the system's behavior. As a result, the runtime system an be relativelye�ient, but may fail to preserve promptness and onsisteny when diretives are inaurate. The runtimesystem that implements heked exeution veri�es that eah thread's behavior onforms to the diretivesthat it exeutes. As a result, heked exeution is able to identify inaurate diretives before they an a�etthe operation of the system.Below, we disuss both diretives and the general model of exeution that de�nes aurate and inauratediretives. First, we introdue the diretives that identify requests and relate them to threads in Setion3.1. These diretives allow the runtime system to relate the system's low-level ativities, suh as modifyingmemory, to requests submitted by its users.In Setion 3.2 we desribe an abstrat model of a multi-threaded system. This model represents regions,threads, the permissions that threads have to aess regions, permission hange events, and aesses toregions. It de�nes:� General rules that threads must follow when obtaining and releasing permissions. These rules areenfored in both trusted and heked exeution.� The riteria for determining that a thread's diretives are aurate. These rules are enfored only byheked exeution.� Constraints on permission hanges needed to avoid data raes. The onstraints motivate the develop-ment of aess poliies for regions, desribed in Setion 3.3.� An approah to desribing happens-before relationships among requests. This approah, along withdiretives desribed in Setion 3.3.2, assists the runtime in implementing the undo() operation.In Setion 3.3 we introdue the diretives that de�ne regions and attah poliies to regions. Poliiesgrant and revoke the permissions that allow threads to aess regions. Trusted exeution assumes thatthreads aess regions only when they have permission to do so. Cheked exeution enfores permissions byterminating the system when a thread attempts to aess a region without permission.In Setion 3.4 we propose an approah for automatially deteting dependenies among requests byusing permissions to detet relationships among requests. As we desribe in Setion 2.2.3, requests are ableto observe the partially ompleted hanges of other requests as they exeute. These observations reatedependenies among requests that an ause hek-then-at failures unless groups of requests are rediretedas a unit. In some ases developers will need to use additional diretives, desribed in Setion 3.4, to informthe runtime system of dependenies that it annot detet.In Setion 3.5 we propose an approah that developers an use when building systems with omponentsthat do not have diretives. The approah attahes modi�ers to the funtion signatures that de�ne theinterfae of these omponents. During ompilation we proess these modi�ers to reate a wrapper for theomponent alled a tollgate. The tollgate provides diretives for the omponent to ensure that rediretingrequests will not ompromise the onsisteny of the system.In Setion 3.6 we propose diretives that doument onstraints related to promptness. The design ofattentive systems often requires that ertain threads avoid long operations to maintain the promptness ofthe system's responses. The runtime system is able to hek these diretives e�iently, allowing them to beused even during trusted exeution. 28



Requests and threads, Setion 3.1
request_t create_request(bool isShort)
associate_request(request_t request)
request_t current_request()
complete_request(request_t request)
set_request_priority(request_t request, int priority)
awaiting_request(request_t r)Supporting onsisteny via regions, Setion 3.3
region_t new_region(policy)
bind(region_t *r)
associate_global(void *block)
region_of(block_t *)
get_ro_slice(? array[], size_t low, size_t high)
get_rw_slice(? array[], size_t low, size_t high)
get_transferable()
get_transferable_ro()
release_ro_slice(? array[], size_t low, size_t high)
release_rw_slice(? array[], size_t low, size_t high)
release_transferable()
release_transferable_ro()Support for dependenies, Setion 3.4
no_region_dependencies(region_t *r)
read_dependency(region_t region)
write_dependency(region_t region)Modi�ers that de�ne tollgates, Setion 3.5
independent
reader
writer
borrowed_ro
borrowed_rw
consumed
opaque
transparentSupport for promptness, Setion 3.6
begin_short_section()
end_short_section()
short_duration_lock(void *lock)Speial ases for rediretion, Setion 3.7
no_rollbacks(region_t *r)
atomic_sections_are_marked()
atomic_sections_restore()
start_atomic() Note: atomic sections are short
end_atomic()Table 3.1: This table provides a list of all of the diretives that we have de�ned for attentiveness, refereningthe setion where they are disussed. 29



Figure 3.1: A typial design-level view of the relationship between a toolkit and an appliation.In Setion 3.7 we desribe diretives that simplify the implementation of themediators: the omponentsthat allow attentive systems to ommuniate with ollaborating systems during rediretion. To preserve thisonsisteny of this ommuniation, mediators must be able to reord information about requests that survivesrediretion. These diretives allow mediators both to reate regions that are not modi�ed during rediretionand also allow mediators to speify short bloks of ode that will exeute to ompletion in the event ofrediretion.Finally, in Setion 3.8 we apply the diretives that desribe regions to third-party benhmarks hosenfrom the PARSEC 2.0 suite [13℄. We �nd that the diretives an ompletely desribe the behavior of thebenhmarks with an inrease in ode size of 1%-8%. We will use the same benhmarks when assessing theperformane of heked exeution in Chapter 5.3.1 RequestsThe design of attentive systems often makes it di�ult to pereive the relationship between the system'sativities, suh as modifying a region, and requests. In this setion we desribe diretives that resolve thisproblem by both identifying requests and also assoiating threads with the requests that they are proessing.Some systems must do onsiderable work before identifying requests. For example, in an appliation builtwith a typial GUI toolkit, the toolkit must proess a stream of low-level events, suh as ButtonPress andMouseMove events, to identify a simple request suh as Paste. The struture of these appliations is shownin Figure 3.1. In this �gure a request is identi�ed when the toolkit's thread invokes one of the appliation'sallbaks.When a thread identi�es a request it alls the request_t create_request(bool isShort) diretive to notifythe runtime system of the new request. The runtime system returns an opaque request identi�er that anbe used by the appliation to identify the request in future diretives.The isShort parameter allows developers to notify the runtime system that this request will omplete ina bounded period of time, as de�ned by the alulus of short and long operations given in Setion 2.6.1. Theruntime system uses this knowledge to redue the overhead of reating a request. As a result, it will not bepossible for the user to rediret the request. The isShort parameter is motivated by prior experiene whereoverhead added to short requests led to attentiveness failures, as desribed in Setion 4.2.1.In our model of the system eah thread in the system is doing work on behalf of some request. Whenreasoning about threads, we speak of a thread being bound to a request. Eah thread is bound to at mostone request, but one request may be bound to many threads at one. For example, a thread may all asorting routine that is implemented with multiple threads while proessing a request. For the duration of thesort all of the threads used by the sorting routine will also be bound to the request. Eah thread identi�esthe request that it is bound to by alling the associate_request(request_t request) diretive. This diretive30



informs the runtime system that the thread's future ations, suh as modifying regions, should be attributedto request. A thread an retrieve its bound request by alling current_request().When a thread does the �nal work for a request, it alls complete_request(request_t request). From thethread's point of view, complete_request(request) is equivalent to associate_request(request_t request):the thread will be bound to request, ausing its future ations to be assoiated with request. However,
complete_request(request) provides additional information to the runtime system that allows it to freeresoures. When it exeutes complete_request(), a thread is asserting:� No other thread in the system is urrently bound to current_request()� In the future no thread will all associate_request() with current_request()� In the future no thread will diretly request rediretion of current_request()These onstraints are reated before the thread's bound request is hanged to request.The runtime system should enfore these onstraints, treating violations of the �rst two as fail-stoponditions, sine they indiate that the request model provided by the system is inonsistent. The runtimesystem should handle violations of the third onstraint by returning an error from the operation doing therediretion.Requests in the system have priorities. The set_request_priority(request_t request, int priority) diretivehanges the priority of the request. Higher values of priority orrespond to higher priorities. By default allrequests start with a priority of 0. A hange in a request's priority may ause one or more requests in thesystem to be redireted, as desribed in Setion 5.1.Finally, the awaiting_request(request_t other) diretive informs the runtime system that the requestbound to the alling thread is waiting for other to omplete. This diretive is non-bloking, allowing systemsto use any appropriate methods to oordinate requests. This diretive allows the runtime system to imple-ment a priority inheritane protool [90℄, potentially raising the priority of the referened request to maththe priority of the request bound to the thread that exeutes the diretive.A pratial example that illustrates the value of priorities and awaiting_request() is disussed in detailin Setion 4.1.3: the junk mail sanner in Thunderbird. The junk mail sanner should usually run as alow-priority task to prevent it from bloking requests diretly submitted by the user, suh as ViewMessagerequests. Therefore, some thread should exeute set_priority() with a low number on the request thatrepresents the junk mail sanner. As a result, the junk mail sanner will be preempted when the usersubmits new requests, ensuring that it will not onsume network bandwidth needed for these requests. Thisbehavior is implemented by an arhitetural element alled the Scheduler, whih is disussed in Setion 4.3.1.However, in some ases the user may submit a ViewMessage request for the message urrently beingdownloaded by the junk mail sanner. In Thunderbird 2.0 this reates a redundant message downloadrequest, wasting network bandwidth. This problem, whih is disussed in more detail in Setion 4.1.3,ould be avoided through areful design. The junk mail sanner would reate a new request for eahmessage download and save a referene to the request.1 The ViewMessage request would hek for an ativerequest that was downloading the message, and upon �nding it would exeute an awaiting_request(request_t
message_download) diretive to raise the priority of the download in progress. This design would bothonserve network bandwidth and also allow the user to bene�t from the partially ompleted work done bythe junk mail sanner.

1The ahe of previously downloaded messages is an obvious andidate.31



3.2 Reasoning about onsisteny and dependeniesIn this setion we desribe the relationship between threads, the onsisteny of the system, and dependeniesamong requests. To do this, we rely on the relationship between requests and threads established in Setion3.1. Spei�ally, we assume that the ativities of eah thread in the system an be attributed to its boundrequest. Therefore, an abstrat model of the ativities of threads an be transformed into an abstrat modelof the ativities of requests.In our model we reason about threads, regions, the permissions that threads obtain to aess regions,and time. Our model is based on models that have been developed in the �eld of temporal logi [80℄.In most models, the memory of the system would be represented as a mapping from an address to a value.However, in our model we are not onerned with the values stored in memory. In addition, we abandonthe idea of individual addresses in favor of regions. Therefore, for eah read or write to memory we identifythe region that orresponds to the address being written and use the region identi�er as a proxy for theaddress. In Chapter 5 we desribe a mehanism that ensures that threads always agree on the mapping ofaddresses to regions. Therefore, in our model we de�ne an unordered set Regions that ontains all of theregions de�ned for the system. We also de�ne a variable to refer to an arbitrary region in the rules below:r : RegionsWe assume that there are multiple threads in the system, that these threads exeute onurrently, andthat there is no global view of time among threads. This desription of time was originally developed fordistributed systems [66℄. By adopting it we an greatly improve the e�ieny of our runtime support, sinereating global onsisteny is often expensive in multiproessor systems. In the model we use the unorderedset Threads as a ontainer for all of the system's threads. We de�ne three variables to refer to arbitrary, butdi�erent, threads in the system:S; T; U : ThreadsS 6= TS 6= UT 6= UWhile there is no global view of time in the system, it is possible to reason about the order of ations of asingle thread. We de�ne an ordered set, ThreadTimes, for this purpose.ThreadTimesWe also de�ne markers to reason about ations for a thread in a pre-determined order. B stands for beginning,and is always the earliest ation undertaken by the thread. M stands for middle and is the middle ation. Estands for end, and is always the last ation in the sequene being disussed. By onvention we use upperaseletters to refer to both Threads and ThreadTimes :B;M;E;B0;M 0; E0; B00;M 00; E00 : ThreadTimesB < M < EB0 < M 0 < E0B00 < M 00 < E00We de�ne a funtion � that holds the history of the ations of every thread in the system for a partiularexeution. In future exeutions the history of threads may be di�erent. Therefore, � would normally havea subsript. However, in this version of the model we reason only about a single exeution, making thesubsript redundant. We have eliminated it for larity. Ations is the set of all possible ations whih anbe undertaken by a thread. We will de�ne Ations in greater detail below:32



� : Threads � ThreadTimes �! AtionsPermissions ontrol a thread's aess to regions. A thread may obtain either read-only aess to a regionor read-write aess to the region. During trusted exeution a thread should only aess the region while itholds permission to do so. If a thread does not follow this rule the runtime system will be unable to detetsome of the aesses to regions, potentially leading to onsisteny failures. During heked exeution theruntime system will stop a thread that attempting to aess a region without permission before the aessours. We also de�ne two arbitrary variables to refer to permissions.Permissions=fRead,Writegp; q : PermissionsIn this model, there are four types of ations:� A thread an obtain permission to aess a region� A thread an release permission to aess a region� A thread an read a region� A thread an write a region. Sine write aess always implies read aess, an uninterruptible test andset operation would be represented as a write in this model.We de�ne a set Ations to refer to these events. We also de�ne two variables that refer to arbitrarypermissions:Ations = fGrant(r; t; p);Revoke(r; t; p);ReadR(r; t);WriteR(r; t)ga; a0 : AtionsSo far the model losely follows the implementation of the system. However, it is easier to reason aboutonsisteny properties from the perspetive of regions. Therefore, we de�ne an ordered set, RegionTimes,that desribes the order of ations for a partiular region. RegionTimes annot be diretly ompared betweentwo regions, and annot be diretly ompared with ThreadTimes. This allows us to use this model to reasonabout systems built with hardware that uses a relaxed ordering of memory operations [2℄. By onventionwe use lowerase letters to refer to RegionTimes, and adopt the same variables orresponding to beginning,middle, and end.b;m; e : RegionTimesb < m < eWe use RegionTimes to de�ne a funtion that provides the past history of eah region in the system for apartiular exeution. Like � , the ontents of this funtion may be di�erent for eah exeution of the system.Therefore, the funtion would normally be subsripted. Sine we reason only about a single exeution belowwe drop the subsript for simpliity:� : Regions� RegionTimes �! AtionsFor readability, we de�ne a short funtion to determine the region for an ation:8(a; r) jmathesRegion(a; r)� 9(T; p) j a = Grant(r; T; p) _ a = Release(r; T; p) _ a = ReadR(r; T ) _ a = WriteR(r; T )The � funtion an be derived by applying some simple rules to � . These rules restrit ations, requiringthem to be initiated by the a�eted thread. This is bene�ial both from the standpoint of understandingthe model and also for the e�ieny of the runtime system, sine it allows us to avoid expensive operationsto remove permissions from threads. In addition, this restrition allows the ations to establish a orrelation33



between the thread's timestamp and the region's timestamp, thus allowing regions to propagate dependeniesthrough the system:8(T;E; a; r; p) j (�(T;E) = a ^mathesRegion(a; r) � 9Eb j �(r; b) = aThe following rule fores the order of a thread's grants and releases to be idential in the � and � funtions.It is needed beause the times in � and � annot be diretly ompared. While the order of eah thread'sations must be preserved, interleaving may ause two adjaent ations for a thread in � to be separated bythe ations of another thread in �.8(T;B; a; r; E; a0) j (�(T;B) = a ^mathesRegion(a; r) ^ �(T;E) = a0 ^mathesRegion(a0; r)=) 9b; e j �(r; b) = a ^ �(r; e) = a0There are two additional rules that apply to the Grant and Release ations. These rules are enfored bothduring trusted exeution and also during heked exeution. We de�ne these rules with the � funtion. First,a thread must release its previous permissions to a region before obtaining new ones:8(r; b; T; e; p; q)j�(r; b) = Grant(r; T; p)^�(r; e) = Grant(r; T; q) =) 9mj�(r;m) = Release(r; T; p) (3.1)Seond, a thread must obtain permissions to a region before releasing them:8(r; e; T; p) j �(r; e) = Release(r; T; p) =) 9b j �(r; b) = Grant(r; T; p) ^ 8m j �(r;m) 6= Release(r; T; p)(3.2)We an now de�ne the ReadableRegions for a thread at a given time in terms of � . Sine, write permissionsalso grant read permissions, it is su�ient to establish that the thread has some unreleased permission toaess the region:8(r; T; E) j r 2 ReadableRegions(T;E)� 9(B; p) j �(T;B) = Grant(r; T; p) ^ 8M j �(T;M) 6= Release(r; T; p) (3.3)The de�nition for WritableRegions is similar, but also heks that the permission being held is a writepermission:8(r; T; E) j r 2WritableRegions(T;E)� 9B j �(t; B) = Grant(r; T;Write) ^ 8M j �(t;M) 6= Release(r; T;Write) (3.4)Finally, we de�ne the onept of aurate diretives. Diretives are aurate when eah thread in the systemreads and writes regions only when it has permission to do so. Cheked exeution, desribed in Setion 5.2,veri�es these properties. If these properties do not hold, our approah of using permissions as a proxy foraesses will be unsound, potentially ompromising the integrity of the system during rediretion:8(T;B; r) : �(T;B) = ReadR(r; t) =) r 2 ReadableRegions(t; B)8(T;B; r) : �(T;B) = WriteR(r; t) =) r 2WriteableRegions(t; B)34



3.2.1 DependeniesDependenies an form among requests proessed onurrently in attentive systems, sine they are notisolated as they are proessed. Normally the runtime would propagate dependenies among requests auto-matially as threads aess and modify regions. For example, onsider a system exeuting three requests,R1, R2, and R3. Eah request has a thread that aesses a shared region S. R3's thread modi�es S, thenR2's thread modi�es S, and �nally R1's thread reads S.In our system, we assume that every modi�ation of S is also an observation of S's state. Therefore, atthe end of this sequene R2 depends on R3, and R1 depends on both R2 and R3: dependenies are transitive.Therefore, dependenies an be represented by Lamport Cloks [65℄ attahed to requests and regions. Itis important to note that dependenies an be irular: if R3 reads S, it will beome dependent on R1 andR2. In other words, the request stream for an attentive system may not be serializable. This is a diretresult of the lak of isolation in attentive systems, and an lead to a asading rediretion, where rediretingone request auses a number of other requests to be redireted. We disuss this issue in more detail inSetion 2.2.3.Traking every aess to a region would be prohibitively expensive. However, when the rules desribedabove hold a runtime system an reason about dependenies among threads, and therefore dependeniesamong requests, without traking individual aesses to regions. To do this, the runtime system monitorspermission hanges, using them as proxies for aesses to the region. The runtime system treats everyGrant(Read) and Release(Read) ation as a read of the region. It treats every treats Grant(Write) andRelease(Write) as a write to the region.Next the runtime system uses the model to searh for happens-before relationships [66℄ among the per-missions hanges of threads. Our approah to establishing a happens-before relationship among threadslosely follows the approah given in the Java Memory Model [20℄. If the runtime system an establish thata write made by thread S happened before a read or a write made by thread T, then the request bound toT depends on the request that was bound to S when it made the write.2In the abstrat model the happens-before relationship is de�ned as a funtion:HappensBefore : hThreads � ThreadTimesi � hThreads � ThreadTimesi �! BooleanHappensBefore relationships exist for ations on a single thread:8(t; B;E) j ht; BiHappensBefore ht; EiIn addition, happens-before relationships are transitive:hS;MiHappensBefore hT;M 0i ^ hT;M 0iHappensBefore hU;M 00i =) hS;MiHappensBefore hU;M 00iTo establish a happens-before relationship among threads it is neessary to relate ations in the � and �funtions:(�(S;M) = a ^ �(T;B0) = a0 ^ �(r; b) = a ^ �(r;m) = a0) =) hS;BiHappensBefore hT;M 0iWe propose an implementation that onforms to this model in Setion 5.1.3. The preise happens-beforerelationships for an exeution are somewhat in�uened by the interleaving in �. Therefore, the dependeniesfor a group of requests may not be idential aross repeated exeutions. However, in the worst ase the2It is important to note that S may not exist when T aesses the region. In addition, S may now be bound to a di�erentrequest. 35



approximation will be onservative, indiating that a dependeny exists where none was enountered in theatual exeution. In addition, we assume that permission transfers funtion as memory barriers in the system.This assumption is sound, even under trusted exeution, due to the heking of the sanity of permissionstransfers outlined in Invariant 3.1 and Invariant 3.2. Finally, it is important to note that nothing in this modelassumes the absene of data raes: it is possible for two threads to obtain simultaneous write permissions tothe same region or for a thread to obtain read permission to a region while a thread is writing it. To reasonabout dependenies in these situations we need additional diretives, whih are desribed in Setion 3.4. Wean avoid these diretives when developers use poliies to restrit the assignment of permissions to threads.These poliies also eliminate the risk of undeteted data raes during heked exeution.3.2.2 Sound poliiesPoliies are spei�ations that restrit the assignment of permissions to threads. A poliy is either sound orunsound. When threads follow a sound poliy, the poliy limits the assignment of permissions to threads,ensuring that there will be no data raes. The poliy ensures that for every region there is either a singlewriter with no readers, or no writers with any number of readers.Con�iting permissions allow data raes, typially by permitting a thread to write to a region urrentlyshared with other threads. Poliies that allow on�iting permissions are unsound. A system may be freeof data raes even though it uses unsound poliies for some regions. For example, the poliy governingaess to loks in onurrent systems is unsound, sine it allows updates from multiple threads attemptingto aquire the lok. However, the implementation of loks avoids data raes by using a speial lass ofmemory operations that are atomi, reading and updating state in a way that is immune to interferenefrom other threads.In our abstrat model sound poliies are governed by two additional onstraints. First, write permissionsare granted only when every thread has relinquished its permissions to the region:8(s; t; r; b; e; p) j (�(r; b) = Grant(s; p)) ^ (�(r; e) = Grant(t;Write))=) 9m j (�(r;m) = Release(s; p)) (3.5)Seond, read permissions are granted only when no thread has write permission to the region:8(s; t; r; b; e) j (�(r; b) = Grant(s;Write)) ^ (�(r; e) = Grant(t;Read))=) 9m j (�(r;m) = Release(s;Write)) (3.6)We will propose a atalog of poliies, most of whih are sound, in Setion 3.3.3.2.3 Relating the model to program-spei� invariantsDevelopers typially reason about the orretness of subsystems, inluding omplex data strutures, in termsof representation invariants that hold at the start and end of eah operation. During the operation, the stateof the subsystem may not honor the invariant. When operations are long, it is possible that rediretion willinterrupt an operation while it is in progress, leading to a onsisteny failure. An approah to ensuring theonsisteny of rediretion an be expressed by establishing a relationship between invariants and the hangesin thread permissions permitted by sound poliies. In this setion we establish this relationship for a doublylinked list. The implementation of the list is shown in Listing 3.1.36



IV1 typedef struct node {IV2 const char *name;IV3 struct node * prev, *next;IV4 } Node;IV6 typedef struct list {IV7 const char *name;IV8 Node * head, *tail;IV9 } List;IV11 void append(List *list, Node *node) {IV12 node�>next = NULL;IV13 node�>prev = list�>tail;IV14 list�>tail = node;IV15 if (list�>head == NULL)IV16 list�>head = node;IV17 elseIV18 node�>prev�>next = node;IV19 }Listing 3.1: The representation invariants for doubly linked list will not hold if this version of the appendfuntion is interrupted after IV13 and before IV18.We de�ne two types of bloks for our example, a doubly linked list. Some bloks are Nodes ; other bloksare the list head strutures:n : Nodesl : ListFinally, we use some �ommon sense� invariants for doubly linked lists.8n j ((n.next 6= NULL) =) (n.next.prev) = n)) (3.7)and 8n j ((n.prev 6= NULL) =) (n.prev.next) = n)) (3.8)and 8l j l.head 6= NULL � l.tail 6= NULL (3.9)In our example Invariant 3.8 holds until line IV13, and is restored at line IV18. In addition, Invariant 3.9is potentially relaxed at IV14 and restored at IV16. When a system with only one thread exeutes thisode to ompletion the invariants there is no way to observe the intermediate states. In e�et the invariantsappear to hold for the entire exeution. However, when systems use multiple threads or support rediretionit is possible to observe intermediate states that violate the invariants, potentially ausing failures due tothe resulting loss of onsisteny.To avoid this failure, we apply the onept of permissions outlined in the model to sope the invariantsgiven above for the linked list, reating invariants that are muh easier to relate to the system's onreteimplementation: 37



8(t;M; n) j ((n 2 ReadableRegions(t;M)) ^ (n =2WritableRegions(t;M)) ^ (n.next 6= NULL))=) (n.next.prev) = n))8(t;M; n) j ((n 2 ReadableRegions(t;M)) ^ (n =2WritableRegions(t;M)) ^ (n.prev 6= NULL))=) (n.prev.next) = n))8(t;M; l) j ((l 2 ReadableRegions(t;M)) ^ (l =2WritableRegions(t;M)))=) (l.head 6= NULL � l.tail 6= NULL)These invariants do not restrit a thread's ations when working with writable regions. Therefore, theinvariants hold both between operations and also within operations. These invariants ensure that onsistenywill be maintained as long as permissions hanges are governed by sound poliies. First, a thread holdingwrite permission to the region ontaining the data struture must restore the representation invariants beforereleasing the permission. Seond, no other threads an observe the data struture while the writer is makingmodi�ations. The runtime system desribed in Chapter 5 exploits this relationship between poliies andinvariants to support rediretion of operations in progress. It does this by opy the ontent of the regionbefore eah thread gains write permission to the region. In the even of rediretion it restores the region fromthe opy. As a result, all of the invariants for the region are known to hold after rediretion.3.3 Regions and poliiesIn many systems, developers reason informally about the permission that threads have to aess parts ofthe system's state. A developer may delare onstraints suh as �lok A protets this array,� or �this arrayis read and written only by thread B.� The informal approah adopted by developers to these onstraintsreates multiple problems:� The rules governing aess to state are rarely doumented, and are often not apparent to developersexamining the implementation of systems� The behavior of the system's implementation may not onform to the rules established by developers,leading to intermittent system failures due to onsisteny errorsIn this setion we introdue diretives to address these problems by relating the informal reasoning ofdevelopers to the formal model given above. The �rst set of diretives allows developers to de�ne parts ofthe system state alled regions. Eah blok of memory reated by the memory alloations routines is plaedinto region through a proess desribed in Setion 3.3.1. Developers doument the onstraints desribedabove by hoosing an aess poliy, desribed in Setion 3.3.2, for the region. There are two advantages todevelopers in doing this work. First, the diretives allow heked exeution to identify data raes that maybe present in the system. Seond, the diretives allow the runtime system to provide the stop(), continue(),and undo() operations that are needed to rediret requests.3.3.1 RegionsA region is a set of bloks of memory. All of the bloks in a region are treated as a single unit with respetto thread permissions. Spei�ally, a thread gaining aess to one blok in a region simultaneously gains38



S1 typedef struct {int i; char *o; } job;S3 int main(int argc, char *argv[]) {S4 pthread_t c;S6 job *j = malloc(sizeof(*j));S7 j�>i = atoi(argv[1]);S8 pthread_create(&c, NULL, do_work, j);S10 ...S12 pthread_join(c, NULL);S13 printf("%s\n", j�>o);S14 return 0;S15 }S17 void *do_work(void *ctx) {S18 job *j = ctx;S19 j�>o = malloc(10);S20 snprintf(j�>o, 10, "%d", j�>i);S21 return NULL;S22 }Listing 3.2: In this example the job alloated at S14 a thread-on�ned blok. The statements in boldtype (lines S16 and S20) enfore the thread-on�nement via a ombination of bloking and happens-beforerelationships.aess to every other blok in the region. A region an be as small as a subset of indexes in an array, alleda slie. However, in most systems a region is either a single blok of memory or a olletion of bloks ofmemory. Many other de�nitions of regions will do as long as all threads in the system agree on the identityof regions and the regions are non-overlapping.Our design of regions was originally based on prior work in stati analysis tools. This work establishedthat grouping bloks of memory redues the annotation e�ort for many systems [44℄. While our diretivesare based on the annotations developed for this work, our diretives make a distintion between having areferene to a blok in a region and having permission to aess the region. This distintion allows ourdiretives to diretly support oding patterns, suh as the one desribed in Listing 3.2, where threads retainreferenes to bloks that they will not aess.The region_t new_region(policy) diretive reates a new region. This diretive aepts a single parameterthat spei�es the poliy that governs aess to the region. The aess poliy for a region is �xed for theregion's lifetime, and ontrols whih Grant ations are legal for the region. A list of poliies is given in thenext setion. By de�nition, the thread invoking the new_region() diretive obtains Write permissions to theregion.The new_region() diretive returns a region identi�er that an be used to referene the region in futurediretives. It is often not neessary to store the region identi�er, sine it an easily be retrieved by applyingthe region_of(block) to one of the bloks of memory in the region. However, when the region is �rst reatedit ontains no bloks, making it neessary to referene the region with its identi�er.The proess of populating a region is indiret to aommodate systems that reate new bloks of memoryin reusable ode. Our approah allows the aller of a funtion to propose a default region for any new bloksthat are reated, while allowing the funtion to override the proposed region. Funtions should overridethe aller's region only when alloating bloks ompletely under their ontrol. For example, a funtion thatinvolves omplex alulations may hoose to memoize [73℄ its results, storing them in enapsulated bloks39



guarded by a lok. When alloating the memory for these bloks the funtion must override the aller'sregion. However, the funtion should restore the aller's region before alloating a blok used to return thefuntion's result.For example, onsider the char *strdup(char *input) funtion from the C runtime library, whih aepts astring as input and reates a new opy of the string on the heap, returning a pointer to the new string. Onealler may use strdup() to alloate a string that will be part of a region that is proteted by a lok. Anotheraller may use strdup() to reate an immutable string. Finally, the aller of strdup() may itself be unawareof the poliy that will be used to protet the string.To address these ases, we use de�ne a diretive�region_t bind(region_t)—that assigns a �urrent region�to the thread that exeutes it. When a memory alloation routine reates a new blok, it retrieves the urrentregion for the thread doing the alloation and plaes the blok into it. The urrent region has no e�et thethread's exeution outside of the memory alloation routines. Threads are initially bound to a thread-loalregion when they are reated. Sine the thread-loal poliy is the most restritive, using it as the defaulteliminates the possibility that raes will go undeteted due to missing diretives.De�ning bloks as by single alls to a memory alloation routine an reate problems for some systems.Some systems share state in arrays, assigning permissions to aess non-overlapping slies of the array todi�erent threads. For example, the x264 video enoder plaes frames into a two-dimensional array and grantsthreads permission to aess individual sanlines.3 We propose speialized diretives�get_rw_slice(array,
low, high), get_ro_slice(array low, high), release_rw_slice(array, low, high), and release_ro_slice(array, low,
high)�that allow threads to request read and write permissions for slies rather than the entire array.Threads are not obligated to use the same ranges in the release diretives that they used in get diretives.For example, an enoding thread in x264 typially issues a get for the entire array representing a frame, butissues a release for eah sanline as it is enoded. Allowing the use of arbitrary, but non-on�iting, rangesin the array slie diretives makes it easier to use diretives to model the system.3.3.2 Poliies governing aess to regionsThe assignment of permissions for every region in the system is governed by an aess poliy. In this setionwe propose a atalog of aess poliies, working from the most restritive poliies to the most �exible. Ingeneral the most restritive poliies require the smallest number of diretives. However, the over use ofrestritive poliies an introdue attentiveness failures in systems. For example, poliies based on loking aresound beause they both blok threads requesting on�iting permissions and also establish happens-beforerelationships [65℄ before they transfer permissions among threads. While these poliies are simple to applyand verify, their use of bloking introdues a threat to promptness.Other poliies rely on developers to oordinate the threads of the system to ensure that threads do notattempt to aquire on�iting permissions to regions. To preserve soundness, these poliies treat any attemptby a thread to aquire on�iting permissions as a fatal error. It is possible for developers to write ode thatwill fail intermittently when using these poliies if the oordination among the threads is inadequate. Wedisuss this issue in more detail in Setion 5.2.3.Our poliies are a superset of the poliies desribed in Chapter 3 of Java Conurreny in Pratie [40℄,and are very similar to the types used for heking data sharing strategies in multithreaded C ode [3℄.They also inorporate knowledge from stati analysis for onurreny, whih identi�ed patterns of non-lokonurreny [97℄:Thread-loal regions an be aessed by only the thread that reates them. Threads do not need toengage in any oordination before aessing thread-loal regions. Thread-loal regions ould be generated asa speial ase of many other poliies. However, we believe that there are several advantages to providing anexpliit thread-loal poliy. First, delaring a region to be thread-loal allows a developer reading the ode to3x264 represents the frame as a single objet, not an array of sanlines.40



know that the region will never be shared. In addition, systems with non-uniform memory aess (NUMA)an use the information that a region is thread-loal to alloate the region in loal, fast memory. Finally,we are able to use this knowledge in our runtime systems to make e�ient use of memory. Permissions tothread-loal regions an never hange. Therefore, any thread exeuting a diretive that would result in aGrant or Revoke ation for a thread-loal region will stop with an error.Guarded regions are proteted by a onurreny-ontrol onstrut, de�ned by the memory model for thesystem, suh as the monitors desribed in the Java Memory Model [20℄ or the mutexes desribed in a memorymodel being developed for C++ [14℄. These onstruts provide mutual exlusion by bloking threads. Theyalso reate a happens-before relationship between the thread relinquishing the mutual exlusion and a newthread that obtains mutual exlusion.Developers must point to a spei� instane of an appropriate onurreny-ontrol onstrut, suh asa pthread_mutex, when reating a guarded region. The runtime system will automatially proess aGrant(Write) ation to the region when a thread obtains mutual exlusion and proess a Release(Write)ation to the region when a thread relinquishes mutual exlusion.Immutable regions go through two phases. In the initial phase the thread that reates the region hasexlusive read-write aess to it. After initializing the region, the thread will relinquish write aess to theregion and publish it. In the abstrat model, this is equivalent to invoking Release(Write) followed by aGrant(Read) for the thread that reated the region. Other threads in the system will eventually also reeivea Grant(Read) to the region. The timing of this Grant(Read) is left to the implementers of the runtimesystem.4We assume that publishing an immutable region establishes a happens-before relationship between thepublisher and any thread that subsequently aesses the region. Other threads must oordinate with thepublisher to establish a happens-before relationship before aessing the region. In Java this is alled �safepubliation� [40℄, and is often implemented with synchronized bloks. One a region has been publishedthere is no mehanism that allows a thread to gain write to the region. As a result, there is no way to freethe region after it has been published. Therefore, immutable regions should be used only for state that willneed to exist for the lifetime of the proess that reated the region. The phased-immutable poliy desribedbelow an be used to implement immutable regions that an be destroyed.Thread-on�ned regions are read and written by only a single thread, alled the owner, at any giventime. Unlike thread-loal regions, the owner of a thread-on�ned region may Release(Write) it, allowing atmost one other thread to laim ownership of the region via a Grant(Write) ation. An example of thread-on�ned regions is shown in Listing 3.2. The pthread_create() all at line S8 allows the parent thread topass a referene to j, the job blok reated at line S6. The parent must not hange the data in j while thehild is running to avoid reating a data rae. After the pthread_join() all at S12 ompletes, reating ahappens-before edge, the parent an aess j to read the results generated by the hild thread.Phased-immutable regions exist in one of three states: exlusive, shared, and unassigned. The phased-immutable poliy is the most �exible sound poliy in the atalog, giving developers diret ontrol overGrant()and Release() ations. When they are �rst alloated, phased immutable regions are in the exlusive state andowned by the thread that reated them, whih exeutes a Grant(Write) ation. The owner an then issuea Release(Write) ation by exeuting the release_transferable(region_t) diretive, plaing the region in theunassigned state. When a region is in the unassigned state any thread an obtain permissions for it. If thethread obtains both read and write permissions by exeuting the get_transferable(region_t) diretive, it issuesa Grant(Write) ation. The thread beomes the new exlusive owner of the region. If the thread obtains onlyread permissions by exeuting the get_transferable_ro(region_t) diretive, it issues a Grant(Read), ausingthe region to enters the shared state. In this state no single thread is the owner of the region. When a regionis in the shared state additional threads an obtain read permission to it. Threads an Release() the readpermission that they have obtained by exeuting the release_transferable_ro(region_t) diretive. When the4 However, the resulting delay must never result in a false report of a violation of the immutable poliy.41



last thread releases its read permission, the region moves bak to the unassigned state. This de�nition ofthe exlusive, shared, and unassigned states ensures that threads obtain only non-on�iting permissions tothe region.Listing 3.3 shows an example of the diretives that are needed to reate a phased-immutable regionontaining a single blok and transfer the region between a parent thread and a hild thread. The parentthread, exeuting at line A9, �rst reates a new region governed by the phased-immutable poliy, in theproess reating a Grant(parent;Write) for the new region. Next, still at A9, the parent thread binds theregion. The bind() diretive returns the region that was previously bound to the thread, allowing the threadto restore the previous region at line A11. Assuming that the program loader alled the main funtion, thesaved region will be the thread-loal region for the parent thread.Line A10 alloates a job blok. The runtime system automatially adds the blok to the bound region.Sine the parent urrently has exlusive read-write aess to the region, the parent is able to initialize thejob blok at line A13. The parent then releases its permissions to aess the region at line A15, generatinga Release(parent;Write).The release happens indiretly by referring to the job blok. We allow developers to get and releaseregions by referening one of the bloks in the region rather than referring to the region identi�er expliitly.This an be onfusing, sine the release will apply to every blok in the region. However, using bloks asproxies for regions greatly redues the e�ort involved in adding diretives to existing systems, freeing thedevelopers from the task of storing and forwarding region identi�ers. This deision is not fundamental toour approah, and ould be easily revised in the future.Even though the parent thread has released its permissions to aess the job blok, it has retaineda referene to it. The parent an safely pass this referene to the pthread_create() all at A17 beause
pthread_create() will not use this referene to aess the blok. Instead, pthread_create() passes the refereneas a parameter to the hild thread, whih starts at line A31. The hild must obtain read-write permissionsfor the region by alling get_transferable() at A32, reating a Grant(hild;Write). This all would result inan error if the region if there were an unreleased Grant(Write). However, a human reader an determinethat this will not be the ase by examining the ode: the release_transferable() at A15 ompleted beforethe hild was started, and the only other get_transferable() ours at A21. However, the pthread_join() allat A19 ensures that A21 will not exeute until the hild exits.Obtaining permissions for the region gives the hild the ability to aess bloks within the region, butdoes not ause new bloks to be plaed in the region. Sine the hild wants to add a new blok to the region,it exeutes bind() at line A33, ausing the blok at A19 to be plaed into the same region as the job blok.If the hild skipped this binding the new blok would have been alloated in the hild's thread-loal region,ausing the dynami analysis to �nd a poliy violation when the parent aessed the blok at A23. The hildthen releases its permissions at line A39 and exits.In the parent, the pthread_join() all at line A19 reates a happen-before relationship with the hild atthe point where the hild exits. Therefore, the get_transferable_ro() at line A21 will sueed, granting readpermission to the region to the parent thread. The parent thread then reads both the job blok and thestring added to the job blok's region by the hild and exits.Thread-safe regions grant read and write permissions to every thread in the system when they arereated. As a result, thread-safe regions are both highly �exible and also unsound. Developers must oftenassign the thread-safe poliy to some regions. For example, pthread_mutex strutures must be aessible toevery thread in the system to allow threads to use mutexes to oordinate their ativity. Allowing this aessis safe beause mutexes are aessed through speial routines, suh as pthread_mutex_lock(), that aessthe region with atomi low-level atomi memory operations that also reate happens-before relationships.Similar tehniques are used to implement other thread-safe regions, suh as non-bloking data strutures [57℄.Sine threads do not use diretives to obtain aess to thread-safe regions, these regions do not au-tomatially propagate dependenies. Developers an use speial diretives, desribed below, to propagate42



dependenies in ode that aesses these regions.3.4 DependeniesWe provide several diretives to give developers greater ontrol over the propagation of dependenies in thesystem. Developers must use these diretives to propagate dependenies reated by thread-safe regions, andmay use to gain �ne-grained ontrol of dependenies in other types of regions. To do this, they use the
read_dependency() and write_dependency() diretives.The read_dependency(region_t region) diretive indiates that the request assoiated with the urrentthread should inherit the dependenies urrently assoiated with the region. The write_dependency(region_t
region) diretive indiates that the urrently bound request should be added to the region's dependenies.By default, poliies have di�erent e�ets on dependenies, as desribed below:Thread-loal regions an reate dependenies among requests. Sine threads do not need to use dire-tives to request aess to their thread-loal regions, by default the runtime system assumes that using a threadto proess a request makes the request dependent on the thread's loal regions. As a result, using a threadto proess two requests, one after another, will ause the seond request to depend on the �rst requests. Theruntime system will not reate these dependenies if developers use the no_region_dependencies() diretive.This diretive informs the runtime system that the thread's loal regions are used only for temporary storagewhile proessing requests and do not propagate information between requests. Grand Central Dispath [4℄plaes similar restritions on ode that runs in blok objets.Guarded regions normally reate a dependeny between the requests that obtain aess to the region.They assume that every request that gains aess to the region modi�es the region. Developers an gaingreater ontrol over the dependenies at the expense of writing more diretives by using the phased-immutableregions desribed below.Immutable regions an propagate dependenies among requests. Before the region is published, it willaumulate a dependeny on every request bound to the thread that reated the region. When other threadsobtain read-only aess to the region after it has been published every request assoiated with the threadwill beome dependent on the dependenies of the region. We expet that developers will normally markimmutable regions with the no_region_dependencies() diretive to avoid this behavior.Thread-on�ned regions propagate dependenies among requests. The region aumulates dependen-ies on every request assoiated with the thread that owns the region. When the region is transferred, therequest assoiated with the thread that obtains the region inherits these dependenies, the set of dependen-ies assoiated with the region is leared, and the urrently assoiated request is added to the set. If thethread still has aess to the region when new requests are assoiated with it, they will be added to theregion's set.Phased-immutable regions propagate dependenies among requests. Threads that request read-onlyaess to phased-immutable regions inherit the set of dependenies from the region, but do not modify theset. Threads that request read-write aess to the region inherit the urrent set of dependenies from theregion, and add any requests assoiated with the thread to the set.Threads an deativate the default dependeny propagation for these poliies for a partiular region byexeuting the no_region_dependencies(region_t region) diretive. For example, developers may use this allto deativate dependeny propagation for a sequene ounter. The results obtained from sequene ountersare rarely a�eted by the rediretion of one of the requests that aessed the ounter. One this diretivehas been exeuted on a region developers must issue the diretives given above to propagate dependeniesmanually to avoid onsisteny failures during rediretion.43



A1 typedef struct {A2 int i;A3 char *o;A4 } job;A6 int main(int argc, char *argv[]) {A7 pthread_t c;A9 region_t saved = bind(new_region(PHASED_IMMUTABLE));A10 job *j = malloc(sizeof(*j));A11 bind(saved);A13 j�>i = atoi(argv[1]);A15 release_transferable(j);A17 pthread_create(&c, NULL, do_work, j);A18 ...A19 pthread_join(c, NULL);A21 get_transferable_ro(j);A23 printf("%s\n", j�>o);A25 release_transferable_ro(j);A27 return 0;A28 }A30 void *do_work(void *ctx) {A31 job *j = ctx;A32 get_transferable(j);A33 region_t saved = bind(region_of(j));A34 j�>o = malloc(10);A35 bind(saved);A37 snprintf(j�>o, 10, "%d", j�>i);A39 release_transferable(tW);A41 return NULL;A42 }Listing 3.3: Diretives to desribe a thread-on�ned job blok, alloated on line A21. The diretives in thislisting are shown in bold type.
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3.5 Tollgates: handling ompositionWhen developers build systems, they often hoose to inorporate third party omponents. Developers maynot be able to inspet these omponents, espeially when they are delivered in ompiled form. In addition,developers may not have the time or expertise to add diretives to these omponents. This rarely presentsa problem for diretives related to promptness and requests, sine they an usually be plaed outside of themodule. However, the lak of diretives in the module reates risk that the system's onsisteny ould beompromised, either by unoordinated state sharing within the module or due to inonsistenies introduedduring rediretion due to a lak of knowledge of the dependenies reated within the module.We address this problem by allowing developers to attah modi�ers to the funtion signatures that de�nethe interfae of the module. These modi�ers trak ownership of the bloks referened in the signature,permissions to aess these bloks, and provide information about the dependenies that may be reatedby the module. A preproessor takes this information and reates a tollgate for the module. A tollgateis a layer that wraps the module, interepting alls from the system to the module and returns from themodule to the system. The tollgate allows the runtime system to enfore the information provided in themodi�ers. Exeution passes through the tollgate when one of the funtions in the module's interfae is alledor returns. The tollgate has no e�et if both sides of the tollgate have diretives or both sides of the tollgatelak diretives. In other ases, the tollgate �ativates.�In our disussion below we assume that the alling funtion is part of a module that has been augmentedwith diretives, but that the alled funtion is in an �opaque� module. We believe that the de�nition oftollgates developed below an also be applied in the opposite situation, a reverse tollgate where the allerhas not diretives and alls ode with diretives.Tollgates do not support the array slies desribed in Setion 3.3. Therefore, in the bloks disussedbelow are reated by alls to the memory alloation routines, suh as malloc(). Bloks that remain underthe ontrol of the module are plaed in a region that is only aessible while the tollgate is ative. We allthis the tollgate region. There is only one tollgate region for the entire system.When ontrol rosses an ative tollgate, the tollgate may reassign ownership of the bloks referened inthe funtion's parameters and return type. This behavior is ontrolled by modi�ers that are attahed to thefuntion signatures that de�ne the tollgate. When bloks are reassigned to the alled module, the tollgatemoves the bloks into the tollgate region. When bloks are reassigned to the aller, the tollgate plaes thebloks into the urrent thread's bound region. Any of the aller's bloks that are not reassigned remain intheir original regions. The poliies attahed to the aller's region will ontinue to be enfored in funtionsin the alled module during heked exeution.During trusted exeution, when poliies are not enfored, tollgates at muh like the annotations devel-oped for MultiRae [81℄. MultiRae heks for rae onditions in systems that are omposed from third-partyomponents. The annotations used for MultiRae are trusted and predit the read and write sets of the all.Therefore, inaurate annotations ould ause MultiRae to fail to detet a rae. A similar problem willour when the runtime system trusts inaurate tollgates. Dependenies among requests may be missed,ausing onsisteny failures during rediretion.3.5.1 Syntax of tollgatesIn some ases, the tollgate region may impose too many dependenies. For example, in C there are manylow-level funtions, suh as the ones marked with independent in Listing 3.4, that aess only the bloks ofmemory provided in their parameters. Sine these bloks are handled by regions, there is no need to reatenew dependenies due to the all to the library.We de�ne three modi�ers that desribe the relationship between funtions and the tollgate region:45



E1 writer int fclose(opaque FILE * fp);E2 writer int fflush(opaque FILE * fp);E3 writer opaque FILE * fopen(borrowed_ro const char * filename, borrowed_ro const char * mode);E4 writer opaque FILE * fopen64(borrowed_ro const char * filename, borrowed_ro const char * mode);E5 writer int fseek(opaque FILE * fp, long int offset, int whence);E6 writer int fseeko(opaque FILE * fp, off_t offset, int whence);E7 writer int fseeko64(opaque FILE * fp, __off64_t offset, int whence);E9 writer int fgetc(opaque FILE * fp);E10 writer size_t fread(borrowed_rw void * buf, size_t size, size_t count, opaque FILE * fp);E11 writer transparent char * fgets(borrowed_rw char * buf, int n, opaque FILE * fp);E13 writer int fputc(int c, opaque FILE * fp);E14 writer size_t fwrite(borrowed_ro const void * buf, size_t size, size_t count, opaque FILE * fp);E15 writer int putchar(int c);E16 writer int puts(borrowed_ro const char * str);E17 writer int vfprintf(opaque FILE * s, borrowed_ro const char * format, borrowed_rw __gnuc_va_list ap);E18 writer int printf(borrowed_ro const char * format, ...);E20 reader int feof(opaque FILE * fp);E21 reader long int ftell(opaque FILE * fp);E22 reader __off_t ftello(opaque FILE * fp);E23 reader __off64_t ftello64(opaque FILE * fp);E25 independent void free(consumed void * mem);E27 independent transparent void * memcpy(borrowed_rw void * dst, borrowed_ro const void * src, size_t len);E28 independent transparent void * memset(borrowed_rw void * dst, int c, size_t len);E30 independent accepted char * strdup(borrowed_ro const char * s);E31 independent int strcasecmp(borrowed_ro const char * s1, borrowed_ro const char * s2);E32 independent int strcmp(borrowed_ro const char * p1, borrowed_ro const char * p2);E33 independent transparent char * strcpy(borrowed_rw char * dest, borrowed_ro const char * src);E34 independent int strncasecmp(borrowed_ro const char * s1, borrowed_ro const char * s2, size_t n);E35 independent transparent char * strstr(borrowed_ro const char * haystck, borrowed_ro const char * needle);E36 independent double strtod(borrowed_ro const char * nptr, borrowed_rw char * * endptr);E37 independent long int strtol(borrowed_ro const char * nptr, borrowed_rw char * * endptr, int base);Listing 3.4: Examples of modi�ers from the C runtime library
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� Writer indiates that the funtion obtains a Grant(Write) to the tollgate region on entry and does aRelease(Write) on the region when it exits. The funtion may both read and write bloks that in thetollgate while it exeutes. Therefore, the all must propagate dependenies through this region. If nomodi�er is provided, the tollgate assumes that the funtion is a writer. For example, fread() is a writerbeause it modi�es the �le's bu�ers, whih are under ontrol of the C runtime library.� Reader indiates that the funtion obtains a Grant(Read) on entry to the funtion and does a Re-lease(Read) on exit. The funtion may read bloks that are in the tollgate region, but will not modifythem. Calling request will beome dependent on any writers that have entered the tollgate regionbefore the funtion exits. For example, feof() is likely to be a reader, sine it examines the �le bu�er.However, if the implementation of feof() memoizes its result, it must be treated as a writer.� Independent indiates that the funtion will not aess bloks in the tollgate region. Therefore, thetollgate will not reate dependenies. For example, the memcpy() routine is likely to be independentbeause it modi�es only the destination bu�er.Developers also add modi�ers to eah parameter and return value in the funtion signatures. The modi�ersattahed to the parameters are shown in Table 3.2.The accepted modi�er indiates that ownership of a blok will be transferred from the funtion to itsaller as the funtion returns. For instane, the return value from the malloc() funtion would be marked as
accepted.The consumed modi�er indiates that ownership of the blok will transfer from the aller to the funtion.For instane, the parameter to the free() funtion would be marked as consumed.The borrowed_ro and borrowed_rw modi�ers apply to the input parameters to funtions, to allow thefuntion to borrow [18, 19℄ read-only or read-write aess to the blok until it returns. The C runtime library'sstring opy funtion, strcpy(destination, source), provides a onvenient example of the use of borrowed. The�rst parameter spei�es the destination string, whih is borrowed_rw beause this string will be written. Theseond parameter spei�es the string to be opied, whih is borrowed_ro, indiating that strcpy() will readthis blok but not write to it. During heked exeution the tollgate will hek that a thread has obtainedthe appropriate level of aess to the parameters in question.The borrowed_ro modi�er is partiularly subtle when allbaks are involved, as is the ase in the Cruntime library's bsearch(key, array, ..., compare) routine. This routine implements a generi binary searhthat will work with any sorted array. Sine the routine will not modify the array, the key and array parametersare annotated with borrowed_ro. Developers must provide a pointer to a funtion that an ompare twokeys in the array when alling bsearch(). This leads to two alternatives when a thread alls bsearch() whileit has read-write aess to an array. In the onservative ase, read-write aess will be dropped before ontrolreturns to the compare() funtion. A more pragmati approah would retain read-write aess to the array.We believe that the runtime system should be onservative during heked exeution.The opaque modi�er indiates that the aller had no permissions to the blok, but grants permissionsto the funtion being alled. For example, fopen(path, permissions) returns a pointer to an opaque FILEblok to its aller. The aller provides this pointer to other alls, suh as fread() and fclose(), to identify the�le to be ated on. However, the aller should not examine the �le blok diretly.The transparent modi�er indiates that the aller has permissions to the blok, but the funtion is allowedto hold a referene to the blok. Ownership of the blok is retained by the aller, and permissions may varywhile the alled omponent holds its referene to the blok. For example, the key and value parameters to
g_hash_table_insert(key, value) in the GLIB library [98℄ would typially be marked as transparent toindiate that the hash table will retain a referene to the bloks while allowing the aller to use the bloksin other data strutures.The tollgate, ooperating with the runtime, an diretly hek the Reader, Writer, Independent, and
opaque modi�ers. This is not true for all of the modi�ers. The accepted, consumed, borrowed_ro, and47



Modi�er Diretion Before all During all After CallOwner Permissions Permissions Owner PermissionsCaller Funtion Caller Funtion Caller Funtion
consumed A alls U C ERW X X RW F X RWU alls A C RW X X ERW F X P
accepted A alls U F X RW X RW C P NU alls A F X P X P!ERW C RW X
borrowed_ro A alls U C R or ERW X R R C S XU alls A C RW X R R C RW X
borrowed_rw A alls U C ERW X X RW C ERW XU alls A C RW X X ERW C RW X
opaque A alls U F N RW N RW F N RWU alls A F N P N P F N P
transparent A alls U C P X P P C P PU alls A C RW X RW N C RW Nunmodi�ed A alls U F X RW X RW F N RWU alls A F X P X P F N PA alls U C P N P P C P NU alls A C RW N RW N C RW Nblok owner is indiated by:C blok owned by the aller's moduleF blok owned by the funtion's modulePermissionsE Thread has exlusive aessN Referene with no permissionsP Permissions determined by the blok's poliyR Read permissionS Same as before allW Write permissionX No refereneModule statusA AnnotatedU UnannotatedTable 3.2: De�nition of modi�ers that de�ne tollgates. The accepted and consumed modi�ers shown abovethe break are su�ient for ompositional heking. The modi�ers below the break provide more ompletedoumentation of the module's interfae. The terms aller and funtion refer to the aller and funtion'smodules. The aller olumn in the during all setion desribes the aess granted to bloks to other threadsin the alling module for the duration of the all. Unmodi�ed is a speial ase, applying only to defetivetollgates, indiating the permission hanges for bloks that ross the tollgate without a modi�er.
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borrowed_rw modi�ers desribe the presene or absene of referenes to regions. The tollgate and runtimehave no way to diretly hek these diretives: they hek aesses to regions rather than traking referenesto regions. Instead, the tollgate translates these diretives to permissions hanges that ontinue to be enforedafter exeution leaves the tollgate. As a result, any attempt to use an invalid referene will reate an error.We have reated a partial tollgate for the C runtime library. The diretives needed to reate this tollgateare shown in Listing 3.4.3.5.2 Bloks alloated behind a tollgateThe accepted modi�er allows the aller to reeive bloks that were initially alloated by the funtion behindthe tollgate, alled the allee below. When this modi�er is absent bloks alloated by the allee an be plaedinto the tollgate region immediately. In this ase, the presene of the memory alloation makes the allee a
writer of the tollgate region. Below we will disuss two ases that our during heked exeution: handlingnew bloks when the funtion is marked as a writer and handling new bloks when the funtion is markedas either a reader or independent.WritersWhen a writer alloates a new blok, the blok is logially part of the tollgate region. However, plaing theblok into the tollgate region immediately ompliates the implementation of the accepted keyword, sinethe tollgate will need to obtain exlusive aess to the blok while moving it to the aller's bound region.This would involve foring the other threads urrently behind the tollgate to issue Release(Write) ationsbefore the aller an exit the tollgate. Foring this level of synhronization among threads is very expensiveand would greatly inrease the expense of exiting tollgates.Instead, writers plae eah new blok into a phased-immutable region. If a seond thread attempts toread or write the blok, it will enounter an error. However, in this ase the error does not indiate aninonsisteny in the diretives, sine the new blok was logially in the tollgate region. The seond threadsimply does a Grant(Write) on the blok and resumes exeution.When the �rst thread begins to exit from the tollgate, it identi�es the bloks that orrespond to acceptedkeywords. It then examines the � funtions for these bloks. If the � funtion indiates that no other threadshave aessed the blok, the �rst thread is able to reassign the blok to the aller's region immediately. Ifthe � funtion indiates that other threads have aessed the blok, the �rst thread ontats these threads,foring them to issue a Release(Write) for the region. When this proess is omplete, the region an bereassigned. Any bloks alloated behind the tollgate that are not reassigned are added to the tollgate region.Reader or independentSome funtions that alloate bloks are not writers. For example, accepted char * strdup(char *string)alloates a blok of memory, opies string into the blok, and returns the blok to its aller. It is highlyunlikely that strdup() will aess any bloks in the tollgate region. Therefore, making strdup() a writer wouldunneessarily propagate dependenies through the system.To handle this ase, we use a speial tollgate for funtions that have the accepted modi�er but donot have the writer modi�er. In these funtions, we reate a phased-immutable region for every memoryalloation, plaing the newly reated blok into the region. The reation of the region issues a Grant(Write)on the region to the thread exeuting behind the tollgate.If a seond thread, also exeuting behind the tollgate, attempts to read from or write to the blok, wereport an error. The aess by the seond thread indiates that the �rst thread ated as a writer, making the49



modi�er that de�ned the tollgate inonsistent. A developer an resolve this error by modifying the keywordto be writer. In some ases it is possible to resume the exeution of the system by imposing the writerkeyword at runtime.Assuming that the funtion exeutes to ompletion, the tollgate proesses the accepted keyword, as-signing a new poliy to the referened bloks based on the bound region of the alling thread. Any bloksthat remain are not added to the tollgate region, sine this would make the funtion a writer. These bloksare owned exlusively by the thread that alloated them, but are aessible only when the thread is be-hind the tollgate. Therefore the tollgate will issue a Release(Write) on these regions as it exits and issue aGrant(Write) on these regions when it reenters.3.5.3 Rules governing the implementation of tollgatesWe have adopted the following rules in our design and implementation of tollgates. These rules are designedto make the e�et of tollgates lear and to minimize the hane that onsisteny errors an arise as exeutionmoves through tollgates.Every blok in the system is owned by either the aller or the alled module, but never both.For onveniene we all these bloks aller bloks and allee bloks. This rule has two impliations. First, itspei�es that there are no bloks in the system that are owned by neither the aller nor the allee. Seond, itasserts that at any given point in time all of the threads in a system agree on the owner of any given blok. Ifthis were not the ase threads running in a module without diretives ould possibly update a blok after itpassed through a tollgate to the system, ausing undeteted onsisteny failures in bloks proteted by soundpoliies even under heked exeution. Cathing these errors during heked exeution allows developers todetet and resolve inonsistenies in the tollgate for the module in question.Every aess to a aller blok is heked. This rule ensures that modules without diretives arenot able to violate the aess poliy put in plae by the aller during heked exeution. These violationsindiate that the tollgate for the module does not aurately re�et the module's behavior.A allee blok may beome a aller blok only when a thread rosses an ative tollgate.The blok must be referened diretly or indiretly by the annotated signature. The tollgate will assigna poliy to the blok, taking the poliy either from the modi�ers in the funtion's signature or the poliybound to the thread rossing the tollgate. The thread rossing the tollgate will gain exlusive aess to theblok before exiting the tollgate. This rule governs the behavior of the accepted modi�er, and ensuresthat allee bloks annot beome aller bloks spontaneously.A aller blok an beome a allee blok only when a thread rosses a tollgate. The blokmust be referened diretly or indiretly in the annotated signature. The aller must obtain exlusive aessto the blok before entering the tollgate. The blok may not be thread-loal5 or immutable. We have usedthis rule only for routines that either destroy or relinquish ontrol of bloks, suh as free() and fclose(). Thisrule governs the behavior of the consumed modi�er. Like the previous rule, it ensures that bloks annotbeome allee bloks spontaneously. It also plaes responsibility on the aller for ensuring exlusive aessto bloks rossing a tollgate. By foring the aller to obtain exlusive aess, we ensure that no other threadwill aess the blok as it rosses the tollgate. If these aesses were allowed they may not be heked againstthe blok's poliy, potentially ausing false negatives.A thread may aess a blok within a tollgate, but the aesses must our while the blokis a aller blok. Typially bloks are not aessed within tollgates. However, when a olletion of blokspasses through a tollgate and the ownership of the olletion is transferred, the tollgate may need to read�elds in one or more of the bloks to identify other bloks that must be transferred. For example, if a tree ispassed through a tollgate the tollgate would need to read the left and right pointers of eah node to identifynodes in the tree. We speify that these aesses must happen while the blok is proteted by a poliy. As5Funtions that destroy bloks, suh as free(), are treated as a speial ase. See Setion Setion 5.3.3.50



I1 void call_annotated_module(consumed char *data);I3 char *blocks[3];I4 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;I5 int locked_buf = 0;I7 void *do_work(void *ctx) {I8 int id = ctx;I9 char *obj;I11 pthread_mutex_lock(&lock);I12 obj = blocks[locked_buf];I13 locked_buf = id;I14 pthread_mutex_unlock(&lock);I15 call_annotated_module(obj);I16 return NULL;I17 }I19 int main(int argc, char *argv[]) {I20 pthread_t c1, c2;I22 blocks[0] = malloc(1);I23 blocks[1] = malloc(1);I24 blocks[2] = malloc(1);I25 pthread_create(&c1, NULL, do_work, 1);I26 pthread_create(&c2, NULL, do_work, 2);I27 pthread_join(c1, NULL);I28 pthread_join(c2, NULL);I29 return 0;I30 }Listing 3.5: This is an example of rae-free ode that is non-deterministi. blok[0℄ will always be passed tothe annotated module in this ode. However, the seond blok will either be blok[1℄ or blok[2℄, dependingon the interleaving of the two hild threads. A rae ould go undeteted if developers attempt to omposemultiple runs of the ode that pass di�erent bloks to the tollgate. The loked setion from I11-I14 ensuresthat there is no rae between the threads that attempt to alloate bloks.
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a result, heked exeution will detet any raes that ould our as the blok passes through the tollgate.These aesses indiate that the ownership transfer spei�ed in the tollgate is not sound, sine threads inboth the aller and the allee are attempting to aess the blok.When ombined, these rules allow us to de�ne a set of heked aesses for eah thread. Eah thread'sset of aesses depends solely on its ativity and the identify of bloks entering tollgates. As a result, theontent of eah thread's set is ompletely independent of thread interleaving.During heked exeution the runtime will not generate false positives, sine it heks only aesses thata�et bloks urrently governed by a poliy. Therefore, every error generated by the system an point todiretives that established a poliy for the blok, the permissions for the thread attempting to aess theblok, and the aess that violates the poliy. Developers an then trae eah of these reports to a defet inthe system's implementation, one or more diretives, or one or more tollgates.We an trivially demonstrate that the runtime system avoids false negatives during heked exeutionwhen all of the modules in a system have diretives. However, in systems with ative tollgates it is possibleto reate intermittent false negatives by manipulating the identity of bloks passed through tollgates. Anexample of ode that does this is shown in Listing 3.5.3.6 PromptnessPromptness is also a onern for attentive systems. Therefore, we have developed diretives to allow develop-ers to doument their assumptions about promptness in implemented systems. Our approah to promptnessdi�ers from our approah to onsisteny. First, there is some ambiguity in the de�nition of promptness thatwe propose. The alulus of short and long operations that we propose in Setion 2.3 fouses on boundedand unbounded sequenes of operations. However, from the lient's point of view, promptness is generallydetermined by measuring the exeution time of sequenes in terms of aknowledgment times. Our diretivesof promptness are based on the alulus of short and long operations. However, the runtime system heksthe diretives with referene to the aknowledgment time.Seond, we do not treat a promptness failure as a fail-stop ondition. Instead, promptness failures shouldbe logged. The log entry should point to the diretives that were violated. Ideally the entry would alsoinlude the all stak.There are several reasons to avoid treating promptness failures as a fail-stop ondition. First, unlikeonsisteny failures, it is possible to allow a system to ontinue exeuting after a promptness failure withoutreating an additional threat to attentiveness. Seond, runtime systems are often able to address promptnessfailures by falling bak to more onservative forms of rediretion that ignore the inonsistent diretives.Finally, the design of many systems makes it muh more di�ult to be on�dent that diretives related topromptness will be aurate. Logging rather than stopping allows developers to be aggressive in adding andadjusting these diretives, thus allowing them to gain knowledge about their systems quikly. In addition,it allows them to leave heking in plae in deployed systems, potentially providing debugging informationfor attentiveness failures in these systems.Below we will desribe three promptness diretives. The �rst allows developers to mark a sequene ofoperations that they believe will be short. The seond allows developers to inform the runtime system thata short sequene of operations should be atomi with respet to the stop operation. We will demonstratethat these annotations allow developers to reate algorithms that an be stopped while retaining partialhanges by applying them to a sorting algorithm. Finally, we will desribe annotations that allow developersto identify short-duration loks [43℄. Short duration loks allow developers to reate systems that maintainonsisteny and promptness while sharing data between threads engaged in short sequenes and threadsengaged in long sequenes. 52



Promptness User Toolkit AppliationMoves the mouseMotionNotify, b=0, x=75, y=10 Update pointers on rulerReturn to toolkitAk. TimeTable 3.3: The toolkit and appliation must ooperate when proessing events for simple mouse movements.The promptness of the system depends on the appliation returning within the aknowledgment time.3.6.1 Short setionsThe need for short setions beomes apparent when we examine Figure 3.1, whih shows an abstrat modelof a toolkit based appliation. The arrows in this model show the path normally taken by requests inthe appliation. The appliation shown here uses only a single thread, and is therefore very vulnerable topromptness failures.When viewed from the perspetive of attentiveness, the system reeives a stream of events from theuser, uses the toolkit to interpret these events and reate a request, and �nally passes the request to theappliation-spei� ode via a allbak. The abstrat path of this exeution is shown in Table 3.3. Sine thetoolkit is single threaded, shares a thread with the allbak, and must exeute before requests an enter thesystem, the promptness of the entire system depends on this allbak returning within the aknowledgmenttime.For example, the model given above orresponds to the arhiteture of Inksape, one of our ase studies.Inksape is a vetor graphis editor and does not bound the omplexity of douments. Therefore, users anprodue promptness failures in Inksape by running ommands on omplex douments. For instane, a userdoing a SeletAll, followed by a Copy, followed by a Paste an ause the user interfae of Inksape to lokfor several minutes.While areful use of threading ould redue the risk of an attentiveness failure, threading annot beapplied arbitrarily to this system. Spei�ally, most GUI toolkits require that the ode in the toolkit andthe appliation's allbaks be exeuted by a single thread. This onstraint allows toolkit designers to avoidthe risk of deadloks and inonsistenies that our in multi-threaded toolkits due to reentrant alls fromthreads [52℄.Listing 3.6 shows diretives that enode this requirement. This ode is taken from the GTK+ toolkit. Wehose to use the gtk_propagate_event() funtion beause it is the last funtion within the toolkit that is guar-anteed to be on the all stak of every appliation allbak invoked by the toolkit. The begin_short_section()diretive indiates that exeution must reah the end_short_section() diretive well within the aknowledg-ment time for the appliation. These diretives an be nested. The timing onstraint will always apply tothe outermost pair of diretives. However, when reporting inonsistenies the runtime system should reportevery short setion that violated the onstraint. By providing this information, the runtime system allowsdevelopers to use nested short setions to diagnose the underlying ause for a promptness failure in their ap-pliation while allowing toolkit developers to plae diretives aggressively to highlight all of the promptnessfailures aused by defetive allbaks.This example also illustrates the need to plae these diretives speulatively. Mouse movement is a verysimple operation. In fat, the allbak registered by Inksape needs only to update two markers that runalong the horizontal and vertial rulers displayed at the sides of the doument to re�et the new position ofthe mouse. Therefore, it is fairly lear, based on the semantis of the request, that this all will be short.However, at the level of implementation this all involves the omplex all graph shown in Figure 3.2. Thisall graph has been simpli�ed so that it shows only alls that ross between Inksape and the libraries thatit uses, inluding the GTK+ toolkit. Funtions are shown as boxes, and four boxes have been highlighted.53



EV23 /**EV24 * gtk_propagate_event:EV25 * @widget: a #GtkWidgetEV26 * @event: an eventEV27 *EV28 * Sends an event to a widget, propagating the event to parent widgetsEV29 * if the event remains unhandled. Events received by GTK+ from GDKEV30 * normally begin in gtk_main_do_event(). Depending on the type ofEV31 ...EV32 *EV33 **/EV34 voidEV35 gtk_propagate_event (GtkWidget *widget, GdkEvent *event) {EV36 ...EV37 begin_short_section();EV38 if ((event�>type == GDK_KEY_PRESS) || (event�>type == GDK_KEY_RELEASE)) {EV39 ...EV40 handled_event = gtk_widget_event (widget, event);EV41 ...EV42 }EV44 /* Other events get propagated up the widget treeEV45 * so that parents can see the button and motionEV46 * events of the children.EV47 */EV48 if (!handled_event) {EV49 while (TRUE) {EV50 ...EV51 handled_event = gtk_widget_event (widget, event);EV52 if (!handled_event && widget)EV53 g_object_ref (widget);EV54 elseEV55 break;EV56 }EV57 }EV58 end_short_section();EV59 ...Listing 3.6: Diretives to express the promptness requirements for allbaks in a general way from withinthe toolkit.
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Figure 3.2: Interations between the toolkit and appliation are omplex. This is a simpli�ed all graphshowing alls between Inksape and its toolkit for a mouse movement. The doument is not hanged as aresult of the movement.The GTK+ toolkit uses XNextEvent() to reeived new events from the user. These events are proessed,eventually resulting in a all to gtk_propagate_event(). The gtk_signal_emit() all invokes a allbak thathandles the event, registered by either the appliation or by GTK+. Finally, the sp_canvas_motion()allbak in Inksape is the �rst point in the ode where we an identify the semantis of the request in theode.The numbers shown at the bottom of the highlighted boxes indiate the number of times that a funtionis alled. Note that there are approximately two gtk_signal_event() alls for every sp_canvas_motion() all,but that the number of sp_canvas_motion() alls is approximately the same as the number of XNextEvent()alls. This, along with the arrows entering gtk_signal_event(), suggests that ode in Inksape forms aseond event, and re-dispathes it through the GTK+ toolkit. Indeed, preliminary analysis of the allgraph indiates that eah mouse movement auses ontrol to ross the Inksape-GTK+ boundary 201 times.Notable examples inlude:1. GTK+ alls Inksape with the mouse-moved event2. Inksape alls GTK+ to update arrows on the rulers showing the mouse position3. GTK+ alls Inksape's seond mouse-motion allbak4. Inksape alls the toolkit to emit signals to other widgets5. GTK+ dispathes some of these events to Inksape's ustom ruler widgets6. Inksape's ruler widgets all inherited methods in GTK+7. GTK+ alls overridden drawing methods in Inksape's ruler widgets8. Inksape alls low-level drawing primitives in GTK+This omplexity is not spei� to Inksape: researhers have disovered that developers struggle to answersimilar ontrol-�ow questions about other systems [68, 1℄. In light of this, our runtime system does nottreat inonsistenies in promptness diretives as a fail-stop ondition. Instead, it logs the inonsisteny andallows omputation to proeed. In some ases the runtime system may not be able to rediret the requests inquestion. In other ases it will fall bak to a more onservative, but also more expensive, form of rediretionsuh as rolling bak to a hekpoint taken before the request was started. Rediretion is disussed in greaterdetail in Setion 5.1. 55



3.6.2 Duration of blokingThe bloking assoiated with guarded regions an present a threat to promptness. To allow threads engagedin short operations, suh as those involved in aknowledging requests, to use loks, we allow developers toidentify short duration loks [43℄. These loks an be held only for short durations of time.Developers use the short_duration_lock(void *lock) diretive to indiate that a lok is only held for shortperiods of time. One this diretive has been issued for a lok it annot be removed. Issuing the diretivemultiple times for the same lok does not indiate an error in the system's model.During heked exeution the runtime system will log an inonsisteny when threads attempt to aquireloks that have not been marked as short duration loks while exeuting in short setions of ode. Inaddition, the runtime will log ases where a thread holds a short duration lok for a long period of time asan inonsisteny.3.7 Rediretion and mediatorsIn this setion we desribe the diretives that o�er an alternative to assigning the responsibility for managingonsisteny to the runtime system. Normally, the runtime system ensures the onsisteny of the system'sstate during rediretion by rolling bak the ontents of regions. This approah helps developers to inorporatethird-party ode that does not diretly support rediretion by removing all evidene of the redireted requestfrom the system's state. However, the runtime annot resolve every onsisteny failure. For example, a systemmay initiate ommuniation with a ollaborating system, suh as an IMAP server, on behalf of a request.If the request is later rolled bak, the runtime has no way of undoing the e�ets of the ommuniation.Developers handle this problem by implementing mediators�omponents that oordinate rediretion withollaborating systems. Mediators must retain information about redireted requests to ompensate for theire�ets in future ommuniation. To implement a mediator developers must:� Identify the state that must be preserved� Maintain the onsisteny of the state� Allow timely rediretion� Address problems that an our when ode is shared by mediators and other parts of the systemIn this setion we desribe diretives that allow developers to address all of these problems. We will use the
qsort() funtion shown in Listing 3.7 to disuss atomi setions. The qsort() funtion is long, varying betweenO(n log(n)) and O(n2) where n is the number of elements in the array. This funtion has been identi�edas the ause of attentiveness failures in a CD database [31℄. We will desribe the implementation of thisfuntion in detail below, after using its interfae to motivate the diretives that support atomi setions.Developers an identify the state that must be preserved by plaing it into regions and identifying theseregions to the runtime system. To identify the regions, threads exeute the no_rollbacks(region_t r) diretive,informing the runtime system that the region should not be modi�ed during rediretion.There is a risk that a request ould leave inonsistent hanges in the region when it rolls bak. To avoidproblem, developers use diretives to delay rollbak for a short period of time as they update the region.These diretives reate atomi sequenes of ode that will always exeute to ompletion one they begin toexeute. The presene of atomi sequenes delays rediretion, potentially introduing a risk to promptness.Therefore, atomi sequenes must also be short sequenes. Threads identify the beginning of an atomisequene by exeuting the start_atomic() diretive and exeute the end_atomic() diretive to mark the endof a sequene. It is possible to nest these diretives. When this happens, the outermost pair of diretivesde�nes the atomi setion. 56



Q1 static void swap(char * restrict a, char * restrict b, size_t sz) {Q2 start_atomic();Q3 while(sz��) {Q4 char t=*a;Q5 *a++ = *b;Q6 *b++ = t;Q7 }Q8 end_atomic();Q9 }Q11 static inline int atomic_compare(int (*compare)(const void *, const void *), const void *a, const void *b) {Q12 start_atomic();Q13 int rval = compare(a, b);Q14 end_atomic();Q15 return rval;Q16 }Q18 static inline void qsort_inner(char *base, size_t nel, size_t width, int (*compare)(const void *, const void *)) {Q19 if ((nel == 2) && (atomic_compare(compare, base, base + width) > 0))Q20 swap(base, base + width, width);Q21 if (nel < 3)Q22 return;Q23 char *left = base;Q24 char *right = base + nel * width;Q25 while(left + width != right) {Q26 while ((left + width != right) && atomic_compare(compare, left + width, base) <= 0)Q27 left += width;Q28 while ((left != right � width) && atomic_compare(compare, base, right � width) <= 0)Q29 right �= width;Q30 if (left + width == right)Q31 break;Q32 swap(left + width, right � width, width);Q33 left += width;Q34 right �= width;Q35 }Q36 swap(base, left, width);Q37 qsort_inner(base, (left � base) / width, width, compare);Q38 qsort_inner(right, (base + nel * width � right) / width, width, compare);Q39 }Q41 void gsh_qsort(void *base, size_t nel, size_t width, int (*compare)(const void *, const void *)) {Q42 atomic_sections_are_marked();Q43 qsort_inner((char *)base, nel, width, compare);Q44 atomic_sections_restore();Q45 }Listing 3.7: An implementation of the qsort() routine with atomi bloks. The routine an be stopped ina short period assuming that ompare() is short and the size of elements is bounded. When stopped, thelist will be partially sorted, but all of the elements will be present. The diretives added to the ode areshown in bold type.
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It is di�ult to apply atomi setions to ode that is shared between mediators and other parts of thesystem. The quik sort funtion, qsort() provides a model of these problems. The funtion's signatureaepts an unbounded6 number of elements, an unbounded element size, and a pointer to a omparisonfuntion alled compare(). The urrent implementation plaes the compare() funtion in an atomi se-tion, but annot be ertain that compare() will return in a bounded amount of time. Sine the omparefuntion is provided by the aller, the developer of qsort() annot ensure that the funtion's exeution timewill be bounded. To resolve this problem, we require the aller to ativate the atomi setions by exeut-ing the atomic_sections_are_marked() diretive. In exeuting this diretive, the aller is making multipleommitments:� The compare() funtion is short� The size of the elements in the array is bounded, making swap() short� The aller is willing to aept a reordered, but still omplete, array if a request is redireted within
qsort()Before returning from the mediator, the aller issues the atomic_sections_restore() diretive. Assuming thatthere is no nesting, this has the e�et of deativating the atomi sequenes, making the start_atomic() and

start_atomic() diretives embedded in qsort() noops.It is possible to stop qsort() promptly, leaving the list partially sorted, when the aller is willing to makethe ommitments outlined above. There are two risks to onsisteny in the implementation of qsort() shownin Listing 3.7:Stopping swap() may orrupt the entries being exhanged. This happens beause swap() modi�es thearray provided by the aller. This risk is resolved by plaing a start_atomic() at Q2, the beginning of theswap() funtion and plaing an end_atomic() at Q8. This atomi blok is known to be short beause anyaller that ativates the atomi setion ommits to bounding the size of the element.Stopping compare() ould leave inonsistenies in the system's state if the funtion has side-e�ets.7 Thisrisk is resolved by plaing an atomi setion around the compare() funtion at lines Q12 and Q14. The allto the aller's compare() funtion is the only operation in the blok, and the aller ommits to making thisa short funtion when it ativates the atomi blok. Therefore, the blok is known to be short.All of the other state hanges in the implementation our in loal variables. Sine the loal variables areabandoned when qsort() returns, they pose no risk to the system's onsisteny when qsort() is interrupted.An example of a all with atomi setions marked is given in gsh_qsort() atomic_sections_are_marked()and diretives. These diretives are shown at line Q42 and Q44 in Listing 3.7.3.8 Case studiesWe evaluated our diretives by applying them to three examples taken from the PARSEC benhmark suite:blaksholes, swaptions, and x264. The benhmarks are relatively self-ontained, relying only on theode in the benhmark and the C runtime library. We applied diretives to all of the shared heap state inthe benhmarks and reated a tollgate for the C runtime library.6Tehnially, this is not true: both the element size and also the number of elements are bounded by the range of size_t.However, the 4GB bound plaed on these parameters by 32-bit systems is e�etively unbounded given the urrent state ofhardware and the timing requirements for human-system interation.7In pratie this is almost never the ase. The interfae to qsort() spei�es that the compare() funtion is not allowed tomodify elements of the array being sorted. In addition, the implementer of the compare() funtion annot rely on the allingpatterns of the qsort() routine. Therefore, the funtion would need to gain aess to the system's state via thread-loal storageor global variables. We deal with this ase here for ompleteness.58



Poliies employedSerial thread on�nement: whole bloks 2 0.4%Serial thread on�nement: slieable arrays 1 0.2%Modeling diretivesWhole blok transfers 8 1.6%Array slie transfers 4 0.8%Publishes of immutable bloks 2 0.4%Overhead diretivesLines hanged for slieable arrays 3 0.6%Support ode 17 3.5%TotalsModi�ed lines 37 7.6%Unmodi�ed lines 453 92.5%Table 3.4: Summary of hanges to blaksholesblaksholesblaksholes omputes the pries of a portfolio of European options by numerially omputing a partialdi�erential equation. A master thread distributes the portfolio to a series of worker threads whih workindependently.Sine the threads are mostly independent, the annotation e�ort for the appliation is relatively light, asan be seen in Table 3.4. The benhmark provides a read-only array desribing options. Worker threads areassigned a range of options to prie when the system is initialized, and write their results into a slie of aresults array after omputing the pries for their options. Most of the lines of support ode are for debuggingoutput that we added to ensure that the benhmark was working. We made one non-annotation hange toblaksholes to eliminate an extra string opy of the option type. This hange had a negligible e�et onthe performane numbers.swaptionsswaptions runs a Monte Carlo simulation to ompute the prie of a portfolio of swaptions. As in blaks-holes, a master thread splits the portfolio into segments and then starts long-running worker threads toparallelize the omputation.Table 3.5 shows that swaptions makes use of serial thread on�nement. We instrumented swaptionsbefore we developed slieable arrays. The diretives in swaptions manually reate a slieable array bypadding the elements of an array to page boundaries, alloating an array, and then using diretives to moveeah index of the array into its own transferable region.Unlike blaksholes, the worker threads in swaptions reate and free a large number of threadon�ned data strutures. Our urrent runtime system does not automatially support reyling memory,and so our diretives added support for reyling these data strutures while maintaining thread-on�nement.We disuss the performane impliations of these hanges in more detail in setion Setion 5.2.7.x264x264 is a lossy video enoder that is apable of proessing multiple frames at one time. A master threadspawns a new worker thread for eah frame, giving it referenes to the unompressed data for its frame andreferenes to prior frames, some of whih are still being enoded by other workers. The workers employ a59



Poliies employedSerial thread on�nement: whole bloks 1 0.1%Modeling diretivesWhole blok transfers 4 0.2%Conversion to slieable array (manual) 1 0.1%Support ode 91 5.0%TotalsModi�ed lines 97 5.4%Unmodi�ed lines 1714 94.6%Table 3.5: Summary of hanges to swaptions
ombination of striping and pipelining by periodially broadasting the number of sanlines that they haveenoded. Workers enoding later frames then read these sanlines. This approah allows the workers toenode frames in parallel, relying on information about the enoding of former frames while also avoidingdata raes.When we attempted to annotate the version of x264 inluded in PARSEC (version r1047), we found aplae where the master thread read from the region transferred to the worker after the worker was started.The worker writes to this part of its region after it has started. The ombination of ommand line parametersused in the PARSEC benhmarks does not trigger this rae. Therefore it would not be deteted by dynamihekers. However, this means that developers ould not onsistently annotate this ode. We notied thatthe o�ending ode had been eliminated in a later version (r1185) of x264, so we rolled forward to this versionand ompleted our diretives.Modeling the sharing rules of x264 required extensive diretives, as shown in Table 3.6. Muh of theomplexity of the model is a diret onsequene of the omplexity of x264's data strutures: frames arerepresented by 8 di�erent shared arrays. Some of these arrays diretly represent sanlines and pixel values.Others represent marobloks, a square group of 256 adjaent pixels.The support ode is largely on�ned to four loations in x264. First, new frames are typially alloatedby the master thread as it initializes the worker thread. Therefore, the master thread must release the read-write aess that it aquires to the frame before transferring it to the worker. Seond, the worker threadsmust aquire permissions to their frames before they read and write to them and release permissions beforeterminating. We handle this by inserting a speial wrapper around the ode that implements the workerthread.Third, frame writers must release write permissions to slies of the 8 shared bu�ers that represent theframe before updating the number of sanlines ompleted. We added this ode to the routine that updatesthe number of sanlines ompleted. This ode is ompliated by two fators. The ranges are di�erentfor di�erent bu�ers, in part beause of the di�erene in data types in the bu�ers. In addition, some of thebu�ers are shared on a page-by-page basis to allow referenes to the bu�er to be passed to assembly languageroutines. However, multiple sanlines frequently share the same page. If some of the ompleted sanlinesshare pages with inomplete sanlines we retain write aess to the page and round the number of sanlinesompleted down to ensure that readers do not attempt to aquire the page. This ode would have beenunneessary if the developers of x264 had reated individual bloks for sanlines.Finally, we added ode to the routines that readers use to hek the progress of shared bu�ers. When areader observes the number of sanlines ompleted we automatially obtain read aess to the relevant pagesin the frame. The logi in this ode losely follows the logi used by writers.60



Poliies employedThread-loal 2 0.00%Serial thread on�nement: whole bloks 8 0.01%Serial thread on�nement: slieable arrays 8 0.00%Shared: immutable 2 0.00%Shared: thread safe 2 0.00%Guarded 1 0.00%Modeling diretivesWhole blok transfers 55 0.10%Array slie transfers 24 0.04%Publishes of immutable bloks 2 0.00%Overhead diretivesSplitting multi-poliy bloks 59 0.11%Lines hanged for slieable arrays 111 0.21%Support ode 444 0.82%TotalsModi�ed lines 718 1.33%Unmodi�ed lines 53,144 98.67%Table 3.6: Summary of hanges to x264Other PARSEC benhmarks examinedWe evaluated several other benhmarks as part of this work. Canneal is designed to allow raes and thenreover from them. Sine all of our poliies involve avoiding data raes, we would need to treat all of theshared state as shared thread-safe.The bloks in streamluster use di�erent onurreny poliies for di�erent �elds. We believe that wewill eventually be able to apply our diretives to streamluster by splitting these bloks.We also examined fluidanimate, and have been able to annotate it with our tehnique. However, thevery large number of �ne-grained loks in the system auses resoure alloation problems in our dynamiheking.These benhmarks may not be representative of many systems that we will examine for attentiveness.First, the benhmarks are transformational systems [53℄, aepting input, doing some omputation, and gen-erating output. By de�nition attentive systems are reative, running in a ontinuous loop and transformingtheir internal state in response to messages from their lients. Therefore, threading in these benhmarks isprimarily used to diving work among multiple proessors. As a result, the benhmarks make extensive useof array sliing and �ne-grained loks. While some parts of attentive systems may adopt similar designs,we expet that the primary use of threading in these systems will be to provide prompt responses to theuser while the system is engaged in long operations. Therefore, attentive systems are more likely to rely onlong-duration loking and thread-loal storage. As a result, the annotation e�ort for attentive systems maybe lower than the benhmarks desribed in this hapter.3.8.1 Limitations of the diretivesGlobal and stati variables present a partiular hallenge to our diretives, sine they are alloated andinitialized before the appliation begins to exeute. Therefore, we added associate_global(), a diretive thatplaes a global variable into the region bound to the thread exeuting the diretive. In some ases, suhas assigning a poliy to stati variables within a funtion, it may not be possible for developers to ensurethat the associate_global() happens a single time. We permit multiple alls for a single global or stati61



variable if the poliy is idential for all of the alls. By default we assume that global variables are all sharedthread-safe. This is inonsistent with our default for bloks on the heap. In the future, we would like tomake the default for global variables thread-loal, assigning them to the initial thread.We are also unable to assign poliies to bloks alloated on thread staks. Some threaded appliations,inluding the blaksholes benhmark, use alloations on the main thread's stak to alloate mutexes,ondition variables, thread desriptors, and the appliation-de�ned data that is passed to new threads. Inaddition, the pthreads library also does some of the initialization of the hild's stak from the parent threadbefore starting the hild.Two fators make it di�ult to apply poliies to bloks that are alloated on the stak. First, theompiler automatially assigns these bloks an address based on the urrent stak pointer. These addressesare rarely page-aligned, preventing us from using tehniques that redue the ost of heking the diretives,as desribed in Setion 5.2. Seond, the bloks will automatially be dealloated if the parent thread returnsfrom the funtion that originally reated the blok. There are several possible solutions to this problem. Oururrent reommendation is to move all shared bloks into the heap, managing their lifetime with malloc()and free() alls. In the future we may be able to use C++ destrutors to detet ases where shared bloksare dealloated.3.9 ConlusionIn this hapter we have introdued diretives, an approah to onneting the design of an attentive systemto its onrete implementation. We have desribed three lasses of diretives, one foused on onsisteny,one foused on promptness, and a third foused on the relationship between onsisteny and promptness inattentive systems. We have also introdued tollgates, a way for developers to maintain many of the bene�tsof diretives in systems onstruted by ombining third-party omponents. Finally, we have desribed asestudies that evaluate the diretives foused on onsisteny by applying them to a series of third-partyonurreny benhmarks.In Chapter 4 we apply these diretives when reasoning about the design and implementation of systems.In Chapter 5 we will desribe our urrent, partial implementations of runtime systems that support trustedand heked exeution. The runtime that supports trusted exeution attempts to avoid onsisteny failuresby rolling bak the entire state of the system. Therefore, it does not support the diretives that desriberegions and onsisteny. Our experiene with this runtime system motivated the �ner-grained approah tomanaging onsisteny desribed in this hapter. The urrent implementation of heked exeution uses thediretives that we have desribed for regions, poliies, and tollgates. It does not yet support rediretion, andtherefore does not implement the diretives for requests, dependenies, promptness, and atomi setions.
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Chapter 4Design for attentivenessThe design of an attentive system should on�ne responsibility for attentiveness to a small number ofomponents. Con�ning responsibility for attentiveness both failitates the reuse of omponents, espeiallyomponents that do not diretly support attentiveness, and also allows developers to fous their investigationof attentiveness failures. It is di�ult to address attentiveness onerns within individual omponents. First,the onstraints on promptness are often spei� to a partiular system, and the e�et of any given omponenton promptness is determined by the way that it is integrated into the system. Seond, maintaining inter-omponent onsisteny requires ollaboration among multiple omponents. Attempting to support thisollaboration within a omponent would reate inter-omponent dependenies that would limit opportunitiesfor reuse. Unfortunately, the designs of many systems delegate, either intentionally or unintentionally, theresponsibility for maintaining promptness and onsisteny to their omponents. Developers using thesedesigns annot improve the attentiveness of these systems while avoiding hanges to omponents.In this hapter we onsider the relationship between attentiveness and design in three stages. First, weanalyze �ve systems and one network protool to illustrate the onnetion between design and attentiveness.Next we desribe two attempts to retro�t attentiveness into one of the systems by modifying the GTK+toolkit, one of the omponents in the system. These attempts point to the need for system-level designto support attentiveness. Then, we outline a system-level design for attentive systems that addresses theproblems that we found in the previous systems. This design assumes the presene of runtime support, whihwe disuss in more detail in Chapter 5. We onlude by applying the design to a simple lient-server systemand demonstrating that the design addresses the attentiveness failures observed in the system.4.1 Assessment of designsWe hose to examine four systems that over di�erent parts of the design spae for attentive systems:� Inksape [60℄: a toolkit-based vetor graphis editor� A simple lient-server system written with Java Remote Method Invoation (RMI) [96℄� Thunderbird [99℄: a toolkit-based email lient that uses the IMAP protool� RoundCube [85℄: a web-based email lient that uses the IMAP protoolInksape is representative of a group of systems that must restrit the use of threading due to the preseneof non-thread-safe ode. The RMI lient-server system allows us both to explore attentiveness in a systemthat does not involve diret human-omputer interation and also to onsider the e�et of ommuniationprotools on attentive systems. Thunderbird is highly threaded, allowing us to explore attentiveness failures63



Figure 4.1: Diagram showing the struture of Inksape from the perspetive of threading. This diagramshows the system in an idle state, with the thread exeuting in the toolkit. Sine there is only one thread,attentiveness failures our if any request's proessing time exeeds the aknowledgment time.that our in threaded systems. Finally, RoundCube provides similar funtionality to Thunderbird but usesweb tehnologies that isolate the user interfae, whih runs in the web browser, from most of the proessing,whih runs on the web server. This separation allows RoundCube to overome many of the problemsassoiated with Thunderbird. However, RoundCube ontinues to su�er from attentiveness failures.4.1.1 InksapeThe design of Inksape is partially ditated by GTK+ [47℄, the GUI toolkit that provides Inksape's userinterfae. GTK+ imposes restritions on the ontrol �ow of appliations that use it, requiring the appliationto implement the standard interation yle [63℄. First, the appliation registers one or more allbaks withthe toolkit. Next, the appliation begins the standard interation yle by alling gtk_main() to initializeGTK+. The funtion does not return until the appliation terminates, allowing the toolkit to use the threadthat initialized the toolkit to proess events. In the disussion below we all this �the toolkit thread.� Whilethe appliation is running the toolkit invokes one or more of the allbaks registered by the appliation toinform it of new requests, a property alled inversion of ontrol [62℄.During the standard interation yle the appliation must not make unoordinated alls to GTK+ fromother threads. The appliation oordinates alls with the toolkit thread either by alling gdk_threads_enter()and gdk_threads_leave()1 or by making the alls from allbaks, whih are always exeuted by the toolkitthread.GTK+ imposes these restritions on alls beause it relies on thread-loal regions to protet its internalstate. Calls from other threads would aess the toolkit's internal state without oordination, leading todata raes. This design, with minor variations,2 is typial of most general purpose GUI toolkits. Whilesome speial-purpose toolkits are able to allow alls from multiple threads [37℄, prior attempts to reategeneral-purpose multi-threaded GUI toolkits has resulted in designs that lead to errors. Either the designsfore developers using the toolkit to follow omplex rules for reentrant alls, or the implemented toolkitsexhibit onurreny failures suh as deadloks [40℄ and data raes [52℄.The appliation-spei� ode in Inksape plaes further restritions on threading. The implementationof Inksape predates the widespread use of threading in GUI appliations. Therefore, muh of the ode inInksape is not thread-safe, in essene relying on thread-loal regions to avoid raes. As a result, any odethat uses multiple threads must hide these threads from both the GTK+ toolkit and the non-thread-safe1Tehnially, these alls are in the GDK library, one of the support libraries used in the onstrution of the toolkit. Forsimpliity in this work we onsider GTK+'s supporting libraries to be a part of GTK+.2For example, in Swing the toolkit reates a new thread to be the toolkit thread and returns from the initialization all.Appliations invoke Swing methods from other threads via the invokeLater() all. In part the di�erenes in design re�et di�erentassumptions about the platform. The design of GTK+ assumes that threading may not be present on the platform, while Swingan assume the presene of threading. 64



Figure 4.2: This log-log graph shows the time to omplete Paste requests in Inksape. For larity the numberof objets for eah point is shown on the X axis, and the exat time for the paste is shown with eah datapoint. The time varies linearly with the number of objets pasted for most of the tests, but inreases withthe �nal test due to swapping (physial memory beomes an over-subsribed resoure). Even at 423 objetsthe time to omplete the Paste poses a risk to attentiveness, sine the aknowledgment time is roughly 0.1s.ode in Inksape.The resulting arhiteture is shown in Figure 4.1. Sine there is only a single thread, attentiveness failuresour in Inksape if the proessing time of any request exeeds the aknowledgment time of the system, whihis usually 100ms. This problem is widely reognized [71℄, and is typially avoided by employing the wrappingpattern in the allbaks to isolate the long operations from the toolkit. Sine the use of the wrapping patternis so ommon, it may seem to the reader that the pattern should atually be inorporated in the GUI toolkititself. Rather than alling the allbak diretly, the toolkit thread would spawn a worker thread, instrut it toativate the allbak, and then ontinue to look for requests from the user. Toolkit-based appliations do notinterat with their users in terms of requests. Instead, they reeive low-level events and infer requests fromthe events, following the model used in the Xerox Alto [7℄. This approah is not feasible beause allbaksfrequently make alls that reon�gure the user interfae [74℄, potentially hanging the interpretation of futurerequests. Therefore, the allbak must blok the toolkit thread until it has ompleted its reon�gurations ofthe user interfae. In addition, the allbaks frequently make alls to the toolkit to update the view afterlong operations omplete.Unfortunately, the proessing time of requests in Inksape is unbounded: the exeution time of manyrequests depends on the omplexity of the doument being edited. For example, Figure 4.2 demonstratesthat the proessing time for Paste operations varies, more or less linearly, with the number of objets beingpasted. Therefore, a user attempting to merge two douments may ause an attentiveness failure by:1. Opening the �rst doument2. Issuing a SeletAll request3. Issuing a Copy request4. Opening the seond doument 65



5. Issuing a Paste request by using the �Edit� menuIn this ase, Inksape's only thread is trapped in request proessing. Therefore, if the number of objetsbeing pasted is large, Inksape does not aknowledge the Paste request by losing the Edit menu and doesnot provide the user with a way to submit new requests. As a result, the user has no way to rediret Inksape.Table 4.1 shows how an attentive system would respond to this situation. This table shows the relationshipamong:� A user's goals� His ations� The events that arrive at the toolkit� The toolkit's responses� The allbaks registered by InksapeFor example, to initiate a Paste request, the user liks on a menu (A1.1), ausing a ButtonPress event(E1.1) to arrive at the toolkit. The toolkit responds by opening the menu (R1.1). Sine this interationdoes not form a ompleted appliation-level request, no allbaks are invoked. A1.2 is also handled by thetoolkit without involving Inksape. However, A1.3 forms a ompleted request, ausing the toolkit to allthe Inksape's paste routine at CB1.3.1. An attentive system would aknowledge the request (R1.3.2 andR1.3.3), and then listen for the arrival of a possible rediretion request suh as the one shown at G2.However, Inksape bloks before R1.3.2, failing to aknowledge the paste request until it ompletes. Notonly does this represent a failure to respond to the request within its aknowledgment time, it also makesit impossible for the user to issue a anel ommand to stop the paste operation. Given the restritionsplaed on threading by GTK+ and Inksape, developers typially use one of three solutions to address thisproblem:� Polling: inserting ode into the omponents responsible for Paste and any other long operations tohek for inoming requests and rediretion. For example, the Maintosh operating system requireddevelopers to poll by alling WaitNextEvent().� Wrapping: developing a system servie that is integrated with the toolkit, supporting anel withouthanges and ooperation from the appliation. We provide examples of wrapping in Chapter 5.� Threading: refatoring the appliation to use multiple threads, splitting its state into two thread-loalregions. For example, the Thunderbird email lient uses threading.Polling was used to support both rediretion and multitasking before threads were available [5℄. Even withthreads, developers often �nd that they must use polling to stop threads without orrupting the appliation'sstate [70℄. There are two disadvantages to polling. First, developers must ensure that the appliation pollsfrequently, in e�et ensuring that the delay between any two poll alls in their appliation is short. If thisis not the ase, lients ontinue to enounter promptness failures when interating with the appliation.However, developers must also ensure that they do not poll too frequently, sine this both represents wastedsoftware development e�ort and also an lead to performane problems [36℄. Seond, implementing pollingan fore developers to make appliation-spei� hanges to modules that they wanted to reuse. It is di�ultto generalize these hanges, sine the de�nition of short is often appliation-spei�. In addition, the lengthof operations within the modules is often a�eted by details of the appliation's implementation. Finally,these modi�ations reate new dependenies between the modules that an make them harder to reuse infuture appliations. Appliations often reuse a large number of modules. For example, Figure 4.3 showsthat Inksape, a relatively simple appliation, reuses 53 modules. These modules are ontrolled by at least20 di�erent open-soure development teams.Our early attempts to add rediretion to Inksape used wrapping. A wrapped system uses toolkitmodi�ations to detet requests and assigns responsibility for redireting requests to a separate proess66



Table 4.1: This table relates the user's goals and ations, shown on the left, to measures of promptness,shown in the middle, to the ontrol-�ow in the system, shown on the right. The user-system boundary isillustrated by the double line, and the toolkit-appliation boundary is shown by the dashed line. The tableillustrates one of the �aws frequently enountered in single-threaded designs: the entire Paste operation,shown on line CB1.3.1, is a part of the aknowledgment time of the request.
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Other reused Request proessingPakage NCNB LOC % Pakage NCNB LOC %libkdefx 568934 14.59 libutil-2 576009 14.77libqt-mt 568415 14.57 libgtk-x11-2 416547 10.68libxml2 195448 5.01 libgthread-2 124575 3.19libstd++ 119235 3.06 libX11 100008 2.56libpangomm-1 91622 2.35 libfreetype 77043 1.98libgnutls 83468 2.14 libairo 56946 1.46libgnomevfs-2 72784 1.87 pango-basi-f 55916 1.43libdbus-1 62489 1.60 libpng12 29294 0.75libaudio 48086 1.23 libfonton�g 21271 0.55libORBitCosNaming-2 38446 0.99 libz 15547 0.40libgonf-2 31951 0.82 libexpat 12982 0.33libavahi-glib 31349 0.80 libatk-1 7256 0.19libXt 31314 0.80 libXext 3837 0.10libxslt 30122 0.77 libXursor 2809 0.07libgrypt 25503 0.65 libXrender 2738 0.07libg 21573 0.55 libXi 2612 0.07libbonobo-ativation 20468 0.52 libXdmp 1116 0.03liblms 20016 0.51 libX�xes 996 0.03libjpeg 18696 0.48 libXrandr 654 0.02libglibmm-2 12807 0.33 libXau 582 0.01... libXinerama 228 0.01Total 2152300 55.18 Total 1508966 38.7Figure 4.3: Inksape soure study as a treemap. The size of eah box represents the number of non-omment,non-blank lines of ode in the omponent. The blak box represents the soure ode for Inksape. All of theother boxes represent third-party libraries that are invoked by the appliation as it exeutes.68



alled a anellation manager. The anellation manager relies on operating system servies to rediret thewrapped appliation. Wrapping has disadvantages in terms of e�ieny and onsisteny. We desribe ourwork with wrapping in more detail in Setion 4.2.1 and Setion 4.2.2.Finally, it is possible to address rediretion in Inksape by introduing an additional thread to handlerequest proessing. If ommuniation between these threads is arefully onstrained, it is possible to dothis while preserving the thread-loal regions of both GTK+ and Inksape. These onstraints informed thegeneral pattern in Setion 4.3. Runtime support, desribed in Chapter 5, ensures that developers do notaess thread-loal regions from the wrong thread.4.1.2 RMI lient and serverClient-server systems an also su�er from attentiveness failures. Some attentiveness failures are aused byfators beyond the ontrol of the system's designers, suh as network failures. Others an be addressed byareful design of the lient, server, and their ommuniation protool. In this setion we examine a failurethat is present in many lient-server systems that an be addressed by design. We use a simple lient-serversystem written in Java to produe this failure. The lient and server in our example ommuniate via JavaRemote Method Invoation [96℄ (RMI), a library that allows developers to ommuniate with remote objetsusing method alls on loal proxy objets.In our example, lients submit requests to a server for remote exeution by enapsulating them in objetsthat implement the IRequest interfae. This interfae ontains a single method, execute(), that has a generireturn type. The lient passes the request objets to the executeRequest() method provided by the server.RMI serializes the lient's request objet and transmits it to the server, whih deserializes the request objet,alls the request's execute() method, and returns the method's result to the lient.There are two potential attentiveness failures in the example, one a�eting the lient and the othera�eting the server. The lient will not be attentive if it enounters a slow server. Sine RMI mimisstandard method alls, whih do not provide the ability to anel alls in progress, the lient has no way toregain ontrol of threads bloked by alls to slow servers.Developers have several options for working around attentiveness failures on the lient. First, they oulduse a separate thread to issue RMI alls, allowing the lient to resume operation before reeiving the resultof the all. Seond, they an use extensions to RMI, suh as Interruptible RMI [77℄. These extensions allowa lient to anel bloked RMI alls by losing the soket used to ommuniate with the server.The implementation of interruptible RMI relies on the implementation details of sokets in Java. Speif-ially, the sokets must permit close() to proeed while threads are bloked in other methods of the soket.To provide this funtionality developers must be willing to aept data raes in ertain lasses [44℄, suhas BufferedInputStream.3 The implementation in JDK 1.2 added synhronization in the send(), receive(),and close() methods to resolve some rae onditions that ould our when close() was alled while anotherthread was aessing the objet. The new synhronization aused alls to close() to blok, breaking odethat relied on close() to interrupt the send() and receive() methods. Eventually, the designers removed theadded synhronization, reintroduing the rae onditions but allowing developers to use close() to regainontrol of threads bloked in send() and receive().Attentiveness failures also our on the server. An attentiveness failure ours when lients abandonrequests, either by losing sokets while the request is being proessed or by rashing. From the server'sperspetive, an abandoned request an also our if a long-term ommuniation failure ours while therequest is being proessed. This senario an be observed on high-tra� web sites, sine browsers make itpartiularly easy for users to abandon requests by pressing the refresh button. The web browser responds tothe refresh button by dropping the urrent HTTP onnetion to the server and opening a new onnetionto re-send the request. When this behavior ours at sale, it produes a troublesome form of positive3We are indebted to Aaron Greenhouse for pointing out this example.69



feedbak: the site experienes a signi�ant inrease in request submissions as it beomes overloaded. Someommuniation libraries, suh as Interruptible RMI, allow servers to poll for abandoned requests. However,these libraries often must be used on both the lient and the server to be e�etive, and the polling spreadsthe responsibility for deteting abandoned requests throughout the server's implementation.In our simple system, the e�et of abandoned requests is easy to observe. A request to alulate the �rst4,500 digits of � takes 2s. If the lient submits and then abandons a request to alulate 450,000 digits of �,the time to omplete the 4,500 digit alulation inreases to 4.4s.Our design, desried in Setion 4.3, addresses both of the problems desribed above. Servers an addressand terminate abandoned requests promptly, even in the presene of ommuniation failures. In addition, thedesign assigns responsibility for deteting abandoned requests to a small part of the server that is independentof the reused omponents.4.1.3 ThunderbirdAppliations that employ multiple threads are also subjet to attentiveness failures. Thunderbird 2.0 [99℄,a mail user agent, makes extensive use of threads but exhibits attentiveness failures when interating withan IMAP [23℄ server. The IMAP server maintains a opy of eah of the user's messages, grouped intovarious folders. Thunderbird and other IMAP lients synhronize with the folders on the IMAP server, bothupdating their loal opy of the messages at startup and also updating the IMAP server as users move, opy,and delete messages. Frequent synhronization ensures that users interating with multiple omputers seethe same set of messages on eah omputer.Thunderbird minimizes the user intervention required to synhronize with the IMAP server, initiatingsynhronization as a bakground task when a user opens a folder. Meanwhile, Thunderbird displays amessage list using the ontents of its ahe. The synhronization task ommuniates with the IMAP server,heking for hanged messages, and possibly downloading some messages for the junk mail sanner. Most ofthis ativity is invisible to the user.In its implementation, Thunderbird uses the Ative Objet pattern [69℄, whih plaes most objets intothread-loal regions. Other threads manipulate the objets by sending asynhronous messages to the threadassoiated with the objet's region. As a result, the Ative Objet pattern greatly redues the risk ofdata raes; while the asynhrony in the messaging system redues the hane that bloking will result inpromptness failures.However, we have disovered that Thunderbird su�ers from a variety of promptness failures. Thesefailures arise beause Thunderbird fails to prioritize the assignment of network bandwidth, a onstrainedresoure, to the user's requests. When bandwidth is over-alloated, Thunderbird promptly aknowledgesrequests from its user to rediret but fails to omplete the rediretion. The following senario illustrates theproblem:1. The user swithes to Folder A2. Thunderbird opens Folder A on the IMAP server, detets new messages, and begins to download theirheaders3. The user swithes to Folder B4. Thunderbird opens Folder B on the IMAP server, detets new messages, and begins to download theirheaders5. The user swithes bak to Folder A6. The user liks on message A1 in the thread pane, issuing a ViewMessage request7. One minute later Thunderbird displays message A18. The user liks on message A2 in the thread pane, issuing a ViewMessage request70



9. Five minutes later Thunderbird still has not downloaded the messageUnlike Inksape, Thunderbird aknowledges the ViewMessage request well within the 100ms response timeby highlighting the seleted message in the message list. However, the message pane either remains blank orontinues to display the previously seleted message.The promptness failure between steps 8 and 9 ours beause Thunderbird allows the junk mail sannerto onsume most of the available network bandwidth rather than alloating bandwidth to the user's requests.When the user opens folders A and B, the junk mail sanner disovers many new messages. It begins todownload these messages to san them, quikly reating a queue of requests that onsumes the bandwidthto the IMAP server. During the senario desribed above, Thunderbird downloaded 720 messages betweensteps 8 and 9, reating the �ve minute delay. To make matters worse, Thunderbird oasionally wastesnetwork bandwidth by downloading the same message twie, even using two di�erent IMAP onnetions atthe same time for the downloads. These problems disappear when we deativate the junk mail sanner.Thunderbird also su�ers from multiple onsisteny failures. For example, Thunderbird an send spuriousresponses during the delay desribed above. This an happen when the user selets a seond message whilewaiting for a message to download from the server. Thunderbird aknowledges the request by highlightingthe seond message in the message list. The user's expetation is that the next update of the messagepane will show the seleted message. However, Thunderbird may ontinue to download the �rst message,displaying it in the message pane when the download ompletes. The user may be onfused by this update,either assoiating the ontent of the �rst message with the sender of the seond message or onluding thatthere is a permanent loss of onsisteny in Thunderbird's internal state.Finally, Thunderbird and the user an disagree about the interpretation of a request. This happens whenThunderbird detets that a message has been deleted from a folder during the bakground synhronizationtask. Thunderbird may then repaint the message list, shifting the position of messages to remove the deletedmessage. As a result, the position of a message just as the user is liking on it. As a result, Thunderbirddisplays a di�erent message than the one that the user intended.Our analysis of Thunderbird informs several parts of our design:� Attentive systems must manage all sare resoures, not just proessor time and threads. The failurein Thunderbird ours beause its design addresses only bloking in threads as a risk to attentiveness.� A single omponent in the system should be aware of all of the system's ativities. This allows thesystem to inform the user of its urrent ativities and also allows the system to detet and eliminateredundant work.� Ativities should have priorities. Requests oming diretly from users should generally have higherpriority than bakground tasks.� The priority of an ativity may hange. For example, the junk mail sanner originally sheduled adownload of A2. However, the priority of downloading A2 inreased when the user issued a ViewMes-sage request.4.1.4 IMAPThe design of the IMAP protool ontributes to the attentiveness failures that we observed in Thunderbird.Some of these failures originate in IMAP's data model. Eah aount is assoiated with one or more folders.The number of folders is not bounded. The number of messages in a folder is theoretially bounded: eahmessage in the folder must be referened by a unique unsigned 32-bit integer. The size of eah message isalso theoretially bounded: the size of the message in otets must be representable by a 32-bit integer. Sineboth of these bounds are large relative the available network bandwidth, we hoose to design systems as ifthey do not plae bounds on the length of operations.71



Messages also ontribute to attentiveness problems. While the ontent of a message is immutable, appli-ations an delete the message, opy it to another folder, and attah and remove �ags. For example, manyIMAP appliations use �ags to mark messages that have been sanned for junk mail. In addition, manyappliations expose the ability to set �ags to their users, allowing them to prioritize messages.IMAP appliations assume that their users will manipulate the messages stored on the server frommultiple systems. Therefore, when an IMAP appliation is started it heks for updates on the server.Ideally, from the appliation's point of view, it would be able to do this by retrieving a log of updates thatourred after it was disonneted.However, IMAP servers do not maintain hange logs for folders. Instead the appliation must open eahfolder, hek for new messages, hek for deleted messages, and retrieve the �ags of every message thatremains in the folder. Sine the bounds on the number of messages are relatively high, IMAP appliationsmust assume that these are long operations. If these operations are allowed to blok user requests theappliation will exhibit attentiveness failures.However, treating these operations as low priority bakground tasks reates a risk of onsisteny failures.When appliations display the ontents of the folder in a list, these heks an ause the position of indi-vidual messages to shift as the appliation disovers new and deleted messages. An appliation aepting aViewMessage request may disover that the message was deleted from the IMAP server when it attempts toretrieve it. In addition, an unexpeted shift in messages may ause the user to lik on the wrong messagein the list.The large bound on the size of IMAP messages also presents problems when appliations attempt todownload messages. The IMAP protool does not permit rediretion. Therefore an appliation downloadinga large message is left with two hoies. First, the appliation ould download the entire message, in e�etlosing aess to the IMAP onnetion in question until the download ompletes. This approah maximizes thee�ieny of the message transfer, and does allow some forms of rediretion. The appliation an anelthe download by losing the IMAP onnetion before the download ompletes. The appliation an alsopause the download by not reading bytes from the soket assoiated with the IMAP onnetion. This willause the soket's TCP reeive window to lose, foring the server to stop sending pakets. Unfortunately,the server has no way to know that this behavior is due to rediretion, and may interpret it as evidene ofeither a network failure or a malfuntioning IMAP appliation.Seond, the appliation may attempt to download the message in segments. The IMAP protool diretlysupports this funtionality. However, it leaves the problem of determining the orret segment size to theappliation. If the appliation hooses a small segment size it an rediret quikly, but message downloadingis ine�ient due to the large number of small requests. If the appliation uses larger hunks it gains e�ienyat the expense of longer rediretion times. Unfortunately the optimal segment size is very dependent onthe bandwidth and lateny of the network onneting the appliation and server. Both the lateny andbandwidth an hange in ways that annot be predited by appliations. For example, the user may dereasethe available bandwidth by initiating a large �le transfer from a di�erent appliation.The message identi�ers used by the IMAP protool lead to redundant work when an appliation moves amessage from one folder to another. When the message arrives in the destination folder it appears as a newmessage and has a new identi�er.4 Therefore appliations will re-download the message, even when theyhave a opy of the message in their ahe.Finally, the IMAP protool does not provide rediretion for some ommands that are very likely to belong. For example, appliations are able to initiate full-text searhes aross all of the messages stored ina folder. These searhes may take many minutes to omplete, and users often deide to hange the searhriteria while they are waiting. Unfortunately, the rediretion approahes adopted for message downloads�4In fat, in standard IMAP this is also true for the appliation moving the message. However, IMAP servers that supportthe UIDPLUS extension provide the new unique identi�er for the message to the appliation initiating the move. Unfortunatelymany IMAP servers do not support the UIDPLUS extension. 72



Figure 4.4: RoundCube, an AJAX email appliation, reates a lear separation between the user interfaeand the bak-end. As a result, it avoids many of the attentiveness failures of Thunderbird.losing the onnetion or refusing to read the results of the ommand�will not be e�etive in these ases.In most servers losing the soket will result in orphaned requests. Refusing to read the results is ine�etivebeause the volume of results in often small, �tting within the TCP transmit window. In addition, mayservers delay transmitting results until the searh is ompleted.Therefore, the IMAP protool is not well suited to the onstrution of attentive appliations. A moreattentive version of the protool would:� Provide a log that would redue the ost of synhronization when an appliation reonnets� Allow the server to promptly detet dropped onnetions and anel requests submitted by theonnetion� Provide identi�ers for messages that are independent of folders� Allow appliations to rediret requests after submitting them to the serverWe believe that these reommendations would also apply to many other network protools.4.1.5 RoundCubeThe reader may onlude that the de�ienies of the IMAP protool enumerated above make it impossibleto avoid the attentiveness failures observed in Thunderbird. However, we believe that a arefully designedIMAP appliation an mask many of these problems from its users. For example, the RoundCube webmailappliation uses the IMAP protool to aess messages, but manages to hide many of the de�ienies ofIMAP from its users.The attentiveness of RoundCube is largely a result of its design, whih is shown in Figure 4.4. Thisdesign bene�ts from the following properties:� Colloation of proessing with data, both minimizing the impat of network delays and also minimizingthe use of network bandwidth� Cahing of data to further redue the use of network bandwidth� Reservation of resoures for the user interfae, ensuring that it will remain responsive during long-running bakground tasks� Limiting the use of bakground tasks and minimizing their size73



RoundCube exploits olloation in two ways. First, RoundCube uses AJAX [88℄ to implement the user inter-fae in the web browser. As a result, simple requests are handled loally, reduing both reduing their latenyand also reduing their onsumption of bandwidth. Seond, RoundCube initiates bandwidth-intensive IMAPrequests on the bak-end. The bak-end summarizes the requests and transmits the summaries to the userinterfae. As a result, RoundCube onsumes network bandwidth on the bak-end, where it is relativelyabundant, to onserve bandwidth between the user interfae and the bak-end, whih is often onstrained.RoundCube exploits the browser ahe to further redue its onsumption of bandwidth. For example,the use of AJAX uts the number of page refreshes dramatially when RoundCube is ompared to otherwebmail appliations. In addition, the ahe is likely to retain opies of email messages, reduing the timeonsumed when a user views the same message multiple times.The user interfae often exeutes on a di�erent mahine than the bak-end. As a result, the user interfaeand bak-end have di�erent pools of resoures. Therefore the performane of the user interfae is not diretlya�eted by the resoures used in bak-end omputations suh as searhes. Network bandwidth is the onlyshared resoure, and both the front-end and bak-end bene�t from minimizing their use of this resoure. Asa result, bak-end ativities almost never adversely a�et the performane of the user interfae.Developers have minimized the number of and extent of bakground tasks. There are two types ofbakground tasks in RoundCube. First, RoundCube treats searhes as bakground tasks, allowing users tohange searh parameters and swith folders while a searh is in progress. This feature provides attentivenessat the user interfae, but results in abandoned searhes on the server similar to the abandoned requestsdesribed in Setion 4.1.2.Seond, RoundCube uses a series of bakground tasks to ollet the data needed to initialize its userinterfae:1. It retrieves the list of subsribe folders to initialize the folder pane2. It retrieves the number of unread messages in the INBOX3. It retrieves the �rst 100 messages of the INBOX to initialize the thread pane4. It retrieves the number of unread messages in all of the subsribed foldersThe fourth step is very expensive and, while important, does not need to be ompleted before the userinterfae is usable. Therefore RoundCube postpones it until the �rst three steps are omplete.As a result of these design deisions, RoundCube generally exhibits fewer attentiveness failures thanThunderbird when working with large IMAP aounts, even when the network bandwidth between its front-end and bak-end is onstrained. This assessment highlights the need to arefully manage the alloationof resoures in systems and also points to the need for anellation of requests in distributed systems. Weaddress both of these onerns in the design desribed in Setion 4.3.
4.2 Assessment of prototypesIn the early stages of this researh we developed two approahes to support attentive systems. Experienewith the �rst system demonstrated that overhead added to the proessing of short requests ould ompromisethe promptness of the system if not arefully managed. The seond system demonstrated that it is di�ult toretro�t attentiveness into a system without the knowledge of the relationship between its low-level ativitiesand the requests submitted by its users. These lessons motivated the design proposed in Setion 4.3.74



Figure 4.5: Lightweight hekpointing in Inksape4.2.1 Wrapping with hekpointsIn our initial attempts to improve the attentiveness of systems, we foused on adding responsibility forattentiveness through the GTK+ toolkit, one of the omponents in many of our examples. We alled thisdesign a wrapper, sine it interepted requests before they appeared at the appliation. We applied twovariants of this design, desribed in this setion and the next, to Inksape. We assessed the wrapper againstthe following goals:� Avoid modi�ations to the appliation. One onsequene of this deision was that the wrapper ouldsupport only the anel behavior, sine other behaviors rely on appliation-spei� knowledge of therequests� Ahieve su�ient e�ieny to avoid introduing new promptness failures due to overhead introduedby the wrapper� Avoid onsisteny failures, both within the appliation and also between the appliation and the Xserver, a ollaborating systemThe wrapper was implemented with four omponents, whih are shown in Figure 4.5. First, we introdued anew omponent into the GTK+ library, alled a trigger, to detet new requests and oordinate rediretion.The trigger is implemented within the gtk_propagate_event() funtion, the last funtion in the GTK+toolkit that enounters every request from the user. Seond, we reated a separate proess alled theanellation manager (CM). The anellation manager displayed and monitored a anel button wheneverInksape proessed a request. Third, we implemented a system all in the Linux kernel to apture and restorehekpoints of Inksape's state. The hekpointer is implemented as a new system all in the kernel, allowingit to use opy-on-write to redue the ost making opies of the proess's address spae. Our implementationuses existing ode in the kernel, allowing us to implement the hekpointer and restorer with about 100lines of new ode. Finally, we use a mediator to restore onsisteny between Inksape and the X serverwhen requests are aneled. This omponent was added in the seond wrapping approah and is disussedin greater detail in the next setion.The �ow of requests in the trigger is given in Figure 4.5. For ompleteness, we desribe the interationswith both the anellation manager and mediator below, even though the mediator was not implemented inthe initial system.Events enter the system via N1. The toolkit proesses these events, generating a stream of requests.An example of this proess is given in the disussion of Table 4.1 on page 66. The request stream thenenters the trigger via N2. The trigger reates a hekpoint, and noti�es the anellation manager that arequest is about to exeute, giving it the hekpoint identi�er at N3. The anellation manager ensures thata anel button is displayed to give the user the ability to anel the request. The trigger then noti�es the75



mediators of the new request at N4. Finally, the trigger forwards the request to the appliation's allbaks atN5, allowing the appliation to begin proessing the request. If the appliation interats with ollaboratingsystems, the mediators interept the outgoing requests (N6), logging and modifying them before sendingthem to the ollaborating systems (N7). If the request ompletes, ontrol returns to the trigger, whihnoti�es both the anellation manager (N8) and the mediators (N9) that the request has ompleted. Theanellation manager runs as an independent proess, allowing it to exeute in parallel with the appliationwithout threatening its onsisteny.The proessing of anel requests begins when the anellation manager detets that the user pressedthe anel button while another request was ative. The anellation manager begins responds by usinga system all to restore the appliation's state from the hekpoint reated by the trigger. This proessalso a�ets the stak and registers of the appliation, ausing it to re-exeute the trigger ode at N2. Thetrigger detets the rollbak by examining the result of the checkpoint() system all. It then aknowledgesthe rollbak by sending N3' to the anellation manager and N4' to the mediators. For more details on theinteration with the mediators, see the disussion in the next setion. Finally, the trigger returns ontrol tothe toolkit without invoking N5.We implemented a prototype of our anel wrapper in the Linux 2.6.14 kernel and ran it on a systemwith a Pentium 4 CPU running at 1.8 GHZ with 1 GB of RAM. We used a referene SVG doumentthat ontained detailed street data for Pittsburgh, Pennsylvania for our testing. This doument ontainedapproximately 4000 objets. While this doument may appear to be omplex, it is representative of thedouments routinely edited by artographers at ompanies like MapQuest. We were able to produe a tenminute attentiveness failure by opying all of the shapes in the doument and then pasting the shapes intoa seond doument of similar omplexity.Tests of the modi�ed system on�rmed that hekpointing was e�etive, allowing us to anel arbitraryoperations in Inksape without notieable delays. The wrapper was able to return ontrol to the user within52ms to 142ms of reeiving the anel request. The system all responsible for restoring the hekpointaounted for 10ms of this time.However, the modi�ed system exhibited other attentiveness failures due to the overheads added by thetrigger. Most of this overhead was due to the ost of reating a new hekpoint for eah request, whihwas approximately 20ms in our system. The overhead was added to all requests, even �requests� suh astraking the mouse that ourred with high frequeny and had short latenies. Even though the operationsfor reating and destroying hekpoints were short, our system was unable proess these requests as quiklyas the X server sent them. As a result, requests aumulated in Inksape's event queue. Eventually thequeue would �ll, ausing Inksape to blok for several seonds.Redireting Inksape also aused a onsisteny failure when the X Server and Inksape began to disagreeabout the sequene numbers for requests. The X protool uses an impliit sequene number for requests thatis rarely transmitted on the wire. Sine Inksape generated a small number of X requests after the hekpointwas reated, restoring the hekpoint would ause it to repeat the sequene numbers. Eventually Inksapewould notie that the sequene numbers were misaligned and stop ommuniating with the X Server.We identi�ed the following problems with the �rst prototype that informed our future designs:� Adding even a short overhead to every request an reate a promptness failure� Mediators are needed for systems that interat with X servers, even when the system does not appearto interat with the server before rediretion4.2.2 Wrapping with redo and mediatorsThe prototype desribed in this setion employs three related strategies to address the problems with the�rst prototype. First, the prototype avoids adding hekpoints to most short operations by reusing hek-76



RC1 const time_t max_time_for_cancel = 5 * SECONDS;RC2 bool checkpoint_exists=false;RC3 chkptid_t checkpoint_id;RC4 time_t cur_cancel_time = 0;RC6 void done_with_checkpoint() {RC7 free_checkpoint(checkpoint_id);RC8 checkpoint_exists = false;RC9 cur_cancel_time = 0;RC10 }RC12 void issue_request(Request r) {RC13 if (!checkpoint_exists) {RC14 checkpoint_id = create_checkpoint();RC15 checkpoint_exists = true;RC16 }RC17 time_t start_time = gettime();RC18 bool cancelled = r.execute();RC19 time_t end_time = gettime();RC20 if (!cancelled) {RC21 cur_cancel_time += end_time � start_time;RC22 if (cur_cancel_time > max_time_for_cancel) {RC23 done_with_checkpoint();RC24 } else {RC25 add_redo(r, checkpoint_id);RC26 }RC27 } else {RC28 provide_estimate_for_progress_feedback(cur_cancel_time);RC29 restore_checkpoint(checkpoint_id);RC30 while (has_redos(checkpoint_id)) {RC31 Request rr = get_redo(checkpoint_id);RC32 rr.execute();RC33 }RC34 done_with_checkpoint();RC35 }RC36 } Listing 4.1: Chekpoint reuse expressed in pseudoode
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points. Seond, the prototype inludes a mediator that monitors the ommuniation with the X server,resynhronizing ommuniation in the event of rediretion. Finally, the modi�ed wrapper must reord re-quests ompleted after the hekpoint was established and replay these ompleted requests if the hekpointis restored. We desribe the design of these three aspets of the system below, onluding with lessons thatinformed our proposed design.Chekpoint reuseThe hekpointing strategy in the �rst prototype reated attentiveness failures beause it established a newhekpoint before proessing eah request. Some requests suh as mouse traking requests were extremelyshort, very frequent, and ould aumulate in queues. As a result, the hekpointing time ould build up,reating promptness failures in the wrapped system.Systems ould avoid this problem by not reating a hekpoint for short requests. However, it may notbe possible for the system to aurately identify short requests. In systems using this approah, if a longrequest were misidenti�ed as a short request there would be no way to rediret the request after it began toexeute.Instead, we adopted an approah that identi�ed short requests when they ompleted their exeution.At this point the system an diretly observe the exeution time of the request, eliminating the risk ofmisidenti�ation. In the modi�ed system a hekpoint is in plae when every request exeutes, ensuring thatthe request an be redireted. However, hekpoints are not destroyed after short requests. Therefore, in asequene of short requests only one hekpoint is reated. The hekpoint will be reused for subsequent shortrequests, and will only be destroyed when the estimated replay time for the sequene beomes a signi�antrisk to the promptness of rediretion requests.The modi�ed hekpointing strategy in the trigger follows the one shown in Figure 4.5 with some varia-tions desribed below. The trigger maintains three piees of persistent state: a urrent hekpoint, a timer,and a redo log of ompleted requests. The trigger heks to see if a hekpoint already exists before reatinga new hekpoint. If no hekpoint exists trigger reates one and sends the identi�er to the anellationmanager at N3.If a hekpoint is already ative, the trigger onsults the timer assoiated with the hekpoint. The timertraks the amount of time that was used by requests that have ompleted after the hekpoint was reated.This timer provides an estimate of the overhead that would be added to a anel the inoming request ifthe trigger reused the urrent hekpoint. If the trigger determines that this overhead is unaeptable, itdestroys the urrent hekpoint, resets the timer, lears the log of ompleted requests, and reates a newhekpoint. Otherwise, the trigger proeeds through steps N3 and N4.Before alling N5 the trigger starts the timer. When N5 returns, the trigger stops the timer5 and adds theompleted request to the redo log. The trigger does not destroy the hekpoint when the request ompletes,allowing future requests to reuse the hekpoint. The logi used by the trigger is shown in Listing 4.1.In the event of a anel, ontrol returned to the trigger just after N3. After deteting that a request wasaneled, the trigger would onsult its queue of ompleted requests. The trigger then replays these requestsby reproduing the alls at N5. The details of the replay are disussed in greater detail at the end of thissetion. Assuming that the hekpoint restoration is non-destrutive, the mediator an ontinue to use theurrent hekpoint for future requests.5We are assuming a single-threaded design like Inksape, where the entire proessing time for the request happens at N5.This assumption is not valid for appliations that a di�erent thread to exeute the request.78



MediatorsWe added a mediator to the wrapper to monitor the ommuniation between the appliation and the X server,a ollaborating proess that manages the low-level elements of the user interfae suh as windows and mouseevents. The trigger ativates the mediator at N4 in the diagram, and also initiates ommuniation with themediator when requests at N4 when requests are aneled. Communiation between the appliation andthe X server is governed by the X protool, whih attahes a sequene number to eah request oming fromthe appliation. The protool does not transmit this sequene number to onserve bandwidth. In addition,requests oming from the appliation are bu�ered and sent in bathes. Therefore, it is impossible for themediator to determine the preise relationship between the requests submitted to the appliation by the userand the requests generated by the appliation and sent to the X server. Therefore, the trigger provides theurrent sequene number to the mediator at N4 before starting a request.During rediretion, the appliation initiates ommuniation with the mediator at N4 to inform it that therequest has been aneled. Rediretion is asynhronous, and therefore an our while the appliation wastransmitting a request to the mediator. Therefore, the appliation ommuniates with the mediator over aseparate soket during rediretion. Rediretion follows the following steps:1. The soket used to forward X requests from the appliation to the mediator is destroyed and replaedwith a new soket. This eliminates the risk that a partial X request that is bu�ered in the kernel willonfuse the mediator after rediretion.2. The mediator noti�es the appliation of the urrent sequene number. This is likely to be higher thanthe appliation's urrent sequene number, whih was restored with the hekpoint3. The mediator then reverses the e�ets of any requests that were forwarded to the X server for theaneled requestWe believe that mediators for other protools would share similar properties.Replaying requestsGiven the design of our trigger, there are three options for implementing replay that orrespond to di�erentlevels of abstration in the appliation: at the toolkit interfae, at the Xlib interfae, and at the system alllevel. These levels are shown in Figure 4.6. We deided that rediretion at the toolkit level was not likelyto sueed, disovered that rediretion at the Xlib level was not feasible, and obtained partial suess withrediretion at the system all level.Rediretion at the toolkit level is ompliated by reentrant alls between the appliation and the toolkit.While we normally disuss the interation between the toolkit and the appliation in terms of inversion ofontrol, in reality ontrol rosses between the toolkit and the appliation multiple times. For example, duringa paste operation ontrol rosses the boundary approximately 200 times, and there are reentrant alls thatare nested to seven layers, as shown in Figure 4.7. Lower levels of the arhiteture do not feature this levelof omplexity, greatly simplifying the implementation replay.Replay an be greatly simpli�ed at the Xlib level. Xlib provides a ommuniation hannel to the Xserver, whih provides events to the appliation, manages windows, and provides simple drawing ommands.Replay at this level involves apturing the events that were provided to the toolkit, storing these events ina bu�er that will survive hekpoint restores, and sending the bu�ered requests bak to the toolkit.In pratie replay at the Xlib level frequently deadloked. After some areful investigation, we disoveredthat the GTK+ toolkit was gaining aess to the soket used to ommuniate with the X server. Evideneof this aess is shown in Figure 4.6. At P1 in this diagram GTK+ is alling poll(), a system all that bloksuntil data appears on a soket. In most ases this bloking is handled within Xlib, as an be seen by the alls79
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Figure 4.7: Inksape makes a large number of reentrant alls to GTK+ (its toolkit) as it proesses requests.This �gure shows only the deepest set of reentrant alls made during a simple Paste request. The �gureeliminates alls that do not ross the boundary between Inksape and GTK+, and also eliminates the allsthat are not as deeply nested. The nesting shown in this diagram makes it di�ult to replay requests bysimulating the interations between the toolkit and Inksape.80



to select()6 in Xlib, one of whih is shown in P2. During replay, events are not being provided by the X server.Instead they are oming from a replay bu�er. Therefore, the poll() system all will blok. Unfortunately,the asynhronous nature of the X protool prevents the mediator from oordinating the replay. Deliveringevents at the wrong time an ause Inksape to misinterpret the event stream, leading it to identify thewrong requests. Therefore, we abandoned replay at the Xlib level in favor of replay at the system all level.Our seond relay approah foused on simulating the results of system alls. We used shared libraries tointerept the system alls made by Inksape, plaing these alls in a log along with the information neededto simulate their e�ets. When ontrol returned to the trigger at N5 it plaed a marker in the log, indiatingthat the alls in the log before this point were assoiated with the ompleted request. This form of replayworked for single-threaded appliations. Unfortunately we determined that it would be di�ult to supportthe same approah in a threaded appliation proessing multiple requests in parallel. Not only would we needto maintain the logs on a per-thread basis, we would also have to examine the logs for dependenies amongthe requests. These dependenies arise beause requests an use system alls to ommuniate as they exeute.For example, the futex() system all implements a form of inter-request ommuniation by managing aessto ontended loks. Other system alls are ambiguous. For example, two requests an ommuniate througha pair of onneted sokets via read() and write() system alls. In other ases read() and write() systemalls represent ommuniation with ollaborating systems that must be managed by mediators. Finally, thesame alls may indiate that hanges are being made to the �lesystems that must be undone in the event ofrediretion. Di�erentiating these ases would involve a detailed study of the semantis of the alls.Finally, all of these replay approahes enounter problems with the mode hanges that our in thetoolkit. Some of the reentrant alls made by the appliation hange the toolkit's interpretation of futureevents, thereby hanging its detetion of requests. Unlike the problem of reentrany, it is not possible tobypass this problem at the toolkit level or below. The Paste senario in Inksape provides one example ofthis problem. If the user initiates the paste operation by pulling down the Edit menu, dragging to Paste,and releasing the mouse button, the toolkit will forward the request to Inksape before losing the menu. Ifthe user then anels the Paste, ontrol will not return to the toolkit, ausing it to leave the Edit menuopen. Not only is this behavior onfusing to the user, it also reates a risk that a bu�ered button lik willstart a seond Paste request if the urrent request is aneled. The only way to avoid this problem is toreturn ontrol to the toolkit at N5 before the Paste request ompletes. However, in the design desribedabove the trigger will misinterpret this return, assuming that the request has ompleted. It appears thathanges to the appliation are needed to avoid this problem.We learned the following lessons from this work:� Runtime support for attentiveness requires knowledge of requests that annot be easily obtained with-out help from the system's developers� There are substantial obstales to implementing replay apart from knowledge of the appliation� Mediators must have knowledge of the request that initiated ommuniation with ollaborating systems4.3 General design patternGiven the obstales that we enountered in our prototype system, we deided to reate a design that wouldallow us to apture and exploit appliation-level knowledge of the requests in a system. This design an beused to struture new systems, but an also be retro�tted into existing systems to improve their attentiveness.To avoid spreading responsibility for attentiveness throughout the system, we on�ned the design to asmall number of new lasses, shown in Figure 4.8. In this �gure the ontroller represents an existingomponent of the system that is responsible for deteting new requests. In toolkit-based appliations the6The poll() and select() system alls provide similar funtionality, but were invented by di�erent variants of UNIX. MostUNIX implementations provide both alls to maximize ompatibility.81



Figure 4.8: This lass diagram shows the major lasses in our design pattern for attentive systems. Methodsmarked with a '+' are short.ontroller represents the ombination of the toolkit and the allbaks registered by the appliation. Theseallbaks reate new request objets and submit them to the sheduler. We do not disuss the ontroller inmore detail. In the setions that follow we disuss the three other lasses on the diagram�the Sheduler,Requests, and ResoureManagers�explaining how the lasses address responsibilities implied by the de�nitionof attentiveness. In the disussion that follows, we pre�x short alls with �+.� Potentially long alls have nopre�x.4.3.1 The shedulerThe Sheduler provides a entral point of ontrol for requests in the system. It aepts requests submittedby the ontroller via the +accept() method. The sheduler deides when to start the request by onsideringthe request's priority, the priorities of other requests in the system, and the availability of resoures. Aftera request has been started, the sheduler ontinues to trak its priority, whih may hange as the requestexeutes. Changes in request priorities and the arrival of new requests may ause the sheduler to rediretone or more ative requests. It does this by invoking methods on individual request objets.In systems that are not thread-safe, suh as Inksape, the sheduler ensures that at most one request isative in the system at any given time. When this design is applied to these systems there are atually twothreads. The sheduler and the toolkit share a thread. The sheduler gains aess to this thread when theallbaks registered with the toolkit all the sheduler's +accept() method. The sheduler returns ontrol tothe toolkit in a short period of time. A seond thread is enapsulated in a request objet and exeutes therequest. This thread has aess to the appliation's state, whih may not be thread-safe. The lasses in thisdesign ensure that the toolkit thread never diretly aesses the appliation's state, and that the appliationdoes not aess the toolkit's state. The runtime support desribed in Chapter 5 an enfore this separationof state with minimal impat on the appliation's performane.4.3.2 RequestsRequest objets serve several purposes in our design:� Like LISP futures [51℄, they protet the sheduler from potentially long operations that our whileproessing requests. As a result, the amount of analysis needed to ensure that the sheduler will notbe bloked is greatly redued.� They allow the sheduler to ontrol requests by alling short methods that are part of the requestinterfae.� Requests provide a way to trak and reord the system's ativities and resoure alloations. As a result,requests provide information that an be used to inform the lient of the system's urrent state, inform82



the sheduler's deisions to start and stop requests, and aid developers in debugging attentivenessfailuresRequests provides up to four short methods that provide low-level mehanisms that the sheduler an useto rediret the request: +start(), +stop(), +continue(), and +undo(). The +start() method begins proessingof a request, generally by starting a new thread that is enapsulated in the request. The +undo() methodstops the proessing of the request and reverses the request's hanges, and will typially be implementedwith the hekpointing sheme desribed in Setion 5.1. The +stop() method pauses a request, temporarilyreleasing its resoures. However, the request preserves as muh of its work as possible, rolling bak only thework that ould ause other requests to fail if they are started. To ensure that +stop() is short, some systemsmay make it asynhronous, notifying the listeners registered through the +onChange() method when therequest has stopped. It is also possible for systems to implement +stop() by using hekpoints. Finally, the
+continue() method resumes exeution of a stopped request.The +changePriority() hanges the request's priority and informs the listeners registered with the request(generally the sheduler) of the priority hange. This method is short and may be alled from any thread.A request's priority may be hanged while it is exeuting. These priority hanges generally ome from theontroller and may ause the sheduler to +stop() or +undo() the request.Requests provide a short +estimate() method that estimates the request's future resoure onsumption.In systems with a large number of requests and a small number of resoure types the +estimate() method'simplementation may be delegated to the resoure managers. The sheduler uses the information providedby +estimate() to avoid over-alloation of the system's resoures.Finally, a request an blok, waiting for another request to omplete by alling the await() method.The +await() method implements priority inheritane [90℄, raising the target's priority when the aller'spriority is higher. This is useful in ases where a high-priority task beomes dependent on a request thatwas initiated by a lower priority task For example, in Thunderbird a user may attempt to view a messagethat was originally being downloaded by the junk mail sanner. Sine the junk mail sanner is normally alow priority task, the user's attempt to view the message is very likely to raise the priority of the messagedownload. The problem of determining that the junk mail sanner and user are attempting to download thesame message is left to the appliation. In this ase the appliation ould provide a hash table to map frommessage identi�ers to request objets.Figure 4.9 shows the sequene of messages among these omponents in a typial system. The shedulergives inoming requests the opportunity to make alls to the toolkit by alling +reconfigure() before returningontrol to the toolkit. Requests an use this method to make reentrant alls to the toolkit that may a�etthe interpretation of future events. However, requests must be areful to reverse these alls if the requestis aneled in the future by a all to the +undo() method. In addition, the +reconfigure() method must beshort to avoid bloking both the toolkit and the sheduler.Some requests must make toolkit alls as the request is proessing. For example, a long-running requestmay need to make toolkit alls to provide progress feedbak to the user. Requests aomplish this by reatingnew request objets (alled subrequests below) and submitting them to the sheduler. By default these newrequest objets have a dependeny on the request that reated them. This approah is similar to Swing's [34℄
invokeLater() all and also Sagas [38℄, a tehnique that is used in database systems to avoid on�its whileproessing long transations. The sheduler traks the dependeny between requests and their subrequests,and alls +undo() on the subrequests before +undo() on the request that reated them.When requests use hekpoints to implement the +stop() and +undo() methods the sheduler is responsiblefor ensuring that a hekpoint is in plae before it alls a request's +start() method. The sheduler may usethe knowledge provided by the request's isShort �ag to improve e�ieny, by not establishing a hekpointbefore alling these requests. The sheduler may also reuse hekpoints when requests omplete quikly. Ifthe sheduler deides to restore the hekpoint, it is responsible for replaying requests ompleted after thehekpoint was taken. This approah is similar to the way that hekpoints are used to debug long-running83



Figure 4.9: This sequene diagram shows the interations among omponents when the design is applied ina single-threaded system. Two requests are shown, the seonds request anels the �rst request. The �rstrequest ontinues to exeute for a brief period of time after the anel. During this time the sheduler mustnot submit an additional request.
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programs [101℄. This design allows the sheduler to limit the overhead of hekpointing at the expense oflonger rediretion times.4.3.3 Resoure managersThe promptness of systems often depends on the areful management of resoures. Resoure onstrainsour in two of our example systems. In our lient-server system, the server must be areful to avoid over-subsription of proessors and memory as requests arrive. Thunderbird, desribed in Setion 4.1.3, mustarefully manage network resoures when ommuniating with IMAP servers. The diverse nature of theseresoure onstraints argues that we should provide a general framework for managing resoures, allowingdevelopers to hoose the resoures to be managed and the management strategy based on the onstraintsenountered by their systems. The framework should allow the inremental addition of new resoure types,sine developers may disover new onstraints as they implement and test the system.We aomplish this by allowing developers to reate multiple resoure managers, eah of whih managesa single resoure type. Resoure managers do not exert diret ontrol over the system. Instead, they trakthe urrent level of resoure onsumption on a per-request basis. The sheduler retrieves this informationby alling the short +available() method to determine the availability of the resoure type provided by aresoure manager. When an exat estimate is not possible in a bounded time, the resoure manager mayreturn an approximation to keep the implementation of +available() short.Resoure managers also ontain methods that requests use to obtain resoures: the allocate() and re-
lease() methods. These methods are used only by the request's implementation, and therefore may be longwithout ompromising the responsiveness of the system.4.4 Applying the pattern to the RMI lient and serverWe have applied the pattern desribed above to the RMI-based lient-server system. Both the lient andthe server have request, sheduler, and resoure manager lasses. Request objets on the lient and serverhave similar responsibilities.The shedulers on the lient and the server have di�erent roles. The sheduler on the lient uses the
+start(), +stop(), and +undo() methods to manage the lient's resoures, inluding server onnetions andnetwork bandwidth. In addition, it publishes an interfae that an be polled by the sheduler on the serverto determine the state of individual requests. The server running on the lient noti�es the server of thisinterfae by plaing a bakpointer into eah request before forwarding it to the server's sheduler.The sheduler running on the server selets the requests to start to ahieve a fair assignment of resouresto ompeting lients. In addition, the sheduler uses the bak-pointer in requests to periodially poll thelient that submitted the request to on�rm that the request has not been abandoned. Polling must beisolated from the sheduler's other ativities to ensure that the sheduler is not bloked. It may appear to besimpler to rely on the lients to send rediretion noti�ations to the server. However, this would make theserver vulnerable to rashed lients, network partitions, and denial of servie attaks from maliious lients.We applied this modi�ed pattern to our simple RMI lient-server system. We did not use hekpointingto implement the request's +stop() and +undo() methods. Instead, we implemented +undo() by invokingthe depreated Thread.stop() method. We attempted to protet RMI from the e�ets of Thread.stop() bymoving the request's proessing into a separate thread. This thread returns a single value to the RMI threadvia a volatile �eld in the Request objet. Sine stores to volatile �elds establish a happens-before relationshipin Java, this approah greatly redues the hanes that an RMI thread ould enounter a orrupted objet.The RMI thread will either see a null pointer, indiating that the request was aneled before produing aresult, or a non-null pointer to an objet ontaining a omplete result.85



We on�gured the sheduler on the server to poll for disonneted lients every 100ms. The resultingserver was apable of aneling abandoned requests promptly. The time to ompute the �rst 15,000 digitsof � inreased from 10.53s to 11.03s. The added overhead was largely due to the polling. Dereasing thepolling rate to one every 1000ms yielded a omputation time of 10.66s. We did not observe failures due tostate orruption due to the use of Thread.stop() during our testing, but would not reommend this approahfor prodution systems.4.5 ConlusionIn this hapter we have onsidered several designs that pose a risk to attentiveness:� In Inksape restritions on the use of threads due to non-thread-safe ode inrease the risk of bloking,sine designers are not free to use threads to isolate the e�ets of long operations� Thunderbird and RoundCube abandon requests pose a risk to attentiveness in servers when theirrequests exhaust onstrained resoures. Protools like IMAP, and to some extent RMI, may ontributeto this problem by foring lients to abandon requests in order to remain attentive.� Thunderbird exeutes bakground tasks in parallel with requests from the user and fails to prioritizethe assignment of assign onstrained resoures to user requests.We have also identi�ed strategies that support attentiveness:� Reservation of resoures for both the user interfae and also the user's requests.� Limiting the sope and number of bakground tasks.� Traking all of the tasks that are ative in the system, inluding bakground tasks.We inorporated these strategies into a design of that supports attentiveness and applied the design to asimple lient-server system. The use of this design overomes the limitations of the RMI protool, resultingin measurable improvements in attentiveness.However, runtime support for rediretion is needed to apply this design safely to more omplex systems.We desribe this runtime support in the next hapter.
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Chapter 5Runtime support for attentive systemsAttentive systems must be able to rediret requests in progress. The system must preserve relationshipsamong multiple parts of the system's state while redireting requests, inluding:� The threads in the system� Persistent state suh as �les� The system's memory� Requests that have been submitted to ollaborating systemsThe relationships among di�erent parts of the system's state are often not apparent when examining thesystem's implementation. In addition, relationships often our among modules maintained by di�erentdevelopers, making it di�ult for a single developer to reason about rediretion. This hapter desribesthe design and partial implementation of a runtime to manage these dependenes. The runtime uses thediretives desribed in Chapter 3 to apture intent that annot be inferred from the system's implementation,and uses this intent to implement the per-request start(), stop(), continue(), and undo() operations desribedin Chapter 4.The soundness of rediretion depends on the auray of diretives. If the diretives do not desribethe system's atual behavior, the runtime may break some of the relationships among the parts of thesystem's state, potentially leading to data orruption and/or the eventual failure of the system. To addressthis problem the runtime is able to verify that the information provided by some diretives mathes thesystem's behavior as it exeutes. This validates the diretives for the urrent exeution of the system.Dynami heking an be very expensive. For example, Helgrind [89℄, a dynami heker that detets dataraes, inreases the running time of systems by a fator of 20-1300. However, our runtime is able to hekdiretives that rule out data raes while inreasing the running time by only a fator of 3. When the runtimeenounters an inaurate diretive it halts the system and generates a report. The report ontains both areferene to the inaurate diretive and also a desription of the behavior that was not aurately desribedby the diretive. Developers an then resolve the inauray either by modifying the diretive or hangingthe implementation of the system to prelude the event.Two runtimes are desribed in two setions. Setion 5.1 desribes the design of a runtime that is able torediret requests. The runtime desribed in the �rst setion has not been implemented. Setion 5.2 desribesthe design and implementation of a runtime that is able to identify inaurate diretives. It quanti�es theperformane impat of heking diretives by adding diretives to benhmarks taken from the PARSEC 2.0suite [13℄. These diretives are su�ient to prove that the benhmarks do not enounter data raes duringexeution. The work desribed in this setion was done with help from Andrew Wesie. Setion 5.3 onludesby proposing additional work that would improve the design and implementation of the runtimes.87



5.1 Runtime support for rediretionThe disussion in this setion uses a simpli�ed IMAP server as a running example. IMAP servers managemultiple folders ontaining email messages. Multiple lients onnet to the server and an aess the samefolder simultaneously. As a result IMAP servers must preserve three forms of onsisteny when operationsare redireted:� Consisteny within the IMAP server� Consisteny between the IMAP server and its lients� Consisteny among the lientsSystems must often employ detailed knowledge of ommuniation protools to preserve the seond and thirdforms of onsisteny. The runtime does not diretly inorporate this knowledge. Instead, the runtime usesmediators, speial omponents registered by the developers of the system, to handle rediretion. Mediatorsare desribed in Setion 5.1.4.IMAP servers often use multiple threads to support onurrent proessing of requests from di�erentlients. The disussion below assumes that the server has four threads, providing examples of the risksto onsisteny that our in threaded systems. The example assumes that the IMAP server follows theative objet pattern, where eah thread has exlusive aess to a de�ned part of the system's state alled aregion and ommuniates with other threads using asynhronous messages. The four threads have di�erentresponsibilities:TC handles ommuniation with the lient that initiated the Copy.TO handles ommuniation with the seond lient, whih observes the destination folder as the opyprogresses.TS manages the folder that is the soure of the messages.TD manages the folder that reeives the new messages.The server maintains persistent state in four �les:FS holds the messages in the soure folder.FD holds the messages for the destination folder.FL holds a log of requests from the user.FI holds a table with one reord per folder giving the next valid UID, the unique identi�er assignedto messages when they are plaed in a folder.The system's memory onsists of three data strutures:MS maps eah message id in the soure folder to an o�set and length in FS . When the server restartsthis map is reonstruted by sanning the �le. The system must ensure that MS and FS remainonsistent during rediretion.MD maps eah message id in the destination folder to an o�set and length in FD . When the serverrestarts this map is reonstruted by sanning the �le. The system must ensure that MD andFD remain onsistent during rediretion.MI ahes the information in FI , allowing the server to quikly assign messages identi�ers to newmessages in folders. MI is loaded from FI when the server starts, and FI is kept in syn withthe view in MI .ML represents memory that is ontrolled by the runtime libraries on the system. The developers ofthe system do not ontrol these libraries and are unaware of their implementation.88



Figure 5.1: Caneling requests in a server an involve negotiation among its lients. When the opy requestmarked with an A4 is aneled, the opy request marked with A5 must be modi�ed to exlude messages 11and 12.In an atual system there would be additional data strutures, inluding memory that is dediated to eah ofthe threads. For simpliity the following disussion does not address these data strutures. The onsistenyof these data strutures an be maintained using the tehniques desribed below.The IMAP server allows lients to observe the progress of long running ommands submitted by otherlients. Figure 5.1 shows the interations between the IMAP server and two lients. The �rst lient initiatesa opy ommand to opy messages in a soure folder to a seond folder alled the destination folder (A4in the �gure). The seond lient observes the destination folder, and initiates a seond opy (marked withA5) while the �rst lient's opy is in progress. A5 referenes two messages (11 and 12) that were plaedin the destination folder by A4. As a result, A5 is also a�eted when the opier anels A4. The runtimepreserves the internal onsisteny of the server and also noti�es lients of the hanges. For example, its replyto A5 indiates that only 10 messages were opied and that messages 11 and 12 have been removed fromthe folder.1 Many IMAP servers, inluding Doveot [27℄ and Cyrus [24℄, implement full isolation of requestsas they exeute. Isolation simpli�es the design of the server, but introdues other problems. For example,isolation makes it impossible to provide progress feedbak for long running ommands.The disussion follows the issues that arise when A4 is aneled. Setion 5.1.1 disusses the features of theruntime that allow developers to identify new requests. Setion 5.1.6 desribes the features of the runtimethat allow the �rst lient's opy request to be stopped without ompromising the system's onsisteny. To dothis, the runtime must undo the request's hanges to MD and ML while preserving the hanges is MI . The1The diagram shows that message 11 was removed twie. This follows the onventions of the IMAP protool, where message12 is renumbered to 11 when message 11 is removed. 89



runtime support for managing this proess is disussed in Setion 5.1.2. In addition, the runtime must undothe hanges that the opy request made to FD, removing all of the messages that were added to the �le by theopy. Support for making these hanges, while retaining the hanges in FL, is disussed in Setion 5.1.4. Theruntime must also restart the seond opy operation, sine it observed some of the hanges made by the �rstopy. To do this, it traks dependenies among requests, as desribed in Setion 5.1.3. Setion 5.1.7 desribesan approah to supporting blak-box omposition with modules by using tollgates. Finally, Setion 5.1.8desribes solutions to thread life-yle issues problems that an our while rolling bak requests.5.1.1 Request trakingThe runtime is not able to identify new requests without help from diretives. Requests an arrive throughmany ommuniation mehanisms, inluding network sokets, pipes, �les, and signals. Systems may use thesame mehanisms for bakground proessing that is not diretly tied to requests. In addition, in toolkitappliations the identi�ation of new requests ours after the ommuniation in a series of allbaks, asdisussed in Chapter 4.Therefore, the runtime relies on the diretives shown in Listing 5.1 to identify requests. When a threadinvokes the create_request() diretive, the runtime reates a new request and returns a request_t objetthat an be used to referene the request in future diretives.The runtime assumes that the proessing for a request happens on one or more threads. The relationshipbetween threads and requests is dynami. An inomplete request may be assoiated with 0, 1, or manythreads at one. Threads are always assoiated with a single request. The request that is assoiated with athread may hange during the thread's lifetime. New requests are not assoiated with threads. New threadsare initially assoiated a speial request alled the nullRequest. The nullRequest annot be redireted.The nullRequest allows developers to identify ativities in the system that are not assoiated with a user-generated request, suh as the proessing that ours in a GUI toolkit as it identi�es a new request.Developers indiate that a thread is about to do work for a request by invoking the associate_request(request)diretive. Developers an retrieve the request urrently bound to a thread by invoking the current_request()diretive. Developers may need to retrieve the urrent request to allow additional threads to bind to therequest. For example, in Figure 5.1 ClientThreads would pass the urrent request when sending messages,suh as AddToFolder, to FolderThreads.Developers indiate that the request urrently bound to a thread has ompleted by alling complete_request().By alling this diretive the thread is asserting that there are no other threads assoiated with the requestand that no thread will all associate_request(current_request()) in the future. Code that violates eitherof these onditions uses the diretives inonsistently, and will ause the runtime to report an error.5.1.2 Traking hanges to memoryRequests modify memory as they exeute. For example, the COPY request at A4 in Figure 5.1 modi�es MDwhen it adds messages to the Dest1 folder, adding entries for the messages that point to their loation inFD . In addition, it modi�es MI as it assigns identi�ers to the messages that it adds. Finally, the librariesthat are used to aess and update the �les may make hanges to ML. The runtime traks these hanges,assoiating eah with the request that aused it. It also ensures that the hanges an be reversed if the
undo() operator is invoked on the request. To do this, the runtime splits the address spae of the system intoa series of regions. Threads, exeuting on behalf of requests, invoke diretives to gain read and/or read-writepermissions to regions before aessing them, as desribed in Chapter 3.To avoid unaeptable overhead the runtime does not examine individual memory aesses. Instead, itrelies on knowledge of the aess poliies that protet regions. These poliies are provided by the diretives,and are disussed in detail in Setion 3.3. For example, multiple FolderThreads may attempt to aess MI .90



typedef enum {
ready, running, stopping, stopped, completed, finalized

} state_t;

typedef struct {
map<region_t *, generation_t> readSet;
map<region_t *, writeEvent_t> writeSet;
set<block_t *> deferredFrees;
state_t state;
bool isShort;
int threadsBound;

} request_t;

set<request_t *> allRequests;

__thread request_t *currentRequest;
__thread request_t *nullRequest;

request_t *create_request(bool isShort) {
request_t *rval = new request_t(isShort);
rval.state = stopped;
rval.threadsBound = 0;
allRequests.add(rval);

return rval;
}

void associate_request(request_t *request) {
exit_as_writer(currentRequest, threadRegion);
currentRequest.threadsBound��;
if (request.state != stopping) {

request.threadsBound++;
enter_as_writer(request, threadRegion);
currentRequest = request;
request.state = running;

} else {
thread_stop();

}
}

void complete_request(request_t *nextReq)
{

request_t *comp = currentRequest;
associate_request(nextReq);
if (comp.threadsBound) {

report_error("Attempting to complete with multiple bound threads");
return;

}
if (comp.state == stopping)

completed_rather_than_stopped();
comp.state = completed;

}Listing 5.1: The runtime uses this data model to trak requests. The __thread keyword is a storage modi�er,supported by g, that indiates that the variable should be plaed in thread-loal storage. The map and settypes are plae-holders for abstrat data types that provide a subset of the funtionality of the orrespondingC++ templates. The operations given above are short and should be onsidered to be atomi.91



To avoid data raes the implementation of MI may use loking to ensure that at most one thread aessesthe region at a time. When a thread obtains the lok the runtime will assume that the thread is aboutto write to the region. The runtime will ensure that the thread's writes an be reversed if its request isredireted. When the thread releases the lok the runtime will assume that the thread will no longer aessthe region. Unlike transational memory systems, the runtime must still be able to roll bak the thread'shanges. Changes are ommitted only when the request is �nalized, as desribed in Setion 5.1.5.In other ases a single thread may have exlusive aess to a region. For example, MD is aessed onlyby TD, the FolderThread that ontrols the Dest1 folder. In this ase the runtime assumes that any requestthat is bound to TD writes to the region.The disussion below overs three aspets of the support for traking hanges to memory: identifyingregions, making opies of regions before they are modi�ed by requests, and managing the address spaeof the system to ensure that the ontent regions an be restored during the undo() operation. Trakinghanges to regions relies on the funtionality for traking dependenies desribed in Setion 5.1.3 for part ofits funtionality.5.1.2.1 De�ning regionsAttentive systems may inorporate ode that is not aware of regions. In addition, standard memory alloationroutines have no onept of regions. Therefore, the runtime onstruts regions indiretly, as the systemexeutes. Diretives embedded within the system speify whih region should hold new bloks that arealloated by a thread. The region that will hold future alloations an be hanged by invoking the bind()diretive. The implementation of bind() saves the region in thread-loal storage, making it available whenthe memory alloation routines are invoked.The runtime interepts low-level alls that alloate memory, inluding malloc(), calloc(), realloc(), mmap(),and mmap64(). It interepts most alls by using the LD_PRELOAD environment variable to reroute allsto these routines to versions provided by the runtime. However, libc, the library that provides system allsupport and memory management for most systems, oasionally alls memory alloation routines diretly,bypassing the interepts. Therefore, the runtime also interepts alls by plaing a jump instrution at thebeginning of some of these routines.The runtime also updates data strutures that allow addresses to be translated bak to the region thatontains them. These data strutures support the region_of(block_t *) diretive, whih retrieves the regionontaining a blok of memory.5.1.2.2 Preserving the ontents of regionsThe runtime system makes a opy of a region the �rst time that a request gains aess to the region. Whenthe undo() operation is invoked the runtime restores the ontent of the region from this opy. The runtimesupports two di�erent opying approahes: an eager opy and a lazy opy. The eager opy is relativelysimple, but an be slow for large, sparsely updated regions. In addition, it onsumes the address spae ofthe system. In the worst ase eah non-�nalized request ould hold a opy of every region in the system.The eager opying sheme follows the following steps:1. The runtime heks for another request that is already writing to the region. If another request iswriting to the same region it will already have a opy of the region. The runtime avoids reating aredundant opy by reating a two-way dependeny between the requests. As a result, issuing an undo()operation with either request will roll bak both requests.2. If no other request is writing to the region, the runtime examines the region, alulating the numberof bloks and the total size of the bloks. 92



3. It alloates a blok of memory that is large enough to hold the address, size, and urrent ontents ofeah blok within the region.4. Finally, it opies the bloks in the region, noting their size and original address.The primary overhead in the eager sheme is due to the opies of the region's bloks. On an Intel XeonE5405 CPU running at 2.0GHz, opying 660MB of memory takes approximately 0.1s. Therefore, the proessof reating a hekpoint on these systems is potentially long, using the terminology outlined in Chapter 2.When systems use the design pattern outlined in Setion 4.3 the overhead for the opying will not a�et theaknowledgment time of the system.The lazy opying sheme ahieves better performane for large, sparsely written regions by postponingthe opy operation. It does this by establishing a opy-on-write mapping to the region. The mappingremoves the system's write aess to the region. As a result, any attempt to write the region will reate afault. The kernel interepts the fault, opies the page being written, whih is generally 4k of memory, grantsthe proess read-write aess to the page. Finally, it allows the write to proeed.Lazy opying is advantageous for large regions that are updated sparsely. The mappings an be establishedquikly, as shown in Figure 5.2. However, if every page in the region is written the added faults will inreasethe opying time for the region by about 40% when ompared to eager opying, as shown in Figure 5.3.In addition, lazy opying an preserve at most one opy of a region at any given time. Therefore, theruntime must introdue additional dependenies among requests to ensure that undo() operations will notompromise the onsisteny of the system.The runtime an implement lazy opying by using standard system alls. The implementation reliesheavily on memory mapped �les. It reates a memory mapped �le in the tmpfs �lesystem to hold the last�nalized version of the system's memory. When a thread obtains write permission to a region, the runtimeexeutes the following operations:1. It heks if another un�nalized request is already modifying the region. If so, it reates a bidiretionaldependeny between the requests and stops. The dependeny will ensure that the region is restoredfrom the lean opy if either request rolls bak.2. It alls mmap() with the MAP_PRIVATE �ag for eah of the pages in the region. One this all hasompleted, writes to the pages will be re�eting in the proess's memory spae but will not a�et thepages for the region in the �le in tmpfs.3. During an undo() operation the runtime issues a seond mmap() for eah of the pages in the region.The mmap() all will disard any modi�ed pages, restoring the region from the lean opy in the tmpfs�lesystem.4. If all of the requests that have modi�ed the region have �nalized, the modi�ed pages are now the leanversion of the region. The runtime ommits these hanges by using the pwrite() system all to writethe pages to the �le in tmpfs. Ideally the kernel would optimize this write, skipping any pages thathave not been modi�ed. One these alls are omplete, the modi�ed pages an be disarded by issuinga seond mmap() all.To use lazy opying the runtime must modify the way that memory is alloated so that a page belongs toat most one region. This hange an be added to the routines that maintain the mapping between regionsand addresses.The appliation of opy-on-write to hekpointing problems is not novel. Copy-on-write has been usedin the past to support I/O prefething [35℄ and to apture snapshots of a system's state before ommittingthem to disk [41℄. However, this tehnique is well-suited to attentive systems, sine it is lightweight relativeto the systems' promptness requirements and an be employed in systems without engaging in extensiveanalysis of every module used to onstrut the system.93



Figure 5.2: The ost of establishing a lazy hekpoint on an Intel Xeon E5405 CPU running at 2.0GHz with4GB of memory.5.1.2.3 Postponing free()The implementations of the undo() operation for both eager and lazy opying assume that regions an berestored at their original addresses. Therefore, the runtime must ensure that a region's addresses are notreassigned to a seond region. If addresses were reassigned, the undo() operation would not be able to restorethe �rst region modifying the seond region.To avoid this problem, the runtime interepts alls to free(), realloc() and munmap(). When there is aopy for the region, frees of bloks in the region are plaed in the deferredFrees �eld of the ative request.The request will omplete these frees when it is �nalized. It may be possible to improve on this design byapplying one of the ideas disussed in Setion 5.3.35.1.3 Dependeny traking and undo()Dependenies arise in attentive systems when requests observe the partially ompleted work of other requestsduring their exeution. For example, there are both external and internal dependenies between the COPYrequest marked with A5 in Figure 5.1 and the COPY request marked with A4:� The internal dependeny is reated when A5 aesses regions that have been modi�ed by A4, inludingMD, MI , and ML. The disussion in this setion addresses internal dependenies.� The external dependeny is reated when Observer reeives the �11 EXISTS� message at TC08 andthe �12 EXISTS� messages at TC12. These messages are generated as A4 exeutes, and are no longervalid after A4 is aneled. Dependeny traking is able to automatially detet this dependeny, but isunable to restore the onsisteny of the system without detailed information about the IMAP protool.Therefore, the runtime ontats a mediator, whih generates the appropriate IMAP noti�ations toinform the observing IMAP lient of the IMAP server's new state.94



Figure 5.3: Cost of establishing and maintaining hekpoints on an Intel Xeon E5405 CPU running at 2.0GHzwith 4GB of memory. The boxes show the results of individual tests. The lines represent a linear �t of thetests. The ost of establishing a lazy hekpoint is low and is represented by the bottom line. The middleline shows the ost of establishing an eager hekpoint, whih immediately inurs the ost of opying thedata in the hekpoint. The top line shows the ost of preserving a lazy hekpoint when data is modi�ed.Dependeny traking does not examine individual aess to the regions. Instead, it uses knowledge extratedfrom the diretives that threads invoke to gain and release permission to aess regions.The runtime uses information provided by the diretives to maintain a generation number for eah region.Pseudo-ode for the data strutures involved is shown in Listing 5.2. The runtime inrements the generationnumber for a region every time that a thread obtains write aess to the region. The generation numberats as a version number for the ontent of the region, with higher numbers orresponding to more reentversion.To illustrate, onsider the generation number of MD, the region ontrolled by the Dest1 FolderThreadin Figure 5.1. Assuming that the initial generation of MD is 0,2 the generation of MD, as viewed by theregion and TD, will beome 1 at TC07, 2 at TC11, and will return to 0 as a result of the undo() operationinvoked by the anel at TC13.Requests beome aware of a region's urrent generation number whenever a thread bound to the requestinvokes a diretive to gain or release permission to aess the region. The readSet of the request alwaysontains the highest observed generation number. For example, A2 observes that the generation numberof MD is 0 at TO02. A3 observes the same generation number at TO05. A4 detets that the generationnumber is 1 at TC06 and updates it to 2 at TC10. In addition, at TC06 A4 modi�es MD for the �rst time.Therefore, it opies the region and saves the opy of the region with a generation number of 0 to its writeSet.This is the opy that is restored during the undo() operation at TC13.A5 disovered that the generation number of MD is 2 at TO08, and reords this number in its readSet.During the undo() of A4, shown at TC13, the runtime restores of MD from A4's writeSet, dropping thegeneration number of MD to 0. It detets that A5 depends on A4 when it examines A5's readSet anddisovers that A5 observed a later version of MD than is now urrent. The runtime responds by also rolling2Any initial value will work. 95



typedef struct {
bool createsDependencies;
generation_t generation;
int writers;
request_t *oldestRequestWithCheckpoint;

} region_t;

typedef struct {
checkpoint_t *chkpt;
generation_t time;

} writeEvent_t;

region_t tollgateRegion;

__thread region_t *threadRegion;

void new_thread() {
threadRegion = new_region(THREAD_LOCAL);
enter_as_writer(threadRegion, pthread_self());

}

region_t *new_region(policy_t policy)
{

region_t *rval = new region_t;
rval.createsDependencies = (policy != THREAD_SAFE);
rval.generation = 0;
enter_as_writer(currentRequest, rval);
return rval;

} Listing 5.2: Request-level dependeny traking
bak A5's hanges. Allowing A5 to ontinue without rollbak ould ompromise the onsisteny of thesystem, sine the ontents of MD hanged. The runtime invokes undo() on A5 to undo A5's observation ofthe later state of MD.The runtime shares many features with some implementations of software transational memory (STM) [26℄.Like STM, the runtime uses generation numbers to detet dependenies. However, it di�ers in the followingways:� STM libraries di�er beause they isolate transations, and therefore must hek for on�its amongtransations whenever a transation ommits. The dependeny traking in the runtime is invoked onlywhen the undo() operation is invoked during rediretion. The runtime assumes that rediretion willbe relatively rare. Therefore, it has been designed to redue the ost of traking dependenies at theexpense of doing more analysis during rediretion.� Requests are not isolated. Therefore, the runtime is unable to apply ertain optimizations that areused in STM implementations. For example some STM systems use a global generation ounter,inremented on eah ommit, to eliminate the traking of read sets for short read-only transations.The STM system assumes a on�it if this ounter updates and restarts the read-only transations.� The runtime uses diretives to ollet dependenies at the level of regions rather than individualmemory loations. This greatly redues the ost of olleting dependenies: there is no need to olletinformation about eah memory aess. However, the runtime will detet false dependenies amongrequests that aess di�erent parts of the same region, potentially inreasing the expense of rediretion.Developers an redue this problem, at the expense of writing more diretives, by using smaller regions.In addition, the runtime an fail to detet dependenies if the diretives are inaurate.96



void no_region_dependencies(region_t *region) {
region.createsDependencies = false;

}

void enter_as_reader(request_t *request, region_t *region) {
if (region.createsDependencies)

request.readSet[region] = region.generation;
}

void exit_as_reader(request_t *request, region_t *region) {
if (region.createsDependencies)

request.readSet[region] = region.generation;
}

void enter_as_writer(request_t *request, region_t *region) {
if (region.createsDependencies) {

enter_as_reader(request, region);
generation_t checkpointGeneration = region.generation;
region.generation++;
if (!request.writeSet.has(region))

request.writeSet[region] = writeEvent_t(checkpointGeneration, makeCheckpoint(region));
region.writers++;

}
}

void exit_as_writer(request_t *request, region_t *region) {
if (region.createsDependencies) {

request.readSet[region] = region.generation;
region.writers��;

}
}

checkpoint_t *makeCheckpoint(region_t *region) {
if (lazy_copy(region) &&

region�>oldestRequestWithCheckpoint &&
region�>oldestRequestWithCheckpoint�>state != finalized) {

// The region holding the checkpoint now depends on current_request()
region�>oldestRequestWithCheckpoint�>readSet[region] = region�>generation;
return NULL;

}
// Checkpointing code goes here

} Listing 5.3: Operations that are invoked during permissions hangesThe subsetions that follow disuss the detailed design of the runtime. Listing 5.3 desribes operationsthat modify the request and region data strutures when threads obtain aess to regions. Setion 5.1.3.2disusses the detailed design of the undo() operation.5.1.3.1 Operations for permissions hangesThe detailed design of the operations that trak dependenies is given in Listing 5.3. Developers an speifythat regions do not propagate dependenies by using the no_region_dependencies(region_t *) diretive. Forexample, developers may do this for the default thread-loal regions assoiated with worker threads in themap phase of a MapRedue [25℄ system. By invoking this diretive the developers are asserting that theworkers do not retain state after they proess eah element in the input set. This assumption is reasonablefor worker threads involved in the Map phase, but may not apply to workers doing the Redue. Developersmust be very autious when invoking this diretive: the runtime has no way of deteting inonsistent use ofthe diretive. 97



The enter_as_reader(request, region) operation uses generation to detet dependenies among requests.It does this by saving the urrent value of the region's generation �eld to the request's readSet. It does nothek for an existing entry in readSet before saving the value. Any existing entry would either refer to anequal value of generation, making the update a noop, or would refer to a lower value of generation. By up-dating generation to the latest value, enter_as_reader() preserves all of the request's previous dependenieswhile potentially adding new ones.The enter_as_writer() operation assumes that every writer of a region is also a reader of the same region.Therefore, enter_as_writer(request, region) starts by alling enter_as_reader(request, region). Next, itheks the request's writeSet for a referene to the region. Unlike the readSet, existing entries in the writeset must be preserved, sine they ontain a hekpoint reated before the request made hanges to the region.Replaing this hekpoint with a later hekpoint would make it impossible to undo the request's hangesto the region. If the region is not in the writeSet, enter_as_writer() reates a hekpoint for the region,saving the hekpoint and the urrent value of generation in a new writeEvent_t struture in the writeSet.Finally, enter_as_writer() inrements the region's generation �eld, indiating that the request may modifythe region.Sine threads automatially obtain read-write aess to regions when they reate them, the new_region(policy)diretive alls enter_as_writer(currentRequest, newRegion) after it reates a new region. It also initializesthe generation �eld to 0 and provides the appropriate default for the createsDependencies �eld.When a new thread is reated the runtime reates a symboli thread-loal region to represent thethread's loal state, inluding its stak and registers and any thread-loal regions later reated by devel-opers. By default this loal region will propagate dependenies among requests assoiated with the thread,as shown in the associate_request() diretive in Listing 5.1. Developers an override this behavior by alling
no_region_dependencies(threadRegion).The exit_as_reader() and exit_as_writer() operations update the request's readSet when it releases aessto a region. These updates address dependenies that our when threads write regions while other threadshave aess to the region. They ensure that the other threads reate a dependeny on the onurrent writers.During undo() the runtime may need to take additional steps to detet these dependenies.The partial design of makeCheckpoint() shows the support needed to propagate the dependenies for lazyopies. The approah proposed for lazy opies in Setion 5.1.2.2 an support at most one opy per region.The earliest opy for a region must be preserved to ensure that all of the ative requests in a system an berolled bak. Therefore, the ode in makeCheckpoint() �rst heks for a request that has a opy of the region.If suh a request exists, the ode makes the request holding the lazy opy dependent on current_request().The dependeny ensures that the request holding the opy will be rolled bak when current_request() isrolled bak. One the dependeny has been established there is no need to reate a hekpoint. Therefore
makeCheckpoint() returns immediately after establishing the dependeny.5.1.3.2 Implementing the undo() operationA design for undo() is shown in Listing 5.4. The undo() operation is implemented in two phases. The �rstphase identi�es the set of regions and requests that must be rolled bak to preserve the system's onsisteny.In the worse ase, this algorithm will exeute O(n2) operations, where n is the number of non-�nal requestsin the system. However, this ase will be produed only if eah non-�nal request depends on exatly oneother non-�nal request and the algorithm proesses the requests in the worst possible order.The algorithm begins by restoring the hekpoints of the request being redireted without aounting fordependenies, rolling bak the generation values of the a�eted regions. Next, the algorithm examines theset of non-�nal requests, omparing the values of generation saved in their readSets to the values in theregions. If the readSet indiates that the request depended on a later version of the region, the non-�nalrequest must also be rolled bak. The algorithm proeeds by alling simple_undo() on the request and98



void simple_undo(map<region_t*, checkpoint_t *> *deferredRestores, request_t *req) {
foreach ((region_t *region, writeEvent_t ev) in req.writeSet) {

if (region.generation > ev.time) {
region.generation = ev.time;
(*deferredRestores)[region] = ev.chk;

}
}
req.readSet.clear();
req.writeSet.clear();
req.deferredFrees.clear();

}

void undo(request_t *req) {
stop_the_world();

map<region_t*, checkpoint_t *> deferredRestores;
simple_undo(&deferredRestores, req);
req.state = stopped;

queue<request_t *> toCheck;
queue<request_t *> checked;
foreach (request_t *request in allRequests) {

if (request.state != finalized) {
toCheck.add(request);

}
}
while (request = toCheck.removeFront()) {

bool addToChecked = true;
foreach ((region_t *region, generation_t t) in request.readSet) {

if (region.generation < t) {
simple_undo(&deferredRestores, request);
request.state = ready;
toCheck.add(checked);
checked.clear();
addToChecked = false;
break;

}
}
if (addToChecked) {

checked.add(request);
}

}
for ((region *region, checkpoint_t *c) in deferredRestores) {

restoreCheckpoint(c, region);
}

start_the_world();
} Listing 5.4: Pseudo-ode for request undo99



restarts by appending the queue of checked requests to its queue of requests to be heked. If the requestbeing examined appears to be onsistent, the algorithm adds it to the queue of checked requests. By plaingit in this queue the algorithm ensures that the request will be reheked if another request rolls bak beforethe algorithm terminates.During the seond phase the runtime restores the ontent of the regions from the opies identi�ed in the�rst phase. Eager hekpoints an be restored by using memcpy() to opy the memory. Lazy hekpointsare restored by alling mmap() on the pages in the region with the MAP_SHARED �ag. As a result of thisall, the modi�ed versions of the pages in the region are abandoned in favor of the original versions. Undoof lazy hekpoints an be highly e�ient, as shown in Figure 5.2.
5.1.4 Handling external dependeniesThere are two forms of external dependenies in the IMAP server. First, the ontent of the �les a�etedby A4, inluding FD , must be restored when A4 is aneled. Seond, the IMAP server must inform the
Observer that messages 11 and 12 have been deleted. The Observer beame aware of these messages atTC08 and TC12, but the IMAP server no longer knows about the messages after the rediretion at TC13.Unlike internal dependenies, the reoniliation of external dependenies must aount for the semantisof operations. For example, in the running example it is su�ient to trunate FD to its length before A4began to run. However, if a seond opy were modifying FD , the tail of the �le would have to be arefullyrewritten to preserve the seond opy's messages. FL, the log of operations on the IMAP server, shouldnot be modi�ed with A4 is redireted, even though A4 modi�ed the �le. In addition, the IMAP protoolspei�es that the server must not reuse the UIDs assigned to messages 11 and 12 at any point in the future.As a result, the server must be areful to avoid rolling bak MI and FI .The strategy for resynhronizing the Observer depends on the semantis of the IMAP protool andthe state of the system. In the running example the IMAP server is able to resynhronize by sendingompensations [15℄, in this ase two �*11 EXPUNGE� messages. The mediator is able to generate thesemessages only beause it has detailed knowledge of the previous messages sent to the Observer and knowledgeof the protool.The runtime allows developers to reate omponents, alled mediators, that manage these issues. Me-diators an partiipate in rollbak system desribed above by reating speial regions. The rollbak systemwill then use allbaks to invoke the mediator during the operations desribed in Listing 5.3, and also in-voke the mediator to restore the state of the region during undo(). In addition, the mediators are apableof interepting, and possibly modifying, operations that ould initiate ommuniation or modify persistentstate on the system. These operations are alled subrequests. Mediators may hoose to pass through ormodify subrequests. The approahes desribed below are similar to the ones used in transational memorysystems [54, 84℄.Some subrequests do not require modi�ation. For example, the �* 11 EXISTS� TC08 an be passedthrough immediately, sine there is always a orresponding �EXPUNGE� that reverses its e�et on the
Observer.Other subrequests ause hanges that are di�ult or impossible to reverse. For example, IMAP lientsan initiate a large number of message deletions in a folder with the EXPUNGE ommand. Normally, anobserver in the same folder would see eah message as it was deleted. However, the IMAP protool does notprovide a way to reverse these hanges if the EXPUNGE is aneled. In this ase the mediator may hoose toisolate the EXPUNGE ommand, informing the Observer only after all of the messages have been deleted.100



Figure 5.4: Rollbak of ompleted requests. A11 must be able to roll bak if A10 is aneled. As a result,opies of regions in A11 must be preserved after TO17, the point where A11 stops exeuting.5.1.5 Freeing opies of regions: the proess of �nalizing requestsThe opies of regions stored with a request may be needed even after a request ompletes. For example,onsider the sequene of IMAP requests shown in Figure 5.4. In this sequene A11 beomes dependent onA10 at TO16. If A11 frees its opies of regions when it ompletes at TO17 there will be no way to rollbak A11 if A10 is later aneled. Therefore, A11 must retain its opies of regions after it ompletes. OneA10 ompletes there is no need to retain A11's opies of regions. The proess of determining this is alled�nalization.Finalization is losely tied to undo(). Therefore, the design for the algorithm for �nalizing shown inListing 5.5, starts by simulating the �rst phase of undo(). The algorithm starts by doing a pseudo_undo()of every request that is not omplete and not �nal. The pseudo_undo() is similar to the simple_undo()funtion, but does not hange the ontent of regions and does not manipulate the generation number storedin regions. To searh for dependenies, pseudo_undo() stores the earlier generation numbers that wouldhave resulted from the rollbak of regions in a map alled pseudoTimes. It then heks all of the ompletedrequests to see if the earlier generation numbers would have aused them to roll bak.When the heks terminate the requests in checked an be �nalized, sine the algorithm has establishedthat it is impossible for dependenies to ause these operations to roll bak. The runtime an free theirhekpoints.5.1.6 Implementing the stop() operationMany of the patterns of rediretion de�ned in Setion 2.6 rely on the stop(request) operation, whih pausesa request while saving as many of its hanges as possible. A trivial, but potentially ine�ient, approah toimplementing the stop(request) is to all undo(request). Similarly, the continue(request) operation an beimplemented in terms of start(request). These implementations ensure both that the stop() and continue()methods will be short and also that the system's state will be onsistent. However, they disard all of thework done by the request before it is stopped. 101



void pseudo_undo(map<region_t*, generation_t> *pseudoTimes, request_t *req) {
foreach ((region_t *region, writeEvent_t ev) in req.writeSet)

if ((!region in pseudoTimes) || (pseudoTimes[region] > ev.time))
pseudoTimes[region] = ev.time;

}
}

void finalize {
map<region_t*, generation_t> pseudoTimes;
queue<request_t *> toCheck;
queue<request_t *> checked;

stop_the_world();
foreach (request_t *request in allRequests) {

if (request.state == finalized) {
continue;

} else if (request.state == completed) {
toCheck.add(request);

} else {
pseudo_undo(&pseudoTimes, request);

}
}

while (request = toCheck.removeFront()) {
bool addToChecked = true;
foreach ((region_t *region, generation_t t) in request.readSet) {

if ((region in pseudoTimes) && (pseudoTimes[region] < t)) {
pseudo_undo(&pseudoTimes, request);
toCheck.add(checked);
checked.clear();
addToChecked = false;
break;

}
}
if (addToChecked)

checked.add(request);
}
foreach (request in checked) {

request.state = finalized;
foreach ((region_t *region, writeEvent_t ev) in request.writeSet)

free_checkpoint(ev.chkpt);
foreach ((block_t *block) in request.deferredFree)

free(block);
request.readSet.clear();
request.writeSet.clear();
request.deferredFree.clear();

}
start_the_world();

} Listing 5.5: Pseudo-ode for �nalization102



Developers an re�ne the implementation of stop() and continue() to redue the amount of work lost byusing diretives to mark atomi setions of ode. These diretives, introdued in Chapter 3, inlude:� start_atomic(): The blok of ode up to the orresponding invoation of end_atomic() must exeuteto ompletion and must not be interrupted by the stop() operation. The blok of ode must exeutewithin a short period of time. The restritions on the undo() of atomi bloks have been de�ned toallow mediators to use atomi bloks to protet their data strutures.� atomic_sections_are_marked(): Developers have marked all of the atomi bloks in the ode that isexeuting. If the runtime an establish that the allers an stop before this ode ompletes, the runtimemay safely stop any thread exeuting this ode if it is outside of a marked atomi blok.� short_duration_lock(void *lock): The referened lok will be held only for short period of time. There-fore, the runtime may be able to avoid an undo by waiting for the lok to be released.The runtime uses these diretives in the following algorithm:1. Mark the request as stopping.2. Any thread exeuting an associate_request() diretive for a stopping request will stop(). As a result,no new threads an enter the set of threads assoiated with a stopping request. The threads in thisset are alled assoiated threads.3. Any assoiated thread alling deassociate_request() will immediately be removed from the set ofassoiated threads.4. If an assoiated thread alls complete_request(), then the request will leave the stopping state andenter the completed state. The runtime will return a value from the stop() operation to indiate thatthe request ompleted rather than stopping. In some ases the system will need to report this eventto the lient, sine it may hange the interpretation of future requests.5. If any assoiated thread is in an atomi blok and holds a long lok the runtime will report inonsistentannotations: the thread engaged in a long duration operation within an atomi blok.6. If any assoiated thread is exeuting ode where atomi setions are not marked, the runtime musteventually roll bak the request with the undo() operation. This rollbak may be delayed to allow otherthreads to exit atomi bloks.7. The runtime will wait for threads to exit atomi bloks, stopping these threads when they exit theoutermost blok. The threads will all exit the bloks within a short time.8. If a thread is exeuting ode where atomi setions are marked and is not in an atomi blok and holdsno loks, the thread an safely stop.9. The other assoiated threads will stop, one at a time, as eah thread exits all of its atomi bloks andreleases all of its short-duration loks.10. One all of the assoiated threads have stopped, then the request enters the stopped state. Sinedevelopers ensure that all atomi bloks and short duration loks are short, a stopping request willreah the stopped state in a short period of time.5.1.7 TollgatesMany attentive systems inorporate third party modules that do not provide diretives to the runtime. Atollgate is a wrapper that surrounds these modules, providing an approximation of the information thatwould normally be provided by diretives within the module. The tollgate is onstruted from modi�ersthat developers add to the module's interfae. The runtime uses the tollgate to manage aess to a region,alled the tollgate region (tgr), that is shared by all of the third party modules. Using a single tollgate regionfor all of the modules allows the runtime to detet dependenies that arise from ommuniation among the103



Atomi setions In atomi blok? Loks held AtionUnmarked Either Any Roll bakMarked No None StopMarked No All short WaitMarked No Some long Roll bakMarked Yes None or all short WaitMarked Yes Some long Error: long duration atomi blokTable 5.1: Rules for stopping requests. Atomi blok are honored even when atomi setions are not markedto simplify the implementation of redo logs. In this table the rules are sorted to demonstrate that all of theases have been handled.modules. The disussion below fouses on the tollgate from the perspetive of propagating dependenies andmanaging hanges in the tollgate region. For more details on the modi�ers see Setion 3.5.During unheked exeution the runtime looks exlusively at the reader, writer, and independent mod-i�ers on the interfae. When a thread alls a funtion marked with reader, the runtime exeutes the
enter_as_reader(tgr) operation before alling the funtion and exeutes exit_as_reader(tgr) when the fun-tion returns. The runtime makes similar alls to enter_as_writer(tgr) and exit_as_writer(tgr) when a threadalls a funtion marked with the writer modi�er. The runtime takes no ation for funtions marked with the
independent modi�er.The approah desribed above is very onservative, and re�ets a pratial limitation plaed on developers.The information hiding priniple [79℄ makes it impossible for developers to know the implementation details ofsome of their modules. Module developers an easily introdue sharing of state in ways that are not apparentat the module's interfae by using of stati �elds, pointers in opaque strutures, and global variables. Priorexperiene has indiated that this sharing an reate unexpeted dependenies among threads that aessthe module [59℄.5.1.8 Thread issuesThe runtime must address three onerns that our in multi-threaded systems: reviving threads that exitduring requests, hanging the run state of threads during rediretion, and interrupting threads in long systemalls during rediretion. These issues are disussed below.5.1.8.1 Life-yle issuesOne or more of the threads may exit while they are assoiated with a request. When the exiting threadwas also reated by the request there is no risk to the onsisteny of the system. In the event of a rollbakthe system will automatially reate a new thread, if needed, after the rollbak. However, in ases wherethe thread existed before the request started the runtime must make some provision for reviving the thread.Creating a new thread will not work, sine it will have a new thread identi�er and the old thread identi�ermay be saved in one or more regions that survive rollbak. In addition, the revived thread must reproduethe values saved in the original thread's loal storage. Therefore, the runtime interepts the thread's attemptto exit and postpones it until its assoiated request has �nalized. If the request is rolled bak, the runtimerevives the thread by restoring its previous state and allows it to ontinue. The runtime must simulate thee�ets of thread exit in pthread_join() to preserve the interfae of the pthreads library.104



5.1.8.2 Waking threadsIn multi-threaded appliations, preserving the orret run state of threads�either sleeping or running�is extremely important. If a anel request fails to wake threads that should still be running there is apossibility that the appliation ould deadlok. Restoring the thread state to what it was when the hekpointan lead to failures. Consider an example where a thread is bloked in a system all when a hekpoint istaken. After the hekpoint, the system all ompletes and the thread wakes. Then the user sends a anelrequest that restores the hekpoint. The thread may never wake if the runtime puts it to sleep as part ofrollbak: the system all is no longer ative in the kernel.The behavior of the pthread_cond_wait() and pthread_cond_signal() alls is espeially subtle.3 If athread is sleeping on a ondition variable and wakes while another request is ative, there are two possibleauses:� The pthread_cond_signal() was generated by a ollaborating system, either diretly via a sharedmemory window or indiretly by sending a message. As a result, the pthread_cond_signal() is stillvalid after rediretion and exeution should proeed.� The pthread_cond_signal() ould have been generated by the redireted request. Note that it ispossible for this to happen via an external ollaborator. In this ase, the �rst thread should atuallybe asleep when the request is rolled bak.The runtime an address these problems by implementing a simple rule: any thread that started to run duringthe redireted request should be restarted after the rollbak. This rule exploits a feature of POSIX [76℄ andJava [55℄ threading, whih state that ode must use a mutex to guard wait() statements, and must also doublehek the state of the system against spurious awakenings before proeeding allowing the thread to proeed.For most other system alls the orret system state is not lear in the ontext of the system all.Therefore developers must provide mediators to restore the system's state after rollbak. These mediatorsan ontrol the running state of the threads engaged in the system all.5.1.8.3 Interrupting long system alls during rollbakWhen a request is rolled bak, it is possible that one or more of its threads will be engaged in a long systemall. It may not be possible to wait for this system all to omplete before ompleting the rediretion.While this problem ould be avoided if developers used asynhronous versions of system alls [100℄, theruntime implements a more general approah that uses pthread_kill() all4 to regain ontrol of the thread.Any partially ompleted state hanges in the proess's address spae will be reversed by the opying shemedesribed above, while state hanges assoiated with ollaborating systems will be handled by their mediators.The runtime will restore the thread's loal state, inluding its instrution pointer, register ontents, stak,and thread-loal storage from a mediator that wraps the system all.5.2 Cheked exeutionCheked exeution provides the same servies as trusted exeution while verifying the auray of the in-formation provided by diretives. Most diretives an be veri�ed with a small number of relatively inexpensiveheks. For example, the diretives that mark short setions�begin_short_section() and end_short_section()�an be implemented with a ounter and a timestamp. The ounter starts at 0 and inrements every time3The orresponding Java methods are wait() and notify().4The pthread_kill() all does not destroy the thread. Instead, it sends an asynhronous signal to the thread that interruptsthe system all. This terminology, while onfusing, is onsistent with the terminology adopted for inter-proess signaling inPOSIX. 105



that the runtime sees a begin_short_section(). When the ounter moves from 0 to 1 the runtime updates thetimestamp. When the runtime enounters an end_short_section(), if �rst veri�es that the ounter is greaterthan 0. If not, the runtime reports that the begin_short_section() and end_short_section() diretives donot nest properly. Seond, the runtime obtains a new timestamp and alulates the elapsed time sine theounter was updated. If a long time has elapsed, the runtime reports that the short setion took too long toexeute.However, the diretives related to onsisteny are muh more di�ult to verify. These diretives makeassertions about the system's future behavior at the level of individual memory aesses. To hek thesediretives, the runtime would need to examine eah aess to memory. Some dynami hekers for on-urreny errors, suh as Eraser [86℄, Helgrind [89℄, and FlashLight [49℄, work at this level. However, thesedynami hekers have been designed with the assumption that information about onurreny poliy is notavailable and must be inferred from the behavior of the system. The runtime is able to exploit the untrustedinformation provided in diretives to ahieve a muh higher level of e�ieny. It translates the informationinto permissions hanges on the page table entries of the thread exeuting the ode, ausing the memoryprotetion hardware in the proessor to generate a fault if the thread makes an aess that is inonsistentwith the information provided in the diretive. As a result, the runtime an hek these diretives whileinreasing the running time of the system by only a fator of 3.We must resolve several problems to implement heked exeution:� The runtime must be able to manipulate aess permissions for eah thread independently. In tradi-tional systems, every thread in a proess shares a ommon set of aess permissions. We aomplishthis by alloating page tables for eah thread in the system.� The threads in the system must share a ommon view of memory. Normally, this happens automatiallydue to the sharing of aess permissions among threads. However, this funtionality is lost when wealloate thread-spei� page tables and must be reimplemented by the runtime.� The runtime must ensure that threads do not aquire on�iting permissions to aess sound regions.While some poliies, inluding guarded regions, ensure this, others, suh as thread-on�ned regions,give developers the ability to ontrol aess to regions diretly. These heks are sensitive to theinterleaving among threads, but the runtime is able to ensure that there are no violations of the poliyfor the observed exeution.� Some systems use bloks that are too small to be represented in page tables, suh as individual elementsof arrays. The runtime must provide a reasonably e�ient way to verify these bloks.� Some systems use modules that do not have diretives. While the runtime annot hek bloks ofmemory that are hidden in these modules, it should ensure that the diretives applied to bloksoutside the module are honored. In addition, it should ensure that the system does not aess blokssupposedly hidden within the module.The setions below disuss eah of the issues mentioned above and desribe some of the implementationdetails of the runtime system for heked exeution. The setion onludes by quantifying the performaneof the runtime as it exeutes benhmarks hosen from the PARSEC benhmark suite.5.2.1 The proess model and �lamentsPOSIX threads share a ommon address spae, permissions to aess parts of this address spae, and resouressuh as �le desriptors. POSIX proesses generally do not share address spaes and resoures. However, itis possible to onstrut POSIX proesses that share memory by employing the mmap() system all to mapparts of a �le into the memory of both proesses. Eah proess is able to ontrol its permissions to aessthis memory by manipulating the �ags of the all.The runtime with dynami heking relies on an entity alled a �lament that shares features of proesses106



and threads. Like a proess, the �lament has ontrol over its permissions to aess memory. Like a thread,the �lament shares resoures suh as �les, network sokets, and a ommon address spae.We disovered that we ould onstrut and ontrol �laments without modifying the pthreads library usedon Linux systems by interepting the clone() system all generated by pthread_create(). The clone() systemall reates either a new thread or a new proess depending on a set of �ags that are passed as one of itsparameters. In general there is a �ag for eah piee of state that ould be shared. We reate new �lamentsby learing three of the �ags: CLONE_VM, CLONE_THREAD, and CLONE_SIGHAND.Clearing CLONE_VM auses the kernel to alloate a new set of page tables for the �lament. This allowsus to manipulate the permission bits in the �lament's page tables to ensure that its aesses do not violatethe poliies spei�ed in diretives.Clearing CLONE_THREAD allows the new thread to all exec() without terminating the proess. Weuse this funtionality to run the debugger when the dynami heker detets an inonsistent diretive.Finally, we lear CLONE_SIGHAND beause the clone() system all will fail if CLONE_SIGHAND isset while CLONE_VM is not set. By learing this �ag we are responsible for propagating hanges in signalhandlers among the �laments of the system. We have not yet implemented this feature beause the systemsthat we have examined do not make use of signal handlers. We would probably propagate this informationthrough the log desribed below.It is important to note that �laments are not totally independent proesses. For example, �laments sharea ommon set of �le desriptors just as threads do. As a result, we do not have to hange the implementationof system alls that work with �le desriptors. This is the prinipal advantage to using the clone() systemall rather than reating a separate proess with fork(). However, sine the clone() all is Linux-spei� it ispossible that later kernels may hange the all in ways that make it impossible to reate �laments.
5.2.2 Propagating hanges among �lamentsThe �laments provided by the clone() system all are not ideal. Sine the page tables for eah �lament areunique, memory alloation events are not automatially propagated among �laments. This in turn, pointsto an assumption built into the design of most proessors that uses a single data struture to ontrol boththe ontent of the address spae and also the permissions to aess the address spae.We overome this limitation by using a log to inform �laments of the reation of new bloks of memory.This log onsists of an array of pointers to the data strutures that desribe regions. These data struturesare prealloated in a blok of memory, and both the log and the blok memory ontaining the data struturesare automatially mapped in to new �laments when they are reated.Filaments disover new regions asynhronously. When a �lament is ready to reate a new region it loksthe log, updates its page tables with any new regions that it �nds in the log, alloates the region, andadds a pointer to the region to the log, and then releases the lok. The lok ensures that �laments do notinadvertently alloate overlapping regions. We also hek the log when aquiring loks, reating new threads,and proessing the get_transferable() and release_transferable() diretives. By heking the log on theseoasions, we ensure that we disover new regions using a sound poliy before aessing them.However, it is possible for a �lament to aess a region with an unsound aess poliy before beomingaware of the existene of the region. The �lament will not have aess to the memory assoiated with theregion, ausing the aess to generate a fault. We hek for this ase in the error reporting ode, whihhandles it by proessing any outstanding log entries and restarting the �lament.107



5.2.3 Cheking transfer diretivesDevelopers plae the following diretives in ode to ontrol the assignment of permissions to �laments forboth thread-on�ned regions and phased immutable regions:� get_transferable()� get_transferable_ro()� release_transferable()� release_transferable_ro()If the system does not oordinate these diretives, for example by using loks, �laments ould attempt toobtain on�iting permissions to aess the region. The runtime will report attempts to gain on�itingpermissions as fatal errors.The urrent implementation of heked exeution ensures that no two �laments gain on�iting permis-sions by examining the region's data struture when it enounters these diretives. It generates an error if a�lament attempts to gain write aess while another �lament has aess to the region and when a �lamentattempts to gain read aess while a writer is ative. We all this approah best e�ort heking.However, it is possible for developers to write poorly synhronized diretives that will oasionally slippast a dynami heker relying on best e�ort heking. An example is given in Listing 5.6. Some interleavingswill allow this program to run to ompletion without reating a data rae. Other interleavings ould ausethe program to read an uninitialized pointer at line B35, potentially reating bad output or a rash. Finally,it is possible that the get_transferable() annotation at line B5 and the get_transferable_ro() annotation atline B33 ould overlap, ausing the dynami heker to report a transfer rae on either the parent or thehild thread.This lak of determinism happens beause the transfer diretives are not su�iently synhronized inthe program due to the missing pthread_join() all at line B31. Ideally we would like the dynami hekerto detet that the transfers are not su�iently synhronized and report an error. However, this problemis not easily solved, sine there are many possible tehniques that an be used to synhronize the trans-fers. The variant of the example shown in Listing 5.7 relies on the happens-before relationships reated by
pthread_create() and pthread_join() to synhronize the permissions hanges. This approah is often usedwhen a parent thread spawns one or more worker threads.It is also possible to synhronize the transfers by using a ombination of ondition variables and syn-hronized bloks. This approah is shown in Listing 5.8. Finally, it is possible to synhronize transfers bypassing a message via either an in-memory queue or network soket to indiate that it is safe to transfer.An example of this form of synhronization is given in Listing 5.9. In this example the read() at line M35establishes a happens-before relationship between the hild's release_transferable() at M14 and the parent's
get_transferable_ro() at M37. This is only the ase beause soket[0℄ and soket[1℄ are onneted by the
socketpair() all. Diret ommuniation between threads via sokets is less e�ient than other forms ofommuniation. However, in ases where threads use sokets to ommuniate with an outside system, suhas an IMAP server, this sort of synhronization is possible.There are several strategies that we ould employ to improve best-e�ort heking: missing happens-before detetion, annotated happens-before heking, and full behavior modeling. Eah of these approahesinvolves trade-o�s among annotation e�ort, false-positives, false-negatives, the types of systems that an beannotated, and the omplexity of analysis. We will disuss these tehniques in more detail below.Missing happens-before detetion involves traking the happens-before relationships reated among�laments by thread reation, thread joins, and standard onurreny ontrol onstruts. The detetion willreate an error when a �lament attempts to obtain permissions that were released by a di�erent �lament andno-happens before relationship was established. This approah does ath some errors missed by best-e�ortheking and adds no annotation e�ort. However, it su�ers both from false positives and false negatives and108



B1 typedef struct {int i; char *o; } job;B3 void *do_work(void *ctx) {B4 job *j = ctx;B5 get_transferable(j);B6 region_t saved = bind(region_of(j));B7 j�>o = malloc(10);B8 bind(saved);B10 snprintf(j�>o, 10, "%d", j�>i);B12 release_transferable(tW);B14 return NULL;B15 }B17 int main(int argc, char *argv[]) {B18 pthread_t c;B20 region_t saved = bind(new_region(PHASED_IMMUTABLE));B21 job *j = malloc(sizeof(*j));B22 bind(saved);B24 j�>i = atoi(argv[1]);B26 release_transferable(j);B28 pthread_create(&c, NULL, do_work, j);B29 ...B30 /* Removing the line below creates a transfer race */B31 /* pthread_join(c, NULL); */B33 get_transferable_ro(j);B35 printf("%s\n", j�>o);B37 release_transferable_ro(j);B39 return 0;B40 }Listing 5.6: An example of a transfer rae. The missing pthread_join() all at line B31 ould ause a transferrae depending on the relative progress of threads. If the runtime heks for happens-before relationshipsthis rae will always be aught. Table 5.2, above and to the right, show the two possible exeutions.

Line Valid Justi�ationB26 YB5 Y pthread_create() at B28B12 Y same threadB33 N Last ommon event was B26, needed B12orLine Valid Justi�ationB26 YB33 Y same threadB37 Y same threadB5 N Last ommon event was B26, needed B37Table 5.2: These tables show two exeutions of the odeto the left. In both tables a diretive exeutes without es-tablishing a happens-before relationship. A 'Y' in the validolumn indiates that the happens-before relationship wasestablished and the relationship is desribed in the Justi�-ation olumn.
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A1 typedef struct {int i; char *o; } job;A3 void *do_work(void *ctx) {A4 job *j = ctx;A5 get_transferable(j);A6 region_t saved = bind(region_of(j));A7 j�>o = malloc(10);A8 bind(saved);A10 snprintf(j�>o, 10, "%d", j�>i);A12 release_transferable(tW);A14 return NULL;A15 }A17 int main(int argc, char *argv[]) {A18 pthread_t c;A20 region_t saved = bind(new_region(PHASED_IMMUTABLE));A21 job *j = malloc(sizeof(*j));A22 bind(saved);A24 j�>i = atoi(argv[1]);A26 release_transferable(j);A28 pthread_create(&c, NULL, do_work, j);A29 ...A30 pthread_join(c, NULL);A32 get_transferable_ro(j);A34 printf("%s\n", j�>o);A36 release_transferable_ro(j);A38 return 0;A39 }Listing 5.7: Diretives to desribe a thread-on�ned job blok, alloated on line A21. The diretives in thislisting are shown in bold type.

Line Valid Justi�ationA26 YA5 Y pthread_create() at A28A12 Y same threadA30 Y pthread_join() is always validA32 Y pthread_join() implies A12 HB A30Table 5.3: This table shows an exeution of the ode to theleft. The ode always establishes the neessary happens-before (HB) relationship before reahing a diretive. A 'Y'in the valid olumn indiates that the happens-before rela-tionship was established and the relationship is desribed inthe Justi�ation olumn.
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C1 typedef struct {C2 int i;C3 char *o;C4 int bDone;C5 pthread_mutex_t lock;C6 pthread_cond_t done;C7 } job;C9 void *do_work(void *ctx) {C10 job *j = ctx;C11 get_transferable(j);C12 region_t saved = bind(region_of(j));C13 j�>o = malloc(10);C14 bind(saved);C16 snprintf(j�>o, 10, "%d", j�>i);C18 release_transferable(tW);C20 pthread_mutex_lock(&j�>lock);C21 j�>bDone = 1;C22 pthread_cond_signal(&j�>done);C23 pthread_mutex_unlock(&j�>lock);C25 return NULL;C26 }C28 int main(int argc, char *argv[]) {C29 pthread_t c;C31 region_t saved = bind(new_region(PHASED_IMMUTABLE));C32 job *j = malloc(sizeof(*j));C33 bind(saved);C34 j�>bDone = 0;C35 pthread_mutex_init(&j�>lock, NULL);C36 pthread_cond_init(&j�>done, NULL);C38 j�>i = atoi(argv[1]);C40 release_transferable(j);C42 pthread_create(&c, NULL, do_work, j);C44 pthread_mutex_lock(&j�>lock);C45 while (!j�>bDone) {C46 pthread_cond_wait(&j�>done, &j�>lock);C47 }C48 pthread_mutex_unlock(&j�>lock);C50 get_transferable_ro(j);C52 printf("%s\n", j�>o);C54 release_transferable_ro(j);C55 return 0;C56 } Listing 5.8: An example of transfers synhronized via loking and ondition variables.

Line Valid Justi�ationC40 YC44 Y pthread_mutex_lock() is always validC46a Y j->lock aquired at C44C11 Y pthread_create() at C42C18 Y Same threadC20 Y pthread_mutex_lock() is always validC21-C23 Y j->lock is held from C20C46a Y Aquires &j->lockC48 Y j->lock was aquired at C46aC50 Y C18 HB C50 established by C46aC54 Y same threadTable 5.4: Fully synhronized transfers will be aepted bymissing happens-before detetion. * Many other interleav-ings are also possible.
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M1 typedef struct {int i; char *o;} job;M3 int sockets[2];M5 void *do_work(void *ctx) {M6 job *j = ctx;M7 get_transferable(j);M8 region_t saved = bind(region_of(j));M9 j�>o = malloc(10);M10 bind(saved);M12 snprintf(j�>o, 10, "%d", j�>i);M14 release_transferable(tW);M16 write(socket[1], &j, sizeof(j));M18 return NULL;M19 }M21 int main(int argc, char *argv[]) {M22 pthread_t c;M24 socketpair(..., sockets);M25 region_t saved = bind(new_region(PHASED_IMMUTABLE));M26 job *j = malloc(sizeof(*j));M27 bind(saved);M29 j�>i = atoi(argv[1]);M31 release_transferable(j);M33 pthread_create(&c, NULL, do_work, j);M35 read(socket[0], &j, sizeof(j));M37 get_transferable_ro(j);M39 printf("%s\n", j�>o);M41 release_transferable_ro(j);M43 return 0;M44 } Listing 5.9: An example of transfers synhronized by ommuniation through a soket.

Line Valid Justi�ationM31 YM7 Y release_transferable() at M31 beforeM37 before M7M14 Y same thread as M7M37 Y release_transferable() at M14 before
write() at M16 before read at M35M41 Y same thread at M37
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also annot be applied to some systems.This approah is su�ient to detet the potential for transfer raes in Listing 5.6. This an be seen byexamining the four possible interleavings of statements B26, B5, B12, B33, and B37.Two of the interleavings, B26:B5:B33 and B26:B33:B5, are aught even by best-e�ort heking and willnot be onsidered further in this setion. The two remaining interleavings are B26:B5:B12:B33:B37 andB26:B33:B37:B5:B12. Both of these interleavings are free of data raes. However, the B26:B33... variantinvolves a referene through an uninitialized pointer at B35. The analysis shown in Table 5.2 demonstratesthat missing happens-before detetion will rejet both of these interleavings as transfer raes due to thelak of synhronization aused by the missing pthread_join() at B31. The version of this ode shown inListing 5.7 also limits exeutions to interleavings that are true negatives under missing happens-beforeanalysis. Examples of true negatives generated by missing happens-before analysis for these ases are shownin Table 5.4.Unfortunately, missing happens-before analysis is subjet to both false positives and false negatives. Theode shown in Listing 5.9 will lead to false positives beause the read() and write() system alls normally onlyat as memory barriers for the threads that issue them. A happens-before relationship an be establishedonly by examining the state of the sokets to determine that they are onneted and that there is no datapending on soket[0℄ before the write all at M16. There are many alls that ould add and remove data fromsokets, and appliations are also free to reate ommuniation protools that are muh more omplex thanthe simple example given here. Therefore, it is not trivial for a dynami analysis to infer these relationships.False negatives our when missing happens-before reates happens-before relationships based on syn-hronization that does not atually protet the transfers. This error an be quite subtle, as an be seen inListing 5.10. The dynami heker may aept the interleaving shown in Table 5.5 due to the reation of afalse, from the perspetive of the transfer, happens-before relationship reated by the loking inside puts(),whih is alled at FP13 and FP34.Diretives for happens-before heking would eliminate the false negatives of missing happens-before analysis by requiring developers to justify the safety of get_transferable() and get_transferable_ro()by referring to spei� happens-before relationships in their ode. These diretives would be limited, allowingdevelopers to speify only transfer poliies that ould be veri�ed by dynami heking. These diretives maynot be able to handle all sound synhronization poliies, and developers may �nd them to be di�ult toapply. For example, systems like the one shown in Listing 5.9 would not �t into any simple system ofdiretives.Full behavior modeling would be needed to handle ases like the one shown in Listing 5.9. Themodeling would be omplex, reasoning about system states, the ontents of various variables, and isolationguarantees. In the example given in this listing, orret synhronization depends on the following properties:� soket[0℄ and soket[1℄ are onneted by socketpair()� The identi�ers in soket[0℄ and soket[1℄ remain unhanged� soket[0℄ and soket[1℄ remain onneted� soket[0℄ has no queued data� There are no other writes to soket[1℄These properties are preserved in Listing 5.9, but ould be di�ult to verify in more omplex systems. Theresulting system of diretives would be very omplex and would probably onstitute a simple model of thesystem, neessitating a model heking approah to establish the soundness of the synhronization poliy.This approah would be similar to the one that Mirosoft adopted for SLAM [9℄.
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FP1 typedef struct {int i; char *o; } job;FP3 void *do_work(void *ctx) {FP4 job *j = ctx;FP5 get_transferable(j);FP6 region_t saved = bind(region_of(j));FP7 j�>o = malloc(10);FP8 bind(saved);FP10 snprintf(j�>o, 10, "%d", j�>i);FP12 release_transferable(tW);FP13 puts("Child done\n");FP15 return NULL;FP16 }FP18 int main(int argc, char *argv[]) {FP19 pthread_t c;FP21 region_t saved = bind(new_region(PHASED_IMMUTABLE));FP22 job *j = malloc(sizeof(*j));FP23 bind(saved);FP25 j�>i = atoi(argv[1]);FP27 release_transferable(j);FP29 pthread_create(&c, NULL, do_work, j);FP30 ...FP31 /* Removing the line below creates a transfer race */FP32 /* pthread_join(c, NULL); */FP34 puts("Our results\n");FP36 get_transferable_ro(j);FP38 printf("%s\n", j�>o);FP40 release_transferable_ro(j);FP42 return 0;FP43 }Listing 5.10: Some transfer raes will esape missing happens-before heking. The C runtime library'simplementation of puts() is thread-safe. Therefore, it is possible to de�ne a happens-before order betweenthe puts() alls at FP13 and FP34. The dynami heker may detet that a happens-before relationshiphas been established among the �laments. However, the presene of the happens-before relationship doesnot indiate that there is su�ient synhronization to ensure that FP12 will always happen before FP36.Therefore, under some interleavings the runtime will falsely infer that the transfers are safe. In otherinterleavings the runtime will detet a transfer rae.

Line Valid Justi�ationFP27 YFP5 Y pthread_create() at FP29FP12 Y Same threadFP13 Y puts(): FP12 HB FP13FP34 Y puts(): FP13 HB FP34FP36 False negative Same thread: FP34 HB FP36HB is transitive: FP12 HB FP34FP40 Y Same thread: FP 36 HB FP40Table 5.5: Example of a false negative via puts() when us-ing happens-before (HB) relationships to validate permis-sion hanges. In this interleaving puts() reated a happens-before relationship between the parent and hild threadseven though the threads were not synhronized. An inter-leaving that swaps FP13 and FP34 is possible and wouldlead to an error under the same analysis.
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5.2.4 Cheking array sliesThe prior disussion has assumed that bloks are individual bloks of memory on the heap. Some systemsshare state in arrays, attahing poliies to ranges of array indexes. To aommodate this, the runtime usesa new data struture alled a slieable array.In most ases the interfae to slieable arrays hides the internal representation. There are at least threeways to hek aesses to slieable arrays. Infrequently aessed arrays made up of small bloks with a smalltransfer granularity an be heked e�iently by assigning a region to eah index and heking aesses insoftware. The urrent implementation uses C maros to implement this approah.If the granularity is preditable and allows the slies to be mapped to unique pages the runtime anmanage the slies as bloks in a region. In some ases it may be neessary to add padding to the arrayto aomplish this. This approah avoids muh of the overhead of heking array aesses in software.In addition, there is no need to rewrite the software to replae the array referene operators with maros.Finally, it allows us to expose pointers to the array to modules without diretives, inluding assembly routinesoptimized to use SIMD instrutions, without losing the ability to hek the poliy attahed to the array.This funtionality was needed in some of the benhmarks disussed below.5.2.5 TollgatesA tollgate is a boundary between a system using diretives and a module that does not have diretives.The tollgate sopes the dynami heks in the system, ensuring that diretives ontinue to apply to bloksontrolled by the system while ensuring that aesses to bloks owned by the module do not produe errors.The tollgate also ontrols the transfer of bloks between the module and the system.The behavior of the tollgate is de�ned by modi�ers that are attahed to funtion signatures, as desribedin Setion 3.5.1. This setion desribes the approah that the dynami heker uses to hek the poliiesspei�ed by these modi�ers. First, it disusses the implementation of tollgates and the way that permissionsare managed to ensure that unheked bloks do not leak through tollgates. Next, it desribes the behaviorof the runtime as it attahes a poliy to a previously unheked blok as a thread passes through the tollgate.Then it onsiders the behavior of the dynami heker when new bloks are reated within a module withoutdiretives. Finally it desribes the behavior of the heker when a heked blok is onverted to an unhekedblok.5.2.5.1 Tollgate implementationIn the runtime tollgates are implemented as wrapper funtions. The runtime reroutes alls from the systemto the module through the tollgate wrapper by using a #define preproessor diretive to hange the funtion'sname when it is alled. This approah allows us to avoid interepting alls that the wrapped module makesto itself and also avoid alls between the modules proteted by tollgates.The runtime uses a speial region, alled the tollgate region, to hold all of the unheked bloks in thesystem. It does not attempt to assoiate bloks with spei� modules, sine the modules behind a tollgatemay share bloks in ways that annot be predited from their interfaes. It ensures that the ode in thesystem does not gain aess to bloks ontrolled by these modules by issuing the mprotect() system all todisable aess permissions to the tollgate region when ontrol returns to the system through the tollgate. Bydefault, every blok alloated while ode is exeuting within the tollgate is plaed in the tollgate region.115



5.2.5.2 Cheking the reader, writer, and independent diretivesMany modules ontain funtions that do not aess bloks within the tollgate region. For example, mostimplementations of strcmp(str1, str2) funtion aess only the two bloks passed to the funtion. Theoverhead of the mprotect() alls ould easily be greater than the proessing time of these funtions. Theruntime relies on the following diretives, whih developers add to the funtion signatures that de�ne themodule's interfae:� Independent indiates that the funtion will not aess bloks in the tollgate region. Therefore, mpro-
tect() alls are unneessary when the funtion enters and exits the tollgate. Any attempt to aess ablok within the module will generate a fault, ausing the runtime to report that the independent dire-tive is inaurate. This is a fatal error, sine the diretive also ontrols the propagation of dependeniesamong requests.� Reader indiates that the funtion will read, but not modify, bloks within the tollgate region. Thetollgate should grant read, but not write, permission to the bloks in the tollgate region. To do thisthe tollgate will have to issue mprotect() alls both when ontrol enters the module and also whenontrol returns from the module. There is no performane bene�t to the reader diretive, but hekedexeution should verify it beause it a�ets the dependenies reated when requests enter the tollgate.� Writer indiates that the funtion will read and modify bloks in the tollgate. The mprotect() alls areneeded. The dynami heker may attempt to identify plaes where the writer diretive was unneessaryto improve the quality of the tollgate. It will do this by postponing the mprotect() all when ontrolpasses through the tollgate, issuing it only if a fault shows that the module attempted to aess one ofthe bloks in the tollgate region. This both improves performane and provides advie to developersthat an be used to make the tollgate more aurate.5.2.5.3 Plaing newly alloated bloks into the tollgate regionFuntions like strdup() reate a new blok but return ontrol of the blok to the system rather than retaininga referene to it. In abstrat terms, new bloks reated by a module behind a tollgate are immediately plaedin the tollgate region. However, reovering aess to these bloks is quite expensive. In addition, plaingthese bloks into the tollgate region would fore developers to apply the writer modi�er to these funtions.Therefore, bloks alloated within tollgates are initially plaed in a region following the serial threadon�nement poliy. The funtion exeuting within the module retains exlusive aess to these bloks untilone of two events ours: the funtion returns through the tollgate or another thread, exeuting ode behindthe tollgate, attempts to aess the blok.When ontrol returns through the tollgate, the tollgate �rst proesses the modi�ers that allow the allerto laim bloks. Bloks are removed from the thread-on�ned region as they are laimed. There is no need toretrieve exlusive aess to these bloks before laiming them: their presene in the thread's region indiatesthat no other thread has gained aess to the bloks. Any bloks that remain in the region after the modi�ershave been proessed are moved to the tollgate region.If another �lament attempts to aess one of the newly alloated bloks before it is plaed in the tollgateregion, the proessor will generate a fault. The runtime will immediately suspend the alloating �lament.It will move the blok into the tollgate region, removing it from the alloator's thread-on�ned region, andthen restart both the alloating thread and the thread attempting to aess the blok.5.2.5.4 Removing bloks from the tollgate regionCallers an gain exlusive aess to bloks in the tollgate region as a result of exeuting a funtion in thetollgate. To soundly assign aess to the aller, the tollgate must remove the blok from the tollgate region,116



suspend any other threads exeuting in modules proteted by tollgates, and remove their permissions toaess the blok before reassigning the blok to the aller. This proedure involves a TLB shoot-down,whih ould involve substantial delays on the thread exiting the tollgate. However, it must be ompletedbefore allowing exeution of the thread to ontinue, sine it prevents other threads that are exeuting inthe tollgate from aessing the blok after it is returned to the aller. If the aller assumes that the blokis proteted by a sound aess poliy, these aesses ould reate undeteted data raes and dependenies.The urrent runtime does not implement this feature.5.2.5.5 Adding the system's bloks to the tollgate regionSome funtions, inluding free(), transfer ontrol of a blok from the system to a module proteted by atollgate. The proedure transferring the blok is relatively simple. First the tollgate ensures that the allerhas established exlusive aess to the blok. Next, the tollgate ensures that the poliy for the blok allowsit to be transferred. There are two poliies whih must be onsidered. If the blok was alloated with thethread-loal poliy it annot plaed into the tollgate region, sine doing so would imply that the blok ouldbe aessed by another �lament. In addition, bloks that have been previously published with the immutablepoliy annot be onverted, sine this implies that the blok ould be modi�ed at some point in the future.All of the other poliies listed in Setion 3.3.2 support onversion.One the tollgate has determined that the onversion is valid, it removes the blok from its urrent regionand plaes the blok into the tollgate region. The tollgate then proeeds to hange the permissions to thehidden region, as desribed in Setion 5.2.5.1.5.2.6 Implementation detailsThere are two aspets of the runtime that may be modi�ed in future versions: the approah to error reportingand the approah to handling the termination of �laments. It is unlikely that these design hoies a�et theperformane numbers reported below.5.2.6.1 Reporting errorsThe runtime installs a signal handler to interept the segmentation violation signal (SIGSEGV) that isgenerated when a �lament attempts to aess memory without �rst obtaining permission to do so. In somesituations the signal handler may be alled even though no poliy has been violated. Therefore, the signalhandler on�rms that there has been a poliy violation by �nding the region that orresponds to the addressthat generated the signal. It onsults the region to see if the urrent �lament should have aess to thememory. If the signal is a true aess violation the handler reports the error by either entering GDB, adebugger, or by writing a log �le and terminating the proess.False faults are often aused by regions in the log that have not been mapped into the �lament's pagetables. In these ases the runtime proesses the new log entries and returns from the signal handler, allowingexeution to ontinue. False faults are expensive, often osting roughly 6,000 yles5 of lost exeution time.Therefore the runtime attempts to avoid false faults by heking for unproessed log entries around the allsthat establish happens-before relationships among �laments. In theory it ould also avoid false faults byinterrupting �laments whenever a new region is reated. However, the performane impat of these interruptswould be similar to the impat of a false fault, and would happen every time a new region is reated. In theurrent implementation false faults are extremely rare. It is likely that interrupting �laments would resultin a less e�ient implementation.5This number was taken on an Intel® Core®2 Duo E7300 CPU running at 2.66 GHz117



Figure 5.5: Time to omplete blaksholes na-tive tests Figure 5.6: Memory use, blaksholes nativetestIt is important to note that the runtime uses log entries only to grant new permissions to �laments, notto take existing permissions away. Filaments always relinquish permissions to memory voluntarily: either byalling release_transferable() for serial-thread-on�ned bloks, alling pthread_mutex_unlock() for guardedbloks, or exiting for thread-loal bloks.5.2.6.2 Kernel supportTo date we have needed to make only one small modi�ation to the kernel to support �laments. Normally,kernels hek the number of threads in a given memory spae when a thread is exiting. Kernels normallyskip some of the proessing needed to support pthread_join() when the last thread in a proess exits. Thisoptimization breaks pthread_join(), and so the runtime disables it. It ould avoid this modi�ation by startingand suspending a plae-holder POSIX thread within eah �lament. However, doing so would ompliate theruntime. In addition, we antiipate adding kernel support for the �nalization of lazy hekpoints.5.2.7 Overhead of heked exeutionThe evaluation of the runtime system used blaksholes, swaptions, and x264, three programs from thePARSEC 2.0 benhmark suite. The results reported below are from the native series of tests, the largesttests in the benhmark suite. The times reported are from a system with two Intel® Xeon® CPUs (E5405)running at 2.00GHz under a modi�ed 2.6.26-2-686 Debian kernel. The system has 4GB of RAM. The testsuse 1 to 16 threads to exeute the benhmarks. By exeeding the number of available ores, the tests willreveal overhead added by the �laments to the task swith time.Figure 5.9 breaks out time that is spent in thekernel in the mprotect() all. This time should be ounted as part of the overhead for the dynami heking.blaksholesThe blaksholes benhmark plaes relatively few demands on the runtime. A master thread initializesseveral large strutures ontaining data for a basket of options. It then starts a small number of long-running threads to prie the options. These threads write their results into shared arrays before exiting.The modi�ations to the benhmark represent this as a slieable array using software heking.118



Figure 5.7: Time to omplete swaptions nativetests Figure 5.8: Memory use, swaptions native testFigure 5.5 shows the results from the tests. The small number of transfers means that the dynamiheker adds very little overhead. The worst ase overhead happens with two threads. The ratio of theexeution time for the fully heked version of blaksholes to the original threads version ranges from1.00 to 1.02, with the worst ase ourring at two threads. When the annotated version of the ode isreompiled for use with pthreads the running time ratio varies between 0.99 and 1.01.Memory is rarely alloated in the blaksholes benhmark. Therefore, the lak of memory reylingin the runtime has little e�et on the memory onsumption, as shown in Figure 5.6. In fat, the results areoasionally lower beause we removed unneessary string dupliations when the benhmark started.swaptionsThere is also relatively little overhead for enforing poliies in the swaptions benhmark. Unlike the othergraphs in this setion, Figure 5.7 omputes the overhead of heking the diretives by omparing the fullyheked ode to the annotated ode ompiled for traditional threading. We did this beause the memoryreyling modi�ations redued the running time of the benhmark, at times exeeding the overhead addedby the dynami heker.Figure 5.8 shows the memory onsumption of swaptions after we implemented memory reyling in theappliation. The memory reyling holds the overhead for dynami heking to a onstant fator relative tothe number of threads.x264As mentioned in Setion 3.8, the tests with x264 use a more reent version of the program than the oneinluded in the PARSEC benhmark suite. The later version has similar performane harateristis to thePARSEC version but makes more onsistent use of loking.The x264 benhmark is hallenging, from both a modeling and a resoure onsumption point of view.A master thread spawns a series of worker threads, roughly one for eah frame in the �le being enoded.It hands eah worker a frame to be enoded and referenes to the prior frames in the stream. Eah workerfrequently aquires loks and initiates small transfers of pages to update the other threads with its progress.Figure 5.9 shows the performane of x264, omparing the exeution time of the program when using119



Figure 5.9: Time to omplete x264 native tests Figure 5.10: Memory use, x264 native teststhreads to the exeution time using �laments. The large number of transfers auses a very large number ofsmall mprotect() system alls, resulting in substantial kernel overhead. The overhead for the single-threadedase is modest beause no transfers are initiated. The overhead appears to gradually inrease with thenumber of threads. At 15 and 16 threads the exeution time of the fully instrumented system is roughly2.46 the time of the original version when exeuted by threads. When the modi�ed ode is ompiled forexeution with standard threads the running time is roughly omparable to the unmodi�ed ode, with anexeution time of 1.03.Figure 5.10 shows the memory overhead of the dynami heking when running the x264 benhmark. Infuture work we plan to address this problem by implementing memory reyling in the dynami heker.Comparison to HelgrindDue to the use of page tables, the runtime is muh more e�ient than other dynami hekers that targetdata raes. Table 5.6 shows a omparison of the overhead of the approah desribed here to the overhead ofHelgrind 3.4.1. This table was onstruted by timing Helgrind as it heked for data raes in the �simlarge�data set using the unmodi�ed ode. The table expresses the overhead as a ratio, dividing the time to run thebenhmark with the heker by the time to run the benhmark using native threads. A ratio of 1.0 indiatesthat the dynami heker adds no detetable overhead to the exeution time of the ode.The table shows that the overheads for �laments are muh lower than the overheads for Helgrind. Thedi�erene in overhead an largely be attributed to the advane knowledge of the poliy used to proteteah blok that the runtime obtains from the diretives. This knowledge allows the runtime for �lamentsto target its data olletion, while Helgrind must ollet data about every shared blok in the system. Inaddition, Helgrind's overhead inreases as the number of threads inreases, re�eting the fat that Helgrinddoes not allow threads to exeute onurrently. Sine the runtime allows threads to exeute onurrentlythe overheads do not rise as quikly as the number of threads inreases.The diretives also allow us to avoid generating false reports of data raes. Helgrind reports 1-9 raesfor the blaksholes benhmark, 1 data rae for swaptions, and 50,000 - 219,000 data raes for x264.Sine we are able to apply sound aess poliies to every region in x264, we an onlude that all of theserae reports are false. 120



blaksholes swaptions x264Fil. Hel. Fil. Hel. Fil. Hel.1 1.0 31 1.0 50 1.1 1552 1.1 68 1.0 104 1.8 4843 1.2 100 1.1 151 2.0 7314 1.0 120 1.1 206 2.2 9475 1.0 143 1.1 205 2.3 11156 1.1 175 1.1 227 2.5 12547 1.1 180 1.0 307 2.3 12608 1.2 205 1.1 384 2.4 13189 1.1 159 1.1 353 2.4 136110 1.1 175 1.0 253 2.5 135611 1.1 180 1.2 228 2.5 137712 1.1 182 1.1 266 2.6 136613 1.1 190 1.2 176 2.7 142814 1.1 197 1.1 219 2.7 143515 1.2 197 1.1 289 2.6 144516 1.2 209 1.1 369 2.5 1366Table 5.6: Overhead of �laments and Helgrind5.3 Future workThe runtime system desribed in this hapter is a work in progress, and is not fully implemented. Mi-robenhmarks, along with the prototype runtime support disussed in Setion 4.2, suggest that the runtimewould be feasible. Implementing the runtime and applying it to a set of representative appliations wouldboth validate the design and also allow the performane impat of the runtime system to be quanti�ed.5.3.1 Comparing error ratesOther researh projets are reduing the number of false raes reported by Helgrind. Notably, Helgrind+ [61℄,an improved version of Helgrind, has eliminated the false reports for blaksholes and swaptions, andhas greatly redued the error rate for x264.However, the version of x264 that was annotated in this work does not orrespond to the version used forthe published results for these tools. In addition, we may have eliminated data raes when we hanged thereporting of sanlines ompleted to align transfers on page boundaries. We would like to diretly omparethe results generated by the runtime to the ones generated by these tools.5.3.2 Assisted development of diretivesIt is often di�ult to infer the design intent of a onurrent system by examining its ode. However,traditional dynami hekers routinely build models that are losely related to the diretives. For example,the LokSet algorithm [86℄ onstruts a model that di�erentiates shared and non-shared memory loationsand assoiates eah shared loation with a set of loks. It may be possible to proess suh a model to generatediretives for private and guarded regions, an approah suggested by other researhers [29℄.121



5.3.3 The problem of reyling memoryThe urrent runtime for heked exeution does not reyle memory when it is freed. Freeing memoryrepresents a hallenge for the approah beause the all to free() happens on a single �lament but e�etivelyrevokes aess to the memory for all �laments in the system. Sine �laments ommuniate asynhronously,the runtime has no faility to ensure that all of the �laments drop permissions to the memory, introduingthe possibility that undeteted data raes will our in the future.Adding dependeny traking and �nalization to the runtime will greatly redue this problem for request-oriented systems. When requests are �nalized the runtime is able to prove that no �lament within thesystem has maintained a referene to the memory. Therefore, freeing memory during �nalization should besafe assuming that no referenes were maintained within the modules behind a tollgate.In future work, we believe that we an address the problem of freeing memory by using the same per-mission heks for memory alloations and frees that we use for writes. One onsequene of this approah isthat it will be di�ult to free data in immutable regions without additional stati inferene to ensure thatthe free is invisible to the immutable poliy.Frees in atomi regions are also problemati. However, we make no laim to detet data raes on bloksin atomi regions, sine these regions are unsound by de�nition. Therefore, we an support frees in theseregions by ensuring that the memory freed in atomi regions is used to reate new atomi bloks.Reyling within a region is safe for regions proteted by the other poliies outlined in this paper. However,reyling within a region does not allow us to handle the destrution of entire regions. This question mustbe addressed on a region-by-region basis. The private region for a �lament is destroyed when the �lamentterminates. One the �lament has terminated it is possible to give its memory to any other �lament. Thisis simply a ase of serial thread on�nement where the hand-o� event is tied to the termination of the �rstowner.A similar argument holds for guarded regions. The destrution of the region represents a write. Therefore,the lok must be held at the time of the destrution. Transfer of the memory is permissible after theorresponding unlok all as long as the runtime ensures that the required memory barriers are in plae.Reyling memory that was part of a transferable region does not introdue the risk of undeteted dataraes. However, there is a risk that a �lament ould use a dangling pointer to obtain aess to a region. Inthis ase, there is a risk that the runtime would misidentify the use of the dangling pointer as a transferon�it. We ould provide a more spei� error by hanging the diretives, requiring threads to provide aregion identi�er when requesting a transfer. This would inrease the annotation e�ort for most appliations.5.3.4 Reduing the ost of mprotect()The benhmarks indiate that hanging the permissions of pages aounts for roughly half of the overheadadded by the dynami heker. It is likely that most of this time is spent within the mprotect() systemall. Most of the alls to mprotect() hange the permissions of only a single page. However, permissionshanges for multiple regions tend to be lustered at spei� points in the ode. The large number of allsto mprotect() is aused by the fragmentation of regions and the inability of the urrent diretives to expressthat the permissions for multiple regions should hange simultaneously.There are at least three opportunities for optimization within the Linux kernel. First, it would be helpfulto have a version of the mprotect() system all that ould hange the permissions of a set of non-ontiguouspages. Seond, it would be helpful to optimize the kernel to better ope with frequent permissions hanges.Current Linux kernels maintain two opies of the permissions for a page, one in the page table entry andone in the page's vm_area_strut struture. All of the pages in a vm_area_strut must have the samepermissions. Therefore, many of the mprotect() alls ause vm_area_struts to be split and/or merged.122



The testing indiates that the overhead for loating, splitting, and merging vm_area_struts aounts for30%-70% of the exeution time of typial mprotect() alls. This overhead ould be redued by allowing pagesin a vm_area_strut to have di�erent permissions. Finally, the x86 version of the kernel urrently �ushesthe entire TLB for eah mprotect() all. Benhmarks indiate that �ushing individual TLB entries for thea�eted pages would inrease the time spent in mprotect(), but would in theory redue the TLB miss rateafter the all ompleted.5.3.5 Poliies to avoid transfer on�itsThe runtime generates an error alled a transfer on�it when two �laments attempt to obtain on�itingaess to the same transferable region. Additional heking, often at the hardware level, ensures that�laments do not aess bloks in transferable regions without requesting aess to the region. When theseheks are ombined we an be ertain that there are no undeteted data raes for bloks within transferableregions.If the diretives provided by a developer are unsound, it is possible for transfer on�its to be deteted onsome runs of the appliation and not others. This happens beause we do not have diretives and poliies thatrelate get and release operations of transferable regions. These poliies are di�ult to generalize; they alwaysdepend on a spei� happens-before relationships in the program, they must ensure that no two �lamentsrely on the same happens-before relationship, and they often depend on knowledge of the appliation's state,suh as the number of sanlines ompleted in frames in x264. When we have examined more onurrentsystems it may be possible to generalize these poliies.It would be possible to detet transfer on�its that our when there is no happens-before relationshipbetween the releasing and getting threads. However, these heks annot avoid false negatives, sine it ispossible that the releasing and getting threads will establish a happens-before relationship for some otherpurpose.5.3.6 Using diretives to improve e�ienyWe believe that it is possible to use the knowledge provided by the diretives to improve the performane ofappliations running on non-traditional memory models. For example, the dynami heker ould alloatebloks in private regions from fast, loal memory on a NUMA system.The diretives may also be useful when implementing software transational memory [91℄. During normaloperation the transational memory system would rely on the diretives to maintain the read and write setfor transations. It would manipulate the page tables of �laments to detet aesses that were not preditedby the diretives. The system would respond to faults by adding the blok to the urrent transation's readand write set, and ould also log these faults to allow programmers to improve the performane of their odeby inreasing the number and auray of the diretives.5.4 ConlusionThis hapter disussed the design of two runtimes that use information provided by the diretives desribedin Chapter 3. The �rst runtime uses the diretives to provide operations that an stop and undo the e�etsof requests. These operations an be invoked while requests are ative, allowing developers to implementbehaviors that improve the attentiveness of their system. Developers an use these operations even whenthe system inorporates third party modules by plaing diretives at the module boundary. However, theoperations will ompromise the system's onsisteny if the information provided by diretives is inaurate.Therefore, Setion 5.2 disusses the design and implementation of a seond runtime that heks the auray123



of diretives as the system exeutes. Together these runtimes allow developers to balane the e�ieny oftheir system, its level of attentiveness, the implementation e�ort of adding diretives, and the reliability ofrediretion.
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Chapter 6ConlusionChapter 2 de�ned attentiveness, a quality attribute that desribes the behavior of systems as they rediretwork in response to hanges in the priorities of their lients. The onept of attentiveness is not entirely novel:attentiveness is similar to the quality attribute addressed by Petra-�ow [33℄, a framework for developingsystems that remain responsive while relying on variable resoures, suh as network bandwidth. Like thework desribed here, Petra-�ow an rediret work in progress in response to external events. However,Petra-�ow requires developers to implement their systems using speialized state variables and to expressthe relationships between these state variables and tasks. Petra-�ow's approah an be highly e�ient, butit requires detailed analysis and extensive rework of third-party ode inorporated in the system.The approah outlined in this doument di�ers, trading o� the e�ieny of rediretion to failitate theinorporation of third-party ode. The approah must aommodate the patterns of state management thatare already present in the ode. However, these patterns often do not express all of the intent needed toensure the soundness of the system during rediretion. Therefore, the runtime requires developers to insertthe diretives desribed in Chapter 3 to provide some of the missing intent. In most ases the ode anbe inorporated without hange, and analysis an be on�ned to the ode's interfae. The runtime system,desribed in Chapter 5, propagates the information provided in the diretives along the ontrol �ow of threadsin the system. The runtime is able to provide low-level operations that allow attentiveness onerns to beisolated, as illustrated in the design outlined in Chapter 4. The approah allows developers to improve theattentiveness and e�ieny of systems inrementally by adding additional diretives to provide additionalinformation to the runtime system.Developers ould use a similar approah of doumenting intent in diretives, using a runtime to gatherinformation from the diretives as the system exeutes, and using the runtime to modify the system'sexeution to ahieve other goals:� Refatoring single-threaded ode to use multiple threads. The runtime support desribed in Chap-ter 5 an be applied without modi�ation to assist developers when adding threads to existing single-threaded systems. When refatoring these systems developers attempt to identify long omputations,hoosing omputations that an proeed with minimal synhronization with the rest of the system.However, developers may miss some shared state, introduing data raes. The runtime support anidentify shared state quikly, reduing the time to �nd defets in the refatoring.� Crash protetion. It may be possible to reover the state of a system after it fails while proessing arequest by employing the rediretion approah desribed in Chapter 5. The approah assumes that therequest aused the failure by orrupting one or more of the regions. These regions would be restoredwhen the request was redireted, reviving the system. If requests are logged the system may be ableto reover when a prior request is responsible for the failure by replaying the other requests in the logfrom a known good hekpoint. 125



� Unit testing of toolkit-based appliations. Testing of toolkit-based appliations is often hampered bythe low-level nature of the events used to submit requests to the system. Tools are often unable toreliably submit requests due to subtle timing dependenies and hanges in the system's user interfae.Tools an avoid this problem in appliations that employ the design disussed in Chapter 4 to injetrequests diretly at the sheduler.� Limiting aess to sensitive in-proess data. Many systems must limit aess to data depending on thestate of their lients. For example, an IMAP server must not provide email messages to a lient beforeit has authentiated. Defets in the authentiation system may allow unauthentiated lients to gainontrol of the IMAP server. One these lients have gained ontrol of the system they may be ableto aess the messages diretly. The data aess poliies developed in Chapter 3 to detet data raesould be extended to onsider the level of authentiation when threads attempt to aess regions. Withadditional kernel support to prevent lients from bypassing the runtime, it would be possible to reatea runtime system that would enfore these poliies. The runtime system would stop a ompromisedsystem before an unauthorized lient gained aess to data.� Monitoring distributed tasks. Developers frequently �nd it di�ult to debug tasks that are submitted tolarge lusters of omputers. In these lusters failures our on nodes that are not under the diret ontrolof the system's developers. In addition, it is frequently di�ult to di�erentiate three types of failures:failures aused by unreliable nodes, intermittent failures aused by software defets, and reproduibleerrors aused by software defets. The proess of di�erentiating these failures is ompliated by theluster management system, whih restarts jobs automatially in an attempt to ope with defetivenodes. As a result, the luster management system may mask intermittent failures and may delayreporting reproduible failures. In addition, nodes oasionally fail slowly or silently, leading to furtherdelays. The ombination of diretives, mediators, and runtime support developed in this researh ouldaddress these problems by providing additional information to the luster management system and thedevelopers. When software running on a node fails due to the violation of a diretive, the lustermanagement system ould forward the report to developers, allowing them to deide if the failure wasdue to a hardware fault or a software defet. In addition, the luster management system ould omparethese reports, allowing it to avoid repeatedly restarting a system that exhibits a reproduible failure.As a result, reproduible failures will be reported with less delay, saving the time of both developers andthe luster. Finally, the runtime provides an opportunity to monitor the progress of nodes, potentiallyallowing the luster management system to detet nodes that are not making aeptable progress andrestarting them to avoid bloking the overall task.The goals desribed above share three features. First, ahieving the goals depends on intent that is notexpressed in the system's implementation. Diretives provide developers a way to doument this intent.Seond, the goals are di�ult to assess by a stati analysis of the system, but an be mehanially hekedduring the system's exeution with modest impat on performane. Finally, the goals are important, makingit plausible that developers would be willing to aept a modest loss in performane to make inrementalprogress toward the goal. Therefore, adopting the approah outlined in this researh may allow developersto make inremental progress toward the goal, trading o� the e�ieny of the system for inremental e�ortin plaing diretives.
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Appendix ARisk of rediretion to intra-omponentonsistenyDevelopers annot be expeted to reover the onsisteny of the system's state after rediretion. For example,onsider the routines shown in Listing A.1 that maintain a doubly linked list. Figure A.1 shows the stepsthat a system would follow if addAll() were alled with two lists, eah of whih has two nodes. One set ofstates in the diagram, SS01-SS12, shows an unoptimized exeution that follows the order of operations inthe ode. In this ase, its developers ould write ode to reover the onsisteny of the system's state afterrediretion.However, ompilers are free to make optimizations to ode during ompilation, suh as eliminating re-dundant stores [6℄. These optimizations relax the Sequential Consisteny model [67℄, leading to states thatould not be reahed from a sequential exeution of the ode. These states are shown in the diagram asOS01-OS10. Most of these states ould not be reahed from a sequential exeution of the soure ode. As aresult, developers have no way of prediting the ontents of memory if the addAll() routine were redireted,making it impossible for them to reover the onsisteny of the system's state. In some ases the head andtail pointers of one of the lists would point to the wrong nodes. In other ases the forward and bakwardpointers in the list would be inonsistent. Therefore, approahes to ensuring intra-omponent onsistenymust be pessimisti, preserving onsistent states that an be restored in the event of rediretion.There are also problems for inter-omponent onsisteny. For example, in the linked list example givenabove states SS04 and SS09 have intra-omponent onsisteny: eah of the linked lists is ompletely on-sistent. However, one of the nodes has been removed from the soure list but has not yet been linked tothe destination list. If the system were to stop in one of these states the node would be lost, violatinginter-omponent onsisteny. In this ase the unstated invariant is that in the event of rediretion while
addAll(L1, L2) is alled, every node in L2 either remains in L2 or is added to L1.
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typedef struct node {
struct node * prev;
struct node * next;

} node_t;

typedef struct list {
node_t * head;
node_t *tail;

} list_t;

static inline void append(list_t *list, node_t *node) {
node�>next = NULL;
node�>prev = list�>tail;
list�>tail = node;
if (list�>head == NULL)

list�>head = node;
else

node�>prev�>next = node;
}

static inline node_t *pop(list_t *list) {
node_t * const rval = list�>head;
node_t * const pop_next = rval�>next;
list�>head = pop_next;
if (pop_next == NULL)

list�>tail = NULL;
else

pop_next�>prev = NULL;
rval�>prev = rval�>next = NULL;
return rval;

}

static inline node_t *push(list_t *list) {
...

}

void addAll(list_t *restrict dst, list_t *restrict src) {
if (src != dst)

while(src�>head != null)
append(dst, pop(src));

} Listing A.1: Code to manage a doubly linked list
134



Figure A.1: State hanges that our while moving nodes from L2 to L1. Nodes are moved one at a time.First, the front node of L2 is removed, and then it is added to the end of L1. The proess repeats until thereare no nodes in L2. When the ode is optimized some of the intermediate steps are eliminated, as shown inthe right olumn. 135
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