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Abstract

Supply chains are a central element of today’s global economy. Existing management practices
consist primarily of static interactions between established partners. Global competition, shorter
product life cycles and the emergence of Internet-mediatedbusiness solutions create an incentive
for exploring more dynamic supply chain practices. The Supply Chain Trading Agent Competition
(TAC SCM) was designed to explore approaches to dynamic supply chain trading between auto-
mated software agents. TAC SCM pits against one another trading agents developed by teams from
around the world. Each agent is responsible for running the procurement, planning and bidding
operations of a PC assembly company, while competing with others for both customer orders and
supplies under varying market conditions. This paper presents Carnegie Mellon University’s 2005
TAC SCM entry, the CMieux supply chain trading agent. CMieuximplements a novel approach
for coordinating supply chain bidding, procurement and planning, with an emphasis on the ability
to rapidly adapt to changing market conditions. We present empirical results based on 200 games
involving agents entered by 25 different teams during what can be seen as the most competitive
phase of the 2005 tournament. Not only did CMieux perform among the top five agents, it sig-
nificantly outperformed these agents in procurement while matching their bidding performance.
We also simulated 40 games against the best publicly available agent binaries. Our results show
CMieux has significantly better average overall performance than any of these agents.





1 Introduction

Existing supply chain management practices consist primarily of static interactions between es-
tablished partners [5]. As the Internet helps mediate an increasing number of supply chain trans-
actions, there is a growing interest in investigating the benefits of more dynamic supply chain
practices [2, 13], such as those involving automated software agents. The Supply Chain Trading
Agent Competition (TAC SCM) was designed to explore such approaches to dynamic supply chain
trading. TAC SCM pits against one another trading agents developed by teams from around the
world. Each agent is responsible for running the procurement, planning and bidding operations of
a PC assembly company, while competing with others for both customer orders and supplies under
varying market conditions. Specifically, the game featuresa number of different types of com-
puters, each requiring different sets of components that can be procured from multiple suppliers.
Agents make money by selling and delivering finished PCs to customers. Supplier and customer
market conditions stochastically change over time and fromone game to another to ensure that
agents are tested across a broad range of representative situations.

This paper presents Carnegie Mellon University’s 2005 TAC SCM entry, the CMieux auto-
mated supply chain trading agent. CMieux’s architecture departs markedly from traditional Enter-
prise Resource Planning architectures and commercially-available supply chain management so-
lutions due to its emphasis on tight coordination between supply chain bidding, procurement and
planning. Through this coordination, our trading agent is capable of adapting rapidly to chang-
ing market conditions to outperform its competitors. In particular, we present empirical results
based on 200 games involving agents entered by 25 different teams during what can be seen as
the most competitive phase of the 2005 tournament. Not only did CMieux perform among the top
five agents, it significantly outperformed these agents in procurement while matching their bidding
performance. We also present results from 40 simulated exhibition games against the top five pub-
licly available agent binaries. The results of these games show that CMieux has significantly better
average overall performance than any of the public agents inthis setting.

The remainder of this paper is organized as follows. Section2 summarizes the TAC SCM en-
vironment, and highlights the features and challenges froma planning and scheduling perspective.
Section 3 presents an overview of CMieux and a detailed description of its underlying modules.
Section 4 presents empirical results. Section 5 briefly discusses the changes that were made to
CMieux in preparation for the 2007 tournament where it was one of the finalists. Finally in Sec-
tion 6 we give a few concluding remarks and directions for future work.

2 TAC Supply Chain Management

This section provides a summary of the TAC Supply Chain Management game. The full description
can be found in the official specification document [6].

A typical supply chain [5] may involve a variety of participants, such as: customers, retailers,
wholesalers/distributors, manufacturers, and component/raw material suppliers. The objective of
a supply chain is to maximize the overall value it generates,which is typically measured through
profitability.
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Figure 1: Summary of the TAC SCM Scenario from the official TACSCM specification [6].

In a direct sales model [5], such as the one used by Dell Inc., aleading PC distributor, manu-
facturers fill customer orders directly. Retailers, wholesalers and distributors are bypassed, leaving
only three participants - customers, manufacturers and suppliers. This is the most dynamic supply
chain framework presently in use, which is the main reason

that TAC is built around this SCM model. However, TAC SCM goesbeyond the limits of
present practices by providing manufacturers with the opportunity to simultaneously search daily
for the best supply prices, while concurrently adjusting asking prices based on changing market
conditions. Competitiveness in dynamic supply chain scenarios, such as those considered in TAC
SCM, require significantly tighter integration of procurement, bidding and planning functionality
than implemented in today’s systems [2].

The TAC SCM game is a simulation of a supply chain where six computer manufacturer agents
compete with each other for both customer orders and components from suppliers. A server simu-
lates the customers and suppliers, and provides banking, production, and warehousing services to
the individual agents. Every game has 220 simulated days, and each day lasts 15 seconds of real
time. The agents receive messages from the server on a daily basis informing them of the state of
the game, such as the current inventory of components, and must send responses to the same server
indicating their actions prior to the end of the day, such as requests for quotes from the suppliers.
At the end of the game, the agent with the highest sum of money is declared the winner. Typically,
each manufacturer agent separates its decisions into the important sub-problems of a supply chain:
procurement of components, production and delivery of computers, and computer sales. Figure 1
summarizes the high level interactions between the variousentities in the game.
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2.1 Procurement of Components

By using different combinations of components, each agent is able to produce and store 16 different
computer configurations in its own production facility. These computers are made from four basic
components: CPUs, motherboards, memory, and hard drives. There are a total of 10 different
components: two brands and speeds of CPUs, two brands of motherboards, and two sizes of hard
disks and memory. The game includes 8 distinct suppliers, and each component has a base price
that is used as reference for suppliers making offers. Each PC type also has a base price equal to
the sum of the base prices of its components.

Every day, agents can send requests for quotes (RFQs) to suppliers with a given reserve price,
quantity, type and delivery date. A supplier receives all RFQs on a given day, and processes them
together at the end of the day to find a combination of offers that approximately maximizes its
revenue. On the following day, the suppliers send back to each agent an offer corresponding to
each RFQ with a price, a quantity, and a delivery date. Due to capacity restrictions, the supplier
may not be able to supply the entire quantity requested in theRFQ by the requested due date. In
this case it responds by issuing up to two modified offers, each of which relaxes one of the two
constraints:

• Quantity , in which case offers are referred to aspartial offers.

• Due date, in which case offers are referred to asearliest offers.

The suppliers have a limited capacity for producing a component, and this limit varies throughout
the game according to a mean reverting random walk. Moreover, suppliers limit their long-term
commitments by reserving some capacity for future business. The pricing of components is based
on the ratio of demand to supply, and higher ratios result in higher prices. Each day the suppliers
estimate their free capacity by scheduling production of components previously ordered as late
as possible. The manufacturer agents normally face an important trade-off in the procurement
process: pre-order components for the future yielding lower prices but where customer demand is
difficult to predict, or wait to purchase components at the last minute and risk being unsuccessful
due to high prices or low availability.

A reputation rating is also used by the suppliers to discourage agents from driving up prices
by sending RFQs with no intention of buying. Each supplier keeps track of its interaction with
each agent, and calculates the reputation rating based on the ratio of the quantity purchased to
quantity offered. If the reputation falls below a minimum value, then the prices and availability
of components begin to deteriorate for that agent. Therefore, agents must carefully plan the RFQs
that they send to suppliers.

2.2 Computer Sales

The server simulates customer demand by sending customer requests for quotes (RFQ) to the
manufacturer agents. Each customer RFQ contains a product type, a quantity, a due date, a reserve
price, and a daily late penalty. Moreover, these customer requests are classified into three market
segments: high range, mid range, and low range. Every day, the server sends a number of RFQs
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for each segment according to a Poisson distribution, with an average that is updated on a daily
basis by a random walk. The total number of RFQs per day rangesbetween 80 and 320, and
demand levels can change rapidly throughout the game. Thus,agents are limited in their ability to
plan sales, production and procurement. The manufacturer agents respond to the customer RFQs
by bidding in a first price sealed bid reverse auction: agent’s cannot see competitors bids, and the
lowest offer price wins the order. Agents do receive market reports each day that inform the highest
and lowest winning bid prices for each PC type on the previousday.

2.3 Production and Delivery

Each manufacturer agent manages an identical factory, where it can produce any type of computer.
The factory is simulated by the game server, and also includes a warehouse for storing components
and finished computers. Each computer type requires a specified number of processing cycles, and
the factory is limited to produce 2000 cycles (approx. 360 units) per day.

Each day the agent sends a production schedule to the game server, and the simulated factory
produces all the PCs in the schedule, as long as the required components are available. A delivery
schedule is also sent to the server on a daily basis, and it must specify the products and quantities
of computers to be shipped to each customer on the following day. Only computers available in
inventory can be shipped to customers. When a customer receives the PCs it ordered the agent’s
bank account is credited with the payment equal to its bid price for the order times its quantity.

2.4 Related Work

Development teams of TAC SCM agents have proposed several different approaches for tackling
important sub-problems in dynamic supply chains. Deep Maize [7] used game theoretic analysis
to factor out the strategic aspects of the environment, and to define an expected profitable zone of
operation. The agent used market feedback [9] to dynamically coordinate sales, procurement and
production strategies in an attempt to stay in the profitablezone. SouthamptonSCM [8] employed
a strategy for using fuzzy reasoning to compute bid prices onRFQs. RedAgent [12] used an
internal market architecture with simple heuristic-basedagents that individually handle different
aspects of the supply chain process. TacTex [10, 11] is builtaround machine learning techniques
for predicting supply and demand. These techniques are extended to form the customer bid price
probability distributions in CMieux (described in Section3.5). The Botticelli team [4] showed how
the problems faced by TAC SCM agents can be modeled as mathematical programming problems,
and used heuristic algorithms for bidding on RFQs and scheduling orders.

3 CMieux

CMieux is dynamic supply chain trading agent that implements adaptive strategies to support the
tight integration of procurement, bidding and planning functionality. In contrast to many other
TAC SCM entries, CMieux continuously re-evaluates both low-level strategies, such as its current
procurement plan, and high-level strategies, such as its current target market share. The following
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section provides a high-level overview of the modules that compose CMieux and how they interact.
Each module is explained in detail in subsequent sections.

3.1 Overview

Figure 2 shows the architecture of our CMieux supply chain trading agent, highlighting key in-
teractions between its five main modules. Thebidding moduleis responsible for responding to
customer requests with price quotes. Theprocurement modulesends RFQs to suppliers and de-
cides which offers to accept. Thescheduling moduleproduces a tentative assembly schedule for
several days based on available and incoming resources (i.e. capacity and components). Thestrat-
egy modulemakes high-level strategic decisions, such as what fraction of the assembly schedule
should be promised to new customers and what part of the demand to focus on. Theforecasting
moduleis responsible for predicting the prices of components and the future demand.

Figure 3 gives a general overview of CMieux’s main daily execution path. The agent begins
by collecting any new information from the server, such as the new set of supplier offers, and
customer requests. This information is fed to the forecast module, which updates its predictions
of future demand and pricing trends accordingly. The forecast demand is given to the strategy
module to determine what part of it our agent should target. From the set of forecast future RFQs
the strategy module chooses a subset as the target demand. The procurement module then deter-
mines whether or not to accept each newly acquired supplier offer. All offers from suppliers are
accepted unless they are too late to be useful, or too expensive to remain profitable. The scheduling
module builds a tentative tardiness minimizing productionschedule for up to twenty days in the
future. The schedule includes the agent’s actual orders, and the future orders composing the target
demand. The target demand orders are used to determine how many finished PCs the agent has
Available to Promise (ATP). On the Business to Consumer (B2C) side, the strategy module uses the
tentative ATP and the forecast selling conditions from the forecasting module to determine what
the agent Desires to Promise (DTP). The DTP is used by the bidding module, along with learned
probabilistic models of competitor pricing. The bidding module chooses prices to maximize the
agent’s expected profit, while offering the amount of products specified by the DTP in expectation.
The procurement module determines how many components are needed to reach the level of in-
ventory specified by the strategy module. It compares the desired levels to the projected levels, and
determines what additional components are needed. Each daythe procurement module attempts to
procure a fraction of the needed components based on the prices and availability predicted by the
forecasting module.

3.2 Forecast Module

The forecast module is an important part of the pro-active planning strategies employed by CMieux.
It helps inform a number of key decisions, such as the planning of RFQs sent to suppliers and the
setting of target market shares for different end products.A formal description of the main inputs
and outputs of the forecast module are provided in Figure 4. The module’s two primary func-
tions arecustomer demand forecastingandprice forecasting. Figure 5 shows examples of the two
prediction techniques used by the forecast module.
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(a) B2C Interaction Overview. The forecast module feeds predictions to the strategy mod-
ule, which uses the scheduling module to determine the agent’s sales target. The bidding
module sends bids to customers that maximize its expected revenue while reaching the strat-
egy module’s target.

(b) B2B Interaction Overview. As on the B2C side, the forecast module feeds predictions
to the strategy module, which uses them to generate the agent’s sales target. On the B2B
side, the sales target is fed to the procurement module, which sends requests to the suppliers
to procure components to meet the sales target as cheaply as possible.

Figure 2: Primary interactions between modules for B2C and B2B operations in CMieux.
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1. Update daily data structures with server information.

2. Forecast Module→ update forecasts.

• Predict future orders and prices using regressions

• Predict component arrivals based on observed delays

3. Strategy Module→ compute target demand.

4. Procurement Module→ accept supplier offers.

• Accepts offers that are reasonably priced.

• Accepts partial offers that are sufficiently large.

• Accepts earliest offers that are not excessively late.

5. Scheduling Module→make production schedule.

• Uses dispatch scheduling and minimizes tardiness.

• Available to Promise (ATP) products come from scheduled forecast orders.

6. Strategy Module→ compute target sales.

7a. Bidding Module → compute customer offers.

– Probability models of competitor pricing are used to maximize expected profit and sell DTP in expectation.

7b. Procurement Module→ send supplier requests.

– Target demand is broken into requests to minimize expected offer cost.

Figure 3: Overview of CMieux’s daily main loop.

Forecast Inputs & Constants:

• R, the set of observed customer RFQs.

• OC, the set of customer orders received by the agent.

• OS, the set of supplier orders received by the agent.

• DF, the number of days to forecast into the future.

Forecast Outputs:

• R̂, a set of RFQs representative of those the agent will see up toDF days in the future.

• fC : j, d→ R, a function predicting the selling price of SKUj on dayd.

• fS : k, d→ R, a function predicting the purchase price of componentk on dayd.

Figure 4: Forecast module inputs and outputs.
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3.2.1 Customer Demand Forecasting

One of the forecast module’s responsibilities is to construct a set of customer RFQs that are repre-
sentative of those our agent expects to see in the future. These forecast RFQs are then used by the
strategy module to determine the agent’s target demand.

The actual daily number of RFQs of each product grade (high, medium and low) is indepen-
dently drawn from a Poisson distribution. The distributions for different grades have different
means and trend values, which change stochastically throughout the game. The mean for each
product grade changes geometrically each day based on its trend (i.e., each day the trend is multi-
plied by the mean and the result is added to the subsequent day’s mean), and the trend changes by
a small amount each day according to a random walk.

The forecast module generates the forecast RFQs by predicting the two parameters governing
the current stochastic demand process for each type, its mean and trend, and extrapolating into
the future. The module predicts the changing mean and trend of each grade’s distribution using
a separate linear least squares (LLSQ) fit of that grade’s observations from the past several game
days (additionally, we enforce a lower and upper bound on thepredictions of 20% below and above
the current day’s number of RFQs, to ensure the predictions remain relatively conservative). The
predicted means and trends into the future, along with the known parameters of distributions over
other attributes (e.g., quantity, penalty, due date) [6], are used to generate an appropriate set of
RFQs.

3.2.2 Price Forecasting

The second responsibility of the forecast module is predicting the selling price of each product,
and the purchasing price of each component up toDF days into the future. This information is
useful to several of the other modules in the agent that base decisions on current and future market
conditions, such as the procurement module.

The product selling prices are predicted in the same fashionas the demand trends. A linear
least squares fit is calculated for the selling prices of eachproduct over the past several game
days. The future purchasing prices of each supplier are predicted using a nearest-neighbor (NN)
technique. The nearest-neighbor technique predicts the price of a supplier request for delivery on
dated as an average of thek historical quotes with due dates nearest tod (in our 2005 agent we
usedk = 5). The contribution of each of thek price quotes is weighted inversely proportionately
to its due date’s distance fromd, and decayed over time as it becomes stale.

On any given day in TAC SCM the agent is limited to a maximum of5 requests per supplier
and component type. Most of these requests are used by the procurement module to purchase
components, and the responses to these requests are included in the collection of historical quotes
used by the NN technique. In addition, the requests that are unused by the procurement module
are used as probes, and also included in the collection of quotes used by the NN technique. The
probes are sent with due dates chosen to provide the most information (i.e., dates that are farthest
from the due dates of previously observed quotes).

An additional responsibility of the forecast module is predicting the delays that the agent can
expect on outstanding supplier orders. Suppliers delay theshipment of orders when their capacity
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(b) This figure shows how supplier prices are predicted by theagent. The
x-axis represents the due date of an RFQ sent to a particular supplier. The
y-axis represents the unit price that the agent expects to receive (or has
received in the case of observations) for offers due on each day.

Figure 5: Examples of the techniques used by the forecast module to predict customer demand and
supplier prices.
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stochastically descends below the level they had previously promised. The forecast module pre-
dicts the delays on outstanding orders based on the delays observed previously for each supplier
and component type. For each product line it determines the delay on the most recent order and
propagates it as the expected delay on all other outstandingorders. This relatively simple technique
helps the planning aspects of the agent react early to a potential back-log in supplies.

3.3 Strategy Module

The strategy module continuously re-evaluates and coordinates strategic decisions, including set-
ting market share targets and selling quotas. These targetsare continuously tweaked to reflect both
present and forecast market conditions. More specifically,the strategy module determines what
subset of the forecast customer RFQs the agent should aim to win (the “target demand”) and what
fraction of the its finished products the agent should plan onselling on any given day (the “desired
to promise” products, or DTP). In other words, the strategy module modulates how the output of
the forecast module impacts the procurement, scheduling and bidding modules (as illustrated in
Figure 2). The primary inputs and outputs of the strategy module are summarized formally in
Figure 6.

Strategy Inputs & Constants:

• O, the set of pending orders.

• R̂, future customer RFQs fromforecast module.

• fC, customer price function fromforecast module.

• fS, supplier price function fromforecast module.

• SATP, the component of the production schedule from thescheduling moduleallocated to future orders.

Strategy Outputs:

• Ô, the set of orders representing a target demand, generated from actual orders and forecast future RFQs.

• Ŝ, quantities of PC that the agent currently desires to promise each day (DTP).

Figure 6: Strategy module inputs and outputs.

3.3.1 Computing Target Demand

On any particular day in the game, the strategy module first determines the part of the forecast
demand that the agent will target. The goal of the strategy module is to target a fraction of the
forecast demand that will lead to the highest overall profit.In TAC SCM each agent competes with
only five other agents. The agents can significantly impact their own profit margins by flooding
or starving a market. Thus, targeting a larger percentage ofthe forecast will push profit margins
down. On the other hand, agents have a limited factory capacity each day. If products are selling
for a profit and factory capacity goes un-utilized, the un-used capacity is lost earning potential.
This creates the need for a balance between decreasing target demand to increase profit margins,
and still targeting enough demand to maintain high factory utilization.
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Figure 7: The strategy module adjusts the percentage of forecast foreach productin the target
demand based on its profit margin. The value of the increase ordecrease each day,∆, depends on
the percentage of the agent’s total profit accounted for by the product type on the previous day.

An agent’s profit margins can also be affected by the amount ofcompetition in the market.
For example, if the other agents are targeting a larger shareof the market, an agent must lower
its prices to reach its target. However, managing the impactof other agents is primarily handled
by the bidding module (see Section 3.5), which adjusts prices to reach the target specified by the
strategy module.

The strategy module uses the following heuristic to set the agent’s target demand. When prod-
ucts are selling for a profit, it always targets exactly enough demand to stay at full utilization. The
relative percentage of each product, or theproduct mixture, used to fill the target to full capacity is
slightly adjusted each day based on the profit margins of eachproduct type. The exact percentage
of each product in the mixture is set equal to the percentage of the agent’s total profit margin it
accounted for on the previous day. Thus, when the profit margin of a product increases (decreases)
relative to the profit margins of the other products, its percentage in the product mixture increases
(decreases).

When a product is no longer being sold for a profit, the strategy module calculates the product
mixture in the same way. However, the mixture is post-processed so that the contribution of the
unprofitable product is significantly decreased.1 This may cause the total target demand to fall
below full factory utilization. Towards the end of a game theagent revises this heuristic to ensure
it completes the game with as little inventory as possible.

3.3.2 Computing Desired to Promise (DTP)

After the target demand is computed by the strategy module, it is used by the scheduling module to
develop a tentative production schedule for several days into the future (thescheduling window).
The scheduling module uses information about incoming and available components, as well as

1In practice we found that completely removing unprofitable products from the product mixture provided too
much of an advantage to competing agents. This motivated ourdecision to allow the agent to occasionally sell a small
percentage of products at a loss.
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Figure 8: This figure shows an example of the agent’s ATP for 5 days starting at the current day.
Each row represents a different finished product and each column represents a different day. The
numbers in the boxes indicate the quantity of each product that is expected to be added to the
agent’s inventory each day. The strategy module instructs the agent to promise the first two days
of available PCs, which are enclosed in dotted lines.

previously committed orders. Using this information it determines when, if at all, each of the
target orders will be produced (this process is described inSection 3.4). The part of this schedule
assigned to filling target demand orders (as opposed toactualorders) indicates production that is
not yet allocated to filling existing customer orders, or theavailable to promise (ATP) production.

As we have already explained, even at times when selling a particular product is profitable, an
agent cannot arbitrarily increase the quantity of that product it sells. This is in part because in order
to sell more of that product the agent has to lower its price and hence its profit margin. iIn the worst
case, the agent might find itself in a situation where it has promised more than it can produce and
will suffer from tardiness penalties. Accordingly, the strategy module relies on the ATP schedule
to determine what the agent should try to promise each day (werefer to this as the agent’s desire
to promise quantities, or DTP). In an effort to sell as littleas possible and still maintain full factory
utilization, the DTP consists of PCs appearing only in the first two day of the ATP schedule. The
products in the first two days of the ATP are used because they represent the un-promised finished
products and the current day’s un-promised factory utilization (see Figure 8). Thus, this is the
fewest number of PCs that can be sold while still maintainingfull factory utilization.2

This technique for computing the DTP ensures that the agent never sells more than its available
capacity and left over inventory for a single day. It also guarantees that the products being sold
are as flexible as possible with respect to satisfying customer requests. Since all of the DTP is
available to ship on the very next day, it allows the bidding module to safely bid on any customer
request without worrying about late penalties.

2Experiments in which the window was extended beyond two dayscaused the agent to over promise and negatively
impacted its profit margin.
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Scheduling Inputs & Constants:

• Ô, a set of orders representing target demand fromstrategy module, each orderi includes the following infor-
mation:

– di, the due date of thei’th order.

– pi, the daily late penalty associated with thei’th order (the contractual penalty for actual orders and a
small constant for forecast orders).

– si, the SKU for the product type associated with thei’th order.

– qi, the quantity of products associated with thei’th order.

– bi ∈ {0, 1}, a flag indicating whether or not thei’th order is an actual order or a forecast order.

• I, the projected component inventory for all remaining days.Idk is the projected inventory level of component
k on dayd.

• DS, number of days in the schedule (scheduling window)

• α, the slack weighting parameter for ATC priorities.

Scheduling Outputs:

• S, a production schedule forDS days,Sd is the set of orders scheduled for production on dayd.

Figure 9: Scheduling module inputs and outputs.

3.4 Scheduling Module

The scheduling module continuously maintains a productionschedule over a horizon of several
days. This schedule reflects current contracts, forecast contracts and projected component inven-
tory levels. It helps drive other planning decisions including which customer RFQs to bid on and
which RFQs to send to suppliers. More specifically, the scheduling module makes a tentative pro-
duction schedule forDS days into the future. The primary inputs and outputs of the module are
summarized formally in Figure 9. The inputs include a set of orders,Ô, from the strategy mod-
ule and the projected component inventory,I, for the remainder of the game. The orders inÔ

represent the target demand of the agent and include both actual and forecast future orders. The
scheduling module’s inputs and outputs are described in Figure 9 The scheduling module uses a
heuristic to sort orders according to “slack” (time before due date) and penalty, and a greedy dis-
patch technique to fill the production schedule. The dispatch technique (presented in pseudo-code
in Figure 11) proceeds as follows. It iterates through each day in the scheduling window and com-
putes the priority of each unscheduled order during each iteration. The priorities are computed
according to the Vepsalainen’s apparent tardiness cost (ATC) dispatch rule [14]. The ATC priority
favors orders with large penalties and little time to complete, since these are likely to be orders that
require the most immediate attention. The slack weighting parameter,α, dictates the exact trade off
in priority between slack and tardiness. An example of the ATC priorities for different orders with
α = 1 (the value used in our agent) is graphed in Figure 10 as the scheduling day increases. While
building a particular day’s segment of the production schedule, the dispatch scheduler attempts to
add each order to the production schedule according to its priority (orders with larger priorities
are considered first). When an order is considered, the scheduler determines whether or not there
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are enough available resources (i.e. capacity and components) on the current day of the iteration
through the scheduling window. If there are enough unclaimed resources, the order is scheduled
for production and the necessary components and productioncycles are allocated. If there are not
enough resources available on the day in question, the orderis removed from the queue and is
considered again the next day. The scheduler proceeds to thefollowing day when all orders have
been considered and either scheduled or delayed. This entire process repeats until the scheduling
window is exceeded.

3.5 Bidding Module

The bidding module is responsible for responding to a subsetof the current customer RFQs. Its
goal is to sell the resources specified in the DTP at the highest prices possible. The inputs and
outputs of the bidding module are formally summarized in Figure 12.

3.5.1 Predicting Offer Acceptance Distributions

The bidding module first predicts a probability distribution, G, for each RFQ that specifies the
likelihood of winning the RFQ at any price. The distributions are learned offline using RFQs from
previously played games to build adistribution tree. A distribution tree is similar to a regression
tree or a decision tree, but instead of predicting a single value at each leaf it predicts a distribution
that best fits the historical data that the leaf represents. The distribution trees used in CMieux
predict a Normal distribution over winning bid prices for each RFQ based on its features (such as
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procedure dispatch(O, I,DS, α)

O′ ← O

for d = 0 to DS do
Sd ← ∅
sort O′ according to apparent tardiness priority. The priority of thei’th order,πi, is calculated as:

πi = pi

[

exp

(

−
1

α
max(0, di − d)

)]

while O′ 6= ∅ do
pop the highest priority orderoi from O′

if the agent has enough inventory and capacity on dayd to scheduleoi then
add oi to the dayd’s schedule
subtract the required parts fromId.

end if
end while
O′ ← O \ S

end for

Figure 11: A summary of the Apparent Tardiness Cost (ATC) dispatch scheduling technique used
by the scheduling module.

Bidding Inputs & Constants:

• R, the set of current RFQs.

• G : r, p → (0, 1), a cumulative density function that takes an RFQ,r, and a unit price,p, and provides the
probability that the winning price forr will be greater thanp.

• G−1 : r, (0, 1)→ p, the inverse ofG, takes an RFQ and a probability and returns the corresponding price.

• Ŝ, the DTP fromstrategy module.

Bidding Outputs:

• F C, a set of offers for customers. Each offer corresponds to an RFQ inR, and includes a unit price.

Figure 12: Bidding module inputs and outputs (G andG−1 are maintained internally).
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due date, penalty, and reserve price) and the features of themarket at the time it was sent (such as
the previous day’s high and low winning bid prices).

3.5.2 Bidding for Customer Orders

The bidding module uses the distributions predicted by the distribution tree to send offers to cus-
tomers that maximize the agent’s expected revenue, subjectto the constraint that the expected
amount of products sold be less than or equal to the amount specified in the DTP. In CMieux, the
problem of choosing prices is reduced to a continuous knapsack problem (CKP) instance. The
CKP is a variant of the knapsack problem classically studiedin artificial intelligence and opera-
tions research that represents a convenient abstraction ofthe pricing problem in TAC SCM. The
CKP asks: given a knapsack with a weight limit and a set of weighted items – each with a value
defined as a function of the fraction included in the knapsack– fill the knapsack with fractions of
those items to maximize its value. The pricing problem can bemodeled as a CKP by considering
the agent’s sales capacity as the knapsack that must be filledwith items, each of which represents
the demand of a different customer. We assume that a fraction, p, of a customer’s demand can be
captured by choosing a price that will be accepted by the customer with probabilityp.

Specifically, a CKP instance is created for each product typein the DTP. The CKP is created by
the items in the CKP instance reduced from the pricing problem represent RFQs with weights equal
to their quantities. The knapsack weight limit in the CKP is the quantity of the product appearing in
the DTP. The value of a fraction,x, of an RFQ,r, is the expected unit revenue that yields a winning
probability ofx. The expected unit revenue is defined as the probability withwhich the customer
is expected to accept the offer (as specified by the bidding module’s probability distribution) times
the offer price,G−1(r, x)× x.

CMieux uses a binary search algorithm to solve the CKP instance for each product that is guar-
anteed to provide a solution withinǫ of optimal expected revenue. The search algorithm operates
on the derivatives of the expected unit revenue functions. It finds the largest derivative value corre-
sponding to a solution that does not violate the weight limitof the knapsack. Since the distributions
are Normal the expected unit revenue functions are strictlyconcave, and the solution corresponding
to the largest feasible derivative value is optimal. For full descriptions of the reduction to a CKP,
the ǫ-optimal algorithm, and the regression tree method used by CMieux the reader is directed
to [3].

3.6 Procurement Module

The procurement module handles all aspects of requesting and purchasing components. It is de-
signed to rapidly adapt to changing market conditions. Eachday, it considers sending requests
with widely varying quantities and lead times in an effort toexploit gaps in current supplier con-
tracts. By finding such gaps, or slow days for the suppliers, the agent ensures that its procurement
prices tend to fall below its competitors. The flexibility gained by considering so many different
procurement strategies in this way sets CMieux apart from most existing supply chain practices, as
well as those of other agents designed for TAC SCM. Each day, the procurement module performs
two tasks: i.) it attempts to identify a particularly promising subset of current supplier offers, and
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Procurement Inputs & Constants:

• F S, the set of offers from suppliers.

• I, the projected component inventory for all remaining days.Ikd is the projected inventory level of component
k on dayd.

• Ô, target demand fromstrategy module.

• fC, customer price function fromforecast module.

• fS, supplier price function fromforecast module.

• 〈D−, D+, DG〉, the earliest, and latest days to consider requesting for, and the granularity to discretize search.

• KS, the number of requests allowed per supplier.

Procurement Outputs:

• F̂ , the set of supplier offers to accept.

• Z, the procurement requests for each supplier.Zlk = {z1, . . . , zKS} is the set of requests for supplierl and
componentk. Each request includes the following information:

– qi, the quantity of the request.

– di, the due date of the request.

– ri, the reserve price of the request.

Figure 13: Procurement module inputs and outputs.

ii.) it constructs a combination of RFQs to be sent to suppliers that balances the agent’s component
needs with identified gaps in current supplier contracts. The procurement module takes as input
the set of recent supplier offers, the projected inventory,the target demand and the forecast pricing
functions (see Figure 13).

3.6.1 Accepting Supplier Offers

The module accepts supplier offers using the following rule-based decision process.

1. The agent begins by rejecting offers that are above a certain price threshold (the threshold
was chosen empirically to be 20% of the offered component’s average purchase price).

2. In an effort to keep the agent’s reputation as high as possible,3 the agent accepts any re-
maining offers that satisfy the quantity and due date requirements of the corresponding RFQ
(“full offers”).

3. Next, if more components are needed, offers with quantities above an empirically chosen
threshold (half of the requested quantity), or offers with due dates before an empricially
chosen deadline (less than 15 days of the requested due date)are also accepted.

3Maintaining a perfect reputation was identified as an important strategic goal for the 2005 competition.
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procedurerequest(I, Ô, fC, fS, 〈D−, D+, DG〉, KS)

let Î be a fraction of the difference between inventory maintaining
production levels of̂O, and inventory available inI.
for each component,k do

d∗ ← {}

u∗ ← 0KS−1

for each set ofKS + 1 dates,{d1, . . . , dKS+1}, betweenD−

andD+, discretized byDG do
u← approx utility({d1, . . . , dKS+1}, Î, k, fC, fS)
if sum(u) > sum(u∗) then

d∗ ← {d1, . . . , dKS+1}
u∗ ← u

end if
end for
for i = 1 to KS do

let l be the supplier ofk with the lowest price on daydi

qi ←
Pdi+1

d=di
Îkd

zi ← 〈di, qi, u
∗
i /qi〉

Zlk ← Zlk ∪ {zi}
end for

end for
return Z

procedureapprox utility({d1, . . . , dKS+1}, Î, k, fC, fS)

u← 0KS

let J be the set of products that componentk is used in
for j ∈ J do

let βj andβk be base prices of productj and componentk from
the game specification
for i = 2 to KS + 1 do

d← di−1

while d < di do
û←

“

βk
βj

fC(j, d)
”

− fS(k, d)

/* û is unit profit from j */
ui−1 ← ui−1 + Îkd

û
|J|

d← d + 1
end while

end for
end for
return u

Figure 14: Pseudo-code for the requisitioning procedure used by the procurement module.

3.6.2 Sending Supplier Requests

Since offer prices, due dates and quantities are dictated bythe specific requests they are offers
for, the primary responsibility of the procurement module is requisitioning. The requisitioning
procedure used in CMieux attempts to request some of the components it needs (that it has not
already purchased) to maintain its target production levels, each day. Its main goal is to ensure
that the prices offered in response to the requests are as lowas possible. The requisitioning pro-
cedure chooses between many different lead times and quantities, based on the forecast supplier
market landscape. Figure 14 provides pseudo-code outlining this process. In order to determine
what requests to send to suppliers, the procurement module computes,̂I, the difference between
the inventory required to maintain production levels specified by the target demand, and the pro-
jected inventory for the remainder of the game (i.e., the components that it needs but has not yet
purchased). However, our agent does notneedto procure this entire difference each day. The com-
ponents are not needed immediately, thus it can divide the purchasing of components in̂I across
several days. To that end, the quantities specified inÎ beyondDS days in the future (the scheduling
window) are linearly depleted. This enables the agent to aggressively procure components within
its scheduling window, so that late penalties are not incurred on existing contracts. In addition, it
allows the agent to buy some of the components it needs well inadvance, when they are likely to be
cheapest. The process of computing what specific requests tosend to suppliers is then decomposed
by component type. For each component type, the procurementmodule generates several sets of
KS(the limit on RFQs sent each day) lead times and searches for the best set. More specifically,
the module uses brute force to enumerate all ways to choose a tuple ofKS + 1 dates betweenD−

andD+, discretized byDG. The firstKS dates in the tuple specify the RFQ lead times. Each of
the RFQs requests the components needed by the agent betweenits lead time, and the next date in
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the tuple (this is why there must be one more thanKS dates in the tuple). For example, ifD− = 5,
D+ = 20, DG = 5, andKS = 2, then the procurement module would consider the following tuples
of dates〈5, 10, 15〉, 〈5, 10, 20〉, 〈5, 15, 20〉 and〈10, 15, 20〉. Each RFQ is used to procure the parts
specified inÎ between its due date and the subsequent due date in the tuple.Consider the tuple
〈5, 10, 15〉, which involves two RFQs. The first has a lead time of5 and a quantity equal to the sum
of the parts specified in̂I between 5 and 10 days in the future. The second RFQ has a lead time of
10 and a quantity equal to the sum of the parts specified inÎ between 10 and15 days in the future.
The utility of the RFQs generated by each tuple is computed byapproximating the sum of the util-
ity of the components they request and subtracting their forecast prices. In order to approximate
the utility of a component,k, we compute the ratio between its base price,βk, and the base price
of each product,j, it is included in,βj. The base price ratio,βk

βj
, provides an approximation of the

fraction of productj’s revenue attributable to componentk. Thus, the utility of a component is
approximated as the average selling price, weighted by the base price ratio, of each of the products
it is included in, minus its cost as predicted by the supplierpricing forecast function,fS.

For each component, the RFQ tuple providing the greatest total utility is chosen. The RFQs
in this tuple are then sent to the suppliers with the lowest predicted prices on each due date. The
reserve price of each RFQ is set as the average utility of the components it includes. In addition,
we augmented this procedure with the following improvements.

Increased bottleneck component utility: The utility of a component can be further refined by
taking into account situations where the agent has all but one of the components required to as-
semble a particular type of PC (making it abottleneck component). This situation can become
more severe toward the end of the game as the agent faces the prospect of being stuck with mis-
matched components. For example, our agent can have hundreds of motherboards, memory, and
CPUs to make a specific product, and be missing only the hard drives. To address this issue, the
procurement module artificially inflates the base price ratio of bottleneck components (such as the
hard drives in the example), and decreases the base price ratio of all other components4. The infla-
tion factor is increased as the agent nears the end of the game.
Dynamically refined search granularity: An additional observation was that, for short lead times,
supplier pricing was often drastically different even between lead times as little as 1 day apart. In
practice, our agent used a search granularity of aboutDG = 5 days, which caused it to frequently
miss promising early lead times. To address this issue, after finding the most promising lead time
tuple at a particular granularity our agent generated new sets of tuples using finer and finer granu-
larity around previously identified promising tuples. Thishelped the agent more effectively cover
the space without drastically effecting its runtime.
Parallelization across components:The requisitioning technique described above decomposes
its search through lead time tuples by component type. In order to give our agent the ability to
perform a finer search we parallelized the requisitioning process across multiple CPUs, each of
which was responsible for considering a subset of components. Due to the natural decomposition
of our problem formulation, the parallel processes had no need to interact (other than to aggregate
their final solutions) making this a relatively simple refinement to implement.

4This can be thought of as a coarse approximation of a component’s marginal utility
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4 Empirical Evaluation

To validate the adaptive and dynamic techniques utilized inour agent we present three sets of
empirical results. The first are taken from the 2005 TAC SCM seeding rounds,5 and summarize
CMieux’s bidding and procurement performance over 200 games involving agents entered by 25
different teams. A second set of non-competition results isalso presented showing that CMieux
significantly outperforms five other publically available versions of top agent binaries over several
repeated games. A third set of results examines the accuracyof our forecast module when it comes
to predicting supplier prices and customer demand.

4.1 Procurement and Bidding Performance

Evaluating the performance of a supply chain trading agent is challenging even in the context of
TAC SCM. The competition effectively consists of two different tournaments:

1. a seeding round tournament featuring a large number of agents competing over a period of 2
weeks in about 400 games

2. a set of final rounds, where small sets of agents are pitted against one another in a relatively
limited number of games (ranging from 8 to 16 per round).

Not only do they feature a small number of games but, because they repeatedly pit the same
agents against one another, final rounds also potentially reward destructive strategies that may not
be representative of real world competition (e.g., an agentdisrupting competitors at the expense
of its own bottom line). In 2005, CMieux finished 4th in the seeding rounds and reached the tour-
nament’s semi-finals. While encouraging, these results only provide a partial picture of CMieux’s
performance. In this section, we provide a more in-depth analysis of our agent during what can be
viewed as the most competitive phase of the competition, namely the 200 games played by the 25
agents participating in the second week of the seeding rounds. All agents at that phase had already
been fine tuned over the course of about 600 games (two weeks ofqualifying rounds, and one week
of seeding).

Our results provide a statistical comparison between the performance of the agents with the top
5 mean overall scores during the second week of the seeding rounds, namely CMieux (abbreviated
CM), FreeAgent (FA), GoBlueOval (GBO), MinnieTAC (MT) and TacTex-05 (TT).

Performance was measured so as to identify those agents thatwere able to extract the highest
sale price and lowest purchasing price in each game they played. Specifically, for each of the top 5
agents in each game it played we computed how far it was from paying the least for its components
and how far it was from obtaining the most for its end products, among the agents in that particular
game. This was measured as the relative difference from the best average procurement price6

and the best average selling price. For each of the top 5 agents we report the mean (with 95%
confidence intervals) of these values across all of the gamesthey played in during the second week
of the 2005 seeding rounds in Figure 15.

5Competition data is available atsics.se/tac/scmserver
6All prices are considered as fractions of the correspondingproduct or component’s base price.
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Figure 15: The mean (with 95% confidence intervals) difference between each of the top 5 agents’
average game unit price and the best unit price in the game, during the second week of the 2005
TAC SCM seeding rounds.

The bidding results for all 5 agents are relatively similar.As can be seen, each of the top 5
agents is on average within about 3% of the base price from being the best in its games. However,
while MinnieTAC (MT) was the closest to the best agent in its games, with an average difference of
about 2% of the base price, there is no statistically significant difference between any of the top 5
agents (as evidenced by their overlapping confidence intervals). On the other hand the procurement
results show that for procurement performace our agent, CMieux (CM), is significantly closer
to being the best than all 4 of the other top 5 agents. These results seem to validate CMieux’s
approach to tightly coordinating its bidding, planning andprocurement operations. They also
suggest that the agent’s approach to optimizing the RFQs it sends to suppliers (requisition process)
was significantly more effective than the procurement strategies implemented by its competitors.

4.2 Results Against Public Binaries

In order to further validate the overall performance of our agent in a statistically significant fashion
we simulated 40 games against the same mix of the best agents drawn from a pool of publicly
available binaries.7 The binaries used in our experiments included TacTex “TT” (the 2005 cham-
pion agent), Mertacor “MC”, MinneTac “MT” (both finalists inthe 2005 competition), Phantagent
“PH” and GoBlueOval “GBO” (both in the top 10 agents from the seeding rounds).

To achieve statistically significant results with relatively few samples compared to the parame-
ter space of the game we used the following analysis technique. First, for each game, we shifted all
scores by adding a constant value that left the worst performing agent with a score of zero. Next,
we computed the sum of all the shifted scores in each game and the fraction of the sum represented
by each agent’s shifted score. This provided us with a more stable normalized value represent-
ing the fraction of total profit accumulated by each agent in each game that is comparable across

7These agents are available atsics.se/tac/showagents.php
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Figure 16: Mean (with 95% confidence interval) fraction of game profit over 40 games.

games. We computed the mean and 95% confidence interval of this value for each agent in our
experiments accross the 40 games. The results in Figure 16 show that CMieux makes significantly
more average relative profit per game than any of the other fiveagents.

4.3 Forecast Accuracy

In this section, we report additional results investigating how well a top performing agent such as
CMieux can predict supplier prices and customer demand, given the high degree of stochasticity
associated with these markets. This includes looking at howwell the agent is able to predict
supplier prices, given the limited number of RFQs allowed bythe game specifications as well as
how accuracy is affected by the forecast horizon in different game phases.

Results reported below were obtained by pitting CMieux against 5 publicly available agents,
namely TacTex-05, Phantagent, Mertacor, CrocodileSCM, GoBlueOval. All 5 of these agents were
among those qualifying for the final rounds of the 2005 competition.

Figure 17(a) plots CMieux’s error in predicting supplier prices during the early, mid, and late
segments of the games as a function of lead time. For comparison purposes, the results in Fig-
ure 17(b) show the error of the early segment predictions of both CMieux’s forecasting technique
and a baseline variant that relaxes the game’s restriction on the number of probes that can be sent
by an agent – results for the mid and end game phases are similar. The plots provide the mean error
(with 95% confidence intervals) of the component price predictions as a fraction of each compo-
nent’s base price. The prediction error is measured for eachpossible lead time between 5 and 40
days at 5 day intervals. The results show that the early segment of the game is the most difficult
segment for CMieux’s forecast module to accurately predictsupplier pricing, for all lead times.
Even the baseline variant with an unlimited number of probesis unable to achieve high accuracy
during this segment. This is not surprising considering that agents are not likely to have settled into
an equilibrium during this early phase and are most likely still reacting to start up effects (effects
introduced by the fact that all agents begin the game with no components). Additionally, we can
see that both our technique and the baseline variant have more error when predicting prices on
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orders with shorter lead times during all game segments. Thedifficulty of predicting prices with
short lead times is exaggerated during the early segment dueto the previously mentioned instabil-
ity. Despite the instability we see that the greatest error in the supplier price forecasting is only
about 10% of the base price, resulting from the prediction ofshort lead time prices during the early
segment of the game. Forecasting of orders with longer lead times, and short lead times later in
the game, is generally accurate within 95% of their base price.

Figure 17(c) shows an example of a changing customer demand mean, and the predictions of
the forecast module based on observations of draws from a Poisson distribution with that mean.
The results on this particular example show that the forecast module is relatively effective at pre-
dicting the mean and following its trend. To gain a better understanding of the effectiveness of
our forecast module for predicting customer demand, we compared it to a naive technique that
assumed the current mean to be the most recently observed sample from the Poisson distribution.
A more detailed analysis of our technique and the naive technique across multiple games revealed
that on average our forecast module was within 7% (plus or minus 1% with 95% confidence) and
the naive technique was within 12% (plus or minus 1% with 95% confidence) of properly predict-
ing the mean of each product type’s demand distribution. While this result does not show a largely
significant difference between our forecast module and the naive technique, our forecast module
was much better at predicting the trends of the means. Our technique was within 2% (plus or minus
less than 1% with 95% confidence) of predicting the trends on average, whereas the naive tech-
nique had an average of about 18% (plus or minus 2% with 95% confidence) error when predicting
the trends.

5 Recent Developments

In both 2007 and 2008, CMieux reached the finals of the TAC SCM competition. In [1], the authors
show that in the 2006 TAC SCM competition, the top agents madepurchases with longer lead
times. The preference for long-term procurement contractsis consistent with real world managerial
insight that such contracts have better guarantees of availability, and lower prices. In this section,
we briefly describe a few changes we made to the procurement module for the 2007 competition
to incorporate this insight.

We adopted different strategies for the different procurement lead times, which we divided into
short-term (2 - 10 days), medium-term (11 - 25 days) and long-term (greater than 25 days) pur-
chases. The short-term and medium-term procurements were handled similar to the procurement
module in the 2005 agent as described in Section 3.6. Our strategy in these markets mainly differed
in how we calculated reserve prices – bidding at slightly lower prices in the medium range than
prices forecast by ourforecasting module.

We predominantly used the long-term procurements for guaranteeing base stock (by base stock
we mean a low level of components that we aimed to maintain throughout the game). We computed
the average and standard deviation of the customer demand from the game specification, and set
the base stock level at a standard deviation below the mean. Since it was difficult to determine
the exact customer demand while placing long-term orders, we used this conservative quantity to
ensure that we did not order more than what we actually needed. The difference in actual demand
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and the base stock at hand was supplemented by the short-termand medium-term markets when
we had better estimates of the actual demand.

It was difficult to consider all days in the long-term market independently when calculating the
order delivery dates for the long term orders. To address this issue we split the long-term period
into non-overlappingbuckets. We then aggregated our desired components in each bucket and
probabilistically chose buckets to target for our long-term deliveries, with a preference for buckets
with greater need and lower prices. We chose this approach versus a more deterministic method
to deter other agents from learning our strategy and employing adversarial tactics. In the 2007 and
2008 competitions, we found that our long term procurement strategy helped our agent procure
components significantly cheaper and with greater reliability.

6 Conclusions

This paper presented a high level view of the interactions between the different modules composing
CMieux, Carnegie Mellon University’s 2005 TAC SCM entry, aswell as detailed descriptions of
its decision making processes. CMieux’s architecture departs markedly from traditional Enterprise
Resource Planning architectures and commercially-available supply chain management solutions
through its emphasis on tight coordination between supply chain bidding, procurement and plan-
ning. CMieux finished 4th in the 2005 seeding rounds of the TACSCM tournament and reached
the competition’s semifinals. In this paper, we presented a more in-depth analysis of the agent’s
performance based on 200 games involving agents entered by 25 different teams during what can
be seen as the most competitive phase of the 2005 tournament and 40 games against the same 5
top performing public binaries. The results show that our agent performed on par with the best
in its bidding while significantly outperforming these agents in terms of procurement during the
2005 seeding rounds, and made more relative profit per game onaverage than any of the other
public binaries tested. These results seem to validate CMieux’s approach to tightly coordinating
its bidding, planning and procurement operations. They also suggest that the agent’s approach to
optimizing the RFQs it sends to suppliers (requisition process) was significantly more effective
than the procurement strategies implemented by its competitors.
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