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Abstract

Many state-machine-replication protocols perform the same tasks of tolerating Byzantine faults
and guaranteeing consistency in an asynchronous environment. However, each protocol seems
uniquely complex in part because commonalities are lost in descriptions of the protocols. In this
paper, we identify Byzantine quorum systems as a unifying factor in the design of each protocol.
Leveraging this, we present a framework of high-level, logical phases, which may be optimistic or
pessimistic, as a path to understanding: the number of servers required; the number of faults that
can be tolerated; and the number of rounds of communication employed by each protocol. Our
framework highlights a tradeoff between the number of rounds of communication required and
the maximum number of faults that can be tolerated. Furthermore, it highlights an independent
tradeoff between an additional round of communication and possibly unnecessary computation.
We use the framework to describe three mainstream state-machine-replication protocols and their
variants.
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1 Introduction

State machine replication [18] is a way to implement a fault-tolerant stateful service. It involves
replicating the service (i.e., running multiple copies) while guaranteeingconsistency—the illusion
of a single centralized service. Conceptually, the operations provided by the service are mapped
to the state transitions of a deterministic state machine. Each replica runs a copy of the state ma-
chine. The state-machine-replication protocol maintainsconsistency by ensuring that each replica
processes the same requests in the same order.

Byzantine-fault-tolerant state-machine-replication protocols (e.g., [16, 8, 4, 17, 3, 20, 10, 15,
1]) are powerful because of their ability to work even if up tob of the n total replicas and any
number of the clients are faulty such that they behave arbitrarily or maliciously (i.e., Byzantine
faults [11]). Unfortunately, due to the Byzantine fault model, no single replica or client can be
trusted independently to provide the same ordered sequenceof client requests to all replicas.

Instead, the non-faulty replicas work together to choose the same request ordering and to ensure
that they all receive the same requests. However, this is complicated by anasynchronous timing
model, i.e., one in which messages might be delayed for arbitrary lengths of time. In such an
environment, it is impossible to ensure consistency while simultaneously ensuring availability (i.e.,
allowing for operations to complete) [6].1

A number of state-machine-replication protocols (e.g., [4, 17, 20, 10, 15, 1]) choose to guaran-
tee consistency in an asynchronous environment while ensuring availability only during periods of
synchrony in which messages to/from non-faulty replicas are delivered in a timely fashion. These
protocols maintain consistency by using Byzantine quorum systems [13], which require only any
quorum (subset) of the replicas to be involved in any operation. Inherently, the use of Byzantine
quorum systems allows the protocols to maintain consistency while making progress even if some
replicas never receive or process requests.

Despite the commonalities of the protocols, some such as BFT [4] (and its derivatives like [17,
20, 10]) are commonly labeled atomic-broadcast protocols,others like Q/U [1] look more like
Byzantine-quorum system protocols, while still others likeFaB Paxos [15] seem to fall somewhere
in between.

However, as we show, the common use of Byzantine quorum systems in these protocols pro-
vides a basis for their comparison. We present a framework offour high-level phases: propose;
accept; update; and verify. The framework allows us to compare the designs of the protocols, and
to see the tradeoffs made in terms of the number of servers required, the number of faults that
can be tolerated, and the number of rounds of communication required. The accept and update
phases may be either optimistic or pessimistic. An optimistic accept phase requires an opaque
quorum system construction, and therefore at least5b + 1 servers; a pessimistic accept phase can
use dissemination or masking quorum systems, and thereforeas few as3b+ 1 servers, but requires
at least one additional round of communication. An optimistic update phase allows replicas to
process requests that may later be given a different ordering; a pessimistic update phase requires

1Intuitively, this is because one cannot distinguish between a faulty replica that is not responding, and a non-faulty
replica that is slow in responding or from which messages aredelayed. Therefore, a non-faulty replica generally
cannot wait for more thann − b responses from different replicas before proceeding, or else risk waiting indefinitely.
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an additional round of communication, but allows replicas to be confident that the request ordering
is permanent before processing.

2 Preliminaries

We begin with: (i) the system model; (ii) a summary of the intuition behind common set sizes like
n − b and2b + 1; and (iii) a review of the three types of quorum systems related to the protocols
we survey.

2.1 System Model

The system consists of a universeU of n replicas, and an arbitrary, but bounded, number of clients.
There is a setB ⊂ U that represents theb faulty replicas; the composition ofB is known by the
faulty clients and replicas, but not by the non-faulty ones.The remainingn−b replicas, i.e.,U \B,
are non-faulty. Faulty replicas and clients can behave arbitrarily (i.e., Byzantine faults [11]), but, as
is typical, are computationally bound such that, e.g., theycannot subvert cryptographic primitives
(e.g., cryptographic hash functions) used in the protocols. The protocols maintain consistency
without assumptions about the processing rates of non-faulty clients and replicas or the message
delays of the network (asynchronous timing model). However, for availability, these delays must
be finite, and the processing rates must be non-zero.

2.2 Sizes of Sets

The meanings of quantities such asn − b, b + 1, and2b + 1 can be a source of confusion. This is
sometimes compounded in descriptions of the protocols by substitution of quantities that are not
necessarily equivalent in all contexts. For example, the quantity 2b + 1 has been used for at least
three distinct conceptual purposes (described in more detail below): (i) the maximum number of
responses for which to wait given the asynchronous timing model (n − b); (ii) a set with a non-
faulty majority (2b + 1); and (iii) the set size that guarantees at least one non-faulty replica in the
intersection of any two sets (⌈(n + b + 1)/2⌉). As seen in the following equations, these quantities
are equivalent under the BFT assumption thatn = 3b + 1:

⌈(n + b + 1)/2⌉

= ⌈(3b + 1 + b + 1)/2⌉

= ⌈(4b + 2)/2⌉

= (2b + 1).

(n − b)

= (3b + 1 − b)

= (2b + 1).

However, these quantities are not necessarily equivalent given other values forn or other types of
quorum systems. Note in particular thatn − b and⌈(n + b + 1)/2⌉ depend on the values ofn and
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b while 2b + 1 depends only onb. Because these quantities are very different conceptually,the use
of a single identifier like2b + 1 can make the description of a protocol difficult to decipher.

Guaranteed responses (n − b). Given an asynchronous timing model and a system that can
tolerate up tob faults, a process can wait for up to, but not more than,n − b responses. This is
becauseb replicas may be faulty and may never respond, and it is impossible to distinguish between
a faulty process and one that is slow.

Guaranteed non-faulty responses (n − 2b). As described above, one can wait for onlyn − b
responses. Of these responses,b may be from faulty replicas; theb replicas not represented in the
set of responses may have simply been slower. Note that in exceptional cases, this may not be
hold. In particular, if one can detect that a response is froma faulty replica based on some property
of the response, then one can wait for an additional responsefrom a non-faulty replica for each
response from a faulty replica.

At least one non-faulty replica (b + 1). Because there are at mostb faulty replicas, any set of
b + 1 responses contains at least one response from a non-faulty replica.

Non-faulty majority (2b + 1). Because there are at mostb faulty replicas, any set of2b + 1
replicas necessarily contains at leastb + 1 non-faulty replicas. As such, the majority of any set of
at least2b + 1 replicas is non-faulty.

Replica in intersection (⌈(n + 1)/2⌉). Any two sets of⌈(n + 1)/2⌉ replicas chosen from then
total replicas contain at least one replica in common.

Non-faulty replica in intersection (⌈(n + b + 1)/2⌉). Any two sets of⌈(n + b + 1)/2⌉ replicas
chosen from then total replicas contain at least one non-faulty replica in common.

c+1 non-faulty replicas in intersection (⌈(n+ b+ c+1)/2⌉). For any non-negative constantc,
any two sets of⌈(n + b + c + 1)/2⌉ replicas chosen from then total replicas contain at leastc + 1
non-faulty replicas in common.

2.3 Byzantine Quorum Systems

A Byzantine quorum system [13] is a set of quorums (subsets) ofreplicas. As seen in Table 1, the
different types of threshold quorum systems make differentassumptions concerning the replicas
that may vote for conflicting candidates (defined below); this has implications for the number of
servers required as well as the number of rounds of communication needed to ensure a successful
update. Quorums are small enough to ensure that there is always anavailablequorum (one in
which all replicas respond during periods of synchrony); this involves setting the size of quorums
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q ≤ n − b. The quorums are used for read and update operations. They overlap in enough non-
faulty replicas to ensure that updates written to one quorumare propagated to other quorums and
cannot be fabricated or corrupted by faulty replicas.

An update that is accepted by a replica yields acandidateat that replica. A candidate isestab-
lishedonce it is accepted by all of the non-faulty replicas in some update quorum. As discussed
below, in opaque quorum systems (used by protocols that havean optimistic accept phase), dif-
ferent non-faulty replicas may have different candidates issued by concurrent updates at a given
instant. (This must be prevented by the protocol if a maskingor dissemination quorum system is
used.) Moreover, in either masking or opaque quorum systems, a faulty replica may try to forge a
concurrent candidate. If there are multiple concurrent candidates and one is established, the others
are calledconflicting. A replica can try tovotefor some candidate by sending a message claiming
to have accepted it.

Byzantine quorum systems require that a candidate written toan update quorum beobserved
in any other quorum; this is how candidates are propagated. To be more precise, we say that a
candidate is observed in a read quorum if it receives at leasta thresholdr of votes from different
replicas. Therefore, the number of non-faulty replicas in the intersection of the update quorum and
any other quorum falls in the range[r..q], wherer is greater than the number of replicas that could
vote for a conflicting update. This requires two constraints.

The first constraint is that a non-faulty client must observethe latest established candidate if
such a candidate exists. All three types of quorum systems state it as follows (whereQ is an update
quorum andQ′ is some other quorum):

∀Q,Q′ : |Q ∩ Q′ \ B| ≥ r

The second constraint is that a conflicting candidate (which, as described above, occurs only if
there is already an established candidate for the same timestamp) is not observed by any client
(non-faulty or faulty). It requires that the replicas that can vote for a conflicting update are fewer
thanr; the number of such replicas is dependent on the restrictions of the type of quorum system
(i.e., dissemination, masking, or opaque). In general, tighter restrictions that decrease this number
have the benefit of allowing for smaller values ofn in terms ofb, but require additional rounds of
communication in order to satisfy as discussed below.

Masking quorum systems. Though not used by any of the three protocols that we review in
detail, masking quorum systems make relatively simple assumptions: faulty replicas can vote for
conflicting candidates, but non-faulty replicas cannot.

Table 1: Threshold quorum systems.

minimumn used by e.g., conflicting candidate

opaque 5b + 1 Q/U [1], FaB Paxos [15] any server
masking 4b + 1 PASIS [7] faulty server
dissemination 3b + 1 BFT [4], SINTRA [3] no server
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Masking quorum systems requiren > 4b. They provide the property that any two quorums
intersect in at leastb + 1 non-faulty replicas (enough to outnumber the faulty replicas). Quorums
are of size⌈(n + 2b + 1)/2⌉.

For example, quorums are of size3b + 1 if n = 4b + 1. An update quorum of size3b + 1 from
4b + 1 means thatb replicas do not observe the update (it is possible that thesereplicas are not
faulty). Further,b replicas from the3b+1 may be faulty. This means that only2b+1 non-faulty of
then total replicas are certain to have observed the update. In another quorum of3b+1 responses,
it is the case thatb may be from the replicas that were not part of the update quorum; however,
these replicas cannot vote for a conflicting candidate by assumption. Anotherb responses may be
votes for a conflicting candidate from faulty replicas. Therefore, it is possible that onlyb + 1 votes
are for the established candidate. However, these votes outnumber the votes for any conflicting
candidate. Therefore,r can be set tob + 1 in order to ensure consistency.

An echo protocol like that in Rampart [16] and Phalanx [14] canbe used to ensure that non-
faulty replicas do not accept conflicting candidates.2 With an echo protocol, an update requires
two phases. First, the client proposes the candidate. If a replica is willing to accept the candidate
upon the condition that other non-faulty replicas accept noconflicting candidate, the replica sends
a tentative accept (echo) response. A quorum of echo responses proves that no quorum will accept
a conflicting update. This is because every two quorums overlap in some positive number of non-
faulty replicas, and no non-faulty replica sends echo messages for different conflicting candidates.
In the second phase of the update, the client sends the quorumof echo messages along with the
candidate. If this is accepted by a quorum of replicas, the update is complete.

Note that the echo protocol by itself does not provide a way todistinguish later between votes
for established and conflicting candidates. Even though non-faulty replicas would accept no con-
flicting candidate, faulty replicas may still forge conflicting candidates. Even having the client
digitally sign each candidate would not help, because clients may also be Byzantine-faulty and
could provide multiple signed versions of the candidate (the established one to non-faulty replicas,
and forged versions to faulty replicas).

Opaque quorum systems. Of the three types of quorum systems discussed here, opaque quo-
rum systems are the only one appropriate for the situation inwhich some non-faulty replicas might
accept candidates that conflict with an established candidate. As such, they can allow for update
operations to complete in a single (optimistic) round of communication, even in the face of Byzan-
tine and/or concurrent clients that may e.g., propose conflicting candidates to some non-faulty
replicas. In order to provide consistency despite this, opaque quorum systems require that the
number of non-faulty replicas in the intersection of any twoquorums is larger than the remainder
of either quorum.

Opaque quorum systems have the disadvantage of requiringn > 5b, which is larger than
required by the two other types. Quorums are of size⌈(n + 3b + 1)/2⌉ assumingn = q + b.

2Another way to ensure that non-faulty replicas do not acceptconflicting candidates is to use unique, verifiable
timestamps for each data item, as done in the PASIS R/W protocol [7]. However, unlike the echo protocol, this
method is not used by any of the protocols in our survey.
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For example, quorums are of size4b + 1 if n = 5b + 1. The non-faulty intersection of any two
quorums of size4b + 1 is 2b + 1, and, therefore, a majority of any quorum. An update quorum
of size4b + 1 from 5b + 1 means thatb replicas do not observe the update (it is possible that
these replicas are not faulty). Further,b replicas from the4b + 1 may be faulty. This means that
only 3b + 1 non-faulty replicas of then total replicas are certain to have observed the update. In
another quorum of4b + 1 responses,b responses may be from the replicas that did not observe the
update. Furthermore, these replicas may have accepted a conflicting candidate and therefore vote
for it. Also, b responses may be from faulty replicas that also vote for the conflicting candidate.
Therefore, it is possible that only2b + 1 responses come from non-faulty replicas that have the
established candidate. However, even in this case, these2b+1 responses strictly outnumber the2b
votes for the conflicting candidate. Therefore,r can be set to2b + 1.

Dissemination quorum systems. Dissemination quorum systems are the most constrained of
the three types of quorum systems. They provide the propertythat any two quorums overlap in at
least one non-faulty replica. Since a quorum may contain more faulty replicas than this (up tob),
dissemination quorum systems are suitable only forself-verifyingdata, i.e., data for which a single
instance proves that it is an established candidate.

Dissemination quorum systems requiren > 3b. Quorums are of size⌈(n + b + 1)/2⌉.
For example, quorums are of size2b + 1 if n = 3b + 1. An update quorum of size2b + 1

from 3b + 1 means thatb replicas do not observe the update (it is possible that thesereplicas are
not faulty). Further,b replicas from the2b + 1 may be faulty. This means that onlyb + 1 non-
faulty of then total replicas are certain to have observed the update. In any quorum of2b + 1
responses,b may be from the replicas that did not observe the update. Also, b replicas may be the
faulty replicas. Therefore, it is possible that only one response is from a non-faulty replica with
the established candidate. However, no replica can vote fora conflicting candidate, and sor can
be set to1.

Liskov and Rodrigues [12] provide a protocol that shows how toensure self-verifying updates
despite Byzantine-faulty or concurrent clients. The protocol uses a modified echo phase similar
to that described above for masking quorum systems. The difference is that the quorum of echos
is stored by replicas and provided to clients along with votes for a candidate. Non-faulty clients
consider a vote for a candidate only if the vote is accompanied by a matching quorum of echos.
Therefore, even faulty replicas cannot vote for conflictingcandidates because it is impossible to
gather a quorum of echos for a conflicting candidate.

3 A Framework for Protocol Operation

We present a framework for comparing and contrasting Byzantine-fault-tolerant state-machine-
replication protocols that highlights a number of tradeoffs in protocol design. We introduce the
framework with a high-level operational description of theway such protocols work in general.
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3.1 Operational Description

Byzantine-fault-tolerant state-machine-replication protocols must ensure replica coordination of
non-faulty replicas. Roughly, they do this as follows. Each request is assigned apermanent se-
quence numberthat exists from the time of assignment through the life of the system and is never
changed.3 We use the term sequence number to indicate that there is a totally-ordered chain of
requests; however, the sequence number might be implemented as a logical timestamp [1] or other
suitable device. Each permanent sequence number is assigned to asinglerequest. Therefore, due
to the Byzantine fault model, permanent sequence numbers cannot be assigned by a single replica
or client, which might assign the same permanent sequence number to multiple requests.

In order to get a permanent sequence number, a request is firstassigned aproposed sequence
number. Unlike permanent sequence numbers, the same proposed sequence number may be as-
signed to multiple requests. Therefore, a proposed sequence number can be selected by a single
client or replica in isolation. The assignment of permanentsequence numbers takes place by per-
forming an update consisting of the proposed sequence number and request together as a candidate
to the replicas, which act as a quorum system. Each non-faulty replica accepts the update only
if it has not accepted a different (conflicting) update with the same proposed sequence number.
This ensures that each sequence number is assigned only to a single request. In addition, sequence
number assignments are preserved by the quorum system; therefore, they are never changed (e.g.,
during repair, discussed below). As such, a sequence numberis permanent if and only if it has
been accepted by a quorum of replicas.

The type of quorum system used for accepting proposed sequence numbers implies a lower
bound onn in terms ofb as discussed in Section 2.3. For example, an opaque quorum system
requires at least5b + 1 replicas, but can accept a proposed sequence number in a single round of
communication. On the other hand, dissemination and masking quorum systems need only3b + 1
and4b + 1 replicas, respectively, but require two rounds of communication (assuming an echo
phase is used) in order to accept proposed sequence numbers.

A non-faulty replica executes a request only after all lowersequence numbers are assigned
permanently and it has executed their corresponding requests. If the system is not making progress
because a non-faulty replica is waiting to execute a requestcorresponding to a lower sequence
number, action is taken so that the replica obtains the missing request. Individual replicas send
responses to the client upon executing the request.

The client determines the correct result from the set of responses received by determining that
the result is due to a permanent sequence number assignment and from at least one non-faulty
replica. This works because each non-faulty replica that executes a request with a permanent
sequence number returns the same, correct result to the client. However, faulty replicas and non-
faulty replicas that execute requests without permanent sequence numbers (an optimization em-
ployed by some protocols) may return incorrect results.

Because of the use of the quorum system for sequence number assignments, none of the proto-
cols surveyed in this paper become inconsistent in the face of a Byzantine-faulty proposer. How-

3We choose the passive voice in this description because details such as which clients/replicas are involved in
assigning the sequence number are protocol-specific.
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Figure 1: The stages of Byzantine-quorum state-machine-replication protocols.

ever, the protocols each require arepair phase in order to continue to be able to make progress.4

The processes performing repair read from the quorum systemto ensure that no permanent se-
quence number assignments are lost or changed. Repair is discussed further in Section 5.

3.2 The Framework

The framework depicted in Figure 1 consists of four high-level phases totaling seven sub-phases.
In phase 1, a proposed sequence number is chosen for the client’s request and sent to (at least)
a quorum of replicas. In phase 2, a quorum of replicas acceptsthe proposed sequence number
(doing so might involve an echo phase as described in Section2.3). If no quorum accepts the
proposed sequence number assignment, a new proposal must betried and the system may require
repair (see Section 5). In phase 3, the request is executed according to the sequence number, and
in phase 4 the client chooses the correct result. Phases 1a, 2a and 3a can be viewed as optional, as
they are omitted by some protocols; however, omitting them has implications as discussed below.
The remainder of this section explores each of the phases of the framework in greater detail.

Phase 1: Propose. Phase 1 is where a proposed sequence number is selected for a client request;
this is done by aproposer, which, dependent on the protocol, is either a replica or a client. In some
protocols, it is possible that the state of the system has been updated without the knowledge of the
proposer (for example due to contention by multiple proposers). In this case the proposer may first
need to retrieve the up-to-date state of the system, including earlier permanent sequence number
assignments. This is the purpose of phase 1a. Phase 1b is where the proposed sequence number
and request are sent to (at least) a quorum of replicas.

Phase 2: Accept. Phase 2 is where the proposed sequence number is either accepted or rejected.
As discussed in Section 2.3, depending on the type of quorum system, this may require a round
of communication (corresponding to an echo phase) for the purpose of ensuring that non-faulty

4In this paper, we do not classify protocols based on their repair phases. Therefore, we do not distinguish between
BFT and Sintra [3], for example.
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replicas do not accept different conflicting proposals for the same sequence-number. If it requires
this round of communication (phase 2a), the protocol is saidto employ apessimistic acceptphase,
otherwise, it is said to employ anoptimistic acceptphase. In phase 2b, the sequence number
assignment becomes permanent if and only if a quorum of replicas accepts it.

The primary benefit of an optimistic accept phase is that one round of communication (phase 2a)
involving at least a quorum of replicas is avoided. The disadvantage is the need for an opaque quo-
rum system, which requiresn > 5b.

Phase 3: Update. Phase 3 is where the update is applied, typically resulting in the execution of
the requested operation. Like phase 2, this phase can be either pessimistic(requiring phase 3a), or
optimistic(omitting phase 3a). Phase 3a allows the execution replicasto learn that the sequence
number assignment has been accepted by a quorum of replicas (and, as such, has become per-
manent) before performing the update. If this is not done, the sequence number assignment may
change and the request may need to be executed again.

Since an optimistic update phase requires no additional round of communication before execu-
tion, it can lead to better performance. The disadvantages are that, as described below, clients must
wait for a quorum of responses instead of justb+1 to ensure that the sequence number assignment
is permanent, and that computation may be wasted in the case that the proposed sequence number
does not become permanent.

Phase 4: Verify. Phase 4 is where the client receives a set of responses. The client must verify
that the update was based on a permanent sequence number assignment and performed by at least
one non-faulty replica (in order to ensure that the result iscorrect). In general, this requires waiting
for a quorum of identical responses indicating the sequencenumber, where the size of the quorum
is dependent on the quorum system construction. However, ifphase 3 is pessimistic, then no non-
faulty replica will execute an operation unless the assignment is permanent. In this case, the client
can rely on non-faulty replicas to verify that the sequence number is permanent, and so clients need
wait for only b + 1 identical responses.

4 The Protocols

The protocols that we consider in this section are BFT [4], FaBPaxos [15], and Q/U [1]. As
summarized in Table 2, these protocols span the four possible combinations of pessimistic and
optimistic accept and update phases (i.e., phases 2 and 3). We classify the protocols accordingly.

4.1 Pessimistic Accept and Update

BFT (without optimizations). BFT [4] is a prominent example of a Byzantine-fault-tolerant
state-machine-replication protocol that employs a pessimistic accept phase (with a dissemination
quorum system) and a pessimistic update phase. As such, it involves communication in all four
phases of our framework. Figure 2 shows the phases of an update request of the BFT protocol in
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Figure 2: BFT.

the fault-free case. The operation is very similar to a protocol presented by Bracha and Toueg [2]
also used by other protocols, e.g., [17, 3, 20, 10].

In the common case, there is a single proposer (called theprimary) that itself is a replica;
therefore, phase 1a is unnecessary—the proposer already knows the next unused sequence number.
In phase 1b, the proposer unilaterally chooses a proposed sequence number for the request (a non-
faulty proposer should choose the next unassigned sequencenumber) and sends the request along
with the proposal to the other replicas in a message called PRE-PREPARE.

The verification done in phase 2a is equivalent to an echo protocol (though the responses are
sent directly to all other replicas instead of through the proposer). This guarantees that non-faulty
replicas do not accept different candidates with the same proposed sequence numbers. Each replica
other than the proposer sends a PREPARE (i.e., echo) message including the proposal to all other
replicas. If a replica obtains a quorum of matching PREPARE andPRE-PREPARE messages
(including its own), it is guaranteed that no other non-faulty replica will accept a proposal for the
same sequence number but with a different request. Such a replica is calledprepared. A prepared
replica accepts the request in phase 2b, and stores the quorum of PREPARE and PRE-PREPARE
messages. The sequence number assignment is permanent if and only if a quorum of replicas
accept the proposed sequence number in phase 2b.

In phase 3a, prepared replicas send COMMIT messages to all other replicas. A COMMIT
message includes the quorum of PREPARE and PRE-PREPARE messages (i.e., echos) so that the
sequence number assignment is self-verifying (which is necessary for a dissemination quorum sys-
tem as discussed in Section 2.3). Because the update phase is pessimistic, in phase 3a, replicas wait
to receive a quorum of COMMIT messages to make certain that thesequence number assignment is

Table 2: Protocol Classification

Update
Accept optimistic pessimistic

optimistic (opaque quorum)
Q/U,

FaB Paxos
FaB Paxos w/ TE

pessimistic (dissemination quorum)BFT w/ TE BFT
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permanent. Having received a quorum of matching COMMIT messages for sequence numberi, a
replica executes the request only after executing all requests corresponding to permanent sequence
number assignments1 .. i − 1.

Since BFT employs a pessimistic update phase, the client waits for onlyb + 1 identical results
in phase 4. This does not require waiting for more than2b + 1 replies.

4.2 Optimistic Accept, Pessimistic Update

One way to avoid a round of communication is to employ an optimistic accept phase (i.e., to skip
phase 2a).

FaB Paxos. In relation to our framework, FaB Paxos [15], can be viewed asBFT with an opti-
mistic accept phase (provided by the use of an opaque quorum system). It is seen in the lower half
of Figure 3. Compared with BFT, FaB Paxos uses larger quorums and requires more replicas, but
saves a round of communication.

4.3 Pessimistic Accept, Optimistic Update

Another way to avoid a round of communication is to employ an optimistic update phase (i.e., to
skip phase 3a).

BFT w/ Tentative Execution. Castro and Liskov [4] detail an optimistic update optimization
for BFT called tentative execution (TE). In tentative execution, phase 3a is omitted; however,
the dissemination quorum system remains the same. Compared with unoptimized BFT, tentative
execution saves a round of communication. However, since a response from a non-faulty replica
no longer necessarily corresponds to a permanent sequence number assignment, the client must
wait for a quorum of identical responses in phase 4. In addition, replicas that execute a request
corresponding to a non-permanent sequence number assignment that later changes (e.g., due to
repair) may need to re-execute the request later.

Figure 3 shows the stages of the BFT protocol with the tentative-execution optimization, com-
pared with FaB Paxos [15].

4.4 Optimistic Accept and Update

Two protocols use both optimistic accept and optimistic update phases. Q/U [1] is a Byzantine-
fault-tolerant state-machine-replication protocol based on opaque quorum systems. FaB Paxos,
which normally employs only an optimistic accept phase as described above, can, like BFT, also
employ an optimistic update optimization known as tentative execution. Since both Q/U and FaB
Paxos with tentative execution skip phase 2a, neither protocol can use fewer than5b + 1 replicas.
In addition, since they also skip phase 3a, both protocols require the client to wait for a quorum
of identical responses in phase 4 to make certain that the result is based on a permanent sequence
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Figure 3: Optimistic update (BFT w/ tentative-execution optimization), compared to optimistic
accept (FaB Paxos).

Phase 1a:
Retrieve 
State

Phase 1b:
Propose
Request

Phase 2a:
Verify

Phase 2b:
Accept

Phase 3a:
Learn 

Replica 1

Replica2

Replica4

Replica3

Log

Log

Log

Log

Phase 3b:
Execute

Phase 4:
Verify result
(n+3b+1)/2
Responses

Update

Update

Update

Update

Client

Replica5

Replica6

Log Update

Figure 4: The Q/U protocol (optimistic accept and update).

number assignment; this quorum is larger than the quorums insystems that employ pessimistic
accept.

Q/U. Figures 4 and 5 show the Q/U protocol. In phase 1, clients act as proposers and directly
issue requests to the replicas. Since there are multiple proposers, a proposer may not know the
next sequence number (implemented as a logical timestamp).Therefore, the client first retrieves
the update history (called a replica history set) from a quorum of replicas (phase 1a). A quorum
of replica history sets is called an object history set. It identifies the latest completed update, and,
therefore, the sequence at which the next update should be applied. The client sends the object
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Figure 5: Optimistic accept and update in Q/U and FaB Paxos (both optimized).

history set along with the request to a quorum of replicas (phase 1b). In phase 2b, each replica
verifies that it has not executed any operation more recent than that which is reflected in the the
object history set, and then accepts the update. Having accepted the update, the acceptor executes
the request (phase 3b).5 Because Q/U is an optimistic execution protocol (it skips phase 3a), the
client must wait for a quorum of responses in phase 4.

In a pipelined optimization of Q/U (shown in Figure 5), clients cache object history sets after
each operation. As such, clients can avoid phase 1a if no other clients have since updated the
system.

FaB Paxos w/ Tentative Execution. The tentative-execution optimization for FaB Paxos works
as it does in BFT—a replica executes the request upon accepting the sequence number assignment
for it in phase 2b (assuming it has also executed the requestscorresponding to all earlier permanent
sequence numbers). Because this sequence number assignmentmay never become permanent, it
may need to be rolled back. Therefore, clients must wait for aquorum of identical responses in
phase 4. Figure 5 highlights the similarities between Q/U with the pipelined optimization described
above and FaB Paxos with the tentative-execution optimization.

5Technically, the log step in phase 2b happens after the update step in phase 3b. However, as there are no messages
between these steps, from an external perspective these steps can be viewed as an atomic unit here.
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5 Other Tradeoffs

BFT and FaB Paxos use a single proposer (the primary), and so can omit phase 1a. On the other
hand, Q/U allows clients to act as proposers, and therefore requires phase 1a. The use of a single
proposer has two potential performance advantages. First,a client sends only a single request to the
system (in the common case) as opposed to sending the requestto an entire quorum. Therefore,
since the single proposer is likely physically closer than the clients to the replicas, the use of a
primary might be more efficient, e.g., on a WAN with relatively large message delays. Another
advantage is that request-batching optimizations can be employed because the primary is aware of
requests from multiple clients. However, the use of a primary involves an extra message delay (for
the request to be forwarded to the primary).

Because a proposer may be Byzantine-faulty, a repair phase maybe necessary in order for the
service to make progress in the presence of faults. In systems such as BFT and FaB Paxos that
use a dedicated proposer, the repair phase is used to choose anew proposer. In Q/U, this phase
may also result from concurrent client updates, and is used to make sure that non-faulty replicas no
longer have conflicting sequence number assignments. In BFT and FaB Paxos, repair is initiated
by non-faulty replicas that have learned of some request butnot have executed it after a specified
length of time (proactive repair). In Q/U, repair is initiated by a client that has learned that the
system is in a state from which no update can be completed due to conflicting proposed sequence
number assignments (need-based repair). Because it is based on timeouts, proactive repair might
sometimes be executed when it is not actually of help, e.g., when the network is being slow but the
primary is not faulty.

6 Related Work

Our framework for comparing protocols finds inspiration in the framework of Wiesmann et al. [19]
who compare (non-Byzantine-fault-tolerant) replication techniques for databases and distributed
systems.

We distinguish state-machine-replication protocols, even those that use quorum systems, from
other protocols for quorum systems [13, 7] that are designedto support read-write shared-variable
semantics with idempotent operations. In protocols for read-write shared variables, updates are
idempotent, and, therefore, do not necessarily all have to be executed. That is, more recent updates
can be applied as soon as they arrive. If older updates arrivelater, they do not need to be applied
to modify the state, as the more recent updates make the olderstate unnecessary. In contrast, state-
machine-replication protocols must guarantee that all updates are applied in order, because if a
replica skips an update applied at other replicas, it might have inconsistent state as a result.

An alternative approach [16, 8] to state machine replication is to assume that all non-responsive
replicas are faulty and, therefore, to remove them from the set of all replicas. However, such an
approach requires the replicas to agree on the set of faulty replicas.

Martin and Alvisi [15] prove that any consensus protocol with two or fewer rounds of commu-
nication requires at least5b + 1 replicas. Our observations support this, and provide insight for
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why this is the case for Byzantine-fault-tolerant state-machine-replication protocols (which imply
consensus).

7 Conclusion

We have presented a framework of high-level, logical phasesfor the comparison of Byzantine-
fault-tolerant state-machine-replication protocols that guarantee consistency in an asynchronous
environment. Our framework centers on the use of Byzantine quorum systems in each protocol,
highlighting tradeoffs made by the protocols in terms of thenumber of replicas required, the num-
ber of faults that can be tolerated, and the number of rounds of communication required.

Since the original drafting of this document, new protocols(e.g., [5, 9]) have been introduced.
We hope that our framework will facilitate understanding the intuition behind these protocols.
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