
Safe and Flexible Dynamic Linking of Native Code

Michael Hicks

University of Pennsylvania

mwh@dsl.cis.upenn.edu

Stephanie Weirich

Cornell University

sweirich@cs.cornell.edu

Karl Crary

Carnegie Mellon University

crary@cs.cmu.edu

Abstract

We present the design and implementation of the �rst com-
plete framework for
exible and safe dynamic linking of na-
tive code. Our approach extends Typed Assembly Language
with a primitive for loading and typechecking code, which
is
exible enough to support a variety of linking strategies,
but simple enough that it does not signi�cantly expand the
trusted computing base. Using this primitive, along with the
ability to compute with types, we show that we can program
many existing dynamic linking approaches. As a concrete
demonstration, we have used our framework to implement
dynamic linking for a type-safe dialect of C, closely mod-
eled after the standard linking facility for Unix C programs.
Aside from the unavoidable cost of veri�cation, our imple-
mentation performs comparably with the standard, untyped
approach.

1 Introduction

A principle requirement in many modern software systems
is dynamic extensibility|the ability to augment a running
system with new code without shutting the system down.
Equally important, especially when extensions may be un-
trusted, is the condition that extension code be safe: an
extension should not be able to compromise the integrity
of the running system. Two examples of systems allowing
untrusted extensions are extensible operating systems [4, 9]
and applet-based web browsers [18]. Extensible systems that
lack safety typically su�er from a lack of robustness; for ex-
ample, if the interface of a newer version of a dynamically
linked library (DLL) changes from what is expected by the
loading program, its functions will be called incorrectly, very
possibly leading to a crash. These sorts of crashes are acci-
dental, so in the arena of untrusted extensions the problem
is greatly magni�ed, since malicious extensions may inten-
tionally violate safety.

The advent of Java [3] and its virtual machine [25] (the
JVM) has popularized the use of language-based technology
to ensure the safety of dynamic extensions. The JVM byte-
code format for extension code is such that the system may
verify that extensions satisfy certain safety constraints be-
fore it runs them. To boost performance, most recent JVM
implementations use just-in-time (JIT) compilers. However,
because JIT compilers are large pieces of software (typically
tens of thousands of lines of code), they unduly expand the
trusted computing base (TCB), the system software that is
required to work properly if safety is to be assured. To min-

imize the likelihood of a security hole, a primary goal of all
such systems is to have a small TCB.

An alternative approach to veri�able bytecode is veri�-
able native code, �rst proposed by Necula and Lee [30] with
Proof-Carrying Code (PCC). In PCC, code may be heav-
ily optimized, and yet still veri�ed for safety, yielding good
performance. Furthermore, the TCB is substantially smaller
than in the JVM: only the veri�er and the security policy are
trusted, not the compiler. A variety of similar architectures
have been proposed [2, 21, 29].

While veri�able native code systems are fairly mature,
all lack a well-designed methodology for dynamic linking,
the mechanism used to achieve extensibility. Within PCC,
for example, dynamic linking has only been performed in an
ad-hoc manner, entirely within the TCB [30]. Most general-
purpose languages support dynamic linking [3, 8, 10, 23, 31,
32], so if we are to compile such languages to PCC, then it
must provide some support for implementing dynamic link-
ing. We believe this support should meet three important
criteria:

1. Security. It should only minimally expand the TCB,
improving con�dence in the system's security. Fur-
thermore, soundness should be proved within a formal
model.

2. Flexibility. We should be able to compile typical
source language linking entities, e.g., Java classes, ML
modules, or C object �les; and their loading and linking
operations.

3. EÆciency. This compilation should result in eÆcient
code, in terms of both space and time.

In this paper, we present the design and implementation of
the �rst complete framework for dynamic linking of veri�-
able native code. We have developed this framework in the
context of Typed Assembly Language [29] (TAL), a system
of typing annotations for machine code, similar to PCC, that
may be used to verify a wide class of safety properties. Our
framework consists of several small additions to TAL that
enable us to program dynamic linking facilities in a type-safe
manner, rather than including them as a monolithic addi-
tion to the TCB. Our additions are simple enough that a
formal proof of soundness is straightforward.1

To demonstrate the
exibility and eÆciency of our frame-
work, we have used it to program a type-safe implementa-
tion of DLopen [8], a UNIX library that provides dynamic

1The interested reader is referred to the companion technical re-
port [16] for the full formal framework and soundness proof.

linking services to C programs. Our version of DLopen has
performance comparable to the standard ELF implementa-
tion [34], and has the added bene�t of safety. Furthermore,
we can program many other dynamic linking approaches
within our framework, including Java classloaders [19], Win-
dows DLLs and COM [6], Objective Caml's Dynlink [23, 32],
Flatt and Felleisen's Units [10], and SPIN's domains [33],
among others.

The remainder of this paper is organized as follows. In
the next section we motivate and present our framework,
which we call TAL/Load. In Section 3 we describe a type-
safe version of DLopen programmed using TAL/Load. In
Section 4 we compare the performance of our type-safe ver-
sion to the standard version of DLopen. We discuss how we
can program other linking approaches using TAL/Load in
Section 5, and discuss other related work. We conclude in
Section 6.

2 Our Approach

We begin our discussion by considering a straightforward
but
awed means of adding dynamic linking in TAL, to
motivate our actual approach, described later. Consider
de�ning a primitive, load0, that dynamically instantiates,
veri�es, and links TAL modules into the running program.
Informally, load0 might have the type:

load0 : 8� : sig: bytearray ! � option

To dynamically load a module, the application �rst obtains
the binary representation of the module as a bytearray,
and provides it to load0 preceded by the module's expected
signature type �. Then load0 parses the bytearray, checks it
for well-formedness, and links any unresolved references in
the �le to their de�nitions in the running program. Next, it
compares the module's signature with the expected one; if
the signatures match, it returns the module to the caller. If
any part of this process fails, load0 returns NONE to signal an
error. As an example, suppose the �le \extension" contains
code believed to implement a module containing a single
function f of type int ! int. In informal notation, that
�le is dynamically linked as follows:

case load0 [sig f : int -> int end]
(read file "extension") of

NONE => ... handle error ...

| SOME m => m.f(12)

There are many problems with this approach. First, it
requires �rst-class modules; in the context of a rich type
system, �rst-class modules require a complicated formaliza-
tion (e.g., Lillibridge [24]) with restrictions on expressive-
ness; as a result, in most ML-variants (and TAL as well)
modules are second-class [14, 22, 26]. Second, it requires a
type-passing semantics as the type passed to load0 must be
checked against the actual type of the module at run-time.
This kind of semantics provides implicit type information
to polymorphic functions, contrary to the e�orts of TAL to
make all computation explicit. Third, all linking operations,
including tracking and managing the exported de�nitions of
the running program, and rewriting the unresolved refer-
ences in the loaded �le, occur within load0, and thus within
the TCB. Finally, we are constrained to using the particular
linking approach de�ned within the TCB, diminishing
exi-
bility. As we show in Sections 3 and 5, linking is the aspect of
extensibility that di�ers most among source languages. For

example, Java links unresolved references incrementally, just
before they are accessed, while in C all linking generally oc-
curs at load-time. Furthermore, extensible systems typically
require more �ne-grained control over linking. For example,
in SPIN [4], only trusted extensions may link against certain
secure interfaces, and in MMM [32], the runtime interface
used during dynamic linking is a safe subset of the one used
during static linking, a practice called module thinning.

Rather than place all dynamic linking functionality
within the TCB, as we have outlined above with load0, we
prefer to place smaller components therein, forming a dy-
namic linking framework. Furthermore, these components
are themselves largely composed of pre-existing TAL func-
tionality. Therefore, this framework does not implement
source-level dynamic linking approaches directly, but may
be used to program them.

Our framework de�nes a primitive load similar to load0
above, but with the following simpli�cations:

� Loaded modules are required to be closed with respect
to terms. That is, they are not allowed to reference any
values de�ned outside of the module itself. Modules
may refer to externally-de�ned (i.e., imported) type
de�nitions.

� Rather than return a �rst-class module, load returns a
tuple containing the module's exported term de�nitions
(and thus the type variable � now is expected to be
a tuple-type, rather than a signature). Any exported
type de�nitions are added to the global program type

interface, a list of types and their de�nitions used by
the current program, used to resolve the imported type
de�nitions of modules loaded later.

� Rather than require a type-passing semantics for the
type argument to load, we make use of term-level rep-
resentations of types, in the style of Crary et al. [7].

These simpli�cations serve three purposes. First, by elim-
inating possible type components from the value returned
by load, we avoid a complicated modular theory, at a small
cost to the
exibility of the system. Second, the majority
of the functionality of load|parsing binary representations
and typechecking|is already a part of the TCB. By avoid-
ing term-level linking (since loaded modules must be closed)
we can avoid adding binary rewriting and symbol manage-
ment to the TCB (we do have to manage type de�nitions,
however, as we explain in the next subsection). Finally, by
adding term-level type representations, we preserve TAL's
type-erasure semantics. These representations also allow the
implementation of a dynamic type, making it possible to
program linking facilities outside of the TCB. We call our
framework TAL/Load.

The simpli�ed approach of TAL/Load may appear overly
limiting. For example, in practice we wish to dynamically
load non-closed modules by resolving their external refer-
ences with de�nitions in the running program. One way to
implement this linking strategy is by translating external
references into "holes" (i.e. uninitialized reference cells), in
a manner similar to closure-converting a function. After the
module is loaded via load, these cells are linked appropri-
ately using a library added to the program. To track the
running program's symbols, we can use term-level type rep-
resentations, existential types [27] and a special checked cast
operator to implement type dynamics [1], amenable to pro-
gramming a type-safe symbol table.

2

We defer a complete discussion of how to e�ectively use
TAL/Load until Section 3, where we describe our imple-
mentation of a full-featured dynamic linking approach for
C programs. For the remainder of this section, we focus
on two things. First, we look more closely at the process
of closing a module with respect to its externally de�ned
types and terms. We explain the diÆculty with closing a
module with respect to named types, thus motivating our
solution of using the program type interface. We then de-
scribe the implementation of TAL/Load in the TALx86 [28]
implementation of TAL.

2.1 Comparing Types by Name

The complications with �rst-class structures arise because of
their type components; ifM andN are arbitrary expressions
of module type having a type component t, it is diÆcult at
compile-time to determine if M:t is equal to (is the same
type as) N:t. The problem arises because we do not know
the identities of types M:t and N:t, and therefore must use
their names (including the paths) to compare them.

In the absence of these named types2, closing a module
with respect to its externally-de�ned terms is fairly simple.
For example, consider the following SML module, perhaps
forming part of an I/O library, that supports the opening
and reading of text �les.

structure TextIO =

struct

type instream = int

val openIn : string -> instream = ...

val inputLine : instream -> string = ...

...

end

A client of this module might be something like:

fun doit =

let val h = TextIO.openIn "myfile.txt" in

TextIO.inputLine h

end

If we want to close this client code to make it amenable for
dynamic loading, we need to remove the references to the
TextIO module. For example, we could do:

val TextIO openIn :

(string -> int) option ref = ref NONE

val TextIO inputLine :

(int -> string) option ref = ref NONE

fun doit () =

let val h = getOpt (!TextIO openIn)

"myfile.txt" in

getOpt (!TextIO inputLine) h

end

We have converted the externally referenced function into
a locally de�ned reference to a function. When the �le is
dynamically loaded, the reference can get �lled in. This
strategy is essentially a \poor-man's" functorization. This
process closes the �le with respect to values. However, we
run into diÆculty when we have externally de�ned values
of named type. Consider if TextIO wished to hold the type
instream abstract. If we attempt to close the client code as
before, we get:

2Named types are also called branded types, and can be used to
implement abstract types (as in �rst-class modules) and generative
types (such as structs in C or datatypes in ML).

val TextIO openIn :

(string -> TextIO.instream) option ref = ...

val TextIO inputLine :

(TextIO.instream -> string) option ref = ...

We still have the external references to the type
TextIO.instream itself. We must have a way to load a mod-
ule referring to externally de�ned, named types. Because
types form an integral part of type-checking, a trusted op-
eration, our solution is to support name-based type equality
within the TCB. As we do not want to overly complicate the
TCB, we base the support for named types on that of TAL's
framework for static link veri�cation [12]. There, paths are
disregarded altogether in comparing types; only one module
may export a type with a given name.

Therefore, loaded code is not closed with respect to ex-
ternally de�ned types, but instead declares a type interface
(XI ; XE), which is a pair of maps from type name to imple-
mentation. XI mentions the named types provided by other
modules, and XE mentions named types de�ned by this one.
By not including the implementation of the type inside the
map X (just mentioning its name), we can use this mech-
anism to implement abstraction. As an example, the type
interface of the client code above would be something like:

(finstreamg; fg)

and the interface for TextIO would be the reverse:

(fg; finstreamg)

Part of the implementation of load maintains a list of
the imported and exported types of all the modules in the
program, called the program type interface. When a new
module is loaded, load checks that the named type imports
of the new module are consistent with the program type
interface, and that the exports of the new module do not
rede�ne, or de�ne di�erently, any types in the program type
interface imports. We do not require that all of a module's
type imports be de�ned by the program interface when it
is loaded. This relaxation allows a program to manipulate
objects of an unde�ned type abstractly.

We have developed a formal calculus for our framework
and have proven it sound. While this formalization is inter-
esting, our real contribution lies in the way we can program
type-safe dynamic linking within our framework. We refer
the interested reader to the companion technical report [16]
for the full theoretical treatment.

2.2 Implementation

We have implemented TAL/Load in the TALx86 [28] imple-
mentation of TAL. The key component of TAL/Load is the
load primitive:

load : 8�: (R(�)� bytearray)! � option

In addition to the bytearray containing the module data,
load takes a term representation of its type argument, fol-
lowing the approach of Crary et al.'s �R [7]. Informally, �R
de�nes term representations for types, called R-terms, and
types to classify these terms, called R-types. For example,
the term to represent the type int would be Rint, and the
type of this term would be R(int). The type R(�) is a sin-
gleton type; for each � there is only one value that inhabits
it|the representation of � . Therefore the typechecker guar-
antees the correspondence between a type variable checked

3

t

valuesvs

disassemble

program
type
interface

object file &
type info

expected
export type disassemble

Disassembly Verification

OR

return vs
merge ts with

valuesvs

tstypes

t =
typeof(vs)?

t

expected TAL type

exported TAL

failure

null (NONE)

type-check

TAL implementation

success
exported TAL

failure

exported TAL

success

R

Figure 1: The implementation of load

statically and the representation of that type used at run-
time.

The actions of load are illustrated in Figure 1. In the
�gure, the square boxes indicate unconditional actions, and
the diamond boxes indicate actions that may succeed or fail.
Each square and diamond box has data inputs and outputs,
indicated as wavy boxes; the arrows illustrate both data-
and control-
ow. Using components of the TALx86 system,
load performs two functions:

1. Disassembly The �rst argumentRt indicates the ex-
pected type t of the exports, and must be disassembled
into the internal representation of TAL types. Type
t should always be of tuple type, where each element
type represents the type of one of the object �le's ex-
ported values. The second argument to load is a byte
array representing the object �le and the typing anno-
tations on it. This information is parsed by the TAL
disassembler to produce the the appropriate internal
representation: a TAL implementation.

2. Veri�cation The TAL implementation is then type-
checked in the context of the program's current type
interface �, following the procedure described in the
previous subsection. If type-checking succeeds, the re-
sult is a list of exported values and exported types. The
values are gathered into a tuple, the type of which is
compared to the expected type. If the types match, the
tuple is returned (within an option type) to the caller,
and the exported types are combined with � to form
the new program type interface. On failure, null (i.e.,
NONE) is returned.

The majority of the functionality described above results
in no addition to the TAL trusted computing base. In par-
ticular, the TAL link veri�er, typechecker, and disassembler
are already an integral part of the the TCB; TAL/Load only
makes these facilities available to programs through load.

Two pieces of trusted functionality are needed, however, be-
yond that already provided by TAL: the ability to represent
types as runtime values, and the maintenance of the pro-
gram type interface � at runtime. We explain how these
elements impact the TCB below.

Passing Types at Runtime Term representations for
types are used, among other things, to preserve TAL's type-
erasure semantics. So that this addition to the TAL trusted
computing base can be kept small, we do two things. First,
we represent R-terms using the binary format for types al-
ready used by the TAL disassembler. Note that the binary
representation of a named type is a string containing the
name. Second, we do not provide any way within TAL to
dynamically introduce or deconstruct R-terms, such as via
appropriate syntax and typecase [7]. Doing so would re-
quire that we re
ect the entire binary format of types into
the type system of TAL. Instead, we only allow the intro-
duction of R-terms in the static data segment by a built-in
directive. Consequently, only closed types may be repre-
sented.

Aside from providing type information to load, R-types
are also useful for implementing dynamic types. Dynamic
types may be used to implement type-safe symbol manage-
ment, as we describe in the next section. Therefore we al-
low limited examination of R-terms with a simple primitive
called checked cast:

checked cast : 8�: 8�: (R(�)� R(�)� �)! � option

Informally, checked cast takes a value of type � and casts
it to one of type � if the types � and � are equal. This
operation is trivial to add as comparing types is part of the
TAL typechecker. Therefore it does not add to the TCB.3

3With a full implementation of �R including typecase, checked cast

does not need to be primitive [36].

4

extern handle;

extern handle dlopen(string fname);

extern a dlsym<a>(handle h, string sym, <a>rep typ);

extern void dlclose(handle h);

extern exception WrongType(string);

extern exception FailsTypeCheck;

extern exception SymbolNotFound(string);

Figure 2: DLpop library interface

Maintaining the Program Type Interface As ex-
plained in the previous subsection, the need to maintain the
program's type interface at runtime derives directly from
the presence of named types in TAL. We may use elements
already within the TCB to implement the program type in-
terface. Representations of type interfaces (XI ; XE) already
exist as a part of object �les; they are used in verifying static
link consistency. The initial � is initialized in a small bit
of code generated by the TAL static linker after it has de-
termined the program's type interface. Computing the new
type interface at run time is done using this same trusted
code for static link veri�cation, so maintaining this informa-
tion at run time does not signi�cantly expand the TCB.

3 Programming Dynamic Linking

In the previous section we described our dynamic linking
framework TAL/Load. In this section, we describe how to
use TAL/Load to program dynamic linking services as typ-
ically de�ned in source languages like C and Java. As a
concrete demonstration, we present a type-safe version of
DLopen [8], a standard dynamic-linking methodology for C,
that we have written using TAL/Load. Our version, called
DLpop, provides the same functionality for Popcorn [28], a
type-safe dialect of C. We chose to implement DLopen over
several other dynamic linking approaches because it is the
most general; we describe informal encodings of other ap-
proaches, including Java classloaders [19], in Section 5. We
begin by describing DLpop and the ways in which it dif-
fers from DLopen, and then follow with a description of our
implementation written in TAL/Load.

3.1 DLpop: A type-safe DLopen

Most Unix systems provide some compiler support and a li-
brary of utilities (interfaced in the C header �le dlfcn.h) for
dynamically linking object �les. We call this methodology
DLopen, after the principal function it provides. We have
implemented a version of DLopen for our type-safe C-like
language, Popcorn [28], which we call DLpop. The library
interface is essentially identical to DLopen except that it is
type-safe; it is depicted in Figure 2. We describe this in-
terface in detail below, noting di�erences with DLopen; a
thorough description of DLopen may be found in Unix doc-
umentation [8]. DLpop and DLopen both provide three core
functions:

� handle dlopen(string fname)

Given the name of a TAL object �le, dlopen dynam-
ically loads the �le and returns a handle to it for fu-
ture operations. Imports in the �le (i.e., symbols de-
clared extern therein) are resolved with the exports

(i.e., symbols not declared static) of the running pro-
gram and any previously loaded object �les. Before
it returns, dlopen will call the function init if that
function is de�ned in the loaded �le. In DLpop (but
not DLopen), dlopen typechecks the object �le, throw-
ing the exception FailsTypeCheck on failure. In addi-
tion, the exception SymbolNotFound will be raised if the
loaded �le imports a symbol not present in the running
program, or WrongType if a symbol in the running pro-
gram does not match the type expected by the import
in the loaded �le.

� a dlsym<a>(handle h, string sym, <a>rep typ)

Given the handle for a loaded object �le, a string nam-
ing the symbol and the representation of the symbol's
type, dlsym returns a pointer to the symbol's value. In
DLopen, dlsym does not receive a type argument, and
the function returns an untyped pointer (null on fail-
ure), of C-type void *, which requires the programmer
to perform an unchecked cast to the expected type. By
contrast, our version takes a type representation argu-
ment typ to indicate the expected type; this type is
checked against the actual type at runtime. In prac-
tice, this type is always a pointer to the symbol's ac-
tual type since the value returned is a reference to the
requested symbol. As in TAL, we have extended Pop-
corn with representation types (<a>rep), implement-
ing them with TAL R-types. The term representing
type t in Popcorn is denoted repterm@<t>. Because
we cannot create the representation of a type with
free type variables in TAL, the type argument a to
dlsym must also be a closed type. If the requested
symbol is not present in the object �le, the exception
SymbolNotFound is thrown; if the passed type does not
match the type of the symbol, the exception WrongType

is thrown.

� void dlclose(handle h)

In DLopen, dlclose unloads the �le associated with
the given handle. In particular, the �le's symbols are
no longer used in linking, and the memory for the �le
is freed; the programmer must make sure there are no
dangling pointers to symbols in the �le. In DLpop,
dlclose only removes symbols from future linkages; if
the user program does not reference the object �le, then
it is unreachable and can be garbage collected.

The current version of DLpop does not implement all of
the features of DLopen, most notably: DLopen automat-
ically loads object �les upon which a dynamically loaded
�le depends, allowing for recursive references; DLopen sup-
ports the ability to optionally resolve function references on-
demand, rather than all at load-time, assuming the underly-
ing mechanisms (e.g. an ELF procedure linkage table [34])
are present in the object �le; and DLopen provides a sort of
�nalization by calling the user-de�ned function fini when
unloading object �les. We foresee no technical diÆculties
in adding these features should the need arise. In particu-
lar, we have implemented a variant of dlopen that allows
the caller to specify a list of object �les to load, and these
�les may have mutually-recursive references. On-demand
function symbol resolution is also feasible; a possible compi-
lation strategy to support it is described below, and another
approach is described in Section 5.1. Finally, �nalization is
implemented in most garbage collectors, in particular the

5

Dynamically linked code: loadable.pop

extern int foo(int);

int bar(int i) f
return foo(i);

g

Static code: main.pop

int foo(int i) f
return i+1;

g

void pop_main()f
handle h = dlopen("loadable");

int bar(int) = dlsym(h,"bar",

repterm@<int(int)>);

bar(3);

dlclose(h);

g

Figure 3: DLpop dynamic loading example

Boehm-Demers-Weiser collector [5] used in the current TAL
implementation.

Figure 3 depicts a simple use of DLpop. The user stat-
ically links the �le main.pop, which, during execution, dy-
namically loads the object �le loadable.o (the result of
compiling loadable.pop), looks up the function bar,4 and
then executes it. The dynamically linked �le also makes an
external reference to the function foo, which is resolved at
load time from the exports of main.pop.

3.2 Implementing DLpop in TAL/Load

Our implementation of DLpop is similar to implementations
of DLopen that follow the ELF standard [34] for dynamic
linking, which requires both library and compiler support.
In ELF, dynamically-loadable �les are compiled so that all
references to data are indirected through a global o�set ta-
ble (GOT) present in the object �le. Each slot in the ta-
ble is labeled with the name of the symbol to be resolved.
When the �le is loaded dynamically, the dynamic linker �lls
each slot with the address of the actual exported function or
value in the running program; these exported symbols are
collected in a dynamic symbol table, used by the dynamic
linker. This table consists of a list of hashtables, one per
object �le, each constructed at compile-time and stored as
a special section in the object �le. As �les are loaded and
unloaded, the hashtables are linked and unlinked from the
list, respectively.

We describe our DLpop implementation below, point-
ing out di�erences with the ELF approach. While similar
in spirit, DLpop is inherently more secure than DLopen:
because it is written in TAL/Load, all operations are veri�-
ably type-safe. A mistake in our implementation will result
only in incorrect behavior, not a potential breach due to a
violation of type safety. We �rst describe the changes we
made to the Popcorn compiler, and then describe how we
implemented the DLpop library.

4Note that the type argument to dlsym is inferred by the Popcorn
compiler.

resolve �le's
imports

add the exported function
to the symbol table

g

static int bar(int i) f

g

g

return GOT.foo(i);

the type of the global o�set table

the global o�set table itself

the function recompiled to
reference the global o�set table

to avoid null checks, all
�elds have dummy values

struct got t f

struct got t GOT = f dummy g;

raise (Failure);

static int dummy(int i) f

int (int) foo;

void dyninit(a lookup<a>(string, <a>rep),

initialization function called by dlopen

int (int) foo =

GOT.foo = foo;
lookup("foo",repterm@<int (int)>);

g
repterm@<int (int)>);

update("bar",bar,

void update<a>(string,a,<a>rep)) f

Figure 4: Compilation of dynamically loadable code

3.2.1 Compilation

As in the ELF approach, dynamically-loadable �les must be
specially compiled, an operation that we perform in three
stages. First, the compiler must de�ne a GOT for the �le,
and translate references to externally de�ned functions and
data to refer to slots in the GOT. In ELF, the GOT is a
trusted part of the object �le, while in DLpop the GOT is
implemented in the veri�able language, TAL. As a conse-
quence, the table is well-typed with the compiler initializ-
ing each slot to a dummy value of the correct type, where
possible. For slots of abstract or generative type, we cannot
create this dummy value, so we initialize the slot to null and
insert null checks for each table access in order to satisfy the
type-checker.

Second, the compiler adds a special dyninit function
that will be called at load-time to �ll in the slots in the
GOT with the proper symbols. This approach di�ers from
ELF, in which the GOT is �lled by a dynamic linker con-
tained in the running program. From the loading program's
point of view, the dyninit function abstracts the linking
process. The dyninit function takes as arguments two other
functions, lookup and update, that provide access to the dy-
namic symbol table. For each symbol address to be stored
in the GOT, dyninit will look up that address by name
and type using the lookup function, and �ll in the appro-
priate GOT slot with the result. Similarly, dyninit will call
update with the name, type, and address of each symbol
that it wishes to export. Because the dyninit function con-
sists only of TAL code, all linking operations are veri�ably
type-safe. This veri�cation prevents, for example, lookup
from requesting a symbol by name, then receiving a symbol
of an unexpected type. In an untypechecked setting, as in
DLopen, this operation could result in a crash.

Finally, because the exports of dynamically linked �les
are designated by dyninit, the object �le should only ex-
port dyninit itself; therefore the compiler makes all global

6

add the exported function
to the symbol table

int foo(int i) f
return i+1;

g

foo is still exported (not static) so
statically linked �les may refer to it

void pop main() f
handle h = dlopen("loadable");

int bar(int) = dlsym(h,"bar",

bar(3);
dlclose(h);

g

repterm@<int (int)>);

initialization function called at startup

void dyninit(a lookup<a>(string, <a>rep),

void update<a>(string,a,<a>rep)) f

update("foo",foo,

g
repterm@<int (int)>);

Figure 5: Compilation of statically linked code

symbols static. Figure 4 shows the entire translation for
the dynamic code in Figure 3.

Statically linked �les are only changed by adding a
dyninit to export symbols to dynamically linked �les. At
startup, the program calls the dyninit functions of each of
its statically linked �les. Figure 5 shows the static code of
Figure 3 compiled in this manner.

Rather than add the dyninit function to �ll in the
GOT's of loaded �les and note their exported symbols,
we could have easily followed the ELF approach of writ-
ing a monolithic dynamic linker, called at startup and from
dlopen. However, we have found that abstracting the pro-
cess of linking to calling a function in the loaded �le has a
number of bene�ts. First, it allows the means by which an
object �le resolves its imported symbols to change without
a�ecting the DLpop library. For example, in order to save
space, we could allow GOT entries to be null by changing
them to option type, or we could eliminate the GOT al-
together by using runtime code generation, as described in
Section 5. If we knew that many symbols may not be used
by the loading program (as is likely with a shared library),
we could resolve them on-demand by making the dummy
functions perform the symbol resolution, rather than do-
ing so in the dyninit function; this approach is shown in
Figure 6. Second, using dyninit allows the loaded �le to
customize operations performed at link-time. For example,
the dyninit function could remove old symbols from the
dynamic symbol table and add its own as a replacements,
carefully directing the transferal of old state to the new im-
plementation; this idea is explored in Hicks [15]. Finally,
dyninit simpli�es the implementation of policy decisions
made by the loading code with regard to symbol manage-
ment. For example, the loading code may wish to restrict
access to some of its symbols based on security criteria [33];
in this case, it could customize the lookup function provided
to dyninit to throw an exception if a restricted symbol is re-
quested. While our approach imposes a space cost above the
ELF approach, we have found this cost not to be excessive
in practice, as we show in Section 4.

static a dynlookup<a>(string, <a>rep) = ...;

saved lookup function as passed to dyninit

void dyninit(a lookup<a>(string, <a>rep),

void update<a>(string,a,<a>rep)) f

dynlookup = lookup;

update("bar",bar,
repterm@<int (int)>);

g

note the lookup function

g

struct got t f

struct got t GOT = f dummy g;

static int dummy(int i) f

int (int) foo;

int (int) foo = dynlookup("foo",
repterm@<int (int)>);

return GOT.foo(i);
g

GOT.foo = foo;

static int bar(int i) f

g
return GOT.foo(i);

replace dummy in the GOT

call it

look up foo

Figure 6: Compilation of dynamically loadable code to re-
solve functions on-demand. Only the parts that di�er from
Figure 4 are commented.

3.2.2 The DLpop Library

The DLpop interface in Figure 2 is implemented as a Pop-
corn library. The central element of the library is a type-safe
implementation of the dynamic symbol table for managing
the symbols exported by the running program. We �rst de-
scribe this symbol table, and then describe how the DLpop
functions are used in conjunction with it.

DLpop encodes the dynamic symbol table much as in
ELF, as a list of hashtables mapping symbol names to their
addresses, one hashtable per linked object �le. Each time
a new object �le is loaded, a new hashtable is added. The
dynamic symbol table is constructed at start-up time by
calling the dyninit functions for all of the statically-linked
object �les.

Each entry of the hashtable contains the name, value,
and type representation of a symbol in the running program,
with the name as the key. So that entries have uniform type,
we use existential types [27] to hide the actual type of the
value:5

objfile ht : <string, 9�: (��R(�))> hashtable

To update the table with a new symbol (the result of calling
update from dyninit), we pack the value and type represen-
tation together in an existential package, hiding the value's
type, and insert that package into the table under the sym-
bol's key. When looking up a symbol, the hashtable returns
an entry containing a value of some abstract type and a rep-
resentation of that type. We then use checked cast to com-
pare that type with the expected type and (if they match)
coerce the value to the expected type.

5The type <�1; �2> hashtable contains mappings from �1 to �2.

7

The DLpop library essentially consists of wrapper func-
tions for load and the dynamic symbol table manipulation
routines:

� dlopen

Recall that dlopen takes as its argument the name of
an object �le to load. First it opens and reads this ob-
ject �le into a bytearray. Because of the compilation
strategy we have chosen, all loadable �les should ex-
port a single symbol, the dyninit function. Therefore,
we call load with the dyninit function's type and the
bytearray, and should receive back the dyninit func-
tion itself as a result. If load returns NONE, indicating
an error, dlopen raises the exception FailsTypeCheck.
Otherwise, a new hashtable is created, and a custom
update function is crafted that adds symbols to it.
The returned dyninit function is called with this cus-
tom update function, as well as with a lookup function
that works on the entire dynamic symbol table. After
dyninit completes, the new hashtable is added to the
dynamic symbol table, and then returned to the caller
with abstract type handle.

� dlsym

This function receives a type argument (call it �) and
three term arguments: a handle, h; a string repre-
senting the symbol name, s; and the representation of
the type �, r. Because the handle object returned by
dlopen is in actuality the hashtable for the object �le,
dlsym simply attempts to look up the given symbol in
that hashtable, raising the exception SymbolNotFound

if the symbol is not present. Otherwise, a value of type
9�:� � R(�) was found in the hashtable. This value
is unpacked, and the tuple destructed, binding a type
variable �, and two term variables, table value and
table rep, of type � and R(�), respectively. With the
call

checked cast[�][�](r, table rep, table value)

the type representations r and table rep are com-
pared, converting table value from type � to type � if
they match. This value is then returned to the caller.
Otherwise, the exception WrongType is raised.

� dlclose

The dlclose operation simply removes the hashtable
associated with the handle from the dynamic symbol
table. Future attempts to look up symbols using this
handle will be unsuccessful. Once the rest of the pro-
gram no longer references the handle's object �le, it
will be safely garbage-collected.

As a closing remark, we emphasize the value of implement-
ing DLpop. We have not intended DLpop to be a signi�cant
contribution in itself; rather, the contribution lies in the way
in which DLpop is implemented. By using TAL/Load, much
of DLpop was implemented within the veri�able language,
and was therefore provably safe. Only load and �R consti-
tute trusted elements in its implementation, and these ele-
ments are themselves small. If some
aw exists in DLpop,
the result will be object �les that fail to verify, not a security
hole.

4 Measurements

Much of the motivation behind TAL and PCC is to provide
safe execution of untrusted code without paying the price

of byte-code interpretation (as in the JVM) or sandboxing
(as in the Exokernel [9]). Therefore, while the chief goal of
our work is to provide
exible and safe dynamic linking for
veri�able native code, another goal is to do so eÆciently.

In this section we examine the time and space costs im-
posed by load and DLpop. We compare these overheads
with those of DLopen (using the ELF implementation) and
show that our overheads are competitive. In particular, our
run-time overhead is exactly the same, and our space over-
head is comparable for typical programs. The veri�cation
operation constitutes an additional load-time cost, but we
believe that the cost is commensurate with the bene�t of
safety, and does not signi�cantly reduce the applicability of
dynamic linking in most programs. All measurements pre-
sented in this section were taken on a 400 MHz Pentium II
with 128 MB of RAM, running Linux kernel version 2.2.5.
DLopen/ELF measurements were generated using gcc ver-
sion egcs-2.91.66.

4.1 Time Overhead

The execution time overhead imposed by dynamic linking,
relative to Popcorn programs that use static linking only,
occurs on three time scales: start-time, load-time, and run-
time. At startup, statically-linked code must construct the
initial dynamic symbol table. At load-time, the running
program must verify and copy the loaded code with load,
and then link it by executing its dyninit function. At run-
time, each reference to an externally de�ned symbol must
be indirected through the GOT. DLopen/ELF has similar
overheads, but lacks veri�cation and its associated bene�t
of safety.

4.1.1 Run-time Overhead

In most cases, the only run-time overhead of dynamic code is
the need to access imported symbols through the GOT; this
overhead is exactly the same as that imposed by the ELF
approach. Each access requires one additional instruction,
which we have measured in practice to cost one extra cycle.
A null function call in our system costs about 7 cycles, so
the dynamic overhead of an additional cycle is about 14%.

For imported values of abstract type, there is also the
cost of the null check before accessing each GOT element.
However, we have yet to see this overhead occur in practice,
for two reasons. First, most �les do not export abstract
values, but instead \constructor" functions that produce
abstract values; an exception in our current code base is
the Popcorn Core library, which de�nes stdin, stdout, and
stderr to have abstract type FILE. Second, these cases typ-
ically de�ne the abstract type to allow a null value (a sort
of abstract option type), meaning that a null-check would
have occurred anyway.

4.1.2 Load-time Overhead

The largest load-time cost in DLpop is veri�cation. Veri�-
cation in load consists of two conceptual steps, disassembly
and veri�cation, as pictured in Figure 1, and described in
Section 2.2. Veri�cation itself is performed in two phases:
consistency checking (labeled type-check in the �gure) and
interface checking (labeled t = typeof (vs)? in the �gure).
For the loadable.pop �le, presented in Figure 3, the total
time of these operations is 47 ms, where 2% is disassem-

8

DLpop DLopen
sym dyninit type GOT (ELF)
name fun rep slot total

import 8 + l 24 t 8 40 + l + t 20 + l

export 8 + l 24 t - 32 + l + t 20 + l

�xed 4 4270

Table 1: Object �le overheads, in bytes, for both DLpop and
ELF. DLpop overheads are broken down into component
costs; l is the length of a symbol's name and t is the size of
its TAL type representation.

bly, 96% is consistency checking, and the remaining 2% is
interface checking.

The remaining cost is to copy the veri�ed code and to ex-
ecute the �le's dyninit function. The code must be copied
because load e�ectively changes the type of the bu�er ar-
gument from bytearray to some type �. Copying prevents
surreptitiously modifying the bu�er via an alias still having
bytearray type. We could avoid this copy by proving that
no aliases exist, e.g. by using alias types [35].

For loadable.pop, the total cost of these two operations
is negligible: about 0.73 ms. This time is roughly twice the
time of 0.35 ms for DLopen/ELF. The main di�erence here
is simply that the ELF loader is more optimized. Because of
its small weight relative to veri�cation, there is little reason
to optimize linking in DLpop.

While veri�cation is expensive, it occurs but once per
extension, and so should not pose a problem for most appli-
cations. In particular, applications that load code at larger
time scales, and/or for which loaded code is long-lived, will
amortize the cost of veri�cation over the entire computation.
Long running systems that load extensions or updates, such
as operating systems and network servers, and productivity
applications that use dynamically-loaded libraries fall into
this category. Even those applications for whom loaded code
is short-lived, e.g., agent systems, may be accommodated,
because while veri�cation time may be large, execution time
(thanks to native code) will be small, balancing out the to-
tal cost. Finally, we note that the TAL veri�er is largely
unoptimized, and e�orts are underway to improve its per-
formance [13].

4.1.3 Start-time Overhead

At start-time, before execution begins, each statically-linked
�le's dyninit function is executed to create the initial dy-
namic symbol table for the program. In addition, the pro-
gram type interface, generated by the linker, is properly
instantiated for use by load. The costs of these operations
depend on the number of symbols and type de�nitions ex-
ported by each �le, and which libraries are used. A typical
delay is on the order of tens of milliseconds, which is essen-
tially meaningless over the life programs that will perform
dynamic linking.

In contrast, ELF imposes no start-time cost, because no
type interface is used, and because the static linker gener-
ates the hashtables that make up the dynamic symbol table,
storing them in the object �le. This implementation trades
space for time.

dlpop
dlpop (no share)
gcc (E

L
F)

dlpop
dlpop (no share)
gcc (E

L
F)

dlpop
dlpop (no share)
gcc (E

L
F)

dlpop
dlpop (no share)
gcc (E

L
F)

 1i 1e 15i 1e 1i 15e 15i 15e

0

2000

4000

6000

8000

10000

fi
le

 s
iz

e
(b

yt
es

)

dynamic imports & exports
dynamic exports
static compilation

Figure 7: Comparing the space overhead of DLpop, DLpop
without type representation sharing, and DLopen/ELF for
some microbenchmarks.

4.2 Space Overhead

Both DLpop and DLopen/ELF increase the size of object
�les relative to their compilation without dynamic linking
support, and in practice, we believe the two are fairly com-
parable. In particular, while the per-symbol costs for DLpop
are higher than that of DLopen/ELF, there is a signi�cantly
smaller �xed cost. For the remainder of this section we break
the down the space costs of DLpop, and compare them to
those of DLopen/ELF.

For both imported and exported symbols, DLpop im-
poses three space costs: the string representation of the
symbol name,6 its type representation, and the instructions
in the dyninit function that perform its linking. For im-
ported symbols, there is the additional cost of the symbol's
GOT slot and its default value. These costs are summarized
in Table 1, and compared to the overheads DLopen/ELF.
DLopen/ELF overheads were calculated empirically (based
on the \gcc (ELF)" part of Figure 7), and are therefore only
a rough estimate.

The per-symbol cost of DLpop is about twice as much
as DLopen/ELF when not including type representations
t. Type representations tend to be large, between 128 and
200 bytes for functions, increasing total overhead when they
are considered. We mitigate this cost somewhat by shar-
ing type representations among elements of the same type.
Function type representations tend to be large because they

6Popcorn strings have a length �eld and an extra pointer (for eas-
ier translation to/from C-style strings), adding 2 words to a C-style
representation.

9

encode not only the types of their arguments and returned
values, but also the calling convention. This fact suggests
that sharing type components among representations could
net a larger savings, since the calling convention will be the
same for all Popcorn functions. We consider this area fu-
ture work. We could also reduce per-symbol overhead by
eliminating dyninit and moving the linking code into the
DLpop library. However, dyninit is a convenient,
exible
way to perform linking, justifying the extra space cost.

DLopen/ELF has a much higher �xed space cost than
DLpop. In ELF, each of the hashtables of the dynamic
symbol table is constructed at compile-time and stored in
the object �le. In DLpop, these tables are constructed at
start-time, creating a start-up penalty but avoiding the ex-
tra space cost per object �le. As a result of this di�er-
ence, when type representations are shared, and the number
of imported and exported symbols is reasonable, the total
overhead of the two approaches is fairly similar. Figure 7
compares DLpop to DLopen/ELF for some benchmark �les.
Each of the four clusters of bars in the graph represents a
di�erent source �le, with varying numbers of imported and
exported functions, notated xi ye at the bottom of the clus-
ter, where x and y are the number of imports and exports,
respectively. When there is one exported function, its code
consists of calling all of the imported functions; when there
are �fteen functions, each one calls a single imported func-
tion. All functions are void (void) functions.7 Each bar in
the cluster represents a di�erent compilation approach. The
leftmost is the standard DLpop approach, and the right-
most is DLopen/ELF. The center bar is DLpop without the
sharing of type representations, to show worst case behav-
ior (when sharing, only one type representation for void

(void) is needed). Each bar shows the size of object �les
when compiled statically, compiled to export symbols to dy-
namic code, and compiled to be dynamically loadable (thus
importing and exporting symbols). The export-only case is
not shown for ELF, as this support is added at static link
time, rather than compile-time.

The �gure shows that DLpop is competitive with
DLopen/ELF. The �gure also illustrates the bene�t of type
representation sharing; the overhead for the 15i 15e when
not sharing is almost twice that when sharing is enabled.
As the number of symbols in the �le increases, the ELF ap-
proach will begin to outperform DLpop, but not by a wide
margin for typical �les (exporting tens of symbols). In gen-
eral, we do not feel that space overheads are a problem (nor
did the designers of ELF dynamic linking, it seems). We
could structure our object �les so that the dyninit func-
tion, which is used once, and type representations, which are
used infrequently, will not a�ect the cache, and may be eas-
ily paged out. Type representations are highly compressible
(up to 90% using gzip), and therefore need not contribute
to excessive network transmission time for extensions.

5 Programming other Linking Strategies
(Related Work)

Using our framework TAL/Load, we can implement safe,

exible, and eÆcient dynamic linking for native code, which
we have illustrated by programming a safe DLopen library
for Popcorn. Many other dynamic linking approaches have
been proposed, for both high and low level languages. In

7This is the Popcorn (C-like) notation for the type unit! unit.

this section we do two things. First, we describe the dy-
namic linking interfaces of some high level languages, de-
scribe their typical implementations, and �nally explain how
to program them in TAL/Load, resulting in better security
due to type safety and/or reduced TCB size. Second, we
look at some low-level mechanisms used to implement dy-
namic linking, and explain how we can program them in our
framework. Overall, we demonstrate that TAL/Load is
ex-
ible enough to encode typical dynamic linking interfaces and
mechanisms, but with a higher level of safety and security.

5.1 Java

In Java, user-de�ned classloaders [19] may be invoked to
retrieve and instantiate the bytes for a class, ultimately re-
turning a Class object to the caller. A classloader may
use any means to locate the bytes of a class, but then re-
lies on the trusted functions Classloader.defineClass and
Classloader.resolveClass to instantiate and verify the
class, respectively. When invoked directly, a classloader is
analogous to dlopen. Returned classes may be accessed di-
rectly, as with dlsym, if they can be cast to some entity that
is known statically, such as an interface or superclass. In the
standard JVM implementation, linking occurs incrementally
as the program executes: when an unresolved class variable
is accessed, the classloader is called to obtain and instantiate
the referenced class. In the standard JVM implementation,
all linking operations occur within the TCB: checks for un-
resolved class variables occur as part of JVM execution, and
symbol management occurs within resolveClass.

We can implement classloaders in TAL/Load by follow-
ing our approach for DLpop: we compile classes to have a
GOT and an dyninit function to resolve and register sym-
bols. A classloader may locate the class bytes exactly as in
Java (i.e., through any means programmable in TAL), and
defineClass simply becomes a wrapper for a function simi-
lar to dlopen, which calls load and then invokes the dyninit
function of the class with the dynamic symbol table.

To support incremental linking, we can alter the com-
pilation of Java to TAL (hypothetically speaking) in two
ways. We �rst compile the GOT, which holds references to
externally de�ned classes, to allow null values (in contrast
to DLpop where we had default values). Each time a class
is referenced through the GOT, a null check is performed;
if the reference is null then we call the classloader to load
the class, �lling in the result in the GOT. Otherwise, we
simply follow the pointer that is present. As in the strategy
depicted in Figure 6, the dyninit function no longer �lls in
the GOT at load-time; it simply registers its symbols in the
dynamic symbol table. This approach moves both symbol
management and the check for unresolved references into
the veri�able language, reducing the size of the TCB.

5.2 Windows DLLs and COM

Windows allows applications to load Dynamically Linked Li-
braries (DLLs) into running applications, following an inter-
face and implementation quite similar to DLopen and ELF,
respectively, with some minor di�erences (see Levine [20],
pps. 217{222). Like DLopen and ELF, DLLs are not type-
safe and would therefore bene�t in this regard from an im-
plementation in TAL/Load.

DLLs are often used as vehicle to load and manipu-
late Common Object Model [6] (COM) objects. COM ob-
jects are treated abstractly by their clients, providing ac-

10

cess through one or more interfaces, each consisting of one
or more function pointers. All COM objects must imple-
ment the interface IUnknown, which provides the function
QueryInterface, to be called at runtime to determine if the
object implements a particular interface. QueryInterface is
called with the globally unique identi�er (GUID) that names
the desired interface. GUIDs are not incorporated into the
type-system (at least not for source languages like C and
C++), and thus, as with dlsym, the user is forced to cast
the object's returned interface to the type expected, with a
mistake likely resulting in a crash.

Implementing COM in TAL/Load would be straightfor-
ward, with the added bene�t of proven type-safety for in-
terfaces. QueryInterface could be changed to take type
parameter R(t) in addition to the GUID of the expected in-
terface, ensuring the proper type of the returned interface.

5.3 OCaml Modules

Objective Caml [23] (OCaml) provides dynamic linking for
its bytecode-based runtime system with a special Dynlink
module; these facilities have been used to implement an
OCaml applet system, MMM [32]. Dynlink essentially im-
plements dlopen, but not dlsym and dlclose, and would
thus be easy to encode in TAL/Load. In contrast to the
JVM, OCaml does not verify that its extensions are well-
formed, and instead relies on a trusted compiler. OCaml
dynamic linking is similar to that of other type-safe, func-
tional languages, e.g. Haskell [31].

A TAL/Load implementation of the OCaml interface
would improve on its current implementation [23] in two
ways. First, all linking operations would occur outside of
the TCB. Second, extension well-formedness would be veri-
�ed rather than assumed.

5.4 Units

Units [10] are software construction components, quite sim-
ilar to modules. A unit may be dynamically linked into a
static program with the invoke primitive, which takes as
arguments the unit itself (perhaps in some binary format)
and a list of symbols needed to resolve its imports. Linking
consists of resolving the imports and executing the unit's
initialization function. Invoke is similar to dlopen, but the
symbols to link are provided explicitly, rather than main-
tained in a global table.

Units could be implemented following DLpop, but with-
out a dynamic symbol table. Rather than compiling the
dyninit function to take two functions, lookup and update,
it would take as arguments the list of symbols needed to
�ll the imports. The function would then �ll in the GOT
entries with these symbols, and then call the user-de�ned
init function for the unit. The implementation for invoke
would call load, and then call the dyninit function with the
arguments supplied to invoke.

The current units implementation [10] is similar to the
one we have described above, but is written in Scheme
(rather than TAL), a dynamically typed language. There-
fore, while linking errors within dyninit may be handled
gracefully in our system (since they will result in thrown ex-
ceptions), in Scheme they will result in run-time type errors,
halting system service. Alternatively, run-time type checks
would have to be provided for each access of the GOT.

5.5 SPIN

The extensible operating systems community has explored a
number of approaches to dynamic linking. For example, the
SPIN [4] kernel may load untrusted extensions written in the
type-safe language Modula-3. In SPIN, dynamic linking op-
erates on objects called domains [33], which are collections
of code, data, and exported symbols. Domains are quite
similar to Units, with the functionality of invoke spread
among separate functions for creation, linking, and initial-
ization, along with other useful operations, including unlink-
ing and combining. All of these operations are provided by
the trusted Domain module. Furthermore, all operations are
subject to security checks based on runtime criteria. For
example, when one domain is linked against the interface
of another, the interface seen may depend on the caller's
privilege.

We can implement domains using techniques described
above, with the addition of �lters to take security informa-
tion into account. TAL/Load would improve on the secu-
rity of the current SPIN implementation in the same ways as
OCaml: less of the domain implementation must be trusted,
and integrity of extensions can be veri�ed, rather than rel-
egated to a trusted compiler.

5.6 Low-level Dynamic Linking Mechanisms

A useful reference of low-level, dynamic linking mechanisms
may be found in Franz [11]. One technique that he presents,
which has been used to implement some versions of DLopen
(as opposed to the ELF methodology [34]), is called load-
time rewriting. Rather than pay the indirection penalty of
using a GOT, the dynamic linker rewrites each of the call-
sites for an external reference with the correct address.

This technique is a simple form of run-time code gen-
eration. Popcorn and the TAL implementation provide fa-
cilities for type-safe run-time code generation, called Cy-
clone [17], that we can use to implement load-time rewriting.
Rather than compile functions to indirect external references
through a GOT, we instead create template functions that
abstract their external references. When dyninit is called,
each template function is invoked with the appropriate sym-
bols (found by calling lookup), returning a custom version
of the original function, closed with respect to the provided
symbols. This function is then registered with the dynamic
symbol table using update. The advantage of this approach
is that the process of rewriting can be proven completely
safe.

There are two notable disadvantages. First, mutually
recursive functions are problematic because their template
functions must be called in a particular order. One possible
solution is to use one level of indirection for recursive calls,
backpatching the correct values. Another disadvantage is
that template functions make copies of the functions they
abstract, rather than �lling in the holes in place; this ap-
proach is more general, but not necessary in our context.
However, the overall cost of doing this should be low (espe-
cially relative to veri�cation). We plan to experiment with
this approach in future work.

6 Conclusions

We have designed, implemented, and demonstrated
TAL/Load, the �rst complete type-safe dynamic linking

11

framework for native code. Our approach has many ad-
vantages:

� It supports linking of native code so dynamic extensions
may be written in many source languages.

� It is composed largely of components already present in
the TAL trusted computing base, therefore its addition
does not overly complicate the code veri�cation system.

� It is expressive enough to support a variety of dynamic
linking strategies in an eÆcient manner.

Furthermore, there is nothing speci�c to TAL in this
strategy|we believe that in principle it would also be ap-
plicable to Proof Carrying Code (with some changes to ver-
i�cation condition generation). We see this work as the �rst
step in a larger study of type-safe extensible systems.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic
typing in a statically-typed language. ACM Transactions on
Programming Languages and Systems, 13(2):237{268, April
1991.

[2] A. W. Appel and A. P. Felty. A semantic model of types and
machine instructions for proof-carrying code. In Twenty-
Seventh ACM Symposium on Principles of Programming
Languages, pages 243{253, Boston, Jan. 2000.

[3] K. Arnold and J. Gosling. The Java Programming Language.
Addison-Wesley, 1996.

[4] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker,
M. Fiuczynski, C. Chambers, and S. Eggers. Extensibility,
safety, and performance in the SPIN operating system. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tem Principles, pages 267{284, Copper Mountain Resort,
Colorado, 1995.

[5] H. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Software|Practice and Experience,
18(9):807{820, September 1988.

[6] Microsoft COM technologies, 2000. http://www.microsoft.
com/com/default.asp.

[7] K. Crary, S. Weirich, and G. Morrisett. Intensional poly-
morphism in type-erasure semantics. In 1998 ACM Interna-
tional Conference on Functional Programming, pages 301{
312, Baltimore, Sept. 1998. Extended version published as
Cornell University technical report TR98-1721.

[8] DLOPEN(3). Linux Programmer's Manual, December 1995.

[9] D. R. Engler, M. F. Kaashoek, and J. O'Toole Jr. Exok-
ernel: an operating system architecture for application-level
resource management. In Proceedings of the 15th ACM Sym-
posium on Operating Systems Principles, pages 251{266,
Copper Mountain Resort, Colorado, December 1995.

[10] M. Flatt and M. Felleisen. Units: Cool modules for HOT
languages. In Proceedings of SIGPLAN International Con-
ference on Programming Language Design and Implementa-
tion, pages 236{248. ACM, June 1998.

[11] M. Franz. Dynamic linking of software components. IEEE
Computer, 30(3):74{81, March 1997.

[12] N. Glew and G. Morrisett. Type-safe linking and modular
assembly language. In Twenty-Sixth ACM Symposium on
Principles of Programming Languages, 1999.

[13] D. Grossman and G. Morrisett. Scalable certi�cation
for Typed Assembly Language. In Proceedings of the
Third ACM SIGPLAN Workshop on Types in Compilation,
September 2000. To appear.

[14] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order mod-
ules and the phase distinction. In Seventeenth ACM Sympo-
sium on Principles of Programming Languages, pages 341{
354, San Francisco, Jan. 1990.

[15] M. Hicks. Dynamic software updating. Technical report, De-
partment of Computer and Information Science, University
of Pennsylvania, October 1999. Thesis proposal. Available
at http://www.cis.upenn.edu/~mwh/proposal.ps.

[16] M. Hicks and S. Weirich. A calculus for dynamic loading.
Technical Report MS-CIS-00-07, University of Pennsylvania,
2000.

[17] L. Hornof and T. Jim. Certifying compilation and run-time
code generation. Journal of Higher-Order and Symbolic
Computation, 12(4), 1999. An earlier version appeared in
Partial Evaluation and Semantics-Based Program Manipu-
lation, January 22-23, 1999.

[18] Hotjava browser. http://java.sun.com/products/hotjava/
index.html.

[19] Basics of java class loaders, 1996. http://www.javaworld.

com/javaworld/jw-10-1996/jw-10-indepth.html.

[20] John R. Levine. Linkers and Loaders. Morgan-Kaufman,
2000.

[21] D. Kozen. EÆcient code certi�cation. Technical Report 98-
1661, Department of Computer Science, Cornell University,
Ithaca, NY 12853-7501, January 1998.

[22] X. Leroy. Manifest types, modules and separate compila-
tion. In Twenty-First ACM Symposium on Principles of
Programming Languages, pages 109{122, Portland, Oregon,
Jan. 1994.

[23] X. Leroy. The Objective Caml System, Release 3.00. Insti-
tut National de Recherche en Informatique et Automatique
(INRIA), 2000. Available at http://caml.inria.fr.

[24] M. Lillibridge. Translucent Sums: A Foundation for Higher-
Order Module Systems. PhD thesis, Carnegie Mellon Univer-
sity, School of Computer Science, Pittsburgh, Pennsylvania,
May 1997.

[25] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
i�cation. Addison-Wesley, 1996.

[26] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The
De�nition of Standard ML (Revised). The MIT Press, Cam-
bridge, Massachusetts, 1997.

[27] J. C. Mitchell and G. D. Plotkin. Abstract types have exis-
tential type. ACM Transactions on Programming Languages
and Systems, 10(3):470{502, July 1988.

[28] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86:
A realistic typed assembly language. In Second Workshop on
Compiler Support for System Software, Atlanta, May 1999.

[29] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly language. ACM Transactions on
Programming Languages and Systems, 21(3):527{568, May
1999. An earlier version appeared in the 1998 Symposium
on Principles of Programming Languages.

[30] G. Necula and P. Lee. Safe kernel extensions without run-
time checking. In Second Symposium on Operating Systems
Design and Implementation, pages 229{243, Seattle, Oct.
1996.

[31] J. Peterson, P. Hudak, and G. S. Ling. Principled dynamic
code improvement. Technical Report YALEU/DCS/RR-
1135, Department of Computer Science, Yale University,
July 1997.

[32] F. Rouaix. A Web navigator with applets in Caml. In Pro-
ceedings of the 5th International World Wide Web Confer-
ence, in Computer Networks and Telecommunications Net-
working, volume 28, pages 1365{1371. Elsevier, May 1996.

12

[33] E. G. Sirer, M. E. Fiuczynski, P. Pardyak, and B. N. Ber-
shad. Safe dynamic linking in an extensible operating sys-
tem. In First Workshop on Compiler Support for System
Software, Tucson, February 1996.

[34] Tool Interface Standards Committee. Executable and Link-
ing Format (ELF) speci�cation. http://x86.ddj.com/ftp/

manuals/tools/elf.pdf, May 1995.

[35] D. Walker and G. Morrisett. Alias types for recursive data
structures. In Proceedings of the Third ACM SIGPLAN
Workshop on Types in Compilation, September 2000. To
appear.

[36] S. Weirich. Type-safe cast. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional
Programming Languages. ACM, September 2000. To ap-
pear.

13

