Automating the Meta Theory of Deductive Systems

Carsten Schirmann
October 16, 2000
CMU-CS-00-146

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Thesis Committee:
Frank Pfenning, Chair
Robert Harper
Peter Lee
Dana Scott
Natarajan Shankar, SRI International

Copyright (© 2000 Carsten Schiirmann

This research was sponsored by the Defense Advanced Research Projects Agency CSTO under the title “The
Fox Project: Advanced Languages for Systems Software”, DARPA Order No. C533, issued by ESC/ENS under
Contract No. F19628-95-C-0050. This research was also sponsored by the National Science Foundation under
grant CCR-9619584.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of NSF or the U.S. Government.

Abstract

This thesis describes the design of a meta-logical framework that supports the representation
and verification of deductive systems, its implementation as an automated theorem prover, and
experimental results related to the areas of programming languages, type theory, and logics.
Design: The meta-logical framework extends the logical framework LF [HHP93] by a meta-logic
M; . This design is novel and unique since it allows higher-order encodings of deductive systems
and induction principles to coexist. On the one hand, higher-order representation techniques
lead to concise and direct encodings of programming languages and logic calculi. Inductive
definitions on the other hand allow the formalization of properties about deductive systems,
such as the proof that an operational semantics preserves types or the proof that a logic is
consistent. M3 is a proof calculus whose proof terms are recursive functions that may be
defined by cases and range over dependent higher-order types. The soundness of /\/12+ follows
from a realizability interpretation of proof terms as total recursive functions.

Implementation: A proof search algorithm for proof terms in /\/12+ is implemented in the meta-
theorem prover that is part of the Twelf system [PS99b]. Its takes full advantage of higher-order
encodings while using inductive reasoning.

Ezperiments: Twelf has been used for many experiments. Among others, it proved automatically
the Church-Rosser theorem for the simply-typed A-calculus and the cut-elimination theorem for
intuitionistic first-order logic. In programming languages, it proved various type preservation
theorems for different operational semantics and compiler correctness theorems. In logics, it was
able to derive the equivalence of various logic calculi, such as the natural deduction calculus, the
sequent calculus, and the Hilbert calculus. Twelf also proved that Cartesian closed categories
can be embedded into the simply-typed A-calculus. In the special domains of programming
languages, type theory, and logics, Twelf’s reasoning power far exceeds that of any other theorem
prover.

Keywords: meta logic, LF, induction, regular world assumption, realizability, higher-order
abstract syntax, Twelf

ii

ii

Contents

1 Introduction

1.1 Contributions L
1.2 Outline e
Background
Logical Frameworks
2.1 Introduction L
2.2 The Simply-Typed A-Calculus
2.2.1 Reduction Relations L o
2.3 Methodology of Representation
2.3.1 Typetheory L
2.3.2 Higher-order abstract syntax o0
2.3.3 Adequacy
2,34 SUmmaryo e e e e e e e
2.4 The Logical Framework LF o oo
241 Syntaxo e
2.4.2 Semantics oL e e
2.4.3 Canonical Forms
244 Meta-Theory
2.5 More Exampleso
2.6 Function Spaces.
2.7 SUMMATY . . . o v ot e e e e e e e e e e
Reasoning
3.1 Introduction
3.2 Church-Rosser Theorem
3.2.1 Properties of Ordinary Reduction
3.2.2 Parallel Reduction
3.2.3 Properties of Parallel Reduction
3.2.4 Equivalence of Parallel and Ordinary Reduction
3.3 Historical Overview
3.3.1 General-Purpose Theorem Provers
3.3.2 Special-Purpose Theorem Provers
3.4 Summary ... Lo

iii

Ne)

11

13
13
14
16
17
18
18
21
26
27
27
28
30
31
32
34
35

v

CONTENTS

IT Design of a Meta-Logical Framework

4 Meta-Logical Frameworks

4.1 Introduction.
4.2 Methodology
4.2.1 Closed Meta-Theorems
4.2.2 Open Meta-Theorems
4.2.3 More on Meta-Theorems
4.3 Overview Of This Thesis
44 Related Work
4.5 Summaryo e e

5 The Meta-logic M

5.1 Introduction.
5.2 Preliminaries
5.3 TheLogic
5.3.1 Syntax
5.3.2 Semanticso
5.4 The Proof System
5.4.1 Generalized Contexts
5.4.2 Context Schemas
54.3 Formulas
544 Mg-Calculus
5.5 Proof Term Calculus
5.5.1 Provability of General Formulas
5.5.2 Provability of Formulas
5.5.3 Provability of Declarations
5.6 Induction
5.6.1 Well-Founded Recursion
5.6.2 Complete Case Analysis
5.7 Lemmas e
5.7.1 Preliminaries
5.7.2 Context Schema Subsumption.
573 Proof Rules
5.8 Summary

6 Operational Semantics for M.

6.1 Introduction.
6.2 Preliminaries
6.2.1 LF
6.2.2 Abstraction
6.2.3 Weakening
6.2.4 Substitution. oL
6.3 Subsumption oL
6.4 Matching o oo
6.4.1 Spine Calculus

v

63

CONTENTS

v
6.4.2 Algorithm 160
6.4.3 Strictness e 168
6.4.4 Soundness e 172
6.4.5 Completeness L 173
6.4.6 Results 176

6.5 Big-Step Semantics 176
6.6 SUMMATY e e e e e 180
7 Realizability 181
7.1 Small-Step Semantics Lo L 182
7.1.1 Programs 183
T.1.2 States e e 183
7.1.3 Abstract Machine 185
7.1.4 Validity 188

7.2 Termination e e e e e 192
7.2.1 Syntactic Restriction on Proof Terms 193
7.2.2 Syntactic Termination Criterion 194
7.2.3 Termination Theorem 196

7.3 COVErage v v o e e e e e e e 197
7.3.1 Motivation 197
7.3.2 Coverage Condition 203
7.3.3 Meta-Theory e 209

7.4 Soundness of M 214
7.5 SUmMmMAary e e e e 215
ITT TImplementation 217
8 Twelf 219
8.1 Introduction L 219
8.2 Theorem Prover for LE 220
8.2.1 Basic Operations e 221
8.2.2 Correctness e e 223
8.2.3 Limitations 223

8.3 Meta-Theorem Prover 224
8.3.1 Basic Operations e 224
8.3.2 Lemmas e e e 229
8.3.3 Strategy 230
8.3.4 Correctness e 232
8.3.0 Limitations 233

84 A CaseStudy 234
8.4.1 A Brief Overview of Twelf 234
8.4.2 Developing the Church-Rosser Theorem in Twelf 241

8.5 Experimental results Lo 251
8.0 Summary e 253

vi

CONTENTS

9 Conclusion

9.1 Future Work
9.1.1 Applications of My
9.1.2 Adaptation of M;
9.1.3 Extensions of M;“
9.1.4 TImplementation of Mg

9.1.5 Functional Programming in M

9.2 Summary e

A Inference rules

Al Meta-Logic Mg
A.2 Operational Big-Step Semantics
A.3 Operational Small-Step Semantics
A.4 Typing Rules for Continuations

B Operational Semantics

B.1 Preliminiaries
B.1.1 Abstraction
B.1.2 Substitution.

B.2 Strictness

B.3 Big-Step Semantics00

C Realizability

vi

List of Figures

2.1 Methodology of representation L. 18
2.2 Type and term constant declarations 0. 23
3.1 LF encoding of parallel reduction and parallel conversion (extends Figure 2.2) . . 42
4.1 The meta-logical layero o 68
4.2 Formal proof of the transitivity Theorem 4.4. 79
4.3 Formal proof of the substitution Lemma 4.5. 81
4.4 Formal proof of the diamond Lemma 3.7 87
4.5 Formal proof of the strip Lemma 3.8 L. 88
4.6 Formal proof of the confluence Lemma 3.9 89
4.7 Formal proof of the Church-Rosser Theorem 3.10 for parallel reduction 89
4.8 Formal proof of the embedding Lemma 4.11 for parallel reduction. 94
8.1 Proof strategy L 231
8.2 Reserved identifierso 235
8.3 Reserved identifiers with predefined meaning 235
8.4 Concrete syntax of Twelf o 236
8.5 Syntax for terms L. 236
8.6 User-defined infix operators L 237
8.7 Syntax for My -formulas in Twelf 239
8.8 Syntax for induction orders in Twelf 240
8.9 Syntax for call-patterns in Twelf 240
8.10 Syntax for proof declarations in Twelf 240
8.11 Experimental results (in CPU seconds) 252

vil

viii LIST OF FIGURES

viii

Acknowledgments

Many people have contributed to the success of this thesis, and I am very grateful to all them.
First and foremost, I would like to thank my advisor Frank Pfenning who has introduced me to
the wonderful and elegant world of logical frameworks in his Computation and Deduction class
in Spring 1994.

It was this class, that sparked my interest to work on meta-logical frameworks for LF. From
a student’s perspective, many of the theorems presented in the class looked rather complicated,
yet their proofs were so elegant and used only very few proof techniques, that it seemed plausible
to try to automate their derivations. Looking back on the class now, we are very happy to report
that all but a few theorems can be automatically derived using Twelf.

Thanks, Frank, for your guidance, for your vision and insight, for your advice, and for the
many discussions we have had over the previous years. I learned a lot from you. Without your
experience on prior implementations of the Elf and the Ergo system, Twelf’s core would not be
as elegant as it is today.

Second, I would like to thank Peter Lee, Robert Harper, Dana Scott, and Natarajan Shankar
for being on my thesis committee and for providing me with lots of suggestions, advice, and ideas.
In particular, I want to express my thanks to Peter Lee and George Necula, who succeeded with
their work on proof carrying code to export logical framework technology to other communities,
Robert Harper who used the Twelf system to verify properties about abstract machines, Dana
Scott, who was happy to discuss different aspects of the system with me, and Natarajan Shankar
who demonstrated that automated theorem proving technology is useful and important for the
real-world.

Third, T would like to thank Wilfried Sieg and Teddy Seinfeld for admitting me the Pure
and Applied Logic Program at Carnegie Mellon University. Thanks also to Steve Brookes, John
Reynolds, and Edmund Clarke for many great ideas.

Special thanks go to all my friends and fellow students for all the countless discussions, for
your support and for the great time: Doug Baker, Andrej Bauer, Christoph Benzmiiller, Lars
Birkedal, Matthew Bishop, Michael Bowling, Iliano Cervesato, Perry Cheng, Karl Crary, Rowan
Davis, Herb Derby, Jiirgen Dingel, Armin Fiedler, Jesse Hughes, Somesh Jha, Will Marrero,
Dominic Mazzoni, Raymond McDowell, Alberto Momigliano, Ljubomir Perkovic, Jeff Polakow,
Mark Plesko, Brigitte Pientka, Ekkehard Rohwedder, Dario Salvucci, Dirk Schlimm, Aaron
Stump, Peter Venable, Roberto Virga, Kevin Watkins, Hao-Chi Wong, and Hongwei Xi.

My time in Pittsburgh would have not been what it was without my dear friend Molly
Bigelow, who believed in me throughout the years, and who waited patiently for me to finish.
I want to thank her for all her love, patience, guidance, and simply for being her. I also feel
very much in debt to my parents and my brother who supported me over all these years, and
for their strength to stand me being so far away for so long.

LIST OF FIGURES

Chapter 1
Introduction

We can look at the current field of problem solving by computers
as o series of ideas about how to present a problem. If a problem
can be cast into one of these representations in a natural way,
then it is possible to manipulate it and stand some chance of
solving it. [Allen Newell]

It is common knowledge that it is very difficult to design software systems that work flawlessly
and reliably. Most software products contain defects, some of them are harmless others might be
potentially harmful. From experiences in programming language research we have learned that
many software defects can be avoided by using appropriate programming languages. For exam-
ple, strongly typed languages like Standard ML of New Jersey [MTHM97], or Haskell [Tho99]
guarantee by design that a program can never cause a segmentation fault and crash.

Also Java [LY96] is designed with a strong type system. Following from properties of the
Java language, the execution of a Java program theoretically never crashes. In fact, the Java
bytecode verifier that is part of the Java distribution statically examines byte code for memory
and type violations and rejects suspicious bytecode. But can we trust the byte code verifier?
Certainly not, since its semantics is specified only informally and in plain English, which renders
convincing formal proofs of any safety guarantees impossible.

Consequently, a rigorous formalization of the programming language and its semantics is
necessary in order to reason about it and to convince others about the soundness of a design.
A sound design of ML for example guarantees that the execution of a program of given type
never returns a result that is of another type. It should also guarantee that the algorithm that
computes the type of a program — the type-inference algorithm — always terminates and always
return the correct results: the principle type if it exists or failure otherwise.

Therefore, in order to reason about programming languages we must rely on rigorous formal-
izations of their syntax operational semantics. Formulations of this kind have been developed
for example for ML [MTHMY97, HS97], and for subsets of Java [SA98, NvO98] but rigorous
arguments about these formalizations are very difficult to do. Answers to questions such as “Is
Java type safe?” or “Is ML type-checking decidable?” are tedious arguments, and they must
consider typically so many cases that they are not easily verifiable by humans. This thesis is
about tools to represent and reason about programming languages.

Another motivating example comes from the area of authentication protocol design. Using

the Needham-Schroeder protocol [NS78] two corresponding parties can authenticate, but unfor-
tunately the protocol is flawed. Lowe [Low96] has shown that it can be attacked by an intruder
making his victim believe that he is somebody else. Is it possible to catch design flaws like
this during the design process? It is, by using techniques such as model checking [MCJ97] or
inductive theorem proving [Pau98].

A few decades ago the importance of automated reasoning has led researchers to develop
systems that provide formal support for everyday tasks of mathematicians programming lan-
guage designers. The first major breakthrough, for example, was possibly a computer assistant
proof of the four color theorem [AH77a, AH77b]: Every planar graph is colorable by four colors
in such a way that regions sharing a common boundary do not share the same color.

Historically speaking, one of the first general purpose theorem provers including induction
is Nqthm system [BM79, BM88] that has been used to prove a tremendous variety of different
results many directly relevant to programming language research. Shankar [Sha94], for example,
has used Nqthm to check a proof of the Church-Rosser theorem for the untyped A-calculus holds,
and he has also verified Godel’s incompleteness theorem. Another example goes back to Kunen
who formalized the proof Ramsey’s theorem [Kun95] in Nqthm.

Following the lead of Nqthm, many other theorem provers have evolved based on different
logics and different automated deduction algorithms with different strengths and weaknesses.
Otter [McC94] for example has been used to show that all Robbins algebras are Boolean [McC97]
as conjectured in 1933.

First-order automated theorem provers could be applicable to our domain of reasoning about
programming languages. However, they are not appropriate for representing programming lan-
guages such as ML or Java since they do not provide inductive definitions. But there are others:
INKA [HS96] for example is a theorem prover that can handle induction and so are many proof
assistants that are based on type theory, such as for example Isabelle [Pau94], Coq [DFHT93],
NuPRL [C*86], and Lego [LP92].

Isabelle is a very popular proof assistant and has been used, for example, to reason about
programming languages such as Milner’s type inference algorithm [NN99] and the operational
semantics of a simple programming language [AC99]. It has also been used to reason about
program refinement languages bases on an embedding of weakest preconditions [Sta99].

Similar experiments in the area of programming languages have been conducted with the Coq
system. In functional programming the type inference algorithm of ML has been verified in Coq
[CD99], and in logic programming the algorithm of SLD resolution [Jau99]. These experiments
are not small, on the contrary in the case of the formalization of SLD resolution, approximately
600 technical lemmas were necessary in the entire development.

The Ensemble project [KHH98] is concerned with the development of reliable and efficient
group communication systems. In order to execute and verify program transformations they
have linked it to the NuPRL system.

For the purpose of machine developed and machine checked domain theory and program
verification, Reus has implemented synthetic domain theory [Reu99] a constructive variant of
domain theory in Lego. Other examples conducted with Lego include the formalization of type
theories and A-calculi [MP99], and a formalization of the strong normalization proof for system F
[A1t93].

The recurring pattern in all these experiments is the following. The programming language
that should be proven sound must be encoded into the language the theorem prover or the prover
assistant provides. For the theorem provers mentioned above this language is either a quantifier

4

CHAPTER 1. INTRODUCTION S

free, a first-order, or a higher-order logic. Generally, the weaker the language, the more indirect
the encoding. On the one hand, inductive definitions and higher-order features allow very direct
encodings of programming languages. Constructs such as expressions, types, and inference rules
are typically inductively defined and higher-order representation techniques [HHP87, PESS§]
allow direct encodings of variables and substitution concepts that are part of any programming
languages.

Thus in general, the expressiveness of a representation language is crucial for the attempt to
reason formally about programming languages. Reasoning about programming languages can
only be as effective as the encoding is — or to put the other way around: the more direct the
encoding is, the easier it is to reason about them.

Unfortunately, higher-order encodings and inductive definitions are incompatible since
higher-order encodings violate the positivity condition associated with inductive definitions
[DPS97]. Various attempts have been made to preserve the advantages of higher-order rep-
resentation techniques in a setting with strong induction principles [DH94, DFH95], but none of
these is entirely satisfactory from a practical or theoretical point of view. A first clean approach
towards a solution of this problem was the modal A-calculus [DPS97] that has been extended to
dependent types [DL98]. A more recent proposal is due to Gabbay and Pitts [GP99], and Hof-
mann has given a categorical semantics for relating higher-order abstract syntax and induction
principles [Hof99].

In this thesis, we describe a tool that provides higher-order representation techniques and
inductive definitions. It is a meta-logical framework and it is implemented in the Twelf sys-
tem [PS99b] and based on the logical framework LF [HHP93]. We discuss its design, its im-
plementation, and demonstrate how to apply it to problems from the field of programming
languages and logics. The Twelf system provides a special purpose theorem prover that draws
its deductive power from the elegance of encoding.

Design of the Meta-Logical Framework

The design of a meta-logical framework can be best motivated by an informal example. Con-
sider a developer who engineers safety architectures for mobile code such as proof carrying
code [Nec97] or typed assembly language [MWCG99]. The basic idea underlying safety archi-
tectures is that a “code producer” augments mobile code with explicit safety proof objects that
adhere to an a-priori specified safety policy. The code and the safety proof are then transmitted
together through the network to a “code consumer”. Once received, the code consumer ex-
amines the code and extracts independently verification conditions which it then verifies using
the safety proof. If the proof checker signals success, the code can be trusted with respect to
the safety policy, and the code consumer can execute it safely. Among the many challenges in
devising a safety architecture is the design of a sound safety proof languages such as for example
a logic or a type system.

Without any machine support the developer has to engineer the safety proof language by
hand and verify its soundness using only pencil and paper. In general, this is a tedious, difficult,
intricate, and error prone process. Slight changes in the design of the safety proof language
can render months of hard work useless, leaving the developer without any other option but
to revisit all the proofs again. With the technology presented in this thesis, the developer can
formalize the safety proof languages such as logics and type systems, and reason about them
automatically and effectively. In many of the examples discussed in this thesis, the system was

5

able to check quickly if changes or extensions to a logic invalidate any of the desired properties.

Our meta-logical framework uses as representation language the logical framework
LF [HHP93]. It is a higher-order type theory which provides dependent types and higher-
order representation techniques. Judgments are formally represented as types and derivations
as objects. Logics such as the sequent calculi and the natural deduction calculi [Gen35] can be
directly encoded in the LF, taking full advantage of higher-order constructions. They directly
support common concepts such as variable binding, capture-avoiding substitution, weakening,
contraction, and exchange. For classical and intuitionistic logic, the representations are adequate
which means that objects in the type theory are in one-to-one correspondence with derivations
in a logic.

There are other logical frameworks, which are based on inductive definitions. To a large
extent they are implemented in the aforementioned proof assistants such as Coq, Isabelle, Lego,
or Nuprl. Inductive definitions rely on the positivity condition that guarantees the set of con-
structors for each datatype to be fixed. From a modal theoretic point of view, we say that the
world in which a datatype is defined is closed, because datatypes must not be extended by new
constructors. Synonymously, we say that a closed world assumption is precondition for standard
inductive definitions.

In general, higher-order representation techniques violate the positivity condition, in partic-
ular deductive systems, which are of particular interest to this work: encodings of programming
languages and logics, for example, possess very elegant higher-order encodings that cannot be
expressed inductively. On the other hand, without higher-order representations, the developer is
obliged to declare the variables, substitutions, and contexts and to reason about their respective
properties, such as, for example, weakening, contraction, exchange, and substitution lemmas.

Nevertheless, one can reason about any object in LF (if functional or not functional) by
induction. The proof of adequacy of any representation, for example, is based on an inductive
argument over the structure of objects in LF. It is sound, because any object — including
functional objects — possesses a canonical form, and canonical forms in LF are inductively
defined [HP99]. Intuitively, the conversion of an object to a canonical form simply corresponds
to the execution of substitution operations.

Intrinsically, inductive definitions are closely related to function definition by cases. Any
proof of a property using standard induction principles can be realized as a total function that
expects input arguments in place of universal quantifiers and that computes witness objects in
place of existential quantifiers. These functions are defined by cases, and totality is established
as an external property of the function. Termination follows from comparing argument vectors
of recursive recalls to the argument vector the function was originally called with; they must
decrease according to a well-founded (terminating) ordering. And coverage relies on the closed
world assumptions; in every situation there are only finitely many cases to consider. Functions
defined by cases should not be confused with the notion of function provided by the logical
framework LF, which by construction cannot be defined by cases since they typically do not
possess canonical forms in LF [DPS97].

Therefore in this thesis, we propose to use two inherently different function spaces. The first
function space is parametric and it serves the purpose of adequate higher-order representation
of deductive systems with implicit treatment of variables and capture avoiding substitutions.
For the purpose of this work we have chosen the function space provided by LF since it satisfies
all requirements and supports adequate encodings. But in general, it is conceivable to extend
this work to other parametric function spaces defined in other logical frameworks, such as for

CHAPTER 1. INTRODUCTION 7

example the linear logical framework [CP96], or the calculus of constructions [CHS8S].

Second, we propose a recursive function space that encodes proofs or properties about deduc-
tive systems, such as the soundness of a logic, or the Church-Rosser property of the simply-typed
A-calculus. These functions range over LF objects of arbitrary (possibly functional) type and
can be defined by cases and recursion. The corresponding type theory, which is developed and
presented in this thesis, is called M; When restricted to total functions, the type theory M;
can be viewed as a meta-logic. Theorems are encoded as types in M; , and proofs as total
functions called realizers.

The argument that a natural deduction representation of first-order intuitionistic logic is
equivalent to a sequent formulation makes use of both function spaces. The parametric function
space is used to represent the either of the two calculi whereas the recursive function space is
used to express that any derivation in one calculus can be converted into a derivation in the
other. Thus, from a programming point of view, M; can be seen as the type system of a
functional programming language that uses LF as language to express datatypes.

If deductive systems are encoded via higher-order functions, M -proof terms may need to
traverse A-binders in order to make a recursive call and each traversal of a A-binder corresponds
to the introduction of a new parameter. Intuitively, these parameters can be viewed as dynamic
extensions of the set of constructors of its type. Consequently, during runtime the set of con-
structors of any type is not fixed any more, which invalidates the closed world assumption. In
contrast, in our setting, inductive definitions are open-ended because recursive functions may
dynamically introduce new parameters as constructors. Therefore, inductive definitions are not
adequate for higher-order encodings.

On the other hand, the open world assumption that allows open-ended definitions of
datatypes does not present an appropriate foundation for the calculus of total functions we
aim to design in this thesis. On the contrary! Under the open world assumption it is impossible
to predict the canonical form of any LF-object. Therefore, the open world assumption cannot
give any guarantees if a recursive function covers all cases! From a modal point of view, it
is possible to argue that a recursive function covers all cases in some given world — but it is
impossible to argue that a recursive function covers all cases in any given world.

M;’s design is based on the following observation: In general, during runtime, recursive
functions follow always a few, but finitely many different patterns when traversing A-binders
before executing a recursive call. Therefore, datatypes are always extended in a regular and pre-
dictable fashion, in contrast to arbitrary extensions associated with the open world assumption.
It is this regularity condition that allows us to judge if a recursive functions over open terms
covers all cases. In this thesis we generalize the closed world assumption and simultaneously
restricted the open world assumption.

The result is the regular world assumption which allows datatypes to be open ended but
requires its extensions to be regular in structure. It enables us to reason about M;’ proof terms
and to determine if they cover all cases. Each proof term is augmented with a description of the
world it is defined in, which ensures that only recursive functions defined in compatible regular
worlds can call each other.

Returning to the example, an M;’—proof term that maps first-order natural deduction deriva-
tions to first-order sequent derivations has to recurse on open subformulas of universal formulas.
In the case of a higher-order encoding of terms, each traversal of the A-binder that represents a
bound variable extends the set of constructors. Clearly, those extensions are regular.

Under the regular world assumption, M; is a type theory of partial functions that ranges

7

over higher-order and dependently-typed LF objects. That M;’ is also a sound logic to reason
about deductive systems is one of the main contributions of this thesis. Proof terms of M; are
recursive functions witnessing the provability of (meta-)theorems about deductive systems. For
this interpretation to hold, proof terms must be realizers, i.e. they are total recursive functions,
that make always progress and terminate eventually on every input.

More precisely, progress is given if case analysis covers all cases, a property that follows from
techniques similar to definitional reflection [SH93a]. Termination on the other hand follows if a
measure associated with each on recursive calls decreases every time a call is executed [RP96].
Under these restrictions all proof terms of Mj are realizers and therefore M as a meta-logic
is sound.

As consequence for the logic example, any total function in Mj that maps any natural
deduction derivation to some sequent derivation is a proof of the soundness of the embedding,
and vice versa, any total function in M; that maps any sequent derivation to some natural
deduction derivation realizes the completeness proof.

A similar approach toward the design of a meta-logic has been taken by Miller and McDowell
[MM97] with their system FOAAY. FOAAY is a meta-logic based on an intuitionistic first order
logic extended by natural number induction and inductive definitions [SH93b]. It supports the
representation of various logical frameworks, for example the intuitionistic and linear framework
of hereditary Harrop formulas [McD97]. The embedded logical frameworks are used to represent
deductive systems. Different from the soundness argument presented in this thesis, the soundness
of FOMNAI follows by a cut-elimination argument [MMOO].

From a purely logical perspective, M7 is weak, since the only connectives defined for it are
universal, existential quantifiers, conjunction and truth. In addition it is restricted to conjunc-
tions of Ils-formulas, i.e. formulas that consist of a block of universal followed by a block of
existential quantifiers. There are no propositional constants and it does neither provide impli-
cation nor disjunction nor negation nor equality. Nevertheless M;“ draws its representational
power from the underlying logical framework LF.

Because of the expressive strength of higher-order representation principles proofs in M
are very efficient. For example substitution, weakening, strengthening, and exchange lemmas
are implicitly provided by LF, and therefore they do not have to be proven explicitly. This
is a tremendous win compared to systems that cannot use higher-order encodings due to the
positivity condition. Therefore, proofs in M; are in general shorter, more concise and more
elegant.

Implementation of the Meta-Logical Framework

The logical framework LF and the meta-logic M3 are implemented in the Twelf system [PS99b].
In addition, we have implemented two proof search algorithms: one algorithm searches for LF
objects of given LF type, and the other search for proof terms in M3 . Because of the judgments-
as-types and the derivations-as-objects paradigm, the LF-theorem prover is logic independent.

As opposed to traditional general purpose theorem provers which are designed to search for
derivations in a particular deductive system, such as for example first-order logic with or without
equality, Twelf’s M; -theorem prover is considered to be special purpose theorem prover. It is
designed to reason about deductive systems in general, and logics and programming languages
in particular. In its current version, Twelf is designed to be mostly automatic. In particular, it
does not provide any mechanisms for user-specified tactics or tacticals. Neither does it employ

CHAPTER 1. INTRODUCTION 9

any form of rewriting. For each theorem we only specify a sequence of lemmas, the induction
variables, and an upper bound for search. The proof is completely automatic in every other
respect.

The Twelf system is entirely written in Standard ML. The latest version is available through
the Twelf homepage http://www.twelf.org.

Application of the Meta-Logical Framework

The technology presented in thesis can be used to reason about prototypes of new programming
languages, compilers, abstract machines, operational semantics, natural deduction calculi, and
sequent calculi. In particular, in this thesis we report on the deductive power of Twelf and many
experiments: In the area of programming languages for example, Twelf has been used to derive
several important properties about Mini-ML, that is a version of an ML-like language without
references, module system and exceptions. Mini-ML’s operational semantics is type preserving,
and it is complete with respect to a reduction semantics. Furthermore, we have used Twelf to
show the completeness of compiling and executing Mini-ML programs on a continuation passing
machine, similar to the CPM machine [FSDF93].

The Church-Rosser theorem for the simply-typed A-calculus is the running example used in
this thesis. Using the standard decomposition of the development into a sequence of lemmas
Twelf can prove all of them automatically. It constructs a proof that is very similar to the one
given in [Pfe93].

Many of our experiments include meta-theorems about logics: We have used Twelf to show
the equivalence of natural deduction and sequent formulation of first-order intuitionistic logic.
Twelf has also shown that the Hilbert derivations can be transformed into natural deduction
derivations. For logic programming in the fragment of hereditary Harrop formulas, we have used
Twelf to show that the search for uniform derivations and resolution are equivalent.

It took Twelf less than seven minutes on a Pentium I1I/400Mhz to show that cut-elimination
holds for full intuitionistic logic. Consequently first-order logic is sound [Gen35].

Further examples stem from the area of category theory: Twelf has been used to show the
existence of an embedding from Cartesian closed categories into the simply typed A-calculus.
The experiments express that the theorem proving technology described in this thesis is powerful
enough to prove theorems far outside the realm of traditional theorem provers.

Twelf is currently actively used in other research groups for example at Princeton to inves-
tigate logics for proof carrying code [Nec97]. Appel, Felten, and Felty for example are using
Twelf to build a generic architecture, that is applied in research on proof carrying code [AF00],
and proof carrying authentication [AF99]. At Stanford, Stump and Dill are applying Twelf to
develop proof terms for decision procedures [SD99].

1.1 Contributions

The first contribution of this thesis is the design of the meta-logic M. It is novel in that it
combines higher-order representation techniques and dependent types provided by the logical
framework LF types with inductive definitions, a combination that has never been attempted
before. Omne of the main consequences of this approach is that the closed world assumption
underlying standard inductive definitions is not general enough to accommodate arguments
over higher-order encodings; this observation leads to the regular world assumption that allows

9

10 1.2. OUTLINE

for dynamic and regular extensions of inductive definitions. M3 is sound by a realizability
interpretation of its proof terms as total functions.

The second contribution is the implementation of the meta-logic My in the Twelf sys-
tem [PS99b]. Because of higher-order representation techniques, proofs of difficult theorems
have still concise and elegant forms in M; We have implemented two proof search algorithm,
one for LF and the other for MJ. The expressive strength of LF together with the deductive
strength of M makes Twelf a powerful meta-logical framework.

The third contribution is the application of Twelf to many problems. It has been successfully
employed to derive the meta-theory of a variety of examples from the areas of functional pro-
gramming languages, type theories, operational semantics, abstract machines, compilers, and
logics.

1.2 Outline

This thesis is organized in three parts. The first part is designed to give the reader an overview
about the background of LF and motivate how to use it as a representation language for deductive
system. Specifically, in Chapter 2, we use the example of the simply-typed A-calculus and the
standard reduction rules to motivate dependent types, higher-order representation techniques,
canonical forms and the desired adequacy of encoding. The simply typed A-calculus and its
meta-theory are the running example throughout this thesis. In Chapter 3, for example, we
prove a sequence of lemmas that eventually leads up to the proof of the Church-Rosser theorem.
Among others, we present the proof the diamond lemma in detail. The proofs of all lemmas
and theorems can be computationally interpreted as functions, and they demonstrate thus the
design principles behind the type theory M; which we present in the second part of this thesis.
Specifically, first we motivate it in Chapter 4 and expose the necessity to dynamically extend
the set of constructors for LF types under the regular world assumption. In Chapter 5 then,
we make the informal constructions from Chapter 4 formal by defining appropriate judgments
and rules for M; . Informal proofs are represented as proof terms in M;’ Moreover establish
two side conditions, coverage and termination, that informally enforce that all proof terms once
evaluated always make progress and are guaranteed to terminate. The meaning of M; -proof
terms is defined via a big-step operational semantics in Chapter 6; it is type-preserving, but
insufficient to show that all proof terms of M are realizers. Therefore, we introduce a state-
based abstract machine, its transition rules and syntactic criteria for coverage and termination
in Chapter 7; the main result of this chapter is that any proof term in M satisfying those two
criteria is a realizer, warranting that the interpretation of M;’ as a meta-logic is sound. In the
third and last part of this thesis, we sketch the implementation of a proof search algorithm for
realizers in M;’, we discuss its implementation in the Twelf system, and we demonstrate how
to use Twelf to prove the Church-Rosser theorem automatically in Chapter 8. Additionally, we
briefly report on other experiments already conducted with the Twelf system. Finally we assess
the results of this thesis and discuss future work in Chapter 9.

10

Part 1

Background

11

Chapter 2

Logical Frameworks

2.1 Introduction

The development of programming languages is a challenging endeavor, and much more
widespread than one might expect at first glance. Besides standard programming languages,
such as C, C++, LISP, ML, and many others, there are scripting languages such as HTML,
XML, PERL, or TgX, and query languages such as SQL, or XQL which can be categorized as
programming languages.

We can make a very similar observation about logics. Logics are very important “languages”
to express properties about any kind of system. Specification logics, temporal logics, and modal
logics, are used in software engineering and model checking to describe large systems. Logics
are also used to describe properties of secure systems and they form the foundation for logic
programming languages.

If a developer follows sound design principles when drafting a programming language or
a logic, the user of the language will benefit from it; programs are easier to write, easier to
compile and very often easier to maintain. For example, a sound design principle underlying
functional programming languages is that the evaluation of programs preserves types. Similarly
a sound design principle underlying a specification logic is consistency. Since results such as type
preservation of an operational semantics and soundness of an inference system always express
properties about the designed language or logic, we call these results meta-logical properties. It
is very important to verify all desired meta-logical properties after each change in the design
of a programming language, e.g. adding new constructors to the language could violate type
preservation, and similarly, adding new connectives and new inference rules to a logic could
render it unsound.

In this work we are not concerned with the design principles themselves, but rather with tools
which support the design process. In this chapter we are primarily interested in the encoding
of systems such as programming languages, operational semantics, and logic calculi whereas in
the subsequent chapters we investigate and devise a system which allows the formalization and
automatic derivation of their meta-logical properties. Concretely, we begin with the presentation
of the simply-typed A-calculus with an appropriate reduction semantics for which we then give
its well-known encoding in the logical framework LF. It is the basis of the running example
which is used throughout this thesis: in Chapter 3, for example, we derive its Church-Rosser
property informally, in Chapter 4 formally, and in Chapter 8 automatically.

13

14 2.2. THE SIMPLY-TYPED A-CALCULUS

2.2 The Simply-Typed A-Calculus

The A-calculus has been introduced by Church [CR36] as a model for partial functions. Ini-
tially, it was only of theoretical interest and it served as a vehicle for the study of computable
functions. In particular it has be shown that each Turing-complete function is also computable
in the A-calculus and vice versa [Rog92]. A few decades later, with the growth of the field of
computer science, the A-calculus has gained a strong foothold in the area of basic computer sci-
ence and functional programming language. Specifically, with the programming language LISP,
a functional programming languages based on the A-calculus, it has gained a lot of influence,
and helped to shape the area of artificial intelligence.

The definition of A-terms (which we simply call terms below) is deceptively simple. A term
can be of the form

1. Az.e, where X\ is a binding operator, a variable and e is the body of the term,
2. ey e, where eq, e2 are two subterms, or
3. x, simply a variable.

The term Az.e; can be interpreted as a function, which may be applied to an argument es.
Strictly speaking (Az.e1) ey reduces by substituting es for x in e;, an operation for which use
the following notation ej[ea/z]. Any expression of the form (Az.eq) ey is called a redez.

How exactly reduction is executed is expressed by the operational semantics of the A-calculus
which is given by reduction rules. In general, reduction rule of the form [hs = rhs can be applied
to any subterm of a given term; applying a reduction rule means to replace the subterm which
matches the shape of the left hand side [hs of a rule and replace it by the right hand side rhs,
where the free schematic variables have been instantiated accordingly.

Az.e =4 Ay.ely/z]
(Az.e1) e =3 eilez/x]

Informally the first rule called the «-rule allows arbitrary renaming of bound variables. It
requires that y does not occur freely in e already. The second rule is called [g-rule and it
simplifies redices. Therefore a redex is also known as (-redez. In the example the application
of two identity functions to each other reduces to just one identity function:

(Az.z) (A\y.y) =5 (A\y.y)

We will not consider the a-rule any further because we can assume that substitution application
will avoid variable capturing. This is a quite common assumptions and easy to enforce. Replacing
z in e by ey requires to first rename all variables in e away from variables in e;. This implicit
operation guarantees that the substitution can be safely executed [Chu40].

Types are an important vehicle in programming, because they can be used to capture invari-
ants. In this sense, the untyped A-calculus has only one type, because everything is a term, and
one cannot distinguish between functions and non-functions which attaches a rather misleading
meaning to the name “untyped” A-calculus. The more refined the concept of types, the more
invariants the type system can capture.

For the purpose of our example, we introduce now a simple type system which goes back to
Church [Chu41] and differentiates between atomic and function types. The syntactic formation
rules are expressed using standard extended Backus Naur form notation (EBNF):

14

CHAPTER 2. LOGICAL FRAMEWORKS 15

Types: T == al|T — T2

This refinement of the untyped A-calculus has its effects on terms: For the typing rules to be
sound which we will introduce below, we must endow bound variables with type information.

Terms: e == xz|Ax:T.e|e e

We call a term closed, if all variable occur in the scope of a A-binder. For example, the term
Az : 7.x is closed whereas Az : 7.y is not. Terms which are not closed are called open.

Types allow us to separate valid terms from invalid terms via a deductive system. In general,
deductive systems are defined by a set of judgments and a set of inference rules. A judgment
is an informal statement, the inference rules help to establish its truth in the following way:
A judgment is said to be evident, if it can be deduced from axioms by applying the inference
rules. For simplicity we think of axioms as inference rules without any premisses. For a very
enlightening presentation we refer the interested reader to the work of Martin-Lof [ML8O0].

We assert that a term e is valid by the judgment: “term e has type 77 and which we
abbreviate with e : 7. There are only two inference rules for this judgment which we give in
natural deduction style.

—
Fo:m
Fe:m " Fei:m—omn Fey:my
tplam tpapp
FAXzx:m.e:m — 1 Feex:n

The rule tpapp is an inference rule with two premisses which reads: if the judgment e :
79 — 71 holds, and e : 75 then the judgment e; ey : 71 holds, too. The rule tplam is slightly
more complicated, because it introduces an additional assumption marked by the label v which
is discharged when the rule is applied. Note that there are no axiom rules. Deductions can only
be closed by introduced hypotheses.

Going back to the previous discussion, the introduction of types and the typing relation
makes a distinction between valid and invalid terms possible: A term e is valid if there is a type
7 and e : 7 is derivable from the two rules above. If not, it is invalid. For any type 7 the term
(Ax : 7.z x) for example is invalid, because when considering the body of the term, if 2 has type
7, the rule tpapp is not applicable, and neither is tplam.

The reduction rules from the untyped A-calculus endowed with types at the variable binders
form the reduction rules for the simply-typed A-calculus.

AT :T.e =4 Ay:T.ely/z]
(Az:Te1) e =35 eilez/x]

On the more pragmatic side, there are terms in the untyped A-calculus which allow infinitely
many applications of the reduction rules, as for example:

(Ar.zz) (Arv.xz) =5 (Azxz) (Aroxz)=g---

15

16 2.2. THE SIMPLY-TYPED A-CALCULUS

This particular infinite rewrite sequence cannot be derived with the reduction rules in the simply-
typed case if we stipulate that we are only working with valid terms. As we have seen, the term
(Axz : 7.z) cannot be assigned a type, and hence, all terms in this rewrite sequence are ill-typed.
As a matter of fact, we can show that for each well-typed term, there is only a finite sequence
of reduction step before no reduction step is applicable no more. The right-most term of such
a sequence is called a normal form of the initial term, and as we will discuss now, it is always
unique.

2.2.1 Reduction Relations

The reduction rules of the simply-typed A-calculus are commonly used to assign meaning to a
term. One way of doing this is to identify all terms that reduce to the same result as a class, and
to pick one witness of the class as a semantic representative. Is this semantic well-defined? Is
it sound? Needless to say, that in order to decide if two terms mean the same thing we have to
check that they are in the same class. Is it possible to calculate the class representative for each
term quickly and effectively? Is the meaning of each term unique? In this section we formally
define an appropriate reduction relation for the simply typed A-calculus for which we prove the
unique existence of class representatives in Section 3.2. This class representative is commonly
referred to as normal form.

Informally, we apply the S-reduction rule in the following way: for a given term, select a
subterm, match it with the left hand side of a reduction rule and then replace it by the right
hand side. In the following, we make this more precise. To assert that a term e reduces to a
term € in one step, we use the judgment e Ly ¢/. The rules which define this judgment are as
follows:

; rbeta
(Az: T.e1) ea — ejlea/x]

1 /
e — €
) rlam
Az :T.e — Ax:T.e
1 / 1 !
€1 — 61 €9 — 62
rapp; rappy
1 1
€1 €9 —> 6’1 €9 e|1 e — €] 6’2

For any given term, there might be more than just one possibility to apply a reduction rule.
Consider for example the well-typed term Az : 7.(Ay : 7.y) ((Az : 7.z) =) which can reduce in
one step to two different terms: Az : 7.(Az : 7.x) £ and Az : 7.(\y : T.y) x. First, the body of
the entire expression is amenable for S-reduction as this derivations shows:

) rbeta
My :7y) (Nz:12)x) — (A\z:7.2) 2

rlam
Az T.(Ay s my) (A2 : m.x) o) NSV 7.(A\z : T.1) T

16

CHAPTER 2. LOGICAL FRAMEWORKS 17

Second, the argument inside the body is also amenable for S-reduction.

rbeta
(A\z:7.x) BRI

rappy

Ay :my) (A2 : 7.x)) SN Ay :Ty)x .

Az T.(Ay Ty) (A2 2 moz) 2) ENSVE T.(A\y : Ty) x

Repeated applications of single-step reduction sequence are captured by the multi-step reduction
relation: If, for example, e; SN eo and ey LI e3 and e3 LN e4, then we write e =5 ey
Clearly, e — ¢’ is again a judgment, which we define by two inference rules.

1 ’ ;% "
) e — e e — e
rid rstep
* * "
e — e e —r €

Finally, we define the conversion relation as the reflexive, transitive, and symmetric closure
of the multi-step reduction. e; and e, are convertible if and only if the new judgment e; <— es
is derivable using the following inference rules:

! — ¢ e «— ¢ € "

e — e e — e
rrefl — rred - rsymm p rtrans
e <— € e <— e e <—— e e <— e

It is very easy to see, that there is a derivation of Az : 7.(Az : 7.2) . «— Az : 7.(Ay : 7.y) =.

To guarantee soundness of the reduction semantics, we need to show the well-known Church-
Rosser property, that is that any two convertible terms reduce to the same unique normal form
given that their reductions terminate. The informal development of this proof will be the main
content of Chapter 4. But first, we investigate possible formalizations of the simply-typed A-
calculus in a logical framework, their advantages and their disadvantages.

2.3 Methodology of Representation

The first step, when using a computer to facilitate the design and the formal development of
a programming language or a logic, is to choose an appropriate formalism to represent these
abstract systems or object languages as we sometimes call them, in order to make them amenable
for algorithmic manipulation and automated reasoning. As a matter of fact, as we show in
this thesis, this point cannot be overemphasized. We will see, the more elegant and direct a
programming language can be represented — in our example the simply typed A-calculus —
the easier it is to do the second step namely to specify meta-theoretic properties, such as the
Church-Rosser theorem.

Even though the formalism to represent an abstract system is called a meta-language in the
literature [HHP93, McD97] we will not adopt this name in order not to confuse the reader with
the continuous overloading of the term “meta”. Throughout this thesis, we use the word “meta”
only to refer to the reasoning layer, the upper level above the representation layer in Figure 2.1.
For us, the informal description and the formal representation of a programming language is
very close and natural, and since the adequacy of representation is the most basic assumption,
we can almost identify the informal and formal representation of an abstract system. Instead of

17

18 2.3. METHODOLOGY OF REPRESENTATION

Informal Reasoning

Church-Rosser theorem
Cut-elimination theorem
Type preservation properties

Informal Specification Logical Framework
Simply-typed A-calculus Type theory LF
Logic calculi Judgments-as-types
Operational semantics Derivations-as-objects

Process of representation/formalization/encoding

Figure 2.1: Methodology of representation

meta-language, we adopt the common name logical framework for the representation language,
and we speak of the encoding of an abstract system, such as the simply-typed A-calculus, as the
image of the representation in the logical framework.

In this section, we motivate and describe the minimal requirements we stipulate for the
representation language, which gradually leads to the definition of the logical framework LF
[HHP93]. We also review other logical frameworks, such as the calculus of constructions [Coq86].

2.3.1 Type theory

The challenge in representing a programming language or a logic which is specified via a de-
ductive system is to define suitable concepts to represent its components: the set of judgments
and the set of inference rules. In the past few decades approaches based on type theory have
prevailed. The underlying paradigms suggest to use types to represent judgments, and objects
to represent derivations. To show that “a judgment is evident” reduces in type theory to the
construction of an object, the so-called witness of a type corresponding to the judgment. If
such a witness exists the type is called inhabited, otherwise uninhabited. Within this paradigm,
judgments are hence represented as types and derivations as objects.

In order to validate formal arguments about derivations in a deductive systems, we must be
sure that the objects in the logical framework that are being manipulated naturally correspond to
derivations in the deductive system and vice versa. Therefore, it must be a priori enforced, that
all derivations of a deductive system stand in one-to-one correspondence with their encodings.
This requirement provides the central justification of formalization and formal reasoning in
general, it must not be destroyed by any extensions to the logical framework.

2.3.2 Higher-order abstract syntax

The issues which arise when representing the simply-typed A-calculus from the Section 2.2 in a
logical framework are manifold. We hence tackle them, one by one, and we start with a tech-
nique called higher-order abstract syntax. Higher-order abstract syntax provides an extremely

18

CHAPTER 2. LOGICAL FRAMEWORKS 19

brief and elegant way of representing variables, and capture-avoiding substitutions. In our first
example of the untyped A-calculus, terms were defined by the following syntactic rules:

Untyped terms: e == x| Az.e|e e

Implicitly, this syntactic description defines a judgment and a set of inference rules. It is
very important to understand the elegant uniformity since it is a recurring scheme throughout
this thesis, and only a deep understanding of this technique can explain the benefits of all the
techniques which are developed and discussed in subsequent chapters. The judgment induced
by the syntactic rules above is simply “is an untyped term” for which we simply write “term”,
and the inference rules are:

x
term
term term term
lam® —app
term term

Note, that the treatment of variables is implicit in these rules. There is no need for a rule which
states that z is a term, since this assumption is dynamically introduced by the lam rule and
discharged thereafter. There is a crucial difference in presenting the syntax of terms in EBNF
or as a deductive system. In the former case, one might first think of representing variables as
strings, or integers, or some other auxiliary construct, which would lead to the representation
of the two judgments as type “term” and type “var”

term : type
var : type

which, hypothetically speaking, would lead to the following representation of the object con-
stants: “var” of type var — term which coerces variables to terms, “lam” of type var — term —
term, and “app” of type term — term — term:

var : var — term
lam : var — term — term
app : term — term — term

In the later case, on the other hand, one might be inspired to represent the variable of the
untyped A-calculus by a variable provided by the logical framework. This is the concept which
we predominantly use in this thesis and it is called higher-order abstract syntaz [PESS]. It leads
to a much simplified representation of terms: we only need to represent one judgment, namely
term. Formally, we write that "term' = term, where the “term” on the left of the equality
symbol is the judgment “term”, and the “term” on the right is a type. The representation
function maps judgments to types and derivations to objects and is written as ™.

term : type

Using this technique, we can inductively define the encoding of the untyped terms by repre-
senting each of the inference rules. In the case of the A-binder, we must dynamically introduce a

19

20 2.3. METHODOLOGY OF REPRESENTATION

new bound variable, . Note that the A-binder to the right of the equality sign is the A-binder of
the logical framework. The e to the left of the equality symbol represents the derivation of the
premiss. Throughout the thesis, we will name the newly defined object constants in correspon-
dence with the names of the rules they are representing. This greatly improves the presentation
of this material. In addition, it is always be clear from the context what a name refers to.

r 1
T

term
e

term

lam?®

term = lam (Az."e")

In a similar, but much easier way, the application rule is represented by an object constant
“app”. e; and e are simply symbolic names of the derivations of the premisses.

r al
€1 €2
term term

app
term =app e ey’

In summary, the representation of the lam and the app rule are two object constants, with
corresponding names. Note that the type of “lam” expresses that it expects a function as
argument.

lam : (term — term) — term
app : term — term — term

As a side remark we want to point out, that both possibilities are correct in the sense that it
is possible to identify A-terms with their images in the type theory. Such an encoding is called
adequate. We discuss the problems related to adequacy in the the next subsection.

Why is the encoding using higher-order abstract syntax preferable? We make the following
observation: Closely associated with the notion of a variable is the notion of substitution. If
A-terms were encoded as suggested in the first solution with “var” and “term”, the reduction
rules could not be represented directly, because the notion of substitution has to made explicit.
As example, consider the left hand side e;[ez/x| of the f-reduction rule from Section 2.2. In
addition, the properties of substitutions must be analyzed and proven explicitly in order to take
advantage of them.

Lemma 2.1 (Substitution) If e; : term with zero or more occurrences of the variable x : var,
and ey : term, then there exists a term €', where all occurrences of (var x) have been replaced by
€.

Proof: The proof goes by induction over e;. O

Even though it is easy in this particular example, substitution lemmas require in general very
tedious and time consuming proofs in more complicated settings. In addition, experience has
shown that lemmas of this form are quite common when experimenting with programming
languages and logics. Most likely their mere existence will pollute the proof search of subsequent

20

CHAPTER 2. LOGICAL FRAMEWORKS 21

lemmas in the implementation which is being discussed in Chapter 8. For larger examples, such
as the entire simply-typed A-calculus (see in Section 2.2) including a typing relation and more
(to be discussed in Section 3.2), proving these kind of lemmas is a necessary, time-consuming,
and simultaneously not very rewarding activity. Therefore, it is of great benefit, if the treatment
of variables and substitutions is implicit.

On the other hand, if we represent terms with higher-order abstract syntax, the substitution
lemma comes for free by the means of the representation. "ej[es/z]” for example is encoded
by the (-rule of the logical framework. Since "Az.e; ' = lam (Az : term."e; ") where "2 = z,
it follows that (Az : term."e;) is a function of type term — term. Moreover, by construction,
if we apply this function to any other term all variables z are being replaced by the argument
term, hence force executing substitution in the A-calculus. Consequently, the representation of
the left hand side of the §-rule in our object language is simply

Ceilea/z] = (Az : term."e;) Tep”

where the juxtaposition to the right of the equality symbol is the application operation of a
function to an argument provided by the logical framework.

The difference between first-order and higher-order representation techniques is that with
first-order representations the concept of substitution and the substitution application mecha-
nism must be explicitly defined and the associated properties explicitly proven. With higher-
order representations on the other hand, we can use the variables and notion of substitution
from the logical framework and inherit all associated properties for free. Naturally, when us-
ing higher-order representation techniques, the proof of adequacy is more complicated and less
direct then in the first-order case. The adequacy of representation is essential in our approach
and therefore discussed in the next subsection.

2.3.3 Adequacy

Deductive systems and their representations in a logical framework must correspond to each
other. The reason is that any derivation in the deductive system should be representable as
an object in the type theory and vice versa. In particular, after mechanically manipulating
objects in the type theory, we must be certain that the results correspond to derivations in the
deductive system. In addition, if higher-order abstract syntax is used, the representation must be
compositional, i.e. f-reduction provided by the logical framework corresponds to substitution.
This correspondence is called adequacy. The untyped A-calculus can be represented in a very
simple logical framework, as we have seen in the previous subsection namely the simply-typed
A-calculus (which would be the logical framework). On the other hand, representing the simply-
typed A-calculus from Section 2.2, requires a refined logical framework to guarantee the adequacy
of encoding which we motivate in this subsection, and which discuss in detail in Section 2.4.

In Section 2.2 we have encountered well-typed and ill-typed terms. Since every simply-typed
term e can be embedded into the untyped A-calculus, clearly "e : term, but on the flip side,
every ill-typed term €’ can also be embedded: "¢’ : term. The encoding is hence not adequate.
It is not because there are too many objects of type “term”, many more then there are well-typed
simply-typed terms.

This observation motivates the solution which has been widely accepted in the literature. In
order to preserve the adequacy of the encoding, we must partition the type “term”. This can be
done by indexing it. But by what? The best solution is to index it by the type which all objects

21

22 2.3. METHODOLOGY OF REPRESENTATION

in this partition share! Intuitively, we partition the the set of objects of type “term”, into subsets
corresponding to the different types. We will see that these subsets are pairwise disjoint because
typing is unique (by Lemma 2.7). A consequence is, that by construction, ill-typed terms do not
belong to any of those partitions. Therefore, strictly speaking, the union of all index partitions
yields the set of simply-typed terms we are interested in but there is an additional partition;
the partition of all ill-typed terms. In order to distinguish non-indexed from indexed types we
continue to call the former type and the latter type family.

In order to represent simply-typed terms, we combine the syntactic formation rules for well-
typed terms and their typing rules, as discussed in Section 2.2. The resulting deductive system
is described by a judgment “is a term of type 77, or short “term 77, and the two inference rules
are given below.

T
term 7
term 7o term (19 — 71) term Ty
——— lam” app
term (11 — 79) term 71

The representation of the judgment is defined by
Tterm 7' = term "7

where the juxtaposition to the right of the equality symbol is the type application operation
provided by the logical framework, which we will discuss in Section 2.4. For the remainder of
this section, it is sufficient to read the argument to the type family term as index.

Similarly to the representation of the untyped A-calculus, we obtain two equations, one for
the lam rule

r il
x
term 7
e
term 7o
—lam”
term (17 — T2) =lam (Az : term "7 .Te7) : term "1y — T
and another for the app rule
r ml
e1 €2
term (19 — 11) term 7o
app
term 7 =app "e; ey term Ty

which implicitly define the constants lam and app. Types of the simply-typed A-calculus are
represented by tp : type, and

11— 19 '="rm Tarrow "1y

where “arrow” is a constant defined in LF. For better readability we use it as an infix operator.
In summary, the representation of simple types, the judgment “is a term of type 7”7 and the

22

CHAPTER 2. LOGICAL FRAMEWORKS 23

tp : type
arrow : tp — tp = tp

term : tp — type
lam : (term 77 — term T5) — term (77 arrow T%)
app : term (T arrow T}) — term Ty — term T}

Figure 2.2: Type and term constant declarations

inference rules lead to the constant declarations depicted in Figure 2.2. “tp” is a type, “term”
is a type family, and both are alternatively called type constants. “arrow”, “lam”, “app” are
object constants. In order not to confuse the type with the object level, we follow the standard
definitions in the literature [HHP93], and call the type of a type constant kind, and continue to
call the type of an object constant type. The uppercase variable names 7% and 75 are universally
quantified place holders that can be instantiated with any type 77 and T5.

As a matter of fact, the distinction between objects, types, and kinds define already the
syntactic hierarchy we require from a logical framework. A complete list of type and object
constant declarations is called a signature, complete in a sense, that each type and each kind
used in the signature does not contain any undeclared type or object constants.

We return to the question of adequacy. An encoding is adequate, if each derivation in the
deductive system has exactly one counterpart in the type theory and vice versa. The adequacy
result for the representation of types is in one direction a straightforward inductive argument.
Let ay,...,ay, be atomic types, which are directly represented in the logical framework as object
constants aj : tp ...ay : tp.

Lemma 2.2 (Adequacy of representation of types I) If 7 is a type, then "77: ip

Proof: by induction on 7:

Case: 7 = a;:

a; : tp by assumption

Case: T=7 > 1

fm':tp by i.h. on 7
"m0 tp by i.h. on 7
T Tarrow "1 ' tp by application provided by the type theory
" — 1 tp by definition

O

23

24 2.3. METHODOLOGY OF REPRESENTATION

The second direction is not more complicated, but it requires that the objects of the logical
framework can be analyzed structurally, i.e. an object must have only finitely many shapes. This
requirement is clearly not satisfied for types. Consider for example the following three objects:

(Az : tp.x) a1 (2.1)
aq

(Az : tp.ay) as

Obviously, all three have type tp. Moreover, if one stipulates the existence of an appropriate
[-rule in the type theory (as one can), all three of them reduce to a;. In other words, there are
too many objects in the type theory corresponding to exactly one derivation in the deductive
system, hence violating the desired and required one-to-one correspondence between derivations
and objects, and hence clearly violating the adequacy of the representation.

What can be done? The answer comes naturally. We consider only those objects in the LF
type theory, which are canonical, i.e. objects which cannot be reduced any further. In essence,
the logical framework we are motivating here, guarantees the existence of these canonical forms
for every well-typed object. The canonical form theorem is essential to the whole thesis, and
is discussed in more detail in Section 2.4. But note, that it is implicitly already used here:
a canonical object T : tp of the logical framework has always the shape of either of the two
B-normal forms: T' = a; or T' =T} arrow T5.

Lemma 2.3 (Adequacy of representation of types II)
If T : tp is canonical then T ="7" and T is a type.

Proof: by induction over the canonical forms of 1"

T =aqa
T="a;" by assumption
a; is a type by assumption

T =T arrow Ty

Ty ="7"and 71 is a type by i.h. on T3
Ty ="1"and 7 is a type by i.h. on Ty
"1 = 1o ' =" Tarrow "o ' = T} arrow Ts by definition
T1 — To is a type by syntactic rule

O

In a very similar way, we can prove the adequacy of the representation of terms by structural
induction. But in this example, S-normal forms do not describe uniquely the possible shapes of
an object of type term: Consider for example the two objects:

lam (A\z : term (aq arrow ag).lam (Ay : term a;.app z y)) (2.4)

lam (Az : term (a1 arrow ag).lam (app z)) (2.5

24

CHAPTER 2. LOGICAL FRAMEWORKS 25

Both objects have type “term (a1 — a2) — a1 — a2”, and they correspond to the same
derivation:

x

term (a1 — ag) term a
app
term a9
—lam?
term a; — a9
lam®

term (a1 — a2) — a1 — as

The difference between the two terms is one application of the so called n-reduction rule,
which is also part of the logical framework:

v AMax =, M if £ does not occur in M

For adequacy, besides being -normal, the term must be in 7-long form, i.e. the n-rule must be
applied in reverse direction until the term cannot be expanded any further without introducing
a (-redex. Canonical objects are always in #-normal and 7-long form. We leave the details to
Section 2.4. In our examples (2.2), (2.4) are canonical, and (2.1), (2.3), (2.5) are not.

Since they exist, canonical objects can be analyzed according to their structure. Note, that
this observation holds for objects of atomic and of functional type. Any closed canonical object
E of type “term T has one of two possible shapes:

E = lam FE' where E':term T} — term Th
and T =T, arrow Ty
E = app Ey Es where Ej:term (T} — T)

and Es :term T}

Any closed canonical object E of type term 77 — term 75 has one of three possible shapes.

E = Xr:termTi.x where 17 =15
E = Xz :term Tj.lam (E' x) where (E' z): term T3 — term T
E = JXz:termT).app (E) z) (B2) where (FE z):term (T3 arrow Tb)

and (Fy x):term Tj

The adequacy theorem follows by two simple structural inductions, the proofs of the indi-
vidual cases proceed in a similar fashion as the ones for types.

Lemma 2.4 (Adequacy of representation of terms)

1. If e :: term of type T which may rely on assumptions of the form xy :: term T,..., T, =
term T, then "e' : term "1 which possibly contains wvariables of the form xy
term ™, ...,z term T,

2. If E : term "7 is canonical, possibly containing wvariables of the form x
term " ,...,x, : term "1, then E = "e where e :: term T which may rely on as-
sumptions of the form xq :: term Ty, ..., x, :: term T,

Proof: by structural induction over e, and FE. O

25

26 2.3. METHODOLOGY OF REPRESENTATION

All that remains to be shown for the adequacy of encoding of terms is compositionality,
i.e. that the (-rule of the logical framework can be used to represent substitution application.
Compositionality is not important for the adequacy of the representation of types, since it does
not employ higher-order abstract syntax, but is very important for the adequacy result for the
representation of terms.

Consider a term eq, with a free variable . After unfolding the syntactic formation rules, e;
is a derivation of the following form

€T
term 7o

€1
term 7

and its representation in the logical framework is a function:

r 1
€T

term 7o
€1
term 7 =Ax:term "7 Te i term Ty ' — term "1y !

Given another term es of type 7o, informally, the substitution means to replace all occurrences
of z in e; by the new derivation of es :: term 79. The representation of es yields

Teo b term "7y

Clearly, the term (Az : term "757."e;) Tey ' is well-typed, and it has a canonical form, but does
it correspond to the "ej[es/x]7? The answer gives the compositionality lemma which is typically
considered part of the adequacy property. It can be easily proven by structural induction given
a precise definition of substitution, which we omit here.

Lemma 2.5 (Compositionality) If e; is a well-typed term which is hypothetical in x ::
term T,x1 :: term Ty, ..., xp :: term 7, and es is a well-typed term of type T, then

Teilea/z]" = (Az : term "1 . Te;) Tey™
Proof: by structural induction over e;. O

Consequently, the representation of the §-rule of the simply-typed A-calculus as we intro-
duced it above, is perfectly sound. The S-reduction rule of the logical framework can be used
as a vehicle to represent substitutions.

2.3.4 Summary

Based on the principles we have introduced in this section, we can use logical frameworks to
reason formally about deductive systems. Judgments are represented as types and derivations as
objects. Consequently inference rules are encoded as constants. In this work, we consider only
logical frameworks that provide a notion of objects, a notion of types, and a notion of kinds;
in particular, in the next section we discuss the logical framework LF, that provides dependent
types, and it satisfies the property that each object, each type, and each kind possesses a
canonical form. It allows us to use higher-order representation techniques while preserving the
adequacy of the encoding.

26

CHAPTER 2. LOGICAL FRAMEWORKS 27

2.4 The Logical Framework LF

There are many logical frameworks suitable for the representation of deductive systems. The
logical framework based on the simply-typed calculus, such as Isabelle [Pau94] requires extra
infrastructure to guarantee adequacy theorems. For this work, however, we restrict our consid-
erations to a logical framework that provides dependent types, such that LF [HHP93]. Indeed,
dependent types facilitate adequate higher-order encodings. Thus, we have chosen LF as the
framework of choice for this thesis. In future work we plan to extend this work to other log-
ical frameworks, such as for example the calculus of constructions [CH88] or the linear logical
framework [CP96].

In this section we give a detailed overview over the language, the judgments, the inference
rules and the meta-theory of LF. Many, if not all of these results go back to the work of Harper,
Honsell, and Plotkin [HHP93], and the interesting reader is referred to an excellent tutorial by
Pfenning[Pfe00]. A detailed discussion about canonical forms in LF can be found in [HP99].
These are the three standard references for this section.

2.4.1 Syntax

Most of the syntactical constructions have been motivated in the previous section. All of them are
present in the logical framework LF. LF’s notion of dependent type provides enough expressive
power to warrant adequate representations of judgments as types, which we denote with A.
Kinds K are needed to classify well-formed type families. The formation rules for objects M
admit constants ¢, variables x, application M; My, A-abstraction Az : A. M. Types are formed
from type constants (or type families) a, type application A M, and dependent types I1z : A;. As.
A dependent type binds an object variable z, and allows other types in its body to dependent
on it. In other words, I1x; : A;. Ay is a generalized function type A; — Ag, where the variable
z is permitted to occur in the type As. As a matter of fact, we use the notation A; — As if the
variable z does not occur in the type As. Consider for example our slight but not unreasonable
simplification of the type of the “lam” constant

lam : (term T} — term T%) — term (T} arrow T5)

Strictly speaking (term 77 — term T5) — term (77 arrow T%) is not a type but a family of types,
since neither T nor 15 are declared anywhere. To transform it into a real LF type, we need to
build the II-closure and obtain

lam : IITy : tp. [IT% : tp. (term 1) — term 1) — term (7 arrow T5)

Note, that 77 and 75 are object level variables. There is a drawback to this complete notation;
whenever the object constant lam is used, it must be first applied to its domain and its range type.
Intuitively, this seems unnecessary since they can be easily be inferred from their positions and
occurrences in the type itself. They must be types: tp! Indeed, it is safe to omit these implicit
arguments if one uses the reconstruction algorithm proposed by Conal and Pfenning [PESS].
For better presentation, we hence omit inferable leading IT-abstractions throughout this thesis,
without further mention. The reader should bear this in mind.

Kinds: K == type|llz: A K
Types: A u= a|AM|Iz: A Ay
Objects: M == c|lz| My My|Ax: A M

27

28 2.4. THE LOGICAL FRAMEWORK LF

The representation of a deductive system is a set of constant declarations. Type constant
declarations represent judgments, and object constant declarations represent inference rules. A
collection of these declarations is called signature, which we denote by . Similarly, we introduce
the notion of a context as a collection of variable declarations xq : Aq,...,%, : A, which we
denote by , . Contexts play an important réle when we define the semantics and validity of
object, types, and kinds.

Signatures: ¥ = -|X,c:A|¥,a: K
Contexts: , == -|,,xz: A

The - stands for an empty signature and an empty context. We simply omit it (and the
following “,”) if the signature and the context are non-empty not to clutter the presentation

unnecessarily.

2.4.2 Semantics

The semantics of LF type theory is defined by a set of of judgments and inference rules. Among
the necessary judgments we must specify what are valid objects, types, kinds, signatures, and
contexts. Note, that the following judgments are all indexed by the signature >, but we can
consider it fixed for all our purposes, and therefore we take the liberty to omit it from the rules
given below.

Judgments:
Valid kinds: , F» K kind
Valid types: , Fs A K
Valid objects: , Fs M : A
Valid signatures: |+ X sig
Valid contexts: Fs, ctx

In Section 2.2 and Section 2.3, we have encountered two reduction rules, namely the - and
n-rule. As above, these rules also exist in the dependently typed setting, and they define a
congruence relation on objects, kinds and terms, which allows us to identify all objects which
do have the same unique canonical (i.e. S-normal, n-long) form. Canonical forms exist because
of Theorem 2.6 below. Its proof depends on the congruence judgments to include typing infor-
mation, but in this presentation omit it from the rules below in order to keep the presentation
clean.

Congruence on kinds: K7 = Ko kind
Congruence on types: A = As: K
Congruence on objects: My = My : A

Rules: Most of these judgments are mutually dependent, i.e. inference rules of one judgments
are defined in terms of another. The rules defining these eight judgments are all standard. We
start with the presentation of the typing rules of kinds.

28

CHAPTER 2. LOGICAL FRAMEWORKS 29

, FA:type ,,x:AF Kkind]
- kndtyp kndpl
, Ftype kind , FIlz: A. K kind

,FA:K K=K, +K': kind
, FA:K'

kndcnv

The typing rules for types and type families are defined as follows. They extend the simply-
typed A-calculus from the Section 2.2.

Y(a) =K
— famcon
, Fa: K
, FA e As. K, M : Ay , F Ay type ,,z: A F As:type)
famapp fampi
, F A M : K[M/x] , FIlz: Ay. Ay : type

Note that in the rule famapp, the free occurrence of z in K must be replaced by the object
M. A very similar replacement takes place in the rule objapp.

Yle)=A4 ,(z) =4

———objcon —— objvar

, Fc: A , Fx: A

,I—Al:type ,,ZE:All—M:AQ A ,I—M1:H{E:A2.A1 ,l_MZ:AQ .
objlam objapp
; ")\LUlAl.M:HIE:Al.AQ , l_Ml MQZAl[MQ/LU]
,"M:Al AlEAQ ,I—Ag:type
typcnv

) l_M:AQ

The rules for signatures are standard. Note, that the type A, and kind K in the rules sigobj
and sigfam are well-defined in the signature to the right of the declaration.

) FXsig -FA:type . FX¥sig -F Kkind |
sigemp sigobj sigfam
F - sig FX,c: Asig F X a: K sig

Similarly, the validity of , is established by the following rules.

F, ctx ., FA:type]
ctxemp ctxobj
F - ctx F,,z:Actx

Throughout any typing derivations of object, types and kinds, , must always remain valid.
Instead of enforcing this condition locally, we push this well-typedness condition all the way to
the axioms. Read from the bottom up, contexts always increase. Hence, we must extend kndtyp,
famcon, objcon, and objvar with this additional premiss. In order not to clutter the rules, we
leave these premisses implicit, too.

The logical framework contains two rules for definitional equality: the §- and the 5-rule.
As we have discussed in Section 2.3, the (-rule is helpful in the representation of substitution
lemmas. In Chapter 4 we will see further applications of this hard-wired substitution principle
of the framework.

29

30 2.4. THE LOGICAL FRAMEWORK LF

()\(II 1 A Ml) M2 = Ml[MQ/x] IB

n
N:AMz)=M x not free in M

Similar to the observation in Section 2.2.1 these two rules can be applied to any subterm of
an object, or a type, or even a kind. In order to make this kind of application entirely precise,
we define a conversion relation, naturally, one for each level. First, the conversion relation is
turned into an equivalence relation by building the reflexive, transitive, and symmetric closure.

KQEKl KIEKQ KQEK:),
kndrefl ———— kndsym kndtrans
K=K K| =Ky K| = K;
AQEAl AlEAQ AQEA;),
famrefl ——— famsym famtrans
= A1 = A2 A1 = A3
) My =M, . My =My, My;=M; .
—— objrefl ———— objsym objtrans
M=M M, = M, My, = M;

And second it is turned into a congruence relation =; conversion can be applied to subterms.

A=A . K=K .
cngkndpil cngkndpir
r: A K=1z:A.K r: A K=Ix: A K
A=A M=M
————— cngfamappl —————— cngfamappr
AM=A"M AM=AM
A1 = All . A2 = AIQ .
cngfampil cngfampir
Hw:Al.AQEHx:A'l.AQ H(I,‘:Al.AgEnxtAl.AIZ
A=A . M=M .
cngobjlaml cngobjlamr
Ne:AM=M: A M e AM=Mx: A M
M1 = M{ . M2 = Mé .
cngobjappl cngobjappr
MlMQEM{MQ MlMQEMlMé

This concludes the formal presentation of the rules for the logical framework LF. The signature
of Section 2.3 is in fact a LF signature after appropriate reconstruction of the types. More
examples can be found in Section 2.5, where we encode the rewrite relations from Section 2.2,

and in Chapter 4, where we will represent the Church-Rosser theorem based on an argument of
parallel reduction.

2.4.3 Canonical Forms

In Section 2.3, we have seen that canonical forms are indispensable for the adequacy Lemma 2.3
and Lemma 2.4. Canonical forms are (-normal, 7n-long forms. Formally, this property is

30

CHAPTER 2. LOGICAL FRAMEWORKS 31

reflected in two mutually dependent judgments: the judgment about canonical forms and
the judgment about atomic forms. Informally again, a canonical form M€¢ has the form
Az1 A Lo ATy s Ay M where M® is atomic, that is, its head A is either a variable or a
constant, and it has generally the following form: h M7y ... Mf, where the M{’s are canonical.
To guarantee n-long forms, M® is required to be of atomic type. As auxiliary judgments, we
also need to formalize canonical types, which enforce that all objects occurring as arguments to
type families in A-labels are also canonical.

Judgments
Canonical objects: |, M f A
Atomic objects: , FM] A
Canonical types: , F A1 type
Atomic types: , FALl K

Rules The following rules define canonical objects, atomic object, canonical types and atomic
types.

, F AL M type ,,z: A1 EMA{ Ay) , FAltype ,FMJ]A
canpl canatm
L FAz AL M (Tl : Ay Ay ,EMAA
,I—MﬂAl AlEAQ s I—Ag:type
cancnv
) I_MTTAZ

Ye)=A4 , (z)=A

——— atmcon — atmvar

, Fecl A , Fz |l A

,"MIiH[II:AQ.Al ,"MQTTAQ ,I—M\LAl AIEAQ ,|—A2:type
atmapp atmcenv
, F My My | Ay[Ms/x] , FM | Ay
) l_Alﬂtype aax:AIFAQﬂtype .) FA\Ltype
cntpi ——— chtatm
, F Iz : Ay. As) type , A type
Y(a)=K
—— attcon
, Fal K
L FALz: A K, FMApA ,FAlK K=K ,FKkind
attapp attcnv
, FAM | K[M/z] , FALK

2.4.4 Meta-Theory

The adequacy results from Section 2.3 depend crucially on one property of LF: Every LF object
has a canonical form. Otherwise one could not carry out an argument by structural induction
over the form of LF objects, which is necessary to establish that there is a one-to-one correspon-
dence between derivations and objects in the type theory. In Chapter 4 we will make a very
similar observation and in fact the entire formalism we present in Chapter 5 is based on this

31

32 2.5. MORE EXAMPLES

property: Every object defined in the logical framework has a unique canonical form, i.e. it is
(G-normal and 7-long. The interested reader may study the proof in [HP99].

Theorem 2.6 (Canonical form theorem)

1. If, FM 4 A then , M : A.

2. For each object M such that , = M : A, there exists a unique object M' such that M = M’
and , = M' v A. Moreover, M' can be effectively computed.

3. For each object A such that , = A : type, there exists a unique object A" such that A = A’
and , = A1 type. Moreover, A" can be effectively computed.

Proof: see [HP99]. O

A direct corollary of the canonical form theorem is that each object has a unique type.

Corollary 2.7 (Uniqueness of typing)
If, - M: A
and , = M : Ay
then there exists a unique type A s.t. A = A1 = Ag
and , = A1 type
and , FM: A

Proof: see [HHP93]. O

That each object has a canonical form and a unique canonical type provides the theoretical
foundation of the theory and the logic development in the subsequent chapters in this thesis. The
necessity to have canonical forms is absolutely essential, and it cannot be emphasized enough:
one can only extend this work to logical frameworks, which possess these properties.

2.5 More Examples

The simply-typed A-calculus in Section 2.2 is defined by its terms and its reduction relation. In
particular, in Section 2.3 we have already discussed an adequate representation of well-typed
terms. In order to show some more examples of how to represent a deductive systems, specified
by its judgments and its inference rules, we address now the representation of the reduction
relation. The judgment e; LN ey is represented by a type family 1y which we use as an
infix operator.

'_61 L> 62_':'—61_' —1> '—62_'
Note, that here again we are overloading notation in order to simplify the presentation. We
use the same arrow for the informal and formal representation of the reduction relation; the
reduction arrow must not be confused with the function arrow of LF.

Because of the elegant representation of variables of the simply-typed A-calculus using higher-
order abstract syntax, we can easily represent the rbeta-rule:

32

CHAPTER 2. LOGICAL FRAMEWORKS 33

r 1
rbeta

(Az : T.eq) e9 BN e1les/x] =rbeta (Az : term "77.Te; ") Tey

capp (lam (Az : term "77.7e; 7)) Tey BN (Az :term "77.Te;) Tex
where "z =z
Note that on the right hand side of the equation we need not represent 7 as argument to “rbeta”;

it is implicitly represented through the type of "e; ' as is the type of "eo . The representation
of the rlam-rule is very similar.

r 1

D
1 '
e — €

) rlam
A\t :T.e — Az:T.€

=rlam (A\z : term "7 .7e™) (Az : term "7 . Te/T) (Ax : term "7 . TD7)
: lam (Az : term "7 7. "e™) 5 lam (Az : term "77.7e'T)

where "z =z

Differently from the informal representation, we make the fact that z might occur free in D
unambiguously explicit. The representation of D is parametric in z! The third argument to

“rlam” has therefore the following type: Ilz : term "77.7¢e™ Ly re where Tz = .

r B
D
1 /
€1 — 61
rapp;
1
e1 ea — €} e =rapp; (Az:term "7".Te; ") (Az : term "7 7. Tey;) Teg T TDT

capp (Az :term "7 ."e;) Teg” BN app (Az : term "7 7.7e]T) Tey
where "z ==z
Very similar to the encoding of rapp; is the rule rapp,:

r 1

D
1 ’

rappy

1
e1 ea —> e €) =rappy (Az :term "7 .Te;) T

62—I l_e/2—l I_D—I

capp (Az :term "7 . Tep) Teg™ B app (Az : term "77.7e;) Tel) T

where "z7 =z

The encoding of the single step reduction relation for the simply-typed A-calculus is adequate,
as one can easily verify by induction.

33

34 2.6. FUNCTION SPACES

1. If D e N
may rely on assumptions of the form xq :: term 71, ..., %, 2 term 7, then "D7: Tey ! RN
Teo ' which possibly contains variables of the form xq : term ", ..., x, : term "7, 7.

Lemma 2.8 (Adequacy of the representation of BN) es which

€2

2. If D : Te;? —

1 .
term "m ..., x, : term "1, then D = "D where D :: eg — ey which may rely
on assumptions of the form xq :: term 1, ...,y :: term 7,

Teo ' is canonical, possibly containing variables of the form x1 :

For all other encodings in remainder of this thesis we will not write out the adequacy theorems
explicitly any more. They always follow the same scheme. Omitting inferable arguments, we

obtain as extension of the LF-signature from Section 2.3 the adequate encoding of the B
relation.

1

— : term T — term T' — type
rbeta (app (lam E;) Es) L E B,
rlam : (Hz:term 7). FE x B x)
— (lam E) - (lam E')
rapp; B E;
— (app By Bz) — (app E| By)
rappy By E}

1
— (app E1 Ez) — (app E1 Ej)
By applying the same representation techniques discussed in this section, we further extend
the signature by an encoding of the multi-step relation — and the conversion relation <—s .

*

— = term T — term T — type
rid : E — FE
rstep @ E g

—~E' = E"

—E 5 E"

— term 7" — term 7' — type
rrefl E +—— FE
rred E X FE
—FE +— F'
rsymin E «— F
—FE «— E
rtrans E «+— F

2.6 Function Spaces

- El EII
- FE «— E"

The function spaces, definable in the logical framework LF are different from function spaces
application programmers are used to. In general, programming relies on features such as function

34

CHAPTER 2. LOGICAL FRAMEWORKS 35

definition by cases or if then else constructions to code specific applications. Those features are
not supported by the logical framework. In fact, the operational meaning of LF includes only
two operations: (-reduction and n-reduction. Hence, LF is not expressive enough to represent
functions that decide if a given term is a (-redex.

Boolean values: B = T | L

Informally, the decision procedure can be defined by pattern-matching

AE :term T'. case E
of (app (lam Ey) Eg) — T
| (app (app E1 E2)) — L
| (lam E') — L

and clearly, this function is cannot further normalized since its argument E is only given at
run-time. Therefore, this function does not possess a canonical form in LF, and thus functions
of this kind violate the adequacy requirement of the encoding.

Therefore we must distinguish the two function spaces from each other. One function space
is the LF function space A; — As, which contains all LF objects that map objects of type A;
to objects of type As. Because of the canonical form theorem, functional LF objects of this
type are inductively defined, and therefore, we call it parametric. In Section 2.3, for example,
we have examined all functions of the type “term 77 — term 7%”. The body of each function is
either a constant from the signature X, or a local parameter, applied to arguments.

We call the other function space recursive, because it permits function definition by cases and
recursion. The question of how to arrange it so that the parametric and the recursive function
space can safely coexist is one of the main contributions of this thesis. In essence, the nature of
the problem is that there are too many recursive functions destroying our requirement for the
existence of canonical forms. It has been shown that in the setting of a non-dependently typed
framework (the simply-typed A-calculus) one can express the recursive function space in terms
of the parametric using a modality, which satisfies the properties of the modal logic Sy. We refer
the interested reader to [DPS97, Lel98].

2.7 Summary

A logical framework is a formal system which represents deductive systems using type theory.
Elegant representations of deductive systems that include variable concepts and appropriate
substitution principles are facilitated by higher-order representation techniques. In order to
guarantee the adequacy of encoding, each object in the logical framework must possess a canon-
ical form. The logical framework LF [HHP93], which is the logical framework of choice for this
thesis, supports higher-order representation techniques and has proven to be appropriate for
the representation of many deductive systems from logics, programming languages, operational
semantics, and many others [Pfe99].

35

36

2.7. SUMMARY

36

Chapter 3

Reasoning

3.1 Introduction

The quality of any design can be drastically improved by specifying and verifying associated
characteristic properties during the design process. For example, we expect that a typed pro-
gramming language satisfies the type preservation property, i.e. that the evaluation of any well-
typed program preserves types. Similarly, a calculus of inference rules for any logic must be
consistent; if falsehood is derivable, typically any other formula is also derivable, a circumstance
that invalidates consistency. Following [Gen35], the consistency of the sequent calculus for first-
order intuitionistic logic for example, follows from a purely syntactical argument. Gentzen has
shown that any derivation with cuts can be transformed into a derivation without cuts while
providing evidence for exactly the same judgment. By inspection of the other inference rules,
the consistency of first-order intuitionistic logic follows easily.

Therefore, good designs of deductive systems requires designers to reason about their prop-
erties. In particular, the overall goal of this thesis is to provide the necessary technology and
tools to support and automate these reasoning tasks. More specific in this chapter we extend
the example presented in Section 2.2 and develop as case study the proof of the Church-Rosser
property in Section 3.2. Then we review previously proposed techniques to formalize meta-
theoretic arguments about deductive systems, and discuss briefly how far these techniques can
be automated in Section 3.3.

3.2 Church-Rosser Theorem

The Church-Rosser theorem for the simply-typed A-calculus states that two convertible terms
e1, es have a common reduct ¢ and two reductions from e; to €’ and from ey to €. This is
property is easily visualized by the following diagram.

€1+ €2

% - -k
"«
!
e

In this presentation we use solid arrows to represent given reductions, and dotted arrows
for reductions whose existence is still to be shown. The goal of this section is to develop the
Church-Rosser theorem for the notion of reduction defined in Section 2.2. The way we proceed

37

38 3.2. CHURCH-ROSSER THEOREM

is to introduce a new notion of reduction which we call parallel reduction as opposed to the
other notion of reduction which we call ordinary reduction in order to keep them apart. The
technique of using parallel reduction and parallel conversion for the proof of the Church-Rosser
property goes back to Martin-Lof and Tait (see [Bar80]). We proceed as follows: First, we take
the ordinary reduction relation defined in Section 2.2 and prove some simple properties. Then,
we introduce the notion of parallel reduction, show the Church-Rosser property and eventually
finish with an equivalence proof between parallel and ordinary reduction. But the reader should
be alert: The main goal of this section is not the theory itself, but rather the development of
an example with which we can explain and test the automated reasoning engine we develop in
this thesis. The argument itself is well-known, and we refer the interested reader to a further
and more detailed explanation in [Pfe93].

3.2.1 Properties of Ordinary Reduction

We begin now with two easy proofs about ordinary reductions: First we show that the multi-step
reduction is transitive, and second that all inference rules for the single-step reduction relation
are still valid, even if we exchange the single-step reduction arrow BN by the multi-step
reduction arrow — .

More precisely, the first lemma expresses that two multi-step reduction with a common term
¢ at the end of the first and the beginning of the second can be merged. This is a very basic
and easy meta-theorem. For example, it follows by induction over the reduction ending in €”.
By careful analysis of the inference rules, we notice that the last applied inference rule is either
the identity reduction rid or the step case rstep. In the latter case, one appeal of the induction
hypothesis provides the right reduction derivation from which the necessary reduction can be
constructed.

Lemma 3.1 (Transitivity of ——) IfD; :e — ¢ and Dy e/ —— € thene — €.

Proof: by induction over Dj:

Case: Dy =— rid
e — e
Dy:iie — ¢ by assumption
/
no
*
e e/// e/// e/
Case: Dy = . rstep
e — €
P s e by i.h. on D} and Dy
Qe —» ¢ by rstep on D}, P

38

CHAPTER 3. REASONING 39

The proof of Lemma 3.1 visualizes the three most basic operations used when reasoning about
deductive systems. The first technique is induction. It means, that the different proof cases
may take advantage of the fact that the induction hypothesis holds for any smaller derivations
according to some well-founded ordering. In particular, since the argument is by structural
induction, the induction hypothesis holds for all subderivations of the given derivation, and
hence the well-founded ordering is simply the subderivation ordering. The second technique
is case analysis: Derivations can be distinguished by the last applied rule. The third and last
technique is the use of other inference rules to reconstruct the desired result derivations (last
step, in the rstep case).

The second lemma, generalizes the rules from Section 2.2.1. It states, that the multi-step
reduction can be manipulated with the same rules that define the single step reduction when
one exchanges the N symbol by the —— symbol. The rules are admissible, because they
require a reorganization of the premiss derivations in order to arrive at the conclusion.

Lemma 3.2 (Admissible rules)
1. IfDue — € then A\t : 7o.6 — Az :79.¢€
2. IfD:ef — e\ then e ey N el e
3. IfD:ey —s ey thenel e — e e

Proof: by structural induction over D

1. Case: D = — rid
e — e
AL To. € LN AL To. € by rid
D! D
e 1 o el
Case: D = . rstep
e — €
Prodz:m.e =5 \x:ma.€ by i.h.(1) on D"
1
Py Az :To.e — Az : 1. €" by rlam on D’
QuAr:To.6 — Az :To.€ by rstep on P, Py
2. Case: D = — rid
e — el
€1 €2 L) €1 €9 by rid
D! D
1
ep — ef el SN el
Case: D = . rstep
e — 6’1

39

40 3.2. CHURCH-ROSSER THEOREM

Preley = e ey by i.h.(2) on D"
1
Py iiepeg —> € ey by rapp; on D’
1
Q:ueleg — € ey by rstep on Py, Po
3. Case: D = — rid
eg — €9
e1 €5 —> e €9 by rid
D! D
1
ey — el el =5 el
Case: D = . rstep
ey — 6’2
Pr:e €l = e el by i.h.(3) on D"
1
Py el ea — eg €l by rapp, on D’
1
Q:ieleg — e €l by rstep on Py, Po
Od

We observe, that we have used the same principles for the proof of Lemma 3.2 as we did to
prove Lemma 3.1. In some sense, the third operation is slightly more general than before. In
the proof of Lemma 3.1 only one rule of the inference system is used to construct the existential
derivation, whereas here several are used. In summary, we have discovered three recurring proof
principles:

1. Appeals to the induction hypothesis to smaller derivations according to some well-founded
ordering on derivations

2. Case analysis over the last applied rule of a derivation.

3. Construction of desired derivations from other rules, assumed derivations, and result
derivations of appeals to the induction hypothesis.

These three proof principles correspond directly to operations which are implemented in the
automated theorem prover described in Chapter 8.

3.2.2 Parallel Reduction

In order to prove the Church-Rosser theorem for ordinary reduction from Section 2.2 we follow
an idea of Martin-Lof and Tait (see [Bar80]) and use the method of parallel reduction. This
method is based the following fundamental idea: Instead of reducing one §-redex after the other
in sequence as with ordinary reduction, parallel reduction is defined in a way that several (-
redices may be reduced simultaneously. The reduction relation is defined by the following three

40

CHAPTER 3. REASONING 41

rules.
u —u
1 1
1 1, 1.
ep = €] er = €y e = e
pbeta® plam"
1 1
Az : T.e1) ea = € [eh/x] Az :T.e = Az :T.€

1 / 1 !
61:>€1 62:>62

papp

€1 €9 :1> 6’1 8’2

The rules pbeta and plam are hypothetical because they discharge the assumption labeled
u. This is one of the crucial differences between this kind of reduction and ordinary reduction:
With ordinary reductions, variables were never reduced whereas here they are. In fact they
reduce to themselves. Reasoning with assumptions has consequences makes the formulation of
lemmas and theorems more difficult; “D is a parallel reduction from e to €'” is a rather imprecise
statement because nothing is said about the context in which this statement is supposed to be
true. Since automated proof construction is the goal of this thesis, we have to be painstakingly
precise. We say that “D is a closed parallel reduction from e to ¢'” if this statement does not
rely on any other additional assumptions. On the other hand, we say that “D is a open parallel
reduction from e to €'”, if the context is not necessarily empty. In this situation, e, e’ may
contain variables 1, ..., z,, each of which reduces to itself: z; N x;.

Following the example of ordinary reductions, we generalize the single-step parallel reduction
relation (that may execute several -reduction steps simultaneously) to a multi-step parallel
reduction relation and for which we write e == ¢’ if e parallel reduces in several steps to €.

1 ’ ro_% "
. e = ¢ e — e
pid pstep

* * "
e — e e — e

Next, we define the notion of parallel conversion between two terms e and e’ . Intuitively,
parallel conversion generalizes the multi-step parallel reduction relation in the same way as
ordinary conversion generalizes the ordinary reduction relation (see Section 2.2). We write
e <= ¢, if there exists a sequence of intermediate terms ey, ...,e,, s.t.

k * k k * k
e =e1 — () P es3 e en—2 P €n—1 — en:e,

keeping in mind that <= is not a new reduction relation but simply an alternative visual
presentation of == .

e = ¢ ¢ = e e <= ¢ € < ¢

— 7 pred ——T " pexp ptrans

e < ¢ e < ¢ e < e

Applying the techniques presented in the previous chapter, we can now give an LF signature
in Figure 3.1, which is an adequate encoding the three parallel reduction rules introduced in
this section.

Lemma 3.3 (Adequacy of the presentation of parallel reduction)

41

42

3.2. CHURCH-ROSSER THEOREM

pbeta

papp

plam

pid
pstep

pred

pexp

ptrans

term 7" — term T" — type.

1 1
(Mz :term T.2 — z —e1 oz — €| x)
1
— ey = ¢
1
— (app (lam e1) eg) = €] €}
1
er = ¢
1
— ey = ¢
1 1o
— (app €1 e) = (app €] €))
1 1
(Iz :term T.2 = =z —ex — € 1)
1
— lame = lam ¢
term 7' — term 1" — type
*
e = e
1 !
e = e
ro_* !
— e — €
—e = ¢

!

term 7' — term 1" — type
e = ¢

—e <= ¢

e = ¢

—e <= e

e <= ¢

— e = ¢

—e = €'

Figure 3.1: LF encoding of parallel reduction and parallel conversion (extends Figure 2.2)

1. If D e N ey which may rely on assumptions of the form x1 :: term T, uy = 1 N

1 1) . .
Tlyeeo, Ty it LETM Ty, Uy 3 Ty = T then "DV :Tey ' = Tey ! which possibly contains
. 1 1
variables of the form z1 : term " uy 11 = T1,...,Ty: term T, LUyt T, = T,
1 .)) .)
2.If D : "ey' — Teo! is canonical, possibly containing variables of the form zi :

1
term " uy . = x1,...

1 . .
D ey —> ey which may rely on assumptions of the form xy :: term T1,u1 2 71

L1y

1
s Ty - term T, Uy - X, = x,, then D = "D where
1
—

1
L i lerm T, Uy 1 Ty = T

3.2.3 Properties of Parallel Reduction

In this section we show the Church-Rosser theorem for parallel reduction. The theorems and
proofs in this section are particularly important especially for the subsequent chapters, because
they reveal the issues associated with reasoning about open derivations, that is, derivations

42

CHAPTER 3. REASONING 43

which my be valid in terms of additional assumption. Recall, that we call a derivation closed, if
no additional assumptions are used.

Used in the proof of one of the subsequent lemmas is the property, that the parallel reduction
relation is reflexive. What we want to show is that for every term e, there exists a reduction

Q:e =L ¢. In a first proof attempt one may assume that e is closed.

Lemma 3.4 (Reflexivity of N , Version I) For any closed term e, e L e

This lemma is not directly provable in its current formulation by structural induction. To see
why consider the case that e’s outermost constructor is an abstraction and not an application.
e has hence the form

x

term 7
el

term 7o

lam?®

term (1, — 7o)

And indeed, the induction hypothesis is not general enough to conclude that e’ =L ¢,
Obviously €’ must be closed for the induction hypothesis to apply, but it is not. Therefore we
must generalize the induction hypothesis in such a way, that it also applies to open terms e. In
the second attempt we try the obvious: e can also depend on variables x; :: term 7q,..., 2,
term 7,:

A4

Lemma 3.4 (Reflexivity of =L , Version II) For any term e, which is open in the sense
that it may depend on assumptions xi :: term Ty,...,%, :: term T,, there exists a derivation of

1
e = e.

Strangely enough, this formulation of the lemma is still not general enough! To see why,
consider ¢ = z;: The lemma should yield that x; :1> xi, but how? There is no rule from the
signature we could apply and there are no assumptions x; N x;. The solution to the problem is
to treat the reduction rules z; L z; in the same way as we treat assumptions. We must set the
stage in such a way, that in addition to the parameter assumptions z; :: term 71, ..., z, :: term 7,
also the following assumptions

U1 — Up
) . 1
T = X1 Tp = In

are available which we as usual abbreviate as list by uq :: z3 :1> L1, .., Uy i Ty :1> z,. For
a better conceptual understanding we pair the declaration of z; and the correspond assumption

uj. Not too surprisingly any more, the reflexivity lemma is now provable in this generality.
4

Lemma 3.4 (Reflexivity of =L , Version III) Consider the situation where a list of the

following assumptions is present
1 1
Ty lerm T, Uy Xy = Tl,...,Tp 1 LETM Ty, Uy 1 Ty = Tp

Then for any well-typed term e, there exists a derivation of e =L e

43

44 3.2. CHURCH-ROSSER THEOREM

Proof: by structural induction on e:

Case: ¢ = T;
term 7;
1 .
U; Ty — Ty by assumption
Tp+1
term 7
el
term 7o
Case: e=—— | gp%nt!

term (17 — 72)

Assume ;11 :: term 7

1
Assume ;11 5 Tpr1 = Tpal

Pre = ¢ by i.h. on €’
Qi ATy : term 1. € L ATy : term 1. € by rule plam on P
€1 €9
term (10 — 71) term 7o
Case: e = app
term 71
Pye = el by i.h. on e;
Po ey = €9 by i.h. on e
1
Q:appej eg = app eq € by rule papp on Py, P2
O

Note, that the proof works only in the situation where we have exactly the assumptions
T1,U1, ..., Tn, Uy if we ignore unrelated assumptions for now. If there are more, the proof is not
a proof: some cases may not be covered. If there are less, the induction hypothesis might not
be applicable. Without making it really precise, we want the reader to notice that the list of
assumptions is very regular in structure. It is made out of basic building blocks of the form:

pu=x:term T,u T —> 7 where 7 is some type (3.1)
and the assumption lists can be inductively described by
® = -|D,p

where variables z,u are a-converted to avoid duplicates. If we refer to the LF signature as a
static description of the world that summarizes all inference rules, ® is a dynamic extension
of the world because it introduces new parameters. In addition, the proof of Lemma 3.4 also

44

CHAPTER 3. REASONING 45

motivates a new meta-proving operation; in the case of lam we extend the current world by two
new parameters z, 1 and u,11. All other proof principles used in this proof have already been
discussed.

When reasoning informally about deductive systems, these assumptions stay in general hid-
den. Their regularity is tremendously important in this work, and it is thoroughly analyzed and
formalized in Chapter 4. Lemma 3.4 is an explicit version of Lemma 3 in [Pfe93].

Following the sequence of lemmas presented in [Pfe93], we generalize each lemma to the
appropriate level of detail in order to motivate the design of our system in Chapter 4. The
transitivity lemma for parallel reductions for example is provable in a setting where D :: ¢ == ¢’
are closed, which raises the question if this is general enough? In other words, the degree of
generality of a lemma does not only depend on its proof, but it also depends on the generality
of the lemma for where it is used. A transitivity property for closed derivations cannot be
applied to derivations which are open. On the one hand, this sounds trivial, but on the other,
there is a whole theory of which proof can appeal to what lemma, which we discuss in detail in
Section 5.7.2. Nevertheless, we prove this lemma in more generality. For all the proofs following
below, we let ® describe dynamic extensions to the world, as defined above.

1 1
O =z term T, Uy X = T1,...,Ty 0 term T, Uy T, = X,

Lemma 3.5 (Transitivity of ==) Let ® be the dynamic extension of the world. If Dy ::
* / N A " * "
e = € and Dy :: ¢/ = €" are closed then e — ¢€".

Proof: by structural induction over Dy:
Case: D; = —, ¢
r = x

Dy = ¢ by assumption

Case: Dy = — pid
e = e
Dy:iie = ¢ by assumption
D DY
e 1‘; M P N
Case: Dy = . pstep
e = ¢
Pl = ¢ by i.h. on DY, Dy
Que = ¢ by pstep on D}, P

45

46 3.2. CHURCH-ROSSER THEOREM

The following sequence of lemmas leads to the main result of this section: the parallel
reduction relation possesses the Church-Rosser property. We present the lemmas in the same
sequence as in [Pfe93], but enrich the formulation by information if the derivations are closed,
or if they are open.

Lemma 3.6 (Substitution lemma) Let ® be the dynamic extension of the world. If

v
1
y =y
D
1 ’
61:>€1

and & 1 ey = e, then exists a reduction ej[e2/y] =L el leh/y].

Proof: by structural induction on D.

Case: D =) u (where z :: term 7, u : L 7€ and = # y)
T =
Evg = 1 by assumption
Case: D = 1 v
Yy =y
Eey = e, by assumption
u
1
T =
Dy Dy
1, 1,
€3 — 63 €4 — 64
Case: D = pbeta®

(Az : T.e3) eq = esel /]

Extend ® by 2 :: term 7,u = 2 = z to O/

P = eslea/y] SN esler/y] by i.h. on D; in @'
Py i ealea/y] = ALY by i.h. on Dy in ¢
Q :: (A\z : T.e3[ea/y]) eale2/y] L esleh /ylleyleh/y]/x] by rule pbeta® on Py, Py
Q :: (A : T.e3) eq)[e2/y] = (e5[el/x])[eh/y] by Definition substitution
u
1
T = =x
D,
L /
e = e
Case: D = plam®

1
A\ :T.e = A :T.€

46

CHAPTER 3. REASONING 47

Extend ® by z :: term 7,u :: = 7 to ¥/

Py elea/y] = el /y] by i.h. on Dy in @'
Q Az : T.e[ez/y] = Azt T.¢'[eh /Y] by rule plam“ on P
Q:: (Az: 1.e)[ea/y] - Az : 7.€¢')[e} /Y] by Definition substitution
D1 Dy
€3 — 63 €4 — 64
Case: D = . papp
ez ey = e5€)

P eslea/y] = €ilel/y] by i.h. on Dy in ®
Py = eslea/y] SN ey ler/y] by i.h. on Dy in ®
Q= (eslea/y)) (ealea/u]) == (ehleh/v]) (€leb/v) by rule papp on 71, Py
Q :: (e eq)[e2/y] N (€} ey)eh/y] by definition substitution

a

By careful inspection we can determine that the only four proof principles used in this proof are
case analysis, appeals to the induction hypothesis, construction of witness objects from rules
and assumptions, and dynamic extensions of the world. We continue this presentation with the
proof of the diamond lemma for parallel reduction which shows clearly how difficult it is to argue
that all cases are covered.

Lemma 3.7 (Diamond lemma) Let ® be the dynamic extension of the world. If D' :: e =L
el and D" e == ¢ then there ewists a common reduct e, such that R' :: e =L ¢ and
R el = .

A
el e’
R! -RT
Y ,*
e

Proof: by simultaneous structural induction over D! and D".

Case: D' = 1 u pr= 1 u (where z :: term 7,u :: = g€ D)
r = T r — I
e ==z by assumption
RI=R =u by assumption

47

48

3.2. CHURCH-ROSSER THEOREM

7N,
A

u u
T = T =
D} D) Dj D}
1 l ! [! r L r
Case: D! = . pbeta pr— ; pbeta"
Az :T.e1) eo = €\ [eh/x] (Az : T.e1) ea = e€l[eh/x]
Extend @ by z : term 7,u :: x =L 7 to @
There exists an e
Py el SE el
Py €] SE el by i.h. on D}, D] in &'
There exists an €,
Q; :: e} SN e
Qe = ¢ by i.h. on D}, D5 in &
el €2
¢ gl) ¢
PN, P N
€l ¢
Ry = el [eb/x] = el e /x] by Lemma 3.6 on Pp, Q;
Ry :: efleh /] L el e /x] by Lemma 3.6 on P2, Qo
(Ax : T.eq) e9
2
!
e1lez /7] e1ley/z]
RN‘ ﬁzZ
!

CHAPTER 3. REASONING 49
Case:
u
1
T =
D D} D D
! l 1 l ! r ! T
er = €] €2 = €5 Az T = €] e2 = e
Dl = pbeta pr _
1 Irl 1
(Az : T.e1) ea = ejley/x] (Az : T.e1) ea = €] €}
u
1
T =z
DY
e = el
D = plam®

1
Az :T.e; = Ax:Tef
el =z :T.ef
1
Extend ® by z : term 7,u : z = z to ¢’
There exists a €}
N 1 /
Pl . 61 —— 81
1
. pIT /
PZ .. 61 — 61
There exists a €},
1 /
Q) ey = ¢
A 1 !
Q2 . 62 — 62

Ry = e [ely /] SN e [eh/x]
Ro i (Ax: T.ef) €h = el e/ x]

¢i[eh/x] (Az : 7€) €
RN‘ ﬁzg
¢! [ey/7]

by inversion on Df

by i.h. on D}, D in &/

by i.h. on DY, D5 in

€2
%\
¢ ¢
Q\ ’/Q2
e

by Lemma 3.6 on Py, Q;
by rule pbeta on P, and Qs

papp

50 3.2. CHURCH-ROSSER THEOREM

Case:
U)
1 1
T = T T = T
[T
Dy 1
1 [1 r
e — e e — e
Dl — plam“ pr _ plam*
1 1
\z:T.e = Azt Az :Te = A\r:T.€

Extend @ by z : term 7,u :: x =L 7 to @
There exists a ¢’

Py el
Py iz e”

1 !
== e
1 . .
= ¢ by i.h. on D}, D7 in &'

e
[
o N
el e

PN /’2
!
e

Ry Az el = \z:re by plam" on Py
Ry Az Te” = Az :r.e by plam" on P,
Az :T.e
Y
Az : 7.l Az T.e”
RN, R
Az 7€
Case:
u
1
T =z
Dj D} D D}
1 ! L, 1.,
Az Tl = e e2 = ey el = €] €2 = €

U
1
r — I
n
Dl
1 1l
Dl = plam“

1
Mg :T.ep = Azl

50

CHAPTER 3. REASONING

ol

el =z : 7€l

Extend ® by z : term 7, u
There exists a €}

Pio ell
Py i€l SE el
There exists a €},

1
:>€1

1
Q) ey = ¢

Qo

1
T !
€y = €

by inversion on D}

1
nx = ztod

by i.h. on D}, D] in @'

by i.h. on D4, Dy in ®

”/\
Q\ /22

€1
Ry (\z: el €l = el ey /x] by rule pbeta on P; and Q;
Ro i e][eh/x] = el e /x] by Lemma 3.6 on Pa, Qo
(A\z : T.e1) eo
13/ \
(Az 2 T.ef) € ei[ez /]
R\ ﬁzz
¢} [e5/]
Case:
Dj D i D
1 l 1 l 1 r 1 r
e — €] €2 — € e — €] ey — €
D' = ; Papp pr— . papp
€] g — €l1€l2 €] €2 = €] €5
There exists a €
Pruel = ¢
P23167i21>8,1 by i.h. on D}, D] in @

There exists a €},
ool 1 /
Ql . 62 —— 62

Qo

1
T !
€y = €

by i.h. on D4, Dy in @

ol

52 3.2. CHURCH-ROSSER THEOREM

el €2

e

e} el eb eh

N S N
€] €

1
Ri:e ey = €] ¢ by papp on P1, Q1
1
Ry el e = €] ¢ by papp on Pz, Qo
€1 €9
D/ Qj
€l ¢ e} ¢
RN ﬁb
€1 ¢
(|

The proof of the diamond lemma, introduces two new proof principles. First we use inversion
in the third and the sixth case of the proof, and second we repeatedly appeal to the substitution
Lemma 3.6. Conceptually, inversion is a new operation, but technically, it is nothing else but
a special form of case analysis. Given a derivation of some judgment cases can be analyzed
according to the last applied rule, and if the last rule application is uniquely determined, case
analysis is called commonly called inversion; in practice however inversion need not to be unique.
One of these examples is the cut-elimination theorem for the sequent calculus of first-order
intuitionistic logic [Pfe95].

The second proof principle is lemma application; it is very important since it allows the
programming language and logic designers to stage their development into tasks of appropriate
size.

Continuing in the development of the Church-Rosser theorem for parallel reduction, we
present three more lemmas, which generalize the diamond Lemma 3.7 to parallel multi-step
reduction and parallel conversion. We give the proofs explicitly, in order to have an extended
set of examples necessary in the subsequent chapters of this thesis. Alternatively, the interested
user may want to consult [Pfe93] for a more detailed presentation.

Lemma 3.8 (Strip lemma) Let ® be the dynamic extension of the world. If D' :: e L ¢

and D" = e == ¢ then there ezists a common reduct €, such that Ry :: ¢ == ¢ and

1
Ry el = €.

CHAPTER 3. REASONING 93

Proof: by structural induction on D"

Case: D" =——— pid
e = e
Ry e = ¢l by pid
Ro=Dj::e =L ¢ by assumption
e
72 4
el e
R\\ /32
ol
noom
e = €] e = ¢
Case: D" = . pstep
e = e

There exists a €}

1
Pl = ¢

1 .
Pre] = € by Lemma 3.7 on D!, D in ®
There exists a €,
Py e = €

1 . .
Ry e’ = ¢ by i.h. on Py, D5 in &

731 7,32/ \

\ /@2
Rize = € by rule pstep on Py, Ps3
Od

A further generalization yields the confluence lemma: The left reduction step is being gen-
eralized to a multi-step reduction.

93

o4 3.2. CHURCH-ROSSER THEOREM

Lemma 3.9 (Confluence lemma) Let ® be the dynamic extension of the world. If D' :

e = ¢l and D" e == ¢ then there exists a common reduct €', such that Ry :: e8 = ¢/
and Ry i e" = €.
e
/ \
el e’
% %
RS
!
e
Proof: by structural induction on D'
Case: D! = — pid
e = ¢
Ri:e = ¢ by assumption D"
Ro:e’ = ¢ by rule pid
e
7%
e e
Rx /32
eT‘
[
D D),
e = ¢l el = ¢
1 1
Case: D! = - pstep
e = ¢

There exists a €}

Py el SE el

Poiel = e by Lemma 3.8 on D!, D" in ®
There exists a €},

Rinel = e

Py e = € by i.h. on DL, Py in @

CHAPTER 3. REASONING

95

* /
Roe" = e,

by rule pstep on P, Ps

All is prepared to prove the Church-Rosser theorem for parallel reduction.

Theorem 3.10 (Church-Rosser) Let ® be the dynamic extension of the world. If D :: ¢! +=
e’ then there exists a common reduct €', such that Ry :: €l

= ¢ and Ry e’ = €.

¢l e’
R
e
Proof: by structural induction on D
Dy
el = ¢
Case: D = pred
e < ¢
Riue = ¢ by assumption D;
Roue = ¢ by rule pid
el D e’
R\ /€2
87'
Dy
e = ¢
Case: D = pexp
e = ¢
Ryuel = ¢ by rule pid
Ry e = ¢ by assumption Dq
el D e’
RN /%
ol
D Dy
el = e e < €’
Case: D = l ptrans

95

56 3.2. CHURCH-ROSSER THEOREM

There exists a €}

Pruel = ¢

Pyie = e} by i.h. on Dy in @
There exists a €},

Psie = ¢

Piie = ¢ by i.h. on Dy in &

2 y

There exists a e’

Q) e} = ¢

Qs el = ¢ by Lemma 3.9 on Py, P53 in ®

2 y

¢! D, . Dy o
P1\‘ ’f&/ Vﬁ, / Py
e e
Q\ ’/QZ
!

Riel = ¢ by Lemma 3.5 on Py, Qy
Roe" = ¢ by Lemma 3.5 on Po, Q9

|

This concludes the presentation of meta-theoretic results for parallel reduction. All proofs
so far have exposed five basic and recurring proof principles. In order to prove a theorem by
induction, different cases must be analyzed, and the formulation of the theorem can be used as
induction hypothesis, as long as the argument derivations are smaller than the given ones. In the
area of inductive theorem proving treated as one operation through the presence of induction
principles, it is treated in our presentation as two different operations.

New derivations must be constructed from already known to exist derivations by the ap-
plication of inference rules. This proof principle constructs witness derivations for existential
quantified variables using assumptions (also from ®), and inference rules.

If the induction hypothesis of a theorem is so general that it can be applied to open terms
(which are open in a regular world extension ®), new parameters can be dynamically introduced
into the proof process. And last but not least, very often lemmas are needed to complete a proof.
The possibility to appeal to lemmas is crucial in any interactive proof development system.

3.2.4 Equivalence of Parallel and Ordinary Reduction

The Church-Rosser property for parallel reduction is proven. But what about the Church-Rosser
property of the ordinary reduction relation? We proceed by showing that it is also satisfied for
ordinary reduction. The essential idea behind the proof is that any ordinary reduction can be
transformed into a parallel reduction and vice versa.

56

CHAPTER 3. REASONING o7

Lemma 3.11 (Single-step correspondence)
1. If D:: € =L o then el = e
2. If D :: €l Ly e then el = ¢

Proof: by structural reduction on D(1),D(2). For the detailed proof, see [Pfe93], Lemma 10,
Lemma 11. O

This result can be generalized to an entire sequence of reduction steps. Each ordinary multi-
step reduction can be expressed by a parallel multi-step reduction and vice versa.

Lemma 3.12 (Multi-step correspondence) D :el 5 ¢ iff R el = ¢

Proof: by structural induction on D, R, respectively. For the detailed proof, see [Pfe93],
Lemma 12. O

The conversion rules for ordinary reduction do not correspond directly to the conversion
rules for parallel reduction. For example, there is an explicit ordinary symmetry rule rsymm,
but there is no such rule in the parallel case. But we can show that it is admissible.

Lemma 3.13 (Symmetry) If D :: ¢! <= ¢" then R ¢ <= ¢
Proof: by structural induction on D. For the detailed proof, see [Pfe93], Lemma 14. O
Using this result, one can now show the equivalence of ordinary and parallel conversion.
Lemma 3.14 (Conversion correspondence)

1. If D€l «— € then e < ¢

2. IfD::el <= ¢ thene «— €

Proof: by structural induction on D(1),D(2). For the detailed proof, see [Pfe93], Lemma 13
and Lemma 15. O

Now it is obvious; also the ordinary reduction relation enjoys the Church-Rosser property.
Given an ordinary conversion derivation between two terms e! and e”, Lemma 3.14 guarantees
that there is a corresponding parallel conversion. By the Church-Rosser property for parallel
reduction 3.10, one obtains a common reduct €/, and two parallel reductions D; and D,, which
can easily be translated back into ordinary reductions using Lemma 3.14 twice.

Theorem 3.15 (Church-Rosser for ordinary reduction) Ife! <— ¢’ then there exists a
common reduct €', s.t. ¢¢ — ¢ and ¢’ — €.
Proof: Direct. For the detailed proof, see [Pfe93], Theorem 16. O

When studying the proofs in [Pfe93], the reader will notice that the only proof principles
used are the ones discussed in this chapter.

o7

o8 3.3. HISTORICAL OVERVIEW

3.3 Historical Overview

The formalization of formal theory of various kinds has been the focus of attention in the
automated theorem proving and proof assistant community for at least four decades. First there
were general-purpose theorem provers which were built to support mathematicians in their quest
for the search of mathematical truth. Then other special-purpose automated theorem proving
techniques have been invented, developed, and established; one of the most successful techniques
is model-checking [CGP00] which has proven extremely successful not only in the academic
environment but also for industrial applications. In order to classify the work presented in this
thesis as a special purpose automated theorem proving system for the development of the meta-
theory of deductive systems, we attempt to give a brief overview over previous developments
and discuss the advantages and disadvantages of existing theorem proving techniques.

3.3.1 General-Purpose Theorem Provers

The work by Boyer and Moore [BM79] on the Nqthm theorem prover has triggered a whole
research program concerned with the automated deduction of true statements. Even though
mainly interested in reasoning about mathematical truth, this theorem prover has been applied
to many different problems domains over the last two decades. In general, formal methods and
automated deduction techniques have found numerous applications in hardware and in software
design. Based on quantifier-free inductive definitions, Nqthm reads a list of theorems and proofs
and tries to bridge the gaps in the proofs by automatically applying small reasoning steps. Only
if a gap is too big, the theorem prover complains and asks the developer to introduce new
lemmas. Many important theorems have been verified using Nqthm, among many others, the
Church-Rosser theorem [Sha88], and Gddel’s incompleteness theorem [Sha94], and the Ramsey
theorem [Kun95].

When using a theorem prover like Nqthm for the development of the Church-Rosser theorem,
the user is required to encode terms, the typing relation, and all reduction relations in form
of quantifier-free inductive definitions. Variables for example must represented as strings or
numbers, substitutions must be encoded explicitly, and naturally the soundness of substitution
application must be proven explicitly. It is clearly possible to use Nqthm as a theorem prover
to tackle this task (as Shankar has demonstrated [Sha88]), but the restriction to quantifier-free
inductive definitions puts additional burden on the user’s shoulders to implement the various
variable concepts, capture avoiding substitutions, and to prove the corresponding substitution
lemmas.

Over time, many techniques have been developed to perform efficient proof search in dif-
ferent logics, ranging from classical, over intuitionistic to linear logics with different degrees of
expressiveness, ranging from propositional over first-order to higher-order logics. Techniques,
such as resolution [Rob65], paramodulation [BGLS92], or the inverse method [DMTV99] have
been devised to facilitate proof search in various calculi, such as natural deduction[Pra65], the
sequent calculus [Gen35], the tableaux formulation [Hah99], or the intercalation calculus which
is a specialized formulation of the natural deduction calculus [SB98] for proof search. These
techniques are tuned to conduct efficient proof search in deductive systems.

Our endeavor however lies in reasoning about deductive systems. Early on, it has been
noticed that the inductive formalization of natural numbers is directly reflected in proofs by
mathematical induction [G6d90]. In computer science, where many constructs are inductively

o8

CHAPTER 3. REASONING 99

defined, induction has presented itself as a very valuable tool to express and reason about
specifications in a formal way. Thus, many theorem provers are based on induction and inductive
definitions in order to formalize deductive systems, such as programming languages and logics.
In fact, induction is one of the core concepts present in almost every proof assistant, such as
Isabelle [Pau94], Coq [DFH'93], Lego [LP92], and PVS [ORS92], and many theorem provers,
such as INKA [HS96], and Nqthm [BMT79].

Unfortunately, inductive theorem provers are limited in their expressiveness. In fact, by
definition, inductive definitions are restricted by the positivity condition: The type to be de-
fined can only occur in positive positions in the constructor types. This means, however, that
our preferred encoding of the simply-typed A-calculus, which relies on a higher-order encoding,
cannot be expressed using standard inductive definitions. The argument to “lam”, for example,
is a function of type “term "7; ' — term "79"” which clearly violates the positivity condition.
Thus none of the presently available theorem provers supports our proposed way of encoding
the Church-Rosser theorem (see Section 3.2). In this thesis we present a technique that al-
lows inductive reasoning over deductive systems that are encoded using higher-order induction
techniques.

Contrary to the proof strategy presented by Nqthm, almost all modern theorem provers
have adopted a tactic based proof development style [Pau83]. The inference system of the
logic intrinsic to the theorem prover consists in general of a set of rules. Given the current
proof goal, it is the user’s responsibility, to apply rules in the correct order. But in many
cases, repeated application of the same rule, or the application of rules in a particular order
becomes necessary, which has prompted the development of special purpose languages to express
algorithms executing any kind of rule application. These algorithms are called tactics and they
simplify the theorem proving effort tremendously. The application of a tactic can either succeed,
leaving the user with a new (possible empty) set of subgoals, or fail in which case the proof goal
remains unchanged.

The work that is presented in this thesis does not take advantage of recent advances in
tactic theorem prover. But we recognize that this work can profit from techniques such as proof
planning [BSvH93] and lemma generalization [FH94].

3.3.2 Special-Purpose Theorem Provers

Besides general-purpose theorem provers which are designed to to tackle any problem expressible
in mathematics, there are theorem provers that are designed to serve a special purpose. In
hardware verification, for example, many circuits can be described by finite state automata.
Specifically, the technique of model checking allows to verify a piece of hardware (or better its
model) against a given specification by means of a complete state space traversal. In general,
the languages used to express those specifications are typically temporal logics. The interested
reader might consult [CGP00] for a detailed discussion. If any of the states does not satisfy
the specification, the model checking algorithm fails and may report a counter example that
gives the hardware designer insight into the cause of failure. Model checking is tremendously
successful because it serves a special and relevant purpose and it guarantees a high degree of
automation.

Other special-purpose theorem proving techniques are based on rewriting [HO80] and geom-
etry. In rewriting important decision procedures have been developed in order to decide if two
terms are equal modulo a set of equalities. Clearly, this decision procedure is a special purpose

99

60 3.4. SUMMARY

theorem proving technique. Special purpose decision procedures have also been developed to
reason quickly about geometry, for example by using Grébner bases [Kap98].

It is very difficult (even though possible) to represent and reason about a model-checking
problem in a general-purpose theorem prover. Almost certainly, since the overhead is enor-
mous, this technology would probably not been as widely accepted as model-checking is today.
Therefore we argue in favor of special purpose techniques to augment general purpose theorem
provers. In particular, general purpose theorem provers only offer a restricted set of operators
for specification and reasoning; therefore in order to use other operators, auxiliary constructions
are mandatory. For example, in order to use a general purpose theorem prover to express a fi-
nite state traversal problem, one has to encode the reachability relation between states explicitly
whereas it is implicit when using a model checker like SMV [CGP00].

In this sense, the meta-theorem prover which we develop in the next few chapters is a special
purpose theorem prover. The technology presented in this thesis does not provide a new approach
to general purpose theorem proving, on the contrary, it delivers special purpose theorem proving
technology for the use of higher-order encodings. Proofs found by our meta-theorem prover can
be transformed into proofs of a general purpose theorem prover. In fact, in Section 9.1.4, we
discuss the possibility of translating our meta-proofs into proofs parsable and understandable
by other theorem provers, such as Lego or Isabelle.

3.4 Summary

In this chapter we have presented a detailed proof of the Church-Rosser theorem for the simply-
typed A-calculus, and have characterized five basic and over and over recurring proof principles:

1. Case analysis of the last applied inference rule of a given derivation. The proof obligation
is split into several new cases.

2. The construction of one or several witness derivations for one ore several existentially
quantified judgments. This operation closes a proof obligation.

3. During a proof an appeal to the induction hypothesis may be invoked.

4. The development of a theory consists of a sequence of lemmas, where each lemma must
be a derivable consequence from previous ones.

5. The proof may be hypothetical, that means that the derivations may be valid in a regular
extension of the current world. The world may be dynamically extended during the course
of a proof.

All proofs in this chapter are composed of a sequence of these basic operations, which should
leave the reader with the following impression: The proofs themselves are not particularly
difficult but they are tedious. The most difficult problem is to express the induction hypothesis
in appropriate generality — that is the formulation of the theorem itself. In addition, we note
that all theorems of this section can be expressed as IIs-formulas.

As opposed to traditional theorem proving techniques, which are concerned with reasoning
in a deductive system — a calculus for some logic — our goal is to reason about deductive
systems. In the further development of this thesis, we will use some techniques from the former,
but the overall emphasis of this thesis is the technology to accomplish the latter. In addition,

60

CHAPTER 3. REASONING 61

we strongly believe that in the formal development of programming languages and logics, the
contributions of this work are very important since they help to verify and automatically prove
many of the properties of deductive systems. Furthermore, we strongly believe, that such a
system should support the user with helpful hints of how to improve the formulation of a lemma
or a theorem in the case of failure.

The theorem prover and its theory, which is presented in the subsequent chapters, is a special
purpose theorem prover: it owes it success to the combination of elegant higher-order represen-
tation techniques, and proofs by cases and recursion. But in other respects, it is quite basic; it
only takes advantage of few of traditional theorem proving techniques, and its implementation
could largely profit from applying techniques, such as the inverse method [DMTV99], focus-
ing [And92, How98], or rippling[BSvH"93] — techniques that are well-known for traditional
systems.

61

62

3.4. SUMMARY

62

Part 11

Design of a Meta-Logical Framework

63

Chapter 4

Meta-Logical Frameworks

4.1 Introduction

Logical frameworks are powerful (meta-)languages that support encodings of a large variety of
deductive systems, including deductive systems which may contain side conditions, such as for
example the Eigenvariable condition for first-order logic, or freshness conditions on parameters
in programming languages. Object languages which contain a variable concept, logics which
introduce hypotheses, and rewrite systems which dynamically extend the local rewrite relation
by cases for newly introduced parameters can be very elegantly represented in these frameworks.
For example in LF, the adequacy and soundness arguments of the encoding rely on the fact that
canonical form exists for any LF object including those of functional type and that the framework
provides dependent types (see Section 2.4.4).

Canonical forms are inductively defined by their very definition in LF. In particular, canonical
forms of functional type always start with a leading prefix of A-abstractions. We have argued in
Section 2.6 that even though the notion of operational semantics associated with LF functions
does not capture definition by cases, LF is an ideal candidate for adequately encoding deductive
systems. Clearly, it is not expressive enough to formalize function manipulating derivations that
need to be defined by recursion and case analysis. In this thesis, we use LF’s function space
only for the purpose of representation; for the purpose of defining functions by case analysis and
recursion, we introduce in this chapter the notion of a recursive function space that is defined
in terms of LF objects and LF types.

There is a very deep connection between the recursive function space and standard induction
principles. First order encodings of natural numbers for example possess standard induction
principles used to reason about natural numbers. More specific, the induction principle expresses
how to derive property P for all natural numbers n.

F P(n) !
- PO) FP(n+1)
FVn.P(n)

natind

Using this induction principle for example, we can argue that the result of adding any number to
itself is even, which is expressed by the predicate “even (n)”. Assuming that “even (n)” implies

65

66 4.1. INTRODUCTION

“even (n 4 2)”, we can quickly prove that the formula “Vn.even (n 4 n)”.

Feven (n 4 n)
—evz ev_ss
even (0 + 0) Feven (n+n +2))

natind“
F Vn.even (n + n)

This proof contains some computational content that can be summarized by a recursive
function defined by cases. Appeals to the induction hypothesis correspond to recursive calls —
given that there is an appropriate formalization the two rules ev_z and ev_ss as “evz” and “evss”,
respectively.

fun double 0 = evz
| double (n+ 1) =
let
val D = double n
in
(evss D)
end

It has been noticed, that the first-order case does not generalize well to the higher-order
case. As our example shows, the main reason that induction principle exists is that we can
predict the form of a natural number. It is either 0, or it is the successor of a some other natural
number. These are the two only cases to be considered, there are no other constructors for
natural numbers. The justification of the soundness of this induction principle relies on the
general assumption of the world: It is assumed to be closed. Only if it is, it can be argued that
the induction principle covers all cases. Correspondingly, it is easy to see that double covers
all cases. In addition it is terminating, which makes it a realizer for the proof given above.

If the definition of natural number were open-ended, this particular induction principle is
not sound. Thus, in order to make the closed world assumption explicit, we take the freedom

and augment the induction schema with a “” representing that the world is closed.
—u
- P(n)
- P(0) -FP(n+1)
natind“
-+ Vn.P(n)

Are there standard induction principle for higher-order encodings? Not according to the
standard literature. It is the goal of this chapter to motivate the design of a meta-logic that
accommodates reasoning by cases in the presence of higher-order encodings. The fundamental
problem is that induction over higher-order encodings violates the closed world assumption, since
in order to appeal to the induction hypothesis, one has to traverse A-binders, thereby extending
the world. Clearly the open world assumption is too general: it is impossible to guarantee that
an induction principle, or the related recursive function covers all cases because the world is
always subject to change.

66

CHAPTER 4. META-LOGICAL FRAMEWORKS 67

The solution suggested by Equation (3.2.3) is what we call the regular world assumption
which characterizes the form of all possible worlds ® (in a finitary way). Thus, one idea is to
design an induction principle to reason about property P for all simply-typed A-terms in a world
with the regular extension:

& = .| ®,(z:termT,u: P(x))

Tentatively, one would expect an induction principle of the following form:

U1 —— U2 us
O - Pler) O - Pleg) O,z term 7, u: P(x) - Ple z)

® - P(app e e2) ¢ F P(lam (A\z : term 7. e x))
termind“t 243

® F Ve : term 7.P(e)

An induction principle of this form would be sufficient for our purposes. But on the other
hand, we push its definition another step further. In this form, the appeals to the induction
hypothesis are limited, since the worlds are fixed in the assumptions u;, uo and us. For our
experiments however, ® describes a valid and regularly formed LF-context, and it must hence
satisfy various requirements such as weakening, contraction, and exchange. Therefore we dis-
tance us ourselves from the standard notation for induction principles, but we develop instead a
meta-logic based on a realizability interpretation of its proofs as total recursive functions. These
functions range over arbitrary LF objects that are valid in some world ®, which is regular in
structure. Thus, the soundness of our technique relies crucially on termination and coverage
properties of the recursive functions.

By basing inductive definitions on the regular world assumption, this thesis generalizes pre-
vious work on standard induction principles which requires the defined datatype not to occur
in any negative position in any constructor type (see for example the inductive calculus of
constructions [PM93]).

In this chapter we motivate the construction of our formal meta-logic that supports proof
about higher-order encodings of deductive systems. In particular, we demonstrate how to define
recursive functions over simply-typed A-terms, and ordinary (Chapter 2) and parallel reduction
relations (Chapter 3).

4.2 Methodology

A meta-logical framework is an extension of a logical framework. Besides the representation
layer, it provides an explicit layer that supports formal arguments about representations. This
section is designed to lead the reader into the area of formalizing the meta-theory of deductive
systems. In particular, we start with the formalization of closed meta-theorems and their proofs
in Section 4.2.1, i.e. meta-theorems where all participating derivations can be assumed to be
closed that is ® is guaranteed to be empty. In the Section 4.2.2 we generalize those techniques
to open meta-theorems, and finally in Section 4.2.3 we extend these techniques to mutually
dependent theorems.

67

68 4.2. METHODOLOGY

Informal Reasoning Meta-Logical Framework
Church-Rosser theorem Meta-logic My
Cut-elimination theorem Propositions-as-formulas
Type preservation properties Proofs-as-realizers
Informal Specification Logical Framework
Simply-typed A-calculus Type theory LF

Logic calculi Judgments-as-types
Operational semantics Derivations-as-objects

Process of representation/formalization/encoding

Figure 4.1: The meta-logical layer

4.2.1 Closed Meta-Theorems

In Chapter 3 we have presented a list of theorems which led to the proof of the Church-Rosser
theorem for the simply typed A-calculus. Each proof followed very similar principles. We
begin with the proof of the transitivity Lemma 3.1 for ordinary reductions. Two derivations
D e — € and Dy = ¢ —— ¢" are given, from which a third is to be constructed
P e — €. The formulation of all theorems are very similar in structure. A theorem
typically consists of a block of universal quantifiers followed by a block of existentials. In the
literature, formulas of this kind are called II-formulas [Rog92]. The index “2” expresses that
only one quantifier alternation is admitted, and the “IT” specifies that the first quantifier block
is universal. For the formalization of Lemma 3.1 we omit the leading universal quantifier for e,
e, and €

VD) ie — €. VDy e = AP e — T

Intuitively, representing this theorem in the meta-logical framework must yield a function which
maps objects of type "e — ¢’ and objects of type "¢/ — €7 to objects of type "e —s €.
Therefore, the universal quantifier can be read as a new function space constructor “D” for
recursive functions:

(e = e)D(ef = &) D(e = &)

The recursive function space is different from the parametric, in that it allows function definition
by cases, for the proof that goes by induction on D;. The recursive function space is part of a
new conceptual layer above LF, the so-called meta-logic as shown in Figure 4.1. All quantifiers
are first-order. In particular, the meta-logic we present in this thesis is the meta-logic Ms
which extends previous work [SP98]. It is presented informally in this section and formally in
Chapter 5. The soundness of the meta-logic is based on an argument very similar to the one
used in constructing the Curry-Howard isomorphism. It is based on a realizability interpretation
of meta-proofs as total recursive functions, which we call realizers. A realizer computes for any
instantiation of the universal quantifiers some witness objects for the existentials. Back to the

68

CHAPTER 4. META-LOGICAL FRAMEWORKS 69

representation of the transitivity theorem.

VD ne — €. VDy e s AP e — T =
VD:Te = VWVE:Te¢ =5 €M.3P:Te = ¢".T
The V quantifier can be read as the recursive function space constructor (similar to a dependent
II type constructor), 3 can be read as X-type constructor, and T as unit type, all on the meta-
level. Strictly speaking, this version of the theorem is not complete since we must also universally
quantify over all free variables:

V7 i tp. Ve :: term 7.Ve' i term 7. Ve :: term 7.
*

VD) e — €. VDy e 5 " AP e — . T

It translates directly into a formula of the meta-logic. For better presentation, we frame the
mathematical formulations of the theorems from Chapter 3.

Lemma 4.1 (Transitivity of — , formalized)

IfDy e — € and Dy ! — €" thene — €.

=VT:tp.VE : term T.VE' : term T.VE" : term T.

VD,:E - E'NDy: E = E"3P:E = E". T

Each variable that occurs in another type in the theorem is called an index variable. Different
from the logical framework level, where we have a type reconstruction mechanism as described
in Section 2.4.1, type reconstruction on the meta-level may lead to ambiguous results, because
it cannot be uniquely determined if index assumptions are to be universally or existentially
quantified. Consider the abbreviated version of the Church-Rosser theorem

VD:E <+ E.3R :E — E'.3Ry:E, — E. T
where it is impossible to determine E'’s status.
VT :tp.VE; : term T.VE, : term T
VD:E, < E,.3F':teem T.3R, : E;, — E'.3Ry: E, — E'.T
Meta-theorems are encoded using recursive functions spaces, and therefore meta-proofs are
represented by recursive functions. Throughout this section, those functions are written in an

ML-like style with the important difference that the arguments do not range over ML-datatypes,
but over LF objects well-formed according to a given signature. We repeat the signature encoding

the ;> -relation in LF from Section 2.5:

Ly term T — term T — type

rbeta : (app (lam Ej) E») . E B,
rlam : (Ilz:term T1. E z N O x)

— (lam E) BN (lam E')
rapp; : E BN E;

— (app E1 E2) BN (app EY Es)
rapp, : Fo BN E}

—~ (app By By) — (app By Bb)

69

70 4.2. METHODOLOGY

Informally we have proven the transitivity Lemma 3.1 already in Section 3.2.1. For the sake
of a clearer presentation we repeat it here.

Proof: (of Lemma 3.1) by induction over Dy:

Case: Dy =———— rid
e — e

Dy:iie — ¢ by assumption

/

L Y
*
e e/// e/// e/
Case: D, = . rstep
e — €
P s e by i.h. on D} and Dy
Qe —» ¢ by rstep on D}, P

|

It is this proof which is encoded as the realizer trans. The informal way of stating “proof by
structural induction on Dy” from the proof of Lemma 3.1 is translated into “trans terminates
because the argument D; decreases in size with every recursive call”. When totally explicit,
trans expects six arguments T, E, E', E”, Dy, and D5, but for our purposes we will omit the
first four (implicit) arguments in order not to clutter the presentation. This leaves trans with
only two arguments D; and D»

fun trans Dy Dy = ...

which we gradually refine until it defines a total function. Keywords and function names are
typeset in bold type face in order to make the difference between the meta-level and the language
level more explicit. The proof of Lemma 3.1 proceeds by induction on D;. As we have seen,
induction translates into a case analysis, generating two cases for D;.

fun trans rid Dy = ...
| trans (rstep D} DY) Dy = ...

Recall that the reason why we can use pattern matching here is that once instantiated, D; has a
canonical form (by Theorem 2.6). D; will be bound to some (here closed) LF-object M, which
matches either with the first or with the second case, but it must match — the case cover must
be complete. “rid” and “rstep” are the only two constructors for type family —— . The first
case can be directly finished by returning object Ds.

fun trans rid Dy = Doy
| trans (rstep D] DY) Dy = ...

The second case is more difficult. The original proof proceeds with the application of the
induction hypothesis, followed by the construction of the witness derivation. In this setting,

70

CHAPTER 4. META-LOGICAL FRAMEWORKS 71

we use termination orders [RP96] to express the well-foundedness of the induction scheme: the
recursion will terminate, because with each recursive call, the first argument decreases in size,
and since the subterm relation is well-founded the recursion will eventually come to a halt.
Translated into formal jargon, we first execute a recursion operation on D! and Ds keeping
in mind that we always have to justify why recursion does not invalidate the totality of the
function. For this particular example, the case is clear. The induction hypothesis holds for DY
because DY is smaller than D;:

D! D!
1 ! !
ES
e — 6’” 6’” — 6,

rstep

* !

In LF, DY is smaller than D; because DY is a subterm of D;. Termination orders are presented
in detail in Section 7.2.

fun trans rid Dy = Dy
| trans (rstep D} DY) Dy =
let
val P = trans D Dy
in
end
Finally, we return object “rstep D] P” and replace the last set of ... to arrive at the final version
of the function.

fun trans rid Dy = Doy
| trans (rstep D} DY) Dy =

let

val P = trans D D,
in

rstep D} P
end

We say, that trans is a realizer of transitivity theorem, and use the following shorthand:

F trans € V7 :: tp. Ve :: term 7.Ve' :: term 7.Ve" :: term 7.
VD e — €.VDy e = " AP e — T

The “€” symbol is reserved for validity on the meta-level whereas “:” only expresses validity on
the language-level as defined in Section 2.4. We postpone the formal presentation of the “€”
relation until Chapter 5.

Using the technique of successive refinements, we continue our quest for a formalized version
of the Church-Rosser theorem with the encoding of Lemma 3.2. On first sight, all three cases of
the lemma are very similar, but on the second, one recognizes, that the first is different from the
second and the third: e and ¢ may contain the free variable x, whereas all terms in the other
two cases are assumed to be closed. Without higher-order representation techniques, this lemma
cannot be directly represented, but in our case it can: the representations of e :: term 7y, ¢’ ::
term 71 and D :: e —> ¢’ are functions, parametrized in z :: term 7. More precisely:

71

72 4.2. METHODOLOGY

e term 7" = Ax:term " .Tel i term "o — term Ty !
where "2z =z
Te mterm 7' = Az:term "m .77 :term " — term "7y
where "2 =z
™Mie -5 €7 = Ar:term TV iterm T — (Telx — T/)

where "z7 =z

This encoding is adequate, and again, this result rests on the canonical form Theorem 2.6.
The representation of the derivation D :: ¢ —» ¢’ is a function, and it can take exactly one of
the two possible forms

D7 = Az :term Th.rid
D7 = Az :term Th.rstep (D1) (D2 x)

The representation of all three cases in Lemma 3.2 follows by successive refinement.

Lemma 4.2 (Admissible rules, formalized)

1. |[IfD:e = ¢ then Az : 1o — Az :mo.€

VT, : tp. VT : tp.VE : term Ty — term T, .VE' : term Ty — term T}.
VD : 1z : termTy. E v —— E' .
3P :lam (\z : term Ty. E 1) —— lam (\z : term Ts. E'). T

2. |IfD:ey — e} then ey ey LN el e

VT : tp.NTy : tp.VEy : term (Ty arrow Th).VE, : term (Ty arrow T1).VEs : term T.
VD:E, — Ei.
3P :app By By — app E| By T

3. |IfD:ey — e thenel e — e el

VT : tp. VT = tp.VE : term (Ty arrow T1).VE; : term T5.VE) : term T.
VD : E, - Eb.
3P :app By By — app By EY. T

Proof: The termination order is subterm order on D in all three cases.

1. fun admissible; (Az : term T%.rid) = rid
| admissible; (Az : term Ty.rstep (D x) (Dy z)) =

let

val P = admissible; (Az : term T5. Dy)
in

rstep (rlam (Az : term T5. Dy z)) P
end

72

CHAPTER 4. META-LOGICAL FRAMEWORKS 73

2. fun admissible, rid = rid
| admissible; (rstep Dy Dy) =

let

val P = admissibley; Dy
in

rstep (rapp; D1) P
end

3. fun admissible; rid = rid
| admissibles (rstep Dy Dg) =

let

val P = admissibles D-
in

rstep (rappy D1) P
end

|

The intended way to read this formalized lemma, is that the proofs admissible;,
admissibles, and admissible; are functions in the encoding of Theorem 3.2, i.e. more for-
mally:

+ admissible; € TIfD:e — € then \z:7.¢ — Az :7.¢
I admissible, € TIfD:e — e} then e; es SN e} e’
 admissible; € TIfD:ey — e theneg e — e eh

The function trans and the family of admissible functions make use of only three of the
proof operations, we have presented in Chapter 3: direct construction, case analysis, and appli-
cation of the induction hypothesis.

4.2.2 Open Meta-Theorems

In the remainder of this section we will continue to formalize the meta-theorems and meta-proofs,
with special emphasis on the parameter operation, which is used for example in the formulation
of Lemma 3.4 and its proof. Lemma 3.4 guarantees that each term parallel reduces to itself: for
every expression e there exists a derivation of e L ..

The theorem is only provable if stated in appropriate generality; it must be so general, that
it accounts for the term e to be well-formed in a regular extension of the world of the form

1
¢ = |drutermT,unr =

and then, the resulting derivation D :: e =L ¢ is valid in the same world ®. Clearly, none of
the techniques introduced so far, can be directly applied to encode this theorem; we must define
an operator to allow quantification over those regularly formed world. The encoding of world
extensions yields an LF context which we call parameter context. Similarly, each extension of
the world is represented by a parameter context fragment called a parameter block. Parameter

73

74 4.2. METHODOLOGY

blocks must be regularly formed, i.e. they must be instantiations of some abstract description
called a block schema. In our example, the block schema has the form:

SOME T : tp. BLOCK z : term T, u : x =L

which reads as follows: for some object T' of type tp, a parameter block must be an a-variant
of z : term T\ u : x L. 4. Block schemas are partial descriptions of the form of a parameter
contexts. Consequently, repeated instantiations of the block schema, yields a valid parameter
context. Hence, a single block schema describes entire sets of parameter contexts, and therefore
we refer to it as context schema for the remainder of this section. A motivation for more complex
context schemas can be found in Section 4.2.3.

The well-formed world extension

1 1
ry term T, U Xy = T1,..., Ty 0 term Ty, Uy X, = Tp

is hence represented in the meta-logical framework as

z1:term T ug s a :1> Tiyenoo, Xy term "1, Uy 2y :1> Tn,
and it is an instance of the context schema from above.
In order to express quantification over regularly formed contexts we extend the formal lan-
guage of theorems provided by the meta-logical framework by a new operator O. With its help,
we can finally formalize of the reflexivity Lemma 3.4:

Lemma 4.3 (Reflexivity theorem, formalized)

Let @ the dynamic extension of the world. Then for any well-typed term e,

. S 1
there exists a derivation of e = e.

=0OSOME T : tp. BLOCK z : term T, u : x L 2
VT :tp.VE : termT.3D : E 4 E.T

The next question we must address is how meta-proofs of meta-theorems using context
quantification are represented. We begin with the definition of the proof representing func-
tion refl which we define by successive refinement keeping in mind that the context scheme

“SOME T : tp. BLOCK z : term T, u : = L. 27 is associated with refl.
funrefl E=---

The informal proof proceeds by induction over e, which is formalized by the subterm order on
E. Case analysis is not as straightforward as for the transitivity lemma for ordinary reduction
above: in addition to the cases introduced by the signature it must also consider parameter cases
from ®. In our example, there can only be one: F = x. Since parameter contexts are regularly
built, it follows by inspection of the context scheme that x must be declared in a parameter
block of the form z : term T, u : z =L 1. Obviously, the parameter context can be composed
of many instantiations of the block schema, and in order to completely cover all possible forms
of E, we would have to provide a case for each possibility. This is impossible, since we would
have to consider infinitely many cases!

74

CHAPTER 4. META-LOGICAL FRAMEWORKS 75

Fortunately, there is a feasible and more elegant solution to this problem. We can take
advantage of the regularity of the parameter context ®. As long as the proof of a parameter
case does not take advantage of the relative position of parameter blocks among each other,
but only of other assumptions declared in the same parameter block, we can arrange things
so that all infinitely many cases are covered by one single case: Instead of distinguishing cases
over all parameter contexts, we consider simultaneously all parameter contexts which contain a
parameter block of the form z : term T, u : x L Naturally z and u do not stand for a
single parameter occurrences any more, but rather for a whole class, and in order to make this
distinction explicit, we write z and u for variables ranging over parameter blocks.

Consequently, a case analysis of E yields three new cases, first a parameter case, second a
app case, and the third a lam case:

funrefl z =
| refl (la ()\w term T. E' x)) =
| reﬂ (18)8) E1 E2)

We incrementally construct this realizer by filling in the three holes ... top to bottom. First, we
discuss the global parameter case for £ = z. The original proof case can be immediately closed
with u;. Note, that here "x; " = x.

Case: e =

T
term 7;

Ui T, = T by assumption

On the formal side, "u; ' = u can also be used to fill the first hole since it is the only object of
desired type z =L z. Note, that this is the only information we extract from ® and therefore
we do not need to pass ® along in the definition of refl. Instead, information about z and u can
be directly extracted from the context schema.

SOME T : tp. BLOCK z : term T, u : x L 2

Therefore, the LF signature X describes the static part of the world and the abstract specification
of @ its dynamic extensions. These two descriptions contain all information needed to complete
and to formalize the proof.

funreflz =u

| refl (_ ()\w term T. E' x)) =
| refl (ap Ey)=...

75

76 4.2. METHODOLOGY

We continue the construction of the realizer by revisiting the lam-case of the proof.

Tn+1

term 7
el

term 79
Case: e=—— |amp@nt!
term (11 — T2)

Assume ;11 :: term 7y
1
Assume vy, 11 3 Tpr1 = Tpal
1 .
Pued = ¢ by i.h. on ¢’

1
Q:Aryyy s term 1. € = Az, term 7. € by rule plam on P

In order to apply the induction hypothesis to term €', we appropriately extend the world in a
way prescribed by the context schema. Only new instances of the block schema can be used,

and in this case we refer to it as z : term "7 L u : :1> z. The parameter context remains
regularly formed after adding these two new declarations.

funreflz = u

| refl (lam (Az : term T. E' z)) =
let
1

newz:termT,u:x — z
in

end
| refl (app Ey Es) = ...

In this extended context, we apply the induction hypothesis to expression "¢/? = E' z and
obtain an object P, which is still defined in the extended context. Note that P represents a

derivation P = ¢ == ¢ by the adequacy result from Lemma 3.3. But P is hypothetical in

unr = (and naturally in z :: term 7).

U

T T

1
=
P
1
=

! ¢ =Tz:teem 7 Tu:z = 2. (B 2) = (E'2) (4.1)

(&

In order to make P = "P™ available to the subsequent operations of this proof case, we insert

76

CHAPTER 4. META-LOGICAL FRAMEWORKS 7

another declaration into the body function refl.

funreflz =u
| refl (lam (Az : term T. E' z)) =
let
new z :term T, u : x :1> T
val Pzu=refl (E z)
in

end
| refl (app Ey E2) = ...

The derivation P matches the premiss of the plam-rule and we return
“plam (\z : term 7. A\u : = = 7.Pg u)” which closes this case in the proof.

funreflz = u
| refl (lam (Az : term T. E' 1)) =
let
new g :term T, u : x :1> x
val Pz u=refl (E z)
in
plam (Az : term 7. Au : x = z.Px w)

end
| refl (app Ey Es) = ...

The representation of the final case in the proof of the reflexivity theorem does not present any
new concepts or difficulties.

el €2
term (19 — 11) term 7o
Case: e = app
term 7
P e :1> el by i.h. on e;
Po i: e L €9 by i.h. on e
Q ::app e e N app e e by rule papp on Py, Ps

Two applications of the induction hypothesis provide two new objects representing derivations,
P; and P, which form as pair the return value of this case. In order to compare the informal
formal proof and its representation as a realizer, we repeat the proof here.

Proof: (of Lemma 3.4) by structural induction on e:

Case: e =

)
term 7;

1 .
U Ty = Ty by assumption

7

78 4.2. METHODOLOGY

Tn41

term 7
el

term 7o
Case: e=—— g+t
term (11 — 72)

Assume x4 : term 71

Assume vy, 11 3 Ty N Tnt1l

Prue = ¢

Q :: Azpyq : term 7. € L ALyt @ term 7. €

by i.h. on ¢’
by rule plam on P

€1 €9
term (10 — 71) term 7o
Case: e = app
term 7
Prier :1> el by i.h. on e;
by i.h. on e

1
Py iieg = eo

Q ::app e e N app e e by rule papp on Py, Ps

Proof: (realizer of Lemma 4.3)
e termination order is a subterm order on F

e using context schema “SOME T : tp. BLOCK z : term T, u : x L

funreflz = u
| refl (lam (A\z : term T. E' 1)) =
let
new z :term T, u : :1> x
val Pzu=refl (E x)

in

plam (Az : term 7. Au : z =L 7.Pg w)
end
| refl (app Ey Es) =
let

val P, = refl E;
val P2 =refl E2
in
papp P P,
end

78

CHAPTER 4. META-LOGICAL FRAMEWORKS 79

fun partrans x D> = D>
| partrans pid D, = D,
| partrans (pstep D} DY) Dy =
let
val P = partrans DY D,
in
pstep D} P
end

Figure 4.2: Formal proof of the transitivity Theorem 4.4.

This concludes the presentation of the formalization of the proof of the reflexivity lemma for
parallel reduction and we continue with the formalization of the transitivity Lemma 3.5 and the
substitution Lemma 3.6 both for parallel reduction. The formalization of the proof itself is very
similar, almost identical to the one of transitivity Lemma 4.1 for ordinary reduction.

Lemma 4.4 (Transitivity of = , formalized)

Let ® be the dynamic extension of the world. If Dy :: e == ¢ and Dy ::
e = ¢" are closed then e = €.

= 0..VT : tp.VE : term T.VE' : term T .VE" : term T.
VD,:E = E'.VDy:E = E"3P:E = E".T

Proof:

e termination order is a subterm order on Dy

e with an empty parameter context

Figure 4.2 shows the formal proof. O

The proof of the substitution lemma does not provide us with any new fundamental insights
into how to formalize meta-theorems and meta-proofs either.

79

80 4.2. METHODOLOGY

Lemma 4.5 (Substitution lemma, formalized)

Consider the situation where a list of the following assumptions is present

1 1
Ty lerm T, Uy 1Ty = T1,...,Ty o LETM Ty, Uy 1t Ty = Tp

If
v
1
Yy =y
D
1 ’

and & 1 ey = e, then exists a reduction e[ez/y] =L el leh/y].

OSOME T : tp. BLOCK z : term T\ u : x L 2
VT, : tp.NTy : tp.VEy : term Ty — term T1.VE : term Ty — term T.
VEs : term Ty.VEY : term Th.
VD : (Ily : term Ty y L y— E1y N E{ y).YD;y : E, N El.
iP:E By = E| E,.T

As in the proof of Lemma 4.2 we have to perform a case analysis on the hypothetical deriva-
tion D. Because it is hypothetical, "D = Ay : term T. \v : y N y. D' five different cases of
D’ have to be considered: D’ could be either a parameter u declared in the dynamic extension
of the world @, simply v, or an object starting with any of the three constants “pbeta”, “plam”,
or “papp”.

Proof:

e termination order is a subterm order on Dy

e using context schema “SOME T : tp. BLOCK z : term T, u : x L
Figure 4.3 shows the formal proof. O

With the diamond lemma, arguably the most difficult lemma presented in Chapter 3, we
shed some more light on the formalization process of the meta-theory of object languages such as
programming languages and logics, and also the meta-logic we are going to present in Chapter 5.
So far we have demonstrated how to formalize “proofs by structural induction” using several
operations, such as case analysis, direct construction of witness objects, appeals to the induction
hypothesis, and regular extensions of the world. In addition, the formalization of the diamond
lemma requires appeals to lemmas and extensions of termination orders.

80

CHAPTER 4. META-LOGICAL FRAMEWORKS 81

fun subst (\y : term 7". \v : y == yu) E=u
subst (A\y : term T". Av:y = y.v) E=E
| y y y
| subst (Ay:term T". \v : y =L y.pbeta Az : term T Au: x X zDiyvz u) (D2 yv)) E =
let
new z :term T, u : = == z
val Py zu=subst (\y:term T'. \v:y N y.Diyvzu) E
in
let
val P, = subst (Ay : term T". \v : y = y. Dy yv) E
in
pbeta P1 P2
end
end
| subst (Ay:term 7. \v : y = y.plam Az : term T Au: x = z.Diyva u)) E =
let
new z :term T, u : = = z
val Py zu=subst (\y:term T". \v:y SN y.Diyvzu) E
in
plam P,
end
| subst (Ay:term 7". \v : y == y.papp (D1 yv) (D2 yv)) E =
let
val P, = subst (\y : term T". \v : y = y.Diyv) E
val P, = subst (A\y : term T". \v : y == y.Ds yv) E
in
papp Pi P»
end

Figure 4.3: Formal proof of the substitution Lemma 4.5.

Lemma 4.6 (Diamond lemma, formalized)

Let ® be the dynamic extension of the world. If D' :: e =L ¢ and D" =

1 . 1
e = ¢ then there exists a common reduct €', such that R' :: ¢! = ¢

1
and R" 1 ef = €.

OSOME T : tp. BLOCK z : term T\ u : x L 2
VT : tp.VE : term T.VE" : term T.VE" : term T.
VD':E = E.VD":E = E'.
IE' :termT.3R' : B = E.3R":E" = E.T
As we have presented the proof of the diamond Lemma 3.7 in Chapter 3, it proceeds by
simultaneous structural induction over the derivations D! and D”. Specifically, an induction
hypothesis is applicable to two parallel reductions D" and D" given that D" is a subderivation
of D! and D' is either equal to or also a subderivation of D”. Formally, the proof principle “proof
by simultaneous structural induction” is represented by a new termination order, a simultaneous
extension of the subterm ordering. We write [D' D] for this new termination order and it is
defined as follows: A pair of objects [D"" D] is smaller than [D! D"}, if either

81

82 4.2. METHODOLOGY

D" is structurally smaller than D! and either D" = D" or D' is a structurally
smaller than D"

or

either D'" = D! or D" is a structurally smaller than D' and D' is structurally smaller
than D".

Another very common termination principle is “proof by lexicographical structural induction”,
which we will not demonstrate by example but merely state here. It is used for example in the
proof of cut-elimination for various logics [Pfe95].

A proof by lexicographical induction on D! and D" provides induction hypothesis, which can
be applied to terms D" and D™ as long as D" is a subderivation of D! and D" is arbitrary, or
D' = D!, and D" is a subderivation of D". Formally, we write {D!, D"} for the lexicographical
termination ordering. We say that {D', D'’} is below {D!, D"}, if either

D" is structurally smaller than D!, and D'" might be arbitrary
or
D" = D' and D" is structurally smaller than D".

Termination orderings based on simultaneous and lexicographical extensions of the subterm
ordering have been studied in [RP96]. We reuse those results in order to prove that each
recursive function formalizing a meta-proof is terminating. Recall that realizers must be total
functions, specifically upon instantiation they must terminate and the execution can never get
stuck. Termination is enforced by allowing only recursive calls on argument vector that are
smaller according to some a priori specified well-founded termination order.

The first two cases of the proof of Lemma 4.6 deserve special attention. We start with the
discussion of the base case:

Case: D! = - % D=7 "
r = r = x
e ==z by assumption
RI=R =u by assumption

How did this case come about? First, we distinguish cases on the derivation D! and consider
the global case, where z :: term 7, and v :: = L . Second, we distinguish cases on D",
and because the parallel reduction D" starts with the same term z, we conclude, that the only
possible instantiation of D" is u. There are no other cases to be considered for D".

Formally, the proof of the diamond lemma is expressed by a function mapping two represen-
tations of parallel reductions D' and D" to two other parallel reductions R' and R! in order to
form a diamond — graphically speaking.

fun dia D! D" = ...

First we distinguish cases of D!. For brevity, we only show the global parameter and the 3-rule
case.

82

CHAPTER 4. META-LOGICAL FRAMEWORKS 83

fundiau D" = ...

| dia (pbeta (Az : term 7. \u : z SN z.D} xu) DY) D" = ...

Assume, that there is one parameter context containing several parameter blocks, and each
parameter block is an instance of the given block schema. At this point D" is instantiated with
some u of one of the parameter blocks. It is not clear if it is the first, the second, or the last, all
we know, that there is one it is instantiated to. Clearly, D" is a derivation which reduces z (the
other assumptions associated with the parameter block which contains) to some term e’.

Next we have to consider all cases for D". Again there are several cases to be considered. The
first case to try is that D" = v assuming that the regular world extension contains a parameter
block of the form y,v. Hence D" : y =L y. We notice, that this can only be the case if and
y refer to the same parameter in the same parameter block in ®, since from the case analysis

on D! we can infer that D" : z :1> E". Therefore D" = v = v and z = y. This is the first
possible form of D”. Tt is also the only possible form of D", because any other instantiation of
D" whose head constant is defined in the signature clashes with the fact that D" stands for a
reduction of z.

fundiavu=...
| dia (pbeta (Az : term 7. \u : z = x.D} zu) DY) D" = ...

Why is this kind of argument sound? It is sound, because we start with a minimal amount
of information, namely that there exists a second parameter block in the parameter context,
and it is only because of additional constraints that we can identify it with one whose existence
we have already assumed. In order to close this proof branch, we simply return the pair (u,u).

fun dia v u = (u,)
| dia (pbeta (Az : term 7. \u : z = x.D} zu) DY) D" = ...

The second case of the proof demonstrates an appeal to the a lemma. It is the substitution
Lemma 3.6 discussed above.

83

84 4.2. METHODOLOGY

u
1
r = x
[[
Dy D,
Lo 1 L,
Case: D! = pbeta"
: 1
Az :T.e1) eg = €l [eb/x]
U
1
T = x
Dy Ds
1, 1,
Dr = pbeta®

Az :T.e1) ex => €l[e}/a]

Extend ® by z : term 7,u :: x =L 7 to @'
There exists an €}

1
Pyuel = ¢
1 . .
Py el = ¢ by i.h. on D}, D} in &'
There exists an ¢,
1
Q) ey = ¢

Qe = ¢ by i.h. on D}, D5 in &
Ry = el[eb/x] N e e/ x] by Lemma 3.6 on Py, Q;
Ro :: el[eh/x] = el [eh/x] by Lemma 3.6 on P, Qo

And again as in the previous case, an analysis of the second derivations leaves only one case.
After two more appeals to the induction hypothesis we obtain the following partially defined
realizer dia.
fun dia u u = (u, u)
| dia (pbeta (Az : term 7. \u : z = 7. D! z u) D)
(pbeta (Az : term T Au : x = 7. D7 z u) D}) =
let

new z :term T, u : x :1> T
val (P z u, P, z u) = dia (D} z u) (D] u)
in
let
val (Q1,Q2) = dia Dé D3

in

end
end

84

CHAPTER 4. META-LOGICAL FRAMEWORKS 85

According to the informal proof the only steps missing to close this branch of the proof are
two appeals to the substitution Lemma 3.6. In order to apply a lemma, we first have to ensure
that the context scheme of the lemma to be proven (i.e. the diamond lemma) and the lemma
to be applied (i.e. Lemma 3.6) are compatible. In a nutshell, a lemma cannot be applied in a
parameter context which is larger than the one in which the lemma is proven, in the sense, that
the lemma must always guarantee coverage of all cases. These considerations establish a notion
of subsumption on context schemas which we investigate in more detail in Section 5.7.2.

The context schema associated with the proof of substitution Lemma 4.5 and the context
schema associated with the diamond lemma are equal, which informally implies that the sub-
stitution lemma covers all cases. More specifically, it is safe to appeal to the substitution in the
proof of the diamond lemma.

Having checked the subsumption property of the context schemas, the application of lemma
translates to function application on the meta-level. subst formalizes the proof of the substi-
tution lemma in form of a recursive function; applying this function yields objects representing
the derivations whose existence is guaranteed by the lemma. Specifically, this case of the proof
requires two appeals to the substitution lemma which yield two objects E; and Fs.

fun dia v u = (u,u)
| dia (pbeta (Az : term 7. \u : z = 1. D! z u) D)
(pbeta (Az : term T Au : x = 7. D} zu) D}) =
let
new z : term T, u : :1> x
val (P zu, P, zu)=dia (D} z u) (D] z u)
in
let
val (Q1,Q2) = dia D} D5,
val R1 = subst P1 Ql
val Ry = subst P, ()
in
end
end

As a matter of fact, Ry and Ry are the required two derivations which the function formalizing
this proof has to return. Therefore, filling the last hole in the body of the let clause with
(R1, R2) closes the proof branch.

85

86 4.2. METHODOLOGY

fun dia v u = (u,u)
| dia (pbeta (Az : term 7. A\u : z = 7. D!z u) DY)
(pbeta (Az : term T. Au : z = 1. D} z u) D}) =
let
new z : term T, u : :1> x
val (P zu, P zu)=dia (D} z u) (D] z u)
in
let
val (Q1,Q2) = dia D, D}
val Ry = subst P;
val R2 = subst P2 QQ
in
(R, R)
end
end

The remaining cases are easily represented using the same techniques presented in this chap-
ter. The diamond lemma is therefore correct, and the function dia a formalization of its proof,
keeping in mind the context schema which was used to determine all the cases.

Proof: of Lemma 4.6:

e termination order is a subterm order on [D! D"]

e using context schema “SOME T : tp. BLOCK z : term T, u : x =L
Figure 4.4 shows the formal proof. O

The diamond lemma is used in the proof of the strip lemma. It guarantees that a multi-step
parallel reduction and a single-step parallel reduction have a common reduct. The theorem need
not to be as general as the reflexivity Lemma 4.3, the substitution Lemma 4.5, or the diamond
Lemma 4.6; we assume the parameter context to be empty. Naturally, since every empty pa-
rameter context is also a parameter context of the context schema “SOME T : tp. BLOCK z :

term T, u : x =L z”, the diamond lemma can be used for the proof of the strip lemma.

Lemma 4.7 (Strip lemma, formalized)

Let ® be the dynamic extension of the world. If D' :: e =L ¢ and D" =

e == ¢" then there exists a common reduct €', such that Ry ¢! = ¢

1
and Ry e = €.

O-.VT : tp.VE : term T.VE" : term T.VE" : term T.
VD':E = E'.VD':E = E".

JIE' :term T.3R': E' = E.3R":E" = E'.T

86

CHAPTER 4. META-LOGICAL FRAMEWORKS 87

fun dia v v = (u,)
| dia (pbeta (Az : term 7. A\u : == z.D\ =z u) Db) (pbeta (Az : term T. Au : = 2.Di =z u) D3) =
let
r =z

new z : term 7T, u

val (Pizu,Pszu)=dia (D] zu) (Df z u)
in

let

val (Q1,Q2) = dia D} D}
val E; = subst P; ()1
val B> = subst P> (02
in
(Ev, E2)
end
end
| dia (pbeta (Az : term T'. A\u
let

iz = z.D\z u) DY) (papp (plam (M\z : term T. Au : =4 2.D7 x u)) D3) =

1

new z :term T\ u:x =

val (Pizu,P zu)=dia (D} zu) (D zu)
in

let

val (Q1,Q2) = dia D} D}
val E; = subst P;

in
(El, pbeta P> Q2)
end
end
| dia (plam (Az : term T. Au : x = z.D\x u)) (plam (Az : term 7. Au : x = z.Djz u)) =
let

1

new z :term T\u:x =
val (Pizu, P>z u)=dia (D} zu) (D} zu)
in
(plam P1, plam P»)
end
| dia (papp (plam (Az : term T. Au : z == z.D}l'x u)) DY) (pbeta (Az : term T. \u : & = 2.Di =z u) D3) =
let

1
=

new z : term 7T, u

val (Pizu, P> zu)=dia (D zu) (D] z u)
in

let

val (Q1,Q2) = dia D} D}
val E> = subst P ()2
in
(pbeta P Ql, E2)
end
end
| dia (papp D} D5) (papp D D3) =
let
val (P1, P;) = dia D} D}
val (Q1,Q>) = dia D} D}
in
(papp P1 Q1,papp P Q2)
end

Figure 4.4: Formal proof of the diamond Lemma 3.7
87

88 4.2. METHODOLOGY

fun strip D' pid = (pid, D")
| strip D' (pstep D} D}) =
let
val (P, P;) = dia D' D
val (Ps, E») = strip P> Dj
in
(pstep Pi Ps, E»)

end

Figure 4.5: Formal proof of the strip Lemma 3.8

Proof:
e termination order is a subterm order on D"
e with an empty parameter context
Figure 4.5 shows the formal proof. O

The confluence lemma, a generalization of the strip lemma, by allowing both given reductions
to be multi-step reduction, relies on the strip lemma in its proof as the reader might recall from
Section 3.2.3.

Lemma 4.8 (Confluence lemma, formalized)

Let ® be the dynamic extension of the world. If D' :: e = ¢! and D" ::

e = ¢ then there exists a common reduct ¢, such that Ry :: ¢ == ¢

and Ry 1 " = €.

O-.VT : tp.VE : term T.VE' : term T.VE" : term T.
VD':E = E'.VD":E = E.

*

JE':term T.3R' : B! = FE'.3R":E" = E'. T
Proof:
e termination order is a subterm order on D'
e with an empty parameter context
Figure 4.6 shows the formal proof. O
In the proof of the Church-Rosser theorem, all our results so far flow together. The interesting
case is transitivity: Two appeals to the induction hypothesis, one application to the confluence

lemma, and finally two appeals to the transitivity lemma for parallel reduction conclude that
any two parallel convertible terms have a common reduct.

88

CHAPTER 4. META-LOGICAL FRAMEWORKS 89

fun conf pid D" = (D", pid)
| conf (pstep D} Db) D" =

let
val (P1, P») = strip D! D"
val (Ey, P;) = conf D}, P,

in
(E1,pstep P> Ps)

end

Figure 4.6: Formal proof of the confluence Lemma 3.9

fun cr (pred D1) = (Dy, pid)
| er (pexp D1) = (pid, Dy)
| cr (ptrans Dy D,) =
let
val (P1, P») =cr D;
val (Ps, Ps) = cr D>
val (Q1,Q2) = conf P> Ps3
val E; = partrans P, Q1
val E, = partrans P>, (2
in
(E1, E)

end

Figure 4.7: Formal proof of the Church-Rosser Theorem 3.10 for parallel reduction

Theorem 4.9 (Church-Rosser theorem for parallel reduction, formalized)

Let ® be the dynamic extension of the world. If D :: ¢! <= ¢ then there
exists a common reduct €', such that Ry :: ¢! = € and Ry e’ = €.

O-.VT : tp.VE' : term T.VE" : term T.
VD: E' < Fr.
JE' i termT.3R' : E! = FE'.3R":E" = E'. T

Proof:
e termination order is a subterm order on D
e with an empty parameter context
Figure 4.7 shows the formal proof. O

This concludes our presentation of the formalization of meta-theorems and meta-proofs re-
lated to ordinary and parallel reductions. One could continue with the presentation of the proofs
of Lemma, 3.11-3.14 from Section 3.2.4 and the interested reader is invited to do so, but we prefer
to leave them to the automated theorem prover, which will be presented in Chapter 8.

89

90 4.2. METHODOLOGY

4.2.3 More on Meta-Theorems

The formalization techniques motivated in the previous chapter are not complete. We have
omitted two important techniques, which we discuss in this section.

First, note that all parameter contexts presented in the previous section were generated by
at most one block schema. This is not always the case. In general, context schemas consist of
many block schemas, which makes it necessary to label different parameter blocks in a param-
eter context in order to reconstruct which context block is an instance of which block schema.
In particular, when we extend the simply typed A-calculus by polymorphism we also have to
generalize the induction hypothesis of the entire sequence the theorems accordingly.

Second, there are many theorems which must be proven by mutual induction. All theorems
from the previous section were provable on their own without mutually relying on any other
lemma. Consider for example the reflexivity result for a normalized version of the simply-
typed A-calculus, where we distinguish between atomic and canonical forms. The definition of
canonical forms relies on the definition of atomic forms, and this circularity must be reflected
in the meta-logic.

Context schemas

Context schemas inductively and abstractly describe all admissible parameter contexts. In the
previous section we have encountered one form of a context schema which is described by one
block schema: “SOME T : tp. BLOCK z : term T, u : =L 2. In general, one block schema
is not enough, since parameters can be introduced anywhere into the proof, and they may not
always look the same. In order to demonstrate this effect, we slightly extend our version of
the simply-typed A-calculus from Figure 2.2 by polymorphism. On the type level, we add type
variables « and a type quantifier Va7 which binds all free occurrences of the type variable « in
7. The following extends the definition of types from Section 2.2.

Types: T == ...|a|Vaor

Those new types can be adequately represented using higher-order abstract syntax, which means
in this context that type variables are represented by LF variables: "o = a.

all : (tp — tp) — tp

The changes in the type system reflect on the syntactic category of terms in a natural way.
On the one hand, there are polymorphic terms which expect a type as argument in order to
specialize the type of the body. And on the other hand, there is an application operator which
applies polymorphic terms to types and hence executes the specialization.

Terms: e == ...|Aaele-T

The term Aa.e is well-typed of type Va.r, if e is well-typed, assuming « as a new type, and e- 7/
is well-typed of type 7[7'/a] if e has type Ya.r and 7' is a type. As one might already suspect,
this extended notion of terms can be adequately represented in the logical framework.

tlam : (Ila: tp.term (T «)) — term (all (Aa : tp. T)
tapp : term (all (Aa: tp. T} «)) — IIT5 : tp. term (all (A : tp. T o) Th)

90

CHAPTER 4. META-LOGICAL FRAMEWORKS 91

Finally, we extend the parallel reduction relation from Section 3.2.2 with reduction rules for
type abstraction and type application. The rules are entirely straightforward.

1 1
e = ¢ e = ¢
ptam ————— ptapp
1 1
Aov.e = Aa.e e-T = ¢ -1

In addition, they can be adequately represented in the logical framework.

ptlam : (Ha:tp.F o = E @)
— tlam (A« : tp. E «) = tlam (A : tp. E')

ptapp : E L. g
—tapp ET N tapp E' T

This concludes the presentation of an polymorphic extension of the simply typed A-calculus.
After extending it, one has to verify that the series of lemmas leading to the Church-Rosser
theorem still hold. They could be invalidated by extending the underlying deductive systems,
and indeed they are. Already the first theorem, namely the reflexivity property of the parallel
reduction relation (Lemma 3.4) does not hold anymore. Why not? In the original version of the
lemma we assumed the context to be

1 1
1 term Ty, uq Xl = Xi,...,Tp i tErm T, Uy, 5 T, — Ip (4.2)

But this is not enough in order to prove reflexivity for the polymorphic parallel reduction. In
the ptlam case, we have to traverse a A\-binder that binds a type variable a! But this assumption
does not fit into the overall structure of the assumption list (4.2). In general, we might assume
the presence of several type variables:

a1 tp, ..., Q tp (4.3)
Assumption lists (4.2) and (4.3) may be arbitrarily interspersed while still respecting parameter
block boundaries. When formalizing the generalized version of the reflexivity lemma, we must

provide for these additional assumptions by adding a new block schema, in this case BLOCK a :
tp, to the context schema.

Lemma 4.10 (Reflexivity theorem for polymorphic parallel reduction, formalized)

Let
¢ = | P,xutermT,unx N z|®,aitp

a regularly formed extension of the world. Then for any well-typed term e, there

. L 1
exists a derivation of e = e.

=OSOME T : tp. BLOCK z : term T,u : x =L z|BLOCK a : tp.
VT :tp.VE : termT.3D : K 4 E.T

91

92 4.2. METHODOLOGY

Therefore, context schemas are defined as a list of block schemas, and in order to identify
different occurrences of parameter blocks as instances of the same block schema, we assign a
necessarily unique label to each block schema. The first context block is labeled Lj, and the
second 1is labeled Ls.

O(SOME T : tp. BLOCK z : term T, u : x =L z) | (BLOCK a : tp)l=.
VT :tp.VE :term T.3D : E 4 E.T

This concludes the discussion on more complex context schemas. We continue with a brief
overview about mutually dependent meta-theorems.

Mutually dependent meta-theorems

We say that two or more meta-theorems are mutually dependent, if none of them can be proved
without the others. Mutually dependent theorems occur frequently in the formal theory of
programming languages and logics. Often they are needed if the argument proceeds by induc-
tion over the derivation of a judgment (or several, depending on the termination order) which
mutually depends on another. Consider for example our definition of canonical forms from Sec-
tion 2.4.3. Canonical forms are defined in terms of atomic forms, and atomic forms are defined
in terms of canonical forms.

Below we define canonical forms for the simply-typed A-calculus (without dependencies). In
this setting proving some property P for canonical forms typically requires another property Q
to be proven for atomic forms. Consider for example, the proof that canonical forms enjoy the
reflexivity property; it is also necessary to show that this property holds for atomic forms.

We omit the informal presentation of canonical and atomic forms and instead simply describe
their representation in LF. There are two type families can and atm which represent well-typed
canonical and well-typed atomic forms.

can : tp — type
atm : tp — type

Using these two type families, application and A-abstraction are easily represented, and for
coercion purposes, there is a rule very similar to canatm.

eapp : can (T arrow T1) — atm T — atm T}
elam : (atm 77 — can Ty) — can (T} arrow T5)
eca :atmT — canT

Intuitively, each closed canonical term is well-typed. As expected this lemma cannot be
proven directly. First, it must be generalized to account for closed atomic terms, which are
clearly well-typed, too. But this is still not enough. When reasoning inductively about canonical
forms, one notices quickly that terms may be open with respect to a set of atomic well-typed
variables.

Lemma 4.11 (Embedding) Consider the situation where a list of the following assumptions
1§ present
Ty alm T,yy o term Ty, ..., Ty i alm Ty, Yy, i term T,

e Fuvery canonical form e. is well-typed

92

CHAPTER 4. META-LOGICAL FRAMEWORKS 93

e Fwvery atomic form eq is well-typed
Proof: by mutual induction over e, and e.. O

In our meta-logic, this theorem is formalized by using conjunction.

Lemma 4.12 (Embedding (formalized))

OSOME T : tp. BLOCK « : atm T,y : term T.
(VT : tp.VE®: can T.3E" : term T. T) AN (VT : tp.VE® : atm T.3E" : term T. T)

But how can we guarantee termination of the recursive function corresponding to the proof of
this theorem? In order to answer this question, we have to generalize the notion of termination
orders. From an abstract point of view, the realizer formalizing the first and the second part
of the theorem call each other recursively. In order to ensure termination, we must guarantee
that the argument to the functions always decreases in size according to some well-founded
measure. Recall, that in this thesis the measure of choice is the subterm relation. Specifically,
when the function representing the first part calls the other with some E%, we always enforce
E® to be a subterm of the original argument term E¢. Similarly, when the second function calls
the first with argument E¢, E° must be smaller than or equal to the initial argument £*. This
termination order is expressed formally as (E° E®). Note that there is an important difference
between a termination order which expresses simultaneous induction [D' D"] as in the proof of
the diamond Lemma, 4.6, for example, and the one for mutual induction.

Proof: of Lemma 4.12
e termination order is a subterm order on (E¢, E?)
e using context schema “SOME T : tp. BLOCK z : atm T, u : term 77

Figure 4.8 shows the formal proof. O

We conclude this subsection with a final remark about applying the induction hypothesis un-
der a local extension of the parameter context. In the formalization of the reflexivity Lemma 3.4
for parallel reduction, we extend the regular world (or formally the parameter context) by two
new parameters before we apply the induction hypothesis. First, we assumed that z is a term
of type "717, and second that it reduces in parallel to itself: z L z. After appealing to
the induction hypothesis, or functionally speaking, after calling the function refl recursively
we obtained a new derivation P z u, which had to be abstracted to the correct context. Equa-
tion (4.1) provided us with the correct insight, that a hypothetical judgment is being represented
as function type in LF.

r A
u
1
T =z
P
1 1 1
¢ = ¢ =llz:term"n " Mu:z = z.(E'z) = (E'x)

In the formalization of the embedding Lemma 4.11, we only used one of the two parameters
“z :atm T,y : term T1” to conclude that “E":term Ty — term Tb”. If we had not omitted z,

93

94 4.3. OVERVIEW OF THIS THESIS

fun embedding® (eapp E° E*) =
let
val F; = embedding® E°¢
val F; = embedding® E*
in
app E1 E»
end
and embedding® (elam (Az : atm T;. E° x)) =
let
new z : atm 71,y : term 11
val E'y=embedding® ((Az : atm T}. E° z))
in B
lam E’
end
| embedding® (eca E*) =
let
val E' = embedding® E*
in
E/
end

Figure 4.8: Formal proof of the embedding Lemma 4.11 for parallel reduction

E' would have the type “atm T} — term T} — term 75" and consequently it is impossible to
apply lam to E’ in order to close the proof branch. But note: By typing reasons we can infer
from the signature that it is impossible that E’ ever depends on z. Therefore, we can strengthen
the type of E' by omitting “atm 77”. On the other hand if E’ contained an occurrence of z, z
would surely escape its scope, and destroy the adequacy of encoding for terms.

How can we mechanize the decision when to omit 27 The answer to this question requires
a careful analysis of the signature: It follows by inspection that “term” and “atm” are defined
entirely independent from each other, i.e. no object of type atm 7T for any arbitrary 7' can
contain an object of type term T”, and vice versa. We say that a type family as depends on
another type family aq, if objects of a1 can be subterms of objects in as, or — synonymously
— ay is subordinate to ag. This relation on type families is called dependency or subordination
relation in the literature and has been introduced by Rohwedder [Roh96] and thoroughly studied
by Virga [Vir99]. In order not to clutter the presentation of the meta-logic, we postpone the
issue of subordination until Section 6.2.2.

4.3 Overview Of This Thesis

A meta-logical framework serves a number of important purposes: First, it allows system devel-
opers to formalize their designs and cast them into a machine interpretable language. Second,
it provides a language to express properties about these designs, and third it implements the
necessary technology to verify these properties.

In this work, we have committed to the logical framework LF [HHP93] as representation
language. We believe that it is currently the best representation language for our work since
we are mainly interested in formal systems, such as programming languages, logics, and type

94

CHAPTER 4. META-LOGICAL FRAMEWORKS 95

systems. What makes LF the framework of choice is, that it permits elegant and adequate
encodings of deductive systems using higher-order representation techniques and dependent
types. Judgments are represented as types and deductions as objects.

One of the main contributions of this thesis to extend LF to a meta-logical framework. We
observe, that the majority of properties about programming languages and logics are proven by
induction, in particular all the properties in the previous chapter. The goal of this work is the
design of the meta-logic M that can formalize the meta-theory of deductive systems.

Finally, we develop tools for automated reasoning in this thesis. Designing, developing,
implementing, enhancing, and verifying the design of formal systems is a very tedious and time
intensive endeavor. In order for a meta-logical framework to be a useful tool, it must support
and automate the user’s task.

More concretely, in this thesis we develop a two-layer meta-logical framework. Based on LF
we develop a meta-logic M;’ in Chapter 5 that is expressive enough to formalize interesting
properties about programming languages, logics and type system. It is an intuitionistic logic,
that defines a language of formulas useful to formalize properties, and a language of proof terms,
witnessing the derivability of a property. What distinguishes M; from other logics is the ability
over higher-order encodings of deductive system relying on the regular world assumption.

Unlike standard inductive theorem provers that rely on the closed world assumption, M;’
allows dynamic but regular extensions of the world. Under the closed world assumption the set
of constructors for a particular inductively defined datatype is statically fixed a priori. However
under the regular closed world assumption it can be dynamically extended by new constructors
during a proof.

The regular world assumption is sound, because from the property of LF that canonical
form are inductively defined, we can infer that any recursive function that is valid in My is
a realizer. For examples refl, subst, dia, strip, conf, and cr are all derivable in M; , and
they are realizers. In order to make the soundness argument formal, we specify an operational
semantics for M;’ in Chapter 6, and in Chapter 7 we show that each function derivable in M;’
is total.

We also present some automated deduction algorithms in Chapter 8 that have been im-
plemented in the Twelf system. In fact Twelf contains a working meta-theorem prover
(http://www.twelf.org) that can prove all the theorems we have shown in the previous sec-
tions and chapters. The theorem prover works mostly automatic; all that is required is the
proper formulation of the induction hypothesis, a termination order, and a number which limits
the search space when Twelf is constructing a witness object to close a proof subgoal.

Twelf has been used in many experiments. In logic for example, Twelf has been successfully
applied to derive the cut-elimination results for full-first order intuitionistic and full first-order
classical logic [Pfe95]. In logic programming, it has been used to show that the fragment of
hereditary Harrop formulas implemented in A-Prolog [NM88], proof search for uniform deriva-
tions and resolution are equivalent. It also derived the same property for the Horn fragment
of predicate logic. In the area of functional programming, Twelf was used to show that the
operational semantics of Mini-ML, an ML dialect without exceptions, references and modules,
preserves types. In addition, it derived a completeness result for compiling Mini-ML programs
into a continuation based transition machine CPM [FSDF93]. Most proofs could be found in a
few seconds, for other some Twelf needed more time.

95

96 4.4. RELATED WORK

4.4 Related Work

In the last few decades it has been realized that type theory is an appropriate formalism for
the representation of propositions and proofs. After the discovery of the Curry-Howard isomor-
phism [How80], it has become common practice to represent proposition as types, and express
derivability by the existence of objects. In particular, it guarantees that propositional natural
deduction derivations [Pra65] can be represented as A-terms in the simply-typed A-calculus.

Thereafter many type theories were developed, arguably the most influential being Martin-
Lo6t’s type theory [ML80]. Most importantly, it demonstrated how dependent types and an
equality relation can be used to adequately represent judgments and derivations in a formal
framework. Martin-Lof’s type theory eventually led to the development of the NuPRL system
[C*86], and it is implemented in ALF [Mag95].

There has been a whole series of different systems, following this tradition, among others the
Isabelle system [Pau94] based on the simply-typed A-calculus, the Coq system [DFHT93], which
is based on the calculus of constructions [CH88], and the Lego system [LP92], which is based on
a refined version of the calculus of constructions. A more detailed discussion about these these
systems and logical frameworks in general can be found in [Pfe99].

All these systems are very similar in nature. One logical framework makes use of polymor-
phism, the other of type constructors. Many of these systems provide the facilities to reason by
induction. But in all cases, the underlying assumption is that the world is closed. Consequently,
higher-order encodings as we use them in this thesis are not directly expressible in any of these
systems, and therefore, none of the systems can express proofs as elegantly as we have presented
them in this chapter.

In order to rectify this inefficiency, many of the systems have introduced inductive datatypes
to which induction principles are associated. In general, it has been accepted that the negativity
condition associated with the inductively defined datatypes (as shown in Section 4.1) is unavoid-
able. Therefore higher-order representation techniques have hardly been used, and alternative
first-order encodings have been chosen. A common way to represent variables for example is the
use of de Bruijn indices or integers.

The main drawback of first-order representation techniques is that they are not very elegant.
They do not exploit the type theory in order to define, represent, and execute substitutions,
instead, everything that has to do with substitutions must be explicitly encoded and proven
correct. Omne can think of higher-order representations as alive since they can change their
shape due to internal (n-reductions, whereas first-order representations are dead, since every
reduction operation must be defined outside the logical framework!.

This way, the original calculus of construction [CH88] has been extended to the inductive
calculus of construction [PM93] which is now used as the formal basis for Coq, and Isabelle,
Lego, and ALF all allow inductive definition given that the positivity condition is satisfied.

On the other hand, the LF type theory does not contain a concept of inductive datatypes.
As already discussed, the recursive functions space implicitly associated with with the elimina-
tion rule of inductive definitions is inherently incompatible with the parametric function space
provided by LF (see Section 2.6), and the Elf project [Pfe89] has taken the stand for higher-order
representation techniques and against inductive datatypes. LF is a very elegant tool to represent
deductive systems, but it lacks a general theory to represent meta-theory adequately.

!This analogy is due to Henk Barendregt

96

CHAPTER 4. META-LOGICAL FRAMEWORKS 97

Even though Elf does not provide a recursive function space, its operational semantics im-
plicitly defines recursive relations. Specifically, recursive functions which lie in the Ils-fragment
can be encoded in Elf as relations [Pfe89]. Each relation relates the universally quantified as-
sumptions (read as input arguments) to the existentially quantified assumptions (read as output
arguments). The relation is representable as LF-signature, and executable via a logic program-
ming interpretation. As example we present an encoding of Lemma 3.5 as a recursive function
which maps two derivations D 1 e — € and £ :: ¢ — € to a derivation P e —— €.
The function is being represented as relation

trans "Dy "Dy TP

which is encoded as type family. The first two arguments must be interpreted as input arguments,
and the last as output argument. We omit that F, E’, and E” are also treated as input
arguments, since also the Elf type reconstruction algorithm infers this information itself.

trans : (F — E')— (' - E") = (E - E") - type
transrid : trans rid Dy Do
transrstep : trans (rstep D] DY) Dy (rstep D} P)
+ trans DY Dy P

Obviously, from the point of view of LF, this is not the encoding of a function, it is a sequence
of constant declarations! The semantics of ordinary parametric functions, given by the - and
n-rule, is not enough to establish an operational semantics of a function represented this way.
Therefore, LF-signatures have been equipped with a logic programming interpretation, which
assigns an operational meaning to — and II [Pfe89] that interprets each declaration in the
signature as applicable if the head is unifiable. This way, a query of the form “trans rid rid P”
can be executed, and the value being returned is the constant “rid” bound to the variable P.
The reader is invited to consult [Pfe00] for a large collection of more examples.

Because of this external interpretation of a signature as a program, recursive functions can
represented in LF. But do these declarations necessarily represent proofs? The answer is clearly
no! To represent a proof the recursive functions must be total, i.e. their evaluation will always
make progress and eventually terminate. But this property is not enforced, neither by the type
system of LF nor by the definition of the operational semantics itself. As a matter of fact, it is
very easy to write non-terminating functions. Adding

infinite : trans Dy Dy P
< trans D1 Dy P

as first object constant declaration to the LF signature, will cause the evaluation to loop. Sim-
ilarly, omitting the rule rid from the signature will force the operational semantics to get stuck
when executing “trans rid rid P”, and the value of P cannot be determined.

In order to determine that a type family represents a proof one has to employ an external
check for totality, a procedure to which we refer as schema-checker. Early attempts have been
made to devise an efficient and reliable schema-checking algorithm by Rohwedder [Roh96]. The
formal conditions for termination (see Section 7.2) and coverage (see Section 7.3) can be used
to devise an appropriate schema-checking algorithm.

It is inherently difficult to extend logical frameworks directly with a parametric function space
by a recursive function space in a way that both function spaces can coexist. We only know of

97

98 4.4. RELATED WORK

one successful attempt which goes back to Schiirmann, Despeyroux, and Pfenning [DPS97]: the
O-calculus — a conservative extension of the simply-typed A-calculus. This work introduces a
new type OA that reads as the type of all closed objects of type A. Using the modal operator
and the parametric function arrow —, the recursive function space A; = As is defined in the
following way.

Al = Ay =04 — Ay

The O-calculus also provides iteration and case operators that provide function definition by
case analysis (over any closed possibly functional object). Specifically, a recursive functions f
mapping natural numbers to natural numbers has either type Onat — nat or type Onat — Onat,
depending if the result of an application of f should be used as argument to another recursive
function or not.

The O-calculus is a very elegant solution to the problem of having a recursive and parametric
function space coexist in one logical framework but it has two severe restrictions, which make
it an unsuitable candidate for a meta-logical framework: First, it requires that arguments to
recursive functions are always closed, which excludes the representation of the proof reflexivity
Lemma 3.4 for parallel reduction as far as we know. Second, it is only defined for the simply-
typed setting. Therefore, it is by far not general enough to be used as a meta-logical framework.
The second restriction has been partially addressed in the thesis of Leleu [Lel98], where he
develops an extension of the O-calculus to also include dependent types. But the first restriction
remains, and it is not at all clear of how to extend it to also reflect parameter contexts and allow
reasoning about open terms.

A more general approach has been taken by Miller and McDowell with their system FO AN,
FOXANN is a meta-logic based on an intuitionistic first-order logic extended by natural number
induction and definitional reflection [SH93b]. This meta-logic is very general, it is so general
that it supports the representation of various logical frameworks, for example the intuitionistic
and linear framework of hereditary Harrop formulas [McD97]. The embedded logical frameworks
are used to represent deductive systems. In [MM97], McDowell discusses the formalization of
the type preservation proof for Mini-ML.

FOXAN is similar to My because it explicitly separates the meta-logic from the logical
framework, but on the other hand, it is quite different: The only induction principle underlying
FOMAN is natural number induction. In particular, every structural inductive argument must
be mapped onto natural numbers which puts additional strains on the formulation of meta-
theorems. A second drawback of FOAAY is the treatment of parameter contexts. The logic is
not specific enough to treat parameter contexts as special entities. To the contrary, parameter
contexts and hypothesis must be explicitly represented as lists or as functions as must the
regularity condition.

In addition, FOX*™ is an intuitionistic logic, without proof terms. Contrary to our approach
where we show soundness of our meta-logic by guaranteeing the proof terms are total functions,
McDowell uses a purely logical argument. He shows that FOA™N enjoys the cut-elimination
property. Naturally, cut-elimination implies consistency. Considering how complicated the orig-
inal cut-elimination proof already is [MMO00], the soundness argument is the major impediment
when generalizing FOA™’s natural number induction principle to full structural induction.

FOMNAN'g ability to represent other logical frameworks raises immediately two questions.
First, which other logical frameworks are there, and are they interesting? And second, how well
can M; adopt to these new logical frameworks. The answer to the first question is yes, there

98

CHAPTER 4. META-LOGICAL FRAMEWORKS 99

are many important logical frameworks, and the answer to the second second question will be
postponed until Section 9.1.2.

The interested reader might wonder if it is possible to develop the meta-logic in M3 using
a proof assistant, such as NuPRL or Coq. The formal development of the meta-logic requires
a sound formalization of LF including congruence rules, and much of its meta-theory; it will
require proofs of many properties such as substitution lemmas, the canonical form theorem, and
many others. In addition, one had to formalize unification and subordination, and derive their
necessary properties. We predict, that the proof search engines of the proof assistants will not
be efficient enough to perform the search for derivations inside the deductive systems since the
LF substitution lemmas and canonical form lemmas will be explicitly and repeatedly applied.
In our system, we can exploit the fact that terms are alive, they normalize to their canonical
form by themselves. However, for traditional theorem provers terms are dead, which means that
it is the provers responsibility to return a result in canonical form.

In summary, we believe the work carried out in this thesis cannot be developed in other proof
assistant without spending a significant amount of time and energy. Even if it were possible,
one cannot expect a working theorem prover for free as result of the formal development.

The theorem prover implemented in Twelf that we present in this thesis in Chapter 8 works by
searching for realizers for a given formula in M. . These realizers are recursive functions, which
can be executed, and they compute witness objects for existential quantifies from instantiations
of universal ones. In this sense, Twelf is program synthesis tool [Kre98], that generates correct
programs in a not yet well explored programming language whose datatype declarations are
written as LF signatures.

4.5 Summary

In this chapter, we have demonstrated of how to formalize meta-proofs and meta-theorems in a
meta-logical framework leading up to an informal description of the meta-logic M. Conceptu-
ally, M3 lies on a different and separate level above the logical framework LF. In particular, it
encompasses universal and existential quantification, and conjunction. This is sufficient because
the meta logic does not provide any other atomic constants or propositions other than truth.
The meta-logic provides a proof term calculus, where each proof term corresponds to a total
recursive function. Totality is required in order to guarantee soundness, i.e. upon instantiation
of its arguments, the function must terminate and return with an answer.

99

100 4.5. SUMMARY

100

Chapter 5

The Meta-logic /\/l;

5.1 Introduction

The design cycle of programming languages, compilers, and logics is long, tedious, and error-
prone. In particular, when extending a programming language by new constructs, one has to
be very careful not to render the entire system design unsound. Even worse, an unsoundness
occurring in a programming language is sometimes very difficult to detect by testing, sometimes
it takes years, and very often it is extremely difficult to rectify since it involves a change in the
language design.

The earlier mistakes in the development of a programming language are caught, the better
the final result is. During the early design stages, adjustments to a language need not to be
local, they might and often will be global. In general, it is impossible to remove all flaws from
a programming language already at the drawing board, but experience has shown, that many
flaws could be avoided by checking the design against certain a-priori defined specifications, such
as type soundness, progress, and others.

Consider for example the untyped A-calculus, a very simple functional programming lan-
guage, from Chapter 2. From [CR36] we learned that the diamond lemma and the Church-Rosser
theorem holds for this language. What about extending it to the simply-typed case? All we had
to do is to edit the sequence of theorems, by indexing all occurrences of “term” by a type. Next,
we refined it to the polymorphic A-calculus, and again we had to slightly generalize the formu-
lation of the lemmas, this time by extending the context schemas (for example Lemma 4.10).
This example shows of how we envision users working with our tool. It serves the incremental
development of programming languages and their theory while offering sophisticated verification
procedures.

In this chapter however, we begin with a formal presentation of the meta-logic which is at
the very heart of this thesis. Its purpose is to express specifications about deductive systems.
We develop an appropriate proof system based on the sequent calculus, for which we develop an
automated proof search procedure in Chapter 8. The meta-logic is called M; and it supersedes
an earlier versions that were published for example in [Sch95, SP98]. Unlike My that relies on
the closed world assumption, M;’ relies on the regular world assumption.

This chapter is organized in the following way. In Section 5.2 we introduce a notion of
substitution for LF (see Section 2.4) since we will use substitutions from early on, and they
will occur in different shapes over and over in this chapter. Using the notion of substitution

101

102 5.2. PRELIMINARIES

we start with the presentation of the logic, its syntax and semantics in Section 5.3, followed
by a formal inference system, based on extensions to the sequent calculus in Section 5.4. In
Section 5.5 we endow the inference rule system with proof terms, constructed in such a way that
they can be used to represent (non-inductive) meta-proofs. In Section 5.6 we extend the proof
term calculus by constructs for recursion, which allow the formalization of meta-proofs carried
out via induction and we add lemmas in Section 5.7. In Section 5.8 we conclude this chapter,
and assess the results.

5.2 Preliminaries

Variables and substitutions are two closely related concepts. In fact, in Chapter 2 we have used
substitutions, for example, for the definition of the S-rule for the untyped, the simply-typed,
and even the dependently typed A-calculus. Be it in a formal development, or in a theorem
prover implementation, or even in the design of a programming language or logic, the treatment
of variables is very difficult to get right. Since the use of higher-order abstract syntax makes
heavy use of the variable concept of the logical framework, variables and substitutions are the
backbone of this development and hence deserve extremely careful attention. Specifically, LF
substitutions are defined as a list of object/variable pairs M/z where z is the variable to be
instantiated, and M an object which is well-defined in some context , .

Substitutions: o = -|o,M/x

In this work we follow standard practice, and allow only valid substitutions to be applied to
valid terms. Because contexts contain explicit type information, validity can be easily expressed
as a static property of substitutions.

Judgment
Valid substitutions: , oo :,

We say, that “a substitution o goes from , ; to , 2”, which means that — when applied — it
substitutes objects valid in , o for variables declared in , 1. We refer to , ; as the domain of the
substitution, and to , o as the co-domain.

Rules

, o M : Alo] ,obFo:,
subempty subcons
y e yoFo Mz, ,z: A

Note that M has type A[o] in the first premiss of rule subcons, where Afo] is the type one
obtains from A by applying the substitution o. Without going into detail of how substitution
application is defined for LF, we always assume that substitutions can be applied to LF types,
LF objects, or LF kinds if they are valid in the domain of the substitution. ¢ can be applied to
A, because , oo :, 1 and, 1 - A: type.

A similar comment holds for the composition of substitutions. A substitution o can only
be composed with o9 if 01’s co-domain and o9’s domain coincide. Formally this is expressed by
,3Fo09:,9and, o F oy :, 1. Substitutions composition is written as , 3 - o1009 :, 1.

102

CHAPTER 5. THE META-LOGIC Mj 103

Definition 5.1 (Composition of substitutions)

009 = 02
(01,M/xz)o0oy = (010039), M[oa]/z

It is an easy consequence from the substitution lemmas for LF [HHP93], that the composition
of two valid substitutions is valid.

Lemma 5.2 (Composition of substitutions)

If Dyyobor:,1
and Do) 3091, 9
then,3|—01002:,1

Proof: by structural induction on Dj. O

This concludes the section on preliminary concepts and we continue with the presentation
of the logic M where substitutions are needed at many different occasions.

5.3 The Logic

We begin with the discussion of the logic M; , its syntax, and its semantics. The syntax
of formulas is more complicated than in other logics, because formulas also describe partial
extensions of the current world. At the end of this section we define a formal semantics for this
logic.

5.3.1 Syntax

We introduce the syntax of M3 in three steps. First formally define what context schemas
are. Second we motivate two different variable concepts. One kind of variables range over
assumptions, i.e. LF types, and the other kind of variables ranges over parameter blocks. Third,
we characterize formulas.

Context schemas

In the formulation of each theorem, we explicitly require that there is a context schema given,
which describes the regular extensions of the world. In Section 4.2.3, we have encountered an
example, where valid extensions to the world can only be described by more than one block
schema. Context schemas are defined by a labeled list of block schemas, and each block schema
has two components, a SOME-component, and a BLOCK-component, where the BLOCK-
component defines the form of a parameter block, and the SOME-component quantifies over
free variable occurrences in this block. Block schemas are always labeled. Context schemas are
an integral part of any formula.

Context form: C == -|Cuz:A
Block schema: B := SOME C;. BLOCK (C,
Context schemas: S == -|S, B

Context forms are LF contexts, they enjoy all substitution and a-conversion properties as
regular LF contexts do. We have given them a different name and denote them with a different
letter C' in order to emphasize that they are blueprints for context blocks.

103

104 5.3. THE LOGIC

Variable concepts

In traditional intuitionistic or classical logic, when we write Vz.3y.P(z,y), we typically do not
specify the domain of the two variables x and y. If this formula is true, then independently of
what z is bound to, it is certain that there exists y which makes P(z,y) true.

For our purposes on the other hand, we think of x and y as LF-objects, representing derivation
of an encoded deductive system. Therefore, z and y range over objects of a certain type; we
have demonstrated this already in Chapter 3, when we developed the different formalizations of
theorems in the meta-logic. Consider for example the formalization of the reflexivity Lemma 4.3
for parallel reduction. The colon “:” indicates that T', F/, and D range over LF-objects.

O(SOME T : tp. BLOCK z : term T, u : N z)k.
VT :tp.VE :term T.3D: E = E.T

Note, that in this formalization 7" and E are not standard LF variables declarations as described
in Section 2.4. There is a new property attached to these variables which is not available in LF
at all: In order to reason by induction, we can analyze the different forms of 7" and E.

Nevertheless, since we always keep the LF level and the /\/12+ level entirely separate, we
continue to write x : A for the assumption that x is of type A, and we keep in mind that we can
analyze = on a case by case basis. From a logical point of view, we call z : A an assumption.

The regular world assumption introduces a new level of complexity. Recall that the regular
world assumption allows dynamic but regular extensions of the LF signature. A recursive func-
tion, as we have seen in the previous chapter can extend the current world by new constructors.
Extensions of the world must always match the abstract description of the world through context
schemas.

In addition to the standard variable concept, we need a notion of variables that range over
parameter blocks. We motivate these new variables using the reflexivity Lemma 4.3. After
analyzing the cases on E, we had to consider the one case that E in fact refers to a parameter
z in an extension of the current world ®. x is a variable, it simply ranges over any parameter.
Recall that the context schema states that

(SOME T : tp. BLOCK z : term T, u : N z)r

which means, that any z in ® is always accompanied by u. Thus, u ranges over the second
parameter in a parameter block. Since we need to reason abstractly about parameter blocks, we
refer to z and u collectively as wvariable block. In full generality, variable blocks consist of many

parameter variables. We write p = (z : term T, u : z :1> z) for variable blocks.
Variable blocks: p == -|p,x:A

Variable blocks are typically labeled as described in Section 4.2.3, and these labels are written
in exponent notation. Consequently, variable blocks p ranging over parameter blocks labeled
with L are written as p“. In this setting, regular world extensions ® can be defined as a list of
labeled variable blocks. As example consider the following extension of the world that is clearly
an instance of the context schema;:

Q= (z;:term "7 ug 2y = 1), (T s term Ty, 1 Ty, = z,)"

104

CHAPTER 5. THE META-LOGIC Mj 105

Variable blocks and regular world extensions enjoy the standard properties, such as sub-
stitution, weakening, contraction, and limited exchange [HHP93]. «-convertibility of variable
blocks p1 =4 p2 is decidable and follows from a simple generalization of convertibility of types.
Formally, variable blocks are simply lists of parameter binding variables together with their

types.

Formulas

Given the two different variable concepts, the formula level must provide two quantifiers, binding
each of the variables. In /\/12+ we use the standard universal quantifier to quantify over LF objects
as used in the formula for the reflexivity lemma.

VE :term T.3D : E — E. T

The other quantifier ranges over variable blocks p. We motivate this new quantifier by further
examples. Consider again the standard extension of the current world as often assumed in the
previous chapter.

1 1
= (z1:term "1 g s = m1)", .., (@, term T Uy m = @)

In the reflexivity Lemma 4.3 for parallel reduction we must analyze cases over E : term 7T'. That
means we have to consider a variable block p ranging over any parameter block of label L. In
this case, we must show that forall types 7', and for variable blocks ranging over parameter
blocks in @ there exists a D of appropriate type. We ues quantification over variable blocks of
label L using the IT-quantifier to express this formula.

VT : tp.I(z : term T, u : x L Q)L.HD:Q L z. T

A formula in M; is built from two parts. The first part describes the form of possible
extensions of the world. It is expressed by the context schema. Informally, the reflexivity
Lemma 3.4 states:

Consider the situation where a list of the following assumptions is present

1 1
ry term T, U Xy = T1,..., Ty 0 term Ty, Uy X, = Tp

Then for any well-typed term e, there exists a derivation of e =L e

The context schema, formalizes the statement about the list of assumptions whereas a formula
expresses the property to be shown.

Formulas are defined in terms of universal and existential quantifiers ranging assumptions and
variable blocks, conjunction to represent mutual inductive theorems, and truth. For this work,
we are particularly interested in formulas that lie in the IIo-fragment, since it is this fragment
for which we develop automated deduction algorithms that are described in Chapter 8. The
well-formedness condition for formulas is discussed in Section 5.4.3.

General formulas: G == 0OS.F
Formulas: F o= Vz:AF|Upl. F|3z:AF|FAF|T

105

106 5.3. THE LOGIC

It is possible to separate the two parts of a general formula, and to leave the definition of the
context schema implicit, similarly as we leave the definition of the signature implicit. However
for clarity we carry the context schema as part of the formula in this work.

As a reminder, here are some examples of meta-theorems expressible in this logic. The first
example is the diamond lemma for parallel reduction.

Example 5.3 (Diamond lemma) (see Lemma 4.6)

O(SOME T : tp. BLOCK z : term T, u : L 2)L
VT : tp.VE : term T.VE' : term T.VE" : term T.

VD' :E = E'VD':E = E.
3 :term T.3R': B! = E'.3R":E" = E'. T

The second example is the reflexivity lemma for the polymorphic A-calculus. Note, that here
the context schema contains two block schemas.

Example 5.4 (Reflexivity lemma for the polymorphic A-calculus) (see Lemma 4.10)

O(SOME T : tp. BLOCK z : term T, u : x = z)l1 | (BLOCK a : tp)l2.
VT :tp.VE :term 7.3D: E == E.T

The logic is very simple, and simultaneously very strong because it inherits the expressiveness
from the underlying logical framework LF. In particular, there are no other constants defined
besides truth. There is no equality. There is no falsehood. There is no disjunction. On the one
hand this sounds like a severe restriction, on the other it may not be. For specific instances,
it is possible to define disjunction in LF and to make it accessible to M; . A more concise
investigation of other useful connectives for My is left to future work.

5.3.2 Semantics

In this subsection we extrapolate a suitable semantics for M; from the examples presented in
Chapter 3. The semantic is straightforward and intuitive. Before we present the meaning of
a general formula G in M3 in detail, we first define an interpretation of the new O-operator,
which prompts the definition of an interpretation of context schemas.

A closer look on context forms C reveals that C’s are defined structurally in a way very
similar to LF contexts, namely as a list of declarations. In order to judge if a given context
satisfies a context schema, we must check that every block is an instantiation of a block schema
— block by block.

Consider for example a regular extension of the world, that we denoted by ® = &', p
where p is the most recent block introduced in the world. This block is labeled with L. Ob-
viously, for ® to be be valid, ®' must be valid and p must be an instance of the block schema
SOME (. BLOCK (5. In other words, there must be an instantiation for the variables in Cy
from @', and p must match C where CY is the result of instantiating all variables from C} in Cy.
In the first case we speak of a SOME-instantiation, and in the second of a BLOCK-construction
which includes an explicit c-conversion step to ensure that the naming of parameters is unique.

BLOCK-construction creates the new parameter context by traversing C' from left to right
instead of right to left as suggested by the syntactical definition of C. We write [0]C for the
instantiation of context form C followed by an a-conversion step. ¢ is a substitution.

106

CHAPTER 5. THE META-LOGIC Mj 107

The interpretation of a block schema is defined in terms of SOME-instantiations and
BLOCK-constructions. It is a set of all parameter blocks, which are the result of BLOCK-
construction, after some appropriate SOME-instantiation.

Definition 5.5 (Interpretation of a block schema)
For all o, s.t. @+ o : Cy, it holds that ® F [0]Cy € [SOME C;. BLOCK (5]

We say that @ lies in the interpretation of S, if any parameter block of @ is in the interpreta-
tion of some block schema defined by S. Obviously, the empty parameter context is an element
of the interpretation of any context schema.

Definition 5.6 (Interpretation of context schemas)
[S] :={-} U{®,p" | ® € [S] and there exists a BY € S, s.t. ® F p € [B]}

On the basis of the interpretation of context schemas we can now define the semantics
of formulas. A general formula is semantically valid, if its body is valid in any parameter
context compatible with the context schema. Universally quantified formulas are valid, if for all
instantiations of the assumption variable, the body of the formula is valid. Similarly for variable
block quantification: A II-formula is semantically valid if and only if its body is semantically
valid after instantiating the variable block with a parameter block from the context (carrying
the same label). An existentially quantified variable is semantically valid if there exists a term
M which makes the body of the formula valid. The conjunctions of two formulas is valid if each
of the conjuncts is, and last but not least, T is always semantically valid.

Definition 5.7 (Meaning of formulas)

EOS.F iff ®EF for all ® € [S5]
Ol=Vz: A F iff = F[M/x] forall M, s.t. - M : A
O EIpl. F iff = F[p/p forall Pt € @, s.t. D p =4 p
Ol=3z: A F iff = F[M/z] for some M, s.t. @+ M : A
@):Fl/\FZ ’Lﬁ <I>|:F1and<1>|:F2
OET

The goal of this thesis is to develop an automated meta-theorem prover which can prove
meta-theorems about deductive systems. Unfortunately, the semantics of the meta-logic does
not provide enough structure for a construction of a theorem-prover for M; . Thus we develop
a formal proof theory for /\/12+ in the remainder of this chapter. The proof system is based on an
extension of intuitionistic logic [Gal93], as the definition of the semantics of M3 already suggests.
Given any instantiation of the universal quantifiers the proof determines witness objects for the
existential quantifiers. That the derivability in this proof theory implies semantic validity is
shown in Chapter 7. The attentive reader might recall that meta-proofs are formalized by
recursive functions for which we have already given many examples in Chapter 4.

The development of the formal proof system is rather complex and quite challenging. In order
to facilitate the presentation, we begin with the presentation of a set of inference rules, which
extends the standard formalization of the sequent calculus for intuitionistic logic by variable
blocks and the appropriate quantifier in Section 5.4. We then endow the calculus with proof
terms in Section 5.5, add two operators to permit definition by cases and recursion in Section 5.6.
Finally we add another operator to express lemma application in Section 5.7.

107

108 5.4. THE PROOF SYSTEM

5.4 The Proof System

The proof system for M3 not only contains a set of inference rules in order to define provability,
but it also contains a set of rules which characterize well-formed context schemes and well-formed
formulas. All three inference rule systems rely on a proper treatment of assumptions. Recall that
there are assumption variables, which correspond to LF objects, and there are variable blocks
which range over entire parameter blocks. In this section we first discuss these assumption
contexts in detail, in Section 5.4.1 we present then the inference system for context schemas
in Section 5.4.2, the inference system for well-formed formulas in Section 5.4.3, and finally the
inference system which defines provability in the sequent calculus in Section 5.4.4.

5.4.1 Generalized Contexts

Generalized contexts for My are inherently different from the standard LF-contexts , from
Section 2.4, and they extend the notion of context used in previous version My [SP98]. There,
contexts were defined as a list of assumptions (or Eigen variables). It was guaranteed that
under the closed world assumption, all variables declared in such a context stood for closed LF
expressions. Generalized context as defined in this section are much more general because of the
regular world assumption. Recall that we reason about derivations that are “open” in regular
extensions of the world, and therefore, assumptions declared in a generalized context may be
open. Generalized contexts also describe the partial knowledge about the world at any point in
a proof.

One question comes immediately to mind: Why represent all information in one generalized
context? Wouldn'’t it be better to represent it in two different ones? One context represents
assumptions, the other the current extension of the world? The answer is subtle: All information
about assumptions and the world cannot be separated because of dependencies. Assumptions
might occur in the types of the parameters, as we can see in the example above where z : term T'.

And vice versa, parameters can occur in the types of assumptions. E : z N z is such an
example. Another example can be found in the proof of the diamond Lemma, 4.6: after the first
case analysis the left reduction is represented by E" : z L e uncovering a dependency.

Since variable blocks describe properties about the parameter contexts and assumptions live
on an entirely different level, they are conceptually different, one could argue not to worry
about dependencies at all. This argument is wrong, and we make one more observation that
should clarify this question; our notion of generalized context cannot represent invalid parameter
contexts.

Example 5.8 (Invalid parameter context) Consider the simply-typed A-calculus from
above and the following context schema:

(SOME T : tp, E : term T. BLOCK z : term T, u : E LN z)t

The list

L 1 L

(x:term "7 u:y N) (y:term "t vz = y)

is not a parameter context, because the two blocks cannot be ordered in any way to respect
dependencies.

108

CHAPTER 5. THE META-LOGIC Mj 109

By definition a context schema represents all valid parameter contexts, whose parameter blocks
match the BLOCK declaration. Disregarding all dependencies would mean to permit invalid
contexts, and reasoning about invalid contexts can lead to inconsistent results. Therefore we re-
quire that all dependencies of assumption and variable blocks declared in an generalized context
are honored, and so invalid parameter contexts are excluded from our considerations. Com-
mitting to an order of variable blocks and assumption variables does not mean that we have
committed to a particular order of declarations in the parameter context: none of the rules
we introduce below will ever take advantage of this information. Consequently, representing
assumption and variable blocks together in one generalized context only means that there exists
at least one valid parameter context described by the generalized context. We start now with
the formal presentation of generalized contexts.

Generalized Context: ¥ = -|U,z:A|¥,pl

Since ¥ — when flattened out — is always a valid LF-context, we can use it also as context
in LF judgments. In the rules below, we use the notation that W = M : A, which means, that
after removing all labels from W, the object M has type A in this newly obtained context.
Moreover, our definition of regular worlds @ is already contained in W if ¥ contains nothing else
but variable block declarations.

Generalized contexts are valid if assumptions and block variables are well-typed in the stan-
dard sense. A variable block p” in the generalized context W, p” is valid, if it is an instance of
a block schema SOME C;. BLOCK (5 as defined in Section 5.3.2.

Judgment
Validity of generalized contexts: 1+ W abstract

Note that we omit two important indices from the judgment: - U abstract is actually indexed
by the signature ¥ and the context schema S. In pedantic detail, one would write

Fy.s U abstract

for the validity judgment. But in order not to clutter the presentation and more than necessary,
we omit these two indices. Because of the semantic validity of formulas and general formulas, it
should be quite clear, that ¥, and S must be assumed constant throughout a proof. A similar
remark holds for all other judgments which we introduce below in this section. Occasionally, we
will remind the reader.

There are three rules which define the generalized contexts. First, the empty context is a
generalized context, second generalized contexts can be extended by valid variable blocks or
valid assumptions. Note that in this rule we use the LF typing judgment where we implicitly
flatten out W.

Rules

—— vempty
- abstract

F U abstract (SOME C;. BLOCK Cy)l e § Tko:C
- U, ([0]Cs)" abstract

vblock

109

110 5.4. THE PROOF SYSTEM

F U abstract WE A:type
F W,z : A abstract

Vvass

5.4.2 Context Schemas

Context schemas are abstract descriptions of parameter contexts. A well-formed context schema
consists of several labeled block schemas, each block schema is closed by itself, i.e. it can-
not rely on any other assumptions but the ones introduced by the block. That means, if
SOME (4. BLOCK ()} is a block schema, C, Cy must form a context.

In this subsection we specify a set of inference rules for well-formed context schemas. By
inspection of the definition of context schemas, it becomes immediately evident that this well-
formed judgment is defined in terms of two auxiliary judgment: one judgment for well-formed
block schemas and one for well-formedness of context forms.

Judgments

Well-formed context schemas: + S SCHEMA
Well-formed block schemas: F B BLOCK
Well-formed context forms: Ci+Cy Ctx

The rules defining these three judgments are entirely straightforward. The only thing to
pay attention to is that for context blocks, we first have to check that the SOME-component
is well-formed, and then that the BLOCK-Component is also well-formed. We tacitly assume
that all labels are distinct.

Rules
F S SCHEMA F B BLOCK

- . SCHEMA - S, BY ScHEMA

-F Cl CTtX Cl F 02 CTtx
F SOME . BLOCK (5 BLock

Ol = OQ CTtx 01,02 HA type
Cll_'CTX Cll_CQ,ZUZACTX

Example 5.9 (Well-formed context schema) The context schema from Lemma 4.10 is
well-formed:

F(SOME T : tp. BLOCK z : term T, u : x = z)"1 (BLOCK a : tp)™* ScHEMA

5.4.3 Formulas

In M;, there are two notions of formulas. First there are “formulas” that express properties,
and second there are “general formulas”. General formulas bind one context schema, which
states the form of the extensions of the regular world. In order to judge if a general formula is
well-formed, the inference rules have to ensure that the context schema is well-formed, and that
every quantifier is well-typed.

110

CHAPTER 5. THE META-LOGIC My 111

Judgments:

Well-formed general formulas: + G general
Well-formed formulas: U = F formula

The judgment for generalized formulas is indexed by an LF signature, whereas the judgment
for regular formulas is also indexed by a context schema. In addition, assumptions and variable
blocks bound by universal quantifiers may occur anywhere in the body of the formula. Hence,
the judgment for well-formed formulas is defined with respect to an generalized context.

Rules
Fy, S SCHEMA - Fy.g F' formula
Vctx
Fs» OS. F' general

U,z:AbFys,g F formula ‘I’aPL tx;s F formula VI U,z:AbFys,g F formula

\YA"
U by.g Vo : A F formula U ks.s HpL. F formula U ts.g dz: A F formula

Vs, F1 formula W by.q Fy formula Fs.s U abstract
VA Vtrue
U by, F1 A Fy formula U by, T formula

In the remainder of this thesis, we drop the subscript 3 and ;S from these judgments and
rules.

Example 5.10 (Well-formed formula) The formulation of the diamond lemma Lemma 4.6
is well-formed.

FOSOME T :tp. BLOCK z : term T, u : x =L 7.
VT : tp.VE : term T.VE' : term T.VYE" : term T

VD':E = E'VD':E — FE.
3E tem T.3R' : B! == E'.3R": E" = E'.T general

This concludes our presentation of well-formed formulas. We continue with the presentation of
the proof system for M3 .

5.4.4 Mj-Calculus

The design of the proof calculus for M7 is inspired by a sequent calculus for first-order intu-
itionistic logic, but it is at the same time significantly different. It is similar in a sense, that there
are left rules and right rules, and it is different in the sense that there is no cut-rule. In addition
to the standard rules for formulas, there are also rules for general formulas. A particular drastic
change to the original set of left rules is posed by the introduction of new parameters. Intu-
itively, introducing new parameter blocks corresponds in informal reasoning to a hypothetical
argument. If assumptions are introduced in a proof, all reasoning steps are hypothetical until
the newly assumed hypothesis are discharged. This observation will have a drastic impact on
the form of the left rules. We will present the inference system in small steps, in this section,

111

112 5.4. THE PROOF SYSTEM

for example, we only present the basic notion of provability which we endow with proof terms
in Section 5.5, recursion in Section 5.6, and lemmas in Section 5.7. The reader is asked to read
this section very carefully and very attentively in order to capture the essential differences of
M; and the standard sequent calculus formulation.

Provability in M; is expressed by two judgments - G and W; A - F. The first judgment
is indexed by X, the second by 3;S. U is the generalized context, describing all LF level
assumptions and variable blocks in any given state in the proof. A stands for a list of formulas,
representing all meta-assumptions during a proof. Informally, the A is the left hand side of the
sequent symbol . Formally, it is defined as

Meta-assumptions: A == -|AF
and meta-assumptions are well-formed, if they satisfy the following judgment
Judgment
Well-formed meta-assumptions: W = A meta
which is defined by the following two rules.

Rules

F U abstract U+ Ameta WF F formula
——— vabstract v
U I - meta U A, F meta

meta

Typical examples of formulas, which are represented by A, are for example the induction
hypothesis, and subformulas of the induction hypothesis resulting of partial applications. In
Section 5.5 we will revisit the list of meta-assumptions and assign names to them which are
simply meta-variable names for the proof term calculus. But for the presentation of pure proof
rules, it is enough to assume A to be a list of formulas.

Judgments

Provability of general formulas: Fy G
Provability of formulas: U Abyg F

The two provability judgments are not general enough to present the entire system of infer-
ence rules. As a matter of fact, they are only general enough to presen approximately half of
the system, namely the right rules. The special case of the left rules is discussed below. For the
sake of clarity, we omit index of the - symbol in the judgments for the definition of the rules
below. It can be easily derived from the context.

- F

——generalR
FOS. F

This is only right rule for general formulas. The other right rules for the provability of formulas
are almost straightforward. ¥, interpreted as LF-context in the R rule, provides all assumptions
about LF objects known at the point of time when the rule is applied in a proof, and M is the
witness object for the existential. Note that A does not change in any of these rules.

112

CHAPTER 5. THE META-LOGIC My 113

FeA
—FF axvar
VAN
Uz: AAFF UM AR o YFM:iA WA FM/a]
RV ———— R3
U;AFVz: A F ;A FIIph. F U;AF3z: A F

U AFF UAFF
RN —————RT
\If;Al_Fl/\FQ \If,Al—T

The rule RY provides information about the existence of LF objects, and this information is
stored in the generalized context. Similarly does the rule RII provide information about the
form of the parameter context.

Now to the left rules. Differently from the right rules, where the defining formula occurs
in the conclusion to the right of the - symbol, the defining formula for the left rules occurs to
the left, in the assumption list. And typically, there are as many rules as there are connectives.
Applying a left rule in a backwards directed fashion means to extend A by new assumptions,
resulting from manipulating this one formula. For example, if Va : A. F' is this formula in A, we
can use it and for well-typed object M of type A, we can assert the new assumption F[M/x].
In a first attempt, let us define the left rule for V to be:

UEM:A U, A\Vz:AF F[M/z],A; - F
L
\IJ;Al,thA.F,AQ FF

How would we use this rule in a proof? Consider for example the proof of the reflexivity
Lemma 4.3, and in this proof the case for app. Furthermore, assume that the induction hypoth-
esis is already contained in A:

VT :tp.VE :term T.3D : E = E.T € A

Applying the induction hypothesis means to apply the rule LV bottom to top. In the example,
assume that F; has type 71, and Fs has type 15, and that all this information is represented
by the generalized context W:

U =T :tp, 15 : tp, By : term T}, Es : term T,

In the proof, we applied the induction hypothesis twice, once to 17 and F, and once to T and
E5. The LY rule provides exactly this functionality. After the first application, observe how the
assumption list A grows.

A = VI tp.VE:term T.3D: E = E.T,
VE:teem T;.3D: E = E.T

Then, after applying it a second time to the newly introduced assumption, we obtain:

A® = VT :tp.VE :terem T.3D : E N E.T,
VE :term71.3D: E = E.T,
ID:E = E.T

113

114 5.4. THE PROOF SYSTEM

Another application of the induction hypothesis, this time on 75 and Ey yields A(®).

AW = VYT tp.VE :tem T.3D: E = E.T,
VE :term T1.3D: E = E.T,
iD:E = E.T
VE :term T.3D: E = E.T,
AD: By = E». T

Note, that in order to continue the proof, we have to extract the existentially quantified witness
objects from the third and the fifth entry in A® back into the generalized context. In natural
deduction, this is done by the existential elimination rule, that corresponds in the sequent
calculus to the existential left rule:

U,x: Ay A, dx: A Fy By, A I—FLEI
\I/;Al,HZUZA.Fl,AQ FF

U has not changed while applying the LV rule, but it does when applying the L3 rule which we
must do twice: The first application extends the generalized context by the (true) assumption

that By =
v = T, :tp, Ty : tp, By : term 11, By : term T, P : Ey :1> E
and the second by the (true) assumption that E > By
OO =Ty :tp, Ty : tp, By : term Ty, B : term Ty, Py : By == Ey, Py: By = FEy

All in all, the proof of the case can be finished by applying R3 with M = papp P, P» followed
by an application of RT.

Unfortunately, the two rules just presented do not apply to the hypothetical reasoning case.
Consider for example the plam case in the proof the reflexivity Lemma 4.3 for parallel reduction:
Before we apply the induction hypothesis, we have to assume the existence of a parameter block

of the form x : term T,u : x —Ls 7. When are these assumptions discharged? Obviously,
they can only be discharged after the induction hypothesis is applied to all arguments, and
all witness objects are moved into the generalized context. From a formal point of view, this
operation corresponds to several applications of the LV-rule, followed by several applications by
the L3-rules.

Now it becomes difficult. We claim that we have to be very careful when to introduce and
to discharge variable blocks! Just imagine two simultaneously applications to the induction
hypothesis, where the first is hypothetical (that means it must extend the world by a new
variable block), and the other isn’t. Which formulas are valid in which world? The problem
reduces to the question of proper scoping of world extensions. In a standard sequent calculus,
the context of assumptions has intuitionistic properties, that means that once an assumption is
introduced it is present in the context of all judgments in the premiss. The situation of world
extensions on the other hand is different. A world is typically extended before an induction
hypothesis is applied, and discharged afterwards. Thus, extensions to the world do not possess
the standard intuitionistic properties.

114

CHAPTER 5. THE META-LOGIC My 115

Seemingly, we need to extend the world only for the purpose of induction hypothesis and
lemma application. Our solution is to introduce a new judgment, that explicitly tracks world
extensions. This judgment is defined exclusively in terms of the left rules since they are the
ones needed for applying an induction hypothesis, precisely LY and L3. While applying the left
rules we do not record changes in ¥ immediately. Instead we collect all information, and add
it to the intuitionistic context only after the last left rule is applied. This judgment entitles
us to reason hypothetically. A special derivation rule which interfaces the standard derivability
judgment with the new judgment extends ¥ accordingly. Back to the example of the proof of
the reflexivity Lemma 4.3 for parallel reduction. This time, we consider the “lam”-case. Recall
that we have to show that £ = lam (Az : term T. E' x) reduces to itself. Formally, we have to

construct an LF object of type (lam (Az : term T. E' x)) =L (lam (Az : term T. E" x)). This
situation is summarized with the following generalized context:

U ="T:tp, T :tp, E' : term T — term T"
We begin now with a formal appeal to the induction hypothesis. First, we assume the existence
of a new parameter block z : term T, u : L 2. Then we apply LV to T".

A = VT :tp.VE :term T.3D : E L E.T,
VE :term T".3D : E = E.T

We then use the LV once again, this time on (E’' z) which has type term T”. Note that from
an algorithmic point of view the type of E' already prompts for an extension of the world.
Otherwise no induction hypothesis is applicable at all.

A® = VT :tp.VE:terem T.3D : E N E.T,
VE:tem7.3D: E = E.T,
3D (B'z) = (E'z).T

And finally we apply L3, and obtain a new assumption: P : (E' z) N (E' z). Clearly, in

order to add P to the generalized context, we have to abstract according to Equation (4.1) on
page 76, and we obtain

UGB = T:tp, T :tp,E' : term T — term 1",
P:llz:term T.Tu: 2 = z.(E'2) = (E' 2).

Similarly, we abstract the new meta-assumptions in A and obtain

A®) = VT tp.VE :teem T.3D: E = E.T,

II(z : term T,u : z N z)L.VE :term T.3D : E 4 E.T,
1 1

O(z:teem T,u:z = z)*.3D: (E'z) = (E'z).T

How do we represent the extension of the world in the new to be defined judgment? The
answer is that we simply extend the general context ¥ by the declaration of a new variable block.
But in general this information is not enough to abstract the hypothetical assumptions after
finishing applying the left rules, because there are possibly many variable blocks declared in W,
and many of them of them must not be discharged. Which variable blocks must be discharged
and abstracted after a successful application of the left rules is represented by the derivation in
M3 : abstraction takes place while unraveling the trace of left rules. The left rules are defined
via a new judgment which we call provability of declarations.

115

116 5.4. THE PROOF SYSTEM

Judgment
Provability of declarations: ¥; A U5 A/

The generalized context W, and the list of meta-assumptions A on the left carry the same
meaning as in the judgments for provability and general provability above. ¥ is used to capture
extensions of the current world. ¥’ and A’ declared left of the - symbol represent a list new
assumptions and new meta-assumptions which are synthesized during the application of the left
rules, and which will be added eventually to the generalized context. Operationally interpreted,
U’ and A’ are constructed after all left rules are applied. The judgment can be read as a function:
U; A are input variables, and ¥’; A’ are output variables. Initially, in the example, before the
induction hypothesis is applied, ¥ and A have the following form:

O = T:tp, T :tp, E' : term T — term T’
A = VT :tp.VE:term T.3D : E 4 E.T

We start now with the application of the induction hypothesis. First, a parameter block is
introduced, and its existence is made visible by a variable block in the generalized context:

@ = T:tp, T :tp,E :term T — term T, (z : term T, u : = N z)t
A® = VI tp.VE:teemT.3D:E = E.T

Next, the induction hypothesis is applied to 71" : tp using a new version of the LV-rule, which we
introduce formally below.

OB = T:tp, T :tp,E :term T — term T, (z : term T, u : L z)t
A® = VI:tp.VE :teemT.3D:E = E.T,
VE:term T.3D : E = E.T,

Another application of the rule LY, this time to E' z (well-typed in ¥(3)) yields

W = T:tp, T :tp,E :term T — term T, (z : term T, u : = N z)t

AW = VT tp.VE :teem T.3D: E = E.T,
VE:teem T.3D: E = E.T,
AD: (B'z) = (E'z).T

which allows us to assume the existence of a P : (E' x) = (E' z) well-typed in ¥*) by rule
L3 (also defined below), and the body of the last formula in A®) becomes a meta-assumption.

¥®) = T:tp, T :tp,E : term T — term T, (z : term T, u : = N z)t

P:(Ez) = (E'z)
A®) = VT tp.VE :teem T.3D: E = E.T,
VE:teem T.3D: E = E.T,
AD: (B' z) = (E'2).T,
-

116

CHAPTER 5. THE META-LOGIC My 117

The induction hypothesis is now completely applied, and we can begin to unravel the trace of
left rule applications. Unraveling in this sense mean to step back through the call tree while
discharging and abstracting hypothetical parameter blocks. Simultaneously, we construct the
U’: A’ extensions of the original generalized context and meta-assumptions list. In the last step,
nothing has been done, so both extensions are empty.

g/ —
A'G) —

In the step before that, two assumptions were recorded, one in the generalized context, the other
in A:

VW = P.(E'z) = (F'z)
AW = T

Note, that U™, ¥'*) is a generalized context, and A%, A’ is a meta-assumption list. Another
step before, we applied the LV rule, and thus, we add the newly generated meta-assumption to
the left.
G = P:(E)
A'®) = 3D (E z)
T

= (E'z)
= (B'z).T

Note, that we maintain the invariant that A®, A/™® ig a valid meta-assumption list.

U = pP:(E'z) = (E'z)

A® = VE:temT.3D:E = E.T,
D (B'z) = (E').T,
-

The last step in this example is the important step because it demonstrates how to discharge
assumptions by abstracting and internalizing the newly assumed parameter block from the
first application of the parameter introduction rule. Informally, we apply Equation (4.1) to all
assumptions in ¥/ in order to obtain ¥'(); and simply bind the new meta-level assumptions
by IL. The result is

D = Pilz:termT.Mu:z = 1. (E' z) N (E' x)
A = Mz :term T,u:z = z)*.VE:teem T.3D : E L E T,
M(z:term T,u:z = z)*.3D: (E' 1) = (E'x). T,

M(z:term T,u: oz = z). T
and the proof can continue with U'() /M. AW A that is:

v @) = T:tp, T : tp, E' : term T — term 1"
Pz term T. 1w : 7 == z.(E" 1) =L (E' z)
AD AN = YT :tp.VE :term T.3D : E 4 E.T

II(z : term T, u : z = z)V'.VE :term T.3D : E L E.T,
I(z: term T,u : x L z)¥.3D : (E' 1) = (E'x). T,
II(z : term T, u : z = z)l. T

117

118 5.4. THE PROOF SYSTEM

This concludes our motivational example of how to formalize hypothetical reasoning. The
skeptical user might wonder, why is is necessary to also maintain A’. As a matter of fact, it
is not. But because partially applied lemmas are always available in a regular intuitionistic
sequent calculus we have decided to also keep them in M;’

What remains to be done, is a formal definition of the rules that we have used in this example.
We start with the presentation of the interface rule sel which triggers a sequence of left rules, in
a very similar manner as shown in the example above.

AT A OO AANEFF
U; A+ F

sel

The first rule Ldone, is the rule which terminates a sequence of left rules. It is basically the
complementary rule to sel, which can be seen as initiator of a sequence of left rules.

—— Ldone
U;AF -

The second rule Lnew supports the introduction of new parameters. W’; A’ are the re-
turning extensions of the generalized context and the meta-assumptions, which are accordingly
abstracted. Tentatively, as a first sketch, we write IIp. A to abstract over a variable block.

.42 = A,
(z: Ay, p). Ay = Iz : Ay (IIp. Ag)

Note that this definition omits the underlines below x because the result of abstraction lives in
LF. Our definition of abstraction can be easily generalized to lists of assumptions: IIp*. (¥/; A").
Note, that this II is not a constructor, neither in LF nor in M;’, it is merely an abbreviation
for a function, that performs the abstraction on the fly. In Section 6.2.2 we refine abstractions
to account only for variables declarations that may occur in the body of A. Declarations which
cannot occur in A should be omitted.

(SOME C1. BLOCK o)l e § Uro:01 Ukp=,[0]C; U, plAFT;A
U; A FIpl. (05 A)

Lnew

The LV- and the LII rule generalize the LV rule from above. Note that we must ensure, as
premiss in LV, that M is well-typed, and likewise, as premiss in LII, that p’ is well-typed. In the
former case we use the typing judgments from LF, in the latter, abstract type convertibility for
variable blocks.

VARV : A F UEM:A UAF[M/z]- 05 A
U; A RO F[M/z], A

LV

WAFIpEF plev Ukp=.p WA F)/pFT;A
U AT Flp'/p), A

The L3 rule is the only rule which extends the generalized context W',
UV:AFIz: A F VUo: A ANFEFUGA
ARz AU F A

L3

118

CHAPTER 5. THE META-LOGIC My 119

Finally, there are to rules which project the left or right proof term from a conjunction.

\If;Al—Fl/\FQ \II;A,Fll—\I/,;AIL/\ \Ij;Al_Fl/\F2 \II;A,FQF\III;A,L/\
1 2
U AR E A U A RO Ey A

This concludes our presentation of the proof system for M; On the one hand, the proof system
borrows many ideas and concepts from the sequent calculus for intuitionistic logic, on the other
it is significantly different. In order to accommodate hypothetical reasoning, for example, the
original judgments must be specialized. New parameter blocks are introduced by the rule Lnew
which also abstracts the results of applying the induction hypothesis appropriately. The method
of abstraction is not as straightforward as it may seem from the examples above, we postpone
the detailed discussion until Section 6.2.2.

The remainder of this chapter is organized in three parts. First we add proof terms to /\/12+ ,
which formalize meta-proofs by summarizing entire M3 -derivations and which form the basis
of our soundness argument. Second, we add two rules in order to express case analysis and
recursion in order to generalize the proof term calculus to a calculus for recursive functions and
third we add lemmas to the meta-logic. Recursion and case analysis allow us to encode proofs
“by induction” over higher-order encodings that may violate the positivity condition associated
with standard inductive definitions.

5.5 Proof Term Calculus

In this section, we endow the proof calculus of M5 with proof terms. Proof terms are very concise
representations of derivations in a formal system. As a matter of fact, given a proof term for a
theorem, the original derivation can be unambiguously reconstructed. But this is not the only
advantage of proof terms: In general it is possible to interpret them operationally. Consider the
natural deduction calculus for propositional logic by Gentzen [Gen35, Pra65]. Each derivation
of a formula can be uniquely represented by a simply-typed A-term using the propositions-as-
types principles. This observation goes back Howard [How69] and is commonly known as the
Curry-Howard isomorphism. In this work, we interpret proof terms as recursive function, and
by an argument of realizability interpretation we will eventually infer the soundness of /\/12+ . By
moving the soundness argument of M3 form the logical level to the proof term level, we manage
to avoid stating explicit induction principles for higher-order encodings. Instead, we argue that
M; is sound, because it only admits proof terms that guarantee complete case coverage and
well-founded recursion.

We begin with the presentation of a proof term calculus for M3 . In Chapter 6 we then define
a type preserving operational semantics for it, and in Chapter 7 we will show that each function
is total, yielding a soundness proof for M3 . All recursive functions presented in Chapter 4 are
proof terms. For improved readability, so far we have used some syntactic sugar in order to make
proof terms more accessible to the user, and we omitted for example all implicit arguments in
order to simplify the presentation, but in essence, the proof terms we present in this section
have all been already discussed informally. As example, consider the proof of the reflexivity

119

120 5.5. PROOF TERM CALCULUS

Lemma 4.3.
funreflz = u

| refl (lam (Az : term T. E' 1)) =
let

new g :term T, u : x :1> x
val Pz u=refl (F z)
in
plam (Az : term 7. Au : x = z.Px w)
end
| refl (app Ey Es) =
let
val P, = refl E;
val P2 = refl E2
in
papp P P,
end
In this section we concentrate on proof terms representating the body of each of the cases.
The presentation of proof terms for pattern matching and recursion is postponed until the next
Section 5.6. There are three kinds of proof terms: general proof terms for general provability
judgments - G, proof terms or programs for the right rules expressed by the judgment U; A - F,
and declarations for the left rules, expressed by the provability judgment U; A - ¥'; A’. General
proof terms are abbreviated with (), proof terms with P and declarations with D. In order not
confuse provability on the meta-level with typability on the logical framework level, we use € as
the structural symbol in A and between proof terms and formulas.

Judgments
Provability of general formulas: + Q € G
Provability of formulas: UV, AFPeF
Provability of declarations: U;AEDe ;A

In the following three subsections, we define proof terms for each of the three judgments.

5.5.1 Provability of General Formulas

There is only one general formula. It is the closure operator, and it binds the context schema in
which the formula makes sense. It is mandatory to represent the context schema on the level of
proof terms since we cannot apply a lemma without validating the context schema of the called
lemma.

General proof terms: @ = box S.P

s FPEF
- box 5. P € OS. F

generalR

Note again that the judgment in the premiss of this rule is implicitly indexed by the context
schema S. We discuss how to use proofs of generalized formulas as lemmas in Section 5.7.

120

CHAPTER 5. THE META-LOGIC My 121

5.5.2 Provability of Formulas

The proof terms for the provability judgment for formulas and inference rules provide an oper-
ational interpretation of derivations in M3 . Recall that the provability judgment of formulas is
defined by the right rules of the proof calculus of M; Proof terms for the judgment whose va-
lidity is given by left rules are presented in Section 5.5.3. We start with endowing the axvar-rule
with a proof term. As in any other proof term calculus [Gal93] assumptions are named and the
name of an assumption is used as the proof term. Specifically, in our setting, meta-assumptions
are labeled with variable names. Since this is already the third variable concept presented in this
thesis, but the first for the meta-level, we call them meta-variables and use little bold Roman
letters to denote them (x,y,z). The list of meta-assumptions is generalized accordingly.

Meta-assumptions: A == -|A,x€F

As usual, we assume that all meta-variable names among meta-assumptions in A are pairwise
distinct. Assigning meta-variable names to meta-assumptions extends the rule vmeta slightly.

F U abstract U+ A meta WF F formula
—— vabstract v
U I - meta U A x € F meta

meta

All meta-variables, defined in A are subject to instantiation. And instantiations of variables
is best described by substitutions. In particular, in the case of meta-contexts and meta-variables,
we introduce the notion of meta-substitution, and denote it with ¢.

Meta-substitutions: § == -|d,P/x

The newly introduced meta-variables are used as proof terms for the rule axvar. If x € F' is
an assumption in A, then x is a proof term for F.

(xe F)e A
UV, AFxeF

axvar

The proof term for the RV-rule is a simple abstraction, similar to the A-abstraction in the
standard simply-typed A-calculus. The proof term has the form Az : A. P. Similarly, the proof
term for RII is an abstraction over variable blocks, which can, at runtime, only be instantiated
with other variable blocks. The proof term for RII has the form \p”. P.

U,z: A, A+FPEF o U, plAFPEF
U;AFAz: A PEVe: A F ;AR NP PeTIph F

RII

Not surprisingly, the proof term for the R3-rule looks like a pair (M, P), where M is a well-typed
LF object — the witness object for the existential — and P is the proof term for the body of the
existential formula. As a matter of fact, the proof term for the conjunction rule is very similar;
it is also a pair, where each component is a proof term of the left and right formula, respectively.
Its form is (Py, P;).

VEM:A WAFPEFMf] o WAFPER WArREl
U;AF(M,P)yedz: A F VAR (P, Py) € Fi NFy

RA

121

122 5.5. PROOF TERM CALCULUS

The rule for T is endowed with the symbol () as proof term. Clearly, () does not expect any
arguments.

— RT
AF()eT

And finally, there is a proof term for the interface rule sel. A derivation of the provability
judgments for declarations corresponds exactly to the list of declarations in a let-expression, as
it is depicted in the following excerpt from the proof of the reflexivity Lemma 4.3 for parallel
reduction.

let

1
new gz :termT,u:x — =z
val Pz u=refl (E z)
in
plam (Az : term 7. Au : x = z.Px u)
end
The list of declarations is represented by declarations D, the proof term for the body is P.
Together they form the arguments to a proof term for the sel-rule which we denote as let D in P.
UV:AFDet: A" UV, AANFPeEF
UV:AkFlet Din P e F

sel

Allin all, there are seven different proof term constructors, one for each rule, and all are different.
That is, given a proof term, one can immediately reconstruct the derivation by decomposing a
proof term into its components. Here is a complete list of all the proof terms for formulas.

Proof terms: P = x|Az:A.P|Xp*. P|(M,P)| (P,)| () |let Din P

This concludes the presentation of proof terms for the provability judgment for formulas. On
the one hand, this fragment is very weak, because it can neither apply induction hypotheses,
nor lemmas, nor perform any kind of case analysis, but on the other, we can already represent
small easy proofs. As example consider the following very simple lemma that states that the
two single parallel reduction steps can be appended to a multi-step parallel reduction.

Lemma 5.11 (Append two single parallel reduction steps) IfD; :: e; L eg and Da ::
€9 :1> esg then there exists a P :: eq = es.

Its formalization in M has the following form:

O-.VT : tp.VE, : term T.VEs : term T.VFE3 : term T'.
VDl ZEl :1> EQ.VDQ H E2 :1> Eg.
JP:E, = FE5.T
And the proof is very simple:

S
Ey — Ej Ey :*> Ey

D,
B = E By == E,

pstep

pstep
E, = E3

122

CHAPTER 5. THE META-LOGIC My 123

and so is its representation as a proof term in M;’

box . AT : tp. AE; :term T. AEs : term T. AEs3 : term T'.
AD1 :E1 :1> EQ.ADQ . E2 :1> E3.
(pstep Dy (pstep D pid), (})

In order to show more interesting examples, we must decorate the left rules with declarations
and add case distinction and recursion. Therefore, a complete proof term for the reflexivity
lemma can only be given at the end of Section 5.6.

5.5.3 Provability of Declarations

The proof terms D for the provability judgment ¥; A + D € U'; A" are called declarations,
because they correspond directly to the sequence of declarations in a let statement. In this
subsection we show how. Declarations are represented as a list. The simplest declaration is
hence the empty list, and it is the proof term of Ldone. Following the line of empty contexts,
empty signatures, and empty context schemas, we denote the empty proof term with “.”.

—— Ldone
U;AF-€ -

The proof term for Lnew has the form v pl. D, where p is a variable block representing the
newly assumed parameter block, and D is the list of subsequent declarations.

U; A Fvph.Dellph. (05 A)

Lnew

The declarations for LV and LII are very similar. In the first case, the declarationy € F[M/z] =
P M, and in the second y € F[p'/p] = P p' is added to the list of already determined declarations
D. To judge by the form, P is a functional proof term in both cases, expecting an LF object M
as argument in the first case, and expecting a variable block p’ in the second.

U;AFPeVr:AF VYEFM:A U;AyeF[M/z]r-Ded;A
U;AF (y e FIM/z] =P M,D) € (V;y € F[M/z],A")

WAFPcMpt F plev Urp=.p U;AyeF[p/plFDecd;A
WA (y € Flp'/p) =P p,D) € (¥y € Flp'/p],A)

The left rule for 3 captures the result of an induction hypothesis and adds it to the generalized
context. Formally, it is expressed by the declaration (z : A,y € F') = P where P is a proof term,
which computes a pair (M, P’) and the declaration operations bind z to M and y to P’. And
again, as we will see in the next chapter and y must be explicitly typed.

LII

UV:AFPedz: A F \IJ,:E:A;A,yEFI—DE\IJ';A'LEI
U;AF((z:AyeF)=PD)e(z: A V;yeFA)

Finally, there are two projection rules for conjunction on the left. Informally these rules are
used to pick which induction hypothesis is supposed to be applied when proving a mutually

123

124 5.6. INDUCTION

inductive theorem. The declaration for selecting the left induction hypothesis is x € F; = m P,
and he one of the right is not very surprisingly x € F» = mo P where P represents the proof of
the mutual inductive theorem.

U AFPERAF, U:AxcF +Decl;A
\IJ;Al—(XEFl =T P,D) S (‘IJI;XEFI,A,)

LAy

UAFPEFR AR, WAxeclFDel,;A
U;AF(x€Fy=m P,D)e (V;x € Fy, A)

Alternatively, one could replace these two rules by one rule that introduces both projections
simultaneously.

All in all, there are six different forms of declarations, each represents one rule. In particular,
a proof term for a derivation in M; is simply a series of declarations.

Declarations: D = -|vpl.D|x€ F=PM,D|x€F=Pp,D
|(z:AyyeF)=P,D|xe€F=mn P,D|xe€F=m P,D

This concludes the presentation of proof terms for the left rules of M;’, and completes the
presentation of proof terms for the core of the meta-logic M; The proof term calculus is
obviously not completely defined yet because none of the non-trivial left rules are applicable.
The attentive reader might have already noticed that A must be empty since none of the right
rules extends it. Hence, none of the left rules (except Ldone) is applicable in the system defined
so far. This is going to change when we introduce recursion and case analysis operators in the
next Section 5.6. In particular, there are no interesting examples we could develop in this version
of M7, therefore we delay an example until the end of the next section.

5.6 Induction

As motivated in Section 4.1, induction is an important technique when it comes to reason about
programming languages, logics, and type systems. Informally, reasoning by induction about
programming languages is a not too difficult concept, but formalizing it in the presence of
higher-order representations is problematic.

The main drawback of standard induction principles is the closed world assumption, which
restricts the formalization of deductive systems to encodings that satisfy the positivity condition.
The datatype defined must only occur in positive positions in its constructor types. Thus
inductive definitions are very restrictive, in fact, they are too restrictive to handle higher-order
encodings. The entire proof of the Church-Rosser theorem, for example, from Chapter 4 in all
its elegance is simply not directly representable in a framework which only provides standard
induction principles.

The goal and challenge of this section is to extend M;’ by constructs to support the formal-
ization of inductive arguments. Instead of trying to define induction principles for higher-order
encodings, we propose a design based on a realizability interpretation of proof terms. In particu-
lar, the solution we are proposing in this thesis is to extend the proof term calculus to a recursive
functional calculus, where all functions are total — i.e. realizers. Specifically, we are extending
M3 by the two principles which are sufficient to formalize inductive arguments: well-founded
recursion and complete case analysis.

124

CHAPTER 5. THE META-LOGIC My 125

Well-founded recursion as opposed to simple recursion guarantees that the computation of
any recursive function is terminating. There cannot be any infinite chains of recursive calls.
Recursion is discussed in Section 5.6.1.

Complete case analysis as opposed to simple case analysis guarantees that while executing a
recursive function some case will be applicable. Therefore the execution of any recursive function
can never get stuck. The technique of complete case analysis is discussed in Section 5.6.2. The
exact definition of what it means to execute a recursive function, i.e. its operational semantics
is presented in Chapter 6.

By guaranteeing well-founded recursion and complete case analysis, all recursive function in
M; are total, and consequently, it is a sound meta-logic based on a realizability interpretation
of its proof terms.

5.6.1 Well-Founded Recursion

Well-founded recursion is expressed by the standard fixed-point rule with an open-ended side
condition. The new proof term has the form pyx € F. P. x is a meta-variable, and P the body of
the fixed-point operator, where x may occur as a free variable. Informally, executing yx € F. P
means to replace all occurrences of x in P by ux € F. P, but this is discussed in the next
Chapter.

Proof Term: P == ...|pux¢€ F.P

The main emphasis of this investigation is how to enforce termination when executing the fixed-
point operator. In our development, we assume that we have only one outermost fixed-point
operator. If the fixed-point variable x occurs someplace else in the body, it is typically applied
to some arguments.

The critical insight into the issue of termination is, that the vector of arguments to which x
is applied is strictly smaller than the vector of arguments the function was originally called with.
The “smaller” relation must be some well-founded order, i.e. the termination order we specified
with each proof in Chapter 4. Naturally, this order must be fixed for all occurrences of x. This
way, we can guarantee that each chain of recursive calls is finite, and hence the execution of any
recursive function must be terminating.

U;A,xe FFPEF
U;AbuxeF.PEF

Retx

The typing rule for the fixed point is standard, but the side condition is not. For now, we
leave it purposely informal, a more concise formulation is left to Section 7.2.

P terminates in x (5.1)

5.6.2 Complete Case Analysis

Well-founded recursion and complete case analysis turn the proof term calculus into a calculus of
total recursive functions. In particular, we discuss in this section of how to add a case operator
to the meta-logic, and how to enforce that case analysis is always complete. What characterizes

125

126 5.6. INDUCTION

case analysis? In order to answer this question, we start the discussion with the reflexivity
Lemma 4.3 for parallel reduction as example.

O(SOME T : tp. BLOCK z : term T, u : x N z)k.
VT :tp.VE :termT.3D : E 4 E.T

In the proof we distinguished cases over the term e which is represented in LF as F : term "7
A closer look at e led us to consider three cases. One case was the global parameter case, the
second the lam-case, and the third the app-case. It is this case analysis we would like to model
in M3 . We omit the leading context schema quantification.

Case: In the first case, the parameter context must contain at least one parameter block of the
form z : term T, u : x N z, that means, that we have to prove the formula

VT :tp. II(z : term T, u : x L 2)L.3AD : x L T

Case: In the second case, there is no parameter block, but there is a function representing the
body of the A-term.

VT, : tp.VTy : tp. VE' : term T — term Tb. 3D : lam E’ L lam E'. T

Case: In the last case, there are two new assumptions, one represents the function, and the
second its argument.

VT : tp.VTh : tp.VE; : term (T arrow 11).VEs : term Th.
dD :app E; Es N app By E». T

The first observation is that case analysis is not local; in general we have to consider more
than one assumption in V. For example in all three cases above the formula 3D : £ =L E.Tis
refined by instantiating E with the concrete forms F takes in each case, “z” in the first, “lam E'”
in the second and “app E; F>” in the third. In particular, if F occurred in the types of other
universally quantified assumptions, these occurrences would be instantiated, too. Moreover,
because of dependencies, consider cases over one assumption might partially instantiate others.
To see that, consider the diamond Lemma 4.6.

OSOME T : tp. BLOCK z : term T, u : = L .
VT : tp.VE : term T.VE' : term T.VE" : term T.

VD':E = E'.YD':E == FE'.
3 cterm T.3R': B! = E'.3R":E" = E. T

In its proof, the first proof operation we performed was a case analysis on D!. The first case
to be considered is that D! is instantiated with a global parameter u. Since u : z L z, for
z : term T, declared by the same variable block, clearly E and E' must equal z. The same holds
for the next case that D! is instantiated “pbeta Dll Dé”. Because of dependencies, this means
that F must have been instantiated with “app (lam Ey) E5” for an E; of type term T} — term T’
for some type T7. And E’ must be the result of applying some E| (an LF-function) to some E

126

CHAPTER 5. THE META-LOGIC My 127

(of appropriate type). While abstractly describing the case analysis, we do not know exactly
what F{ and E), are instantiated with, we only know that they must exist.

Formally, all universal assumptions in the examples are represented by a generalized context
U. Subsequently, each case analysis of ¥ leads to a new generalized context ¥'. As example,
consider the reflexivity Lemma 4.3.

Example 5.12 (Case analysis in reflexivity Lemma 4.3:) The form of the generalized
context representing all universally quantified assumptions right before case analysis is

U=T:tp,E:term T

and the form of the generalized context in each of the cases right after case analysis are

Case: V| =T :tp,(z:term T ,u: z L z)t
Case: U, =T, : tp, Ty : tp, E' : term T} — term Tb

Case: Ui =T, : tp, T : tp, E; : term (T arrow 1), Ey : term Th
As second example, consider the diamond Lemma 4.6.

Example 5.13 (Case analysis in diamond Lemma 4.6) The form of the generalized con-
text representing all universally quantified assumptions right before the first case analysis is

U=T:tp,E:term T,E' : teem T, E" : term T, D' : E =L E'.D":E R
and the form of the generalized context in each of the cases right after case analysis on D' are
Case: V| =T :tp,(z:term T ,u: z N z)lE" i term T, D" : x =L Er

Case: ¥, = T : tp, Ty : tp,E; : term T} — term T,FE2 : term Tl,Ei : term T —
term T, EY term Ty, E™ : term T, D! : Ilz : term T}. © = 1z - Bz = E! z,D} :
E, = E\ D" : (app (lam E,) Ey) = E"

Case: U, = T : tp, T’ : tp,E : term T — term T",E' : term T — term T',E"
term (T arrow T"), D' : Tlz : term T'. - 1> Bz = E z,D" : (lam E) = B

Case: U, =T : tp, Ty : tp, B} : term Ty — term T4, E» : term Tg,Ei : term Ty — term Tl,Eé :
term Ty, E" : term Ty, D! : B, = E! DL:E, = E. D" :app Ey B, —> E'

Again, all assumptions in W}, ..., U/ represent exactly the available assumptions after case
analysis of the first parallel reduction D', as implicitly assumed in the informal presentation of
the proof of Lemma 3.7. There the situation is slightly different, because we performed two case
analysis at once, whereas here, we only present the one over D'.

It is one of the major technical contributions of this thesis of how to design the case-
distinction operator in order to capture this refinement of generalized contexts. Our solution
employs generalized substitutions (defined for generalized contexts) whose definition we address
in the following.

127

128 5.6. INDUCTION

A generalized substitution is defined very similarly to LF level substitutions in Section 5.2.
The main difference is, that its domain and its co-domain are generalized contexts, and therefore
a special case for substituting context variables must be provided; only variable blocks can be
substituted for variable blocks. Generalized substitutions are denoted by .

Generalized substitutions: 1 == - |, M/z |, p'/p

The composition of generalized substitutions is very similar to Definition 5.1 with one extra case
for variable blocks.

Definition 5.14 (Composition of generalized substitutions)

oty = 1o
(1, M/z)otpe = (th1 01h2), M[1po]/x
(1,0 [p) otba = (b1 oth2), [1b2lp'/p

where we write [1)]p to apply a generalized substitution to a variable block, or more precise to
the types declared within. The prefix notation indicates that the substitution is applied to a list
of entities. It is an abbreviation for

[Y]- =
[4)(z : A, p)

z: Alpl, [, z/x]p

Note that if p = @1 : A1,...,2, : Ay and p) = y1 : Bi,...yn : By, then p/p’ is a substitution
which substitutes x; for y; for all 1 < n. Specifically, [@bg]p'_updates only the type information
in p’ but leaves the variable names in p’ untouched. In our shorthand notation [¢]p’/p denotes
exactly the same generalized substitution as p’/p does, but the co-domain may be different.

Returning to the Example 5.12 of the reflexivity Lemma 4.3, there are three generalized
substitutions 11, 12,13, one associated with each case:

Example 5.15 (Generalized substitutions and the reflexivity Lemma 4.3)

Case: The first case of the proof translates into ¢y = T'/T, z/E, where U is its domain and ¥/ its
co-domain. The z/F in the substitution corresponds to the z in the informal presentation
in Lemma, 3.4, where z is declared of the variable block p = z : term T, u : x :1> .
In this special case z is a binding occurrence of a parameter block. There can also be
non-binding occurrences of variable blocks, which we encounter in the example about the
diamond lemma below.

Case: The second case is also expressed by a simple substitution relating U}, to ¥: v =
(Ty arrow T3) /T, (lam E')/E

Case: And so is the third case: The domain of U5 is ¥, and W% is its co-domain.)5 =
/T, (app B\ E»)/E

The difference between binding and none-binding occurrences of variable blocks in a context
is illustrated by the proof of the diamond Lemma 4.6. We put special emphasis on the first case:

128

CHAPTER 5. THE META-LOGIC My 129

Example 5.16 (Generalized substitution and the diamond Lemma 4.6:)
This example extends Lemma 5.13

Case: V| =T :tp,(z:term T ,u: z N z)LE" i term T, D" : x =L B

The first case translates into the generalized substitution

1 = y L y L U)
T/T,z/E,z/E" w/D' D" /D"

The variable block (z : term T, u : z =L z) is a binding occurrence because, informally,
when the case is executed, the instantiation of E, E', and D' determine the parameter
block in the context. In the original proof of the diamond Lemma 3.7, we discussed how
to assume the existence of a second parameter block in order to distinguish cases over
D". Because of typing constraints, the two variable blocks are constrained to be identical
because as the left reduction, the right reduction starts in . In our system there are two
options to express the second case analysis:

1. Define a second case analysis which is defined inside the scope of the first, with a new
domain U and a substitution]

U] = T:tp,(y:termT,v:y = g)L
Yy = T/T,(y:termT,v:y =L y)/(z :term T,u: z SN z),y/E",v/D"

The variable block (y : term T,v : y = y)* is a non-binding occurrence of a
variable block. It is merely a renaming of z and u to y and v.

2. Modify the generalized context UY and the generalized substitution] to also ac-

commodate the second case analysis.
U= T:tp,(g:termT,g:g:%g)L
! = T/T,z/E'z/E",u/D"u/D"

and again is (z : term T\ u : z :1> Q)L a binding occurrence of a variable block.

It is possible to use either of these two representations, and the attentive reader might
have noticed that ¢ is nothing else but a composition of 1; and .

Case: ¥, = T : tp, Ty : tp,E; : term T} — term T,FEy : term Tl,Ei : term T —
term T,Eé term 77, E" : term T,Dl1 : [z : term 11 x ST E oz N E{ x,Dé :
By = E. D" : (app (lam E,) Ey) = E":
The substitution which expresses the relationship between ¥ and W/ results from a
straightforward instantiation of assumption in W:

Yo = T/T, (app (lam E,) Ey)/E, (E, Ey)/E',E"JE", (pbeta D} DL)/D', D" /D"
Case: U, = T : tp, T’ : tp,E : term T — term 7",E' : term T — term T’ ,E"
term (T arrow 7"), D' : Iz : term T x - 13 Eg = E z,D" : (lam E) =L B

Analogously, the relationship between ¥ and ¥4 is expressed by the generalized substitu-
tion 1/)3.

Y3 = (T} arrow Ty) /T, (lam E)/E, (lam E')/E', E" /E", (plam D')/D', D" /D"

129

130 5.6. INDUCTION

Case: U, =T : tp,Tb : tp, E; : term T5 — term T4, F» : term TQ,Ei s term Th — term Tl,Eé :
term T, E” : term T}, D! : By = E! DL: B, = E. D" :app Ey By —> E':

And finally, the relationship between ¥ and ¥/ is expressed by the generalized substitution
P4

w =TT, (app Ey Es)/E, (app E! EY)/E', E" /E" (papp D! D.)/D' D" /D"
1 =2 1 2

These two example clearly demonstrate the general idea behind the design of the case con-
struct. Each case is expressed by a substitution and its co-domain. The domain of the substi-
tution is the context in which the original case-expression is valid (it therefore stays invariant
for all the cases) , and the co-domain of the substitution is the context in which the body of a
case is valid.

The subject of the case construct is hence not simply one LF object, instead it is a list of LF
objects (a substitution) that instantiates all variables declared in the context simultaneously. In
summary, we use the basic idea of explicit substitutions [DHKP96] to encode the case subject.
An explicit substitution is a substitution which is turned into a first-class object of the calculus.
We use such an explicit generalized substitutions in order to represent the case subject, that is
.

In order to make this presentation more uniform, we also use explicit meta-substitutions to
capture the instantiation of meta-variables. These observations give rise to a new proof term,
which is defined in terms of a list of cases.

Proof Terms P == ... |case (1;9) of Q
Cases Q Q2 (¥ > — P)

The (1;0) part of the new proof term is a pair of already discussed explicit substitutions,
and 2 is a list of cases. Each case describes the substitution 1 in order to recognize if a case
is applicable, its co-domain which describes all assumption and block variables available to the
body of the case, and finally the body P of the case itself.

Operationally speaking, assume that at the time of execution case (¢;d) of € is given and is
the term is closed (it doesn’t contain any free variables). Consequently, ¢ is ground substitution.
A case (U'>1)) — P) € Q is applicable, if the system can construct a closed substitution 1" (the
new environment) with domain ¥’ from 1) (the old environment), such that 1)’ o 9" = 1). If such
a 1" exists, informally, the case is applicable, and the body P of the case can be executed after
all variables from U’ have been replaced according to ".

All proof terms are now defined and we can return to the reflexivity lemma 4.3, and illustrate
its proof term. Proof terms in their internal formulation are very verbose, difficult to parse and
painfully hard to interpret. We therefore opt to illustrate the internal version only once in
the next example, and use the more familiar notation of proof terms (from Chapter 4) in the
remainder of this thesis. In addition, this notation is easily definable as syntactic sugar.

Example 5.17 (Proof of the reflexivity Lemma 4.3) As derived by syntactic refinement
in Section 4.2.2, the proof of the reflexivity lemma

OSOME T : tp. BLOCK z : term T, u : x =L o
VT :tp.VE :term T.3D : E 4 E.T

130

CHAPTER 5. THE META-LOGIC My 131

is a recursion. To the left is the version we have already seen, and to the right is the internal
representation, where we omit some type and formula annotations.

funrefl z = u box (SOME T : tp. BLOCK z : term T\ u : x =L z)k.
| refl (lam (\z : term 7. E')) = prefl. AT : tp. AE : term T'.
let case (T'/T, E/E;refl/refl) of
new z :term T, u: z :1> x (T:tp, (z:term T,u: z :1> E)L > T/T,z/E
val Pz u=refl (E z) = (u, (),
in (T} : tp, Ty : tp, E' : term T} — term T
plam (Az. Au. P = u) > (Ty arrow T3) /T, (lam E')/E
end —let v (z:term Th,u: z L z)l.
| refl (app Ey E3) = x; =refl Th,xo =x1 (E'), (P,x3) = %2
let in (plam (Az : term Ty. \u : z =L z.Pz u),())),
val P = refl B, (T} : tp, Ty : tp, Ey : term (T, arrow T1), Es : term Th
. val Pg =refl E2 > Tl/T, (app El EZ)/E
m — let
p;‘pp P1 P2 X1 = refl (T2 arrow Tl), X9 = X1 El, <P1, X3> = X9,
en

yi =refl b, yo =y Eo, (P,y3) = y2
in (papp P P,,()))

Similar to LF-level substitutions from Section 5.2, generalized and meta-substitutions must
be well-formed — we establish this property by two judgments. Generalized substitutions map
generalized contexts into generalized contexts but generalized contexts themselves are already
a prerequisite for meta-contexts. Consequently the definition of meta-substitutions relies on
generalized substitutions.

The first of the two judgments is that of well-formed generalized substitutions, ¥’ - ¢ € 0.
Clearly, W is the domain of the substitution and ¥’ is its co-domain.

Judgment:
Well-typed generalized substitutions W't € ¥

The semantics of this judgment is defined by three inference rules. The empty generalized
substitution is well-formed with an empty domain. Recall, that variable blocks are used to
express the presence of a parameter block in the parameter context. Consequently, the image
of a variable block must be a variable block. Finally there is the expected rule which allows a
substitution of any well-typed LF-term for an assumption variable.

Rules:
F U’ abstract
— " sempty
U'E.e.
Plew Uirkp)=[Wp Vhrypel U EM:A[p] VEgpel
sblock sass
' E (4,0 /p) €T, p" V' (p,M/z) €V, z: A

Generalized substitution composition is well-defined.

131

132 5.6. INDUCTION

Lemma 5.18 (Composition of generalized substitutions)

IfDl Zl\Ifgl_l/)ll\Ifl
andDg ::\Ijgl—@bgt\ljg
then \Ijgl—iﬁloiﬁgt\yl

Proof: by structural induction on Dj. O

Generalized substitutions are a prerequisite for the definition of well-defined meta-
substitutions. As a reminder, a meta-substitution replaces meta-variables by entire proof terms,
as it is for example necessary when evaluating the fixed point-operator. Substitutions on meta-
variables are used very often in the remainder of this thesis, for example in the substitution
Lemma 6.20 which we prove in the next chapter. The judgment, expressing that a meta-
substitution is well-formed, is in principle just an extension of the previous judgment.

Judgment:
Well-typed meta-substitutions W3 A’ F ;0 € ¥; A

In the spirit of extending the first judgment, the semantics of well-typed meta-substitutions
is defined by two inference rules. The first rule coerces a standard well-formed generalized
substitution to be a well-formed meta-substitution in the base case. The other expresses when
non-trivial meta-substitutions are well-formed.

Rules:

Vhpew VA FPeF] WA Fgide ;A
sabstract smeta
U A ;- € U5 U A" a0, P/x € U; A,x € F

In order to be perfectly precise, a precondition for the two judgments is, that all involved con-
texts are well-formed. That means that for the first judgment we can assume that = U abstract
and U’ abstract, and for the second, we assume that ¥ - A meta and ¥/ - A’ meta.

Meta-substitutions can be composed and we write (1; §) o (¢'; ") = (¢"; ") for the resulting
substitution. It is defined in a straightforward way, where we assume the that meta-substitutions
can be applied to a proof term P[i); d].

Definition 5.19 (Composition of meta-substitutions)

(;-) o (4'50") = (dod's) (cempty)
(450, P/x) o (¢;6") = (450", P[¢)';6"]/x) (cmeta)
where (;6) o (¢';6") = (¢";8")

Meta-substitution composition is well-defined, too. Since its proof relies on a substitution
lemma for applying meta-substitution to programs, we postpone the proof this lemma until
Section 6.2.4, Corollary 6.21.

Lemma 5.20 (Composition of meta-substitutions)

132

CHAPTER 5. THE META-LOGIC Mj 133

[fi)l 2 Wo Ay - dq;51 € Uy Ay
and Dy :: \Ifg;Ag = 1/)2;(52 € \IIQ;AQ
then W3; Az b (1h1;61) o (the;d2) € Vi3 A4

The special character of a meta-substitution to extend a generalized substitution is clearly
exhibited by the observation that the underlying generalized substitution can easily be extracted
form the meta-substitution.

Lemma 5.21 IfD: VA" F;0 € U; A
then W' F) € U,

Proof: by induction on D. O

In many proofs below, we will encounter identity substitutions, i.e. substitutions whose do-
main and co-domain are equal, and every variable is mapped to itself. If an identity substitutions
acts on an LF context , , we write idp. Likewise a generalized identity substitution on ¥ is writ-
ten as idy, and a meta identity substitutions on A as ida. In the remainder of this thesis we take
the freedom to simply omit identity substitutions from the formalism, if it does not contribute
to the presentation of the material. For example the instead of 1);ida we simply write 1.

We continue this rather technical discussion, and present now the final extension to
the inference rule system of M. The rules will capture the essence of case analysis
in order to define and formalize recursive functions in /\/12+ . Recall, from Example 5.17
that there is the case construct itself which takes as argument a list of cases which
must also be well-formed. Obviously, (2’s well-formedness requires a judgment by itself:
U: A + Qe F, where F is the formula, and each case in must be valid. Typically, F
is an existentially quantified formula, such as 3D : FE =L E.T in the reflexivity lemma, or

3E i term T.3P': E' == E'.3P": E" == E'.T in the diamond lemma.
Judgment
Well-formed case lists: U; A Qe F

The typing rule for case requires, that the case subject is a valid meta-substitution and that
all cases are well-typed.

Rules
U: AR 5e VA U A'FQeF
U: A+ case (1;6) of Q € F[i)]

case

Cases are well-formed, if each of the substitutions is well-formed with the associated gener-
alized context as its co-domain. In addition, the proof term associated with each case must be
well-formed in the same generalized context. There is a generalized substitution ¢ that express
how a case is being refined when it is successfully applied. The well-formedness proof can (and
in most cases will) use the meta-assumptions given in A, but because case analysis might have
distinguished cases over other variables which occur free in the formulas in A, the refinement
must be reflected, written as [1)]A in alt’s premiss. Likewise, ¢ must be applied to the formula

133

134 5.6. INDUCTION

in premiss of alt below. The precise definition of substitution application together with the
associated properties are postponed until the next Chapter.

——— base

U, AF-€eF

Vigpel WAFQeF U;[hlAk P e Fy]
UAFQ (Wb P)eF

alt

This almost completes the presentation of the typing rules for case analysis. The only thing
missing, is that the proof terms which are formalized in this system are realizers, which means
that the case rule must guarantee that all cases are always covered, a property which is also
referred to as coverage [Roh96]. Similarly to the side condition for termination 5.1, we endow
the case rule with a side condition which enforces coverage.

Informally, the coverage condition guarantees that if the recursive function (the proof term)
is executed in an environment possibly defined in a concrete parameter context, and all as-
sumption and variable blocks in the generalized context are instantiated with LF objects and
parameter blocks, then the case analysis can be successfully executed, and at least one case
applies. Consider the following situation. We are presented with a well-typed term

lam (Az : term nat. z) : term (nat arrow nat),

where we assume that nat : tp is a base type for natural numbers. The objective is to construct a

term of type “lam (Az : term nat. x) L5 lam (Az : term nat.z)”. This can be easily established
by employing the recursive function refl, and applying it to the argument “lam Az : term nat. x”.
Once the evaluation reaches the point of case analysis, there is a case which applies: it is the
second in Example 5.17.

But in general this is not necessarily the case. The rules defining the well-formedness of
cases do not imply that a case is guaranteed to be applicable. Of course, this observation is
not new. The same observation holds for any functional programming language, as for example
ML [MTHMO97] or Haskell [Tho99, Hud00] which employs pattern matching; in a situation where
no case is applicable an exception is raised.

This solution is unacceptable for our situation. We must enforce that all recursive functions
are realizers, that is evaluation must always make progress and eventually terminate. Termina-
tion is already informally guaranteed by side condition (5.1). It remains to guarantee that the
evaluation of each recursive function makes progress under all circumstances.

In the quest for coverage, we first examine what it means for a rule to be applicable. At the
interesting point in the evaluation, shortly before cases are analyzed, there exists a generalized
substitution, (or better environments as they are called in functional programming languages)
which has the following form:

- F ((nat arrow nat)/7T,lam (Az : term nat.z)/E) € (T : tp, E : term T')

~ /
~~

n

Recall that the applicable case has the form

(Ty : tp, Ty : tp, E' : term Ty — term 1) > ((T} arrow T3)/T, (lam E')/E) + ...

~ J/

v

134

CHAPTER 5. THE META-LOGIC Mj 135

In detail, the rule is applicable, because the environment 7 is decomposable into a new environ-
ment, call it ', and . We do not show how to calculate this new environment 7’ from 1 and
1), this is left to the next chapter. Instead we simply state the result:

-+ (nat/Ty,nat/Ty, (Az : term nat. z)/E') € (T : tp, E : term T)

~ J

77/

One can easily see, that n’ is the right choice of environment since the composition of ¢ and 7’
inevitably yields 7:

((Ty arrow T%)/T, (lam E')/E) o (nat/T},nat/Ts, (Az : term nat. z)/E') =
((nat arrow nat) /T, lam (Az : term nat. z)/E)

More formally, we say that a list of cases {2 covers all cases, if any environment 7 can be
decomposed into 7' and ¢ for some case (V' > ¢ — P) € Q.

2 is a complete case cover (5.2)

This side condition is associated with the case rule. The general problem of coverage is undecid-
able, but in Section 7.3, we will give a formal but sufficient criterion for coverage. It is semantic
in nature; there is no feasible way to try every instantiation of ¢ a priori. Semantic conditions
are in general impossible to enforce directly. Therefore we present in Section 7.3 a syntactic
criterion on {2, which — when satisfied — guarantees complete case coverage. As we will see,
the entire construction rests on the shoulders of the canonical form Theorem 2.6 for LF.

Side condition (5.2) enforces a condition on the refinement substitution 1) which are part of a
case (U’ > ¢ — P) € Q. The rule alt guarantees that the substitution is well-typed: ' ¢ € U.
The following example shows that ¥’ should not be unnecessarily large. If it were, an oracle
would be necessary to assign an operational semantics to our proof term calculus. Consider the
slightly extended lam-case of the reflexivity lemma (by adding @ : term T} — term T}).

Ty : tp, 15 : tp, B : term T — term 15, Q : term 17 — term T}
> (11 arrow T%) /T, (lam E')/E + ...

After applying the decomposition rule to n above using ¢ we arrive at an extension of 1’ which
also instantiates Q. The value of () cannot be determined from 7 itself since () is not mentioned
in any of the LF-objects used in 7. It is hence entirely under-constrained, which gives rise to
a possible non-deterministic choice: We simply choose Az : term T7.z for () and complete the
decomposition.

-k nat/T1,nat /Ty, (Az : term nat. z)/E', (Az : term Ty.2)/Q € T : tp, E : term T

The strange behavior associated with allowing unconstrained assumptions in ¥’ is even more
clearly illustrated by the following extension of ¥'; adding @ : term T, — term T}

Ty : tp, 15 : tp, B : term T — term 15, Q : term Ty — term T}
> (11 arrow 1) /T, (lam E')/E + ...

renders the case inapplicable because there is no possible instantiation for). Such non-
determinism therefore blurs the interpretation of proof terms as recursive functions. In general,

135

136 5.7. LEMMAS

we require that each 1 can be decomposed into a 1) and some 7'. Moreover, we require that this
decomposition is unique. Note, that and r’ need not to be closed; as usual they might be open
in some parameter context, expressed abstractly by ®. All these requirements are summarized
by the following side condition which we associate with alt-rule.

For all n (® Fn € V) there exists an)/ (P F 7' € ¥') s.t. n=1pon (5.3)

Similar to side condition (5.2) it is semantic, probably undecidable, but we present a sufficient
syntactic criteria in Section 6.4.

This concludes our presentation of two new meta-level proof terms expressing well-founded
recursion and complete case analysis which turn as we will see in Chapter 7 the proof term
calculus of M7 into a calculus of total recursive functions, warranting the soundness of M .
We have established three semantic side conditions for the rules for which we present precise
syntactic criteria in the chapters to follow. We conclude this chapter with a discussion of how
to add lemma application to M; .

5.7 Lemmas

Theory and proof development without lemmas is unthinkable. Meta-logical arguments always
consist of a sequence of lemmas as for example the development of the Church-Rosser theorem
presented in Chapter 4. Using an auxiliary notion of parallel reduction, the proof of the Church-
Rosser property of ordinary reduction is reduced to the Church-Rosser property for parallel
reduction each of which is derived by a series of lemmas. In the discussion so far, we have
presented all techniques necessary to formalize proofs which do not rely on other lemmas, the
basic building blocks of a formal theory so to speak. We generalize this idea in this section by
adding the ability to apply other lemmas to our system. With this technology at hand, we can
formalize all lemmas and theorems from Chapter 4.

The reader may wish to skip this section in the first reading. If all lemmas in the development
of a theory depend on one but fized world extension this section does not contain any new ideas.
In such a situation lemmas can simply be added as meta-assumptions to A. If on the other
hand, the lemmas necessary for a development require many possibly different world extensions,
the mechanism presented in this section apply.

This section is structured as follows. First we introduce the necessary basic definitions of
lemmas in Section 5.7.1. As presented in Section 4.2.2, lemmas and theorems also take the shape
of the parameter context into account. A criteria which expresses if one lemma can call another
without violating the context schema restriction is presented in Section 5.7.2. In Section 5.7.3
we finally present the new proof rules extending the proof term calculus of /\/12+ .

5.7.1 Preliminaries

Lemmas are a very valuable and an important organizing force in the development of theories.
Typically theories are built as hierarchies of lemmas. If well-chosen, this hierarchy can support
the automated validation of changes to the underlying definition of a formal system. For example
in Section 4.2.3, when we extend the simply-typed A-calculus by polymorphism, all lemmas for
the Church-Rosser theorem are still true (with a very minor modifications in the definition of
context schemas, by adding a block schema for type variables).

136

CHAPTER 5. THE META-LOGIC Mj 137

What are lemmas? Lemmas are general formulas, i.e. they define a context schema and a
formula whose proof possibly relies on meta-hypotheses, i.e. proofs of other lemmas which are
assumed to be true. For example we can prove confluence Lemma 4.8 under the assumption that
the strip Lemma 4.7 is true. Likewise, the proof of the strip lemma relies on the truth of the
diamond Lemma 4.6, which itself depends on the truth of the substitution Lemma 4.5. It should
be clear, that a general formula is only proven, if all of its meta-hypothesis are instantiated by
real proofs. Formally, we first extend the notion of general proof term to allow meta-hypothesis.

General proof terms: Q == ...|x

Meta-hypotheses are organized in form of a lemma repository which is very closely related
to the list of meta-assumptions A and the instantiation of meta-hypothesis is described a sub-
stitution like structure, called a lemma instantiation.

Lemma repository: = x= -|Exed
Lemma instantiation: £ == -|&,Q/x

In addition, each judgment of the formal proof system M;’ is being equipped with such a
lemma repository. There are three such judgments expressing the provability of general formulas,
formulas, and declarations.

Judgments
Provability of general formulas: =2+ Q € G
Provability of formulas: U, A;EFPEF
Provability of declarations: U, A;EFDe A

—_

= is not going to change during the proof of a meta-theorem. It only changes when meta-
hypothesis are instantiated. Therefore, a meta-theorem G is proven if its proof is closed, that is
formally, if there exists a proof @) such that - - @Q € G.

5.7.2 Context Schema Subsumption

One of the main characteristics of a lemma is the form of the world extension for which it is
defined. World extensions are described by the context schema. The need of context schemas
has been motivated and discussed in Section 4.2.2 in great detail. In particular, context schemas
are necessary in order to express properties of deductions which are not necessarily closed. The
diamond Lemma 4.6 for example contains the declaration of the context schema

(SOME T : tp. BLOCK z : term T, u : N z)k

which serves as a quantifier over all regularly formed parameter contexts of the form:

1 1
(21 :term T, uy : 2y = E)L,...(xn termThy,, up T, = E)L

The question, if the proof of the diamond lemma can use to the transitivity Lemma 4.4. Surely,
if the transitivity lemma is proven for the same world extension as required by the diamond
lemma, the application is sound. If it isn’t it may not be sound. Which lemmas can be applied
from within a meta-proof and which can not is determined by a relation between the context

137

138 5.7. LEMMAS

schema, of the lemma to be proven to the context schema of the lemma to be applied which we
call subsumption relation.

More abstractly, if a formula is to be proven for any parameter context ® € [S], and one is
tempted to apply lemma OS’. F| then such an appeal is admissible if ® € [S’]. This is a very
strong requirement, and without doubt, it can be relaxed. We postpone the discussion on more
sophisticated context subsumptions until Section 9.1.3.

Definition 5.22 (Context subsumption) We say that context schema S’ subsumes context
schema S iff ® € [S] implies that ® € [S'].

Context subsumption is a semantic criteria and in this, it is very similar to termination,
coverage, and strictness. A very simple minded syntactic criterion for context will be presented
in Chapter 6.

It is clear, that the diamond Lemma 4.6 can appeal to the substitution Lemma 4.5, because
both context schemas are the same, and hence the subsumption condition is trivially satisfied.

5.7.3 Proof Rules

The concepts of lemmas requires two additional proof rules for M; (Section 5.5), one to type
meta-hypothesis, and the other to express lemma application. The first rule extends the provabil-
ity judgment on general formulas, and the second the judgments of provability of declarations.
The complete and final set of proof rules for M; is presented in Appendix A.

So far, a general formula is considered proved if its body is provable from no other assump-
tions. Since we have extended the meta-logic by meta-hypothesis, we must add one more rule.
Each meta-hypothesis is a proof.

xeGex=

mhyp
EFxed

Next to the new left rule. So far, the only two application rules where LY and LV, which pick
a meta-assumption from A, and apply them to either an LF-term or a block-variable to the
meta-assumption, respectively. Likewise, if () is a general proof term, it can be considered for
application. Recall that the judgment for the provability of formulas is indexed by a context
schema S and a signature X.

EFQenS. F ;A ye F;EFDeVU;A
U:A;EFy € F=lemmaQ@,Dc¥ycF A

—
—

Of course, as side condition, we must require that the context schema of the callee S’ subsumes
the context schema S of the caller.

S" subsumes S (5.4)
The Church-Rosser theorem is provable under the meta-hypothesis, that the confluence prop-
erty holds; there is a proof term Qc¢r, which one obtains by desugaring the proof term in Fig-

ure 4.7,

138

CHAPTER 5. THE META-LOGIC Mj 139

conf € OSOME T : tp. BLOCK z : term T, u : = = 2
VT : tp.VE : term T.VE' : term T.VE" : term 7.
VD':E = E'.VD":E = E".

*

JE' iteem T.3R' . E! = E'.3R":E" = E'.T

- Qer € OSOME T : tp. BLOCK 7 : term T, u : 2 = .
VT : tp.VE' : term T.VE" : term T.
VD: E' < E".
JE' :term T.3R' : E' = FE'.3R":E" = E'. T

Similarly, the confluence lemma is provable under the meta-hypothesis that there is a proof
of the strip lemma: Q.qopnf is the desugared version of the proof term in Figure 4.6.

strip € OSOME T : tp. BLOCK z : term T\ u : z L 2
VT : tp.VE : term T.VE' : term T.VE" : term T.

VD' E =% E'VD':E == E'.
I :term T.3E' : Rl = E'.3R" : E" = E'. T

F Qeonf € BSOME T : tp. BLOCK z : term T, u : =
VT : tp.VE : term T.VE' : term T.VE" : term T.

VD' E = E'.VD":E = E'.
JE' :term T.3R' : B! = E'.3R":E" = E'. T

The strip Lemma 3.8 is based on the diamond Lemma 4.6, and its proof term Qstrip is the
desugared version of the proof term in Figure 4.5.

dia €¢ OSOME T : tp. BLOCK z : term T, u : x =L 2
VT : tp.VE : term T.VE' : term T.VYE" : term T

VD' E == E'YD'.E == E'.
JE :term T.3R': E' = E'.3R":E" = E'. T

k- Qstrip € OSOME T : tp. BLOCK z : term T, u : x .
VT : tp.VE : term T.VE': term T.VE" : term T.

VD' E == E'.YD':E == FE'.
JE cterm T.3R': B! == E'.3R":E" = E. T

On the other hand the diamond Lemma 4.6 is provable using the substitution as meta-
hypothesis. The proof term ()i, is the desugared version of the proof term given in Figure4.4.

139

140 5.7. LEMMAS

subst € OSOME T : tp. BLOCK z : term T, u : =L o
VT : tp. VT, : tp.VE; : term Ty — term T1.VE] : term Ty — term T3 .
VE; : term Ty.VE) : term Th.
VD, : (Ily : term Th. y N y— Ery N E{ y).¥YDy : E, N El.
3P:E By, = E| E,. T

- Qgia € OSOME T : tp. BLOCK # : term T,u : & = .
VT : tp.VE : term T.VE' : term T.VE" : term T.
VD':E = E'VD":E = E".
3E' :teem T.3R' : B! = E'.3R":E" = E.T
Finally, the substitution lemma is directly provable. The proof is formalized by the proof
term Qg hst,> the desugared version of the proof term given in Figure 4.3

‘F Qgubst € OSOME T : tp. BLOCK : term T, u : = 7
VT : tp. VT : tp. VE; : term Ty — term 77.VE] : term Ty — term 7.
VEy : term T.VE : term Tb.
VD, : (Ty : term Th.y = y — By y = E! y).¥Dy: By = E.
3P: E, By = E| E). T
How can we obtain a closed proof the Church-Rosser theorem? By using lemma instantia-
tions. Lemma instantiations act as substitutions on the meta-level. Entire proofs are substituted

into proof terms, hereby gradually instantiating meta-assumptions. Naturally, lemma instanti-
ations must be well-formed.

Judgment
Well-formed lemma instantiations: =+ Q € 2

Intuitively, a lemma instantiation is well-formed, if it is either empty, or if the general programs
Q are really proofs of the formulas the claim to be proofs of.

FQeG E'He¢eE
— sabstract — — smeta
EFk-e- EFEQ/xeEEXEG

Similar to substitution we write Q[¢] in order to apply a lemma instantiation £ to a general
proof term). Lemma instantiations can be composed the same way, substitutions can.

Definition 5.23 (Composition of lemma instantiations)

0b = &
(1,Q/x)0& = (£10&2),Q[E]/

Provided, that there is a substitution lemma for lemma instantiations (which we prove in Chap-
ter 6), we can prove the validity of lemma instantiation composition.

140

CHAPTER 5. THE META-LOGIC My 141

Lemma 5.24 (Composition of lemma instantiations)

IfDl ::Egl—fltEl
and Dy :: 23 & 1 29
then Egl—flofgtEl

As example, consider the a combined proof of the Church-Rosser theorem for parallel reduction,

b Qer[Qeonfl@strip[@dial@subst/subst]/dia]/strip]/conf]

€ OSOME T : tp. BLOCK z : term T, u : x =L 7.
VT : tp.VE' : term T.VE" : term 7.
VD:E' < FE".
3E' :tem T.3R' . E! = E'.3R":F" = E'.T

By easy inspection, if follows that all involved lemma instantiations are well-formed, and by
the meta-theory which we start to describe in the next Chapter that this proof term indeed
formalizes the proof of the Church-Rosser theorem.

5.8 Summary

In this Section we have described the meta-logic ./\/12+ and an appropriate proof term calculus
which formalizes meta-proofs as recursive functions. Among the many rules, there are four rules,
which have side conditions in order to guarantee that the proof term calculus is indeed a calculus
of realizers. There is a termination side condition (5.1), which enforces that any evaluation of a
recursive function eventually terminates, the coverage side condition (5.2), which ensures that
all cases are always covered, the strictness side condition (5.3), which enforces determinacy,
and eventually the subsumption side condition (5.4), which guarantees soundness of lemma
application. A summary of all rules can be found in Appendix A.

The meta-logic is general enough to represent any of the proof terms from Chapter 3 and
Chapter 4, such as the entire development of the Church-Rosser proof of ordinary reduction.
It is powerful enough to represent the theory of cut-elimination, meta-theoretic properties of
programming languages, especially functional and logic programming languages, compiler cor-
rectness, and examples from category theory. Not only are all theorems representable in the
meta-logic, but they are also automatically derivable, as we will discuss in Chapter 8. A more
detailed account on which theorems have been proven automatically will be given in Section 8.5.

M; has several limitations. The first limitation stems from the observation that the rep-
resentation power of the meta-logic is directly connected to the representation power of the
underlying logical framework. Reasoning about imperative programming languages is not very
well supported by the logical framework LF due to the lack of an elegant encoding of state. First
promising results have been achieved with an extension of LF to a linear logical framework LLF
[CP96], which treats memory cells as resources. Resources disappear whenever accessed. It is
during the reassumption phase, that the value of a resource can be changed, which makes the
linear logical framework a prime candidate for modeling imperative languages. A generalization
of M;’ to a meta-logic for a linear logical framework such as LLF has not been carried out yet,
but it will be discussed briefly in Section 9.1.2.

A second limitation of the meta-logic M; is that it currently cannot represent any meta-
logical arguments which require a proof by logical relations (also Tait’s method). When applying

141

142 5.8. SUMMARY

this method, one normally defines semantically a relation P, and in order to show that a judg-
ment J can be transformed into a judgment J', we show that each derivation of J satisfies P and
furthermore that each derivation satisfying P can be transformed into a derivation satisfying
J'. This technique is used for example in the canonical form theorem for the simply-typed A-
calculus. /\/12+ lacks mechanisms such as for example quantification over substitutions to express
commonly used logical relations P.

A third limitation is that M7 is restricted to IIo-formulas, and that it offers only a limited
number of logical connectives. Many theorems have natural formulations, which fall outside this
fragment, prompting the user for auxiliary constructions.

This concludes the presentation of the meta-logic M; , and we continue with the presentation
of a type-preserving operational semantics, which we use to show that all proof terms are total
functions.

142

Chapter 6

Operational Semantics for /\/l;

6.1 Introduction

The proof term calculus M; is designed with the idea in mind that all proof terms correspond to
total recursive functions called realizers, summarizing derivations and witnessing the soundness
of the meta-logic M3 . The soundness proof itself is long and introduces many definitions, a
sophisticated matching algorithm, a big-step and a small-step semantics. Therefore we have
decided to break it up into two chapters. This is the first chapter, and its goal is to demonstrate
how proof terms are interpreted as recursive functions and how they can be executed. In future
work we will investigate independent applications of M3 as a programming language. In the
next chapter we show that all functions in MJ are realizers when satisfying the termination
side condition (5.1), and the coverage side condition (5.2). The reader who is more interested
in the practical applications and results is invited to skip these two chapters and to continue
reading Chapter 8 which discusses an implementation of M; as part of the Twelf system.

This Chapter is organized as follows: In Section 6.2, we directly begin with the technical
discussion; we formally introduce substitutions, abstractions, subordination, and other neces-
sary concepts, and we derive basic properties such as weakening and substitution lemmas. In
Section 6.3 then, we present a syntactic criterion for context schema subsumption necessary for
sound lemma invocations. The matching algorithm for case constructs is defined in Section 6.4
as part of the big-step semantics which is described in Section 6.5. Finally, we conclude this
chapter with a summary in Section 6.6.

6.2 Preliminaries

Proof terms are recursive functions and they operate on LF objects. Because of the different
variable concepts used to define M;, there are many different notions of substitutions and
substitution applications to be considered. Generalized substitutions for example enjoy the same
properties LF substitutions introduced in Section 5.2 enjoy; assumptions variables correspond
directly to LF variables, and variable blocks are mapped to lists of LF variables. The main
difference to LF substitutions is that generalized substitutions carry additional information
about the boundaries of variable blocks.

This section is organized as follows: We first discuss basic properties of standard LF substi-
tutions in Section 6.2.1 and issues related to hypothetical arguments in Section 6.2.2. We then

143

144 6.2. PRELIMINARIES

derive a set of weakening lemmas, for formulas, proof terms, generalized, and meta-contexts in
Section 6.2.3 which are required for the upcoming technical discussions. Likewise we prove a
variety of substitution lemmas for formulas and proof terms in Section 6.2.4.

6.2.1 LF

The construction of M; relies on the fundamental property of LF that canonical forms exist, as
shown in Theorem 2.6. But there are also other properties, which are equally important for the
sake of the formal development. The first property is the weakening property. An object M (type
family A) remains well-typed (well-kinded) under any extension of the context , . Formally, we
write , < ,’if ,’ results from interspersing , with arbitrary (but always well-typed) variable
declarations. Note, that we implicitly assume that -, ctx and -, ’ ctx holds.

Lemma 6.1 (Weakening for LF)

1. If, FM:A

and , <,'
then ," =M : A
2. If, FA: K
and) S) !
then ,"FA: K
Proof: by induction on the typing derivations. O

Similarly, there is a substitution lemma, which expresses that the typing relation is stable under
substitution application. The definition of substitution application to LF objects, LF types, and
LF kinds is omitted from this thesis.

Lemma 6.2 (Substitution property of LF)

L If, FM:A
and ,"Fo:,
then ,' = M|[o] : Alo]

2. If, FA:K
and ,"Fo:,
then , '+ Alo] : K[o]

Proof: by induction on the typing derivations. O

This concludes the presentation of all properties of the logical framework LF necessary to carry
out the formal analysis of M.

144

CHAPTER 6. OPERATIONAL SEMANTICS FOR M 145

6.2.2 Abstraction

Abstraction is an operation which is used for example in the definition of the Lnew-rule in
Section 5.4.4.

(SOME C;. BLOCK Cy)* €S Uko:C, Ukp=,[0]Cy T, p"AFT ;A
U; A FIpl. (05 A)

Lnew

Abstraction formalizes how results of applying the induction hypothesis are interpreted after
an extension of the world is discharged. Hypothetical arguments typically first introduce new
assumptions, then apply induction hypotheses or possibly lemmas, and eventually discharge the
new assumptions. It is the goal of this subsection to give a formal account on how to interpret,
for example, the result of the induction hypothesis after the last step.

Recall the walk through the proof of the reflexivity Lemma 4.3 in Section 5.4.4. In order to
prove the case for “lam” we had to introduce new assumptions. More precisely, we introduced a

new parameter block in form of a variable block (z : term T, u : x L z)l. After a few further

reasoning steps, we demonstrated the existence of an LF object P : (E' z) N (E" z), and
three meta-assumptions, represented as the meta-assumption list A" on page 117.

V@ = P:(Ez) = (B

A®? = xyeVE:teemT.3D : E N E. T,
x; € 3D : (E' z) = (E'z). T,
X9 €T

Let us first concentrate only on ¥/(2). What does it mean to reason hypothetically? It
simply means, that P is the representation image of a derivation P, which possibly uses two
assumptions z and u represented as "z = z and "u" = u as already shown in Equation (4.1),

keeping in mind that (z : term T, u : z N g)L is assumed.
r il
U
1
r = x
P
¢ = ¢ =Iz:term n .MMu:z = z. (E' z) = (E' x)

By abstraction we refer to the process that calculates the right hand side of this equation
from the variable block (z : term T,u : z =L z)" and the type of the new assumption
(E" z) = (E" z): We write P : II(z : term T\ u : z = z).(E" z) - (E" z) for this
operation. Here is a preliminary definition of the abstraction operation Ilp. A, the same we have
already presented earlier.

1.4, = Ay
(z: A1, p). Ay = Iz : Ay (IIp. Ag)

Note, that while the abstraction algorithm executes, the hypothesis x and u are transformed into
LF variables x and u. Thus, abstraction simultaneously and implicitly removes the “underlines”
from variable names. This operation is rather conservative. On the one hand, it safe because

145

146 6.2. PRELIMINARIES

no variable cannot escape its scope. On the other hand, it is conservative, because it is possible
that z can never occur in Ilp. As; as for example no term z can ever occur in the definition
of a type “tp”. This is impossible as an easy inspection of the signature in Figure 2.2 shows.
Abstracting over z in this situation certainly does not lead to an unsoundness, but it may lead
to an incompleteness, as we can easily demonstrate using the proof of Lemma 4.12. Thus,
abstraction should be able to strengthen the variable block that is abstracted by removing all
declarations that cannot occur in the type.

In the example the hypothetical argument introduces two related parameters: z is an atomic
term and y is a term of the same type. Therefore, the regular world extension consists of
parameter blocks of the following form: (z : atm 77,y : term T7)%. In the proof of Lemma 4.12
the induction hypothesis is applied in an extension of the current world with the result that
there exists a term of type 1. T5’s existence is hypothetical, therefore we use the abstraction
algorithm to abstract, z and y. However, using the algorithm in its current form, the result is
an object of type “atm T — term 7} — term 715”, even though z is a semantically meaningless
abstraction. Consequently, we will refine the abstraction algorithm to ignore any semantically
meaningless assumption. Only if abstraction ignores the “z : atm 71”7 hypothesis, the proof can
be easily completed as we have already informally argued at the end of Section 4.2.3.

The static analysis of the signature which summarizes which objects of which type can occur
as subobjects in objects of some other type is satisfactorily summarized by the dependency
relation, or subordination relation [Roh96, Vir99]. Virga has shown that if a type A; is not
subordinate to type As, then it is impossible, that any object of type A; occurs as a subobject
in any object of type As. As a matter of fact, we can partition type families into equivalence
classes modulo subordination and define a partial order on those classes based on subordination.
For our purposes, we completely adopt the definition and notation of the subordination relation
from Virga [Vir99], Chapter 5, and we write A; <y Ay iff A1 <} Az or 4y -<tE As. Indeed by
Corollary 5.2.2 in [Vir99] we learn that if A; A5 Ay then no variable z : A; can occur freely in
any object of type As. Translated into our setting we obtain the following lemma.

Lemma 6.3 (Subordination)

1. If Ay £x As
and , 1,x: A1, oFM: A
then , 1,, 2 M : A

2. If A1 As Ao
and , 1,x: A1,, s FA: K
then , 1,, 2 F A: K

Proof: see [Vir99], Corollary 5.2.2. O

This lemma only holds for objects which are valid in regular world extensions that conform with
the subordination relation. In our situation it is hence important, that the signature and the
context schema bound by any general formula do not invalidate the subordination relation. All
one has to do is to check all dependencies introduced by the LF-types of the BLOCK-component
of a block schema. More precisely, we write <g for the subordination relation induced by a
context schema S. In order to guarantee soundness of M;’ we must attach a side condition to
the rule generalR.

146

CHAPTER 6. OPERATIONAL SEMANTICS FOR M 147

(=s) C (=z) (6.1)

Without loss of generality, we can assume that this side condition is always satisfied for the
set of meta-theorems and proofs, we are interested in, and hence we drop the subscript and write
only < instead of <y. Inspired by Lemma 6.3, we refine the abstraction operation from above
by defining it for arbitrary LF (sub-)contexts. The reader should keep in mind, that abstraction
is an LF-level operation which expects an LF type as argument and computes a new abstracted
LF-type. Likewise we define an abstraction operation for objects by building A-closures in a
very similar way.

Definition 6.4 (Abstraction)

1. Type-level abstraction:

II.4 = A
H(.’E:Al,,)A2 = H, .A2 ZfA1 74A2
H(:E:Al,,)A2 = Hw:Al.(H, Ag) ZfA1 < Ay

2. Object-level abstraction: Let M be well-typed of type As

XM = M
)\(l‘Al,,)M)\,M ZfAl%AQ
Mz:A,,)M = Xx:A. (N, .M) if A) < Ay

It remains to show that the abstraction algorithm is well-defined. But this is an easy consequence
from Virga’s results. The statement of the theorem relies on

Lemma 6.5 (Single assumption abstraction)

1. For all contexts , |

if71752|_A:type
then , 1 F 11, 5. A : type

2. For all contexts , |
if, 1y, 2|_M:A
th@’n,1|_>\, Q.M:H, 2.A

Proof: by induction over , 5 (in part 1) and , 9 (in part 2), using Lemma 6.3. A detailed proof
can be found in Appendix B.1.1. O

LF-level abstraction ignores semantically meaningless parameter declarations, which can
provably never occur in the subject of abstraction. Meta-level assumptions on the other hand
are treated differently. In the example above recall that the assumptions in A’® are also being
abstracted over the same block variable. But on the meta-level, at least in this thesis, we
respect parameter block boundaries and do not omit any semantically meaningless parameter
declarations. Thus, abstraction translates directly into the application of the inference rule RII.

147

148 6.2. PRELIMINARIES

In this subsection so far we have described how to execute abstraction for single LF-
assumptions and for single meta-assumptions. In the remainder of this subsection we gener-
alize abstraction to extensions U'; A’ as used in the Lnew-rule. As example consider again the
reflexivity lemma for parallel reduction from above. In this special case we can simply iterate
through ¥/?); A/ and repeatedly apply the abstraction operation which eventually results in
¥'(; A'M | The reader should be warned, the general case is more complicated.

O = Pillz:termT.Mu:z = (E' z) = (E' z)

A = x, ell(z:term T, u:x L z)V'.VE :term T.3D : E L E.T,
x) EH(z:term T\ u: z L z)¥.3D : (E' 1) SN (E'z). T,
xg €El(z :term T, u : x N z)l. T

Formally, we write IIpL. (/(2); A’?)) = ¥/(1); A’1) for this abstraction operation. Clearly,
the abstraction of an assumption variable implicitly changes its type, and this change must be
reflected at the locations the variable in a type. In the example above, the only new declaration
in W is P, and by the formulation of the theorem, P does not occur in any other type as index
variable. Thus this example is only a special case.

We encounter the general case in the proof of the diamond Lemma 4.6. In the pbeta/pbeta-
case for example, we assume the existence of a parameter block (which happens to have the

same form as above: z : term T, u : z L z). Here is a snapshot of the additional assumptions
immediately before the abstraction operation is about to take place. For brevity, we only present
the extension to the abstract context.

' = E':term Ty, R': (E' z) = E' R (E" z) = B

Abstraction considers the declaration of E’ first. Because of the subordination relation, u is
guaranteed not to occur as a subterm of E’. Using the abstraction operation from Definition 6.4
we obtain as new type for E': “term T — term 7%”. It should be clear, that all occurrences of
E' must be replaced by the abstracted version of E’, namely E' x.

Next R! is abstracted, and a quick inspection of the subordination relation reveals that it
may depend on z and u. Consequently, R"’s new type is Ilz : term 7. Iu : =L 2 (E' z) N
(E' z) and any occurrences of R' would have to be replaced by R’ z u, but there aren’t any.
Similarly, R"’s abstracted type is Iz : term 7. 1lu : = L 1. (E" x) = (E'" z).

In summary, after abstraction we must obtain a new abstract context extension, for which
we write

U'D = E':term T — term Th,
R :Mz:term T.Tu:z = 2. (E'z) = (E'z),
R Tz :term T.1u : ¢ == z.(E") SE (E')

A1) —

and naturally, A'M) follows from A’ by replacing all occurrences of E' by (E'), followed by
the standard abstraction step for formula as described in Section 6.2.2.
In the general case, the occurrence of a variable might be abstracted over several variables,

possibly over all variables declared by the new parameter block which satisfy the subordination

condition we have described in Section 6.2.2. In the example above, for p =z : term T, u : = L

148

CHAPTER 6. OPERATIONAL SEMANTICS FOR M 149

x we write (E' p)/E. The notation of F p is introduced to facilitate the presentation. Again,
we loose the underlines of the parameter variables when execution this variable application. It
is defined as as follows.

Definition 6.6 (Variable application) Let E' be well-typed of type As

El . — El
E'(z:Anp) = (B'z)p if Al <A
E'(z:A1,p) = E'p if A1 A Ay

We begin now with the formal definition of the ITp~. (I; A) = ¥'; A’ relation. The reader
should be aware, that neither ¥; A nor ¥'; A’ are meta-contexts by themselves, they are merely
valid extensions of some meta-context Wy; Ag. Formally, it always holds that

- Wy, p¥, U abstract
g, pl', U - Ay, A meta

and the same for the abstracted versions:

F Wy, U abstract
\Ifo, v+ Ao, A’ meta,

The basic idea of the definition of IIp”. (¥;A) is therefore to traverse W, abstract it to
U’ and simultaneously, replace all occurrences of abstracted variables by the their abstracted
counterparts in the rest of ¥ and in A.

Judgment
Meta-context abstraction: IIp%. (U;A) = 0'; A’
Rules
rempty
" ([(z p) /2] ¥; (2 p) [2]A)) = W A Ip*. (54) = 5 A'
rass rmeta
Mpr. (z: A, U;A) =z : Tp. A, U'; A’ Ipr. (hx € F,A) = x e IIpl . F, A

Meta-context abstraction is used in the definition of the meta logic M; , specifically, for the
definition of the Lnew-rule. When executing a proof term, we calculate an instantiation for those
variable declarations, as we discuss in Section 6.5, and those instantiations must clearly be ab-
stracted accordingly. For obvious reasons, we call this operation meta-substitution abstraction,
and write A\p”. (4;6) = 1/'; 6'. Note that the instantiation is only a tail of real meta-substitutions,
i.e. they are partial in the same sense as meta-contexts are extensions of real meta-contexts, too.

Judgment

Meta-substitution abstraction: Ap%. (1;8) = ¢'; ¢’

149

150 6.2. PRELIMINARIES

Rules
rpempty
ApL‘ (.; .) = -; .
At (i3 6) = ¢'; 8" AL (6) = '
rpass rpmeta
Aol (M [z, 1p; 8) = Ap. M)z, & Mol (5 P/x,6) = - Ml P/x, 8

The reader might already suspect that if ¥'; A’ is a valid meta-context and in ¥', pl; A/
the meta-substitution extension ;¢ instantiates the meta-context extension ¥; A then we can
safely abstract the variable block p¥. As result we obtain a new meta-substitution extension
Mo¥. (;6) declared for IIp*. (¥; A). This result is one of the basic ingredients to the proofs of
type preservation for the operational semantics.

Lemma 6.7 (Extension abstraction)

1. If &€ =g, pls- by, p/p,ab; 6 € Uy, pl Us A
and D :: Uy;- Fpp;- € Uy;-
then Wo;- F apy, 4’0" € Uy, U5 A
and ;8 = \pb. (1 6)
and U'; A" = Ip*. (U; A)

2. If Wo,p;-Fapr,p/p;d € Uy, pls A
and D :: Uy;- Fpp;- € Uy;-
then Wy; - ¢1;5l € \Ijl;Al
and ;8 = \pl. (;0)
and - A" =TIpr. (- A)

Proof: by induction on ¥(1), A(2), using Lemma 6.5. A detailed proof can be found in Ap-
pendix B.1.1. O

This concludes our discussion about abstraction and we continue with the presentation of a
few weakening results.

6.2.3 Weakening

The weakening results for LF from Section 6.2.1 generalize directly to weakening results for
meta-level constructs such as generalized contexts, formulas, meta contexts, and proof terms.
To establish these results is the goal of this subsection.

We begin with the presentation of a weakening result for generalized substitutions. If a
generalized substitution has co-domain ¥ and ¥’ extends ¥ then — as expected — the same
substitution is still well-defined only in the extended co-domain ¥’. Similarly to Section 6.2.1,
we write U < U’ for U’ extends ¥ and again, we implicitly assume that = U abstract and
F U’ abstract. U’ stems from ¥ by inserting new assumption variables and variable block
declarations.

150

CHAPTER 6. OPERATIONAL SEMANTICS FOR M 151

Lemma 6.8 (Weakening of generalized substitutions)
IfD:VEypew
and U < ¢
then O) € U

Proof: by induction on D using Lemma 6.1. O

Recall from Section 5.4.3, that the well-formedness judgment for formulas is defined with
respect to a generalized context W. Naturally a weakening result for proof terms implicitly
requires that weakening of meta contexts is admissible which itself relies on a weakening result
for formulas. The last lemma, can be easily proven by induction on the structure of the formula.

Lemma 6.9 (Weakening of formulas)
If DV EF formula
and U < U/
then O' = F formula

Proof: by induction on D, using Lemma 6.1. O

The next goal is to establish a similar weakening result for proof terms. Proof terms may
be open with respect to W; A. In particular, proof terms are defined in terms of declarations
D and explicit meta substitutions ;¢ for which we show the weakening property first. From
the definition of meta contexts in Section 5.5.2, it follows immediately, that W is a generalized
context. How shall we define context extensions of meta contexts? We follow the same pattern
as above and say that U’; A’ extends WU; A, if ¥ < U’ and A’ results from inserting new meta-
assumptions of the form x € F into A. In this case we write ¥; A < U'; A’, where we always
implicitly assume that the left and right hand sides of this notation are all well-formed meta-
contexts. Naturally, the argument that this construction works relies on the shoulders of the
weakening property for meta-contexts.

Lemma 6.10 (Weakening of meta-contexts)
If D::VEA meta
and U < ¥’
then U' = A meta

Proof: by induction on D, using Lemma 6.9. O

The weakening lemma for proof terms cannot be proven directly, since they are mutually
dependent on declarations and explicit meta substitutions. Consequently, the generalized form
of the theorem must provide extra cases for those two constructs.

Lemma 6.11 (Weakening of proof terms)
1. IfD:V;A;ZEFPeF
and U; A < U5 A
then V; A" 2+ P e F

151

152 6.2. PRELIMINARIES

2. IfD:U;A;E-De v’ A
and U; A < U5 A/
then V: A" 2+ D e 0"; A"

3. IfD:U A0 € U A
and U'; A" < 0" A"
then O"; A" Fap; 6 € U; A

Proof: by induction on D(1), D(2), and D(3). O

Weakening is an essential property which is used implicitly and explicitly over and over
throughout the entire theoretical investigation of this thesis, especially when we examine the
interaction of substitutions and derivations in the meta-logic M7 which will be discussed in the
next subsection.

6.2.4 Substitution

Substitutions are omnipresent in our investigation. The subject of the case construct in Sec-
tion 5.6.2, for example, is defined by a pair of explicit substitutions; one which collects instan-
tiations for assumptions and variable blocks, and another which explicitly tracks instantiations
of meta-variables. The first substitution is an generalized substitution, and the second a meta
substitution. Third, there are lemma instantiations. Recall that any proof is parametrized by a
lemma repository = which contains a list of lemmas, not necessarily proven yet, but which may
be used during a meta-proof. All in all, there are three variables concepts and consequently three
different notions of substitutions. In this subsection we are concerned with the application and
interaction of the different kind of substitutions with context schemas, formulas, abstractions,
and proof terms.

Context schemas

Context schemas are abstract descriptions of regularly formed parameter contexts. Every the-
orem is quantified by one outermost context schema. In Section 5.3 for example, we have
specified a precise criterion of how to judge if a parameter block is an instance of a block
schema SOME (. BLOCK (). First, all SOME-parameters must be instantiated by well-
typed objects, well-typed in some generalized context W. This process is referred to as SOME-
instantiation. The parameter block in question must then be a-equivalent to the BLOCK-
construction of this block schema. These two constructions are used in the Lnew-rule. It is this
setting for which we need a substitution property.

Lemma 6.12 (Substitution lemma for context schemas)

1. IfDy:Vko:Cy
and U'Hp e U
then W' oo : Cy

9. IfUF[0]C=p
and U'Hp e U
then W't [0 o]C = [¢]p

Proof: by structural induction on D(1) and C(2) using Lemma 6.2. O

152

CHAPTER 6. OPERATIONAL SEMANTICS FOR M 153

Formulas

The application of generalized substitutions to formulas F[¢)] = F' is easily defined.

(Vo : A F)[Yp] = Vao:Alp]. Fly,z/x] (sAll)
(Mp™. F)[y] = Tp*[y]. Fli, pl]/p] (SAIIP)
(Fz: A F)[Y] = Fz:Alp]. Fly,z/x] (sEx)
(Ml = T (sTrue)

(B ABR)[p] = Y] A Foly)] (sAnd)

It is similarly easy to see that substitution application is sound.

Lemma 6.13 (Substitution lemma for formulas)
If DV F formula
and P W' -4 eV
then V' = F[¢] formula.

Proof: by induction on D using Lemma 6.2. O

Note, that general formulas are always closed. Therefore they do not have to be considered
for any kind of substitution operation. The careful reader will undoubtedly have noticed, that
substitutions as used for example in the IR or VL rules are not completely specified. In the
rule 3R, for example we write M/z as substitution, but we really mean idy, M/z. We have
committed to this simplification in order to keep this discussion short and accessible. Finally,
we derive a limited commutativity property for substitutions.

Lemma 6.14 (Properties of substitution)
1. F[M/z|[] = Flyp,z/z|[M[y]/z]
2. Flp'/pll¥] = Flb, p/plll1p'/ p]

Proof: by induction on F'. O

Meta assumptions

Meta assumptions lists are lists of possibly open formulas. They are defined with respect to
a generalized context ¥ — A meta. The notion of substitution application to formulas can be
easily generalized to those lists for which we write [)]A = A'.

[= - (sassempty)
[l(x € F,A) = x € F[y],[¢]A (sasscons)

In this definition we use another simple trick in order to facilitate the presentation. Even though
assumption list typically grow to the right, we treat them in the definition as if they do grow to
the left. Even though not necessary here, this trick makes subsequent definitions structural.

Lemma 6.15 (Substitution lemma for assumptions)
If D:: U E A meta
and P W' -4 e
then V' = [¢]A meta.

153

154 6.2. PRELIMINARIES

Proof: by induction on D using Lemma 6.13. |

Any meta substitution can be extended in such a way that it acts as identity substitution
on any domain extension. Note, that the co-domain must be extended accordingly. This lemma
is trivially true, but it requires some work and a few generalizations because of the complicated
definition of meta-substitutions.

Lemma 6.16 (Identity extension for declarations)

I U Fpev
and = U, U meta
then " [1), idy € U, W’

2. IfD:U";A"F;6 € U A
and = U, U meta
then U [p]U"; A" = 4pidyr; 6 € U, U5 A

3. IfU"; A" 6 € U A
and = U, U meta
and U,V = A, A" abstract
then " [A" (1), idg |A" F 4, idgr; 0, idar € U, W' AJA!

Proof: by structural induction on ¥’'(1), D(2), and A’(3), using Lemma 6.9, Lemma 6.11 (3),
and sabstract, and Lemma 6.13. O

Back in Section 6.2.2 we have discussed how to abstract new meta-assumptions. How does
abstraction interact with substitution application? Essentially, the answer is a generalization of
Lemma 6.14.

Lemma 6.17 (Substitution lemma and abstraction)

[PI(IIp". (7 A")) = TL([¥lp)". ([4, [¥lo/ p]"; [1h, ¥/ p, idwr] AT)

Proof: by structural induction on p. O

This concludes our presentation of substitution properties for formulas. We continue the
discussion and investigate of how substitutions can be applied to proof terms.

Proof terms

There are two entirely independent notions of substitution application associated with proof
terms. First, there is lemma instantiation. Before a program can be executed, we must guarantee
that it doesn’t contain any free meta-hypotheses. Meta-hypothesis can only be instantiated by
general proof terms. Second, there is meta-substitution application which is used for example
when applying a proof term to some argument object. The operational semantics we define
below immediately carries out substitution application; in doing so, it is different from previous
versions of My [SP98] where the operational semantics is defined via environments.

The idea behind lemma instantiation has already been explained in Section 5.7. In the
following we discuss how it is carried out. A lemma repository consists of free meta-hypotheses.

154

CHAPTER 6. OPERATIONAL SEMANTICS FOR M 155

By instantiating them with closed general proof terms, we can turn a hypothetical into a non-
hypothetical meta-proof. Formally, we write Q[¢] = @', P[] = P’, and D[{] = D' to apply
the lemma instantiation £ to a general proof term, proof term, and to a list of declarations,
respectively.

General proof terms: x[¢] = £&(x) (iHyp)
(box S.P)[(] = box S.P (iCtx)
Proof terms: iVar)x[¢] = x
(Az: A.P)[¢§] = Ax:A. P[] (iFun)
(b PE] = Aph. Ple] (iFunP)
(M, P)E] = (M, P[E) (i)
0 = 0 (iUnit)
(let D in P)[¢] = let D[¢]in P[¢] (iLet)
(ux € F.P)[(§] = pxe€ F.P[] (iRec)
(PLPE = (Pl Pole) (iPair)
(case (1';0") of Q)[(] = case (¢';0") of Q[¢] (iCase)
Declarations: €] = - (iDone)
(z:AyeF)=PD)] = (s:AyeF)=P,Dlg (iSplit
(xe F=PM.D)] — xeF =Pl M, D] (iAop)
(xe F=Pp D) = xeF=P{pD[] (IAppP)
(v ph.D)[§] = vp". D[] (iNew)
(xe F=m P,D)§] = xe€F=m P[],D[] (iPil)
(x e F=m P,D)[¢(] = x€F =my P[¢],D[] (iPir)
(y € F =lemma@,D)¢] = ye€F =lemmaQ[¢],D[¢] (iLem)

And, as one might already expect, the application of lemma instantiations is sound:

Lemma 6.18 (Soundness of lemmas instantiation)
IfD:V;AsEFPEF
and P = E FEEE
then ¥; A;='+ P[E] € F.

Proof: by induction on D. O

Hypothetical meta-proofs can be turned non-hypothetical by providing general proof terms
for each meta-hypothesis. As a matter of fact, all future considerations involving the operational
semantics require Z to be empty. In particular, only if they are defined with respect to an empty
lemma repository, programs P and general programs) are executable.

In the remainder of this subsection we are concerned with the application of a meta-
substitution ;d, which replaces variables in ¥ and meta-assumptions in A simultaneously.
Meta-substitutions can only be applied to programs and declarations. Clearly, there is no need
to apply them to general programs since they are always closed by definition. In addition they
need not be applied to cases €2 because of the choice of case subjects; a case subject is an explicit
substitution which absorbs all substitution applications by composition while shielding the list
of cases (2 from substitution application. Only when a case construct is operationally executed,
i.e. one of its cases is selected and matched against (see Section 6.4), the newly derived matching

155

156 6.2. PRELIMINARIES

substitution is applied to its body. For the application of a meta-substitution to programs we
write P[i;0] = P’ and to declarations D[i;d] = D'. Both judgments are mutual recursive and
defined by the following rules.

The construction of idgs and idas in the rule sLet can be easily calculated while applying
;0 to D. In essence, it summarizes all newly introduced assumptions and meta-assumptions
of D[i;0]. Alternatively, we could have made the calculation of idys and idas explicit which
would have noticeably cluttered the presentation. Note the use of meta-substitution composition
in the rule sCase, as described above. The composition itself is described by Definition 5.19.
The subject of case in rule sCase is an explicit substitution, and substituting into a case object
reduces to substitution composition.

x[;0] = 0(x) (sVar
(Az: A.P)[y; 0] = Alp]. P, z/x; d] (sFun
(b PY0] = A1) Pl, [¥lo/e:) (sFunP
(M, P)[;6] = (M[], Pl:d]) (shnx
Ohed] = 0 (sUnit
(let D in P)[¢;0] = let D[t;6] in P, idys;d,idar] (sLet
where U’; A’ are newly introduced assumptions by D
(ux € F.P)pid] = px € Fly]. P ,x/x] (sRec
(P, Po)i0] = (Pils 0], Polis) (sPair
(case (1';0") of Q)[1p;8] = case (¢';0") o (;0) of Q (sCase
[; 6] . (sDone
(o: Ay € Fy=P.D)prd] = ((x:Ally € Fli, o)) = Plisd], Dl o/z:0,y/y)) (Spl
(x€F =P M,D)[$:3] = (x € Ff] = Ply;] Mg, D[y; ,%/x]) (sApp
(xeF=PpD)pd] = (xe Fl