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Abstract

Extracting knowledge and providing insights into complegamanisms under-
lying noisy high-dimensional data sets is of utmost impac&in many scientific
domains. Statistical modeling has become ubiquitous imttadysis of high dimen-
sional functional data in search of better understandirgpghition mechanisms, in
the exploration of large-scale gene regulatory networksojme of developing drugs
for lethal diseases, and in prediction of volatility in dtonarket in hope of beating
the market. Statistical analysis in these high-dimengidata sets is possible only
if an estimation procedure exploits hidden structures tiyig data.

This thesis develops flexible estimation procedures withvaginle theoretical
guarantees for uncovering unknown hidden structures iyidgrdata generating
process. Of particular interest are procedures that carsé@ ean high dimensional
data sets where the number of samplé&smuch smaller than the ambient dimension
p. Learning in high-dimensions is difficult due to the curselwhensionality, how-
ever, the special problem structure makes inference pdes$ie to its importance
for scientific discovery, we put emphasis on consistentsire recovery through-
out the thesis. Particular focus is given to two importanbems, semi-parametric
estimation of networks and feature selection in multi-taskning.
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Chapter 1

Introduction

In recent years, we have witnessed fast advancement obdgtasition techniques in many ar-
eas, including biological domains, engineering and samednces. As a result, new statistical
and machine learning techniques are needed to help us gexvdletter understanding of com-
plexities underlying large, noisy data sets.

Statistical inference in high-dimensions is challenging do the curse of dimensionality.
What makes the inference possible is that many real worltésyshave a special structure that
can be represented with a much smaller number of parambterste dimension of the ambient
space. Even when a system cannot be represented exactljewitparameters, there are still
good approximations that use few parameters and usefubiiging insights into the system.
This concept of parsimony commonly occurs in a number ofngigie disciplines.

The main goal of this thesis is to develop flexible and pritedstatistical methods for uncov-
ering hidden structure underlying high-dimensional, clemplata sets with focus on scientific
discovery. This thesis is naturally divided into two paiitsthe first part, we focus on learning
structure of time varying latent networks from nodal obaéions. The second part of the thesis
focus on exploiting structure in multi-task learning.

1.1 Network Structure Estimation

Across the sciences, networks provide a fundamental gédttinrepresenting and interpreting
information on the state of an entity, the structure andmiggdion of communities, and changes
in these over time. Traditional approaches to network amsbgnd to make simplistic assump-
tions, such as assuming that there is only a single node @ tgg, or ignoring the dynamics
of the networks. Unfortunately, these classical approseahe not suitable for network data aris-
ing in contemporary applications. Modern network data camebge, dynamic, heterogeneous,
noisy and incomplete. These characteristics add a degEmgilexity to the interpretation and
analysis of networks.

As a motivating example, let us consider estimation of ¢ailoetworks in systems biology.
Studying biological networks is a difficult task, becauseamplex organisms, biological pro-
cesses are often controlled by a large number of molecud¢gitieract and exchange information
in a spatial-temporally specific and context-dependentneanCurrent approaches to studying
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biological networks have primarily focused on creating aadiptive analysis of macroscopic
properties, which include degree distribution, path laregtd motif profiles of the networks, or
using graph mining tools to identify clusters and subgrafghsh simple analysis offer limited
insights into the remarkably complex functional and st organization of a biological sys-
tem, especially in a dynamic context. Furthermore, it isitommon to completely ignore the
dynamic context in which the data are collected. For exanpline analysis of microarray data
collected over a time course it is common to infer a singléstene network. As a solution to
this problem, we develop a flexible framework for inferringhdmic networks.

In this thesis, we develop flexible statistical proceduréh wgorous theoretical guarantees
for inferring unobservable dynamic network structure fnoodal observations that are governed
by the latent network. In particular, we build on the formsaliof probabilistic graphical models
in which we cast the problem of network learning as the pmobdd learning a graph structure
from observational data. We develop methods for learnirtly bodirected and directed graphical
models. These estimation methods are developed for botugltg changing networks and
networks with abrupt changes. Furthermore, we go beyontysisadynamic systems only.
Methods that are developed can be also used to learn camalitovariance structures, where a
network depends on some other observed random variables.

Analysis of network data is an important problem in a numidedisciplines [see, e.gDSS,
for a textbook treatment of the topic]. However, these mashassume availability of network
structure for performing a statistical analysis. In thisdis, we develop techniques that learn
network structure from only nodal observations. Once a agkwtructure is learned, any of the
existing network analysis tools can be used to further ithgate properties of the underlying
system. Therefore, this thesis makes significant progresslvancing the boundary of what
problems can be tackled using well developed network aislysls.

1.2 Multi-task Learning

In different scientific fields, such as neuroscience andtiEs)ét has been empirically observed
that learning jointly from related tasks (i.e., multi-taglarning) improves estimation perfor-
mance. For example, in biology, a genome-wide associatappmg study aims to find a small
set of causal single-nucleotide polymorphisms (SNPs) dbabunt for genetic variations of a
large number of genes. Identifying causal SNPs is a chalgngroblem for current statistical
methods due to a large number of variables and low signabtse ratio. However, genes in a
biological pathway are co-expressed as a module and ites @ssumed that a causal SNP af-
fects multiple genes in one pathway. Therefore, once thdentiological pathway is examined,
it is much easier to find the causal SNPs.

Prior to the work in this thesis, despite many investigatjahe theory of variable selection in
multi-task regression models was far from settled, ancetivexs no clear picture that explained
when variable selection can be done more efficiently by ctamgig multiple tasks. Using the
framework of the Normal means model, we are able to sharg@yacherize the theoretical prop-
erties of different estimation procedures. In particulg,provide a sharp characterization of the
variable selection properties of two commonly used proocesitor variable selection in high-
dimensional problems, the lasso and group lasso. Integhgtitwo distinct regimes emerge
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showing that one or the other procedure is optimal, in theinmam sense, depending on the
amount of relatedness between the tasks.

Although optimal in many settings, variable selection methbased on convex programming
do not scale well to the setting when the number of varialsl@sthe hundreds of thousands. For
that reason, in this thesis, we study ways to identify relevariables quickly. We prove that
simultaneous orthogonal matching pursuit and marginakssjon can be used to identify rele-
vant variables quickly and under much less stringent carditcompared to the ones required
for the lasso or group lasso.

1.3 Thesis Overview

The central focus of the thesis is uncovering unknown stiredrom high-dimensional data.
In Partf] (Chaptelr]2 - Chapter110), we focus on uncovering anknlatent networks:

e Chaptef R reviews Markov random fields. The problem of undogenetworks is cast as a
task of learning graph structure of a Markov random field. Tagthods commonly used
to learn graph structure in high-dimensions are revieweel will build on these methods
in subsequent chapters.

¢ Chaptel B introduces time-varying networks. These modelm&roduced as semi-parametric
extensions of Markov random fields. Therefore, they areerdilxible in capturing real-
world phenomena and at the same time easily interpretabtivimain experts. We intro-
duce general framework which will be used for estimatiorimoetvarying networks in the
subsequent Chapters.

e Chaptef ¥ presents algorihtms for recovery of time-varyietyvork structure from discrete
data. An algorithm for recovery of smoothly and abruptlyrafiag networks is given. Us-
ing the algorithms, we reverse engineer the latent sequetiemporally rewiring political
networks between Senators from the US Senate voting reaadithe latent evolving reg-
ulatory networks underlying 588 genes across the life cgElbrosophila melanogaster
from the microarray time course. The chapter is based\

¢ Chaptefb establishes conditions under which the methqubgex in Chaptéd 4, for recov-
ery of smoothly varying networks, consistently recovers gtructure of a network. This
work complements previous empirical findings by providingsd theoretical guarantees
for the proposed estimation procedure. The chapter is b&as ]

e Chapterd 6 an] 7 introduce and analyze procedures for ngcobfegraph structure of
Gaussian graphical models. Again, sufficient conditionsclansistent graph structure
recoveri are given, as well as efficient numerical algorghirhese chapters are based on

1118].

e Chapter8 is focused on conditional estimation of networlicstires. Unlike previous
chapters, where the network structure changes as a furadtione, in many applications,
it is more natural to think of a network changing as a funcbbsome other random vari-
able. We motivate the problem with examples in portfolicesgbn and exploration of
complex dependencies between assets. Efficient algorahchtheir theoretical underpin-
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nings are presented. This work was publishe[lll].

e Chapter§P and 10 focus on estimation of static networksrundee realistic assumptions
than commonly studied in literature. Chaptér 9 studies akrtwo step procedure for
estimating sparse precision matrices from data with mgssatues, which is tractable in
high-dimensions and does not require imputation of thein@ssalues@]. Chaptér 10
studies a principled framework for estimating structureuntlirected graphical models
from multivariate nodal dat@bQ].

In Part]l (Chaptel 111 - Chapterll4), we focus on variablecsigla in multi-task learning:

e Chaptef1ll reviews multi-task learning in the context oftiplé output multivariate linear
regression. The problem of variable selection in thissgtis introduced.

e Chaptef_IR analyzes commonly used penalties for varialéetsa in multi-task linear
regression problems. We establish sharp bounds that ¢baracperformance of these
penalties. The chapter is based @110].

e Chaptei 1B and Chapter]14 focus on fast variable selectiamuiti-task problems. Prob-
lems that arise in genome-wide associations studies afterivie hundred of thousands
of single nucleotide polymorphisms, which are used as inptitbles. Problems of this
size are not readily solvable using off-the-shelf solverscbnvex programs. In these two
chapters we analyze greedy methods that can quickly redaceimber of input variables.
These chapters are based ﬁ[@ 104].

The conclusions and future directions are provided in GiélB.

1.4 Notation

We use€ln] to denote the sdfl, ..., n} and[l : 7] to denote the s, [+ 1,...,r — 1}. For a set
S C V, we use the notatioX s to denote the s€tX, : a € S} of random variables. We usé
to denote the: x p matrix whose rows consist of observations. The veXipe= (z1 4, ..., Tna)
denotes a column of matriX and, similarly,Xgs = (X; : b € S) denotes the: x |S| sub-
matrix of X whose columns are indexed by the §eandX*’ denotes the sub-matr{%’| x p
whose rows are indexed by the €&t For simplicity of notation, we will uséa to denote
the index sefp] \ {a}, X\, = (X; : b € [p]\ {a}). For a vectora € R?, we letS(a)
denote the set of non-zero componentaoflhroughout the paper, we usg ¢, . .. to denote
positive constants whose value may change from line to liRer a vectora € R", define

lalli = Y .ciilads [lalle = /> ... a? and||al]|c = max;|a;|. For a symmetric matrix
i€[n] i€[n] “i

A, Anin(A) denotes the smallest and,..(A) the largest eigenvalue. For a matex (not
necessarily symmetric), we ugé ||, = max; > _;|A;[. For two vectorsa,b € R", the dot
product is denoteda, b) = Eie[n] a;b;. For two matricesA, B € R™*"™, the dot product is
denoted ag(A, B)) = tr(A’B). Given two sequenceg, } and{b,}, the notatioru,, = O(b,)
means that there exists a constansuch thatu,, < ¢,b,,; the notatiorn,, = €(b,,) means that
there exists a constant such that,, > ¢»b,, and the notation,, < b, means that,, = O(b,,)
andb,, = O(a,,). Similarly, we will use the notation,, = 0,(b,,) to denote that,, 'a,, converges
to 0 in probability.
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Chapter 2

Learning Network Structure

Network models have become popular as a way to abstract eampstems and gain insights
into relational patterns among observed variables. Famel& in a biological study, nodes of
the network can represent genes in one organism and edgesprasent associations or regula-
tory dependencies among genes. In a social domain, nodetetivark can represent actors and
edges can represent interactions between actors. Regeutaptechniques for modeling and
exploring networks are based on the structure estimatiahdrprobabilistic graphical models,
specifically, Markov Random Fields (MRFs). These modelsasgnt conditional independence
between variables, which are represented as nodes. Onsgubeire of the MRF is estimated,
the network is drawn by connecting variables that are canditly dependent. The hope is that
this graphical representation is going to provide addélansight into the system under obser-
vation, for example, by showing how different parts of thetsyn interact.

In this chapter, we review methods for learning structur®&Fs in high-dimensions with
focus on the Ising model and the Gaussian graphical modeMGGne Ising model represents
a typical discrete MRF, while the GGMs are commonly used poegent continuous MRFs. We
focus on these two models because they can be fully speaifgavjth the first two moments.
Even though they are quite simple, they are rich enough t@pkcable in a number of domains
and also provide an opportunity to succinctly present thtscal results. The statistical challenge
is going to be structure estimation of a graphical model feosample in a high-dimensional
setting. Since the number of unknown model parameters dzdbe number of observations,
classical tools, like the maximum likelihood estimator di-posed in this high-dimensional
setting. Therefore, additional assumption will be neeaethake high-dimensional statistical
inference possible. For example, we will need to assumetligaparameter vector is sparse,
that is, that only a few of the unknown model parameters dferdnt from zero. Using penal-
ized maximum likelihood (or pseudo-likelihood) estimatiave will see that the correct graph
structure can be recovered consistently.

2.1 Preliminaries

In recent years, we have witnessed fast advancement obdgtasition techniques in many ar-
eas, including biological domains, engineering and samednces. As a result, new statistical
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and machine learning techniques are needed to help us gexvddetter understanding of com-
plexities underlying large, noisy data sets. Networks lmen commonly used to abstract noisy
data and provide an insight into regularities and dependsietween observed variables. For
example, in a biological study, nodes of the network canesgmt genes in one organism and
edges can represent associations or regulatory depeedeaming genes. In a social domain,
nodes of a network can represent actors and edges can mpirgseactions between actors.
Recent popular techniques for modeling and exploring nedsvare based on the structure esti-
mation in the probabilistic graphical models, specificdiarkov Random Fields (MRFs). These
models represent conditional independence between \esjalhich are represented as nodes.
Once the structure of the MRF is estimated, the network &gy connecting variables that
are conditionally dependent.

Let G = (V, E) represent a graph, of whidh denotes the set of vertices, ahdenotes the
set of edges over vertices. Depending on the specific apiplicaf interest, a node € V' can
represent a gene, a stock, or a social actor, and an(edbgec F can represent a relationship
(e.g., correlation, influence, friendship) between actoasidb. Let X = (X;,...,X,), where
p = |V, be a random vector of nodal states following a probabilisgribution indexed by €
O. Under a MRF, the nodal staté§,’s are assumed to be either discrete or continuous and the
edge set? C V x V encodes certain conditional independence assumptionsgaooonponents
of the random vectoKX, for example, the random variable, is conditionally independent of
the random variabl&, given the rest of the variables (&, b) ¢ E. We focus on two types of
MRFs: the Ising model and the Gaussian graphical models.pafify their forms below.

The Ising model arises as a special case of discrete MRFgevdaeh node takes binary
nodal states. That is, under the Ising model, we hdye= X = {—1,1}, foralla € V and the
joint probability of X = x can be expressed by a simple exponential family model:

Py(x) = ﬁ €xXp {Z eab%%} (2.1)
a<b

whereZ(0) = Exe{_l,l}p exp {Z(Kb Qabxaxb} denotes the partition function that is intractable
to compute (even for moderately largg and the weight potentials are given By, for all
(a,b) € E. Under the Ising model, the model is completely defined byvéhetor of param-
eters(0.)w,nevxv- Furthermore, the parameters specify the graph strudtuaejs, we have
thatf,, = 0 for all (a,b) ¢ E.

The Gaussian graphical models are used as the simplestgou MRFs, since the proba-
bility distribution under the GGM can be fully specified witie first two moments. Let

X = (Xy,....X,) ~N(0,%)

be ap-dimensional multivariate Gaussian random variable widamzero and covarianée =
(0ab)(ap)cv < v- Associated with the vectdX is a graphy = (V, I) that encodes the conditional
independence assumptions between the componeiXs ¢t Q = X! = (Tab)(ap)cv v be
the precision matrix. The precision matrix encodes the itmmél independence assumptions as
well, in the sense that variabl€, is conditionally independent of, given the rest of variables
if and only if w,, = 0. Therefore the grapty is specified directly by the positions of non-zero
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elements of the precision matrix, that is, an edge= F only if w,, # 0. An elementy,, of the
precision matrix is proportional to the partial correlatioetween random variablés, and X,,.

Indeed, we have
Wab

ab aby — T T  —-
Pab|V\{a,b} nain

This relationship will be used later to motivate the aldams for learning structure of GGMs.
All these properties are well known and can be found in a moagdgon the Gaussian graphical
models ].

2.2 Structure Learning Procedures

One of the most important tasks in graphical models is thigarhing the graph structure given
a sample. LeD, = {x; ~Pg | i € [n|} be a sample of i.i.d. p-dimensional vectors drawn
from the distributiorPe. The goal is to estimate conditional independence assongpkbietween
the components oK ~ Py. In a high-dimensional setting, when>> n, it is common to
use penalization or regularization methods in order to fidel®. We will use the estimation
procedures of the form

arg moin L(D,;0) + pen,(0) (2.2)

where L(-; 0) is the convex loss functiomen, (-) is the regularization term anklis a tuning
parameter. The first term in the objective is measuring theofdata, while the second one
measures the complexity of the model. The regularizatiom ie used to encode some prior
assumptions about the model, e.g., sparsity of the grapbtste or the way the graph structure
changes over time. The loss functions that is used will belpro specific. For example, in the
case of the Gaussian graphical models, we will use the nvegati-likelihood, while in the case
of discrete MRFs a surrogate to the negative log-likelinadtbe used.

2.2.1 Learning structure of an Ising model

In general, learning structure of an Ising model is hard [@3¢ to the combinatorial explo-
sion of the search space of graphs. Therefore, score baaethes are limited to restricted
classes of models, such as, trees, polytrees and bouneéedittth hypertree@ﬂﬂ%]. The
computational complexity of search based proceduressafieen two sources. First, there are

2(%) potential graph structures to be evaluated. Second, cangpatscore for any fixed graph
structure involves computing the normalization constasiich is intractable in general. Other
methods for learning the graph structure include miningzive Kullback-Leibler divergencE| [5]
and other pseudo-likelihood methotls| [@, 29].

Ravikumar et al.l] use an optimization approach to es@the graph structure in a high-
dimensional setting. This approach can be cast in the aaiion framework outlined i (2.2),
where the loss function is a node conditional likelihood #r&¥; norm of a coefficient vector is
used as a penalty function. Therefore, the optimizatioguiare decomposes across different
nodes and as a result can be maximized efficiently. We desttréoprocedure in details below.
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The estimation procedure imﬂ] is based on the neighlmatiselection technique, where
the graph structure is estimated by combining the localeg#s of neighborhoods of each node.
For each vertex € V, define the set of neighboring edges

S(a) = {(a,b) | (a,0) € E}.

Under the mode[(2]1), the conditional distribution’6f given other variableX,, = {X, | b €
V'\ a} takes the form

exp(224(0a, X\q))

P a X a = a) — ’
0, ('T | \ X\ ) exp(2l’a<0a,x\a>) +1

(2.3)

where(a, b) = a’b denotes the dot product. Under the modell(2.3) the logilikeld, for one
data-point, can be written in the following form

Y(04; %) = log P, (%4 | Xi\a)
= xi,a<0a7 Xi,\a> — log (eXP(<0au Xi,\a>) + exp(— (0., Xi,\a>)) )

where, for simplicity, we writéPq, (z; , | Xi\o = Xi\u) aSPq, (i | Xi\u). The estimatoﬁa of
the vectord,, is defined as the solution to the following convex program:

0, = min {((0,;D,)+ |64} (2.4)
6,cRP—1
wherel(6.; D,) = — > ,c(, 7(0a; ;) is the logloss. Based on the vectly, we have the fol-

lowing estimate of the neighborhood

§(a):{(a,b)|b€V\a, @Méo}.

The structure of grapty¥” is consistently estimated if every neighborhood is recedethat is,
S(a) = S(a) forall a € V. In §4 andgH, we build on this procedure to estimate time-varying
networks from discrete nodal observations.

2.2.2 Learning structure of a Gaussian graphical model

A large amount of literature in both statistics and machaarning has been devoted to the prob-
lem of estimating sparse precision matrices, as they encodditional independence structure
between random variables. The problem of estimating pgoetimatrices with zeros is known
in statistics asovariance selectioand was introduced in the seminal paper @ [47]. An in-
troduction to classical approaches, which are commonlgdbas identifying the correct set of
non-zero elements and then estimating the non-zero elsmesnt be found in, for example,
[@,@]. @] proposed a method that tests if partial datrens are different from zero. This
and other classical methods can be applied when the numlaiémehsionsg is small in com-
parison to the sample size However, due to the technological improvements of datictbn
processes, we have seen a surge in the number of high-donahdata sets. As a result, more
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recent literature on estimating sparse precision matrscegused on methods suitable for high-
dimensional problems where the number of varialblean be much larger than the sample size
n.

[@] proposed a procedure basedmaighborhood selectioaf each node via thé penal-
ized regression. Leveraging the Ia@l?S] they efficyesgtimate the non-zero pattern of the
precision matrix. Like the approachlin 2.2.1, this proceduses a pseudo-likelihood, which de-
composes across different nodes, to estimate graph eddesldrough the estimated parameters
are not consistent, the procedure recovers the graphwteumbnsistently under a set of suitable
conditions.

Let Q = (wa)ap be the precision matrix The neighborhood of the nedan be directly read
of from the precision matrix as

S(a)={beV \a|wy#0}.

It is a well known result for Gaussian graphical models thaté¢lements of

2
6" = arg min, E(Xa -y Xbeb)
be\a

are given by? = —w./wa.. Therefore, the neighborhood of a nagdes(a), is equal to the set
of non-zero coefficients @“. Using the expression f@*, we can writeX, = Zbesa X007 + ¢,
wheree is independent of{,. The neighborhood selection procedure was motivated by the
above relationship between the regression coefficientsrendlements of the precision matrix.
[@] proposed to solve the following optimization procezlu

~ .1 , 2

0° = arg Ogll{lpl}l o Z (xi,a - Xi,\ae) + All6]]x (2.5)

i€[n]

and proved that the non-zero coefficientsé@fconsistently estimate the neighborhood of the
nodea, under a suitably chosen penalty parameter

A related approach is proposed in [146] who consider a diffeneighborhood selection
procedure for the structure estimation in which they edtnadl neighborhoods jointly and as a
result obtain a global estimate of the graph structure thggiecally improves the performance
on a number of networks. These neighborhood selection guves are suitable for large-scale
problems due to availability of fast solvers#4ppenalized problemﬁtﬂl’s].

Another popular technique for estimating sparse precisiatrix is based o#;-norm penal-
ized maximum likelihood [195], which simultaneously estiles the graph structure and the el-
ements of the covariance matrix. The penalized likelihgmat@ach involves solving a semidef-
inite program (SDP)

~

Q:argglil(l] {trQE—log|Q|+)\||Q||1}, (2.6)

whereX is a sample covariance matrix. A number of authors have vdookeefficient solvers

that exploit the special structure of the problem (see, xangle, Eb@zﬁﬂﬂbﬂ%]).

Statistical properties of the above procedure were andlyz@,@]. Some authors have
proposed to use a nonconcaVﬁnalty instead of,tipenalty, which tries to remedy the bias
that thel; penalty introducem BOZ]. See alsd E'}’ 39].
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2.3 Discussion

In this chapter, we have discussed common approachesntagisiin of graph structure in Markov
random fields in a high-dimensional setting. The focus wamethods where the structure is
estimated from i.i.d. data. Most of the work in the litera&uras been by the simplifying as-
sumption of static network structure. In the next chaptermwotivate estimation of time-varying
networks as a useful and flexible tool for exploring complgstems. Estimation framework will
build on the methods presented here.
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Chapter 3

Time Varying Networks

As discussed in Chapter 2, stochastic networks are a plausitresentation of the relational in-
formation among entities in dynamic systems such as livels or social communities. While
there is a rich literature in estimating a static or temgwgrialvariant network from observation
data, little has been done toward estimating time-varyetgvarks from time series of entity at-
tributes. In this chapter, we introduce and motivate timeging networks. A general estimation
framework is presented, which is going to be used in subseqiapters.

3.1 Motivation

In many problems arising from natural, social, and infoiprasciences, it is often necessary to
analyze a large quantity of random variables interconoyea complex dependency network,
such as the expressions of genes in a genome, or the astivftiadividuals in a community.
Real-time analysis of such networks is important for unideding and predicting the organi-
zational processes, modeling information diffusion, dietg vulnerability, and assessing the
potential impact of interventions in various natural andtlaystems. It is not unusual for net-
work data to be large, dynamic, heterogeneous, noisy, iptetey or even unobservable. Each
of these characteristics adds a degree of complexity tortteepretation and analysis of net-
works. One of the fundamental questions in this thesis iddhewing: how can one reverse
engineer networks that are latent, and topologically eaglever time, from time series of nodal
attributes?

Prior to our work, literature mainly focused on estimatingjragle static network underlying
a complex system. However, in reality, many systems arerémitly dynamic and can be bet-
ter explained by a dynamic network whose structure evolves ime. We develop statistical
methodology of dealing with the following real world probis:

¢ Analysis of gene regulatory networl&uppose that we have a setahicroarray measure-
ments of gene expression levels, obtained at differenestdgring the development of an
organism or at different times during the cell cycle. Givkis data, biologists would like
to get insight into dynamic relationships between différgenes and how these relations
change at different stages of development. The problenmatsatheach time point there is
only one or at most a few measurements of the gene expresaimha naive approach to
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estimating the gene regulatory network, which uses onlyl#ta at the time point in ques-
tion to infer the network, would fail. To obtain a good esttmaf the regulatory network
at any time point, we need to leverage the data collectedhat ¢ime points and extract
some information from them.

¢ Analysis of stock marketn a finance setting, we have values of different stocks &t eac
time point. Suppose, for simplicity, that we only measurethier the value of a particular
stock is going up or down. We would like to find the underlyiragisient relational patterns
between different stocks from these measurements andggghirinto how these patterns
change over time. Again, we only have one measurement attigaelpoint and we need
to leverage information from the data obtained at nearbg paints.

e Understanding social network.here are 100 Senators in the U.S. Senate and each can
cast a vote on different bills. Suppose that we are giveating records over some period
of time. How can one infer the latent political liaisons arahlitions among different
senators and the way these relationships change with tegptime and with respect to
different issues raised in bills just from the voting recstd

The aforementioned problems have commonality in estirgaisequence of time-specific
latent relational structures between a fixed set of entfties variables), from a time series of
observation data of entities states; and the relationatwtres between the entities are time
evolving, rather than being invariant throughout the datéection period. A key technical hur-
dle preventing us from an in-depth investigation of the na@midms underlying these complex
systems is the unavailability aferial snapshotsf the time-varying networks underlying these
systems. For example, for a realistic biological systens itnpossible to experimentally de-
termine time-specific networks for a series of time pointsdobon current technologies such as
two-hybrid or ChIP-chip systems. Usually, only time senesasurements, such as microarray,
stock price, etc., of the activity of the nodal entities, hot their linkage status, are available. Our
goal is to recover the latent time-varying networks with pemal resolution up to every single
time point based on time series measurements. Most of tilséirexiwork on structure estima-
tion assumes that the data generating process is timganvand that the relational structure is
fixed. (see, for exampld:ﬂl%]@ 76,1135, 146, 153,/154, 185, 195] and references
therein), which may not be a suitable assumption for therd®sat problems. Chaptet 2 presents
some of these methods. The focus of this chapter is to praggrteral framework for estimating
dynamic network structure from a time series of entity btttes.

3.2 Estimation Framework
In the following few chapters, we will assume that we are gigesequence of observations
Dn:{XtNPQt |t€7;L}

where7, = {1/n,2/n,...,1}is an index set. The observations are independent (but eotiid
cally distributed) samples from a series of time-evolvinBRR& {Py: () },c7,. The goal is to es-
timate the parameters of the sequence of probability Higions{Py: } .7, or more specifically
conditional independence assumptions encoded by a sezgjaegraphs G'},c7,. The problem
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of dynamic structure estimation is of high importance in dom that lack prior knowledge or
measurement techniques about the interactions betwedenedif actors; and such estimates can
provide desirable information about the details of reladlochanges in a complex system. It
might seem that the problem is ill-defined, since for any tpomt we have at most one observa-
tion; however, as we will show shortly, under a set of sugadsumptions the problem is indeed
well defined and the series of underlying graph structuresbeaestimated. For example, we
may assume that the probability distributions are changngothlyover time, or there exists
a partition of the interval0, 1] into segments where the graph structure within each segisient
invariant.

The estimation procedure we use to estimate the structaréroe-varying MRF will depend
on the assumptions we make on the network dynamics. The a@efioem of the estimation
procedure will be as i§2.2. In the case that the network parameters change smowihhyill
use estimation procedures of the form

6" = arg mein Z w]v(0;x") + pen, (). (3.1)

teTn

The first term is the local log-likelihood (or pseudo-likediod), with~(8;x") being the log-
likelihood (or pseudo-likelihood) and the weighf defines the contribution of the poirt at
a time pointr € [0, 1]. The regularization termpen, () encourages sparsity of the estimated
network at the time point € [0,1]. Note that the above estimation procedure estimates the
time-varying network only at one time point In order to get insight into dynamics, we need to
solve [3.1) for a number of time points for example, for all- € 7,,.

When the underlying network parameters are piecewise aonsive will use estimation
procedures of the form

{ét}ten = arg Brtnin Z 7(0;x") + pen, ({Ot}teTn) ) (3.2)

SteTy
}E”teTn

Compared to the optimization problem [n_(3.1), here the whilyinamic network is estimated at
once. The regularization term will encourage both spardithe parameter vector at each time
point and the way parameters change over time.

In §4 and§5 we specialize optimization problems [0 (3.1) ahd](3.2)rmbfems of learning
time-varying network structure from binary nodal obseoms. Ingg and{7, the two optimiza-
tion are discussed in the context of learning network stimecof Gaussian graphical models. In
48, a related problem of estimating conditional networksssuksed.

3.3 Related Work

In §2 we have discussed estimation of static networks from diath. Here we discuss work re-
lated to estimation of dynamic networks. With few excemi@,@mq little has been
done on modeling dynamical processes that guide topollogigéring and semantic evolution
of networks over time. In particular, prior to our work, vditfle has been done toward esti-
mating the time-varying graph topologies from observedahsthtes, which represent attributes
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of entities forming a network.@Z] introduced a new classmafdels to capture dynamics of
networks evolving over discrete time steps, catlmaiporal Exponential Random Graph Models
(tERGMSs). This class of models uses a number of statistifisetbon time-adjacent graphs, for
example, “edge-stability,” “reciprocity,” “density,” fansitivity,” etc., to construct a log-linear
graph transition modeP(G*|G*~!) that captures dynamics of topological chang [75] in-
corporate a hidden Markov process into the tERGMs, whichosep stochastic constraints on
topological changes in graphs, and, in principle, show howfer a time-specific graph struc-
ture from the posterior distribution @¥¢, given the time series of node attributes. Unfortunately,
even though this class of model is very expressive, the sagwlgorithm for posterior inference
scales only to small graphs with tens of nodes.

Other literature on inferring time inhomogeneous netwarés be divided into two cate-
gories: estimation of directed graphical models and estomaf undirected graphical models.
Literature on estimating time-inhomogeneous directedords usually assumes a time-varying
vector auto-regressive model for observed data [see, fmmpie,@l]ZBéj@E8 86,
99,[126/ 145 Q_._lbii,_:l]6|Q._i87], a class of models that caepgresented in the formalism
of time-inhomogeneous Dynamic Bayesian Networks althaughall authors use terminology
commonly used in the Dynamic Bayesian Networks literatitarkov switching linear dynami-
cal systems are another popular choice for modeling ndrestay time series [see, for example,
@,@@6]. This body of work has focused on apiey flexible models capable
of capturing different assumptions on the underlying systefficient algorithms and sampling
schemes for fitting these models. Although a lot of work hasnbdone in this area, little is
known about finite sample and asymptotic properties reggritie consistent recovery of the un-
derlying networks structures. Some asymptotic resultgaen in @]. Due to the complexity
of MCMC sampling procedures, existing work does not handi# metworks with hundreds of
nodes, which commonly arise in practice. Finally, the bgjgkfference from our work is that the
estimated networks are directe 78] point our that wudéd models constitute the simplest
class of models, whose understanding is crucial for theystfidirected models and models with
both, directed and undirected edges. [168] [192] statgnation of time-varying Gaussian
graphical models in a Bayesian settirbjl68 use a revergimp MCMC approach to estimate
the time-varying variance structure of the d 192] psmul an iterative procedure to segment
the time-series using the dynamic programming approachlopeed byEb] and fit a Gaussian
graphical model using the penalized maximum likelihoodrapph on each segment. To the best
of our knowledge, [206] is the first work that focuses on cstesit estimation, in the Frobenius
norm, of covariance and concentration matrix under theraption that the time-varying Gaus-
sian graphical model changes smoothly over time. Howeveiptoblem of consistent estimation
of the non-zero pattern in the concentration matrix, whictre&sponds to the graph structure es-
timation, is not addressed there. Note that the consistehttye graph structure recovery does
not immediately follow from the consistency of the concatitm matrix. Network estimation
consistency for this smoothly changing model is estabds'hq@]. Time-varying Gaussian
graphical models with abrupt changes in network structuseevstudied in6], where con-
sistent network recovery is established using a complelifigrent proof technique. A related
problem is that of estimating conditional covariance nwe;%h 3], where in place of time,
which is deterministic quantity, one has a random quaritiigthods for estimating time-varying
discrete Markov random fields were given i [2] a,ﬂllZ], kuer, no results on the consis-
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tency of the network structure were given. Note that a lohefwork appeared after our initial
work was communicate@bS].

3.4 Discussion

In this chapter, we have discussed a framework for estimatymamic networks. This frame-
work will be specialized to different models and assumgion the way the structure changes
over time in the following chapters. The framework exterfds ¢common estimation tools used
for learning static networks.
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Chapter 4

Estimating time-varying networks from
binary nodal observations

In this chapter we present two new machine learning methmdsstimating time-varying net-
works, which both build on a temporally smoothédregularized logistic regression formal-
ism that can be cast as a standard convex-optimization gmolind solved efficiently using
generic solvers scalable to large networks. We report gimgiresults on recovering simulated
time-varying networks. For real data sets, we reverse eegithe latent sequence of tempo-
rally rewiring political networks between Senators frone tiS Senate voting records and the
latent evolving regulatory networks underlying 588 gene®ss the life cycle oDrosophila
melanogastefrom the microarray time course.

4.1 Preliminaries

LetD, = {x' ~ Py | t € T,} be an independent samplesobbservation from a time series,
obtained at discrete time steps indexedhy= {1/n,2/n,...,1} (for simplicity, we assume
that the observations are equidistant in time). Each sapgig comes from a different discrete
time step and is distributed according to a distribufityn indexed by8* € ©. In particular,
we will assume thaX’ is ap-dimensional random variable taking values frém1, 1}* with a
distribution of the following form:

Pgt(x): exp( >, xux) (4.1)

(u,w)ER?

where Z(6") is the partition function@® € R() is the parameter vector, an@f = (V,E") is
an undirected graph representing conditional indepere@lassumptions among subsets of the
p-dimensional random vectdX’. Recall thatV = {1,...,p} is the node set and each node
corresponds with one component of the vedor

The model given in[{4]1) can be thought of as a nonparamettansion of conventional
MREFs, in the similar way as the varying-coefficient modet ] are thought of as an extension
to the linear regression models. The difference betweemibael given in[(4.1) and an MRF
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model is that our model allows for parameters to change,enhilMRF the parameters are
considered fixed. Allowing parameters to vary over time éases the expressiveness of the
model, and make it more suitable for longitudinal networkaddor simplicity of presentation,
in this chapter we consider time-varying MRFs with only pase potentials as il (4.1). Note
that in the case of discrete MRFs there is no loss of gengrajitconsidering only pairwise
interactions, since any MRF with higher-order interactioan be represented with an equivalent
MRF with pairwise interactionl].
In this chapter, we are addressing the following graph sreestimation problem:

Given any time point € [0, 1] estimate the graph structure associated ®ih,

given the observatior®,,.
To obtain insight into the dynamics of changes in the graplctire, one only needs to estimate
graph structure for multiple time-points, for example, éveryr € 7,,.

We specialize the general estimation framework describg8 io binary nodal observations.
Discussion that follows extends the setup introducegli2.1 to allow for estimation of time-
varying networks from binary observations.

The graph structur&™ is encoded by the locations of the nonzero elements of trepeter
vector@™, which we refer to as the nonzero pattern of the paran®#terComponents of the
vector@™ are indexed by distinct pairs of nodes and a component oféh®x] is nonzero if
and only if the corresponding edge, v) € E™. Throughout the rest of the chapter we will focus
on estimation of the nonzero pattern of the ve@dras a way to estimate the graph structure.
Let 8] be the(p — 1)-dimensional subvector of parameters

0 ={0,|veV\u}

associated with each nodez V, and letS™ (u) be the set of edges adjacent to a nodg a time
point:

S™(u) :={(u,v) € Vx V|0, #0}.
Observe that the graph structuré can be recovered from the local information on neighboring
edgesS7(u), for each node: € V, which can be obtained from the nonzero pattern of the
subvectom@] alone. The main focus of this section is on obtaining nocmaveistimatorgg of
the nonzero pattern of the subveo®jr which are then used to create estimates

ST(u):={(u,0) EV xV |0, £0}, weV.

Note that the estimated nonzero pattern might be asymmfﬂriexampleﬁ;v =0, but@{,u # 0.
We consider using thexin and max operations to combine the estimat@(,g and @T)u. Let
67 denote the combined estimator. The estimator combinedyubmmin operation has the
following form:

O = Oun: !f O] < 16ul, “min_symmetrization,” (4.2)
evuu If |6uv‘ Z |evu|7

which means that the edde, v) is included in the graph estimate only if it appears in both
estimatesS™(u) andS7(v). Using themax operation, the combined estimator can be expressed
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as

Oy = { Q“”’ !f |€“U| = |€vu|» “max_symmetrization,” (4.3)
evua If |8uv‘ S |evu‘7

and, as a result, the edge, v) is included in the graph estimate if it appears in at leastaine
the estimates™ (u) or S™(v).

A stronger notion of structure estimation is thatsagned edge recovelin which an edge
(u,v) € E7 is recovered together with the sign of the parameiet(0”, ). For each vertex
u € V, similar to the setS7(u), we define the set ofigned neighboring edgeS] (u) :=
{(sign(07,), (u,v)) : (u,v) € S7(u)}, which can be determined from the signs of elements
of the (p — 1)-dimensional subvector of parameté&s Based on the vectcﬁ;, we have the
following estimate of the signed neighborhood:

57 (u) = {(sign(égv), (0, 0)) : veV\u, 07, # o} . (4.4)

An estimator@; is obtained through the use of pseudo-likelihood based ercdmditional
distribution of X given the other of variableX7 = {X] | v € V \ u}. Although the use
of pseudo-likelihood fails in certain scenarios, for exénpstimation of Exponential Random
Graphs (seéEiBO] for a recent study), the graph structussndéing model can be recovered
from an i.i.d. sample using the pseudo-likelihood, as sh]. Under the model(4]1), the
conditional distribution ofX] given the other variableX{  takes the form

eXp(!L’Z(OZ, X<u>)
exp(27,(07,x7,)) + exp(—27(07,X7,))’

where(a, b) = a’b denotes the dot product. For simplicity, we will writg; (27| X[, = x{,) as
Po: (:c;\x{u). Observe that the model given in equatibn¥4.5) can be viegeskpressing” as
the response variable in the generalized varying-coefiicreodels WithX(u playing the role of
covariates. Under the model given in equationl(4.5), thalitmmal log-likelihood, for the node
u at the time point € 7,,, can be written in the following form:

Y(0u;x") = logPe, (2} |x{,)

t t t t (46)
$u<0u, X\u> - log(exp((@u, X\u>) + eXp(_<0U7 X\u>))

The nonzero pattern @& can be estimated by maximizing the conditional log-likebld given
in equation[(4.6). What is left to show is how to combine thferimation across different time
points, which will depend on the assumptions that are madb@anknown vectof®.

The primary focus is to develop methods applicable to datveigh the total number of ob-
servations: small compared to the dimensionality= p,,. Without assuming anything abo#,
the estimation problem is ill-posed, since there can be iparameters than samples. Acommon
way to deal with the estimation problem is to assume that thptgs{ G'} 7, are sparse, that is,
the parameter vecto®'},.r, have only few nonzero elements. In particular, we assunte tha
each node: has a small number of neighbors, that is, there exists a nusnke p such that it
upper bounds the number of edg®s(u)| for all w € V andr € 7,. In many real data sets the
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sparsity assumption holds quite well. For example, in a ilenetwork, rarely a regulator gene
would control more than a handful of regulatees under a 8paxndition [51]. Furthermore,
we will assume that the parameter vea#behaves “nicely” as a function of time. Intuitively,
without any assumptions about the paraméteit is impossible to aggregate information from
observations even close in time, because the underlyirappility distributions for observations
from different time points might be completely differenh this chapter, we will consider two
ways of constraining the parameter ved#6ras a function of time:

e Smooth changes in parameteWse first consider that the distribution generating the obser
vation changes smoothly over the time, that is, the paranaetgoré’ is a smooth function
of time. Formally, we assume that there exists a constant 0 such that it upper bounds
the following quantities:

9 0%
8t9uv ﬁeuv
Under this assumption, as we get more and more data (i.e.olleeicdata in higher and

higher temporal resolution within intervdl, 1]), parameters, and graph structures, corre-
sponding to any two adjacent time points will differ less desk.

e Piecewise constant with abrupt structural changes in patars. Next, we consider that
there are a number of change points at which the distribgemerating samples changes
abruptly. Formally, we assume that, for each nadthere is a partition

Bu = {0 = Bu70 < Bu71 < - Bu7ku = 1}

of the interval[0, 1], such that each element 6f is constant on each segment of the
partition. At change points some of the elements of the veitanay become zero, while
some others may become nonzero, which corresponds to aehatige graph structure.
If the number of change points is small, that is, the grapicstire changes infrequently,
then there will be enough samples at a segment of the partii@stimate the nonzero
pattern of the vectof”.

In the following two sections we propose two estimation met) each suitable for one of the

assumptions discussed above.

<M, max  sup < M.

max sup
u UEVXV te 0 1

u ’UEVXVtG[O 1]

4.2 Smooth changes in parameters

Under the assumption that the element®oére smooth functions of time, as described in the
previous section, we use a kernel smoothing approach tmagtithe nonzero pattern 6f at
the time point of interest € [0, 1], for each node: € V. These node-wise estimators are then
combined using either equatidn (4.2) or equation](4.3) tmiokthe estimator of the nonzero
pattern of@”. The estimato#], is defined as a minimizer of the following objective:

6, = arg min {1(8,:D,) + Ai|6ul]1}. (4.7)
where
(6u;Dn) = — Y wiy(6u;x")
teTn

22



is a weighted log-likelihood, with weights definedas = % andK,(-) = K(-/h)
is a symmetric, nonnegative kernel function. We will referthis approach of obtaining an
estimator asnoot h. The/; norm of the parameter is used to regularize the solution asd,
result, the estimated parameter has a lot of zeros. The nuphbige nonzero elements 6f, is
controlled by the user-specified regularization paramgter 0. The bandwidth parametéris
also a user defined parameter that effectively controls tineber of observations aroundised
to obtaind?. In §4.5 we discuss how to choose the parametem@nd/. Note how [4.7) extends
the optimization problem i .(2.4) to allow for non-i.i.d.tda

The optimization probleni (4.7) is the well-known objectivethe ¢, penalized logistic re-
gression and there are many ways of solving it, for exampkejrterior point method o@l]
the projected subgradient descent method of [52], or thecfawrdinate-wise descent method
of [7Q]. From our limited experience, the specialized firedlay methods work faster than the
interior point methods and we briefly describe the iteratiwerdinate-wise descent method:

1. Set initial valuesg7" «+ 0.

2. For eachv € V' \ u, set the current estimaﬁg;f“’“rl as a solution to the following opti-
mization procedure:

. T 1ter+1 AT iter+1 AT, iter Ariter |t
mm{g ~(0 A N A PN D < )+)\1|9|}. (4.8)

OeR
teTn

3. Repeat step 2 until convergence

For an efficient way of solvind (41.8) refer tEi?O]. In our exipeents, we find that the neigh-
borhood of each node can be estimated in a few seconds eventid@umber of covariates
is up to a thousand. A nice property of our algorithm is that dlerall estimation procedure
decouples to a collection of separate neighborhood estmptoblems, which can be trivially
parallelized. If we treat the neighborhood estimation aatamic operation, the overall algo-
rithm scales linearly as a product of the number of covasiatend the number of time points
n, that is,O(pn). For instance, the Drosophila data set in the applicaticticge contains 588
genes and 66 time points. The metlgtbot h can estimate the neighborhood of one node, for
all points in a regularization plane, in less than 1.5 hBurs.

4.3 Structural changes in parameters

In this section we give the estimation procedure of the nanpattern of{6'},.+, under the
assumption that the elements @ff are a piecewise constant function, with pieces defined by
the partitions3,. Again, the estimation is performed node-wise and the @stinrs are combined
using either equatior_(4.2) or equatidn (4.3). As opposethéokernel smoothing estimator
defined in equatiori (4.7), which gives the estimate at one pointr, the procedure described
below simultaneously estlmatéé her,. The estlmatoriet her, are defined as a minimizer

We have used a server with dual core 2.6GHz processor and 2BB R
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of the following convex optimization objective:

g, min {300+ 0 N6+ Are 3 TV L) en) f @9)

eRr—1teT;
" NeTn teTn veV\u

where TV ({60!, }ie7.) == S0, [6i" — 65 Y/"| is the total variation penalty. We will refer
to this approach of obtaining an estimatorfdé The penalty is structured as a combination
of two terms. As mentioned before, tlie norm of the parameters is used to regularize the
solution toward estimators with lots of zeros and the reggdiion parametei; controls the
number of nonzero elements. The second term penalizesffaeedce between parameters that
are adjacent in time and, as a result, the estimated parenfetee infrequent changes across
time. This composite penalty, known as the “fused” Lassafignwas successfully applied in a
slightly different setting of signal denoising (see, fomeyple, [148]) where it creates an estimate
of the signal that is piecewise constant.

The optimization problem given in equatidn (4.9) is conves aan be solved using an off-
the-shelf interior point solver (for example, tk/X package4]) However, for large scale
problems (i.e., botlp andn are large), the interior point method can be computatigredpen-
sive, and we do not know of any specialized algorithm thattmuosed to solvé (4.9) efficiently.
Therefore, we propose a block-coordinate descent proeeshich is much more efficient than
the existing off-the-shelf solvers for large scale proldef@bserve that the loss function can be
decomposed as

LEOer) = A{O}er) + Y fo({0h,}er)

veV\u

for a smooth differentiable convex function

A0 ier,) = Z (0

teTn

and a convex function

fo{0iueer) = A Y 100,] + Arv TV ({6, }er)-

teTn

Tseng [[I@b] established that the block-coordinate desmanerges for loss functions with such
structure. Based on this observation, we propose the folgpaigorithm:
1. Setinitial values’® < 0,Vt € 7,.

2. For eachy € V' \ u, set the current estimat¢g’i*"+1},. as a solution to the following
optimization procedure:

. Nt,iter+1 Ntyiter+1 pt iter Ntiiter | _t
{eté%l}n { E 7(9%1 yoon by 0 ,HUUH,...,HU,p_l,X)
teTn
teTn

(4.10)
03 A TV )

teTm
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3. Repeat step 2 until convergence.

Using the proposed block-coordinate descent algorithnsolge a sequence of optimization
problems each with only. variables given in equatioh (4]10), instead of solving oigedpti-
mization problem witm(n — 1) variables given in equatiofi (4.9). In our experiments, we fin
that the optimization in equatioh (4.9) can be estimatechih@ur when the number of covari-
ates is up to a few hundred and when the number of time poirisdsin the hundreds. Here,
the bottleneck is the number of time points. Observe thatiimensionality of the problem in
equation [(4.70) grows linearly with the number of time psinAgain, the overall estimation
procedure decouples to a collection of smaller problemgkvban be trivially parallelized. If
we treat the optimization in equatidn_(4.9) as an atomic atpam, the overall algorithm scales
linearly as a function of the number of covariateshat is,O(p). For instance, the Senate data
set in the application section contains 100 Senators andiB¥2points. It took about a day to
solve the optimization problem in equatidn (4.9) for allqtsiin the regularization plane.

4.4 Multiple observations

In the discussion so far, it is assumed that at any time poifjt only one observation is available.
There are situations with multiple observations at eacle fpwint, for example, in a controlled
repeated microarray experiment two samples obtained atarcéme point could be regarded
as independent and identically distributed, and we disbaksv how to incorporate such obser-
vations into our estimation procedures. Later{4n8 we empirically show how the estimation
procedures benefit from additional observations at each piomt.

For the estimation procedure given in equation](4.7), tlaeeeno modifications needed to
accommodate multiple observations at a time point. Eacltiaddl sample will be assigned the
same weight through the kernel functiéf,(-). On the other hand, we need a small change in

equation[(4.9) to allow for multiple observations. Themﬁiors{@@}ten are defined as follows:

[0y, —arg min {Z S (0% + A S 1L+ Ay S TV({@fw}tem},

0t cRr—1 tcT,
¢ " MeTn xeDy, teTn veV\u

where the seD! denotes elements from the samplg observed at a time point

4.5 Choosing tuning parameters

Estimation procedures discussed#? andj4.3,snoot h andTV respectively, require a choice
of tuning parameters. These tuning parameters controsispaf estimated graphs and the way
the graph structure changes over time. The tuning parametdor both snoot h and TV,
controls the sparsity of the graph structure. Large valli¢iseoparametei; result in estimates
with lots of zeros, corresponding to sparse graphs, whilallsvalues result in dense models.
Dense models will have a higher pseudo-likelihood scoré whilialso have more degrees of
freedom. A good choice of the tuning parameters is essentiabtaining a good estimator
that does not overfit the data, and balances between the g$ikalihood and the degrees of
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freedom. The bandwidth parameterand the penalty parametai, control how similar are
estimated networks that are close in time. Intuitively, baedwidth parameter controls the size
of a window around time point from which observations are used to estimate the gt@ph
Small values of the bandwidth result in estimates that cearfign with time, while large values
produce estimates that are almost time invariant. The pepatametenry biases the estimates
{0 },c7, that are close in time to have similar values; large valu¢b®penalty result in graphs
whose structure changes slowly, while small values allawrfore changes in estimates.

We discuss how to choose the penalty paramete@nd Ay for the methodTl'V. Observe
that~(0’,; x") represents a logistic regression loss function when regrgs node: onto the
other noded” \ u. Hence, problems defined in equatibn{4.7) and equdtiol ¢4rdbe regarded
assupervisedlassification problems, for which a number of techniquestmused to select the
tuning parameters, for example, cross-validation or loeitldata sets can be used when enough
data is available, otherwise, the BIC score can be empladyethis paper we focus on the BIC
score defined fof0: },.7, as

logn
BIC({6; }ic7,.) - Z 7(0,;x") — N Dim({8, }er,,),

teTn

whereDim(-) denotes the degrees of freedom of the estimated model.etBimi@], we adopt
the following approximation to the degrees of freedom:

DIm({0) }rer,) = > Y Wsign(6l,) # sign(6l,")] x U[sign(6L,) # 0], (4.11)

t€Tn veEV\u

which counts the number of blocks on which the parametersarstant and not equal to zero. In
practice, we average the BIC scores from all nodes and choodels according to the average.

Next, we address the way to choose the bandwidémd the penalty parameteg for the
methods oot h. As mentioned earlier, the tuning of bandwidth parametgnould trade off the
smoothness of the network changes and the coverage of saogad to estimate the network.
Using a wider bandwidth parameter provides more samplestimate the network, but this
risks missing sharper changes in the network; using a namrdandwidth parameter makes
the estimate more sensitive to sharper changes, but toisralkes the estimate subject to larger
variance due to the reduced effective sample size. In tinismpae adopt a heuristic for tuning the
inital scale of the bandwidth parameter: we set it to be thdiameof the distance between pairs
of time points. That is, we first form a matri¥;;) with its entriesd;; := (¢, — t;)* (t:, t; € T,).
Then the scale of the bandwidth parameter is set to the medltae entries ir(d;;). In our later
simulation experiments, we find that this heuristic progidegood initial guess fak, and it is
quite close to the value obtained via exhaustive grid sedfoh the methodnoot h, the BIC
score for{@! },., is defined as

BIO({0,}icr) == 30 3 wiv(O7:x) — 5" Dim({0}ier),  (4.12)

TETn t€TH

whereDim(+) is defined in equatioh (4.11).
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4.6 Simulation studies

We have conducted a small empirical study of the performaficaethodssmoot h and TV.
Our idea was to choose parameter vect@s};c7., generate data according to the model in
equation[(4.11) using Gibbs sampling, and try to recover tmearo pattern o’ for eacht € 7,,.
Parameter$6'},.7. are considered to be evaluations of the funcfiémt 7,, and we study two
scenarios, as discussed#hd: 6! is a smooth functiong’ is a piecewise constant function. In
addition to the methodsnoot h and TV, we will use the method OI_T;IJSl] to estimate a time-
invariant graph structure, which we refer tostsat i c. All of the three methods estimate the
graph based on node-wise neighborhood estimation, whicisaussed i§4.1, may produce
asymmetric estimates. Solutions combined with the minatper in equation (4]2) are denoted
as+*xx. M N, while those combined with the max operation in equatiof)(d4re denoted as
sokokk, MAX,

we took the number of nodes= 20, the maximum node degree= 4, the number of edges

e = 25, and the sample size= 500. The parameter vectof®'},., and observation sequences
are generated as follows:

1. Generate a random graﬁﬁ with 20 nodes and 15 edges: edges are added, one at a time,
between random pairs of nodes that have the node degreéhéesglt Next, randomly
add 10 edges and remove 10 edges ftdintaking care that the maximum node degree is
still 4, to obtainG'. Repeat the process of adding and removing edges *bto obtain
G?,...,G°. We refer to these 6 graphs as the anchor graphs. We will ralydgenerate
the prototype parameter vectd, . . ., 8°, corresponding to the anchor graphs, and then
interpolate between them to obtain the paramef@f$;.r. .

2. Generate a prototype parameter ve@&bofor each anchor grap@", i € {0,...,5}, by
sampling nonzero elements of the vector independently f#eif([0.5, 1]). Then generate
{6'},c7, according to one of the following two cases:

e Smooth function: The parametef8'}.c(;_1)/5,i/5n7, are obtained by linearly inter-
polating100 points betwee®'~! andé', i € {1,...,5}.
e Piecewise constant function: The paramet@s c(—1)/5i/5;n7, are set to be equal
to (0! +6%)/2,i € {1,...,5}.
Observe that after interpolating between the prototyparpaters, a graph corresponding
to 8" has25 edges and the maximum node degreg is
3. Generate 10 independent samples at e&clf,, according tdPs:, given in equation(4]1),
using Gibbs sampling.
We estimate’; for eacht € 7, with our snoot h and TV methods, using: € {1,...,10}
samples at each time point. The results are expressed i tdrthe precisior(Pre) and the
recall (Rec) and F'1 score, which is the harmonic mean of precision and recal, ith F'1 :=
2 % Pre « Rec/(Pre + Rec). Let E' denote the estimated edge set(8f then the precision is
calculated a®re :== 1/n), ., |E'NE!|/|E'| and the recall aBec := 1/n p— |E'NE!|/|E|.
Furthermore, we report results averaged over 20 indepénaies

We discuss the estimation results when the underlying patiermvector changes smoothly.
See Figuré 412 for results. It can be seen that as the numbwee bi.d. observations at each time
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Figure 4.1: Plot of théBIC,,, score over the regularization plane. The parameter véttisra smooth
function of time and at each time point there is one obsemat{a) The graph structure recovered using
the methodmooth. (b) Recovered using the methad/.

point increases, the performance of both metreadsot h andTV increases. On the other hand,
the performance of the methat at i ¢ does not benefit from additional i.i.d. observations.
This observation should not be surprising as the time-ngrypietwork models better fit the data
generating process. When the underlying parameter vétisra smooth function of time, we
expect that the methairoot h would have a faster convergence and better performancehwhi
can be seen in Figufe 4.2. There are some differences betive@stimates obtained through
M N and MAX symmetrization. In our limited numerical experience, weeaeen thaivAX
symmetrization outperformg N symmetrizationM N symmetrization is more conservative in
including edges to the graph and seems to be more susceptitbése.

Next, we discuss the estimation results when then the uidggbarameter vector is a piece-
wise constant function. See Figurel4.3 for results. Agaothtperformance of the method
snoot h and of the methodV improve as there are more independent samples at diffeneat t
points, as opposed to the meth®idat i c. It is worth noting that the empirical performance of
snmoot h andTV is very similar in the setting whe#¥ is a piecewise constant function of time,
with the methodTV performing marginally better. This may be a consequencéefnay we
present results, averaged over all time pointg,inA closer inspection of the estimated graphs
shows that the methaghoot h poorly estimates graph structure close to the time pointéthv
the parameter vector changes abruptly (results not shown).

The tuning parameters and \; for snoot h, and\; and Ay for TV, are chosen by maxi-
mizing the average BIC score,

BICavg = l/p Z BIC({etu}tETn)’

ueV

over a grid of parameters. The bandwidth parameisrsearched ove0.05,0.1,...,0.45,0.5}

and the penalty parametar, over 10 points, equidistant on the log-scale, from the vater
[0.05,0.3]. The penalty parameter is searched over 100 points, etpntlisn the log-scale, from
the interval[0.01, 0.3] for bothsnoot h andTV. The same range is used to select the penalty
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parameten for the methodt at i ¢ that estimates a time-invariant network. In our experiragnt
we use the Epanechnikov kerngl(z) = 3/4 « (1 — 2?) 1{|z|] < 1} and we remind our reader
that K, (-) = K(-/h). For illustrative purposes, in Figure 4.1 we plot fBEC,,, score over the
grid of tuning parameters.

We have decided to perform simulation studies on ErdoeyRgraphs, while real-world
graphs are likely to have different properties, such as kdgo@e network with a long tail in its
degree distribution. From a theoretical perspective, cethiwd can still recover the true structure
of these networks regardless of the degree distributitingagh for a more complicated model,
we may need more samples in order to achieve this.| [146] pexpa joint sparse regression
model, which performs better than the neighborhood selectiethod when estimating networks
with hubs (nodes with very high degree) and scale-free nm&svoFor such networks, we can
extend their model to our time-varying setting, and potdiytimake more efficient use of the
samples, however, we do not pursue this direction here.

4.7 Applications to real data

In this section we present the analysis of two real data satg the algorithms presenteddf.].
First, we present the analysis of the senate data consstiignators’ votes on bills during the
109th Congress. The second data set consists of expresgels bf more than 4000 genes from
the life cycle ofDrosophila melanogaster

4.7.1 Senate voting records data

The US senate data consists of voting records from 109threea@2005-2006). There are 100
senators whose votes were recorded on the 542 bills. Eaehoserorresponds to a variable,
while the votes are samples recorded-disfor no and 1 for yes. This data set was analyzed
in [@], where a static network was estimated. Here, we aedtljyis data set in a time-varying
framework in order to discover how the relationship betwsemators changes over time.

This data set has many missing values, corresponding t@ Yot were not cast. We fol-
low the approach omg] and fill those missing values witHl]. Bills were mapped onto the
[0, 1] interval, with O representing Jan 1st, 2005 and 1 represgmiec 31st, 2006. We use
the Epanechnikov kernel for the methsdoot h. The tuning parameters are chosen optimiz-
ing the average BIC score over the same range as used forntiéatons in§4.6. For the
methodsnoot h, the bandwidth parameter was selected as0.174 and the penalty parameter
A1 = 0.195, while penalty parameters, = 0.24 and Ay = 0.28 were selected for the method
TV. In the figures in this section, we use pink square nodes tesept republican Senators and
blue circle nodes to represent democrat Senators.

A first question is whether the learned network reflects tHeigal division between Repub-
licans and Democrats. Indeed, at any time puittie estimated network contains few clusters of
nodes. These clusters consist of either Republicans or Detsoconnected to each others; see
Figurel4.4. Furthermore, there are very few links conngdtiifferent clusters. We observe that
most Senators vote similarly to other members of their paityks connecting different clusters
usually go through senators that are members of one pattyrawe views more similar to the
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Figure 4.4: 109th Congress, Connections between Senatdpmil 2005. Democrats are represented with
blue circles, Republicans with pink squares, and the rexdeciepresents independent Senator Jeffords.

other party, for example, Senator Ben Nelson or Senatoregeéh&fote that we do not necessarily
need to estimate a time evolving network to discover thitgpabf political division, as they can
also be observed from a time-invariant network (see, fompta, [19]).

Therefore, what is more interesting is whether there is ang evolving pattern. To show
this, we examine neighborhoods of Senators Jon Corzine abdv&nendez. Senator Corzine
stepped down from the Senate at the end of the 1st Sessioe i08th Congress to become
the Governor of New Jersey. His place in the Senate was fije8dmator Menendez. This
dynamic change of interactions can be well captured by the-tiarying network (Figure_4.5).
Interestingly, we can see that Senator Lautenberg who wsetédract with Senator Corzine
switches to Senator Menendez in response to this event.

Another interesting question is whether we can discoveatees with swaying political
stance based on time evolving networks. We discover thaatSelen Nelson and Lincoln
Chafee fall into this category. Although Senator Ben Nelsoam Democrat from Nebraska, he
is considered to be one of the most conservative DemocrateiSenate. Figufe 4.6 presents

Me l;ljdez

Cdrzine Lau(e}l erg
Cdrzine = /k
.{:) Lautenberg i R
D _r_l)iﬁ"aéj

(a) March 2005 (b) August 2005 (c) March 2006 (d) August 2006

Figure 4.5: Direct neighbors of the node that represent t8ei@orzine and Senator Menendez at four
different time points. Senator Corzine stepped down at tigeog the 1st Session and his place was taken
by Senator Menendez, which is reflected in the graph streictur
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Figure 4.6: Neighbors of Senator Ben Nelson (distance twitower) at the beginning of the 109th
Congress and at the end of the 109th Congress. Democratemesented with blue circles, Republi-
cans with pink squares. The estimated neighborhood in ABNEBS consists only of Republicans, which
may be due to the type of bills passed around that time on wéctator Ben Nelson had similar views as
other Republicans.

neighbors at distance two or less of Senator Ben Nelson atita® points, one during the
1st Session and one during the 2nd Session. As a conserizivecrat, he is connected to
both Democrats and Republicans since he shares views withpaoties. This observation is
supported by Figure_4.6(a) which presents his neighbonmgluhe 1st Session. It is also in-
teresting to note that during the second session, his vieifisdimore toward the Republicans
[Figure[4.6(b)]. For instance, he voted against abortiath\@ithdrawal of most combat troops
from Iraq, which are both Republican views.

In contrast, although Senator Lincoln Chafee is a Reputlib#s political view grew in-
creasingly Democratic. Figufe 4.7 presents neighbors oa®e Chafee at three time points
during the 109th Congress. We observe that his neighborimetieties an increasing amount of
Democrats as time progresses during the 109th CongressalAgiSenator Chafee later left the
Republican Party and became an independent in 2007. Alswajidw on abortion, gay rights,
and environmental policies are strongly aligned with thosBemocrats, which is also consis-
tently reflected in the estimated network. We emphasizdlhiese patterns about Senator Nelson
and Chafee could not be observed in a static network.

(b)

Figure 4.7: Neighbors of Senator Chafee (distance two oetpat different time points during the 109th
Congress. Democrats are represented with blue circlegylflegns with pink squares, and the red circle
represents independent Senator Jeffords.
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Figure 4.8: Characteristic of the dynamic networks es#@adior the genes related to the developmental
process. (a) Plot of two network statistics as functiondefdevelopment time line. Network size ranges
between 1712 and 2061 over time, while local clusteringfaeit ranges between 0.23 and 0.53 over
time; To focus on relative activity over time, both statistare normalized to the range between 0 and 1.
(b) and (c) are the visualization of two examples of netwdr&m different time points. We can see that
network size can evolve in a very different way from the lodaktering coefficient.

4.7.2 Gene regulatory networks of Drosophila melanogaster

In this section we used the kernel reweighting approachverse engineer the gene regulatory
networks ofDrosophila melanogastdrom a time series of gene expression data measured dur-
ing its full life cycle. Over the developmental course@osophila melanogastethere exist
multiple underlying “themes” that determine the functilities of each gene and their relation-
ships to each other, and such themes are dynamical and stiech@&s a result, the gene regu-
latory networks at each time point are context-dependeshitan undergo systematic rewiring,
rather than being invariant over time. In a seminal stud@], it was shown that the “active
regulatory paths” in the gene regulatory network$Satcharomyces cerevisiaghibit topolog-
ical changes and hub transience during a temporal cellutaregs, or in response to diverse
stimuli. We expect similar properties can also be observedfe gene regulatory networks of
Drosophila melanogaster

We used microarray gene expression measurements mmz{lﬁyanput data. In such an
experiment, the expression levels of 4028 genes are sinedtesly measured at various devel-
opmental stages. Particularly, 66 time points are chosenglthe full developmental cycle of
Drosophila melanogastespanning across four different stagést is embryonic (1-30 time
point), larval (31-40 time point), pupal (41-58 time po)ntsd adult stages (59-66 time points).
In this study we focused on 588 genes that are known to beecelatthe developmental process
based on their gene ontologies.

Usually, the samples prepared for microarray experimaeta anixture of tissues with pos-
sibly different expression levels. This means that mig@aexperiments only provide rough
estimates of the average expression levels of the mixtuteer&ources of noise can also be
introduced into the microarray measurements during, ftaimce, the stage of hybridization and
digitization. Therefore, microarray measurements arédan the exact values of the expression
levels, and it will be more robust if we only consider the Injnatate of the gene expression:
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Figure 4.9: Interactivity of 3 groups of genes related toef@pryonic development (ranging between 169
and 241), (b) post-embryonic development (ranging betwi&thand 210), and (c) muscle development
(ranging between 29 and 89). To focus on the relative agtowier time, we normalize the score|tp 1.
The higher the interactivity, the more active the group afage The interactivities of these three groups
are very consistent with their functional annotations.

either being up-regulated or down-regulated. For thisaeas/e binarize the gene expression
levels into{—1,1} (—1 for down-regulated and 1 for up-regulated). We learnedjaesece of
binary MRFs from these time series.

First, we study the global pattern of the time evolving regotly networks. In Figurie 4.8(a)
we plotted two different statistics of the reversed engieégene regulatory networks as a func-
tion of the developmental time point (1-66). The first statis the network size as measured
by the number of edges; and the second is the average loséichg coefficient as defined
by @]. For comparison, we normalized both statisticshe range betweej), 1]. It can be
seen that the network size and its local clustering coeffidellow very different trajectories
during the developmental cycle. The network size exhibitaae structure featuring two peaks
at mid-embryonic stage and the beginning of the pupal stagemilar pattern of gene activity
has also been observed @[10]. In contrast, the clusteoefjicients of the dynamic networks
drop sharply after the mid-embryonic stage, and they stayuliotil the start of the adult stage.
One explanation is that at the beginning of the developmemaigss, genes have a more fixed and
localized function, and they mainly interact with other genvith similar functions. However,
after mid-embryonic stage, genes become more versatilenaotved in more diverse roles to
serve the need of rapid development; as the organism tuimainadult, its growth slows down
and each gene is restored to its more specialized role. Ustridite how the network proper-
ties change over time, we visualized two networks from nmtbg/onic stage (time point 15)
and mid-pupal stage (time point 45) using the spring layégarihm in Figure 4.8(b) and (c)
respectively. Although the size of the two networks are caraple, tight local clusters of in-
teracting genes are more visible during mid-embryonicestdign mid-pupal stage, which is
consistent with the evolution local clustering coefficianFigure[4.8(a).

To judge whether the learned networks make sense bioldgiva zoom into three groups
of genes functionally related to different stages of theettggment process. In particular, the
first group (30 genes) is related to embryonic developmesgdban their functional ontologies;
the second group (27 genes) is related to post-embryonela@went; and the third group (25
genes) is related to muscle development. For each groupse¢he number of within group
connections plus all its outgoing connections to deschieattivitiy of each group of genes (for
short, we call it interactivity). In Figure 4.9 we plottedetime courses of interactivity for the
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Figure 4.10: Timeline of 45 known gene interactions. Eadhicehe plot corresponds to one gene pair
of gene interaction at one specific time point. The cells icheaw are ordered according to their time
point, ranging from embryonic stage (E) to larval stage (& pupal stage (P), and to adult stage (A). Cells
colored blue indicate the corresponding interaction distethe right column is present in the estimated
network; blank color indicates the interaction is absent.
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Figure 4.11: The largest transcriptional factors (TF) adscinvolving 36 transcriptional factors. (a) The
summary network is obtained by summing the networks frontiké points. Each node in the network
represents a transcriptional factor, and each edge reysean interaction between them. On different
stages of the development, the networks are different(¢h)(d), (e) shows representative networks for
the embryonic, larval, pupal, and adult stage of the devetny respectively.

three groups respectively. For comparison, we normalizecakes to the range d¢6,1]. We
see that the time courses have a nice correspondence witlstipposed roles. For instance,
embryonic development genes have the highest intergctiviting embryonic stage, and post-
embryonic genes increase their interactivity during thredlaand pupal stages. The muscle
development genes are less specific to certain develophséagas, since they are needed across
the developmental cycle. However, we see its increasedtsctiihen the organism approaches
its adult stage where muscle development becomes incgbagimportant.

The estimated networks also recover many known interasti@tween genes. In recovering
these known interactions, the dynamic networks also peadtlitional information as to when
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(a) Average network. Each color patch denotes an onto-
logical group, and the position of these ontological groups

remain the same from (a) to (u). The annotation in the
outer rim indicates the function of each group.
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Figure 4.12: Interactions between gene ontological groalsded to the developmental process undergo
dynamic rewiring. The weight of an edge between two ontaialggroups is the total number of connec-
tions between genes in the two groups. In the visualizatioa,width of an edge is proportional to its
edge weight. We thresholded the edge weight at 30 in (b)-e(uha only those interactions exceeding

this number are displayed. The average network in (a) isymed by averaging the networks underlying
(b)—(u). In this case, the threshold is set to 20 instead.
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interactions occur during development. In Figlre ¥.10 sted these recovered known inter-
actions and the precise time when they occur. This also gesva way to check whether the
learned networks are biologically plausible given the pkioowledge of the actual occurrence
of gene interactions. For instance, the interaction betvgemes msn and dock is related to the
regulation of embryonic cell shape, correct targeting aftpheceptor axons. This is very con-
sistent with the timeline provided by the dynamic netwoksecond example is the interaction
between genes sno and DI which is related to the developrmeatgpound eyes dDrosophila

A third example is between genes caps and Chi which are detatering development during
pupal stage. What is most interesting is that the dynamiwarés provide timelines for many
other gene interactions that have not yet been verified erpatally. This information will be a
useful guide for future experiments.

We further studied the relations between 130 transcriptitactors (TF). The network con-
tains several clusters of transcriptional cascades, andilw@resent the detail of the largest
transcriptional factor cascade involving 36 transcripéiiofactors (Figure€4.11). This cascade of
TFs is functionally very coherent, and many TFs in this nekyaday important roles in the ner-
vous system and eye development. For example, Zn finger radonemin 1 (zhfl), brinker (brk),
charlatan (chn), decapentaplegic (dpp), invected (imrkHead box, subgroup 0 (foxo), Optix,
eagle (eg), prospero (pros), pointed (pnt), thickveing)(tkxtra macrochaetae (emc), lilliputian
(lilli), and doublesex (dsx) are all involved in nervous ak development. Besides functional
coherence, the network also reveals the dynamic naturenaf gegulation: some relations are
persistent across the full developmental cycle, while maiimers are transient and specific to
certain stages of development. For instance, five trartgmmgd factors, brk-pnt-zfh1-pros-dpp,
form a long cascade of regulatory relations which are aetoress the full developmental cycle.
Another example is gene Optix which is active across thedelelopmental cycle and serves
as a hub for many other regulatory relations. As for trartenf the regulatory relations, TFs
to the right of the Optix hub reduced in their activity as depenent proceeds to a later stage.
Furthermore, Optix connects two disjoint cascades of gegelations to its left and right side
after embryonic stage.

The dynamic networks also provide an overview of the inttoas between genes from
different functional groups. In Figuie 4]12 we grouped geaecording to 58 ontologies and
visualized the connectivity between groups. We can sedalge topological changes and net-
work rewiring occur between functional groups. Besideseekgd interactions, the figure also
reveals many seemingly unexpected interactions. Fornastaduring the transition from pupa
stage to adult stag®rosophilais undergoing a huge metamorphosis. One major feature of thi
metamorphosis is the development of the wing. As can be seanRigurd 4.12(r) and (s), genes
related to metamorphosis, wing margin morphogenesis, wéig morphogenesis, and apposi-
tion of wing surfaces are among the most active group of gemmabkthey carry their activity into
adult stage. Actually, many of these genes are also veryeadtiring early embryonic stage [for
example, Figure 4.12(b) and (c)]; though the differencééytinteract with different groups of
genes. On one hand, the abundance of the transcripts frsa tlemes at embryonic stage is
likely due to maternal deposﬁllO]; on the other hand, tlais also be due to the diverse func-
tionalities of these genes. For instance, two genes retatadhg development, held out wings
(how) and tolloid (td), also play roles in embryonic devetont.
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4.8 Discussion

We have presented two algorithms for an important problemstifcture estimation of time-
varying networks. While the structure estimation of theistaetworks is an important problem
in itself, in certain cases static structures are of limited. More specifically, a static structure
only shows connections and interactions that are persisterughout the whole time period and,
therefore, time-varying structures are needed to desdsihamic interactions that are transient
in time. Although the algorithms presented in this papeldarning time-varying networks are
simple, they can already be used to discover some patteshsvtiuld not be discovered using
a method that estimates static networks. However, thetyaldilearn time-varying networks
comes at a price of extra tuning parameters: the bandwidtnpeterh, or the penalty parameter
)\TV-

Throughout the chapter, we assume that the observationféesiedt points in time are inde-
pendent. An important future direction is the analysis & ¢fnaph structure estimation from a
general time series, with dependent observations. In aniap this extension will be straight-
forward but with great practical importance. Furthermeve,have worked with the assumption
that the data are binary, however, extending the proceduetk with multi-category data is
also straightforward. One possible approach is explain@] and can be directly used here.

There are still ways to improve the methods presented heyeinstance, more principled
ways of selecting tuning parameters are definitely needeléctng the tuning parameters in the
neighborhood selection procedure for static graphs is meay problem, and estimating time-
varying graphs makes the problem more challenging. Furtbex, methods presented here do
not allow for the incorporation of existing knowledge on tregwork topology into the algorithm.
In some cases, the data are very scarce and we would likedpimr@te as much prior knowledge
as possible, so developing Bayesian methods seems verytanpo

The methodsnoot h and the methodV represent two different ends of the spectrum: one
algorithm is able to estimate smoothly changing networkslerthe other one is tailored toward
estimation of structural changes in the model. Itis impadrta bring the two methods together in
the future work. There is a great amount of work on nonparamestimation of change points
and it would be interesting to incorporate those methods$timating time-varying networks.
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Chapter 5

Sparsistent estimation of smoothly varying
Ising model

In the previous chapter, we proposed a method based on fsmusthing/,-penalized logistic
regression for estimating time-varying networks from naeservations collected from a time-
series of observational data. In this chapter, we estabbsilitions under which the proposed
method consistently recovers the structure of a time-ngryietwork. This work complements
previous empirical findings by providing sound theoretigaarantees for the proposed estima-
tion procedure. Theoretical findings are illustrated tigtoaumerical simulations.

5.1 Introduction

In this chapter, we study the problem of estimating a sequiehtigh-dimensional MRFs that
slowly evolve over time from observational data. Recall sleéup introduced in the previous
chapter. We are given a sequencerafodal state®,, = {x' ~ Py | t € T,}, with the time
index defined a¥,, = {1/n,2/n,...,1}. For simplicity of presentation, we assume that the
observations are equidistant in time and only one observaiavailable at each time point from
distributionP: indexed byg*. Specifically, we assume that thalimensional random vectag!
takes values if—1, 1}? and the probability distribution takes the following form:

Pgt (SL’) =

exp Z 0! v, |, VteT,,

(u,v)EE?
whereZ(6") is the partition functiong@® e R() is the parameter vector ad = (V, E?) is an
undirected graph representing certain conditional inddpace assumptions among subsets of
the p-dimensional random vectdt’. For any given time point € [0, 1], we are interested in
estimating the grapty”™ associated witlP,-, given the observatioriB,,. Since we are primarily
interested in a situation where the total number of obsemat is small compared to the di-
mensiorp, our estimation task is going to be feasible only under sagalarity conditions. We
impose two natural assumptions: thgarsityof the graphg G*},<7,, and thesmoothnessf the
parameter®’ as functions of time. These assumptions are preciselydstatfs.2. Intuitively,
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Input: DatasetD,,, time point of interest € [0, 1], penalty parametey,,, bandwidth
parameten R
Output: Estimate of the graph structuég

foreachu € V do
Estimatef,, by solving the convex prograi (4.7)

Estimate the set of signed neighboring ed§&éu) using [4.2)
end

Combine sets{?;(u)}uev to obtainG™.

Algorithm 1: Graph structure estimation

the smoothness assumption is required so that a graphws&wattthe time point can be esti-
mated from samples close in timetoOn the other hand, the sparsity assumption is required to
avoid the curse of dimensionality and to ensure that a thehgs&ructure can be identified from

a small sample.

The main contribution of this chapter is to establish theoaéguarantees for the estimation
procedure discussed iffl.2. The estimation procedure is based on temporally sreddth
regularized logistic regression formalism, as summariredigorithm[1. An application to
real world data was given i9], where the procedure wasl tis infer the latent evolving
regulatory network underlying 588 genes across the liféecytDrosophila melanogastdrom
microarray time course. Although the true regulatory nekas not known for this organism,
the procedure recovers a number of interactions that wenaqursly experimentally validated.
Since in most real world problems the ground truth is not kmowe emphasize the importance
of simulation studies to evaluate the estimation procedure

It is noteworthy that the problem of the graph structurenestion is quite different from
the problem of (value-) consistent estimation of the unkm@arametep that indexes the dis-
tribution. In general, the graph structure estimation nexpua more stringent assumptions on
the underlying distribution and the parameter values. kangple, observe that a consistent es-
timator of @ in the Euclidean distance does not guarantee a consistantéen of the graph
structure, encoded by the non-zero patter of the estimaidhe motivating problems that we
gave in§2 and§3, the main goal is to understand the interactions betwetareit actors. These
interactions are more easily interpreted by a domain expart the numerical values of the pa-
rameter vectof and have potential to reveal more information about the dyidg process of
interest. This is especially true in situations where thenétle or no domain knowledge and
one is interested in obtaining casual, preliminary infaiora

5.2 Main theoretical result

In this section, we provide conditions under which the eation procedure detailed .2
consistently recovers the graph structure. In particwarshow that under suitable conditions
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PVu §;(u) — S7(u)] 2== 1, the property known asparsistency We are mainly interested
in the high-dimensional case, where the dimensgios p, is comparable or even larger than
the sample size. It is of great interest to understand the performance okestamator under
this assumption, since in many real world scenarios the wineality of data is large. Our
analysis is asymptotic and we consider the model dimensterp,, to grow at a certain rate as
the sample size grows. This essentially allows us to consmee “complicated” models as we
observe more data points. Another quantity that will déscthe complexity of the model is the
maximum node degree= s,,, which is also considered as a function of the sample sizeletUn
the assumption that the true-graph structure is sparse,ilveequire that the maximum node
degree is smalk < n. The main result describes the scaling of the triplgp,,, s,,) under which
the estimation procedure given in the previous sectiomesés the graph structure consistently.

We will need certain regularity conditions to hold in orderprove the sparsistency result.
These conditions are expressed in terms of the Hessian loigHikelihood function as evaluated
at the true model parameter, i.e., the Fisher informatiotrimarhe Fisher information matrix
Qr € RP~Dx(r=1) js a matrix defined for each nodec V' as:

Q] : = E[V?log Po; [X,[X\,]]
= E[n(X;07)X\.X{,],
where
4 exp (22, (0u, X\u))
(exp (224, (0y, X\y)) + 1)?
is the variance function and? denotes the operator that computes the matrix of secondbderi

tives. We writeQ™ := Q7 and assume that the following assumptions hold for each nadé&’ .
Al: Dependency condition There exist constants,,;,,, D, Dmax > 0 such that

n(x; 6,) =

Amin (QE‘S) 2 C'min

and
Amin (ET) Z Dmina Amax (ET) S Dmaxa

whereX™ = Ey-[XX’']. HereAyin(-) and A« () denote the minimum and maximum
eigenvalue of a matrix.

A2: Incoherence condition There exists an incoherence parameter (0, 1] such that

1Q5:5(Q5s) oo < 1 -0,

where, for a matrix4 € R**?, the/., matrix norm is defined as

.....

The setS¢ denotes the complement of the $ein {1, ..., p}, thatis,S¢ = {1,...,p}\S. With
some abuse of notation, when defining assumptions A1 and A2ise the index sét := S™(u)
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to denote nodes adjacent to the nadat timer. For example, ifs = |S
denotes the sub-matrix @" indexed bysS.

Condition Al assures that the relevant features are notdoelated, while condition A2
assures that the irrelevant features do not have to stréect ehto the relevant features. Similar
conditions are common in other literature on high-dimenaicestimation (see, for example,
[@,l] and references therein). The differérece is that we assume the conditions
hold for the time point of interest at which we want to recover the graph structure.

Next, we assume that the distributiBg- changes smoothly over time, which we express in
the following form, for every node € V.

A3: Smoothness conditionsLet X' = [o! ]. There exists a constant > 0 such that it upper
bounds the following quantities:

, thenQ%g € R¥?

o0 , 9?
max sup |=—o’ . | < M max sup |—o' | < M
u,UEVXVtE[OIS)l] |8t uv‘ ’ u;UEVXVtE[OI’)” ‘atQ uv‘
max  sup |gﬁt | <M max  sup \8—29t | < M
u,UEVXVtE[O’l] 8t uv ’ u7’l)ev><vt€[0’1] at2 wu '

The condition A3 captures our notion of the distributionttbhanges smoothly over time. If
we consider the elements of the covariance matrix and tmeegits of the parameter vector as
a function of time, then these functions have bounded firdtssatond derivatives. From these
assumptions, it is not too hard to see that elements of tHeeFiaformation matrix are also
smooth functions of time.

A4: Kernel The kernelK : R — R is a symmetric function, supported ir1, 1]. There exists
a constanfi/x > 1 which upper bounds the quantitiesix.cr | K (2)| andmax.cr K (2)2.

The condition A4 gives some regularity conditions on thenkéused to define the weights.
For example, the assumption is satisfied by the box keiie) = 3 1{z € [-1, 1]}.

With the assumptions made above, we are ready to state theethehat characterizes the
consistency of the method given§A.2 for recovering the unknown time-varying graph strugtur
An important quantity, appearing in the statement, is theimim value of the parameter vector
that is different from zero

Opmin = min |67 |

(u,v)€ET

Intuitively, the success of the recovery should depend om Iard it is to distinguish the true
non-zero parameters from noise.
Theorem 5.1. Assume that the dependency condition A1 holds @ith, D..;, and D,,.., that
for each nodeu € V, the Fisher information matriXQ” satisfies the incoherence condition
A2 with parametely, the smoothness assumption A3 holds with parameéterand that the
kernel function used ifd.7) satisfies assumption A4 with parameléy;. Let the regularization

parameter satisfy
Vlogp

n1/3

for a constantC' > 0 independent ofn, p, s). Furthermore, assume that the following conditions
hold:

A > C
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1. h=0(n"s)

2. s =o(n'/?), TIE = o(1)

3. O = Q(YHEL).
Then for a fixed- € [0, 1] the estimated grap&™ (),,) obtained through neighborhood selection
satisfies

N n2/3
PG (\,) # GT] =0 (exp <—C? + ' logp)) — 0,

for some constants’, C” independent ofn, p, s).

This theorem guarantees that the procedure in Algorithmyfnpsotically recovers the se-
guence of graphs underlying all the nodal-state measursnrea time series, and the snapshot
of the evolving graph at any time point during measuremedstvals, under appropriate regular-
ization parameteh,, as long as the ambient dimensionalitand the maximum node degree
are not too large, and minimuéhvalues do not tend to zero too fast.

Remarks:

1. The bandwidth parametéris chosen so that it balances variance and squared bias of

estimation of the elements of the Fisher information matrix

2. Theoreni 5]l states that the tuning paramatean be set as,, > Cn~/3\/Iogp. In
practice, one can use the Bayesian information criterisetect the tuning parametgy,
is a data dependent way, as explainegirl. We conjecture that this approach would lead
to asymptotically consistent model selection, howeveés, ¢taim needs to be proven.

3. Condition 2 requires that the size of the neighborhoocachenode remains smaller than
the size of the samples. However, the model ambient dimensie allowed to grow
exponentially inn.

4. Condition 3is crucial to be able to distinguish true elataén the neighborhood of a node.
We require that the size of the minimum element of the paramadctor stays bounded
away from zero.

5. The rate of convergence is dictated by the rate of conneryef the sample Fisher infor-
mation matrix to the true Fisher information matrix, as shamwLemmd5.B. Using a locall
linear smoother, instead of the kernel smoother, to eséirtted coefficients in the model
(4.8) one could get a faster rate of convergence.

6. Theorem5]1 provides sufficient conditions for relialgereation of the sequence of graphs
when the sample size is large enough. In order to improvel saalple properties of the
procedure, one could adapt the approac@f [76] to the tiamghvg setting, to incorpo-
rate sharing between nodeE[76] estimate all the locahbeidioods simultaneously, as
opposed to estimating each neighborhood individuallgai¥ely reducing the number of
parameters needed to be inferred from data. This is espyelo@ieficial in networks with
prominent hubs and scale-free networks.

In order to obtain insight into the network dynamics one sdedstimate the graph structure
at multiple time points. A common choice is to estimate thepbrstructure for every € 7,, and
obtain a sequence of graph structufés } .., . We a have the following immediate consequence
of Theoreni 5.11.
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Corollary 5.1. Under the assumptions of Theoreml 5.1, we have that

P|vreT, @T(An):GT] noo

In the sequel, we set out to prove Theofen 5.1. First, we shatite minimizeﬁ; of (4.1) is
unique under the assumptions given in Thedrem 5.1. Nexthaw that with high probability the
estimatorgd] recovers the true neighborhood of a nadeRepeating the procedure for all nodes
u € V we obtain the result stated in Theoreml5.1. The proof usesethéts that the empirical
estimates of the Fisher information matrix and the covagamatrix are close elementwise to
their population versions.

5.3 Proof of the main result

In this section we give the proof of Theorédm|5.1. The proofiie through a sequence of
technical lemmas. We build on the ideas develope [15dfeNhat in what follows, we use
C,C" and C” to denote positive constants independentrafp, s) and their value my change
from line to line.

The main idea behind the proof is to characterize the minimbiained in[(4.J7) and show
that the correct neighborhood of one node at an arbitrarg point can be recovered with high
probability. Next, using the union bound over the nodes ofagph, we can conclude that the
whole graph is estimated sparsistently at the time pointstefest.

We first address the problem of uniqueness of the solutiod.#).( Note that because the
objective in [[4.Y) is not strictly convex, it is necessarystmw that the non-zero pattern of the
parameter vector is unique, since otherwise the problenparfssstent graph estimation would
be meaningless. Under the conditions of Thedrerh 5.1 we Hetelte solution is unique. This
is shown in Lemm@&5]1 and Lemimalb.2. Lenima 5.1 gives conditioner which two solutions
to the problem in[(4]7) have the same pattern of non-zeroaiesnLemma’]2 then shows, that
with probability tending tal, the solution is unique. Once we have shown that the soldtion
the problem in[(4.]7) is unigque, we proceed to show that itvemothe correct pattern of non-
zero elements. To show that, we require the sample versidineoFisher information matrix
to satisfy certain conditions. Under the assumptions ofofém[5.1, Lemm&a5l3 shows that
the sample version of the Fisher information matrix satisfree same conditions as the true
Fisher information matrix, although with worse constamsxt we identify two events, related
to the Karush-Kuhn-Tucker optimality conditions, on whitte vectorf, recovers the correct
neighborhood the node This is shown in Propositidn 8.1. Finally, Proposition] Stibws that
the event, on which the neighborhood of the nadecorrectly identified, occurs with probability
tending tol under the assumptions of Theoreml5.1. Tablé 5.1 providesansuy of different
parts of the proof.

Let us denote the set of all solution fo (4.7)@§\,,). We define the objective function in
(4.1) by

F(0,) ==Y wiy(0u;x") + \,|[04] |1 (5.1)

teTn
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Table 5.1: Outline of the proof strategy.

Result Description of the result

Lemmd5.l and Lemma’.2 These two lemmas establish the unique
ness of the solution to the optimization
problem in [4.7).

Lemmd5.B Shows that the sample version of the
Fisher information matrix satisfies the
similar conditions to the population ver-
sion of the Fisher information matrix.

Propositiod 5.11 Shows that on an event, related to the
KKT conditions, the vecto®, recovers
the correct neighborhood the node

Propositioi 5.2 Shows that the event in Proposifion 5.1
holds with probability tending ta.

and we say thal, € RP~! satisfies the systens] when

— _ ZteTn th(VV(Ouv Xt))v - )\n Sign(euv) If euv 7& 0
Yo = 1,... P 1, { | Zte% wz—(V’Y(Ou; Xt))v| < )\n if euv =0, (5.2)
where
V(0,5 x") = x{, {2, + 1 — 2Py, [}, = 1|xt\u]} (5.3)

is the score function. Eq.(3.2) is obtained by taking the-gt#lient of 7(6) and equating it
to zero. From the Karush-Kuhn-Tucker (KKT) conditions itléws thatd, ¢ RP~! belongs
to ©(\,) if and only if 8, satisfies the systens]. The following Lemma shows that any two
solutions have the same non-zero pattern.
Lemma 5.1. Consider a node, € V. If 8, € R*~! and@, € R?~! both belong tad(\,) then
(xt\u,@) = <x§u,5u>,t € 7,,. Furthermore, solutiong,, and 6, have non-zero elements in the
same positions.

We now use the result of Lemrhab.1 to show that with high priityathe minimizer in (4.T)
is unique. We consider the following event:

QOl - {Dmin —0 S yligsy S Dmax + 0 y € Rsa ||Y||2 - 1}
Lemma 5.2. Consider a node € V. Assume that the conditions of Lenimd 5.6 are satisfied. As-

sume also that the dependency condition Al holds. Thereastants”, C’, C"” > 0 depending
on M and My only, such that

P[Qy] > 1 — 4exp(—C'nh(é — C'h)? + C" log(s)).
S
Moreover, on the eveffl;, the minimizer of{d.4) is unique.
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We have shown that the estimzﬁgais unique on the everiy,, which under the conditions
of Theoreni 5.1 happens with probability converging to 1 egudially fast. To finish the proof
of Theoren 51l we need to show that the estingiitbas the same non-zero pattern as the true
parameter vectof]. In order to show that we consider a few “good” events, whiapgen
with high probability and on which the estimaﬁg has the desired properties. We start by
characterizing the sample version of the Fisher infornmatnatrix, defined in[(5.10). Consider
the following events:

Q02 = {Cmin - 5 S y/Qg’Sy Yy € Rsv Hy||2 = 1}
and N _ o
Qog = {H‘Qgcs<Qgs)_1|Hoo <1- 5}

Lemma 5.3. Assume that the conditions of Lemimd 5.6 are satisfied. Assismthat the depen-
dency condition Al holds and the incoherence condition A@shwith the incoherence parame-
ter «. There are constants, C’, C” > 0 depending on\/, My and« only, such that

2

+ C'log(s))

h
P[] > 1 — 2exp(—c”8,f

and h
n 1
P[Qos] > 1 - exp(—C’E + C"log(p)).

Lemmad 5.8 guarantees that the sample Fisher informationxsatisfies “good” properties
with high probability, under the appropriate scaling of jiizesn, p, s andh.

We are now ready to analyze the optimum to the convex proddanmy. (To that end we apply
the mean-value theorem coordinate-wise to the gradiemeofveighted logloss

Z wlVy(0,;x")
teTn
X and obtain
S wi (V8 x") — =D wi v (0 x))(0; — 0]) + AT, (5.4)
teTn teTn

whereA™ € RP~! is the remainder term of the form

= 3w (V@) x") — V(6] x"))], (0] - 6])

teTn

andﬁ( is a point on the line betweddy, andGT and[-]/, denoting the-th row of the matrix. Re-
call thatQ™ = > et Wi V*y(67;x"). Using the expansiofi(3.4), we write the KKT conditions
given in [5.2) in the following formyv = 1,...,p — 1,

QT(B —0))+> e wi(Vy(07; X))y + A7 = N sign(0y,) i 04y #0 (5.5)
Q7 (0. — 07) + X e, Wi (VAUOL X))y + AT < A, if 0y = 0.
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We consider the following events

Qo = Qo1 N Qo2 N Qga,

={W e S : [M((Qhs) " sign(03)), — ((QGs)"WE).| < |07, ]}

and
c T AT AT — T Q
Oy ={Voe S [(WE — Qhs(Qfs) " WE)| < §>\n}
where
= w V(O] x") + A,
teTn

We will work on the evenf), on which the minimum eigenvalue (ﬁgs is strictly positive and,
s0,Q% Is regular andy, N 2, and$, N 2, are well defined.
Proposition 5.1. Assume that the conditions of Lemimd 5.3 are satisfied. T eve

{v87 € R~ solution of(S), we havesign(8) = sign(67)} N
contains evenf), N 2 N €.

Proof. We consider the following linear functional
G { R® — RS
L0 = 0-05+(Qhs) WG — A\i(QFs) " sign(65).
For any two vectory = (y1,...,ys) € R®andr = (r,...,r,) € R%, define the following set

centered ay as

S

B(y,r) = H(yz — T Yi T 1)
Now, we have
G (B(0%,10%)) = B ((Qs) "W — A(Qis) " sign(63), 16 )

On the evenf), N 4,
0 € B ((Qis) Wi — Au(Qis) " sign(6%), 163 )

which implies that there exists avect@g € B(673,03|) such thaiG(85) = 0. For@y it holds
thatly = 07 + A\, (QL) ' sign(6%) — (QLg) *W7 and |6 — 075 < |07]. Thus, the vectof
satisfies
sign(@) = sign(67)
and R
Qss(05 — 05) + W = A, sign(6). (5.6)
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Next, we consider the vectér = ( s ) wheref. is the null vector oR?~1-*. On event
SC
Qo, from Lemmé&5.B we know thgiQt.4(Q%g) 'l < 1 — %. Now, on the evenf, N Q, it
holds

||QEes (@ — 05) + Wi ||
| — Qes(QLs) "W + Wi + X, Qhes(Qhs) ' sign(0)][ee < An-

Note that for6", equations[(5]6) and(3.7) are equivalent to saying fhaatisfies conditions
(G3) or [5.2), i.e., saying th& satisfies the KKT conditions. Sineézn(fg) = sign(67), we
havesign(0') = sign(@7). Furthermore, because of the uniqueness of the solutidh.) ¢n

T

the event), , we conclude thaﬁj =0 . O

(5.7)

Propositio 5.11 implies Theordm b.1 if we manage to showttieévent), N, N, occurs
with high probability under the assumptions stated in Tea®b.1. Proposition 5.2 characterizes
the probability of that event, which concludes the proof bédreni 5.11.

Proposition 5.2. Assume that the conditions of Theorleml 5.1 are satisfied. {feza are con-
stantsC, C’ > 0 depending onV/, My, Dy.x, Cimin @nda only, such that the following holds:

P[Q N QN Q) > 1 — 2exp(—Cnh(N, — sh)® + log(p)).

Proof. We start the proof of the proposmon by giving a technicahiea, which characterizes
the distance between vectaﬁ; 6" and@’ under the assumptions of Theorem 5.1, wiérés
constructed in the proof of Proposmﬁﬁ 1. The followiegima gives a bound on the distance
between the vecto@; and@7, which we use in the proof of the proposition. The proof of the
lemma is given in Appendix.

Lemma 5.4. Assume that the conditions of Theoreml 5.1 are satisfied. eTéer constants
C,C" > 0 depending oV, My, Dy, Crnin @nda only, such that

sl
165 — 63|, < Y2 O8P (5.8)

/3
with probability at leastl — exp(—C"logp).
Using Lemmd. 54 we can prove Proposition 5.2. We start byystgdhe probability of the
event(2,. We have
~ ~ _ - o
ch C UveSC{WU + (QECS(QES) IWS)U > §>‘n}
Recall thatW™ = >, -~ w/V~y(0];x") + A”. Let us define the event

T T. b a)\n
93_{1<m<ax |e Zwtv’Y(euaX” < 4(2_@)}7

teTn

wheree, € RP~! is a unit vector with one at the positierand zeros elsewhere. From the proof
of Lemmd5.4 available in the appendix we have tH&t;] > 1 — 2 exp(—C'log(p)) and on that
event the bound given i (5.8) holds.
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On the evenf2;, we bound the remainder terd™. Letg : R — R be defined as

4exp(2z)
(1+exp(22))?

9(2) =

Thenn(x; 6.,) = g(x,(0,,x\,)). Forv € {1,...,p—1}, using the mean value theorem it follows
that
Ay = [ 0l (V5(8,:x") = V2(0:x))], (0] - 07)
teTn
T 7 T ! ola T
= Z Wy [U(Xt? Ou ) - n(xt; eu)] [Xt\uxt\u];[eu - eu]
teTn
_(v —(v

11p®)

teTn

T 7®) T " 1T T
= Z Wy {g u u 7X\u>) Zzi}{[eu - eu],xt\uxiu [eu - eu]}7

teTn

0;)[=x!, )67 — 67]

—(v)
uv)

19’ (23,0, ,x\,))7,2,| < 1, forallt € 7, so we have

where@, is another point on the line joininé;’ and @7. A simple calculation shows that

5(v) T T " \ioT T

teTn
< [0; - 0){>_ wix{,x{,}[0] - 6]]
t€Tn (5.9
= [05 — 05D wixix}[05 — 0%
teTn

S Dmax||eg - 0;”%

Combining the equationk (5.9) ard (5.8), we have that ontbet€);

An
max |A,| < ONs < a
1<v<p—1 4(2 —_ a)

where(' is a constant depending dn,,., andC,,;, only.
On the evenf), N 23, we have

a, a,
22—a) =~ 2

a,
22— )

W+ (Qhes(Qis) W), < +(1-a)

and we can conclude th&2;] > 1 — 2exp(—C'log(p)) for some constant’ depending on
M, My, Crin, Dmax @anda only.
Next, we study the probability of the eveff. We have

Qf C Upes{Aa((Qhg) ™' sign(0)), + ((Qs) ™' WE), > 607,
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Again, we will consider the evefil;. On the evenf), N Q23 we have that

M (Q5e) " sign(62)), + (Qhs) WD), < VS Moy

- Cmm C'min
for some constant’. When#,,;,, > C\,+/s, we have thaP[2;] > 1 — 2exp(—C'log(p)) for
some constant' that depends on/, My, C\in, Dmax @anda only. O

In summary, under the assumptions of Theokerm 5.1, the pildgalf event Q0 N QN
converges to one exponentially fast. On this event, we havess that the estimatd is the
unique minimizer ofi(4J7) and that it consistently estinsdtee signed non-zero pattern of the true
parameter vecto’, i.e., it consistently estimates the neighborhood of a nod@pplying the
union bound over all nodes € V/, we can conclude that the estimation procedure consigtent!
estimates the graph structure at a time point

5.4 Numerical simulation

In this section, we demonstrate numerical performance gbAthm[1. A detailed comparison
with other estimation procedures and an application tajichl data has been reportediin [112].
We will use three different types of graph structures: amchainearest-neighbor and a random
graph. Each graph has= 50 nodes and the maximum node degree is bounded-byt. These
graphs are detailed below:

Example 1: Chain graph. First a random permutationof {1,...,p} is chosen. Then a graph
structure is created by connecting consecutive nodes ipdirautation, that is,

(W(l)v 71-(2))7 ) (7T(p - 1)7 ﬂ(p)) S

Example 2: Nearest neighbor graph. A nearest neighbor graph if generated following the
procedure outlined i 9]. For each node, we draw a poiiformly at random on a unit
square and compute the pairwise distances between nodeh ngde is then connected to
4 closest neighbors. Since some of nodes will have more thadjatent edges, we remove
randomly edges from nodes that have degree larger thanl4hethaximum degree of a node
inagraphis 4.

Example 3: Random graph. To generate a random graph with= 45 edges, we add each
edges one at a time, between random pairs of nodes that feaxede degree less than 4.

We use the above described procedure to create the firstmagdaphG®. Next, we ran-
domly add 10 edges and remove 10 edges fédtaking care that the maximum node degree
is still 4, to obtainG'. Repeat the process of adding and removing edges orto obtain
G?,...,G°. We refer to these 6 graphs as the anchor graphs. We will ralydgenerate the
prototype parameter vectoé, .. ., 8°, corresponding to the anchor graphs, and then interpo-
late 200 points between them to obtaln the parame{@ﬁs}ten, which gives us: = 1000. We
generate a prototype parameter vedofor each anchor graptﬁZ i €40,...,5}, by sampling
non-zero elements of the vector independently franif ([—1,0.5] U [0.5, ]). Now, for each
t € 7, we generatd0 i.i.d. samples using Gibbs sampling from the distribufitgn. Specifi-
cally, we discard samples from the fidst* iterations and collect samples every) iterations.
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Table 5.2: Summary of simulation results. The number of sgde 50 and the number of discrete time
pointsn. = 1000.

Number of independent samples
1 2 3 4 5 6 7 8 9 10
Chain 0.75 0.95 0.96 0.96 0.97 0.98 0.99 0.99 0.99 0.99
Precision NN 0.84 0.98 0.97 0.96 0.98 0.98 0.98 0.98 0.97 0.98
Random 0.55 057 0.65 0.71 0.75 0.79 0.83 0.84 0.85 0.85

Chain 059 065 069 0.72 0.73 0.73 0.73 0.73 0.73 0.73
Recall NN 0.48 057 061 0.63 0.63 0.64 0.64 0.64 0.65 0.65
Random 0.50 0.52 055 0.56 0.56 0.58 0.60 0.60 0.63 0.66

Chain 0.66 0.76 0.80 0.82 0.83 0.84 0.84 0.84 0.85 0.84
F1 score NN 0.61 0.72 0.74 0.76 0.77 0.77 0.77 0.77 0.77 0.78
Random 0.52 054 0.60 0.63 0.64 0.67 0.70 0.70 0.72 0.74

We estimatest for eacht € 7, usingk € {1,...,10} samples at each time point. The
results are expressed in terms of the precigixe) and the recal(Rec) and F'1 score, which is
the harmonic mean of precision and recall, ifél,:= 2 « Pre « Rec/(Pre + Rec). Let £ denote
the estimated edge set®@f, then the precision is calculatedas := 1/n e |E'NE!|/|E|

and the recall aRec := 1/n) , |E' N E'|/|EY|. Furthermore, we report results averaged
over 100 independent runs. The tuning parameters are selected bynizarg the BIC score
over a grid of regularization parameters as describefli§. Tabld 5.2 contains a summary of
simulation results.

We perform an additional simulation that illustrates th&t ¢onditions of Theorem 5.1 can be
satisfied. We will use the random chain graph and the neagégtimor graph for two simulation
settings. In each setting, we generate two anchor graphspwiodes and create two prototype
parameter vectors, as described above. Then we intergbk&de two parameters overpoints.
Theoreni 5.1 predicts the scaling for the samplesjzes a function of other parameters, required
to successfully recover the graph at a time painfTherefore, if our theory correctly predicts
the behavior of the estimation procedure and we plot the hamuetistance between the true
and recovered graph structure against appropriately lsssample size, we expect the curves
to reach zero distance for different problem sizes at a sanimt. (fhe bandwidth parametéris
set ash = 4.8n~'/3 and the penalty parametgy; as )\, = 21/n-2/3log(p) as suggested by the
theory. Figuré 5J1 shows the hamming distance against tledssample size/(s*®log"”(p)).
Each point is averaged over 100 independent runs.

5.5 Discussion
In the chapter, we focus on sparsistent estimation of the-tiarying high-dimensional graph
structure in Markov Random Fields from a small size sample.imeresting open direction is

estimation of the graph structure from a general time-sevidere observations are dependent.
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In our opinion, the graph structure that changes with tineatas the biggest technical difficul-
ties. Incorporating dependent observations would be aerga®blem to address, however, the
one of great practical importance, since samples in thedadal sets are likely to be dependent.
Another open direction is to establish necessary conditittncomplement sufficient conditions
established here, under which it is possible to estimatme-tiarying graph structure. Another
research direction may be to use non-convex penaltiesdnted by [[64] in place of thé,
penalty. The idea would be to relax the condition imposetiéassumption A2, since it is well
known that the SCAD penalties improve performance when éhiables are correlated.

5.6 Technical results

5.6.1 Large deviation inequalities

In this section we characterize the deviation of elements@sample Fisher information matrix
Q QT at time pointr, defined as

= > win(x";0])x{ x{,, (5.10)
t

and the sample covariance matBiX from their population version®™ andX". These results
are crucial for the proof of the main theorem, where the @tescy result depends on the bounds
on the differenc&®”™— Q™ andX™—X7. In the following, we us€’, C’ andC"” as generic positive
constants independent of, p, s).

Chain Graph Nearest Neighbor Graph
1009 Y = Sp—y 100 W =p =00
' -%-p =100 V! -%-p =100
@ X - p=140 O 1 0 e p = 140
(&) (&) \
c - c 80+ \
@ @®
+— +— X
0 %) \
© © 60+
o (@)
= £
- = 40
S S
cIG % 204
0

15 20 25 30 20 25 30 35
Scaled sample size n/(s*°log"’(p)) Scaled sample size n/(s*° log"’ (p))

Figure 5.1: Average hamming distance plotted against theated sample size. Each column represents
one simulation setting. Results are averaged over 100 émamt runs.
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Sample Fisher information matrix

To bound the deviation between element€¥f= [77,] andQ™ = [¢7,.], v. v’ € V\u, we will
use the following decomposition:

| _qvv|<|zwtnX0Tx v’ Zwtnx 0tl’l’|
teTn teTn
+|Zw[nx 0!)x! !t —EZwtnx 0!)x! 2! ]| (5.11)
teTn teTn
+|E2wtnx 0! )tz —ql |
te€Tn

The following lemma gives us bounds on the term$in (5.11).

Lemma 5.5. Assume that the smoothness condition A3 is satisfied andhih&ernel function
K (-) satisfies A4. Furthermore, assume

max [{v e {1,...,p} : 0!, #0} <s,
te[0,1]
e., the number of non-zero elements of the parameter vectoounded bys. There exist
constants”, C’,C” > 0, depending onV/ and My only, which are the constants quantifying
assumption A3 and A4, respectively , such that forasmy[0, 1|, we have

max |Gy — Zwtn (x5 0%)xtal,| = Csh (5.12)
teTn
max [E[ > win(x'0,)atal] — g = C'h. (5.13)
t€Tn
Furthermore,
| Z n(x'; 0!t xt, — Elwin(x"; 0°) X! X)) < e (5.14)

teTn

with probability at leastl — 2 exp(—C"nhe?).

Proof. We start the proof by bounding the differerjgéx; 6:7°) —n(x; 6! )| which will be useful
later on. By applying the mean value theoremyts; -) and the Taylor expansion aff, we
obtain:

p—1 —(v) . . .
. gt+s 0')| = (015 — 9t Yof( E(v) 0, is apoint onthe line
In(x: 0,7) = mix; | ; ) betweeng’+ and@?,

< Z 0550 — 6L () < 1)
v=1

- 82 02

; 9 @ uv

1

0

o=—0' +
‘at uv

t=B, betweent andt + §

| ( f3, is a point on the Iine)
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Without loss of generality, let = 1. Using the above equation, and the Riemann integral to
approximate the sum, we have

|Zw§nx 07 )x! x!, Zwtnx 0!)xl 2! |

teTn teTn

2 =T z. T 2. N2\ 2 02
< | [ 2RETD 06 07) — o 0l

0

<2 / K()[n( " 07) — n(x"; 6,+")|d
1
“h

0 p—1 a .
< / /
< 2/_1K(z)[v: Shd|

(Z,h)z 0 t

/
2 8t2 uv t:BdeZ

< Csh,

for some constant’ > 0 depending onV/ from A3 which bounds the derivatives in the equa-
tion above, andV/; from A4 which bounds the kernel. The last inequality follofsem the
assumption that the number of non-zero components of tHen@cis bounded bys.

Next, we prove equatiof (5.113). Using the Taylor expandimmany fixedl < v,v' <p—1
we have

By win(x';0,)ata] — ap,|
te€Tn
= |Zwt qvv qvv |
te€Tn
8 (t—1)* 0% ,
= ((t — —— b
|teZth T 8tqvv 2 8t2qvv t=§|7

where¢ € [t, 7]. Sincew] = 0 for |t — 7| > h, we have

max|EZwtnX 0 )xlal, ) —ql,| < C'h

teTn

for some constant’ > 0 depending on\/ and My only.
Finally, we prove equation (5.114). Observe that

win(x'; 0)z,),

are independent and bounded random variaples , w;]. The equation simply follows from
the Hoeffding’s inequality. O

Using results of Lemm@a8.5 we can obtain the rate at which lgment-wise distance be-
tween the true and sample Fisher information matrix decay®to as a function of the band-
width parameter, and the size of neighborhoad In the proof of the main theorem, the band-
width parameter will be chosen so that the bias and variaeroestare balanced.
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Sample covariance matrix

The deviation of the elements of the sample covariance xiatbiounded in a similar way as the
deviation of elements of the sample Fisher information imagjiven in Lemmd5.)5. Denoting
the sample covariance matrix at time poirds

= E wix'x",
t

and the difference between the element&ofand X" can be bounded as

‘aqu—v_o-z;v‘ = |Zw7—xtxt —O' |
teTn
t t t
< | Y wizyr, —E[Y | wiw,z)] (5.15)
teTn teTn
+ B[ wizlal] — o, |.
teTn

The following lemma gives us bounds on the term$in (5.15).

Lemma 5.6. Assume that the smoothness condition A3 is satisfied andhth&ernel function
K () satisfies A4. There are constardtsC’ > 0 depending onV/ and My only such that for
anyr € [0, 1], we have

max [E[> _ w]zlal] — o7,| < Ch. (5.16)
o teTn
and
|Zw7xtxt—EZw7t 2l <e (5.17)
teTn teTn

with probability at leastl — 2 exp(—C'nhe?).

Proof. To obtain the Lemma, we follow the same proof strategy aseérptivof of Lemma515.
In particular, [5.1B) is proved in the same way [as (5.13) Bnff7] in the same way as (5]14).
The details of this derivation are omitted. ]

5.6.2 Proof of Lemmd5.1

The set of minima(\,,) of a convex function is convex. So, for two distinct pointswhima,
0., andg;, every point on the line connecting two points also belongsinima, i.e.£0, + (1 —
5)5; € O(\,), foranyé € (0,1). Letn =6, — 6, and now any point on the line can be written
asf, + ¢n. The value of the objective at any point of minima is constard we have

F(0,+¢n)=c, €£€(0,1),
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wherec is some constant. By taking the derivative with respegted F'(0,, + £n) we obtain

S [ exp((B, + €, x!,)) — exp(— (0, + £, %))

—l’u + = " ~ L <777 Xt\u>
teTh, exp(<0u + 5777 X\u>) + exp(—(@u + gn’ X\u>>
B (5.18)
+ A\ Z Mo sign(@w +&n,) = 0.
v=1

On a small neighborhood gfthe sign of6, + ¢n is constant, for each componentsince the
function 8, + £n is continuous ir. By taking the derivative with respect toof (5.18) and
noting that the last term is constant on a small neighborlwdgdve have

) exp(=2(0, + €n.x.,))
4Zwt <I’77X<u>2 L

=0.
- 2
teTn <1 + exp(—2(0, + &, Xt\u>))

This implies thatn, x{,,) = 0 for everyt € 7,,, which implies tha(xt\uﬁu) = (x{,; 0u), t € T,

for any two solution®,, and@,,. Sinced, andd, were two arbitrary elements 6f(\,,) we can
conclude thatxt\u, 0.),t € T, is constant for all elemen®, € O()\,).

Next, we need to show that the conclusion from above imphas any two solutions have
non-zero elements in the same position. From equdtioh, ()lows that the set of non-zero
components of the solution is given by

- A} |

> Wi (V(0.:x)),

teTn

S:{lgvgp—l:

Using equation(5]3) we have that
Y wi (V05 x)), =

teTn

S uf a1 -2

teTn

exp(22,(6],x! )
exp(22, (67, x7,)) + 1

})'U?

which is constant across different elemefifsc O(\,), since(xt\u, 0.),t € T, is constant for
all 8, € ©()\,). Thisimplies that the set of non-zero components is the $anadl solutions.”]

5.6.3 Proof of LemmdB5.P2

Under the assumptions given in the Lemma, we can apply thét ifd emmab.6. Ley € R
be a unit norm minimal eigenvector &f; .. We have

T : / T
Anin(X5g) = Hn‘a‘mlx 35X
X||o=

= Hn‘a‘in {Xligsx + X' (X5 — igs)x }
x|l2=1

< ¥y'ELy +¥ (Ess — X59)y,
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which implies N N
Amin(zg‘s) > Dinin — |||(Eg”s - Egsﬂ”z-

Let X" = [o7,] and%" = [57,]. We have the following bound on the spectral norm

s s 1/2
155 — Sigll2 < (Z > @G, - 0;,)2) <,

u=1 v=1

with the probability at least — 2 exp(—Cnh(2 — C'h)? + C" log(s)), for some fixed constants
C,C",C" > 0 depending o/ and M only.
Similarly, we have that R
AmaX(EgS) < Dmax + 57

with probability at leastl — 2exp(—Cnh(2 — C'h)* + C"log(s)), for some fixed constants
C,C",C" > 0 depending o/ and M only. o
From Lemmd3J1, we know that any two solutidhs 6, € ©(\,) of the optimization prob-

lem (4.7) have non-zero elements in the same position. Banfotwo solution®,,, 8, € O(),,),
it holds

X\u(gu - gu) = X\u,S(au - gu)S + X\u,Sc(gu - gu)SC = X\u,S(gu - éu)s

Furthermore, from Lemnia 5.1 we know that the two solutioesmthe kernel oKX, s. On the
event()y, kernel ofX,, s is {0}. Thus, the solution is unique &R, . O

5.6.4 Proof of Lemmd5.B

We first analyze the probability of the eveig,. Using the same argument to those in the proof
of Lemmd5.2, we obtain

Amin(QZg) > Cuin — [|Q5s — Qisllo-

Next, using results of Lemnia’.5, we have the following bound

s s 1/2
I1Q%s — Qslla < (Z > (@, - q&f) <9, (5.19)

u=1 v=1

with probability at leastl — 2exp(—(]”g§2 + 2log(s)), for some fixed constants,C’ > 0
depending onV/ and M only.
Next, we deal with the evelily;. We are going to use the following decomposition

Qies(Qhs) ™" = Qiesl(Qhs) ™ — (Qhs)
+ [Qbes — Qhes(Qfg) ™
+ [Qbes — Qaesl(Q%e) ™" — (QGs) 7]
+ Qies(Qiy) ™
=T +1T5+T5+ T}
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Under the assumption A2, we have thdt||.. < 1 — «. The lemma follows if we prove that
for all the other terms we haye ||, < . Using the submultiplicative property of the norm, we
have for the first term:

ITilloe < 1Q5es (Q%s) ™" Nl QEs — Qisllocl(QEs) ™l

° ool (5.20)
< (1-a)llQ5s — Qssllo Vsl (Qss) "l

—~ -1
Using (5.19), we can bound the telhh(QEs) lo < C”, for some constant depending 6%,

only, with probability at least — 2 exp(—C™2 + 2log(s)), for some fixed constartt > 0. The
bound on the ternff Q% s — Q% follows from application of Lemma5.5. Observe that

PllQss — Qsslls = 0] = P[rgeag{z |G — G|} = 6]
v'es (5.21)
< 2 exp(—C’nh(g — ('sh)? 4 2log(s)),
for some fixed constants, C’ > 0. Combining all the elements, we obtain the bound on the
first term||71 ]|« < &, with probability at least — C exp(C'% + C” log(s)), for some constants
c,C’',C" > 0.
Next, we analyze the second term. We have that

IT2lle < 1Q%es — Qeslloov/sl (QEs) ™" Il2
NG

< X2 1QEes — Qk
15 — Qs

The bound on the terfiQ%¢ — Q% follows in the same way as the bound [A{5.21) and we
can conclude thafTs[l., < ¢ with probability at least — C exp(C'2% + C" log(p)), for some
constants”, ', C" > 0.

Finally, we bound the third terfh;. We have the following decomposition

I1Q%:s — Q5esll(QFs) ™" — (Qhs) Tl
< 1Qes — Qheslloe V3l (QEs) " [QEs — QEsl(Q5s) I

V5 e S A
o NQ5es — Qaesll Qs — Qs l2(Q5s) "Il
min

Bounding the remaining terms as in equatidns (5.22), [5afdl)(5.20), we obtain th3T;||., <
2 with probability at least — C exp(C'2 + C" log(p)).
Bound on the probability of evefity; follows from combining the bounds on all terms[]

(5.22)

|OO‘

<

5.6.5 Proof of Lemmd5.4

To prove this Lemma, we use a technique@154] applied tgptbelem of consistency of the
penalized covariance matrix estimator. Let us define tHevidhg function

I RF — R
| D = F(0;+D)-F(0)),
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where the functior'(-) is defined in equatio_(3.1). The functiéfy-) takes the following form

)= wi(y( — (07 + D;x"))

teTn

An (1167 + DIl = [16:]11)-

Recall the minimizer ofi(417) constructed in the proof of gsition[5.1, OT = (5;, <o)
The minimizer of the functior/(-) is D = 87 — 6. FunctionH (-) is convex andH (0) = 0 by
construction. TherefoH(f)) < 0. If we show that for some radiu8 > 0, andD € R? with
ID||> = B andDg. = 0, we haveH (D) > 0, then we claim tha D||, < B. This follows from
the convexity off (-).

We proceed to show strict positivity df (-) on the boundary of the ball with radius =
K\,+/s, whereK > 0 is a parameter to be chosen wisely later. Detc R? be an arbitrary
vector with||D||, = B andDg. = 0, then by the Taylor expansion of-; x*) we have

= —(>_w]vy(8

teTn
_ D’[Z win(x'; 07 + aD)Xiux'{u]D
teTn
+ (1167 + DIl1 — [16]]1)
= (I)+ (II) + (II1),

(5.23)

for somex € [0, 1].

We start from the terni/). Lete, € R” be a unit vector with one at the positi@)nand
zeros elsewhere. Then random variable$ >, - w7 V~(67;x") are bounded—<, <] for all
1 <wv < p—1,with constant” > 0 depending or/x only. Using the Hoeffding inequality and
the union bound, we have

max [e},(Y _ wfVy(0:x") — B> w]Vy(0];x")])| <4,

1<v<p—1
teTn teTn

with probability at least — 2 exp(—Cnhd? + log(p)), whereC > 0 is a constant depending on
M only. Moreover, denoting

p(8,) =P [, = 1| x{,]

to simplify the notation, we have for all< v < p — 1,

el > wi V(05 x) | {x, e

teTn

— Z wi [z, +1—2p(60])] | {x\, }e7.]]

teTn

= [2) wia, —p(6)]l

teTn
0
< 4| K(2)|p(6;7") — p(6;)|d=.

(5.24)

1
R
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Next, we apply the mean value theorem @) and the Taylor's theorem oé’. Under the
assumption A3, we have

p(077*") — p(67)]

< ZIOT“" 0l (1PCI<T)

(5.25)
B J . (zh)* 9*
- vz:; |Zhat9uv = 2 at2 uv t:ay| (Oév < [T + Zh7 T] )
2
< Cs|zh + (Z;L) E

for someC > 0 depending only od/. Combining [5.2b) and (5.24) we have that

e, > wiVy(0];x")| < Csh

teTn

forall 1 < v < p— 1. Thus, with probability greater than
1 — 2exp(—Cnh(\, — sh)* + log(p))

for some constan€ > 0 depending only onV/yx, M and «, which under the conditions of
Theoreni 511 goes to 1 exponentially fast, we have

/ T T. a)\" &
teTn
On that event, using Holder’s inequality, we have
(- wiVA(85:x)YD| < ||D|y max [e], >~ w] V(85 x")]
teTn teTn

< —\/_||D||2 (An f)
The triangle inequality applied to the tefi/ I') of equation[(5.23) yields:
An(1107, + Dl1 — [[0]]1) = —Aal[Dslx
> —A\v/5||Dslls > —K (A/5)%
Finally, we bound the terrt/ I) of equation[(5.213). Observe that siflbg. = 0, we have
D) win(x; 6] + aD)x{,x{,]D

teTn

= D> win(x'; 6] + aD)xixt|Ds
teTn

> K Amin()_ win(x'; 6] + aD)xsx5)

teTn
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Letg : R — R be defined ag(z) = % Now, n(x; 0,) = g(z.(0.,%\,)) and we have

Amin( D win(x'; 0] + aD)xixy)

teTn
> ogl[%ﬁ] Amin(; wtn(xt§ 0, + aD)XtSXg)
Z min Z wtn X eT XSXg’)
teTn
~ max | Z wig'(2!,(6] + aD, x)) (a, Dl xx
Z min — max m Z ’UJ OT + aD XS))(xZDng)ngg H|2

teTn

To bound the spectral norm, we observe that for any fixed [0, 1] andy € R?,||y|]» = 1 we
have:

y{D " wig (#,(6] + oD, xk)) (x! Dsxl)xxs by

teTn

=Y wig(a (0] + aD,xk)) (! Disxk) (xky)?
teTn

<Y w]lg(al (6] + aD, x4)) (!l Disx§)|(x5y)?
teTn

<VsIDILI Y wixixll.  (lg() < 1)

t
< Dyax K Aps < Cm‘“

The last inequality follows as long as s < 5 Cmm . We have shown that

m ax

! C’min
Amin( D win(x'; 0] + aD)xix) > =,

teTn

with high probability.
Putting the bounds on the three terms together, we have

HD) > (uver {1+ Bowe i),

which is strictly positive fork’ = C . For this choice of, we have that,, s < 105““ which
holds under the conditions of Theor-5.17fd|arge enough. O
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Chapter 6

Sparsistent Estimation Of Smoothly
Varying Gaussian Graphical Models

The time-varying multivariate Gaussian distribution anel tindirected graph associated with it,
as introduced in_[206], provide a useful statistical fraragwfor modeling complex dynamic
networks. In many application domains, it is of high impade to estimate the graph struc-
ture of the model consistently for the purpose of scientifscalvery. In this chapter, we show
that under suitable technical conditions, the structurthefundirected graphical model can be
consistently estimated in the high dimensional settingemwthe dimensionality of the model
is allowed to diverge with the sample size. The model salaatonsistency is shown for the
procedure proposed i@OG] and for the modified neighbadlssdection procedure dﬂSS].

6.1 Preliminaries

In this chapter, we study consistent graph structure eittman a time-varying Gaussian graph-
ical model I@b]. Let

x'~N(0,2), teT,={1/n2/n,... 1} (6.1)

be an independent sequencepafimensional observations distributed according to a imult
variate Gaussian distribution whose covariance matrixngha smoothly over time. A graph
G' = (V, E') is associated with each observatixinand it represents the non-zero elements of
the precision matrixX2! = (X!)~! (recall thate,, € E* only if w!, # 0). With changing pre-
cision matrixQ2?, the associated graphs change as well, which allows for higief dynamic
networks. The model given if(6.1) can be thought of as a apease of the varying coefficient
models introduced in_[96]. In particular, the model in {6.ibherits flexibility and modelling
power from the class of nonparametric models, but at the $eneeit retains interpretability of
parametric models. Indeed, there are no assumptions orataeptric form of the elements of
the covariance matriX! as a function of time.

Under the mode[ (6] 1)@6] studied the problem of the cxiesit recovery in the Frobenius
norm of Q2" for somer € [0, 1], as well as the predictive performance of the fitted modelil&h
those results are very interesting and important in sikegisin many application areas, it is the
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graph structure that provides most insight into complexesyis by allowing visualiziation of re-
lational structures and mechanisms that explain the dateexample, in computational biology,
a graph estimated from a gene expression microarray prafileeveal the topology of genetic
regulation circuitry, while in sociocultural analysis, mgh structure helps identify communities
and communication patterns among actors. Unfortunatedyconsistent estimation of the graph
structure does not follow immediately from the consistestineation of the precision matri&e.
We address the problem of the consistent graph structuozegcunder the mode[(8.1). Our
work has applications in many disciplines, including cotapional biology and computational
finance, where the assumptions that the data are distributedare not satisfied. For example,
a gene regulatory network is assumed to change throughewtevelopmental process of the
organism, and a plausible way to model the longitudinal geqpession levels is by using the
multivariate Gaussian distribution with a time-evolvingisture.

The main contributions of the chapter include establislsinficient conditions for the pe-
nalized likelihood procedure, proposed mleG], to estamnthe graph structure consistently.
Furthermore, we modify the neighborhood selection procedd ] to estimate the graph
structure under the modél(6.1) and provide sufficient cmws for the graph recovery.

6.2 Penalized likelihood estimation

In this section, we show that, under some technical conditithe procedure proposed @06]
is able to consistently estimate the set of non-zero elesradrihe precision matri2™ at a given
time pointr € [0, 1]. Under the mode[(6l1), an estimator of the precision matixbe obtained
by minimizing the following objective

~

Q" = argmin {tmiT—log|ﬂ| +)\||Q‘||1}, (6.2)
Q-0
where(2~ has off-diagonal elements equal to thos&band diagonal elements equal to zero,
X7 =3, wix'(x")" is the weighted sample covariance matrix, with weights eeffias

'LUT— Kh(t—T)
¢ ZtETn Kh(t—7)7

K : R — R being the kernel function anll,,(-) = K(-/h). Note that[(6.R) extends the penalized
maximum likelihood estimation procedure givén (2.6) farleng network structure from i.i.d.
data. The tuning parametg&rcontrols the number of non-zero pattern of the estimatecigios
matrix, while the bandwidth parametércontrols the smoothness over time of the estimated
precision matrix and the effective sample size. These tuparameters depend on the sample
sizen, but we will omit this dependence in our notation. In pragtithe parameters are chosen
using standard model selection techniques in data depemasin for example, using cross-
validation or Bayesian information criterion. The kerdélis taken such that the following set
of assumptions holds.

Assumption K: The kernelK : R — R is symmetric, supported ir-1, 1] and there exists a
constantM > 1 which upper bounds the quantitiesix,cr | K (z)| andmax,cg K (7).

1

For example, the assumptiéhis satisfied by the box kernél (z) = 5 I{x € [-1,1]}.

(6.3)
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A similar estimator to the one given in(6.2) is analyzedﬁ[zand the convergence rate is
established fof|Q2™ — Q7|| . However, establishing that the estimated edge set

E™ = {(a,b) | a # b,@, # 0}

consistently estimates the true edge Bét= {(a,b) | a # b,w!, # 0} is a harder problem,
which requires stronger conditions on the true model. et max; |E*| denote the maximum
number of edges in a graph ad= max;c7, maxqcy [{b € V | a # b, e € E'}| the maximum
node degree. In the remainder of this section, we providiécgarit conditions or(n, p, d, h, \)
under which the estimator given Hy (6.2) recovers the graplttsire with high probability. To
that end, we will use some of the results established irl [152]

We start by imposing some assumptions on the true model. ladsumption assures that
the covariance matrix is not singular at any time point. Nibt if the population covariance
matrix was singular, the problem of recovering the true grapucture would be ill-defined,
since there would be no unique graph structure associatedivé probability distribution.

Assumption C: There exist constants,,.., M., < oo such that for alt € 7,, we have

1
A S Amin(zt) S Amax(2t> S Amax and m z)tmoo,oo S Moo

Furthermore, we assume thg}, = 1 foralla € V.
The next assumption captures the notion of the distribudi@nging smoothly over time.
Assumption S:Let X' = (o?,). There exists a constaffy, > 0 such that

max sup |o,,| < My, and
@b ref0,1]

max sup |67,| < My,
ab  reo0,1]

wheres!, ands’!, denote the first and second derivative with respect to time.

Assumptions similar t&C andS are also imposed iIJ[]_TZbB] in order to show consistency in
the Frobenius norm. In particular, the rate of the convergesf||Q2” — Q7||» depends on the
quantities\ ..., M., andMs,. Assumptiors captures our notion of a distribution that is smoothly
changing over time and together with assumpt®muarantees that the precision matf
changes smoothly over time as well. The common varianceeo€timponents is assumed for
presentation simplicity and can be obtained through sgalin

AssumptionsC and S are not enough to guarantee recovery of the non-zero paifdire
population precision matrif2”. From the previous work on variable selection in generdlize
linear models (see, for exampl@[GﬂS]lﬂ[lZ]) we kndvatt additional assumptions are
needed on the Fisher information matrix in order to guaentmsistent model identification. In
the case of the multivariate Gaussian distribution thedfigfformation matrix at time € [0, 1]
is given as

" =I(Q7) = () & ()7,

where® denotes the Kronecker product. The elements of the Fisfamnation matrix can be
also expressed &, ;) ;) = Corr(X; X[, X7 X7). LetS = S™ = E7J{(a, @) }eev be an
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index set of the non-zero elements@f and S¢ denotes its complement i x V. LetZ7g¢
denote theS| x |S| sub-matrix ofZ™ indexed by elements &f.

Assumption F: The sub-matriXZs is invertible. There exist constanisc (0, 1] and M7 <
oo such that

IZ505(Z5s) oo < 1= and [[(Z5s) oo < Mz

The assumptiolk is identical to the assumptions madem152]. We need torasghat it
holds only for the time point of interestat which the precision matrix is being estimated.

With these assumptions, we have the following result.
Theorem 6.1. Fix a time point of interest € [0,1]. Let {x'};c7, be an independent sam-
ple according to the moddE.1). Under the assumptionS, S, F and K there exists a con-
stantC' > 0 depending only om\,., M., Ms, My, Mz anda for which the following holds.
Suppose that the weighted sample covariance maifixs estimated using the kernel with the
bandwidth parameter satisfying = O (n='/%). If the penalty parametek in (€.2) scales as

A = O (n~'3/logp) and the sample size satisfies- Cd*(log p)*/2, then the minimizef2™ of
(6.2) defines the edge s&r which satisfies

PIET # {(a,b) | @ # b, |wl,| > Wmin}] = O(exp(—clog p)) — 0,

for some constant > 0, with w,,.,, = M, n~"'/3y/logp and M, being a sufficiently large con-
stant.

The theorem states that all the non-zero elements of thelgiogpu precision matrix27,
which are larger in absolute value than,;,, will be identified. Note that if the elements of
the precision matrix are too small, then the estimation gdace is not able to distinguish them
from zero. Furthermore, the estimation procedure doesatsxlfy include zero elements into the
estimated set of edges. The theorem guarantees consestenery of the set of sufficiently large
non-zero elements of the precision matrix at the time poirih order to obtain insight into the
network dynamics, the graph corresgondingl*meeds to be estimated at multiple time points.
Due to the slow rate of convergence@f, it is sufficient to estimate a graph at each time point
teT,.

Comparing Theorem 8.1 to the results on the static grapbtsmmestimatioZ], we can
observe a slower rate of convergence. The difference drnsesthe fact that using the kernel
estimate, we effectively use only the sample that is “cldsethe time pointr. Using a local
linear smoother, instead of the kernel smoother to redueebids in the estimation, a better
dependence on the sample size could be obtained. Finallyoteetimat, for simplicity and ease
of interpretation, Theoreiin 6.1 is stated without provideglicit dependence of the rate of
convergence on the constants appearing in the assumptions.

6.2.1 Proof of Theoreni6.1

The proof of the theorem will be separated into several psitjpms to facilitate the exposition.
Technical lemmas and some proofs are deferred to the encéptah Our proof uses some ideas
introduced in@Z].
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We start by introducing the following function
G(Q) = tr Q" —log |Q] + A||Q7|]1, VQ =0
and we say thaf2 € RP*? satisfies the systendf whenvVa #b eV x V,
(Z7)ap — (27w = =Asign((Q7w), if (7w #0
[(E7)as — (27 Ha| < A, if (7 =
It is known thatQ2 € RP*? is the minimizer of Equatior (6l.2) if and only if it satisfidsetsystem
(S). SinceG(Q) is strictly convex, the minimum, if attained, is unique. TassumptiorC
guarantees that the minimum is attained. Therefore, we tloave to worry about the possibility
of having severaf? satisfying the systems).

Recall that we use the s&tto index the non-zero elements of the population precisiatrim
Without loss of generality we write

Iss ZLgge = s
I g Z p— — .
< ISCS IScSc ’ ESC
Let 2 = Q7 + A. Using the first-order Taylor expansion of the functigiX) = X! around
Q" we have

(6.4)

Q=) - (Q)TTA@Q) T + R(A), (6.5)
whereR(A) denotes the remainder term. We consider the following tvemes/
=T N —
& = {I(Zss) (S~ £7) — R(A + Msign(@)]s] < w(n.p)}
and

E = {|ISCS(ISS) E —E +ﬁs+ 2 —ET sc—ﬁgc| <Oé)\}

where, in both events, inequalities hold element-wise.
Proposition 6.1. Under the assumptions of Theorem 6.1, the event

{SAZT € RP*? minimizer of (6.2), sign(Was) = sign(wy,) for all we| & (O,Wmin)}

contains the everdt; [ &.

Proof. We start by manlpulatlng the conditions given(in {6.4). \gsf6.3) and using the fact that
vec(() LAY = ()@ () H)A = ZA, we can rewrite[(6]4) in the equivalent
form

(IA)S -+ (Z — ZT 5 — R ; 5 = — SlgIl ))5 (66)
‘(IA)SC‘i‘(E —ZT SC— R ;SC‘<)\]I50
wherells¢ is the vector of the forn{l,1,...,1)" and the equations hold element-wise. Now

consider the following linear functional; : RISl — RIS,
0 — 6 — QL + (Zss) ™" [z — 37 — R( 3} + A(Zss)lsign(8).
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For any two vectors = (zy, ..., z5))’ € RISlandr = (ry, ..., 7)) € R, define the set
S|
B(X, I‘) = H(Zlf, — 1T + ’f’,’).

i=1

Now, we have
— =T - —_—
F(B(25, Wmin)) = B((Igs)_l[(z -3 — R(A}]g + A(Igs)‘1s1gn(ﬂg), wmin) =H.

Onthe evenE;, we haved € H and hence there exi:ﬁss € B(ﬁg, Wmin) SUCH thatF(ﬁg) =0.
Thus we haveign(i,,) = sign(w/,) for all elementga, b) € S such thatw?,| > wpi, and

IssAs + ( 3)s — (R(A D Slgn ))S (6.7)

Under the assumption on the Fisher information md&rand on the evert, it holds

Alge < ISCSAS+<§:T—ET) (ﬁ)
— Tges(Tss) ™! [ ﬂ +R‘5] (27—27)50—(1@)50 6.8)

—
+A\Zsos(Tss) " (sign ()
< AMge.

OSC
are equivalent to saying th& satisfies condition$ (6.6) dr (6.4), that is, saying fagatisfies
the systemd&). We have thasign(w,,) = sign(w],) for all (a,b) such thatiw?,| ¢ (0, wmin)-
Furthermore the solution tb (6.2) is unique. O

Now, we consider the vecte? — ( 95 ) e R”". Note that foi2, equations(6]7) an@(8.8)

Using Propositio 6]1, Theorem 6.1 follows if we show thag¢reg&, and £, occur with
high probability. The following two propositions state tllae events; and&; occur with high
probability.

Proposition 6.2. Under the assumptions of Theoreéml 6.1, there exist constants, > 0 de-
pending oM\ ., Moo, Ms, Mk, M,,, Mz anda such thatP|&,] > 1 — C exp(—Cy log p).

Proof. We will perform analysis on the event

i -z <2 (6.9)

Under the assumptions of the proposition, it follows frommireall in [@] that
PlA] > 1 — C)exp(—Cslogp).
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Also, under the assumptions of the proposition, Lemma cappéed to conclude thdt(A) <
%A. Lete; € R/l be a unit vector with at positionj and zeros elsewhere. On the eveitit
holds that

max e’ (Zss) ™ 2 — ¥ - R(A A+ )\51gn Is|

1<5<]S|

< 1(Zss) N, oo(II(E — 37)slloo + ||R(A 3s||oo + Allsign(€23)] )
(using the Holder's inequality )

4 Jogp JIog D
+O‘A < oMO8P gy V08P

for a sufficiently large constarit/,,. O

Proposition 6.3. Under the assumptions of Theorem|6.1, there &Xjst; > 0 depending on
Amax, Mo, My, My, Mz anda such thatP[&y] > 1 — C exp(—Cs log p).

Proof. We will work on the eveni4 defined in IKB:B) Under the assumptions of the proposition,
Lemmal2 in [105] givesR(A) < 22 |ete; € R”-15 be a unit vector with at position;j and
zeros elsewhere. On the eveftit holds that

max ¢ (Zses(Zss) ™| f] )+ R(A b +(Z —%)ge — R(A;Sc)
1<5<(p?=18])
< 1 Zses(Zss) ™ loooo (IIfY — 3 o + IIR(A3IIOO) IS — 57+ 1RA 1
A A
<(1- oz)% + % < @),
which concludes the proof. O

Theoreni 6.1 follows from Propositiohs BL.1,16.2 6.3.

6.3 Neighborhood selection estimation

In this section, we discuss the neighborhood selectionogmprto selection of non-zero elements
of the precision matriX2™ under the model[(6l1). The neighborhood selection proeedas
proposed inES] as a way to estimate the graph structucised to a GGM from an i.i.d.
sample. The method was applied to learn graph structure ia gemeral settings as well (see, for
example,MﬂhﬂSl]). As opposed to optimizing peed likelihood, the neighborhood
selection method is based on optimizing penalized pseikdbHood on each node of the graph,
which results in local estimation of the graph structure.i/tine procedure is very scalable and
suitable for large problems, it does not result in conststetimation of the precision matrix. On
the other hand, as we will show, the non-zero pattern of themehts of the precision matrix can
be recovered under weaker assumptions.

We start by describing the neighborhood selection metha@uthe model(6]1). Here, we
modify As mentioned in the introduction, the elements ofgithecision matrix are related to the
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partial correlation coefficients ag, = —w!,/\/wi,wi,. A well known result [130] relates the
partial correlation coefficients to a regression model whewrariableX, is regressed onto the
rest of variableX,,,
Z X0, +€, aeV.
beV\{a}

In the equation above, is independent oK, if and only if 6!, = pl, \/wt,/wi,. The relation-
ship between the elements of the precision matrix and tret fgpuare regression immediately
suggests the following estimator féfa = {07, }oev\{a}s

lw=arg min Y (x, = > wjfh)*w] + N6, (6.10)
€ teTn b#a

where the weightv] are defined in[{6]3). Note how (6]10) modifies the objectivé2if) to
estimate changing neighborhoods. The estlm%(tgdeflnes the neighborhood of the nade V/

at the time point asST = S(GT ). By estimating the neighborhood of each node and combining
them, the whole graph structure can be obtained. There areatural ways to combine the
estimated neighborhoods, using the unigfiY = (a b) | be ST Vae ST} or intersection

of different neighborhoodst™" = {(a,b) | b € ST ANa € ST} Asymptotically these two
approaches are equivalent and we will denote the resulinhgfedges ag’".

The consistency of the graph estimation for the neighbaths®ection procedure will be
proven under similar assumptions to those of Thedrein 6.1veder, the assumptios can be
relaxed. LetS = S7 = S(67,) denote the set of neighbors of the nadeUsing the index set
S, we write X7 for the|S| x |.S| submatrix of¥™ whose rows and columns are indexed by the
elements of5.

Assumption F': There exist constants € (0, 1] such that

I2505(256) oo < 1=

foralla € {1,. ..,p} (recall thatS' = S7).

The assumptloﬂ? is known in the literature as the irrepresentable condm 1181/ 190,
@] It is known that it is sufficient and almost necessanydition for the consistent variable
selection in the Lasso setting. Compared to the assumigtioat was sufficient for the consistent
graph selection using penalized maximum likelihood esiim&he assumptio#’ is weaker, see
for example,[[134] and [152].

With these assumptions, we have the following result.

Theorem 6.2. Fix a time point of interest € [0,1]. Let{x'};,c7, be an independent sample
according to the modgle.d). Under the assumptiors, S, F andK there exists a constant
C' > 0 depending only om\,,..., Mx, My and~ for which the following holds. Suppose that
the bandwidth parameter used (6.10) satisfies: = O (n~'/%). If the penalty parameteX in
(6.10)scales as\ = O (n~'/3\/log p) and the sample size satisfies> Cd*?*(log p)*?, then
the neighborhood selection procedure defines the edg@Tsetiy solving(@10)for all a € V,
which satisfies

BIE" # {(a.6) | a # b 07| > fusn}] = Olexp(—en®*(dlogp) ™)) — 0,
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for some constant > 0, with 6,,;,, = Myn~/3\/dlogp and M, being a sufficiently large con-
stant.

The theorem states that the neighborhood selection prozedm be used to estimate the
pattern of non-zero elements of the matlx that are sufficiently large, as defined &y, and
the relationship betwew(a and the elements &®". Similarly to the procedure defined §6.2,
in order to gain insight into the network dynamics, the graphcture needs to be estimated at
multiple time points.

The advantage of the neighborhood selection proceduretbggoenalized likelihood pro-
cedure is that it allows for very simple parallel implemeiuta, since the neighborhood of each
node can be estimated independently. Furthermore, thengasisms under which the neighbor-
hood selection procedure consistently estimates thetstaiof the graph are weaker. Therefore,
since the network structure is important in many problemseems that the neighborhood se-
lection procedure should be the method of choice. Howemgoraoblems where the estimated
coefficients of the precision matrix are also of importartbe, penalized likelihood approach
has the advantage over the neighborhood selection prazekiuorder to estimate the precision
matrix using the neighborhood selection, one needs firdtimate the structure and then fit the
parameters subject to the structural constraints. Howéwsas pointed out by{ﬂ?] that such
two step procedures are not stable.

6.3.1 Proof of Theoreni6.PR

There has been a lot of work on the analysis of the Lasso aatkdgprocedure (see for example
[@,@,Eb@ﬂ). We will adapt some of the standard toolprove our theorem. We will
prove that the estimatcﬂ(a defined in[(6.10) consistently defines the neighborhoodehtide
a. Using the union bound over all the nodes in the graph, wethglh conclude the theorem.
Unlike the optimization probleni_(8.2), the problem defined@.10) is not strongly convex.
Let © be the set of all minimizers of (6.110). To simplify the notatj we introduceX, € R*~!
with componentsy, = \/w]z, andX,, € R™**~! with rows equal toax{,, = /wjx{,. With this,
we say thap € RP~! satisfies the systefy ) whenforallb=1,...,p—1

29X, (X, — X\,0) = —Asign(6y) if 6, # 0

o (6.11)
12X5(X, — X\ 0)| < A if 6, = 0.
Furthermorep € O if and only if @ satisfies the systertyV"). The following result from@Z]
relates the two elements 6f
Lemma 6.1([@]). Let#, and @, be any two elements 6f. Thenf(\a(el — 0,) = 0. Further-
more, all solutions have non-zero components in the samggos

The above lemma guarantees that even though the problef) {6 Aot strongly convex, all
the solutions will define the same neighborhood.

Recall thatS = S, denotes the set of neighbors of the nad&Vithout loss of generality, we

can write
st Zss Xsse |
T T
ESCS ESCSC
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We will consider the following two events
& = {12855) 7 2XGE — Asign(03)]] < bhin

and
&1 = {125505(S5s) ! [XSE — Asign(83)] — 2X4coE| < A}, (6.12)

where, in both events, inequalities hold element-wiselar@R" is the noise term with elements
e’ = wj (e, + (6}, — 07,)'x"). Note that the noise term is not centered and includes tre bia
term. Using Lemmd3 in [@], the matrixf)gs is invertible and the event§;, and&, are well
defined.

We have an equivalent of propositionl6.1 for the neighbodsmection procedure.
Proposition 6.4. Under the assumptions of Theorem| 6.2, the event

{§<a € R”~! minimizer of 6.10) sign(.,) = sign(67,) for all |6,,] & (0, Gmin)}

contains the everl; () &,.

The theorerh 6]2 will follow from Propositidn 6.4, once we stthat the evenf; () €, occurs
with high-probability. The proof of Propositidn 6.4 is bdsen the analysis of the conditions
given in [6.11) and, since it follows the same reasoningrgimehe proof of Proposition 6.1, the
proof is omitted.

The following two lemmas establish that the evefifsand £, occur with high probability
under the assumptions of Theorem!6.2.

Lemma 6.2. Under the assumptions of Theoreml 6.2, we have that
nh

>1— Oy
P[Eg] = 1 Cl exp( ngz logd>

with constants’; and C; depending only o/, My, My and A ..

Proof. To prove the lemma, we will analyze the following three tesaparately,

T, = A(2555)" sign(6],).

T, = (2¥%4) '2X/yE', and

Ty = (28%4) '2X\E?,
whereE = E! + E?, E! € R" has elements’! = /uw]¢. andE? € R" has elements’? =
\/wg(eia — 0<a)’xt. Using the above defined terms and the triangle inequaligyneed to show

that‘Tl +T5 + Tg‘ < |T[ + |T2| + |T3| < Gmin.
Using Lemmal3 in ], we have the following chain of inequalities

1Tl < IIT]le < 2AAmax(E58)2| sign(67,)]1: < C1AVA

with probability at least — C, eXp(—C;J,#:gd) andC, C, andC5 are some constants depending
on My andA,,ax.
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Next, we turn to the analysis @f,. Conditioning onX y and using Lemmaas3 in [@], we
have that the components 0f are normally distributed with zero mean and variance bodnde
by Ci(nh)~!, whereC, depends oi/x, A.... Next, using Gaussian tail bounds, we have that

log d

Tl < C
ITallue < O/

with probability at least — Cs eXp(—C;),#:gd), where(; is a constant depending Oy, A, ax
and M.
For the termis, we have that

1730100 < N1 T5ll2 < Amax((E55)™IE]2 < 2A0max| B2

where the last inequality follows from an application of Lan13 in [@] with probability
at leastl — Cj exp(—(,*g#fgd). Furthermore, elements &2 are normally distributed with
zero mean and varianegé hn~!'. Hence, we can conclude that the tefimis asymptotically
dominated byr5.

Combining all the terms, we have thdt + T, + T3] < Mg—vgfj{%p = Onin With probability
h

at leastl — C} exp(—(bdz’fm) for constants’,, C, and sufficiently largé\/y. O
Lemma 6.3. Under the assumptions of Theoreml 6.2, we have that

nh
dlogp

P[84] 2 1-— Cl exp(—C'g )

with constants’; and C; depending only o/, Ms;, A, and~.

Proof. Only a proof sketch is provided here. We analyze the evemel&in [6.12) by splitting
it into several terms. Observe that foe S¢, we can write

Ty = B7g(The) X + [Bhs(Ths) T — Bs(Te) ' x + v

wherev! ~ N(0, (1)) with o/ < 1. Let us denotéV, € R" the vector with components
Ui = y/w]vt. With this, we have the following decomposition of the coments of the everd,.
For allb € S¢,

w1 = T5(XGg) ' Asign(65),

wz = Vi | (Xs(Sss) " Asign(0F) + g _(EY)]

Wy3 = fng;S(Ez), and

wya = B[ (X (Ss) " Asign(63) + 11, (B! + E?)|,

wherell} is the projection operator defined Bs— X(X4sXs) ' X}, E' andE? are defined
in the proof of Lemma6]2 and we have introdudgde R” as the vector with components

fr = Vi [E14(E56) " — Tig(Z5e) X
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The lemma will follow using the triangle inequality if we shiahat

max |wp 1| + |weo| + |wes| + |wea| < A
beNC

Under the assumptions of the lemma, it holds thak,c yc |wp 1| < (1 — ).

Next, we deal with the termv, ». We observe that conditioning alg, we have thatv, -
is normally distributed with variance that can be boundewhlzioing results of Lemmas in
[@] with the proof of Lemma 4 imm. Next, we use the Gaarssail bound to conclude that
maxye ye |wy 2| < yA/2 with probability at least — exp(—Caynh(dlogp)™).

An upper bound on the term, ; is obtained as follows), 3 < ||\~/'b||2||H)£(S(E2)||2 and then
observing that the term is asymptotically dominated by &ty . Using similar reasoning,
we also have that, 4 is asymptotically smaller tham, -.

Combining all the upper bounds, we obtain the desired result O

Now, Theoreni6J2 follows from Propositions 6.4, Lemma 6.8 kemmd 6.8 and an appli-
cation of the union bound.

6.4 Discussion

In this chapter, we focus on consistent estimation of thplysaructure in high-dimensional time-
varying multivariate Gaussian distributions, as introgtlin @G]. The non-parametric estimate
of the sample covariance matrix used together with/hpenalized log-likelihood estimation
produces a good estimate of the concentration matrix. Ounfiribation is the derivation of the
sufficient conditions under which the estimate consisyarttovers the graph structure.

This work complements the earlier work on value consistatiation of time-varying
Gaussian graphical models 06] in that the main focus ieethe consistent structure recov-
ery of the graph associated with the probability distribntat a fixed time point. Obtaining an
estimator that consistently recovers the structure is ddngroblem than obtaining an estimator
that is only consistent in, say, Frobenius norm. However pitice for the correct model identi-
fication comes in much more strict assumptions on the unidgripodel. Note that we needed
to assume the “irrepresentable-like” condition on the &ishformation matrix (AssumptioR),
which is not needed in the work @06]. In some problems, nelvee want to learn about the
nature of the process that generates the data, estimagistyticture of the graph associated with
the distribution gives more insight into the nature thanvkies of the concentration matrix.
This is especially true in cases where the estimated grappaisse and easily interpretable by
domain experts.

Motivated by many real world problems coming from diverseaar such as biology and
finance, we extend the work MSZ] which facilitates estigraunder the assumption that the
underlying distribution does not change. We assume thatitgbution changes smoothly, an
assumption that is more valid, but could still be unreaistireal life. In the next chapter, we
consider estimation of abrupt changes in the distributrmhthe graph structure.

Furthermore, we extend the neighborhood selection praeeakiintroduced i5] to the
time-varying Gaussian graphical models. This is done imaagéttforward way using ideas from
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the literature on the varying-coefficient models, where em&kesmoother is used to estimate
the model parameters that change over time in an unspecifigd We have shown that the
neighborhood selection procedure is a good alternativiestpénalized log-likelihood estimation
procedure, as it requires less strict assumptions on themiodparticular, the assumptidncan
be relaxed toF'. We believe that our work provides important insights irtte problem of
estimating structure of dynamic networks.
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Chapter 7

Time Varying Gaussian Graphical Models
With Jumps

In this chapter, we consider the scenario in which the modelves in a piece-wise constant
fashion. We propose a procedure that estimates the steuattargraphical model by minimizing
the temporally smoothed L1 penalized regression, whiawalljointly estimating the partition
boundaries of the model and the coefficient of the sparsespwaanmatrix on each block of the
partition. A highly scalable proximal gradient method isposed to solve the resultant convex
optimization problem; and the conditions for sparsistetingation and the convergence rate of
both the partition boundaries and the network structuresta&blished for the first time for such
estimators.

7.1 Introduction

In this chapter, we consider an estimation problem undertacpkar dynamic context, where the
model evolves piecewise constantly, i.e., staying strafliuinvariant during unknown segments
of time, and then jump to a different structure.

Approximately piecewise constantly evolving networks banfound underlying many nat-
ural dynamic systems of intellectual and practical interdsor example, in a biological de-
velopmental system such as the fruit fly, the entire life eyad the fly consists of 4 discrete
developmental stages, namely, embryo, larva, pupa, antl adtoss the stages, one expect to
see dramatical rewiring of the regulatory network to realiery different regulation functions
due to different developmental needs, whereas within etadiesthe change of the network
topology are expected to be relatively more mild as revelbjethe smoother trajectories of the
gene expression activities, because a largely stableategulmachinery is employed to control
stage-specific developmental processes. Such phenonmeenatarncommon in social systems.
For example, in an underlying social network between thatees, even it is not visible to out-
siders, we would imagine the network structure being maielstbetween the elections but more
volatile when the campaigns start. Although it is legitism&d use a completely unconstrained
time-evolving network model to describe or analysis sudtays, an approximately piecewise
constantly evolving network model is better at capturing thifferent amount of network dy-
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namics during different phases of a entire life cycle, aneécteng boundaries between different
phases when desirable.

Let {x;},c(n) € R” be a sequence of independent observations from soméimensional
multivariate Gaussian distributions, not necessarilystirae for every observation. LB’ } ;¢ (5
be a disjoint partitioning of the sét| where each block of the partition consists of consecutive
elements, that ig3’ NB7" = () for j # j' and{J; B/ = [n] andB’ = [T}y : T}] := {Tj_1, Tj_1 +
L...,T; —1}. LetT :={Tp =1 < Ty} < --- < T = n+ 1} denote the set of partition
boundaries. We consider the following model

x; ~ N, (0,37), i€ B, (7.1)

such that observations indexed by element§’iarep-dimensional realizations of a multivariate
Gaussian distribution with zero mean and the covariancexigt = (o7, ), sc(,), Which suggest
that it is only unique to segmenof the time series. Le®’ := (37)~! denote the precision ma-
trix with elementsw’, ), »ef,)- With the number of partitions3, and the boundaries of partitions,
T, unknown, we study the problem of estimating both the partiset{5’} and the non-zero
elements of the precision matricé®’ } ;c(5 from the samplgx;};c(,. Note that in this work
we study a particular case, where the coefficients of the havdeiece-wise constant functions
of time.

If the partitions{5’}; were known, the problem would be trivially reduced to theisgt
analyzed in the previous work. Dealing with the unknownigarts, together with the structure
estimation of the model, calls for new methods. We proposkanalyze a method based on
time-coupled neighborhood selectjavhere the model estimates are forced to stay similar across
time using a fusion-type total variation penalty and thesipaof each neighborhood is obtained
through the/; penalty. Details of the approach are given{id.

The model in[{711) is related to the varying-coefficient medéor example,[[96]) with the
coefficients being piece-wise constant functions. Varyeogfficient regression models with
piece-wise constant coefficients are also known as segthemigtivariate regression models

] or linear models with structural chang@[lS]. Theistural changes are commonly de-
termined through hypothesis testing and a separate linedehis fit to each of the estimated
segments. In our work, we use the penalized model selecgiproach to jointly estimate the
partition boundaries and the model parameters.

The work presented in this chapter is very different fromdhe of @6] andfg, since under
our assumptions the network changes abruptly rather thaotsy. The work of |ﬂZ] iS most
similar to our setting, where they also use a fused-typelpecambined with ar/; penalty to
estimate the structure of the varying Ising model. Hereduht#on to focusing on GGMs, there
is an additional subtle, but important, difference!to [2). this chapter, we use a modification
of the fusion penalty (formally described if7.2) which allows us to characterize the model
selection consistency of our estimates and the convergaoperties of the estimated partition
boundaries, which is not available in the earlier work.
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7.2 Graph estimation via Temporal-Difference Lasso

In this section, we introduce our time-varying covarianekestion procedure, which is based
on the time-coupled neighborhood selection using the fingeel penalty. We call the proposed
procedure Temporal-Difference LassSi-Lass9.

We build on the neighbourhood selection procedure to estith@ changing graph structure
in model [Z.1). We usé’ to denote the neighborhood of the naden the blocki3’ and N/ to
denote nodes not in the neighborhood of the neda thej-th block, N7 = V' \ S7. Consider
the following estimation procedure

B = argmin L£(8) + pen,, ,(B) (7.2)

ﬁGRP71X7L

where the loss is defined f@t = (5,;)pep—1,icin) @S

L(B) = Z (:c -y xi,bﬁb,iy (7.3)

i€[n] be\a
and the penalty is defined as
peny, »,(B) =2\ Z 1B.i — Biz1ll2 + 29 Z Z | Bb.il- (7.4)
=2 i=1 be\a

The penalty term is constructed from two terms. The first tensures that the solution is going
to be piecewise constant for some partition[nf (possibly a trivial one). The first term can
be seen as a sparsity inducing term in the temporal domaine st penalizes the difference
between the coefficients.; and 3., at successive time-points. The second term results in
estimates that have many zero coefficients within each btke partition. The estimated set
of partition boundaries

T=ATy=1u{T e 2:n] : By #B% yulTz=n+1}

contains indices of points at which a change isAestimatetd,ﬁlbeing an estimate of the number
of blocks B. The estimated number of the blogkis controlled through the user defined penalty
parameten, while the sparsity of the neighborhood is controlled tlgiothe penalty parameter
Aa.

Based on the estimated set of partition boundaﬂ" iegve can define the neighborhood esti-
mate of the node for each estimated block. L@t = ﬁ“ Vi € [ : ] be the estimated
coefficient vector for the block’ = [T’ PR TJ]. Using the estimated vecteﬁﬂ, we define the
neighborhood estimate of the nodéor the blockB’ as

57 :=8(6°) :={be\a : 677 +£0}.

Solving (7.2) for each node € V' gives us a neighborhood estimate for each node. Combining
the neighborhood estimates we can obtain an estimate ofdpd gtructure for each pointe

[n).
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The choice of the penalty term is motivated by the work on peaton using total varia-
tion @,], which results in a piece-wise constant agjnation of an unknown regression
function. The fusion-penalty has also been applied in tméeca of multivariate linear regression

], where the coefficients that are spatially close, é8e hiased to have similar values. As
a result, nearby coefficients are fused to the same estinmated. Instead of penalizing thg
norm on the difference between coefficients, we us¢/thrm in order to enforce that all the
changes occur at the same point.

The objective[(7.2) estimates the neighborhood of one nodegraph for all time-points.
After solving the objectivel(7]2) for all nodes< V, we need to combine them to obtain the
graph structure. We will use the following procedure to came 3%}y,

E; = {(a,b) : max(|8g,],18%,]) >0}, i€ n).

That is, an edge between nodeandb is included in the graph if at least one of the nodes b

is included in the neighborhood of the other node. We useitheoperator to combine different
neighborhoods as we believe that for the purpose of netwgqplogation it is more important
to occasionally include spurious edges than to omit reliesaas. For further discussion on the
differences between the min and the max combination, we agf@nterested reader @19].

7.2.1 Numerical procedure

Finding a minimizerﬁ“ of (Z.2) can be a computationally challenging task for artloé-shelf
convex optimization procedure. We propose to use an aetetegradient method with a smooth-
ing techniqueZ], which converges@1/¢) iterations where is the desired accuracy.
We start by defining a smooth approximation of the fused petaim. LetH € R**"~! be
a matrix with elements
—1 ifi=j
0 otherwise.

With the matrixH we can rewrite the fused penalty term2as "7~ ||(BH).,| |, and using the
fact that the/, norm is self dual (e.qg., selaZG]) we have the following repreation

20118 = Buinill2 = max (U, 2),8H)
=2

whereQ := {U € RP~"=1 . ||U 4||s < 1, Vi € [n — 1]}. The following function is defined
as a smooth approximation to the fused penalty,

U, (B) = max (U, 20, 8H)) - u/|U]|% (7.5)

wherey > 0 is the smoothness parameter. It is easy to see that
V.(B) < ¥o(B) < VL(B) + pu(n —1).
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Setting the smoothness parameter te 2(n—€_1) the correct rate of convergence is ensured. Let

U, (B) be the optimal solution of the maximization problem [in {7 which can be obtained
analytically as
)\BH)

U.(B8) =1l (T
wherellg(-) is the projection operator onto the 8t From Theorem 1 ir@Z], we have that

U, (B) is continuously differentiable and convex, with the gradie
VU, (8)=2MU,(B)H

that is Lipschitz continuous.
With the above defined smooth approximation, we focus onmiging the following objec-
tive
min F(B8):= min L(8)+ V,(8) + 2X:[|8]]1.

BeRpflxn ﬂGRP71X7L

Following ] (see alsl]), we define the following quatit approximation of'(3) at a
point 8y
QL(B, Bo) == L(Bo) + V,.(Bo) + (B — Bo, VL(Bo) + V¥(Bo)))

L
+5l118 - Bol |7 + 22218l

whereL > 0 is the parameter chosen as an upper bounds for the Lipsomistant ofV L+ V.
Letp.(8o) be a minimizer of) . (3, By). lgnoring constant termg,,(3,) can be obtained as

23

pu0) = avguin 6~ (&—%(vuw)(ﬂ@)”} !

BeRpflxn 2

18],

It is clear that,,(3,) is the unique minimizer, which can be obtained in a closehfas a result
of the soft-thresholding,

pL(Bo) = T(ﬂo - %(Vﬁ + V‘I’)(ﬂo)7 2%\2> (7.6)

whereT'(z, \) = sign(x) max(0, |z|]—\) is the soft-thresholding operator that is applied element-
wise.

In practice, an upper bound on the Lipschitz constanVdf + VW can be expensive to
compute, so the parameters going to be determined iteratively. Combining all of theeae, we
arrive at Algorithni2. In the algorithn@, is set to zero or, if the optimization problem is solved
for a sequence of tuning parameters, it can be set to themo[tibbtained for the previous set of
tuning parameters. The parameteis a constant used to increase the estimate of the Lipschitz
constant, and we set it toy = 1.5 in our experiments, whild, = 1 initially. Compared to
the gradient descent method (which can be obtain by iteygtin, = p.(8s)), the accelerated
gradient method updates two sequen{8s} and{z,} recursively. Instead of performing the
gradient step from the latest approximate solufifn the gradient step is performed from the
search point,, that is obtained as a linear combination of the last two agprate solutions
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Br—1 andBy. Since the conditiod’(p.(zx)) < Qr(pr(zk), z:) is satisfied in every iteration, we

have the algorithm converges(1/¢) iterations following [11 ]. As the convergence criterion,
we stop iterating once the relative change in the objectalaeris below some threshold value
(e.g., we usé0~4).

7.2.2 Tuning parameter selection

The penalty parameteps and\, control the complexity of the estimated model. In this work,
we propose to use the BIC score to select the tuning parasnddefine the BIC score for each
nodea € V as

. E(B\a) IOg n Aa, ]
BIC, (M, ) = log = + =22 Z 1S(6™)]
JjelB]
whereL(+) is defined in[(7.B) an@® = 3“()\1, \o) is a solution of[(7.R). The penalty parameters
can now be chosen as

{A1, A2} = argmin Y BIC,(A1, o).

ALA2 aeV

We will use the above formula to select the tuning parameteosir simulations, where we are
going to search for the best choice of parameters over a grid.

7.3 Theoretical results

This section is going to address the statistical propeofitise estimation procedure presented in
Sectiorl Z.R. The properties are addressed in an asympitietvork by letting the sample size

Input: X € R™?, By € RF", 9> 1, L >0, 1t = 55
Output: B“
Initialize k& := 1, o, := 1, z1, := By
repeat
while F(pr(zi)) > Qr(pL(zk), zx) dO
L:=~L
end
By, = pr(z) (using Eq.[(7.6))
Ap41 = _1+\/12+Tk
Zi1 = B + i’;: (Be — Br—1)
until convergence
B = By

Algorithm 2: Accelerated Gradient Method for Equation (7.2)
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n grow, while keeping the other parameters fixed. For the agytiegramework to make sense,
we assume that there exists a fixed unknown sequence of nsifrbgthat defines the partition
boundaries a%; = |n7; |, where|a| denotes the largest integer smaller thalhis assures that
as the number of samples grow, the same fraction of samplesri every partition. We call
{r;} the boundary fractions.

We give sufficient conditions under which the sequeficé is consistently estimated. In par-
ticular, if the number of partition blocks is estimated eatty, then we show thatax; s |T; —
T;| < no,, with probability tending to 1, wheréé, },, is a non-increasing sequence of positive
numbers that tends to zero. If the number of partition segsnsrover estimated, then we show
that for a distance defined for two setand B as

h(A, B) := sup inf |a — 0|, (7.7)
beB a€A

we haveh(7A', T) < nd, with probability tending to 1. With the boundary segmentasis-
tently estimated, we further show that under suitable damdh for each node € V' the correct
neighborhood is selected on all estimated block partitibasare sufficiently large.

The proof technique employed in this section is quite ingdlvso we briefly describe the
steps used. Our analysis is based on careful inspectioreafthmality conditions that a solu-
tion 32 of the optimization probleni{7.2) need to satisfy. The oplity conditions for3? to be
a solution of [7.R) are given iffiZ.3.2. Using the optimality conditions, we establish the &
convergence for the partition boundaries. This is done lpfiny contradiction. Suppose that
there is a solution with the partition boundafythat satisfies.(7,7) > nd,. Then we show
that, with high-probability, all such solutions will nottgsly the KKT conditions and therefore
cannot be optimal. This shows that all the solutions to th@rapation problem[(7.R2) result in
partition boundaries that are “close” to the true partittoundaries, with high-probability. Once
it is established thai” and7 satisfyh(7,7) < nd,, we can further show that the neighbor-
hood estimates are consistently estimated, under the asismnthat the estimated blocks of the
partition have enough samples. This part of the analysievislthe commonly used strategy to
prove that the Lasso is sparsistent (e.g., @-‘) 18Ryever important modifications are
required due to the fact that position of the partition banek are being estimated.

Our analysis is going to focus on one nade V' and its neighborhood. However, using the
union bound over all nodes ivi, we will be able to carry over conclusions to the whole graph.
To simplify our notation, when it is clear from the context will omit the superscript and
wrlteﬁ 0 ands, etc., to denoté“ ¢ ands,, etc.

7.3.1 Assumptions

Before presenting our theoretical results, we give somaeitiefis and assumptions that are going
to be used in this section. Lét,,;, := min;¢p |T; — T;_1| denote the minimum length between
change pointsi, := min,ey minjep—_q) ||@* — 8*7||, denote the minimum jump size and
Omin = Mingey Minje[p Minye g \Hg’j| the minimum coefficient size. Throughout the section, we
assume that the following holds.

Al There exist two constants,;, > 0 and¢,,., < oo such that

Grmin = min {Ain(X7) @ j € [Bl,a eV}
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and
Gmax = Max {Apax(X?) : j € [B],a €V},

A2 Variables are scaled so thg}, = 1 forall j € [B] and alla € V.

The assumptioi\1 is commonly used to ensure that the model is identifiablehdfgopula-
tion covariance matrix is ill-conditioned, the questiontieé correct model identification if not
well defined, as a neighborhood of a node may not be uniqudiyete The assumptioA2 is
assumed for the simplicity of the presentation. The comnaance can be obtained through
scaling.

A3 There exists a constaif > 0 such that

max max [|@“* — 07|, < M.
acV jke[B)

The assumptioA3 states that the difference between coefficients on tworeifiteolocks | | —
0“7||5, is bounded for allj, k € [B]. This assumption is simply satisfied if the coefficiefits
were bounded in thé, norm.

A4 There exist a constant € (0, 1], such that the following holds

max |20 (Sgg) oo <1—0a, VaeV.
JE[B] a a a a

The assumptior\4 states that the variables in the neighborhood of the mod#, are not too
correlated with the variables in the $€f. This assumption is necessary and sufficient for correct
identification of the relevant variables in the Lasso regjmsproblems (e.g., se@OS]).
Note that this condition is sufficient also in our case whendbrrect partition boundaries are
not known.

A5 The minimum coefficient siz&,,;, satisfied,,i, = Q(1/log(n)/n).

The lower bound on the minimum coefficient si%g,, is necessary, since if a partial correlation
coefficient is too close to zero the edge in the graph wouldeatetectable.

A6 The sequence of partition boundarigs; } satisfy7; = |n7;|, where{r;} is a fixed, un-
known sequence of the boundary fractions belonging,to).

The assumption is needed for the asymptotic settingn As oo, there will be enough sample
points in each of the blocks to estimate the neighborhooadés correctly.

7.3.2 Convergence of the partition boundaries

In this subsection we establish the rate of convergenceedidlindary partitions for the estima-
tor (Z.2). We start by giving a lemma that characterizestimis of the optimization problem
given in [Z.2). Note that the optimization problem [n_{7.8)convex, however, there may be
multiple solutions to it, since it is not strictly convex.
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Lemma 7.1. Letz;, = x},,0, + €. A matrix 3 is optimal for the optimization probleq7.2)
if and only if there exist a collection of subgradient Vest{z; }cj2..,; and {y; }icpn), Withz; €
9|18 — B.i-1ll2 andy; € J||B.l|1, that satisfies

Z Xi\a <Xi,\a7 B\z —B.) — Z X;i\a€i T+ MZy + Ao Z yi =0 (7.8)
i=k i=k i=k

forall k € [n| andz; =z, = 0.

The following theorem provides the convergence rate of stienated boundaries &, under
the assumption that the correct number of blocks is known.
Theorem 7.1.Let{x;}c[, be a sequence of observation according to the modgL). Assume
thatA1-A3 and A5-A6 hold. Suppose that the penalty parametgrand A\, satisfy

A1 < Ay = O(y/log(n)/n).

Let{ﬁ.,i}iqn] be any solution ofZ-3)and let7 be the associated estimate of the block partition.
Let{J, }.>1 be a non-increasing positive sequence that convergesaaser— oo and satisfies
Apin > nd, for all n > 1. Furthermore, suppose th&td, &min) ' A1 — 0, &t01/PA2 — 0 and

(EminV/nd,) " t/plogn — 0, then if\7A'| = B + 1 the following holds

Plmax |Tj — Tj| < né,] == 1.
Jj€(B]
The proof builds on techniques developedﬂ [94] and is priesking7. 4.
Suppose that, = (logn)?/n for somey > 1 and&,;, = Q(y/logn/(logn)7), the con-
ditions of Theoren 7]1 are satisfied, and we have that theeseguof boundary fractionsr; }
is consistently estimated. Since the boundary fractioascansistently estimated, we will see
below that the estimated neighborhoS@?) on the block3’ consistently recovers the true
neighborhoods”.
Unfortunately, the correct bound on the number of blétknay not be known. However,
a conservative upper bouris},.. on the number of block®& may be known. Suppose that the
sequence of observation is over segmented, with the nunflestionated blocks bounded by
Buax- Then the following proposition gives an upper bounddf, 7)) whereh(-, -) is defined
in (Z1).
Proposition 7.1. Let {x;},c[,) be a sequence of observation according to the mod¢L.if).
Assume that the conditions of Theoreml 7.1 are §atisfiedﬁlim a solution of(Z.2) and T
the corresponding set of partition boundaries, withblocks. If the number of blocks satisfy
B < B < B, then R
PA(T,T) < nd,] =5 1.

The proof of the proposition follows the same ideas of Thexrel and its sketch is given in
the appendix.

The above proposition assures us that even if the numbeook®lis overestimated, there
will be a partition boundary close to every true unknown iiart boundary. In many cases it is
reasonable to assume that a practitioner would have an kmted the number of blocks that she
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Figure 7.1: The figure illustrates where we expect to estéraaieighborhood of a node consistently. The
blue region corresponds to the overlap between the trud iflmuinded by gray lines) and the estimated
block (bounded by black lines). If the blue region is muclydairthan the orange regions, the additional
bias introduced from the samples from the orange regionneiliconsiderably affect the estimation of
the neighborhood of a node on the blue region. However, waatdmope to consistently estimate the
neighborhood of a node on the orange region.

wishes to discover. In that way, our procedure can be usexplore and visualize the data. It is
still an open question to pick the tuning parameters in a defeendent way so that the number
of blocks are estimated consistently.

7.3.3 Correct neighborhood selection

In this section, we give a result on the consistency of thghi®rhood estimation. We will
show that whenever the estimated bldgkis large enough, say3’| > r,, where{r,},>; is an
increasing sequence of numbers that satigfy\,)~*\; — 0 andr,\2 — oo asn — oo, we
have that5(87) = S(8%), where* is the true parameter on the true bloBk that overlaps
B’ the most. Figuré 711 illustrates this idea. The blue regiothe figure denotes the overlap
between the true block and the estimated block of the pamtiffhe orange region corresponds
to the overlap of the estimated block with a different truechl If the blue region is considerably
larger than the orange region, the bias coming from the saifngin the orange region will not
be strong enough to disable us from selecting the correghberhood. On the other hand,
since the orange region is small, as seen from Thebrem 21k ik little hope of estimating the
neighborhood correctly on that portion of the sample.

Suppose that we know that there is a solution to the optifizgiroblem [(Z.2) with the
partition boundary/". Then that solution is also a minimizer of the following atijee

B B
min_ > |[XEF = X503+ 20 D167 — 6077+ 20 > B]]167]]1. (7.9)
01,...08 ieB =2 =1
Note that the problen (7.9) does not give a practical way bfisg (7.2), but will help us to
reason about the solutions 6f (7.2). In particular, whileréhmay be multiple solutions to the
problem [Z.2), under some conditions, we can characteizesparsity pattern of any solution
that has specified partition boundarigs
Lemma 7.2. Let@ be a solution ta[7.2), with T being an associated estimate of the partition
boundaries. Suppose that the subgradient vectors safisfy< 1 for all b ¢ S(8.,;), then any

other solution3 with the partition boundarie§ satisfy3,; = 0 for all b & S(8..).
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The above Lemma states sufficient conditions under whiclspaesity pattern of a solution
with the partition boundary™ is unique. Note, however, that there may other solution& ) (
that have different partition boundaries.

Now, we are ready to state the following theorem, which distiaés that the correct neigh-
borhood is selected on every sufficiently large estimatedkobf the partition.

Theorem 7.2.Let{x; },c[, be a sequence of observation according to the modgLi). Assume
that the conditions of theorem 7.1 are satisfied. In addjtsuppose thad4 also holds. Then, if
|T| = B+ 1, it holds that

P[S* = S(6")] "= 1, vk € [B].

Under the assumptions of theorém]7.1 each estimated bloaksize O(n). As a result,
there are enough samples in each block to consistently &stithe underlying neighborhood
structure. Observe that the neighborhood is consistestlgnated at each € B’ N B’ for all
j € [B] and the error is made only on the small fraction of samplegnwhkg 3 N B7, which is
of orderO(nd,,).

Using propositio 7]1 in place of theorém]7.1, it can be sirhjlshown that, for a large frac-
tion of samples, the neighborhood is consistently estichewen in the case of over-segmentation.
In particular, whenever there is a sufficiently large estedélock, with|B* N B/| = O(r,,), it
holds thaiS(l?’“) = S7 with probability tending to one.

7.4 Alternative estimation procedures

In this section, we discuss some alternative estimatioraust to the neighborhood selection
detailed ing7.2. We start describing how to solve the objectivel(7.2)different penalties than
the one given in[{714). In particular, we describe how to miae the objective when th& is
replaced with the, (¢ € {1,00}) norm in [7.4). Next, we describe how to solve the penalized
maximum likelihood objective with the temporal differemuenalty. We do not provide statistical
guarantees for solutions of these objective functions.

7.4.1 Neighborhood selection with modified penalty
We consider the optimization problem given[in (7.2) with tbkkowing penalty

peny 3, (8) =20 (18— Baillg +2% ) > 1Bl g €{l,00}. (7.10)
=2

i=1 be\a
We call the penalty in[(7.10) the Tpenalty. As in§7.2.1, we apply the smoothing procedure
to the first term in[(Z.10). Using the dual norm representatice have

20 ) 1B = Buicilly = max (U, 21, 8H))
=2
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where
Q' :={UeR™" 1 |[Ujll <1, Vi€ n—1]}

and
Q*:={Ucec Rp—1xn-1 . NU.ills <1, Vie[n—1]}

Next, we define smooth approximation to the norm as

V7.(B) = max (U, 2\ 8H) — wlI0]% (7.11)

wherep > 0 is the smoothness parameter. Let

Ul(8) = g (WTH)

be the optimal solution of the maximization problem[in (Jj, Mherello.(-) is the projection
operator onto the s&?. We observe that the projection on thgunit ball can be easily obtained,
while a fast algorithm for projection on the unit ball can be found iHﬂO]. The gradient can
now be obtained as

VUi(B) =2MUj(B)H,

and we can proceed as§iY.2.] to arrive at the update (7.6).
We have described how to optimiZe (7.2) with the Tiznalty forq € {1,2,00}. Other/,
norms are not commonly used in practice. We also note thdteaeht procedure fog = 1 can

be found in[133].

7.4.2 Penalized maximum likelihood estimation

In §7.2, we have related the problem of estimating zero elemahés precision matrix to a
penalized regression procedure. Now, we consider estinatisparse precision matrix using
a penalized maximum likelihood approach. That is, we carside following optimization
procedure

min Z (tr Q;x;x; — log |€]) + peny, », { Qi }em) (7.12)

Q;>0}icin
{ Yiet i€[n]

where . .
peny, s, ({Qibiep) =20 D 119 — Qi |lr + 220 ) [

i=2 i=1
In order to optimize[(7.12) using the smoothing techniquscdbed in§7.2.1, we need to show
that the gradient of the log-likelihood is Lipschitz contous. The following Lemma establishes
the desired result.
Lemma 7.3. The functionf(A) = tr SA — log |A| has Lipschitz continuous gradient on the set
{A € 8 : Anin(A) > +}, with Lipschitz constant = ~~2.

Following [19], we can show that a solution to the optimiaatiproblem [(Z.12), on each
estimated block, is indeed positive definite matrix with Hes eigenvalue bounded away from
zero. This allows us to use the Nesterov's smoothing tecteniq solve[(7.12).
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Penalized maximum likelihood approach for estimatingsparecision matrix was proposed
by ﬂ@]. Here, we have modified the penalty to perform edionaunder the model(7.1). Al-
though the parameters of the precision matrix can be estthwinsistently using the penalized
maximum likelihood approach, a number of theoretical risshihve shown that the neighbor-
hood selection procedure requires lest stringent assangoiin order to estimate the underlying
network consistentIZ]. We observe this phenoneoar simulation studies as well.

7.5 Numerical studies

In this section, we present a small numerical study on sitedlaetworks. In all of our simula-
tions studies we set= 30 and B = 3 with |5,| = 80, |Bz| = 130 and|Bs| = 90, so that in total
we haven = 300 samples. We consider two types of random networks: a charaarearest
neighbor network. We measure the performance of the estimptocedure outlined ifi7Z.2 on
the following metrics: average precision of estimated sdgeerage recall of estimated edges
and averagéd score which combines the precision and recall score. Thagioe, recall and
F7 score are respectively defined as

1 Z Zae[p} g:a—i—l ]]{(CL, b) € Ei A (CL, b) < EZ}

precision = —

" i€[n] Zae[p] Zi:a+1 ]I{<a’7 b) S Ez}
1 a p_a 1{(a,d EE@/\ a,b) € E;
recall = — Z Z €[p] b=a+1 I;{( ) ( ) }
n Zae[p] > bar1 H(a,b) € Ei}

i€[n]

2 2 % precision * recall
1 =

precision + recall

Furthermore, we report results on estimating the partibonndaries using‘lh(?, T), where
h(7A’, T) is defined in[(Z]7). Results are averaged over 50 simulating.rWe compare the TD-
Lasso algorithm introduced i$i7.2.1 against an oracle algorithm which exactly knows the tr
partition boundaries. In this case, it is only needed to heratigorithm of|LT3|5] on each block of
the partition independently. We use a BIC criterion to Setlee tuning parameter for this oracle
procedure as described 46]. Furthermore, we repouiteeasing neighborhood selection
procedures introduced i#/.4, which are denoted TELasso and TQ -Lasso, as well as the
penalized maximum likelihood procedure, which is denoted.la,.... We choose the tuning
parameters for the penalized maximum likelihood procedsneg the BIC procedure.

Chain networks We follow the simulation in7] to generate a chain netwadd Figuré 712).
This network corresponds to a tridiagonal precision mdafier an appropriate permutation of
nodes). The network is generated as follows. First, we ahtingenerate a random permutation

O—0O—O-----0—0—0

Figure 7.2: A chain graph
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Figure 7.3: Plots of the precision, recall ahg scores as functions of the penalty parametgrand A,

for chain networks estimated using the TD-Lasso. The pame is obtained ag00 * 0.98°0+7, where

i indexesy-axis. The parametex, is computed ag85 x 0.98%30+7, where; indexesz-axis. Black dot
represents the selected tuning parameters. The whitenrefiieach plot corresponds to a region of the
parameter space that we did not explore.

7 of [n]. Next, the covariance matrix is generated as follows: teeneht at positioria, b) is
chosen ag,, = exp(—|tr@) —trp)|/2) Wheret; <t, <--- <t,andt;—t,_; ~ Unif(0.5,1) for

i =2,...,p. This processes is repeated three times to obtain thresehifcovariance matrices,
from which we sampl&0, 130 and90 samples respectively.

For illustrative purposes, Figufe 7.3 plots the precisimeall andF; score computed for
different values of the penalty parametessand \,. Table[7.1 shows the precision, recall and
F, score for the parameters chosen using the BIC score dedanilie?.2, as well as the error in
estimating the partition boundaries. The numbers in phes#s correspond to standard devia-
tion. Due to the fact that there is some error in estimatiegadrtition boundaries, we observe a
decrease in performance compared to the oracle procedatrernthws the correct position of the
partition boundaries. Further, we observe that the neididmal selection procedure estimate the
graph structure more accurately than the maximum likehocedure. For TBLasso we do
not reportn 1A (T, T), as the procedure does not estimate the partition boursdarie

Nearest neighbors networks We generate nearest neighbor networks following the praeed
outlined in [119]. For each node, we draw a point uniformlyeatdom on a unit square and com-
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Table 7.1: Performance of different procedures when estigiahain networks

Method name Precision Recall F} score n (T, T)
TD-Lasso 0.84 (0.04) | 0.80(0.04) | 0.82(0.04) 0.03 (0.01)
TD,-Lasso 0.78 (0.05) | 0.70(0.03) | 0.74(0.04) N/A
TD..-Lasso 0.83(0.03) | 0.80(0.03) | 0.81(0.03) | 0.03(0.01)

LL o 0.72 (0.03) | 0.65(0.03) | 0.68(0.04) | 0.06(0.02)
Oracle procedure| 0.97 (0.02) 0.89 (0.02) 0.93(0.02) 0 (0)

For illustrative purposes, Figufe 7.5 plots the precisimeall andF; score computed for
different values of the penalty parametersand \,. Table[Z.2 shows the precision, recall,
Fy score anch 1A (T, T) for the parameters chosen using the BIC score, togethertitn
standard deviations. The results obtained for neareshherghetworks are qualitatively similar
to the results obtain for chain networks.

pute the pairwise distances between nodes. Each node isdheected to 4 closest neighbors
(see Figuré 714). Since some of nodes will have more thanatedf edges, we remove ran-
domly edges from nodes that have degree larger than 4 uatihtximum degree of a node in a
network is 4. Each edge, b) in this network corresponds to a non-zero element in thegicec
matrix 2, whose value is generated uniformly pnl, —0.5] U [0.5, 1]. The diagonal elements of
the precision matrix are set to a smallest positive numkanttakes the matrix positive definite.
Next, we scale the corresponding covariance mafrix Q! to have diagonal elements equal
to 1. This processes is repeated three times to obtain thffeeedt covariance matrices, from
which we sampl&0, 130 and90 samples respectively.

Figure 7.4: An instance of a random neighborhood graph with@&les.
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Figure 7.5: Plots of the precision, recall aRidscores as functions of the penalty parametgrand )\, for
nearest neighbor networks estimated using the TD-Lassepa@tametel, is obtained ag00 x 0.98%0+,
wherei indexesy-axis. The parameteY, is computed a885 * 0.98230+7  where;j indexesz-axis. Black
dot represents the selected tuning parameters. The whiteref each plot corresponds to a region of the
parameter space that we did not explore.

Table 7.2: Performance of different procedure when esiimgaandom nearest neighbor networks

Method name Precision Recall F; score n~'h(T,T)
TD-Lasso 0.79 (0.06) | 0.76(0.05) | 0.77(0.05) 0.04 (0.02)
TD,-Lasso 0.70(0.05) | 0.68(0.07) | 0.69 (0.06) N/A
TD..-Lasso 0.80 (0.06) | 0.75(0.06) | 0.77(0.06) | 0.04 (0.02)

LL o 0.62 (0.08) | 0.60(0.06) | 0.61(0.06) | 0.06 (0.02)
Oracle procedure | 0.87 (0.05) 0.82 (0.05) 0.84 (0.04) 0 (0)
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7.6 Discussion

We have addressed the problem of time-varying covariarieetge when the underlying proba-
bility distribution changes abruptly at some unknown pinttime. Using a penalized neighbor-
hood selection approach with the fused-type penalty, wableto consistently estimate times
when the distribution changes and the network structurenyidg the sample. The proof tech-
nique used to establish the convergence of the boundarydinaausing the fused-type penalty
is novel and constitutes an important contribution of thapthr. Furthermore, our procedure
estimates the network structure consistently whenevee tisea large overlap between the esti-
mated blocks and the unknown true blocks of samples comarg the same distribution. The
proof technique used to establish the consistency of theanktstructure builds on the proof
for consistency of the neighborhood selection procedueelrer, important modifications are
necessary since the times of distribution changes are rmotkin advance. Applications of the
proposed approach range from cognitive neuroscience gtheproblem is to identify changing
associations between different parts of a brain when ptedemith different stimuli, to system
biology studies, where the task is to identify changingguat of interactions between genes
involved in different cellular processes. We conjectue thur estimation procedure is also valid
in the high-dimensional setting when the number of varigples much larger than the sample
sizen. We leave the investigations of the rate of convergencearhnigh-dimensional setting for
a future work.

7.7 Technical Proofs

7.7.1 Proof of Lemmd7Z.1

For eachi € [n], introduce &p — 1)-dimensional vectoty; defined as

v fori =1
'Yz':{ﬂ’ :

B..— B.i-1 otherwise
and rewrite the objectivé (1.2) as

(3}iepy = argmin z( zxzbz%b)

1
YyERmXPE be\a §<i

+2)‘IZ||72||2+2>\2ZZ

=1 be\a

(7.13)

Z’ij

1<t

A necessary and sufficient condition gy, } ;<) to be a solution of(7.13), is that for eakhe [n]
the (p — 1)-dimensional zero vecto, belongs to the subdifferential ¢f (7]113) with respectto
evaluated af~; }c[,), that is,

0=2 Z (—Xi)\a (xz a Z T bﬁbz) +2MZ, + 2 Z Vi, (7.14)

be\a
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wherez;, € J|| - ||2(7x), that is,

N et if Y, #£0

Zk — 'Yk||2 .

€ By(0,1) otherwise

andfork <i,y; € 9 3,7, thatis,y; = sign(3_, ., 7;) with sign(0) € [~1,1]. The Lemma
now simply follows from [(7.14). -
7.7.2 Proof of Theoren 7.1L
We build on the ideas presented in the proof of Propositicmﬂ@]. Using the union bound,

Plmax |T; — Tj| > nd,) < > P[|T; = T;| > nd,]

selB] JE[B]

and it is enough to show th&{|7; — T;-| > né,| — 0forall j € [B]. Define the event,, ; as

and the event’,, as

2

We show thatP[4,, ;] — 0 by showing that bot®[A4, ; N C,] — 0 andP[A4, ; N C¢] — 0 as
n — oo. The idea here is that, in some sense, the evgind a good event on which the estimated
boundary partitions and the true boundary partitions atéamfar from each other. Considering
the two cases will make the analysis simpler. R

First, we show thaP[A, ; N C,] — 0. Without loss of generality, we assume that< 73,
since the other case follows using the same reasoning. §&i8ytwice withk = ZIA} and with
k = T; and then applying the triangle inequality we have

e Amin
Cn::{maX|Tj—Tj|< }
JE[B]

T;—1 -1 T;—1
20\ > Z Xi\a(Xi\as Bz —B.) — Z Xi\a€i T A2 Z Vi (7.15)
i=T) i=T) i=Tj 2
Some algebra on the above display gives
T;—1
201+ (T = Ty)y/pha > || D Xina(Xina, 00 — 6777)
=T 2
T;—1 Tj—1
— Z Xi\a(Xi)\a» 2 L §j+1> ' — Z X \a€i
i=T; 2 i=Tj 2

= |[Rill2 = || Ra2|[2 — || Rs]]2

The above display occurs with probability one, so that theney2\, + (7, — CIA})\/@)\Q >
%||R1||2} U {||R2||2 > %||R1||2} U {||R3||2 > %||R1||2} also occurs with prObablhty one, which
gives us the following bound
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PlAn; 1 o] < Bl N Cun {220+ (T = T)y/phe 2 sIRil )]
FBA N Con IRl 2 IR )]
+ {4 1 O (IRl 2 g1l
=: PlAnja] + PlAn 2] + PlAns]-
First, we focus on the evert, ; ;. Using lemma& 716, we can upper bouPid4,, ; ;] with

¢m1n

o (T; T})fmm] + 2exp(—nd, /2 + 2logn).

PR2A + (T) = T))V/phe >

Since under the assumptions of the theofe®, &, ) "t A1 — 0 andgr;}n\/ﬁ/\g — 0 asn — oo,
we have thaP[A4,, ;] — 0 asn — oc.

Next, we show that the probability of the evehy ; » converges to zero. L&, := |271(T; +
Tj+1)|. Observe that on the event,, T]H > T; so thatﬁ — 6i+! for aII i € [13,T}]
Using (7.8) withk = T; andk = T'; we have that

T;—1 T,-1
2\ + (T = T)/Phe > || Y Xina(Xina, 077 — 67 D Xk
=T i=T; 2

Using lemma7lJ6 on the display above we have

361 + 18(T; — Tj)y/BAo + 18| 17 xinacill2
( Jj+1 = )¢m1n ’

which holds with probability at least — 2 exp(—Auin/4 + 2logn). We will use the above
bound to deal with the eved{|Ry||> > 1||Ri||2}. Using lemmd 716, we have that,,(7; —
T)émin/9 < ||Rill2 and || Rol|y < (T; — T)) 67! — 9it+1||, with probability at least
1 —4exp(—nd,/2 + 2logn). Combining with [7.16), the probabilif§[A,, ; -] is upper bounded
by

1741 — 67|, < (7.16)

P[clgﬁ?ningﬁr;;xAmingmin S A ] + P[02¢r2nin¢r:1;x£min S \/ﬁ)‘Q]
Z Xi\a€i

Under the conditions of the theorem, the first term above em®s to zero, sincA ., > nd,
and (nd,&min) "' A1 — 0. The second term also converges to zero, s{qﬁg/ﬁ& — 0. Using
lemmaZ.b, the third term converges to zero with the ¢ateg —cs logn), since

+ P C3¢m1n¢max§m1n_ T T

} +cyexp(—nd,/2+2logn).

(bminV/ Amin) "1/ plogn — 0.

Combining all the bounds, we have tit,, ;] — 0 asn — oco.
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Finally, we upper bound the probability of the evefyt; ;. As before g, (7 —Tj)fmin/9 <
|| R1]]2 with probability at least — 2 exp(—nd,,/2 + 2logn). This gives us an upper bound on
P[A,, ;3] as

P ¢min£min H Z T XZ \a€2||2
R

which, using lemmA& 715, converges to zero as under the ¢onsliof the theorem

+ 2exp(—nd, /2 + 2logn),

(Eminy/nd,) "1/ plogn — 0.

Thus we have shown th&{A,, ; ;] — 0. Since the case Wheﬁ- > T} is shown similarly, we
have proved thab[A4,, ; N C,] — 0 asn — oo.

We proceed to show th@#{ A, ; N C¢] — 0 asn — oo. Recall thatCt = {max;¢p T, —
T;] > Anin/2}. Define the following events

D0 :={3j € B, T, <.} nCs,

~

D = {vj € [B], T < T < Tra f N C5

n’

DY = {3j € (B T2 Ty f N Cs

and writeP[A,, ; N C<] = P[A,; N D] + P[A,; N DY + P[A,; N D). First, consider the
eventA, ; N D™ under the assumption th@t < 7;. Due to symmetry, the other case will
follow in a similar way. Observe that

P[A,; N DY)
-~ Amin
< Pl N {(Tj1 = 7)) = =23 0 D)
. Ao
+ P{(Tjp1 — Tj1) > —23 0 DM
[{( Jj+1 J+1) QA} ] (7.17)
< Pl N {(Tja — T)) 2 =57} 0 DY)
Amin = Amin m
+Z (T, = T},) > 5 FOA{(Thrr — Ti) 2 5 } N DY)

k=j+1

We bound the first term i (7.1 7) and note that the other teramsbe bounded in the same
way. The following analysis is performed on the event; N {(Cf}H —T5) > Anin/2} N DI,
Using (7.8) withk = ZIA} andk = Tj, after some algebra (similar to the derivation[of (7.15¥) th
following holds

) . 18)\1+9(T T)\/_)\2+9||2 J‘A, Xz\a€z||
167 — 67|, < :
gbmin(Tj _TJ)
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with probablllty at leastl — 2exp(—nd,/2 + 2logn), where we have used lemrhal7.6. Let
T; = |27YT; + T;41)]. Using [Z.8) withk = T'; andk = T} after some algebra (similar to the
derivation of [7.16)) we obtain the following bound

18X\ + 9(T; — T3) /bha + 911 iz, Xinaéill2

¢min(Tj - ,TJ)
+ 81¢max¢mm||0] j+1||27

167 — 7], <

which holds with probability at leagt— ¢; exp(—nd, /2 + 2logn), where we have used lemma
[7.8 twice. Combining the last two displays, we can upper bdhe first term in[(Z.17) with

[gmmn(sn S C1 ] + ]P)[gmin S C2\/2_7)\2]

+ Plmin /10, < c37/plogn] + ¢y exp(—cslogn),

where we have used leminal7.5 to obtain the third term. Uné@ezdhditions of the theorem, all
terms converge to zero. Reasoning similar about the othast (Z.17), we can conclude that

P[A,; N DY™] — 0 asn — .
Next, we bound the probability of the evesy, ; N DY, which is upper bounded by

s}

P[DY] Z 2 'Pmax{l € [B] : T, < T} = j].

Observe that .
{max{l € [B] : T} < T)_1} = j}
Amin
2

B
= Amin =
T - 2 22 0 (B - T, 2 22
l=j

so that we have

- Amin ) Amin
PDY) <2271 ) 3 BT~ T 2 =) 0 (T = T 2 =5,

Using the same arguments as those used to bound terfs i), (el Rave thaP[D’] — 0 as

n — oo under the conditions of the theorem. Similarly, we can sHuat the terniP’[D( )] — 0
asn — oo. Thus, we have shown th&fA4,, ; N C¢] — 0, which concludes the proof.

7.7.3 Proof of Lemmd 7.2

ConsiderT fixed. The lemma is a simple consequence of the duality thedrich states that
given the subdifferentiay; (which is constant for alf € 537, B’ being an estimated block of
the partition7A'), all solutions{B.,i}ie[n] of (Z.2) need to satisfy the complementary slackness
conditiony", .\ , %6 = ||B../|1, which holds only i, ; = 0 for all b € \a for which|g.,| < 1.
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7.7.4 Proof of Theoreni 7.2

Since the assumptions of theoreml 7.1 are satisfied, we ang gmivork on the event

E = T. —T| < On t.
{ﬁ%“ J‘—n }

In this case|B*| = O(n). Fori € B, we write

2 k
Tiaq = xi,beb + e+ €
beSI

wheree; = >, o 7:4(8y: — 07) is the bias. Observe thalf € B* N B*, the biase; = 0, while
for i ¢ B* N B*, the bias; is normally distributed with variance bounded bi? ¢,..... under the
assumptiorAl andA3.
We proceed to show thﬁ(é\’f) C S*. Since#* is an optimal solution of {7]2), it needs to
satisfy
(X, )'XE, (68F — 0") — (XF,) (e + )

\ A o (7.18)
+ )\1<ka71 B ka) + )\2‘8 |yfk71 = 0.

Now, we will construct the vectoi@", z; ,z; andyz  that satisfy[(Z.18) and verify that the
subdifferential vectors are dual feasible. Consider thleviong restricted optimization problem

min Y |IXE — XE 6|2
or,..., eB;oka:o —
jE[B]

20 ) 1167 — 6l 200 ) |B7]]167]1,

j=2 7j=1

where the vecto’ , is constrained to be. Let{67} je|p Pe asolutionto the restricted optimiza-
tion problem[[Z.19). Set the subgradient vectorgas € 9||6" — 61|, z;, € 0/|9"+" — 0*|]
andyz o = sign(6%,). Solve [Z.IB) foryz . By construction, the vectoB¥, z; , zz
andyﬁH satisfy [7.18). Furthermore, the vectars andsz are elements of the subdiffer-

ential, and hence dual feasible. To show t¥ats also a solution td (719), we need to show that
137, wrllee < 1, thatiis, thaty™*— is also dual feasible variable. Using lemind 7.2, if we show

~k
thatys; . is strict dual feasiblely7 | yill < 1, then any other solutioél to (7.9) will

~k
satisfy@, = 0.
From [Z.I8) we can obtain an explicit formula @y
Sk ok B\ B\ T B (B L B
Ogr = Og + ((Xge)'Xge ) (Xge)'(e7 +€7)
o R (7.20)
~ (OBXE) " (lor s 37,00 + Xl ).
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Recall that for large enough we have thai3| > p, so that the matriKXEZ)’XEZ is in-
vertible with probability one. Pluggindg (7.R0) inth (7118ye have that|ys  yill < 1 if
maxye vt | Y| < 1, whereY is defined to be

2\’ Ak Ak e\ L /o )\1(/2\1?7 Sk T /Z\CIA“ ,Sk)
v, = (x§) [XS (XEYXE) (vg 00+ — T )
B* 1 (egk + egk )} B )‘1(73@,1,6 - 2@,5;)
|BE| Ay |BE| Ay

Y

whereHE:’L Is the projection matrix
PN ~ ~ ~\ —1 ~ N/
HG =1 x5 (xE)yxE) (x5

~ =k
Let X% andX be defined as

~ 1 ) . =k 1 ) )

k __ 7 i _ i i

X _—\gk\ E Elx,(x,)] and X _—\gk| E xt, (x{,)"
ieBk ieBk

Fori € [n], we letB(i) index the block to which the sampidelongs to. Now, for any € N*,

we can writex], = zfgfi)(zﬁg’;k)—lxgk + wj, wherew; is normally distributed with variance
o; < 1 and independent of,. LetF, € RIB" pe the vector whose components are equal to
sr(s80 ) 71xk,, i € BY, andW, € RIF"! be the vector with components equaktp Using
this notation, we writd, = T} + 7> + 17 + T;' where

_ . N\ -1 )\I(ZA . — 7 k)
T = FiXE ((XEYXE)  (yg, , + e )

|BE| Ao
7 = FyHE (Lk - eBk)
— ’ _
° |B¥| A
N N . o\ =1 )\1(21? gk — Zf Sk) Ak eglC + ng

7 = (W) {XBk (XEYXE)  (vg,, + = ) HGH (S )} and

b Sk Sk Sk Te_1 ‘Bk|)\2 Sk |Bk‘)\2

i _)\l(éﬁ,l,b - 5@,1)

' |B¥| Az

We analyze each of the terms separately. Starting with the’fg, after some algebra, we obtain
that
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FiX5 (XE)XE)

B N BY| BB sk N\

- Z fzbsk(zgksk) I(Egigf Eysksk) Xsn s

j: BRABi£0 (7.21)
~k

+ Ebsk((isksk) (Esksk) ")
—1
+ Ebsk(zsksk)

Recall that we are working on the evehtso that
n—)oo —1
I8 g (Ehg) oo 22 18Kreg (Sheg) ™ lloo

and

n— o0
0

(|Bk‘)‘2)_1)‘1(sz,1,sk - zifk,Sk) ’

element-wise. Usind (7.25) we bound the first two terms inetpgation above. We bound the
first term by observing that for anyand anyh € N* andn sufficiently large

1BI N BE| S
T e () I — Tl
\BﬂmB’f\ o _
= W”EW( L) IIEEE — 2, e
BB, apicme
<ol |||E‘§?J;’E"—Eﬂskskumg61

with probability1 — ¢; exp(—c; logn). Next, for anyb € N* we bound the second term as

k ~
||Ebsk((25ksk)l (Zrse) Dl

g@\\(isksk) — (Zs) llr

~ =k ~ ~k .
< Ol |Bngnl Bl Bgrsr — Begrllr + O Zgrgr — Eugell7)
<é€

with probability1 — ¢; exp(—cz logn). Choosing:, e, sufficiently small and for. large enough,
we have thatnax;, [T}}| <1 — « + 0,(1) under the assumptioid.
We proceed with the term?, which can be written as

= (1B%)”! (2 (Sheg) " — XA ((xEYxE) ) D X

ieBkNBk
~ . ; -1 = = S\ —1 . . .
+ (B ) Y (255%? (250 —FixE (xE)xE) )xgk(ewel).
igBkNBk
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Since we are working on the evefithe second term in the above equation is dominated by the
first term. Next, using(7.21) together wifh (7.25), we havat for allb ¢ N*

1 5 N 2\ —1
s (Shs) ™ = FXE ((XE)XE) Il = 0,(1).
Combining with Lemma7]5, we have that under the assumptibtie theorem

max T2 = 0,(1).

We deal with the ternT}? by conditioning onXB ande?*, we have thaW, is independent
of the terms in the squared brackefif, since aIIzTHﬂ, z7 gandyz ¢ are determined from
the solution to the restricted optimization problem. To hthe second term, we observe that
conditional onX‘;Z ande?”, the variance of ? can be bounded as

o oL P 4 B
k k k
Var(1) < [|[X5 (XEYXE) e+ HE (T)Ilé
1B 7,22

\B’“Mz

—1

< (XEXE) ,

2

Nsk + H

where

Ai(Zg, | or — ka,s)>
| B|As
Using lemmd 716 and Young'’s inequality, the first termin 2.2 upper bounded by

18 < 272 )
— S+ —= 5
| B|drmin |B*A3

with probability at least — 2 exp(—|B¥|/2 + 2log n). Using lemm&7}4 we have that the second
term is upper bounded by

ﬁSk = (yfk717sk +

(140" + M?Prmax)
LZp%:
with probability at least. — exp(—c;|B¥|6"> + 2logn). Combining the two bounds, we have
that Var(7?) < c¢;s(|B*|)~* with high probability, using the fact that3*|\,)~'\; — 0 and

|B¥|\y — oo asn — oo. Using the bound on the variance of the teffhand the Gaussian tail
bound, we have that

max T}'] = o,(1).

Combining the results, we have thatx,cy« |Y,| < 1 — a + 0,(1). For a sufficiently large
n, under the conditions of the theorem, we have shownithad, v |Y,| < 1 which implies that

P[S(6%) C SK] 222 1,
Next, we proceed to show thBfS* c S(8*)] “=> 1. Observe that

P[S* ¢ S(6")] < P[||05 — 0%l > Ouin]-
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From [Z.18) we have tha9", — 6%,]|.. is upper bounded by

-1
~ 1 —~ @ —~
\mmX%%Q—Tm%@H#>

+ H ((Xgﬁ)’Xgﬁ) <)\1( 1,8k ZT Sk) )\Q‘BBk‘ka 1,5k H

Sincee; # 0 only oni € B*\ B* andnd, /|B*| — 0, the term involvinge?” is stochastically

dominated by the term mvolvmgB and can be ignored. Define the following terms
-1

T = @(X 51X B, @(X‘gﬁ)’egﬁ
-1

T, = é(x L) XE; éﬁ(szl,sk — 2, st),
-1

Ty = @(XE:),XEZ YT 1,54

Conditioning onX Sk, the termT7 is a|S*| dimensional Gaussian with variance bounded by
with probability at least — ¢; exp(—cy logn) using lemma7]6. Combining with the Gaussian
tail bound, the term|7 ||, can be upper bounded as

/1
IE”{||T1||C><J > _ogs} < coexp(—czlogn).
n

Using lemma 716, we have that with probability greater thanc, exp(—c; log n)

| T2]]oe < ||T5]]2 < c3—

2

under the conditions of theorem. Similafl{;|| < ¢14/s, with probability greater thah —
c1 exp(—cq log n). Combining the terms, we have that

1
16" — 8% < CM/% + e /5N

with probability at least —c3 exp(—c4 logn). Sincel,, = Q(y/log(n)/n), we have shown that
Sk C S(0%). Combining with the first part, it follows that(6%) = S* with probability tending
to one.

7.7.5 Proof of Lemmd7.B

We have thaVV f(A) = A~!. Then

IVA(A) = VIA)r=[|AT = (A)7|r
S AmaxA_lHA - A,||FAmaxA_1
< 77%|A - A'||p.
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7.7.6 Proof of Proposition 7.1

The following proof follows main ideas already given in them[7.1. We provide only a sketch.
Given an upper bound on the number of partitidhs.., we are going to perform the analysis
on the even{ B < By.x}. Since

BIY\aX
P[h<‘?\-7 T) Z n(Sn ‘ {E S Bmax}] S Z P[h(?, T) 2 nén ‘ {"?\" — B/ + 1}]7

B'=B
we are going to focus oB[1(T,T) > nd, | {|T| = B'+1}] for B’ > B (for B’ = B it follows
from theoreni 711 that (7, 7)) < nd, with high probability). Let us define the following events
E={ANe[B] : |T)—Tj| > nby,, |Tis1 — Tj| > nd, andT; < T; < Tp41}
Eio={Vl € [B] : |T; = Tj| > nd, andT; < T;}
Eis={Vle[B] : |T, - T;| > nd, andT; > T;}.

Using the above events, we have the following bound

PIW(T,T) >nd, | {|T| =B +1}] < Y P& ]+ PIE;2] + PE; 5],

JE[B]

The probabilities of the above events can be bounded usengdime reasoning as in the proof
of theoreni 711, by repeatedly using the KKT conditions givefr.8). In particular, we can use
the strategy used to bound the event; .. Since the proof is technical and does not reveal any
new insight, we omit the details.

7.7.7 Technical results

Lemma 7.4. Let {('} ;e[ be a sequence of ild/(0, 1) random variables. I, > Clogn, for
some constant’ > 16, then

{ ﬂ {Z 1+C(T—l+1)}}Zl—exp(—cllogn)

1<i<r<n
r—Ii>rn

for some constant; > 0.

Proof. Foranyl <[ < r < mn, withr — [ > v, we have

P[Z((i)z >(1+C)(r—1+ 1)} <exp(—=C(r—1+1)/8)
< exp(—C'logn/8)

using [Z.26). The lemma follows from an application of théomrbound. O
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Lemma 7.5. Let {x;};c») be independent observations fr@il) and let{e; };c,) be indepen-
dentN (0, 1). Assume thad\l holds. Ifv,, > C'logn for some constan® > 16, then

1 . o/ T
B[N N {mi]| Do < it vinTomen)]
J€[B] treBi it i=l 2
> 1 — ¢y exp(—celogn),

r—Il>un

for some constants, ¢, > 0.

Proof. Let /2 denote the symmetric square root of the covariance matgix and let3(i)
denote the block3’ of the true partition such that € B’. With this notation, we can write

X; = (23’5(“)1/2 u; whereu; ~ A/(0,1). For anyl < r € B’ we have

ZT: X;€; , ZT: (EJ) 1/2 u;€; Z u;€;
1=l

i=l
Conditioning on{¢; };, for eachb € [p], E::l u; p€; 1S @ normal random variable with variance
i (e)? Hence|| > we||5/ (3", (€)?) conditioned or{¢; }; is distributed according tg?
and

1/2

max

r—1I1+ 1
< IP’[XIZD > p(1+ Clogn)] < exp(—C'logn/8),

where the last inequality follows frorh (7J26). Using lemmd,or alll,r € B/ withr — [ > v,
the quantityd ;_,(¢;)? is bounded by1+C') (r—I+1) with probability at least —exp(—c; log n),
which gives us the following bound

2NN

j€[B] t,reBi
r—Il>vn

1/2
> max\/ D i ( 1/ (1+Clogn) ‘{eZ i l}
2

MV 1+ C
< gbr_—lilvp“ +Cl°g")}}
2

T
E Xi€;
i=l

> 1 —cpexp(—cglogn).

0

Lemma 7.6. Let {x; };c,) be independent observations frdil). Assume thaf\l holds. Then
for anywv,, > p,

1 ’ , ] ,
P 1%??” Aax (m ;Xi (x;) ) > 9Pmax | < 2n° exp(—v,/2)
and i
1 I8
P 1%;{%31%71 Amin (m ; Xi (Xi)/> S (bmin/g S 2n2 eXP(_Un/Q)-
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Proof. Foranyl <[ < r <n, withr — [ > v, we have

1 d ,
P Amax (’f’ I+ 1 ZE:Z X; (Xz) ) = 9¢max

<2exp(—(r—1+1)/2)

< 2exp(—v,/2)

using [7.28), convexity of\,,,..(-) andAl. The lemma follows from an application of the union
bound. The other inequality follows using a similar argumen O

7.7.8 A collection of known results

This section collects some known results that we have ustéetichapter. We start by collecting
some results on the eigenvalues of random matrices.xLét N(@O,%), i € [n], andS =
n~t 3" x,(x;)" be the empirical covariance matrix. Denote the elementseotbvariance matrix
3. as[o,] and of the empirical covariance matixas [Gab)-

Using standard results on concentration of spectral nondse%lgenvaluem4]0] derives
the following two crude bounds that can be very useful. Unlderassumption that < n,

P[Amax(E) > 9max] < 2 exp(—n/2) (7.23)
P[Ain(E) < bmin/9] < 2 exp(—n/2). (7.24)
From Lemma A.3. in@5] we have the following bound on the etets of the covariance

matrix
]P)Ha\ab - Uab| > 6] < eXp(_62n62)7 |€| < € (725)

wherec; andc, are positive constants that depend only\gn, (3) andey,.
Next, we use the following tail bound foy? distribution from EB] which holds for all
e >0,

62

P2 >n+¢ < exp(—% min (e, E)) (7.26)
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Chapter 8

Conditional Estimation of Covariance
Models

In the previous chapters, we discussed estimation of n&tatoactures as a function of time,
however, in many applications, it is more natural to thinkaaietwork changing as a function
of some other random variable. In this chapter, we focus awlitional estimation of network
structures. We start by motivating the problem by few reallevapplications.

Consider the problem of gene network inference in systewisdy, which is of increasing
importance in drug development and disease treatment. A getwork is commonly repre-
sented as a fixed network, with edge weights denoting stnerfghssociations between genes.
Realistically, the strength of associations between geaasdepend on many covariates such
as blood pressure, sugar levels, and other body indicatorgever, biologists have very little
knowledge on how various factors affect strength of assiocis. Ignoring the influence of dif-
ferent factors leads to estimation procedures that ovieitoportant subtleties of the regulatory
networks. Consider another problem in quantitative finafarewhich one wants to understand
how different stocks are associated and how these assmsaiary with respect to external fac-
tors to help investors construct a diversified portfolio.eTrale of Diversification formalized
by Modern Portfolio Theor@Z], dictates that risk can bduced by constructing a portfolio
out of uncorrelated assets. However, it also assumes tbagbociations between assets are
fixed (which is highly unrealistic) and a more robust applhote modeling assets would take
into account how their associations change with respect@oa@nic indicators, such as, gross
domestic product (GDP), oil price or inflation rate. Unforately, there is very little domain
knowledge on the exact relationship between economic aaolis and associations between as-
sets, which motivates the problem adnditional covariance selectione intend to investigate
in this chapter.

8.1 Motivation
Let X € RP denote ap-dimensional random vector representing genes or stockesaland
Z € R denote an index random variable representing some bodyrfacieconomic indicator

of interest. Both of the above mentioned problems in biolagyg finance can be modeled as
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inferring non-zero partial correlations between difféareamponents of the random vectir
conditioned on a particular value of the index variadle= >. We assume that the value of
partial correlations change with however, the set of non-zero partial correlations is comtst
with respect to:. Let 3(z) = Cov(X|Z = z) denote theonditionalcovariance oX givenZ,
which we assume to be positive definite, and¥t) = X(z)~! denote the conditional precision
matrix. The structure of non-zero components of the m&2(ix) tells us a lot about associations
between different components of the vecXorsince the elements 6%(z) correspond to partial
correlation coefficients. In this section we address thél@mge of selecting non-zero compo-
nents ofQ2(z) from noisy samples. Usually, very little is known about te&ationship between
the index variableZ and associations between components of the random vadabé®, we
develop a nonparametric method for estimating the non-@erments of2(z). Specifically, we
develop a new method based 6n¢, penalized kernel smoothing, that is able to estimate the
functional relationship between the ind&and components d(z) with minimal assumptions
on the distribution X, Z) and only smoothness assumptionona> Q(z). In addition to devel-
oping an estimation procedure that works with minimal agstions, we also focus on statistical
properties of the estimator in the high-dimensional sgitmhere the number of dimensiops
is comparable or even larger than the sample size. Ubiqditygh-dimensionality in many
real world data forces us to carefully analyze statisticapprties of the estimator, that would
otherwise be apparent in a low-dimensional setting.

Our problem setting, as stated above, should be distingdiflom the classical problem of
covariance selection, introduced in the seminal paper lmp[%er]. In the classical setting,
the main goal is to select non-zero elements of the precisatnix; however, the precision matrix
does not vary with respect to the index variables. As mertidiefore, non-zero elements of the
precision matrix correspond to partial correlation coedfits, which encode associations among
sets of random variables.

There are only few references for work on nonparametric risdde conditional covariance
and precision matricesm%] develop a kernel estimatdahefconditional covariance matrix
based on the local-likelihood approach. Since their apgrabes not perform estimation of
non-zero elements in the precision matrix, it is suitableow-dimensions. Other related work
includes nonparametric estimation of the conditionalaree function in longitudinal studies
(see EBEO] and references within).

In summary, here are the highlights of our this chapter. Oamneontribution is a new
nonparametric model for sparse conditional precision icegr and the; /¢, penalized kernel
estimator for the proposed model. The estimation procedasedeveloped under minimal as-
sumptions, with the focus on the high-dimensional settimiggre the number of dimensions is
potentially larger than the sample size. A modified BayeBi&rmation Criterion (BIC) is given
that can be used to correctly identify the set of non-zeragaorrelations. Finally, we demon-
strate the performance of the algorithm on synthetic datbaaualyze the associations between
the set of stocks in the S&P 500 as a function of oil price.

The work presented here is related, but different from estion of time-varying networks.
As we will see, the estimation procedure is based on the heitjood selection described @
and is a slight modification of neighborhood estimation usegstimate time-varying networks.
However, the difference comes from the fact that the vagial@ are conditioning is not fixed,
but a random quantity.
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8.2 The Model

LetX = (Xi,...,X,)T € R? be ap-dimensional random vector (representing gene expression
or stock values) and let random varialdlec [0, 1] be an associated univariate index (representing
a body factor or an economy index). We will estimate assimriatbetween different components
of X conditionally onZ. For simplicity of presentation, we assume that the indelatse can

be scaled into the intervdl, 1] and, furthermore, we assume that it is a scalar variable. The
kernel smoothing method, to be introduced, can be easignetd to multivariate/. However,
such an extension may only be practical in limited cases,tdube curse of dimensionality
[125]. Throughout the chapter, we assume ha |7 = 2] = 0 for all z € [0, 1]. In practice,
one can easily estimate the conditional meaXogiven Z using local polynomial fitting@O]
and subtract it fronX. We denote the conditional covariance matrixofyiven Z asX(z) :=
Cov(X|Z = z) = (0uw(2)), ey Where we usep| to denote the sefl, ..., p}. Assuming
that 3(z) is positive definite, for alk € [0, 1], the conditional precision matrix is given as
Q(2) :=2(2) ™ = (Wuo(2))uvep)- Elementw,,(2))u e are smooth, but unknown functions
of z.

With the notation introduced above, the problem of condaiocovariance selection, e.g.,
recovering the strength of association between stocks asaidn of oil price, or association
between gene expressions as a function of blood pressurdectbrmulated as estimating the
non-zero elements in the conditional precision mafix). As mentioned before, association
between different components &f can be expressed using the partial correlation coeffigients
which are directly related to the elements of precision mais follows; the partial correlation
puv(2) betweenX, and X, (u,v € [p|) givenZ = z can be computed as

W (2)

W (2) Wy (2) '

Pun(2) = —

The above equation confirms that the non-zero partial @irogl coefficients can be selected
by estimating non-zero elements of the precision matrix. .e= {(u,v) : f[o,u w2 (2)dz >
0, u # v} denote the set of non-zero partial correlation coefficiewtsich we assume to be
constant with respect tg, i.e., we assume that the associations are fixed, but tmength can
vary with respect to the index Furthermore, we assume that the number of non-zero partial
correlation coefficientss := |S|, is small. This is a reasonable assumption for many prohlems
e.g., in biological systems a gene usually interacts witly achandful of other genes. In the
following paragraphs, we relate the partial correlatioeftioients to a regression problem, and
present a computationally efficient method for estimating-aero elements of the precision
matrix based on this insight. In particular, we extend thegmegorhood selection procedure
discussed 2.

For each component,, (v € [p]) we set up a regression model, whe¥g is the response
variable, and all the other components are the covariatesXL,, := {X, : v # u,v € [p|}.
Then we have the following regression model

Xu= Xobu(2) +eul2), e lpl,
v#U
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with ¢, (z) being uncorrelated witlX., , if and only if

buv(z) = _wuv(Z) = uv(z) Wuv(z)

wuu(2) Wy (2)

We propose a locally weighted kernel estimator of the nawn-partial correlations. LeD™ =
{(x", ") }iepn) be an independent samplerofealizations of X, Z). For eachu € [p], we define
the loss function

n i i 2 i
LuBuD) = Yo Y (ah =D wibu(e) Ka(z = 2) +20 Y [l (g
ze{z7}jepn €[N v#U vFu
whereB, = (b,(z'),...,b,(2")), bu(27) € RF Ky(z — 2%) = K(%) is a symmetric
density function with bounded support that defines locabies,» denotes the bandwidth,is
the penalty parameter and,,(-)||. := \/Zze{zj}je[n] buw(2)2. DefineB,, as a minimizer of the
loss

B, := argmin L,(B;D"). (8.2)

BeRp—1xn

Combining{ﬁu}uem gives an estimator

S = {(u, v) : max{| [0y, ()], |[bou ()] |2} > 0}

of the non-zero elements of the precision matrix.

In (8.1), thet, /¢, norm is used to penalize model parameters. This norm is cartynsed
in the Group Lass4]. In our case, since we assume thd senezero elements, of the
precision matrix, to be fixed with respect tpthe /;, norm is a natural way to shrink the whole
group of coefficientg b, (2") }:c, to zero. Note that the group consists of the same element, say
(u,v), of the precision matrix for different values of

8.3 Optimization algorithm

In this section, we detail an efficient optimization alglnit that can be used to solve the problem
givenin [8.2). Given that the optimization problem is comevariety of techniques can be used
to solve it. A particularly efficient optimization algorithhas been devised fér /¢, penalized
problems, that is based on the group-coordinate descens aefiérred to as the active-shooting
algorithm @@6] A modification of the procedure, suitafor our objective, is outlined in
Algorithm[3, which we now explain.

We point out that the group coordinate descent will convéogen optimum, since the loss
function is smooth and the penalty term[in (8.1) decomposessa different rows of the matrix
B, [ﬁ]. Now, we derive an update for row, while keeping all other rows dB,, fixed. Let
{buv(27)} jejn) be @ minimizer of

Lo({bu( e D) = D > (rha(2) = 2hbun(2)) Kz = ) 4 22 [[buu ()],

Ze{zj}je[n] Ze[n]

(8.3)
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Input: DataD" = {x, z'};c,y, initial solutionB"
Output: SolutionB,, to Eq. [8.2)

A:={vep|\u: |[[B2()]s> 0}, t=0
repeat
repeatiterate oven € A
Compute{r;, (/) }; jefn using [8.4)
if condition(8.5)is satisfiedhen
else
Dyo(+) <= argmin £ (by,(-); D)
end
ntil convergence onl
orall the v € [p] \ v do
if condition(8.8)is satisfiedhen
else
Dy (+) ¢ argmin L2 (by, (-); D™
end
end
A:=A{vep]\u:|lbw()l[2 >0}
until A did not change

Bu — {buv()}ve[p]\u

Algorithm 3: Procedure for solving Ed.(8.2)

= C

where
() = @, — Z xi’guv’(z) (8.4)
' Fu
and {b,./(z)} denotes the current solution for all the other variabledviSg (83) iteratively,
by cycling through rows € [p] \ u, will lead to an optimal solutiol,, of (8.2). By analyzing
Karush-Kuhn-Tucker conditions of the optimization prahlen Eqg. [8.3), we can conclude that
the necessary and sufficient condition {Egv(zﬂ')}jew =0is

v X (szmzmu—zi)) <1 5)

2€{27}jem (€M

Eq. (8.3) gives a fast way to explicitly check if the ravof a solution is identical to zero or not.
If the condition in[[8.b) is not satisfied, only then we needirid a minimizer of[(8.B), which can
be done by the gradient descent, since the objective igeliffeble wher{b,,(z7)} ;e # 0.

In practice, one needs to find a solution[fo {8.2) for a largalmer of penalty parameteps
Computing solutions across a large set of possibtalues can effectively be implemented using
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the warm start technlquﬂm] In this technique, EE(BS?S)oIved for a decreasing sequence
of penalty parameters, > ... > Ay and the initial valud3\” provided to Algorithni B for)\;

is the final solutionB,, for >\2_1. This experimentally results in faster convergence and eemo
stable algorithm.

8.4 Theoretical properties

In this section, we give some theoretical properties of staration procedure given igB.2.
These results are given for completeness and are presentezlityproofs, which will be re-
ported elsewhere. In particular, we provide conditionseurvdhich there exists a sét= S(\)

of selected non-zero partial correlations, which constieestimates, the true set of non-zero
partial correlations. Observe thatdepends on the penalty parameterso it is of practical
importance to correctly select the parametéor which S consistently recoverS. We give con-
ditions under which the modified BIC criterion is able to itlnthe correct penalty parameter
A. We start by giving general regularity conditions.

The following regularity conditions are standard in thergture Ehmfs](Al) There is an
s > 2 such thaff[||X]|3*] < oo; (A2) The density functiory(z) of the random variabl¢ is
bounded away from 0 off), 1] and has bounded second order derivatp®&) The matrix2(z)
is positive definite for alk € [0, 1] and its elementéw,,,(z)) are functions that have bounded
second derivative§A4) The functionE[|| X||3 | Z = 2] is bounded{A5) The kernelK(-) is a
symmetric density with compact support. In addition thedtad regularity conditions, we need
the following identifiability condition, which allows us worrectly identify the true mod€A6)
SUD, ¢ [0,1) MAX 2y [Wao (2°)] < O(3), whered := max,cpy [{v : (u,v) € S}

Theorem 8.1. Assume that the regularity conditio(&1)-(A6) are satisfied. Furthermore, as-
sume thai[exp(tX)|Z = z] < exp(c?t?/2) forall z € [0,1], ¢ € R and somer € (0, cc). Let
h = OMn™ 1), X = O(n™/*/logp) andn=9°)\ — 0. If f/lﬂ min, ,es |[buy(+)|]2 = o0, then
P[S = S] — 1.

Assuming thafX is a subgaussian random variable in Theokem 8.1 is due toitadhrea-
sons. The assumption is needed to establish exponentiplaliges for the probability that each
solutionB, of Eq. (8.2) correctly identifies the set of non-zero row®qf Then consistency of
S can be established by applying the union bound over the eteat estimator¢B,, } [, con-
sistently estimate non-zero rows B, }..,. For the last claim to be true when the dimension
pis large, e.g.p = O(exp(n®)),a > 0, we need a good tail behavior of the distributiorof
The statement of the theorem still holds true, even if we doestablish exponential inequali-
ties, but only for smaller dimensions. Another commonlydussgularity condition orX is to
assume that it is bounded with probability 1, which wouldiagdlow us to establish exponential
inequalities needed in the proof. Finally, we need to assiwaiefor (u, v) € S, ||bu.(+)||2 does
not decay to zero too quickly. Otherwise, the element of tleeipion matrix would be to hard
to distinguish from 0.

Next, we show that the correct penalty parame\tcean be chosen using the modified BIC
criterion of Ei] DenoteBu » as the solution of Eq[(8.2) obtained for the penalty paramet
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We define the residual sum of squares as

RSS,(A) :=n"? Z Z (2 — in@uv,A(z))th(z — 2%

z  i€ln] vEU

and the BIC-type criterion

~

df , \(log(nh) + 2logp)
nh ’

BIC,()\) = log(RSS,(\)) +

WheredAfwA denotes the number of non-zero rowsﬁ)j,x. We used the modified version of the
BIC criterion, since the ordinary BIC criterion tends tolube many spurious variables when
the complexity of the model space is Iar [31]. Nowis chosen by a minimization:

X = argmin »_ BIC,()), (8.6)

u€(p]

and the final estimator of the non-zero components of thagioecmatrixS = §(X) is obtained
by combining{ﬁuvx}ue[p]. We have the following theorem.

Theorem 8.2. Assume that the conditions of Theoifen 8.1 are satisfied. fhieetuining param-
eter \ obtained by minimizing criteriof8.8) asymptotically identifies the correct model, i.e.,
P[S(\) = S] — 1.

8.5 Simulation results

8.5.1 Toy example

We first consider a small toy example in order to demonstratalgorithm’s performance. We
drawn samples, from the joint distribution ¢X, 7) where the conditional distribution &
givenZ = z is a 5-dimensional multivariate Gaussian with mean 0 andigion matrix€2(z),
andZ is uniformly distributed on0, 1]. The setS = {(1,2), (3,4), (2,4), (1,5), (3,5) } denotes
the non-zero elements 61(z). We set elements,,,(2) = wu(2) = fuu(z) for all (u,v) € S,
where the functionq f,,(z)} are defined as follows(1) f;» = 1 (constant),(2) f54 = 1
(constant)(3) fo4(z) = 1if z < .5and—1 for z > .5 (piecewise constant}4) f1 5(z) = 2z — 1
(linear),(5) fs35(2) = sin(2mz) (sinusoid). The diagonal elements, (=) (¢ € [0, 1]) are set to
a constant number such tHat z) is diagonally dominant, and hence positive definite.

We compared our method against the approadﬁ [135] (exfeoradvB), which assumes an
invariant covariance matrix and ignoresand against a simpler variant of our algorithm (called
“kernel, ¢, penalty”), which replaces the grodp//, penalty in [8.1) with the/; penalty. Recall
that the/; penalty does not encourage the set of non-zero elementg iprétision matrix to
remain fixed for allz € [0, 1]. Our algorithm, developed i#8.2 is referred to as “kernel, group
penalty”.

We average our results over 100 random trials. For eachsrial 300 samples are randomly
generated using the procedure described above. We coumdetuimber of times each of the
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Figure 8.1: Toy example results. Each bar represents thdeuof times the corresponding precision
matrix element was included ifi. Performance of the ideal algorithm is shown in the top leftpOur
algorithm gets close to this, and far outperforms both theminethods.
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Figure 8.2: Simulation results for 8x8 grid. S§&5.2 for details.
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() = 10 possible off-diagonal elements of the precision matrixeveelected as non-zeros.
Figure[8.1 displays results as histograms. Bars 1-5 cavresfo the true non-zero elements in
S, as enumerated above, while bars 6-10 correspond to theetsrtinat should be set to zero.
Thus, in the ideal case, bars 1-5 should be estimated asaroriex all 100 trials, while bars 6-10
should never be selected. As we can see, all algorithmg $leéeconstant elements,(-) (bar 1)
andwsy(+) (bar 2). However, th&B approach fails to recover the three varying precision matri
elements and also recovers many false elements. Just h&ingitnel +/; penalty, described
above, performs better, but still selects many elementsm6t Our algorithm, on the other
hand, selects all the elements $halmost all of the time, and also excludes the elements not
in S the vast majority of the time. This higher precision is theuteof our group penalty, and
gives superior performance to just using/ampenalty (assuming that the set of non-zero partial
correlation coefficients is fixed with respectp

8.5.2 Large simulations

We next tested our algorithm on a larger problem whére R%. The components aX were
arranged into an 8x8 grid, so that only adjacent componariteigrid have has non-zero partial
correlation. For all adjacer(t:, v), wy,(z) = sin(2rz + cu), Wherec,,, ~ Unif([0, 1]) is a
random offset. We measure how well the algorithm recovesdrile set of non-zero precision
matrix elements. BotlvB and “kernel +¢;” perform much worse than our estimator, so we do
not display their performance. Performance of the “kerngtaup penalty” estimator is shown
in Figure[8.2. Even though the problem is significantly hgreéter 800 samples our algorithm
achieves an F1 score abave.

8.6 Analyzing the stock market

We next apply our method to analyzing relationships amoaogkstin the S&P 500. Such an
analysis would be useful to an economist studying the effeearious indicators on the market,
or an investor who is seeking to minimize his risk by condingea diverse portfolio according to
Modern Portfolio Theor 2]. Rather than assume stagoeaistions among stocks we believe
it is more realistic to model them as a function of an econamdicator, such as oil price. We
acquired closing stock prices from all stocks in the S&P Bemd oil price@ for all the days
that the market was open from Jan 1, 2003 through Dec 31, 20B8&. gave us 750 samples
of 469 stocks (we only considered stocks that remained irs8@ 500 during the entire time
period). Instead of considering the raw prices, which o&tena reflection of other factors, such
as number of shares, we used the logarithm of the ratio ofribe pt timet to the price at time

t — 1 and subtracted the mean value and divided by the standaiatidevfor each stock.

Our data consists of paifs’, z'}, the vector of standardized stock prices and the oil price,
respectively, obtained over a period of time. We analyzeddim to recover the strength of
associations between different stocks as a function of ith@ioe. Our belief is that each stock
is associated with a small number of other stocks and thegehef associations is fixed over a

1Can be obtained &tt t p: // www. f i nance. yahoo. com
2Can be obtained &t t p: / / t ont 0. ei a. doe. gov/|
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time-period of interest, although the strengths may chaidégbelieve this is justified since we

are looking for long-term trends among stocks and want tongrransient effects. Figure 8.3

illustrates the estimated network, where an edge betweembsles correspond to a non-zero
element in the precision matrix. Note that the presentedoriitis not a representation of an

undirected probabilistic graphical model.

Clusters of related stocks are circled in Figurd 8.3, andehargely confirm our intuition.
Here are some of the stocks in a few of the clustét$Technology/semiconductorsdewlett
Packard, Intel, Teradyne, Analog Devices e{@) Oil/drilling/energy - Diamond Offshore
Drilling, Baker Hughes, Halliburton, etc(3) Manufacturing- Alcoa, PPG Industries (coating
products), International Paper Co. efd) Financial- American Express, Wells Fargo, Franklin
Resources etc. It is also interesting that there exist evttaubgroups inside these clusters. For
example, the “Retail stores” sector could be further didid®o companies that specialize in
clothes, like Gap and Limited, and those that are more geparpose department stores, like
Wal-Mart and Target.

Another point of interest are two hubs (enlarged and higidid in green in Figurie 8.3), that
connect a set of diverse stocks that do not easily categotizen industrial sector. They corre-
spond to JPMorgan Chase and Citigroup (two prominent fiicstitutions). It possible that
these stocks are good indicators of the status of the marketve certain investment portfolios
that contribute to their central positions in the network.

Finally, we explore the evolving nature of our edge weightsagunction of oil price to
demonstrate the advantages over simply assuming statialgarrelations. Recall that the edge
weights vary with oil price and are proportional to the estied partial correlation coefficients.
Consider the two stocks Analog Devices (ADI), which makemal processing solutions, and
NVIDIA (NVDA), which makes graphics processing units. Igimy the effect of the oil price,
both of these companies are highly related since they bettige semiconductor sector. How-
ever, if one analyzes the edge weights as a function of aikpas shown in Figufe 8.4 (a) and
(b), both behave quite differently. This changing relasioip is reflected by the varying strength
of the edge weight between NVIDIA and Analog Devices (showFRigure 8.4 (c) ). Note that
when oil prices are low, the edge weight is high since Anal@yifes and NVIDIA are both
rising as a function of oil price. However, as oil prices e&se, Analog Devices stabilizes while
NVIDIA is more erratic (although it is mostly rising), so tleglge weight sharply decreases.
Thus, if an investor is aiming for diversification to redugskr he/she may be wary of investing
in both of these stocks together when olil prices are low stheg are highly associated, but
might consider it if oil prices are high and the stocks ars Essociated.
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Figure 8.3: Overall stock market network that was recovénethe algorithm. Edges in the graph corre-
spond to non-zero elements in the precision matrix. As onesea, the recovered network contains many
clusters of related stocks. The green (and enlarged) heldesicribed in the text.
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Figure 8.4: This figure demonstrates how the changing edgghtgetween Analog Devices and NVIDIA
((c)) corroborates with the fact that Analog Devices and DIMI behave quite differently as a function

of ail price ((a) and (b)). In (a) and (b), the y-axis is theoaif the stock price to its price on January 1,
2003.
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Chapter 9

Estimation From Data with Missing Values

In this chapter, we study a simple two step procedure fomeding sparse precision matrices
from data with missing values, which is tractable in highadhsions and does not require impu-
tation of the missing values. We provide rates of convergdacthis estimator in the spectral
norm, Frobenius norm and element-wisge norm. Simulation studies show that this estimator
compares favorably with the EM algorithm. Our results hampartant practical consequences
as they show that standard tools for estimating sparsesiwaanatrices can be used when data
contains missing values, without resorting to the itemEWM algorithm that can be slow to con-
verge in practice for large problems. Furthermore, thestdeleloped here could be extended to
estimation of time-varying networks in previous chapters.

9.1 Introduction

Covariance matrices and their inverses, precision matriagse in a nhumber of applications
including principal component analysis, classificatiodibgar and quadratic discriminant anal-
ysis, and the identification of conditional independensaagptions in the context of Gaussian
graphical models. As a result, obtaining good estimatorsogfiriance and precision matrices
under various contexts is of essential importance in siggiand machine learning research. In
g2 we provide an overview of methods for learning GGMs frontyfobserved data.

In practice, we often have to analyze data that containsjm\gjszalues]. Missing values
may occur due to a number of reasons, for example, faulty maghthat collects data, subjects
not being available in subsequent experiments (longialditudies), limits from experimental
design, etc. When missing values are present, they arelyismgluted to obtain a complete
data set on which standard methods can be applied. Howeethons that directly perform
statistical inference, without imputing missing value preferred. A systematic approach to
missing values problem is based on likelihoods of obseraddes. However, with an arbitrary
pattern of missing values, no explicit maximization of tileelihood is possible even for the
mean values and covariance matridg_|[129]. Expectationmization algorithms, which are
iterative methods, are commonly used in cases where expiaximization of the likelihood
is not possible; however, providing theoretical guarasfee such procedures is difficult. This
approach was employed in [1 64] to estimate sparse inversgiaoce matrices, which we will
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review in the following section. In recent worMZZ] dealgh the estimation of covariance
matrices from data with missing values under the assumptiainthe true covariance matrix is
approximately low rank4] recently studied high-diraemal regression problems when data
contains missing values. Casting the estimation of a gratimatrix as a sequence of regression
problems, they obtain an estimator of the precision matiilkout maximizing partially observed
likelihood function using an EM algorithm.

In this chapter, we present a simple, principled method diratctly estimates a large di-
mensional precision matrix from data with missing values #fm an unbiased estimator of
the covariance matrix from available data, which is therggkd into the penalized maximum
likelihood objective for a multivariate Normal distribati to obtain a sparse estimator of the
precision matrix. Even though the initial estimator of tlewvariance matrix is not necessarily
positive-definite, we can show that the final estimator of ghecision matrix is positive defi-
nite. Furthermore, unlike the EM algorithm, which is onlyaganteed to converge to a local
maximum, we prove consistency and convergence rate forstimator in the Frobenius norm,
spectral norm and,, norm. Our results have important practical consequencésegsallow
practitioners to use existing tools for penalized covamaselection (see, for examplE[?l]),
which are very efficient in high-dimensions for data sethwaitissing values without changing
the algorithm or resorting to the iterative EM algorithm.

Throughout the chapter we assume that the missing valuesisseng at random in the sense
of [@]. LetX = (z;;) € R™*? be a matrix of observations with samples organized into yows
and letR = (r;;) € R™*? be a matrix of indicators of observed values, that'js,= 1 if the
valuez,; was observed and; = 0 otherwise. We assume that the data is missing completely
at random (MCAR), which means th&fR|X, ¢] = P[R|y] for all X andy, wherey denotes
unknown parameters. The MCAR assumption implies that thesimgness does not depend
on the observed values, e.g., in a distributed environneah sensor may fail independently
from other sensors. This assumption is relaxed in the exyatial section where we test the
robustness of our procedure when the missing data mechaeisants from the MCAR assump-
tion. Another more realistic assumption is called missihgaadom (MAR), which assumes
PR|X, ¢] = P[R|Xoms, ¢] for all X,,;;s andy, whereX,,,; denotes the observed components of
X andX,,;s denotes the missing components. The MAR assumes that tinéwati®n of R de-
pends on the observed valuesXfbut not on the missing values, e.g., cholesterol level neay b
measured only if patient has high blood pressure. Finddgymissing data mechanism is called
not-missing at random (NMAR) if the distribution & depends on the non-observed values of
X. Estimation under NMAR is a hard problem, as one needs to ms&emptions on the model
for missing values. The method presented in this chapterioaheory, be extended to handle
the MAR case.

9.2 Problem setup and the EM algorithm

Let {x;}! , be ani.i.d. sample from the multivariate Normal distribution with theamp, € R?
and the covariance matrX € RP*?P, Let R € R"*? be a matrix of missing values indicators
with r;; = 1if z,; is observed and O otherwise. The goal is to estimate the espaegision
matrix Q2 = X! from the data with missing values.
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Estimating covariance matrices from data with missing @alis quite an old problem. See,
for example, D7Eﬂ7]. However, literature on hagimensional estimation of covari-
ance matrices from incomplete data is missing. Recel@][mbposed to use an EM algorithm,
called MissGlasso, to estimate sparse precision matmdash we review below.

As discussed infZ the sparse precision matrix can be estimated by solvindall@ving
¢1-norm penalized maximization problem

ﬁ:argrggéc {log || — tr QS — A|Q |1}, (9.1)

whereS is the empirical covariance matri€~ := £ — diag(€2) and|[A[[s = >_,; [Asl-

When the data are fully observem%] arrived at the ogation procedure i (9.1) from
the penalized maximum likelihood approach, with= n=*>""  (x; — X)(x; — X)'. In the case
when data contains missing values, the log-likelihood &ferbed data takes the following form

6(/1'7 Q7 {Xi,obs}i) =

1< ~ _ _
- 5 Z (lOg |(Q 1)i,obs| + (Xi,obs - u'i,obs)/((Q l)i,obs) 1(Xi,obs - ui,obs)>a
=1

where for a sample point; we writex; = (X; obs, Xi mis) {0 denote observed and missing compo-
nents, angk; .,s ands2; .1, are the mean and precision matrix of the observed compoogrts
MissGlasso is an EM algorithm that finds a local maxim{finQ2) of the ¢, penalized observed
log-likelihood. In the E-step, MissGLasso imputes the imgsalues by conditional means of
the distribution. That is, imputation is done Ryiis = Lmis — (Rmismis) " Lumis.obs (Xi.obs — Hobs )
where i1 and ) are the current estimates of the parameters. In the M-gtepoptimization
problem [9.1) is solved using the GLasso on data with impuot&asing values. The procedure
iterates between the E-step and the M-step until conveegiere local optimum of the penalized
observed log-likelihood. We will denot@®™, the final estimator of the precision matrix ob-
tained by the EM algorithm. As the objective is non-conveis difficult to establish theoretical
guarantees on the solution produced by the EM. Next, we prese estimator.

9.3 Plug-in estimator and related procedures

In this section, we propose a simple procedure based on tigeiplestimator of the covariance
matrix from available data that can be used together witltierg procedures for estimating
precision matrices from fully observed data. Specificailg, will use the penalized likelihood
approach, which was introduced in the previous section.i) (rom [9.1) it is obvious that we
only need a sample estimate of the covariance matrix, wisigiugged into a convex program
that produces an estimate of the precision matrix.

We form a sample covariance matrix from the available sasnpbataining missing values
as follows. LetS = [0,;]. be the sample covariance matrix with elements

8@1) _ Eizl Tz’arib(a;;ia - ,ua)(xib - ,ub) (92)
Eizl TiaTib
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wherezi = (i,) is the sample mean defined@as= (3.7, 7ia) " > i, Tiaia- Observe that the
missing values ifX are taken into account naturally and that the mean and enaielements
are estimated only from the observed sample. Under the MGSRraption, it is simple to show
thatS is an unbiased estimator &, that is,E[S] = 3.

__ Our estimator is formed by pluggir@ into the objective in[(9]1), which we will denote as
QmGlLasso - Note thatS is not necessarily a positive definite matrix, however, theimization
problem in[9.1) is still convex and the resulting estim&t<as° will be positive definite and
unique. In the next section, we leverage the analysi@][]l@%stablish a number of good
statistical properties of the estimatar©lasse,

9.3.1 Selecting tuning parameters

The procedure described in the previous section requitestsm of the tuning parameters
which controls the sparsity of the solution and balancestité fit to data. A common approach
is to form a grid of candidate values for the tuning paramgt@nd choose one that minimizes a
modified BIC criterion

BIC(A) = —20(R, Q; {xion:}:) + log(n) Y 1{@us # 0}.

a<b

Here (1, ﬁ) are estimates obtained using the tuning parametand ¢(, Q; {Xiobs}i) IS the
observed Iog-likelihood.5] proposed to use, ., 1{{., # 0} to measure the degrees of
freedom. -

Performing cross-validation is another possibility fodiimg the optimal parametex. In the
V-fold cross-validation, samples are divided intadisjoint folds, sayD, forv =1,...,V, and
the score is computed as

14
CV(A) =D > log (2, )iobs| + (Kiobs — (Fw)iobs) () iobs) ™ (Kiobs — (o )i.obs)s

v=1 ieDv

where (g, ﬁv) denote estimates obtained from the samipte}” ,\D,. The optimal tuning

parameten is the one that minimize§V()). The final estimate&, Q) are constructed using
the optimization procedure with the tuning parameten all the data.

9.3.2 Related procedures

] and ] have recently proposed procedures for esimg approximately low-rank co-
variance matrices and sparse precision matrices, regplctirom high-dimensional data with
missing values. In both works, a sample covariance estnmformed, which is then plugged
into an optimization procedure. The sample covariancenastir they consider, assumifg, ). (9
Bern(y) with v € (0, 1] known, is defined as

=0y =y )diag(®) + 4778
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whereX = (Gaplap @NAGa = 0™t >0 | Tiaripiaxsp. The estimatoB is an unbiased estimator
of the covariance matrix, however, it requires knowledgthefparametery.

Procedure 0@2] is focused on estimating a covariancexnatder the assumption that the
true covariance matrix is approximately low rank and hesa®i comparable to our procedure.
] used a projected gradient descent method to obtainuiaoto a high-dimensional re-
gression problem when data contains missing values. Aspaesision matrix can be obtained
by maximizing an/, penalized pseudo-likelihood, which reduces to a sequehoegeession
problems. We note that the estimafor©2° can be obtained using any convex program solver
that can solve (9]1), while the results @24] rely on thagesof projected gradient descent.

9.4 Theoretical results

In this section, we provide theoretical analysis of theneatesQmSLass which we denote
throughout the section for notational simplicity, undez MCAR assumption. We start by ana-
lyzing the sample covariance matfxn (©.2). We will assume that each element of the missing
values indicator matribR is independently distributed ag, ~ Bern(y),i = 1,...,n, a =
1,...,p. Furthermore, we assume that a distributiorXohas sub-Gaussian tails, that is, there
exists a constant € (0, co) such that

Elexp(t(Xia — ta))] < exp(c?t?), forall t € R.

A multivariate Gaussian distribution satisfies this coiodit We define the functiorf(n, v, §),
which will be useful for characterizing probabilistic dation of different quantities, as

f(n,7,8) = (ny* — /2n721og(2/5)) ™" log(8/9).

Ouir first result characterizes the deviation of the samplargance matrix from the true covari-
ance matrix.
Lemma 9.1. Assume thak, /v/>,, is sub-Gaussian with parametef. Fix § > 0 and assume
that n is big enough so thaf(n,v,d) < 1/2. Then for any fixeda,b) € {1,...,p}? a # b,
with probability at leastl — §, we have thalg,, — 0. < C,+/f(n, 7, ) whereC, = 16v/2(1 +
40?%) max, Oqq.

Similarly, we can obtain that for any diagonal elementSdahe statemeno,, — 0u.| <
Cs+/ f(n, /7, 6) holds with probabilityl — .

We use Lemm&a9l1 to prove properties of the estinglité>s=°. We start by introducing
some additional notation and assumptions. FoIIO\N@[;LﬁE] introduce therrepresentable
condition

ITses(Tss) Moo <1—a, a€(0,1] (9.3)
wherel' = Q®Q, S := {(a,b) : wy # 0} is supportof2 andS® := {(a,b) : wa = 0}, and|-
| is thely, /(..-operator norm. Furthermore, we defiRg := ||X||c andAT = ||[(Tss) ™ oo-

The maximum number of non-zero elements in a rovfdofs denoted! := max,—;__, [{b :
wa # 0}|. The rate of convergence will depend on these quantities.
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Theorem 9.1. Suppose that the distribution &F satisfies the irrepresentable condition(@®3)
with parametera: € (0, 1] and that the missing values indicator mati has i.i.d. Bern(~)
elements, that is, the data is missing completely at randsimpsobability 1 — ~. Furthermore,
assume that the conditions of Lenimd 9.1 hold 26k the unique solution for the regularization
parameter\ = %C’U\/f(n,’y,p_T) with somer > 2 andC, = 16v/2(1 + 40%) max, 0,,. If the
sample size satisfies

2(C3(1+8a71)2d* + Oy (1 + 8a1)d) log 8p™
,}/2
whereC; = 6C, max{ Kx K, K3 K%} then with probability at least — p?~

max @y — Wap| < 2(1 4+ 8a ) KpCyun/ f(n, vy, p77),

whereQ) = [@Dablap ANAL = [Wap) ab-

The result follows from application of Theorem 1 EiSZ] teettail bound in LemmBa 9.1
and some algebra. A simple consequence of Thebrem 9.1 'rEt1thal:1ppor§ of Q consistently
estimates the suppostof 2 if all the elements of2 are large enough in absolute values.
Corollary 9.1. Under the same assumptions as in Theofem 9.1, we havePifat= S] >
1 —p? 7 if ming |was| > 2(1 + 8a™ ) KrCyur/ f(n,v,p~7).

Proof follows by straightforward algebra from Theoréml 9ldsing the element-wisé,,
bound on deviation of2 from Q established in Theorem 9.1, we can simply establish thedsun
on the convergence in the Frobenius and spectral norms.

Corollary 9.2. Under the same assumptions as in Thedremh 9.1, we have thairetiability at
leastl — p>~7,

n >

12 — Q|| < KV/|S[f(n,7,p7), and

12 — Ql> < K min{+/[S],d}/f(n,7,p77)
whereK = 2(1 + 8a~ 1)Kt C,.

Proof follows by straightforward algebra from Theorem 9Me can compare the established
results forQ under the MCAR assumption to results ﬂSZ] for the fullysebved case. We
observe that the sample size increases by a fact@r(of2), while the rate of convergence in
the element-wisé,, norm is slower by a factor ab(y~!). The parameter which controls the
rate of missing data is commonly considered a constant, Vet is clear from Theorem 9.1
that we could lety — 0 slowly as a function o, andp, while maintaining the convergence
properties of the procedure.

9.5 Simulation Analysis

In this section, we perform a set of simulation studies tosiitate finite sample performance
of our procedure. First, we show that the scalings predibiedhe theory are sharp. Next,
we compare our procedure to the EM algorithm, MissGL ][46d the projected gradient
method [124], PGLasso. Furthermore, we can explore robastaf our method when the data
generating process departs from the one assumed in Sedfion 9
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Figure 9.1: Hamming distance between the suppo@cﬂndﬂ averaged over 100 runs. Vertical line
marks a threshold at which the graph structure is consigtestimated.

9.5.1 \Verifying theoretical scalings

Theoretical results given in Sectibn B.4 predict behavfdhe error when estimating the preci-
sion matrix. In particular, Corollafy 9.1 suggests that veedO(d* log(p)) samples to estimate
the graph structure consistently and Corollary 9.2 stditasthe error in the operator norm de-
creases a®(d+/log(p)/n). Therefore, if we plot the error curves against appropiyjatscaled
sample size, we expect them to align for different problemesi To verify this, we create a
chain-structured Gaussian graphical model (follow 12s0 thatd = 2 and the precision
matrix €2 is created as follows. Each diagonal element is set to 1, lhtiteaentries correspond-
ing to the chain are set equal #ol. The precision matrix is rescaled so tH&2|, = 1 and

v =0.8.

Figure[9.1 shows the hamming distance between the suppﬁrmﬁﬁ plotted against the
rescaled sample size. Vertical line marks a threshold iledsample size after which the pattern
of non-zero element of the precision matrix is consistergtovered. Figure 9.2 shows that the
error curves align when the sample size is rescaled, asgpeedyy the theory.

9.5.2 Data missing completely at random

Ouir first simulation explores the MCAR assumption. We useetefifom @]:
Model I o,, = 0.7/*7?, so that the elements of the covariance matrix decay expiaiign
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Recall Precision

MissGLasso mGLasso PGLasso MissGLasso mGLasso PGLasso

o 0% NA 1.000(0.000) 1.000(0.000) NA 0.973(0.045) 0.99116)0
S 10% 1.000(0.000) 1.000(0.000) 0.998(0.008) 0.608(0.068P15(0.059) 0.998(0.010)
L 20% 0.999(0.004) 1.000(0.003) 0.967(0.006) 0.636(0.081.897(0.073) 0.999(0.003)
30% 0.977(0.062) 0.989(0.003) 0.759(0.140) 0.642(0.063.836(0.057) 0.998(0.009)

" o 0% NA 1.000(0.000) 0.891(0.005) NA 0.950(0.046) 0.999@)0
g L 10% 0.860(0.022) 0.950(0.006) 0.782(0.024) 0.858(0.043803(0.046) 0.984(0.027)
§ L 20% 0.833(0.053) 0.930(0.001) 0.556(0.006) 0.763(0.04@)734(0.062) 0.952(0.091)
30% 0.794(0.138) 0.923(0.003) 0.553(0.009) 0.729(0.05@)731(0.060) 0.941(0.052)

o 0% NA 1.000(0.001) 0.889(0.015) NA 0.912(0.022) 0.995(3)0
Q[ 10% 0.931(0.011) 0.933(0.031) 0.855(0.023) 0.834(0.029862(0.044) 0.966(0.010)
L20% 0.852(0.064) 0.920(0.024) 0.767(0.026) 0.811(0.037.841(0.037) 0.965(0.025)
30% 0.808(0.045) 0.887(0.028) 0.526(0.031) 0.739(0.043)r81(0.030) 0.963(0.033)

o 0% NA 0.330(0.008) 0.403(0.006) NA 0.420(0.012) 0.2971@)0
S 10% 0.278(0.019) 0.280(0.011) 0.380(0.007) 0.342(0.012)B375(0.010) 0.319(0.008)
L 20% 0.240(0.022) 0.253(0.018) 0.259(0.012) 0.339(0.028)372(0.027) 0.320(0.026)
30% 0.231(0.031) 0.241(0.027) 0.174(0.030) 0.267(0.033R81(0.037) 0.331(0.042)

N o5 0% NA 0.281(0.011) 0.410(0.013) NA 0.570(0.012) 0.2702a)0
g L 10% 0.331(0.011) 0.261(0.010) 0.361(0.011) 0.354(0.013%71(0.015) 0.257(0.018)
§ L 20% 0.261(0.012) 0.243(0.015) 0.283(0.013) 0.274(0.018354(0.021) 0.313(0.021)
30% 0.218(0.017) 0.232(0.017) 0.208(0.017) 0.281(0.01@p67(0.031) 0.453(0.059)

o 0% NA 0.309(0.006) 0.302(0.012) NA 0.510(0.007) 0.54018)0
Q[ 10% 0.305(0.007) 0.307(0.005) 0.357(0.009) 0.461(0.008162(0.010) 0.224(0.012)
L 20% 0.297(0.010) 0.315(0.027) 0.243(0.015) 0.272(0.028223(0.048) 0.383(0.019)
30% 0.238(0.025) 0.242(0.023) 0.203(0.028) 0.267(0.031.259(0.033) 0.396(0.021)

o 0% NA 0.943(0.002) 0.971(0.015) NA 0.532(0.017) 0.251%Q)0
S 10% 0.857(0.010) 0.857(0.003) 0.994(0.005) 0.857(0.009)882(0.004) 0.200(0.006)
L 20% 0.829(0.017) 0.857(0.012) 0.886(0.035) 0.691(0.022)688(0.015) 0.307(0.059)
30% 0.771(0.053) 0.829(0.033) 0.595(0.096) 0.780(0.050671(0.050) 0.797(0.053)

o o 0% NA 0.783(0.005) 1.000(0.003) NA 0.921(0.002) 0.24528)0
g L 1% 0.747(0.005) 0.733(0.006) 0.998(0.007) 0.887(0.009)021(0.004) 0.233(0.030)
§ L 20% 0.667(0.009) 0.747(0.030) 0.931(0.014) 0.909(0.013)r37(0.031) 0.311(0.023)
30% 0.480(0.037) 0.600(0.052) 0.801(0.045) 0.837(0.05@)B04(0.033) 0.412(0.035)

o 0% NA 0.744(0.005) 0.998(0.002) NA 0.844(0.003) 0.19119)0
QS 10% 0.627(0.006) 0.718(0.006) 0.994(0.003) 0.893(0.003)B835(0.005) 0.180(0.020)
L 20% 0.601(0.010) 0.699(0.031) 0.923(0.029) 0.887(0.033)r89(0.037) 0.259(0.054)
30% 0.511(0.039) 0.614(0.038) 0.851(0.041) 0.800(0.04@)755(0.027) 0.355(0.047)

Table 9.1: Average (standard deviation) recall and precisnder the MCAR assumption.
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Figure 9.2: Operator norm error averaged over 100 runs. V¥ereb that the error curve align when
plotted against the rescaled sample size.

Model 2
Oap = ]]{a:b} +0.4 ]I{|a—b|:1} +0.2 ]|{|a—b|:2}
+0.2 ]]{‘a_b‘zg} +0.1 ]]{\a—b\:4}a

where the symbol represents the indicator function whichligf « = b and0 otherwise.

Model 3 ©2 = B + 41, where each off-diagonal entry & is generated independently and
equals).5 with probabilityc = 0.1 or 0 with probabilityl — «. Diagonal entries oB are zero,
and/ is chosen so that the condition numbegdfs p.

We report convergence results in the operator norm. We afsart precision and recall for

the performance on recovering the sparsity structufe,affhereprecision = ‘S\Ef | andrecall =
‘ﬁgf'. As described in Sectidn 9.3.1, the tuning paraméater selected by minimizing the BIC
criterion. We observed that using the tuning parametettsntiv@mize the cross-validation loss
result in complex estimates with many falsely selected edigsults not reported).

We set the sample size and number of dimensfens) = (100, 100), (150, 200), (200, 500)
for each model and report results averaged over 50 indepéengies for each setting. For each
generated data set, we remove completely at rantd@fify 20% and30% entries. Results on
recall and precision for different degrees of missingnessreported in Table 9.1, while the
operator norm convergence results are reported in Tablé=8a2n the simulations, we observe
that mGLasso performs better than the EM algorithm on thke ¢dgecovering the sparsity
pattern of the precision matrix. PGLasso does well on Moddlut does not perform so well
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under Model 2 and 3. Model 2 is a difficult one for recoveringn+er@ro patterns, as the true
precision matrix contains many small non-zero elementse ERl algorithm performs better

than mGLasso and PGLasso measurefi®y- €2||», with mGLasso doing better than PGLasso.
However, on average the EM algorithm requires 20 iteratfonsconvergence, which makes
mGLasso about 20 times faster on average.

9.5.3 Data missing at random

In the previous section, we have simulated data with misgahges completely at random, under
which consistency of the estimat@™ S »° given in Section 3 can be proven. When the missing
values are produced at random (MAR), the EM algorithm dbscris still valid, however, the
estimatorf2mSLass js not. [128] provided a statistical test for checking wieetmissing values
are missing completely at random, however, no such tesss fxi high-dimensional data. In
this section, we will observe how robust our estimator is mttee data generating mechanism
departs from the MCAR assumption. When the missing data amesim is NMAR, then neither
the EM algorithm, nor the procedures described Section Saie.

We will use the model considered i@64] in Section 4.1.2e Tiodel is a Gaussian with
p = 30, n = 100 and the covariance matrix is block-diagonal,= diag(B, B, ..., B) with

B € R3%3, b, = 0.7/, Missing values are created using the following three meisias:
iid

1. Forallj =1,...,|p/3] andi = 1,...,n: z;3.; iS missing ifr;; = 0 wherer; ; ~
Bern().

2. Forallj =1,...,[p/3] andi =1,...,n: z;3,; is missing ifz; 3,;_» < T

3. Forallj =1,...,|p/3] andi =1,...,n! x;3,; is missing ifz; 3,; < T

The threshold valug' determines the percentage of missing values. We consicks Het-
tings: 1) = 0.25 andT = ®71(0.25), 2) 7 = 0.5 andT = ®~1(0.5). and 3)7 = 0.75
andT = ®1(0.75) where®(-) is the standard Normal cumulative distribution functiorheT
first missing data mechanism is MCAR as the missing valuesada@epend on the observed
values. The second missing data mechanism is MAR as thengigalue indicators depend on
the observed values of other variables. Finally, the thirssing data mechanism is NMAR as
the missing data indicators depend on the unobserved values

Results of the simulation, averaged over 50 independest ane summarized in Taldle .3
and Tabld 9J4. We first observe that when the missing valiesarmissing at random, per-
formance of all procedures degrades. Furthermore, the Ebtitim performs better than the
other two methods when the data is generated under MAR. $leisgected, since our proposed
procedure is not valid under this assumption. Note, howdlvat mGLasso performs better than
PGLasso under this simulation scenario.

9.6 Discussion and extensions

We have proposed a simple estimator for the precision miathigh-dimensions from data with
missing values. The estimator is based on a convex progratcém be solved efficiently. In
particular, from our simulation studies, we observed thatalgorithm runs on average 20 times
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Table 9.2: Average (standard deviation) distance in theatpenorm|©2 — ||, under the MCAR as-

sumption.

MissGLasso

mGLasso PGLasso

Model 1
o 0% NA 2.10(0.01) 4.35(0.01)
S 10% 2.25(0.01) 2.31(0.01) 4.69(0.01)
4 20% 2.35(0.04) 2.42(0.03) 4.78(0.04)
30% 2.69(0.05) 2.85(0.04) 4.82(0.06)
o 0% NA 2.26(0.01) 4.49(0.01)
Q 10% 2.32(0.01) 2.73(0.01) 4.76(0.02)
& 20% 2.51(0.01) 2.88(0.01) 4.86(0.02)
30% 2.96(0.02) 3.04(0.01) 4.98(0.05)
o 0% NA 3.59(0.03) 4.94(0.03)
Q 10% 3.71(0.02) 3.85(0.02) 5.25(0.04)
& 20% 3.99(0.03) 3.99(0.02) 5.32(0.04)
30% 4.11(0.05) 4.77(0.04) 5.76(0.05)
Model 2
o 0% NA 1.25(0.01) 1.63(0.01)
S 10% 1.32(0.01) 1.66(0.01) 1.75(0.01)
& 20% 1.59(0.01) 1.75(0.01) 1.88(0.02)
30% 1.66(0.02) 1.86(0.01) 1.99(0.02)
o 0% NA 1.31(0.01) 1.69(0.01)
< 10% 1.41(0.01) 1.71(0.01) 1.71(0.01)
& 20% 1.61(0.01) 1.79(0.02) 1.99(0.01)
30% 1.69(0.01) 1.87(0.01) 2.08(0.01)
o 0% NA 1.44(0.01) 1.73(0.01)
Q 10% 1.49(0.01) 1.74(0.01) 1.84(0.02)
& 20% 1.66(0.01) 1.81(0.02) 2.05(0.03)
30% 1.72(0.02) 1.95(0.02) 2.22(0.04)
Model 3
o 0% NA 1.12(0.01) 1.35(0.01)
S 10% 1.16(0.01) 1.32(0.01) 1.42(0.02)
4 20% 1.20(0.01) 1.64(0.02) 1.70(0.03)
30% 1.49(0.05) 1.67(0.03) 1.83(0.03)
o 0% NA 1.35(0.01) 1.59(0.01)
Q 10% 1.43(0.01) 1.62(0.01) 1.83(0.01)
& 20% 1.46(0.03) 1.71(0.02) 1.87(0.01)
30% 1.52(0.03) 1.82(0.01) 1.93(0.03)
o 0% NA 1.42(0.01) 1.64(0.02)
Q 10% 1.47(0.01) 1.69(0.02) 1.86(0.01)
& 20% 1.55(0.02) 1.73(0.04) 1.92(0.03)
30% 1.59(0.02) 1.87(0.03) 2.01(0.03)
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T =0.75

m=0.25 MCAR
MAR
NMAR

MCAR
MAR
NMAR

MCAR
MAR
NMAR

MissGLasso

2.88(0.02)
3.24(0.01)
5.78(0.05)

2.97(0.03)
3.41(0.05)
6.15(0.07)

3.17(0.02)
3.59(0.05)
6.87(0.11)

mGLasso

3.16(0.01)
3.92(0.03)
6.57(0.08)

3.28(0.02)
4.16(0.06)
6.61(0.10)

3.31(0.03)
4.47(0.04)
7.04(0.13)

PGLasso

3.72(0.01)
4.15(0.05)
7.64(0.10)

3.77(0.02)
4.58(0.04)
8.12(0.12)

3.99(0.03)
4.87(0.05)
8.76(0.15)

Table 9.3: Average (standard deviation) distance in theatpenorm||© — €|, when missing values
mechanism is MCAR, MAR and NMAR. The fraction of the obserdadia is controlled byt.

m=0.25 MCAR
MAR

NMAR

MCAR
MAR
NMAR

MCAR
MAR
NMAR

m™=0.75

MissGLasso

0.900(0.003)
0.512(0.026)
0.500(0.015)

0.800(0.005)
0.650(0.034)
0.531(0.042)

0.626(0.062)
0.619(0.014)
0.491(0.046)

Recall
mGLasso

0.950(0.005)
0.815(0.070)
0.443(0.052)

0.900(0.003)
0.900(0.005)
0.613(0.477)

0.635(0.220)
0.611(0.132)
0.557(0.115)

PGLasso

1.000(0.000)
0.501(0.067)
0.465(0.112)

1.000(0.000)
0.551(0.061)
0.463(0.073)

0.775(0.081)
0.431(0.075)
0.411(0.076)

Precision

MissGLasso mGLasso
0.900(0)00R2.861(0.006)
0.995(0.006)471(0.052)
0.698(0)086.188(0.021)

0.889(0)008.774(0.068)
0.921(0.020)393(0.089)
0.684(0)09D.370(0.285)

0.924(0)058.891(0.063)
0.879(0.060)555(0.074)
0.688(0)059.464(0.067)

PGLasso

0.333(0.030)
0.634(0.025)
0.213(0.091)

0.263(0.050)
0.453(0.072)
0.315(0.109)

0.221(0.039)
0.399(0.044)
0.368(0.071)

Table 9.4: Average (standard deviation) recall and precisihen missing values mechanism is MCAR,

MAR and NMAR.
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faster than the EM algorithm. Furthermore, the estimat@sdaot require imputation of the
missing values and can be found using existing numericagahares. As such, we believe that
it represents a viable alternative to the iterative EM athan.

From the analysis in Sectidn 9.4, it is clear that other places for estimating precision
matrices from fully observed data, such as the Clime esti ], could be easily extended to
handle data with missing values. Theoretical propertiesage procedures would be established
using the tail bounds on the sample covariance matrix giwvéemme 9.11.

There are two directions in which this work should be extehdrrst, the MCAR assumption
is very strong and it is hard to check whether it holds in pcactHowever, we have observed
in our simulation studies that under the MAR assumption,clwhg a more realistic assump-
tion than MCAR, performance of the estimators does not dkgdaamatically when estimating
the support of the precision matrix. However, estimatedpaters are quite far from the true
parameters. This could be improved by using a weighted astinor the sample covariance
matrix (see, for exampleml%]). Second, it is importanestablish sharp lower bounds for
the estimation problem from data with missing values, wisicbuld reflect dependence on the
proportion of observed entries(see [L1_2|2]).
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Chapter 10

Estimation of Networks From
Multi-attribute Data

The existing methods for estimating structure of undirg@gt@phical models focus on data where
each node represents a scalar random variable, even thiougany real world problems, nodes
are representing multivariate variables, such as imag&sot multi-view feature vectors. In
this chapter, we study a principled framework for estimgitructure of undirected graphical
models from multivariate (or multi-attribute) nodal datBhe structure of a graph is estimated
through estimation of non-zero partial canonical corretabetween nodes, which under the
Gaussian model is equivalent to estimating conditionatpahdencies between random vectors
represented by the nodes. We develop a method that efficiairiimize the penalized Gaussian
likelihood. Extensive simulation studies demonstratedfiectiveness of the method under vari-
ous conditions. We provide illustrative applications t@owering gene regulatory networks from
gene and protein profiles, and uncovering brain connegtyaph from functional magnetic res-
onance imaging data. Finally, we provide sufficient coodi$si which guarantee consistent graph
recovery.

10.1 Motivation

Undirected Gaussian graphical models are commonly usegptesent and explore conditional
independencies between variables in a complex system. Afiseass infZ, these conditional
dependencies are represented by a network, where an edgect®two conditionally dependent
random variables. Current approaches to estimating steicf an undirected graphical model
focus on cases where nodes represent scalar variablesydmwemany modern problems, we
are interested in studying a network where nodes represatbivvariables or multi-attribute
objects. For example, when modeling a social network, a moa correspond to a person for
which a vector of attributes is available, such as persaorfalination, demographics, interests,
and other features. In the current literature on sociallyesgtimation based on Markov random
fields it is commonly assumed that a node represents a sealable, such as a binary vote (see
for example 2]). As another example, consider modejiene regulatory networks. A
node in a graphical model corresponds to a gene and the girackuse is estimated from gene
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expression levels (see for examd@l%]). However, duetam@ces of modern data acquisition
technologies, researchers are able to measure the asivfta single gene in a high-dimensional
space, such as an image of the spatial distribution of the grpression, or a multi-view snap-
shot of the gene activity such as mRNA and protein abundaridesrefore, there is a need for
methods that estimate the structure of an undirected gralpimiodel from multi-attribute data.

In this chapter, we present new methodology for estimahegtructure of undirected graph-
ical models where nodes correspond to vectors, that isj-attiloute objects. We consider the
following setting. LetX = (X{,...,X)) whereX; € R™, ... X, € R* are random vec-
tors that jointly follow a multivariate Gaussian distrimrt with meany = (p3, ..., ;)" and
covariance matrix:*, which is partitioned as

IR i
¥t = ST : (10.1)
X X

with 33, = Cov(X;, X;). Without loss of generality, we assumpe= 0. LetG = (V, E)
be a graph with the vertex skt = {1,...,p} and the set of edges C V x V that encodes
the conditional independence relationships am@g),.,. That is, each node € V' of the
graphG corresponds to the random vecXy, and there is no edge between nodesdb in the
graph if and only ifX, is conditionally independent aX, given all the vectors corresponding
to the remaining nodesX_,, = {X. : ¢ € V \ {a,b}}. Such a graph is also known as
a Markov network (of Markov graph), which we shall emphagizé¢his chapter to compare
with an alternative graph ovéf known as the association network, which is based on pairwise
marginal independence. Conditional independence caralddn@m the inverse of the covariance
matrix, as the block corresponding X, andX,, will be equal to zero. LeD,, = {x;}; , be a
sample ofn independent and identically distributed vectors drawmfrg’(0, ). For a vector
x;, we denoter; , € R the component corresponding to the nade V. Our goal is to estimate
the structure of the grapi from the samplé,,. Note that we allow for different nodes to have
different number of attributes, which is useful in many agggions, e.g., when a node represents
a gene pathway in a regulatory network.

Methods discussed i cannot be extended to handle multi-attribute data in afolkwvay.
For example, if the number of attributes is the same for eade jone may naively estimate one
graph per attribute, however, it is not clear how to combunehsgraphs into a summary graph
with a clear statistical interpretation. The situation dres even more difficult when nodes
correspond to objects that have different number of attesu

In a related WOI‘k,|_[_TJI4] use canonical correlation to estaressociation networks from
multi-attribute data, however, such networks have difienaterpretation to undirected graphical
models. In particular, association networks are known tdfaand the direct interactions with
indirect ones as they only represent marginal associatinere as undirected graphical mod-
els represent conditional independence assumptions ithdttedter suited for separating direct
interactions from indirect confounders. Our work is retate the literature on simultaneous es-
timation of multiple Gaussian graphical models under a rta#k setting@ﬂﬁﬂé@m].
However, the model given in (10.1) is different from modetmsidered in various multi-task
settings and the optimization algorithms developed in tlutirtask literature do not extend to
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handle the optimization problem given in our setting.

Unlike the standard procedures for estimating the strectdirGaussian graphical models
(e.g., neighborhood selectidﬂBS] or gla@ [71]), whidlr the partial correlations between
pairs of nodes, our proposed method estimates the grapttstbased on the partial canon-
ical correlation, which can naturally incorporate compledal observations. Under that the
Gaussian model i (10.1), the estimated graph structuréhbeasame probabilistic independence
interpretations as the Gaussian graphical model over tateanodes. The main contributions
of the chapter are the following. First, we introduce a neawfework for learning structure of
undirected graphical models from multi-attribute datacdel, we develop an efficient algorithm
that estimates the structure of a graph from the observed daird, we provide extensive sim-
ulation studies that demonstrate effectiveness of our oge#imd illustrate how the framework
can be used to uncover gene regulatory networks from genpratein profiles, and to uncover
brain connectivity graph from functional magnetic resaeimaging data. Finally, we provide
theoretical results, which give sufficient conditions fonsistent structure recovery.

10.2 Methodology

In this section, we propose to estimate the graph by estigyatn-zero partial canonical corre-
lation between the nodes. This leads to a penalized maxinketihibod objective, for which we
develop an efficient optimization procedure.

10.2.1 Preliminaries

Let X, andX; be two multivariate random vectors. Canonical correlaisatefined betweekX ,
andX, as

(X, Xp) =  max  Corr(u'X,, v'X,).
ucRka veRFb

That is, computing canonical correlation betweepn and X, is equivalent to maximizing the
correlation between two linear combination'X,, and v'X, with respect to vectora andv.
Canonical correlation can be used to measure associatenmygt between two nodes with multi-
attribute observations. For example, |ln__[|114], a graph isneded from multi-attribute nodal
observations by elementwise thresholding the canonigatletion matrix between nodes, but
such a graph estimator may confound the direct interactgtisindirect ones.

We exploit the partial canonical correlation to estimaterapd from multi-attribute nodal
observations. A graph is going to be formed by connectingea@dth non-zero partial canonical
correlation. LetA = argmin E (||X, — AX_4|[2) andB = argmin E (||X, — BX_,|[2), then
the partial canonical correlation betweKn andX, is defined as

pe(Xa, Xp; Xogp) =  max  Corr{u’(X, — AXﬁab), V(X — ]§Xﬁab)},

ucRka veRFb

that is, the partial canonical correlation betw@énandX, is equal to the canonical correlation
between the residual vectors Xf, andX, after the effect oiX_; is removedl].
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Let 2* denote the precision matrix under the mode 0.1). Ustagdard results for the
multivariate Gaussian distribution (see also Equationr{(121]), a straightforward calculation

(given in§10.8.3) shows that
pe(Xa, Xp; Xogp) # 0 if and only if max  u'Qfv #0. (10.2)

ucRka veRFb

This implies that estimating whether the partial canorgcatelation is zero or not can be done by
estimating whether a block of the precision matrix is zeraatt Furthermore, under the model
in (I0.1), vectorsX, and X, are conditionally independent giveX_,, if and only if partial
canonical correlation is zero. A graph built on this typerdér-nodal relationship is known as a
Markov graph, as it captures both local and global Markowpprtoes over all arbitrary subsets
of nodes in the graph, even though the graph is built base@iowise conditional independence
properties. Irf10.2.2, we use the above observations to design an algotithnestimates the
non-zero partial canonical correlation between nodes ttataD,, using the penalized maximum
likelihood estimation of the precision matrix.

Based on the relationship given [n(1I0.2), we can motivatal&mnative method for estimat-
ing the non-zero partial canonical correlation. ket {b : b € V' \ {a}} denote the set of all
nodes minus the node Then

E (X, | Xq = %) = X} .55 %

SinceQY!, = —(=F, — X, 22y )7In: B2t we observe that a zero blo€k,, can be
identified from the regression coefficients when each corapoofX,, is regressed oX;. We do
not build an estimation procedure around this observaliowgver, we note that this relationship
shows how one would develop a regression based analogue wbitk presented i4].

10.2.2 Penalized Log-Likelihood Optimization

Based on the dat®,,, we propose to minimize the penalized negative Gaussiatikeljhood
under the model if(10.1),

min {trSQ—log|Q| +>\Zb||ﬂab||F} (10.3)

whereS = n~!'>""  x;x} is the sample covariance matrif§2,,||») denotes the Frobenius
norm of 2, and\ is a user defined parameter that controls the sparsity ofailoéian Q. The
Frobenius norm penalty encourages blocks of the precisiamixto be equal to zero, similar
to the way that thé, penalty is used in the group Las@%]. Here we assumelthaame
number of samples is available per attribute. However, #8mesmethod can be used in cases
when some samples are obtained on a subset of attributesednaie can simply estimate each
element of the matriXS from available samples, treating non-measured attribasesissing
completely at random (for more details see [107] §8d

The dual problem td(10.3) is

mEaX;kj +log[Z|  subjectto  max [[Sy — sl < A,
J€
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whereX is the dual variable t62 and|X| denotes the determinant &f. Note that the primal
problem gives us an estimate of the precision matrix, wihiéedual problem estimates the co-
variance matrix. The proposed optimization procedurecrigsd below, will simultaneously
estimate the precision matrix and covariance matrix, witlexplicitly performing an expensive
matrix inversion.

We propose to optimize the objective function [in (10.3) gsam inexact block coordinate
descent procedure, inspired MBS]. The block coordidaseent is an iterative procedure that
operates on a block of rows and columns while keeping ther etves and columns fixed. We

write
Qaa Qa,ﬁ o Eaa Ea,& _ Saa Sa,ﬁ
2= ( Qs 9) == ( S 2) 5= ( Sua s)
and suppose thaﬁ, f)) are the current estimates of the precision matrix and canee matrix.

With the above block partition, we hales |2] = log(Q2a.4) + 10g(Qus — Raa(Qaa) ' Qaa). I
the next iteration$? is of the form

PN O Aaa Aa,ﬁ o ﬁaa ﬁa,&
Q B Q+ ( Aa,a 0 ) N ( ﬁﬁ,a ﬁﬁ’ﬁ )

and is obtained by minimizing

tr Saaﬂaa+2 tr Saﬁﬂma — log |Qaa — Qaﬁ(ﬁaﬁ)_lﬂa’(A —|— )\| |Qaa| |F —|— 2)\ Z | |Qab| |F. (104)
b#a

Exact minimization over the variabld3,, and$2,; at each iteration of the block coordinate
descent procedure can be computationally expensive. foinereve propose to upda®,,
and(2,z using one generalized gradient step update @e [11]) im iezx@tion. Note that the
objective function in[(10J4) is a sum of a smooth convex fiorcand a non-smooth convex
penalty so that the gradient descent method cannot be lglilsgmplied. Given a step size
generalized gradient descent optimizes a quadratic ajppation of the objective at the current
iterate€2, which results in the following two updates

~ ~ 1 ~
Qo = argmin { t0(Sa0 = Faa)Raa + 711200 = Laal [} + )\||Qaa||F}, and  (10.5)
naa

~

~ 1 ~
Qab = argmin{tr(Sab — Eab)ﬂba + 2—tHQab — Qab”% + )\HQabHF}a Vb € a. (106)
Q(Lb

Solutions to[(10J5) and (10.6) can be computed in a closeud &

(1 = tA/]|Q%a + t(Zaa — Saa)|| 7)1 (Qaa + t(Zwe — Saa)),  and (10.7)
= (1 — tA/||Qa + t(Zap — San)||7) 4 (R + t(Zap — Sap)), Vb € @, (10.8)

Qaa
Qab

where(z), = max(0,z). If the resulting estimataf? is not positive definite or the update does
not decrease the objective, we halve the steptsarel find a new update. Once the update of the
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precision matrix? is obtained, we update the covariance maktix This update can be found
efficiently, without inverting the whol€2 matrix, using the matrix inversion lemma as follows

o~ ~ o~ o~ ~

ia,a = (ﬁa,a)_l + (Qa,a)_lﬁa,a(ﬁaa — Q4.4(Qa, ,
iaﬁ - _ﬁaaﬁ Ei @) (109)

2|
2
~—
L
)
)
Q
~—
L
)
2
Q|
—
)
2|
Bl
N~—
L

with (ﬁm)—1 = f)aﬁ — iavai;j f)aﬁ. Combining all three steps we get the following algorithm:
1. Set the initial estimatd® = diag(S) andX = QL. Set the step size= 1.
2. For eachu € V perform the following:

UpdateQ using [Z0.Y) and{10.8).

If Q is not positive definite, sét« ¢/2 and repeat the update.
UpdateX using [10.9).
3. Repeat Step 2 until the duality gap

tr(SQ) — log |2 + AZ 19l = kj — 1og|2|) <e

JjeV

wheree is a prefixed precision parameter (for example, 1073).
Finally, we form a graplt; = (V, E) by connecting nodes WitﬁﬁabHF # 0.

Step 2 of the estimation algorithm updates portions of tleeipion and covariance matrices
corresponding to one node at a time. We observe that the datignal complexity of updating
the precision matrix i€ (pk?). Updating the covariance matrix requires computifly )",
which can be efficiently done i (p?k? + pk? + k*) = O (p*k?*) operations, assuming that
k < p. With this, the covariance matrix can be updatedi(p®k?) operations. Therefore the
total cost of updating the covariance and precision matiie® (p?k?) operations. Since step 2
needs to be performed for each nade V, the total complexity i) (p*k?). LetT denote the
total number of times step 2 is executed. This leads to theabhw@mplexity of the algorithm
asO (Tp*k?). In practice, we observe thdt ~ 10 to 20 for sparse graphs. Furthermore, when
the whole solution path is computed, we can use warm staftgttter speed up computation,
leading tol" < 5 for each\.

Convergence of the above described procedure to the uniouom of the objective func-
tion in (10.3) does not follow from the standard results anlitock coordinate descent algorithm

] for two reasons. First, the minimization problem[i@) is not solved exactly at each it-
eration, since we only updafe,, and(2,; using one generalized gradient step update in each
iteration. Second, the blocks of variables, over which thgnaization is done at each iteration,
are not completely separable between iterations due toj/thenstry of the problem. The proof
of the following convergence result is givengh0.8.

Lemma 10.1. For every value ofA > 0, the above described algorithm produces a sequence

of estlmates{Q(t } of the precision matrix that monotonically decrease thesotiye values

>1
given in(10.3) Every element of this sequence is positive definite ancetiigesice converges to
the unique minimize of (10.3)
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10.2.3 Efficient Identification of Connected Components

When the target grap@ is composed of smaller, disconnected components, thei@oltd
the problem in[(1013) is block diagonal (possibly after petimg the node indices) and can be
obtained by solving smaller optimization problems. Thathe minimizer2 can be obtained by
solving (10.8) for each connected component independeatiylting in massive computational
gains. We give necessary and sufficient condition for thetsmi 2 of (10.3) to be block-
diagonal, which can be easily checked by inspecting the grapcovariance matris.

Our first result follows immediately from the Karush-Kuhn€ker conditions for the opti-
mization problem[(10]3) and states thafifis block-diagonal, then it can be obtained by solving
a sequence of smaller optimization problems.

Lemma 10.2. If the solution to{I0.3)takes the forn§2 = diag(Q:, s, ..., ), thatis,Q is a

block diagonal matrix with the diagonal blockﬁ Ql, then it can be obtained by solving
min {tr Sy — log [ + Azb: ||Qab||F}
separately for eacli = 1,...,[, whereS, are submatrices db corresponding tq?2; .

Next, we describe how to identify diagonal blocks@f LetP = {P\,P,,...,P} be a
partition of the set” and assume that the nodes of the graph are ordered in a waly ¢hatP;,
be Py, j < j' thena < b. The following lemma states that the blocks{dtan be obtained
from the blocks of a thresholded sample covariance matrix.

Lemma 10.3. A necessary and sufficient conditions farto be block diagonal with blocks
P, Py, ..., Pisthat|[Sy,||r < Aforalla e P;j,be Py, j# 7.

Blocks P, P, ..., P, can be identified by forming a x p matrix Q with elementsy,, =
1{||Sa||Fr > A} and computing connected components of the graph with aufjgcenatrix
Q. The lemma states also that given two penalty parameaters \,, the set of unconnected
nodes with penalty paramety is a subset of unconnected nodes with penalty parameter
The simple check above allows us to estimate graphs on dstagh large number of nodes,
if we are interested in graphs with small number of edges. évwew this is often the case
when the graphs are used for exploration and interpretati@momplex systems. Lemnia 10.3
is related to existing results established for speedingaupputation when learning single and
multiple Gaussian graphical mode@[@@ 189]. Eachlitmm is different, since the methods
optimize different objective functions.

10.3 Consistent Graph Identification

In this section, we provide theoretical analysis of theneator described if10.2.2. In particular,

we provide sufficient conditions for consistent graph rergyv For simplicity of presentation,
we assume that, = k, for alla € V, that is, we assume that the same number of attributes is
observed for each node. For each- 1,...,kp, we assume thab,)~/?X,, is sub-Gaussian
with parametery, wherec?, is theath diagonal element aE*. Recall thatZ is a sub-Gaussian
random variable if there exists a constant (0, co) such that

E (exp(tZ)) < exp(c*t?), forall t € R.
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Our assumptions involve the Hessian of the funci¢éA ) = tr SA —log |A| evaluated at the
trueQ*, H = H(Q*) = (Q*)'@(Q*) "' € RPH**#M* with @ denoting the Kronecker product,
and the true covariance mat¥X*. The Hessian and the covariance matrix can be thought of as
block matrices with blocks of size? x k* andk x k, respectively. We will make use of the
operatorC(-) that operates on these block matrices and outputs a smalkeixwith elements
that equal to the Frobenius norm of the original blocks. Paneple,C(X*) € RP*? with
elements’(3*).;, = [|3,||p. Let T = {(a,b) : [|Qu||r # 0} andA" = {(a,b) : [|Qu||r = 0}.

With this notation introduced, we assume that the followimgpresentable condition holds.
There exists a constaate [0, 1) such that

IC (Har(Hrr) ™) o <1 —a,

where|| Al = max; ), [A;;|. We will also need the following quantities to specify theuts

ks = [|C(E*)]lw andry = ||C(H75)]l- These conditions extend the conditions specified in
] needed for estimating graphs from single attributeenations.
We have the following result that provides sufficient coiais for the exact recovery of the
graph.
Proposition 10.1.LetT > 2. We set the penalty parametein (10.3)as

A= skt (12801 + 49 (max(o,) )~ (21og(28) + log(v)))

If n > C15%k(1 + 8a™1)?(rlogp + log 4 + 2log k), wheres is the maximal degree of nodes in
G, O = (48V2(1 + 479?)(max, 07, ) max(kx- Ky, k5.k2,))? and

min || Qal|r > 16V2(1 4 49%)(max o7, ) (1 + 8a~ ) ryk <

Tlogp + log4 + 2logk>1/2
(a,b)ET ,a#b ’

n

thenP (@ = G) >1—p> 7.

The proof of Proposition 10.1 is given §10.8. We extend the proof dﬂSZ] to accommo-
date the Frobenius norm penalty on blocks of the precisiomixnalhis proposition specifies
the sufficient sample size and a lower bound on the Frobemitsa of the off-diagonal blocks
needed for recovery of the unknown graph. Under these dondiand correctly specified tuning
parametep, the solution to the optimization problem [n(1I0.3) corhgoecovers the graph with
high probability. In practice, one needs to choose the yparameter in a data dependent way.
For example, using the Bayesian information criterion. rEtleough our theoretical analysis
obtains the same rate of convergence as that of [152], ouradédtas a significantly improved
finite-sample performance (More details will be provided10.5.). It remains an open question
whether the sample size requirement can be improved as icathee of group Lasso (see, for
example,ms]). The analysis 6J__L1|23] relies heavily onspecial structure of the least squares
regression. Hence, their method does not carry over to thre owmplicated objective function

as in [10.8).
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10.4 Interpreting Edges

We propose a post-processing step that will allow us to dfiyathie strength of links identified
by the method proposed {10.2.2, as well as identify important attributes that citwtie to the
existence of links.

For any two nodes andb for which Q,, # 0, we defineN (a,b) = {c € V \ {a,b} :
Q.. # 00rQ,. # 0}, which is the Markov blanket for the set of nodgX,, X,}. Note that
the conditional distribution ofX!, X})" givenX_,, is equal to the conditional distribution of
(X1, X3)" givenXy(a,pn. Now,

pc(Xaa Xb; Xﬁab) = pc(Xaa Xb; XN(a,b))
= max  Corr(u(X, — AXp(an), V' (Xp — BXp(an));

wqERFa YWh ERkb

whereA = argmin E (|| Xe — AXn(ap)[3) andB = argmin E (||Xy — BXnapll3). Let

Y(a,b) = Var(X,, X, | X)) Now we can express the partial canonical correlation as

I~
WGEabwb

po(ch Xb; X./\/(a,b)) = max — —
woERFa w, ERKa (Wlazaawa) 12 (Wgzbbwb)

- Y S
X(a,b) = S =" ).
(a.9) ( Yo X )

The weight vectorsv, andw, can be easily found by solving the system of eigenvalue et
E;aliabfb_blibavva - ¢2Wa
fl;,lfbaf;llfabwb = ¢2Wb

with w, andw, being the vectors that correspond to the maximum eigenv&luEurthermore,

we havep.(X,, Xy; X)) = ¢. Following ], the weightsv,, w;, can be used to access

the relative contribution of each attribute to the edge leetwthe nodes andb. In particu-
lar, the weight(w, ;)* characterizes the relative contribution of thb attribute of node: to
pc<Xa7 Xb7 XN(a,b))- R R R

Given an estimatd/(a,b) = {c € V' \ {a,b} : Q4 # 0 0r Q. # 0} of the Markov blanket
N (a,b), we form the residual vectors

1/2

where

(10.10)

Tia = Xjaq— AXi,_/V(a,b)’ iy = Xip — BXz’,,/\?(a,b)’

whereA andB are the least square estimators\oéndB. Given the residuals, we for®(a, b),
the empirical version of the matri(a, b), by setting

Zvzaa = Corr ({ri,a}ie[n}) ’ Zvlbb = Corr ({ri,b}ie[n}) ) Zvlab = Corr ({ri,a}ie[n]a {ri,a}ie[n]) .

Now, solving the eigenvalue system in (10.10) will give usmates of the vectors/,, w;, and
the partial canonical correlation.

Note that we have described a way to interpret the elemertkeaiff-diagonal blocks in the
estimated precision matrix. The elements of the diagor@ils, which correspond to coeffi-
cients between attributes of the same node, can still bepretied by their relationship to the
partial correlation coefficients.
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10.5 Simulation Studies

In this section, we perform a set of simulation studies toesiilate finite sample performance
of our method. We demonstrate that the scaling&0p, s) predicted by the theory are sharp.
Furthermore, we compare against three other methods: 1)}tleochéhat uses thelasso first

to estimate one graph over each of thendividual attributes and then creates an edge in the
resulting graph if an edge appears in at least one of theesatgibute graphs, 2) the method of
[Iﬁ] and 3) the method omS]. We have also tried applyinggheso to estimate the precision
matrix for the model in[(Z0]1) and then post-processingithat an edge appears in the resulting
graph if the corresponding block of the estimated precisiafrix is non-zero. The result of this
method is worse compared to the first baseline, so we do nottriéere.

All the methods above require setting one or two tuning patans that control the sparsity of
the estimated graph. We select these tuning parametersrynizning the Bayesian information
criterion, which balances the goodness of fit of the model ismdomplexity, over a grid of
parameter values. For our multi-attribute method, the Bi@yeinformation criterion takes the
following form

BIC()) = tr(SQ) — log Q] + > 1{Qq, # 0}kqky log(n).

a<b

Other methods for selecting tuning parameters are posEkaeninimization of cross-validation
or Akaike information criterion. However, these methodsit® select models that are too dense.
Theoretical results given iL0.3 characterize the sample size needed for consistaviagc

of the underlying graph. In particular, Proposition 10.ggests that we need= 0sk? log(pk)
samples to estimate the graph structure consistentlyoime$ > 0. Therefore, if we plot the
hamming distance between the true and recovered graphsa@aive expect the curves to reach
zero distance for different problem sizes at a same pointvé&kiéy this on randomly generated
chain and nearest-neighbors graphs.

We generate data as follows. A random graph withodes is created by first partitioning
nodes intgp/20 connected components, each withnodes, and then forming a random graph
over these0 nodes. A chain graph is formed by permuting the nodes andemimg them in
succession, while a nearest-neighbor graph is constrdicliesving the procedure outlined in
[@]. That is, for each node, we draw a point uniformly aid@m on a unit square and compute
the pairwise distances between nodes. Each node is theeatedrtos = 4 closest neighbors.
Since some of nodes will have more thamadjacent edges, we randomly remove edges from
nodes that have degree larger thanntil the maximum degree of a node in a networkltis
Once the graph is created, we construct a precision matiilt,n@n-zero blocks corresponding
to edges in the graph. Elements of diagonal blocks are s&6%4s’, 0 < a,b < k, while off-
diagonal blocks have elements with the same vadliefor chain graphs and.3/k for nearest-
neighbor networks. Finally, we agd to the precision matrix, so that its minimum eigenvalue
is equal to0.5. Note thats = 2 for the chain graph ane = 4 for the nearest-neighbor graph.
Simulation results are averaged over 100 replicates.

Figure[10.1 shows simulation results. Each row in the figap®rts results for one method,
while each column in the figure represents a different sitrarlasetting. For the first two
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columns, we set: = 3 and vary the total number of nodes in the graph. The third simu
tion setting sets the total number of noges 20 and changes the number of attribukesn the
case of the chain graph, we observe that for small samplg tizenethod 0@5] outperforms all
the other methods. We note that the multi-attribute mete@$iimating many more parameters,
which require large sample size in order to achieve highraogu However, as the sample size
increases, we observe that multi-attribute method stadsitperform the other methods. In par-
ticular, for the sample size indexed By= 13 all the graph are correctly recovered, while other
methods fail to recover the graph consistently at the samplgasize. In the case of nearest-
neighbor graph, none of the methods recover the graph wedifall sample sizes. However,
for moderate sample sizes, multi-attribute method outper$ the other methods. Furthermore,
as the sample size increases none of the other methods relcexgraph exactly. This suggests
that the conditions for consistent graph recovery may beerda the multi-attribute setting.

10.5.1 Alternative Structure of Off-diagonal Blocks

In this section, we investigate performance of differeninestion procedures under different
assumptions on the elements of the off-diagonal blockseoptlacision matrix.

First, we investigate a situation where the multi-attrénethod does not perform as well as
the methods that estimate multiple graphical models. Ogh situation arises when different
attributes are conditionally independent. To simulats #iuation, we use the data generating
approach as before, however, we make each bfegkof the precision matriX2 a diagonal
matrix. Figurd_ 102 summarizes results of the simulatioe. 3&€ that the methods &[45] and
[iﬁ] perform better, since they are estimating much feweampaters than the multi-attribute
method. glasso does not utilize any structural information underlying trstimation problem
and requires larger sample size to correctly estimate tghgthan other methods.

A completely different situation arises when the edges betwnodes can be inferred only
based on inter-attribute data, that is, when a graph baseshymdividual attribute is empty.
To generate data under this situation, we follow the promeds before, but with the diagonal
elements of the off-diagonal block3,, set to zero. Figure_10.3 summarizes results of the sim-
ulation. In this setting, we clearly see the advantage ohth#i-attribute method, compared to
other three methods. Furthermore, we can seeglhaio does better than multi-graph methods
of [@] and EJV]. The reason is thgtasso can identify edges based on inter-attribute relation-
ships among nodes, while multi-graph methods rely only ¢raiattribute relationships. This
simulation illustrates an extreme scenario where inteibate relationships are important for
identifying edges.

So far, off-diagonal blocks of the precision matrix were stoacted to have constant values.
Now, we use the same data generating procedure, but genérdtagonal blocks of a precision
matrix in a different way. Each element of the off-diagonaldi 2, is generated independently
and uniformly from the set—0.3, —0.1] | J[0.1, 0.3]. The results of the simulation are given in
Figure[10.4. Again, qualitatively, the results are simitathose given in Figurle 10.1, except that
in this setting more samples are needed to recover the goapcty.
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Figure 10.5: Average hamming distance plotted againstebeated sample size. Results are averaged
over 100 independent runs. Additional samples availabléhifirst attribute.

10.5.2 Different Number of Samples per Attribute

In this section, we show how to deal with a case when diffeneimiber of samples is available
per attribute. As noted ifi£0.2.2, we can treat non-measured attributes as missingletely at
random (se@?] for more details).

Let R = (7a)icq1,..n}ie{i,..pk} € R™P* pe an indicator matrix, which denotes for each
sample poink; the components that are observed. Then we can form an estohtite sample
covariance matrixs = (oy;,) € RP¥*Pk as

n
> i1 TilTi kTiiTi k

n
Zi:l TiiTik

This estimate is plugged into the objectivelin (10.3).

We generate a chain graph with= 60 nodes, construct a precision matrix associated with
the graph and: = 3 attributes, and generate = 0s*k? log(pk) samplesf > 0. Next, we
generate additiondD%, 30% and50% samples from the same model, but record only the values
for the first attribute. Results of the simulation are givefrigure 10.b. Qualitatively, the results
are similar to those presented in Figlire 10.1.

Ol =

10.6 |lllustrative Applications to Real Data

In this section, we illustrate how to apply our method to datiging in studies of biological
regulatory networks and Alzheimer’s disease.

10.6.1 Analysis of a Gene/Protein Regulatory Network

We provide illustrative, exploratory analysis of data freéhe well-known NCI-60 database,
which contains different molecular profiles on a panel of 8@&ide human cancer cell lines.
Data set consists of protein profiles (normalized revetsesp lysate arrays for 92 antibodies)
and gene profiles (normalized RNA microarray intensitiesfHuman Genome U95 Affymetrix
chip-set for> 9000 genes). We focus our analysis on a subset of 91 genes/mdteimhich
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Figure 10.6: Node degree distributions for protein, gercegene/protein networks.

both types of profiles are available. These profiles are @vailacross the same settofcancer
cells. More detailed description of the data set can be fouftil4].

We inferred three types of networks: a network based on proteasurements alone, a
network based on gene expression profiles and a single geted/pnetwork. For protein and
gene networks we use tlgg asso, while for the gene/protein network, we use our procedure
outlined in§10.2.2. We use the stability selection [136] procedure tionege stable networks.

In particular, we first select the penalty parametarsing cross-validation, which over-selects
the number of edges in a network. Next, we use the selectedestimate 100 networks based
on random subsamples containing 80% of the data-pointsl Retwork is composed of stable
edges that appear in at least 95 of the estimated networkde[TA.1 provides a few summary
statistics for the estimated networks. Furthermore, piaiad gene/protein networks sh&@
edges, while gene and gene/protein networks shatedges. Gene and protein network share
only 17 edges. Finally6 edges are unique to gene/protein network. Figurel 10.6 shods
degree distributions for the three networks. We observethieaestimated networks are much
sparser than the association networks in[114], as expécietb marginal correlations between
a number of nodes. The differences in networks require aeclbmlogical inspection by a
domain scientist.

We proceed with a further exploratory analysis of the genoédin network. We investigate
the contribution of two nodal attributes to the existencaroédges between the nodes. Following
[114], we use a simple heuristic based on the weight veabazkassify the nodes and edges into
three classes. For an edge between the nodexlb, we take one weight vector, say,, and
normalize it to have unit norm. Denote, the component corresponding to the protein attribute.

Table 10.1: Summary statistics for protein, gene, and geoi®in networksy{ = 91).

protein network gene network gene/protein network

Number of edges 122 214 249
Density 0.03 0.05 0.06
Largest connected component 62 89 82
Avg Node Degree 2.68 4.70 5.47
Avg Clustering Coefficient 0.0008 0.001 0.003
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Figure 10.7: Edge and node classification basedﬁ)n

Left plot in Figure[10.7 shows the valueswi over all edges. The edges can be classified into
three classes based on the valuespf Given a threshold’, the edges for whichv? € (0,7)

are classified as gene-influenced, the edges for WlhﬁClEE (1 —T,1) are classified as protein
influenced, while the remainder of the edges are classifiadigsd type. In the left plot of
Figure[10.7, the threshold is setAs= 0.25. Similar classification can be performed for nodes
after computing the proportion of incident edges. hgetp, andps denote proportions of gene,
protein and mixed edges, respectively, incident with a nddeese proportions are represented
in a simplex in the right subplot of Figute 10.7. Nodes withstfypgene edges are located in
the lower left corner, while the nodes with mostly proteigesl are located in the lower right
corner. Mixed nodes are located in the center and towardsgheorner of the simplex. Further
biological enrichment analysis is possible (see [114]yyéxer, we do not pursue this here.

10.6.2 Uncovering Functional Brain Network

We apply our method to the Positron Emission Tomographyseatavhich contains 259 sub-
jects, of whom 72 are healthy, 132 have mild cognitive Impaint and 55 are diagnosed as
Alzheimer's & Dementia. Note that mild cognitive impairnmeésa transition stage from normal
aging to Alzheimer’s & Dementia. The data can be obtainechfrbttp://adni.loni.ucla.edu/
The preprocessing is done in the same way as in [91].

Each Positron Emission Tomography image contfing 109 x 91 = 902, 629 voxels. The
effective brain region contairis0, 502 voxels, which are partitioned iniy regions, ignoring the
regions with fewer than00 voxels. The largest region containg)14 voxels and the smallest
region containg65 voxels. Our preprocessing stage extraet8 representative voxels from
these regions using thi€-median clustering algorithm. The parameiéiis chosen differently
for each region, proportionally to the initial number of edin that region. More specifically,
for each category of subjects we haverar (d; + ... + dg5) matrix, wheren is the number of
subjects and,; + ... + dgs = 902, 629 is the number of voxels. Next we s&} = [d;/ . d;],
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the number of representative voxels in regipn = 1,...,95. The representative voxels are
identified by running the<-median clustering algorithm on a sub-matrix of sizex d; with

We inferred three networks, one for each subtype of subjesitg) the procedure outlined in
g10.2.2. Note that for different nodes we have different nendf attributes, which correspond
to medians found by the clustering algorithm. We use theilgtabelection @] approach
to estimate stable networks. The stability selection ptace is combined with our estimation
procedure as follows. We first select the penalty parametar(I0.3) using cross-validation,
which overselects the number of edges in a network. Next,re&tel 00 subsampled data sets,
each of which contaig0% of the data points, and estimate one network for each dalasej
the selected\. The final network is composed of stable edges that appedrl@ast9o5 of the
estimated networks.

We visualize the estimated networks in Figlre 10.8. Tabl&® poovides a few summary
statistics for the estimated networkgllOS] contains reanfdifferent regions, as well as the
adjacency matrices for networks. From the summary stegistve can observe that in normal
subjects there are many more connections between diffeggitns of the brain. Loss of con-
nectivity in Alzheimer’'s & Dementia has been widely repadrte the Iiteraturemﬂﬂﬂ.

Learning functional brain connectivity is potentially uable for early identification of signs
of Alzheimer’s diseasemal] approach this problem usinga@atory data analysis. The frame-
work of Gaussian graphical models is used to explore funatibrain connectivity. Here we
point out that our approach can be used for the same expigitatk, without the need to reduce
the information in the whole brain to one number. For examipden our estimates, we observe
the loss of connectivity in the cerebellum region of patesith Alzheimer’s disease, which has
been reported previously i@GZ]. As another example, we mxreased connectivity between
the frontal lobe and other regions in the patients, which lk&d to compensation for the lost
connections in other regiorE_gl97].

(a) Healthy subjects (b) Mild Cognitive Impairment  (c) Alzheimer’'s & Dementia

Figure 10.8: Brain connectivity networks
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Table 10.2: Summary statistics for protein, gene, and geoi&in networks = 91)

Healthy Mild Cognitive Alzheimer's &

subjects Impairment Dementia
Number of edges 116 84 59
Density 0.030 0.020 0.014
Largest connected component 48 27 25
Avg Node Degree 2.40 1.73 1.2
Avg Clustering Coefficient 0.001 0.0023 0.0007

10.7 Discussion

In this chapter, we have proposed a solution to the probleleaohing networks from multivari-
ate nodal attributes, which arises in a variety of domainar @ethod is based on simultane-
ously estimating non-zero partial canonical correlatibesveen nodes in a network. When all
the attributes across all the nodes follow joint multivegidlormal distribution, our procedure
Is equivalent to estimating conditional independencida/ben nodes, which is revealed by re-
lating the blocks of the precision matrix to partial can@hicorrelation. Although a penalized
likelihood framework is adopted for estimation of the narezblocks of the precision matrix,
other approaches like neighborhood pursuit or greedy fiwan also be developed. Thorough
numerical evaluations and theoretical analysis of thesiadle is an interesting direction for
future work.

10.8 Technical Proofs

10.8.1 Proof of Lemmd 10.1

We start the proof by giving to technical results needed.|dtee following lemma states that the
minimizer of (10.8) is unique and has bounded minimum andimarn eigenvalues, denoted as
Apin @NdA k.

Lemma 10.4. For every value of\ > 0, the optimization problem iL0.3) has a unique mini-
mizer(2, which satisfied\ i (2) > (Amax(S) + Ap) ™" > 0 and Aoy () < AT Y0y Ky

Proof. The optimization objective given in (10.3) can be writterttie equivalent constrained
form as

min trSQ —log [ subjectto > [|Qul[r < C(N).

Q-0
a,b

The procedure involves minimizing a continuous objectivera compact set, and so by Weier-
strass theorem, the minimum is always achieved. Furtherntioe objective is strongly convex
and therefore the minimum is unique.

The solutiorf2 to the optimization probleni{10.3) satisfies

S—-Q'+)MZ=0 (10.11)
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whereZ €903, ||| is the element of the sub-differential and satisfi&s,||» < 1 for all
(a,b) € V2 Therefore,

Ao (271 < Ao (S) + Manax(Z) < Aax(S) + Ap.

Next, we prove an upper bound max( ). At optimum, the primal-dual gap is zero, which

gives that
D N Qallr < XKy —trSQ) <Ak,
a,b JjeVv jev
asS = 0 and€2 > 0. SinceAnx(Q) < 32, ||Qu |7, the proof is done. O

The next results states that the objective function has schitz continuous gradient, which
will be used to show that the generalized gradient descenbeaised to find2.

Lemma 10.5. The functionf(A) = tr SA — log |A| has a Lipschitz continuous gradient on the
set{A € §” : Anim(A) > ~}, with the Lipschitz constart = 2.

Proof. We have thatV f(A) =S — A~!. Then

IVF(A) = VF(Ar=|AT = (A)|p
S AmaxA_lHA - A,||FAmaxA_1
<77?A — Al|r,

which completes the proof. O

Now, we provide the proof of Lemnia 10.1.

By construction, the sequence of estima(@t))tzl decrease the objective value and are
positive definite.

To prove the convergence, we first introduce some additiooi@tion. Letf(2) = tr SQ —
log || and F(Q2) = f(Q) + >, ||Qas|| 7. For anyL > 0, let

_ _ _ L _
Q% Q) = f(Q) + u[(Q -V /()] + 12 - Q[ + > 1Qallr
ab
be a quadratic approximation &f(€2) at a given poinf2, which has a unique minimizer
pu(92) == argmin Q1 (4 ).

From Lemma 2.3. irﬂl], we have that

h

F(©Q) - F(p(Q) = 5 |lpe(Q) — QI (10.12)

\)

if F(pL(Q)) < Qr(pr(2); Q). Note thatF(p.(2)) < Qr(p(22); Q) always holds ifL is as
large as the Lipschitz constant OfF'.
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Let Q¢-1 andQ® denote two successive iterates obtained by the proceduitBoiWloss
of generality, we can assume tiat" is obtained by updating the rows/columns corresponding
to the node:. From [10.1R), it follows that

2 ~ ~ ~ ~ ~ ~
—(FQ) = F@Y) = 1907 - Qlllr+2) 195 - Qglls  (10.13)
k

b#a

whereL; is a current estimate of the Lipschitz constant. Recallithaur procedure the scalar
t serves as a local approximation bfL. Since eigenvalues d are bounded according to

Lemmd10.4, we can conclude that the eigenvaluéé(bf” are bounded as well. Therefore the
current Lipschitz constant is bounded away from zero, uselgmd 10.5. Combining the results,
we observe that the right hand sidelof (10.13) convergestoas — oo, since the optimization
procedure produces iterates that decrease the objechiwe Vdis shows thdtﬁff;l) —Qlf) l|lF+

2 hta 1% — Q|- converges to zero, for anye V. Since(Q2® is a bounded sequence,

it has a limit point, which we denot®. It is easy to see, from the stationary conditions for
the optimization problem given in (10.4), that the limit pb{2 also satisfies the global KKT
conditions to the optimization problem in(1D.3).

10.8.2 Proof of Lemmd 10.3

Suppose that the solutié2to (10.3) is block diagonal with block;, P, . .., P,. For two nodes
a, b in different blocks, we have thaf2) ! = 0 as the inverse of the block diagonal matrix is
block diagonal. From the KKT conditions, it follows thd8,,||» < A.

Now suppose thafiS.,||» < Aforalla € P;,b € Py, j # j. Foreveryl! = 1,...,1
construct

Q) = arg mino tr Sy Qy — log || + )\Z [|200]| F-

Ql’>_
a,b

ThenQ = diag(ﬁl, Q... ﬁl) is the solution of[(10]3) as it satisfies the KKT conditions.

10.8.3 Proof of Equation10.P

First, we note that

Var (X[, X3)" | Xg5) = Zabab — Zop a6 = Sab.ab

ab,ab
is the conditional covariance matrix GX/,, X;)’ given the remaining nodés,; (see Proposition

C.5in [130]). Definex = X0 — > b5 5 2anap- Partial canonical correlation betwesin

andX, is equal to zero if and only iE,, = 0. On the other hand, the matrix inversion lemma

gives thatQ,, ., = ' Now, ©,, = 0 if and only if ,, = 0. This shows the equivalence
relationship in[(10.2).
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10.8.4 Proof of Propositiori 10.]1

We provide sufficient conditions for consistent networkireation. Propositiofl 011 given in
g10.3 is then a simple consequence. To provide sufficientitond, we extend the work of
ﬂ@] to our setting, where we observe multiple attributegsgfach node. In particular, we extend
their Theorem 1.

For simplicity of presentation, we assume that= k, for all « € V, that is, we assume that
the same number of attributes is observed for each node. S3umptions involve the Hessian
of the functionf(A) = tr SA — log |A| evaluated at the tru@*,

H = H(Q*) _ (Q*)_l ® (Q*)—l c ]R(pk)2><(pk:)27

and the true covariance matr®*. The Hessian and the covariance matrix can be thought of
block matrices with blocks of size? x k? andk x k, respectively. We will make use of the
operatorC(-) that operates on these block matrices and outputs a smadkeixrwith elements
that equal to the Frobenius norm of the original blocks,

Ay A o Ay Aullr [|Awllr - [[ApllF
Ay Ay -+ Ay, ) |Aoil|r ||A2llr -+ [[Agpllr
Apl App ||Ap1||F ||App||F

In particular,C(X*) € RP? andC(H) e R <’
We denote the index set of the non-zero blocks of the pratisiatrix as

T :={(a,b) e VxV : ||Qulls #0}U{(a,a) : a €V}
and let\ denote its complement ii x V/, that is,
N ={(a,b) : ||Qu]||r =0}.

As mentioned earlier, we need to make an assumption on theadtematrix, which takes the
standard irrepresentable-like form. There exists a cahsata [0, 1) such that

IC (Har(Hrr) ™) loo < 1—a (10.14)

These condition extends the irrepresentable conditioerngiv @], which was needed for esti-
mation of networks from single attribute observationss Worth noting, that the condition given
in (I0.14) can be much weaker than the irrepresentable ttonaif ] applied directly to the
full Hessian matrix. This can be observed in simulationsediorfI0.5, where a chain network
is not consistently estimated even with a large number opéssn

We will also need the following two quantities to specify tiesults

rse = [IC(Z7) ]l

and
k= IC(H77) oo
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Finally, the results are going to depend on the tail boundsHe elements of the matrix
C(S — X*). We will assume that there is a constant (0, oc] and a functionf : N x (0, 00) —
(0, 00) such that for anya,b) € V x V

. 1
P(C(S—X")w >0) < Fn.0)

The functionf(n, §) will be monotonically increasing in bothhandd. Therefore, we define the
following two inverse functions

5 € (0,071, (10.15)

np(6;r) = argmax{n : f(n,d) <r}

and

0f(r;n) = argmax{d : f(n,0) <r}

forr € [1,00).

With the notation introduced, we have the following result.
Theorem 10.1.Assume that the irrepresentable condition(I®.14)is satisfied and that there
exists a constant, € (0, oo} and a functionf(n, 0) so that(10.15)is satisfied for anya,b) €
V x V. Let

8.
A= 25 (n.p
” r(n,p")

for somer > 2. If

1
> _ T
neny (max(v*, 6(1 + 8a~!)s max (ks Ky, F&?ﬁ’f%{)) P )

then R
1C(2 — Q)||oe < 2(1+ 8 )rgds(n, pT)

with probability at leastl — p*~".

Theoren{ 1011 is of the same form as Theorem @[152], but thelement-wise conver-
gence is established f@(2 — €2), which will guarantee successful recovery of non-zeroiglart
canonical correlations if the blocks of the true precisicatnm are sufficiently large.

Theoreni 10/1 is proven as Theorem 152]. We provide teahresults in Lemma10.6,
Lemmal10.7 and Lemnia10.8, which can be used to substitutbses Lemma 4, Lemma 5
and Lemma 6 in@Z] under our setting. The rest of the argusnien go through. Below we
provide some more details.

First, letZ : RPk*Pk y RPFXPE pe the mapping defined as

e [ Al #0
Z(A) s — ) Thwl abl|F 7 0,
(A)ar {z\/vbitﬁquFg if | Al = 0,

Next, define the function
G(Q) =tr QS — log || + \|[C(Q)]]:, VQ =0
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and the following system of equations

{ Sab - (Q_1>ab _)\Z(Q)aln if Qab % 0

It is known thatQ2 € RP*? is the minimizer of optimization problem i (10.3) if and gnif it
satisfies the system of equations givenin (10.16). We haeady shown in Lemma_10.4 that
the minimizer is unique.

Let 2 be the solution to the following constrained optimizatioolgem

r&ig tr SQ — log || + A||C(£2)]|; subject taC(2),, = 0, V(a,b) € N.

Observe that one cannot fit§dlin practice, as it depends on the unknown/setHowever, it is
a useful construction in the proof. We will prove tifatis solution to the optimization problem
given in [10.3), that is, we will show th& satisfies the system of equatiohs (10.16).

Using the first-order Taylor expansion we have that

Q= ()= () TAMQ) T + R(A), (10.17)

whereA = Q — Q* and R(A) denotes the remainder term. With this, we state and prove
Lemma10.6, Lemm@a1d.7 and Lemma10.8. They can be combiriadEsd] to complete the
proof of Theorend 10]1.

Lemma 10.6. Assume that

A\ A
% and  max |35, — Sullr < e (10.18)

Apllr <
max | Ag||r < A
Then2 is the solution to the optimization problem@0.3)

Proof. We useR to denoteR(A). Recall thatA,, = 0 by construction. Usind (10.17) we can
rewrite (10.16) as

Har7AT —Rap + Sap — Ty + AZ(Q)ap = 0 if (a,0) € T (10.19)
[ Hap A7 — Rap + Sap — Zpll2 < A if (a,b) € . (10.20)
By construction, the solutiof® satisfy [T0.1P). Under the assumptions, we show fhat () %20

also satisfied with inequality.
From [10.19), we can solve fax,

Ar =H 7Ry — S+ 57— AZ(Q)7].
Then
| Hav 717 Ry — Z7 4+ S7 = AZ(2)7] — Rap + S — T |2
< MHa 7”7 Z( Q)72 + || Hao 7 H Ry — B7 + 57|l + [[Ras + Sap — 2

gA(l—aH(z—a)O‘f
<A
using assumption o in (I0.13) and[{10.18). This shows tfatsatisfies[(10.16). O
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Lemma 10.7. Assume that .

3hx+S

IC(A)]oo <

Then 3
S
[IC(R(A))][ < 5%%*\\C(A)Ilio-

Proof. Remainder term can be written as
R(A) = (@ +A)" — (@) '+ (@) 'Aa@) "
Using (10.211), we have that

(@) A)lo < 1CU(2) Dl llC(A)
< sfle((@) /(Ao
<1
-3
which gives us the following expansion
(@ +A)7 = ()7 = (2)7'AQ) T + (2) AR TAT() T
with J =37, (=1)*((2*)'A)*. Using [10.2R) and(10.21), we have that

ICR)|l < [1C(Q) A lC((2) T AT(Q) ) [l
<l @) HIElC(A) | llC @) lllC(A)
< sIe(@) DI IENCT) -

Next, we have that

IC(I s < D llc(a@) ik

k>0
1

= IC(A2) )]l

which gives us

3s
IC(R)||o0 < 5H§*I|C(A)H§o

as claimed.

Lemma 10.8. Assume that

1 1
T HH(H ( )|| + ) = i (3/@*3 3/{7{/{?’2*8)

Then
[IC(A)|[oe < 7.

160



Proof. The proof follows the proof of Lemma 6 i52]. Define the ball
B(r):={A : C(A)w <rV(a,b) €T},
the gradient mapping
G(Qr) = —(Q7)7 + ST+ AZ(Q)r

and B B B
F(A7) = —H -G+ A7) + AT

We need to show that(B(r)) C B(r), which implies that|C(A7)|| < 7.
Under the assumptions of the lemma, for aRy € B(r), we have the following decompo-
sition
F(A7) = HrrR(A)r + Hrp(S7 = Z7 + AZ(Q° + A)7).
Using Lemma 1017, the first term can be bounded as

IC(H7TR(A) 7)o < NC(H7 7)ol IC(R(A)] |

< 5 rukse 1C(A)|I%

where the last inequality follows under the assumptionsuil&rly

IC(H7 (ST = T + AZ(2 + A)7) ||
< ICHF P s (1IC(S = =) ||o + AlIC(Z(" + A))||0)
< wu(]|C(S =)o + A)
<r/2.

This shows that'(B(r)) C B(r). O

The following result is a corollary of Theordm 1D.1, whictoals that the graph structure can
be estimated consistently under some assumptions.
Corollary 10.1. Assume that the conditions of Theoiem 110.1 are satisfiedh&umore, suppose
that
i Q 2(1 “Dkyo T
i [82le > 201+ 8a™ )y (n, p7)

then Algorithm 1 estimates a graﬁhwhich satisfies
P(@%G) > p*T
Next, we specialize the result of Theorem 10.1 to a case vKdéras sub-Gaussian tails. That
is, the random vectaX = (X, ..., X,;)" is zero-mean with covariand®*. Each(s?,)""/2X,

is sub-Gaussian with parameter
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Proposition 10.2. Set the penalty parameter iin (10.3)as

A= kot (12801 + 49?2 (max(3,)?)n " (21og(2k) + 7log(v)))

n > C15°k*(1 + 8a™1)?(rlogp + log4 + 2log k)

whereC; = (48v/2(1 + 44%)(max, o7,) max(ks-ky, k%.k2,))? then

Q 1 log4 + 2log k) '/*
1C(9 = Q)]0 < 16v/2(1 4 49%) max (1 + 8a~ Yy <T ogp +log4 +2log )

n

with probability1l — p?~.
The proof simply follows by observing that, for afwy, b),

P(CS—X")p>0) <P < max (0.4 — 05y)% > 52//€2)
(c,d)e(a,b)

< K°P(|oca — ool > 0/K)

52
< 4k* _r
< P exp ( k)

forall § € (0,8(1 + 49?)(max, o7,)) with ¢, = 128(1 + 49?)*(max,(c},)?). Therefore,

1 nd>
f(n,d) = @exp(c*ﬁ)
_ k% log(4k>r)
ns(d;r) = 7
- k2 log(4k?r)\ /2

Theoreni 10J1 and some simple algebra complete the proof.
Propositiori I0J1 is a simple consegeuence of Proposéitich 10

10.8.5 Some Results on Norms of Block Matrices

Let 7 be a partition oft”. Throughout this section, we assume that matrikeB € RP*? and a
vectorb € R? are partitioned into blocks accordingTa

Lemma 10.9.

bz < max ) .
max [|[A, bl|z < max 2 [ As|| max [[b||2
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Proof. Foranya € T,

1ALbll2 < [|Aubyl
beT

1/2
- Z(Aibbbf)

beT \i€a

1/2
<> 1Y ||Aib||§beH§>

beT \i€a

1/2
(Y ||Aib||3> mae [b|

beT \i€a

= 2 liAnlrmx bl

(]
Lemma 10.10.
IC(AB)[loc < IC(B)loc[IC(A) - (10.21)
Proof. Let C = AB and let7 be a partition of//.

IC(AB) e = max > [|Cal|r
beT
< max > 3 [ AuellrlIBall
b c

< (e Y [ Auelle} max 3 |[Bollr}
c b
= [IC(A) [l IC(B) |-

Lemma 10.11.
IC(AB)||oo < [[C(A)[|solIC(B) |- (10.22)
Proof. For a fixeda andb,

C(AB)ab - || ZAachbHF
<Y Al l#l B ¢
< max || Ag|| > Ba|r.

Maximizing overa andb gives the result. O
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Feature Selection in Multi-task Learning
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Chapter 11

Multi-task learning

It has been empirically observed, on various data setsmgrfgpm cognitive neuroscience Liu
et al. (2009) to genome-wide association mapping studiesdfial. (2009), that considering re-
lated estimation tasks jointly, improves estimation perfance. Because of this, joint estimation
from related tasks or multi-task learning has received nafitention in the machine learning and
statistics community.

In this part of the thesis, we focus on a particular form of tirialsk learning, in which the
problem is to estimate the coefficients of several multiptgessions

y; = X,;0; + €, j € [K] (11.1)

whereX; € R"*? is the design matrixy; € R" is the vector of observations; € R" is the
noise vector an@, € R? is the unknown vector of regression coefficients for tih task, with
k] ={1,...,k}.

Under the model i (11l1), we focus on variable selectioreatite assumption that the same
variables are relevant for different regression probléms sharply characterize the performance
of different penalization schemes on the problem of selgctihe relevant variables. Casting
the problem of variable selection in the context of the Ndrmaans, we are able to sharply
characterize the sparsity patterns under which the Lassegdure performs better than the group
Lasso. Similarly, our results characterize how the grougsbacan perform better when each
non-zero row is dense.

Next, we focus on efficient algorithms for screening reléwamiables under the multi-task
regression model. In particular, we analyze forward regjoesand marginal regression, which
are extremely efficient in ultra-high dimensions. Commoul for variable selection in multi-
task regression problems is the penalized least squaresdanee, where the penalty biases solu-
tion to have many zero coefficients. Though efficient al¢pong for these objectives exist, they
still do not scale to million of input variables. Therefosgreening procedures are extremely
useful for initial reduction of the dimensionality.

11.1 Related Work

Multi-task learning has been an active research area foe than a decadalllﬂm]. For an
estimation procedure to benefit from multiple tasks, the@drto be some connections between
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the tasks. One common assumption is that tasks share thedfsatucture. Along this direction,
researchers have proposed to select relevant variablesréhpredictive for all task20,
123,148] 144, 17 :t;_szJ04] or to learn transformation efdhginal variables so that in the
transformed space only few features are rele\ar@, 144].

The model given in[(1111) has been used in many different dwmanging from multi-
variate regression [104, 123, 143, 144] and sparse appadicim[174] to neural science [120],
multi-task Iearningtb. 3, 123] and biological network esttina [147]. A number of authors have
provided theoretical understanding of the estimation i itiodel using convex programing.
[@] propose to minimize the penalized least squares tbgawith a mixed(2, 1)-norm on the
coefficients as the penalty term. The authors focus on demsigstimation of the support s&t
albeit under the assumption that the number of taskdixed. @] use the mixetbo, 1)-norm
to penalize the coefficients and focus on the exact recovigheaon-zero pattern of the regres-
sion coefficients, rather than the support SetFor a rather limited case &f = 2, the authors
show that when the regression do not share a common sugpoéy ibe harmful to consider the
regression problems jointly using the mixésb, 1)-norm penalty. In@fB], the focus is shifted
from the consistent selection to benefits of the joint ediionafor the prediction accuracy and
consistent estimation. The authors showed the benefiteegbtht estimation, when there is a
small set of variables common to all outputs and the numbeutguts is large.

The Orthogonal Matching Pursuit (OMP) has been analyzeorbén the literature (see, for
example,@b 7L,_1$124_2|07])|._L1|82] showed that the OMP hasstire screening property in
a linear regression with a single output. The exact variablection property of the OMP is
analyzed in?] an7]. The exact variable selectiquites much stronger assumptions
on the design, such as the irrepresentable condition, teabard to satisfy in the ultra-high
dimensional setting. 1§13, we focus on the sure screening property, which can bershow
hold under much weaker assumptions.

Marginal regression, also known as correlation learningrgimal learning and sure screen-
ing, is one computationally superior alternative to thedoasThis is a very old and simple pro-
cedure, which has recently gained popularity due to itsrdlel properties in high-dimensional
setting @@6@@4}. Motivated by successful agpions to variable selection in single
task problems, we study properties of the marginal regsaseia multitask setting if14.
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Chapter 12

Multi-Normal Means Model

Despite many previous investigations, the theory of véeiaelection in multi-task regression
models prior to our Work]_L_l.’[O] was far from settled. A simplear picture of when sharing
between tasks actually improves performance did not emdrgparticular, to the best of our
knowledge, there has been no previous work that sharphacteizes the performance of dif-
ferent penalization schemes on the problem of selectingalegant variables in the multi-task
setting.

In this chapter we study multi-task learning in the contéxthe many Normal means model
This is a simplified model that is often useful for studying theoretical properties of statistical
procedures. The use of the many Normal means model is fairhnmon in statistics but appears
to be less common in machine learning. Our results provideegpscharacterization of the spar-
sity patterns under which the Lasso procedure performeibttan the group Lasso. Similarly,
our results characterize how the group Lasso (with the miget) norm) can perform better
when each non-zero row is dense.

12.1 Introduction

We consider the problem of estimating a sparse signal in tesepce of noise. It has been
empirically observed, on various data sets ranging fronmitivg neurosciencO] to genome-
wide association mapping studi@lﬁ], that consideraigted estimation tasks jointly can
improve estimation performance. Because of this, joiritreion from related tasks onulti-
task learninghas received much attention in the machine learning andtstatcommunity (see,
for example,|[B, 116, 120, 123, 123, 143, hl44,/172] 203, 20d]references therein). However,
the theory behind multi-task learning is not yet settled.

An example of multi-task learning is the problem of estimgtthe coefficients of several
multiple regressions

y; = X;0; + €, j € [K] (12.1)

whereX; € R"*? is the design matrixy; € R" is the vector of observations; € R" is the
noise vector an@, € R? is the unknown vector of regression coefficients for tia task, with

K] = {1,....k}.
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When the number of variablgsis much larger than the sample sizgit is commonly as-
sumed that the regression coefficients are jointly sparaeig, there exists a small subset [p]
of the regression coefficients, with= |S| < n, that are non-zero for all or most of the tasks.

The model in[(TZ]1) under the joint sparsity assumption wiadyaed in, for examplel, [144],
[|123], 1143], [123] and[le4]. |_L144] propose to minimize thenalized least squares objective
with a mixed(2, 1)-norm on the coefficients as the penalty term. The authorssfon consistent
estimation of the support sét albeit under the assumption that the number of tasissfixed.
] use the mixedoo, 1)-norm to penalize the coefficients and focus on the exactvezgo
of the non-zero pattern of the regression coefficientseratian the support sét For a rather
limited case of = 2, the authors show that when the regression do not share a@osupport,
it may be harmful to consider the regression problems jpining the mixed oo, 1)-norm
penalty. mﬂ address the feature selection propertisgnudiltaneous greedy forward selection.
However, it is not clear what the benefits are compared to timary forward selection done
on each task separately. 23] a@lZS], the focus igeghifom the consistent selection to
benefits of the joint estimation for the prediction accuraeyg consistent estimation. The number
of tasksk is allowed to increase with the sample size. However, itssiased that all tasks share
the same features; that is, a relevant coefficient is noofperall tasks.

Despite these previous investigations, the theory is famfsettled. A simple clear picture
of when sharing between tasks actually improves perforeduas not emerged. In particular,
to the best of our knowledge, there has been no previous wartksharply characterizes the
performance of different penalization schemes on the prolaf selecting the relevant variables
in the multi-task setting.

In this chapter we study multi-task learning in the contéxthe many Normal means model
This is a simplified model that is often useful for studying theoretical properties of statistical
procedures. The use of the many Normal means model is fairhynmon in statistics but appears
to be less common in machine learning. Our results provideepscharacterization of the spar-
sity patterns under which the Lasso procedure performeiian the group Lasso. Similarly,
our results characterize how the group Lasso (with the m{getl) norm) can perform better
when each non-zero row is dense.

12.1.1 The Normal Means Model

The simplest Normal means model has the form
Yi=pi+oe, i=1,...,p (12.2)

wherep, . . ., u, are unknown parameters and. . ., ¢, are independent, identically distributed
Normal random variables with mean 0 and variance 1. Thera asiety of resultﬂﬂmO]
showing that many learning problems can be converted intorandl means problem. This im-
plies that results obtained in the Normal means setting eardnsferred to many other settings.
As a simple example, consider the nonparametric regressaate! Z; = m(i/n) + J; wherem

is a smooth function ofv, 1] andd; ~ N(0, 1). Let ¢y, ¢o, .. ., be an orthonormal basis on [0,1]
and writem(z) = 3% | ;65 () wherep; = fol m(x)¢;(x)dx. To estimate the regression func-
tion m we need only estimate,, o, . ..,. LetY; =n='>"" | Z; ¢;(i/n). ThenY; ~ N(u;,0?)
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whereo? = 1/n. This has the form of(12.2) with = 1/,/n. Hence this regression problem
can be converted into a Normal means model.

However, the most important aspect of the Normal means medéhkt it allows a clean
setting for studying complex problems. We consider theofeihg Normal means model. Let

¥, ~ { (1—eN(0,0%) + eN(pij,0*)  jelk], i€S (12.3)

N(0,5?) jelk], iese

where(y;;); ; are unknown real numbers,= oy/+/n is the variance witlr, > 0 known, (Y;;); ;
are random observationsc [0, 1] is the parameter that controls the sparsity of featuressacro
tasks andS C [p] is the set of relevant features. Let= |S| denote the number of relevant
features. Denote the matri¥ € RP** of means

Tasks
1 2 ... k
1y gz oo pag
2| por pa2 .. ok
P Hpr Hp2 .- Hpk

and letd; = (11;5) <) denote the-th row of the matrixA/. The setS® = [p] \ S indexes the zero
rows of the matrix)/ and the associated observations are distributed accoralitige Normal
distribution with zero mean and varianeé. The rows indexed by are non-zero and the cor-
responding observation are coming from a mixture of two Nadrdistributions. The parameter
¢ determines the proportion of observations coming from andNdrdistribution with non-zero
mean. The reader should regard each column as one vectorahgiers that we want to esti-
mate. The question is whether sharing across columns irapithe estimation performance.

It is known from the work on the Lasso that in regression peoid, the design matrix needs
to satisfy certain conditions in order for the Lasso to caityadentify the support [sed_l_ﬁll, for
an extensive discussion on the different conditions]. €hlregularity conditions are essentially
unavoidable. However, the Normal means model{12.3) alleswt® analyze the estimation pro-
cedure in[(12}4) and focus on the scaling of the importarampatersn, k, p, s, €, pimin) for the
success of the support recovery. Using the mddel{12.3)fenddtimation procedure in (12.4),
we are able to identify regimes in which estimating the supigamore efficient using the ordi-
nary Lasso than with the multi-task Lasso and vice versa.r€sults suggest that the multi-task
Lasso does not outperform the ordinary Lasso when the fesatanre not considerably shared
across tasks; thus, practitioners should be careful whplyiag the multi-task Lasso without
knowledge of the task structure.

An alternative representation of the model is

V. — N (&g, 0?)  jelk], ieS
N N(0,0%) jelk], iese

where¢;; is a Bernoulli random variable with success probab#ityrhroughout the chapter, we

will sete = k=" for some parametet € [0, 1); 3 < 1/2 corresponds to dense rows aid- 1/2
corresponds to sparse rows. Lgt;,, denote the following quantity,,;, = min |z
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Under the model(1213), we analyze penalized least squanesdures of the form

— 1

fi = axgmin [Y — p[} + pen(p) (12.4)
pERPxk

where||Al[r = 3., A% is the Frobenious nornpen(-) is a penalty function ang is ap x k

matrix of means. We consider the following penalties:

1. the/; penalty
pen(p) = )\Z Z |11,

i€lp] jE[k]
which corresponds to the Lasso procedure applied on eakimtdspendently, and denote
the resulting estimate gs"

2. the mixed2, 1)-norm penalty

pen(p) =AY [[6:]2
i€lp]
which corresponds to the multi-task Lasso formulation dxland [128], and denote the
resulting estimate gg“/%

3. the mixed oo, 1)-norm penalty

pen(p) =AY 116;]]oc,
i€[p)
which correspond to the multi-task Lasso formulation@]léhnd denote the resulting
estimate agi“/‘>.
For any solutioru of (12.4), letS(x) denote the set of estimated non-zero rows

S(@) ={ielp] : |16i]> #0}.

We establish sufficient conditions under whift (1z) # S] < « for different methods. These
results are complemented with necessary conditions farett®/ery of the support sét

We focus our attention on the three penalties outlined aboMeere is a large literature
on the penalized least squares estimation using concawdtipsras introduced in [64]. These
penalization methods have better theoretical propertiethe presence of the design matrix,
especially when the design matrix is far from satisfying ithepresentable condition [205]. In
the Normal means model, due to the lack of the design malréxetis no advantage to concave
penalties in terms of variable selection.

12.1.2 Overview of the Main Results

The main contributions of the chapter can be summarizediiasvia

1. We establish alower bound on the paramgigr, as a function of the parametérs &, p, s, 3).
Our result can be interpreted as follows: for any estimapi@tedure there exists a model
given by [12.8) with non-zero elements equalg, such that the estimation procedure
will make an error when identifying the sétwith probability bounded away from zero.
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2. We establish the sufficient conditions on the signal gfitep,,;, for the Lasso and both
variants of the group Lasso under which these proceduresaraectly identify the set of
Nnon-zero rowss.

By comparing the lower bounds with the sufficient conditioms are able to identify regimes
in which each procedure is optimal for the problem of idsfirtij the set of non-zero rows.
Furthermore, we point out that the usage of the popular gtagso with the mixedoo, 1)
norm can be disastrous when features are not perfectly dlzemeng tasks. This is further
demonstrated through an empirical study.

12.2 Lower Bound on the Support Recovery

In this section, we derive a lower bound for the problem ohiifging the correct variables. In
particular, we derive conditions dm, &, p, s, €, umin) Under which any method is going to make
an error when estimating the correct variables. Intuiyiviél..,.;, is very small, a non-zero row
may be hard to distinguish from a zero row. Similarly i§ very small, many elements in a row
will be zero and, again, as a result it may be difficult to idigra non-zero row. Before, we give
the main result of the section, we introduce the class of iisdtat are going to be considered.
Let
Flul={0 € R* : min 6] > 1}

denote the set of feasible non-zero rows. For gaeh{0, 1, ..., k}, let M(j, k) be the class of
all the subsets of1, . . ., k} of cardinality;. Let

M, s|= |J {(61,....6,) eR" : 0, € Flplificw 6,=0ifi¢gw} (12.5)
weM(s,p)

be the class of all feasible matrix means. For a matfix M|y, s|, letP), denote the joint law
of {Y; Liepljel)- SincelPy, is a product measure, we can witgy = ®;¢[,/Ps,. FOr a non-zero
row @,, we set

Po,(A) = / N(A;0,0°1,)dv(0),  Ac BR"Y),

wherev is the distribution of the random variab¥e ., 11:;¢;¢; With §; ~ Bernoulli(k~#) and
{e;};er denoting the canonical basis&f. For a zero rowd; = 0, we set

Po(A) = N(4;0,0°T}), A € B(R").

With this notation, we have the following result.
Theorem 12.1.Let

Iu?nin = :u?nin(nv kvpvsaev 5) =1In <1 +u+ v 2U+U2)0'2

where

in (14 2205220)
2k1—25

u =
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If e € (0, 3) andk~Pu < 1, then for allpy < fimin,

inf sup Py[S(A) # S(M)] >

# MeMlp,s]

whereM(, s is given by(IZ.5)

The result can be interpreted in words in the following wayhatever the estimation pro-
cedureys, there exists some matriX/ € M]|umi, s] such that the probability of incorrectly
identifying the support(M) is bounded away from zero. In the next section, we will seé tha
some estimation procedures achieve the lower bound givEhéoreni 12]1.

(1—a)

N —

12.3 Upper Bounds on the Support Recovery

In this section, we present sufficient conditions(enp, k, €, umin) for different estimation pro-
cedures, so that
PS(f1) # 5] < a.

Leto/, 9’ > 0 be two parameters such thét+ o’ = a. The parametet’ controls the probability
of making a type one error

P[3i € [p] : i€ S(f)andi &S] < o,

that is, the parameter’ upper bounds the probability that there is a zero row of thgima/
that is estimated as a non-zero row. Likewise, the paramietentrols the probability of making
a type two error

P[3iep] : i ¢ S(p)andi € S] < ¢,

that is, the parameter upper bounds the probability that there is a non-zero rovhefmatrix
M that is estimated as a zero row.

The control of the type one and type two errors is establishexligh the tuning parameter
A. It can be seen that if the parameters chosen such that, for alle S, it holds thatP[i ¢
S(p)] < ¢'/s and, for alli € S¢, it hold thatP[: € S(u)] < o'/(p — s), then using the union
bound we have thak[S(i) # S] < a. In the following subsections, we will use the outlined
strategy to choose for different estimation procedures.

12.3.1 Upper Bounds for the Lasso

Recall that the Lasso estimator is given as
~ 1
i = argmin S||Y — g2+ Al
MeRpXk

It is easy to see that the solution of the above estimatioblenois given as the following soft-
thresholding operation
A
~0
pij =\ 1— —) Yij, (12.6)
! ( ‘Y;J| + ’
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where(z), := max(0, z). From [I2.6), it is obvious thate S (") if and only if the maximum
statistic, defined as

My (i) = max Y31,
satisfiesV.(i) > A. Therefore it is crucial to find the critical value of the paweter) such that
{ P[M, (i) < \] < & /s ieS
P[M(i) > A\ < &/f(p—s) i€eS°
We start by controlling the type one error. Eag S€ it holds that

2ko - 2
\/%)\ exp( ﬁ)

using a standard tail bound for the Normal distributiontiSgtthe right hand side ta’/(p — s)
in the above display, we obtain thatan be set as

P[My (i) 2 A < KE[IN(0,0%)] > A] <

(12.7)

2k(p —
A= oy f2m 2R =3) (12.8)
2mal
and [12.7) holds as soon 2a& % > 1. Next, we deal with the type two error. Let
T = P|(1 = N (0,0%) + N (ftin; 0%)] > Al (12.9)

Then fori € S, P[M,(i) < A\ < P[Bin(k, ) = 0], whereBin(k, 7;) denotes the binomial

random variable with parametefs, ). Control of the type two error is going to be established

through careful analysis af,, for various regimes of problem parameters.

Theorem 12.2.Let \ be defined b{12.8) Suppose..;, satisfies one of the following two cases:
() fmin = 0V 2rInk where

2
r > <\/1—|—Ck7p7s—\/1—ﬁ>

with
In 2(p—s)
o 2ma
Chps = Ink
andlim,, ., Cj,,.s € [0,00);
(i) ftmin > A When
|
lim — 28
n—oo In(p — s)

andk'=%/2 > In(s/d").
Then



The proof is given in Sectidn 12.6.2. The two different cadescribe two different regimes
characterized by the ratio af £ andIn(p — s).

Now we can compare the lower boundgfy, from Theoreni 12]1 and the upper bound from
TheorenIZ]2. Without loss of generality we assume ¢hat 1. We have that whep < 1/2
the lower bound is of the orde? (In (k°~/?In(p — s))) and the upper bound is of the order
In(k(p — s)). Ignoring the logarithmic terms ip ands, we have that the lower bound is of the
order®(k?~1/2) and the upper bound is of the ord®fIn k), which implies that the Lasso does
not achieve the lower bound when the non-zero rows are deféen the non-zero rows are
sparsef > 1/2, we have that both the lower and upper bound are of the d@derk) (ignoring
the terms depending gnands).

12.3.2 Upper Bounds for the Group Lasso

Recall that the group Lasso estimator is given as

~ M 1
'ulfl/b = argmin §||Y — MH% + A Z ||0i||27

pXk .
HeR i€p]

wheref; = (11;;) jei)- The group Lasso estimator can be obtained in a closed foamesult of
the following thresholding operation [see, for exam@, 72

. A
6/ = (1 - —) Y;. (12.10)
1Yill2) ¢

whereY;. is thei™" row of the data. Fron{(12.10), it is obvious that S(z‘/*2) if and only if
the statistic defined as
j

satisfiesS,(i) > \. The choice of\ is crucial for the control of type one and type two errors.
We use the following result, which directly follows from Tdrem 2 in Et].
Lemma 12.1.Let{Y; = f; + 0§ }icin) De @ sequence of independent observations, whete

{fi}iem) is @ sequence of numbeﬁs,éivd N(0,1) ando is a known positive constant. Suppose
thatt, ., € R satisfieP[x? > t,.] < a. Let

¢o¢ = ]{Z Y;Z 2 tn,aUQ}

i€[n]
be a test forf = 0 versusf # 0. Then the tesp,, satisfies
Plpa =1] < a

whenf = 0 and

for all f such that

I£1 > 2(V5 + 4)0 In (%) /.

176



Proof. This follows immediately from Theorem 2 iﬂZZ]. O
It follows directly from lemma&_12]1 that setting
A =tna )(p-s)0" (12.11)
will control the probability of type one error at the desitedel, that is,
P[Sk(i) > A\ < d'/(p—9), Vi e S°.

The following theorem gives us the control of the type twmerr
Theorem 12.3.Let\ = t,, o/ /(,—s)0>. Then

P[S(%/") # 5] < a

k—1/2+8 2e(2s — ') (p — s
finin > 0\ 2(V5 +4)4 | — \/m ( O/;( )

wherec = /21n(2s/8") /k'-5.

The proof is given in Sectidn 12.6.3.

Using Theorerh 12]1 and Theorém 12.3 we can compare the lawmedon.? ;. and the up-
per bound. Without loss of generality we assume that 1. When each non-zero row is dense,
that is, when3 < 1/2, we have that both lower and upper bounds are of the afér—'/2)
(ignoring the logarithmic terms ip ands). This suggest that the group Lasso performs better
than the Lasso for the case where there is a lot of featurénghaetween different tasks. Recall
from previous section that the Lasso in this setting doeshawete the optimal dependence bn
However, wherg > 1/2, that is, in the sparse non-zero row regime, we see that wes loound
is of the orderO(In(k)) whereas the upper bound is of the ord&#?~/2). This implies that
the group Lasso does not have optimal dependendeiiothe sparse non-zero row setting.

12.3.3 Upper Bounds for the Group Lasso with the Mixed oo, 1) Norm

In this section, we analyze the group Lasso estimator wighmixed(oco, 1) norm, defined as

1
~/ /goo . 2 )
[,l,1 = argmin —2||Y—[,L||F—|—)\ E ||02||ooa

pXk .
HER i€p]

where®; = (p1;;) ;- The closed form solution foii“/“= can be obtained [8@20], however,
we are only going to use the following lemma.

Lemma 12.2.[120] 6!/~ = 0 if and only it [Vij| < A
Proof. See the proof of Proposition 5 i20]. O

177



Suppose that the penalty parametes set as

k _
A= koy/21n (p : ). (12.12)
(8]

It follows immediately using a tail bound for the Normal dikstition that

Z| i > <k:maXIP’[| I >NE < /(p—s), Vie S

which implies that the probability of the type one error isitolled at the desired level.
Theorem 12.4.Let the penalty parameter be defined bfI2.12) Then

P[S(B"/*~) # 5] <

fain > 1B
1—c¢

wherec = /21n(2s/6') /k'-F andt = o /2kIn 5% /X,

The proof is given in Sectidn 12.6.4.

Comparing upper bounds for the Lasso and the group Lassdhvétimixed(2, 1) norm with
the result of Theorern_12.4, we can see that both the Lassohangroup Lasso have better
dependence oh than the group Lasso with the mixé¢do, 1) norm. The difference becomes
more pronounced as increases. This suggest that we should be very cautious ugirg the
group Lasso with the mixetbo, 1) norm, since as soon as the tasks do not share exactly the
same features, the other two procedures have much betfermance on identifying the set of
non-zero rows.

12.4 Simulation Results

We conduct a small-scale empirical study of the performari¢be Lasso and the group Lasso
(both with the mixed 2, 1) norm and with the mixedoc, 1) norm). Our empirical study shows
that the theoretical findings of Section 12.3 describe dhdne behavior of procedures even for
small sample studies. In particular, we demonstrate thtteasiinimum signal level,,;,, varies

in the model [(1213), our theory sharply determines pointwlith probability of identifying
non-zero rows of matriX/ successfully transitions fromnto 1 for different procedures.

The simulation procedure can be described as follows. Withass of generality we let

S = [s] and draw the samplels;; }icpy,jeqr) according to the model i (12.3). The total num-
ber of rowsp is varied in{128,256,512,1024} and the number of columns is set ko =
|plogy(p)|. The sparsity of each non-zero row is controlled by changireggparametep in
{0,0.25,0.5,0.75} and setting: = k. The number of non-zero rows is set¢e= |log,(p)],
the sample size is set to = 0.1p ando, = 1. The parametera’ andé’ are both set td.01.
For each setting of the parameters, we report our resultaged over 1000 simulation runs.
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Simulations with other choices of parameters andk have been tried out, but the results were
qualitatively similar and, hence, we do not report them here

The regularization parametgris chosen according to Equations (12.8), (1R.11) nd () 2.12
which assume that the noise lewglis known. In practice, estimating the standard deviation of
the noise in high-dimensions is a hard problem and pranéti® often use cross-validation as a
data-driven way to choose the penalty parameter. For reeerkt on data-driven tuning of the
penalty parameters, we refer the reader to [6].

12.4.1 Lasso

We investigate the performance on the Lasso for the purpbsstimnating the set of non-zero
rows,S. Figure[12.11 plots the probability of success as a functidh@signal strength. On the
same figure we plot the probability of success for the grougsbawith both(2, 1) and (oo, 1)-
mixed norms. Using theoreim 12.2, we set

[asso = \/2(7 +0.001) In k (12.13)

wherer is defined in theorein 12.2. Next, we generate data accordi@@t3) with all elements
{1} settop = pruasso, Wherep € [0.05,2]. The penalty parameteris chosen as i (12.8).
Figure[1Z.1 plots probability of success as a function ofiaeameterp, which controls the
signal strength. This probability transitions very shafpbm O to 1. A rectangle on a horizontal
line represents points at which the probabilftys = S] is betweerD.05 and0.95. From each
subfigure in Figureé 1211, we can observe that the probalofisuccess for the Lasso transitions
from 0 to 1 for the same value of the parametefor different values op, which indicates that,
except for constants, our theory correctly characterizesstaling ofu,,;,. In addition, we can
see that the Lasso outperforms the group Lasso ({ith)-mixed norm) when each non-zero
row is very sparse (the parameters close to one).

12.4.2 Group Lasso

Next, we focus on the empirical performance of the group dagish the mixed(2, 1) norm.
Figure[12.? plots the probability of success as a functiothefsignal strength. Using theorem

[12.3, we set
/ [0 (25 — &) (p — s)
Mgroup =0 2(\/5 -+ 4) i \/ln 0/5/ (1214)

wherec is defined in theorein 12.3. Next, we generate data accordifi@t3) with all elements
{uij} settou = ppgoup, Wherep € [0.05,2]. The penalty parametex is given by [I2.111).
Figurel12.P plots probability of success as a function opdm@metep, which controls the signal
strength. A rectangle on a horizontal line represents pa@twhich the probabiliti[S = S| is
betweer).05 and0.95. From each subfigure in Figure IR.2, we can observe that timpility
of success for the group Lasso transitions froto 1 for the same value of the parametefor
different values op, which indicated that, except for constants, our theoryealy characterizes
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Figure 12.1: The probability of success for the Lasso forpittdlem of estimating' plotted against the
signal strength, which is varied as a multiple af., defined in[I2.13). A rectangle on each horizontal
line represents points at which the probabil[[{jg = S| is between0.05 and0.95. To the left of the
rectangle the probability is smaller théud)5, while to the right the probability is larger thard5. Different
subplots represent the probability of success as the gppesametel changes.

180



the scaling ofu.,;n. We observe also that the group Lasso outperforms the Lasso @ach non-
zero row is not too sparse, that is, when there is a considemerlap of features between
different tasks.

12.4.3 Group Lasso with the Mixed(oco, 1) Norm

Next, we focus on the empirical performance of the group aasgish the mixed(oc, 1) norm.
Figure[12.8 plots the probability of success as a functiotihefsignal strength. Using theorem
12.4, we set

1+7._
Hinfty = 77 Ck 1A (12.15)

wherer andc are defined in theorei _12.4 ands given by [12.12). Next, we generate data
according to[(1Z13) with all elemen{g.;;} set top = puinsy, Wherep € [0.05,2]. Figure[1Z.B
plots probability of success as a function of the parameterhich controls the signal strength. A
rectangle on a horizontal line represents points at whielptbbabilityP[S = S] is betweern).05
and0.95. From each subfigure in Figure 1P.3, we can observe that dimpility of success for
the group Lasso transitions frobrto 1 for the same value of the parametefior different values

of p, which indicated that, except for constants, our theoryeaily characterizes the scaling of
Imin- We also observe that the group Lasso with the mixed 1) norm never outperforms the
Lasso or the group Lasso with the mixgd 1) norm.

12.5 Discussion

We have studied the benefits of task sharing in sparse prsbléinder many scenarios, the
group lasso outperforms the lasso. Thél, penalty seems to be a much better choice for the
group lasso than thg //.,. However, as pointed out to us by Han Liu, for screening, effigise
discoveries are less important than accurate recovesypivésible that thé, /¢, penalty could
be useful. From the results in Section 12.3, we can furthaclede that the Lasso procedure
performs better than the group Lasso when each non-zercsreparse, while the group Lasso
(with the mixed(2, 1) norm) performs better when each non-zero row is dense. Sintany
practical situations one does not know how much overlapetiebetween different tasks, it
would be useful to combine the Lasso and the group Lasso &r tedmprove the performance.
For example, one can take the union of the Lasso and the grasgolestimate§ = S(“) U
S(m’/*). The suggested approach has the advantage that one doeeddorknow in advance
which estimation procedure to use. While such a combinatambe justified in the Normal
means problem as a way to increase the power to detect theamomews, it is not clear whether
the same approach can be justified in the multi-task regressodel [(12.11).

The analysis of the Normal means model[in (12.3) provideglits into the theoretical re-
sults we could expect in the conventional multi-task leagrgiven in [12.11). However, there is
no direct way to translate our results into valid resultstiiermodel in[(12]1); a separate analysis
needs to be done in order to establish sharp theoreticdtsesu
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Figure 12.2: The probability of success for the group Lassotlie problem of estimating' plotted
against the signal strength, which is varied as a multiple,f,,, defined in[(12.14). A rectangle on each
horizontal line represents points at which the probab]ﬂiig = 5] is betweer).05 and0.95. To the left
of the rectangle the probability is smaller th&5, while to the right the probability is larger th&m5.
Different subplots represent the probability of succeshasparsity parametérchanges.
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Figure 12.3: The probability of success for the group Lasib mixed (oo, 1) norm for the problem of
estimatingS plotted against the signal strength, which is varied as dipfeilof 1., defined in[(12.15).
A rectangle on each horizontal line represents points athwthe probability]P’[§ = 5] is betweerD.05
and0.95. To the left of the rectangle the probability is smaller tiedb, while to the right the probability
is larger than0.95. Different subplots represent the probability of successha sparsity parametgr
changes.
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12.6 Technical Proofs

This section collects technical proofs of the results presgkin the chapter. Throughout the
section we usey, ¢, . . . to denote positive constants whose value may change framditine.

12.6.1 Proof of Theoremi 1ZJ1

Without loss of generality, we may assume- 1. Let ¢(u) be the density oV (0, 1) and define
P, andP; to be two probability measures @& with the densities with respect to the Lebesgue
measure given as

folar,...ar) = [ ¢(ay) (12.16)
JEK]
and
fl(ab ce ak) = EZEmE§ H ¢(aj - fj,umin) H ¢(aj) (12.17)
jeEM j€m

where Z ~ Bin(k,k=?), m is a random variable uniformly distributed ove!(Z, k) and
{&}jem is asequence of Rademacher random variables, indeperideand. A Rademacher
random variable takes valuad with probability%.

To simplify the discussion, suppose that s + 1 is divisible by 2. Letl’ = (p — s+ 1) /2.
UsingPo andP, we construct the following three measures,

Q=P Pyt

and

It holds that

inf sup Pay[S(M) # S()] > inf max (Qo(¥ = 1), Q:(¥ = 0))

B MeM

—IIQo—QlHl,

l\:>|}—l

where the infimum is taken over all tesitgtaking values if0, 1} and|| - ||, is the total variation

distance between probability measures. For a readabledinttion on lower bounds on the
minimax probability of error, see Section 2 -71] In pewtar, our approach is related to
the one described in Section 2.7.4. We proceed by upper logitite total variation distance

184



betweernQ, andQ;. Letg = dP; /dP, and letu; € R* for eachi € [p], then

dQo
—,V(U/l, . y up)
dQ
1 dP, Py, dPy dPo
- T ‘ Z ' H dPl( Z) ‘ H dPO (UZ>dIP>0( ]) H d]P)O (ul)
Jegsé\;;r;p} i€{l,...,s—1} i€{s,....j—1} i€{j+1,...,p}
1
=7 Z 9(u;)
JE{‘S ,,,,, p}

and, similarly, we can comput@l/d@. The following holds

1Qo — Qi3
2
1
(I3 X = 3 s| T ot
JE{éé\}ér;p} je{‘séﬁd’p} i€{s,...,p}
1 ' ' (12.18)
< [ (X swy— X gw) T dPefw)
et g i€{s,-p}

where the last equality follows by observing that

/ Z Z 9(u;)g(uj) H dPo(u;) = T Po(g*) + T2 — T
¥ }

JE{s,.., p} j'€{s,..., P i€{s,..., P
j even § even i even

and

/ > g(ugluy) ] dPo(us) =T
! }

Jje{s-p} j'€{s,...p 1€{s,...,p
j even 4 odd

Next, we proceed to upper boufitg(g?), using some ideas presented in the proof of Theorem 1
in [22]. Recall definitions off, and f; in (I2.16) and(12.17) respectively. Ther= dP; /dPy =
f1/ fo and we have

AT
g(al, .. .,ak) = EzEmE§ [exp ( — % —+ uminZ@ajﬂ

jeEmM

— | oxp (- 2, [ T costlpmna)] |

JEM
Furthermore, letZ' ~ Bin(k, k=?) be independent of andm’ uniformly distributed over
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M(Z', k). The following holds

Po(g”)
nN,,2
= ]P)O (EZ’,Z [exp < — %) Em,m’ H COSh(,umina'j) H COSh(Mmina’j)])
JjEM jem’
2
=y [exp (- D )
Em,m’[ H / cosh? (pmint;)¢(a;)da;
jemnNm/’
11 /cosh(uminaj)sﬁ(%)daj”a
jeEMAmM/

where we usen/Am/’ to denotgm Um') \ (m N m’). By direct calculation, we have that

/ cosh? (piminat; )¢ (a;)da; = exp(pigy,) cosh(ply,)
and
/cosh(uminaj)¢(aj)daj = eXP(/ifmn/2)-

Sincei|mAm/| + |mNm/| = (Z + Z')/2, we have that

Po(9%) = Ezz B [( cosh(fipin)) \mﬂm’\”

_k i
= EZZ/ _ij(COSh(:u?nin))q

J=0

=Ezz |Ex [COSh(Miin)XH :

where

0 ifj<Z+27Z —korj>min(Z,2Z")

pi=9 (D)

(2)
andP[X = j| = p,. Therefore,X follows a hypergeometric distribution with parametgrsZ,
Z'/k. [The first parameter denotes the total number of stones irmnthe second parameter
denotes the number of stones we are going to sample withplaicement from the urn and the
last parameter denotes the fraction of white stones in thg Uren following E} p. 173; see
also ]], we know thatX has the same distribution as the random vari@jl€|7] where X
is a binomial random variable with parametéfsand Z’/k, and7 is a suitabler-algebra. By
convexity, it follows that

otherwise

Po(g?) < Ezz [EX' |:COSh(,U12nin)X] }

— B, [exp (Zln (1 + %(cosh(uiﬂn) - 1)))}

—E,E, [exp (Z in (14 Z?“> )}
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wherep?;, = In(1 + u + v2u + u?) with

In (1+ <7
2f1—268
Continuing with our calculations, we have that

u =

Po(g?) = Ez exp (kln (1+ k;-<1+6>uzf))

< E, exp (l{;_ﬁuZ/>
= exp <k1n (1 + k‘_ﬁ(exp(k_ﬁu) - 1)>)

< exp (l{:l_ﬁ(exp (k_ﬁu) — 1))
< exp (le_zﬁu)

a?T
=1+ DR

where the last inequality follows sinée®u < 1 for all largep. Combining [12.19) with{12.18),
we have that

(12.19)

Qo — Qifi <«
which implies that
inf sup Pa[S(M) # S(7)] >

Ko MeM

.

NN
NO| —

12.6.2 Proof of Theorem 1212

Without loss of generality, we can assume that 1 and rescale the final result. Fdmgiven in
(AZ.8), it holds thaP[|AV/(0,1) > A] = o(1). For the probability defined i (12.9), we have the
following lower bound

7 = (1= P[0, 1)] = X] + Pl (i, D] = N = PN (s, 1) = Al

We prove the two cases separately.
Case 1:Large number of task®8y direct calculation

1 >
> PN (fimin, 1) > A = e CVAEz e
T = € [ (Iu ) = ] \/47_‘_ log k(\/l ¥ Ck’p’s . \/7—”) E

Sincel — 8 > (/T + Crps — /7)", We have thaP[Bin(k, ;) = 0] “2>% 0. We can conclude
that as soon akm;, > In(s/d"), it holds thatP[S (") # S] < a.
Case 2:Medium number of task®Vheny,,;, > ), it holds that

k=B

Tk 2 6]P)[-/\/(,Umina ]-) Z )\] 2 7

We can conclude that as soonids? /2 > In(s/d’), it holds thatP[S(1i*) # S] < a.
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12.6.3 Proof of Theoreni 12J3

Using a Chernoff bound?[Bin(k, k=#) < (1 — c)k'=#] < §/2s for ¢ = /21n(2s/0") /k' 7.
Fori € S, we have that

Pl <A< 5+ (1= 2 )P[0 <01 {108 2 (- on i}

Therefore, using lemnma12.1 with= ¢'/(2s — ¢'), if follows thatP[Sy. (i) < A] < ¢'/(2s) for

all 7 € S when
L—1/2+8 2e(2s — —
MmmZU\/Q \/74‘4 Ty \/ 6 i /5/ S)

SinceX = t, 0502 P[Sk(i) > A] < o//(p — s) for all i € S°. We can conclude that
PS(@/*) # 5] < a.

12.6.4 Proof of Theoren 1214

Without loss of generality, we can assume that 1. Proceeding as in the proof of theorem12.3,
PBin(k,k=?) < (1 — ¢)k'~P] < §/2s for c = \/21In(2s/d") /k'=P. Then fori € S it holds that

5 5
< <_ . — kY Py <
§:| <A 4-0_ %)Pﬁl R pin + 2 < Al

wherez;, ~ N (0, k). Since(1 —¢)k' P pmin > (14 7)), the right-hand side of the above display
can upper bounded as

! ! 0o’ 0o’ o 0o’
: : ( ) 25 — o' = s

o+ <1—Z)IP’[/\/(O,1) > AVE < o (1= o

The above display gives us the desired control of the typeemar, and we can conclude that
P[S(B“/*=) # 8] < a.
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Chapter 13

Feature Screening With Forward
Regression

In this chapter, we propose a novel application of the Siamdbus Orthogonal Matching Pursuit
(S-OMP) procedure for sparsistant variable selectiontratiiigh dimensional multi-task regres-
sion problems. Screening of variables, as introduceh i62n efficient and highly scalable
way to remove many irrelevant variables from the set of allakdes, while retaining all the rel-
evant variables. S-OMP can be applied to problems with redsdof thousands of variables and
once the number of variables is reduced to a manageableasizere computationally demand-
ing procedure can be used to identify the relevant varidblesach of the regression outputs. To
our knowledge, this is the first attempt to utilize relatesmef multiple outputs to perform fast
screening of relevant variables. As our main theoreticatrdoution, we prove that, asymptoti-
cally, S-OMP is guaranteed to reduce an ultra-high numbeawébles to below the sample size
without losing true relevant variables. We also providerfalrevidence that a modified Bayesian
information criterion (BIC) can be used to efficiently detéme the number of iterations in S-
OMP. We further provide empirical evidence on the benefitasfable selection using multiple
regression outputs jointly, as opposed to performing téeiaelection for each output separately.
The finite sample performance of S-OMP is demonstrated ameite simulation studies, and
on a genetic association mapping problem.

13.1 Introduction

Multiple output regression, also known as multi-task regren, withultra-high dimensionain-
puts commonly arise in problems such as genome-wide as®oci{&WA) mapping in genetics,
or stock portfolio prediction in finance. For example, in a &Wapping problem, the goal is to
find a small set of relevant single-nucleotide polymorplag®NP) Covariates, or inpufsthat
account for variations of a large number of gene expresgsiatiracal traits fesponses, or out-
put9, through a response function that is often modeled via @essgpn. However, this is a very
challenging problem for current statistical methods sit@enumber of input variables is likely
to reach millions, prohibiting even usage of scalable imq@atation of Lasso-like procedures
for model selection, which are a convex relaxation of a coratarial subset selection search.
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Furthermore, the outputs in a typical multi-task regrasgimblem are not independent of each
other, therefore the discovery of truly relevant inputs toatake into consideration of potential
joint effects induced by coupled responses. To appredmdebetter, consider again the GWA
example. Typically, genes in a biological pathway are cpregsed as a module and it is often
assumed that a causal SNP affects multiple genes in one ggthut not all of the genes in the
pathway. In order to effectively reduce the dimensionadftthe problem and to detect the causal
SNPs, itis very important to look at how SNPs affect all ganesbiological pathway. Since the
experimentally collected data is usually very noisy, regirg genes individually onto SNPs may
not be sufficient to identify the relevant SNPs that are ondakly marginally correlated with
each individual gene in a module. However, once the whol®gical pathway is examined, it
is much easier to find such causal SNPs. In this paper, we dgmatathat the Simultaneous
Orthogonal Matching Pursuit (S-OMMM] can be used tekjyireduce the dimensionality
of such problems, without losing any of the relevant vaeabl

From a computational point of view, as the dimensionalithef problem and the number of
outputs increase, it can become intractable to solve therlyadg convex programs commonly
used to identify relevant variables in multi-task regresgproblems. Previous work bm20],
[@] and M], for example, do not scale well to settingewthe number of variables exceeds
2 10000 and the number of outputs exceerd 000, as in typical genome-wide association stud-
ies. Furthermore, since the estimation error of the regregs®efficients depends on the number
of variables in the problem, variable selection can imprawevergence rates of estimation pro-
cedures. These concerns motivate us to propose and stu@@MP as a fast way to remove
irrelevant variables from an ultra-high dimensional space

Formally, the GWA mapping problem, which we will use as ansttative example both
in here for model formulation and later for empirical expeental validation, can be cast as a
variable selection problem in a multiple output regressimuel:

Y=XB+W (13.1)

whereY = [yi,...,yr| € R™T is a matrix of outputs, whose column is ann-vector for
thet-th output (i.e., gene)X € R"*? is a random design matrix, of which each rawdenotes

a p-dimensional inputB = [3i,...,87] € RP*T is the matrix of regression coefficients and
W = [e1,...,er] € R™T is a matrix of [ID random noise, independentXf Throughout the
paper, we will assume that the columnsBfare jointly sparse, as we precisely specify below.
Note that if different columns oB do not share any underlying structure, the modelin {13.1)
can be estimated by fitting each of the tasks separately.

We are interested in estimating the regression coefficiemder the assumption that they
share a common structure, for example, there exist a subsariables with non-zero coeffi-
cients for more than one regression output. We informaligrr® such outputs as related. Such
a variable selection problem can be formalized in two wayshe union supportrecovery of
B, as defined i4], where a subset of variables is selebtddhffect at least one output; ii)
the exact supportecovery ofB, where the exact positions of non-zero elementB iare esti-
mated. In this paper, we concern ourselves with exact stipgoovery, which is of particular
importance in problems like GWA mappir@lS] or biologioatwork estimatio?]. Under
such a multi-task setting, two interesting questions radiufollow: i) how can information be
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shared between related outputs in order to improve the greeliaccuracy and the rate of con-
vergence of the estimated regression coefficients oventtependent estimation on each output
separately; ii) how to select relevant variables more ately based on information from related
outputs. To address these two questions, one line of rés{a‘aroexamplemdﬂifzbq has
looked into the following estimation procedure leveragangulti-task regularization

T P
B = argmin Z ly: — XB |3 + A Z pen(fyj, ..., Bryj), (13.2)

BeeRP te[T] =] st

with pen(as, ..., ar) = maxyer |a;] OF pen(as,...,ar) = /> a? for a vectora € RT.

Under an appropriate choice of the penalty paramgtédre estimatoB has many rows equal to
zero, which correspond to irrelevant variables. Howewakisg (13.2) can be computationally
prohibitive.

In this chapter, we consider an ultra-high dimensionalrsgtor the aforementioned multi-
task regression problem, where the number of varigblesnuch higher than the sample size
for examplep = O(exp(n’)) for a positive constant,, but the regression coefficients are
sparse, that is, for each taskthere exist a very small number of variables that are releta
the output. Under the sparsity assumption, it is highly inguat to efficiently select the relevant
variables in order to improve the accuracy of the estima#ind prediction, and to facilitate
the understanding of the underlying phenomenon for domgierts. In the seminal paper of
[@], the concept o$ure screeningvas introduced, which leads to a sequential variable sefect
procedure that keeps all the relevant variables with higbaipility in ultra-high dimensionaini-
output regressionin this paper, we propose the S-OMP procedure, which ergogesscreening
property in ultra-high dimensionahultiple output regressioas defined in[(13]1). To perform
exact supportecovery, we further propose a two-step procedure thatfsess S-OMP to screen
the variables, i.e., select a subset of variables that ooaththe true variables; and then use
the adaptive Lasso (ALaSSdl)__t97] to further select a sublsstreened variables for each task.
We show, both theoretically and empirically, that our poha® ensures sparsistant recovery of
relevant variables. To the best of our knowledge, this isfils¢ attempt to analyze the sure
screening property in the ultra-high dimensional spacaguiiie shared information from the
multiple regression outputs.

In this chapter, we make the following novel contributior)sve prove that the S-OMP can
be used for the ultra-high dimensional variable screemnguiltiple output regression problems
and demonstrate its performance on extensive numericdiestuii) we show that a two step
procedure can be used to select exactly the relevant vasi&dn each task; and iii) we prove that
a modification of the BIC scorﬁbl] can be used to select tmeb®u of steps in the S-OMP.
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13.2 Methodology

13.2.1 The model and notation

We will consider a slightly more general model

yi=X161+e€

=X
Yo 202 + € (13.3)

yr = XrBr + €r,

than the one given in(13.1). The modelin(13.1) is a speeséof the model i (13.3), with
all the design matrice§X, },cr) being equal andll’] denoting the sefl,...,7'}. Assume that
forallt € [T], X; € R"™*P. For the desigX,, we denoteX, ; the j-th column (i.e., dimension),
x;,; thei-th row (i.e., instance) and, ;; the element ati, j). DenoteX; = Cov(x;;). Without
loss of generality, we assume théir(y, ;) = 1, E(z;,;;) = 0 andVar(z,,;) = 1. The noiseg,

is zero mean an@ov(e;) = o°L,x,. We assume that the number of variahes> n and that
the vector of regression coefficientss are jointly sparse, that is, there exist a small number of
variables that are relevant for the most of theegression problems. Put another way, the matrix
B = [By,...,Br] has only a small number of non-zero rows. Uet, , denote the set of non-
zero coefficients o, and M., = UL, M, , denote the set of all relevant variables, i.e., variables
with non-zero coefficient in at least one of the tasks. Forrbitrary setM C {1,....p}, X; m
denotes the design with columns indexed/bt; B, denotes the rows dB indexed byM and

B; = (B1,...,08r,). The cardinality of the seM is denoted agM|. Lets := | M, | denote
the total number of relevant variables, so under the syaasgumption we have < n. For a

matrix A = [aij] € RpXT’ we deﬁne||A||271 = Zze[p] V ZjE[T] a’?j'

13.2.2 Simultaneous Orthogonal Matching Pursuit

We propose a Simultaneous Orthogonal Matching Pursuitgoiae for ultra high-dimensional
variable selection in the multi-task regression probleimicivis outlined in Algorithni 4. Before
describing the algorithm, we introduce some additionahtioh. For an arbitrary subsatt C [p]
of variables, lelH, , be the orthogonal projection matrix orfipan(X; (), i.e.,

Hy = Xy (X 0 X)X

and define the residual sum of squares (RSS) as
T
RSS(M) = >y, (Loxn — Hp)ye.
t=1

The algorithm starts with an empty s&t®) = (). We recursively define the sat*) based
on the setM*~1, The setM* is obtained by adding a variable indexed hye< [p], which
minimizesRSS(M =Yy ) over the sefp]\M* =Y, to the set\*~1). Repeating the algorithm
for n — 1 steps, a sequence of nested get$")}7_! is obtained, withm1®) = {f,,.. .. fi}.
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Input: Datase{ X,,y;} L,
Output: Sequence of selected modélst1® 17—}

SetM©) = ()
fork=1ton —1do
for j =1topdo
M = MED U ()
RSS(M ) = S0, yi (T — Hi )y
end
fr = argminjeq PHME—D) RSS(Mg-
ME) = MED YL f)
end

—) !
t M e

k:))

Algorithm 4: Group Forward Regression

To practically select one of the sets of variables frpf*)}7_, we minimize the modified
BIC criterion [31], which is defined as

RSS(M)) | M(log(n) + 2log(p))

= (13.4)

BIC(M) = log (

n

with | M| denoting the number of elements of the 84t Let

so that the selected modelig ).

The S-OMP algorithm is outlined only conceptually in thistsen. The steps 5 and 6 of the
algorithm can be implemented efficiently using the progwes€holesky decomposition (see,
for example,@]). A computationally costly step 5 invadveversion of the matriX; ,,X; i1,
however, it can be seen from the algorithm that the maXix, X, 1 is updated in each iteration
by simply appending a row and a column to it. Therefore, it®l€éky factorization can be
efficiently computed based on calculation involving onlg thst row. A detailed implementation
of the orthogonal matching pursuit algorithm based on tlgmssive Cholesky decomposition
can be found iHES].

13.2.3 Exact variable selection

After many of the irrelevant variables have been removedgusilgorithm[4, we are left with
the variables in the set®), whose size is smaller than the sample sizeThese variables
are candidates for the relevant variables for each of theessgpns. Now, we can address the
problem of estimating the regression coefficients and rex@oyg the exact support d8 using
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a lower dimensional selection procedure. In this paper, sesthe adaptive Lasso as a lower
dimensional selection procedure, which was shown to haaeimpropertie@?]. The ALasso
solves the penalized least square problem

B; = argmin ||y, — X B3 + A Z w;| Bl
BiERS JEM®

where(w;) ;e v is @ vector of known weight andlis a tuning parameter. Usually, the weights

are defined as); = 1/|Bt 1 whereg, is a/n-consistent estimator ¢,. In a low dimensional
setting, we know fromEéQ] that the adaptive Lasso can recexactly the relevant variables.
Therefore, we can use the ALasso on each output separatedgdeer the exact support 8.
However, in order to ensure that the exact suppoiBa$ recovered with high probability, we
need to ensure that the total number of tasks(ig. The exact support recovery & is es-
tablished using the union bound over different tasks, foesenve need the number of tasks to
remain relatively small in comparison to the sample sizeHowever, simulation results pre-
sented in Section 13.4.1 show that the ALasso proceduresdsadn the exact support recovery
even when the number of tasks are much larger than the samplenich indicates that our
theoretical considerations could be improved. FigurellRidtrates the two step procedure.

Full Model S-OMP Only relevant variables AlLasso
) EE—— - ) (I S Exact support
large number of variables small number of variables
Screening

Figure 13.1: Framework for exact support recovery

We point out that solving the multi-task problem defined[iB.2) can be efficiently done
on the reduced set of variables, but it is not obvious how t@iokthe estimate of the exact
support usingl(13]2). In Sectign 134.1, our numericalistidhow that the ALasso applied to
the reduced set of variables can be used to estimate thesexygmirt ofB.

13.3 Theory

In this section, we state conditions under which Algorifiis 4creening consistent, i.e.,
PEk € {0,1,....,n —1} : M, € MW¥] = 1, asn — oc.

Furthermore, we also show that the model selected using tla&fied BIC criterion contains all
the relevant variables, i.e.,

PM, C MP] — 1, asn — oo.

Note that we can choose trivially1™ since it holds thaim, € M. However, we will be
able to prove that chosen by the modified BIC criterion is much smaller than #rape size.
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13.3.1 Assumptions

Before we state the theorem characterizing the performahttee S-OMP, we give some tech-
nical conditions that are needed for our analysis.

Al: The random noise vectoes, . . ., er are independent Gaussian with zero mean and covari-
ance matrixo?I,, ...

A2: Each row of the design matriX; is IID Gaussian with zero mean and covariance matrix
3};. Furthermore, there exist two positive constants ¢,,;, < ¢max < 0o such that

min < ] Amin ) < Amax ) < max -
¢ < min ( t)_gg% (Z) < ¢

A3: The true regression coefficients are bounded, i.e., theésésexpositive constarits such
that||B||2.; < Cg. Furthermore, the norm of any non-zero row of the maBiis bounded
away from zero, that is, there exist positive constagtandd,,;, such that

T min Y B2 2 cpn .
te[T]

A4: There exist positive constant,, C,, 5, and §, such thajM.| < C,n’ andlog(p) <
Cynlr.

The normality conditiorAl is assumed here only to facilitate presentation of thezaktesults,
as is commonly assumed in literature [see, for exar@@, The normality assumption can
be avoided at the cost of more technical proofs (see, for pka,r@]). Under the conditioA2,

we will be able to show that the empirical covariance mataixssies the sparse eigenvalue condi-
tion with probability tending to one. The assumption thatitbws of the design are Gaussian can
be easily relaxed to the case when the rows are sub-Gaugsiaoyt any technical difficulties
in proofs, since we would still obtain exponential boundgtmntail probabilities. The condition
A3 states that the regression coefficients are bounded, wheckeichnical condition likely to be
satisfied in practice. Furthermore, it is assumed that twenamrms ofB ., do not decay to zero
too fast or, otherwise, they would not be distinguishaldefnoise. If every non-zero coefficient
is bounded away from zero by a constant, the condifi8ns trivially satisfied withd,,;, = 0.
However, we allow the coefficients of the relevant varialiteget smaller as the sample size
increases and still guarantee that the relevant variablé&identified, which suggests that the
condition is not too restrictive. The conditidw sets the upper bound on the number of relevant
variables and the total number of variables. While the totahber of variables can diverge to
infinity much faster than the sample size, the number of eglevariables needs to be smaller
than the sample size. ConditioA8 and A4 implicitly relate different outputs and control the
number of non-zero coefficients shared between differetmpiuas. Intuitively, if the upper bound
in A4 on the size ofM., is large, this immediately implies that the constahtin A3 should be
large as well, since otherwise there would exist a ro8athosel; norm would be too small to
be detected by Algorithiin 4.
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13.3.2 Screening consistency

Ouir first result states that after a small number of iterati@ompared to the dimensionaljty
the S-OMP procedure will include all the relevant variables

Theorem 13.1.Assume the model iL3.3) and that the condition&1-A4 are satisfied. Fur-
thermore, assume that

n1_65s_65min
— 00, asSn — oQ.
max{log(p), log(T)}
Then there exists a number’ . = m?* . (n), sothatinm? _ steps of S-OMP iteration, all the

relevant variables are included in the model, that ispasy co

" n1_66s_66min
P[M, C M(mmax)] >1—Ciexp (—Cg ) )

max{log(p),log(T)}
for some positive constants andC,. The exact value of. .. is given as

M = | 2" O, max CHC 2202 20 | (13.5)

max

Under the assumptions of Theorém 13:%,,. < n — 1, so that the procedure effectively
reduces the dimensionality below the sample size. Fromribaf pf the theorem, it is clear how
multiple outputs help to identify the relevant variablesieTcrucial quantity in identifying all
relevant variables is the minimum non-zero row nornByfwhich allows us to identify weak
variables if they are relevant for a large number of outpuendhough individual coefficients
may be small. It should be noted that the main improvementtbesordinary forward regression
is in the size of the signal that can be detected, as defina8 andA4.

Theorem 13]1 guarantees that one of the $gt$*)} will contain all relevant variables,
with high probability. However, it is of practical importe@ to select one set in the collection
that contains all relevant variables and does not have toyynneelevant ones. Our following
theorem shows that the modified BIC criterion can be usechismurpose, that is, the sat®)

IS screening consistent.
Theorem 13.2. Assume that the conditions of Theofem113.1 are satisfied. Let

5= argmin BIC(M®)

be the index of the model selected by optimizing the modiftéai®&erion. Then, as — oo
PM, C M®] = 1.

Combining results from Theorem 1B.1 and Theofem]13.2, we Bhown that the S-OMP
procedure is screening consistent and can be applied ttepnslvhere the dimensionality of the
problemp is exponential in the number of observed samples. In thesextion, we also show
that the S-OMP has great empirical performance.

13.4 Numerical studies

In this section, we perform simulation studies on an extensumber of synthetic data sets.
Furthermore, we demonstrate the application of the praeedn the genome-wide association
mapping problem.

196



13.4.1 Simulation studies

We conduct an extensive number of numerical studies to atatue finite sample performance
of the S-OMP. We consider three procedures that performnatitn on individuals outputs: Sure
Independence Screening (SIS), Iterative SIS (I1S1S) [68],the OMP, for comparison purposes.
The evaluation is done on the modellin(13.1). SIS and ISI8sed to select a subset of variables
and then the ALasso is used to further refine the selectiondé&lete this combination as SIS-
ALasso and ISIS-ALasso. The size of the model selected bysSigd as» — 1, while the ISIS
selectgn/ log(n) | variables in each of thdog(n) — 1] iterations. From the screened variables,
the final model is selected using the ALasso, together witBt€ criterion [13.14) to determine
the penalty parametex. The number of variables selected by the OMP is determinied) tise
BIC criterion, however, we do not further refine the seleatadables using the ALasso, since
from the numerical studies n-lZ] it was observed that tivéher refinement does not result
in improvement. The S-OMP is used to reduce the dimensiyriziow the sample size jointly
using the regression outputs. Next, the ALasso is used dnafdbe outputs to further perform
the estimation. This combination is denoted SOMP-ALasso.

Let B = [51, . BT] € RP*T pe an estimate obtained by one of the estimation pro-
cedures. We evaluate the performance averaged over 200asonuruns. LetE, denote
the empirical average over the simulation runs. We meadwesize of the union support
S=5B):={j¢e [ ] : ||B]||2 > 0} Next, we estimate the probability that the screening
property is satisfiedin[]l{/\/l* C S( )}, which we call coverage probability. For the union
support, we define fraction of correct zergs— s)'E,[|S(B)° N MC|], fraction of incorrect
zeross—'E, [|S(B)¢ N M.,|] and fraction of correctly fitted, [1 { M, = S(B)}] to measure the
performance of different procedures. Similar quantitiesdefined for the exact support recov-
ery. In addition, we measure the estimation eftgl{|B — B||3] and the prediction performance
on the test set. On the test ddte, y; }ic,), We compute

Zie[n] Zte[T] (yt*,z - (X;k,i),/at)z

R*=1-— St
Zie[n] Zte[T] (y;tkz —y;)?

wherey; = n™! > icin Y-

The following simulation studies are used to comparatiesigess the numerical performance
of the procedures. Due to space constraints, tables witile@thumerical results are given in
the Appendix. In this section, we outline main findings.

Simulation 1:[Model with uncorrelated variables] The following toy madebased on the
simulation | in [62] with(n,p, s, T) = (400, 20000, 18,500). Eachx; is drawn independently
from a standard multivariate normal distribution, so tie variables are mutually independent.
Forj € [s] andt € [T, the non-zero coefficients & are given as}, ; = (—1)“(4n"2logn +
), whereu ~ Bernoulli(0.4) andz ~ N(0,1). The number of non-zero elements By
is given as a paramet&i,,, ..o € {500,300,100}. The positions of non-zero elements are
chosen uniformly at random fronT']. The noise is Gaussian with the standard deviation
set to control the signal-to-noise ratio (SNR). SNR is defiagVar(x3)/ Var(e) and we vary
SNR € {15,10,5,1}.
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Simulation 2: [Changing the number of non-zero elementsBr] The following model
is used to evaluate the performance of the methods as theeamushimon-zero elements in
a row of B varies. We setn,p,s) = (100,500, 10) and vary the number of output§ €
{500, 750,1000}. For each number of outpufs, we vary T,on 0 € {0.87,0.5T,0.2T}.
The samples; and regression coefficienB® are given as in Simulation 1, that is; is drawn
from a multivariate standard normal distribution and th@-zero coefficient® are given as
Bii = (—1)%(4n~Y2logn + |z|), whereu ~ Bernoulli(0.4) andz ~ N(0,1). The noise is
Gaussian, with the standard deviation defined through tHe, 8#ich varies in{10, 5, 1}.

Simulation 3:[Model with the decaying correlation between variablesg Tollowing model
is borrowed from|[182]. We assume a correlation structuteséen variables given as

Var(le, Xj2) = p|jl_j2‘7

wherep € {0.2,0.5,0.7}. This correlation structure appears naturally among edigariables.
We set(n,p,s,T) = (100,5000,3,150) and T,on—sero = 80. The relevant variables are at
positions(1,4,7) and non-zero coefficients are given&d.5 and 2 respectively. The SNR
varies in{10, 5, 1}. A heat map of the correlation matrix between different ciates is given in
Figure[13.2.

Simulation 4:[Model with the block-compound correlation structure] Th#owing model
assumes a block compound correlation structure. For a @daeap) the correlation between
two variablesX;, andX,, is given asp, p* or p* when|j; — jo| < 10, |51 — jo| € (10,20]
or |j1 — j2| € (20,30] and is set to O otherwise. We set, p,s,T") = (150,4000, 8, 150),
Thon—zero = 80 and the parameter € {0.2,0.5}. The relevant variables are located at positions
1,11, 21, 31,41, 51, 61, 71 and 81, so that each block of higinselated variables has exactly
one relevant variable. The values of relevant coefficierdsgaven in Simulation 1. The noise
is Gaussian and the SNR varies{in0,5,1}. A heat map of the correlation matrix between
different covariates is shown in Figure 13.3.

Simulation 5: [Model with a 'masked’ relevant variable] This model reets a difficult
setting. Itis modified fron{EZ]. We sét, p, s, T') = (200, 10000, 5, 500). The number of non-
zero elements in each row variedis, ... € {400,250,100}. Forj € [s] andt € [T], the non-
zero elements equd] ; = 2j. Each row ofX is generated as follows. Draw independentignd
z, from ap-dimensional standard multivariate normal distributiblow, x;; = (z;; + z.,)//(2)
for j € [s] andz;; = (zij + X2y 2i) /2 for j € [p]\[s]. Now, Corr(z; 1, y:,) is much smaller
thenCorr(z; ;,y::) for j € [p]\[s], so that it becomes difficult to select variable 1. The vdeiab
1 is 'masked’ with the noisy variables. This setting is diffidor screening procedures as they
take into consideration only marginal information. Thesaas Gaussian with standard deviation
o€ {1.5,2.5,4.5}.

In the next section, we summarize results of our experimh@ntings. Our simulation set-
ting transitions from a simple scenario considered in Satioh 1 towards a challenging one
in Simulation 5. Simulation 1 is adopted frodﬂ[62] as a toy mlodn which all algorithms
should work well. Simulation 2 examines the influence of tbember of non-zero elements in a
relevant row of the matriBB. We expect that Algorithriil4 will outperform procedures that-
form estimation on individual outputs whéf,, ..., is large, while wher},,,,_,..c is small the
single-task screening procedures should have an adva@agetuition is also supported by re-
cent results 00]. Simulations 3 and 4 represent mor#esiging situations with structured
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Figure 13.2: Visualization of the correlation matrix in Silation 3. Only an upper left corner is presented

corresponding to 20 of the 5000 variables.
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Figure 13.3: Visualization of the correlation matrix in Sikation 4. Only an upper left corner is presented
corresponding to 100 of the 4000 variables.
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correlation that naturally appears in many data sets, famgse, a correlation between gene
measurements that are closely located on a chromosomellyFanaulation 5 is constructed
in such a way such that procedures which use only marginaindtion are going to include
irrelevant variables before relevant ones.

13.4.2 Results of simulations

Tables giving detailed results of the above described sitions are given ir@M]. In this sec-
tion, we outline main findings and reproduce some parts didbies that we think are insightful.

Table[13.1 shows parts of the results for simulation 1. Wesganthat all methods perform
well in the setting when the input variables are mutuallyarnelated and the SNR is high. Note
that even though the variables are uncorrelated, the saropiglation between variables can be
quite high due to large and smallz, which can result in selection of spurious variables. As we
can see from the table, comparing to SIS, ISIS and OMP, th&I8-@3 able to select the correct
union support, while the procedures that select variabdsedb on different outputs separately
also include additional spurious variables into the seactFurthermore, we can see that the
S-OMP-ALasso procedure does much better on the problemest sxpport recovery compared
to the other procedures. The first simulations suggeststméwhat higher computational cost
of the S-OMP procedure can be justified by the improved perémce on the problem of union
and exact support recovery as well as on the error in the asohtoefficients.

Table[13.2 shows parts of the results for simulation 2. Is #iinulation, we measured the
performance of estimation procedures as the amount ofghgvat variables between different
outputs varies. The parametér,,_,.., controls the amount of information that is shared be-
tween different tasks as defined in the previous subsedtgparticular, the parameter controls
the number of non-zero elements in a row of the maBigorresponding to a relevant variable.
When the number of non-zero elements is high, a variabldasaet to many tasks and we say
that outputs overlap. In this setting, the S-OMP procedsiexpected to outperform the other
methods, however, whéh,.,_,... iS low, the noise coming from the tasks for which the variable
is irrelevant can actually harm the performance. The tabtavs results when the overlap of
shared variables is small, that is, a relevant variable lig @bevant for 10% of outputs. As one
would expect, the S-OMP procedure does as well as other guoeg. This is not surprising
since the amount of shared information between differetputs is limited. Therefore, if one
expects little variable sharing across different outpuggg the SIS or ISIS may result in similar
accuracy, but an improved computational efficiency. It isthv@ointing out that in our simula-
tions, the different tasks are correlated since the samegruXsis used for all tasks. However, we
expect the same qualitative results even under the modsh givequation (1313) where different
tasks can have different desigKs and the outputs are uncorrelated.

Simulation 3 represents a situation that commonly occuratare, where there is an order-
ing among input variables and the correlation between bkesadecays as the distance between
variables increases. The model in simulation 4 is a modifinatf the model in simulation 3
where the variables are grouped and there is some correlagtween different groups. Ta-
ble[13.3 gives results for simulation 3 for the parametet 0.5. In this setting, the S-OMP
performs much better that the other procedures. The imprexnébecomes more pronounced
with increase of the correlation parameger Similar behavior is observed in simulation 4 as
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well, see tablé 1314. Results of simulation 5, given in TA&A&, further reinforce our intuition
that the S-OMP procedure does well even on problems with-bagrelation between the set of
relevant input variables and the set of irrelevant ones.

To further compare the performance of the S-OMP procedutbddSIS, we explore the
minimum number of iterations needed for the algorithm tdude all the relevant variables
into the selected model. From our limited numerical expexe we note that the simulation
parameters do not affect the number of iterations for theNg2@rocedure. This is unlike the
SIS procedure, which occasionally requires a large numibstieps before all the true variables
are included, see Figure 3 iE[GZ]. We note that while the SFOdrlocedure does include, in
many cases, all the relevant variables before the irretevags, the BIC criterion is not able to
correctly select the number of variables to include whenSN® is small. As a result, we can
see the drop in performance as the SNR decreases.

13.4.3 Real data analysis

We demonstrate an application of the S-OMP to a genome-vasieceation mapping problem.
The data were collected by our collaborator Judie HowryMlD. at Harvard Medical School
from 200 individuals that are suffering from asthma. Fortemclividual, we have a collection
of about~350,000 genetic mark@,&which are called single nucleotide polymorphisms (SNPs),
and a collection of 1,424 gene expression measurementsgddief this study is to identify a
small number of SNPs that can help explain variations in gapeessions. Typically, this type
of analysis is done by regressing each gene individualljhemteasured SNPs, however, since
the data are very noisy, such an approach results in sejattamy variables. Our approach to
this problem is to regress a group of genes onto the SNPsthsiéere has been some previous
work on this problem5], that considered regressing psoof genes onto SNPs, however,
those approaches use variants of the estimation procevereig Eq. (13.2), which is not easily
scalable to the data we analyze here.

We use the spectral relaxation of the k-means cluste@] [BD group 1424 genes into
48 clusters according to their expression values, so tlatrtimimum, maximum and median
number of genes per cluster is 4, 90 and 19, respectively.ntinéer of clusters was chosen
somewhat arbitrarily, based on the domain knowledge of tedical experts. The main idea
behind the clustering is that we want to identify genes tle&drg to the same regulatory pathway
since they are more likely to be affected with the same SNRste&d of clustering, one may
use prior knowledge to identify interesting groups of gendext, we want to use the S-OMP
procedure to identify relevant SNPs for each of the genetaisis Since we do not have the
ground truth for the data set, we use predictive power ondkeset and the size of estimated
models to access their quality. We randomly split the daia antraining set of size 170 and a
testing set of size 30 and report results over 500 runs. WeputatheR?? coefficient on the test
set defined as— 307! > ierm ¥t test — X test Bl |2 (because the data have been normalized).

These markers were preprocessed, by imputing missings/ahgtremoving duplicate SNPs that were perfectly
correlated with other SNPs.
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Table 13.1: Results for simulation 1 with parametersp, s, 7') = (500, 20000, 18, 500), Thon—zero = 500

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of tEsrror  Test error
Method name M,C 8 Correct zeros  Incorrectzeros M, = S S| ||B — BJ|2
SNR =15

- SIS-ALASSO 100.0 100.0 0.0 10.0 20.2 - -

c ’g ISIS-ALASSO 100.0 100.0 0.0 18.0 19.6 - -

2 = OMP 100.0 100.0 0.0 0.0 23.9 - -

oM S-OMP 100.0 100.0 0.0 100.0 18.0 - -

S-OMP-ALASSO 100.0 100.0 0.0 100.0 18.0 - -
€ SIS-ALASSO 0.0 100.0 0.7 0.0 8940.5 0.97 0.93
‘g 2 ISIS-ALASSO 100.0 100.0 0.0 18.0 9001.6 0.33 0.93
53 OMP 100.0 100.0 0.0 0.0 9005.9 0.20 0.93
S-OMP-ALASSO 100.0 100.0 0.0 100.0 9000.0 0.20 0.93

c0¢

Table 13.2: Results for simulation 2 with parametersp, s, 7') = (200, 5000, 10, 1000), Thon—zero = 200

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of tEsrror  Test error
Method name M,C 8 Correct zeros  Incorrectzeros M, = S S| ||B — BJ|2
SNR =5

- SIS-ALASSO 100.0 100.0 0.0 100.0 10.0 - -

c ’g ISIS-ALASSO 100.0 100.0 0.0 100.0 10.0 - -

2 = OMP 100.0 97.4 0.0 0.0 139.6 - -

oM S-OMP 100.0 100.0 0.0 100.0 10.0 - -

S-OMP-ALASSO 100.0 100.0 0.0 100.0 10.0 - -
€ SIS-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.04 0.72
‘g 2 ISIS-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.04 0.72
53 OMP 100.0 100.0 0.0 0.0 2131.6 0.05 0.71
S-OMP-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.03 0.72




Table 13.3: Results for simulation 3 with parametersp, s, 7') = (100, 5000, 3, 150), Thon—zero = 80, p = 0.5

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of tEsrror  Test error
Method name M, C8 Correct zeros  Incorrectzeros M, =5 IS|  IB-BJ2 R?
SNR=5
- SIS-ALASSO 100.0 100.0 0.0 97.0 3.0 - -
- g ISIS-ALASSO 100.0 100.0 0.0 96.0 3.0 - -
2 = OMP 100.0 99.8 0.0 0.0 19.6 - -
o0 S-OMP 100.0 100.0 0.0 100.0 3.0 - -
S-OMP-ALASSO 100.0 100.0 0.0 100.0 3.0 - -
g SIS-ALASSO 60.0 100.0 0.2 57.0 239.5 0.10 0.61
g S ISIS-ALASSO 84.0 100.0 0.1 80.0 239.8 0.08 0.61
S OMP 100.0 100.0 0.0 0.0 256.6 0.06 0.61
S-OMP-ALASSO 100.0 100.0 0.0 100.0 240.0 0.03 0.62

€0¢

Table 13.4: Results of simulation 4 with parametersp, s, 7') = (150, 4000, 8, 150), Thon—zero = 80, p = 0.5

Prob. (%) of Fraction (%) of Fraction (%) of Fraction (%) of tEsrror  Test error
Method name M,C8 Correct zeros  Incorrectzeros M, =5 IS|  IB-B2 R?
SNR =10
- SIS-ALASSO 100.0 100.0 0.0 100.0 8.0 - -
- g ISIS-ALASSO 100.0 100.0 0.0 97.0 8.0 - -
-g = OMP 100.0 99.9 0.0 2.0 11.7 - -
oM S-OMP 100.0 100.0 0.0 100.0 8.0 - -
S-OMP-ALASSO 100.0 100.0 0.0 100.0 8.0 - -
g SIS-ALASSO 35.0 100.0 1.4 35.0 631.3 0.55 0.88
g = ISIS-ALASSO 100.0 100.0 0.0 97.0 640.0 0.14 0.89
S OMP 100.0 100.0 0.0 2.0 643.7 0.10 0.89

S-OMP-ALASSO 100.0 100.0 0.0 100.0 640.0 0.09 0.89




Table 13.5: Results of simulation 5 with parametersp, s, 7') = (200, 10000, 5, 500), Tyon—zero = 400

404

Prob. (%) of Fraction (%) of  Fraction (%) of Fraction (%) of tEsrror  Test error
Method name M, C8 Correctzeros  Incorrectzeros M, = S S| |B — BJ|2 R?
c=1.5
- SIS-ALASSO 53.0 99.6 9.4 0.0 41.1 - -
- g ISIS-ALASSO 100.0 99.8 0.0 0.0 28.1 - -
2 = OMP 100.0 99.9 0.0 12.0 10.0 - -
>N S-OMP 100.0 100.0 0.0 44.0 5.6 - -
S-OMP-ALASSO 100.0 100.0 0.0 100.0 5.0 - -
g SIS-ALASSO 0.0 100.0 68.9 0.0 936.0 84.66 0.66
‘g S ISIS-ALASSO 0.0 100.0 16.2 0.0 1791.9 5.80 0.96
S OMP 100.0 100.0 0.0 12.0 2090.3 0.06 0.99

S-OMP-ALASSO 100.0 100.0 0.0 100.0 2000.0 0.05 0.99




We give results on few clusters in Taljle 13.6 and note thatlitatively, the results do not
vary much between different clusters. While the fitted medelve limited predictive perfor-
mance, which results from highly noisy data, we observetti@aS-OMP is able to identify on
average one SNP per gene cluster that is related to a largbenuwhgenes. Other methods,
while having a similar predictive performance, select géamumber of SNPs, which can be
seen from the size of the union support. On this particulta dat, the S-OMP seems to produce
results that are more interpretable from a specialist'atgmf view. Further investigation needs
to be done to verify the biological significance of the seddc®$NPs, however, the details of such
an analysis are going to be reported elsewhere.

13.5 Discussion

In this work, we analyze the Simultaneous Orthogonal Maigifursuit as a method for variable
selection in an ultra-high dimensional space. We provettieS-OMP is screening consistent
and provide a practical way to select the number of stepsdrptbcedure using the modified
Bayesian information criterion. A limited number of expeents suggests that the method per-
forms well in practice and that the joint estimation from tiplé outputs often outperforms
methods that use one regression output at a time. Furthermvercan see the S-OMP procedure
as a way to improve the variable selection properties of tBesfthout having to solve a costly
complex optimization procedure in EQ. (13.2), therefomdahcing the computational costs and
the estimation accuracy.

13.6 Technical Proofs

13.6.1 Proof of Theorem 13]1

Under the assumptions of the theorem, the number of relexardbless is relatively small
compared to the sample size The proof strategy can be outlined as follows: i) we are goin
to show that, with high probability, at least one relevamtalale is going to be identified within
the following m?,. steps, conditioning on the already selected variad¢%) and this holds
uniformly for all &; ii) we can conclude that all the relevant variables are gambe selected
within m; .. = sm} . steps. Exact values forn . andm; . are given below. Without loss
of generality, we analyze the first step of the algorithmt thawe show that the first relevant
variable is going to be selected within the firs},, steps.

Assume that in the firsi} . — 1 steps, there were no relevant variables selected. Assuming

that the variable selected in the -th step is still an irrelevant one, we will arrive at a contra

one

diction, which shows that at least one relevant variabletie®s selected in the first? . steps.
For any stepk, the reduction of the squared error is given as
A(k) :=RSS(k — 1) —RSS(k) = > ||H§i;k (Lo — Hy i)y |2 (13.6)
t

with HE'Z) :*XE?XE?'||X§?||‘2 and XE? = (Inxn - H, \q»)X,;. We are interested in the
quantity> ;2 A(k), when all the selected variabl¢s (see Algorithni#) belong tf]\ M...
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Table 13.6: Results on the asthma data

Method name

Union support

R2

Cluster 9
Size =18

Cluster 16
Size =31

Cluster 17
Size =19

Cluster 19
Size =17

Cluster 22
Size =34

Cluster 23
Size =35

Cluster 24
Size =28

Cluster 32
Size =15

Cluster 36
Size =33

Cluster 37
Size =19

Cluster 39
Size =24

Cluster 44
Size =35

Cluster 49
Size =23

SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
SIS-ALASSO
OMP
S-OMP
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18.0 (1.0)
17.5 (2.9)
1.0 (0.0)
31.0 (1.0)
29.0 (1.8)
1.0 (0.0)
18.5 (0.9)
19.5 (0.8)
1.0 (0.0)
17.0 (1.2)
11.0 (4.1)
1.0 (0.0)
34.0 (0.9)
30.0 (7.3)
1.0(0.0)
35.0 (0.9)
33.0 (9.9)
1.0 (0.0)
28.0 (1.0)
28.0 (2.6)
1.0(0.0)
15.0 (0.9)
10.0 (2.6)
1.0 (0.0)
34.0 (1.4)
29.0 (5.3)
1.0(0.0)
19.0 (0.9)
22.0 (2.5)
1.0 (0.0)
24.0 (0.9)
27.0 (1.9)
1.0 (0.0)
35.0 (0.9)
26.5 (6.6)
1.0 (0.0)
23.0 (1.0)
23.0(1.2)
1.0 (0.0)

0.178 (0.006)
0.167 (0.002)
0.214 (0.005)
0.160 (0.007)
0.165 (0.002)
0.209 (0.005)
0.173 (0.006)
0.146 (0.003)
0.184 (0.004)
0.270 (0.017)
0.213 (0.008)
0.280 (0.017)
0.153 (0.005)
0.142 (0.000)
0.145 (0.002)
0.238 (0.018)
0.208 (0.009)
0.229 (0.014)
0.123 (0.003)
0.114 (0.001)
0.129 (0.003)
0.188 (0.010)
0.211 (0.006)
0.215 (0.008)
0.147 (0.005)
0.157 (0.002)
0.168 (0.004)
0.207 (0.015)
0.175 (0.006)
0.235 (0.014)
0.131 (0.006)
0.141 (0.003)
0.160 (0.005)
0.177 (0.010)
0.183 (0.005)
0.170 (0.011)
0.124 (0.004)
0.140 (0.000)
0.159 (0.004)



In what follows, we will derive a lower bound fah (k). We perform our analysis on the
event R
£ = Amin X 2 @Omin 2
2R i e, in (0] = G2}

Amax i\) < 2 maxJ -
ﬂ{teﬁmmem (Ba1) < 20umanc}

From the definition oﬁ, we have
k
AE) 2 g DI (o = Fy oyl
> H(k L. —
> e (321 (Do = Hoo)

= S IHE T~ Hy o))
t

> max Y ||HY Loy — Hy o) X,
t

(13.7)

JEM

_]Igj&x Z ||H Lnxn — tMUV))etHg

=) —(I1).

We deal with these two terms separately. Hﬁ;%(M = I,,., — H; A denote the projection matrix.
We have that the first terrf7) is lower bounded by

2
max Z ||HtJHtM(k)Xt,M*/6t,M* 2

k)
=gﬁ§wﬁuﬂ% H i X, B, |

(k)||—2 (13.8)
- te{f%fylgM {11l } oax Z ‘Xty Ht M Xt M.
> {te[%lax ||Xt,yH - 1 max Z ‘thHtM(k)Xt M. 7
where the last inequality follows from the fact thak, ;||» > HX("C || and X(k Hthu@) =
X HjMW A simple calculation shows that
ZHHi/vr(k)Xt,M*
t
- Z Z 6t7thijj,_M<k)Xt,M*6t,M*
(13.9)
< Z Z B Z(XtijiM(k)Xt,M*ﬁmM*)Z
JEM. t t

SWW%%¢Z@M%M&m@MV
’ t
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Plugging [13.P) back int¢ (13.8), the following lower bourdchieved

> ||HJ‘ 'XvM*ﬁ,M*||2)2
()>{ max HthH2}—1 t £ M k) £XE t 5

, (13.10)
7],5€ ? IBI13,

On the event, maxeir) jem. ||Xe;]|3 < 2n¢dmax. Since we have assumed that no additional
relevant predictors have been selected by the procedi@ds thatM, ¢ M®*). This leads to

Z ||HtJ:M(k)Xt,M* > 2 n(ﬁmln 1’I111'l Z Btp
t

te[T]

on the event. Using the Cauchy-Schwarz inequalifyB||;; > s~'7'C5?*. Plugging back
into (I3.10), we have that

(I) > 2722 b Cg s ' T (min > B

te[T)

> 27302 O Cg 2 C I T (min > B

te[T)

Next, we deal with the second term il (13.7). Recall that! = H! X, ;, so that
HX Hz > 27 @i, ON the evenE. We have

ZHH Lisxn — tM(k))etHg

= Z X 172(X H o €0) (13.11)

<2¢tn'max max X! Hi,e)?
min’? JEM. | M|<mz,.. - ( t,j - t,M )

Under the conditions of the theoreX, ;H;", ¢, is normally distributed with mean 0 and vari-
ance||H; X, ;|[3. Furthermore,

max max Imax H uX < 2n
JeEMa [Mj<mz  te[T] ] el Pmax:

Plugging back in[(13.11), we have

(1) < 22¢mm¢max max max XT,

wherey?2 denotes a chi-squared random variable Withegrees of freedom. The total number
of possibilities forj € M, and| M| < m?,,. is bounded by™=x*2. Using a tail bound fox?
random variable together with the union bound, we obtain

(II) < 23¢I:111n¢max ( :nax _'_ 2) lng

5 (13.12)
< 9¢mm¢maxc n memax
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with probability at least

1 — pmiect? oxp ( 2T (M + 2) log(p) (1 - 2\/2(m* +12) log(p)>> '

Going back to[(1317), we have the following

nTTIA(R) > 2732 ;;XC' 20702 mln Z ﬁt]
te[T]
_9¢I:111n¢maxcpn6p_l ;knax
> 2 3 1 Cﬁ—2C 10%771_6 _25m in (13.13)

min®m
min ¥ max

0
- 9¢mm¢maxcpn v ;knax

> 2 ’ Izllln(bm;xc_zc 10%7]/_6 5—20min
X (1 = 72053 62,1 C2C, Oy ot Bmint 0oLy,
Since the bound iri(13.13) holds uniformly fore {1,.. ., mg,.}, we have that

*
one

nT TN lyills 2T T Y AGR).
1

te[T] k=

Settin
g me, = L24¢mm¢maxcﬁ C EQn(; s+20mi nJ

and recalling thatn}, . = the lower bound becomes

one 1

n_lT_l Z Hytug 2 2(1 _ Cn353+45min+5p_1)’ (13.14)

te(T)

for a positive constan®’ independent op, n, s and7". Under the conditions of the theorem, the
right side of [13.14) is bounded below by 2. We have arrivedl @ntradiction, since under the
assumption&/ar(y; ;) = 1 and by the weak law of large numbers,' T~ 3", ||y:[[3 — 11in
probability. Therefore, at least one relevant variablé belselected imn . steps.

To complete the proof, we lower bound the probabilitylin {P3.and the probability of the
eventé. Plugging in the value fom},, , the probability in[(13.12) can be lower bounded by
1 — exp(—C(2T — 1)n?=t2mint%) for some positive constaii. The probability of the event
& is lower bounded a$ — C} exp(— @%) for some positive constants, and Cs.
Both of these probabilities convergelttander the conditions of the theorem.

13.6.2 Proof of Theorem 1312

To prove the theorem, we use the same strategy as ih [182fn Fheoreni 13]1, we have that
P33k € {0,...,n — 1} : M, € MW] = 1, SOk = mingeqo,. n-13{k : M, € MP}is

well defined andcmm <m:,., form: _defined in[(13.5). We show that

P[  min  (BIC(M®) - BIC(M®*)) > 0] — 1,

]CE{O ..... k?min_l}
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so thatP[s < k| — 0 asn — co. We proceed by lower bounding the difference in the BIC
scores as

(k)

RSS(M®+D))
RSS(M®) — RSS(ME+D) .

n

> log (1+

where we have assumed> n. Define the event = {n~'T"' 3", ., [ly:/[3 < 2}. Note
that RSS(M*+D) < > iern |yl |3, s0 on the event! the difference in the BIC scores is lower
bounded as

log(1 4+ 2n"T7'A(k)) — 3n" " log(p),

where A(k) is defined in[(I3)6). Using the fact thialg(1 + =) > min(log(2),2 'z) and the
lower bound from[(13:13), we have
BIC(M®™) — BIC(M* ) > min(log 2, Cn %~ %min) — 3n" og p, (13.15)

for some positive constant. It is easy to check thdbg 2 — 3n~'logp > 0 andCn =% ~20min —
3n~'logp > 0 under the conditions of the theorem. The lower boundin @3is uniform for
k € {0,..., knn}, SO the proof is complete if we show th&ftd] — 1. But this easily follows
from the tail bounds on the central chi-squared random bhia
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Chapter 14

Marginal Regression For Multi-task
Learning

Variable selection is an important practical problem thiegess in analysis of many high dimen-
sional datasets. Convex optimization procedures, thae drom relaxing the NP-hard subset
selection procedure, e.g., the Lasso or Dantzig selecwe hecome the focus of intense theo-
retical investigations. Although many efficient algorithexist that solve these problems, finding
a solution when the number of variables is large, e.g., séhendreds of thousands in problems
arising in genome-wide association analysis, is still cataponally challenging. A practical
solution for these high-dimensional problems is the maigiegression, where the output is
regressed on each variable separately. We investigatecticat properties of the marginal re-
gression in a multitask framework. Our contribution ina@ud) sharp analysis for the marginal
regression in a single task setting with random designuifj@ent conditions for the multitask
screening to select the relevant variables, iii) a lowernaban the Hamming distance conver-
gence for multitask variable selection problems. A simatastudy further demonstrates the
performance of the marginal regression.

14.1 Introduction

Recent technological advances are allowing scientistvariaty of disciplines to collect data of
unprecedented size and complexity. Examples include daa biology, genetics, astronomy,
brain imaging and high frequency trading. These novel appbins are often characterized by
large number of variables which can be much larger than the number of observatipasd are
currently driving the development of statistical and maehiearning procedures. The sparsity
assumption has been recognized to play a critical role ataffe high-dimensional inference in
classification and regression problems, that is, the statisnference is possible in the under-
determined problems under the assumption that only a feiahlas contribute to the response.
Therefore, the variable selection is of fundamental imgoaee in the high-dimensional problems.
Consider a regression model
y=XB+¢€ (14.1)

with responsey = (y1,...,ym), m X p design matrixX, noise vectok = (eq,...,€,) and
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coefficients@ = (54, ..., 3,)’. For simplicity of presentation, we assume that= 2n and use
first n samples to estimate the parameters and use remaining garanteoptimally select the
tuning parameters. The high dimensional setting assymesn and the sparsity assumption
roughly states that the coefficient vectdhas a few non-zero components or that it can be well
approximated by such a vector. In the context of linear i=gjom, there has been a lot of recent

work focusing on variable selection under the sparsit ia)n such asS]l__L434]leiZ8],
[97], [201], [202], [198], [38], [35], [48], [190],[[205],49], [74], [173], and[137], to name a

few. Many of these methods are based on constrained or pedaptimization procedures in
which solutions are biased to have many zero coefficiente @rhe main tools for variable
selection in a regression model is the Lasso estimator dkfipe

Bzm%mMy—Xm@+Mmm (14.2)

where\ > 0 is a user defined regularization parameter. Theoreticalepties of the estima-
tor 5 are now well understood and the optimization problém (14a2) be efficiently solved
for medium sized problems. However, finding a solution inbiems involving hundreds of
thousands variables, which commonly arise in genome-vgde@ation mapping problems, still
remains a computationally challenging task, even when naangbles can be pruned using rules
based on the KKT condition 76].

One computationally superior alternative to the Lasso iggimal regression, also known as
correlation learning, marginal learning and sure scregnifhis is a very old and simple pro-
cedure, which has recently gained popularity due to itsrdlel properties in high-dimensional
setting @2@6@@4]. Marginal regression is baserkgressing the response variable on
each variable separately

fi; = (X)X;) " Xy, (14.3)

whereX; = (zy,,...,%,;)". Next, the valued|z;|} are sorted in decreasing order, with; }
denoting the ranks, and the set of estimated variables is

Sky:={1<j<p:7 <k}, 1<k<p.

Note that in Eq.[(14]3) we use the firssamples only to compufe;. Under a condition, related
to the faithfulness conditions used in causal Iiterat[ﬁt], it can be shown that the set
S(k) correctly estimates the relevant variables= {1 < j < p : ; # 0}, see |LT§|4]. The
following result provides the conditions under which theexvariable selection is possible if

the size of the suppost:= |S| is known.

Theorem 14.1.Consider the regression model@I)with X = (x;,. .., x,), x; ~ N, (0, %),
ande ~ N,,(0,071,), X independent of. Assume that

maX|EjSﬁS| +’Yn(p7 57/37275) < m1n|2]5/35‘ (144)
jESC jeS

with ~,, = O(y/log(p — s)/n), then



The above theorem is based on the asymptotic result in [1\84)] provide a finite sample
analysis and explicit constants for the tetpip, s, 3,3, ) in Appendix. The condition like the
one in Eq.[(14.1) is essentially unavoidable for margingtession, since it can be seen that in
the noiseless setting (= 0) the condition[(I4.14) withy, = 0 is necessary and sufficient for
successful recovery. S@[SB] for discussion of cases wherfithfulness condition is weaker
than the irrepresentable condition, which is necessarysaiffetient for exact recovery of the
support using the Lass@OS].

Besides computational simplicity, another practical ala&ge of the marginal regression is
that the number of relevant variablesan be estimated from data efficiently as we show below.
This corresponds to choosing the tuning paramgtierthe Lasso problent (14.2) from data. To
estimate the number of relevant variables, we will use thepsas indexed byn + 1,...,2n},
which are independent from those used to estinjate;. For a fixedl < k£ < p, let j;, denote
the index of the variable for which, = k. Let V, (k) = span{X;,, ..., X;, } be the linear space
spanned by: variables whose empirical correlation with the responsieahighest, and IdAE(k)
be the projection matrix fromk™ to Vn(k;). Note thatX;, = (41, - -, %20, ). Define

(k) = [|(H(k + 1) —H(k)yll3, 1<k<p-1,
which is then used to estimate the number of relevant vasadod
Sp=max{l <k <p—1:&(k) < 20%log 22} + 1.

Using an independent sample to select the number of releraaiables is needed so that the
projection matrix is independent of the noise With these definitions, we have the following
result.

Theorem 14.2. Assume that the conditions of Theofem 114.1 are satisfiedh&umore, assume

that
min 8] = ©(v/logn).

ThenP[S(5,) = S] === 1.
The above results builds on Theorem 3irl [83].
In the next few sections, we study properties of the margegtession in a multitask setting.

14.2 Multitask Learning with Marginal Regression

In this section, we analyze properties of the marginal i=gjom in a multitask setting. We will
consider the following multitask regression model

yt:X/Bt+6t tzl,,T (145)

wherey,, e € R™ and ,X € R™*P, Again, we assume that = 2n and use half of the samples
to rank the variables and the other half to select the comestber of relevant variables. The
subscriptt indexes tasks ané; € R? is the unknown regression coefficient for thth task. We
assume that there is a shared design matrigr all tasks, a situation that arises, for example, in
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genome-wide association studies. Alternatively, one eae lbbne design matriX; for each task.
We assume that the regression coefficients are jointly spaesS; := {1 < j <p: f; # 0} be
the set of relevant variables for the¢h task and lets = U,.S; be the set of all relevant variables.
Under the joint sparsity assumptien= |S| < n.

To perform marginal regression in the multitask, one compuworrelation between each
variable and each task using the first half of the samples

fi; = (X[X;)~ D¢ LYt (14.6)

foreacht =1,....7, j =1,...,p. Let® : RT + R, be a scoring function, which is used to
sort the value§®({}i;}+)}; in decreasing order. L€ ;} denote the rank of variablgin the
ordering, then the set of estimated variables is

Se(k) ={1<j<p:Ta; <k}, 1<k<p.

For concreteness, we will use the nofm ||, || - [z and|| - ||~ as our scoring functions and
denote the sets of estimated variabes k), Sy, (k) andS,_ (k) respectively.

With the notation introduced, we focus on providing coradiss for the marginal regression
to exactly select the relevant variablés We start our analysis in the fixed design setting. Let
3 = n~'X’X and assume that the variables are standardized to have garoand unit variance,
so that the diagonal elementsXfare equal td. Now it simply follows from [14.6) that

Hij = n‘lX;-yt = X;5,8ts, + n_lngt-

In order to show that marginal regression exactly recoverset of relevant variables, we need
to have

?elggq)({ﬁtj}t) < ijggq)({ﬁtj}t)- (14.7)

It is easy to see that (14.7) is necessary for exact recovEng following theorem provides
sufficient conditions for(1417) to hold.

Theorem 14.3.Consider the moddlZ.8)with ¢, ~ A (0, 0%L,) ando > 0 known. The follow-
ing three claims hold: i) Define; = 021 Y., (5,815, )% If

2(p — s) 25 2(p — 5)
gl;g}cwj + 2log 3 +r§1€a§<2\/(T+21/j)log 3 +§r€1%>c<2\/(T+2uj)log 5
< minv;
jES
(14.8)

thenP[S,, (s) = S] > 1 — 4. ii) If

E 2(p—s) 2(p—s)
2
nggx |2,5,08s,| +n~ a\/T +2T\/ T log 5 + 2T log 5
2 2
U\/T2 +27[Tlog 5 + 2T log = (14.9)

< I]nelg; 125, Bks, |
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thenP[S,, (s) = S] > 1 — 4. iii) If

2p — )T \/ 25T

1/2 - - - <

?Gl%)c( max |2,5,8ts,| +n~ (\/2 log 5 2log 5 rjnelg Dax, 125,88,
(14.10)

thenP[S,_(s) = 5] > 1 — 4.

Theoren 143 extends Theorém 14.1 to the multitask settidgpaovides sufficient condi-
tions for the marginal regression to perform exact variagglkection. We will discuss how the
three different scoring procedures compare to each othéeifollowing section.

Theoreni 14]3 assumes that the number of relevant variablawivn, as in Theorem 14.1.
Therefore, we need to estimate the number of relevant uagab a data-dependent way. This
is done using the remainingsamples, indexed b{n + 1,...,2n}. Recall the definitions from
p.[2I3, wherg,, denotes the index of the variable for whigh;, = k, V,,(k) = span{X,,, ..., X, }
andﬁ(k:) is the projection matrix fronR" to V/, (k). Define

€k ZH (k+1) —HE)y:|2, 1<k<p-—1,

which is then used to estlmate the number of relevant vasads
§52n:1+max{1 <k<p—1:

&w < (T +2+/Tlog(2/5) + 21og(2/9))o?}.
Let Vg = span{X; : j € S} be the subspace spanned by columnXoindexed byS and
similarly defineVs_; = span{X; : j/ € S\{j}}. LetX?" denote the projection aX; to
Vs N VS{_].. With these definitions, we have the following result.
Theorem 14.4.Consider the moddl4.8)with e; ~ N (0, ¢%I,) ando > 0 known. Suppose that
one of the following three claims hold: i) E{l4.8) holds and variables are ranked 48, ,};,
i) Eq. (I4.9)holds and variables are ranked 48, ;};, or iii) Eq. (I4.10)holds and variables
are ranked agry, ; };. Furthermore assume that

T
. 4
i Y X8> 275106 (5,
t=1

ThenP[s,,, = s] > 1 — 25 andP[S,(5y,,) = S] > 1 — 2.

Theoren{ 1414 provides a way to select the number of relewanibles in a multitask set-
ting. It is assumed that one of the conditions given in Thedi€.3 are satisfied and that the
corresponding scoring procedure is used to rank featurasdi€on [14.11) is required in order
to distinguish relevant variables from noise. If the sigsteéngth is small compared to the noise,
there is no hope to select the relevant variables. Compéoiitneoreni 14]2, we can quantify
improvement over applying marginal regression to eachitasiKidually. First, the minimal sig-
nal strength for each variable, quantifiedras;cs 3, ||X§2)5tj||§ needs to increase only as
O(V/T) in multitask setting compared t6(7") when the marginal regression is applied to each
task individually.

Theoreni 1413 and 14.4 assume that the design is fixed. Howgiven proofs of Theorem
[14.1 and 1412, extending the proofs of the multitask matgegression is straight forward.

—)} o2, (14.11)
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14.2.1 Comparing Different Scoring Procedures

In this section, we compare the three scoring proceduresdbas|| - ||1, || - ||2 and|| - || -
Theoren{ 1413 provides sufficient conditions under wh?@h 3}2 and 3}00 exactly recover the
set of relevant variables. In order to provide more intuition, we will focus on conditis [14.8),
(14.9) and[(14.10) wheR = I. Furthermore, we assume that O(1).

From (14.8), we have that

V(T + nmax; [|3,][3) log p
nT

) < min 77118,

- logp
1 2
ma T 18,4112 + O 77) + O

is sufficient for§g2 to recoverS. Condition [14.D) simplifies to

1+ T tlogp+ T-Y2\/logp

n

T8, O\/
max T[]l + O

Finally, condition [I4.70) simplifies to

log pT .
. < .
max |[Bllec + O —,—) < min [18,{loc

Comparing the sufficient condition in this simplified formewan observe that th@2 requires
weaker conditions for exact support recovery ttﬁg. Furthermore, it can be seen that the
estimatorS,_ is the most related to the support recovered using the nalngigression on each
task separately. From Theorém 14.1, if we stack regressiefiicients for different tasks into a
big vector, we have that

[log pT' . .
. < .
E‘relg%( gtaé}gf 18]+ O( n )< ranelg 1I§r}t1SnT 1B

is sufficient for the exact support recovery. This is a stesmgquirement that the one needed for
Sy.. Still, from the numerical results, we observe thatand.S,, perform better thaty,__.

<min 7|8,
) < min T™7|B4]1

14.3 Universal Lower Bound for Hamming distance

So far, we have focused on the exact variable selection.oAgh the exact variable selection
has been focus of many studies, the exact recovery of vagadhot possible in many practical
applications with low signal to noise ratio. Thereforesitiore natural to measure performance
using a distance between the sets of selected variablebamadié sefs.

In this section, letX, y1,...,yr, B1,...,87, €,...,er be the same as before. Hexe
could be either deterministic or random satisfyXgX; = 1 for j = 1,...,p. We are interested
in studying the lower bound for variable selection problesasured by Hamming distance. To
construct lower bound, we need to clearly define the modellyane are studying. We use the
following random coefficient model which is adapted fr&ﬂ][&%

iid.
Bij "~ (1- 77p)’/0 + Nplry,
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forallt=1,...,T, j=1,...,p, wherey, is the point mass d@tandv., is the point mass at,.
Bothn, andr, vary withp. We set

n,=p " 0<v<l,

so that the expected number of signals,js= pn, = p*~*. Letr > 0 be some fixed constant
and setr, = /2rlogp the signal strength. Such a setting has been extensivelprexpin
the community of modern statistics to explore the theoaktimit of many problems including
classification, density estimation, and multiple hypothéssting Ebdﬁ&.

Let S be the index set of selected variables for any variable seteprocedure and be the
index set of true relevant variables. We define the Hammistadce

Hy(5,81X) = By, z, ||\ S) U8\ S)]]

1 1— T2
= o () < 5
p P

Let

1 rlogp
= ——1 -1+ T
V2rlogp og(p )+ 2
(v+Tr)y/logp
< .
\V2r

Our main result in this section provides a universal Iowant[bopr(g, S | X) for all sample
sizen and design matriX. Let F'(-) and F(-) be the distribution function and survival function
of the standard Gaussian distribution and#ét) denote the density function of the standard
Gaussian distribution. We have the following lower bourslits.

Theorem 14.5.(Universal lower boundfrix v € (0,1),r > 0 and a sufficiently large. For any
n and design matriX such thatX’X has unit diagonals, we have the following lower bound:

Hp(§75|X) [1—%—(%) (Ap )}
> F +F (2L —VTr, ). (14.12)
Sp p VT VT !
This can be further written as
H,(S,S | X) - VT pT T/ WT) gy
- s = 2(v+Tr)ymlogp
P 1+o0(1), v>rT.

One thing to note is that in the above theorem is that such arl®ound simultaneously
holds for any sample size. The main reason for this is that we constrakitX; = 1 for all
j =1,...,p. Such a standardization essentially fixes the signal-tsen@tio under asymptotic
framework where increases. Therefore, the lower bound does not depend quiesainen.
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14.3.1 Comparing with Single Task Screening

It would be instructive to compare the lower bounds for ntadtk screening with that for single
task screening. By settirif = 1, we can obtain from Theorelm 1#4.5 that the Hamming distance
lower bound for single task screening takes the form:

Hls)inglc(g’ S | X) \/F . p—(v—r)Q/(ﬁlr)’ v<Tr
> 5 2(v+r)ymlogp
5p 1+o0(1), v >,

Comparing the lower bounds for both settings, we see thatifmle task screening. #f > r,
Hymele(S, S | X) > s,+0(1). This means no procedure can recovery any information dftiee
signal at all. On the other hand, the corresponding no regaandition for multitask screening
is strengthened to be> T'r and such a condition rarely holds whéns larger. Therefore, one
effect of the multitask setting is that the signal-to-na@go is improved by jointly considering
multiple tasks. For the case thak vT" andr < T in both settings, it can be seen that the rate
for multitask screening is much faster than that for sirtgkk screening.

14.3.2 Upper Bound on Hamming Distance

Though the lower bound result in 14.5 is illustrative, it Wbbe more interesting if we could
match the lower bound with a certain algorithm procedurewdfonly consider the screening
error made by the multitask regression (i.e., the scregmiogedure should miss important vari-
ables), it's straightforward to match the lower bound byisgta conservative threshold using
any of the|| - ||1, | - [|2, ]| - ||o-Procedures. However, it is still an open problem to see whic
procedure could match the Hamming distance lower bound.

14.4 Empirical Results

We conduct an extensive number of numerical studies to atathe finite sample performance
of the marginal regression on the multitask model give /). We consider marginal regres-
sion using the three scoring procedures outlined in Se@@#oB. The variables are ranked using
|| - || and|| - ||~ norms and the resulting sets of variables are densteds,, andS,_.

The number of active variables is set using the result of Tdragl4.4.

Let S be an estimate obtained by one of the scoring methods. Weateahe performance
averaged over 200 simulation runs. [EBtdenote the empirical average over the simulation runs.
We measure the size of the supp6rtNext, we estimate the probability that the estimated set
contains the true sef, that is,E,, [IJ{S C S}, which we call coverage probability We define
fraction of correct zerogp — s)~ IE,[|SC n S€|], fraction of incorrect zerosE, [|SC N S]]
and fraction of correctly fitted,, [1{S = S}] to measure the performance of different scoring
procedures.

We outline main findings using the following simulation segl Due to space constraints,
tables with detailed numerical results are given in the Ayojpe
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Simulation 1:The following toy model is based on the simulation Ilinl [62iin, p, s, T) =
(400, 20000, 18, 500). Eachx; is drawn independently from a standard multivariate nortis
tribution, so that the variables are mutually independdrtr ;7 € S andt € 1,...,T, the
non-zero coefficients are given dg = (—1)*“(4n"'/?logn + |2]), whereu ~ Bernoulli(0.4)
andz ~ N(0, 1). The number of non-zero elements{ifi; }, is given as a paramet&on_ero €
{500, 300, 100}. The positions of non-zero elements are chosen uniformisaatom from
{1,...,T}. The noise is Gaussian with the standard deviaticget to control the signal-to-
noise ratio (SNR). SNR is defined &sr(x/3)/ Var(e) and we varysNR € {15,10,5, 1}.

Simulation 2: The following model is used to evaluate the performance efrtiethods as
the number of non-zero elementsf{ifi,; }; varies. We setn, p, s) = (100, 500, 10) and vary the
number of output§™ € {500, 750,1000}. For each number of outputs, we varyT}on_zero €
{0.87,0.57,0.2T'}. The sampleg; and regression coefficients are given as in Simulation 1, tha
is, x; is drawn from a multivariate standard normal distributiod ghe non-zero coefficients are
given as3;; = (—1)“(4n"/2logn+|z|), whereu ~ Bernoulli(0.4) andz ~ N (0, 1). The noise
is Gaussian, with the standard deviation defined througBNie, which varies i{ 10,5, 1}.

Simulation 3:The following model is borrowed fr02]. We assume a datren struc-
ture between variables givendsr(X,, X;,) = pl1 =72, wherep € {0.2,0.5,0.7}. This correla-
tion structure appears naturally among ordered varialiVeset(n, p, s, T') = (100, 5000, 3, 150)
andT,on—zero = 80. The relevant variables are at positigris4, 7) and non-zero coefficients are
given as3, 1.5 and2 respectively. The SNR varies {10, 5, 1}.

Simulation 4: The following model assumes a block compound correlatiamcire. For
a parametep, the correlation between two variablXs, andX;, is given asp, p? or p* when
|71 — j2| < 10, |j1 — jo| € (10,20] or |71 — j2| € (20,30] and is set to O otherwise. We set
(n,p,s,T) = (150, 4000, 8, 150), Thon—zero = 80 @and the parameter € {0.2,0.5}. The relevant
variables are located at positions 1, 11, 21, 31, 41, 51, 61and 81, so that each block of
highly correlated variables has exactly one relevant faégiaThe values of relevant coefficients
are given in Simulation 1. The noise is Gaussian and the SKBsvim {10, 5, 1}.

Simulation 5: This model represents a difficult setting. It is modified fr@]. We set
(n,p,s,T) = (200,10000,5,500). The number of non-zero elements in each row varies is
Thon—zero € {400,250,100}. Forj € [s] andt € [T, the non-zero elements equal = 2j.
Each row ofX is generated as follows. Draw independerd]yandz; from a p-dimensional
standard multivariate normal distribution. Nowy, = (z; + z;j)/\ﬂm for j € [s] andz;; =
(215 + 2 jrepq 2ig7) /2 for j € [p]\[s]. Now, Corr(z; 1, y::) is much smaller the@orr(; 5, yz.;) for
J € [p]\[s], so that it becomes difficult to select variable 1. The vdedbis 'masked’ with the
noisy variables. This setting is difficult for screening gedures as they take into consideration
only marginal information. The noise is Gaussian with staddieviatioro € {1.5,2.5,4.5}.

Our simulation setting transitions from a simple scenaoiostdered in Simulation 1 towards
a challenging one in Simulation 5. Simulation 1 represenisyamodel, where variables are
independent. Simulation 2 examines the influence of the euiwinon-zero elements in the set
{B:;}+. Simulations 3 and 4 represent more challenging situatigtiisstructured correlation that
naturally appears in many data sets, for example, a caoelaetween gene measurements that
are closely located on a chromosome. Finally Simulatiorcisstructed in such a way such that
an irrelevant variable is more correlated with the outpanth relevant variable. Tables giving
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detailed results of the above described simulations aengiv Appendix. We reproduce some
parts of the tables below. We observe that the Sgt:;lnng2 perform similarly across different

simulation settings. Except for the S|mulat|on& has worse performance than the other
two estimators. The performance difference is increasdteasignal to noise ratio decreases.
However, when the signal to noise ratio is large there igldifference between the procedures.

Prob. (%) of

~

Fraction (%) of

Fraction (%) of

Fraction (%) of

S SCS Correctzeros  Incorrectzeros S =25 5|
Simulation 1:(n, p, s, T) = (500, 20000, 18, 500), Thon—zero = 300
So_ 100.0 100.0 0.0 76.0 18.3
SNR=5 3, 100.0 100.0 0.0 91.0 18.1
Sy, 100.0 100.0 0.0 92.0 18.1
Simulation 2.a1n, p, s, T') = (200, 5000, 10, 500), Thon—zero = 400
Si. 100.0 100.0 0.0 82.0 10.2
SNR=5 5, 100.0 100.0 0.0 91.0 10.1
Se, 100.0 100.0 0.0 91.0 10.1
Simulation 3:(n, p, s, T') = (100, 5000, 3, 150), Thon—zero = 80, p = 0.7
Si. 96.0 100.0 1.3 95.0 3.0
SNR=5 3, 99.0 100.0 0.3 97.0 3.0
Se, 97.0 100.0 1.0 95.0 3.0
Simulation 4:(n, p, s, T) = (150,4000, 8, 150), Thon—zero = 80, p = 0.5
So_ 100.0 100.0 0.0 84.0 8.2
SNR=5 3, 100.0 100.0 0.0 87.0 8.1
Se, 100.0 100.0 0.0 87.0 8.1
Simulation 5:(n, p, 5, ) = (200, 10000, 5, 500), Thon—zero = 250
S 87.0 100.0 2.6 39.0 5.9
c=25 g, 0.0 99.9 90.6 0.0 14.8
Se, 0.0 99.9 55.0 0.0 125

14.5 Discussion

This chapter has focused on the analysis of the marginatssigm in the multitask setting. Due
to its simplicity and computational efficiency, the mardiregression is often applied in practice.
Therefore, it is important to understand under what assiampit can be expected to work well.
Using multiple related tasks, the signal in data can be masdyedetected and the estimation
procedure is more efficient. Our theoretical results sugth@ intuition. One open question still
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remains. It is still not clear how to match the lower bound lo@ Hamming distance given in
SectiorI4B, but we suspect that recent developmenitsJref@28d provide tools to match the
lower bound.

14.6 Technical Proofs

14.6.1 Tail bounds for Chi-squared variables

Throughout the proofs we will often use one of the followiag bounds for centra{? random
variables. These are well known and proofs can be found iotigenal papers.
Lemma 14.1([118]). Let X ~ X3 Forall z >0,

P[X —d > 2Vdx + 2z] < exp(—x) (14.13)
P[X — d < —2Vdz] < exp(—z).
Lemma 14.2([@]). Let X ~ x2, then
Plld'X — 1| > 2] < exp(—%de), z €0, %) (14.14)

The following result provide a tail bound for non-centra@l random variable with non-
centrality parameter.
Lemma 14.3([1€]). Let X ~ X3(v), then for allz > 0

P[X > (d+ v) + 2y/(d + 2v)x + 22] < exp(—x) (14.15)
PX < (d+v) —2y/({d+2v)z] < e p( z). (14.16)

14.6.2 Spectral norms for random matrices

The following results can be found in literature on randontrir@heory. We collect some useful
results.

Lemma 14.4([@]). Let A € R™** be a random matrix from the standard Gaussian ensemble
with £ < n. Then for allt > 0

P[Apax(n P A’A — 1) > f(n, k,t)] < 2exp(—nt?/2)

wheref(n, k,t) = 2(\/%+ t)+ (\/%—i— t)%.

The above results holds for random matrices whose elemenisdgependent and identically
distributedN (0, 1). The result can be extended to random matrices with coeetlelements in
each row.

Lemma 14.5([@]). Let A € R™* be a random matrix with rows sampled iid froki(0, 32).
Then for allt > 0

PlAmax(n ' A’A = ) > Ay (2) f(n, k. 1)] < 2exp(—nt?/2), (14.17)
Corollary 14.1. Let A € R™* be a random matrix with rows sampled iid froi(0, ). Then
P [|Amax (n7TA'A) | > 9 ()] < 2exp(—n/2).
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14.6.3 Sample covariance matrix

Let X € R™*? be a random matrix whose rows are independent and idegtidatributed
N(0,X). The matrixX = (o,;) and denote,, = (0.a0m) "/?0q. The following result provides
element-wise deviation of the empirical covariance makix= n~1X'X from the population
quantity .

Lemma 14.6. Letv,, = max{(1 — pup)/TaaObh, (1 + pab)\/TaaOws }- Then or allt € [0, v,,/2)

~ 3nt?
P Haab - Uab| > t] < 4exp <_ 161/317) .

The proof is based on Lemma A.3. 25] with explicit congsan
Proof. Let !, = x;,/\/04a. Then using[(14.14)

1 n
]P)_ watib — Ya Zt
anz Tip — Oab| > 1]

t
— o >
‘ lea Zb p b‘ —_ m]

Bl Y+ 4 =200+ ) = (=5 =200 ) > ]

2nt
—2(1 “ >
|Z o+ <+pb>>|_m]

2nt
— —2(1 = pw))| >
|Z m Zb ( p b))| - \/m]
nt 3Int?
<P\ —n| > —]1<4 —
— HXn n‘ — Vab] — exp( 161/317)7
wherevy,, = max{(1 — pa) V200X (1 + pap)VSaaXw F @Ndt € [0, 1,/2). O

This result implies that, for any € (0, 1), we have

P| sup [0w — 0| < 4m%XVab\/
a

0<a<b<p

2log 2d + log(1/9) S1_5
3n - '

As a corollary of Lemma 1416, we have a tail bound for sum oflpat-normal random variables.

Corollary 14.2. Let Z; and Z, be two independent Gaussian random variables and(llei@l
Z1Zy,i=1...n. Thenfort € [0,1/2)

3nt?

_1ZX|>t < 4dexp(— 16

1€[n]

). (14.18)
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14.6.4 Proof of Theorem 141

We introduce some notation before providing the proof of areen[14.1. Consider a + 1
dimensional random vectot’, X') = (Y, X4, ..., X,) and assume that

Y o g00 C/

with C = (00s)j—, = EYX € R? andX = (0u), ,—, = EXX'. Define

_ woo P’
EFIZQF:<£O Q)’

with P = (wo);—, andQ = (wa);, ,—;- The partial correlation betweén and X;; is defined as
woj

V/WooWs;

Therefore, nonzero entries of the inverse covariance ratrirespond to nonzero partial cor-

relation coefficients. For Gaussian models,= 0 correspond td” and X; are conditionally

independent giverX\ ;. The relationship between the partial correlation estiomaand a re-

gression problem can be formulated by the following welbkmn propositionO].

Proposition 14.1. Consider the following regression model:

pj = Corr (Y, X; | Xy53) = —

Y =) BiX;+e e~ N(0,Var(e))

i=1

Thene is independent ok, ..., X ifand only ifforallj =1,...,p

Furthermore Var(e) = 1/wqo.
Let Xgcis = Lgege — Bgeg(Lss) ' Lgse be the conditional covariance 0K gc| Xs). We
are now ready to prove Theorém 14.1.

Theorem[14.1.Consider the regression model@@)with X = (x;,...,x,), x; ~ N,(0,X),
ande ~ N, (0, 0*1,,) with knowns > 0, X independent of. Assume that

max |X;58s| + ya(p; 5,8, %, ) < min ;585
jESC j€s
with

S
’}/n(pa Saﬁa Ev 6) = 8Amax(25’3)\/%||ﬂ3||2 grelg}c((l + ||2jS(ESS)_1||2)

2'3(253)_123' 10g Ap=s)
+4 [ max J !+ max/[2 O — 5
jeSC\/ oo icsC [ SC\S]JJ 00 I
4s
JES Woo 3n
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then
P[S(s) = S] > 1 — 36 — 2exp(—s/2).

Proof. Denotingc; =n~'>_"" | v;x;;, we would like to establish that

P—
max [¢;] < min [}

Using Propositio 1411, foj € S we haveX) = X;4(Xss) ' X/ + E) with E; = (ey),
eij ~ N(0,[Escys];;). Now
¢ = n_lXszﬁg + n_lXje
= n_lzjg(zgs)_lxg(Xsﬁs -+ 6) + n_lE;(XSBS + 6)

=3,s08s + Ejs(zss)_l(iss — X55)Bs
+n7 ' 25(Bss) ' Xse + n T EL(XsBs + €),

(14.19)

whereS = n~'X’X is the empirical covariance matrix. Usifig (14.17) witk: /s/n we have
that N
max|¥;s(Xss) " (Bss — Zss)Bs|

jeSs

S _
< 8Aan(Bs5)y sl ls B (Ss)

with probability at least — 2 exp(—s/2). From [14.1B) it follows that

—1yv. —1~¢/
?Elgg\n 3js(Xss) Xse\§4§gg§

Yis(Xss) 1Xg; [log @
Woo 3n

with probability1 — § and
gy fo g o [log 25
§r€1251>0<|n E}(XsB8s + €)] < 4;22}6( [Xscs]i5000 —, (14.20)
with probability 1 — §. Combining [I4.19)E(14.20)

. 5 .
;,Telg§|cj| < [X;s8s| + SAmax(Ess)\/%Hﬁs\b %%}CSHEJ‘S(ESS) I2

5(Sss) 1 Bs; , [log 18-
+4ma>c<\/ ss(Zss) ' Bs; /108 7 (14.21)
jES Woo 3an
10g4(p5_8)
+ e/ Bseislijom|| =5

with probability 1 — 2§ — 2 exp(—s/2).
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Similarly we can show foy € S that

mip €] > min [Eg58s| — Amax(Bss — Bss)|Bsll2 — max [~ Xel

3 S T.s logﬁ
> min [Xg58s| — SAmax(Ess)\/%Hﬁs\b — 4r§1éisx, /w—;; 3—715

with probability 1 — ¢ — 2 exp(—s/2). The theorem now follows fronhi (14.21) aid (14.22).]

(14.22)

14.6.5 Proof of Theorem 1412
In this section we prove Theordm I#.2. Defifie; := S\{;j} and let

~2 . —1
0; =04 — Xjs_;(Bs_;5_,) Bs_;

denote the variance ¢, |Xs_, ), j € S. The theorem is restated below.
Theorem[14.2. Assume that the conditions of Theofem114.1 are satisfied. Let

~ [161og(16/9)
' 3(n—s+1)

and assume that< % Furthermore, assume that

max
JjeS

202 log(4n/8)  20+/2(1 + 1) log(8n/0)
{ B3l —1) i pi;(1 =) } <t

Then R
P[S(5,) = S] > 1 —40 — 2exp(—s/2).
Proof. Define the event R
E,=1{S(s) = 5}.

From Theoremi 1411,
P[EC] < 36 + 2 exp(—s/2). (14.23)

We proceed to show that for some smélt> 0
P[5, # s] < P[5, # s|EP[E,] + PIES] < &,

which will prove the theorem together with (14123). An uppeund onP[s,, # s|&,] is con-
structed by combining upper boundsBjs,, > s|&,] andP[s,, < s|&,).
LetT = 202 log 2. From{s,, > s|&,} C Uy_{&.(k) > 7|€,} follows that

[y

P[5, > s|€] <> PlEa(k) > 7IE,). (14.24)

s

<

=
I
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Recalling definitions oF/, (k) andH,, (k) from p[2I3, for afixed < k < p—1, H(k-+1)—H(k)
is the projection matrix fronR” to V, (k + 1) NV, (k)*. Recall also that we are using the second
half of the sample to estimatg, which implies that the projection matrﬁ(k;) is independent
of e for all k. Now, exactly one of the two event&/, (k) = V,,(k-+1)} and{V, (k (k) S V,(k+1)}
occur. On the eventV,, (k) = V,(k + 1)}, &,(k) = 0. We analyze the evedtV, (k) ¢ V,(k +

1)} N &, by conditioning onX. SinceH(k + 1) — H(k) is a rank one projection matrix

Enlk) = |I(EL(k +1) = H(k))y|[3 = [|(F(k + 1) — H(k))el[3 = o).

Furthermore(H(k + 1) — fI( )) 1L (H(K + 1) — H(K))e, k # K. It follows that for any
realization of the sequencé’g(l) , Va(p),

SB[ (k) = 7€)
= ST > 7HTLR) € Dalk + 1)) N EJBITL(K) € Dl 1 1)
_ B2 > B S 1Tk € Tk + 1))

where the first equality follows sincgV, (k) C V,(k + 1)} is independent of,,. Combining
with (14.24) gives
P[5, > 5|&,] < nPlo?x3 > 7] < 6/2

using a standard normal tail bound. R
Next, we focus on bounding[s, < s|&,]. Since{s, < s|&,} C {& (s —1) < 7|&,}, we
can boundP[¢,, (s — 1) < 7]&,]. Using the definition oH(s) it is straightforward to obtain that

A~ A~ A~

(F(s) — H(s — 1))y = (H(s) — H(s — 1))(X,, 85 + €).

Using Propositio 1411, we can wril, = 3, ¢, (3
e; X N'(0,52). Then

s.;,) ' X, + E whereE = (¢;),

—Js

(F(s) — H(s — 1))y = (H(s) — H(s — 1))(EB), + €)
— (I, —H(s — 1))EB;, + (H(s) — H(s — 1))e.

Define

and



Conditional onXs_, , T ﬁfsa] X2 s+1 SinceE 1l X . , and conditional oX, T2 = o%y2.
Define the events
A= {83 (1-0) STy < BL52 (1+ 1)}

Js ]
and .
Ay = {T, < 20%log Tn}

From Eq. [TZI4)P[A,(1)¢] < §/4, and using a normal tail bounB[A¢] < §/4. Setting

T=7T+4 2@353-30\/2(1 + ) log E%n’

under the assumptions of theorem

PlE,(s — 1) < 7|€,] < P[T1 + Ty < 7+ 2y/Ti T3 /&)
< P[B3,07 (1 — 1) < 7] + PLA]] + PlAS] (14.25)
0
=3

Combining [1Z.2B)HI4.25), we have tHgjtS(5,,) = S] > 1 — 46 — 2exp(—s/2), which com-
pletes the proof.
(]

14.6.6 Proof of Theoren 1413

We proceed to show thdt (14.7) holds with high probabilitgerthe assumptions of the theorem.
We start with the case wheb(-) = || - [|.. Letoy = o®/n andv; = 6,237, 1y (S5, Brs, ).
With this notation, it is easy to observe thbt({/ix;}r) ~ o2x>(v;) wherexZ.(v;) is a non-
central chi-squared random variable witldegrees of freedom and non-centrality parameter

From [14.15),

2(p — s)
5

with probability at least — 6/2. Similarly, from [I4.16),

2(p — s)
5

o, 2 max ®*({fig; }x) < T + 2log + max v; +2\/(T+21/j)10g
jesc jESC

2s
-2 20075 . > 1 P . —_—
o, min O ({1iksti) > T + min v; — max 2\/(T + 2v;) log 5
with probability at least — ¢/2. Combining the last two displays we have shown that (14.8) is
sufficient to show thaP[S,,(s) = S| > 1 — 6.
Next, we proceed witkd(-) = || - ||1, which can be dealt with similarly as the previous case.
Using [I4.IB) together witha||, < /p||a||2, a € R?,

2(p — s) 2(p — s)
max > [ < max ) By Bes,| + an\/ T2 + 2T Tlog == + 2T log =~

ke[T) ke[T)
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with probability at least — 6/2. Similarly,

25 25
mln Z || > rjnm Z |25, Brs,| — Un\/T2 + QT\/Tlogg + 2Tlog?

lce (T]

with probability1 — 4 /2. Comblnlng the last two displays we have shown that {14.9)fficient
to show thaf?[Sy, (s) = 5] > 1 — 4.

We complete the proof with the case whef) = || - || . Using a standard normal tail bound
together with union bound

2(p—s)T
max O({ik; 1) < maxmax [Xs, Bys, | + an\/ 2log ————

with probability1 — §/2 and

25T
min ®({fik; }x) = min gé?g@gskﬁksJ on\f2log ——

with probability1 — §/2, wheres? = ¢%/n. This shows tha{(14.10) is sufficient to show that
P[S, (s)=S]>1-4.

14.6.7 Proof of Theorenm 14J4
We proceed as in the proof[of T#.2. Define the event

& ={Sy(s) = S}.

Irrespective of which scoring functiohis used, Theoremn 14.1 provides the sufficient conditions
under whichP[£¢] < 4. It remains to upper boun[s,, # s|&,], since

P[5, # s] < P[5, # s|&.JPIE] + PIEY]. (14.26)

An upper bound oi?[s,, # s|&,] is constructed by combining upper boundsfs, > s|&,] and
P[5, < s|&,].

Letr = (T + 2,/T1og(2/8) + 21og(2/6))a2 From{s, > s|&,} C U &, n(k) > 7]E0}

follows that
p—1

P, > s, <Y Plér,nlk) > 7|E,]. (14.27)
k=s
Forafixeds < k < p—1, H(k+1)—H(k) is the projection matrix frori" to V,, (k+1)NV,, (k)*.
Since we are estimating, on the second half of the samples, the projection ma‘/ﬁ(k) is
independent o for all k. Now, exactly one of the two evenl{si/( ) = Vo(k + 1)} and
{V,(k) C Vo (k + 1)} occur. On the ever{tV (k) =V (k+ 1)}, &w( ) = 0. Next we analyze
the event{V, (k) C V,(k + 1)} N E,. SlnceH(k + 1) — H(k) is a rank one projection matrix

Eran(k) = D NHK +1) = Hk)yil 2 = D HE +1) — Hk)el 3 £ o3

te|T) te(T)
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Furthermoregy, . (k) 1L &,..(k'), k # K. It follows that for any realization of the sequences
V(1) ..., Vi(p),

p—1
> Pléralk) > 7IE,]
k=s

) PEr, n(k) > 7[{Va(k) C Valk + 1)} N EJPVa() & Vo + 1))
= Plo*\2 > T]Epi {V, (k) C V(k + 1)}

where the first equality follows sincgV, (k) C V,(k + 1)} is independent of,,. Combining
with (L4.27) gives
P[5, > s|E,] < nPlo*x7 > 7] < §/2 (14.28)

using [14.1B). R
Next, we focus on bounding[s,, < s|&,]. Since{s,, < s|€,} C {&pn(s —1) < 7|&,}, itis

sufficient to bound”[@w(s — 1) < 7|&,]. Using the definition of(s) it is straightforward to
obtain that

(H(s) — H(s — 1)) = (H(s) — H(s — 1))(X,, 8, + &),
Write X;, = X!V + X'? whereX'!" € V(s — 1) andX'? € V,(s) N V,,(s — 1)*. Then

A~

(Fi(s) — H(s — 1))y, = (H(s) — H(s = 1))(X{ 8y, + €0).

Furthermore we have that

A~

[|(Fi(s) — H(s — D)X By, + €)[[3 = (I1X5 B llo + 20

whereZ, % N(0,02). It follows tha@w(s —1) ~o*}&(v)withy = 072 > tel] ||X§f)ﬂtjs 2
It is left to show that

Plo*x7(v) < 7] < §/2. (14.29)
Using [I4.16) and following the proof of Theorem 2inl[22], have that[[T4:29) holds if

4 4
v > 2V/5log"/? (ﬁ) VT +8log <§> .
Under the assumptions, we have that
min > {15 8y13 >

2\/510g1/2< )\/7+810g<;2)} 2
te[T

which shows[(14.29). Combining (14128) and (14.29), we iobfg4.26) which completes the
proof.
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14.6.8 Proof of Theorem 14J5

We have

H,(5,5|X) > Z[ (18,112 = 0, 135112 # 0) + (118,112 # 0, 1B, = 0)] .

For1l < j < p, we consider the hypothesis testing:
1B.5ll2 =0 vs. [|8,]]2 # 0.

For1 <t < T, we denote by3, any empirical realization of the coefficient vector. Ifgt::
B: — Bi;e; wheree; is thej-th canonical basis dk”. We define

h(Y7g7a) = h(yb"'7YT;/§17"'75T7a17"'7aT)

to be the joint distribution of

We then have

h(y; B, @) = h(y; 3,0) - exp (Z oy — XB) = > %) -

t=1 t=1

Let max;<;<r |ow| < 7,. We define

~ T 2
h(y; B,7,) = h(y; 53,0) - exp (Tpr —XB,) — %) .

LetG(E) be the joint distribution 0f3,, . . ., 37. Using Neyman-Pearson Lemma, Fubinni's
Theorem and some basic calculus, we have

P (11851l = 0,18, # 0) +B (18,112 # 0. 13,12 = 0)

>%——/U) (1= n,)h(y; B, 0) — mph(y; B, ex) ‘d}’} dr,(a)dG(B3)
— 53 | HB.ayin(@iG(B),

where N
H(B.a)= [|(1=n)h(ysB.0) — nhly: Bo)|dy.

It can be seen that

H(B, a) < H(Ba Tp)-
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We then have

P (1350 = 01312 £ 0) + B (18,0 £ 0,18, = 0) 2 5 = 5 [ H(B7)dG(B).

For any realization 051, o ,Ep, we define
~ T _ TT2
D,(B) =< ¥1,.. -, Y7 : - €XP Tpr;(yt - XB) — Tp > (1—mn,) -
t=1

We know thaty,...,yr € Dp(ﬁ) if and only if

Wy= a;(yi— XB) > A

It is then easy to see that

W, ~ N(0,T) underH, ;
W; ~ N (T, T)underH, ;.

Following exactly the same argument as in Lemma 6.1 from di&n (2011), we obtain the
lower bound:

3 3HBm) 2 (=) () +F (22 - VT).

Thus we finish the proof of the main argument (1#.12).
To obtain more detailed rate, we have

1
——1=p"-1
Tlp
Also,
T (ﬁ) VT, (ﬁ
vT) — 2X T
VvrT 1 (v+Tr)?logp
exp | —
- (v +Tr) 21ogp V2T P 4rT
_ vrT . p—(v+Tr)2 /(4rT)
2(v+Tr)y/mlogp
Therefore
1-— UPF (ﬁ) — VT . pv—(v+TT)2/(4rT)
Tp VT 2(v+Tr)y/mlogp
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vrT =TI /@),
2(v+Tr)y/mlogp

We then evaluate the second term

F(%—\/T) =F<\/Trp—%).

First, we have that

Ap JT (v+Tr)y/logp
— —VT1, = —+\/2rT logp.
VT P V2Tr &P
If v > Tr, we have \
2 _Tr, =
VT ? ’

which implies that

F (% - \/Tfp) > 1+ o(1).

Now, we consider the case thak T'r,

() (5

> valr 1 ) p—(v—Tr)Q/ (4rT)
= (Tr —o)Vogp V2r

VI'r ) p—(v—Tr)2 /(4rT)
(Tr —v)y/mlogp

This finishes the whole proof.
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Chapter 15

Conclusions and Future Directions

Black-box models are not useful for scientific discoveryéawese they do not provide insights
about a system under consideration. Finding interestingraerpretable structure is important
in many sciences, ranging from systems biology, statigjieaetics, and computer science to var-
ious social sciences. In this thesis, we have developediplad machine learning techniques,
with strong theoretical guarantees, that are capable afwang mechanisms underlying com-
plex systems. When data are high-dimensional and gendbgtedme unknown process, it is
important to have flexible models that provide insights id&ta generating mechanisms and
allow for discovering of new scientific facts.

In this thesis, we have focused on two specific problems wigperimental techniques are
expensive, not sufficient, or not available to uncover meidmas underlying a complex system.
In these cases, statistical tools are needed. We have addrée following questions:

1. Given noisy observations collected from a complex systesw can we find a dynamic

network, which encodes and explains relationships of ésten the system?

2. How can we identify features that are relevant for a nunabdrigh-dimensional, noisy
learning tasks in a fast and reliable way?
For all of these problems, an important question is undet siheumstances are statistical meth-
ods going to reliably identify the underlying structure ofarest; and, furthermore, which pro-
cedure can be used to identify the structure quickly.

In the first part of the thesis, we have focused on methods ricowering dynamic net-
work structure from nodal observations, while in the secpad, we have analyzed methods
for variable selection in multi-task learning problems. Wave focused on applications arising
in systems biology, social media analysis and economicsyeer, our results are applicable
in many other modern scientific fields, ranging from cogeitheuroscience to computational
meteorology.

15.1 Learning and exploring network structure

In this thesis, we have developed a comprehensive framegifdiie-varying networks for un-
covering structure of dynamic networks from noisy obseovet! data, based on rigorous statis-
tical formalism with provable guarantees. We see it as tedtep towards building a dynamic
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network analysis system for understanding complex netwotkies and how they evolve and
interact over time. The framework is especially useful irestific domains where interactions
cannot be easily measured, but noisy and indirect versikamsdal attributes are available, which
prevents scientists from an in-depth investigation of tleeanisms underlying a system of in-
terest. Using the framework of time-varying networks, egsbers can reverse-engineer active
interactions between entities in a system from observegitiodinal data and postulate more pre-
cise hypotheses about processes undergoing changes iorketws an exploratory tool, they
are indispensable for capturing transient events in thahyn system, and have the potential to
change the way people analyze complex, dynamic systemseawonks.

The new framework of time-varying networks is a semiparaimgeneralization of the clas-
sical framework of probabilistic graphical models, whidloas for both flexibility in modeling
many effects of interest and development of efficient anthbta estimation procedures. Esti-
mation in the framework is done by solving convex optimiaatprograms, based on penalized
empirical risk minimization, for which we have developeticéént methods, including the prox-
imal gradient descent. Furthermore, we have identifiedceiffi conditions for correct recovery
of the underlying network structure with high probabiliiyy different models in the framework.
The framework can model a number of interesting scenaritscibuld arise in a dynamic sys-
tem, e.g., a smoothly evolving network during regular depeient of a biological organism;
or a network undergoing dramatic reorganization, possibkesponse to harsh economic and
political changes during a crisis, or a cell response toasvivWe used the time-varying network
framework to identify patterns of interactions betweenegem fruit flies as they go through
the developmental process. We have also demonstratedapipty to social media analysis by
learning a latent time-varying network between senatam fthe US Senate voting records.

We have also studied a couple of related network structaenileg problems. We have
studied uncovering structure of covariate indexed netgjonkhere interactions between nodes
depend on an external covariate. For example, when nodessesi stock prices, it is of interest
to understand which stock prices jointly rise or fall, ani ttelationship may change depend-
ing on oil price or the price of some other commodity. Estioraibf network structure from
multi-attribute data often arises in practice, howeveistaxg methods largely ignore this aspect
of data. We have develop a new principled framework for esfiimy network structure from
multi-attribute data based on partial canonical correfatiFinally, we have develop an estima-
tion method, based on a convex optimization program, fanieg network structure from data
with missing values that runs 20 to 40 times faster than tlieieg Expectation-Maximization
approach.

15.2 Identifying relevant variables for a large number of re-
lated high-dimensional tasks

In different scientific fields, such as neuroscience andtiEs)ét has been empirically observed

that learning jointly from related tasks (i.e., multi-taglarning) improves estimation perfor-

mance. For example, in biology, a genome-wide associateppmg study aims to find a small
set of causal single-nucleotide polymorphisms (SNPs)dbabunt for genetic variations of a
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large number of genes. Identifying causal SNPs is a chalgngroblem for current statistical
methods due to a large number of variables and low signabtse ratio. However, genes in a
biological pathway are co-expressed as a module and ites @ssumed that a causal SNP af-
fects multiple genes in one pathway. Therefore, once thdeniological pathway is examined,
it is much easier to find the causal SNPs.

Prior to my work, despite many investigations, the theoryasfable selection in multi-task
regression models was far from settled, and there was nopletare that explained when vari-
able selection can be done more efficiently by considerintjipheitasks. Using the framework
of the Normal means model, we were able to sharply charaeténe theoretical properties of
different estimation procedures. In particular, we hawavted a sharp characterization of the
variable selection properties of two commonly used proceslior variable selection in high-
dimensional problems, the lasso and group lasso. Intaghgtitwo distinct regimes emerged
showing that one or the other procedure is optimal, in theintam sense, depending on the
amount of relatedness between the tasks.

Finally, we have explored efficient greedy methods for qudtgntification of relevant vari-
ables in multi-task learning problems. When faced with pgots that involve hundreds of thou-
sands input variables, classical methods for variablecBete based on convex programming
are too slow. Due to their simplicity and computational éficy, the marginal and forward
regressions are often applied in practice. Our investiggirovides understanding under what
assumptions these methods can be expected to work welluitiesstanding will hopefully lead
to design of better and faster variable selection proceduarthe future.

15.3 Future Directions

It is clear that in the future, statistical and machine leagrmodels will become even more
prevalent in the analysis of high-dimensional functionatiad Although capable of discovering
complex structures underlying noisy data, machine legrmethods still need human guidance
and expertise to instruct them for what to search. The angdélés therefore to develop methods
capable of posing hypotheses on what constitutes an ititegetructure and trying to identify
it in data, reducing the need for human supervision. We segpaortunity in continuing re-
search on flexible models capable of extracting useful atetpretable patterns from complex
systems. Here, we provide examples of several researcleprsbhat represent important future
directions:

1. Uncertainty quantificatiorof learned structure. Most of the current literature on high
dimensional structure recovery provides only a point estéof the underlying structure
without providing confidence intervals, which could be usedssess uncertainty on dif-
ferent parts of the structure. Assessed uncertainty is itapbfor domain scientists, who
can use it to guide the design of future experiments and adiection processes.

2. Develop network toolthat would allow researchers to reason about meta-levehisigen
aspects underlying network structures and their dynanfiebbviors. In my current re-
search, | have tackled the problem of learning network sirec Once the structure is
uncovered, scientists will need network tools capable sfaaming useful analytic ques-
tions, like:
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(a) Function identificatior- What role(s) do individuals play when they interact with di
ferent peers? Over the course of a cellular process, sucbedlscgcle or an immune
response, what is each molecules function and relationgliother molecules?

(b) System robustnessHow do social groups form and dissolve as a response taekter
stimuli? How do biological networks rewire to respond toegrtl stress?

(c) Forecasting— Based on current activity, can we predict changes in sgtiatture
(e.g., emerging or dissolving of subpopulations)? How aitlisease progress based
on current expression levels of genes in different path®ays

3. Nonparametric and semiparametric methdoisuncovering structure. Nonparametric and
semiparametric models are rather flexible in representargpus phenomena, however,
due to the amount of samples and computational resourcdsaéfit them, they have not
been used often in the analysis of high-dimensional dataeMecent findings show that
in many cases the problem under study has a special struethieh can be exploited to
effectively fit a nonparametric method. We plan to invesgdew nonparametric methods
can be used to learn the structure underlying a high-diroeasnon-stationary time-series,
extending the applicability of time-varying dynamic Baiasnetworks.
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