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Abstract

This article discusses the design of the 2007 ”Supply Chain Management - Procurement Chal-
lenge”’ (SCM-PC), a competition designed by the first three authors to evaluate the performance
of mixed procurement strategies. Specifically, the SCM-PC Challenge revolves around a PC assem-
bly scenario, where trading agents developed by different teams compete for components required
to assemble different types of PCs. The Challenge requires the agents to manage supply chain risk
through combinations of long-term, quantity-flexible procurement contracts and one-off procure-
ment contracts for different components. Collectively the authors represent the top three entries
in the 2007 Procurement Challenge. They present the strategies their teams developed for the
competition, compare their performances, and discuss lessons learned from the competition.
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1 Introduction

Supply chain management involves planning, implementing and controlling the buying and selling
of raw materials, work-in-process inventory and finished goods. Traditionally, this process has
been static, depending primarily on long-term relationships between existing trading partners. The
increasing adoption of more flexible and dynamic relations has the potential to make markets more
efficient by establishing better matches between suppliers and customers. However, as relationships
become more flexible the decisions involved in supply chain management will become more complex
due to both the shear number of factors that have to be taken into account while making these
decisions, and the uncertainties in the markets. The role of technology to aid in supply chain
management decision making has thus become inevitable. In the short term, technology can be
used passively to provide insights to supply chain managers. In the longer term, technology can
adopt a more active role by making decisions in an autonomous manner.

1.1 The TAC SCM Competition

The TAC SCM competition was established to simulate many of the challenges imposed by dy-
namic markets, while keeping the rules simple enough to entice researchers from various fields to
submit entries. The rules of the game mimic many of the real world market forces, in order to
be able to transfer the results of the game into practical managerial insights. In this competition,
the participants make a software agent that plays the role of a PC manufacturer that needs to
make decisions regarding procurement of raw materials, production of computers, and sale of these
finished goods to consumers.

1.2 The Procurement Challenge

Over the years, the annual TAC SCM competition has become more and more competitive with
contributions from top universities around the world. In order to push the science to the extreme,
it is necessary to continuously change the rules of the game. While redesigning a game, one has to
strike a very delicate balance between making a game too boring for incumbents, and too difficult
for new entrants. In TAC SCM, we achieve this balance by introducing new challenge games that
mimic smaller but more complex goals.

We discuss one such challenge in this paper - the procurement challenge where agents compete
in securing profitable contracts for procuring raw materials from the suppliers. By limiting the
agents’ control to just the procurement of raw materials we are able to better analyze best prac-
tices in a more controlled setting. In [1], the authors show that in the “baseline” TAC SCM game,
the top agents make purchases with longer lead times. This is similar to the real world managerial
insight that supply chain risks can usually be mitigated by adopting long-term procurement options
versus one-off contract purchases. In order to further understand the tradeoffs between the uncer-
tainty in demand in the long-term and uncertainty in supply in the short term, we introduced the
option of negotiating long-term, quantity-flexible procurement contracts in addition to the one-off
procurement contracts that are present in the “baseline” TAC SCM game.

We present an extended description of the procurement challenge in Section 3 after discussing
relevant background work in the next section. We then describe the approaches of the top three
agents in the 2007 competition in Section 4. We present a detailed analysis of the results of the
actual competition in Section 5. We finally conclude in Section 6 by enlisting some insights we have
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gathered from this work that may be useful in real world supply chains.

2 Related Work

The work presented in this paper is closely related to three lines of research: i.) the development of
other trading agent competitions, ii.) reports about supply chain trading agent design and analysis,
and iii.) work on optimizing procurement decisions through analytical methods and simulations.

2.1 Related Work on Trading Agent Competitions

The original Trading Agent Competition (TAC) was first conceived in 1999 [29] as a way to encour-
age research on automated trading in a competitive academic environment. The first tournament
was held in July 2000, and centered around a travel scenario [30]. The travel game is now called
TAC Classic and involves agents bidding against one another on the various components of travel
packages to satisfy the demands of their simulated clients. The annual competitions led to the
growth of a community centered around the topic of automated trading and significant develop-
ments in the understanding of the phenomena surrounding this topic (many of these developments
are summarized in [28]).

Building on the success of the original Trading Agent Competition, a new game scenario was
introduced in 2003 that focuses on the challenges of automating a supply chain entity [3]. The
supply chain game, called TAC Supply Chain Management (TAC SCM), involves agents playing
the role of PC manufacturers who buy components and sell assembled PCs to simulated customers.
TAC SCM has cultivated a research community from over 60 different institutions and 20 different
countries, and continues to produce research that is relevant to real-world supply chain entities
(e.g. [4, 11]).

In 2007 the TAC community introduced three new competitions. One was a completely new
scenario called the TAC Market Design game [7]. This game requires entrants to develop automated
market rules for matching simulated buyers and sellers. The other new competitions were challenges
based on the same scenario as the TAC Supply Chain Management game. The TAC SCM challenges
isolate specific components of the problem faced by agents competing in the full game. The TAC
SCM Prediction Challenge [16] focuses on the task of predicting and forecasting the stochastic
supply and demand faced by a supply chain trading agent. The TAC SCM Procurement Challenge
is the topic of this paper and was designed to isolate the procurement decisions faced by agents in
the full TAC SCM game.

2.2 Related Work on Trading Agent Design and Analysis

The agent descriptions in this paper follow a long line of work describing successful agents for the
TAC SCM scenario. For example, Benisch et. al. 2006 [5] provides an in depth description of the
different modules composing the CMieux agent. In Kiekintveld et. al. 2004 [12] the DeepMaize
team describes how their agent dynamically coordinates sales, procurement and production strate-
gies in an attempt to stay profitable. In [10] the SouthamptonSCM team presents their agent’s
strategy based on fuzzy reasoning. In [17] the TacTex team describes machine learning techniques
that were used to predict bid prices of other agents and offers considerable insight into the overall
strategy behind their first-place agent in [18] and [15]. Podobnik, Petric and Jezic describe the
CrocodileAgent agent in [22], [19] and [20], and PhantAgent is described by Stan et. al. in [24].
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The Botticelli team [6] shows how the problems faced by TAC SCM agents can be modeled as
mathematical programming problems, and offers heuristic algorithms for bidding on RFQs and
scheduling orders. The RedAgent team [21] presents an internal market architecture with simple
heuristic-based agents that individually handle different aspects of the supply chain process.

2.3 Related Work on Supply Chain Optimization

The third line of related work involves optimizing supply chain decisions in a non-competitive set-
ting by analyzing abstracted models of purchasing decisions or running simulations. Analytical
techniques have come largely from the management science and operations research communities.
A good overview of the work in this space is given by Lariviere [13]. This work typically attempts
to characterize optimal replenishment policies (e.g. [2]) under various stochastic assumptions about
supply and demand. The most closely related paper to our work is by Martinez-de-Albeniz and
Simchi-Levi [9]. They address the problem of optimizing order quantities from a portfolio of flex-
ible long-term contracts and spot market procurement opportunities when supply conditions are
deterministic (e.g. suppliers do not refuse business and never default).

There have been a number of other simulation tools developed to analyze different aspects of
supply chain performance. These simulations include software to evaluate different ways of re-
engineering the supply chain [26], determine the impact of different information exchange protocols
on supply chain performance [25], and understand the “bullwhip effect,” [14] (i.e. the amplification
of demand fluctuations as they travel through a supply chain).

3 TAC SCM Procurement Challenge

The TAC-SCM Procurement Challenge was introduced in 2007 to provide a competition platform
designed to isolate the procurement decisions faced by manufacturer agents in the baseline TAC-
SCM game [3, 8]. This challenge game also extends the space of procurement options available to
the manufacturer agents by allowing them to enter long-term contracts with suppliers agents.

The TAC SCM Procurement Challenge (or “SCM-PC”) was designed to promote the develop-
ment of supply chain trading agents that are capable of effectively coordinating their procurement
decisions. The game revolves around a personal computer (PC) assembly supply chain consisting
of competing PC manufacturer agents (or agents), their component supplier agents (or suppliers)
and their customer agents (or customers). This challenge requires agents to manage supply chain
risk by negotiating long-term, quantity-flexible procurement contracts (or long-term contracts) and
supplementing these contracts with one-off procurement contracts.

The SCM-PC game features three agents competing for supply contracts from ten different
suppliers. Each game has one hundred simulated days, and each day lasts ten seconds of real
time. A server simulates the customers and suppliers, and provides banking, production, and
warehousing services to the individual agents. The agents receive messages from the server on
a daily basis informing the state of the game, such as the current inventory of components, and
must send responses to the same server until the end of the day indicating their actions, such as
component orders to the suppliers. At the end of the game, the agent with the highest sum of
money is declared the winner.

The long-term contracts are negotiated when the game starts, and each contract stipulates a
minimum and maximum weekly quantity the agent commits to purchasing. Each day, the agents
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may also decide to procure additional components by negotiating one-off contracts. Each agent has
an identical factory, where it can produce any type of computer. The factory is simulated by the
game server, and also includes a warehouse for storing components and finished computers. A daily
production and delivery schedules are also generated for the agent, and orders are only produced
and delivered if the required components are available.

3.1 Customer Demand, Production and Delivery

On each day, the agents receive the exact same set of orders from customers representing one third
of the total demand. Each order consists of a product type, a quantity, a due date and a price per
unit. The server attempts to produce and deliver orders in a greedy fashion by giving priority to
orders with higher revenue. When an order reaches the top of the queue the server checks whether
or not each agent has enough components to produce it. Those agents with enough components
exchange them for the revenue associated with the order.

3.2 Long-term Contracts

The long-term contracts are used to distribute risk between suppliers and agents. Each contract
consists of a minimum (Qlts

min) and maximum (Qlts
max) weekly quantity the agent commits to pur-

chasing, an execution price (pexec) that the agent has to pay for each unit it actually purchases from
the supplier, and a unit reservation price (pres) that the agent has to pay independently of how
much it actually orders. To ensure that each game presents a mix of long-term and one-off contract
options, we assume that each component is available from a supplier that only offers long-term
contracts and another one that only offers one-off contracts.

When the game starts, the agents have the option of negotiating the long-term contracts for
each component, and these contracts are awarded based on second price auctions. The server first
announces a reserve price (ρ) for each auction, and then waits ten seconds for the agents to submit
their bids. Each bid consist of a requested maximum weekly quantity and an execution price that
the agent is willing to pay for each component. The minimum weekly quantity and the reservation
price are not specified by the agents in the bids, but are calculated by the suppliers as follows:

• Qlts
min = Qlts

max/(1 + α), where α changes from one game to another and is announced at the
start of each game.

• pres/(pres + pexec) = β, where β also changes from one game to another and is announced at
the start of each game.

The long-term contract supplier allocates 100% of its weekly nominal capacity (Cnom
week) to the

bidding agents. Quantities are allocated based on the requested maximum weekly quantities,
starting with the bid that has the highest execution price. Each agent’s long-term contract has
an execution price that is computed as the next highest price below its own bid (”second highest
price” rule). The allocation proceeds until there are no bids left or until the long-term supplier
has run out of capacity (based on its weekly nominal capacity). In the latter situation, the last
manufacturer agent to receive a contract may end up with a maximum weekly quantity that is less
than what it had requested.

Table 1 presents an example of bids sent to a long-term contract supplier. In this example, let
us assume that the weekly nominal capacity of the supplier is 2695 and the auction’s reserve price
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Table 1: Long-term Contract Bids
Agent Requested maximum Bid price

weekly quantity
1 1000 850
2 800 950
3 1200 870

is 800. Agent 2 is the first to receive a long-term contract with a maximum weekly quantity of 800
units and an execution price of 870, followed by Agent 3 that gets a long-term contract with 1200
units/week for 850 per unit and Agent 1 that only gets a contract with 695 units/week for 800 per
unit, namely the supplier’s reserve price.

At the beginning of any given week, each agent decides how much to actually order under its
long-term contracts. If the total quantity of a given component requested by the agents is less than
the actual supplier’s capacity, all agents get the full quantities they requested. If the total quantity
requested by the agents exceeds this capacity, the supplier computes the ratio of demand it can
satisfy based on its actual capacity. Each agent then receives a quantity that is proportional to this
ratio, so that all agents with long-term contracts are treated equally and receive the same fraction
of their actual demand that week.

3.3 One-off Contracts

Every day, manufacturer agents can send requests for quotes (RFQs) to suppliers with a given
reserve price, quantity, type and delivery date. A supplier receives all RFQs on a given day, and
processes them together at the end of the day to find a combination of offers that approximately
maximizes its revenue. On the following day, the suppliers send back to each agent an offer for each
RFQ with a price, a possibly adjusted quantity, and a due date. Due to capacity restrictions, the
supplier may not be able to supply the entire quantity requested in the RFQ by the due date. Thus,
it responds by issuing up to two modified offers, each of which relaxes one of the two constraints:

• Quantity, in which case offers are referred to as partial offers.

• Due date, in which case offers are referred to as earliest offers.

The suppliers have a limited capacity for producing a component, and this limit varies through-
out the game according to a mean reverting random walk. Moreover, suppliers also limit their
long-term commitments by reserving some capacity for future business. The pricing of components
is based on the ratio of demand to supply, and higher ratios result in higher prices. Each day
the suppliers estimate their free capacity by scheduling production of components ordered in the
past and components requested that day as late as possible. The price offered in response to an
RFQ is equal to the requested components base price discounted by a function proportionate to
the supplier’s free capacity before the RFQ due date. The manufacturer agents normally face an
important trade-off in the procurement process: pre-order components for the future where cus-
tomer demand is difficult to predict, or wait to purchase components and risk being unsuccessful
due to high prices or availability.
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A reputation rating is also used by the suppliers to discourage agents from driving up prices
by sending RFQs with no intention of buying. Each supplier keeps track of its interaction with
each agent, and calculates the reputation rating based on the ratio of the quantity purchased to
quantity offered. If the reputation falls bellow a minimum value, then the prices and availability
of components are affected for that specific agent. Therefore, agents must carefully plan the RFQs
sent to suppliers.

4 TAC SCM-PC Agents

This section describes the approaches of the top three SCM-PC agents: PhantAgent (University
“Politehnica” of Bucharest), CMieux (Carnegie Mellon University) and CrocodileAgent (University
of Zagreb). Each of these agents use a different combination of long-term and one-off contract
strategies. One of the primary differences between the agents is the way that future demand is
predicted and how this prediction is used to create long-term procurement strategies. Another
primary difference is how one-off contracts are handled, with PhantAgent and CrocodileAgent
using repeated queries with fixed lead times and CMieux varying its lead times between queries.

4.1 PhantAgent

PhantAgent divides its decision making process into three different sub-problems: calculating
needed components, handling long-term contract procurement, and generating one-off contract
orders. Each of these problems is solved using relatively simple heuristics which we will now de-
scribe in detail. Many of the heuristics used in PhantAgent rely on external parameters which can
be optimized by analyzing historical performance. However, due to limited availability of historical
data prior to the 2007 SCM-PC competition these parameters were set largely by hand.

4.1.1 Calculating Needed Components

At the beginning of each day, PhantAgent estimates the number of components it will need from
the current day to the end of the simulation. In order to determine this number, PhantAgent
first estimates the number of components it expects to have in inventory on each of the remaining
days. The expected inventory levels are estimated by iterating through each day, adding component
arrivals that are due and subtracting the estimated component usage. The main difficulty in this
process involves determining a good estimate of each day’s component usage. We will refer to the
usage of component j on day d as Q(d,j). To estimate Q(d,j) PhantAgent combines two heuristic
values:

• The first heuristic value, E[Qj ] (Equation 1), assumes a fixed usage each day based on the
expected demand as described in the simulation parameters.

E[Qj ] =
∑
s∈S

QsP (component = j|s) (1)

where:
Qj - number of components j,
S - market segments,
Qs - average number of customer orders in segment s (s ∈ S).
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• The second, Q̄(d,j), is a moving average of component usage from the past 10 days as shown
in Equation 2.

Q̄(d,j) =
1
10

d∑
d′=d−10

Q(d′,j) (2)

Both of these heuristic values have certain weaknesses. The problem with using E[Qj ] is that
it is not flexible to demand variations and fails to account for fluctuations in demand throughout
the game. By ignoring such fluctuations the agent will often either run out of components or be
left with excess inventory when the simulation nears its end. The problem with using Q̄ is that
demand at the beginning of the simulation can be significantly different than the demand at the
end. Thus, the long lead time orders placed at the beginning of the game based on the demand
at that time may not match the demand when the components arrive. To avoid these problems
PhantAgent uses a weighted average of both heuristic values, where E[Qj ] is weighted more heavily
during the beginning of the game. The formula is given in Equation 3.

Q̂(d,j) =
D − d
D

E[Qj ] +
d

D
Q̄(d,j) (3)

where:
D - the total number of days in the simulation.

The result is then slightly scaled down to avoid excess inventory towards the end of the game
due to changes in demand when the long lead time requests were made.

4.1.2 Handling Long-term Contract Procurement

Long-term contracts have the potential to provide lower prices and higher guarantees on availability.
PhantAgent prioritizes availability over price in the long-term contracts. In order to capitalize on
high selling prices during time of low availability, it was empirically determined that bidding the
average one-off contract prices from the past several games enabled the agent to reliably procure
the quantity it desired.

Throughout the game PhantAgent exercises the option to increase weekly order quantities if
there is a need for components and the one-off contract suppliers are charging more than the
long-term contract prices.

4.1.3 Generating One-off Contract Orders

For one-off contract requests, PhantAgent uses all 5 RFQs each day to request components with
fixed lead times (for SCM-PC in 2007, values used were {2, 3, 10, 25, 45} days). The agent adjusts
its requested quantities according to current market conditions, so on some occasion it might not
use some of the RFQs. This fixed lead time strategy usually allows the agent to procure components
consistently throughout the simulation while paying a price that is close to the average paid by any
agent.

Requests with very short lead times (such as lead times of 2 and 3 days) are treated indepen-
dently of the other RFQs and are used primarily to maintain a steady stock of components. These
requests have been observed to vary significantly in price from one day to another (during low and
high demand periods, the prices of RFQs with very short lead times are usually very low and very
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high respectively). Handling these daily variations is the main concern here and for this the reserve
price mechanism is used to only accept offers with good prices. The reserve price is set to a value
that is slightly over the minimum price obtained in the last 5 days (using the average price was
also considered, but results were observed to be worse).

Generating Long Lead Time Requests with One-off Contracts

Since PhantAgent uses fixed lead times for all one-off contract requests, the main decision regarding
long lead time requests is choosing appropriate order quantities and reserve prices. The general
principle governing these choices is to make long lead time orders only if they are expected to be
better or equal to orders with short lead times. In most cases the order with longer lead times
have the lowest prices. However, orders with shorter lead times towards the end of the game are
important due to the scaling down applied to the estimated component usage described in section
4.1.1.

Order quantities are chosen simply based on the difference between the expected usage and the
components already expected from prior procurement. The reserve price is calculated the same
way as the reserve prices in the very short lead time requests (i.e. the minimum price obtained in
the last 5 days). This ensures that long lead time orders are made only when they are as good as
current short lead time ones.

4.2 CMieux

The CMieux agent handles all aspects of requesting and purchasing components from the long-
term and one-off contract suppliers. The strategy used for the long-term contract negotiation and
procurement is described in section 4.2.1. The strategy used for negotiating one-off contracts
is essentially the same used in [5]. Therefore, we will only present a summarized version of this
strategy in section 4.2.2.

4.2.1 Long-term Contract Negotiation and Procurement

The negotiation of the long-term contracts is conducted on the first day of each game, and each
agent receives a reserve price pres, an α and a β before it computes a bid for each component. The
main challenge the agent faces when computing a bid, composed of a desired maximum weekly
quantity and a bid price, is the high uncertainty it has about the customer demand and the prices
of components in the one-off contract markets. Thus, the strategy used by CMieux relies on average
one-off contract prices (P̄one−off ) from previous games to compute a bid price for pexec. The formula
is given in Equation 4.

p = max(P̄one−off , pres + increment) (4)

The first value of the max function in Equation 4 computes a bid price (p) for low reserve prices
(smaller than a threshold, P̄one−off ). Thus, when reserve prices are low the agent is willing to buy
components from the long-term contract suppliers for a price equal to the average one-off contract
price. The second value of the max function in Equation 4 computes a bid price for high reserve
prices (when pres ≥ P̄one−off ), and sets p to be very close to pres.

The requested maximum weekly quantity in each bid is considered a parameter in the model
that must be adjusted to reflect the amount of risk the agent is willing to take with the long-term

8



contracts. Empirically, it was determined that on average the loss from unsold inventory in low
customer demand games outweighed the profits from sales in higher demand games. This problem
occurred due to the very low flexibility (approximately 15%) between the minimum and maximum
weekly quantities, which was not large enough to cover all the different customer demand scenarios.
Thus, a more conservative strategy was adopted and the requested maximum weekly quantity was
adjusted to suit low demand games.

4.2.2 One-off Contract Procurement

CMieux uses the procurement module in [5] to handle all aspects of requesting and purchasing com-
ponents from the one-off contract suppliers. The module is designed to rapidly adapt to changing
market conditions and exploit gaps in the one-off contract market to ensure that its procurement
prices tend to fall below its competitors. Each day, the procurement module performs two tasks:
i.) it attempts to identify a particularly promising subset of current supplier offers, and ii.) it
constructs a combination of RFQs to be sent to suppliers that balances the agent’s component
needs with identified gaps in current supplier contracts.

Accepting Supplier Offers

The module accepts supplier offers using a rule-based decision process. The agent begins by
selecting offers that are satisfactory based on price, quantity and due date using historical data.
In an effort to keep the agent’s reputation as high as possible, the agent first accepts offers that
satisfy the quantity and due date requirements of the corresponding RFQ (“full offers”). Next, if
still needed, satisfactory offers with relatively large quantities (“partial offers”), or early due dates
(“earliest complete offers”) are also accepted.

Sending Supplier Requests

In order to determine the amount of components needed, the procurement module computes the
difference between the inventory required to maintain production levels specified by the customer
orders, and the projected inventory from the long-term and one-off contract suppliers for the re-
mainder of the game. However, CMieux does not need to procure this entire difference each day.
The components are not needed immediately, thus it can divide the purchasing of components
across several days. This will not only enable the agent to aggressively procure components within
a specific scheduling window, but also allow the agent to buy some of the components it needs well
in advance, when they are likely to be cheapest.

The process of computing what specific requests to send to suppliers is then decomposed by
component type. For each component type, the procurement module generates several sets of lead
times and searches for the set with the highest utility. This utility is computed by approximating
the sum of the utility of the components they request and subtracting their forecast prices. The
sets of lead times with the greatest utility for each component are sent as RFQs to the appropriate
suppliers. The reserve price of each RFQ is set to be the average utility of the components it
includes.
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4.3 CrocodileAgent

CrocodileAgent’s architecture is based on incorporating a generic intelligent software agent model
[23] into the IKB framework [27], a three layered agent-based framework for designing strategies
in electronic trading markets. The following sections describe the approach for handling long-term
contract negotiation and one-off contract procurement.

4.3.1 Negotiating Long-term Contracts

At the start of the game the CrocodileAgent negotiates long-term contracts for each component.
After the suppliers announce reserve prices for each component CrocodileAgent calculates the
maximum weekly quantity it will request. The requested quantity for each component j is a linear
function of its reserve price (ρ, where ρ is represented as a fraction of the component’s base price).
The reserve price may assume any value in the interval [ρmin, ρmax], so Q̂j is calculated as shown
in Equation 5.

Q̂j = (
ρmax − ρ

ρmax − ρmin
)Qmax

j + (1− ρmax − ρ
ρmax − ρmin

)Qmin
j (5)

where:
Qmin

j - the minimum quantity requested for component j,
Qmax

j - the maximum quantity requested for component j.

After the maximum weekly quantities have been determined, CrocodileAgent submits a long-
term contract bid for each component with price equal to the reserve price (p = ρ).

Each week CrocodileAgent chooses an actual quantity to order (Qorder
j ) for each long-term

contract based on the amount of components it has in inventory (Nj). This quantity increases
linearly from σ% to 100% of the maximum quantity in the long-term contract (Qlts

max) as the
number of components in inventory decreases. The formula is given in Equation 6.

Qorder
j = min

(
Qlts

max ×

(
N+

j − σ%×N−j + (σ%− 100%)×Nj

N+
j −N

−
j

)
, Qlts

max

)
(6)

where:
N−j - minimum inventory level for component j,
N+

j - maximum inventory level for component j.

4.3.2 Negotiating One-off Contracts

CrocodileAgent breaks up the procurement problem with one-off contracts into two different sub-
problems: strategy on the first day (day 0 ) and replenishment of components during the rest of
the game. A close examination of the baseline TAC SCM Game rules [8] (which also defines the
SCM-PC one-off contract supplier model) suggests that procurement of components at the very
beginning of the game (day 0 procurement) can provide components with low prices throughout
the game (because there is no prior component demand). Although the concept of day 0 procure-
ment strategy has some similarities with long-term contract negotiation, these two procurement
strategies are totally independent because each component is available from two different suppliers:
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one that only offers long-term contracts and one that only sells components with one-off contracts.

Day 0 Strategy with One-off Contracts

The goal of using the day 0 strategy is to acquire components for the beginning of the game
and (if possible) buy cheap components with longer lead times. CrocodileAgent sends a fixed set
of five RFQs on day 0 (the specific values of the lead times, quantities and reserve prices are given
in Table 2). The parameters for day 0 procurement were determined by conducting a series of
experiments. In the event that a supplier cannot deliver the requested quantities by the requested
due date CrocodileAgent accepts partial offers that will arrive on time.

Lead time 7 days 14 days 21 days 52 days 77 days
Reserve price (fraction of nom.) 1.07 0.97 0.92 0.77 0.69

Quantity for CPUs 300 350 400 450 450
Quantity for all other types 600 700 800 900 900

Table 2: The actual parameter values in day 0 RFQs

Component Purchase During the Game with One-off Contracts

Throughout the game CrocodileAgent uses the one-off contracts to fill in gaps in its inventory
not covered by the long-term contracts or day 0 strategy with one-off contracts. At the beginning
of each day, the agent calculates the quantity of each component that has been previously ordered
but not yet delivered (Qoutstanding

j ). This quantity is multiplied by a distance factor, so that orders
with longer lead times have a smaller weight than orders with shorter lead times. If the quantity in
inventory plus the outstanding quantity for a component is less than a threshold, a more aggressive
strategy is used where five RFQs are sent to the supplier with short lead times and relaxed reserve
prices. Otherwise, RFQs are sent to suppliers with fixed lead times so that it can replenish its
inventory without exceeding a maximum amount.

The one-off contract suppliers sometimes offer bargains on very short lead times (e.g. lead
times of 2 or 3 days). In order to capitalize on these bargains, CrocodileAgent sends RFQs with
short lead times and low reserve prices during the first few days of the game and as long as its
outstanding components are not more than a certain percentage above an acceptable maximum.
Additionally, there are special mechanisms which calculate the reserve prices and exact quantities
that need to be ordered. A simplified description of some of these mechanisms follows:

• One mechanism alerts the agent when an inventory level of a certain component is low. This
alert allows the agent to procure components with higher prices than usual.

• Another mechanism alerts the agent when the demand rises rapidly. When this happens
the component usage also increases, so that the agent does not run out of components and
consequently loses potentially profitable PC orders.

Special attention is also given to the end of the game. The main goal of the agent in the last
days of the simulation is to maintain low inventory levels and fulfill as much customer orders as
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possible. Requests are sent to suppliers so that the agent does not either run out of components or
be left with excess inventory when the simulation nears its end.

5 2007 TAC SCM-PC Results and Analysis

This section presents the results of the final rounds of the 2007 TAC-SCM Procurement Challenge.
The final rounds were held at the Twenty-Second Conference on Artificial Intelligence (AAAI-07).
They featured twelve games, three games for each combination of three agents out of the four
finalists. The final standings are presented in table 3, the value in the third column is the average
profit accumulated by each agent over the course of the nine games it played in.

Table 3: Final Standings for the 2007 SCM-PC

Agent Games Played Number of Average Score
(out of 12) Games Won

PhantAgent 9 4 8,731,513
CMieux 9 6 7,405,743

CrocodileAgent 9 2 6,399,115
Warrior 9 0 4,200,440

In addition to the overall competition results we also performed a finer pairwise comparison of
the top three agents to account for the fact that they did not all participate in the same games.
Table 4 presents the performance of pairs of agents in all of the games involving them both. For
the top three agents there are three distinct pairs and each pair participated in six common games.
As can be seen, the pairwise results provide a different ranking with CMieux ahead of the other
two agents and Phantagent ahead of CrocodileAgent. It is also worth noting that these results
are consistent with the number of games won by each agent throughout the finals, with CMieux
winning 6 out 9 games, Phantagent 4 out of 9 games and CrocodileAgent 2 out of 9 games.

The discrepancy between the overall rankings and pairwise rankings can be explained by the
varying demand conditions faced by agents in different games. Phantagent achieved a higher overall
score than CMieux because it participated in one game with a high customer demand, and was
able to successfully take advantage of this opportunity.

We will now present analysis of several important aspects of the game as well as graphs that
illustrate the effect of the strategies adopted by the top three agents. Section 5.1 describes the
sales volume of each agent, section 5.2 presents their one-off and long-term contract mixes, and
section 5.3 presents their average procurement costs.

5.1 Customer Orders and Deliveries

To measure the sales volume of the top three SCM-PC agents, we calculated their realized demand
percentages’s, or the fraction of the total possible demand that they were able to satisfy. Figure 1
presents a pairwise comparison of the average realized demand (with 95% confidence intervals) of
the top three agents. As in Table 4, the values shown for each pair in Figure 1 are calculated
using only the games that pair participated in. CrocodileAgent had the highest average realized
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Table 4: Final “Pairwise” Standings for the 2007 SCM-PC

Agent Games Played Number of Average Score
Games Won

CMieux 6 4 7,149,838
PhantAgent 6 2 6,788,197

Agent Games Played Number of Average Score
Games Won

CMieux 6 4 8,286,761
CrocodileAgent 6 1 4,385,217

Agent Games Played Number of Average Score
Games Won

PhantAgent 6 3 10,027,071
CrocodileAgent 6 1 7,096,601

demand amongst all agents. However, the overlapping confidence intervals show that there was no
statistically significant difference between any of the agents.

Figure 1: Average Realized Demand

5.2 Quantity Ordered from the Suppliers

The average number of components ordered by each of the top three agents from the one-off and
the long-term contract suppliers with 95% confidence intervals is presented in Figures 2 and 3.
These graphs show that all three of the top agents procure a substantial amount of components
from the more stable long-term market, but tend to buy significantly more from the one-off contract
market. While long-term contracts provide some amount of flexibility in the weekly orders, they are
negotiated when the agents have no information about the customer demand. It is not surprising
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that these agents chose to rely more on one-off contracts since they can be negotiated on a daily
basis giving them more flexibility to adapt to varying market conditions.

Figure 2: Average Number of Components Ordered from the One-off Contract Suppliers

Figure 3: Average Number of Components Ordered from the Long-term Contract Suppliers

5.3 Component Prices

Figure 4 presents the average weighted prices of components purchased by each agent in both
the long-term and one-off contract markets combined (with 95% confidence intervals). The graph
shows that CMieux’s procurement prices were significantly better than the other two agents when
compared across both markets.

When we examine the one-off and long-term contract markets separately we see that CrocodileAgent
was able to get significantly lower prices for long-term contracts than the other two agents (figure 5
- appendix A). CMieux’s long-term prices were a close second to CrocodileAgent with an average
difference of 1.69%. In the one-off contract market CMieux has a significant edge over the other
two agents (appendix A – figure 6).

CrocodileAgent’s low long-term procurement costs can be explained by the fact that it bids the
lowest possible price for all of the long-term contracts (as described in section 4.3.1). However,
the fact that CMieux had the lowest overall procurement costs suggests that CrocodileAgent was
not able to procure enough from the long-term market to overcome CMieux’s better prices in the
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Figure 4: Average Weighted Prices of Components from Long-term and One-off Contracts

one-off contract market. CMieux’s dynamic one-off contract strategy for optimizing RFQs each
day was more effective than the fixed procurement strategies of the other agents. The additional
flexibility provided an advantage leading to the lowest overall average procurement costs.

6 Conclusions and Future Work

This paper began with a description of the Supply Chain Trading Agent Competition Procurement
Challenge (SCM-PC). In addition to isolating the procurement decisions faced by agents in the
“baseline” Supply Chain Trading Competition, the SCM-PC rules extended the purchasing options
to include quantity flexible long-term contracts that are negotiated once at the start of the game.

We then described the approaches of the top three SCM-PC agents from the 2007 competition:
PhantAgent (University “Politehnica” of Bucharest), CMieux (Carnegie Mellon University) and
CrocodileAgent (University of Zagreb). These agents were shown to differ primarily in the ways they
predicted future demand and the flexibility they employed in their one-off contract procurement.
In particular, PhantAgent and CrocodileAgent used repeated queries with fixed lead times, while
CMieux varied its lead times between queries.

Finally, we presented a detailed analysis of the results from the actual competition. The results
showed that the agents used long-term procurement contracts to procure a baseline inventory, but
purchased the bulk of their components with one-off contracts. This suggests that the existence of
a flexible one-off contract market enabled the agents to mitigate the risk typically associated with
long-term commitments.

One potential short-coming of the results from the 2007 SCM-PC competition is that the agents
and agent designers had very little historical experience to learn from. This lack of historical data
may have made the game less dynamic and slightly inefficient. In the future we plan to provide
tools allowing agents to analyze information from previous game logs.

Another future change will involve improving the competition structure itself. Our analysis
of the results suggested that CMieux was purchasing components significantly cheaper than the
other two agents, while maintaining similar service levels. However, due to an imbalance in game
conditions CMieux placed behind PhantAgent in overall average profit. A closer look at the reasons
for this discrepancy revealed a flaw in the competition structure. Due to the high variance in
customer demand between games the agents should not have been compared across games in which
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they did not all compete. Our attempts to control for this after the fact (by comparing performance
between agents only in games where they were both present) appeared to correct the discrepancy.

We originally proposed the TAC SCM Procurement Challenge in order to better analyze best
practices in procurement in a more controlled setting. Largely, we believe we have made signifi-
cant progress towards this goal and have gained important insights about automated supply chain
procurement markets.
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A Component Prices in the Long-term and One-off Contracts

Figure 5: Average Prices of Components from Long-term Contracts

Figure 6: Average Prices of Components from One-off Contracts
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