

Finding Predictors of Field Defects
for Open Source Software Systems in
Commonly Available Data Sources:

a Case Study of OpenBSD

Paul Luo Li, Mary Shaw, Jim Herbsleb,
June 2005

CMU-ISRI-05-121

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

Pittsburgh PA, 15213

This paper is an expanded version of the paper titled: Finding Predictors of Field Defects for
Open Source Software Systems in Commonly Available Data Sources: a Case Study of
OpenBSD, in METRICS, 2005.

This research was supported by the National Science Foundation under Grants ITR-0086003, IIS-
0414698, and CCF-0438929, by the Carnegie Mellon Sloan Software Center, and by the High
Dependability Computing Program from NASA Ames cooperative agreement NCC-2-1298.

Keywords: Process metrics, product metrics, software science, software quality assurance,
measurement, documentation, reliability, experimentation, field defect prediction, open source
software, reliability modeling, CVS repository, request tracking system, mailing list archives,
deployment and usage metrics, software and hardware configurations metrics

ABSTRACT
Open source software systems are important components of many business software applications.
Field defect predictions for open source software systems may allow organizations to make
informed decisions regarding open source software components. In this paper, we remotely
measure and analyze predictors (metrics available before release) mined from established data
sources (the code repository and the request tracking system) as well as a novel source of data
(mailing list archives) for nine releases of OpenBSD. First, we attempt to predict field defects by
extending a software reliability model fitted to development defects. We find this approach to be
infeasible, which motivates examining metrics-based field defect prediction. Then, we evaluate
139 predictors using established statistical methods: Kendall’s rank correlation, Pearson’s rank
correlation, and forward AIC model selection. The metrics we collect include product metrics,
development metrics, deployment and usage metrics, and software and hardware configurations
metrics. We find the number of messages to the technical discussion mailing list during the
development period (a deployment and usage metric captured from mailing list archives) to be the
best predictor of field defects. Our work identifies predictors of field defects in commonly
available data sources for open source software systems and is a step towards metrics-based field
defect prediction for quantitatively-based decision making regarding open source software
components.

1 INTRODUCTION
Open source software systems such as operating systems are important components of many
business software applications. Being able to predict field defects (customer reported software
problems requiring developer intervention to resolve) may allow existing quantitatively-based
decision making methods to be used to:

Help organizations that are seeking to adopt open source software components to make informed
choices between candidates

Help organizations using open source software components to decide whether they should adopt
the latest release

Help organizations that adopt a release to better manage resources to deal with possible defects

In this paper, we present a case study of the open source operating system OpenBSD in which we
try two different approaches to predicting field defects: model fitting and a metrics-based
approach.

Prior work by Li et. al. [16] shows that the Weibull model is the preferred model for modeling the
defect occurrence pattern of OpenBSD. In the work we report here, we attempt to predict field
defects by extending a Weibull model from development to the field. We find that it is not
possible to fit an acceptable Weibull model to development defects. The release dates of
OpenBSD are consistently around the time when the rate of defect occurrences peaks. Hence,
there is insufficient data to fit a Weibull model. This result is consistent with Kenny’s finding in
[7]. Our finding that it is not possible to fit a Weibull model until the rate of defect occurrences
establishes the need for metrics-based field defect prediction.

Identifying and collecting predictors (metrics available before release) are prerequisites activities
for metrics-based field defect prediction. We attempt first steps toward a metrics-based field
defect prediction model by identifying and collecting potentially important predictors of field
defects for OpenBSD. Prior work has identified important predictors of field defects and has
predicted field defects for commercial software systems (e.g. Khoshgoftaar et. al. [9], Ostrand et.
al. [29], Mockus et. al. [22]). The categories of predictors used in prior work are product metrics,
development metrics, deployment and usage (DU) metrics, and software and hardware
configurations (SH) metrics. However, prior work has not examined open source software
systems, has not examined all categories of predictors simultaneously, and has not identified
commonly available data sources for each category of predictor. In this paper, we examine
predictors of field defects for an open source software system.

Our experiments show it is possible to collect product, development, DU, and SH predictors from
data sources commonly available for open source projects. We identify seven important
predictors collected from mailing list archives and the CVS code repository. Somewhat
surprisingly, the most important predictor for the OpenBSD project is the number of messages to
the technical discussion mailing list during the development period, which is a deployment and
usage metric collected from mailing list archives.

Section 2 discusses prior work and motivates our work. Section 3 describes OpenBSD. Section 4
and 5 discuss our data collection method and data analysis method. Section 6 presents the results.
Section 7 contains a discussion of our findings. Section 8 is the conclusion.

2 PRIOR WORK AND MOTIVATION
In this section, we motivate our work by discussing prior work. We define field defects as user-
reported code-related problems requiring programmer intervention to correct. This is the same

definition used by Li et. al. in [16]. We discuss software reliability modeling, software metrics as
predictors, and methods used to establish predictors as important.

2.1 Software reliability modeling
Prior work by Li et. al. [16] shows that it is possible to model the rate of field defect occurrences
of OpenBSD using the Weibull model. Software reliability modeling research summarized by
Lyu in [17] suggests that it may be possible to predict field defects by fitting a Weibull model to
development defects and then extending the model to the field. This leads to our first question:

Is it possible to predict field defects by fitting a Weibull model to development defects and then
extending the model to the field?

Li et. al. use non-linear least squares (NLS) regression to fit defect occurrence data to the Weibull
model. We will use the same regression technique to fit a Weibull model to development defects.

2.2 Software metrics as predictors
Metrics are defined by Fenton and Pfleeger in [4] as outputs of measurements, where
measurement is defined as the process by which values are assigned to attributes of entities in the
real world in such a way as to describe them according to clearly defined rules. Metrics available
before release are predictors, which can be used to predict field defects.

We categorize predictors used in prior work using an augmented version of the categorization
schemes used by Fenton and Pfleeger in [4], Khoshgoftaar et. al. in [15], and the IEEE standard
for software quality metrics methodology [3]:

Product metrics: metrics that measure the attributes of any intermediate or final product of the
software development process [3]. The product metrics used in prior work are computed using a
snapshot of the code. Product metrics have been shown to be important predictors by studies such
as Khoshgoftaar et. al. [10], Jones et. al. [6], Khoshgoftaar et. al. [11], Khoshgoftaar et. al. [15],
and Khoshgoftaar et. al. [13].

Development metrics: metrics that measure attributes of the development process. The
development metrics used in prior work are usually computed using information in the change
management system or the version control system. Development metrics have been shown to be
important predictors by studies such as Khoshgoftaar et. al. [10], Khoshgoftaar et. al. [11],
Khoshgoftaar et. al. [15], and Khoshgoftaar et. al. [13].

Deployment and usage metrics (DU): metrics that measure attributes of deployment of the
software system and usage in the field. Little prior work has examined DU metrics, and no data
source is consistently used. DU metrics have been shown to be important predictors by studies
such as Jones et. al. [6], Khoshgoftaar et. al. [11], Khoshgoftaar et. al. [15], Khoshgoftaar et. al.
[13], and Mockus et. al. [22].

Software and hardware configurations metrics (SH): metrics that measure attributes of the
software and hardware systems that interact with the software system in the field. Little prior
work has examined SH metrics and no data source is consistently used. SH metrics have been
shown to be important predictors by Mockus et. al. [22].

Prior work has examined only commercial software systems, and no prior work has examined
predictors in all the categories simultaneously. Product and development predictors commonly
used in prior work can be computed for open source software systems since the data sources used
to compute the predictors (e.g. snapshots of the code and information in the version control
system) are commonly available for open source software projects. However, prior work
examining DU and SH metrics has had accurate information about system deployment and the
users, such as deployment logs and usage profiles (e.g. Khoshgoftaar et. al. [11]) or information
from a customer monitoring system (Mockus et. al. [22]). The data sources used in those studies

are generally not available for open source projects; therefore, the DU and SH metrics used in
prior work are not available. These concerns lead us to two additional questions:

Is it possible to collect DU, and SH predictors using data sources commonly available for open
source software projects?

What are the important predictors of field defects for OpenBSD?

2.3 Methods of establishing the importance of predictors
Three methods are commonly used to establish a predictor as important:

1. Show high correlation between the predictor and field defects. This method is recommended by IEEE [3]
and is used by Ohlsson and Alberg [25] and Ostrand and Weyuker [28].

2. Show that the predictor is selected using a model selection method. This method is used by Jones et al.
[6] and Mockus et al.[22].

3. Show that the accuracy of predictions improves with the predictor included in the prediction model. This
method is used by Khoshgoftaar et al. [10] and Jones et al. [6].

We use methods 1 and 2 to determine important predictors in this paper. Since we examine
predictors that may be included in a metrics-based field defect prediction model but do not
actually produce a prediction model, we do not use method 3.

3 SYSTEM DESCRIPTION
In this section, we present the open source software system OpenBSD. We present project details,
information on the code repository, information on the request tracking system, and information
on the mailing list archives.

3.1 Project details
OpenBSD is a Unix-style operating system written primarily in C. The project dates back to 1995
and has developers (i.e. users who have the write access rights to the CVS code repository) in
North America, South America, Europe, Australia, and Asia. This project is similar to the
FreeBSD project examined by Dinh-Trong and Bieman [33].

We examine the project between approximately 1998 and 2004. During that time, there were 10
releases (of which we examine 9, as we explain below) and the CVS code repository documented
development changes by 159 different developers.

The OpenBSD project uses the Berkley copyrights. The Berkley copyrights retain the rights of
the copyright holder, while imposing minimal conditions on the use of the copyrighted material
[26]; therefore, OpenBSD has been incorporated into several commercial products.

The OpenBSD project puts out a release approximately every six months. The release dates are
published on the web [26].

3.2 The code repository
The OpenBSD project manages its source code using a CVS code repository. Developers are
users who have both read and write access rights. Someone becomes a “developer” (i.e. getting an
account on the main server) by “doing some good work and showing that he/she can work with
the team” [26]. Everyone else has read access to the CVS code repository.

3.3 The request tracking system
The OpenBSD project uses a problem tracking system. Anyone can report a problem by using the
sendbug command built into OpenBSD [26]. Each problem report is assigned a unique number
and stored in the bugs database. The problem report can be tracked on-line using the unique
number. A problem report can be assigned one of four classes: sw-bug (software bug), doc-bug

(documentation bug), change request, and support. All problem reports are initially marked as
open, and then a developer acts on the report and changes the status accordingly.

Our measure of defects for OpenBSD is user submitted problem reports in the request tracking
system of the class software bugs. We count each problem report (which may not be unique)
because a user deemed the problem important enough to report. These software related problem
reports require a developer’s intervention to resolve. This measure of defects is used by Li et. al.
in [16]. Defects that occur after the release date are considered field defects. Defects that occur
during the development and test period are considered development defects.

3.4 Mailing lists
The OpenBSD project has 23 mailing lists in five categories:

• General interest lists

• Developer’s lists

• Platform specific lists

• CVS changes mailing lists

• CTM (emails out deltas to the source).

Not all lists are active and not all lists are archived consistently. The two most complete archives
are at sigmasoft [31] and MARC [18].

4 DATA COLLECTION
This section describes the data collection process we used to extract data from the request
tracking system, the CVS repository, and the mailing lists. It also describes the predictors we
collect.

We consider the published date of release (announced on the OpenBSD website) rounded to the
nearest month to be the release date for the release. We round the date to the nearest month due to
the time it takes to install the operating system, use the system, and discover and report a
problem. Someone reporting a bug right after the un-rounded release date is unlikely to be using
the latest release. This is the same approach taken by Mockus et. al. in [22].

We consider the date of the first reported defect rounded to the nearest month to be the start of
development. The date of the first reported defect usually occurs several months before the date
of release and represents the first time when a problem can be reported against the release that is
in development. The development period is then the duration between the start of development
and the release date.

4.1 The request tracking system
We wrote Java programs and perl programs to download each problem report from the OpenBSD
website and parse the report to extract the report open date, the class (e.g. sw-bug, doc-bug, or
change request), the release reported against, and the machine (i.e. the hardware configuration
such as i386 or sparc).

There was one anomaly. Three months of data were missing between August 2002 and October
2002. We verified this by examining the bugs mailing list archive (i.e. the mailing lists that
records messages to the request tracking system). The mailing list archive showed no bugs
recorded during that time interval even though there is activity on the bugs mailing list, which
indicates that problems did occur. This happened during development and deployment of release
3.2. As a result, we did not examine release 3.2.

4.2 The CVS repository
We used the CVS checkout command to download the tagged release version of the source code
from the CVS repository for releases 2.4 to 3.3 (except release 3.2).

We used four metrics tools and several scripts to compute product metrics from the C source
files. The tools we used were:

• RSM by M Squared Technologies [23]

• SourceMonitor by Campwood Software [1]

• c_count written by Thomas E. Dickey [2]

• metrics written by Brian Renaud [19]

We arrived at these tools by conducting a web search, asking experts for help, and posting to the
comp.software-eng and comp.software.measurement newsgroups. We evaluated the collection of
tools and selected those listed above.

We encountered an existing CVS bug when downloading the source code for release 2.4 and
release 2.5. As a result, we had to bypass a directory that contained HTML help documents. We
also encountered 10 files with coding anomalies that the metrics tools could not resolve. We
skipped those files for all releases. These files constitute less than .1% of the number of C source
files.

We used the CVS log command to obtain information on changes to the source code. We used the
log information between the start of development of release 2.4 and the release date of release
3.3. There were 97,566 committed changes in the development periods of the nine releases.

4.3 Mailing list archives
We wrote java programs to extract the number of messages posted each month in the mailing lists
archives.

Not all lists were archived consistently and not all lists were active. Consistent data was not
available for many of the lists before 1998; therefore, we only considered releases after 1998.
When an archive showed no messages for a certain month, we were often unable to determine if
no messages were posted or if the archive failed to properly record messages (both of which
occur). Therefore, lists that had intervals in which no messages were posted for more than three
months were not considered.

4.4 Metrics
We provide a summary of the 139 predictors we collected. Appendix B lists the full set of metrics
and Appendix C contains the collected data.

4.4.1 Product metrics
We collected 101 product metrics using snapshots of the code from the CVS code repository
(details in Appendix B and C). Due to tooling constraints, we did not collect all the product
metrics used in the literature. However, we did collect metrics that covered all of the dimensions
of variation in the product metrics identified by prior work. Munson and Khoshgoftaar identified
the dimensions of product metrics (i.e. components of variance captured by product predictors)
used in the literature using principal component analysis in [24]. Principal component analysis
captures the dimensions of variance in a group of predictors. Predictors that load on the same
principal component capture the same dimension of variance and are highly correlated with each
other [24]; therefore, it may be sufficient to use a predictor from each dimension. We give the
dimensions and examples of the product metrics we used to capture the variation in the dimension
in table 1. The product metrics we used had been shown to load on the principal component by
Munson and Khoshgoftaar in [24]. Appendix B lists the full set of product metrics.

Table 1. Product metrics

Dimension Product metrics used in this study

Control: metrics related the flow of
program control

Cyclo: Cyclomatic complexity

KWbreak: Number of occurrences of the key word break (which is
equivalent to possible program knot count as shown by Khoshgoftaar
and Szabo [14])

Action: number of distinct operations
and statements

UOpand: Unique operands

UOpator: Unique operators

Size: size or item count of a program

Statements: Total number of statements per file summed across all
files

LOC: Lines of code per file summed across all files

Effort: Halstead’s effort metrics PGeffort: Halstead’s effort metric per file summed across all files

Modularity: degree of modularity of
a program

DeepNest: Number of statements at nesting level >9 per file summed
across all files

4.4.2 Development metrics
We collected 22 development metrics (details in Appendix B and C). Due to differences in the
style of development, we were not able to collect the same development metrics used in the
literature. However, we tried to collect metrics that captured the same intent as the metrics used in
the literature in our study. We collected metrics that cover all of the independent dimensions of
variation in the development metrics identified by Khoshgoftaar et. al. in [13] and [15].
Khoshgoftaar et. al. used principal component analysis to identify the dimensions of variation in
their development metrics in [13] and [15]. Khoshgoftaar et. al. examined a commercial software
system while we examined an open source software system; therefore, we made changes to the
metrics to account for the differences between commercial and open source software systems. We
offer an interpretation of the dimensions captured by each principal component (which is not
offered by Khoshgoftaar et. al.), examples of the metrics belonging to each dimension in [13] and
[15], and the metrics we used to capture the same sources of variance in table 2. We made one
major modification. Since OpenBSD did not distinguish between designers and testers, we
combined the dimensions identified by Khoshgoftaar et. al. that separated designers and testers.
We believe our metrics captured the same source of variation as the referenced metrics since the
only changes we made were to accommodate differences between commercial and open source
styles of development. (Metrics collected using the CVS code repository are indicated by ‘CVS’,
ones collected using the request tracking system are indicated by ‘RTS’ , and ones collected using
mailing list archives are indicated by ‘MLA’ .)

Table 2. Development metrics

Dimensions [13] and [15] Example of metrics in
dimensions [13] Development metrics used in this study

Dimension 1:

the number of changes

Total number of changes to the
code for any reason

TotalUpdate (CVS): Total number of
updates during the development period

Dimension 2:

experience of the people
making changes

Number of updates to this module
by designers who had 10 or less
total updates in entire company
career

BotHalfC (CVS): Number of different
developers making changes to files that
are c source files during the development
period who are in the bottom 50% of all
developers ranked based on the number of
changes

Dimension 3:

amount of change to the
code

Net increase in lines of code
Difference (CVS): Lines added to c source
files minus lines deleted from c source
files during the development period

Dimension 4 and 7:

problems found during the
development of the prior
release

Number of problems fixed that
were found by designers or
during beta testing in the prior
release

PreBugsPrev (RTS): Total number of field
defects reported during the development
period of the previous release

Dimension 5 :

field problems found by
customers in prior releases

Number of problems fixed that
were found by customer in the
prior release

PreBugsAll (RTS): Total number of field
defects reported during the development
period in all releases

Dimension 6 and 8:

problems found during the
development of the current
release

Number of problems found by
designers or during beta testing
in the current release

PreBugsCurrent (RTS): Number of field
defects reported against the release under
development during the development
period

4.4.3 Deployment and usage metrics
We collected nine deployment and usage metrics (details in Appendix B and C). The metrics we
collected fall into two categories: mailing list predictors and request tracking system predictors.
Mailing list predictors counted the number of messages to non-hardware related mailing lists
during development. We believed our mailing list predictors captured characteristics of
deployment and usage because they quantified the amount of interest in OpenBSD, which might
be related to how many systems were deployed and how much the systems were used. Request
tracking predictors counted the number of problem reports during development that were not
defects. We believed our request tracking system predictors captured characteristics of
deployment and usage because users had to install OpenBSD and use the system before they
could report a problem. We present the two categories, examples of predictors in the categories,
and short justifications for the predictors in table 3. Appendix B lists the full set of deployment
and usage metrics.

Table 3. Deployment and usage metrics

Category of
predictors

DU metrics used in this study Justification

Mailing list
predictors

MiscMailings (MLA): number of messages to
the miscellaneous mailing list, a general interest
mailing list, during the development period

AdvocayMailings (MLA): number of messages
to the advocacy mailing list (which promotes the
use of OpenBSD), a general interest mailing list,

These metrics quantify the
amount of interest in OpenBSD,
which may be related to how
many systems are deployed and
how much the systems are used.

during the development period

Request tracking
system predictors

ChangeRequests (RTS): Number of change
requests during the development period

DocBugs (RTS): Number of reported
documentation problems during the
development period

These metrics quantify the
amount of deployment and usage
because users must install
OpenBSD and use the system
before they can request changes
or report documentation problems

4.4.4 Software and hardware configurations metrics
We collected seven software and hardware configurations metrics in all (details in Appendix B
and C). The metrics we collected fall into two categories: mailing list predictors and request
tracking system predictors. Mailing list predictors counted the number of messages to hardware
specific mailing lists during development. We believed our mailing list predictors captured
characteristics of software and hardware configurations because they reflect the amount of
interest/activity related to the specific hardware, which might be related to how many of the
specified hardware machines had OpenBSD installed. Request tracking predictors counted the
number of defects (field defects and development defects) during development that identify the
type of hardware used. We believed our request tracking system predictors captured
characteristics of software and hardware configurations because users had to install OpenBSD on
the specified HW before they could report a problem. We present the two categories, examples of
predictors in the categories, and short justifications of the predictors in table 4. Appendix B lists
the full set of software and hardware configurations metrics.

Table 4. Software and hardware configurations metrics

Category of
predictors

SH metrics used in this study Justification

Mailing list
predictors

SparcMailing (MLA) Number of
messages to the sparc hardware
specific mailing list, a platform
specific mailing list, during the
development period

This metrics may reflect the amount of
interest/activity related to the specific
hardware, which may be related to how
many of the specific hardware machines
have OpenBSD installed.

Request tracking
system predictors

CurrentBSDBugs i386HW (RTS):
Number of field defects reported
against the current release during the
development period that identify the
machine as type i386

These metrics may quantify the number of
machines with specific HW that have
OpenBSD installed since users must install
and use the system to report a problem

5 DATA ANALYSIS
First, we attempted to fit Weibull models to development defects. We used NLS regression to fit
the Weibull models. NLS is a widely used model fitting method discussed in detail by Lyu in
[17].

Next, we computed the correlations between the predictors and field defects in order to identify
important predictors. We did not consider predictors that did not vary since they cannot predict
field defects (e.g. we discarded the predictor measuring the number of instances of the key work
‘struct’ in the code, which was zero for all releases). We computed Spearman’s rank correlation

(?), Kendall’ s rank correlation (t), and the statistical significance of the correlations. These are
standard ways of computing rank correlation. Holland and Wolfe [5] recommended using rank
correlation when the data are not be normally distributed. We determined that the data were not
normally distributed by examining data plots. Refer to Weisberg [35], Venable and Ripley [34],
and Hollander and Wolfe [5] for detailed explanations of rank correlation.

Finally, we performed a forward AIC model selection to identify important predictors. The
predictors selected using the forward AIC model selection method complement each other since
each predictor improves the fit substantially (i.e. enough to overcome the AIC penalty) even with
the other predictors already in the model. The forward AIC model selection method can be used
to select a subset of predictors as a first step in a regression analysis even if the data is not
normally distributed. Refer to Weisberg [35] for a detailed explanation. The model selection
process usually continues until the AIC score does not improve with additional predictors;
however, since we had 9 observations and 139 predictors, we stopped at three iterations to
prevent over fitting. Similar model selection methods were used by Ostrand et. al. in [29] and
Khoshgoftaar et. al. in [12].

For all our analysis, we used the open source statistical program R [30].

6 RESULTS
We present the results of fitting the Weibull model, evaluating the predictors using correlation,
evaluating the predictors using forward AIC model selection, and comparing important
predictors. We find that the number of messages to the technical mailing list during development
is the best predictor.

6.1 Prediction using a software reliability model
We are not able to fit a Weibull model to development defects. The NLS model fitting procedure
does not converge for any of the releases. Our finding that the modeling fitting procedure does
not converge is consistent with Kenny’s findings in [7], which show that it is not possible to fit a
Weibull model until most of the defects have occurred (i.e. past the hump in the number of
defects). A typical release with the release date indicated is in shown figure 1. Plots of all the
releases are in Appendix A. In 7 out of 9 releases, the release date is within two months of the
time the rate of defect occurrences peak. In 8 out of 9 releases, the release date is either within
one month or before the time the rate of defect occurrences peak. We cannot predict field defects
by fitting a Weibull model to development defects.

Figure 1. Defects for OpenBSD release 3.0

6.2 Analysis of predictors using correlations
Table 5 presents predictors that are significant at the 95% confidence level (CL) using rank
correlation (a blank indicates that a predictor’s correlation is not significant at the 95% CL). We
briefly explain the predictors in this section.

Product metrics (computed using a snapshot of the code from the CVS code repository and
the RSM metrics tool):

• TotMeth: Total number of methods.

• PubMeth: Number of public methods.

• InlineComment: Number of inline comments.

• ProtMeth: Number of protected methods.

• CommentsClass: Number of comments in classes summed across all classes.

• InterfaceCompClass: Number of parameters + number of returns in classes summed across all
classes.

• TotalParamClass: Total number of parameters in classes summed across all classes.

Development metric (computed using the CVS code repository):

• UpdateNotCFiles: During the development period, the number of updates (deltas) to files that
are not c source files.

Deployment and usage metric (computed using mailing list archives):

• TechMailing: Number of messages to the technical mailing list, a developer’s mailing list,
during development.

Software and hardware configuration metric (computed using mailing list archives):

• SparcMailing: number of messages to the sparc hardware specific mailing list, a platform
specific mailing list, during the development period.

Table 5. Rank correlations

Predictor
Kendall

Correlation
p-value

Spearman

Correlation
p-value

 TechMailing 0.61 0.02 0.78 0.02

 TotMeth 0.61 0.02 0.73 0.03

 PubMeth 0.61 0.02 0.73 0.03

 CommentsClass 0.61 0.02 - -

 ProtMeth 0.57 0.03 0.67 0.05

 InlineComment 0.56 0.04 0.68 0.05

 InterfaceCompClass 0.51 0.05 - -

 TotalParamClass 0.51 0.05 - -

6.3 Analysis of predictors using forward AIC model selection
We use three iterations of the forward AIC model selection method to select important predictors.
Due to space limitation, we present the final linear model in table 6. The predictors are listed in
the order selected. The AIC score of the final model is 75.52. The r2 between the fitted model and
field defects is 0.93. This high correlation suggests possible over fitting and confirms the need to
stop at three iterations.

Table 6. AIC selected model

Variable Estimate coefficient Standard Error t value Pr(>|t|)

(Intercept) 134.32 18.06 7.437 0.0007

TechMailing 0.1102 0.015 7.445 0.0007

UpdatesNotCFiles -0.0289 0.005 -5.757 0.0022

SparcMailing 0.1406 0.045 3.153 0.0253

The linear model in table 6 is not intended to be a valid prediction model. Additional steps need
to be taken (e.g. adjust for non-constant variance) before the model can be used for prediction.
Further validation of the predictors is also needed. We hope to do so in future work.

The estimated coefficients require interpretation. Since ranges of the predictors differ and all
predictors are statistically significant, it is sensible to examine only the direction of the estimated
coefficients (i.e. if they positive or negative). The coefficient for TechMailing is positive,
indicating that increases in the metric correspond to more field defects. TechMailing measures the
amount of deployment and usage of the system. This metric quantifies the amount of interest in
OpenBSD, which may be related to how many systems are deployed and how much the systems
are used. Our finding that increased deployment and usage correspond to more field defects is
consistent with findings in Jones et al. [6] and Mockus et al. [22].

The coefficient for UpdatesNotCFiles is negative, indicating that increases correspond to fewer
field defects. We think larger UpdatesNotCFiles may indicate maintenance (i.e. efforts to
eliminate problems); therefore, it corresponds to fewer field defects. The coefficient for
SparcMailing is positive indicating that increases in SparcMailing correspond to more field
problems. Increase in SparcMailing may indicate increased activity/usage related to the sparc
hardware, which may lead to field defects unaccounted for by the other predictors.

6.4 Comparison of important predictors
We compare the important predictors by examining the rank correlation among the predictors and
field defects. This may allow us to determine which predictors may produce better predictions.
We do not have enough observations to perform a principal component analysis.

The correlations between important predictors selected using rank correlation and field defects in
table 7 indicate that increases in each of the predictors correspond to more field defects. These
correlations are consistent with findings in prior work. The relationship between TechMailing (a
DU metrics) and field defects is consistent with findings in Jones et. al. [6] and Mockus et. al.
[22]. All other important predictors are product metrics. Our finding that increases in the product
correspond to more field defects is consistent with findings in Ostand et. al.[29] and Jones et. al.
[6]. However, the predictors are highly correlated with each other. This suggests that it may be
sufficient to use just one of the predictors and that including all the predictors in a model may
result in the multi-co-linearity problem discussed in Feton and Pfleeger [4] .

Table 7. Correlations among important predictors

 AIC selected predictors Correlation selected predictors

Field defects

Sparc

Mailing

Updates

NotCFiles

Tech

Mailing

Tot

Meth

Pub

Meth

Inline

Comment

Prot

Meth

Field defects 1.000 0.278 -0.111 0.611 0.611 0.611 0.556 0.567

SparcMailing 0.278 1.000 0.500 0.111 0.556 0.556 0.278 0.433

UpdatesNotCFiles -0.111 0.500 1.000 0.167 0.278 0.278 0.222 0.367

TechMailing 0.611 0.111 0.167 1.000 0.444 0.444 0.611 0.500

TotMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767

PubMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767

InlineComment 0.556 0.278 0.222 0.611 0.722 0.722 1.000 0.833

ProtMeth 0.567 0.433 0.367 0.500 0.767 0.767 0.833 1.000

The correlation among important predictors selected using the forward AIC model selection
method are lower than the correlation among important predictors selected using correlations.
This confirms that the each predictor selected using model selection captures information not
captured by the other predictors; therefore, they will complement each other in a prediction model
and avoid the multi-co-linearity problem.

7 Discussion
We have established that it is not possible to fit a Weibull model to development defects for
OpenBSD. We present results from fitting the Weibull model because prior work has identified
the Weibull model as the preferred model. In addition, we also have results from experiments
showing that it is not possible to make meaningful field defect predictions by extending other
software reliability models fitted to development defects (i.e. the Gamma model, the Logarithmic
model, the Exponential model, the Power model). Due to space limitations, those results are
omitted. These results motivate the need to consider metrics-based field defect prediction.

We find that it is possible to collect product, development, DU, and SH predictors using data
sources commonly available for open source software systems. In addition to validating the CVS
code repository and the request tracking system as sources of predictors, we establish mailing list
archives as an important data source, one not considered by previous studies.

We find that the most important predictor for the OpenBSD project is TechMailing collected
from mailing list archives. The TechMailing predictor is the most highly rank correlated predictor
with the number of defects and is the first variable selected using AIC forward model selection.
We have validated this finding by talking with developers on the discussion forum. Feedback [27]
indicates that this finding fits with the developers’ intuition that participation by active developers
(reflected by postings to the TechMailing list) leads to more defect discoveries. A plot of
TechMailing against field defects is shown in figure 3. Other important predictors selected
include four product metrics collected from the CVS code repository, a development metric
collected from the CVS code repository (UpdatesNotCFiles), and a software and hardware
configurations metric collected from mailing list archives (SparcMailings).

Figure 3. TechMailing and field defects

In contrast to findings in commercial software systems, (e.g. Mockus et. al. [21], Khoshgoftaar et.
al. [10], and Khoshgoftaar et. al. [11]) predictors regarding changes to source files and those
regarding developers are not important predictors for OpenBSD. We suspect this is due to the
review and check-in process employed by the OpenBSD project (and possibly by other open
source projects as well), which assures that all changes are of a certain quality regardless of the
number of changes or the author of the change. All changes must be checked-in by a developer,
who is someone that has shown ability to work on the code. This is supported by the explanation
on the project webpage, which details how someone becomes a developer and gains the ability to
check-in code. In addition, many changes are reviewed. We find evidence of this by observing
logs of committed changes. Many logs contain markers (of the type “developer id” followed by
the @ sign, e.g. art@) indicating that another developer has reviewed the changes.

8 CONCLUSION
In our case study of OpenBSD, we find that it is not possible to predict field defects by extending
a Weibull model fitted to development defects. This indicates the importance of metrics-based
field defect prediction models for open source software systems. We also find that it is possible to
collect product, development, DU, and SH metrics using commonly available data sources for
opens source projects. In addition, we identify important predictors that can be used to construct a
field defect prediction model for OpenBSD using modeling methods in the literature. Such a

model can help organizations make informed decisions regarding open source software
components.

The paper presents novel and interesting findings, which are appropriate for a case study.
However, our experiments need to be replicated on other open source projects. Replications can
help verify that the relationships we have established are not due to chance alone. Future studies
can include similar projects developing operating systems like FreeBSD or Debian and other
types of systems like MySQL or JakartaTomcat.

Replication of our experiments is relatively straightforward since data sources we use are
commonly available for open source software systems. For example, all projects hosted by
SourceForge [32] use a CVS code repository, a request tracking system, and have mailing lists.

We do not consider non-c source files in our analysis (e.g. perl files and assembly files). These
files may contain valuable information. However, since most of the system is written in c, we feel
c source files are the most appropriate files to analyze. In release 3.4 (the most recent release we
examine), there are ~36384 files in total. Approximately 17578 are c source files, 2378 are perl
source files, and 1624 are assembly files. The remaining files are mostly documentation,
configuration, and installation files.

There maybe other metrics we have failed to collect. For example, it may be possible to parse the
defect reports for more detailed information regarding bugs, such as which software applications
were running when the bug occurred. Since the data sources are available to everyone, we
encourage others to explore other predictors.

Results in this paper represent a promising step towards quantitatively-based decision making
regarding open source software components. The next step is to use the results in this paper and
metrics-based modeling methods in the literature to construct metrics-based field defect
prediction models and then to compare their predictions (e.g. the trees based method used by
Khoshgotaar et. al. in [13], the neural networks method used by Khoshgoftaar et. al. in [14], and
the linear regression used by Mockus et. al. in [22]).

9 ACKNOWLEDGMENTS
This research was supported by the National Science Foundation under Grants ITR-0086003, IIS-
0414698, and CCF-0438929, by the Carnegie Mellon Sloan Software Center, and by the High
Dependability Computing Program from NASA Ames cooperative agreement NCC-2-1298. We
thank the developers of OpenBSD for answering our postings. We thank the tool vendor who
gave us trial licenses. We thank George Fairbanks, Patrick Riley, and Greg Wolfson for their help
and insight.

10 REFERENCES
[1] Campwood Software. http://www.campwoodsw.com/
[2] c_count. http://dickey.his.com/c_count/c_count.html
[3] IEEE standard for a software quality metrics methodology. In IEEE Std 1061-1998, 1998.
[4] Norman Fenton and Shari Pfleeger. Software Metrics - A Rigorous and Practical Approach.

Chapmann & Hall, London, 1997
[5] Myles Hollander and Douglas A. Wolfe. Nonparametric statistical inference. Wiley & Sons, 1973.
[6] Wendell Jones, John P. Hudepohl, Taghi M. Khoshgoftaar, and Edware B. Allen. Application of a

Usage Profile in Software Quality Models. In 3rd European Conference on Software Maintenance and
Reengineering, 1999.

[7] Garrison Kenny. Estimating defects in commercial software during operational use. In IEEE TR on
Reliability, 1993.

[8] Taghi M. Khoshgoftaar, Edward B. Allen, Wendell Jones, and John Hudepohl. Which software
modules will have faults that will be discovered by customers? In Journal of Software Maintenance:
Research and Practice, 1999

[9] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S. Kalaichelvan, and Nitith Goel. Predictive modeling
of software quality for very large telecommunications systems. In IEEE International Conference on
Communications, 1996.

[10] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S. Kalaichelvan, Nitith Goel, John Hedepohl, and
Jean Mayrand. Detection of fault-prone program modules in a very large telecommunications system.
In Proceedings of ISSRE, 1995.

[11] Taghi M. Khoshgoftaar, Edward B. Allen, Xiaojing Yuan, Wendell D. Jones, and John P. Hudepohl.
Preparing measurements of legacy software for predicting operational faults. In ICSM, 1999.

[12] Taghi Khoshgoftaar, Adhijit Pandya, and David Lanning. Application of neural networks for
predicting program faults. In Annals of Software Engineering, 1995.

[13] Taghi M. Khoshgoftaar, Ruqun Shan, and Edward B. Allen. Using product, process, and execution
metrics to predict fault-prone software modules with classification trees. In HASE, 2000.

[14] Taghi Khoshgoftaar and Robert Szabo. Using neural networks to predict software faults during testing.
In IEEE Transaction on Reliability, 1996.

[15] Taghi M. Khoshgoftaar and Vishal Thaker and Edward Allen. Modeling fault-prone modules of
subsystems. In Proceedings of ISSRE, 2000.

[16] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P. Santhanam. Empirical Evaluation of
Defect Projection Models for Widely-deployed Production Software Systems. FSE, 2004.

[17] Michael Lyu. Handbook of Software Reliability Engineering. IEEE Society Press, USA, 1996.
[18] MARC. http://marc.theaimsgroup.com/
[19] metrics. http://www.chris-lott.org/resources/cmetrics/
[20] Audris Mockus, Roy Fielding, and James Herbsleb. A case study of open source software

development: the Apache server. ICSE, 2000.
[21] Audris Mockus, David Weiss, and Ping Zhang. Understanding and predicting effort in software

projects. In ICSE, 2003
[22] Audris Mockus and Ping Zhang and Paul Luo Li. Drivers for Customer Perceived Quality. In ICSE,

2005.
[23] M Squared Technologies. http://msquaredtechnologies.com
[24] John Munson and Taghi Khoshgoftaar. The dimensionality of program complexity. In ICSE, 1989.
[25] Niclas Ohlsson and Hans Alberg. Predicting fault-prone software modules in telephone switches. In

IEEE Transactions on Software Engineering, 1996
[26] OpenBSD. www.openbsd.org.
[27] OpenBSD discussion thread. http://marc.theaimsgroup.com/?t=110788031900001&r=1&w=2
[28] Thomas J. Ostrand and Elaine J. Weyuker. The Distribution of Faults in a Large Industrial Software

System. In ISSTA, 2002.
[29] Thomas J. Ostrand and Elaine J. Weyuker and Thomas Robert M. Bell. Where the bugs are. In ISSTA,

2004.
[30] R. http://www.r-project.org/
[31] Sigmasoft. http://www.sigmasoft.com/~openbsd/
[32] SourceForge. http://sourceforge.net/
[33] Trimg Dinh-Trong and James M. Bieman, Open source software development: a case study of

FreeBSD. Metrics, 2004.
[34] W.N. Venables and Brian D. Ripley. Modern Applied Statistics with S-plus, 4th edition. Springer-

Verlag, 2000.
[35] Sanford Weisberg. Applied Linear Regression, 2nd Edition. Wiley and Son, 1985.
[36] Xiaohong Yuan, Taghi Khoshgoftaar, Edward Allen, and K Gasesan. An application of fuzzy

clustering to software quality prediction. In IEEE Symposium on Application-Specific Systems and
Software Engineering Technology, 2000.

11 APPENDIX A
In this section, we present results of fitting software reliability models to development defects.
We consider the same set of models considered in Li et al. [16].

The Weibull model, Exponential model, and Logarithmic model could not be fitted using data
between first availability and general availability for any of the releases. The Gamma model
could be fitted for only 2 of the releases (R2.8 and R3.3). However, the predictions are not
accurate. The predicted total number of defect occurrences are 71.5 ~ 72 occurrences and 169.9 ~
170 occurrences for the two releases respectively. The actual total numbers of defect occurrences
for the releases are 239 and 172. The power model could be fitted for all the releases, but the
fitted models were not meaningful. Each model was strictly increasing. The fitted models and the
actual defect occurrences for OpenBSD 2.8 and 3.3 are in figures A1-A2.

We conclude that it is not possible to fit a model using data between first availability and general
availability to predict the number of defect occurrences after general availability. This agrees with
Kenny’s findings in [7] that it is not possible to fit Weibull model parameters to a model until
most of the defects have occurred. The idea is that for initially increasing and eventually
decreasing defect occurrence patterns, most of the defects need to have already occurred (i.e. past
the hump) before a software reliability model can be fitted. All of the releases with the release
dates labeled are in figures A3-A11.

Figure A1. Field defects and fits release 2.8 Figure A2. Field defects and fits release 3.3

Figure A3. Field defects release 2.4 Figure A4. Field defects release 2.5

Figure A5. Field defects release 2.6 Figure A6. Field defects release 2.7

Figure A7. Field defects release 2.8 Figure A8. Field defects release 2.9

Figure A9. Field defects release 3.0 Figure A10. Field defects release 3.1

Figure A11. Field defects release 3.3

12 APPENDIX B
In this section, we present the full set of metrics used in our study.

12.1 Product metrics
LOC: Lines of code calculated by the metrics tool Source Monitor

Statements: Statements in C and .h files calculated by the metrics tool Source Monitor

Functions: Statements calculated by the metrics tool Source Monitor

Bandwidth: Modified Bandwidth metric calculated using statements and nesting depth
information from the metrics tool Source Monitor. Source Monitor only count nesting up to 10
levels. Therefore, the metrics clip the statements at nesting of 10 levels.

DeepNest: Statements at nesting level greater than 10 calculated using the metrics tool Source
Monitor

Cstatements: Statements in C source files calculated by the metrics tool C_Count

Lineswithcomments: Lines with comments in C source files calculated by the metrics tool
C_Count

InlineComment: Lines with inline comments in C source files calculated by the metrics tool
C_Count

Blanklines: Blank lines in C source files calculated by the metrics tool C_Count

Linesforpreprocess: Pre-processor lines in C source files calculated by the metrics tool C_Count

Lineswithcode: Lines with code in C source files calculated by the metrics tool C_Count

Totallines: Total number of lines in C source files calculated by the metrics tool C_Count

Statements: Total number of statements in C source files calculated by the metrics tool C_Count

Commentchars: Total number of comment characters in C source files calculated by the metrics
tool C_Count

Nontextcommentchars: Total number of non-text comment characters in C source files calculated
by the metrics tool C_Count

Whitespacechars: White space characters in C source files calculated by the metrics tool
C_Count

Preprocessorchars: Characters for the pre-processor in C source files calculated by the metrics
tool C_Count

Statementchars: Statement characters in C source files calculated by the metrics tool C_Count

Totalchars: Total number of characters in C source files calculated by the metrics tool C_Count

Tokens: Total number of recognized program token in C source files calculated by the metrics
tool Metrics

UOpand: Unique operands in C source files calculated by the metrics tool Metrics

UOpator: Unique operators in C source files calculated by the metrics tool Metrics

TPpand: Total operands in C source files calculated by the metrics tool Metrics

TOpator: Total operators in C source files calculated by the metrics tool Metrics

PGlength: Halstead’s estimated program length in C source files calculated by the metrics tool
Metrics

PGvolume: Halstead’s program volume in C source files calculated by the metrics tool Metrics

PGeffort: Halstead’s estimated program effort in C source files calculated by the metrics tool
Metrics

PGlevel: Halstead’s estimated program level in C source files calculated by the metrics tool
Metrics

Files: Number of C files calculated by the metrics tool RSM

FunctionsRSM: Number of functions calculated by the metrics tool RSM

PhysicalLines: Number of physical lines calculated by the metrics tool RSM

LOCRSM: Lines of code calculated by the metrics tool RSM

eLOC: Effective lines of code calculated by the metrics tool RSM

lLOC: Logical lines of code calculated by the metrics tool RSM

Cyclo: Cyclomatic complexity calculated by the metrics tool RSM

InterfaceComp: Interface complexity calculated by the metrics tool RSM

TotalParams: Total parameters used calculated by the metrics tool RSM

TotalReturn: Total returns calculated by the metrics tool RSM

CommentsRSM: Number of comments calculated by the metrics tool RSM

BlanksRSM: Number of blank lines calculated by the metrics tool RSM

Classes: Number of classes calculated by the metrics tool RSM

NestedClasses: Number of nested classes calculated by the metrics tool RSM

TotMeth: Number of methods in classes alculated by the metrics tool RSM

PubMeth: Number of public methods in classes calculated by the metrics tool RSM

Publicattributes: Number of public attributes in classes calculated by the metrics tool RSM

ProtMeth: Number of protested methods in classes calculated by the metrics tool RSM

Protectedattributes: Number of protected attributes in classes calculated by the metrics tool RSM

PrivateMethods: Number of private methods in classes calculated by the metrics tool RSM

Privateattributes: Number of private attributes in classes calculated by the metrics tool RSM

Physicallinesclass: Number of physical lines in classes calculated by the metrics tool RSM

LOCclass: Lines of code in classes calculated by the metrics tool RSM

eLOCclass: Effective lines of code in classes calculated by the metrics tool RSM

lLOCclass: Logical lines of code in classes calculated by the metrics tool RSM

Cycloclass: Cyclomatic complexity in classes calculated by the metrics tool RSM

InterfaceCompClass: Interface complexity in classes calculated by the metrics tool RSM

TotalParamClass: Total parameters in classes calculated by the metrics tool RSM

TotalReturnClass: Total returns in classes calculated by the metrics tool RSM

CommentsClass: Comments in classes calculated by the metrics tool RSM

BlanksClass: Number of blank lines in classes calculated by the metrics tool RSM

Case: Number of occurrence of the key word “case” calculated by the metrics tool RSM

KWBreak: Number of occurrence of the key word “break” calculated by the metrics tool RSM

LOCh: Lines of code in .h files calculated by the metrics tool RSM

If: Number of occurrence of the key word “ if” calculated by the metrics tool RSM

Else: Number of occurrence of the key word “else” calculated by the metrics tool RSM

{}: Number of lines with key words “ { “ or “ } ” calculated by the metrics tool RSM

Goto: Number of occurrence of the key word “goto” calculated by the metrics tool RSM

Return: Number of occurrence of the key word “ return” calculated by the metrics tool RSM

(): Number of lines with key words “ (“ or “)” calculated by the metrics tool RSM

Exit: Number of occurrence of the key word “exit” calculated by the metrics tool RSM

_exit: Number of occurrence of the key word “_exit” calculated by the metrics tool RSM

Abort: Number of occurrence of the key word “abort” calculated by the metrics tool RSM

eLOCh: Effective lines of code in .h files calculated by the metrics tool RSM

Macro: Number of occurrence of the key word “macro” calculated by the metrics tool RSM

Union: Number of occurrence of the key word “union” calculated by the metrics tool RSM

lLOCh: Logical lines of code in .h files calculated by the metrics tool RSM

Class: Number of occurrence of the key word “class” calculated by the metrics tool RSM

Blankh: Blank lines in .h files calculated by the metrics tool RSM

Commenth: Comments in .h files calculated by the metrics tool RSM

Inline: Inline comments in .h files calculated by the metrics tool RSM

TotalLogicalh: Total logical lines in .h files calculated by the metrics tool RSM

Memoryalloc: Number of occurrence of the key word “alloc” for memory calculated by the
metrics tool RSM

Memoryfree: Number of occurrence of the key word “ free” for memory calculated by the metrics
tool RSM

TotalPhysicalh: Total physical lines in .h files calculated by the metrics tool RSM

Memorynew: Number of occurrence of the key word “new” for memory calculated by the metrics
tool RSM

Memorydelete: Number of occurrence of the key word “delete” for memory calculated by the
metrics tool RSM

Literalstrings: Number of occurrence of literal strings calculated by the metrics tool RSM

Continuation: Number of occurrence of line continuations calculated by the metrics tool RSM

Preprocessor: Number of preprocessor lines calculated by the metrics tool RSM

Include: Number of “ include” calculated by the metrics tool RSM

Define: Number of “defines” calculated by the metrics tool RSM

Typedef: Number of “ typedef” calculated by the metrics tool RSM

Const: Number of occurrence of the key word “const” calculated by the metrics tool RSM

Enum: Number of occurrence of the key word “enum” calculated by the metrics tool

Do: Number of occurrence of the key word “do” calculated by the metrics tool RSM

While: Number of occurrence of the key word “while” calculated by the metrics tool RSM

Switch: Number of occurrence of the key word “switch” calculated by the metrics tool RSM

Default: Number of occurrence of the key word “default” calculated by the metrics tool RSM

For: Number of occurrence of the key word “ for” calculated by the metrics tool RSM

Baseclass: Number of base classes calculated by the metrics tool RSM

Derivedclass: Number of base classes calculated by the metrics tool RSM

Quality: Number of quality notices by the metrics tool RSM

12.2 Development metrics
UpdateNotCFiles: Number of updates to files that are not C source files during development

CUpdate: Number of updates to files that are C source files during development

TotalUpdate: Total number of updates during development

NotcAdded: Number of lines added to files that are not C source files during development

CAdded: Number of lines added to files that are C source files during development

Added: Total number of lines added during development

Notcdeleted: Number of lines deleted from files that are not C source files during development

Cdeleted: Number of lines deleted from files that are C source files during development

Deleted: Total of lines deleted during development

Modified: Total number of lines modified during development

Difference: Lines added minus lines deleted during development

Notcnumauthors: Number of authors of changes to files that are not C source files during
development

Cnumauthors: Number of authors of changes to files that are C source files during development

Totalnumauthors:Total number of authors of changes during development

BotHalfnotC: Number of changes to files that are not C source files by authors in the bottom half
in terms of number of changes

BotHalfC: Number of changes to files that are C source files by authors in the bottom half in
terms of number of changes

BotHalfTotal: Number of changes to files by authors in the bottom half in terms of number of
changes

PreBugsAll: Number of bugs during development for all active releases

PreBugsPrev: Number of bugs during development for the previous release

PreBugsCurrent: Number of bugs during development for the current release

PreBugsUnknown: Number of bugs during development where the release is unspecified

Months: Months between first defect and deployment

12.3 Deployment and usage metrics
MiscMailings: Number of messages to the misc mailing list during development.

AdvocayMailings: Number of messages to the advocay mailing list during development.

AnnounceMailings: Number of messages to the announcement mailing list during development.

PortsMailings: Number of messages to the ports mailing list during development.

WWWMailings: Number of messages to the www mailing list during development.

BugsMailings: Number of messages to the bugs mailing list during development.

TechMailings: Number of messages to the technical mailing list during development.

ChangeRequests: Change requests during development

DocBugs: Document problems during development

12.4 Software and hardware configurations metrics
AllbugsotherHW: Number of bugs during development for all active releases against all other
HW

AllBSDBugsi386HW: Number of bugs during development for all active releases against x86 HW

AllBSDBugssparcHW: Number of bugs during development for all active releases against sparc
HW

CurrentBSDBugsotherHW: Number of bugs during development for the current releases against
all other HW

CurrentBSDBugsi386HW: Number of bugs during development for the current releases against
x86 HW

CurrentBSDBugssparcHW: Number of bugs during development for the current releases against
sparcHW

SparcMailings: Number of messages to the sparc mailing list during development.

13 APPENDIX C
In this section, we present the values of the metrics we collected for releases 2.4 – 3.3 (except
release 3.2).

Metric Release
2.4

Release
2.5

Release
2.6

Release
2.7

Release
2.8

Release
2.9

Release
3.0

Release
3.1

Release
3.3

LOC 5170933 5340424 5810112 6228123 6557530 6525985 6700415 6777811 7077564

Statements 2242959 2313823 2534623 2716490 2869484 2844151 2917318 2957934 3072884

Functions 31228 32124 45426 50384 53606 54522 58846 60325 71269

Bandwidth 21810.27 22007.25 24804.13 26279.62 27346.78 26504.45 27611.73 27929.09 28358.65

DeepNest 3791 3845 4214 4415 4783 4759 4799 4805 4921

Cstatements 1957580 2020030 2172704 2329374 2464715 2440893 2503682 2538388 2646759

Lineswithcomments 949837 979421 1030722 1092413 1139499 1116084 1138301 1149453 1172001

InlineComment 127414 130503 135267 143383 150505 144534 143562 144280 141255

Blanklines 502780 518458 553743 588185 627752 619611 630671 639626 672765

Linesforpreprocess 238528 246451 262674 283607 299466 294040 294358 293092 298351

Lineswithcode 2752045 2834971 3035060 3260165 3462274 3434900 3526353 3569082 3735768

Totallines 4317450 4450489 4748625 5082631 5380130 5321745 5447723 5508575 5739232

Statements 1481098 1529889 1636381 1753927 1854569 1833851 1878494 1901778 1976739

Commentchars 26601684 27258556 28695142 30379489 31696338 31096977 31862786 32177394 32912915

Nontext

commentchars 3794338 3920893 4114823 4298042 4474054 4394199 4413557 4457190 4581923

Whitespacechars 25331060 26120778 27714517 29514385 31362841 30983857 31627665 31957921 33255514

Preprocessorchars 3972081 4113186 4447194 4788392 5090807 5021928 5052895 5081232 5251247

Statementchars 49662768 51802002 55209112 59422303 63286051 63060836 64991967 65870331 69188053

Totalchars 93774007 97474610 1.04E+08 1.11E+08 1.17E+08 1.15E+08 1.18E+08 1.2E+08 1.23E+08

Tokens 7777859 8052375 8660048 9297996 9899501 9815601 10078167 10184386 10700109

UOpand 1137692 1172554 1260575 1360499 1438961 1423165 1475036 1494784 1552950

UOpator 307249 311451 336342 357822 373384 363261 375449 378823 384400

TPpand 6548261 6793547 7306580 7854043 8379425 8305298 8534896 8630505 9114100

TOpator 8923582 9229145 9902440 10626528 11305316 11219266 11520892 11627458 12208559

PGlength 10431149 10742929 11538010 12464450 13195471 13051408 13510330 13687553 14236826

PGvolume 85299041 87955629 94565522 1.02E+08 1.09E+08 1.08E+08 1.12E+08 1.13E+08 1.18E+08

PGeffort 2.76E+10 2.84E+10 3.04E+10 3.22E+10 3.47E+10 3.45E+10 3.51E+10 3.53E+10 3.75E+10

PGlevel 337.648 337.833 487.197 506.528 516.59 500.347 523.047 530.679 539.454

Files 15201 15382 19602 20573 21222 20603 21355 21534 21952

FunctionsRSM 75357 77110 88297 94591 99114 98755 102610 103962 110971

PhysicalLines 2813041 2905392 3113258 3319232 3508784 3490288 3572826 3618972 3841430

LOCRSM 1980497 2024110 2171088 2327761 2473709 2487433 2549945 2566510 2761209

eLOC 1612641 1649675 1765992 1897487 2017332 2029131 2082612 2095935 2260053

lLOC 1179144 1217191 1302510 1395292 1473806 1465026 1508776 1528757 1626512

Cyclo 588455 602196 649176 692881 731564 731577 750783 759062 808138

InterfaceComp 300550 309034 347075 372984 394057 394352 412458 417986 448741

TotalParams 135851 140274 157792 169912 179862 179652 189346 192032 207299

TotalReturn 164699 168760 189283 203072 214195 214700 223112 225954 241442

CommentsRSM 423701 470961 500102 527040 545822 537990 536058 542920 561798

BlanksRSM 247863 254398 270345 286057 308989 310596 315729 317975 343230

Classes 9395 9589 11102 11916 12637 12866 13315 13438 14010

NestedClasses 658 668 764 813 858 893 914 924 940

TotMeth 10083 10366 12380 14040 14701 14697 15007 15112 14276

PubMeth 9177 9460 11477 12828 13489 13485 13791 13896 13239

Publicattributes 63995 66871 73417 79398 84127 82949 85568 86611 89350

ProtMeth 562 562 592 847 847 847 847 847 665

Protectedattributes 228 228 208 242 242 242 242 242 254

PrivateMethods 358 344 311 365 365 365 369 369 372

Privateattributes 556 527 470 538 540 540 549 549 554

Physicallinesclass 213047 220271 243134 261277 285487 279507 288515 294611 305725

LOCclass 199542 206158 229342 246888 267545 261497 270566 276481 286505

eLOCclass 180784 186837 205844 222048 240753 234655 242984 248276 257829

lLOCclass 80839 83567 93342 101159 107192 106166 109008 110060 111065

Cycloclass 3746 3748 4959 4930 4941 4941 4975 4975 5091

InterfaceCompClass 5753 5757 7726 7452 7465 7465 7505 7505 7623

TotalParamClass 2750 2752 3772 3539 3541 3541 3556 3556 3606

TotalReturnClass 3003 3005 3954 3913 3924 3924 3949 3949 4017

CommentsClass 83292 86046 90921 95391 101295 97344 96913 97642 95268

BlanksClass 10576 10950 12003 12646 14092 14101 14651 14822 15220

Case 86495 87874 95354 100532 108255 107551 108750 109352 111174

KWBreak 62977 64334 69255 73905 79511 79162 80596 81209 82944

LOCh 3538393 3655496 3978999 4286572 4519206 4525850 4662087 4708862 4907820

If 307082 314631 337716 361854 381186 380853 391279 395282 413931

Else 68679 70080 75147 80230 84356 84547 85861 86573 90858

{} 458169 469401 513858 546704 578945 577260 589012 594710 619409

Goto 16320 16872 18494 19878 20885 21006 22069 22656 25520

Return 129648 133351 148902 160362 169822 170323 177274 179085 187610

() 637 661 712 744 810 841 930 933 998

Exit 5409 5148 5869 6145 6357 6415 6249 6229 5994

_exit 215 214 229 252 264 277 283 349 384

Abort 2727 2723 4183 4204 4503 4409 4460 4464 4526

eLOCh 1829637 3185434 3464429 3739124 3939451 3947749 4072145 4113219 4287413

Macro 33280 34297 38267 41761 43007 42994 43906 43981 46477

Union 824 842 948 982 1038 1024 1036 1042 1060

lLOCh 1650510 1693127 1836233 1962769 2069547 2053046 2105484 2126094 2205548

Class 9323 9586 10955 11769 12487 12716 13165 13288 13860

Blankh 636499 654447 722201 764330 810248 804424 820743 829481 871179

Commenth 1336561 1376375 1468051 1553551 1614221 1616403 1645532 1659336 1722407

Inline 2616 2606 3253 3319 3402 3358 3199 3168 3899

TotalLogicalh 5511553 5686318 6169251 6604453 6943675 6946677 7128362 7197679 7501406

Memoryalloc 3224 3440 3728 4068 4400 4410 4890 4966 5036

Memoryfree 6877 7221 7447 8062 8762 8950 9897 10031 10359

TotalPhysicalh 5297659 5466867 5936264 6355812 6684439 6665131 6850618 6917857 7217021

Memorynew 24 24 29 40 40 39 42 42 47

Memorydelete 32 33 34 41 41 41 47 47 53

Literalstrings 343973 351656 370490 396418 420529 417220 430159 434449 452821

Continuation 71871 72029 83993 86917 87652 86997 88764 88775 93425

Preprocessor 410007 422562 460623 501378 525893 519503 527585 529786 537162

Include 75799 78453 83084 89320 93797 93087 95817 96946 98763

Define 167446 172507 192976 210315 220493 217765 223503 227903 231861

Typedef 6489 6750 8932 9519 9921 9819 9907 9913 10689

Const 22033 22428 28731 31316 35118 36275 37954 38438 43855

Enum 1356 1371 1733 1806 1894 1909 1960 1967 2063

Do 3857 3901 4353 4536 4684 4560 4759 4828 5213

While 22566 22904 24007 25550 26578 26119 26639 26823 27235

Switch 14086 14419 15594 16716 17620 17540 17967 18144 18318

Default 9334 9512 10366 11083 11803 11788 12069 12201 12485

For 32692 33921 36422 38636 40406 40082 41040 41430 42192

Baseclass 9545 9398 10847 11659 12378 12607 13056 13179 13749

Derivedclass 431 260 403 405 408 408 412 412 416

Quality 5022854 5189601 5537801 6000023 6256205 6283992 6469353 6547285 6850235

UpdateNotCFiles 4301 2367 2395 4785 4441 4661 3451 4786 5413

CUpdate 3847 1797 3592 3872 5311 10327 8699 12549 10972

TotalUpdate 8148 4164 5987 8657 9752 14988 12150 17335 16385

NotcAdded 28801 208302 60902 243847 201325 158178 91162 182179 135368

CAdded 59094 170830 140658 184473 283670 301660 204478 375910 425018

Added 87895 379132 201560 428320 484995 459838 295640 558089 560386

Notcdeleted 14212 91377 44481 149151 80924 86522 57663 170533 73729

Cdeleted 38579 99253 110327 103762 145609 227685 161326 292137 319049

Deleted 52791 190630 154808 252913 226533 314207 218989 462670 392778

Modified 140686 569762 356368 681233 711528 774045 514629 1020759 953164

Difference 35104 188502 46752 175407 258462 145631 76651 95419 167608

Notcnumauthors 30 27 38 44 42 59 53 50 61

Cnumauthors 32 26 36 40 43 53 59 55 65

Totalnumauthors 34 29 42 45 46 61 63 63 66

BotHalfnotC 12 3 11 12 12 23 58 12 28

BotHalfC 22 30 12 12 13 103 24 32 129

BotHalfTotal 34 33 23 24 25 126 82 44 157

PreBugsAll 58 62 71 106 140 123 130 186 145

PreBugsPrev 30 34 36 32 51 57 78 66 64

PreBugsCurrent 34 36 32 51 57 78 66 64 65

PreBugsUnknown 3 2 3 4 6 5 17 63 17

Months 3 2 3 3 4 3 3 3 4

MiscMailings 1437 937 3173 4608 8280 6468 5552 6467 8892

AdvocayMailings 105 24 126 87 65 140 109 82 77

AnnounceMailings 9 5 2 17 9 10 11 11 10

PortsMailings 152 149 664 498 1144 1470 1078 1422 1396

WWWMailings 71 82 178 229 386 380 409 628 398

BugsMailings 180 184 189 307 495 598 557 691 687

SparcMailings 61 46 81 127 120 57 225 348 308

TechMailings 536 332 915 842 1445 1174 944 876 881

AllbugsotherHW 6 6 6 14 3 12 22 29 15

AllBSD

Bugsi386HW 48 54 42 74 130 92 93 96 106

AllBSD

BugssparcHW 10 9 8 17 5 2 6 11 14

CurrentBSD

BugsotherHW 5 2 2 4 0 5 8 14 6

CurrentBSD

Bugsi386HW 26 34 25 42 55 72 53 53 49

CurrentBSD

BugssparcHW 4 1 5 3 2 2 7 2 11

ChangeRequests 6 8 6 11 18 14 22 25 15

DocBugs 3 12 7 13 21 18 33 45 28

