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ABSTRACT 
Open source software systems are important components of many business software applications. 
Field defect predictions for open source software systems may allow organizations to make 
informed decisions regarding open source software components. In this paper, we remotely 
measure and analyze predictors (metrics available before release) mined from established data 
sources (the code repository and the request tracking system) as well as a novel source of data 
(mailing list archives) for nine releases of OpenBSD. First, we attempt to predict field defects by 
extending a software reliability model fitted to development defects. We find this approach to be 
infeasible, which motivates examining metrics-based field defect prediction. Then, we evaluate 
139 predictors using established statistical methods: Kendall’s rank correlation, Pearson’s rank 
correlation, and forward AIC model selection. The metrics we collect include product metrics, 
development metrics, deployment and usage metrics, and software and hardware configurations 
metrics. We find the number of messages to the technical discussion mailing list during the 
development period (a deployment and usage metric captured from mailing list archives) to be the 
best predictor of field defects. Our work identifies predictors of field defects in commonly 
available data sources for open source software systems and is a step towards metrics-based field 
defect prediction for quantitatively-based decision making regarding open source software 
components. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1 INTRODUCTION 
Open source software systems such as operating systems are important components of many 
business software applications. Being able to predict field defects (customer reported software 
problems requiring developer intervention to resolve) may allow existing quantitatively-based 
decision making methods to be used to: 

Help organizations that are seeking to adopt open source software components to make informed 
choices between candidates 

Help organizations using open source software components to decide whether they should adopt 
the latest release 

Help organizations that adopt a release to better manage resources to deal with possible defects 

In this paper, we present a case study of the open source operating system OpenBSD in which we 
try two different approaches to predicting field defects: model fitting and a metrics-based 
approach.  

Prior work by Li et. al. [16] shows that the Weibull model is the preferred model for modeling the 
defect occurrence pattern of OpenBSD. In the work we report here, we attempt to predict field 
defects by extending a Weibull model from development to the field. We find that it is not 
possible to fit an acceptable Weibull model to development defects. The release dates of 
OpenBSD are consistently around the time when the rate of defect occurrences peaks. Hence, 
there is insufficient data to fit a Weibull model. This result is consistent with Kenny’s finding in 
[7]. Our finding that it is not possible to fit a Weibull model until the rate of defect occurrences 
establishes the need for metrics-based field defect prediction. 

Identifying and collecting predictors (metrics available before release) are prerequisites activities 
for metrics-based field defect prediction. We attempt first steps toward a metrics-based field 
defect prediction model by identifying and collecting potentially important predictors of field 
defects for OpenBSD. Prior work has identified important predictors of field defects and has 
predicted field defects for commercial software systems (e.g. Khoshgoftaar et. al. [9], Ostrand et. 
al. [29], Mockus et. al. [22]). The categories of predictors used in prior work are product metrics, 
development metrics, deployment and usage (DU) metrics, and software and hardware 
configurations (SH) metrics. However, prior work has not examined open source software 
systems, has not examined all categories of predictors simultaneously, and has not identified 
commonly available data sources for each category of predictor. In this paper, we examine 
predictors of field defects for an open source software system.   

Our experiments show it is possible to collect product, development, DU, and SH predictors from 
data sources commonly available for open source projects. We identify seven important 
predictors collected from mailing list archives and the CVS code repository. Somewhat 
surprisingly, the most important predictor for the OpenBSD project is the number of messages to 
the technical discussion mailing list during the development period, which is a deployment and 
usage metric collected from mailing list archives.  

Section 2 discusses prior work and motivates our work. Section 3 describes OpenBSD. Section 4 
and 5 discuss our data collection method and data analysis method. Section 6 presents the results. 
Section 7 contains a discussion of our findings. Section 8 is the conclusion. 

2 PRIOR WORK AND MOTIVATION 
In this section, we motivate our work by discussing prior work. We define field defects as user-
reported code-related problems requiring programmer intervention to correct. This is the same 



definition used by Li et. al. in [16]. We discuss software reliability modeling, software metrics as 
predictors, and methods used to establish predictors as important.  

2.1 Software reliability modeling 
Prior work by Li et. al. [16] shows that it is possible to model the rate of field defect occurrences 
of OpenBSD using the Weibull model. Software reliability modeling research summarized by 
Lyu in [17] suggests that it may be possible to predict field defects by fitting a Weibull model to 
development defects and then extending the model to the field. This leads to our first question:  

Is it possible to predict field defects by fitting a Weibull model to development defects and then 
extending the model to the field? 

Li et. al. use non-linear least squares (NLS) regression to fit defect occurrence data to the Weibull 
model. We will use the same regression technique to fit a Weibull model to development defects.  

2.2 Software metrics as predictors 
Metrics are defined by Fenton and Pfleeger in [4] as outputs of measurements, where 
measurement is defined as the process by which values are assigned to attributes of entities in the 
real world in such a way as to describe them according to clearly defined rules. Metrics available 
before release are predictors, which can be used to predict field defects. 

We categorize predictors used in prior work using an augmented version of the categorization 
schemes used by Fenton and Pfleeger in [4], Khoshgoftaar et. al. in [15], and the IEEE standard 
for software quality metrics methodology [3]: 

Product metrics: metrics that measure the attributes of any intermediate or final product of the 
software development process [3]. The product metrics used in prior work are computed using a 
snapshot of the code. Product metrics have been shown to be important predictors by studies such 
as Khoshgoftaar et. al. [10], Jones et. al. [6], Khoshgoftaar et. al. [11], Khoshgoftaar et. al. [15], 
and Khoshgoftaar et. al. [13]. 

Development metrics: metrics that measure attributes of the development process. The 
development metrics used in prior work are usually computed using information in the change 
management system or the version control system. Development metrics have been shown to be 
important predictors by studies such as Khoshgoftaar et. al. [10], Khoshgoftaar et. al. [11], 
Khoshgoftaar et. al. [15], and Khoshgoftaar  et. al. [13]. 

Deployment and usage metrics (DU): metrics that measure attributes of deployment of the 
software system and usage in the field. Little prior work has examined DU metrics, and no data 
source is consistently used. DU metrics have been shown to be important predictors by studies 
such as Jones et. al. [6], Khoshgoftaar et. al. [11], Khoshgoftaar et. al. [15], Khoshgoftaar et. al. 
[13], and Mockus et. al. [22]. 

Software and hardware configurations metrics (SH): metrics that measure attributes of the 
software and hardware systems that interact with the software system in the field. Little prior 
work has examined SH metrics and no data source is consistently used. SH metrics have been 
shown to be important predictors by Mockus et. al. [22].  

Prior work has examined only commercial software systems, and no prior work has examined 
predictors in all the categories simultaneously. Product and development predictors commonly 
used in prior work can be computed for open source software systems since the data sources used 
to compute the predictors (e.g. snapshots of the code and information in the version control 
system) are commonly available for open source software projects. However, prior work 
examining DU and SH metrics has had accurate information about system deployment and the 
users, such as deployment logs and usage profiles (e.g. Khoshgoftaar et. al. [11]) or information 
from a customer monitoring system (Mockus et. al. [22]). The data sources used in those studies 



are generally not available for open source projects; therefore, the DU and SH metrics used in 
prior work are not available. These concerns lead us to two additional questions: 

Is it possible to collect DU, and SH predictors using data sources commonly available for open 
source software projects? 

What are the important predictors of field defects for OpenBSD?  

 

2.3 Methods of establishing the importance of predictors 
Three methods are commonly used to establish a predictor as important: 

1. Show high correlation between the predictor and field defects. This method is recommended by IEEE [3] 
and is used by Ohlsson and Alberg [25] and Ostrand and Weyuker [28].  

2. Show that the predictor is selected using a model selection method. This method is used by Jones et al. 
[6]  and Mockus et al.[22]. 

3. Show that the accuracy of predictions improves with the predictor included in the prediction model. This 
method is used by Khoshgoftaar et al. [10] and Jones et al. [6]. 

We use methods 1 and 2 to determine important predictors in this paper. Since we examine 
predictors that may be included in a metrics-based field defect prediction model but do not 
actually produce a prediction model, we do not use method 3.  

3 SYSTEM DESCRIPTION 
In this section, we present the open source software system OpenBSD. We present project details, 
information on the code repository, information on the request tracking system, and information 
on the mailing list archives. 

3.1 Project details 
OpenBSD is a Unix-style operating system written primarily in C. The project dates back to 1995 
and has developers (i.e. users who have the write access rights to the CVS code repository) in 
North America, South America, Europe, Australia, and Asia. This project is similar to the 
FreeBSD project examined by Dinh-Trong and Bieman [33].  

We examine the project between approximately 1998 and 2004. During that time, there were 10 
releases (of which we examine 9, as we explain below) and the CVS code repository documented 
development changes by 159 different developers.  

The OpenBSD project uses the Berkley copyrights. The Berkley copyrights retain the rights of 
the copyright holder, while imposing minimal conditions on the use of the copyrighted material 
[26]; therefore, OpenBSD has been incorporated into several commercial products.  

The OpenBSD project puts out a release approximately every six months. The release dates are 
published on the web [26].  

3.2 The code repository 
The OpenBSD project manages its source code using a CVS code repository. Developers are 
users who have both read and write access rights. Someone becomes a “developer”  (i.e. getting an 
account on the main server) by “doing some good work and showing that he/she can work with 
the team” [26]. Everyone else has read access to the CVS code repository.  

3.3 The request tracking system 
The OpenBSD project uses a problem tracking system. Anyone can report a problem by using the 
sendbug command built into OpenBSD [26]. Each problem report is assigned a unique number 
and stored in the bugs database. The problem report can be tracked on-line using the unique 
number. A problem report can be assigned one of four classes: sw-bug (software bug), doc-bug 



(documentation bug), change request, and support. All problem reports are initially marked as 
open, and then a developer acts on the report and changes the status accordingly.  

Our measure of defects for OpenBSD is user submitted problem reports in the request tracking 
system of the class software bugs. We count each problem report (which may not be unique) 
because a user deemed the problem important enough to report. These software related problem 
reports require a developer’s intervention to resolve. This measure of defects is used by Li et. al. 
in [16]. Defects that occur after the release date are considered field defects. Defects that occur 
during the development and test period are considered development defects. 

3.4 Mailing lists 
The OpenBSD project has 23 mailing lists in five categories:  

• General interest lists 

• Developer’s lists 

• Platform specific lists 

• CVS changes mailing lists 

• CTM (emails out deltas to the source).  

Not all lists are active and not all lists are archived consistently. The two most complete archives 
are at sigmasoft [31] and MARC [18].  

4 DATA COLLECTION 
This section describes the data collection process we used to extract data from the request 
tracking system, the CVS repository, and the mailing lists. It also describes the predictors we 
collect.  

We consider the published date of release (announced on the OpenBSD website) rounded to the 
nearest month to be the release date for the release. We round the date to the nearest month due to 
the time it takes to install the operating system, use the system, and discover and report a 
problem. Someone reporting a bug right after the un-rounded release date is unlikely to be using 
the latest release. This is the same approach taken by Mockus et. al. in [22]. 

We consider the date of the first reported defect rounded to the nearest month to be the start of 
development. The date of the first reported defect usually occurs several months before the date 
of release and represents the first time when a problem can be reported against the release that is 
in development. The development period is then the duration between the start of development 
and the release date. 

4.1 The request tracking system  
We wrote Java programs and perl programs to download each problem report from the OpenBSD 
website and parse the report to extract the report open date, the class (e.g. sw-bug, doc-bug, or 
change request), the release reported against, and the machine (i.e. the hardware configuration 
such as i386 or sparc).  

There was one anomaly. Three months of data were missing between August 2002 and October 
2002. We verified this by examining the bugs mailing list archive (i.e. the mailing lists that 
records messages to the request tracking system). The mailing list archive showed no bugs 
recorded during that time interval even though there is activity on the bugs mailing list, which 
indicates that problems did occur. This happened during development and deployment of release 
3.2. As a result, we did not examine release 3.2.  

4.2 The CVS repository 
We used the CVS checkout command to download the tagged release version of the source code 
from the CVS repository for releases 2.4 to 3.3 (except release 3.2).  



We used four metrics tools and several scripts to compute product metrics from the C source 
files. The tools we used were: 

• RSM by M Squared Technologies [23] 

• SourceMonitor by Campwood Software [1] 

• c_count written by Thomas E. Dickey [2] 

• metrics written by Brian Renaud [19] 

We arrived at these tools by conducting a web search, asking experts for help, and posting to the 
comp.software-eng and comp.software.measurement newsgroups. We evaluated the collection of 
tools and selected those listed above.  

We encountered an existing CVS bug when downloading the source code for release 2.4 and 
release 2.5. As a result, we had to bypass a directory that contained HTML help documents. We 
also encountered 10 files with coding anomalies that the metrics tools could not resolve. We 
skipped those files for all releases. These files constitute less than .1% of the number of C source 
files. 

We used the CVS log command to obtain information on changes to the source code. We used the 
log information between the start of development of release 2.4 and the release date of release 
3.3. There were 97,566 committed changes in the development periods of the nine releases. 

4.3 Mailing list archives 
We wrote java programs to extract the number of messages posted each month in the mailing lists 
archives.   

Not all lists were archived consistently and not all lists were active. Consistent data was not 
available for many of the lists before 1998; therefore, we only considered releases after 1998. 
When an archive showed no messages for a certain month, we were often unable to determine if 
no messages were posted or if the archive failed to properly record messages (both of which 
occur). Therefore, lists that had intervals in which no messages were posted for more than three 
months were not considered.  

4.4 Metrics 
We provide a summary of the 139 predictors we collected. Appendix B lists the full set of metrics 
and Appendix C contains the collected data. 

4.4.1 Product metrics 
We collected 101 product metrics using snapshots of the code from the CVS code repository 
(details in Appendix B and C). Due to tooling constraints, we did not collect all the product 
metrics used in the literature. However, we did collect metrics that covered all of the dimensions 
of variation in the product metrics identified by prior work. Munson and Khoshgoftaar identified 
the dimensions of product metrics (i.e. components of variance captured by product predictors) 
used in the literature using principal component analysis in [24]. Principal component analysis 
captures the dimensions of variance in a group of predictors. Predictors that load on the same 
principal component capture the same dimension of variance and are highly correlated with each 
other [24]; therefore, it may be sufficient to use a predictor from each dimension. We give the 
dimensions and examples of the product metrics we used to capture the variation in the dimension 
in table 1. The product metrics we used had been shown to load on the principal component by 
Munson and Khoshgoftaar in [24]. Appendix B lists the full set of product metrics. 

 

 

 



Table 1. Product metrics 

Dimension Product metrics used in this study 

Control: metrics related the flow of 
program control 

Cyclo: Cyclomatic complexity 

KWbreak: Number of occurrences of the key word break (which is 
equivalent to possible program knot count as shown by Khoshgoftaar 
and Szabo [14]) 

Action: number of distinct operations 
and statements 

UOpand: Unique operands 

UOpator: Unique operators 

Size: size or item count of a program  

Statements: Total number of statements per file summed across all 
files 

LOC: Lines of code per file summed across all files 

Effort: Halstead’s effort metrics PGeffort: Halstead’s effort metric per file summed across all files 

Modularity: degree of modularity of 
a program 

DeepNest: Number of statements at nesting level >9 per file summed 
across all files 

4.4.2 Development metrics 
We collected 22 development metrics (details in Appendix B and C). Due to differences in the 
style of development, we were not able to collect the same development metrics used in the 
literature. However, we tried to collect metrics that captured the same intent as the metrics used in 
the literature in our study. We collected metrics that cover all of the independent dimensions of 
variation in the development metrics identified by Khoshgoftaar et. al. in [13] and [15]. 
Khoshgoftaar et. al. used principal component analysis to identify the dimensions of  variation in 
their development metrics in [13] and [15]. Khoshgoftaar et. al. examined a commercial software 
system while we examined an open source software system; therefore, we made changes to the 
metrics to account for the differences between commercial and open source software systems. We 
offer an interpretation of the dimensions captured by each principal component (which is not 
offered by Khoshgoftaar et. al.), examples of the metrics belonging to each dimension in [13] and 
[15], and the metrics we used to capture the same sources of variance in table 2. We made one 
major modification. Since OpenBSD did not distinguish between designers and testers, we 
combined the dimensions identified by Khoshgoftaar et. al. that separated designers and testers. 
We believe our metrics captured the same source of variation as the referenced metrics since the 
only changes we made were to accommodate differences between commercial and open source 
styles of development. (Metrics collected using the CVS code repository are indicated by ‘CVS’, 
ones collected using the request tracking system are indicated by ‘RTS’ , and ones collected using 
mailing list archives are indicated by ‘MLA’ .) 

 
 

Table 2. Development metrics  

Dimensions  [13] and [15] Example of metrics in 
dimensions [13] Development metrics used in this study 

Dimension 1:  

the number of changes 

Total number of changes to the 
code for any reason 

TotalUpdate (CVS): Total number of 
updates during the development period  



Dimension 2:  

experience of the people 
making changes 

Number of updates to this module 
by designers who had 10 or less 
total updates in entire company 
career 

BotHalfC (CVS): Number of different 
developers making changes to files that 
are c source files during the development 
period who are in the bottom 50% of all 
developers ranked based on the number of 
changes  

Dimension 3:  

amount of change to the 
code 

Net increase in lines of code   
Difference (CVS): Lines added to c source 
files minus  lines deleted from c source 
files during the development period  

Dimension 4 and 7:   

problems found during the 
development of the prior 
release 

Number of problems fixed that 
were found by designers or 
during beta testing in the prior 
release 

PreBugsPrev (RTS): Total number of field 
defects reported during the development 
period of the previous release  

Dimension 5 :  

field problems found by 
customers in prior releases 

Number of problems fixed that 
were found by customer in the 
prior release 

PreBugsAll (RTS): Total number of field 
defects reported during the development 
period in all releases  

Dimension 6 and 8:  

problems found during the 
development of the current 
release 

Number of problems found by 
designers  or during beta testing 
in the current release 

PreBugsCurrent (RTS): Number of field 
defects reported against the release under 
development during the development 
period  

4.4.3 Deployment and usage metrics 
We collected nine deployment and usage metrics (details in Appendix B and C). The metrics we 
collected fall into two categories: mailing list predictors and request tracking system predictors. 
Mailing list predictors counted the number of messages to non-hardware related mailing lists 
during development. We believed our mailing list predictors captured characteristics of 
deployment and usage because they quantified the amount of interest in OpenBSD, which might 
be related to how many systems were deployed and how much the systems were used. Request 
tracking predictors counted the number of problem reports during development that were not 
defects. We believed our request tracking system predictors captured characteristics of 
deployment and usage because users had to install OpenBSD and use the system before they 
could report a problem. We present the two categories, examples of predictors in the categories, 
and short justifications for the predictors in table 3. Appendix B lists the full set of deployment 
and usage metrics.  

 
Table 3. Deployment and usage metrics  

Category of 
predictors 

DU metrics used in this  study Justification 

Mailing list 
predictors 

MiscMailings (MLA): number of messages to 
the miscellaneous mailing list, a general interest 
mailing list, during the development period  

AdvocayMailings (MLA): number of messages 
to the advocacy mailing list (which promotes the 
use of OpenBSD), a general interest mailing list, 

These metrics quantify the 
amount of interest in OpenBSD, 
which may be related to how 
many systems are deployed and 
how much the systems are used. 



during the development period  

Request tracking 
system predictors 

 

ChangeRequests (RTS): Number of change 
requests during the development period  

DocBugs (RTS): Number of reported 
documentation problems during the 
development period  

These metrics quantify the 
amount of deployment and usage 
because users must install 
OpenBSD and use the system 
before they can request changes 
or report documentation problems 

4.4.4 Software and hardware configurations metrics 
We collected seven software and hardware configurations metrics in all (details in Appendix B 
and C). The metrics we collected fall into two categories: mailing list predictors and request 
tracking system predictors. Mailing list predictors counted the number of messages to hardware 
specific mailing lists during development. We believed our mailing list predictors captured 
characteristics of software and hardware configurations because they reflect the amount of 
interest/activity related to the specific hardware, which might be related to how many of the 
specified hardware machines had OpenBSD installed. Request tracking predictors counted the 
number of defects (field defects and development defects) during development that identify the 
type of hardware used. We believed our request tracking system predictors captured 
characteristics of software and hardware configurations because users had to install OpenBSD on 
the specified HW before they could report a problem. We present the two categories, examples of 
predictors in the categories, and short justifications of the predictors in table 4. Appendix B lists 
the full set of software and hardware configurations metrics. 

Table 4. Software and hardware configurations metrics  

Category of 
predictors 

SH metrics used in this  study Justification 

Mailing list 
predictors 

SparcMailing  (MLA) Number of 
messages to the sparc hardware 
specific mailing list, a platform 
specific mailing list, during the 
development period  

 

This metrics may reflect the amount of 
interest/activity related to the specific 
hardware, which may be related to how 
many of the specific hardware machines 
have OpenBSD installed.  

Request tracking 
system predictors 

 

CurrentBSDBugs i386HW (RTS): 
Number of field defects reported 
against the current release during the 
development period that identify the 
machine as type i386  

These metrics may quantify the number of 
machines with specific HW that have 
OpenBSD installed since users must install 
and use the system to report a problem  

5 DATA ANALYSIS 
First, we attempted to fit Weibull models to development defects. We used NLS regression to fit 
the Weibull models. NLS is a widely used model fitting method discussed in detail by Lyu in 
[17]. 

Next, we computed the correlations between the predictors and field defects in order to identify 
important predictors. We did not consider predictors that did not vary since they cannot predict 
field defects (e.g. we discarded the predictor measuring the number of instances of the key work 
‘struct’  in the code, which was zero for all releases). We computed Spearman’s rank correlation 



(?), Kendall’ s rank correlation (t), and the statistical significance of the correlations. These are 
standard ways of computing rank correlation. Holland and Wolfe [5] recommended using rank 
correlation when the data are not be normally distributed. We determined that the data were not 
normally distributed by examining data plots. Refer to Weisberg [35], Venable and Ripley [34], 
and Hollander and Wolfe [5] for detailed explanations of rank correlation.  

Finally, we performed a forward AIC model selection to identify important predictors. The 
predictors selected using the forward AIC model selection method complement each other since 
each predictor improves the fit substantially (i.e. enough to overcome the AIC penalty) even with 
the other predictors already in the model. The forward AIC model selection method can be used 
to select a subset of predictors as a first step in a regression analysis even if the data is not 
normally distributed. Refer to Weisberg [35] for a detailed explanation. The model selection 
process usually continues until the AIC score does not improve with additional predictors; 
however, since we had 9 observations and 139 predictors, we stopped at three iterations to 
prevent over fitting. Similar model selection methods were used by Ostrand et. al. in [29] and 
Khoshgoftaar et. al. in [12].  

For all our analysis, we used the open source statistical program R [30].  

6 RESULTS 
We present the results of fitting the Weibull model, evaluating the predictors using correlation, 
evaluating the predictors using forward AIC model selection, and comparing important 
predictors. We find that the number of messages to the technical mailing list during development 
is the best predictor. 

6.1 Prediction using a software reliability model 
We are not able to fit a Weibull model to development defects. The NLS model fitting procedure 
does not converge for any of the releases. Our finding that the modeling fitting procedure does 
not converge is consistent with Kenny’s findings in [7], which show that it is not possible to fit a 
Weibull model until most of the defects have occurred (i.e. past the hump in the number of 
defects). A typical release with the release date indicated is in shown figure 1. Plots of all the 
releases are in Appendix A. In 7 out of 9 releases, the release date is within two months of the 
time the rate of defect occurrences peak. In 8 out of 9 releases, the release date is either within 
one month or before the time the rate of defect occurrences peak.  We cannot predict field defects 
by fitting a Weibull model to development defects. 

 



Figure 1. Defects for OpenBSD release 3.0 

6.2 Analysis of predictors using correlations 
Table 5 presents predictors that are significant at the 95% confidence level (CL) using rank 
correlation (a blank indicates that a predictor’s correlation is not significant at the 95% CL). We 
briefly explain the predictors in this section.  

Product metrics (computed using a snapshot of the code from the CVS code repository and 
the RSM metrics tool):  

• TotMeth: Total number of methods.  

• PubMeth: Number of public methods.  

• InlineComment: Number of inline comments.  

• ProtMeth: Number of protected methods.  

• CommentsClass: Number of comments in classes summed across all classes.  

• InterfaceCompClass: Number of parameters + number of returns in classes summed across all 
classes.  

• TotalParamClass: Total number of parameters in classes summed across all classes.  

Development metric (computed using the CVS code repository): 

• UpdateNotCFiles: During the development period, the number of updates (deltas) to files that 
are not c source files.  

Deployment and usage metric (computed using mailing list archives): 

• TechMailing: Number of messages to the technical mailing list, a developer’s mailing list, 
during development.  

Software and hardware configuration metric (computed using mailing list archives): 

• SparcMailing: number of messages to the sparc hardware specific mailing list, a platform 
specific mailing list, during the development period.  

Table 5. Rank correlations 

Predictor 
Kendall 

Correlation 
p-value 

Spearman 

Correlation 
p-value 

 TechMailing  0.61   0.02  0.78  0.02 

 TotMeth  0.61   0.02  0.73   0.03 

 PubMeth  0.61   0.02  0.73   0.03 

 CommentsClass  0.61   0.02     -  - 

 ProtMeth  0.57   0.03  0.67  0.05 

 InlineComment  0.56   0.04  0.68  0.05 

 InterfaceCompClass  0.51   0.05     -     - 

 TotalParamClass  0.51   0.05     -     - 



6.3 Analysis of predictors using forward AIC model selection 
We use three iterations of the forward AIC model selection method to select important predictors. 
Due to space limitation, we present the final linear model in table 6. The predictors are listed in 
the order selected. The AIC score of the final model is 75.52. The r2 between the fitted model and 
field defects is 0.93. This high correlation suggests possible over fitting and confirms the need to 
stop at three iterations.  

 
Table 6. AIC selected model 

Variable Estimate coefficient Standard  Error t value Pr(>|t|) 

(Intercept)  134.32  18.06  7.437  0.0007 

TechMailing  0.1102  0.015  7.445  0.0007 

UpdatesNotCFiles  -0.0289  0.005  -5.757  0.0022 

SparcMailing  0.1406  0.045  3.153  0.0253 

The linear model in table 6 is not intended to be a valid prediction model. Additional steps need 
to be taken (e.g. adjust for non-constant variance) before the model can be used for prediction. 
Further validation of the predictors is also needed. We hope to do so in future work.  

The estimated coefficients require interpretation. Since ranges of the predictors differ and all 
predictors are statistically significant, it is sensible to examine only the direction of the estimated 
coefficients (i.e. if they positive or negative). The coefficient for TechMailing is positive, 
indicating that increases in the metric correspond to more field defects. TechMailing measures the 
amount of deployment and usage of the system. This metric quantifies the amount of interest in 
OpenBSD, which may be related to how many systems are deployed and how much the systems 
are used. Our finding that increased deployment and usage correspond to more field defects is 
consistent with findings in Jones et al. [6] and Mockus et al. [22].  

The coefficient for UpdatesNotCFiles is negative, indicating that increases correspond to fewer 
field defects. We think larger UpdatesNotCFiles may indicate maintenance (i.e. efforts to 
eliminate problems); therefore, it corresponds to fewer field defects. The coefficient for 
SparcMailing is positive indicating that increases in SparcMailing correspond to more field 
problems. Increase in SparcMailing may indicate increased activity/usage related to the sparc 
hardware, which may lead to field defects unaccounted for by the other predictors. 

6.4 Comparison of important predictors 
We compare the important predictors by examining the rank correlation among the predictors and 
field defects. This may allow us to determine which predictors may produce better predictions. 
We do not have enough observations to perform a principal component analysis.  

The correlations between important predictors selected using rank correlation and field defects in 
table 7 indicate that increases in each of the predictors correspond to more field defects. These 
correlations are consistent with findings in prior work. The relationship between TechMailing (a 
DU metrics) and field defects is consistent with findings in Jones et. al. [6] and Mockus et. al. 
[22]. All other important predictors are product metrics. Our finding that increases in the product 
correspond to more field defects is consistent with findings in Ostand et. al.[29] and Jones et. al. 
[6]. However, the predictors are highly correlated with each other. This suggests that it may be 
sufficient to use just one of the predictors and that including all the predictors in a model may 
result in the multi-co-linearity problem discussed in Feton and Pfleeger [4] . 



 
 

 

 

 

 

 

 

 

Table 7. Correlations among important predictors  

  AIC selected predictors  Correlation selected predictors 

 
Field defects 

Sparc 

Mailing 

Updates 

NotCFiles 

Tech 

Mailing 

Tot 

Meth 

Pub 

Meth 

Inline 

Comment 

Prot 

Meth 

Field defects 1.000 0.278 -0.111 0.611 0.611 0.611 0.556 0.567 

SparcMailing 0.278 1.000 0.500 0.111 0.556 0.556 0.278 0.433 

UpdatesNotCFiles -0.111 0.500 1.000 0.167 0.278 0.278 0.222 0.367 

TechMailing 0.611 0.111 0.167 1.000 0.444 0.444 0.611 0.500 

TotMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767 

PubMeth 0.611 0.556 0.278 0.444 1.000 1.000 0.722 0.767 

InlineComment 0.556 0.278 0.222 0.611 0.722 0.722 1.000 0.833 

ProtMeth 0.567 0.433 0.367 0.500 0.767 0.767 0.833 1.000 

The correlation among important predictors selected using the forward AIC model selection 
method are lower than the correlation among important predictors selected using correlations. 
This confirms that the each predictor selected using model selection captures information not 
captured by the other predictors; therefore, they will complement each other in a prediction model 
and avoid the multi-co-linearity problem. 

7 Discussion 
We have established that it is not possible to fit a Weibull model to development defects for 
OpenBSD. We present results from fitting the Weibull model because prior work has identified 
the Weibull model as the preferred model. In addition, we also have results from experiments 
showing that it is not possible to make meaningful field defect predictions by extending other 
software reliability models fitted to development defects (i.e. the Gamma model, the Logarithmic 
model, the Exponential model, the Power model). Due to space limitations, those results are 
omitted. These results motivate the need to consider metrics-based field defect prediction. 

We find that it is possible to collect product, development, DU, and SH predictors using data 
sources commonly available for open source software systems. In addition to validating the CVS 
code repository and the request tracking system as sources of predictors, we establish mailing list 
archives as an important data source, one not considered by previous studies.  



We find that the most important predictor for the OpenBSD project is TechMailing collected 
from mailing list archives. The TechMailing predictor is the most highly rank correlated predictor 
with the number of defects and is the first variable selected using AIC forward model selection. 
We have validated this finding by talking with developers on the discussion forum. Feedback [27] 
indicates that this finding fits with the developers’  intuition that participation by active developers 
(reflected by postings to the TechMailing list) leads to more defect discoveries. A plot of 
TechMailing against field defects is shown in figure 3. Other important predictors selected 
include four product metrics collected from the CVS code repository, a development metric 
collected from the CVS code repository (UpdatesNotCFiles), and a software and hardware 
configurations metric  collected from mailing list archives (SparcMailings). 

 

 
Figure 3. TechMailing and field defects 

In contrast to findings in commercial software systems, (e.g. Mockus et. al. [21], Khoshgoftaar et. 
al. [10], and Khoshgoftaar et. al. [11]) predictors regarding changes to source files and those 
regarding developers are not important predictors for OpenBSD. We suspect this is due to the 
review and check-in process employed by the OpenBSD project (and possibly by other open 
source projects as well), which assures that all changes are of a certain quality regardless of the 
number of changes or the author of the change. All changes must be checked-in by a developer, 
who is someone that has shown ability to work on the code. This is supported by the explanation 
on the project webpage, which details how someone becomes a developer and gains the ability to 
check-in code. In addition, many changes are reviewed. We find evidence of this by observing 
logs of committed changes. Many logs contain markers (of the type “developer id”  followed by 
the @ sign, e.g. art@) indicating that another developer has reviewed the changes. 

8 CONCLUSION 
In our case study of OpenBSD, we find that it is not possible to predict field defects by extending 
a Weibull model fitted to development defects. This indicates the importance of metrics-based 
field defect prediction models for open source software systems. We also find that it is possible to 
collect product, development, DU, and SH metrics using commonly available data sources for 
opens source projects. In addition, we identify important predictors that can be used to construct a 
field defect prediction model for OpenBSD using modeling methods in the literature. Such a 



model can help organizations make informed decisions regarding open source software 
components.  

The paper presents novel and interesting findings, which are appropriate for a case study. 
However, our experiments need to be replicated on other open source projects. Replications can 
help verify that the relationships we have established are not due to chance alone. Future studies 
can include similar projects developing operating systems like FreeBSD or Debian and other 
types of systems like MySQL or JakartaTomcat.  

Replication of our experiments is relatively straightforward since data sources we use are 
commonly available for open source software systems. For example, all projects hosted by 
SourceForge [32] use a CVS code repository, a request tracking system, and have mailing lists.  

We do not consider non-c source files in our analysis (e.g. perl files and assembly files). These 
files may contain valuable information. However, since most of the system is written in c, we feel 
c source files are the most appropriate files to analyze. In release 3.4 (the most recent  release we 
examine), there are ~36384 files in total. Approximately 17578 are c source files, 2378 are perl 
source files, and 1624 are assembly files. The remaining files are mostly documentation, 
configuration, and installation files.  

There maybe other metrics we have failed to collect. For example, it may be possible to parse the 
defect reports for more detailed information regarding bugs, such as which software applications 
were running when the bug occurred. Since the data sources are available to everyone, we 
encourage others to explore other predictors.  

Results in this paper represent a promising step towards quantitatively-based decision making 
regarding open source software components. The next step is to use the results in this paper and 
metrics-based modeling methods in the literature to construct metrics-based field defect 
prediction models and then to compare their predictions (e.g. the trees based method used by 
Khoshgotaar et. al. in [13], the neural networks method used by Khoshgoftaar et. al. in [14], and 
the linear regression used by Mockus et. al. in [22]).  
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11 APPENDIX A 
In this section, we present results of fitting software reliability models to development defects. 
We consider the same set of models considered in Li et al. [16]. 

The Weibull model, Exponential model, and Logarithmic model could not be fitted using data 
between first availability and general availability for any of the releases. The Gamma model 
could be fitted for only 2 of the releases (R2.8 and R3.3). However, the predictions are not 
accurate. The predicted total number of defect occurrences are 71.5 ~ 72 occurrences and 169.9 ~ 
170 occurrences for the two releases respectively. The actual total numbers of defect occurrences 
for the releases are 239 and 172. The power model could be fitted for all the releases, but the 
fitted models were not meaningful. Each model was strictly increasing. The fitted models and the 
actual defect occurrences for OpenBSD 2.8 and 3.3 are in figures A1-A2.  

We conclude that it is not possible to fit a model using data between first availability and general 
availability to predict the number of defect occurrences after general availability. This agrees with 
Kenny’s findings in [7] that it is not possible to fit Weibull model parameters to a model until 
most of the defects have occurred. The idea is that for initially increasing and eventually 
decreasing defect occurrence patterns, most of the defects need to have already occurred (i.e. past 
the hump) before a software reliability model can be fitted. All of the releases with the release 
dates labeled are in figures A3-A11. 

 

 

 
Figure A1. Field defects and fits release 2.8            Figure A2. Field defects and fits release 3.3                               



 
Figure A3. Field defects release 2.4              Figure A4. Field defects release 2.5                      

 
Figure A5. Field defects release 2.6             Figure A6. Field defects release 2.7 

 
Figure A7. Field defects release 2.8             Figure A8. Field defects release 2.9 



 
Figure A9. Field defects release 3.0             Figure A10. Field defects release 3.1 

 
Figure A11. Field defects release 3.3 

 

12 APPENDIX B 
In this section, we present the full set of metrics used in our study.  

12.1  Product metrics 
LOC: Lines of code calculated by the metrics tool Source Monitor 

Statements: Statements in C and .h files calculated by the metrics tool Source Monitor  

Functions: Statements calculated by the metrics tool Source Monitor  

Bandwidth: Modified Bandwidth metric calculated using statements and nesting depth 
information from the metrics tool Source Monitor. Source Monitor only count nesting up to 10 
levels.  Therefore, the metrics clip the statements at nesting of 10 levels. 

DeepNest: Statements at nesting level greater than 10 calculated using the metrics tool Source 
Monitor 

Cstatements: Statements in C source files calculated by the metrics tool C_Count  



Lineswithcomments: Lines with comments in C source files calculated by the metrics tool 
C_Count  

InlineComment: Lines with inline comments in C source files calculated by the metrics tool 
C_Count 

Blanklines: Blank lines in C source files calculated by the metrics tool C_Count 

Linesforpreprocess: Pre-processor lines in C source files calculated by the metrics tool C_Count 

Lineswithcode: Lines with code in C source files calculated by the metrics tool C_Count 

Totallines: Total number of lines in C source files calculated by the metrics tool C_Count 

Statements: Total number of statements in C source files calculated by the metrics tool C_Count 

Commentchars: Total number of comment characters in C source files calculated by the metrics 
tool C_Count 

Nontextcommentchars: Total number of non-text comment characters in C source files calculated 
by the metrics tool C_Count   

Whitespacechars: White space characters in C source files calculated by the metrics tool 
C_Count 

Preprocessorchars: Characters for the pre-processor in C source files calculated by the metrics 
tool C_Count 

Statementchars: Statement characters in C source files calculated by the metrics tool C_Count 

Totalchars: Total number of characters in C source files calculated by the metrics tool C_Count 

Tokens: Total number of recognized program token in C source files calculated by the metrics 
tool Metrics 

UOpand: Unique operands in C source files calculated by the metrics tool Metrics 

UOpator: Unique operators in C source files calculated by the metrics tool Metrics 

TPpand: Total operands in C source files calculated by the metrics tool Metrics 

TOpator: Total operators in C source files calculated by the metrics tool Metrics 

PGlength: Halstead’s estimated program length in C source files calculated by the metrics tool 
Metrics 

PGvolume: Halstead’s program volume in C source files calculated by the metrics tool Metrics 

PGeffort: Halstead’s estimated program effort in C source files calculated by the metrics tool 
Metrics 

PGlevel: Halstead’s estimated program level in C source files calculated by the metrics tool 
Metrics 

Files: Number of C files calculated by the metrics tool RSM 

FunctionsRSM: Number of functions calculated by the metrics tool RSM 

PhysicalLines: Number of physical lines calculated by the metrics tool RSM 

LOCRSM: Lines of code calculated by the metrics tool RSM 

eLOC: Effective lines of code calculated by the metrics tool RSM 

lLOC: Logical lines of code calculated by the metrics tool RSM 

Cyclo: Cyclomatic complexity calculated by the metrics tool RSM 

InterfaceComp: Interface complexity calculated by the metrics tool RSM 

TotalParams: Total parameters used calculated by the metrics tool RSM 



TotalReturn: Total returns calculated by the metrics tool RSM 

CommentsRSM: Number of comments calculated by the metrics tool RSM 

BlanksRSM: Number of blank lines calculated by the metrics tool RSM 

Classes: Number of classes calculated by the metrics tool RSM 

NestedClasses: Number of nested classes calculated by the metrics tool RSM 

TotMeth: Number of methods in classes alculated by the metrics tool RSM 

PubMeth: Number of public methods in classes calculated by the metrics tool RSM 

Publicattributes: Number of public attributes in classes calculated by the metrics tool RSM 

ProtMeth: Number of protested methods in classes calculated by the metrics tool RSM 

Protectedattributes: Number of protected attributes in classes calculated by the metrics tool RSM 

PrivateMethods: Number of private methods in classes calculated by the metrics tool RSM 

Privateattributes: Number of private attributes in classes calculated by the metrics tool RSM 

Physicallinesclass: Number of physical lines in classes calculated by the metrics tool RSM 

LOCclass: Lines of code in classes calculated by the metrics tool RSM 

eLOCclass: Effective lines of code in classes calculated by the metrics tool RSM 

lLOCclass: Logical lines of code in classes calculated by the metrics tool RSM 

Cycloclass: Cyclomatic complexity in classes calculated by the metrics tool RSM 

InterfaceCompClass: Interface complexity in classes calculated by the metrics tool RSM 

TotalParamClass: Total parameters in classes calculated by the metrics tool RSM 

TotalReturnClass: Total returns in classes calculated by the metrics tool RSM 

CommentsClass: Comments in classes calculated by the metrics tool RSM 

BlanksClass: Number of blank lines in classes calculated by the metrics tool RSM 

Case: Number of occurrence of the key word “case” calculated by the metrics tool RSM 

KWBreak: Number of occurrence of the key word “break”  calculated by the metrics tool RSM 

LOCh: Lines of code in .h files calculated by the metrics tool RSM 

If: Number of occurrence of the key word “ if”  calculated by the metrics tool RSM 

Else: Number of occurrence of the key word “else”  calculated by the metrics tool RSM 

{}: Number of lines with key words “ { “  or “ } ”  calculated by the metrics tool RSM 

Goto: Number of occurrence of the key word “goto”  calculated by the metrics tool RSM 

Return: Number of occurrence of the key word “ return”  calculated by the metrics tool RSM 

(): Number of lines with key words “ (“  or “ )”  calculated by the metrics tool RSM 

Exit: Number of occurrence of the key word “exit”  calculated by the metrics tool RSM 

_exit: Number of occurrence of the key word “_exit”  calculated by the metrics tool RSM 

Abort: Number of occurrence of the key word “abort”  calculated by the metrics tool RSM 

eLOCh: Effective lines of code in .h files calculated by the metrics tool RSM 

Macro: Number of occurrence of the key word “macro”  calculated by the metrics tool RSM 

Union: Number of occurrence of the key word “union”  calculated by the metrics tool RSM 

lLOCh: Logical lines of code in .h files calculated by the metrics tool RSM 

Class: Number of occurrence of the key word “class”  calculated by the metrics tool RSM 



Blankh: Blank lines in .h files calculated by the metrics tool RSM 

Commenth: Comments in .h files calculated by the metrics tool RSM 

Inline: Inline comments  in .h files calculated by the metrics tool RSM 

TotalLogicalh: Total logical lines in .h files calculated by the metrics tool RSM 

Memoryalloc: Number of occurrence of the key word “alloc”  for memory calculated by the 
metrics tool RSM 

Memoryfree: Number of occurrence of the key word “ free”  for memory calculated by the metrics 
tool RSM 

TotalPhysicalh: Total physical lines in .h files calculated by the metrics tool RSM 

Memorynew: Number of occurrence of the key word “new” for memory calculated by the metrics 
tool RSM 

Memorydelete: Number of occurrence of the key word “delete”  for memory calculated by the 
metrics tool RSM 

Literalstrings: Number of occurrence of literal strings calculated by the metrics tool RSM 

Continuation: Number of occurrence of line continuations calculated by the metrics tool RSM 

Preprocessor: Number of preprocessor lines calculated by the metrics tool RSM 

Include: Number of “ include”  calculated by the metrics tool RSM 

Define: Number of “defines”  calculated by the metrics tool RSM 

Typedef: Number of “ typedef”  calculated by the metrics tool RSM 

Const: Number of occurrence of the key word “const”  calculated by the metrics tool RSM 

Enum: Number of occurrence of the key word “enum” calculated by the metrics tool 

Do: Number of occurrence of the key word “do”  calculated by the metrics tool RSM 

While: Number of occurrence of the key word “while”  calculated by the metrics tool RSM 

Switch: Number of occurrence of the key word “switch”  calculated by the metrics tool RSM 

Default: Number of occurrence of the key word “default”  calculated by the metrics tool RSM 

For: Number of occurrence of the key word “ for”  calculated by the metrics tool RSM 

Baseclass: Number of base classes calculated by the metrics tool RSM 

Derivedclass: Number of base classes calculated by the metrics tool RSM 

Quality: Number of quality notices by the metrics tool RSM 

12.2  Development metrics  
UpdateNotCFiles: Number of updates to files that are not C source files during development  

CUpdate: Number of updates to files that are C source files during development  

TotalUpdate: Total number of updates during development  

NotcAdded: Number of lines added to files that are not C source files during development  

CAdded: Number of lines added to files that are C source files during development  

Added: Total number of lines added during development  

Notcdeleted: Number of lines deleted from files that are not C source files during development  

Cdeleted: Number of lines deleted from files that are C source files during development  

Deleted: Total of lines deleted during development 



Modified: Total number of lines modified during development 

Difference: Lines added minus lines deleted during development 

Notcnumauthors: Number of authors of changes to files that are not C source files during 
development  

Cnumauthors: Number of authors of changes to files that are C source files during development  

Totalnumauthors:Total number of authors of changes during development  

BotHalfnotC: Number of changes to files that are not C source files by authors in the bottom half 
in terms of number of changes  

BotHalfC: Number of changes to files that are C source files by authors in the bottom half in 
terms of number of changes 

BotHalfTotal: Number of changes to files by authors in the bottom half in terms of number of 
changes  

PreBugsAll: Number of bugs during development for all active releases 

PreBugsPrev: Number of bugs during development for the previous release 

PreBugsCurrent: Number of bugs during development for the current release 

PreBugsUnknown: Number of bugs during development where the release is unspecified 

Months: Months between first defect and deployment 

12.3  Deployment and usage metrics 
MiscMailings: Number of messages to the misc mailing list during development.  

AdvocayMailings: Number of messages to the advocay mailing list during development.  

AnnounceMailings: Number of messages to the announcement mailing list during development.  

PortsMailings: Number of messages to the ports mailing list during development.  

WWWMailings: Number of messages to the www mailing list during development.  

BugsMailings: Number of messages to the bugs mailing list during development.  

TechMailings: Number of messages to the technical mailing list during development.  

ChangeRequests: Change requests during development 

DocBugs: Document problems during development 

12.4  Software and hardware configurations metrics 
AllbugsotherHW: Number of bugs during development for all active releases against all other 
HW 

AllBSDBugsi386HW: Number of bugs during development for all active releases against x86 HW 

AllBSDBugssparcHW: Number of bugs during development for all active releases against sparc 
HW 

CurrentBSDBugsotherHW: Number of bugs during development for the current releases against 
all other HW 

CurrentBSDBugsi386HW: Number of bugs during development for the current releases against 
x86 HW 

CurrentBSDBugssparcHW: Number of bugs during development for the current releases against 
sparcHW 

SparcMailings: Number of messages to the sparc mailing list during development.  



13 APPENDIX C 
In this section, we present the values of the metrics we collected for releases 2.4 – 3.3 (except 
release 3.2).  

Metric Release 
2.4 

Release 
2.5 

Release 
2.6 

Release 
2.7 

Release 
2.8 

Release 
2.9 

Release 
3.0 

Release 
3.1 

Release 
3.3 

LOC 5170933 5340424 5810112 6228123 6557530 6525985 6700415 6777811 7077564 

Statements 2242959 2313823 2534623 2716490 2869484 2844151 2917318 2957934 3072884 

Functions 31228 32124 45426 50384 53606 54522 58846 60325 71269 

Bandwidth 21810.27 22007.25 24804.13 26279.62 27346.78 26504.45 27611.73 27929.09 28358.65 

DeepNest 3791 3845 4214 4415 4783 4759 4799 4805 4921 

Cstatements 1957580 2020030 2172704 2329374 2464715 2440893 2503682 2538388 2646759 

Lineswithcomments 949837 979421 1030722 1092413 1139499 1116084 1138301 1149453 1172001 

InlineComment 127414 130503 135267 143383 150505 144534 143562 144280 141255 

Blanklines 502780 518458 553743 588185 627752 619611 630671 639626 672765 

Linesforpreprocess 238528 246451 262674 283607 299466 294040 294358 293092 298351 

Lineswithcode 2752045 2834971 3035060 3260165 3462274 3434900 3526353 3569082 3735768 

Totallines 4317450 4450489 4748625 5082631 5380130 5321745 5447723 5508575 5739232 

Statements 1481098 1529889 1636381 1753927 1854569 1833851 1878494 1901778 1976739 

Commentchars 26601684 27258556 28695142 30379489 31696338 31096977 31862786 32177394 32912915 

Nontext 

commentchars 3794338 3920893 4114823 4298042 4474054 4394199 4413557 4457190 4581923 

Whitespacechars 25331060 26120778 27714517 29514385 31362841 30983857 31627665 31957921 33255514 

Preprocessorchars 3972081 4113186 4447194 4788392 5090807 5021928 5052895 5081232 5251247 

Statementchars 49662768 51802002 55209112 59422303 63286051 63060836 64991967 65870331 69188053 

Totalchars 93774007 97474610 1.04E+08 1.11E+08 1.17E+08 1.15E+08 1.18E+08 1.2E+08 1.23E+08 

Tokens 7777859 8052375 8660048 9297996 9899501 9815601 10078167 10184386 10700109 

UOpand 1137692 1172554 1260575 1360499 1438961 1423165 1475036 1494784 1552950 

UOpator 307249 311451 336342 357822 373384 363261 375449 378823 384400 

TPpand 6548261 6793547 7306580 7854043 8379425 8305298 8534896 8630505 9114100 

TOpator 8923582 9229145 9902440 10626528 11305316 11219266 11520892 11627458 12208559 

PGlength 10431149 10742929 11538010 12464450 13195471 13051408 13510330 13687553 14236826 



PGvolume 85299041 87955629 94565522 1.02E+08 1.09E+08 1.08E+08 1.12E+08 1.13E+08 1.18E+08 

PGeffort 2.76E+10 2.84E+10 3.04E+10 3.22E+10 3.47E+10 3.45E+10 3.51E+10 3.53E+10 3.75E+10 

PGlevel 337.648 337.833 487.197 506.528 516.59 500.347 523.047 530.679 539.454 

Files 15201 15382 19602 20573 21222 20603 21355 21534 21952 

FunctionsRSM 75357 77110 88297 94591 99114 98755 102610 103962 110971 

PhysicalLines 2813041 2905392 3113258 3319232 3508784 3490288 3572826 3618972 3841430 

LOCRSM 1980497 2024110 2171088 2327761 2473709 2487433 2549945 2566510 2761209 

eLOC 1612641 1649675 1765992 1897487 2017332 2029131 2082612 2095935 2260053 

lLOC 1179144 1217191 1302510 1395292 1473806 1465026 1508776 1528757 1626512 

Cyclo 588455 602196 649176 692881 731564 731577 750783 759062 808138 

InterfaceComp 300550 309034 347075 372984 394057 394352 412458 417986 448741 

TotalParams 135851 140274 157792 169912 179862 179652 189346 192032 207299 

TotalReturn 164699 168760 189283 203072 214195 214700 223112 225954 241442 

CommentsRSM 423701 470961 500102 527040 545822 537990 536058 542920 561798 

BlanksRSM 247863 254398 270345 286057 308989 310596 315729 317975 343230 

Classes 9395 9589 11102 11916 12637 12866 13315 13438 14010 

NestedClasses 658 668 764 813 858 893 914 924 940 

TotMeth 10083 10366 12380 14040 14701 14697 15007 15112 14276 

PubMeth 9177 9460 11477 12828 13489 13485 13791 13896 13239 

Publicattributes 63995 66871 73417 79398 84127 82949 85568 86611 89350 

ProtMeth 562 562 592 847 847 847 847 847 665 

Protectedattributes 228 228 208 242 242 242 242 242 254 

PrivateMethods 358 344 311 365 365 365 369 369 372 

Privateattributes 556 527 470 538 540 540 549 549 554 

Physicallinesclass 213047 220271 243134 261277 285487 279507 288515 294611 305725 

LOCclass 199542 206158 229342 246888 267545 261497 270566 276481 286505 

eLOCclass 180784 186837 205844 222048 240753 234655 242984 248276 257829 

lLOCclass 80839 83567 93342 101159 107192 106166 109008 110060 111065 

Cycloclass 3746 3748 4959 4930 4941 4941 4975 4975 5091 



InterfaceCompClass 5753 5757 7726 7452 7465 7465 7505 7505 7623 

TotalParamClass 2750 2752 3772 3539 3541 3541 3556 3556 3606 

TotalReturnClass 3003 3005 3954 3913 3924 3924 3949 3949 4017 

CommentsClass 83292 86046 90921 95391 101295 97344 96913 97642 95268 

BlanksClass 10576 10950 12003 12646 14092 14101 14651 14822 15220 

Case 86495 87874 95354 100532 108255 107551 108750 109352 111174 

KWBreak 62977 64334 69255 73905 79511 79162 80596 81209 82944 

LOCh 3538393 3655496 3978999 4286572 4519206 4525850 4662087 4708862 4907820 

If 307082 314631 337716 361854 381186 380853 391279 395282 413931 

Else 68679 70080 75147 80230 84356 84547 85861 86573 90858 

{} 458169 469401 513858 546704 578945 577260 589012 594710 619409 

Goto 16320 16872 18494 19878 20885 21006 22069 22656 25520 

Return 129648 133351 148902 160362 169822 170323 177274 179085 187610 

() 637 661 712 744 810 841 930 933 998 

Exit 5409 5148 5869 6145 6357 6415 6249 6229 5994 

_exit 215 214 229 252 264 277 283 349 384 

Abort 2727 2723 4183 4204 4503 4409 4460 4464 4526 

eLOCh 1829637 3185434 3464429 3739124 3939451 3947749 4072145 4113219 4287413 

Macro 33280 34297 38267 41761 43007 42994 43906 43981 46477 

Union 824 842 948 982 1038 1024 1036 1042 1060 

lLOCh 1650510 1693127 1836233 1962769 2069547 2053046 2105484 2126094 2205548 

Class 9323 9586 10955 11769 12487 12716 13165 13288 13860 

Blankh 636499 654447 722201 764330 810248 804424 820743 829481 871179 

Commenth 1336561 1376375 1468051 1553551 1614221 1616403 1645532 1659336 1722407 

Inline 2616 2606 3253 3319 3402 3358 3199 3168 3899 

TotalLogicalh 5511553 5686318 6169251 6604453 6943675 6946677 7128362 7197679 7501406 

Memoryalloc 3224 3440 3728 4068 4400 4410 4890 4966 5036 

Memoryfree 6877 7221 7447 8062 8762 8950 9897 10031 10359 

TotalPhysicalh 5297659 5466867 5936264 6355812 6684439 6665131 6850618 6917857 7217021 



Memorynew 24 24 29 40 40 39 42 42 47 

Memorydelete 32 33 34 41 41 41 47 47 53 

Literalstrings 343973 351656 370490 396418 420529 417220 430159 434449 452821 

Continuation 71871 72029 83993 86917 87652 86997 88764 88775 93425 

Preprocessor 410007 422562 460623 501378 525893 519503 527585 529786 537162 

Include 75799 78453 83084 89320 93797 93087 95817 96946 98763 

Define 167446 172507 192976 210315 220493 217765 223503 227903 231861 

Typedef 6489 6750 8932 9519 9921 9819 9907 9913 10689 

Const 22033 22428 28731 31316 35118 36275 37954 38438 43855 

Enum 1356 1371 1733 1806 1894 1909 1960 1967 2063 

Do 3857 3901 4353 4536 4684 4560 4759 4828 5213 

While 22566 22904 24007 25550 26578 26119 26639 26823 27235 

Switch 14086 14419 15594 16716 17620 17540 17967 18144 18318 

Default 9334 9512 10366 11083 11803 11788 12069 12201 12485 

For 32692 33921 36422 38636 40406 40082 41040 41430 42192 

Baseclass 9545 9398 10847 11659 12378 12607 13056 13179 13749 

Derivedclass 431 260 403 405 408 408 412 412 416 

Quality 5022854 5189601 5537801 6000023 6256205 6283992 6469353 6547285 6850235 

UpdateNotCFiles 4301 2367 2395 4785 4441 4661 3451 4786 5413 

CUpdate 3847 1797 3592 3872 5311 10327 8699 12549 10972 

TotalUpdate 8148 4164 5987 8657 9752 14988 12150 17335 16385 

NotcAdded 28801 208302 60902 243847 201325 158178 91162 182179 135368 

CAdded 59094 170830 140658 184473 283670 301660 204478 375910 425018 

Added 87895 379132 201560 428320 484995 459838 295640 558089 560386 

Notcdeleted 14212 91377 44481 149151 80924 86522 57663 170533 73729 

Cdeleted 38579 99253 110327 103762 145609 227685 161326 292137 319049 

Deleted 52791 190630 154808 252913 226533 314207 218989 462670 392778 

Modified 140686 569762 356368 681233 711528 774045 514629 1020759 953164 

Difference 35104 188502 46752 175407 258462 145631 76651 95419 167608 



Notcnumauthors 30 27 38 44 42 59 53 50 61 

Cnumauthors 32 26 36 40 43 53 59 55 65 

Totalnumauthors 34 29 42 45 46 61 63 63 66 

BotHalfnotC 12 3 11 12 12 23 58 12 28 

BotHalfC 22 30 12 12 13 103 24 32 129 

BotHalfTotal 34 33 23 24 25 126 82 44 157 

PreBugsAll 58 62 71 106 140 123 130 186 145 

PreBugsPrev 30 34 36 32 51 57 78 66 64 

PreBugsCurrent 34 36 32 51 57 78 66 64 65 

PreBugsUnknown 3 2 3 4 6 5 17 63 17 

Months 3 2 3 3 4 3 3 3 4 

MiscMailings 1437 937 3173 4608 8280 6468 5552 6467 8892 

AdvocayMailings 105 24 126 87 65 140 109 82 77 

AnnounceMailings 9 5 2 17 9 10 11 11 10 

PortsMailings 152 149 664 498 1144 1470 1078 1422 1396 

WWWMailings 71 82 178 229 386 380 409 628 398 

BugsMailings 180 184 189 307 495 598 557 691 687 

SparcMailings 61 46 81 127 120 57 225 348 308 

TechMailings 536 332 915 842 1445 1174 944 876 881 

AllbugsotherHW 6 6 6 14 3 12 22 29 15 

AllBSD 

Bugsi386HW 48 54 42 74 130 92 93 96 106 

AllBSD 

BugssparcHW 10 9 8 17 5 2 6 11 14 

CurrentBSD 

BugsotherHW 5 2 2 4 0 5 8 14 6 

CurrentBSD 

Bugsi386HW 26 34 25 42 55 72 53 53 49 

CurrentBSD 

BugssparcHW 4 1 5 3 2 2 7 2 11 

ChangeRequests 6 8 6 11 18 14 22 25 15 



DocBugs 3 12 7 13 21 18 33 45 28 

 

 


