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Abstract

A basic premise behind the study of large networks is that interaction leads to complex
collective behavior. In our work we found very interesting and counterintuitive patternsfor
time evolving networks, which change some of the basic assumptions that were made in the
past. We then developmodelsthat explain processes which govern the network evolution,
fit such models to real networks, and use them to generate realistic graphsor give formal
explanations about their properties. In addition, our work has a wide range of applications:
it can help us spot anomalous graphs and outliers, forecast future graph structure and run
simulations of network evolution.

Another important aspect of our research is the study of “local” patternsand structures
of propagation in networks. We aim to identify building blocks of the networksand find
the patterns of influence that these blocks have on information or virus propagation over the
network. Our recent work included the study of the spread of influencein a large person-
to-person product recommendation network and its effect on purchases. We also model the
propagation of informationon the blogosphere, and proposealgorithms to efficiently find
influential nodes in the network.

A central topic of our thesis is also the analysis oflarge datasetsas certain network prop-
erties only emerge and thus become visible when dealing with lots of data. We analyze the
world’s largest social and communication network of Microsoft Instant Messenger with 240
million people and 255 billion conversations. We also made interesting and counterintuitive
observations about network community structure that suggest that only small network clusters
exist, and that they merge and vanish as they grow.
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Chapter 1

Introduction

The main interest of our research has been in understanding the structural properties and patterns in the
evolution of large graphs and networks. What does a “normal” network look like? How will it evolve over
time? How can we spot “abnormal” interactions (e.g., spam) in a time-evolving e-mail graph? How do
information and viruses spread over the network? How can we identify andfind influential nodes or select
nodes to immunize in networks? Answers to such questions are vital to a rangeof application areas from
the identification of illegal money-laundering rings, misconfigured routers on the Internet, viral marketing
and protein-protein interactions to disease outbreak detection.

A basic premise behind the study of large networks is that interaction leads to complex collective behavior.
We study three such cases where complex collective behavior emerges from local interaction:

• Network evolution: The study of statistical properties and models that govern the generation and
evolution of large real-world networks. Evolution of network structure is aform of collective be-
havior, where our studies are the first to examine network evolution over long time periods both
at the macroscopic level of statistical network properties and at the microscopic level by analyzing
individual arrivals and attachments of millions of edges. We view the networkas a big complex
system, and observe its static and temporal properties and patterns to designmodels that capture
and help us understand the temporal and static patterns of real-world networks.

• Network cascades:The study of the network by starting from individual nodes and small com-
munities. Cascades are a form of collective behavior that has been analyzed both empirically and
theoretically, but for which the study of complete, large-scale datasets hasbeen limited. We examine
two examples where it is possible to directly observe and measure large scalecascading behavior.
We show that cascades exist in large real-world networks, and investigate some of their structural
features. We aim to find common and abnormal sub-network patterns and understand the propa-
gation of influence, information, diseases and computer viruses over the network. Once we know
the propagation patterns and structure, we devise algorithms for efficientlyfinding influential nodes
and detecting disease or virus outbreaks in networks.

• Large data: The study of large real-world networks with hundreds of millions of nodes and edges.
Working with such datasets is important in order to understand and take into account performance
and scalability issues and to discover patterns that may become apparent only in massive datasets.
For example, we demonstrate the value of large data in the case of quantifyingnetwork community
structure where most of the existing work focused on small networks of several hundred nodes. On
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the other hand we analyze large networks of millions of nodes and show theirstructure is funda-
mentally different from small networks. Basically, our observations only become possible when
working with enough data so that the behavior or the structural property emerges.

1.1 Motivation and applications

Traditionally small networks were analyzed from a “node centric” point ofview where researchers wanted
to answer questions about behavior and properties of particular nodesin the network. Though such models
are very expressive, they often fail to scale to large networks with millions of nodes and edges. Moreover,
many times we need to work with a large network for a structural property of the network to emerge; thus,
the focus moves to the study of structural properties of the network as a whole.

Today with the ubiquity of the web and with billions of its users there are several opportunities to study
phenomena and computing systems at scales that were not possible before. This can be summarized by
the following three points:

• On-line computing systems (e.g., web, email) have detailed traces of human activity.

• Such applications (e.g., Facebook, Second Life, blogs) have millions of users interacting with one
another and with the system.

• Such rich data can naturally be modeled and represented as a network.

For example, Web 2.0 [O’Reilly, 2005] is a set of tools that enable the masses to easily create content
on the WWW, in the form of blogs, social networks, video and photo collections, and simple application
creation frameworks. In addition, Web 2.0 has amplified the importance of relationships between users
that are represented in social networks. The emergence of this new andvaried content has led to a flurry
of research activity that aims to mine the content and infer useful data fromit (e.g., sentiment analysis,
network analysis). Other such examples include: mobile caller networks, which include traces of calling
and mobility dynamics of millions of people; Instant messaging data that in a single application under a
single system captures communication patterns of basically the whole planet Earth; Or for example, online
worlds and massively multiplayer online games which are capable of supporting hundreds or thousands
of players interacting simultaneously.

This presents many unique opportunities and challenges. On one hand, it presents a shift in computer
science from engineering big systems to a more natural science approach. Unlike other areas in the field,
we are not engineering a system over which we have complete control anymore. We are studying the real
world, adding local mechanisms to achieve certain global goals. On the otherhand, the emergence of
socially rich computing applications with millions of users allows us to ask questionsthat were impos-
sible to answer before as large scale human social dynamics data was practically impossible to collect.
Moreover, this also offers a unique opportunity for computer science to reach towards other sciences like
social sciences, economics and mechanism design, and physics of complex systems.

To understand the complex behavior and dynamics of the web or the internetbackbone one basically
follows the steps of the scientific method. Thus, throughout this thesis we follow the following three
steps:
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Thesis Steps of the thesis

part 1: Observations 2: Models 3: Algorithms

Part 1: Network evolution chapter 3 chapter 4 chapter 5

Part 2: Network cascades chapter 6 chapter 7 chapter 8

Part 3: Large data chapter 9 chapter 10 chapter 11

Table 1.1: Structure of the thesis with references to the chapters.

• STEP 1 – Observations:Hypothesis and data analysis.We consider a problem of interest and form
a hypothesis. We collect real data, measure and observe the phenomenaof interest, and perform
measurements and analyses that prove or disprove the hypothesis.

• STEP 2 – Models: Explanation/model design.Given a novel observation we design models that
give intuitions, explanations and predictions about the system.

• STEP 3 – Algorithms: System and algorithm development.Using insights from the data analysis
and models that explain the observations, we develop new better and fasteralgorithms and systems.

While the first two steps are part of usual scientific method, the last third stepis somewhat unique to com-
puter science as it introduces a feedback loop to the process. It aims to harness the empirical observations
and intuitions coming from the models to develop better systems, applications and algorithms. This is
also the primary reason why computer scienceper seis interested in asking and validating the empirical
questions.

For example, recently the field of “internet measurement” [Crovella and Bestavros, 1997, Zhang et al.,
2002] emerged in the area of computer networks. It empirically explores, measures and models how
Internet as a whole looks, works, and behaves. This is shift from traditional engineering point of view.
If one engineers a system, there is usually no need to measure and model it as we designed it and thus
understand how it works. However, even though the physical Internet was designed and engineered, it
evolved into a large and complex system that one today needs to measure andmodel to understand it and
make predictions about it. Thus also comparisons and parallels of the internet with complex physical and
biological systems.

This puts computer science a unique position as we not only study but also design and build such complex
systems. We are not only silent observers that measure and model, but wecan also design, create and
impose rules and incentives on such systems. Via computing application we have control at micro level,
while the system is affected globally. So it is important to understand how suchsystems work, and
understand what consequences our micro decisions have globally, which then naturally closes the loop
between design and engineering on one hand, and empirical measurementand modeling on the other
hand.

Thus, the thesis naturally breaks into nine pieces, as shown in Table1.1: the rows correspond to the re-
search problems, and the columns correspond to the steps of the scientific process as described above. Next
we give the motivation for each of the nine parts, following by the summary of our contributions.
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1.1.1 Network evolution

Ultimately we search for interesting measures that let us characterize the network structure and the pro-
cesses spreading over the networks. Then we design models and algorithms that take advantage of the
identified structural network properties.

The focus of analyzing and modeling the structure of large networks aims to do the following three
things:

(1) Observations: What are interesting statistical properties of network structure?The aim is to find
statistical properties, such as path lengths and degree distributions, that characterize the structure
and behavior of networks, and suggest appropriate ways to measure these properties.

(2) Models: What is a good model that helps us understand these properties?We aim to create models
of networks that can help us to understand the meaning of the statistical properties of networks.
How they come to be as they are, and how they interact with one another?

(3) Algorithms: Estimate the model and predict behavior of networks based on measured structural
properties and local rules governing individual nodes?How, for example, will Internet structure
evolve and how does the network structure affect traffic on the Internet or performance of a web
crawler?

Applications:

• Models and parameters:Generative models and their parameters give us insight into the graph
formation process. Intuitions developed by the models are useful in understanding the network
generation processes and reasoning about the structure of the networks in general.

• Graph generation:Our methods form means of assessing the quality of graph generators. Synthetic
graphs are important for “what if” scenarios where we need to extrapolate and simulate graph
growth and evolution, since real graphs may be impossible to collect and track (like, e.g., a very large
friendship graph between people). Synthetic graphs can then be used for predicting future network
evolution, hypothesis testing, and simulations and evaluation of algorithms,e.g., simulations of new
network routing protocols, virus propagation, etc.

• Extrapolations and predictions:For several real graphs, we have a lot of snapshots of their past.
What can we say about their future? Our results help form a basis for validating scenarios for graph
evolution.

1.1.2 Network cascades

The second part of the thesis deals with information propagation in large networks. The social network
of interactions among a group of individuals plays a fundamental role in the spread of information, ideas,
and influence. Such effects have occurred in many cases, when an idea or action gains sudden widespread
popularity through word-of-mouth or “viral marketing” effects. To take arecent example from the tech-
nology domain, free e-mail services such as Microsoft’s Hotmail and later Google’s Gmail achieved wide
usage largely through referrals, rather than direct advertising. However, directly measuring such behaviors
on a large scale proved difficult.
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We would like to understand how the structure of the network affects the spread of information, influence
and viruses over the network. We monitor the spread of information on the blogosphere or recommenda-
tions in a product recommendation network. We aim to answer the following questions:

(1) Observations: What are the typical patterns of information propagation?The aim is to find statis-
tical properties, such as how deep or wide are the propagation graphs (also calledcascades) or how
fast is the information spreading? We want to characterize such behaviors and suggest appropriate
ways to measure them.

(2) Models: What is a good model that helps us understand these properties?For example, we aim
to create models of information propagation on the web. Why information or diseases spread in a
particular way, and how does this interact with the network structure?

(3) Algorithms: How to identify influential nodes and detect disease outbreaks?For example, given
a fixed budget of attention, which blogs should we read to be most up to date on the news? Or
similarly, in a big water distribution network, where shall we position the sensors to detect disease
outbreaks as quickly as possible?

Applications:

• Cascade formation:Understanding cascade formation helps to explain the propagation of infor-
mation and viruses over the network. This allows for more accurate models ofvirus propagation,
which can be used in epidemiology for simulations.

• Outbreak detection:Our work on cascades also gives us the means to study, for example, which
nodes to inoculate to prevent a virus from spreading through the network, or where to place sensors
in a water distribution network to quickly detect disease outbreaks.

1.1.3 Large data

A basic premise behind the study of networks is that interaction leads to collective behavior. For such
collective behavior to become “visible” and detectable by statistical and machine learning methods one
needs to analyze large datasets. As it turns out, many network properties follow heavy-tailed distributions
that have infinite variances, which makes estimation hard and requires lots ofdata.

(1) Observations:What novel observations can we make from large datasets?Using large datasets we
can more accurately measure and experiment at scales that were not possible before. This can then
lead to observing novel patterns or answering questions that were previously practically impossible
to answer due to lack of data and tools to analyze them.

(2) Models: What is a good model that explains the observation?When existing models fail to give an
explanation, novel observations give us opportunities to design new models.

(3) Algorithms: How to handle and analyze large datasets?Working with large datasets presents sev-
eral engineering, systems and implementation challenges. It forces us to develop scalable parallel
and out-of-core algorithms and tools that scale to large datasets and allow for measurement and
analysis.
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Applications:

• Data mining:Scaling data mining algorithms to large data is important by itself as it will allow us
to discover novel patterns not found in smaller datasets.

• Abnormality detection and computer network management:In many network settings, “normal”
behavior will produce subgraphs that obey properties of network growth. To detect activity which
produces structures that deviate significantly from the normal patterns one needs to efficiently pro-
cess lots of data. As the detections are made, we can flag them as abnormalities; this can potentially
help with the detection of,e.g., fraud, spam, or distributed denial of service (DDoS) attacks.

1.2 Thesis overview and contributions

The thesis addresses a number of important questions regarding the properties and patterns of large evolv-
ing networks by revealing how local behavior and structure lead to large scale phenomena.

The dissertation focuses on dynamics of time evolving networks, and the dynamics of processes, like
virus propagation, that take place in networks. Our thesis has a “3-by-3” structure: it focuses on three
problem domains where each of them is examined from three different aspects,i.e., there are three parts:
Network evolution, Network cascades and Large data, where each of them is composed of three chapters:
Observations, Models and Algorithms. Table1.1 gives the overall structure of our research with the
mapping to the chapters of this thesis.

The the main questions this thesis asks and answers are the following. We break each of them in the three
steps the thesis follows:

1.2.1 Part 1 – Network evolution: How do real-world networksevolve?

Accurate properties of network growth, information propagation, and themodels supporting them, have
several possible consequences. Patterns give us ways for understanding and building models, and models
help us to reason, monitor and predict features of the network in the future.

Step 1 – Observations:How do network properties evolve over time?(Chapter3)

Here we examine how the macroscopic network properties, like diameter and network densification,
change over time as the network evolves. This work had influence on thinking about fundamental struc-
tural properties of networks varying over time. For example, to date, it wascommonly believed that
the average degree of graphs of natural phenomena remains constantas they grow over time. Moreover,
it was also assumed that the distances in networks slowly (logarithmically) increase with the network
size. We showed that in fact networksdensify over timeas the number of edgesE(t) at time t is in-
creasing asE(t) ∝ N(t)a with the number of nodesN(t). The densification exponenta is non-trivial,
a ≈ 1.2–1.6 [Leskovec et al., 2005b]. Even more surprisingly, the diameter of the networkshrinksas it
grows. These findings are fundamentally different from what was believed and commonly assumed in
the past. A natural question to ask then is why do we observe these regularities? What is the connection
between densification and shrinking diameters? As the existing intuitions and models do not explain these
types of behavior, we developed a “Forest Fire” generative model that creates graphs with these proper-
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ties [Leskovec et al., 2007b]. We also showed that densification itself is not enough to observe shrinking
diameters.

Step 2 – Models:How can we model the network growth and evolution?(Chapter4)

We examine network evolution by studying individual edge arrivals and placements. It is the individual
edges that collectively give rise to observed macroscopic network properties. We use themaximum-
likelihoodprinciple to quantify the bias of new edges towards the degree and age of nodes, and to objec-
tively compare various models such as preferential attachment. In fact, our work is the first to directly
quantify the amount of preferential attachment in large social networks. We show that most new edges
span very short distances, typicallyclosing triangles. Motivated by these observations, we develop a
completemodel ofnetwork evolution, incorporating node arrivals, edge initiation, and edge destination
selection processes. While node arrivals are mostly network-specific, the edge initiation process can be
captured by exponential node lifetimes and a “gap” model based on a power law with exponential cutoff.
We arrive at an extremely simple yet surprisingly accurate description of the edge destination selection in
real networks.

Step 3 – Algorithms: How can we generate large synthetic realistic looking networks?(Chapter5)

Last, we examine a question of how one can generate realistic looking synthetic graphs. This competency
is important as we often need good null-models for simulations, what-if scenarios and hypothesis testing.
We developed a Kronecker graph model that is based on the tensor product of graph adjacency matrices.
In contrast to previous models, Kronecker graphs capture greatest number of static and dynamic network
properties [Leskovec et al., 2005a], while being mathematically tractable. Moreover, we developed a max-
imum likelihood approach for parameter estimation of Kronecker graphs [Leskovec and Faloutsos, 2007].
Naive approaches take super-exponential time, while we developed alinear time parameter estimation
algorithm. Using approximation and sampling we efficiently search the space of101,000,000 states, and
estimate the model parameters for networks with millions of nodes in a matter of hours.

Contributions:

• We discovered the networkdensificationandshrinking diameterthat influenced the thinking about
fundamental structural properties of networks varying over time.

• We developed Kronecker graphs, which are amathematically tractablemodel of network genera-
tion and evolution. Moreover, Kronecker graphs are the first model that is able to captureseveral
temporal and static network properties at the same time.

• We developed KRONFIT, an algorithm for estimating parameters of a Kronecker graphs model.
Naive parameter estimation takesO(N !N2) time, while our approach scaleslinearly O(E), which
allows us to fit large graphs with millions on nodes and edges.

Impact:

• The work on densification and shrinking diameters received the best research paper award at ACM
KDD 2005 [Leskovec et al., 2005b].

• Kronecker graphs have been harnessed by the high performance computing community,e.g., by
Jeremy Kepner [Kepner, 2008] at MIT Lincoln Lab, and David Bader at Georgia Tech, and Mo-
hammad Mahdian from Yahoo! Research [Mahdian and Xu, 2007].
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1.2.2 Part 2 – Network cascades: How information spreads in networks?

To model the evolution of large networked systems one also needs to understand how influence and infor-
mation spread and propagate. Developing insights into such propagations isimportant for selecting targets
for advertising and marketing, finding opinion makers with great influence inshaping people’s opinions,
and to select nodes to monitor to best detect the potential epidemics.

The second part of the thesis presents our results on dynamics of processes that cascade from node to node
like an epidemic. As the processes propagate they createcascadesthat are a form of collective behavior
that has been analyzed both empirically and theoretically, but for which the study of complete, large-scale
datasets has been limited. We investigated two examples of cascading behaviorin networks where propa-
gations naturally form cascades and we were able to directly measure and observe them on a large scale.
In our work on information propagation between blogs [Leskovec et al., 2007d] and on product recom-
mendation networks [Leskovec et al., 2006a, 2007a], we developed macroscopic models of the spread of
influence in networks [Leskovec et al., 2007d], and found common and abnormal network substructures,
calledcascades, that the propagation process creates [Leskovec et al., 2007d, 2006b].

Step 1 – Observations:What are patterns of diffusion and cascades in networks?(Chapter6)

First we present a study of influence and recommendation propagation in alarge viral marketing network.
To the best of our knowledge, our research was the first to answer a simple question: What is the probabil-
ity of a person adopting the behavior (e.g., buying a product) as more friends have adopted [Leskovec et al.,
2006a]. Two competing theories are diminishing returns, which assumes that the probability of adoption
increases slowly, and a critical threshold hypothesis, which assumes thatthe probability of purchase sud-
denly jumps as a particular number of friends acquire the product. The validation of these competing
models is only made possible with sufficient data. We observed 16 million product recommendations be-
tween 4 million people on half a million products from a large online retailer. We found that probability of
adoption follows adiminishing returnsproperty, and that the probability of adoption saturates (and some-
times even starts to decrease) after around 20 network neighbors adopt[Leskovec et al., 2007a]. These
findings are important for advertising and viral marketing.

Step 2 – Models:How can we model information diffusion and cascades?(Chapter7)

We also study the information propagation and the cascades this process results in on the blogosphere. We
analyzed one of the largest available collections of blog information, trying tofind how blogs behave and
how information propagates through the blogosphere. In contrast with viral marketing, stars and chains
are basic components of blog cascades, with stars being more common.

Step 3 – Algorithms: How can we effectively detect epidemics and disease outbreaks?(Chapter8)

The diminishing returns property has also led us to efficient and theoreticallysound algorithms for network
sensor placement [Leskovec et al., 2007c]. Submodularityis the diminishing returns property that we ex-
ploited to develop new tighter bounds for greedy optimization of submodular functions and to devise new
efficient optimization algorithms. Our approachprovablyachievesnear optimalplacements, while being
700 timesfaster on our dataset than a simple greedy algorithm. Our approach [Krause et al., 2008] ranked
first in the “Battle of the Water Sensor Networks” competition where the task was to place sensors in a city
water distribution network to effectively detect contaminants spreading over the network [Ostfeld et al.,
2006]. Beyond the task at hand, we showed that the same sensor placement algorithm can be used to decide
the best news sites on the internet to read to not miss important information,i.e., to detect “information epi-
demics” effectively. We tracked the information propagation on the blogosphere for 1 year, and used our
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algorithms to find the most informative blogs. Our project websitehttp://www.blogcascades.org

received more than 30,000 pageviews to date.

Contributions:

• Our work on the shape of the human adoption curve and cascades in viralmarketing and blogosphere
was the first to measure and analyze cascading behavior in a large real-world setting. We also found
that the human adoption curve followsdiminishing returns.

• We developed the CELF algorithm for sensor placement to detect disease outbreaks in networks.
We proved that CELF placements are near optimal, and obtained data dependent bounds that show
our solutions are at≈ 90% of NP-hard to compute optimal, while being700 times fasterthan a
simple non-optimal greedy algorithm.

Impact:

• Our work on the CELF algorithm received the best student research paper award at ACM KDD
2007 conference [Leskovec et al., 2007c].

• Our approach for contamination detection in water distribution networks [Krause et al., 2008] ranked
first in the “Battle of the Water Sensor Networks” competition where the task was to place sen-
sors in a city water distribution network to effectively detect contaminants spreading over the net-
work [Ostfeld et al., 2006].

• Follow-up works by Duncan Watts [Kossinets and Watts, 2006], Jon Kleinberg, Daniel Hutten-
locher [Backstrom et al., 2006] and others later confirmed the diminishing returns behavior in a
number of other domains,e.g., the probability of joining a community, sending an email, or editing
an article on Wikipedia.

1.2.3 Part 3 – Large data

The third part of the thesis presents our work on very large networks. We show how large amounts of data
give us opportunities to observe phenomena that were previously practically invisible.

Step 1 – Observations:What properties hold for a social network of the whole planet?(Chapter9)

We present the “planetary scale” Microsoft Instant Messenger network, the largest social networkana-
lyzed to date [Leskovec and Horvitz, 2008]. We collected and analyzed4.5 terabytesof network data.
The MSN network contains240 millionpeople, with more than1 billion conversations per day. We inves-
tigate on a planetary scale the oft-cited report that people are separated by “six degrees of separation” and
find that the average path length among Messenger users is6.6. We also examine homophily and patterns
of intra- and international conversation.

Step 2 – Models:What is community or cluster structure of real-world networks?(Chapter10)

We present our work on community structure in networks. Researchers inthe social sciences and physics
have long been excited about the existence of “network communities”, where the intuition is that networks
contain sets of nodes that interact more strongly with each other than with the remainder of the network.
We found behaviors that are fundamentally different from intuitions based on small social networks, spa-
tial graphs or hierarchical community structure that has typically been assumed for social and biological
networks. Our observation is that, in large networks, tight communities exist only at smaller size scales.
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The limit on the community size is≈ 100 nodes which agrees well with Dunbar’s observation that 150 is
the maximum human community size [Dunbar, 1998]. As community exceeds this critical size it vanishes
and blends with the rest of the network [Leskovec et al., 2008b]. Our observations were only possible
since we examined large enough networks exceeding the size scale of communities. Formalization and
models of such behavior would have a wide range of implications for researchers in the social sciences
who want to discover communities from network data, and also for graph clustering and partitioning
research [Leskovec et al., 2008b].

Step 3 – Algorithms: How can we predict web search result quality without looking at the webpage
content?(Chapter11)

Last, we present ways of how local web graph structure can be used for predicting the quality of web search
results. We show how local structure of the web graph can be used to makeglobally accurate predictions
about relevancy of web pages. We introduceweb projections, where we extract context sensitive subgraphs
of the web, and then usemachine learningon contextual subgraphs of the web that can be used for
search result qualityprediction,web spamidentification and predicting what search engine user will do
next.

Contributions:

• We analyzed the properties of the planetary MSN Messenger social network, the largest social
networkexamined up to date, and found the“6.6 degrees of messaging”, i.e., that people are on
average separated by only 6.6 hops [Leskovec and Horvitz, 2008].

• Our analysis of community structure in large social and information networks showed that there is
a maximum scale to a network community, which has many implications for clustering and com-
munity identification methods.

Impact:

• Our analysis on of MSN Messenger network, the largest network analyzed up to date, and the “6.6
degrees of messaging” appeared in popular press like Nature news, ZDNet, Cnet (all in March ’08),
Washington Post, MSNBC and BBC (all in August ’08).

• Our work on the most influential bloggers generated lots of excitement as weexperienced a “Slash-
dot effect” with more than30,000 visitsto our project websitehttp://www.blogcascades.org .
Moreover, the work also appeared in ACM TechNews (November ’08) and on MSNBC (January
’08).

Next, we present basic concepts and preliminaries, introduce the notation and briefly survey the related
work. We then proceed with each of the three main parts of the thesis: Network evolution, Network
cascades, and Large data.
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Chapter 2

Overview and survey

In this chapter we review the basic concepts and terminology used in this thesisand introduce the notation.
Next, we survey the works on properties of networks and models to explaintheir emergence, as well as
network diffusion, cascading behavior and information propagation in networks.

2.1 Basic concepts and definitions

Next, we briefly define concepts and terminology that we will be using throughout the thesis. We introduce
basic graph-theoretic concepts and review the power law distributions.

2.1.1 General graph-theoretic concepts

Network data is modeled or represented with agraph. A graphG = (V, E) is defined with a vertex set
V, whereN denotes the number of nodes,N = |V|, and an edge setE , whereE denotes the number of
edges,E = |E|. We interchangeably use terms vertex or node to refer to elements of the vertex setV, and
similarly edge, link or connection to refer to elements of the edge setE .

A convenient way to represent a graphG is by using anadjacency matrix, which is anN ×N matrix A,
whereAi,j = 1 if (i, j) ∈ E and0 otherwise.

Next we define the terminology and several basic graph-theoretic concepts:

Bipartite graph: graphG is bipartite if its vertex set can be partitioned into two disjoint setsV1, V2, so
that there are only edges connecting nodes across the setsV1 andV2. Or equivalently, there exist no edges
between the nodes of the same partition.

Directed and undirected graph: A graph isundirectedif (i, j) ∈ E ⇔ (j, i) ∈ E , i.e., edges are
unordered pairs of nodes. If pairs of nodes are ordered,i.e., edges have direction, then the graph is
directed.

Connectedness:We say that two nodes in a network areconnectedif there exists an undirected path
between them.

11



Weakly and strongly connected graph:A graph isconnectedif there is a path between all pairs of nodes
in a graph. If the graph is directed, then it isweakly connectedif there exists an undirected path connecting
any pair of nodes. Similarly graph isstrongly connectedis there exists a directed path connecting any pair
of nodes in a graph.

Connected component:A connected componentor just a component is a maximal set of nodes where
for every pair of the nodes in the set there exist a path connecting them. Analogously, for directed graphs
we haveweaklyandstronglyconnected components.

Biconnected graph: A graph isbiconnectedif the removal of any single edge does not disconnect the
graph. This means that between any pair of nodes there exist at least 2 disjoint paths. Edges whose
removal disconnects a connected graph are calledbridge edges. Similarly, a node is anarticulation node
if its removal disconnects the graph.

Complete graph: A graph is complete if all pairs of nodes are connected.

Expander graph: An expander graph is a sparse graph which has high connectivity properties quantified
using vertex (or edge) expansion: A graphG on N nodes isα-vertex expander if for anyS ⊂ V where
|S| ≤ N/2 we have|δ(S)| ≥ α|S|. Hereδ(S) denotes a set of all edges with one end inS and the other
end inV\S.

Loosely speaking,G is an expander ifα is “large”. Intuitively, an expander is a graph for which any
“small” subset of vertices has a relatively “large” neighborhood, or similarly, removing random edges
does not reduce the property of an expander by much.

Subgraph: A subgraphGs = (Vs, Es) of a graphG = (V, E) is a subset of edges and all their endpoints:
Es ⊆ E andVs = {i, j : (i, j) ∈ Es}.

Induced subgraph: An induced subgraphGs = (Vs, Es) of a graphG = (V, E) is a subset of nodes and
all their edges:Vs ⊆ V andEs = {(i, j) : (i, j) ∈ E ∧ i, j ∈ Vs}.

Node degree:We say that a node has degreed if it has d incident nodes. For directed graphs we talk
about out-degreedout, which is the number of edges pointing from the node. Similarly, in-degreedin

denotes the number of edges pointing towards the node. For undirected graphs for every nodeu din(u) =
dout(u) = d(u). We also define the graph average degreed̄ = 1/N

∑
u∈V d(u) = 2E/N .

Triad: A triad (or a triangle) is a triple of connected nodes(u, v, w), i.e., (u, v), (v, w), (w, u) ∈ E .

2.1.2 Diameter and effective diameter

For each natural numberh, letg(h) denote the fraction of connected node pairs whose shortest connecting
path has length at mosth, i.e., at mosth hops away. Thehop-plot for the network is the set of pairs
(h, g(h)); it thus gives the cumulative distribution of distances between connected node pairs. We extend
the hop-plot to a function defined over all positive real numbers by linearly interpolating between the
points(h, g(h)) and(h + 1, g(h + 1)) for eachh, and we define theeffective diameterof the network to
be the value ofh at which the functiong(h) achieves the value0.9.

Definition 2.1.1. GraphG has thediameterD if the maximum length of undirected shortest path over all
connectedpairs of nodes isD. The length of the path is the number of segments (edges, links, hops) it
contains.
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We also usefull diameterto refer to this quantity. Notice the difference between the usual and our defini-
tion of the diameter. For a disconnected graph the diameter as usually definedto be infinite, here we avoid
this problem by considering only pairs of nodes that are connected. Alsonote we ignore the directionality
of an edge if the graph is directed.

Definition 2.1.2. For each natural numberh, let g(h) denote thefractionof connected node pairs whose
undirected shortest connecting path in a graphG has length at mosth. And letD′ be an integer for which
g(D′ − 1) < 0.9 andg(D′) ≥ 0.9. Then the graphG has theinteger effective diameterD′ [Tauro et al.,
2001].

In other words, theinteger effective diameteris the smallest number of hopsD′ at which at least 90% of
all connected pairs of nodes can be reached.

Last we give the definition of theeffective diameteras considered in this thesis. Originally we defined
g(h), a fraction of connected pairs of nodes at distance at mosth, only for natural numbersh. Now we
extend the definition ofg to all positive realsx by linearly interpolating the function value betweeng(h)
andg(h + 1) (h ≤ x < h + 1): g(x) = g(h) + (g(h + 1)− g(h))(x− h).

Definition 2.1.3. LetD∗ be a value whereg(D∗) = 0.9, then graphG has theeffective diameterD∗.

This definition varies slightly from an alternate definition of the effective diameter used in earlier work:
the minimum integer valueh such that at least90% of the connected node pairs are at distance at mosth.
Our variation smoothes this definition by allowing it to takenon-integervalues.

The effective diameter is a more robust quantity than the diameter (defined asthe maximum distance over
all connected node pairs), since the diameter is prone to the effects of degenerate structures in the graph
(e.g., very long chains). However, our experiments show that the effectivediameter and diameter tend
to exhibit qualitatively similar behavior. Note that under these definitions the effective diameter and the
diameter are well defined even if the graph is disconnected.

Calculating the exact diameter or effective diameter is infeasible for large networks at it takesO(N3)
time. One way to overcome this would be to resort to sampling,i.e., sample a large number of node pairs
and calculate the length of the shortest paths between pairs. We chose a different approach, and rather
used an approximation algorithm ANF [Palmer et al., 2002] that is based on fast approximate counting
and hashing.

2.1.3 Power law distributions and heavy tails

Here we describe the power law and heavy-tailed distributions and then makeconnections to several
network properties that usually follow power law distributions. Further details on mathematics of power
laws can be found in [Mitzenmacher, 2004, Newman, 2005, Clauset et al., 2007].

A distribution is a Power law if it has a PDF (probability density function) of the form

p(x) ∝ x−γ

wherep(x) is the probability to encounter valuex andγ is the exponent of the power law.

If x is a continuous random variable thenp(x)dx = Pr(x ≤ X < x + dx) = 1
Z x−γdx, whereZ is a

normalizing constant. The density diverges asx→ 0 so the equation cannot hold for allx; so there must
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be some lower boundxmin to power law behavior. Provided thatγ > 1 then calculating the normalizing
constant we find that:

p(x) =
γ − 1

xmin

( x

xmin

)−γ

For the case whenx is discrete and takes integer values we obtainp(x) = Pr(X = x) = 1
Z x−γ . Again the

distribution diverges at zero, so there must be a lower boundxmin on the power law behavior. Calculating
the normalizing constant we find that

p(x) =
x−γ

ζ(γ, xmin)

whereζ(γ, xmin) =
∑∞

i=0(i + xmin)−γ is the generalized zeta function.

In many cases it is useful to consider the Complementary Cumulative DistributionFunction (CCDF) of a
power law distributed random variable. In both discrete and continuous case it is defined asPr(X ≥ x).
For continuous casePr(X ≥ x) = ( x

xmin
)−γ+1 and for discrete casePr(X ≥ x) = ζ(γ,x)

ζ(γ,xmin) .

Perhaps surprisingly, power law distributions can have infinite variancesand even the mean can be infinite.
Basically, one can show that for a power law distribution with power law exponentγ momentsm < γ− 1
will exist and all higher moments will diverge. For example, forγ ≤ 2 mean, variance and all other
moments are infinite; similarly, for2 < γ ≤ 3 mean exists (i.e., is finite), while variance will be infinite,
and forγ > 3 mean and variance will be finite, while third and all higher moments will diverge.

Heavy-tailed and scale-free distributions

A power law distribution is sometimes called ascale-freedistribution, which intuitively means that it looks
the same regardless of what scale we look at it on. More precisely,

Definition 2.1.4. Distribution p(x) for a quantityx is scale-free if there exists a functiong(b) such that
p(bx) = g(b)p(x) for all b andx.

The scale-free property means that when we increase the scale or units by which we measurex by factor
b the shape of the distributionp(x) is unchanged except for the multiplicative constant. This means that
no matter what range ofx one looks at, the proportion of small to large events is the same,i.e., the slope
of the curve on any section of the log-log plot is the same.

Exponential family distributions (like Gaussian distribution) are not scale-free. Actually, power law is the
only scale-free distribution [Newman, 2005].

Similarly, power law is also a heavy-tailed distribution. This means that its tails are not exponentially
bounded; that is, they have heavier tails than the exponential distribution. More precisely, we define
heavy-tails in the following way [Asmussen, 2003]:

Definition 2.1.5. The distribution of a random variableX is heavy-tailed if

lim
x→∞

Pr(X > x)

e−εx
=∞

for all ε > 0.

In contrast, we say a distribution is light-tailed if the limit<∞ for someε.

Examples of heavy-tailed distributions include power law distributions, Paretoand others which we ex-
amine next.
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Relation to Zipf and Pareto distributions

Zipf’s law [Zipf, 1949] usually refers to the rank-frequency plots,i.e., “size” or magnitudey of an oc-
currence of an event relative to its rankr. Zipf’s law is named after George Kingsley Zipf, a Harvard
linguistics professor, who tried to determine the “size” of therth most common English word. Size here
denotes the frequency of use of the word in English text. Zipf’s law states that the size of therth largest
occurrence of the event is inversely proportional to its rank:y ∝ r−b with b ≈ 1.

Pareto distribution is named after economist Vilfredo Pareto, who was interested in the distribution of
income [Lorenz, 1905]. Instead of asking what therth largest income is, Pareto asked how many people
have an income greater thanx. Pareto’s law is given in terms of the complementary cumulative distribution
function (CCDF),i.e., the number of events larger thanx is an inverse power ofx: Pr(X ≥ x) ∝ x−k.
Basically, it states that there are a few multi-billionaires, but most people make only a modest income.
When this distribution is used to model the distribution of wealth, then the parameterk is called the Pareto
index. In 1906 Pareto also made the observation that twenty percent of thepopulation owned eighty
percent of the property in Italy,i.e., the80− 20 rule (that occurs for power law exponentγ = 2).

Interestingly, power law, Pareto distributions and the Zipf’s law are all intimately related. Relation be-
tween the power law scaling exponentγ and the Zipf’s law exponentb is γ = 1 + (1/b). Similarly for the
relation of power law exponentγ and Pareto indexk we obtainγ = k + 1 [Adamic, 2000].

Estimating power law parameters from empirical data

Most commonly the parameters of the power law distribution are estimated from a simple histogram.
Taking logs on both sides of the power law equation givesln p(x) = γ lnx + const, which implies that
a histogram follows a straight line when plotted on log–log scales. We calculatethe empirical probability
density function ofx (histogram of its frequency distribution) and plot the histogram on log-log axis. If a
distribution approximately follows a straight line, then one could assert that distribution follows a power
law with exponentγ given by the slope of the line. Unfortunately this method shows some bias as the
independence and Gaussian noise assumption of least squares linear regression are violated [Newman,
2005].

A better but still not entirely correct way of parameter estimation is by fitting a straight line on a log-log
plot of the CCDF. This gives less biased results as the visual form of the CCDF is more robust against
fluctuations due to finite sample sizes [Clauset et al., 2007]. To improve the accuracy one also bins the
data using the exponentially increasing bin widths,i.e., logarithmic binning.

The Maximum Likelihood Estimates (MLE) are unbiased. For the continuous case of power law distribu-
tion for the power law exponentγ the MLE is:

γ̂ = 1 + n
[ n∑

i=1

ln
xi

xmin

]−1

wherexi, i = 1, . . . , n, are the observed valuesx such thatx ≥ xmin.

For the discrete case there is no closed form solution for the MLE estimate of the power law exponent.
The most convenient way to estimateγ is to directly optimize the log-likelihood function:

l(γ) = −n ln ζ(γ, xmin)− γ
∑

i=1

n lnxi
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Empirically MLE estimates work best and give unbiased results. However many times they give visually
unsatisfying estimates, especially as one has to estimate also the start of the power law tailxmin which in
practice is hard to estimate [Clauset et al., 2007].

2.2 Statistical properties of networks

Networks are composed of nodes and edges connecting them. Dependingon the domain network data
comes from they can represented by directed or undirected networks. Examples of networks include the
Internet, World Wide Web, social networks of acquaintance, collaboration or other connections between
individuals, organizational networks, metabolic networks, language networks, food webs, distribution
networks such as water distribution networks, blood vessels or postal delivery routes, networks of citations
between papers, software networks where edges represent dependencies or function calls.

Research over the past few years has identified classes of propertiesthat can be found in many real-world
networks from various domains. While many patterns have been discovered, two of the principal ones are
heavy-tailed degree distributions and small diameters.

Degree distributions: The degree-distribution of a graph is a power law if the number of nodesNd of
degreed is given byNd ∝ d−γ (γ > 1) whereγ is called thepower law degree exponent.

Such degree distributions have been identified in phone call graphs [Abello et al., 1998], the Internet
[Faloutsos et al., 1999], the Web [Kleinberg et al., 1999, Broder et al., 2000, Barab́asi and Albert, 1999,
Huberman and Adamic, 1999, Kumar et al., 1999b], citation graphs [Redner, 1998], online social net-
works [Chakrabarti et al., 2004], click-stream data [Bi et al., 2001], and many others.

Typically for most datasets the degree exponentγ takes values2 < γ < 3. For example, in-degree
distribution of web graph hasγin = 2.1 and out-degreeγout ≈ 2.4 [Albert and Barab́asi, 2002], while
Autonomous systems haveγ ≈ 2.4 [Faloutsos et al., 1999]. However, deviations from the power law pat-
tern have been noticed [Pennock et al., 2002], which can be explained by the “DGX” distribution [Bi et al.,
2001].

Most of large real-world networks have heavy-tailed or power law degree distributions, and are thus often
called scale-free networks. This discovery [Faloutsos et al., 1999] is important as it shows that real net-
works are not “random” (as we will more precisely define below). Moreover, in scale-free networks there
are many vertices with a degree that greatly exceeds the average (a direct result of power law degree dis-
tributions). These highest-degree nodes are often called “hubs”, andare thought to serve specific purposes
in their networks, although this depends greatly on the domain.

The notion of self-similarity is implied in the name “scale-free”. Intuitively, a self-similar object con-
sists of miniature replicas of itself [Schroeder, 1991]. Several researchers have argued that especially
web graphs [Dill et al., 2002, Dorogovtsev et al., 2002, Crovella and Bestavros, 1997] and biological net-
works [Ravasz and Barabási, 2003] tend to be self-similar and “fractal”.

Small diameter: Most real-world graphs exhibit relatively small diameter, which is also known as the
“small-world” phenomenon: A graph has diameterd if every pair of nodes can be connected by a path of
length at mostd. The diameterd is susceptible to outliers. Thus, a more robust measure of the pair-
wise distances between nodes of a graph is theeffective diameter[Tauro et al., 2001] as we defined
it in definition 2.1.3. The effective diameter has been found to be small for large real-world graphs,
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like Internet, Web, and social networks [Albert and Barab́asi, 2002, Milgram, 1967, Albert et al., 1999,
Bollobas and Riordan, 2004, Broder et al., 2000, Chung and Lu, 2002a, Watts and Strogatz, 1998]).

Scree plot:This is a plot of the eigenvalues (or singular values) of the graph adjacency matrix of the graph,
versus their rank, using a log-log scale. The scree plot for real networks is often found to approximately
obey a power law [Dorogovtsev et al., 2002, Faloutsos et al., 1999]. The distribution of components of
the elements of the first eigenvector (indicators of “network value”) has also been found to be skewed
following a power law distribution [Chakrabarti et al., 2004].

Triads and clustering coefficient: Clustering coefficient is a measure of transitivity in networks and
especially in social networks [Watts and Strogatz, 1998], i.e., friend of a friend is more likely to be also
my friend. In many networks it is found that if nodeu is connected tov andv is further connected tow
then there is a higher probability that nodeu is connected tow. In terms of network topology, transitivity
means the presence of a heightened number of triangles in the network,i.e., sets of fully connected triples
of nodes.

Clustering coefficientCd of a vertex of degreed is defined as follows. Let nodev haved neighbors; then
at mostd(d − 1)/2 edges can exist between them. LetCv denote the fraction of these allowable edges
that actually exist. This basically means that clustering coefficientCv of a vertexv is the proportion of
links between the vertices within its neighborhood divided by the number of links that could possibly
exist between them. Or equivalently,Cv is the fraction of triangles (triads) centered at nodev among the
d(d − 1)/2 triangles that could possibly exist. ThenCd is defined as the averageCv over all nodesv of
degreed, and the global clustering coefficientC is the averageCv over all nodesv.

It has been found that clustering coefficient in real networks is significantly higher than for random net-
works (conditioned on same degree distribution). Moreover, it has beenalso observed [Dorogovtsev et al.,
2002, Ravasz and Barabási, 2003] that in real networks clustering coefficientCd decreases as the node de-
greed increases. Moreover,Cd scales as a power law,Cd ∝ d−1. This observation has been somewhat
quickly used as an indication of hierarchical network organization [Ravasz et al., 2002, Ravasz and Barabási,
2003].

The idea is that the low-degree nodes belong to very dense sub-graphsand those sub-graphs are con-
nected to each other through hubs. Consider a social network in which nodes are people and links are
acquaintance relationships between people. People tend to form communities,i.e., small groups in which
everyone knows almost everyone else; and such groups can then be hierarchically nested or organized. In
addition, the members of a community also have a few acquaintance relationshipsto people outside that
community.

A variant of clustering coefficient for directed graphs has also been defined and examined by Ahnert and
Fink [Ahnert and Fink, 2008]. Authors found that different types of networks have various kindstriangles
more expressed. For example, feed forward loops are very common in transcription networks, while
cycles are most common in language networks.

Community structure: A large body of work has been devoted to defining and identifying communities
in social and information networks. Communities, modules or clusters are most often thought as sets of
nodes that has more and/or better-connected edges between its members than between members of that
set and the remainder of the network [Radicchi et al., 2004, Girvan and Newman, 2002]. Many times
it is also naturally assumed that the communities observe a recursive structure, where bigger commu-
nities can further be split into smaller and smaller communities [Clauset et al., 2006, Sales-Pardo et al.,
2007].
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The problem of community identification is often formulated as unsupervised learning, some form of
clustering or graph partitioning where the idea is to partition the network into disjoint but sometime also
overlapping sets of nodes, where there few edges need to be cut to separate internally densely linked set
of nodes,i.e., a community. For example, see the reviews on community identification [Newman, 2004,
Danon et al., 2005, Palla et al., 2005, Clauset et al., 2008], data clustering [Jain et al., 1999], and graph
and spectral clustering [Gaertler, 2005, Schaeffer, 2007, von Luxburg, 2006].

It has been observed that community-like sets of nodes tend to correspondto organizational units in
social networks [Newman, 2006b], functional modules in biological networks [Ravasz et al., 2002], and
scientific disciplines in collaboration networks between scientists [Girvan and Newman, 2002].

A somewhat contrary concept to hierarchical community structure is the “core-periphery” structure of the
network [Borgatti and Everett, 2000, Holme, 2005], that in computer science also goes by the name of
the jellyfish [Siganos et al., 2006], or theoctopus[Chung and Lu, 2006a] structure of the network. All of
the above basically say that the network is composed of a large and denselyinterlinked network core that
basically has no community structure. The remainder of the nodes is a part ofthe periphery, where the
periphery nodes have links towards the core, but are not connected among themselves.

Core-periphery structure suggests the opposite of the community structureor the hierarchical network
structure. In core-periphery there is a densely linked and intermingled network core, and a number of
nodes on the periphery with their links pointing towards the core.

For example, Internet Autonomous Systems [Siganos et al., 2006] have been found to have this structure.
And as we will later see in Chapter10 this network structure is present in almost all large networks with
more than several thousand nodes.

Network motifs: Network motifs [Milo et al., 2002, Alon, 2007] are basic building blocks of complex
networks. They are of interest in gene regulatory and other biological networks, like protein-protein
interaction networks, signal transduction networks and metabolic networks[Shai et al., 2002].

The idea is to enumerate and count occurrences of all possible induced subgraphs of a given graphG up
to a small number of nodes. Usually, subgraphs of size up toN ≤ 5 nodes, as the combinatorial explosion
of the number of possible graphs and the graph isomorphism test that is needed when counting make the
computation unfeasible for largerN .

The frequencies of motifs are then compared to those of a random graph conditioning on the same degree
distribution. (See [Milo et al., 2004] for how to generate such graphs.) This way a random graph with
same degree distribution is taken as a null-model and motifs that occur significantly more frequently in
real graph than in the null-model are then extracted. Different studies have argued that certain motifs are
found frequently in biological networks, and then tried to assign them a biological function.

For example, a node with a self-loop is the simplest possible motif in a regulatory network. It is called the
autoregulation motif, and it has been argued that it controls for up-regulation or down-regulation of its own
expression/activity. It has been shown that this motif appears at least 40times in the E. coli regulatory
network [Shai et al., 2002], which is much greater than what is expected by chance. Moreover, other
motifs, like feed forward or feed backward loop, and have also been assigned biological functions.

Network motifs are interesting as they are exploring the basic building blocks from which networks are
composed. In chapters6 and7 we will observe the cascading behavior in viral marketing and blogosphere,
and we will present similar analysis of cascade motifs,i.e., what do network cascades look like and what
are their building blocks.
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Additional network properties: Apart from these, several other patterns have been found in networks.
For example, the “resilience” [Albert and Barab́asi, 2002, Palmer et al., 2002] shows that real-networks
are resilient to random node attacks,i.e., one can remove many randomly selected nodes from the network
and the connectivity is not impacted by much. However, if one performs a targeted attack by removing just
a few high degree hub nodes, the network connectivity gets severely disrupted. Other properties are also
“stress” [Chakrabarti et al., 2004], network navigation [Kleinberg, 1999b, Watts et al., 2002], and many
more.

We point the reader to [Albert and Barab́asi, 2002, Newman, 2003, Li et al., 2005, Boccaletti et al., 2006,
Chakrabarti and Faloutsos, 2006] for overviews of the structural properties of networks. The book on
social network analysis [Wasserman and Faust, 1994] is also useful reading.

2.3 Models of network structure and evolution

In parallel with empirical studies of large networks, there has been considerable work on models for
graph generation. Both deterministic and stochastic models have been explored. Most often the models
do not “force” the network to have a certain property but rather give general principles or mechanisms
of edge creation that consequently lead to the global statistical property ordistribution to arise in the
network.

Erdős–Ŕenyi random graph model

The earliest probabilistic generative model for graphs was a random graph model introduced by Erdős and
Rényi [Erdős and Ŕenyi, 1960]. The model states that given a number of nodes each pair of nodes hasan
identical, independent probability of being joined by an edge. There are two variants of the model:Gn,p

is defined to haven nodes, and each edge appears independently with probabilityp. Similarly, theGn,m

is defined to haven nodes andm uniformly at random placed edges. There exists a close correspondence
between the models, as in practice most theorems hold for both variants.

The study of Erd̋os–Ŕenyi random graph model has led to a rich mathematical theory. For example,one
can study the evolution ofGn,m, where one starts with the empty graph onn nodes and then keeps adding
random edges one at a time. The graph will then be aGn,m wherem is the number of edges added so far,
i.e., if one drawsGn,m at random and adds a random edge the new graph will beGn,m+1.

In evolution ofGn,m there exists sharp thresholds orphase transitionsin emergence of certain network
properties. For example, there is a sharp threshold for the size of the largest connected component. Let
d̄ = 2m/n denote the average degree, then ifd̄ = 1− ε then graph is disconnected and all components are
of sizeO(log n). Whend̄ = 1 + ε there is exactly one component of sizeΩ(n), i.e. the giant component,
and all other components are of sizeO(log n). This is exactly the point, the threshold, where the giant
connected component emerges. Moreover, one can also prove that allother components are just trees plus
one edge so they have at most one cycle [Bollobas and Riordan, 2003].

Similarly, one can show that degree distribution of Erdős–Ŕenyi random graph follows a binomial dis-
tribution with meand̄ [Albert and Barab́asi, 2002]. Moreover, the diameter (longest shortest path) of a
random graph increases with the number of nodesn asO(log n), and the average shortest path length
grows asO(log log n) [Chung and Lu, 2001].
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There is a rich mathematical theory about this model; however, the model is notrealistic as it produces
graphs that fail to match real-world networks in a number of respects (e.g., it does not produce power law
degree distributions).

Preferential attachment

The discovery of degree power laws led to the development of random graph models that exhibited such
degree distributions, including the family of models based onpreferential attachment[Barab́asi and Albert,
1999, Cooper and Frieze, 2003]. The model operates in the following way. Nodes are arriving one at a
time. And when a new nodeu arrives to the network it createsm edges (m is a parameter and is constant
for all nodes). The edges are not placed uniformly at random but preferentially,i.e., probability that a new
edge ofu is placed to a nodev of degreed(v) is proportional to its degree,pu(v) ∝ d(v).

This model was first described by Herb Simon [Simon, 1955] and he uses the term Yule distribution to
refer to the power law distribution. Empirically power law degree distributions were first discovered in
citation networks by D.J. de Solla Price [de Solla Price, 1965], where Price noticed that the number of new
citations a paper obtains is proportional to the current number of citations. He calls this the “cumulative
advantage” or the “rich get richer” phenomenon.

This simple behavior leads to power law degree tails with exponentγ = 3. Moreover it also leads to
low diameters. The diameter in preferential attachment model grows slowly,i.e., logarithmically with the
number of nodes [Lu, 2001]. More precisely, diameter grows aslog(N) when a new node adds a single
edge (m = 1), and aslog(N)/ log log(N) for m ≥ 2.

There are also many extensions to the Preferential attachment model. We mention three of them: the
fitness model, Winners don’t take all, and the geometric preferential attachment.

In Preferential attachment model nodes that arrive early will end up having highest degrees. However, one
could envision that each node has an inherent competitive factor that nodes may have, capable of affecting
the network’s evolution. This is called nodefitness[Bianconi and Barab́asi, 2001, Dorogovtsev et al.,
2000, Ergün and Rodgers, 2002]. The idea is that intrinsic ability of a node to attract links in the network
varies from node to node. The most efficient (or “fit”) nodes are able togather more edges at the expense
of others. In that sense, not all nodes are identical, and they claim their degree increase in the number of
edges accordingly to the fitness they possess every time. Fitness parameteris usually considered as not
varying over time and is multiplicative to the edge probability.

In spirit similar is theWinners don’t take all[Pennock et al., 2002] model where the intuition is taken
from the web. It has been observed that for web communities of interest the distribution of links no
longer follows a power law but rather resembles a normal distribution [Pennock et al., 2002]. Based on
this observation, the authors then propose a generative model that mixes preferential attachment with a
baseline probability of gaining a link.

A last variant of Preferential Attachment that we also describe is theGeometric Preferential Attach-
ment[Flaxman et al., 2004, 2007], where the idea is to incorporate geography into the Preferential At-
tachment model. Intuition is that probability of linking to a node of degreed should be higher if the node
is closer rather than farther. In this model nodes belong to some underlyinggeometry and then each node
connects preferentially to other nodes inside some local ball of radiusr. For example, one can scatter
nodes uniformly on a sphere, and each node uses Preferential Attachment mechanism to attach to other
nodes in some local neighborhood as defined by the sphere.
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Copying model

Similar in spirit to the above models is thecopying model[Kleinberg et al., 1999, Kumar et al., 2000],
where a new node joins the network by uniformly at random choosing nodeu and then either linking to
u’s neighbors or creating a random edges. More precisely, nodes arearriving one at a time. A new node
v choosesk, the number of edges to add, and then with probabilityβ it selectsk vertices uniformly at
random and links to them; and with probability1−β nodev links tok random neighbors of a uniformly at
random chosen nodeu, i.e., v copiesu’s links. Copying model generates power law degree distributions
with exponentγ = 1/(1− β).

There are also many related models where a new node selects an existing node u and then starts a ran-
dom walk or breath first search type of procedure to create links to nodes in u’s vicinity. Such mod-
els include thegrowing network with copyingmodel [Krapivsky and Redner, 2005], Recursive search
model [Vazquez, 2001], and theRandom Surfer Model[Blum et al., 2006], that is based on starting a
random walk from nodeu and after each step restarting or with some probability creating a link.

Other models of scale-free networks

There are many other ways to explain the emergence of scale-free networks. For example,Heuristically
optimized tradeoffs[Fabrikant et al., 2002] and Highly optimized tolerance[Carlson and Doyle, 1999,
Doyle and Carlson, 2000, 2002] are two models where power law degree distributions emerge as a result
of optimization. For example, on the internet one wishes to maximize the connectivity (ping time), while
minimizing the cost of the physical connection. Power laws naturally emerge in such case [Fabrikant et al.,
2002].

Alternative models for generating scale-free networks with power law degree distributions includecon-
figuration model[Bollobas, 1980, Aiello et al., 2000, Bollobas and Riordan, 2003], where nodes have a
number of outward pointing spokes and then these spokes are connecteduniformly at random. This closely
resembles the Erdős–Ŕenyi random graph model so many tools developed for analysis of random graphs
apply. The distribution of a number of spokes of a node defines degree distribution of a graph. Chung
and Lu [Lu, 2001] proposed a different model where node degree sequencewi is generated (e.g., sampled
from power law distribution) and the edge(u, v) appears with probabilitywu · wv/

∑
i wi. In this model

the expected degree sequence will follow the sequencewi.

Small-world model

Last family of network models we describe here strives for small diameters and local structures, like
triangles, in networks that arise from geographical proximity or homophily.Such models include the
small-worldmodel [Watts and Strogatz, 1998] and the Waxman generator [Waxman, 1988]. In a small-
world model one starts with a regular lattice (e.g., a grid). The lattice models local short-range links. Then
for each edge with probabilityp we move its endpoint to a uniformly at random chosen node. The model
offers a nice way of interpolating between regular (p = 0) and random graphs (p = 1). For lowp graphs
will have lots of local structure with many short range links, clustering will behigh but the diameter will
be also large. As one increasesp long range edges will start to appear which will have the effect to destroy
the local structure (clustering will decrease) but at the same time the diameter of the network will also
decrease.
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Related to the small-world is the concept of “navigability” or “searchability” in networks [Kleinberg,
1999b] where the question is how to locally route a message to a target node so that itreaches the target
as quickly as possible. In fact, it has been shown that the structure of real networks allows local routing
and navigation [Liben-Nowell et al., 2005].

For a more extensive review of the topic of network models and generatorswe point the reader to re-
cent works [Albert and Barab́asi, 2002, Chakrabarti and Faloutsos, 2006, Bollobas and Riordan, 2003,
Newman, 2003] that give a survey of the structural properties and statistics of real world graphs and
the underlying generative models for graphs.

2.4 Diffusion and cascading behavior in networks

Information cascades are phenomena in which an action or idea becomes widely adopted due to influ-
ence by others [Bikhchandani et al., 1992]. Cascades are also known as “fads” or “resonance.” Cascades
have been studied for many years by sociologists concerned with thediffusion of innovation[Rogers,
1995]; more recently, researchers in several fields have investigated cascades for the purpose of selecting
trendsetters for viral marketing [Domingos and Richardson, 2001], finding inoculation targets in epidemi-
ology [Newman et al., 2002], and explaining trends in blogosphere [Kumar et al., 2003]. Despite much
empirical work in the social sciences on datasets of moderate size, the difficulty in obtaining data has
limited the extent of analysis on very large-scale, complete datasets representing cascades. We look at the
patterns of influence in a large-scale, real recommendation network and examine the topological structure
of cascades.

Most of the previous research on the flow of information or influence through the networks has been
done in the context of epidemiology and the spread of diseases or virusesover the network [Bailey, 1975,
Anderson and May, 2002]. Classical disease propagation models are based on the stages of a disease
in a host: a person is firstsusceptibleto a disease, then if she is exposed to an infectious contact she
can becomeinfectedand thusinfectious. After the disease ceases the person is then eitherrecoveredor
removed. After that a person becomesimmunefor some period. The immunity can also wear off and the
person becomes again susceptible. Thus SIR (susceptible – infected – recovered) models diseases where a
recovered person never again becomes susceptible, while SIRS (SIS,susceptible – infected – (recovered)
– susceptible) models population in which recovered host can become susceptible again. Given a network
and a set of infected nodes theepidemic thresholdis studied,i.e., conditions under which the disease will
either dominate or die out.

Diffusion models that try to model the process of adoption of an idea or a product can generally be divided
into two groups:

• Threshold model[Granovetter, 1978] where each node in the network has a thresholdt ∈ [0, 1],
typically drawn from some probability distribution. We also assignconnection weightswu,v on the
edges of the network. A node adopts the behavior if a sum of the connection weights of its neighbors
that already adopted the behavior (purchased a product in our case)is greater than the threshold:
t ≤∑adopters(u) wu,v.

• Independent cascade model[Goldenberg et al., 2001] where whenever a neighborv of nodeu
adopts, then nodeu also adopts with probabilitypu,v. In other words, every time a neighbor of
u purchases a product, there is a chance thatu will decide to purchase as well.
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While these models address the question of how influence spreads in a network, they are based onassumed
rather thanmeasuredinfluence effects. In contrast, our study tracks the actual diffusion ofrecommenda-
tions through email, allowing us to quantify the importance of factors such as thepresence of highly
connected individuals, or the effect of receiving recommendations from multiple contacts. Compared
to previous empirical studies which tracked the adoption of a single innovationor product, our data en-
compasses over half a million different products, allowing us to model a product’s suitability for viral
marketing in terms of both the properties of the network and the product itself.

2.4.1 Information cascades in blogosphere

Most work on extracting information cascades has been done in the blog domain [Adamic and Glance,
2005, Adar and Adamic, 2005, Gruhl et al., 2004]. The authors in this domain noted that, while informa-
tion propagates between blogs, examples of genuine cascading behaviorappeared relatively rarely. This
is possibly due to bias in the web-crawling and text analysis techniques usedto collect pages and infer
relationships. In our dataset, all the recommendations are stored as database transactions, and we know
that no records are missing. Associated with each recommendation is the product involved, and the time
the recommendation was made. Studies of blogosphere either spend a lot of effort mining topics from
posts [Adar and Adamic, 2005, Gruhl et al., 2004] or consider only the properties of blogosphere as a
graph of unlabeled post or blog URLs [Adamic and Glance, 2005].

There are several potential models to capture the structure of the blogosphere. Work on information dif-
fusion based on topics [Gruhl et al., 2004] showed that for some topics, their popularity remains constant
in time (“chatter”) while for other topics the popularity is more volatile (“spikes”). [Kumar et al., 2003]
analyze community-level behavior as inferred from blog-rolls — permanent links between “friend” blogs.
In their extension [Kumar et al., 2006] performed analysis of several topological properties of link graphs
in communities, finding that much behavior was characterized by star like graph structure,i.e., a single
charismatic individual linked to many users each with very few other connections.

2.4.2 Cascades in viral marketing

Viral marketing can be thought of as a diffusion of information about the product and its adoption over the
network. Primarily in social sciences there is a long history of research onthe influence of social networks
on innovation and product diffusion. However, such studies have been typically limited to small networks
and typically a single product or service. For example, [Brown and Reingen, 1987] interviewed the fami-
lies of students being instructed by three piano teachers, in order to find out the network of referrals. They
found that strong ties, those between family or friends, were more likely to beactivated for information
flow and were also more influential than weak ties [Granovetter, 1973] between acquaintances.

In the context of the internet, word-of-mouth advertising is not restricted topairwise or small-group in-
teractions between individuals. Rather, customers can share their experiences and opinions regarding
a product with everyone. Quantitative marketing techniques have been proposed [Montgomery, 2001]
to describe product information flow online, and the rating of products andmerchants has been shown
to effect the likelihood of an item being bought [Resnick and Zeckhauser, 2002, Chevalier and Mayzlin,
2006]. More sophisticated online recommendation systems allow users to rate others’ reviews, or directly
rate other reviewers to implicitly form a trusted reviewer network that may havevery little overlap with a
person’s actual social circle. [Richardson and Domingos, 2002b] used Epinions’ trusted reviewer network
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SYMBOL DESCRIPTION

G Graph or graph adjacency matrix
Gt Graph composed of nodes and edges that arrived before timet
N Number of nodes in a graph
E Number of edges in a graph
N(t) Number of nodes in a graph at timet
N(e) Number of nodes in a graph at timet
u, v, w Nodes in a graph
e = (u, v) Edge in a graph
d(u) Degree of nodeu (number of edges incident to nodeu)
d Degree
d̄ Average node degree in a graph
dmax Maximum node degree in a graph
γ Power law degree exponent,p(d) ∝ d−γ

a Densification power law exponent,E(t) ∝ N(t)a

h(u, v) Length of the shortest path between nodesu andv
h Number of hops, path length, distance
D Diameter of a graph as defined in2.1.1
D∗ Effective diameter of the graph as defined in2.1.3
A Set of elements,A = {a1, . . . , an}

Table 2.1: Table of common symbols.

to construct an algorithm to maximize viral marketing efficiency assuming that individuals’ probability
of purchasing a product depends on the opinions on the trusted peers intheir network. [Kempe et al.,
2003] have followed up on the challenge of maximizing viral information spread by evaluating several
algorithms given various models of adoption we discuss next.

2.5 Table of symbols

We list common symbols used in the thesis. Each chapter then also defines chapter-specific concepts and
symbols. For the comprehensive list of symbols refer to the appendix tableA.1.

2.6 Table of datasets

In this thesis we use more than 100 different network datasets. TablesA.2, A.3, andA.4 give brief de-
scriptions and some of the basic statistics, like number of nodes and edges, diameter, clustering coefficient
and so on.
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Part I

Network evolution

How do large networks evolve and

how to model this?
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Part 1 – Network evolution: Overview

Networks, especially social networks and the web, are not static but evolve over time by additions and
deletions of nodes and edges. Here we examine such evolutionary processes at the two levels: (1) the evo-
lution of macroscopic network properties, like diameter and network densification, via a series of network
snapshots over time. (2) The network evolution at the level of individual edge arrivals and placements.
Studying individual edge arrivals is important as it gives us clues to microscopic mechanisms that give rise
to the observed macroscopic network properties. We study large online social networks with individual
node and edge arrivals from the first to the “million-th” edge.

Observations: In both cases we make novel empirical observations.E.g., the counterintuitive Densifi-
cation power law and shrinking diameters at the macroscopic level, to link localityand triangle closure
mechanisms taking place at the level of individual edges.

Models: We then use these observations to develop novel generation and evolutionmodels that specify
individual microscopic node behavior and give raise to the macroscopic phenomena observed in net-
works.

Algorithms: We also introduce a more mathematical model of Kronecker graphs, which is an analytically
tractable network generation and evolution model. Moreover, we also present efficient algorithms to
estimate Kronecker model parameters from data and then use them to generate synthetic graphs with
similar properties as the original network.
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Chapter 3

Macroscopic network evolution

How do real graphs evolve over time? What are “normal” growth patterns insocial, technological, and
information networks? Many studies have discovered patterns instatic graphs, identifying properties in a
single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for
in- and out-degree distributions, communities, small-world phenomena, and others. However, given the
lack of information about network evolution over long periods, it has beenhard to convert these findings
into statements about trends over time.

Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most
of these graphs densify over time, with the number of edges growing super-linearly in the number of
nodes. Second, the average distance between nodes oftenshrinksover time, in contrast to the conventional
wisdom that such distance parameters should increase slowly as a functionof the number of nodes (like
O(log N) or O(log N/ log log N), see Section2.3).

Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We
provide a new graph generator, based on a “forest fire” spreadingprocess, that has a simple, intuitive justi-
fication, requires very few parameters (like the “flammability” of nodes), and produces graphs exhibiting
the full range of properties observed both in prior work and in the present study.

3.1 Introduction

In recent years, there has been considerable interest in graph structures arising in technological, socio-
logical, and scientific settings: computer networks (routers or autonomous systems connected together);
networks of users exchanging e-mail or instant messages; citation networks and hyperlink networks; so-
cial networks (who-trusts-whom, who-talks-to-whom, and so forth); and countless more [Newman, 2003].
The study of such networks has proceeded along two related tracks: themeasurement of large network
datasets, and the development of random graph models that approximate theobserved properties.

Many of the properties of interest in these studies are based on two fundamental parameters: the nodes’
degrees(i.e., the number of edges incident to each node), and thedistancesbetween pairs of nodes (as
measured by shortest-path length). The node-to-node distances are often studied in terms of thediameter
— the maximum distance — and a set of closely related but more robust quantitiesincluding the average
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distance among pairs and theeffective diameter(the90th percentile distance, a smoothed form of which
we use for our studies).

Almost all large real-world networks evolve over time by the addition and deletion of nodes and edges.
Most of the recent models of network evolution capture the growth process in a way that incorporates two
pieces of “conventional wisdom:”

(A) Constant average degree assumption: The average node degree in the network remains constant
over time [Barab́asi and Albert, 1999, Kumar et al., 2000]. (Or equivalently, the number of edges
grows linearly in the number of nodes.)

(B) Slowly growing diameter assumption: The diameter is a slowly growing function of the net-
work size, as in “small world” graphs [Albert et al., 1999, Broder et al., 2000, Milgram, 1967,
Watts and Strogatz, 1998].

For example, the intensively-studiedpreferential attachment model[Barab́asi and Albert, 1999, Newman,
2003] posits a network in which each new node, when it arrives, attaches to theexisting network by a con-
stant number of out-links, according to a “rich-get-richer” rule. Recent work has given tight asymptotic
bounds on the diameter of preferential attachment networks [Bollobas and Riordan, 2004, Chung and Lu,
2002a]; depending on the precise model, these bounds grow logarithmically [Krapivsky and Redner,
2005] or even slower than logarithmically in the number of nodes.

How are assumptions (A) and (B) reflected in data on network growth? Empirical studies of large networks
to date have mainly focused onstaticgraphs, identifying properties of a single snapshot or a very small
number of snapshots of a large network. For example, despite the intense interest in the Web’s link
structure, the recent work of Ntoulas et al. [Ntoulas et al., 2004] noted the lack of prior empirical research
on the evolution of the Web. Thus, while one can assert based on these studies that, qualitatively, real
networks have relatively small average node degrees and diameters, it has not been clear how to convert
these into statements about trends over time.

The present work: Densification laws and shrinking diameters Here we study a range of different
networks, from several domains, and we focus specifically on the way inwhich fundamental network
properties vary with time. We find, based on the growth patterns of these networks, that principles (A)
and (B) need to be reassessed. Specifically, we show the following for abroad range of networks across
diverse domains.

(A′) Empirical observation: Densification power laws: The networks are becomingdenserover time,
with the average degree increasing (and hence with the number of edges growing super-linearly in
the number of nodes). Moreover, the densification follows a power law pattern.

(B′) Empirical observation: Shrinking diameters: The effective diameter is, in many cases, actually
decreasingas the network grows.

We view the second of these findings as particularly surprising: Rather than shedding light on the long-
running debate over exactly how slowly the graph diametergrowsas a function of the number of nodes,
it suggests a need to revisit standard models so as to produce graphs in which the effective diameter is
capable of actuallyshrinkingover time. We also note that, while densification and decreasing diameters
are properties that are intuitively consistent with one another (and are both borne out in the datasets
we study), they are qualitatively distinct in the sense that it is possible to construct examples of graphs
evolving over time that exhibit one of these properties but not the other.
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We can further sharpen the quantitative aspects of these findings. In particular, the densification of these
graphs, as suggested by (A′), is not arbitrary; we find that as the graphs evolve over time, they follow a
version of the relation

E(t) ∝ N(t)a (3.1)

whereE(t) andN(t) denote the number of edges and nodes of the graph at timet, anda is an exponent
that generally lies strictly between1 and2. We refer to such a relation as aDensification Power Law
(DPL). (Exponenta = 1 corresponds to constant average degree over time, whilea = 2 corresponds to an
extremely dense graph where each node has, on average, edges to a constant fraction of all nodes.)

What underlying process causes a graph to systematically densify, with a fixed exponent as in Equation
(3.1), and to experience a decrease in effective diameter even as its size increases? This question motivates
the second main contribution of this work: we present two families of probabilistic generative models
for graphs that capture aspects of these properties. The first model, which we refer to asCommunity
Guided Attachment(CGA) [Leskovec et al., 2005b], argues that graph densification can have a simple
underlying basis; it is based on a decomposition of the nodes into a nested set of communities, such that
the difficulty of forming links between communities increases with the community size.For this model,
we obtain rigorous results showing that a natural tunable parameter in the model can lead to a densification
power law with any desired exponenta. The second model, which is more sophisticated, exhibits both
densification and a decreasing effective diameter as it grows. This model,which we refer to as theForest
Fire Model, is based on having new nodes attach to the network by “burning” throughexisting edges
in epidemic fashion. The mathematical analysis of this model appears to lead to novel questions about
random graphs that are quite complex, but through simulation we find that for a range of parameter values
the model exhibits realistic behavior in densification, distances, and degreedistributions. It is thus the first
model, to our knowledge, that exhibits this full set of desired properties.

Accurate properties of network growth, together with models supporting them, have implications in sev-
eral contexts.

• Graph generation:Our findings form means for assessing the quality of graph generators.Synthetic
graphs are important for ‘what if’ scenarios, for extrapolations, andfor simulations, when real
graphs are impossible to collect (like,e.g., a very large friendship graph between people).

• Graph sampling:Datasets consisting of huge real-world graphs are increasingly available, with
sizes ranging from the millions to billions of nodes. There are many known algorithms to compute
interesting measures (shortest paths, centrality, betweenness, etc.), but most of these algorithms
become impractical for large graphs. Thus sampling is essential — but sampling from a graph is a
non-trivial problem since the goal is to maintain structural properties of thenetwork. Densification
laws can help discard bad sampling methods, by providing means to reject sampled subgraphs.

Our recent work [Leskovec and Faloutsos, 2006] proposed two views on sampling from large graphs.
For Back-in-timesampling the goal is to find a sequence of sampled subgraphs that matches the
evolution of the original graph and thus obey the temporal growth patterns.On the other hand,
Scale-downsampling aims for a sample that matches the properties of the original large graph. We
considered various sampling strategies, propose evaluation techniques,and use the temporal graph
patterns presented in this chapter to evaluate the quality of the sampled subgraphs.

• Extrapolations:For several real graphs, we have a lot of snapshots of their past. What can we say
about their future? Our results help form a basis for validating scenariosfor graph evolution.
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• Abnormality detection and computer network management:In many network settings, “normal” be-
havior will produce subgraphs that obey densification laws (with a predictable exponent) and other
properties of network growth. If we detect activity producing structures that deviate significantly
from this, we can flag it as an abnormality; this can potentially help with the detection of e.g.fraud,
spam, or distributed denial of service (DDoS) attacks.

The rest of the chapter is organized as follows: Section3.2 surveys the related work on networks over
time. Section3.3gives our empirical findings on real-world networks across diverse domains. Section3.4
describes our proposed models and gives results obtained both throughanalysis and simulation. Sec-
tion 3.3.4gives the formal and experimental analysis of the relationship between the degree distribution
and the graph densification over time. We conclude and discuss the implicationsof our findings in Sec-
tion 3.5.

3.2 Related work on graphs over time

Many network models are evolutionary in nature. For example, thepreferential attachment[Abello et al.,
2002, Barab́asi and Albert, 1999, Cooper and Frieze, 2003] is evolutionary as nodes arrive one at the time
and each node creates it edges before next node arrives. Similar is true forcopying model[Kleinberg et al.,
1999, Kumar et al., 2000], which both produce graphs with constant average degree and logarithmi-
cally increasing diameter. A relatedgrowing network with redirectionmodel [Krapivsky and Redner,
2001] produces networks with constant diameter andlogarithmically increasing average degree over
time [Krapivsky and Redner, 2005].

Similar to our Forest Fire Model is the work of Vazquez [Vazquez, 2001, 2003] where ideas based on
random walks and recursive search for generating networks were introduced. In a random walk model the
walk starts at a random node, follows links, and for each visited node with some probability an edge is
created between the visited node and the new node. It can be shown that such model will generate graphs
with power law degree distribution with exponentγ ≥ 2. On the other hand, in the recursive search model
first a new node is added to the network, and the edge to a random node is created. If an edge is created to
a node in the network, then with some probabilityq an edge is also created to each of its 1-hop neighbors.
This rule is recursively applied until no edges are created. The recursive search model is similar to our
Forest Fire Model in a sense that it exploits current network structure tocreate new edges. However, there
is an important difference that in recursive search model the average degree scales at mostlogarithmically
(and not as a power law) with the number of nodes in the network. Our simulation experiments also
indicated that the diameter of networks generated by the recursive search does not decrease over time, but
it either slowly increases or remains constant.

It is important to note the fundamental contrast between one of our main findings here — that the average
number of out-links per node is growing polynomially in the network size — and body of work on degree
power laws. This earlier work developed models that almost exclusively used the assumption of node
degrees that were bounded by constants (or at most logarithmic functions) as the network grew; our
findings and associated model challenge this assumption, by showing that networks across a number of
domains are becomingdenserover time.

Dorogovtsev and Mendes in a series of works [Dorogovtsev and Mendes, 2001a,b, 2003] analyzed possi-
ble scenarios of nonlinearly growing networks while maintaining scale-freestructure. Among considered
hypothetical scenarios were also those where the number of links grows polynomially with the number
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of edges,i.e., Densification Power Law, while maintaining power law degree distribution. The authors
call this anaccelerated growthand propose preferential attachment type models where densification is
forced by introducing an additional “node attractiveness” factor that isnot only degree-dependent but
also time-dependent. The motivation for their work comes from the fact that authors [Broder et al., 2000,
Faloutsos et al., 1999] reported the increase of the average degree over time on the Web and theInternet.
Our work differs in that it presents measurements on many time evolving networks to support our find-
ings, and proposes generative models where densification is an emergingproperty of the model. Besides
densification we also address the shrinking diameters and consider models for generating them.

The bulk of prior work on the empirical study of network datasets has focused onstaticgraphs, identify-
ing patterns in a single snapshot, or a small number of network snapshots (see also the discussion of this
point by Ntoulas et al. [Ntoulas et al., 2004]). Two exceptions are the very recent work of Katz [Katz,
2005], who independently discovered densification power laws for citation networks, and the work of
Redner [Redner, 2004], who studied the evolution of the citation graph ofPhysical Reviewover the past
century. Katz’s work builds on his earlier research on power law relationships between the size and the
recognition of professional communities [Katz, 1999]; his work on densification is focused specifically
on citations, and he does not propose a generative network model to account for the densification phe-
nomenon, as we do here. Redner’s work focuses on a range of citationpatterns over time which are
different from the network properties we study here.

Our Community Guided Attachment (CGA) model, which produces densifying graphs, is an example of
a hierarchical graph generation model, in which the linkage probability between nodes decreases as a
function of their relative distance in the hierarchy [Chakrabarti et al., 2004, Kleinberg, 2002, Watts et al.,
2002, Leskovec et al., 2005b,a, Abello, 2004]. Again, there is a distinction between the aims of this
past work and our model here; where these earlier network models wereseeking to capture properties
of individual snapshots of a graph, we seek to explain a time evolution process in which one of the
fundamental parameters, the average node degree, is varying as the process unfolds. Our Forest Fire
Model follows the overall framework of earlier graph models in which nodes arrive one at a time and link
into the existing structure; like the copying model discussed above, for example, a new node creates links
by consulting the links of existing nodes. However, the recursive process by which nodes in the Forest
Fire Model creates these links is quite different, leading to the new properties discussed in the previous
section.

3.3 Observations

We study the temporal evolution of several networks, by observing snapshots of these networks taken
at regularly spaced points in time. We use datasets from seven different sources; for each, we have
information about the time when each node was added to the network over a period of several years —
this enables the construction of a snapshot at any desired point in time. Foreach of datasets, we find a
version of the densification power law from Equation (3.1), E(t) ∝ N(t)a; the exponenta differs across
datasets, but remains remarkably stable over time. We also find that the effective diameter decreases in all
the datasets considered.

The datasets consist of two citation graphs for different areas in the physics literature, a citation graph for
U.S. patents, a graph of the Internet, five bipartite affiliation graphs of authors with papers they authored,
a recommendation network, an email communication network, and four online social networks. Overall,
then, we consider 16 different datasets from 11 different sources.
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SYMBOL DESCRIPTION

Gt Graph composed of nodes and edges that arrived before timet
N Total number of nodes in a graph
E Total number of edges in a graph
N(t) Number of nodes in a graph at timet
N(e) Number of nodes in a graph at timet
a Power law densification exponent,E(t) ∝ N(t)a

c Difficulty Constant
f(h) Difficulty Function
b Community hierarchy branching factor
d̄ Expected average node out-degree in a graph
dmax Maximum node out-degree in a graph
γ Power law degree distribution exponent,p(d) ∝ d−γ

Γ Community hierarchy (tree)
HΓ Height of the treeΓ
hΓ(v, w) Least common ancestor height of leavesv, w in Γ
h(v, w) Length of the shortest path between nodesv, w
p Forest Fire forward burning probability
pb Forest Fire backward burning probability
r Ratio of backward and forward probability,r = p/pb

α Diameter factor (We fitD∗(t) = α log t + β over timet).
α > 0⇒ increasing,α < 0⇒ decreasing diameter

Table 3.1: Table of symbols.

3.3.1 Densification Laws

Here we describe the datasets we used, and our findings related to densification. For each graph dataset,
we have, or can generate, several time snapshots, for which we study the number of nodesN(t) and the
number of edgesE(t) at each timestampt. We denote byN andE the final number of nodes and edges.
We use the termDensification Power Law plot(or just DPL plot) to refer to the log-log plot of number of
edgesE(t) versus number of nodesN(t).

ArXiv citation graph

We first investigate a citation graph provided as part of the 2003 KDD Cup [Gehrke et al., 2003]. The
HEP–TH (high energy physics theory) citation graph from the e-print arXiv covers all the citations within
a dataset ofN = 29, 555 papers withE = 352, 807 edges. If a paperi cites paperj, the graph contains
a directed edge fromi to j. If a paper cites, or is cited by, a paper outside the dataset, the graph does not
contain any information about this. We refer to this dataset as CIT-HEP-TH.

This data covers papers in the period from January 1993 to April 2003 (124 months). It begins within
a few months of the inception of the arXiv, and thus represents essentially the complete history of its
HEP–TH section. For each monthm (1 ≤ m ≤ 124) we create a citation graph using all papers published
up to monthm. For each of these graphs, we plot the number of nodes versus the number of edges on a
logarithmic scale and fit a line.
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Figure 3.1: The average node out-degree over time for (a) ArXiv high energy physics citation network
(CIT-HEP-TH), (b) US patent citation network (CIT-PATENTS), (c) Autonomous Systems
network (AS-ROUTEV IEWS), (d) ArXiv Astro-Physics authors-to-papers bipartite network
(ATP-ASTRO-PH). Notice that it increases, in all 4 datasets. That is, all graphs aredensifying.

Figure 3.2(a) shows the DPL plot of the CIT-HEP-TH; the slope isa = 1.68 and corresponds to the
exponent in the densification law. Notice thata is significantly higher than 1, indicating a large deviation
from linear growth. As noted earlier, when a graph hasa > 1, its average degree increases over time.
Figure3.1(a) exactly plots the average degreed̄ over time, and it is clear that̄d increases. This means that
the average length of the bibliographies of papers increases over time. Wealso found that the median of the
degree distribution over time also behaves in a qualitatively similar way,i.e., it increases over time.

There is a subtle point here that we elaborate next: With almost any network dataset, one does not have
data reaching all the way back to the network’s birth (to the extent that this is awell-defined notion). We
refer to this as the problem of the “missing past.” Due to this, there will be some effect of increasing out-
degree simply because edges will point to nodes prior to the beginning of theobservation period,i.e., over
time less references are pointing to papers outside the dataset. We refer to such nodes asphantom nodes,
with a similar definition forphantom edges. In all our datasets, we find that this effect is relatively minor
once we move away from the beginning of the observation period; on the other hand, the phenomenon
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of increasing degree continues through to the present. For example, in arXiv, nodes over the most recent
years are primarily referencing non-phantom nodes; we observe a knee in Figure3.1(a) in 1997 that
appears to be attributable in large part to the effect of phantom nodes. (Later, when we consider a graph
of the Internet and the online social networks, we will see a case where comparable properties hold in the
absence of any “missing past” issues.) A similar observation of growing reference lists over time was also
independently made by Krapivsky and Redner [Krapivsky and Redner, 2005].

We also experimented with a second citation graph CIT-HEP-PH, taken from the HEP–PH section of the
arXiv, which is about the same size as our first arXiv dataset. It exhibitsthe same behavior, with the
densification exponenta = 1.56. The plot is omitted but we show the summary of results on all 16
datasets we considered in table3.2.

Patents citation graph

Next, we consider a U.S. patent citation dataset maintained by the National Bureau of Economic Re-
search [Hall et al., 2001]. The data set spans 37 years (January 1, 1963 to December 30, 1999), and
includes all the utility patents granted during that period, totalingN = 3, 923, 922 patents. The citation
graph includes all citations made by patents granted between 1975 and 1999, totalingE = 16, 522, 438
citations. For the patents dataset there are 1,803,511 nodes for which we have no information about their
citations (we only have the in-links). Because the dataset begins in 1975, ittoo has a “missing past” issue,
but again the effect of this is minor as one moves away from the first few years. We refer to this patent
citation network as CIT-PATENTS.

The CIT-PATENTS patents data also contains citations outside the dataset. For patents outside the dataset
the time is unknown. These patents have zero out-degree and are at some timecited by the patents from
within the dataset. We set the time (grant year) of these out-of-dataset patents to the year when they were
first cited by a patent from the dataset. This is natural and is equivalent tosaying that patents for which
grant year is unknown are in the dataset from the beginning, but when counting, we count only non-zero
degree nodes. So the time when we first count an unknown patent is whenit gets a first link.

We follow the same procedure as with arXiv citation networks. For each year Y from 1975 to 1999, we
create a citation network on patents up to yearY , and give the DPL plot, in Figure3.2(b). As with the
arXiv citation network, we observe a high densification exponent, in this casea = 1.66.

Figure3.1(b) illustrates the increasing out-degree of patents over time. Note that this plot does not incur
any of the complications of a bounded observation period, since the patentsin the dataset include complete
citation lists, and here we are simply plotting the average size of these as a function of the year.

Autonomous systems graph

The graph of routers comprising the Internet can be organized into sub-graphs called Autonomous Systems
(AS). Each AS exchanges traffic flows with some neighbors (peers). We can construct a communication
network of who-talks-to-whom from the BGP (Border Gateway Protocol)logs.

We use theAutonomous Systems (AS)dataset from RouteViews project at University of Oregon [RouteViews,
1997]. The dataset contains 735 daily instances which span an interval of 785days from November 8
1997 to January 2 2000. The graphs range in size fromN = 3, 011 nodes andE = 10, 687 edges to
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Figure 3.2: Number of edgesE(t) versus number of nodesN(t), in log-log scales, for (a) ArXiv high en-
ergy physics citation network (CIT-HEP-TH), (b) US patent citation network (CIT-PATENTS),
(c) Autonomous Systems network (AS-ROUTEV IEWS), (d) ArXiv Astro-Physics authors-
to-papers bipartite network (ATP-ASTRO-PH), (e) Email network (EMAIL -INOUT), and (f)
Actors-to-movies bipartite network from IMDB (ATM-IMDB). All 6 graphs obey the Den-
sification Power Law, with a consistently good fit. Slopes:a = 1.68, 1.66, 1.18, 1.15, 1.12,
and 1.11 respectively.
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the largest AS graph that hasN = 6, 474 nodes andE = 26, 467 edges. We refer to this dataset as
AS-ROUTEV IEWS.

In contrast to citation networks, where nodes and edges only get added(not deleted) over time, the AS
dataset also exhibits both the addition and deletion of the nodes and edges over time.

Figure3.2(c) shows the DPL plot for the AS-ROUTEV IEWS dataset. We observe a clear trend: Even in
the presence of noise, changing external conditions, and disruptions tothe Internet we observe a strong
super-linear growth in the number of edges over more than 700 AS graphs. We show the increase in the
average node degree over time in Figure3.1(c). The densification exponent isa = 1.18, lower than the
one for the citation networks, but still clearly greater than1.

Affiliation graphs

Using the arXiv data, we also constructed bipartiteaffiliation graphs. There is a node for each paper, a
node for each person who authored at least one arXiv paper, and an edge connecting people to the papers
they authored. Note that the more traditionalco-authorship networkis implicit in the affiliation network:
two people are co-authors if there is at least one paper joined by an edgeto each of them.

We studied affiliation networks derived from the five largest categories inthe arXiv. We refer to these
Authors-to-Papers graphs as ATP-ASTRO-PH, ATP-HEP-TH, ATP-HEP-PH, ATP-COND-MAT and ATP-
GR-QC. See also the tableA.3 for additional information about the datasets.

We place a time-stamp on each node: the submission date of each paper, and for each person, the date
of their first submission to the arXiv. The data for affiliation graphs covers the period from April 1992
to March 2002. The smallest of the graphs (category GR–QC) had 19,309nodes (5,855 authors, 13,454
papers) and 26,169 edges. ATP-ASTRO-PH is the largest graph, with 57,381 nodes (19,393 authors, 37,988
papers) and 133,170 edges. It has 6.87 authors per paper; most of the other categories also have similarly
high numbers of authors per paper.

For all these affiliation graphs we observe similar phenomena, and in particular we have densification
exponents between1.08 and1.15. We present the complete set of measurements only for ASTRO–PH,
the largest affiliation graph. Figures3.1(d) and3.2(d) show the increasing average degree over time, and
a densification exponent ofa = 1.15. Table3.2shows the sizes and Densification Power Law exponents
for other four affiliation graphs.

Email network

We also considered an email network from a large European research organization. For a period from
October 2003 to May 2005 (18 months) we have anonymized information about all incoming and outgoing
email of the research organization. For each sent or received email message we know the time, the sender
and the recipient of the email. All personally identifiable data was hashed andnodes were assigned random
ids. Overall we have 3,038,531 emails between 287,755 different email addresses. Note that we have a
complete email graph for only 1,258 email addresses that come from inside the research organization.
Furthermore, there are 35,756 email addresses that both sent and received email within the span of our
dataset. All other email addresses are either non-existing, mistyped or spam.
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Given a set of email messages we need to create a graph. Since there canbe multiple emails sent between
same two addresses (nodes) we follow the practice of Kossinets and Watts [Kossinets and Watts, 2006].
Given a set of email messages, each node corresponds to an email address. We create an edge between
nodesi andj, if they exchanged messages both ways,i.e., nodei sent at least one message to nodej, and
j sent at least one message toi.

Similarly to citation networks, we take all email messages up to particular timet and create a graph using
the procedure described above. So, in the first month we observe 254,080 emails between 38,090 different
addresses. Using the procedure [Kossinets and Watts, 2006] of generating a graph from a set of emails,
we getN = 6, 537 nodes andE = 18, 812 edges. After 18 months, at the end of the dataset, we have
N = 35, 756 nodes andE = 123, 254 edges. We refer to this network as EMAIL -INOUT. See also
tableA.2 for additional information about the dataset.

Figure3.2(e) presents the DPL plot for the EMAIL -INOUT network. Observe a clear trend: the email
network is densifying, regardless of the fact that it is growing and that new parts of social network (email
address space) are being explored. The densification exponent isa = 1.12, lower than the one for the
citation networks but more similar to those from affiliation networks. Still clearly greater than1.

Note that there is one issue with this dataset: we have complete information aboutall sent and received
emails only for the core of the network (1258 email addresses from the organization). For the rest of
the addresses, the nodes on the periphery, we only have their communication (links) with the core of the
network.

Regardless of how we look at the email network it always densifies: If weconsider only the core of
the network, the densification is very high. This is expected, since the number of nodes (people at the
research organization) basically remains constant over time and the edgescan only be added, not deleted,
and densification naturally occurs.

The EMAIL -INOUT network also densifies if we consider the core plus the periphery but when deter-
mining edges we take a 2 month sliding window [Kossinets and Watts, 2006]. This means that for every
monthm, we take all email messages betweenm− 1 andm, and create a graph, where there is an edge,
if nodes exchanged emails both ways in the last 2 months. This graph also densifies with densification
exponenta = 1.21.

Interestingly, the sliding window email network has higher densification exponent than the full evolving
email network. A possible explanation is that email usage is increasing over timeand not all nodes (email
addresses) are active at all times. Over the 18 month time period the size of 2-month sliding window
graphs increases from 7,000 to 10,000 nodes. On the other hand the fullemail graph (composed of all
nodes up to monthm) grows from 3,000 to 38,000 nodes over the same time period. This means that
there is a large number of e-mail addresses that are active only for a period of time. In a moving window
graph we observe only active users and thus more edges since email usage has also increased and people
communicate more. As opposed to the evolution of the full email network, the moving window graphs do
not have to accumulate the history,i.e., sparse graphs from the past, so they densify faster.

IMDB actors to movies network

The Internet Movie Data Base (IMDB,http://www.imdb.com ) is a collection of facts about movies
and actors. For every movie we know the year of production, genre, and actor names that appeared in the
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movie. From IMDB we obtained data about 896,192 actors and 334,084 movies produced between 1890
and 2004 (114 years).

Given this data we created a bi-partite graph of actors to movies the same way as in the case of affiliation
networks. We refer to this network as ATM-IMDB. This means that whenever a new movie appears, it
links to all the actors participating in it. We create a new actor node when the actor first appears in any
movie. This way, when a new movie appears, we first create a movie node. Then we introduce actor
nodes, but only for actors for whom this was their first appearance in amovie. Then we link actors and
the movie.

In our experiment we started observing the graph in 1910, when the giantconnected component started
to form. Before 1910 the largest connected component consisted of lessthan 15% of the nodes. At the
beginning of our observation period the ATM-IMDB network hadN = 7, 690 nodes (4,219 actors and
3,471 movies) andE = 12, 243 edges. At the end of the dataset in 2004, we haveN = 1, 230, 276 nodes
andE = 3, 790, 667 edges. See also tableA.4 for additional information about the dataset.

We follow the usual procedure: for every yearY we take all the movies up to yearY and actors that
appeared in them. We create a graph and measure how the number of edgesgrows with the number of
nodes. Figure3.2(f) presents the DPL plot for the ATM-IMDB actors to movies network. Again, notice
the nontrivial densification exponent ofa = 1.11.

Product recommendation network

We also report the analysis of the product recommendation network [Leskovec et al., 2006a] that we will
describe in greater detail in chapter6. We measure the densification of a large person-to-person recom-
mendation network from a large on-line retailer. Nodes represent peopleand edges represent recommen-
dations. The network generation process was as follows. Each time a person purchasesa book, music
CD, or a movie he or she is given the option of sending emails recommending the item to friends. Any
of the recipients of the recommendation that makes a purchase can further recommend the item, and by
this propagation of recommendations the network forms. We refer to this network as RECOMMENDA-
TIONS.

The RECOMMENDATIONS network consists ofE = 15, 646, 121 recommendations made amongN =
3, 943, 084 distinct users. The data was collected from June 5 2001 to May 16 2003. In total, 548,523 prod-
ucts were recommended. We report the Densification Power Law exponent a = 1.26 in table3.2.

Online social networks

We also consider large online social networks that are parts of the popular social networking and photo
sharing websites like: FLICKR (flickr.com , a photo-sharing website), DELICIOUS (del.icio.us ,
a collaborative bookmark tagging website), YAHOO! A NSWERS(answers.yahoo.com , a knowledge
sharing website), and LINKED IN (linkedin.com , a professional contacts website) — where nodes
represent people and edges represent social relationships. Networks have up to 8 million nodes and 31
million edges. Notice here we have complete data on the evolution of these four networks from the
inception of the service to the end. All personally identifiable data was hashed and nodes were assigned
random ids. Refer to table3.2for information on network sizes and densification exponents.
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DATASET NODES EDGES TIME DPL EXPONENT

CIT-HEP-PH 30,501 347,268 10 years 1.56
CIT-HEP-TH 29,555 352,807 10 years 1.68
CIT-PATENTS 3,923,922 16,522,438 37 years 1.66
AS-ROUTEV IEWS 6,474 26,467 785 days 1.18
ATP-ASTRO-PH 57,381 133,179 10 years 1.15
ATP-COND-MAT 62,085 108,182 10 years 1.10
ATP-GR-QC 19,309 26,169 10 years 1.08
ATP-HEP-PH 51,037 89,163 10 years 1.08
ATP-HEP-TH 45,280 68,695 10 years 1.08
EMAIL -INOUT 35,756 123,254 18 months 1.12
ATM-IMDB 1,230,276 3,790,667 114 years 1.11
RECOMMENDATIONS 3,943,084 15,656,121 710 days 1.26
FLICKR 584,207 3,554,130 20 months 1.32
DELICIOUS 203,234 430,707 10 months 1.15
ANSWERS 598,314 1,834,217 4 months 1.25
L INKED IN 7,550,955 30,682,028 3.5 years 1.20

Table 3.2: Dataset names with sizes, time lengths and Densification Power Law exponents. Notice very
high densification exponent for citation networks (≈ 1.6), around1.2 for Autonomous Systems
and lower (but still significant) densification exponent (≈ 1.1) for affiliation and collaboration
type networks.

3.3.2 Shrinking Diameters

We now discuss the behavior of the effective diameter over time, for this collection of network datasets.
Following the conventional wisdom on this topic, we expected the underlying question to be whether we
could detect the differences among competing hypotheses concerning thegrowth rates of the diameter
— for example, the difference between logarithmic and sub-logarithmic growth. Thus, it was with some
surprise that we found the effective diameters to be actuallydecreasingover time (Figure3.3).

As mentioned earlier in Chapter2, a graph has diameterD if every pair of nodes can be connected by a
path of length at mostD. The diameterD is susceptible to outliers. Thus, a more robust measure of the
pairwise distances between nodes of a graph is theeffective diameter. This is defined as the minimum
number of hops in which 90% of all connected pairs of nodes can reach each other. See section2.1
for more precise definitions of these concepts. The effective diameter has been found to be small for
large real-world graphs, like Internet, Web, and social networks [Albert and Barab́asi, 2002, Milgram,
1967].

We follow the same procedure as in case of Densification Power Law measurements. For each timet, we
create a graph consisting of nodes up to that time, and compute the effectivediameter of the undirected
version of the graph.

Figure3.3shows the effective diameter over time; one observes a decreasing trendfor all the graphs. We
performed a comparable analysis to what we describe here for all 16 graph datasets in our study, with very
similar results. For the citation networks in our study, the decreasing effective diameter has the following
interpretation: Since all the links out of a node are “frozen” at the moment itjoins the graph, the decreasing
distance between pairs of nodes appears to be the result of subsequent papers acting as “bridges” by citing
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Figure 3.3: The effective diameter over time for 6 different datasets. Notice consistent decrease of the
diameter over time.
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earlier papers from disparate areas. Note that for other graphs in ourstudy, such as the AS dataset, it
is possible for an edge between two nodes to appear at an arbitrary time after these two nodes join the
graph.

We note that the effective diameter of a graph over time is necessarily bounded from below, and the
decreasing patterns of the effective diameter in the plots of Figure3.3 are consistent with convergence
to some asymptotic value. However, understanding the full “limiting behavior” of the effective diameter
over time, to the extent that this is even a well-defined notion, remains an open question.

Validating the shrinking diameter conclusion

Given the unexpected nature of this result, we wanted to verify that the shrinking diameters were not
attributable to artifacts of our datasets or analyses. We explored this issue ina number of ways, which
we now summarize; the conclusion is that the shrinking diameter appears to be arobust, and intrinsic,
phenomenon. Specifically, we performed experiments to account for (a)possible sampling problems, (b)
the effect of disconnected components, (c) the effect of the “missing past”(as in the previous subsection),
and (d) the dynamics of the emergence of the giant component.

• Possible sampling problems:Computing shortest paths among all node pairs is computationally
prohibitive for graphs of our scale. We used several different approximate methods, obtaining al-
most identical results from all of them. In particular, we applied the Approximate Neighborhood
Function (ANF) approach [Palmer et al., 2002] (in two different implementations), which can esti-
mate effective diameters for very large graphs, as well as a basic samplingapproach in which we
ran exhaustive breadth-first search from a subset of the nodes chosen uniformly at random. The
results using all these methods were essentially identical.

Plots on figure3.3were created by averaging over 100 runs of the ANF, the approximate diameter
algorithm. For all datasets the standard error is less than 10%. For clarity ofpresentation we do not
show the error bars.

• Disconnected components:One can also ask about the effect of small disconnected components.
All of our graphs have a singlegiant component– a connected component (or a weakly connected
component in the case of directed graphs, ignoring the direction of the edges) that accounts for a
significant fraction of all nodes. For each graph, we computed effective diameters for both the entire
graph and for just the giant component; again, our results are essentiallythe same using these two
methods.

• “Missing Past” effects:A third issue is the problem of the “missing past,” the same general issue
that surfaced in the previous subsection when we considered densification. In particular, we must
decide how to handle citations to papers that predate our earliest recorded time. (Note that the
missing past is not an issue for the AS network and the four online social network data, where the
effective diameter also decreases.)

To understand how the diameters of our networks are affected by this unavoidable problem, we
perform the following test. We pick some positive timet0 > 0, and determine what the diameter
would look like as a function of time,if this were the beginning of our data. We then put back in the
nodes and the edges from before timet0, and study how much the diameters change. If this change
is small — or at least if it does not affect the qualitative conclusions — then itprovides evidence
that the missing past is not influencing the overall result.
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Specifically, we set this cut-off timet0 to be the beginning of1995 for the arXiv (since we have
data from1993), and to be1985 for the patent citation graph (we have data from1975). For Email
network we set the cut-off time to January 2004 and for IMDB to 1940 (we also experimented with
1920 and 1960 and findings were consistent). We then compared the results of three measurements:

− Diameter of full graph.For each timet we compute the effective diameter of the graph’s giant
component.

− Post-t0 subgraph.We compute the effective diameter of the post-t0 subgraph using all nodes
and edges. This means that for each timet (t > t0) we create a graph using all nodes dated
beforet. We then compute the effective diameter of the subgraph of the nodes datedbetweent0
andt. To compute the effective diameter we can use all edges and nodes (including those dated
beforet0). This means that we are measuring distancesonly among nodes dated betweent0
andt while also using nodes and edges beforet0 as “shortcuts” or “bypasses”. The experiment
measures the diameter of the graph if we knew the full (pre-t0) past — the citations of the
papers which we have intentionally excluded for this test.

− Post-t0 subgraph, no past.We sett0 the same way as in previous experiment, but then for
all nodes dated beforet0 we delete all their out-links. This creates the graph we would have
gotten if we had started collecting data only at timet0.

In Figure3.3, we superimpose the effective diameters using the three different techniques. If the
missing past does not play a large role in the diameter, then all three curves should lie close to
one another. We observe this is the case for the arXiv citation graphs. For the arXiv paper-author
affiliation graph, and for the patent citation graph, the curves are quite different right at the cut-off
time t0 (where the effect of deleted edges is most pronounced), but they quickly align with one
another. As a result, it seems clear that the continued decreasing trend in the effective diameter as
time runs to the present is not the result of these boundary effects.

• Emergence of giant component:A final issue is the dynamics by which the giant component
emerges. For example, in the standard Erdős–Ŕenyi random graph model (which has a substantially
different flavor from the growth dynamics of the graphs here), the diameter of the giant compo-
nent is quite large when it first appears, and then it shrinks as edges continue to be added. Could
shrinking diameters in some way be a symptom of emergence of giant component?

It appears fairly clear that this is not the case. Figure3.4 shows the fraction of all nodes that are
part of the largest connected component (LCC) over time. We plot the sizeof the LCC for the full
graph and for a graph where we had no past —i.e., where we delete all out-links of the nodes dated
before the cut-off timet0. Because we delete the out-links of the pre-t0 nodes the size of LCC is
smaller, but as the graph grows the effect of these deleted links becomes negligible.

We see that within a few years the giant component accounts for almost all thenodes in the graph.
The effective diameter, however, continues to steadily decrease beyond this point. This indicates
that the decrease is happening in a “mature” graph, and not because many small disconnected com-
ponents are being rapidly glued together.

Based on all this, we believe that the decreasing diameters in our study reflect a fundamental property of
the underlying networks. Understanding the possible causes of this property, as well as the causes of the
densification power laws discussed earlier, will be the subject of the nextsection.
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Figure 3.4: The fraction of nodes that are part of the giant connected component over time. We see that
after 4 years the 90% of all nodes in the graph belong to giant component.

3.3.3 Does densification cause shrinking diameter?

A natural question to ask next is whether densification itself is enough for the diameter to shrink. Or, is
there something more that causes shrinking diameters. For example, it could be that the edge attachment
changes and the edges attach less and less “locally” over time, which shrinks the network diameter.

In principle there are three possible answers to this question. We list them from the simplest to the most
complex: (1) densification causes shrinking diameter; (2) densification in combination with particularly
evolving degree sequence causes shrinking diameter; (3) densificationand special evolution of edge at-
tachment cause shrinking diameter. Next, we examine which of these possibleanswers is true.

First, we examine the connection between the densification and the shrinking diameter. We generate a
densifying random graphGn,p and measure the effective diameter as we grow and densify the graph. If
solely the densification causes shrinking diameter, then the diameter of a densifying Gn,p should also
shrink. Figure3.5(a) shows the plot for a densifying random graph with densification exponenta = 1.3.
Notice the diameter is still slowly increasing which shows that densification itself isnot enough to obtain
shrinking diameter. Similarly, Figure3.5(b) shows the diameter of a densifying Preferential Attachment
(PA) model. Here the diameter quickly fluctuates and then remains constant withthe network size.

Now, we evaluate the hypothesis whether the densification and the evolution of the degree sequence could
cause the diameter to shrink. We measure the diameter over time of a real network and then compare this
with a diameter of a random network conditioning on the same degree distribution. Basically, we take
a real network and then generate a random network with same degree sequence using the configuration
model [Bollobas, 1980]. Figures3.5(c) and (d) show the true network shrinking diameter for the ATP-
ASTRO-PH affiliation network the US patent citation network (CIT-PATENTS). Dots present the diameter
of the real network, while line shows the evolution of the diameter of a “rewired” network,i.e., a random
network with same degree distribution. Notice the effective diameter nicely follows true diameter even if
we randomly rewire the edges. This shows that there is nothing special about how the edges attach but it
is the way the degree sequence evolves over time that gives rise to the shrinking diameter.

Next, we analyze exactly the connections between the densification power law and the evolution of the
degree sequence.
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Figure 3.5: (Top row: (a) The effective diameter of a densifying Erdős–Ŕenyi random graphGn,p with
densification exponenta = 1.3. (b) Densifying Preferential Attachment (PA) model with
densification exponenta = 1.2. In Gn,p the diameter is still slowly increasing regardless
of the fact that the network is densifying. In case of Preferential Attachment the diameter is
basically constant. This means that densification itself isnot enough for diameter to shrink.
Bottom row compares the true effective diameter (red dots) with the effective diameter of a
rewired network,i.e., a random graph with same degree distribution (solid line).Notice they
both match well. The rewiring process does not alter network’s degree sequence and densi-
fication. This shows one needs the right combination of the densification and the evolving
degree sequence to obtain shrinking diameter.

3.3.4 Densification and the degree distribution over time

Many real world graphs exhibit power law degree distributions [Barab́asi and Albert, 1999, Faloutsos et al.,
1999]. As we saw in section3.3 the average degree increases over time, and the graphs densify follow-
ing the power law relationship between the number of nodes and the number ofedges. Here we analyze
the relation between the densification and the power law degree distribution over time, and find evidence
that some of the real world graphs obey the relations we find. A similar analysis was also performed by
Dorogovtsev and Mendes [Dorogovtsev and Mendes, 2002b] although without specific measurements or
comparison to real data.
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We analyze the following two cases: If the degree distribution of a time evolvinggraph is power law, and
it maintainsconstantpower law exponentγ over time, then we show that for1 < γ < 2 we obtain the
Densification Power Law exponent

a = 2/γ.

arises. In this case the Densification Power Law is the consequence of thefact that a power law distribution
with exponentγ < 2 has no finite expectation [Newman, 2005], and thus the average degree grows with
the number of samples (i.e., nodes) while power law degree exponent is constant over time.

Our second result is for the case when temporally evolving graph densifies with densification exponenta,
and follows a power law degree distribution with exponentγ > 2 that we alow tochangeover time. We
show that in this case for a given densification exponenta, the power law degree exponentγ(N) has to
evolve with the size of the graphN as

γ(N) =
4Na−1 − 1

2Na−1 − 1

This shows that Densification Power Law and the degree distribution are related and that one implies the
other.

Constant degree exponent over time

First, we analyze the case where the graph over time maintains power law degree distribution with a
constant exponentγ. Power law distributionp(x) = cx−γ with exponentγ < 2 has infinite expecta-
tion [Newman, 2005], i.e., as the number of samples increases, the average also increases. Assuming that
the exponent (slope) of the degree distribution doesnot change over time, a natural question to ask is:
what is the relation between the Densification Power Law exponent and the degree distribution over time?
The following theorem answers the question:

Theorem 3.3.1. In a temporally evolving graph with a power law degree distribution having constant
degree exponentγ over time, the DPL exponenta is:

a = 1 if γ > 2 (3.2)

= 2/γ if 1 ≤ γ ≤ 2 (3.3)

= 2 if γ < 1 (3.4)

Proof. Assume that at any timet the degree distribution of an undirected graphG follows a power law.
This means the number of nodesNd with degreed is Nd = cd−γ , wherec is a constant. Now assume
that at some point in time the maximum degree in the graph isdmax. Later as the graph grows we will
let dmax → ∞. Using the previous power law relation, we can calculate the number of nodes N and the
number of edgesE in the graph:
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N =

dmax∑

d=1

cd−γ ≈
∫ dmax

d=1
d−γ = c

d1−γ
max − 1

1− γ

E =
1

2

dmax∑

d=1

cd1−γ ≈
∫ dmax

d=1
d1−γ = c

d2−γ
max − 1

2− γ

Now, we let the graph grow, sodmax →∞. Then the DPL exponenta is:

a = lim
dmax→∞

log(E)

log(N)
=

γ log(dmax) + log(|d2−γ
max − 1|)− log(|2− γ|)

γ log(dmax) + log(|d1−γ
max − 1|)− log(|1− γ|)

Note, that the degree distribution exponent isγ, so we also have the relationlog(c) = γ log(dmax). Now,
we have 3 cases:

Case 1: γ ≥ 2. No densification:

a =
γ log(dmax) + o(1)

γ log(dmax) + o(1)
= 1

Case 2: 1 < γ < 2 is the interesting case where densification arises:

a =
γ log(dmax) + (2− γ) log(dmax) + o(1)

γ log(dmax) + o(1)
=

2

γ

Case 3:γ ≤ 1. Maximum densification – the graph is basically a clique and the number of edges grows
quadratically with the number of nodes:

a =
γ log(dmax) + (2− γ) log(dmax) + o(1)

γ log(dmax) + (1− γ) log(dmax) + o(1)
= 2

This shows that for cases when graph evolves by maintaining the constantpower law degree exponent
γ > 2 over time it does not densify. However, for cases whenγ < 2 we observe densification. This can
easily be explained. The densification means that the number of edges grows faster than the number of
nodes. So, for densification to appear the tail of the degree distribution has to grow,i.e. has to accumulate
more mass over time. Here, this is the case since power law distributions with exponentγ < 2 have no
finite expectation. In the case of degree distribution this means that the expected node degree grows as the
graph accumulates more nodes (i.e., samples from degree distribution).
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Evolving degree distribution

There also exist graphs with degree distributionγ > 2 which can also densify. Now, we allow the degree
distribution to change over time. In fact, the degree distribution has to flatten over time to accumulate more
mass in the tail as more nodes are added to allow for densification. This is whatwe explore next.

In the previous section we assumed that the exponentγ of the power law degree distribution remains con-
stant over time, and then found the range for power law degree exponent γ where it leads to densification.
Now, we assume Densification Power Law with exponenta, allow degree distribution to change over time,
and askHow should the power law degree exponentγ(N) change over time (as the number of nodesN
grows) to allow for densification?We show the following result:

Theorem 3.3.2.Given a time evolving graph onN nodes that evolves according to Densification Power
Law with exponenta > 1 and has a Power law degree distribution with exponentγ(N) > 2, then the
degree exponentγ(N) evolves with the number of nodesN as

γ(N) =
4Na−1 − 1

2Na−1 − 1
(3.5)

Proof. An undirected graphG on N nodes hasE = 1
2Nd̄ edges, wherēd is the average degree in graph

G. Then the DPL exponenta is

a =
log(E)

log(N)
=

log(N) + log(d̄)− log(2)

log(N)
(3.6)

In a graph with power law degree distribution,p(x) = x−γ , with exponentγ > 2, the average degreēd is

d̄ ≈
∫ ∞

1
xp(x) dx = c

∫ ∞

1
x−γ+1dx =

c

2− γ
x−γ+2

∣∣∣∣
∞

1

=
γ − 1

γ − 2
. (3.7)

Now, substitutingd̄ in equation3.6with the result of equation3.7, and solving forγ, we obtain:

γ(N) =
4Na−1 − 1

2Na−1 − 1
(3.8)

Here we found the evolution pattern that degree distribution with exponentγ > 2 has to follow in order to
allow for densification. As theorem3.6shows the degree distribution has to flatten over time, so that the
expected node degree increases, which is the result of densification.
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Figure 3.6: Degree distribution (a) and the degree exponentγ over time (b) for the email network EMAIL -
INOUT. The network maintains constant slopeγ of degree distribution over time. Notice that
γ < 2. We observe a remarkably good agreement between the result of Theorem3.3.1(DPL
exponenta = 1.13), and our measurements (DPL exponenta = 1.11) in figure3.2(e).

Measurements on real networks

Next, given the analysis from the previous section, we went back to the data and checked if graphs we
analyzed before behave according to the results of theorems3.3.1and3.3.2.

First, we show an example of a graph where the evolution of the degree distribution and the DPL exponent
follow the results of theorem3.3.1. Using the email network described in section3.3.1we found that the
degree distribution follows a power law with exponentγ that remains constant over time.

Figure3.6(a) shows the degree distribution of the email network for last snapshot of the network,i.e., last
2 months of the data. We create the networks by using a 2 month sliding window. We fit the power law
degree exponentγ using Maximum Likelihood Estimation (MLE), and plot its evolution over time in fig-
ure3.6(b). Noticeγ remains practically constant over time, which is also in agreement with observations
reported in [Kossinets and Watts, 2006]. Also notice that the power law degree exponentγ = 1.76 < 2.
Given the degree exponentγ, and using theorem3.3.1we obtain the theoretical value of the DPL exponent
a = 2/1.76 ≈ 1.13. The value of DPL exponent we measured in section3.3 figure3.2(e) isa = 1.11,
which is a remarkably good agreement. This shows that there exist graphsin the real world that densify
and have decreasing diameter while maintaining constant degree exponentover time.

Last, we show an example of a temporally evolving graph that densifies, andhas the power law degree
exponentγ changing over time.

Figure3.7(a) plots the degree distribution of the full HEP–PH citation network from section 3.3.1. In
this case the degree distribution only follows a power law in the tail of the distribution, so we applied the
following procedure. For every yeary, 1992 ≤ y ≤ 2002 we create a citation graph and measure the
exponent of the power law degree distribution. We apply logarithmic binning and fit the power law degree
distribution using MLE on the tail of the degree distribution starting at minimum degree 10. We plot the
resulting degree exponentγ over time as a function of the size of the graph in figure3.7(b).

Using dashed-lines we also plot the degree exponentγ as obtained by theorem3.3.2. Since the graph does
not exhibit power law degree distribution on the entire range, and due to missing past effects, we had to
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Figure 3.7: Degree distribution (a) and the degree exponent over time (b) for the HEP–PH citation net-
work (CIT-HEP-PH). The network follows power law degree distribution only inthe tail.
Degree distribution exponentγ is decreasing over time. Notice a good agreement of degree
distribution evolution (solid line) as predicted by the theorem3.3.2(dashed line).
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Figure 3.8: Rank Degree plot for the degree distribution of the email, (EMAIL -INOUT) and the HEP–PH
(CIT-HEP-PH) networks. We use the same data as in figures3.6(a) and3.7(a) but plot node
degree vs. rank using the log-log scales. As a eye guideline we plot the solid lines that present
the power law decay with exponentγ = 1.75 andγ = 2.24, respectively.

appropriately scale time axis with a manually chosen value. Regardless of the manual scaling we think
this result indicates that for a class of temporally evolving graphs the degree distribution flattens over time
as given by the theorem3.3.2. This seems to be the case for HEP–PH citation network where the evolution
of the degree exponent qualitatively follows the result of theorem3.3.2.

Figure3.8 further investigates the degree distribution of the email and HEP–PH networks. We use the
same data as in figures3.6(a) and3.7(a), and plot the number of nodes of a certain degree against the rank.
The solid lines present the power law decay with exponentsγ = 1.75 andγ = 2.24, respectively. The
actual slope of the plotted line is1/(γ − 1), which is the relation between the power law exponentγ and
the slope of the rank degree plot (see [Adamic, 2000] for more details on these relationships).
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In both plots of figure3.8 we observe linearity which suggests a power law relationship for a part ofthe
degree distribution. For the email network we observe linearity in the tail, and for the HEP–PH citation
network in the first part of the distribution. These two plots show that in our two datasets the power
law degree distribution does not hold for the entire range. However, we still observe a significant range
where power law relationship seems to hold. Regardless of these irregularities there is still very good
agreement of the data with the results of theorems3.3.1and3.3.2, which suggests that there exists graphs
that densify by maintaining constant power law degree exponent (theorem 3.3.1), and also graphs that
densify by degree exponent flattening over time (theorem3.3.2).

3.4 Proposed models

We have now seen that densification power laws and shrinking effectivediameters are properties that hold
across a range of diverse networks. Moreover, existing models do not capture these phenomena. We would
like to find some simple, local model of behavior, which could naturally lead to themacroscopic phenom-
ena we have observed. We present increasingly sophisticated models, all of which naturally achieve the
observed densification; the last one (the “Forest Fire” model) also exhibits shrinking diameter and all the
other main patterns known (including heavy-tailed in- and out-degree distributions).

3.4.1 Community Guided Attachment

What are the underlying principles that drive all our observed graphsto obey a densification power law,
without central control or coordination? We seek a model in which the densification exponent arises from
intrinsic features of the process that generates nodes and edges. Whileone could clearly define a graph
model in whichE(t) ∝ N(t)a by simply having each node, when it arrives at timet, generateN(t)a−1

out-links — the equivalent of positing that each author of a paper in a citationnetwork has a rule like,
“Cite Na−1 other documents,” hard-wired in his or her brain — such a model would notprovide any
insight into the origin of the exponenta, as the exponent is unrelated to the operational details by which
the network is being constructed. Instead, our goal is to see how underlying properties of the network
evolution process itself can affect the observed densification behavior.

We take the following approach. Power laws often appear in combination withself-similarstructures.
Intuitively, a self-similar object consists of miniature replicas of itself [Schroeder, 1991]. Our approach
involves two steps, both of which are based on self-similarity.

We begin by searching for self-similar, recursive structures. In fact,we can easily find several such
recursive sets: For example, computer networks form tight groups (e.g., based on geography), which
consist of smaller groups, and so on, recursively. Similarly for patents:they also form conceptual groups
(“chemistry”, “communications”, etc.), which consist of sub-groups, and so on recursively. Several other
graphs feature such “communities within communities” patterns.

For example, it has been argued (seee.g.[Watts et al., 2002] and the references therein) that social struc-
tures exhibit self-similarity, with individuals organizing their social contacts hierarchically. Moreover,
pairs of individuals belonging to the same small community form social ties more easily than pairs of
individuals who are only related by membership in a larger community. In a different domain, Menczer
studied the frequency of links among Web pages that are organized into a topic hierarchy such as the Open
Directory [Menczer, 2002]. He showed that link density among pages decreases with the height of their
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least common ancestor in the hierarchy. That is, two pages on closely related topics are more likely to be
hyperlinked than are two pages on more distantly related topics.

This is the first, qualitative step in our explanation for the Densification PowerLaw. The second step is
quantitative. We will need a numerical measure of the difficulty in crossing communities. The extent
to which it is indeed difficult to form links across communities will be a property of the domain being
studied. We call this theDifficulty Constant, and we define it more precisely below.

The basic version of the model

We represent the recursive structure of communities-within-communities as atreeΓ, of heightHΓ. We
shall show that even a simple, perfectly balanced tree of constant fanout b is enough to lead to a densifica-
tion power law, and so we will focus the analysis on this basic model.

The nodesV in the graph we construct will be the leaves of the tree; that is,N = |V|. (Note thatN = bHΓ .)
Let hΓ(v, w) define the standard tree distance of two leaf nodesv andw: that is,hΓ(v, w) is the height of
their least common ancestor (the height of the smallest sub-tree containing both v andw).

We will construct a random graph on a set of nodesV by specifying the probability thatv andw form
an edge as a functionf of hΓ(v, w). We refer to this functionf as theDifficulty Function. What should
be the form off? Clearly, it should decrease withh; but there are many forms such a decrease could
take.

The form off that works best for our purposes comes from the self-similarity argumentswe made earlier:
We would likef to be scale-free; that is,f(h)/f(h − 1) should be level-independent and thus constant.
The only way to achieve level-independence is to definef(h) = f(0)c−h. Settingf(0) to 1 for simplicity,
we have:

f(h) = c−h (3.9)

wherec ≥ 1. We refer to the constantc as theDifficulty Constant. Intuitively, cross-communities links
become harder to form asc increases.

This completes our development of the model, which we refer to asCommunity Guided Attachment: If the
nodes of a graph belong to communities-within-communities, and if the cost for cross-community edges
is scale-free (Eq. (3.9)), the Densification Power Law follows naturally. No central control or exogenous
regulations are needed to force the resulting graph to obey this property.In short, self-similarity itself
leads to the Densification Power Law.

Theorem 3.4.1. In the Community Guided Attachment random graph model just defined, the expected
average out-degreēd of a node is proportional to:

d̄ = N1−logb(c) if 1 ≤ c ≤ b

= logb(N) if c = b

= constant if c > b
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Proof. For a given nodev, the expected out-degree (number of links)d̄ of the node is proportional to

d̄ =
∑

x 6=v

f(hΓ(x, v)) =

logb(N)∑

j=1

(b− 1)bj−1c−j =
b− 1

c

logb(N)∑

j=1

(
b

c

)j−1

. (3.10)

There are three different cases: if1 ≤ c < b then by summing the geometric series we obtain

d̄ =
b− 1

c
·
(

b
c

)logb(N) − 1
(

b
c

)
− 1

=

(
b− 1

b− c

)
(N1−logb(c) − 1)

= Θ(N1−logb(c)).

In the case whenc = b the series sums to

d̄ =
∑

x 6=v

f(hΓ(x, v)) =
b− 1

b

logb(N)∑

j=1

(
b

b

)j−1

=
b− 1

b
logb(N)

= Θ(logb(N)).

The last case is when Difficulty Constantc is greater than branching factorb (c > b), then the sum in
Eq. (3.10) converges to a constant even if carried out to infinity, and so we obtaind̄ = Θ(1).

Note that whenc < b, we get a densification law with exponent greater than1: the expected out-degree is
N(t)1−logb(c), and so the total number of edges grows asN(t)a wherea = 2 − logb(c). Moreover, asc
varies over the interval[1, b), the exponenta ranges over all values in the interval(1, 2].
Corollary 3.4.2. If the Difficulty Function is scale-free (f(h) = c−h, with1 < c < b), then the Community
Guided Attachment obeys the Densification Power Law with exponent

a = 2− logb(c)

The Community Guided Attachment model above also leads to some intuitive extreme cases:

• If the cross-community difficulty constant Difficulty Function is too low (= 1), then every node can
easily connect to every other node, and the average degreed̄ is N . That is, we have a near-clique.

• If cross-community difficulty constant is too high then we obtain no densification (a = 1), which
means that nodes only link inside their own subtree and do not create long range edges to nodes
residing in other parts of the tree.

Dynamic Community Guided Attachment

So far we have discussed a model in which nodes are first organized intoa nested set of communities, and
then they start forming links. We now extend this to a setting in which nodes are added over time, and
the nested structure deepens to accommodate them. We will assume that a node only creates out-links at
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the moment it is added (and hence, only to nodes already present); this is natural for domains like citation
networks in which a paper’s citations are written at the same time as the paper itself.

Specifically, the model is as follows. Rather than having graph nodes reside only at the leaves of the tree
Γ, there will now be a graph node corresponding to every internal node of Γ as well. Initially, there is a
single nodev in the graph, and our treeΓ consists just ofv. In time stept, we go from a completeb-ary
tree of deptht− 1 to one of deptht, by addingb new leaves as children of each current leaf. Each of these
new leaves will contain a new node of the graph.

Now, each new node forms out-links according to a variant of the process in which all graph nodes are
leaves. However, since a new node has the ability to link to internal nodes ofthe existing tree, not just to
other leaves, we need to extend the model to incorporate this. Thus, we define thetree-distanceh(v, w)
between nodesv andw to be the length of a path between them inΓ — this is the length of the path from
v up to the least common ancestor ofv andw, plus the length of the path from this least common ancestor
down tow. Note that ifv andw are both leaves, thenh(v, w) = 2hΓ(v, w), following our definition of
hΓ(v, w) from before.

The process of forming out-links is now as follows: For a constantc, nodev forms a link to each node
w, independently, with probabilityc−h(v,w)/2. (Note that dividing by2 in the exponent means this model
gives the same probability as basic model in the case when bothv andw are leaves.)

Like the first model, this process produces a densification law with exponent a = 2− logb(c) whenc < b.
However, forc < b2, it also yields a heavy-tailed distribution of in-degrees — something that the basic
model did not produce. We describe this in the following theorem.

Theorem 3.4.3.The Dynamic Community Guided Attachment model just defined has the following prop-
erties.

• Whenc < b, the average node degree isN1−logb(c) and the in-degrees follow a Zipf distribution
with exponent12 logb(c).

• Whenb < c < b2, the average node degree is constant, and the in-degrees follow a Zipf distribution
with exponent1− 1

2 logb(c).

• Whenc > b2, the average node degree is constant and the probability of an in-degree exceeding
any constant boundk decreases exponentially ink.

Proof. In the proof, all logarithms will be expressed in baseb unless specified otherwise.

We begin with the following basic facts. If a node is at heighth in the tree, then the number of nodes at
distanced ≤ h from it is Θ

(
bd
)
. Nodes at distanced > h can be reached by going up forj steps, and

then down ford−j steps (ifd−j ≤ h+j). This is maximized forj = (d−h)/2, and so the total number
of nodes reachable at distanced is Θ

(
b(d+h)/2

)
.

Case 1:c < b In this case, the expected out-degree for a leaf node is

2 log N∑

d=0

Θ

(
bd/2

cd/2

)
= Θ

(
blog N

clog N

)
= Θ

(
N

clog N

)
= Θ

(
N1−log c

)
.
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Since the expected out-degree values for other nodes are smaller, and since a constant fraction of all nodes
are leaves, it follows that the expected value of the out-degree taken over all nodes isΘ

(
N1−log c

)
as well.

Now we compute the expected in-degree of a node at heighth. This is

∑

d≤h

Θ

(
bd

cd/2

)
+
∑

d>h

Θ

(
b(d+h)/2

cd/2

)
=
∑

d≤h

Θ

(
bd/2

cd/2

)
bd/2 +

∑

d>h

Θ

(
bd/2

cd/2

)
bh/2.

The largest term in this sum is the last, ford = 2 log N − h. Here it takes the value

Θ

(
blog N

clog N−(h/2)

)
= Θ

(
blog N

clog N

)
ch/2 = Θ

(
N1−log cch/2

)
.

The maximum expected in-degreez is achieved forh = log N , when we get

z = Θ
(
N1−log cc.5 log N

)
= Θ

(
N1−.5 log c

)
.

So for a node at deptht = log N − h, we get an expected in-degree of

Θ
(
N1−log cc(log N−t)/2

)
= Θ

(
zc−t/2

)
.

Hence, to compute a Zipf exponent, we see that a node of degree rankr = bt has deptht, so it has degree

Θ
( z

ct/2

)
= Θ

( z

r.5 log c

)
.

Case 2:b < c < b2 In this case, the expected out-degree for a leaf node is

2 log N∑

d=0

Θ

(
bd/2

cd/2

)
= Θ(1).

Since the expected out-degree values for other nodes are smaller, it follows that the expected value of the
out-degree taken over all nodes isΘ (1) as well.

Now we compute the expected in-degree of a node at heighth. This is

∑

d≤h

Θ

(
bd

cd/2

)
+
∑

d>h

Θ

(
b(d+h)/2

cd/2

)
=
∑

d≤h

Θ

(
bd/2

cd/2

)
bd/2 +

∑

d>h

Θ

(
bd/2

cd/2

)
bh/2.

Sinceb < c < b2, these terms increase geometrically up tod = h, then decrease. Thus, the largest term is
for d = h, where it isΘ

(
bhc−h/2

)
.

Thus the maximum degree isz = Θ
(
N1−.5 log c

)
, and for deptht = log N − h, we get a degree of
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Θ

((
b

c1/2

)log N ( b

c1/2

)−t
)

= Θ

(
z

(
b

c1/2

)−t
)

.

Now, b/c1/2 = b1−.5 log c, so a node of degree rankr = bt (at deptht) has degreeΘ
(
z/r1−.5 log c

)
.

Case 3: c > b2 The expected out-degrees here are only smaller than they are in the previous case, and
hence the expected value of the out-degree taken over all nodes isΘ (1).

The node whose in-degree is most likely to exceed a fixed boundk is the root, at heighth = log N . The
in-degree of the root is a sumX of independent0-1 random variablesXv, whereXv takes the value1 if
nodev links to the root, andXv takes the value0 otherwise. We have

EX =
∑

v

EXv =
∑

d≤log N

Θ

(
bd

cd/2

)
= Θ(1),

and hence by Chernoff bounds, the probability that it exceeds a givenvaluek > EX decreases exponen-
tially in k.

Thus, the dynamic Community Guided Attachment model exhibits three qualitatively different behaviors
as the parameterc varies: densification with heavy-tailed in-degrees; then constant average degree with
heavy-tailed in-degrees; and then constant in- and out-degrees with high probability. Note also the in-
teresting fact that the power law degree exponent is maximized for the valueof c right at the onset of
densification.

Finally, we have experimented with versions of the dynamic Community Guided Attachment model in
which the tree is not balanced, but rather deepens more on the left branches than the right (in a recursive
fashion). We have also considered versions in which a single graph node can “reside” at two different
nodes of the treeΓ, allowing for graph nodes to be members of different communities. Experimental
results and overall conclusions were all the time the same and consistent regardless of the particular
version (modification) of the dynamic Community Guided Attachment model used.

3.4.2 The Forest Fire Model

Community Guided Attachment and its extensions show how densification can arise naturally, and even in
conjunction with heavy-tailed in-degree distributions. However, it is not a rich enough class of models to
capture all the properties in our network datasets. In particular, we wouldlike to capture both the shrinking
effective diameters that we have observed, as well as the fact that real networks tend to have heavy-tailed
out-degree distributions (though generally not as skewed as their in-degree distributions). The Community
Guided Attachment models do not exhibit either of these properties.

Specifically, our goal is as follows. Given a (possibly empty) initial graphG, and a sequence of new
nodesv1 . . . vN , we want to design a simple randomized process to successively linkvi to nodes of
G (i = 1, . . . N ) so that the resulting graphGfinal will obey all of the following patterns: heavy-tailed
distributions for in- and out-degrees, the Densification Power Law, and shrinking effective diameter.
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We are guided by the intuition that such a graph generator may arise from a combination of the following
components:

• some type of “rich get richer” attachment process, to lead to heavy-tailed in-degrees;

• some flavor of the “copying” model [Kumar et al., 2000], to lead to communities;

• some flavor of Community Guided Attachment, to produce a version of the Densification Power
Law;

• and a yet-unknown ingredient, to lead to shrinking diameters.

Note that we willnot be assuming a community hierarchy on nodes, and so it is not enough to simply vary
the Community Guided Attachment model.

Based on this, we introduce theForest Fire Model, which is capable of producing all these properties. To
set up this model, we begin with some intuition that also underpinned Community Guided Attachment:
nodes arrive in over time; each node has a “center of gravity” in some part of the network; and its probabil-
ity of linking to other nodes decreases rapidly with their distance from this center of gravity. However, we
add to this picture the notion that, occasionally, a new node will produce a very large number of out-links.
Such nodes will help cause a more skewed out-degree distribution; they willalso serve as “bridges” that
connect formerly disparate parts of the network, bringing the diameter down.

The Basic Forest Fire Model

Following this plan, we now define the most basic version of the model. Essentially, nodes arrive one at
a time and form out-links to some subset of the earlier nodes; to form out-links,a new nodev attaches to
a nodew in the existing graph, and then begins “burning” links outward fromw, linking with a certain
probability to any new node it discovers. One can view such a process asintuitively corresponding to a
model by which an author of a paper identifies references to include in the bibliography. He or she finds a
first paper to cite, chases a subset of the references in this paper (modeled here as random), and continues
recursively with the papers discovered in this way. Depending on the bibliographic aids being used in
this process, it may also be possible to chase back-links to papers that cite the paper under consideration.
Similar scenarios can be considered for social networks: a new computerscience (CS) graduate student
arrives at a university, meets some older CS students, who introduce him/her to their friends (CS or non-
CS), and the introductions may continue recursively.

We formalize this process as follows, obtaining the Forest Fire Model. To begin with, we will need
two parameters, aforward burning probabilityp, and abackward burning ratior, whose roles will be
described below. Consider a nodev joining the network at timet > 1, and letGt be the graph constructed
thus far. (G1 will consist of just a single node.) Nodev forms out-links to nodes inGt according to the
following process.

(i) v first chooses anambassador nodew uniformly at random, and forms a link tow.

(ii) We generate two random numbers:x andy that are geometrically distributed with meansp/(1− p)
andrp/(1− rp) respectively. Nodev selectsx out-links andy in-links of w incident to nodes that
were not yet visited. Letw1, w2, . . . , wx+y denote the other ends of these selected links. If not
enough in- or out-links are available,v selects as many as it can.

56



(iii) v forms out-links tow1, w2, . . . , wx+y, and then applies step (ii) recursively to each of the nodes
w1, w2, . . . , wx+y. As the process continues, nodes cannot be visited a second time, preventing the
construction from cycling.

Thus, the “burning” of links in Forest Fire model begins atw, spreads tow1, . . . , wx+y, and proceeds
recursively until it dies out. In terms of the intuition from citations in papers, the author of a new paper
v initially consultsw, follows a subset of its references (potentially both forward and backward) to the
papersw1, . . . , wx+y, and then continues accumulating references recursively by consultingthese papers.
The key property of this model is that certain nodes produce large “conflagrations,” burning many edges
and hence forming many out-links before the process ends.

Despite the fact that there is no explicit hierarchy in the Forest Fire Model,as there was in Community
Guided Attachment, there are some subtle similarities between the models. Where a node in Community
Guided Attachment was the child of a parent in the hierarchy, a nodev in the Forest Fire Model also has
an “entry point” via its chosen ambassador nodew. Moreover, just as the probability of linking to a node
in Community Guided Attachment decreased exponentially in the tree distance, theprobability that a new
nodev burnsk successive links so as to reach a nodeu lying k steps away is exponentially small ink. (Of
course, in the Forest Fire Model, there may be many paths that could be burned fromv to u, adding some
complexity to this analogy.)

In fact, our Forest Fire Model combines the flavors of several older models, and produces graphs qualita-
tively matching their properties. We establish this by simulation, as we describe below, but it is also useful
to provide some intuition for why these properties arise.

• Heavy-tailed in-degrees.Our model has a “rich get richer” flavor: highly linked nodes can easily
be reached by a newcomer, no matter which ambassador it starts from.

• Communities.The model also has a “copying” flavor: a newcomer copies several of the neighbors
of his/her ambassador (and then continues this recursively).

• Heavy-tailed out-degrees.The recursive nature of link formation provides a reasonable chance for
a new node to burn many edges, and thus produce a large out-degree.

• Densification Power Law.A newcomer will have a lot of links near the community of his/her am-
bassador; a few links beyond this, and significantly fewer farther away. Intuitively, this is analogous
to the Community Guided Attachment, although without an explicit set of communities.

• Shrinking diameter.It is not a priori clear why the Forest Fire Model should exhibit a shrinking
diameter as it grows. Graph densification is helpful in reducing the diameter,but it is important to
note that densification is certainly not enough on its own to imply shrinking diameter. For example,
the Community Guided Attachment model obeys the Densification Power Law, butour experiments
also show that the diameter slowly increases (not shown here).

Rigorous analysis of the Forest Fire Model appears to be quite difficult. However, in simulations, we find
that by varying just the two parametersp andr, we can produce graphs that densify (a > 1), exhibit
heavy-tailed distributions for both in- and out-degrees (Fig.3.10), and have diameters that decrease. This
is illustrated in Figure3.9, which shows plots for the effective diameter and the Densification Power Law
exponent as a function of the number of nodes for some selections ofp andr.

We see that depending on the forward and backward burning parameters the Forest Fire Model is capable
of generating sparse or dense graphs with effective diameters that either increase or decrease, while also
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Figure 3.9: The DPL plot and the effective diameter for the Forest Fire model. Row 1: sparse graph
(a = 1.01 < 2), with increasing diameter (forward burning probabilityp = 0.35, backward
probabilitypb = 0.20). Row 2: (most realistic case:) densifying graph (a = 1.21 < 2) with
slowly decreasing diameter (p = 0.37, pb = 0.32). Row 3: densifying graph (a = 1.32 < 2)
with decreasing diameter (p = 0.37, pb = 0.33). Row 4: dense graph with densification
exponent close to 2 (a = 1.57) and decreasing diameter (p = 0.38, pb = 0.35).
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Figure 3.10: Degree distribution of a sparse graph with decreasing diameter (forward burning probability:
0.37, backward probability: 0.32).
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Figure 3.11: Evolution of effective diameter of Forest Fire model while generating a large graph. Both
plots show the same data; left one plots on linear scales and the right one plots on log-
linear scales (effective diameter vs. log number of nodes).Error bars show the confidence
interval of the estimated effective diameter. Notice that the effective diameter shrinks and
then slowly converges.

producing power law in- and out-degree distributions (figure3.10). Informally, a dense graph has close to
a linear number of edges incident to each node, while a sparse graph hassignificantly fewer than a linear
number of edges incident to each node.

Also notice the high sensitivity of the parameter space. We fix the forward burning probabilityp, and
by increasing the backward burning probabilitypb (pb = r · p) for only a few percent we move from an
increasing to a slowly and then to more rapidly decreasing effective diameter(figure3.9).

Figure3.11plots the evolution of the effective diameter of Forest Fire. We generated asingle large graph
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on250, 000 nodes and measured the effective diameter over time. Error bars present 1 standard deviation
of the estimated effective diameter over 10 runs. Both plots show the same data. The left figure plots the
number of nodes on linear while the right plots the log number of nodes. Noticethe convergence of the
effective diameter. At first it shrinks more rapidly and then slowly converges to a low value.

Extensions to the Forest Fire Model

Our basic version of the Forest Fire Model exhibits rich structure with justtwo parameters. By extending
the model in natural ways, we can fit observed network data even more closely. We propose two natural
extensions: “orphans” and multiple ambassadors.

“Orphans”: In both the patent and arXiv citation graphs, there are many isolated nodes, that is, documents
with no citations into the corpus. For example, many papers in the arXiv only citenon-arXiv papers. We
refer to them asorphans. Our basic model does not produce orphans, since each node always links at least
to its chosen ambassador. However, it is easy to incorporate orphans intothe model in two different ways.
We can start our graphs withn0 > 1 nodes at timet = 1; or we can have some probabilityq > 0 that a
newcomer will form no links (not even to its ambassador) and so become an orphan.

We find that such variants of the model have a more pronounced decrease in the effective diameter over
time, with large distances caused by groups of nodes linking to different orphans gradually diminishing
as further nodes arrive to connect them together.

Multiple ambassadors: We experimented with allowing newcomers to choose more than one ambassador
with some positive probability. That is, rather than burning links starting fromjust one node, there is
some probability that a newly arriving node burns links starting from two or more. This extension also
accentuates the decrease in effective diameter over time, as nodes linking tomultiple ambassadors serve
to bring together formerly far-apart parts of the graph.

Burning a fixed percentage of neighbors:We also considered a version of Forest Fire where the fire
burns a fixed percentage of node’s edges,i.e., the number of burned edges is proportional to the node’s
degree. When a fire comes into a node, for each unburned neighbor weindependentlyflip a biased coin to
determine where to spread the fire. This continues recursively until no new nodes are burned. In case of
forward and backward burning probabilities we have two coins, one forout- and one for in-edges.

The problem with this version of the model is that, once there is a single large fire that burns a large fraction
of the graph, many subsequent fires will also burn much of the graph. This results in a bell-shaped, non-
heavy-tailed degree distribution and gives two regimes of densification — slower densification before the
first big fire, and quadratic (a = 2) densification afterwards.

We also experimented with the model where burning probability decayed exponentially as the fire moves
away from the ambassador node.

Phase plot

In order to understand the densification and the diameter properties of graphs produced by the Forest Fire
Model, we explored the full parameter space of the basic model in terms of thetwo underlying parameters:
the forward burning probabilityp and the backward burning ratior.
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(a) We fix burning ratio,r = 0.5 (b) We fix backward burning prob.,pb = 0.3
and vary forward burning probabilityp and vary forward burning probabilityp

Figure 3.12: We vary the forward burning probability while fixing burningratio (a) or backward burning
probability (b). The plot gives a very precise cut through Forest Fire parameter space. Notice
that each plot hastwo vertical axes: DPL exponent on the left, and the diameter log-fit
factor on the right. Observe a very sharp transition in DPL exponent and a narrow region,
indicated by vertical dashed lines, where Forest Fire produces slowly densifying graphs with
decreasing effective diameter.

Note, there are two equivalent ways to parameterize the Forest Fire model.We can use the forward burning
probability p and the backward burning ratior; or the forward burning probabilityp and the backward
burning probabilitypb (pb = rp). We examine both and show two cuts through the parameter space.

Figure3.12shows how the densification exponent and the effective diameter dependon forward burning
probabilityp. In the left plot of figure3.12we fix the backward burning ratior = 0.5, and in the right
plot we fix the backward burning probabilitypb = 0.3. We vary forward burning probability, and plot
the Densification Power Law exponent. The densification exponenta is computed as in Section3.3, by
fitting a relation of the formE(t) ∝ N(t)a. Notice the very sharp transition between the regimes with no
densification and those with very high densification.

On the same plot we also show theEffective diameter log-fit factorα. We fit a logarithmic function of the
form D∗(t) = α log t+β (wheret is the current time, and hence the current number of vertices) to the last
half of the effective diameter plot; we then report the factorα. Thus, Diameter Factorα < 0 corresponds
to decreasing effective diameter over time, andα > 0 corresponds to increasing effective diameter.

Going back to Figure3.12, notice that at low values of forward burning probabilityp, we observe increas-
ing effective diameter and no densification (a = 1). As p increases, the effective diameter grows slower
and slower. For a narrow band ofp we observedecreasing effective diameter, negativeα (the small valley
aroundp = 0.45). With high values ofp the effective diameter is constant (α ≈ 0), which means that the
generated graph is effectively a clique with effective diameter close to 1 and DPL exponenta ≈ 2. Also
notice that the sharp transition in the DPL exponent and the decreasing effective diameter are very well
aligned.

This simulations indicate that even the basic Forest Fire Model is able to produce sparse and slowly
densifying (with densification exponent near1) graphs in which the effective diameter decreases.
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Figure 3.13: Contour plots: The Densification Power Law exponenta (left) and the effective diameter
log-fit factorα (right) over the parameter space (forward-burning probability and backward
burning ratio) of the Forest Fire model.

Figure3.13shows how the densification exponent and the effective diameter dependon the values of the
Forest Fire parametersp andr.

Figure3.13(a) gives the contour plot of the densification exponenta. The lower left part corresponds to
a = 1 (the graph maintains constant average degree), and in the upper right part a = 2 – the graph is
“dense”, that is, the number of edges grows quadratically with the number of nodes, as,e.g., in the case
of a clique. The contours in-between correspond to0.1 increase in DPL exponent: the left-most contour
corresponds toa = 1.1 and the right-most contour corresponds toa = 1.9 The desirable region is in-
between; we observe that it is very narrow:a increases dramatically along a contour line, suggesting a
sharp transition.

Figure3.13(b) gives the contour plot for the Effective diameter log-fit factorα as defined above. Each
contour correspond to diameter factorα. We varyα in range−0.3 ≤ α ≤ 0.1, with step-size0.05.
Notice, the boundary in parameter space between decreasing and increasing effective diameter is very
narrow.

Do contour plots of Densification Power Law and Shrinking Diameters from Figure3.13follow the same
shape? More exactly, does the boundary between decreasing and increasing diameters follow the same
shape as the transition in the densification exponent?

We answer this question on figure3.14, where we superimpose phase contours of DPL and the effec-
tive diameter over the Forest Fire parameter space. The left plot superimposes phase contours for the
Densification Power Law exponenta = 1.3 and the diameter log-fit factorα = −0.05. The right plot
superimposes contours fora = 1.6 andα = −0.30. In both cases we observe very good alignment of
the two phase lines which suggests the same shape of the transition boundaryfor the Densification Power
Law exponent and the Effective Diameter.

We also observe similar behavior with orphans and multiple ambassadors. These additional features in
the model help further separate the diameter decrease/increase boundary from the densification transition,
and so widen the region of parameter space for which the model producesreasonably sparse graphs with
decreasing effective diameters.
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Figure 3.14: We superimpose the Densification Power Law exponenta and diameter log-fitα factor over
the Forest Fire Model parameter space. Notice that the shapeof transition boundary of the
densification and the shrinking diameter very much follow the same shape.

3.5 Discussion

Despite the enormous recent interest in large-scale network data, and therange of interesting patterns
identified for static snapshots of graphs (e.g, heavy-tailed distributions, small-world phenomena), there
has been relatively little work on the properties of the time evolution of real graphs. This is exactly the
focus of this work. The main findings and contributions follow:

• The Densification Power Law: In contrast to the standard modeling assumption that the average
out-degree remains constant over time, we discover that real graphs have out-degrees that grow
over time, following a natural pattern (Eq. (3.1)).

• Shrinking diameters: Our experiments also show that the standard assumptionof slowly growing
diameters does not hold in a range of real networks; rather, the diameter may actually exhibit a
gradual decrease as the network grows.

• We show that our Community Guided Attachment model leads to the Densification Power Law, and
that it needs only one parameter to achieve it.

• We give the Forest Fire model, based on only two parameters, which is able tocapture patterns
observed both in previous work and in the current study: heavy-tailed in- and out-degrees, the
Densification Power Law, and a shrinking diameter.

• We notice that the Forest Fire Model exhibits a sharp transition between sparse graphs and graphs
that are densifying. Graphs with decreasing effective diameter are generated around this transition
point.

• Finally, we find a fundamental relation between the temporal evolution of the graph’s power law
degree distribution and the Densification Power Law exponent. We also observe that real datasets
exhibit this type of relation.
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Our work here began with an investigation of the time-evolution of a set of large real-world graphs across
diverse domains. It resulted in the finding that real-world graphs are becoming denser as they grow,
and that in many cases their effective diameters are decreasing. This challenges some of the dominant
assumptions in recent work on random graph models, which assumes constant (or at most logarithmic)
node degrees, and diameters that increase slowly in the number of nodes.Building on these findings,
we have proposed a set of simple graph generation processes, capable of producing graphs that exhibit
densification and exhibit decreasing effective diameter.

Our results have potential relevance in multiple settings, including ’what if’ scenarios; in forecasting
of future parameters of computer and social networks; in anomaly detectionon monitored graphs; in
designing graph sampling algorithms; and in realistic graph generators.

We just examined the evolution of macroscopic statistical properties of networks by studying a set of
snapshots. Next, we continue examining network evolution but at much finer granularity. We examine
evolution of the online social networks by studying individual edge arrivals from the first to the “million-
th” edge.
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Chapter 4

Microscopic network evolution

In this chapter we present a microscopic analysis of the edge-by-edge evolution of four large online social
networks. The use of the maximum-likelihood principle allows us to quantify the bias of new edges
towards the degree and age of nodes, and to objectively compare various models such as preferential
attachment. In fact, our work is the first to directly quantify the amount of preferential attachment in large
social networks.

Our study shows that most new edges span very short distances, typically closing triangles. Motivated
by these observations, we develop a complete model of network evolution, incorporating node arrivals,
edge initiation, and edge destination selection processes. While node arrivals are mostly network-specific,
the edge initiation process can be captured by exponential node lifetimes anda “gap” model based on a
power law with exponential cutoff. We arrive at an extremely simple yet surprisingly accurate description
of the edge destination selection in real networks. Our model of network evolution can be used to gen-
erate arbitrary-sized synthetic networks that closely mimic the macroscopic characteristics of real social
networks.

4.1 Introduction

In recent years a wide variety of models have been proposed for the growth of complex networks. These
models are typically advanced in order to reproduce statistical network properties observed in real-world
data. They are evaluated on the fidelity with which they reproduce these global network statistics and
patterns. In many cases, the goal is to define individual node behaviorsthat result in a global structure
such as power law node degree distributions; in other cases, the goal is tomatch some other network
property such as small diameter.

For example, the observation of heavy-tailed degree distributions [Faloutsos et al., 1999] led to hypothesis
about edge creation processes (e.g., preferential attachment [Barab́asi and Albert, 1999]) that could lead
to this observation. In fact, there are several edge creation processes that all lead to heavy-tailed degree
distributions and it is not clear which among them captures reality best.

Here we take a different approach. Instead of only focusing on the global network structure and then
hypothesizing about what kind of microscopic node behavior would reproduce the observed macroscopic
network structure, we focusdirectly on the microscopic node behaviorper se. For the first time at such
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a large scale, we study a sequence of millions of individual edge arrivals, which allows us to directly
evaluate and compare microscopic processes that give rise to global network structure.

4.1.1 Evaluation based on likelihood

Given that the microscopic behavior of nodes solely determines the macroscopic network properties, a
good network model should match real-world data on global statistics, while maximizing the likelihood
of the low-level processes generating the data. Towards this goal, we propose the use of model likelihood
of individual edges as a way to evaluate and compare various network evolution models.

Likelihood has not been considered to date in the analysis of the evolution oflarge social networks mainly
due to lack of data and computational issues. Many early network datasets contained only a single or a
small number of snapshots of the data, making likelihood computations for evolutionary models infea-
sible. In contrast, we study four large social networks withexacttemporal information about individual
arrivals of millions of nodes and edges. Here we are therefore able to consider edge-by-edge evolution
of networks from their inception onwards, and hence efficiently compute the likelihood that a particular
model would have produced a particular edge, given the current state of the network. In contrast to pre-
vious work on evolution of large networks that used a series of snapshots to consider patterns at global
scale, we study the exact edge arrival sequence, which means we areable todirectly observe and model
the fine-grained network evolutionary processes that are directly responsible for global network patterns
and statistics.

A likelihood-based approach has several advantages over approaches based purely on global statistics:

(1) Models may be compared directly in a unified way, rather than arguing whether faithful reproduction
of, e.g., diameter is more important than clustering coefficient and so forth.

(2) As our understanding of real-world networks improves, the evaluation criterion, i.e., likelihood,
remains unchanged while the generative models improve to incorporate the new understanding.
Success in modeling can therefore be effectively tracked.

(3) Models may be meaningfully distinguished based on as-yet-undiscovered properties of real-world
data.

4.1.2 Data and model structure

We consider four large online social network datasets — FLICKR (flickr.com , a photo-sharing web-
site), DELICIOUS (del.icio.us , a collaborative bookmark tagging website), YAHOO! A NSWERS

(answers.yahoo.com , a knowledge sharing website), and LINKED IN (linkedin.com , a profes-
sional contacts website) — where nodes represent people and edges represent social relationships. In all
networks all personally identifiable data was hashed and nodes were assigned random ids.

These networks are large with up to millions of nodes and edges, and the time span of the data ranges
from four months to almost four years. All the networks are in early stagesof their evolution with the
connected component being small and the clustering coefficient increasing over time.

We consider models that can be decomposed into three core processes that completely describe the evolu-
tion of the network:
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(1) thenode arrival processthat governs the arrival of new nodes into the network,

(2) theedge initiation processthat determines for each node when it will initiate a new edge, and

(3) theedge destination selection processthat determines the destination of a newly initiated edge.

Our networks do not include removal of nodes or edges, so we do not model deletion (although we do
model the “death” of a node in the sense that it ceases producing new edges).

4.1.3 Our results

We begin with a series of analyses of our four networks, capturing the evolution of key network parame-
ters, and evaluation of the extent to which the edge destination selection process subscribes to preferential
attachment. We show that the inherently non-local nature of preferential attachment is fundamentally un-
able to capture important characteristics in these networks. To the best of our knowledge, this is the first
direct large-scale validation of the preferential attachment model in socialnetworks.

Next, we provide a detailed analysis of the data in order to consider parsimonious models for edge desti-
nation selection that incorporate locality. We evaluate a wide variety of such models using the maximum-
likelihood principle and choose a simple triangle-closing model that is free of parameters. Based on
the findings, we then propose a complete network evolution model that accurately captures a variety of
network properties. We summarize our model based on the three processes listed earlier.

(1) Node arrival process:We find large variation in node arrival rates over the four networks, ranging
from exponential to sub-linear growth. Thus we treat node arrival rate as input to our model.

(2) Edge initiation process:Upon arrival, a node draws its lifetime and then keeps adding edges until
reaching its lifetime, with edges inter-arrival rate following a power law with exponential cut-off
distribution. We find that edge initiations areacceleratingwith node degree (age), and prove that this
leads to power law out degree distributions. The model produces accurate fits and high likelihood.

(3) Edge destination selection process:We find that most edges (30%–60%) are local as they close
triangles,i.e., the destination is only two hops from the source. We consider a variety of triangle-
closing mechanisms and show that a simple scheme, where a source node chooses an intermediate
node uniformly from among its neighbors, and then the intermediate node doesthe same, has high
likelihood.

This scheme is easily and naturally expanded to capture non-local edges according to the distribution of
source-destination distance observed in all networks.

Our model is simple and easy to implement. It precisely defines the network evolution process, and we
also give parameter settings that allow others to generate networks at arbitrary scale or to take a current
existing network and further evolve it. We show that our model produces realistic social network evolution
following the true evolution of network properties such as clustering coefficient and diameter; our purely
local model gives rise to accurate global properties.

Moreover, our model is also complete. In contrast to Preferential Attachment [Albert et al., 1999], Copy-
ing model [Kumar et al., 2000] or Forest Fire model [Leskovec et al., 2005b] where nodes arrive one at a
time, immediately create all their edges and then essentially die, our model describes the evolution much
more precisely as in our model nodes appear, create one edge at a time, then go to sleep, wake up, create
next edge and so on until they die.
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4.2 Relation to previous work on network evolution

Many studies on online social networks, world wide web, and biological networks focused on macroscopic
properties of static or evolving networks such as degree distributions, diameter, clustering coefficient,
communities, densification and shrinking diameters [Faloutsos et al., 1999, Albert and Barab́asi, 2002,
Strogatz, 2001, Newman, 2003, Dorogovtsev and Mendes, 2003, Broder et al., 2000, Fetterly et al., 2004,
Leskovec et al., 2007b, Ntoulas et al., 2004, Kumar et al., 2006]. In contrast the following chapter focuses
on local microscopic processes that give raise to observed macroscopic network properties, like heavy
tailed degree distributions or densification.

Recently, researchers examined the finer aspects of edge creation by focusing on a small set of net-
work snapshots. The role of common friends in community formation was analyzed by Backstrom et
al. [Backstrom et al., 2006]. A similar study on the collaboration between scientists was done by New-
man [Newman, 2001]. Kleinberg and Liben-Nowell [Liben-Nowell and Kleinberg, 2003] studied the pre-
dictability of edges in social networks. Later on Capocciet al. [Capocci et al., 2006] focused on preferen-
tial attachment mechanism in Wikipedia. However, they used a series of weekly snapshots of Wikipedia,
while our results are much more precise as we use the exact edge arrivalsequence. They observed the
(sublinear) preferential attachment up to page degreed ≈ 100 and ford > 100 linking probability actually
decreased withd.

The role of triangle closure in small social networks was long studied by sociologists, but never on such a
large scale. Simmel theorized that people with common friends are more likely to create friendships and
Krackhardt and Handcock [Krackhardt and Handcock, 2007] applied this theory to explain the evolution
of triangle closures. A network model based on closed triangles was proposed by Shi et al. [Shi et al.,
2007].

The maximum-likelihood principle that will be a common theme throughout the chapterhas been typically
used to estimate network model parameters [Wasserman and Pattison, 1996, Leskovec and Faloutsos, 2007,
Wiuf et al., 2006] or for model selection [Beźakov́a et al., 2006], which often requires expensive compu-
tations of high dimensional integrals over all possible node arrival sequences. In contrast, we use the
likelihood in a much more direct way to evaluate and compare different modeling choices at the level of
individual edge placements.

4.3 Preliminaries

Next, we briefly introduce the datasets we use in this chapter, the notation andthe experimental method-
ology we adopt.

4.3.1 Datasets

For each of our four large network datasets, we know the exact time of allthe node/edge arrivals. Table4.1
gives the basic statistics of the four networks. All the networks slowly densify with a densification expo-
nent [Leskovec et al., 2007b] a ≈ 1.2. All the networks, except DELICIOUS, have shrinking diameter. In
FLICKR, ANSWERS, and LINKED IN, the effective diameter reaches the maximum value of 10 when the
network has around 50,000 nodes, and then slowly decreases to the around 7.5; in DELICIOUS, the diam-
eter is practically constant. Also, in all the networks, a majority of edges are bidirectional (columnEb).

68



Network FLICKR DELICIOUS ANSWERS L INKED IN

Time span 03/2003–09/2005 05/2006–02/2007 03/2007–06/2007 05/2003–10/2006
T 621 292 121 1294
N 584,207 203,234 598,314 7,550,955
E 3,554,130 430,707 1,834,217 30,682,028
Eb 2,594,078 348,437 1,067,021 30,682,028
Eu 2,257,211 348,437 1,300,698 30,682,028
E∆ 1,475,345 96,387 303,858 15,201,596
% 65.63 27.66 23.36 49.55
a 1.32 1.15 1.25 1.14
κ 1.45 0.80 0.95 1.04

Table 4.1: Network dataset statistics.Eb is the number of bidirectional edges,Eu is the number of edges
in undirected network,E∆ is the number of edges that close triangles,% is the fraction of
triangle-closing edges,a is the densification exponent (E(t) ∝ N(t)a), andκ is the decay
exponent (Eh ∝ exp(−κh)) of the number of edgesEh closingh hop paths (see Section4.5
and Figure4.4).

The reciprocity is 73% in FLICKR, 81% in DELICIOUS, and 58% in ANSWERS; L INKED IN is undirected,
but we know the edge initiator. The fraction of nodes that belongs to the largest weakly connected compo-
nent is 69% in FLICKR, 72% in DELICIOUS, 81% in ANSWERS, and 91% in LINKED IN. See TableA.2
for additional information and statistics of these networks.

We consider all networks as undirected but as the edges appear we distinguish between the edge initiator
and the edge target. For example, even though edges in LINKED IN are undirected, the edge initiator is the
person that sent the link invitation, and edge target is the node that accepted the invitation.

4.3.2 Notation

Let N, E, andT denote the total number of nodes, edges, and the span of the data in days.Let Gt be a
network composed from the earliestt edges,e1, . . . , et for t ∈ {1, . . . , E}. Let t(e) be the time when the
edgee is created, lett(u) be the time when the nodeu joined the network, and lettk(u) be the time when
thekth edge of the nodeu is created. Thenat(u) = t− t(u) denotes the age of the nodeu at timet. Let
dt(u) denote the degree of the nodeu at timet andd(u) = dT (u). We use[·] to denote a predicate (takes
value of 1 if expression is true, else 0). Table4.1gives the rest of the symbols.

4.3.3 Maximum-likelihood principle

The maximum-likelihood estimation (MLE) principle can be applied to compare a family of parameterized
models in terms of their likelihood of generating the observed data, and as a result, pick the “best” model
(and parameters) to explain the data. To apply the likelihood principle, we consider the following setting:
we evolve the network edge by edge, and for every edge that arrivesinto the network, we measure the
likelihood that the particular edge endpoints would be chosen under some model. The product of these
likelihoods over all edges will give the likelihood of the model. A higher likelihood means a “better”
model in the sense that it offers a more likely explanation of the observed data. For numerical purposes,
we use log-likelihoods.
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SYMBOL DESCRIPTION

Gt Graph composed of nodes and edges that arrived before timet
T Time span of a graph
N Number of nodes in a graph
E Number of edges in a graph
N(t) Number of nodes in a graph at timet
N(e) Number of nodes in a graph at timet
et tth edge in a graph
t(e) Time of creation of edgee
t(u) Time when nodeu joined the network (created its first edge)
ti(u) Time of creation ofith edge of nodeu
at(u) Age of a nodeu at timet, at(u) = t− t(u)
d(u) Final degree of nodeu
dt(u) Degree of nodeu at timet
γ Power law degree exponent,p(d) ∝ d−γ

a Densification power law exponent,E(t) ∝ N(t)a

h(u, v) Length of the shortest path between nodesu andv
h Number of hops, path length, distance
Eh Number of edges that at the time of creation spanh hop path
κ Decay exponent inEh ∝ exp(−κh)
pe(d) Probability of new edge linking to node of degreed
pl(a) Node lifetime distribution,i.e., prob. of node being alive at agea
λ Node lifetime distribution parameter (exponential distribution)
δu(d) Edge gap, time betweendth andd + 1th edge ofu, δu(d) = td+1(u)− td(u)
α Power law parameter of edge gap distribution
β Exponential parameter of edge gap distribution

Table 4.2: Table of symbols.

4.4 Preferential attachment

In this section we study the bias in selection of an edge’s source and destination based on the degree and
age of the node.

4.4.1 Edge attachment by degree

The preferential attachment (PA) model [Barab́asi and Albert, 1999] postulates that when a new node
joins the network, it creates a constant number of edges, where the destination node of each edge is
chosen proportional to the destination’s degree. Using our data, we compute the probabilitype(d) that a
new edge chooses a destination node of degreed; pe(d) is normalized by the number of nodes of degreed
that exist just before this step. We compute:

pe(d) =

∑
t[et = (u, v) ∧ dt−1(v) = d]∑

t |{u : dt−1(u) = d}| .
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Figure 4.1: Probabilitype(d) of a new edgee choosing a destination at a node of degreed.

First, Figure4.1(a) showspe(d) for the Erd̋os–Ŕenyi [Erdős and Ŕenyi, 1960] random network,Gnp,
with p = 12/n. In Gnp, since the destination node is chosen independently of its degree, the line is
flat. Similarly, in the PA model, where nodes are chosen proportionally to their degree, we get a linear
relationshippe(d) ∝ d; see Figure4.1(b).

Next we turn to our four networks and fit the functionpe(d) ∝ dτ . In FLICKR, Figure4.1(c), degree 1
nodes have lower probability of being linked as in the PA model; the rest of theedges could be explained
well by PA. In DELICIOUS, Figure4.1(d), the fit nicely follows PA. In ANSWERS, Figure4.1(e), the
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Figure 4.2: Average number of edges created by a node of agea.

presence of PA is slightly weaker, withpe(d) ∝ d0.9. L INKED IN has a very different pattern: edges to the
low degree nodes do not attach preferentially (the fit isd0.6), whereas edges to higher degree nodes are
more “sticky” (the fit isd1.2). This suggests that high-degree nodes in LINKED IN get super-preferential
treatment.

To summarize, even though there are minor differences in the exponentsτ for each of the four networks,
we can treatτ ≈ 1, meaning, the attachment is essentially linear. This observation is a bit different from
than what was observed by Capocciet al. [Capocci et al., 2006] who observed the (sublinear,tau = 0.9)
preferential attachment up to page degreed ≈ 100 and ford > 100 linking probability actuallydecreased
with node degreed.

4.4.2 Edges by the age of the node

Next, we examine the effect of a node’s age on the number of edges it creates. The hypothesis is that
older, more experienced users are also more engaged and thus create more edges.

Figure4.2 plots the fraction of edges initiated by nodes of a certain age. Thene(a), the average number
of edges created by nodes of agea, is the number of edges created by nodes of agea normalized by the
number of nodes that achieved agea:
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Figure 4.3: Log-likelihood of an edge selecting its source and destination node. Arrows denoteτ at
highest likelihood.

e(a) =
|{e = (u, v) : t(e)− t(u) = a}|
|{t(u) : t` − t(u) ≥ a}| ,

wheret` is the time when the last node in the network joined.

Notice a spike at nodes of age 0. These correspond to the people who receive an invite to join the network,
create a first edge, and then never come back. Typically these are the users who are not yet part of the
social network service, they receive an invitation to join as one of the existing members invited them.
By accepting the invitation and registering they also create a link but never come back to use the service
again. For all other ages, the level of activity seems to be uniform over time,except for LINKED IN, in
which activity of older nodes slowly increases over time.

4.4.3 Bias towards node age and degree

Using the MLE principle, we study the combined effect of node age and degree by considering the fol-
lowing four parameterized models for choosing the edge endpoints at timet.

• D: The probability of selecting a nodev is proportional to its current degree raised to powerτ :
dt(v)τ .
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• DR: With probabilityτ , the nodev is selected preferentially (proportionally to its degree), and with
probability(1− τ), uniformly at random:τ · dt(v) + (1− τ) · 1/N(t).

• A: The probability of selecting a node is proportional to its age raised to powerτ : at(v)τ

• DA: The probability of selecting a nodev is proportional the product of its current degree and its
age raised to the powerτ : dt(v)· at(v)τ .

The experiment goes as follows. We unroll the evolution of the network edge by edge. Then for each
edgeet we take current state of the graphGt−1 at timet− 1 and we consider the probability of selecting
the source and destination node ofet under one of the above four models and fixedτ . We repeat this for
each value ofτ and plot the log-likelihood separately for selection of edge source and edge destination
node.

Figure4.3 plots the log-likelihoods under different models, as a function ofτ . The red curve plots the
log-likelihood of selecting a source node and the green curve for selecting the destination node of an
edge.

In FLICKR the selection of destination is purely preferential: modelD achieves the maximum likelihood at
τ = 1, and modelDA is very biased to modelD, i.e., τ ≈ 1. ModelA has worse likelihood but modelDA
improves the overall log-likelihood by around 10%. Edge attachment in DELICIOUS seems to be the most
“random”: modelD has worse likelihood than modelDR. Moreover the likelihood of modelDR achieves
maximum atτ = 0.5 suggesting that about 50% of the DELICIOUS edges attach randomly. ModelA has
better likelihood than the degree-based models, showing edges are highly biased towards young nodes.
For ANSWERS, modelsD, A, andDR have roughly equal likelihoods (at the optimal choice ofτ ), while
modelDA further improves the log-likelihood by 20%, showing some age bias. In LINKED IN, age-biased
models are worse than degree-biased models. We also note strong degreepreferential bias of the edges.
As in FLICKR, modelDA improves the log-likelihood by 10%.

We notice that selecting an edge’s destination node is harder than selecting itssource (the green curve
is usually below the red). Also, selecting a destination appears more randomthan selecting a source —
the maximum likelihoodτ of the destination node (green curve) for modelsD andDR is shifted to the
left when compared to the source node (red), which means the degree bias is weaker. Similarly, there
is a stronger bias towards young nodes in selecting an edge’s source than in selecting its destination.
Based on the observations, we conclude that PA (modelD) performs reasonably well compared to more
sophisticated variants based on degree and age.

4.5 Locality of edge attachment

Even though our analysis suggests that PA is a reasonable model for edge destination selection, it is
inherently “non-local” in that edges are no more likely to form between nodes which already have friends
in common. In this section we perform a detailed study of the locality properties of edge destination
selection.

We first consider the following notion of edge locality: for each new edge(u, w), we measure the number
of hops it spans,i.e., the length of the shortest path between nodesu andw immediately before the edge
was created. In Figure4.4 we study the distribution of these shortest path values induced by each new
edge forGnp (with p = 12/n), PA, and the four social networks. (The isolated dot on the left countsthe
number of edges that connected previously disconnected components ofthe network.)
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Figure 4.4: Number of edgesEh created to nodesh hops away.h = 0 counts the number of edges that
connected previously disconnected components.

For Gnp most new edges span nodes that were originally six hops away, and then the number decays
polynomially in the hops. In the PA model, we see a lot of long-range edges; most of them span four hops
but none spans more than seven. The hop distributions corresponding tothe four real-world networks
look similar to one another, and strikingly different from bothGnp and PA. The number of edges decays
exponentially with the distance between the nodes (see Table4.1for fitted decay exponentsκ). This means
that most edges are created between nodes that are close. The exponential decay suggests that the creation
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Figure 4.5: Probability of linking to a random node ath hops from source node. Value ath = 0 hops is
for edges that connect previously disconnected components.

of a large fraction of edges can be attributed to locality in the network structure, namely most of the times
people who are close in the network (e.g., have a common friend) become friends themselves.

These results involve counting the number of edges that link nodes certain distance away. In a sense, this
overcounts edges(u, w) for which u andw are far away, as there are many more distant candidates to
choose from — it appears that the number of long-range edges decaysexponentially while the number of
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Figure 4.6: Triangle-closing model: nodeu creates an edge by selecting intermediate nodev, which then
selects target nodew to which the edge(u,w) is created.

long-range candidates grows exponentially. To explore this phenomenon, we count the number of hops
each new edge spans but then normalize the count by the total number of nodes ath hops. More precisely,
we compute

pe(h) =

∑
t[et connects nodes at distanceh in Gt−1]∑

t(# nodes at distanceh from the source node ofet)
.

First, Figures4.5(a) and (b) show the results forGnp and PA models. (Again, the isolated dot ath = 0
plots the probability of a new edge connecting disconnected components.) InGnp, edges are created
uniformly at random, and so the probability of linking is independent of the number of hopsh between
the edge endpoints and thuspl(h) is flat. In PA, due to degree correlations short (local) edges prevail.
However, a non-trivial amount of probability goes to edges that span more than two hops. (Notice the
logarithmicy-axis.)

Figures4.5(c)–(f) show the plots for the four networks. The probability of linking to anodeh hops
away decays very quickly, seemingly double-exponentially,i.e., pe(h) ∝ exp(exp(−h)) (fits not shown).
This behavior is drastically different from both the PA andGnp models. Also note that almost all of the
probability mass is on edges that close length-two paths. This means that edges are most likely to close
triangles,i.e., connect people with common friends.

ColumnE∆ in Table4.1 further illustrates this point by presenting the number of triangle-closing edges.
FLICKR and LINKED IN have the highest fraction of triangle-closing edges, whereas ANSWERSand DE-
LICIOUS have substantially less such edges. Note that here we are not measuring the fraction of nodes
participating in triangles. Rather, we unroll the evolution of the network, andfor every new edge check to
see if it closes a new triangle or not.

4.5.1 Triangle-closing models

Given that such a high fraction of edges close triangles, we aim to model how a length-two path should
be selected. We consider a scenario in which a source nodeu has decided to add an edge to some nodew
two hops away, and we are faced with various alternatives for the choiceof nodew. Figure4.6 illustrates
the setting. Edges arrive one by one and the simplest model to close a triangle(edge(u, w) in the figure)
is to haveu select a destinationw randomly from all nodes at two hops fromu.

To improve upon this baseline model we consider various models of choosingnodew. We consider
processes in whichu first selects a neighborv according to some mechanism, andv then selects a neighbor
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w according to some (possibly different) mechanism. The edge(u, w) is then created and the triangle
(u, v, w) is closed. The selection of bothv andw involves picking a neighbor of a node.

We consider five different models of choosing a neighborv of u. Nodev is chosen:

• random: uniformly at random,

• degτ : proportional to degree raised to powerτ , d(v)τ ,

• com: prop. to the number of common friendsc(u, v) with u,

• lastτ : proportional to the time passed sincev last created an edge raised to powerτ ,

• comlastτ : proportional to the product of the number of common friends withu and the last activity
time, raised to powerτ .

As stated before, we can compose any two of these basic models to choose atwo-hop neighbor,i.e., a
way to close the triangle. For instance, thelast0.1-com model will work as follows:u will employ the
last0.1 model to select nodev, v will then employ thecom model to select nodew, and thenu will add an
edge tow, closing the triangle(u, v, w). We consider all 25 five possible composite models for selecting
a two-hop neighbor and evaluate them by the likelihood that the model generated all the edges that closed
length-two paths in the real network.

Table4.3 shows the percent improvement of various triangle-closing models over thelog-likelihood of
choosing a two-hop neighbor uniformly at random as a destination of the edge (the baseline). The sim-
plest model,random-random, works remarkably well. Initially, we were somewhat surprised by this.
However, if one thinks about therandom-random it has many desirable properties. For example, it gives
higher probability to nodes with more length-two paths, discounting each path by roughly1/d(v). More-
over, it is also biased towards high-degree nodes, as they have multiple paths leading towards them.

The deg1.0-random model weighs each nodew by roughly the number of length-two paths betweenu
andw. However, we find that it performs worse thanrandom-random. For the more generaldegτ -
random, the optimal value ofτ varies from0.1 to 0.3 over all the four networks, and this model provides
meaningful improvements only for the ANSWERSnetwork.

The com model considers the strength of a tie betweenu andv, which we approximate by the number
of common friendsc(u, v) of nodesu and v; the larger the value, the stronger the tie. By selecting
v with probability proportional toc(u, v), we get a substantial gain in model likelihood. A factor that
further improves the model is the recency of activity byv, captured bylastτ . By selecting nodes that have
recently participated in a new edge with higher probability, we get another sizable improvement in the
model likelihood. These two capture the finer details of network evolution.

In summary, while degree helps marginally, for all the networks, therandom-random model gives a
sizable chunk of the performance gain over the baseline (10%). Due its simplicity, we choose this as the
triangle-closing model for the rest of the chapter.

Note that the above methodology could be extended to edge creations other than triangle-closing. We
chose to focus on the triangle-closing edges for two reasons. First, a high fraction of all edges created fall
into this category, and hence an understanding of triangle-closing edgesis an important first step towards
understanding the overall network evolution. Second, with the exception of quite simplistic models, it is
computationally infeasible to compute the likelihood at a distance greater than two hops as the number of
nodes and possible paths increases dramatically.
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FLICKR random deg0.2 com last−0.4 comlast−0.4

random 13.6 13.9 14.3 16.1 15.7
deg0.1 13.5 14.2 13.7 16.0 15.6
last0.2 14.7 15.6 15.0 17.2 16.9
com 11.2 11.6 11.9 13.9 13.4

comlast0.1 11.0 11.4 11.7 13.6 13.2

DELICIOUS random deg0.3 com last−0.2 comlast−0.2

random 11.7 12.4 13.8 13.2 15.1
deg0.2 12.2 12.8 14.3 13.7 15.6
last−0.3 13.8 14.6 16.0 15.3 17.2

com 13.6 14.4 15.8 15.2 17.1
comlast−0.2 14.7 15.6 16.9 16.3 18.2

ANSWERS random deg0.3 com last−0.2 comlast−0.2

random 6.80 10.1 11.8 9.70 13.3
deg0.2 7.18 10.5 12.2 10.1 13.7
last−0.3 9.95 13.4 15.0 12.8 16.4

com 6.82 10.3 11.8 9.80 13.4
comlast0.2 7.93 11.5 12.9 10.9 14.5

L INKED IN random deg0.1 com last−0.1 comlast−0.1

random 16.0 16.5 18.2 17.2 18.5
deg0.1 15.9 16.4 18.0 17.0 18.4
last−0.1 19.0 19.5 21.1 20.0 21.4

Table 4.3: Triangle-closing models. First pick intermediate nodev (fix column), then target nodew (fix
row). The cell gives percent improvement over the log-likelihood of picking a random node
two hops away (baseline).

4.6 Node and edge arrival process

In this section we turn our focus to the edge initiation process that determines which node is responsible
for creating a new edge (Section4.6.1), and then to the process by which new nodes arrive into the network
(Section4.6.2).

4.6.1 Edge initiation

In the following we assume that the sequence and timing of node arrivals is given, and we model the
process by which nodes initiate edges. We begin by studying how long a node remains active in the social
network, and then during this active lifetime, we study the specific times at whichthe node initiates new
edges.
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Figure 4.7: Exponentially distributed node lifetimes.

Node lifetime

To avoid truncation effects, we only consider those nodes whose last-created edge is in the first half of
all edges in the data. Recall that the lifetime of a nodeu is a(u) = td(u)(u) − t1(u). We evaluate the
likelihood of various distributions and observe that node lifetimes are best modeled by an exponential
distribution,p`(a) = λ exp(−λa). Figure4.7 gives the plot of the data and the exponential fits, where
time is measured in days. In Table4.6, the row corresponding toλ gives the values of fitted exponents. We
note that the exponential distribution does not fit well the nodes with very short lifetimes,i.e., nodes that
are invited into the network, create an edge and never return. But the distribution provides a very clean fit
for nodes whose lifetime is more than a week.

Time gap between the edges

Now that we have a model for the lifetime of a nodeu, we must model that amount of elapsed time between
edge initiations fromu. Letδu(d) = td+1(u)−td(u) be the time it takes for the nodeu with current degree
d to create its(d + 1)-st out-edge; we callδu(d) the edge gap. Again, we examine several candidate
distributions to model edge gaps. Table4.4 shows the percent improvement of the log-likelihood at the
MLE over the exponential distribution. The best likelihood is provided by a power law with exponential
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degreed power power law log stretched
law exp. cutoff normal exp.

1 9.84 12.50 11.65 12.10
2 11.55 13.85 13.02 13.40
3 10.53 13.00 12.15 12.59
4 9.82 12.40 11.55 12.05
5 8.87 11.62 10.77 11.28

avg.,d ≤ 20 8.27 11.12 10.23 10.76

Table 4.4: Edge gap distribution: percent improvement of the log-likelihood at MLE over the exponential
distribution.

cutoff: pg(δ(d); α, β) ∝ δ(d)−α exp(−βδ(d)), whered is the current degree of the node. (Note that
the distribution is neither exponential nor Poisson, as one might be tempted to assume.) We confirm these
results in Figure4.8, in which we plot the MLE estimates to gap distributionδ(1), i.e., distribution of times
that it took a node of degree 1 to add the second edge. In fact, we find that all gaps distributionsδ(d) are
best modeled by a power law with exponential cut-off (Table4.4 gives improvements in log-likelihoods
for d = 1, . . . , 5 and the average ford = 1, . . . , 20.) The hump in LINKED IN dataset can be explained by
external event and the way the LinkedIn service operates.

For eachδ(d) we fit a separate distribution and Figure4.9shows the evolution of the parametersα andβ
of the gap distribution, as a function of the degreed of the node. Interestingly, the power law exponent
α(d) remainsconstantas a function ofd, at almost the same value for all four networks. On the other
hand, the exponential cutoff parameterβ(d) increaseslinearly with d, and varies by an order of magnitude
across networks; this variation models the extent to which the “rich get richer” phenomenon manifests in
each network. This means that the slopeα of power law part remains constant, only the exponential cutoff
part (parameterβ) starts to kick in sooner and sooner. So, nodes add their(d + 1)st edge faster than their
dth edge,i.e., nodes start to create more and more edges (sleeping times get shorter) asthey get older (and
have higher degree). So, based on Figure4.9, the overall gap distribution can be modeled by the power
law with exponential cutoff distribution where the exponential cutoff parameter β increases linearly with
current node degreed: pg(δ|d; α, β) ∝ δ−α exp(−βdδ).

This is interesting finding as it very accurately models node dynamics. Nodessleep, wake up, create edges
and go back to sleep. As nodes get older they keep adding edges faster. However, the power-law slope of
gap time distribution remains constant with node degree. But it is the exponential cutoff parameter that
starts getting stronger and stronger and cuts the tail of the power law part, which makes the sleeping times
shorter and shorter.

Given the above observation, a natural hypothesis would be that nodesthat will attain high degree in
the network are in some way a priori special,i.e., they correspond to “more social” people who would
inherently tend to have shorter gap times and enthusiastically invite friends at ahigher rate than others,
attaining high degree quickly due to their increased activity level. However,this phenomenon does not
occur in any of the networks. We computed the correlation coefficient betweenδ(1) and the final degree
d(u) of a nodeu. The correlation values are−0.069 for DELICIOUS, −0.043 for FLICKR, −0.036 for
ANSWERS, and−0.027 for L INKED IN. Thus, there is almost no correlation, which shows that the gap
distribution is independent of a node’s final degree. It only depends on node lifetime,i.e., high degree
nodes are not a priori special, they just live longer, and accumulate manyedges.
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Figure 4.8: Edge gap distribution for a node to obtain the second edge,δ(1), and MLE power law with
exponential cutoff fits.
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Figure 4.10: Number of nodes over time.

Network N(t)

FLICKR exp(0.25t)
DELICIOUS 16t2 + 3000t + 40000
ANSWERS −284t2 + 40000t− 2500
L INKED IN 3900t2 + 76000t− 130000

Table 4.5: Node arrival functions for the four network datasets. Figure 4.10plots the number of nodes
over time.

4.6.2 Node arrivals

Finally, we turn to the question of modeling node arrivals into the system. Figure4.10shows the number
of users in each of our networks over time, and Table4.5captures the best fits. FLICKR grows exponen-
tially over much of our network, while the growth of other networks is much slower. DELICIOUS grows
slightly superlinearly, LINKED IN quadratically, and ANSWERSsublinearly. Given these wild variations
we conclude the node arrival process needs to be specified in advance as it varies greatly across networks
due to external factors.

83



4.7 A network evolution model

Next we present our network evolution model. In contrast to Preferential Attachment, Copying or Forest
Fire model where nodes arrive one at a time, immediately create all their edgesand then essentially die,
our model describes the evolution much more precisely as in our model nodesappear, create one edge at a
time, then go to sleep, wake up, create next edge and so on until they die. Sowe model complete temporal
arrival and creation process of both nodes and edges.

First let’s take stock of what we measured and observed so far:

(a) In Section4.6.2, we analyzed the node arrival rates and showed that they are network-dependent
and can be succinctly represented by a node arrival functionN(t) that is either a polynomial or an
exponential.

(b) In Section4.6.1, we analyzed the node lifetimes and showed they are exponentially distributedwith
parameterλ.

(c) In Section4.4.1, we argued that the destination of the first edge of a node is chosen proportional to
its degree (i.e., preferentially attached).

(d) In Section4.6.1, we analyzed the time gaps between edge creation at a node and showed they can
be captured by a power law with exponential cutoff, with parametersα, β.

(e) In Section4.5, we showed that most of the edges span two hops, and the simplerandom-random
triangle-closing model works well.

Motivated by these observations, we now present a complete network evolution model. Our model is
parameterized byN(·), λ, α, β, and operates as follows.

1. Nodes arrive using the node arrival functionN(·).

2. Nodeu arrives and samples its lifetimea from the exponential distributionp`(a) = λ exp(−λa).

3. Nodeu adds the first edge to nodev with probability proportional to its degree.

4. A nodeu with degreed samples a time gapδ from the edge gap distributionpg(δ|d; α, β) =
(1/Z)δ−α exp(−βdδ) and goes to sleep forδ time steps.

5. When a node wakes up, if its lifetime has not expired yet, it creates a two-hop edge using the
random-random triangle-closing model.

6. If a node’s lifetime has expired, then it stops adding edges; otherwise itrepeats from step 4.

The values ofN(·) for the four networks are given in Table4.5 and the values ofα, β, λ are given in
Table4.6.

Note that one could also use more sophisticated edge destination selection strategies like the random
surfer model [Blum et al., 2006] or other triangle-closing techniques as discussed in Section4.5.1. For
example, in step 5, a nodeu can pick a sequence of nodes(u = w0, w1, . . . , wk = w), where eachwi is
picked uniformly from the neighbors ofwi−1, and the sequence lengthk is chosen from the distribution
in Figure4.4. Nodeu then links tow.
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4.7.1 Gaps and power law degree distribution

We now show that our model, node lifetime combined with gaps, produces power law out-degree distri-
bution. This is interesting as a model of temporal behavior (lifetime plus gaps) gives rise to a structural
network property (i.e., power law out degree distribution).

Theorem 4.7.1.The out-degrees are distributed according to a power law with exponent

γ = 1 +
λΓ(2− α)

βΓ(1− α)
. (4.1)

Proof. We first compute the normalizing constantZ of the gap distributionpg(δ|d; α, β):

Z =

∫ ∞

0
δ−αe−βdδdδ =

Γ(1− α)

(βd)1−α
. (4.2)

Let a be the lifetime sampled from the exponential distributionp`(a) = λ exp(−λa). Recall the edge
creation process: a node adds its first edge and samples the next gapδ(1) according topg(·), sleeps for
δ(1) time units, creates the second edge, samples a new gapδ(2) according topg(·), sleeps forδ(2) units,
and so on until it uses up all of its lifetimea. This means that for a nodeu with lifetime a = a(u) and
final degreeD = d(u), we have

D∑

d=1

δ(k) ≤ a. (4.3)

Analogous to (4.2), we obtain the expected time gapE(δ|d; α, β) for a node of degreed:

E(δ|d; α, β) =
Γ(2− α)

Γ(1− α)
(βd)−1. (4.4)

Combining (4.3) and (4.4), we relate the lifetimea and the expected final degreeD of a node:

D∑

d=1

Γ(2− α)

Γ(1− α)
(βd)−1 =

Γ(2− α)

Γ(1− α)
β−1

D∑

d=1

d−1 ≤ a. (4.5)

Notice that
∑D

d=1 d−1 = Θ(lnD). From (4.5), the final degreeD of a node with lifetimea is

D ≈ exp
(Γ(1− α)

Γ(2− α)
βa
)
.

Thus,D is an exponential function of the agea, i.e., D = r(a) = exp(µa), whereµ = Γ(1−α)
Γ(2−α)β.

Since node lifetimes are exponentially distributed with parameterλ, we now compute the distribution of
D as a function ofλ andµ as follows:

D ∼ p`(r
−1(D))

∣∣∣
∂r−1(D)

∂D

∣∣∣ =
λ

µD
e−(λ/µ) log D =

λD−(1+λ/µ)

µ
.

Thus, the degree distribution in our gap model follows a power law with exponent1 + λ/µ, completing
the proof.
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FLICKR DELICIOUS ANSWERS L INKED IN

λ 0.0092 0.0052 0.019 0.0018
α 0.84 0.92 0.85 0.78
β 0.0020 0.00032 0.0038 0.00036

trueγ 1.73 2.38 1.90 2.11
predictedγ 1.74 2.30 1.75 2.08

Table 4.6: Predicted by Theorem4.7.1vs. true degree exponents.
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Figure 4.11: Degree distribution and power law fits.

4.7.2 Validation of the model

We validate the accuracy of our modeling assumptions by empirically estimating the lifetimeλ, and gap
distributionα, β parameter values for each network. We then apply Theorem4.7.1, which yields the
power law degree exponents produced by our model. Then we empirically measure the true power law
degree exponents of the four networks and compare them to predictions of Theorem4.7.1. Table4.6shows
the results. Note the predicted degree exponents remarkably agree with thetrue exponents, validating our
model. This is interesting as we specified the model of temporal node behavior(lifetime+gaps) that results
in a accurate structural network property (power law degree distribution).
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Figure 4.12: We take FLICKR network at first half of its evolution. Then we simulate the evolution using
our model and PA for the second half, and compare the obtainednetworks with the real
FLICKR network. Notice our model matches the macroscopic statistical properties of the
true FLICKR network very well, and in fact much better than PA.

Figure4.11 plots degree distributions of four networks and gives the power law fits. Table4.6 shows
the values of parametersλ, α andβ measured from the evolution of the networks. We also show the
measured degree exponent (denoted as trueγ), and the degree exponent predicted from equation4.1.
Notice the remarkable agreement in degree exponent between the data andthe model prediction.

For example, in FLICKR we observe the following parameters (see Table4.6): λ = 0.0092, andα = 0.84,
β = 0.0020. Using equation4.1we obtain degree exponentγ = 1.74, which is very close to true exponent
of 1.73 (see figure4.11). See table4.6for comparison of true degree exponents and the degree exponents
as predicted by out gap model.

We find this somewhat surprising as using only three parameters (1 parameter for node lifetime, and 2 for
the gap distribution) we can accurately model the temporal part of the network evolution. Basically, with
just 3 parameters we can accurately describe the non-structural part evolution (i.e., everything except the
selection of the edge destination).

4.7.3 Unfolding network evolution

To further our understanding of the network evolution, especially the edge creation process, we perform
the following semi-simulation. We consider the real networkGT/2 and evolve it fromt = T/2, . . . , T
using therandom-random model to obtain a networkG′

T . At the end of the evolution, we compare the
macroscopic properties ofG′

T andGT . For completeness we also compare the results to the Preferential
Attachment (PA) model.

More precisely, we evolveGT/2 by considering all the edges that were created after timeT/2 between
the nodes inGT/2. (We do not allow new nodes to joinGT/2.) We consider two different processes to
place these new edges. In the first process (PA), we select two nodespreferentially, with probabilities
proportional to their degrees, and add an edge. In the second process (RR), we use therandom-random
triangle-closing model,i.e., we first select a node preferentially and then pick a node two hops awayusing
therandom-random model.

Figure4.12shows results for FLICKR: clustering coefficient, degree distribution, and pairwise distance
histogram for the true data, and the two simulations. Therandom-random model matches the true net-
work well and outperforms the PA. Similar results also hold for other networks; we omit these plots.
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4.8 Discussion

In this chapter we presented a microscopic analysis of the edge-by-edgeevolution of four large online
social networks. The use of the maximum-likelihood principle allowed us to quantify the bias of new
edges towards the degree and age of nodes, and to objectively comparevarious models such as preferential
attachment. In fact, our work is the first to directly quantify the amount of preferential attachment that
occurs in the evolution of large networks.

Our study shows that most new edges span very short distances, typically closing triangles. Motivated
by these observations, we developed a complete model of network evolution, incorporating node arrivals,
edge initiation, and edge destination selection processes. While node arrivals are mostly network-specific,
the edge initiation process can be captured by exponential node lifetimes anda “gap” model based on a
power law with exponential cutoff. We arrive at an extremely simple yet surprisingly accurate description
of the edge destination selection in real networks. Moreover, our model isthe first to accurately gives
the complete picture of network evolution from node and edge arrivals to edge placement. Our model
of network evolution can be used to generate arbitrary-sized synthetic networks that closely mimic the
macroscopic characteristics of real social networks.
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Chapter 5

Kronecker graphs

How can we generate realistic network? In addition, how can we do so with a mathematically tractable
model that allows for rigorous analysis of network properties? Real networks exhibit a long list of sur-
prising properties: Heavy tails for the in- and out-degree distribution; heavy tails for the eigenvalues and
eigenvectors; small diameters; and over time the densification power law and shrinking diameters occur.
The present network models and generators either fail to match several of the above properties, are com-
plicated to analyze mathematically, or both. In this chapter we propose a generative model for networks
that is both mathematically tractable and can generate networks that have all theabove mentioned struc-
tural properties. Our main idea here is to use a non-standard matrix operation, theKronecker product, to
generate graphs that we refer to as “Kronecker graphs”.

First, we show that Kronecker graphs naturally obey common network properties; in fact, we rigorously
provethat they do so. We also provide empirical evidence showing that Kronecker graphs can well mimic
the structure of real networks.

Then, given a large real network, we present KRONFIT, a fast and scalable algorithm for fitting the Kro-
necker graph generation model to real networks. A naive approach tofitting would take super-exponential
time. In contrast, KRONFIT takeslinear time, by exploiting the structure of Kronecker matrix multiplica-
tion and by using statistical simulation techniques.

Experiments on large real and synthetic networks show that KRONFIT finds accurate parameters that
indeed very well mimic the properties of target networks. Once fitted, the model parameters can be used
to gain insights about the network structure, and the resulting synthetic graphs can be used for null-models,
anonymization, extrapolations, and graph summarization.

5.1 Introduction

What do real graphs look like? How do they evolve over time? How can we generate synthetic, but
realistic looking, time-evolving graphs? Recently network analysis has beenattracting much interest,
with an emphasis on finding patterns and abnormalities in social networks, computer networks, e-mail
interactions, gene regulatory networks, and many more. Most of the workfocuses on static snapshots of
graphs, where fascinating “laws” have been discovered, including small diameters and heavy-tailed degree
distributions.

89



As such structural “laws” have been discovered a natural next question is to find a model that produces
networks with such structure. Thus, a good realistic network generation model is important for at least two
reasons. The first is that it can generate graphs for extrapolations, “what-if” scenarios, and simulations,
when real graphs are difficult or impossible to collect. For example, how well will a given protocol run
on the Internet five years from now? Accurate network models can produce more realistic models for the
future Internet, on which simulations can be run. The second reason is more subtle: it forces us to think
about the network properties that a graph models should obey, to be realistic.

In this chapter we introduce Kronecker graphs, a network generativemodel which obeys all the main
static network patterns that have appeared in the literature. Our model also obeys the temporal evolution
patterns that we described in chapter3. And, contrary to other models that match this combination of
network properties, Kronecker graphs also lead to tractable analysis and rigorous proofs. Furthermore,
Kronecker graphs generative process also has a nice natural interpretation and justification.

Our model is based on a matrix operation, theKronecker product. There are several known theorems on
Kronecker products, which correspond exactly to a significant portionof what we want to prove: heavy-
tailed distributions for in-degree, out-degree, eigenvalues, and eigenvectors. We also demonstrate how a
Kronecker Graph can match the behavior of several real networks (social networks, citations, web, inter-
net, and others). While Kronecker products have been studied by the algebraic combinatorics community
(see,e.g., [Chow, 1997]), the present work is the first to employ this operation in the design of network
models to match real data.

Then we also make a step further and tackle the following problem: Given a large real network, we want to
generate a synthetic graph, so that our resulting synthetic graph matches the properties of the real network
as well as possible.

Ideally we would like: (a) A graph generation model that naturally produces networks with many proper-
ties that are also found in real networks. (b) The model parameter estimationshould be fast and scalable,
so that we can handle networks with millions of nodes. (c) The resulting set of parameters should generate
realistic-looking networks that match the statistical properties of the target, real networks.

In general the problem of modeling network structure presents severalconceptual and engineering chal-
lenges: Which generative model should we choose, among the many in the literature? How do we measure
the goodness of the fit? (Least squares don’t work well for power laws, for subtle reasons!) If we use like-
lihood, (that we do), how to estimate it faster than in time quadratic on the number of nodes? How do we
solve the node correspondence problem (which node of the real network corresponds to what node of the
synthetic one)?

To answer the above questions we present KRONFIT, a fast and scalable algorithm for fitting Kronecker
graphs by using the maximum likelihood principle. When calculating the likelihood there are two chal-
lenges: First, one needs to solve the node correspondence problem bymatching the nodes of the real and
the synthetic network. Essentially, one has to consider all mappings of nodes of the network to the rows
and columns of the graph adjacency matrix. This becomes intractable for graphs with more than a handful
of nodes. Even when given the “true” correspondences just evaluating the likelihood is still prohibitively
expensive for the size of graphs we want to consider here. We present solutions to both of these prob-
lems: We develop Metropolis sampling algorithm for sampling node correspondences, and approximate
the likelihood to obtain alinear time algorithm that scales to large networks with millions of nodes and
edges. KRONFIT gives orders of magnitude speed-ups against older methods (20 minutes on a commodity
PC, versus 2 days on a 50-machine cluster).
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Our extensive experiments on synthetic and real networks show that Kronecker Graph can efficiently
model statistical properties of networks, like degree distribution and diameter, while using only four pa-
rameters.

Once the model is fitted to the real network, there are several benefits andapplications:

(a) The parameters give us insight into the structure of the network itself;

(b) Extrapolations: we can use the model to generate a larger graph, to help us understand how the
network will look like in the future;

(c) Sampling: conversely, we can also generate a smaller graph, which may be useful for running
simulation experiments (e.g., simulating routing algorithms in computer networks, or virus/worm
propagation algorithms), when these algorithms may be too slow to run on large graphs;

(d) Null-model:when working with network data we would often like to assess the significanceor the
extent to which a certain network property is expressed. We can use the fitted Kronecker graph as
an accurate null-model.

(e) Simulations:given an algorithm working on a graph we would like to evaluate how its performance
depends on various properties of the network. Using our model one cangenerate graphs that exhibit
various combinations of such properties, and then evaluate the algorithm.

(f) Graph compression:we can compress the graph, by storing just the model parameters, and the
deviations between the real and the synthetic graph;

(g) Anonymization:suppose that the real graph cannot be publicized, like,e.g., corporate e-mail net-
work; customer-product sales in a recommendation system. Yet, we would liketo share our network.
Our work gives ways to such a realistic, ’similar’ network.

The rest of the chapter is organized as follows: Section5.2briefly surveys the related literature. In section
5.3 we introduce the Kronecker graphs model, and give formal statements about the properties of net-
works it generates. We investigate the model using simulation in Section5.4and continue by introducing
KRONFIT, the Kronecker graphs parameter estimation algorithm, in Section5.5. We present experimen-
tal results on real and synthetic networks in Section5.6. We close with discussion and conclusions in
sections5.7and5.8.

5.2 Relation to previous work on network modeling

Networks across a wide range of domains present surprising regularities, like power laws, small diameters,
communities, and so on. We use these patterns as sanity checks, that is, oursynthetic graphs should match
those properties of the real target graph.

Most of the related work in this field has concentrated on two aspects: properties and patterns found in
real-world networks, and then ways to find models to build understanding about the emergence of these
properties. First, we will discuss the commonly found patterns in (static and temporally evolving) graphs,
and finally, the state of the art in graph generation methods. Refer to chapter 2 for more detailed discussion
of graph patterns and explanatory models.

91



5.2.1 Graph Patterns

Here we briefly introduce the network patterns (also referred to as properties or statistics) that we will
later use to compare the similarity between the real networks and their synthetic counterparts produced
by Kronecker graphs model. While many patterns have been discovered,two of the principal ones are
heavy-tailed degree distributions and small diameters. Refer to chapter2 for more details.

Degree distribution:The degree-distribution of a graph is a power law if the number of nodesNd with
degreed is given byNd ∝ d−γ (γ > 0) whereγ is called the power law exponent. Power laws have
been found in the Internet [Faloutsos et al., 1999], the Web [Kleinberg et al., 1999, Broder et al., 2000],
citation graphs [Redner, 1998], online social networks [Chakrabarti et al., 2004] and many others.

Small diameter:Most real-world graphs exhibit relatively small diameter (the “small- world” phenomenon,
or “six degrees of separation”): A graph has diameterD if every pair of nodes can be connected by a path
of length at mostD edges. The diameterD is susceptible to outliers. Thus, a more robust measure of
the pair wise distances between nodes in a graph is theeffective diameter[Tauro et al., 2001], which is
the minimum number of links (steps/hops) in which some fraction (or quantileq, sayq = 0.9) of all
connected pairs of nodes can reach each other. The effective diameter has been found to be small for large
real-world graphs, like Internet, Web, and online social networks [Albert and Barab́asi, 2002, Milgram,
1967, Leskovec et al., 2005b].

Hop-plot: extends the notion of diameter by plotting the number of reachable pairsg(h) within h hops,
as a function of the number of hopsh [Palmer et al., 2002]. It gives us a sense of how quickly nodes’
neighborhoods expand with the number of hops.

Scree plot:This is a plot of the eigenvalues (or singular values) of the graph adjacency matrix, versus
their rank, using the logarithmic scale. The scree plot is also often found to approximately obey a power
law [Chakrabarti et al., 2004, Farkas et al., 2001]. Moreover, this pattern was also found analytically for
random power law graphs [Chung et al., 2003a].

Network values:The distribution of eigenvector components (indicators of “network value”) associated to
the largest eigenvalue of the graph adjacency matrix has also been foundto be skewed [Chakrabarti et al.,
2004].

Node triangle participation:is a measure of transitivity in networks. It counts the number of triangles
a node participates in,i.e., the number of connections between the neighbors of a node. The plot ofthe
number of triangles∆ versus the number of nodes participating in∆ triangles has also been found to be
skewed [Tsourakakis, 2008].

Densification Power Law:The relation between the number of edgesE(t) and the number of nodesN(t)
in evolving network at timet obeys thedensification power law(DPL), which states thatE(t) ∝ N(t)a.
Thedensification exponenta is typically greater than1, implying that the average degree of a node in the
network isincreasingover time. This means that real networks tend to sprout many more edges thannodes,
and thus densify as they grow [Leskovec et al., 2005b, 2007b]. See chapter3 for more details.

Shirking diameter:The effective diameter of graphs tends to shrink or stabilize as the number of nodes in
a network grows over time [Leskovec et al., 2005b, 2007b]. This is somewhat counterintuitive since from
common experience as one would expect that as the volume of the object (a graph) grows, the size (i.e.,
the diameter) would also grow. But for networks it seems this does not hold as the diameter shrinks and
then stabilizes as the network grows. See chapter3 for more details.
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5.2.2 Generative models of network structure

The earliest probabilistic generative model for graphs was the Erdős-Ŕenyi [Erdős and Ŕenyi, 1960] ran-
dom graph model, where each pair of nodes has an identical, independent probability of being joined by
an edge. The study of this model has led to a rich mathematical theory; however, as the model was not
developed to model real-world networks it produces graphs that fail to match real networks in a number
of respects (for example, it does not produce heavy-tailed degree distributions).

The vast majority of recent network models involve some form ofpreferential attachment[Barab́asi and Albert,
1999, Albert and Barab́asi, 2002, Winick and Jamin, 2002, Kleinberg et al., 1999, Kumar et al., 1999a]
that employs a simple rule: new node joins the graph at each time step, and then creates a connection to
an existing nodeu with the probability proportional to the degree of the nodeu. This leads to the “rich
get richer” phenomena and to power law tails in degree distribution. However, the diameter in this model
grows slowly with the number of nodesN , which violates the “shrinking diameter” property mentioned
above.

There are also many variations of preferential attachment model all somehow employing the “rich get
richer” type mechanism. For example, “copying model” [Kumar et al., 2000], the “winner does not take
all” model [Pennock et al., 2002], the “forest fire” model [Leskovec et al., 2005b], “random surfer model”
[Blum et al., 2006], etc.

A different family of network methods strives for small diameter and local clustering in networks. Ex-
amples of such models include thesmall-worldmodel [Watts and Strogatz, 1998] and the Waxman gen-
erator [Waxman, 1988]. Another family of models shows that heavy tails emerge if nodes try to optimize
their connectivity under resource constraints [Carlson and Doyle, 1999, Fabrikant et al., 2002]. Refer to
chapter2 for further details on network models.

In summary, most current models focus on modeling only one (static) networkproperty, and neglect the
others. In addition, it is usually hard to analytically analyze properties of thenetwork model. On the
other hand, Kronecker graphs model we describe in the next section addresses these issues as it matches
multiple properties of real networks at the same time, while being analytically tractable lending itself to
rigorous analysis.

5.2.3 Parameter estimation of network models

Until recently relatively little effort was made to fit the above network models to real data. One of the
difficulties is that most of the above models usually do not have a probabilistic interpretation, but rather
define a mechanism or a principle by which a network is constructed.

Most work in estimating network models comes from the area of social sciences, statistics and so-
cial network analysis where theexponential random graphs, also known asp∗ model, were introduced
[Wasserman and Pattison, 1996]. The model essentially defines a log linear model over all possible graphs
G, p(G|θ) ∝ exp(θT s(G)), whereG is a graph, ands is a set of functions, that can be viewed as summary
statistics for the structural features of the network. Thep∗model usually focuses on “local” structural fea-
tures of networks (like,e.g., characteristics of nodes that determine a presence of an edge, link reciprocity,
etc.). As exponential random graphs have been very useful for modeling small networks, and individual
nodes and edges our goal here is different in a sense that we aim to accurately model the structure of the
network as a whole. Moreover, we aim to model and estimate parameters of networks with millions of
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nodes, while even for graphs of small size (> 100 nodes) the number of model parameters in exponen-
tial random graphs usually becomes too large, and estimation prohibitively expensive, both in terms of
computational time and memory.

Regardless of a particular choice of a network model, a common theme when estimating the likelihood
P (G) of a graphG under some model is the challenge of finding the correspondence betweenthe nodes
of the true network and its synthetic counterpart. The node correspondence problem results in the facto-
rially many possible matchings of nodes. One can think of the correspondence problem as some kind of
graph isomorphism test. Two isomorphic graphsG andG′ with differently assigned node ids should have
same likelihoodP (G) = P (G′) so we aim to find an accurate mapping between the nodes of the two
graphs.

Ordering or a permutation defines the mapping of nodes in one network to nodes in the other network. For
example, Butts [Butts, 2005] used permutation sampling to determine similarity between two graph adja-
cency matrices, while Bezákov́a et al. [Beźakov́a et al., 2006] used permutations for graph model selec-
tion. Recently, an approach for estimating parameters of the “copying” model was introduced [Wiuf et al.,
2006], however authors also note that the class of “copying” models may not berich enough to accurately
model real networks. As we show later, Kronecker graphs model seemsto have the necessary expressive
power to mimic real networks well.

5.3 Kronecker graphs model

The Kronecker graphs model we propose here is based on a recursive construction. Defining the recursion
properly is somewhat subtle, as a number of standard, related graph construction methods fail to produce
graphs that densify according to the patterns observed in real networks, and they also produce graphs
whose diameters increase. To produce densifying graphs with constant/shrinking diameter, and thereby
match the qualitative behavior of a real network, we develop a procedurethat is best described in terms
of theKronecker productof matrices. To help in the description of the method, the accompanying table
provides a list of symbols and their definitions.

5.3.1 Main idea

The main intuition behind the model is to create self-similar graphs, recursively. We begin with anini-
tiator graphK1, with N1 nodes andE1 edges, and by recursion we produce successively larger graphs
K2, K3, . . . such that thekth graphKk is onNk = Nk

1 nodes. If we want these graphs to exhibit a version
of the Densification Power Law [Leskovec et al., 2005b], thenKk should haveEk = Ek

1 edges. This is
a property that requires some care in order to get right, as standard recursive constructions (for example,
the traditional Cartesian product or the construction of [Barab́asi et al., 2001]) do not satisfy it.

It turns out that theKronecker productof two matrices is the right tool for this goal. The Kronecker
product is defined as follows:
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SYMBOL DESCRIPTION

G Real network
N Number of nodes inG
E Number of edges inG
K Kronecker graph (synthetic estimate ofG)
K1 Initiator of a Kronecker Graph
N1 Number of nodes in initiatorK1

E1 Number of edges in initiatorK1

G⊗H Kronecker product of adjacency matrices of graphsG andH

K
[k]
1 = Kk = K kth Kronecker power ofK1

K1[i, j] Entry at rowi and columnj of K1

Θ = P1 Stochastic Kronecker initiator

P [k]
1 = Pk = P kth Kronecker power ofP1

θij = P1[i, j] Entry at rowi and columnj of P1

pij = Pk[i, j] Probability of an edge(i, j) in Pk, i.e., entry at rowi and columnj of Pk

K = R(P) Realization of a Stochastic Kronecker graphP
l(Θ) Log-likelihood. Log-prob. thatΘ generated real graphG, log P (G|Θ)

Θ̂ Parameters at maximum likelihood,Θ̂ = argmaxΘ P (G|Θ)
σ Permutation that maps node ids ofG to those ofP
a Densification power law exponent,E(t) ∝ N(t)a

D Diameter of a graph
Nc Number of nodes in the largest weakly connected component of a graph
ω Proportion of timesSwapNodes permutation proposal distribution is used

Table 5.1: Table of symbols.

Definition 5.3.1 (Kronecker product of matrices). Given two matricesA = [ai,j ] andB of sizesn ×m
andn′ ×m′ respectively, the Kronecker product matrixC of dimensions(n · n′)× (m ·m′) is given by

C = A⊗B
.
=





a1,1B a1,2B . . . a1,mB

a2,1B a2,2B . . . a2,mB

...
...

.. .
...

an,1B an,2B . . . an,mB




(5.1)

We then define the Kronecker product of two graphs simply as the Kronecker product of their correspond-
ing adjacency matrices.

Definition 5.3.2 (Kronecker product of graphs). If G andH are graphs with adjacency matricesA(G)
andA(H) respectively, then the Kronecker productG⊗H is defined as the graph with adjacency matrix
A(G)⊗A(H).

Observation 5.3.3(Edges in Kronecker-multiplied graphs).

Edge(Xij , Xkl) ∈ G⊗H iff (Xi, Xk) ∈ G and(Xj , Xl) ∈ H

whereXij andXkl are nodes inG ⊗H, andXi, Xj , Xk andXl are the corresponding nodes inG and
H, as in Figure5.1.
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(a) GraphK1 (b) Intermediate stage (c) GraphK2 = K1 ⊗K1

1   1   0
1   1   1
0   1   1

K1 K1
K1 K1

K1K1

K1

0

0

(d) Adjacency matrix (e) Adjacency matrix
of K1 of K2 = K1 ⊗K1

Figure 5.1: Example of Kronecker multiplication:Top: a “3-chain” initiator graph and its Kronecker
product with itself; each of theXi nodes gets expanded into3 nodes, which are then linked
using Observation5.3.3. Bottom row: the corresponding adjacency matrices. See figure 5.2
for adjacency matrices ofK3 andK4.

(a)K3 adjacency matrix (27× 27) (b) K4 adjacency matrix (81× 81)

Figure 5.2: Adjacency matrices ofK3 andK4, the3rd and4th Kronecker power ofK1 matrix as de-
fined in Figure5.1. Dots represent non-zero matrix entries, and white space represents zeros.
Notice the recursive self-similar structure of the adjacency matrix.

The last observation is subtle, but crucial, and deserves elaboration. Basically, each node inG ⊗ H can
be represented as an ordered pairXij , with i a node ofG andj a node ofH, and with an edge joining
Xij andXkl precisely when(Xi, Xk) is an edge ofG and(Xj , Xl) is an edge ofH. This is a direct
consequence of the hierarchical nature of the Kronecker product. Figure5.1(a–c) further illustrates this
by showing the recursive construction ofG⊗H, whenG = H is a 3-node chain. Consider nodeX1,2 in
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Initiator K1 K1 adjacency matrix K3 adjacency matrix

Figure 5.3: Two examples of Kronecker initiators on 4 nodes and the self-similar adjacency matrices they
produce.

Figure5.1(c): It belongs to theH graph that replaced nodeX1 (see Figure5.1(b)), and in fact is theX2

node (i.e., the center) within this smallH-graph.

We propose to produce a growing sequence of matrices by iterating the Kronecker product:

Definition 5.3.4 (Kronecker power). Thekth power ofK1 is defined as the matrixK [k]
1 (abbreviated to

Kk), such that:

K
[k]
1 = Kk = K1 ⊗K1 ⊗ . . . K1︸ ︷︷ ︸

k times

= Kk−1 ⊗K1

Definition 5.3.5(Kronecker graph). Kronecker graph of orderk is defined by the adjacency matrixK
[k]
1 ,

whereK1 is the Kronecker initiator adjacency matrix.

The self-similar nature of the Kronecker graph product is clear: To produceKk from Kk−1, we “expand”
(replace) each node ofKk−1 by converting it into a copy ofK1, and we join these copies together ac-
cording to the adjacencies inKk−1 (see Figure5.1). This process is very natural: one can imagine it as
positing that communities within the graph grow recursively, with nodes in the community recursively
getting expanded into miniature copies of the community. Nodes in the sub-communitythen link among
themselves and also to nodes from other communities.
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5.3.2 Analysis of Kronecker Graphs

We shall now discuss the properties of Kronecker graphs, specifically, their degree distributions, diameters,
eigenvalues, eigenvectors, and time-evolution. Our ability to prove analytical results about all of these
properties is a major advantage of Kronecker graphs over other network models.

Degree distribution

The next few theorems prove that several distributions of interest aremultinomialfor our Kronecker graph
model. This is important, because a careful choice of the initial graphK1 makes the resulting multinomial
distribution to behave like a power law or DGX distribution [Bi et al., 2001, Clauset et al., 2007].

Theorem 5.3.6(Multinomial degree distribution). Kronecker graphs have multinomial degree distribu-
tions, for both in- and out-degrees.

Proof. Let the initiatorK1 have the degree sequenced1, d2, . . . , dN1 . Kronecker multiplication of a node
with degreed expands it intoN1 nodes, with the corresponding degrees beingd × d1, d × d2, . . . , d ×
dN1 . After Kronecker powering, the degree of each node in graphKk is of the formdi1 × di2 × . . . dik ,
with i1, i2, . . . , ik ∈ (1 . . . N1), and there is one node for each ordered combination. This gives us the
multinomial distribution on the degrees ofKk. Note also that the degrees of nodes inKk can be expressed
as thekth Kronecker power of the vector(d1, d2, . . . , dN1).

Spectral properties

Next we analyze the spectral properties of adjacency matrix of a Kronecker graph. We show that both
the distribution of eigenvalues and distribution of component values of eigenvectors of graph adjacency
matrix both follow multinomial distribution.

Theorem 5.3.7(Multinomial eigenvalue distribution). The Kronecker graphKk has a multinomial distri-
bution for its eigenvalues.

Proof. LetK1 have the eigenvaluesλ1, λ2, . . . , λN1 . By properties of the Kronecker multiplication [Loan,
2000, Langville and Stewart, 2004], the eigenvalues ofKk are thekth Kronecker power of the vector of
eigenvalues of the initiator matrix,(λ1, λ2, . . . , λN1)

[k]. As in Theorem5.3.6, the eigenvalue distribution
is a multinomial.

A similar argument using properties of Kronecker matrix multiplication shows the following.

Theorem 5.3.8(Multinomial eigenvector distribution). The components of each eigenvector of the Kro-
necker graphKk follow a multinomial distribution.

Proof. LetK1 have the eigenvectors~v1, ~v2, . . . , ~vN1 . By properties of the Kronecker multiplication [Loan,
2000, Langville and Stewart, 2004], the eigenvectors ofKk are given by thekth Kronecker power of the
vector: (~v1, ~v2, . . . , ~vN1), which gives a multinomial distribution for the components of each eigenvector
in Kk.

We have just covered several of the static graph patterns. Notice that theproofs were a direct consequences
of the Kronecker multiplication properties.
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Connectivity of Kronecker graphs

We now present a series of results on the connectivity of Kronecker graphs. We show, maybe a bit
surprisingly, that even if a Kronecker initiator graph is connected its Kronecker power can in fact be
disconnected.

Lemma 5.3.9. If at least one ofG andH is a disconnected graph, thenG⊗H is also disconnected.

Proof. Without loss of generality we can assume thatG has two connected components, whileH is
connected. Figure5.4(a) illustrates the corresponding adjacency matrix ofG. Using the notation from
observation5.3.3let graph letG have nodesX1, . . . , Xn, where nodes{X1, . . . Xr} and{Xr+1, . . . , Xn}
form the two connected components. Now,G⊗H has at least two connected components as there are no
edges:(Xij , Xkl) /∈ G ⊗ H for i ∈ {1, . . . , r}, k ∈ {r + 1, . . . , n}, and allj, l. This follows directly
from observation5.3.3as(Xi, Xk) are not edges inG.

Actually it turns out that bothG andH can be connected butG⊗H is still disconnected. The following
theorem analyzes this case.

Theorem 5.3.10.If bothG andH are connected but bipartite, thenG⊗H is disconnected, and each of
the two connected components is again bipartite.

Proof. Again without loss of generality letG be bipartite with two partitionsA = {X1, . . . Xr} and
B = {Xr+1, . . . , Xn}, where edges exists only between the partitions, and no edges exist insidethe
partition: (Xi, Xk) /∈ G for i, k ∈ A or i, k ∈ B. Similarly, letH also be bipartite with two partitions
C = {X1, . . . Xs} and D = {Xs+1, . . . , Xm}. Figures5.4(b) and (c) illustrate the structure of the
corresponding adjacency matrices.

Now, there will be two connected components inG ⊗ H: 1st component will be composed of nodes
{Xij} ∈ G ⊗ H, where(i ∈ A, j ∈ D) or (i ∈ B, j ∈ C). And similarly, 2nd component will be
composed of nodes{Xij}, where(i ∈ A, j ∈ C) or (i ∈ B, j ∈ D). Basically, there exist edges between
node sets(A, D) and(B, C), and similarly between(A, C) and(B, D) but not across the sets. To see this
we have to analyze the cases using observation5.3.3. For example, inG ⊗H there exist edges between
nodes(A, D) and(B, C) as there exist edges(i, k) ∈ G for i ∈ A, k ∈ B, and(j, l) ∈ H for j ∈ C and
l ∈ D. Similar is true for nodes(A, C) and(B, D). However, there are no edges cross the two sets,e.g.,
nodes from(A, D) do not link to(A, C), as there are no edges between nodes inA (sinceG is bipartite).
See Figures5.4(d) and5.4(e) for a visual proof.

Note that bipartite graphs are triangle free and have no self-loops. For example, stars, chains, trees and
cycles of even length are all examples of bipartite graphs. This means that one way to generate a connected
Kronecker graphs is to require the initiatorK1 to be connected while not being bipartite. For example,
initiatorK1 can have a self loops, or a triangles (a triple of connected nodes), whichmakes it non-bipartite,
and ensures thatKk will be connected.

For the remainder of the chapter we will focus on the initiator graphsK1 that have self loops on all of
their nodes so that we ensureKk to be connected.
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(a) Adjacency matrix (b) Adjacency matrix (c) Adjacency matrix
whenG is disconnected whenG is bipartite whenH is bipartite

(d) Kronecker product of (e) Rearranged adjacency
two bipartite graphsG andH matrix from panel (d)

Figure 5.4: Graph adjacency matrices. Dark parts present connected (filled with ones) and white parts
present empty (filled with zeros) parts of the adjacency matrix. (a) WhenG is disconnected,
Kronecker multiplication with any matrixH will result in G ⊗ H being disconnected. (b)
Adjacency matrix of a connected bipartite graphG with partitionsA andB. (c) Adjacency
matrix of a connected bipartite graphG with partitionsC andD. (e) Kronecker product of
two bipartite graphsG andH. (d) After rearranging the adjacency matrixG⊗H we clearly
see the resulting graph is disconnected.

Temporal properties of Kronecker graphs

We continue with the analysis of temporal patterns of evolution of Kroneckergraphs: the densification
power law, and shrinking/stabilizing diameter [Leskovec et al., 2005b, 2007b].

Theorem 5.3.11(Densification Power Law). Kronecker graphs follow the Densification Power Law
(DPL) with densification exponenta = log(E1)/ log(N1).

Proof. Since thekth Kronecker powerKk hasNk = Nk
1 nodes andEk = Ek

1 edges, it satisfiesEk = Na
k ,

wherea = log(E1)/ log(N1). The crucial point is that this exponenta is independent ofk, and hence the
sequence of Kronecker powers follows an exact version of the Densification Power Law.

We now show how the Kronecker product also preserves the propertyof constant diameter, a crucial
ingredient for matching the diameter properties of many real-world network datasets. In order to establish
this, we will assume that the initiator graphK1 has a self-loop on every node; otherwise, its Kronecker
powers may be disconnected.
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Lemma 5.3.12. If G andH each have diameter at mostD, and each has a self-loop on every node, then
the Kronecker graphG⊗H also has diameter at mostD.

Proof. Each node inG ⊗ H can be represented as an ordered pair(v, w), with v a node ofG andw a
node ofH, and with an edge joining(v, w) and(x, y) precisely when(v, x) is an edge ofG and(w, y)
is an edge ofH. (Note this exactly the Observation5.3.3.) Now, for an arbitrary pair of nodes(v, w) and
(v′, w′), we must show that there is a path of length at mostD connecting them. SinceG has diameter
at mostD, there is a pathv = v1, v2, . . . , vr = v′, wherer ≤ D. If r < D, we can convert this into
a pathv = v1, v2, . . . , vD = v′ of length exactlyD, by simply repeatingv′ at the end forD − r times.
By an analogous argument, we have a pathw = w1, w2, . . . , wD = w′. Now by the definition of the
Kronecker product, there is an edge joining(vi, wi) and (vi+1, wi+1) for all 1 ≤ i ≤ D − 1, and so
(v, w) = (v1, w1), (v2, w2), . . . , (vD, wD) = (v′, w′) is a path of lengthD connecting(v, w) to (v′, w′),
as required.

Theorem 5.3.13.If K1 has diameterD and a self-loop on every node, then for everyk, the graphKk

also has diameterD.

Proof. This follows directly from the previous lemma, combined with induction onk.

As defined in section2.1.2we also consider theeffective diameterD∗; we defined theq-effective diameter
as the minimumD∗ such that, for at least aq fraction of the reachable node pairs, the path length is at
mostD∗. Theq-effective diameter is a more robust quantity than the diameter, the latter being prone to
the effects of degenerate structures in the graph (e.g., very long chains); however, theq-effective diameter
and diameter tend to exhibit qualitatively similar behavior. For reporting resultsin subsequent sections,
we will generally consider theq-effective diameter withq = 0.9, and refer to this simply as theeffective
diameter.

Theorem 5.3.14(Effective Diameter). If K1 has diameterD and a self-loop on every node, then for every
q, theq-effective diameter ofKk converges toD (from above) ask increases.

Proof. To prove this, it is sufficient to show that for two randomly selected nodes of Kk, the probability
that their distance isD converges to1 ask goes to infinity.

We establish this as follows. Each node inKk can be represented as an ordered sequence ofk nodes from
K1, and we can view the random selection of a node inKk as a sequence ofk independent random node
selections fromK1. Suppose thatv = (v1, . . . , vk) andw = (w1, . . . , wk) are two such randomly selected
nodes fromKk. Now, if x andy are two nodes inK1 at distanceD (such a pair(x, y) exists sinceK1 has
diameterD), then with probability1− (1− 2/N1)

k, there is some indexj for which{vj , wj} = {x, y}.
If there is such an index, then the distance betweenv andw is D. As the expression1 − (1 − 2/N1)

k

converges to1 ask increases, it follows that theq-effective diameter is converging toD.

5.3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed so far yields graphswith a range of desired properties,
its discrete nature produces “staircase effects” in the degrees and spectral quantities, simply because indi-
vidual values have large multiplicities. For example, degree distribution and distribution of eigenvalues of
graph adjacency matrix and the distribution of the principal eigenvector components (i.e., the “network”
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Figure 5.5: The “staircase” effect. Kronecker initiator and the degreedistribution and network value plot
for the6th Kronecker power of the initiator. Notice the non-smoothness of the curves.

value) are all impacted by this. These quantities are multinomially distributed which leads to individual
values with large multiplicities. Figure5.5 illustrates the staircase effect.

Here we propose a stochastic version of Kronecker graphs that eliminates this effect. There are many
possible ways how one could introduce stochasticity into Kronecker graphs model. Before introducing
the proposed model, we introduce two simple ways of introducing randomnessto Kronecker graphs and
describe why they do not work.

Probably the simplest (but wrong) idea is to generate a large deterministic Kronecker graphKk, and then
uniformly at random flip some edges,i.e., uniformly at random select entries of the graph adjacency matrix
and flip them (1 → 0, 0 → 1). However, this will not work, as it will essentially superimpose a Erdős-
Rényi random graph, which would, for example, corrupt the degree distribution – real networks usually
have heavy tailed degree distributions, while random graphs have Binomialdegree distributions. Second
idea could be to allow weighted initiator matrix,i.e., values of entries ofK1 are not restricted to values
{0, 1} but rather can be any non-negative real number. Using suchK1 one would generateKk and then
threshold theKk matrix to obtain a binary adjacency matrixK, i.e., for a chosen value ofε setK[i, j] = 1
if Kk[i, j] > ε elseK[i, j] = 0. This also would not work as the mechanism would selectively remove
edges and thus the low degree nodes which would have low weight edges would get isolated first.

Now we defineStochastic Kronecker Graphsmodel that overcomes the above issues. A more natural way
to introduce stochasticity to Kronecker graphs is to relax the assumption that entries of the initiator matrix
take only binary values. Now, we will allow cells of the initiator to take values on interval [0, 1]. This
means now each entry of the initiator matrix encodes the probability of that particular edge appearing.
We then Kronecker power such initiator matrix to obtain a large stochastic adjacency matrix, where again
each entry of the large matrix gives the probability of that particular edge appearing in a big graph. Such
stochastic adjacency matrix effectively defines a probability distribution over all graphs. To obtain a
graph we simply sample an instance from this distribution by sampling individual edges, where each edge
appears independently with probability given by the entry of the large stochastic adjacency matrix. More
formally, we define:

Definition 5.3.15 (Stochastic Kronecker Graph). Let P1 be aN1 × N1 probability matrix: the value
θij ∈ P1 denotes the probability that edge(i, j) is present,θij ∈ [0, 1].
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Thenkth Kronecker powerP [k]
1 = Pk, where each entrypuv ∈ Pk encodes the probability of an edge

(u, v).

To obtain a graph, aninstance(or realization), K = R(Pk) we include edge(u, v) in K with probability
puv, puv ∈ Pk.

First, note that sum of the entries ofP1,
∑

ij θij , can be greater than 1. Second, notice that in principle it

takesO(N2k
1 ) time to generate an instanceK of a Stochastic Kronecker graph from the probability matrix

Pk. This means the time to get a realizationK is quadratic in the size ofPk as one has to flip a coin for
each possible edge in the graph. Later we show how to generate StochasticKronecker graphs much faster,
in the timelinear in the number of edges inPk.

Probability of an edge

For the size of the graphs we aim to model and generate here takingP1 (or K1) and then explicitly
performing the Kronecker product of the initiator matrix is infeasible. The reason for this is thatP1 is
usually dense, soPk is also dense and one can not store it in memory. However, due to the structure of
Kronecker multiplication one can easily computer the probability of an edge inPk.

The probabilitypuv of an edge(u, v) occurring ink-th Kronecker powerP = Pk can be calculated in
O(k) time as follows:

puv =
k−1∏

i=0

P
[⌊u− 1

N i
1

⌋
(modN1) + 1,

⌊v − 1

N i
1

⌋
(modN1) + 1

]
(5.2)

The equation imitates recursive descent into the matrixP, where at every leveli the appropriate entry of
P1 is chosen. SinceP hasNk

1 rows and columns it takesO(k log N1) to evaluate the equation. Refer to
figure5.6for the illustration of the recursive structure ofP.

5.3.4 Additional properties of Kronecker graphs

Stochastic Kronecker Graphs with initiator matrix of sizeN1 = 2 were studied by Mahdian and Xu
[Mahdian and Xu, 2007]. Authors show a phase transition for the emergence of the giant component and
another phase transition for connectivity, and prove that such graphshave constant diameters beyond the
connectivity threshold, but are not searchable using a decentralized algorithm [Kleinberg, 1999b].

Moreover, recently [Tsourakakis, 2008] gave a closed form expression for the number of triangles in a
Kronecker graph that depends on the eigenvalues of the initiator graphK1.

5.3.5 Two interpretations of Kronecker graphs

Next, we present two natural interpretations of the generative processbehind the Kronecker Graphs that
go beyond the purely mathematical construction of Kronecker Graphs as introduced so far.

We already mentioned the first interpretation when we first defined Kronecker Graphs. One intuition
is that networks and communities in them grow recursively, creating miniature copies of themselves.
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(a)2× 2 Stochastic (b) Probability matrix (c) Alternative view
Kronecker initiatorP1 P2 = P1 ⊗ P1 of P2 = P1 ⊗ P1

Figure 5.6: Stochastic Kronecker initiatorP1 and the corresponding2nd Kronecker powerP2. Notice
the recursive nature of the Kronecker product, with edge probabilities inP2 simply being
products of entries ofP1.

Figure5.1 depicts the process of the recursive community expansion. In fact, several researchers have
argued that real networks are hierarchically organized [Ravasz et al., 2002, Ravasz and Barabási, 2003]
and algorithms to extract the network hierarchical structure have also been developed [Sales-Pardo et al.,
2007, Clauset et al., 2008]. Moreover, especially web graphs [Dill et al., 2002, Dorogovtsev et al., 2002,
Crovella and Bestavros, 1997] and biological networks [Ravasz and Barabási, 2003] were found to be
self-similar and “fractal”.

Second intuition comes from viewing every node ofPk as being described with an ordered sequence ofk
nodes fromP1. (This is similar to the Observation5.3.3and the proof of Theorem5.3.14.)

Let’s label nodes of the initiator matrixP1, u1, . . . , uN1 , and nodes ofPk asv1, . . . , vNk
1
. Then every node

vi of Pk is described with a sequence(vi(1), . . . , vi(k)) of node labels ofP1, wherevi(l) ∈ {u1, . . . , uk}.
Similarly, consider also a second nodevj with the label sequence(vj(1), . . . , vj(k)). Then the probability
pe of an edge(vi, vj) in Pk is exactly:

pe(vi, vj) = Pk[vi, vj ] =
k∏

l=1

P1[vi(l), vj(l)]

(Note this is exactly the Equation5.2.)

Now one can look at the description sequence of nodevi as ak dimensional vector of attribute val-
ues(vi(1), . . . , vi(k)). Thenpe(vi, vj) is exactly the coordinate-wise product of appropriate entries of
P1, where the node description sequence selects which entries to multiply. Thus, theP1 matrix can be
thought of as the attribute similarity matrix,i.e., it encodes the probability of linking given that two nodes
agree/disagree on the attribute value. Then the probability of an edge is simplya product of individual
attribute similarities over thek N1-ary attributes that describe each of the two nodes.

This gives us a very natural interpretation of Stochastic Kronecker graphs: Each node is described by
a sequence of categorical attribute values or features. And then the probability of two nodes linking
depends on the product of individual attribute similarities. This way Kronecker graphs can effectively
model homophily (nodes with similar attribute values are more likely to link) byP1 having high value
entries on the diagonal; or heterophily (nodes that differ are more likely to link) byP1 having high entries
off the diagonal.
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Figure5.6shows an example. Let’s label nodes ofP1 u1, u2 as in Figure5.6(a). Then every node ofPk is
described with an ordered sequence ofk binary attributes. For example, Figure5.6(b) shows an instance
for k = 2 where nodev2 of P2 is described by(u1, u2), and similarlyv3 by (u2, u1). Then as shown in
Figure5.6(b), the probability of edgepe(v2, v3) = b · c, which is exactlyP1[u2, u1] · P1[u1, u2] = b · c —
the product of entries ofP1, where the corresponding elements of the description of nodesv2 andv3 act
as selectors of which entries ofP1 to multiply.

Figure5.6(c) further illustrates the recursive nature of Kronecker graphs. One can see Kronecker product
as recursive descent into the big adjacency matrix where at each stage one of the entries or blocks is
chosen. For example, to get to entry(v2, v3) one first needs to dive into quadrantb following by the
quadrantc. This intuition will help us in section5.3.6to devise a fast algorithm for generating Kronecker
graphs.

However, there are also two notes to make here. First, using a single initiatorP1 we are implicitly as-
suming that there is one single and universal attribute similarity matrix that holds across allk N1-ary
attributes. One can easily relax this assumption by taking a different initiator matrix for each attribute
(initiator matrices can even be of different sizes as attributes are of different arity), and then Kronecker
multiplying them to obtain a large network. Here each initiator matrix plays the role ofattribute similarity
matrix for that particular attribute.

For simplicity and convenience we will work with a single initiator matrix but all our methods can be
trivially extended to handle multiple initiator matrices. Moreover, as we will see later in section5.6even
a single2× 2 initiator matrix seems to be enough to capture large scale statistical properties ofreal-world
networks.

Second assumption is harder to relax. When describing every nodevi with a sequence of attribute values
we are implicitly assuming the values of all attributes are uniformly distributed (have same proportions),
and that every node has a unique combination of attribute values. So, all possible combinations of at-
tribute values are taken. For example, nodev1 in a largePk has attribute sequence(u1, u1, . . . , u1), vN1

has(u1, u1, . . . , u1, uN1), while the “last” nodevNk
1

is has attribute values(uN1 , uN1 , . . . , uN1). One
can think of this as counting inN1-ary number system, where node attribute descriptions range from0
(i.e., “leftmost” node with attribute description(u1, u1, . . . , u1)) to Nk

1 (i.e., “rightmost” node attribute
description(uN1 , uN1 , . . . , uN1)).

A simple way to relax the above assumption is to take a larger initiator matrix with a smallernumber of
parameters than the number of entries. This means that multiple entries ofP1 will share the same value
(parameter). For example, if attributeu1 takes one value 66% of the times, and the other value 33% of
the times, then one can model this by taking a3× 3 initiator matrix with only four parameters. Adopting
the naming convention of Figure5.6this means that parametera now occupies a2× 2 block, which then
also makesb andc occupy2× 1 and1× 2 blocks, andd a single cell. This way one gets a four parameter
model with uneven feature value distribution.

We note that the view of Kronecker graphs where every node is described with a set of features and
the initiator matrix encodes the probability of linking given the attribute values of two nodes somewhat
resembles the Random dot product graphs model [Young and Scheinerman, 2007, Nickel, 2008]. The
important difference here is that we multiply individual linking probabilities, while in Random dot product
graphs one takes the sum of individual probabilities which seems somewhatless natural.
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5.3.6 Fast generation of Stochastic Kronecker Graphs

The intuition for fast generation of Stochastic Kronecker Graphs comes from the recursive nature of
the Kronecker product and is closely related to the R-Mat graph generator [Chakrabarti et al., 2004].
Generating a Stochastic Kronecker graphK on N nodes naively takesO(N2) time. Here we present a
linear timeO(E) algorithm, whereE is the (expected) number of edges inK.

Figure5.6(c) shows the recursive nature of the Kronecker product. To “arrive” to a particular edge(vi, vj)
of Pk one has to make a sequence ofk (in our casek = 2) decisions among the entries ofP1, multiply
the chosen entries ofP1, and then placing the edge(vi, vj) with the obtained probability.

Instead of flippingO(N2) = O(N2k
1 ) biased coins to determine the edges, we can placeE edges by

directly simulating the recursion of the Kronecker product. Basically we recursively choose sub-regions
of matrix K with probability proportional toθij , θij ∈ P1 until in k steps we descend to a single cell of
the matrix and place an edge. For example, for(v2, v3) in Figure5.6(c) we first have to chooseb following
by c.

As probability of each individual edge ofPk follows a Bernoulli distribution, as the edge occurrences
are independent, the number of edges inPk is Binomially distributed with mean(

∑
θij)

k = Ek
1 , where

θij ∈ P1. So, given a stochastic initiator matrixP1 we first sample the expected number of edgesE
in Pk from a Binomial distribution. Then we placeE edges in a graphK, by applying the recursive
descent fork steps where at each step we choose entry(i, j) with probabilityθij/E1 whereθij ∈ P1 and
E1 =

∑
ij θij . Since we addE = Ek

1 edges, the probability that edge(vi, vj) appears inK is exactly
Pk[vi, vj ]. This basically means that in Stochastic Kronecker Graphs the initiator matrix encodes both the
total number of edges in a graph and their structure.

∑
θij encodes the number of edges in the graph,

while the proportions (ratios) of valuesθij define how many edges each part of graph adjacency matrix
will contain.

In practice it can happen that more than one edge lands in the same(vi, vj) cell of K. Even though
values ofP1 are usually skewed, adjacency matrices of real network are sparse which mitigates the prob-
lem.

5.3.7 Observations and connections

Next, we describe several observations about the properties of Kronecker graphs and make connections to
other network models.

• Bipartite graphs:Kronecker Graphs can naturally model bipartite graphs. Instead of starting with
a squareN1 ×N1 initiator matrix, one can choose arbitraryN1 ×M1 initiator matrix, where rows
define “left”, and columns the “right” side of the bipartite graph. Kronecker multiplication will then
generate bipartite graphs with partition sizesNk

1 andMk
1 .

• Graph distributions:Pk defines a distribution over all graphs, as it encodes the probability of all
possibleN2k

1 edges appearing in a graph by using exponentially smaller number of parameters (just
N2

1 ). As we will later see even a very small number of parameters,e.g., 4 (2× 2 initiator matrix) or
9 (3× 3 initiator), is enough to accurately model the structure large networks.

• Natural extension of Erd̋os-Ŕenyi random graph model:Stochastic Kronecker Graphs represent a
natural extension of Erd̋os-Ŕenyi [Erdős and Ŕenyi, 1960] random graphs. If one takesP1 = [θij ],
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where everyθij = p then we obtain exactly the Erdős-Ŕenyi model of random graphsGn,p, where
every node appears independently with probabilityp.

• Relation to R-mat model:The recursive nature of Stochastic Kronecker Graphs makes them related
to the R-mat generator [Chakrabarti et al., 2004]. The difference between the two models is that in
R-mat one needs to separately specify the number of edges, while in Stochastic Kronecker Graphs
initiator matrix P1 also encodes the number of edges in the graph. Section5.3.6 built on this
similarity to devise a fast algorithm for generating Stochastic Kronecker graphs.

• Densification:Similarly as with deterministic Kronecker graphs the number of nodes in a Stochastic
Kronecker Graph grows asNk

1 , and the expected number of edges grows as(
∑

ij θij)
k. This means

one would want to choose valuesθij of the initiator matrixP1 so that
∑

ij θij > N1 in order for the
resulting network to densify.

5.4 Simulations of Kronecker graphs

In previous section we proved and now we demonstrate using simulation the ability of Kronecker graphs
to match the patterns of real-world networks. We will tackle the problem of estimating the Kronecker
Graphs model from real data,i.e., finding the most likely initiatorP1, in the next section. Instead here we
present simulation experiments using Kronecker graphs to explore the parameter space, and to compare
properties of Kronecker Graphs to those found in large real networks.

5.4.1 Comparison to real graphs

We observe two kinds of graph patterns — “static” and “temporal.” As mentioned earlier, common static
patterns include degree distribution, scree plot (eigenvalues of graph adjacency matrix vs. rank) and
distribution of components of the principal eigenvector of graph adjacency matrix. Temporal patterns
include the diameter over time, and the densification power law. For the diameter computation, we use the
effective diameter as defined in Section2.1.2.

For the purpose of this section consider the following setting. Given a realgraphG we want to find
Kronecker initiator that produces qualitatively similar graph. In principle one could try choosing each of
theN2

1 parameters for the matrixP1 separately. However, we reduce the number of parameters fromN2
1

to just two: α andβ. Let K1 be the initiator matrix (binary, deterministic); we create the corresponding
stochastic initiator matrixP1 by replacing each “1” and “0” ofK1 with α andβ respectively (β ≤ α).
The resulting probability matrices maintain — with some random noise — the self-similarstructure of the
Kronecker graphs in the previous section (which, for clarity, we calldeterministic Kronecker graphs). We
defer the discussion of how to estimateP1 from dataG to the next section.

The datasets we use here are:

• CIT-HEP-TH: This is a citation graph for High-Energy Physics Theory research papers from pre-
print archive ArXiv, with a total ofN = 29, 555 papers andE = 352, 807 citations [Gehrke et al.,
2003]. We follow its evolution from January 1993 to April 2003, with one data-point per month.

• AS-ROUTEV IEWS: We also analyze a static dataset consisting of a single snapshot of connectivity
among Internet Autonomous Systems [RouteViews, 1997] from January 2000, withN = 6, 474
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(a) Degree (b) Scree plot (c) Diameter (d) DPL
distribution over time

Figure 5.7: Citation network (CIT-HEP-TH): Patterns from the real graph (top row), the deterministic
Kronecker graph withK1 being a star graph on 4 nodes (center + 3 satellites) (middle row),
and the Stochastic Kronecker graph (α = 0.41, β = 0.11 – bottom row).Staticpatterns: (a)
is the PDF of degrees in the graph (log-log scale), and (b) thedistribution of eigenvalues (log-
log scale).Temporalpatterns: (c) gives the effective diameter over time (linear-linear scale),
and (d) is the number of edges versus number of nodes over time(log-log scale). Notice that
the Stochastic Kronecker Graph qualitatively matches all the patterns very well.

andE = 26, 467.

Results are shown in Figure5.7for the CIT-HEP-TH graph which evolves over time. We show the plots of
two static and two temporal patterns. We see that the deterministic Kronecker model already captures the
qualitative structure of the degree and eigenvalue distributions, as well asthe temporal patterns represented
by the Densification Power Law and the stabilizing diameter. However, the deterministic nature of this
model results in “staircase” behavior, as shown in scree plot for the deterministic Kronecker graph of
Figure 5.7 (column (b), second row). We see that the Stochastic Kronecker Graphs smooth out these
distributions, further matching the qualitative structure of the real data; theyalso match the shrinking-
before-stabilization trend of the diameters of real graphs.

Similarly, Figure5.8 shows plots for the static patterns in theAutonomous systems(AS-ROUTEV IEWS)
graph. Recall that we analyze a single, static network snapshot in this case. In addition to the degree
distribution and scree plot, we also show two typical plots [Chakrabarti et al., 2004]: the distribution of
network values(principal eigenvector components, sorted, versus rank) and thehop-plot(the number of
reachable pairsg(h) within h hops or less, as a function of the number of hopsh). Notice that, again, the
Stochastic Kronecker graph matches well the properties of the real graph.
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(a) Degree (b) Scree plot (c) “Network value” (d) “Hop-plot”
distribution distribution

Figure 5.8: Autonomous systems (AS-ROUTEV IEWS): Real (top) versus Kronecker (bottom). Columns
(a) and (b) show the degree distribution and the scree plot, as before. Columns (c) and (d)
show two more static patterns (see text). Notice that, again, the Stochastic Kronecker graph
matches well the properties of the real graph.
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Figure 5.9: Diameter over time for a 4-node chain initiator graph. Aftereach consecutive Kronecker
power we measure the effective diameter. We use different settings of α parameter.α =
0.38, 0.43, 0.54 andβ = 0, respectively.

5.4.2 Parameter space of Kronecker Graphs

Last we present simulation experiments that investigate the parameter space of Stochastic Kronecker
Graphs.

First, in Figure5.9we show the ability of Kronecker Graphs to generate networks with increasing, constant
and decreasing/stabilizing effective diameter. We start with a 4-node chaininitiator graph, setting each
“1” of K1 to α and each “0” toβ = 0 to obtainP1 that we then use to generate a growing sequence
of graphs. We plot the effective diameter of eachR(Pk) as we generate a sequence of growing graphs
R(P2), R(P3), . . . , R(P10). R(P10) has exactly1, 048, 576 nodes. Notice Stochastic Kronecker graphs
is a very flexible model. When the generated graph is very sparse (low value of α) we obtain graphs
with slowly increasing effective diameter (Figure5.9(a)). For intermediate values ofα we get graphs with
constant diameter (Figure5.9(b)) and that in our case also slowly densify with densification exponent in
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Figure 5.10: Fraction of nodes in the largest weakly connected component(Nc/N ) and the effective
diameter for 4-star initiator graph. (a) We fixβ = 0.15 and varyα. (b) We vary bothα
andβ. (c) Effective diameter of the network, if network is disconnected or very dense path
lengths are short, the diameter is large when the network is barely connected.

a = 1.05. Last, we see an example of a graph with shrinking/stabilizing effective diameter. Here we
set theα = 0.54 which results in a densification exponent of 1.2. Note that these observations are not
contradicting Theorem5.3.12. Actually, these simulations here agree well with the analysis of Mahdian
and Xu [Mahdian and Xu, 2007].

Last, we examine the parameter space of a Stochastic Kronecker graph where we choose a star on 4 nodes
as a initiator graph and use the familiar parameterization, usingα andβ. The initiator graph and the
structure of the corresponding (deterministic) Kronecker graph adjacency matrix is shown in top row of
Figure5.3.

Figure5.10(a) shows the sharp transition in the fraction of the number of nodes that belong to the largest
weakly connected component as we fixβ = 0.15 and slowly increaseα. Such phase transitions on
the size of the largest connected component also occur in Erdős-Ŕenyi random graphs. Figure5.10(b)
further explores this by plotting the fraction of nodes in the largest connected component (Nc/N ) over the
full parameter space. Notice a sharp transition between disconnected (white area) and connected graphs
(dark).

Last, Figure5.10(c) shows the effective diameter over the parameter space(α, β) for the 4-node star
initiator graph. Notice that when parameter values are small, the effective diameter is small, since the
graph is disconnected and not many pairs of nodes can be reached. The shape of the transition between
low-high diameter closely follows the shape of the emergence of the connected component. Similarly,
when parameter values are large, graph is very dense, and the diameter issmall. There is a narrow band
in parameter space where we get graphs with interesting diameters.

5.5 Kronecker graphs model estimation

In previous sections we proved that shapes (parametric forms) of various network properties of Kronecker
graphs follow those found in real networks. Moreover, we also gave closed form expressions that allow
us to calculate a property (e.g., diameter, eigenvalue spectrum) of a network given just the initiator matrix.
So in principle, one could invert the equations and directly get from a property (e.g., shape of degree
distribution) to the values of initiator matrix.
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However, in previous section we did not say anything about how variousnetwork properties of a Kronecker
graph correlate and interdepend. For example, it could be the case that they are mutually exclusive. So
one could, for instance, only match the network diameter but not the degreedistribution or vice versa.
However, as we show later this is not the case.

Now we turn our attention to automatically estimating the Kronecker initiator graph. The setting is that
we are given a real networkG and would like to find a Stochastic Kronecker initiatorP1 that produces a
synthetic Kronecker graphK that is “similar” toG. One way to measure similarity is to compare statistical
network properties, like diameter and degree distribution, of graphsG andK.

Comparing statistical properties already suggests a very direct approach to this problem: One could first
identify the set of statistics to match, then define an error metric and somehow optimize over it. For
example, one could use the KL divergence [Kullback and Leibler, 1951], or the sum of squared differences
between the degree distribution of the real networkG and its synthetic counterpartK. Moreover, as we
are interested in matching several such statistics between the networks one would have to meaningfully
combine these individual error metrics into a global error metric. So, one would have to specify what
kind of properties he or she cares about and then combine them accordingly. This would be a hard task
as the patterns of interest have very different magnitudes and scales. Moreover, as new network patterns
are discovered, the error functions would have to be changed and models re-estimated. And even then it
is not clear how to define the optimization procedure and how to perform optimization over the parameter
space.

Our approach here is different. Instead of committing to a set of network properties ahead of time, we will
try to directly match the adjacency matrices of real networkG and its synthetic counterpartK. The idea is
that if the adjacency matrices are similar then the global statistical properties (statistics computed overK
andG) will also match. Moreover, by directly working with the graph itself (and notsummary statistics),
we do not commit to any particular set of network statistics (network properties/patterns) and as new
statistical properties of networks are discovered our models and estimated parameters still hold.

5.5.1 Preliminaries

Stochastic graph models introduce probability distributions over graphs. A generative model assigns a
probability P (G) to every graphG. P (G) is the likelihood that a given model (with a given set of
parameters) generated graphG. We concentrate on Stochastic Kronecker Graph model, and consider
fitting it to a real graphG, our data. We use maximum likelihood approach,i.e., we aim to find parameter
values, the initiatorP1, that maximize theP (G) under the Stochastic Kronecker model.

This presents several challenges:

• Model selection:Graph is a single structure, and not a set of items drawn i.i.d. from some distribu-
tion. So one can not split it into independent training and test sets. The fittedparameters will thus
be best to generate aparticular instance of a graph. Also, overfitting could be an issue since more
complex model generally fits better.

• Node correspondence:The second challenge is the node correspondence or node labeling prob-
lem. GraphG has a set ofN nodes, and each node has unique index (label, id). Labels do not carry
any particular meaning, they just uniquely denote or identify the nodes. Onecan think of this as the
graph is first generated and then the labels (node ids) are randomly assigned. This means that two
isomorphic graphs that have different node ids should have the same likelihood. Permutationσ is
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sufficient to describe the node correspondences as it maps labels (ids)to nodes of the graph. To com-
pute the likelihoodP (G) one has to consider all node correspondencesP (G) =

∑
σ P (G|σ)P (σ),

where the sum is over allN ! permutationsσ of N nodes. Calculating thissuper-exponentialsum
explicitly is unfeasible for any graph with more than a handful of nodes. Intuitively, one can think
of this summation as some kind of graph isomorphism test where we are searching for best corre-
spondence (mapping) between nodes ofG andP.

• Likelihood estimation: CalculatingP (G|σ) naively takesO(N2) as one has to evaluate the prob-
ability of each of theN2 possible edges in the graph adjacency matrix. Again, for graphs of size we
want to model here, approaches with quadratic complexity are infeasible.

To develop our solution we use sampling to avoid super-exponential sum over the node correspondences.
By exploiting the structure of the Kronecker matrix multiplication we develop an algorithm to evaluate
P (G|σ) in linear timeO(E). Since real graphs aresparse, i.e., the number of edges is roughly of the same
order as the number of nodes, this makes fitting of Kronecker Graphs to large networks feasible.

5.5.2 Problem formulation

Suppose we are given a graphG onN = Nk
1 nodes (for some positive integerk), and aN1×N1 Stochastic

Kronecker Graph initiator matrixP1. HereP1 is a parameter matrix, a set of parameters that we aim to
estimate. For now also assumeN1, the size of the initiator matrix, is given. Later we will show how to
automatically select it. Next, usingP1 we create a Stochastic Kronecker Graph probability matrixPk,
where every entrypuv of Pk contains a probability that nodeu links to nodev. We then evaluate the
probability thatG is a realization ofPk. The task is to find suchP1 that has the highest probability of
realizing (generating)G.

Formally, we are solving:

arg max
P1

P (G|P1) (5.3)

To keep the notation simpler we use standard symbolΘ to denote the parameter matrixP1 that we are
trying to estimate. We denote entries ofΘ = P1 = [θij ], and similarly we denoteP = Pk = [pij ]. Note
that here we slightly simplified the notation: we useΘ to refer toP1, andθij are elements ofΘ. Similarly,
pij are elements ofP (≡ Pk). Moreover, we denoteK = R(P), i.e., K is a realization of the Stochastic
Kronecker graph sampled from probabilistic adjacency matrixP.

As noted before, the node ids are assigned arbitrary and they carry nosignificant information, which means
that we have to consider all the mappings of nodes fromG to rows and columns of stochastic adjacency
matrix P. A priori all labelings are equally likely. A permutationσ of the set{1, . . . , N} defines this
mapping of nodes fromG to stochastic adjacency matrixP. To evaluate the likelihood ofG one needs to
consider all possible mappings ofN nodes ofG to rows (columns) ofP. For convenience we work with
log-likelihoodl(Θ), and solvêΘ = arg maxΘ l(Θ), wherel(Θ) is defined as:

l(Θ) = log P (G|Θ) = log
∑

σ

P (G|Θ, σ)P (σ|Θ)

= log
∑

σ

P (G|Θ, σ)P (σ) (5.4)
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Figure 5.11: Kronecker parameter estimation as an optimization problem. We search over the initia-
tor matricesΘ (≡ P1). Using Kronecker multiplication we create probabilisticadjacency
matrix Θ[k] that is of same size as real networkG. Now, we evaluate the likelihood by si-
multaneously traversing and multiplying entries ofG andΘ[k] (see Eq.5.5). As shown by
the figure permutationσ plays an important role, as permuting rows and columns ofG could
make it look more similar toΘ[k] and thus increase the likelihood.

The likelihood that a given initiator matrixΘ and permutationσ gave rise to the real graphG, P (G|Θ, σ),
is calculated naturally as follows. First, by usingΘ we create the Stochastic Kronecker graph adjacency
matrixP = Pk = Θ[k]. Permutationσ defines the mapping of nodes ofG to the rows and columns of
stochastic adjacency matrixP. (See Figure5.11for illustration.) We then model edges as independent
Bernoulli random variables parameterized by the parameter matrixΘ. So, each entrypuv of P gives
exactly the probability of edge(u, v) appearing.

We then define the likelihood:

P (G|P, σ) =
∏

(u,v)∈G

P[σu, σv]
∏

(u,v)/∈G

(1− P[σu, σv]), (5.5)

where we denoteσi as theith element of the permutationσ, andP[i, j] is the element at rowi, and column
j of matrixP = Θ[k].

The likelihood is defined very naturally. We traverse the entries of adjacency matrixG and then based on
whether a particular edge appeared inG or not we take the probability of edge occurring (or not) as given
by P, and multiply these probabilities. As one has to touch all the entries of the stochastic adjacency
matrixP evaluating Equation5.5takesO(N2).

We further illustrate the process of estimating Stochastic Kronecker initiator matrix Θ in Figure5.11.
We search over initiator matricesΘ to find the one that maximizes the likelihoodP (G|Θ). To estimate
P (G|Θ) we are given a concreteΘ and now we use Kronecker multiplication to create probabilistic
adjacency matrixΘ[k] that is of same size as real networkG. Now, we evaluate the likelihood by traversing
the corresponding entries ofG andΘ[k]. Equation5.5basically traverses the adjacency matrix ofG, and
maps every entry(u, v) of G to a corresponding entry(σu, σv) of P. Then in case that edge(u, v) exists
in G (i.e., G[u, v] = 1) likelihood that particular edge existing isP[σu, σv], and similarly, in case the
edge(u, v) does not exists the likelihood is simply1− P[σu, σv]. This also demonstrates the importance
of permutationσ, as permuting rows and columns ofG could make the adjacency matrix looking more
“similar” to Θ[k], and would increase the likelihood.

So far we showed how to asses the quality (likelihood) of a particularΘ. So, naively one could perform
some kind of exhaustive grid search to find bestΘ. However, this is very inefficient. A better way of
doing it is to compute the gradient of the log-likelihood∂

∂Θ̂
l(Θ̂), and then use the gradient to update the
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Algorithm 5.1: KRONFIT algorithm.

input : size of parameter matrixN1, graphG onN = Nk
1 nodes, and learning rateλ

output: MLE parameterŝΘ (N1 ×N1 probability matrix)

initialize Θ̂1

while not convergeddo
evaluate gradient:∂

∂Θ̂t
l(Θ̂t)

update parameter estimates:Θ̂t+1 = Θ̂t + λ ∂
∂Θ̂t

l(Θ̂t)

end
return Θ̂ = Θ̂t

current estimate ofΘ and move towards a solution of higher likelihood. Algorithm5.1gives an outline of
the optimization procedure.

However, there are several difficulties with this algorithm. First, we are assuming gradient descent type
optimization will work,i.e. the problem does not have (too many) local minima. Second, we are summing
over exponentially many permutations in equation5.4. Third, the evaluation of equation5.5 as it is
written takesO(N2) and needs to be evaluatedN ! times. So, just naively calculating the likelihood takes
O(N !N2).

Observation 5.5.1. The complexity of calculating the likelihoodP (G|Θ) of the graphG naively is
O(N !N2), whereN is the number of nodes inG.

Next, we show that all this can be done inlinear time.

5.5.3 Summing over the node labelings

To maximize equation5.3using algorithm5.1we need to obtain the gradient of the log-likelihood∂
∂Θ l(Θ).

We can write:

∂

∂Θ
l(Θ) =

∑
σ

∂
∂ΘP (G|σ, Θ)P (σ)∑

σ′ P (G|σ′, Θ)P (σ′)

=

∑
σ

∂ log P (G|σ, Θ)

∂Θ
P (G|σ, Θ)P (σ)

P (G|Θ)

=
∑

σ

∂ log P (G|σ, Θ)

∂Θ
P (σ|G, Θ) (5.6)

Note we are still summing over allN ! permutationsσ, so calculating eq.5.6is computationally intractable
for graphs with more than a handful of nodes. However, the equation has a nice form which allows for use
of simulation techniques to avoid the summation over super-exponentially many node correspondences.
Thus, we simulate draws from the permutation distributionP (σ|G, Θ), and then evaluate the quantities
at the sampled permutations to obtain the expected values of log-likelihood and gradient. Algorithm5.2
gives the details.
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Algorithm 5.2: Calculating log-likelihood and gradient
input : Parameter matrixΘ, and graphG
output: Log-likelihoodl(Θ), and gradient∂∂Θ l(Θ)

for t := 1 to T do
σt := SamplePermutation (G, Θ)
lt = log P (G|σ(t), Θ)
gradt := ∂

∂Θ log P (G|σ(t), Θ)

end
return l(Θ) = 1

T

∑
t lt, and ∂

∂Θ l(Θ) = 1
T

∑
t gradt

Sampling permutations

Next, we describe the Metropolis algorithm to simulate draws from the permutationdistributionP (σ|G, Θ),
which is given by

P (σ|G, Θ) =
P (σ, G, Θ)∑
σ P (σ, G, Θ)

=

∑
σ P (σ, G, Θ)

Zσ

whereZσ is the normalizing constant that is hard to compute since it involves the sum overN ! elements.
However, if we compute the likelihood ratio between permutationsσ andσ′ (Equation5.7) the normalizing
constants nicely cancel out:

P (σ′|G, Θ)

P (σ|G, Θ)
=

∏

(u,v)∈G

P[σu, σv]

P[σ′
u, σ′

v]

∏

(u,v)/∈G

(1− P[σu, σv])

(1− P[σ′
u, σ′

v])
(5.7)

=
∏

(u,v)∈G
(σu,σv) 6=(σ′

u,σ′
v)

P[σu, σv]

P[σ′
u, σ′

v]

∏

(u,v)/∈G
(σu,σv) 6=(σ′

u,σ′
v)

(1− P[σu, σv])

(1− P[σ′
u, σ′

v])
(5.8)

This immediately suggests to use of Metropolis sampling algorithm [Gamerman, 1997] to simulate draws
from the permutation distribution since Metropolis is solely based on such ratios(where normalizing
constants cancel out). In particular, suppose that in the Metropolis algorithm (Algorithm5.3) we consider
a move from permutationσ to a new permutationσ′. Probability of accepting the move toσ′ is given by
Equation5.7(if P (σ′|G,Θ)

P (σ|G,Θ) ≤ 1) or 1 otherwise.

Now we have to devise a way to sample permutationsσ from the proposal distribution. One way to do
this would be to simply generate a random permutationσ′ and then check the acceptance condition. This
would be very inefficient as we expect the distributionP (σ|G, Θ) to be heavily skewed,i.e., there will
be a relatively small number of good node mappings. Even more so as the degree distributions in real
networks are skewed there will be many bad permutations with low likelihood, andfew good ones that do
a good job in matching nodes of high degree.

To make the sampling process “smoother”,i.e., sample permutations that are not that different (and thus
are not randomly jumping across the permutation space) we design a Markovchain. The idea is to stay in
high likelihood part of permutation space longer. We do this by making samples dependent,i.e., givenσ′

we want to generate next candidate permutationσ′′ to then evaluate the likelihood ratio. When designing
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Algorithm 5.3: SamplePermutation( G, Θ) : Metropolis sampling of the node permutation.
input : Kronecker initiator matrixΘ and a graphG onN nodes
output: Permutationσ(i) ∼ P (σ|G, Θ)

σ(0) := (1, . . . , N)
i = 1
repeat

Draw j andk uniformly from (1, . . . , N)
σ(i) := SwapNodes(σ(i−1), j, k)
Drawu from U(0, 1)

if u > P (σ(i)|G,Θ)

P (σ(i−1)|G,Θ)
then

σ(i) := σ(i−1)

end
i = i + 1

until σ(i) ∼ P (σ|G, Θ)
return σ(i)

WhereU(0, 1) is a uniform distribution on[0, 1], andσ′ := SwapNodes( σ, j, k) is the
permutationσ′ obtained fromσ by swapping elements at positionsj andk.

the Markov chain step one has to be careful so that the proposal distribution satisfies the detailed balance
condition. This means that probability of a generating a candidateσ′′ from σ′ has to be same as transition
in the opposite way,P (σ′ → σ′′) = P (σ′′ → σ′).

In algorithm 5.3 we use a simple proposal where given permutationσ′ we generateσ′′ by swapping
elements at two uniformly at random chosen positions ofσ′. We refer to this proposal asSwapNodes.
While this is simple and clearly satisfies the detailed balance condition it is also inefficient in a way
that most of the times low degree nodes will get swapped (a direct consequence of heavy tailed degree
distributions). This has two consequences, (a) we will slowly converge togood permutations (accurate
mappings of high degree nodes), and (b) once we reach a good permutation, very few permutations will
get accepted as most proposed permutationsσ′ will swap low degree nodes (as they form the majority of
nodes).

A possibly more efficient way would be to swap elements ofσ biased based on corresponding node de-
gree. However, doing this directly does not satisfy the detailed balance condition. A way of sampling
labels biased by node degrees that at the same time satisfies the detailed balance condition is the fol-
lowing: we pick an edge inG uniformly at random and swap the labels of the endpoints. Notice this
is biased towards swapping labels of nodes with high degrees simply as they have more edges. The de-
tailed balance condition holds as edges are sampled uniformly at random. We refer to this proposal as
SwapEdgeEndpoints .

However, the issue with this proposal is that if the graphG is disconnected, we will only be swapping
labels of nodes that belong to the same connected component. This means thatsome parts of the per-
mutation space will never get visited. To overcome this problem we executeSwapNodes with some
probabilityω andSwapEdgeEndpoints with probability1− ω.

To summarize we consider the following two permutation proposal distributions:

• σ′′ = SwapNodes(σ′): we obtainσ′′ by takingσ′, uniformly at random selecting a pair of elements
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and swapping their positions.

• σ′′ = SwapEdgeEndpoints (σ′): we obtainσ′′ from σ′ by first sampling an edge(j, k) from G
uniformly at random, then we takeσ′ and swap the labels at positionsj andk.

Speeding up the likelihood ratio calculation

We further speed up the algorithm by using the following observation. As written the equation5.7 takes
O(N2) to evaluate since we have to considerN2 possible edges. However, notice that permutationsσ
andσ′ differ only at two positions,i.e. elements at positionj andk are swapped,i.e., σ andσ′ map all
nodes except the two to the same locations. This means those elements of equation 5.7cancel out. Thus
to update the likelihood we only need to traverse two rows and columns of matrixP, namely rows and
columnsj andk, since everywhere else the mapping of the nodes to the adjacency matrix is thesame for
both permutations. This gives equation5.8where the products now range only over the two rows/columns
of P whereσ andσ′ differ.

Graphs we are working with here are too large to allow us to explicitly create and store the stochastic
adjacency matrixP by Kronecker powering the initiator matrixΘ. Every time probabilityP[i, j] of edge
(i, j) is needed the equation5.2 is evaluated, which takesO(k). So a single iteration of algorithm5.3
takesO(kN).

Observation 5.5.2.Sampling a permutationσ fromP (σ|G, Θ) takesO(kN).

This is gives us an improvement over theO(N !) complexity of summing over all the permutations. So
far we have shown how to obtain a permutation but we still need to evaluate the likelihood and find the
gradients that will guide us in finding good initiator matrix. The problem here is that naively evaluating
the network likelihood (gradient) as written in equation5.6 takes timeO(N2). This is exactly what we
investigate next and how to calculate the likelihood inlinear time.

5.5.4 Efficiently evaluating likelihood and gradient

We just showed how to efficiently sample node permutations. Now, given a permutation we show how to
efficiently evaluate the likelihood and it’s gradient. Similarly as evaluating the likelihood ratio, naively
calculating the log-likelihoodl(Θ) or its gradient ∂

∂Θ l(Θ) takes time quadratic in the number of nodes.
Next, we show how to compute this in linear timeO(E).

We begin with the observation that real graphs are sparse, which means that the number of edges is not
quadratic but rather almost linear in the number of nodes,E � N2. This means that majority of entries
of graph adjacency matrix are zero,i.e., most of the edges are not present. We exploit this fact. The idea is
to first calculate the likelihood (gradient) of an empty graph,i.e., a graph with zero edges, and then correct
for the edges that actually appear inG.

To naively calculate the likelihood for an empty graph one needs to evaluate every cell of graph adjacency
matrix. We consider Taylor approximation to the likelihood, and exploit the structure of matrixP to devise
a constant time algorithm.

First, consider the second order Taylor approximation to log-likelihood of an edge that succeeds with
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probabilityx but does not appear in the graph:

log(1− x) ≈ −x− 1

2
x2

Calculatingle(Θ), the log-likelihood of an empty graph, becomes:

le(Θ) =
N∑

i=1

N∑

j=1

log(1− pij) ≈ −
( N1∑

i=1

N1∑

j=1

θij

)k

− 1

2

( N1∑

i=1

N1∑

j=1

θij
2

)k

(5.9)

Notice that while the first pair of sums ranges overN elements, the last pair only ranges overN1 elements
(N1 = logk N ). Equation5.9holds due to the recursive structure of matrixP generated by the Kronecker
product. We substitute thelog(1 − pij) with its Taylor approximation, which gives a sum over elements
of P and their squares. Next, we notice the sum of elements ofP forms a multinomial series, and thus∑

i,j pij = (
∑

i,j θij)
k, whereθij denotes an element ofΘ, andpij element ofΘ[k].

Calculating log-likelihood ofG now takesO(E): First, we calculate the likelihood of an empty graph
in constant time, and then account for the edges that are actually presentin G, i.e., we subtract no-edge
likelihood and add the edge likelihoods:

l(Θ) = le(Θ) +
∑

(u,v)∈G

− log(1− P[σu, σv]) + log(P[σu, σv])

5.5.5 Calculating the gradient

Calculation of the gradient of log-likelihood follows exactly the same pattern asdescribed above. We first
calculate gradient as if graphG would have no edges. Then we correct the gradient for the edges thatare
present inG. As in previous section we speed up the calculations of the gradient by exploiting the fact
that two consecutive permutationsσ andσ′ differ only at two positions, and thus given the gradient from
previous step one only needs to account for the swap of the two rows andcolumns of the gradient matrix
∂P/∂Θ to update to the gradients of individual parameters.

5.5.6 Determining the size of initiator matrix

The question we answer next is how to determine the right number of parameters, i.e., what is the right
size ofΘ matrix? This is a classical question of model selection where there is a tradeoff between the
complexity of the model, and the quality of the fit. Bigger model with more parametersusually fits better,
however it is also more likely to overfit the data.

For model selection to find the appropriate value ofN1, the size of matrixΘ, and choose the right tradeoff
between the complexity of the model and the quality of the fit, we propose to use the Bayes Informa-
tion Criterion (BIC) [Schwarz, 1978]. Stochastic Kronecker Graphs model the presence of edges with
independent Bernoulli random variables, where the canonical numberof parameters isN2k

1 , which is a
function of a lower-dimensional parameterΘ. This is then acurved exponential family[Efron, 1975], and
BIC naturally applies:

BIC = −l(Θ̂) +
1

2
N2

1 log(N2)
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whereΘ̂ are maximum likelihood parameters under the model withΘ̂ of sizeN1 × N1, andN is the
number of nodes inG.

Similarly, to BIC one could also consider the Minimum Description Length (MDL) [Rissanen, 1978]
principle where the model is scored by the quality of the fit plus the size of the description that encodes
the model and the parameters.

5.6 Experiments on real and synthetic data

We divide the experiments into several subsections. First we examine the convergence and mixing of the
Markov chain of our permutation sampling scheme. Then we consider estimatingthe parameters of the
synthetic Kronecker graphs to see whether KRONFIT is able to recover the parameters used to generate
the network. Last, we consider fitting Stochastic Kronecker Graph to largereal world networks.

5.6.1 Permutation sampling

In our experiments we considered both synthetic and real graphs. Unless mentioned otherwise all synthetic
Kronecker graphs were generated usingP∗

1 = [0.8, 0.6; 0.5, 0.3], andk = 14 which gives us a graphG on
N = 16, 384 nodes andE = 115, 741 edges. We chose this particularP∗

1 as it closely resembles a typical
initiator for real networks (that we show later).

Convergence of the log-likelihood and the gradient

First, we examine the convergence of Metropolis permutation sampling. As every next permutation is
obtained from the previous one by locally modifying it this creates a Markov chain. We want to assess
the convergence and mixing of the chain,i.e., determine how many permutations one needs to draw to
reliably estimate the likelihood and the gradient, and also how long does it take till the samples converge
to the stationary distribution. For the experiment we generated a synthetic Stochastic Kronecker Graph
usingP∗

1 as defined above. Then, starting with a random permutation we run algorithm5.3, and measure
how the likelihood and the gradients converge to their true values.

In this particular case we first generated Stochastic Kronecker GraphG as described above, but then
calculated the likelihood and the parameter gradients forΘ′ = [0.8, 0.75; 0.45, 0.3]. We average the
likelihoods and gradients over buckets of 1,000 consecutive samples, and plot how the log-likelihood
calculated over the sampled permutations approaches the true log-likelihood (that we can compute since
G is a Stochastic Kronecker Graph).

First, we present experiments that aim to answer how many samples (i.e., permutations) does one need
to draw to obtain a reliable estimate of the gradient (see Equation5.6). Figure5.12(a) shows how the
estimated log-likelihood approaches the true likelihood. Notice that estimated values quickly converge
to their true values,i.e., Metropolis sampling quickly moves towards “good” permutations. Similarly,
Figure5.12(b) plots the convergence of the gradients. Notice thatθ11 andθ22 of Θ′ andP∗

1 match, so
gradients of these two parameters should converge to zero and indeed they do. On the other hand,θ12 and
θ21 differ betweenΘ′ andP∗

1 . Notice, the gradient for one is positive as the parameterθ12 of Θ′ should
be decreased, and similarly forθ21 the gradient is negative as the parameter value should be increased to
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Figure 5.12: Convergence of the log-likelihood and gradients towards their true values for Metropolis
permutation sampling (algorithm5.3) with the number of samples.

match theΘ′. In summary, this shows that log-likelihood and gradients rather quickly converge to their
true values.

Moreover, in Figures5.12(c) and (d) we investigate the properties of the Markov Chain Monte Carlo
sampling procedure, and asses convergence and mixing criteria. First, we plot the fraction of accepted
proposals. It stabilizes at around 15%, which is quite close to the rule-of-a-thumb of 25%. Second,
Figure5.12(d) plots the autocorrelation of the log-likelihood as a function of the lag. Autocorrelationrk

of a signalX is a function of the lagk whererk is defined as the correlation of signalX at timet with
X at t + k, i.e., correlation of the signal with itself at lagk. High autocorrelations within chains indicate
slow mixing and, usually, slow convergence. On the other hand fast decay of autocorrelation means better
the mixing and thus one needs less samples to accurately estimate the gradient orthe likelihood. Notice
rather fast autocorrelation decay.

All in all, these experiments show that one needs to sample an order of tens ofthousands of permutations
for the estimates to converge. We also verified that the variance of the estimates is sufficiently small. In
our experiments we start with a random permutation and use long burn-in time. Then when performing
optimization we use the permutation from previous step to initialize the permutation at current step of
gradient descent. The intuition is that small changes inP (σ|G, Θ) also mean small changes inΘ.
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Figure 5.13: Convergence of the log-likelihood and gradients for Metropolis permutation sampling (al-
gorithm5.3) for different choices ofω that interpolates between theSwapNodes (ω = 1)
andSwapEdgeEndpoints (ω = 0) permutation proposal distributions.

Different proposal distributions

In section5.5.3we defined two permutation sampling proposal distributions:SwapNodes where we pick
two nodes uniformly at random and swap their labels (node ids); andSwapEdgeEndpoints where
we pick a random edge in a graph and then swap the labels of the edge endpoints. We also discussed
that one can interpolate between the two strategies by executingSwapNodes with probability ω, and
SwapEdgeEndpoints with probability1− ω.

So, given a Stochastic Kronecker GraphG on N = 16, 384 andE = 115, 741 generated fromP∗
1 =

[0.8, 0.7; 0.5, 0.3] we evaluate the likelihood ofΘ′ = [0.8, 0.75; 0.45, 0.3]. As we sample permutations we
observe how the estimated likelihood converges to the true likelihood. Moreover we also vary parameter
ω that interpolates between the two permutation proposal distributions. The quicker the converge towards
the true log-likelihood the better the proposal distribution.

Figure5.13plots the convergence of the log-likelihood with the number of sampled permutations. We plot
the average over non-overlapping buckets of 1,000 consecutive permutations. Faster convergence means
better permutation proposal distribution. When we use onlySwapNodes (ω = 1) orSwapEdgeEndpoints
(ω = 0) convergence is rather slow. We obtain best convergence forω around0.6.

Similarly, Figure5.14(a) plots the autocorrelation as a function of the lagk for different choices ofω.
Faster autocorrelation decay means better mixing of the Markov chain. Again, notice that we get best
mixing for ω = 0.6. (Notice logarithmic y-axis.)

Last, we diagnose how long the sampling procedure must be run before thegenerated samples can be
considered to be drawn (approximately) from the stationary distribution. Wecall this the burn-in time of
the chain. There are various procedures for assessing convergence. Here we adopt the approach of Gelman
et al.[Gelman et al., 2003], that is based on running multiple Markov chains each from a different starting
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Figure 5.14: (a) Autocorrelation plot of the log-likelihood for the different choices of parameterω. Notice
we get best mixing withω = 0.6. (b) The potential scale reduction that compares the
variance inside- and across- independent Markov chains fordifferent values of parameterω.

point, and then comparing the variance within the chain and between the chains. The sooner the within-
and between-chain variances become equal the faster the burn-in time,i.e., the sooner the samples are
drawn from the stationary distribution.

Let l be the parameter that is being simulated withJ different chains, and then letl(k)
j denote thekth

sample of thejth chain, wherej = 1, . . . , J and k = 1, . . . , K. More specifically, in our case we
run separate permutation sampling chains. So, we first sample permutationσ

(k)
j and then calculate the

corresponding log-likelihoodl(k)
j .

First, we compute between and within chain variancesσ̂2
B and σ̂2

W , where between-chain variance is
obtained by

σ̂2
B =

K

J − 1

J∑

j=1

(l̄·j − l̄··)
2

wherel̄·j = 1
K

∑K
k=1 l

(k)
j andl̄·· = 1

J

∑J
j=1 l̄·j

Similarly the within-chain variance is defined by

σ̂2
W =

1

J(K − 1)

J∑

j=1

K∑

k=1

(l
(k)
j − l̄·j)

2

Then, the marginal posterior variance ofl̂ is calculated using

σ̂2 =
K − 1

K
σ̂2

W +
1

K
σ̂2

B

And, finally, we estimate thepotential scale reduction[Gelman et al., 2003] of l by

√
R̂ =

√
σ̂2

σ̂2
W
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Note that as the length of the chainK → ∞
√

R̂ converges to 1 from above. A recommendation for
convergence assessment from [Gelman et al., 2003] is that potential scale reduction is below 1.2.

Figure 5.14(b) gives the Gelman-Rubin-Brooks plot, where we plot the potential scalereduction
√

R̂
over the increasing chain lengthK for different choices of parameterω. Notice that the potential scale
reduction quickly decays towards 1. Similarly as in Figure5.14the extreme values ofω give slow decay,
while we obtain fastest potential scale reduction whenω ≈ 0.6.

Properties of the permutation space

Next we explore the properties of the permutation space. We would like to quantify what fraction of per-
mutations are “good” (have high likelihood), and how quickly do we discover them. For the experiment
we took a real networkG (AS-ROUTEV IEWS network) and the MLE parameterŝΘ for it that we esti-
mated before hand (l(Θ̂) ≈ −150, 000). The networkG has6, 474 nodes which means the space of all
permutations has≈ 1022,000 elements.

First, we sampled 1 billion (109) permutationsσi uniformly at random,i.e., P (σi) = 1/(6, 474!) and for
each evaluated its log-likelihoodl(σ|Θi) = log P (Θi|G, σ). We ordered the permutations in deceasing
log-likelihood and plottedl(σ|Θi) vs. rank. Figure5.15(a) gives the plot. Notice that very few random
permutations are very bad (i.e., they give low likelihood), similarly few permutations are very good, while
most of them are somewhere in between. Notice that best “random” permutation has log-likelihood of
≈ −320, 000, which is far below true likelihoodl(Θ̂) ≈ −150, 000. This suggests that only a very small
fraction of all permutations gives good node labelings.

On the other hand, we also repeated the same experiment but now sampled permutations from the per-
mutation distributionσi ∼ P (σ|Θ, G) using our Metropolis sampling scheme. Figure5.15(b) gives the
plot. Notice the radical difference. Now thel(σ|Θi) very quickly converges to the true likelihood of
≈ −150, 000. This suggest that while the number of “good” permutations (accurate node mappings) is
rather small, our sampling procedure quickly converges to the “good” part of the permutation space where
node mappings are accurate.
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5.6.2 Properties of the optimization space

In maximizing the likelihood we use stochastic approximation to the gradient. This adds variance to
the gradient and makes efficient optimization techniques, like conjugate gradient, highly unstable. Thus
we use gradient descent, which is slower but easier to control. First, we make the following observa-
tion:

Observation 5.6.1. Given a real graphG then finding the maximum likelihood Stochastic Kronecker
initiator matrix Θ̂

Θ̂ = arg max
Θ

P (G|Θ)

is a non-convex optimization problem.

Proof. By definition permutations of the Kronecker graphs initiator matrixΘ̂ all have the same log-
likelihood. This means that we have several global minima that correspond topermutations of parameter
matrix Θ̂, and then between them the log-likelihood drops. This means that the optimizationproblem is
non-convex.

The above observation seem not to give much promise to estimatingΘ̂ using gradient descent as it is
prone to local minima. To check for the presence of other local minima where gradient descent could get
stuck we run the following experiment: we generated 100 synthetic Kronecker graphs on 16,384 (214)
nodes and 1.4 million edges on the average, with a randomly chosen2× 2 parameter matrixΘ∗. For each
of the 100 graphs we run gradient descent starting from a different random parameter matrixΘ′, and try
to recoverΘ∗. In 98% of the cases the gradient descent converged to the true parameters. Many times
the algorithm converged to a different global minima,i.e., Θ̂ is a permuted version of original parameter
matrixΘ∗. Moreover, the median number of gradient descent iterations was only 52.

This suggests surprisingly nice structure of our optimization space: it seemsto behave like a convex
optimization problem with many equivalent global minima. Moreover, this experiment is also a good
sanity check as it shows that given a Kronecker graph we can recover and identify the parameters that
were used to generate it.

Moreover, Figure5.15(c) plots the log-likelihoodl(Θt) of the current parameter estimateΘt over the
iterationst of the stochastic gradient descent. We plot the log-likelihood for 10 different runs of gra-
dient descent, each time starting from a different random set of parameters Θ0. Notice that in all runs
gradient descent always converges towards the optimum, and none of the runs gets stuck is some local
maxima.

5.6.3 Convergence of the graph properties

We approached the problem of estimating Stochastic Kronecker initiator matrixΘ by defining the like-
lihood over the individual entries of the graph adjacency matrix. However, what we would really like is
to be given a real graphG and then generate a synthetic graphK that has similar network properties as
G. By properties we mean network statistics that can be computed from the graph, e.g., diameter, degree
distribution, clustering coefficient, etc. A priori it is not clear that our approach which tries to match in-
dividual entries of graph adjacency matrix will also be able to reproduce these global network statistics.
However, as show next this is not the case.
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Figure 5.16: Convergence of graph patterns with the number of iterationsof gradient descent using the
synthetic dataset.

To get some understanding of the convergence of the gradient descent in terms of the network properties
we performed the following experiment. After every stept of stochastic gradient descent, we compare the
true graphG with the synthetic Kronecker graphKt generated using the current parameter estimatesΘ̂t.
Figure5.16(a) gives the convergence of log-likelihood, and (b) gives absolute error in parameter values
(
∑ |θ̂ij − θ∗ij |, whereθ̂ij ∈ Θ̂t, andθ∗ij ∈ Θ∗). Similarly, Figure5.16(c) plots the effective diameter, and

(d) gives the largest singular value of graph adjacency matrixK as it converges to largest singular value
of G.

Note how with progressing iterations of gradient descent properties of graph Kt quickly converge to
those ofG even though we are not directly optimizing the similarity in network properties: log-likelihood
increases, absolute error of parameters decreases, diameter and largest singular value ofKt both converge
to G. This is a nice result as it shows that through maximizing the likelihood the resulting graphs become
more and more similar also in their structural properties (even though we are not directly optimizing over
them).
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Figure 5.17: Autonomous Systems (AS-ROUTEV IEWS): Overlayed patterns of real graph and the fitted
Kronecker graph. Notice that the fitted Kronecker graph matches patterns of the real graph
while using only four parameters (2× 2 initiator matrix).

5.6.4 Fitting to real-world networks

Next, we present experiments of fitting Kronecker Graphs model to real-world networks. Given a real
networkG we aim to discover the most likely parametersΘ̂ that ideally would generate a synthetic graph
K having similar properties as realG. This assumes that Kronecker Graphs is a good model of the
network structure, and that KRONFIT is able to find good parameters. In previous section we showed that
KRONFIT can efficiently recover the parameters. Now we examine how well can Kronecker graphs model
the structure of real networks.

We consider several different networks, like a graph of connectivityamong Internet Autonomous systems
(AS-ROUTEV IEWS) with N = 6, 474 andE =26,467; a who-trusts-whom type social network from
Epinions [Richardson et al., 2003] (EPINIONS) with N =75,879 andE =508,960 and many others. The
largest network we consider for fitting is FLICKR photo-sharing online social network with 584,207 nodes
and 3,555,115 edges.

For the purpose of this section we take a real networkG, find parameterŝΘ using KRONFIT, generate a
synthetic graphK usingΘ̂, and then compareG andK by comparing their properties that we introduced
in section5.2. In all experiments we started from a random point (random initiator matrix) and run gradient
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descent for 100 steps. At each step we estimate the likelihood and the gradient based on 510,000 sampled
permutations where we discard first 10,000 samples to allow the chain to burn-in.

Fitting to Autonomous Systems network

First, we focus on the Autonomous Systems network obtained from the University of Oregon Route Views
project [RouteViews, 1997]. Given the AS networkG we run KRONFIT to obtain parameter estimatesΘ̂.
Using theΘ̂ we then generate a synthetic Kronecker graphK, and compare the properties ofG and
K.

Figure5.17shows properties of AS-ROUTEV IEWS, and compares them with the properties of a synthetic
Kronecker graph generated using the fitted parametersΘ̂ of size2 × 2. Notice that properties of both
graphs match really well. The estimated parameters areΘ̂ = [0.987, 0.571; 0.571, 0.049].

Figure5.17(a) compares the degree distributions of the AS-ROUTEV IEWS network and its synthetic Kro-
necker estimate. In this and all other plots we use the exponential binning which is a standard procedure
the de-noise the data when plotting on log–log scales. Notice a very close matchin degree distribution
between the real graph and its synthetic counterpart.

Figure5.17(b) plots the cumulative number of pairs of nodesg(h) that can be reached in≤ h hops. The
hop plot gives a sense about the distribution of the shortest path lengths inthe network and about the
network diameter. Last, Figures5.17(c) and (d) plot the spectral properties of the graph adjacency matrix.
Figure5.17(c) plots largest singular values vs. rank, and (d) plots the components ofleft singular vector
(the network value) vs. the rank. Again notice good agreement with the real graph while using only four
parameters.

Moreover, on all plots the error bars of two standard deviations show thevariance of the graph properties
for different realizationsR(Θ̂[k]). To obtain the error bars we took the sameΘ̂, and generated 50 real-
izations of a Kronecker graph. As for the most of the plots the error barsare so small to be practically
invisible, this shows that the variance of network properties when generating a Stochastic Kronecker graph
is indeed very small.

Also notice that the AS-ROUTEV IEWS is an undirected graph, and that the fitted parameter matrixΘ̂
is in fact symmetric. This means that without a priori biasing the fitting towards undirected graphs, the
recovered parameters obey this aspect of the network. Fitting AS-ROUTEV IEWS graph from a random
set of parameters, performing gradient descent for 100 iterations andat each iteration sampling half a
million permutations, took less than 10 minutes on a standard desktop PC. This is a significant speedup
over [Beźakov́a et al., 2006], where by using a similar permutation sampling approach for calculating the
likelihood of a preferential attachment model on similar AS-ROUTEV IEWS graph took about two days on
a cluster of 50 machines, while in our case the computation took 10 minutes on a desktop PC.

Choice of the initiator matrix size N1

As mentioned earlier for finding the optimal number of parameters,i.e., selecting the size of initiator
matrix, BIC criterion naturally applies to the case of Kronecker Graphs. Figure5.23(b) shows BIC scores
for the following experiment: We generated Kronecker graph withN = 2, 187 andE = 8, 736 using
N1 = 3 (9 parameters) andk = 7. For 1 ≤ N1 ≤ 9 we find the MLE parameters using gradient
descent, and calculate the BIC scores. Model with the lowest score is chosen. As figure5.23(b) shows we
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N1 l(Θ̂) Nk
1 Ek

1 |{deg(u) > 0}| BIC score

2 −152, 499 8,192 25,023 5,675 152,506
3 −127, 066 6,561 28,790 5,683 127,083
4 −153, 260 16,384 24,925 8,222 153,290
5 −149, 949 15,625 29,111 9,822 149,996
6 −128, 241 7,776 26,557 6,623 128,309

AS-ROUTEV IEWS 26,467 6,474

Table 5.2: Log-likelihood at MLE for different choices of the size of the initiator matrixN1 for the AS-
ROUTEV IEWS graph. Notice the log-likelihoodl(θ̂) generally increases with the model com-
plexity N1. Also notice the effect of zero-padding,i.e., for N1 = 4 andN1 = 5 the con-
straint of the number of nodes being an integer power ofN1 decreases the log-likelihood.
However, the column|{deg(u) > 0}| gives the number of non-isolated nodes in the network
which is much less thanNk

1 and is in fact very close to the true number of nodes in the AS-
ROUTEV IEWS. Using the BIC scores we see thatN1 = 3 or N1 = 6 are best choices for the
size of the initiator matrix.

recovered the true model,i.e., BIC score is the lowest for the model with the true number of parameters,
N1 = 3.

Intuitively we expect a more complex model with more parameters to fit the data better. Thus we expect
largerN1 to generally give better likelihood. On the other hand the fit will also depend on the size of the
graphG. Kronecker graphs can only generate graphs onNk

1 nodes, while real graphs do not necessarily
haveNk

1 nodes (for some, preferably small, integersN1 andk). To solve this problem we choosek so that
Nk−1

1 < N(G) ≤ Nk
1 , and then augmentG by addingNk

1 −N isolated nodes. Or equivalently, we pad
the adjacency matrix ofG with zeros until it is of the appropriate size,Nk

1 × Nk
1 . While this solves the

problem of requiring the integer power of the number of nodes it also makesthe fitting problem harder as
whenN � Nk

1 we are basically fittingG plus a large number of isolated nodes.

Table5.2shows the results of fitting Kronecker graphs to AS-ROUTEV IEWS while varying the size of the
initiator matrixN1. First, notice that in general largerN1 results in higher log-likelihoodl(Θ̂) at MLE.
Similarly, notice (columnNk

1 ) that while AS-ROUTEV IEWS has6, 474 nodes, Kronecker estimates have
up to16, 384 nodes (16, 384 = 47, which is the first integer power of 4 greater than6, 474). However, we
also show the number of non-zero degree (non-isolated) nodes in the Kronecker graph (column|{deg(u) >
0}|). Notice that the number of non-isolated nodes well corresponds to the number of nodes in AS-
ROUTEV IEWS network. This shows that KRONFIT is actually fitting the graph well, it successfully fits
the structure of the graph plus a number of isolated nodes. Last, columnEk

1 gives the number of edges in
the corresponding Kronecker graph which is close to the true number of edges of the AS-ROUTEV IEWS

graph.

Last, comparing the log-likelihood at MLE and the BIC score in Table5.2we notice that the log-likelihood
heavily dominates the BIC score. This means that the size of the initiator matrix (number of parameters)
is so small that one does not really have to care about overfitting. Thus wecan just choose the initiator
matrix that maximizes the likelihood. A simple calculation shows that one would need totake initiator
matrices with thousands of entries before the model complexity part of BIC score would start to play a
significant role.

We further examine the sensitivity of the choice of the initiator size by the following experiment. We
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Figure 5.18: 3 by 3 Stochastic Kronecker Graph:Given a Stochastic Kronecker GraphG generated from
N1 = 3 (red curve), we fit a Kronecker graphK ′ with N ′

1 = 2 (green) andK ′′ with N ′′

1 = 3
(blue). Not surprisinglyK ′′ fits the properties ofK perfectly as the model is the of same
complexity. On the other handK ′ has only 4 parameters (instead of 9 as inK andK ′′) and
still fits well.

generate a Stochastic Kronecker GraphK on 9 parameters (N1 = 3), and then fit a Kronecker graphK ′

with a smaller number of parameters (4 instead of 9,N ′
1 = 2). And also a Kronecker graphK ′′ of the

same complexity asK (N ′′
1 = 3).

Figure 5.18 plots the properties of all three graphs. Not surprisinglyK ′′ (blue) fits the properties of
K (red) perfectly as the initiator is of the same size. On the other handK ′ (green) is a simpler model
with only 4 parameters (instead of 9 as inK andK ′′) and still generally fits well: hop plot and degree
distribution match well, while spectral properties of graph adjacency matrix, especially scree plot, are not
matched that well. This shows that nothing drastic happens and that even a bit too simple model still fits
the data well. In general we observe empirically that by increasing the size of initiator matrix one does
not gain radically better fits for degree distribution and hop plot. On the otherhand there is usually an
improvement in the scree plot and the plot of network values when one increases the initiator size.
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Snapshot at time N E l(Θ̂) Estimates at MLE,̂Θ

T1 2,048 8,794 −40, 535 [0.981, 0.633; 0.633, 0.048]

T2 4,088 15,711 −82, 675 [0.934, 0.623; 0.622, 0.044]

T3 6,474 26,467 −152, 499 [0.987, 0.571; 0.571, 0.049]

Table 5.3: Parameter estimates of the three temporal snapshots of the AS-ROUTEV IEWS network. Notice
that estimates stay remarkably stable over time.
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Figure 5.19: Autonomous systems network over time(AS-ROUTEV IEWS): Overlayed patterns of real
AS-ROUTEV IEWS network at timeT3 and the Kronecker graphs with parameters estimated
from AS-ROUTEV IEWS at timeT1 andT2. Notice good fits which means that parameters
estimated on historic snapshots can be used to estimate the graph in the future.

Network parameters over time

Next we briefly examine the evolution of the Kronecker initiator for a temporally evolving graph. The
idea is that given parameter estimates of a real-graphGt at timet, we can forecast the future structure of
the graphGt+x at timet + x, i.e., using parameters obtained fromGt we can generate a larger synthetic
graphK that will be similar toGt+x.

As we have the information about the evolution of the AS-ROUTEV IEWS network, we estimated param-
eters for three snapshots of the network when it had about2k nodes. Table5.3 gives the results of the
fitting for the three temporal snapshots of the AS-ROUTEV IEWS network. Notice the parameter estimates
Θ̂ remain remarkably stable over time. This means that Kronecker graphs can be used to estimate the
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Network N E Estimated parameterŝΘ l(Θ̂) Time

AS-ROUTEV IEWS 6,474 26,467 [0.987, 0.571; 0.571, 0.049] −152, 499 8m15s
ATP-GR-QC 19,177 26,169 [0.902, 0.253; 0.221, 0.582] −242, 493 7m40s
BIO-PROTEINS 4,626 29,602 [0.847, 0.641; 0.641, 0.072] −185, 130 43m41s
EMAIL -INSIDE 986 32,128 [0.999, 0.772; 0.772, 0.257] −107, 283 1h07m
CA-GR-QC 5,242 28,980 [0.999, 0.245; 0.245, 0.691] −160, 902 14m02s
AS-NEWMAN 22,963 96,872 [0.954, 0.594; 0.594, 0.019] −593, 747 28m48s
BLOG-NAT05-6M 31,600 271,377 [0.999, 0.569; 0.502, 0.221] −1, 994, 943 47m20s
BLOG-NAT06ALL 32,443 318,815 [0.999, 0.578; 0.517, 0.221] −2, 289, 009 52m31s
CA-HEP-PH 12,008 237,010 [0.999, 0.437; 0.437, 0.484] −1, 272, 629 1h22m
CA-HEP-TH 9,877 51,971 [0.999, 0.271; 0.271, 0.587] −343, 614 21m17s
CIT-HEP-PH 30,567 348,721 [0.994, 0.439; 0.355, 0.526] −2, 607, 159 51m26s
CIT-HEP-TH 27,770 352,807 [0.990, 0.440; 0.347, 0.538] −2, 507, 167 15m23s
EPINIONS 75,879 508,837 [0.999, 0.532; 0.480, 0.129] −3, 817, 121 45m39s
GNUTELLA -25 22,687 54,705 [0.746, 0.496; 0.654, 0.183] −530, 199 16m22s
GNUTELLA -30 36,682 88,328 [0.753, 0.489; 0.632, 0.178] −919, 235 14m20s
DELICIOUS 205,282 436,735 [0.999, 0.327; 0.348, 0.391] −4, 579, 001 27m51s
ANSWERS 598,314 1,834,200 [0.994, 0.384; 0.414, 0.249] −20, 508, 982 2h35m
CA-DBLP 425,957 2,696,489 [0.999, 0.307; 0.307, 0.574] −26, 813, 878 3h01m
FLICKR 584,207 3,555,115 [0.999, 0.474; 0.485, 0.144] −32, 043, 787 4h26m
WEB-NOTREDAME 325,729 1,497,134 [0.999, 0.414; 0.453, 0.229] −14, 588, 217 02h59m

Table 5.4: Results of parameter estimation for 20 different networks.Tables in SectionA.2 give the
description and basic properties of the above network datasets.

structure of the networks in the future,i.e., parameters estimated from the historic data can extrapolate the
graph structure in the future.

Figure5.19further explores this. It overlays the graph properties of the real AS-ROUTEV IEWS network at
timeT3 and the synthetic graphs for which we used the parameters obtained on historic snapshots of AS-
ROUTEV IEWS at timesT1 andT2. The agreements are good which demonstrates that Kronecker graphs
can forecast the structure of the network in the future.

Moreover, this experiments also shows that parameter estimates do not suffer much from the zero padding
of graph adjacency matrix (i.e., adding isolated nodes to makeG haveNk

1 nodes). Snapshots of AS-
ROUTEV IEWS at T1 andT2 have close to2k nodes, while we had to add 26% (1,718) isolated nodes to
the network atT3 to make the number of nodes be2k. Regardless of this we see the parameter estimates
Θ̂ remain basically constant over time, which seems to be independent of the number of isolated nodes
added. This means that the estimated parameters are not biased too much fromzero padding the adjacency
matrix ofG.

5.6.5 Fitting to other large real-world networks

Last, we present results of fitting Stochastic Kronecker Graph to 20 largereal-world networks: large on-
line social networks, like EPINIONS, FLICKR and DELICIOUS, web and blog graphs (WEB-NOTREDAME,
BLOG-NAT05-6M, BLOG-NAT06ALL ), internet and peer-to-peer networks (AS-NEWMAN, GNUTELLA -
25, GNUTELLA -30), collaboration networks of co-authorships from DBLP (CA-DBLP) and various
areas of physics (CA-HEP-TH, CA-HEP-PH, CA-GR-QC), physics citation networks (CIT-HEP-PH, CIT-
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Figure 5.20: Blog network(BLOG-NAT06ALL ): Overlayed patterns of real network and the estimated
Kronecker graph using 4 parameters (2 × 2 initiator matrix). Notice that the Kronecker
graph matches all properties of the real network.

HEP-TH), an email network (EMAIL -INSIDE), a protein interaction network BIO-PROTEINS, and a bi-
partite affiliation network (authors-to-papers, ATP-GR-QC). Refer to tableA.2 in the appendix for the
description and basic properties of these networks.

For each dataset we started gradient descent from a random point (random initiator matrix) and run it for
100 steps. At each step we estimate the likelihood and the gradient based on 510,000 sampled permuta-
tions where we discard first 10,000 samples to allow the chain to burn-in.

Table5.4gives the estimated parameters, the corresponding log-likelihoods and the wall clock times. All
experiments were carried out on standard desktop computer. Notice that the estimated initiator matrix
Θ̂ seems to have almost universal structure with a big value in the top left entry,a very low value at the
bottom right corner and intermediate values in the other two corners. We further discuss the implications
of such structure of Kronecker initiator matrix on the global network structure in the next section.

Last, Figures5.20and5.21show overlays of various network properties of real and the estimated synthetic
networks. In addition to the network properties we plotted in Figure5.18, we also separately plot in- and
out-degree distributions (as both networks are directed) and plot the node triangle participation in panel
(c), where we plot the number of triangles a node participates in versus thenumber of such nodes. (Again
the error bars show the variance of network properties over different realizationsR(Θ̂[k]) of a Stochastic
Kronecker graph.)

Notice that for both networks and in all cases the properties of the real network and the synthetic Kronecker
coincide really well. Using Stochastic Kronecker Graph with just 4 parameters we match the scree plot,
degree distributions, triangle participation, hop plot and network values.

Given the experience from the Autonomous systems we only present the results for the simplest model

132



100

101

102

103

104

105

100 101 102 103 104

C
ou

nt

In-degree, k

Real graph
Kronecker

100

101

102

103

104

105

100 101 102 103 104

C
ou

nt

Out-degree, k

Real graph
Kronecker

100

101

102

103

104

105

100 101 102 103 104 105

C
ou

nt

Node triangle participation

Real graph
Kronecker

(a) In-Degree (b) Out-degree (c) Triangle participation

104

105

106

107

108

109

1010

 0  1  2  3  4  5  6  7  8

R
ea

ch
ab

le
 p

ai
rs

 o
f n

od
es

, r
(h

)

Number of hops, h

Real graph
Kronecker

101

102

103

100 101 102

S
in

gu
la

r 
va

lu
e

Rank

Real graph
Kronecker

10-3

10-2

10-1

100

100 101 102 103 104

N
et

w
or

k 
va

lu
e

Rank

Real graph
Kronecker

(d) Hop plot (e) Scree plot (f) “Network” value

Figure 5.21: EPINIONS who-trusts-whom social network:Overlayed patterns of real network and the
fitted Kronecker graph using only 4 parameters (2× 2 initiator matrix). Again, the synthetic
Kronecker graph matches all the properties of the real network.

with initiator sizeN1 = 2. Empirically we also observe thatN1 = 2 gives surprisingly good fits and the
estimation procedure is the most robust and converges the fastest. Using larger initiator matricesN1 > 2
generally helps improve the likelihood but not dramatically. In terms of matching the network properties
we also get a slight improvement by making the model more complex. Figure5.22 gives the percent
improvement in log-likelihood as we make the model more complex. We use the log-likelihood of a2× 2
model as a baseline and estimate the log-likelihood at MLE for larger initiator matrices. Again, models
with more parameters tend to fit better. However, sometimes due to zero-padding of graph adjacency
matrix they actually have lower log-likelihood.

5.6.6 Scalability

Last we also empirically evaluate the scalability of the KRONFIT. The experiment confirms that KRONFIT

runtime scales linearly with the number of edgesE in a graphG. More precisely, we performed the
following experiment.

We generated a sequence of increasingly larger synthetic graphs onN nodes and8N edges, and measured
the time of one iteration of gradient descent,i.e., sample 1 million permutations and evaluate the gradients.
We started with a graph on 1,000 nodes, and finished with a graph on 8 million nodes, and 64 million
edges. Figure5.23(a) shows KRONFIT scaleslinearly with the size of the network. We plot wall-clock
time vs. size of the graph. Dashed line presents linear fit to the data points.
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Figure 5.22: Percent improvement in log-likelihood over the2× 2 model as we increase the model com-
plexity (size of initiator matrix). In general larger initiator matrices that have more degrees
of freedom help improving the fit of the model.
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Figure 5.23: (a) Processor time to sample 1 million gradients as the graphgrows. Notice the algorithm
scales linearly with the graph size. (b) BIC score for model selection.

5.7 Discussion

Here we discuss several of the desirable properties of the proposed Kronecker Graphs.

Generality: Stochastic Kronecker Graphs include several other generators as special cases: Forθij = c,
we obtain classical Erd̋os-Ŕenyi random graph model; forθi,j ∈ {0, 1}, we obtain a deterministic Kro-
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(a)2× 2 initiator matrix (b) Two recursive communities (c) Core-periphery

Figure 5.24: 2 × 2 Kronecker initiator matrix (a) can be thought of as two communities where there are
a andd edges inside each of the communities andb andc edges crossing the communities
as illustrated in (b). The each sub-community can then be recursively divided using the
same pattern. (c) The onion like core-periphery structure where the network gets denser and
denser as we move towards the center of the network.

necker graph; setting theK1 matrix to a2× 2 matrix, we obtain the RMAT generator [Chakrabarti et al.,
2004]. In contrast to Kronecker graphs, the RMAT cannot extrapolate into the future, since it needs to
know the number of edges to insert. Thus, it is incapable of obeying the densification power law.

Phase transition phenomena:The Erd̋os-Ŕenyi graphs exhibit phase transitions [Erdős and Ŕenyi, 1960].
Several researchers argue that real systems are “at the edge of chaos” [Bak, 1996, Sole and Goodwin,
2000]. Stochastic Kronecker Graphs also exhibit phase transitions [Mahdian and Xu, 2007] for the emer-
gence of the giant component and another phase transition for connectivity.

Implications to the structure of the large-real networks: Empirically we found that2 × 2 initiator
(N1 = 2) fits well the properties of real-world networks. Moreover, given a2× 2 initiator matrix, one can
look at it as a recursive expansion of two groups into sub-groups. Weintroduced this recursive view of
Kronecker graphs back in section5.3. So, one can then interpret the diagonal values ofΘ as the proportion
of edges inside each of the groups, and the off-diagonal values givethe fraction of edges connecting the
groups. Figure5.24illustrates the setting for two groups.

For example, as shown in Figure5.24, largea, d and smallb, c would imply that the network is composed
of hierarchically nested communities, where there are many edges inside each community and few edges
crossing them. One could think of this structure as some kind of organizational or university hierarchy,
where one expects the most friendships between people within same lab, a bitless between people in the
same department, less across different departments, and the least friendships to be formed across people
from different schools of the university.

However, parameter estimates for a wide range of networks presented in Table5.4suggests a very different
picture of the network structure. Notice that for most networksa � b > c � d. Moreover,a ≈ 1,
b ≈ c ≈ 0.6 andd ≈ 0.2. We empirically observed that the same structure of initiator matrixΘ̂ also holds
when fitting3 × 3 or 4 × 4 models. Always the top left element is the largest and then the values on the
diagonal decay faster than off the diagonal.

This suggests a network structure which is also known ascore-periphery[Borgatti and Everett, 2000,
Holme, 2005], thejellyfish[Tauro et al., 2001, Siganos et al., 2006], or theoctopus[Chung and Lu, 2006a]
structure of the network as illustrated in Figure5.24(c).

All of the above basically say that the network is composed of a densely linked network core and the
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periphery. In our case this would imply the following structure of the initiator matrix. Core is modeled by
parametera and the periphery byd. The most edges are inside the core (largea), and the fewest between
the nodes of periphery (smalld). Then there are many more edges between the core and the periphery
than inside the periphery (b, c > d). This is exactly what we see. Many edges are inside the core (large
a), there are very few edges among the periphery nodes (smalld), while there are relatively many edges
connecting the core with the periphery (b, c are relatively large). And in spirit of Kronecker graphs the
structure repeats recursively — core has again the dense core and theperiphery, and so on. And similarly
the periphery itself has the core and the periphery.

This suggest an “onion” like network structure as illustrated in Figure5.24(c), where the network is com-
posed of denser and denser layers as one moves towards the center ofthe network. We also observe similar
structure of the Kronecker initiator when fitting3 × 3 or 4 × 4 initiator matrix. The diagonal elements
have large but decreasing values with off diagonal elements following samedecreasing pattern.

One of the implications of this is that networks do not break nicely into hierarchically organized sets of
communities that nicely allow themselves to partitioning and community identification algorithms. On
contrary, this suggests that large networks can be decomposed into a densely linked core with many small
periphery pieces hanging off the core. This is in accordance with our recent results [Leskovec et al.,
2008b], that make similar observation (but based on a completely different methodology) about the struc-
ture of large real-world networks. We further explore this in greater detail in chapter10.

5.8 Conclusion

In conclusion, the main contribution of this work is a family of models of network structure that uses a
non-traditional matrix operation, theKronecker product. The resulting graphs (a) have all the static prop-
erties (heavy-tailed degree distribution, small diameter, etc.), (b) all the temporal properties (densification,
shrinking diameter) that are found in real networks. And in addition, (c) we can formally prove all of these
properties.

Several of the proofs are extremely simple, thanks to the rich theory of Kronecker multiplication. We also
provide proofs about the diameter and effective diameter, and we show that Stochastic Kronecker Graphs
can mimic real graphs well.

Moreover, we also presented KRONFIT, a fast, scalable algorithm to estimate Stochastic Kronecker ini-
tiator, which can be then used to create a synthetic graph that mimics the properties of a given real net-
work.

In contrast to earlier work, our work has the following novelties: (a) it is among the few that estimates the
parameters of the chosen generator in a principled way, (b) it is among the few that has a concrete measure
of goodness of the fit (namely, the likelihood), (c) it avoids the quadratic complexity of computing the
likelihood by exploiting the properties of the Kronecker graphs, and (d) itavoids the factorial explosion
of the node correspondence problem, by using the Metropolis sampling.

The resulting algorithm matches well all the known properties of real graphs, as we show with the Epinions
graph and the AS graph, it scales linearly on the number of edges, and it isorders of magnitudes faster
than earlier graph-fitting attempts: 20 minutes on a commodity PC, versus 2 days on a cluster of 50
workstations [Beźakov́a et al., 2006].

The benefits of fitting a Kronecker graph model into a real graph are several:
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• Extrapolation: Once we have the Kronecker generatorΘ for a given real matrixG (such thatG is
mimicked byΘ[k]), a larger version ofG can be generated byΘ[k+1].

• Null-model: When analyzing a real networkG one often needs to asses the significance of the
observation.Θ[k] that mimicsG can be used as an accurate model ofG.

• Network structure: fitted parameters give insight into the global network and community structure
of the network.

• Forecasting: As we demonstrated one can obtainΘ from a graphGt at time t such thatG is
mimicked byΘ[k]. ThenΘ can be used to model the structure ofGt+x in the future.

• Sampling: Similarly, if we want a realistic sample of the real graph, we could use a smallerexponent
in the Kronecker exponentiation, likeΘ[k−1].

• Anonymization: SinceΘ[k] mimicsG, we can publishΘ[k], without revealing information about the
nodes of the real graphG.
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Part 1 – Network evolution: Conclusion

Despite the enormous recent interest in large-scale network data, and therange of interesting patterns
identified for static snapshots of graphs (e.g., heavy-tailed distributions, small-world phenomena), there
has been relatively little work on the properties of the time evolution of real graphs. This was exactly the
focus of this part of the thesis.

Observations: In contrast to the standard modeling assumption that the average out-degree remains con-
stant over time, we discovered that real graphs have out-degrees thatgrow over time, following aDensifi-
cation power law. Moreover, our experiments also show that the standard assumption of slowly growing
diameters does not hold in a range of real networks; rather, thediametermay actually exhibit agradual
decreaseas the network grows. We then developed the Forest Fire Model, based on only two parame-
ters, where the observed patterns naturallyemergefrom simple local rules that govern individual edge
creation.

Models: We then presented a detailed study of network evolution by analyzing four large online social
networks with full temporal information about individual node and edge arrivals. The use of themaximum-
likelihoodprinciple allowed us to quantify the bias of new edges towards the degree and age of nodes, and
to objectively compare various models such as preferential attachment. In fact, our work is the first to
directly quantify the amount of preferential attachment that occurs in largesocial networks. Based on
our observations, we derived an extremely simple yet surprisingly accurate model of network evolution,
thatfully specifies three essential processestaking place in evolving networks: (a) node arrivals, (b) edges
arrivals, and (c) edge placement.

Algorithms : Last, we presented a family of models of network structure that uses a non-traditional ma-
trix operation, theKronecker product. We show that resulting graphs (a) have all the static properties
(heavy-tailed degree distribution, small diameter), (b) all the temporal properties (densification, shrinking
diameter), and in addition, (c) we can formally prove all of these properties. Moreover, we also pre-
sented KRONFIT, a fast, scalable algorithm to estimate Kronecker initiator, which can be then used to
create a synthetic graph that mimics the properties of a given real graph. Naive approach to fitting would
take super-exponential time, while KRONFIT takeslinear time, by exploiting the structure of Kronecker
matrix multiplication and by using sampling. In contrast to earlier work, Kronecker graphs aremathemat-
ically tractablemodel of network generation satisfying many real network properties, while we can also
efficiently fit it to graphs on millions of nodes and edges.
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Part II

Network cascades

How do influence and information spread over
the network, and

how to detect this quickly?
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Part 2 – Network cascades: Overview

A basic premise behind the study of social networks is that interaction leads tocomplex collective behav-
ior. Cascades are a form of collective behavior that has been analyzed both empirically and theoretically,
but for which the study of complete, large-scale datasets has been limited. Here we show that cascades
exist in a large real-world networks, and investigate some of their structural features.

We present two studies of diffusion and cascading behavior in networks, where for the first time we are
able to directly measure millions of propagations individually.

Observations: First, we study the influence and recommendation propagation in a large viralmarketing
network. And then present our work on the information propagation on theweb and the cascades this
process results in. We make observations on the sizes,shapes, and temporal characteristics of the cascades.
We also explore what product and recommendation network factors play arole in the propagation and
purchases of products, and notice that the human adoption curve followsdiminishing returnstrend, as
opposed to the critical threshold conjecture.

Models: We also analyzed one of the largest available collections of blog information.We investigate
how blogs behave and howinformation propagatesthrough the blogosphere. We develop a simple but
accurate model of information propagation on the blogosphere. In contrast with viral marketing stars and
chains are basic components of blog cascades, with stars being more common.

Algorithms: As we observe the cascades spreading through the network a natural question is how to
detect them effectively. For example, given a water distribution network,where should we place sensors
to quickly detect contaminants? Or, which blogs should we read to avoid missingimportant stories? These
seemingly different problems share common structure:Outbreak detectioncan be modeled as selecting
nodes (sensor locations, blogs) in a network, in order to detect the spreading of a virus or information as
quickly as possible. We present a general methodology fornear optimalsensor placement in these and
related problems. We demonstrate that many realistic outbreak detection objectives exhibit the property of
“submodularity”. We exploit submodularity to develop an efficient algorithm that scales to large problems,
achieving near optimal placements, while being700 timesfaster than a simple greedy algorithm. We also
derive online bounds on the quality of the placements obtained byany algorithm. Our algorithms and
bounds also handle cases where nodes (sensor locations, blogs) have different costs.
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Chapter 6

Diffusion and cascading behavior in viral
marketing

6.1 Introduction

With consumers showing increasing resistance to traditional forms of advertising such as TV or newspa-
per ads, marketers have turned to alternate strategies, including viral marketing. Viral marketing exploits
existing social networks by encouraging customers to share product information with their friends. Previ-
ously, a few in depth studies have shown that social networks affect theadoption of individual innovations
and products (for a review see [Rogers, 1995] or [Strang and Soule, 1998]). But until recently it has been
difficult to measure how influential person-to-person recommendations actually are over a wide range of
products. Moreover, Subramani and Rajagopalan [Subramani and Rajagopalan, 2003] noted that “there
needs to be a greater understanding of the contexts in which viral marketingstrategy works and the char-
acteristics of products and services for which it is most effective. This isparticularly important because
the inappropriate use of viral marketing can be counterproductive by creating unfavorable attitudes to-
wards products. What is missing is an analysis of viral marketing that highlights systematic patterns in the
nature of knowledge-sharing and persuasion by influencers and responses by recipients in online social
networks.”

Here we were able to in detail study the above mentioned problem. We were ableto directly measure and
model the effectiveness of recommendations by studying one online retailer’s incentivised viral marketing
program. The website gave discounts to customers recommending any of its products to others, and then
tracked the resulting purchases and additional recommendations.

Although word of mouth can be a powerful factor influencing purchasingdecisions, it can be tricky for
advertisers to tap into. Some services used by individuals to communicate are natural candidates for
viral marketing, because the product can be observed or advertised as part of the communication. Email
services such as Hotmail and Yahoo had very fast adoption curves because every email sent through them
contained an advertisement for the service and because they were free. Hotmail spent a mere $50,000 on
traditional marketing and still grew from zero to 12 million users in 18 months [Jurvetson, 2000]. The
Hotmail user base grew faster than any media company in history – faster thanCNN, faster than AOL,
even faster than Seinfeld’s audience. By mid-2000, Hotmail had over 66 million users with 270,000 new
accounts being established each day [Bronson, 1998]. Google’s Gmail also captured a significant part of
market share in spite of the fact that theonlyway to sign up for the service was through a referral.
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Most products cannot be advertised in such a direct way. At the same time the choice of products available
to consumers has increased manyfold thanks to online retailers who can supply a much wider variety of
products than traditional brick-and-mortar stores. Not only is the variety of products larger, but one
observes a ‘fat tail’ phenomenon, where a large fraction of purchases are of relatively obscure items. On
Amazon.com, somewhere between 20 to 40 percent of unit sales fall outsideof its top 100,000 ranked
products [Brynjolfsson et al., 2003]. Rhapsody, a streaming-music service, streams more tracks outside
than inside its top 10,000 tunes [Anonymous, 2005]. Some argue that the presence of the long tail indicates
that niche products with low sales are contributing significantly to overall sales online.

We find that product purchases that result from recommendations are not far from the usual 80-20 rule.
The rule states that the top twenty percent of the products account for 80percent of the sales. In our case
the top 20% of the products contribute to about half the sales.

Effectively advertising these niche products using traditional advertisingapproaches is impractical. There-
fore using more targeted marketing approaches is advantageous both to themerchant and the consumer,
who would benefit from learning about new products.

The problem is partly addressed by the advent of online product and merchant reviews, both at retail sites
such as EBay and Amazon, and specialized product comparison sites such as Epinions and CNET. Of
further help to the consumer are collaborative filtering recommendations of the form “people who boughtx
also boughty” feature [Linden et al., 2003]. These refinements help consumers discover new products and
receive more accurate evaluations, but they cannot completely substitute personalized recommendations
that one receives from a friend or relative. It is human nature to be moreinterested in what a friend buys
than what an anonymous person buys, to be more likely to trust their opinion,and to be more influenced
by their actions. As one would expect our friends are also acquainted withour needs and tastes, and can
make appropriate recommendations. A Lucid Marketing survey found that 68% of individuals consulted
friends and relatives before purchasing home electronics – more than thehalf who used search engines to
find product information [Burke, 2003].

In our study we are able to directly observe the effectiveness of person to person word of mouth advertising
for hundreds of thousands of products for the first time. We find that most recommendation chains do not
grow very large, often terminating with the initial purchase of a product. However, occasionally a product
will propagate through a very active recommendation network. We propose a simple stochastic model that
seems to explain the propagation of recommendations.

Moreover, the characteristics of recommendation networks influence the purchase patterns of their mem-
bers. For example, individuals’ likelihood of purchasing a product initiallyincreases as they receive addi-
tional recommendations, but a saturation point is quickly reached. Interestingly, as more recommendations
are sent between the same two individuals, the likelihood that they will be heeded decreases.

We find that communities (automatically found by a community finding algorithm) were usually centered
around a product group, such as books, music, or DVDs, but almost all of them shared recommendations
for all types of products. We also find patterns of homophily, the tendencyof like to associate with like,
with communities of customers recommending types of products reflecting their common interests.

We propose models to identify products for which viral marketing is effective: We find that the category
and price of product plays a role, with recommendations of expensive products of interest to small, well
connected communities resulting in a purchase more often. We also observe patterns in the timing of
recommendations and purchases corresponding to times of day when people are likely to be shopping
online or reading email.
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We report on these and other findings in the following sections. We first survey the related work in
section6.2. We then describe the characteristics of the incentivised recommendations program and the
dataset in section6.3. Section6.3.3studies the temporal and static characteristics of the recommenda-
tion network. We investigate the propagation of recommendations and model the cascading behavior in
section6.4. Next we concentrate on the various aspects of the recommendation success from the view-
point of the sender and the recipient of the recommendation in section6.5. The timing and the time lag
between the recommendations and purchases is studied in section6.6. We study network communities,
product characteristics and the purchasing behavior in section6.7. Last, in section6.8we present a model
that relates product characteristics and the surrounding recommendationnetwork to predict the product
recommendation success. We discuss the implications of our findings and conclude in section6.10.

6.2 Connection to viral marketing

Viral marketing can be thought of as a diffusion of information about the product and its adoption over
the network. Primarily in social sciences there is a long history of the research on the influence of social
networks on innovation and product diffusion. However, such studieshave been typically limited to small
networks and typically a single product or service. For example, Brown and Reingen [Brown and Reingen,
1987] interviewed the families of students being instructed by three piano teachers, in order to find out the
network of referrals. They found that strong ties, those between family or friends, were more likely to be
activated for information flow and were also more influential than weak ties [Granovetter, 1973] between
acquaintances. Similar observations were also made by DeBruyn and Lilien in[DeBruyn and Lilien,
2004] in the context of electronic referrals. They found that characteristicsof the social tie influenced
recipients’ behavior but had different effects at different stages of decision making process: tie strength
facilitates awareness, perceptual affinity triggers recipients’ interest, and demographic similarity had a
positive influence on each stage of the decision-making process.

Social networks can be composed by using various information,i.e., geographic similarity, age, similar
interests and so on. Yang and Allenby [Yang and Allenby, 2003] showed that the geographically defined
network of consumers is more useful than the demographic network for explaining consumer behavior
in purchasing Japanese cars. A recent study by Hill et al. [Hill et al., 2006] found that adding network
information, specifically whether a potential customer was already “talking to”an existing customer, was
predictive of the chances of adoption of a new phone service option. For the customers linked to a prior
customer the adoption rate was 3–5 times greater than the baseline.

Factors that influence customers’ willingness to actively share the information with others via word of
mouth have also been studied. Frenzen and Nakamoto [Frenzen and Nakamoto, 1993] surveyed a group
of people and found that the stronger the moral hazard presented by theinformation, the stronger the
ties must be to foster information propagation. Also, the network structure and information character-
istics interact when individuals form decisions about transmitting information.Bowman and Narayan-
das [Bowman and Narayandas, 2001] found that self-reported loyal customers were more likely to talk to
others about the products when they were dissatisfied, but not more likelywhen they were satisfied.

In the context of the internet word-of-mouth advertising is not restricted topairwise or small-group in-
teractions between individuals. Rather, customers can share their experiences and opinions regarding
a product with everyone. Quantitative marketing techniques have been proposed [Montgomery, 2001]
to describe product information flow online, and the rating of products andmerchants has been shown
to effect the likelihood of an item being bought [Resnick and Zeckhauser, 2002, Chevalier and Mayzlin,
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2006]. More sophisticated online recommendation systems allow users to rate others’ reviews, or di-
rectly rate other reviewers to implicitly form a trusted reviewer network that mayhave very little over-
lap with a person’s actual social circle. Richardson and Domingos [Domingos and Richardson, 2001,
Richardson and Domingos, 2002b] used Epinions’ trusted reviewer network to construct an algorithm to
maximize viral marketing efficiency assuming that individuals’ probability of purchasing a product de-
pends on the opinions on the trusted peers in their network. Kempe, Kleinberg and Tardos [Kempe et al.,
2003] have followed up on Richardson and Domingos’ challenge of maximizing viral information spread
by evaluating several algorithms given various models of adoption we discuss next.

Most of the previous research on the flow of information and influence through the networks has been
done in the context of epidemiology and the spread of diseases over the network. See the works of Bai-
ley [Bailey, 1975] and Anderson and May [Anderson and May, 2002] for reviews of this area. The classi-
cal disease propagation models are based on the stages of a disease in a host: a person is firstsusceptible
to a disease, then if she is exposed to an infectious contact she can becomeinfectedand thusinfectious.
After the disease ceases the person isrecoveredor removed. The person is thenimmunefor some pe-
riod. The immunity can also wear off and the person becomes again susceptible. Thus SIR (susceptible –
infected – recovered) models diseases where a recovered person never again becomes susceptible, while
SIRS (SIS, susceptible – infected – (recovered) – susceptible) models population in which recovered host
can become susceptible again. Given a network and a set of infected nodes theepidemic thresholdis
studied,i.e., conditions under which the disease will either dominate or die out. In our case SIR model
would correspond to the case where a set of initially infected nodes corresponds to people that purchased a
product without first receiving the recommendations. A node can purchase a product only once, and then
tries to infect its neighbors with a purchase by sending out the recommendations. SIS model corresponds
to the less realistic case where a person can purchase a product multiple timesas a result of multiple
recommendations. The problem with these type of models is that they assume a known social network
over which the diseases (product recommendations) are spreading andusually a single parameter which
specifies the infectiousness of the disease. In our context this would meanthat the whole population is
equally susceptible to recommendations of a particular product.

There are numerous other models of influence spread in social networks. One of the first and most influ-
ential diffusion models was proposed by Bass [Bass, 1969]. The model of product diffusion predicts the
number of people who will adopt an innovation over time. It does not explicitlyaccount for the structure
of the social network but it rather assumes that the rate of adoption is a function of the current proportion
of the population who have already adopted (purchased a product in our case). The diffusion equation
models the cumulative proportion of adopters in the population as a function ofthe intrinsic adoption rate,
and a measure of social contagion. The model describes an S-shaped curve, where adoption is slow at first,
takes off exponentially and flattens at the end. It can effectively model word-of-mouth product diffusion
at the aggregate level, but not at the level of an individual person, which is one of the topics we explore in
this chapter.

Diffusion models that try to model the process of adoption of an idea or a product can generally be divided
into two groups:

• Threshold model[Granovetter, 1978] where each node in the network has a thresholdt ∈ [0, 1],
typically drawn from some probability distribution. We also assignconnection weightswu,v on the
edges of the network. A node adopts the behavior if a sum of the connection weights of its neighbors
that already adopted the behavior (purchased a product in our case)is greater than the threshold:
t ≤∑adopters(u) wu,v.
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• Cascade model[Goldenberg et al., 2001] where whenever a neighborv of nodeu adopts, then node
u also adopts with probabilitypu,v. In other words, every time a neighbor ofu purchases a product,
there is a chance thatu will decide to purchase as well.

In the independent cascade model, Goldenberg et al. [Goldenberg et al., 2001] simulated the spread of
information on an artificially generated network topology that consisted both of strong ties within groups
of spatially proximate nodes and weak ties between the groups. They foundthat weak ties were important
to the rate of information diffusion. Centola and Macy [Centola and Macy, 2005] modeled product adop-
tion on small world topologies when a person’s chance of adoption is dependent on having more than one
contact who had previously adopted. Wu and Huberman [Wu and Huberman, 2004b] modeled opinion
formation on different network topologies, and found that if highly connected nodes were seeded with a
particular opinion, this would proportionally effect the long term distribution of opinions in the network.
Holme and Newman [Holme and Newman, 2006] introduced a model where individuals’ preferences are
shaped by their social networks, but their choices of whom to include in their social network are also
influenced by their preferences.

While these models address the question of how influence spreads in a network, they are based onassumed
rather thanmeasuredinfluence effects. In contrast, our study tracks the actual diffusion ofrecommenda-
tions through email, allowing us to quantify the importance of factors such as thepresence of highly
connected individuals, or the effect of receiving recommendations from multiple contacts. Compared
to previous empirical studies which tracked the adoption of a single innovationor product, our data en-
compasses over half a million different products, allowing us to model a product’s suitability for viral
marketing in terms of both the properties of the network and the product itself.

6.3 The recommendation network

Here we briefly describe our viral marketing dataset and the properties of the recommendation net-
work.

6.3.1 Recommendation program and dataset description

Our analysis focuses on the recommendation referral program run by alarge retailer. The program rules
were as follows. Each time a person purchases a book, music, or a movie heor she is given the option
of sending emails recommending the item to friends. The first person to purchase the same item through
a referral link in the email gets a 10% discount. When this happens the sender of the recommendation
receives a 10% credit on their purchase.

The following information is recorded for each recommendation

1. Sender Customer ID (shadowed)

2. Receiver Customer ID (shadowed)

3. Date of Sending

4. Purchase flag (buy-bit)

5. Purchase Date (error-prone due to asynchrony in the servers)
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SYMBOL DESCRIPTION

np Number of products
Ns Number of senders of recommendations
Nr Number of recommendation receivers
N Number of nodes,N = Ns ∪Nr

rr Number of recommendations
E Number of edges,i.e., unique pairs of nodes that exchanged recommendatios
buy-bit Whether a recommendation results in a purchase that received discount
bb Number of purchases with buy-bit turned on
buy-edge If a node got a recommendation and then sent another one then it must havebought
be Number of purchases as determined via buy-edges
Nc Number of nodes in the largest weakly connected component
rc Number of recommendation in the largest component
Ec Number of edges in largest component
cc Fraction of nodes in largest connected component,cc = 100Nc/N
γ Power law degree exponent,p(d) ∝ d−γ

Nt Size of the cascade at timet
pt Probability of a recommendation causing a purchase
rp1 Average number of reviews per product in 2001–2003
vav Average star rating
cav Average number of people recommending a product
pm Median product price
br Purchases per recommender,br = (bb + be)/r

Table 6.1: Table of symbols.

6. Product identifier

7. Price

The recommendation dataset consists of 15,646,121 recommendations made among 3,943,084 distinct
users. The data was collected from June 5 2001 to May 16 2003. In total, 548,523 products were recom-
mended, 99% of them belonging to 4 main product groups: Books, DVDs, Music and Videos. In addition
to recommendation data, we also crawled the retailer’s website to obtain product categories, reviews and
ratings for all products. Of the products in our data set, 5813 (1%) werediscontinued (the retailer no
longer provided any information about them).

Although the data gives us a detailed and accurate view of recommendation dynamics, it does have its
limitations. The only indication of the success of a recommendation is the observation of the recipient
purchasing the product through the same vendor. We have no way of knowing if the person had decided in-
stead to purchase elsewhere, borrow, or otherwise obtain the product.The delivery of the recommendation
is also somewhat different from one person simply telling another about a product they enjoy, possibly
in the context of a broader discussion of similar products. The recommendation is received as a form
email including information about the discount program. Someone reading theemail might consider it
spam, or at least deem it less important than a recommendation given in the context of a conversation. The
recipient may also doubt whether the friend is recommending the product because they think the recipient
might enjoy it, or are simply trying to get a discount for themselves. Finally, because the recommendation
takes place before the recommender receives the product, it might not bebased on a direct observation of
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the product. Nevertheless, we believe that these recommendation networksare reflective of the nature of
word of mouth advertising, and give us key insights into the influence of social networks on purchasing
decisions.

6.3.2 Identifying successful recommendations

For each recommendation, the dataset includes information about the recommended product, sender and
received or the recommendation, and most importantly, the success of recommendation. See section6.3.1
for more details.

We represent this data set as a directed multi graph. The nodes represent customers, and a directed edge
contains all the information about the recommendation. The edge(i, j, p, t) indicates thati recommended
productp to customerj at timet. Note that as there can be multiple recommendations between the persons
(even on the same product) there can be multiple edges between two nodes.

The typical process generating edges in the recommendation network is as follows: a nodei first buys a
productp at timet and then it recommends it to nodesj1, . . . , jn. Thej nodes can then buy the product
and further recommend it. The only way for a node to recommend a product isto first buy it. Note
that even if all nodesj buy a product, only the edge to the nodejk that first made the purchase (within
a week after the recommendation) will be marked by abuy-bit. Because the buy-bit is set only for the
first person who acts on a recommendation, we identify additional purchases by the presence of outgoing
recommendations for a person, since all recommendations must beprecededby a purchase. We call
this type of evidence of purchase abuy-edge. Note that buy-edges provide only a lower bound on the
total number of purchases without discounts. It is possible for a customerto not be the first to act on a
recommendation and also to not recommend the product to others. Unfortunately, this was not recorded in
the data set. We consider, however, the buy-bits and buy-edges as proxies for the total number of purchases
through recommendations.

As mentioned above the first buyer only gets a discount (the buy-bit is turned on) if the purchase is
made within one week of the recommendation. In order to account for as manypurchases as possible,
we consider all purchases where the recommendation preceded the purchase (buy-edge) regardless of the
time difference between the two events.

To avoid confusion we will refer to edges in a multi graph as recommendations(or multi-edges) — there
can be more than one recommendation between a pair of nodes. We will use theterm edge (or unique
edge) to refer to edges in the usual sense,i.e., there is only one edge between a pair of people. And, to get
from recommendations to edges we create an edge between a pair of peopleif they exchanged at least one
recommendation.

6.3.3 Properties of the recommendation network

For each product group we took recommendations on all products from the group and created a network.
Table6.2 shows the sizes of various product group recommendation networks withnp being the total
number of products in the product group,N the total number of nodes spanned by the group recommen-
dation network, andrr the number of recommendations (there can be multiple recommendations between
two nodes). ColumnE shows the number of (unique) edges – disregarding multiple recommendations
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Group np N rr E bb be

Book 103,161 2,863,977 5,741,611 2,097,809 65,344 17,769
DVD 19,829 805,285 8,180,393 962,341 17,232 58,189
Music 393,598 794,148 1,443,847 585,738 7,837 2,739
Video 26,131 239,583 280,270 160,683 909 467
Full network 542,719 3,943,084 15,646,121 3,153,676 91,322 79,164

Table 6.2: Product group recommendation statistics.np: number of products,N : number of nodes,rr:
number of recommendations,E: number of edges,bb: number of buy bits,be: number of buy
edges.

Group Nc rc Ec bbc bec

Book 53,681 933,988 184,188 1,919 1,921
DVD 39,699 6,903,087 442,747 6,199 41,744
Music 22,044 295,543 82,844 348 456
Video 4,964 23,555 15,331 2 74
Full network 100,460 8,283,753 521,803 8,468 44,195

Table 6.3: Statistics for the largest connected component of each product group.Nc: number of nodes
in largest connected component,rc: number recommendations in the component,Ec: number
of edges in the component,bbc: number of buy bits,bec: number of buy edges in the largest
connected component, andbbc and bec are the number of purchase through a buy-bit and a
buy-edge, respectively.

between the same source and recipient (i.e., number of pairs of people that exchanged at least one recom-
mendation).

In terms of the number of different items, there are by far the most music CDs,followed by books and
videos. There is a surprisingly small number of DVD titles. On the other hand,DVDs account for more
half of all recommendations in the dataset. The DVD network is also the most dense, having about 10
recommendations per node, while books and music have about 2 recommendations per node and videos
have only a bit more than 1 recommendation per node.

Music recommendations reached about the same number of people as DVDs but used more than 5 times
fewer recommendations to achieve the same coverage of the nodes. Book recommendations reached by
far the most people – 2.8 million. Notice that all networks have a very small number of unique edges. For
books, videos and music the number of unique edges is smaller than the numberof nodes – this suggests
that the networks are highly disconnected [Erdős and Ŕenyi, 1960].

Back to table6.2: given the total number of recommendationsrr and purchases (bb + be) influenced by
recommendations we can estimate how many recommendations need to be independently sent over the
network to induce a new purchase. Using this metric books have the most influential recommendations
followed by DVDs and music. For books one out of 69 recommendations resulted in a purchase. For
DVDs it increases to 108 recommendations per purchase and further increases to 136 for music and 203
for video.

Table6.3gives more insight into the structure of the largest connected component ofeach product group’s
recommendation network. We performed the same measurements as in table6.2with the difference being
that we did not use the whole network but only its largest weakly connectedcomponent. The table shows
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Figure 6.1: (a) The size of the largest connected component of customersover time. The inset shows the
linear growth in the number of customersN over time.

the number of nodesN , the number of recommendationsrc, and the number of (unique) edgesEc in
the largest component. The last two columns (bbc andbec) show the number of purchases resulting in
a discount (buy-bit,bbc) and the number of purchases through buy-edges (bec) in the largest connected
component.

First, notice that the largest connected components are very small. DVDs have the largest - containing
4.9% of the nodes, books have the smallest at 1.78%. One would also expect that the fraction of the
recommendations in the largest component would be proportional to its size. We notice that this is not
the case. For example, the largest component in the full recommendation network contains 2.54% of the
nodes and 52.9% of all recommendations, which is the result of heavy bias inDVD recommendations.
Breaking this down by product categories we see that for DVDs 84.3% ofthe recommendations are in
the largest component (which contains 4.9% of all DVD nodes), vs. 16.3%for book recommendations
(component size 1.79%), 20.5% for music recommendations (component size2.77%), and 8.4% for video
recommendations (component size 2.1%). This shows that the dynamic in the largest component is very
much different from the rest of the network. Especially for DVDs we cansee that a very small fraction of
users generated most of the recommendations.

6.3.4 Recommendation network over time

The recommendations that occurred were exchanged over an existing underlying social network. In the
real world, it is estimated that any two people on the globe are connected via ashort chain of acquaintances
- popularly known as the small world phenomenon [Travers and Milgram, 1969]. We examined whether
the edges formed by aggregating recommendations over all products wouldsimilarly yield a small world
network, even though they represent only a small fraction of a person’s complete social network. We
measured the growth of the largest weakly connected component over time,shown in Figure6.1. Within
the weakly connected component, any node can be reached from any other node by traversing (undirected)
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(a) LCC growth (b) Sender in LCC (c) Sender outside LCC

Figure 6.2: Growth of the largest connected component (LCC). (a) the distribution of sizes of components
when they are merged into the largest connected component. (b) same as (a), but restricted
to cases when a member of the LCC sends a recommendation to someone outside the largest
component. (c) a sender outside the largest component sendsa recommendation to a member
of the component.

edges. For example, ifu recommended productx to v, andw recommended producty to v, thenu andw
are linked through one intermediary and thus belong to the same weakly connected component. Note that
connected components do not necessarily correspond to communities (clusters) which we often think of
as densely linked parts of the networks. Nodes belong to same component ifthey can reach each other via
an undirected path regardless of how densely they are linked.

Figure6.1 shows the size of the largest connected component, as a fraction of the total network. The
largest component is very small over all time. Even though we compose the network using all the rec-
ommendations in the dataset, the largest connected component contains less than 2.5% (100,420) of the
nodes, and the second largest component has only600 nodes. Still, some smaller communities, number-
ing in the tens of thousands of purchasers of DVDs in categories such aswesterns, classics and Japanese
animated films (anime), had connected components spanning about 20% of their members.

The insert in figure6.1shows the growth of the customer base over time. Surprisingly it was linear, adding
on average 165,000 new users each month, which is an indication that the service itself was not spreading
epidemically. Further evidence of non-viral spread is provided by the relatively high percentage (94%) of
users who made their first recommendation without having previously received one.

Growth of the largest connected component

Next, we examine the growth of the largest connected component (LCC). In figure6.1 we saw that the
largest component seems to grow quadratically over time, but at the end of the data collection period is
still very small,i.e., only 2.5% of the nodes belong to largest weakly connected component. Here we are
not interested in how fast the largest component grows over time but rather how big other components are
when they get merged into the largest component. Also, since our graph is directed we are interested in
determining whether smaller components become attached to the largest component by a recommendation
sent from inside of the largest component. One can think of these recommendations as being tentacles
reaching out of largest component to attach smaller components. The otherpossibility is that the recom-
mendation comes from a node outside the component to a member of the largest component and thus the
initiative to attach comes from outside the largest component.
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We look at whether the largest component grows gradually, adding nodes one by one as the members
send out more recommendations, or whether a new recommendation might act as a bridge to a compo-
nent consisting of several nodes who are already linked by their previous recommendations. To this end
we measure the distribution of a component’s size when it gets merged to the largest weakly connected
component.

We operate under the following setting. Recommendations are arriving overtime one by one creating
edges between the nodes of the network. As more edges are being addedthe size of largest connected
component grows. We keep track of the currently largest component, and measure how big the separate
components are when they get attached to the largest component.

Figure6.2(a) shows the distribution of merged connected component (CC) sizes. Onthe x-axis we plot
the component size (number of nodesN ) and on the y-axis the number of components of sizeN that
were merged over time with the largest component. We see that a majority of the time asingle node
(component of size 1) merged with the currently largest component. On the other extreme is the case
when a component of1, 568 nodes merged with the largest component.

Interestingly, out of all merged components, in 77% of the cases the source of the recommendation comes
from inside the largest component, while in the remaining 23% of the cases it is the smaller component
that attaches itself to the largest one. Figure6.2(b) shows the distribution of component sizes only for
the case when the sender of the recommendation was a member of the largest component,i.e., the small
component was attached from the largest component. Lastly, Figure6.2(c) shows the distribution for the
opposite case when the sender of the recommendation was not a member of thelargest component,i.e.,
the small component attached itself to the largest.

Also notice that in all cases the distribution of merged component sizes followsa heavy-tailed distribution.
We fit a power law distribution and note the power law exponent of 1.90 (fig.6.2(a)) when considering all
merged components. Limiting the analysis to the cases where the source of the edge that attached a small
component to the largest is in the largest component we obtain power law exponent of 1.96 (fig.6.2(b)),
and when the edge originated from the small component to attached it to the largest, the power law expo-
nent is 1.76. This shows that even though in most cases the LCC absorbs the small component, we see that
components that attach themselves to the LCC tend to be larger (smaller power lawexponent) than those
attracted by the LCC. This means that the component sometimes grows a bit before it attaches itself to
the largest component. Intuitively, an individual node can get attached tothe largest component simply by
passively receiving a recommendation. But if it is the outside node that sends a recommendation to some-
one in the giant component, it is already an active recommender and could therefore have recommended
to several others previously, thus forming a slightly bigger component thatis then merged.

From these experiments we see that the largest component is very active,adding smaller components by
generating new recommendations. Most of the time these newly merged components are quite small, but
occasionally sizable components are attached.

6.3.5 Preliminary observations and discussion

Even with these simple counts and experiments we can already make a few observations. It seems that
some people got quite heavily involved in the recommendation program, and thatthey tended to recom-
mend a large number of products to the same set of friends (since the numberof unique edges is so small
as shown on table6.2). This means that people tend to buy more DVDs and also like to recommend
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Figure 6.3: Examples of two product recommendation networks: (a) Firstaid study guideFirst Aid for
the USMLE Step, (b) Japanese graphic novel (manga)Oh My Goddess!: Mara Strikes Back.

them to their friends, while they seem to be more conservative with books. One possible reason is that
a book is a bigger time investment than a DVD: one usually needs several days to read a book, while a
DVD can be viewed in a single evening. Another factor may be how informed the customer is about the
product. DVDs, while fewer in number, are more heavily advertised on TV,billboards, and movie theater
previews. Furthermore, it is possible that a customer has already watcheda movie and is adding the DVD
to their collection. This could make them more confident in sending recommendations before viewing the
purchased DVD.

One external factor which may be affecting the recommendation patterns forDVDs is the existence of
referral websites (www.dvdtalk.com ). On these websites people, who want to buy a DVD and get
a discount, would ask for recommendations. This way there would be recommendations made between
people who don’t really know each other but rather have an economic incentive to cooperate.

In effect, the viral marketing program is altering, albeit briefly and most likely unintentionally, the struc-
ture of the social network it is spreading on. We were not able to find similar referral sharing sites for
books or CDs.

6.4 Propagation of recommendations

6.4.1 Forward recommendations

Not all people who accept a recommendation by making a purchase also decide to give recommendations.
In estimating what fraction of people that purchase also decide to recommendforward, we can only use
the nodes with purchases that resulted in a discount. Table6.4shows that only about a third of the people
that purchase also recommend the product forward. The ratio of forward recommendations is much higher
for DVDs than for other kinds of products. Videos also have a higher ratio of forward recommendations,
while books have the lowest. This shows that people are most keen on recommending movies, possibly
for the above mentioned reasons, while more conservative when recommending books and music.

Figure6.4 shows the cumulative out-degree distribution, that is the number of people who sent out at
leastkp recommendations, for a product. We fit a power law to all but the tail of the distribution. Also,
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Number of nodes
Group Purchases Forward Percent

Book 65,391 15,769 24.2
DVD 16,459 7,336 44.6
Music 7,843 1,824 23.3
Video 909 250 27.6
Total 90,602 25,179 27.8

Table 6.4: Fraction of people that purchase and also recommend forward. Purchases: number of nodes
that purchased as a result of receiving a recommendation.Forward: nodes that purchased and
then also recommended the product to others.
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Figure 6.4: The number of recommendations sent by a user with each curve representing a different depth
of the user in the recommendation chain. A power law exponentγ is fitted to all but the tail,
which shows an exponential drop-off at around 100 recommendations sent). This drop-off
is consistent across all depth levels, and may reflect eithera natural disinclination to send
recommendation to over a hundred people, or a technical issue that might have made it more
inconvenient to do so. The fitted lines follow the order of thelevel number (i.e., top line
corresponds to level 0 and bottom to level 4).

notice the exponential decay in the tail of the distribution which could be, amongother reasons, attributed
to the finite time horizon of our dataset. (Note that the reasons for exponential decay here are different
than in Chapter4 where we investigated microscopic network evolution. There the power law exponents
remained constant and the exponential decay factor got stronger as node degree increased.)

The figure6.4shows that the deeper an individual is in the cascade, if they choose to make recommenda-
tions, they tend to recommend to a greater number of people on average (the fitted line has smaller slope
γ, i.e., the distribution has higher variance). This effect is probably due to onlyvery heavily recommended
products producing large enough cascades to reach a certain depth. We also observe, as is shown in Ta-
ble6.5, that the probability of an individual making a recommendation at all (which can only occur if they
make a purchase), declines after an initial increase as one gets deeper into the cascade.
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level prob. buy & average
forward out-degree

0 N/A 1.99
1 0.0069 5.34
2 0.0149 24.43
3 0.0115 72.79
4 0.0082 111.75

Table 6.5: Statistics about individuals at different levels of the cascade.
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Figure 6.5: Distribution of the number of recommendations and number ofpurchases made by a customer.

6.4.2 Identifying cascades

As customers continue forwarding recommendations, they contribute to the formation of cascades. In
order to identify cascades,i.e., the “causal” propagation of recommendations, we tracksuccessful rec-
ommendationsas they influence purchases and further recommendations. We define a recommendation
to be successful if it reached a node before itsfirst purchase. We consider only the first purchase of an
item, because there are many cases when a person made multiple purchases of the same product, and in
between those purchases she may have received new recommendations.In this case one cannot conclude
that recommendations following the first purchase influenced the later purchases.

Each cascade is a network consisting of customers (nodes) who purchased the same product as a result of
each other’s recommendations (edges). We deletelate recommendations— all incoming recommenda-
tions that happened after the first purchase of the product. This way wemake the networktime increasing
or causal— for each node all incoming edges (recommendations) occurred beforeall outgoing edges.
Now each connected component represents a time obeying propagation ofrecommendations.

Figure 6.3 shows two typical product recommendation networks: (a) a medical study guide and (b) a
Japanese graphic novel. Throughout the dataset we observe very similar patters. Most product recommen-
dation networks consist of a large number of small disconnected componentswhere we do not observe
cascades. Then there is usually a small number of relatively small componentswith recommendations
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Figure 6.6: Size distribution of cascades (size of cascade vs. count). Bold line presents a power-fit.

successfully propagating. This observation is reflected in the heavy taileddistribution of cascade sizes
(see figure6.6), having a power law exponent close to 1 for DVDs in particular. We determined the power
law exponent by fitting a line on log-log scales using the least squares method.

We also notice bursts of recommendations (figure6.3(b)). Some nodes recommend to many friends,
forming a star like pattern. Figure6.5shows the distribution of the recommendations and purchases made
by a single node in the recommendation network. Notice the power law distributions and long flat tails.
The most active customer made 83,729 recommendations and purchased 4,416 different items. Finally, we
also sometimes observe “collisions”, where nodes receive recommendations from two or more sources.
A detailed enumeration and analysis of observed topological cascade patterns for this dataset is made in
section6.9.

Last, we examine the number of exchanged recommendations between a pair of people in figure6.7. Over-
all, 39% of pairs of people exchanged just a single recommendation. This number decreases for DVDs
to 37%, and increases for books to 45%. The distribution of the number of exchanged recommendations
follows a heavy tailed distribution. To get a better understanding of the distributions we show the power

155



10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

10
5

10
6

r
e
 (Number of exchanged recommendations)

N
(x

=
r e) 

(C
ou

nt
)

 

γ = −2.0

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

10
4

10
5

r
e
 (Number of exchanged recommendations)

N
(x

=
r e) 

(C
ou

nt
)

 

γ = −2.7

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

10
4

10
5

r
e
 (Number of exchanged recommendations)

N
(x

=
r e) 

(C
ou

nt
)

 

γ = −1.5

(a) All (b) Books (c) DVD

Figure 6.7: Distribution of the number of exchanged recommendations between pairs of people.

law decay lines. Notice that one gets much stronger decay exponent (distribution has weaker tail) of -2.7
for books and a very shallow power law exponent of -1.5 for DVDs. This means that even a pair of people
exchanges more DVD than book recommendations.

6.4.3 The recommendation propagation model

A simple model can help explain how the wide variance we observe in the numberof recommendations
made by individuals can lead to power laws in cascade sizes (figure6.6). The model assumes that each
recipient of a recommendation will forward it to others if its value exceeds anarbitrary threshold that the
individual sets for herself. Since exceeding this value is a probabilistic event, let’s callpt the probability
that at time stept the recommendation exceeds the threshold. In that case the number of recommendations
Nt+1 at time(t + 1) is given in terms of the number of recommendations at an earlier time by

Nt+1 = (1 + pt)Nt (6.1)

where the probabilitypt is defined over the unit interval.

Notice that, because of the probabilistic nature of the threshold being exceeded, one can only compute the
final distribution of recommendation chain lengths, which we now proceed to do.

Subtracting from both sides of this equation the termNt and diving by it we obtain

N(t+1) −Nt

Nt
= pt (6.2)

Summing both sides from the initial time to some very large timeT and assuming that for long times the
numerator is smaller than the denominator (a reasonable assumption) we get, upto a unit constant

∫
dN

N
≈
∑ N(t+1) −Nt

Nt
=
∑

pt (6.3)

The left hand integral is justln(N), and the right hand side is a sum of random variables, which in the limit
of a very large uncorrelated number of recommendations is normally distributed (central limit theorem).
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This observation was first made by Gibrat [Gibrat, 1931] to model the growth rates of firms and is known
as the Law of Proportional Effect or simply Gibrat’s Law.

So, this means that the logarithm of the number of messages is normally distributed. Or equivalently,
the number of messages passed is log-normally distributed. So, the probabilitydensity forN is given
by

P (N) =
1

N
√

2πσ2
exp
−(ln(N)− µ)2

2σ2
(6.4)

which, for large variances describes a behavior whereby the typical number of recommendations is small
(the mode of the distribution) but there are unlikely events of large chains ofrecommendations which are
also observable.

Furthermore, for large variances, the lognormal distribution can behavelike a power law for a range of
values. In order to see this, take the logarithms on both sides of the equation (equivalent to a log-log plot)
and one obtains

ln(P (N)) = − ln(N)− ln(
√

2πσ2)− (ln (N)− µ)2

2σ2
(6.5)

So, for largeσ, the last term of the right hand side goes to zero, and since the second term is a constant
one obtains a power law behavior with exponent value of minus one [Bi et al., 2001]. There are other
models which produce power law distributions of cascade sizes, but we present ours for its simplicity,
since it does not depend on network topology [Gruhl et al., 2004] or critical thresholds in the probability
of a recommendation being accepted [Watts, 2002]. Also, similar derivation of lognormal distribution can
be found in [Johnson et al., 1994] and is also known as the “law of proportional effect”.

6.5 Success of Recommendations

So far we only looked into the aggregate statistics of the recommendation network. Next, we ask questions
about the effectiveness of recommendations in the recommendation networkitself. First, we analyze the
probability of purchasing as one gets more and more recommendations. Next,we measure recommen-
dation effectiveness as two people exchange more and more recommendations. Lastly, we observe the
recommendation network from the perspective of the sender of the recommendation. Does a node that
makes more recommendations also influence more purchases?

6.5.1 Human adoption curve: the probability of buying versus number of incoming rec-
ommendations

First, we examine how the probability of purchasing changes as one gets more and more recommendations.
One would expect that a person is more likely to buy a product if she gets morerecommendations. On the
other had one would also think that there is a saturation point – if a person hasn’t bought a product after a
number of recommendations, they are not likely to change their minds after receiving even more of them.
So, how many recommendations are too many?

Figure6.8shows the probability of purchasing a product as a function of the numberof incoming recom-
mendations on the product. Because we exclude late recommendations, thosethat were received after the
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Figure 6.8: Probability of buying a book (DVD) given a number of incomingrecommendations. This
shows the human adoption curve has the diminishing returns property.

purchase, an individual counts as having received three recommendations only if they did not make a pur-
chase after the first two, and either purchased or did not receive further recommendations after receiving
the third one. As we move to higher numbers of incoming recommendations, the number of observations
drops rapidly. For example, there were 5 million cases with 1 incoming recommendation on a book, and
only 58 cases where a person got 20 incoming recommendations on a particular book. The maximum was
30 incoming recommendations. For these reasons we cut-off the plot when the number of observations
becomes too small and the error bars too large.

We calculate the purchase probabilities and the standard errors of the estimates which we use to plot the
error bars in the following way. We regard each point as a binomial random variable. Given the number
of observationsn, let m be the number of successes, andk (k = n −m) the number of failures. In our
case,m is the number of people that first purchased a product after receivingr recommendations on it,
andk is the number of people that received the total ofr recommendations on a product (till the end of
the dataset) but did purchase it, then the estimated probability of purchasing isp̂ = m/n and the standard
errorsp̂ of estimatêp is sp̂ =

√
p(1− p)/n.

Figure6.8(a) shows that, overall, book recommendations are rarely followed. Evenmore surprisingly, as
more and more recommendations are received, their success decreases. We observe a peak in probability
of buying at 2 incoming recommendations and then a slow drop. This implies that if aperson doesn’t
buy a book after the first recommendation, but receives another, they are more likely to be persuaded by
the second recommendation. But thereafter, they are less likely to respondto additional recommenda-
tions, possibly because they perceive them as spam, are less susceptibleto others’ opinions, have a strong
opinion on the particular product, or have a different means of accessing it.

For DVDs (figure6.8(b)) we observe a saturation around 10 incoming recommendations. This means
that with each additional recommendation, a person is more and more likely to be persuaded - up to a
point. After a person gets 10 recommendations on a particular DVD, their probability of buying does not
increase anymore. The number of observations is 2.5 million at 1 incoming recommendation and 100 at 60
incoming recommendations. The maximal number of received recommendations is172 (and that person
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did not buy), but someone purchased a DVD after 169 receiving recommendations. The different patterns
between book and DVD recommendations may be a result of the recommendationexchange websites
for DVDs. Someone receiving many DVD recommendations may have signed up to receive them for a
product they intended to purchase, and hence a greater number of received recommendations corresponds
to a higher likelihood of purchase (up to a point).

6.5.2 Success of subsequent recommendations

Next, we analyze how the effectiveness of recommendations changes asone received more and more
recommendations from the same person. A large number of exchanged recommendations can be a sign of
trust and influence, but a sender of too many recommendations can be perceived as a spammer. A person
who recommends only a few products will have her friends’ attention, but one who floods her friends with
all sorts of recommendations will start to loose her influence.

We measure the effectiveness of recommendations as a function of the totalnumber of previously received
recommendations from a particular node. We thus measure how spending changes over time, where time
is measured in the number of received recommendations.

We construct the experiment in the following way. For every recommendationr on some productp be-
tween nodesu and v, we first determine how many recommendations nodeu received fromv before
gettingr. Then we check whetherv, the recipient of recommendation, purchasedp after the recommen-
dationr arrived. If so, we count the recommendation as successful since it influenced the purchase. This
way we can calculate the recommendation success rate as more recommendations were exchanged. For
the experiment we consider only node pairs(u, v), where there were at least a total of 10 recommenda-
tions sent fromu to v. We perform the experiment using only recommendations from the same product
group.

We decided to set a lower limit on the number of exchanged recommendations sothat we can measure
how the effectiveness of recommendations changes as thesametwo people exchange more and more rec-
ommendations. Considering all pairs of people would heavily bias our findings since most pairs exchange
just a few or even just a single recommendation. Using the data from figure6.7we see that 91% of pairs of
people that exchange at least 1 recommendation exchange less than 10. For books this number increases
to 96%, and for DVDs it is even smaller (81%). In the DVD network there are182 thousand pairs that
exchanged more than 10 recommendations, and 70 thousand for the book network.

Figure6.9shows the probability of buying as a function of the total number of received recommendations
from a particular person up to that point. One can think of x-axis as measuring time where the unit is the
number of received recommendations from a particular person.

For books we observe that the effectiveness of recommendation remainsabout constant up to 3 exchanged
recommendations. As the number of exchanged recommendations increases, the probability of buying
starts to decrease to about half of the original value and then levels off. For DVDs we observe an im-
mediate and consistent drop. We performed the experiment also for video and music, but the number of
observations was too low and the measurements were noisy. This experimentshows that recommenda-
tions start to lose effect after more than two or three are passed between two people. Also, notice that the
effectiveness of book recommendations show in Figure6.9(a) decays much more slowly than that of DVD
recommendations (Figure6.9(b)), flattening out at around 20 recommendations, compared to around 10
DVD exchanged recommendations.
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Figure 6.9: The effectiveness of recommendations with the number of received recommendations.

This result has important implications for viral marketing practitioners as it shows that by providing too
much incentive for people to recommend to one another can weaken the verysocial network links that the
marketer is intending to exploit.

6.5.3 Success of outgoing recommendations

In previous sections we examined the data from the viewpoint of the receiver of the recommendation. Now
we look from the viewpoint of the sender. The two interesting questions are: how does the probability
of getting a 10% credit change with the number of outgoing recommendations; and given a number of
outgoing recommendations, how many purchases will they influence?

One would expect that recommendations would be the most effective when recommended to the right
subset of friends. If one is very selective and recommends to too few friends, then the chances of success
are slim. One the other hand, recommending to everyone and spamming them with recommendations may
have limited returns as well.

The top row of figure6.10 shows how the average number of purchases changes with the number of
outgoing recommendations. For books, music, and VHS videos the number ofpurchases soon saturates:
purchases grow fast up to around 10 outgoing recommendations and thenthe trend either slows down
or starts to drop. DVDs exhibit different behavior, with the expected number of purchases increasing
throughout.

These results are even more interesting since the receiver of the recommendation does not know how
many other people also received the recommendation. Thus the plots of figure6.10show that there are
interesting dependencies between the product characteristics and the recommender that manifest through
the number of recommendations sent. It could be the case that widely recommended products are not
suitable for viral marketing (we find something similar in section6.8.2), or that the recommender did not
put too much thought into who to send the recommendation to, or simply that peoplesoon start to ignore
mass recommenders.
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Figure 6.10: Top row: Number of resulting purchases given a number of outgoing recommendations.
Bottom row: Probability of getting a credit given a number ofoutgoing recommendations.

Plotting the probability of getting a 10% credit as a function of the number of outgoing recommendations,
as in the bottom row of figure6.10, we see that the success of DVD recommendations saturates as well,
while books, videos and music have qualitatively similar trends. The difference in the curves for DVD
recommendations points to the presence of collisions in the dense DVD network, which has 10 recommen-
dations per node and around 400 per product — an order of magnitude more than other product groups.
This means that many different individuals are recommending to the same person, and after that person
makes a purchase, even though all of them made a ‘successful recommendation’ by our definition, only
one of them receives a credit.

6.5.4 Success of incoming recommendations

The collisions of recommendations are a dominant feature of the DVD recommendation network. Book
recommendations have the highest chance of getting a credit, but DVD recommendations cause the most
purchases. So far it seems people are very keen on recommending various DVDs, while very conservative
on recommending books. But how does the behavior of customers changeas they get more involved into
the recommendation network? We would expect that most of the people are not heavily involved, so their
probability of buying is not high. In the extreme case we expect to find people who buy almost everything
they get recommendations on.

There are two ways to measure the involvedness of a person in the network: by the total number of incom-
ing recommendations (on all products) or the total number of different products they were recommended.
For every purchase of a book at timet, we count the number of different books (DVDs, ...) the person
received recommendations for before timet. As in all previous experiments we delete late recommenda-
tions,i.e., recommendations that arrived after the first purchase of a product.

We show the probability of buying as a function of the number of different products recommended in
Figure6.11. Figure6.12plots the same data but with the total number of incoming recommendations on
the x-axis. We calculate the error bars as described in section6.5.1. The number of observations is large
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Figure 6.11: The probability of buying a product given a number of different products a node got recom-
mendations on.

enough (error bars are sufficiently small) to draw conclusions about thetrends observed in the figures. For
example, there are more than15, 000 users that had 15 incoming DVD recommendations.

Notice that trends are quite similar regardless of whether we measure how involved is the user in the
network by counting the number of products recommended (figure6.11) or the number of incoming rec-
ommendations (fig.6.12).

We observe two distinct trends. For books and music (figures6.11and6.12, (a) and (c)) the probability of
buying is the highest when a person got recommendations on just 1 item, as thenumber of recommended
products increases to 2 or more the probability of buying quickly decreases and then flattens.

Movies (DVDs and videos) exhibit different behavior (figure6.11and6.12, (b) and (d)). A person is more
likely to buy the more recommendations she gets. For DVDs the peak is at around 15 incoming products,
while for videos there is no such peak – the probability remains fairly level. Interestingly for DVDs the
distribution reaches its low at 2 and 3 items, while for videos it lies somewhere between 3 and 8 items.
The results suggest that books and music buyers tend to be conservative and focused. On the other hand
there are people who like to buy movies in general. One could hypothesize that buying a book is a larger
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Figure 6.12: Probability of buying a product given a total number of incoming recommendations on all
products.

investment of time and effort than buying a movie. One can finish a movie in an evening, while reading a
book requires more effort. There are also many more book and music titles than movie titles.

The other difference between the book and music recommendations in comparison to movies are the
recommendation referral websites where people could go to get recommendations. One could see these
websites as recommendation subscription services – posting one’s email on alist results in a higher number
of incoming recommendations. For movies, people with a high number of incoming recommendations
“subscribed” to them and thus expected/wanted the recommendations. On theother hand people with
high numbers of incoming book or music recommendations did not “sign up” forthem, so they may
perceive recommendations as spam and thus the influence of recommendations drops.

Another evidence of the existence of recommendations referral websitesincludes the DVD recommenda-
tion network degree distribution. The DVDs follow a power law degree distribution with an exception of
a peak at out-degree 50. Other plots of DVD recommendation behavior alsoexhibited abnormalities at
around 50 recommendations. These can be attributed to the recommendation referral websites.
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Figure 6.13: The time between the recommendation and the actual purchase. We use all purchases.

6.6 Timing of recommendations and purchases

The recommendation referral program encourages people to purchase as soon as possible after they get
a recommendation, since this maximizes the probability of getting a discount. We study the time lag
between the recommendation and the purchase of different product groups, effectively how long it takes a
person to receive a recommendation, consider it, and act on it.

We present the histograms of the “thinking time”,i.e., the difference between the time of purchase and
the time the last recommendation was received for the product prior to the purchase (figure6.13). We
use a bin size of 1 day. Around 35%-40% of book and DVD purchases occurred within a day after
the last recommendation was received. For DVDs 16% purchases occurmore than a week after the last
recommendation, while this drops to 10% for books. In contrast, if we consider the lag between the
purchase and thefirst recommendation, only 23% of DVD purchases are made within a day, while the
proportion stays the same for books. This reflects a greater likelihood fora person to receive multiple
recommendations for a DVD than for a book. At the same time, DVD recommenderstend to send out
many more recommendations, only one of which can result in a discount. Individuals then often miss
their chance of a discount, which is reflected in the high ratio (78%) of recommended DVD purchases that
did not a get discount (see table6.2, columnsbb andbe). In contrast, for books, only 21% of purchases
through recommendations did not receive a discount.

We also measure the variation in intensity by time of day for three different activities in the recommen-
dation system: recommendations (figure6.14(a)), all purchases (figure6.14(b)), and finally just the pur-
chases which resulted in a discount (figure6.14(c)). Each is given as a total count by hour of day.

The recommendations and purchases follow the same pattern. The only small difference is that purchases
reach a sharper peak in the afternoon (after 3pm Pacific Time, 6pm Eastern time). This means that the
willingness to recommend does not change with time, since about a constant fraction of purchases also
result in recommendations sent (plots6.14(a) and (b) follow the same shape).

The purchases that resulted in a discount (fig.6.14(c)) look like a negative image of the first two figures.
If recommendations would have no effect then plot (c) should follow the same shape as (a) and (b), since
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Figure 6.14: Time of day for purchases and recommendations. (a) shows thedistribution of recommen-
dations over the day, (b) shows all purchases and (c) shows only purchases that resulted in a
discount.

a fraction of people that buy would become first buyers,i.e., the more recommendations sent, the more
first buyers and thus discounts. However, this does not seem to be the case. The number of purchases with
discount is high when the number of purchases is small. This means that most of discounted purchases
happened in the morning when the traffic (number of purchases/recommendations) on the retailer’s web-
site was low. This makes sense since most of the recommendations happened during the day, and if the
person wanted to get the discount by being the first one to purchase, she had the highest chances when the
traffic on the website was the lowest.

There are also other factors that come into play here. Assuming that recommendations are sent to people’s
personal (non-work) email addresses, then people probably checkthese email accounts for new email
less regularly while at work. So checking personal email while at work and reacting to a recommenda-
tion would mean higher chances of getting a discount. Second, there are also network effects,i.e., the
more recommendations sent, the higher chance of recommendation collision, thelower chance of getting
discount, since one competes with the larger set of people.

6.7 Recommendations and communities of interest

Social networks are a product of the contexts that bring people together. The context can be a shared
interest in a particular topic or kind of a book. Sometimes there are circumstances, such as a specific job
or religious affiliation, that would make people more likely to be interested in the same type of book or
DVD. We first apply a community discovery algorithm to automatically detect communities of individuals
who exchange recommendations with one another and to identify the kinds of products each community
prefers. We then compare the effectiveness of recommendations across book categories, showing that
books on different subjects have varying success rates.

6.7.1 Communities and purchases

In aggregating all recommendations between any two individuals in Section6.3.4we showed that the
network consists of one large component, containing a little over 100,000 customers, and many smaller
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components, the largest of which has 634 customers. However, knowingthat a hundred thousand cus-
tomers are linked together in a large network does not reveal whether a product in a particular category is
likely to diffuse through it. Consider for example a new science fiction book one would like to market by
word-of-mouth. If science fiction fans are scattered throughout the network, with very few recommenda-
tions shared between them, then recommendations about the new book are unlikely to diffuse. If on the
other hand one finds one or more science fictioncommunities, where sci-fi fans are close together in the
network because they exchange recommendations with one another, then the book recommendation has a
chance of spreading by word-of-mouth.

In the following analysis, we use a community finding algorithm [Clauset et al., 2004] in order to dis-
cover the types of products that link customers and so define a community. The algorithm breaks up the
component into parts, such that the modularity Q,

Q = (number of edges within communities)− (expected number of such edges), (6.6)

is maximized. In other words, the algorithm identifies communities such that individuals within those
communities tend to preferentially exchange recommendations with one another.

The results of the community finding analysis, while primarily descriptive, illustrate both the presence
of communities whose members are linked by their common interests, and the presence cross-cutting in-
terests between communities. Applying the algorithm to the largest component, we identify many small
communities and a few larger ones. The largest contains 21,000 nodes, 5,000 of whom are senders of a
relatively modest 335,000 recommendations. More interesting than simply observing the size of commu-
nities is discovering what interests bring them together. We identify those interests by observing product
categories where the number of recommendations within the community is significantly higher than it is
for the overall customer population. Letpc be the proportion of all recommendations that fall within a
particular product categoryc. Then for a set of individuals sendingxg recommendations, we would expect
by chance thatxg ∗pc±

√
xg ∗ pc ∗ (1− pc) would fall within categoryc. We note the product categories

for which the observed number of recommendations in the community is many standard deviations higher
than expected. For example, compared to the background population, the largest community is focused on
a wide variety of books and music. In contrast, the second largest community, involving 10,412 individ-
uals (4,205 of whom are sending over 3 million recommendations), is predominantly focused on DVDs
from many different genres, with no particular emphasis on anime. The animecommunity itself emerges
as a highly unusual group of 1,874 users who exchanged over 3 million recommendations.

We find that large communities are very diverse and uninteresting. Perhaps the most interesting are the
medium sized communities, some of which are listed in Table6.6, having around 100 senders and often
reflecting specific interests. Among the hundred or so medium communities, we found, for example,
several communities focusing on Christianity. While some of the Christian communities also shared an
interest in children’s books, Broadway musicals, and travel to Italy, others focused on prayer and bibles,
still others also enjoyed DVDs of the Simpsons TV series, and others still tookan interest in Catholicism,
occult spirituality and kabbalah.

Communities were usually centered around a product group, such as books, music, or DVDs, but almost
all of them shared recommendations for all types of products. The DVD communities ranged from bargain
shoppers purchasing discounted comedy and action DVDs to smaller anime orindependent movie com-
munities, to a group of customers purchasing predominantly children’s movies. One community focused
heavily on indie music, and imported dance and club music. Another seemed to center around intellectual
pursuits, including reading books on sociology, politics, artificial intelligence, mathematics, and media

166



# nodes # senders topics

735 74 books: American literature, poetry
710 179 sci-fi books, TV series DVDs, alternative rock music
667 181 music: dance, indie
653 121 discounted DVDs
541 112 books: art & photography, web development, graphical design, sci-fi
502 104 books: sci-fi and other
388 77 books: Christianity and Catholicism
309 81 books: business and investing, computers, Harry Potter
192 30 books: parenting, women’s health, pregnancy
163 48 books: comparative religion, Egypt’s history, new age, role playing games

Table 6.6: A sample of the medium sized communities present in the largest component

culture, listening to classical music and watching neo-noir film. Several communities centered around
business and investment books and frequently also recommended books on computing. One business and
investment community included fans of the Harry Potter fiction series, while another enjoyed science fic-
tion and adventure DVDs. One of communities with the most particular interests recommended not only
business and investing books to one another, but also an unusual number of books on terrorism, bacte-
riology, and military history. A community of what one can presume are web designers recommended
books to one another on art and photography, web development, graphical design, and Ray Bradbury’s
science fiction novels. Several sci-fi TV series such as Buffy the Vampire Slayer and Star Trek appeared
prominently in a few communities, while Stephen King and Douglas Clegg featuredin a community
recommending horror, sci-fi, and thrillers to one another. One community focused predominantly on par-
enting, women’s health and pregnancy, while another recommended a variety of books but especially a
collection of cookie baking recipes.

Going back to components in the network that were disconnected from the largest component, we find
similar patterns of homophily, the tendency of like to associate with like. Two of thecomponents recom-
mended technical books about medicine, one focused on dance music, while some others predominantly
purchased books on business and investing. Given more time, it is quite possible that one of the customers
in one of these disconnected components would have received a recommendation from a customer within
the largest component, and the two components would have merged. For example, a disconnected com-
ponent of medical students purchasing medical textbooks might have sentor received a recommendation
from the medical community within the largest component. However, the medical community may also
become linked to other parts of the network through a different interest ofone of its members. At the
very least many communities, no matter their focus, will have recommendations for children’s books or
movies, since children are a focus for a great many people. The community finding algorithm on the other
hand is able to break up the larger social network to automatically identify groups of individuals with
a particular focus or a set of related interests. Now that we have shown that communities of customers
recommend types of products reflecting their interests, we will examine whether these different kinds of
products tend to have different success rates in their recommendations.
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6.7.2 Recommendation effectiveness by book category

Some contexts result in social ties that are more effective at conducting anaction. For example, in small
world experiments, where participants attempt to reach a target individual through their chain of acquain-
tances, profession trumped geography, which in turn was more useful inlocating a target than attributes
such as religion or hobbies [Killworth and Bernard, 1978, Travers and Milgram, 1969]. In the context of
product recommendations, we can ask whether a recommendation for a work of fiction, which may be
made by any friend or neighbor, is more or less influential than a recommendation for a technical book,
which may be made by a colleague at work or school.

Table 6.7 shows recommendation trends for all top level book categories by subject.For clarity, we
group the results by 4 different category types: fiction, personal/leisure, professional/technical, and non-
fiction/other. Fiction encompasses categories such as Sci-Fi and Romance, as well as children’s and
young adult books. Personal/Leisure encompasses everything from gardening, photography and cooking
to health and religion.

First, we compare the relative number of recommendations to reviews posted on the site (columncav/rp1

of table6.7). Surprisingly, we find that the number of people making personal recommendations was only
a few times greater than the number of people posting a public review on the website. We observe that
fiction books have relatively few recommendations compared to the number ofreviews, while professional
and technical books have more recommendations than reviews. This could reflect several factors. One is
that people feel more confident reviewing fiction than technical books. Another is that they hesitate to
recommend a work of fiction before reading it themselves, since the recommendation must be made at
the point of purchase. Yet another explanation is that the median price of awork of fiction is lower than
that of a technical book. This means that the discount received for successfully recommending a mystery
novel or thriller is lower and hence people have less incentive to send recommendations.

Next, we measure the per category efficacy of recommendations by observing the ratio of the number
of purchases occurring within a week following a recommendation to the number of recommenders for
each book subject category (columnbr of table6.7). On average, only 2% of the recommenders of a
book received a discount because their recommendation was accepted,and another 1% made a recom-
mendation that resulted in a purchase, but not a discount. We observe marked differences in the response
to recommendation for different categories of books. Fiction in general isnot very effectively recom-
mended, with only around 2% of recommenders succeeding. The efficacywas a bit higher (around 3%)
for non-fiction books dealing with personal and leisure pursuits. Perhaps people generally know what
their friends’ leisure interests are, or even have gotten to know them through those shared interests. On
the other hand they may not know as much about each others’ tastes in fiction. Recommendation success
is highest in the professional and technical category. Medical books have nearly double the average rate
of recommendation acceptance. This could be in part attributed to the higher median price of medical
books and technical books in general. As we will see in Section6.8.2, a higher product price increases the
chance that a recommendation will be accepted.

Recommendations are also more likely to be accepted for certain religious categories: 4.3% for Christian
living and theology and 4.8% for Bibles. In contrast, books not tied to organized religions, such as ones
on the subject of new age (2.5%) and occult (2.2%) spirituality, have lowerrecommendation effectiveness.
These results raise the interesting possibility that individuals have greater influence over one another in
an organized context, for example through a professional contact or areligious one. There are exceptions
of course. For example, Japanese anime DVDs have a strong following in the US, and this is reflected
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category np N cc rp1 vav cav/rp1 pm br ∗ 100

Books general 370,230 2,860,714 1.87 5.28 4.32 1.41 14.95 3.12

Fiction

Children 46,451 390,283 2.82 6.44 4.52 1.12 8.76 2.06**
Literature 41,682 502,179 3.06 13.09 4.30 0.57 11.87 2.82*
Mystery 10,734 123,392 6.03 20.14 4.08 0.36 9.60 2.40**
Science fiction 10,008 175,168 6.17 19.90 4.15 0.64 10.39 2.34**
Romance 6,317 60,902 5.65 12.81 4.17 0.52 6.99 1.78**
Teens 5,857 81,260 5.72 20.52 4.36 0.41 9.56 1.94**
Comics 3,565 46,564 11.70 4.76 4.36 2.03 10.47 2.30*
Horror 2,773 48,321 9.35 21.26 4.16 0.44 9.60 1.81**

Personal

Religion 43,423 441,263 1.89 3.87 4.45 1.73 9.99 3.13
Health/Body 33,751 572,704 1.54 4.34 4.41 2.39 13.96 3.04
History 28,458 28,3406 2.74 4.34 4.30 1.27 18.00 2.84
Home/Garden 19,024 180,009 2.91 1.78 4.31 3.48 15.37 2.26**
Entertainment 18,724 258,142 3.65 3.48 4.29 2.26 13.97 2.66*
Arts/Photo 17,153 179,074 3.49 1.56 4.42 3.85 20.95 2.87
Travel 12,670 113,939 3.91 2.74 4.26 1.87 13.27 2.39**
Sports 10,183 120,103 1.74 3.36 4.34 1.99 13.97 2.26**
Parenting 8,324 182,792 0.73 4.71 4.42 2.57 11.87 2.81
Cooking 7,655 146,522 3.02 3.14 4.45 3.49 13.97 2.38*
Outdoors 6,413 59,764 2.23 1.93 4.42 2.50 15.00 3.05

Professional

Professional 41,794 459,889 1.72 1.91 4.30 3.22 32.50 4.54**
Business 29,002 476,542 1.55 3.61 4.22 2.94 20.99 3.62**
Science 25,697 271,391 2.64 2.41 4.30 2.42 28.00 3.90**
Computers 18,941 375,712 2.22 4.51 3.98 3.10 34.95 3.61**
Medicine 16,047 175,520 1.08 1.41 4.40 4.19 39.95 5.68**
Engineering 10,312 107,255 1.30 1.43 4.14 3.85 59.95 4.10**
Law 5,176 53,182 2.64 1.89 4.25 2.67 24.95 3.66*

Other

Nonfiction 55,868 560,552 2.03 3.13 4.29 1.89 18.95 3.28**
Reference 26,834 371,959 1.94 2.49 4.19 3.04 17.47 3.21
Biographies 18,233 277,356 2.80 7.65 4.34 0.90 14.00 2.96

Table 6.7: Statistics by book category:np:number of products in category,N : number of customers,cc:
percentage of customers in the largest connected component, rp1: avg. # reviews in 2001 –
2003,vav: average star rating,cav: average number of people recommending product,cav/rp1:
ratio of recommenders to reviewers,pm: median price,br: ratio of the number of purchases
resulting from a recommendation to the number of recommenders. The symbol ** denotes
statistical significance at the 0.01 level, * at the 0.05 level.
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in their frequency and success in recommendations. Another example is thatof gardening. In general,
recommendations for books relating to gardening have only a modest chance of being accepted, which
agrees with the individual prerogative that accompanies this hobby. At the same time, orchid cultivation
can be a highly organized and social activity, with frequent ‘shows’ and online communities devoted
entirely to orchids. Perhaps because of this, the rate of acceptance of orchid book recommendations is
twice as high as those for books on vegetable or tomato growing.

6.8 Products and recommendations

We have examined the properties of the recommendation network in relation to viral marketing. Now we
focus on the products themselves and their characteristics that determine thesuccess of recommendations.

6.8.1 How long is the long tail?

Recently a ‘long tail’ phenomenon has been observed, where a large fraction of purchases are of relatively
obscure items where each of them sells in very low numbers but there are many of those items. On Ama-
zon.com, somewhere between 20 to 40 percent of unit sales fall outside ofits top 100,000 ranked prod-
ucts [Brynjolfsson et al., 2003]. Considering that a typical brick and mortar store holds around 100,000
books, this presents a significant share. A streaming-music service streams more tracks outside than inside
its top 10,000 tunes [Anonymous, 2005].

We performed a similar experiment using our data. Since we do not have direct sales data we used the
number of successful recommendations as a proxy to the number of purchases. Figure6.15 plots the
distribution of the number of purchases and the number of recommendations per product. Notice that
both the number of recommendations and the number of purchases per product follow a heavy-tailed
distribution and that the distribution of recommendations has a heavier tail.

Interestingly, figure6.15(a) shows that just the top 100 products account for 11.4% of the all sales (pur-
chases with discount), and the top 1000 products amount to 27% of total sales through the recommendation
system. On the other hand 67% of the products have only a single purchaseand they account for 30%
of all sales. This shows that a significant portion of sales come from products that sell very few times.
Recently there has been some debate about the long tail [Gomes, 2006, Anderson, 2006]. Some argue
that the presence of the long tail indicates that niche products with low sales are contributing significantly
to overall sales online. We also find that the tail is a bit longer than the usual 80-20 rule, with the top
20% of the products contributing to about half the sales. It is important to note, however, that our ob-
servations do not reflect the total sales of the products on the website, since they include only successful
recommendations that resulted in a discount. This incorporates both a bias in the kind of product that
is likely to be recommended, and in the probability that a recommendation for that kind of product is
accepted.

If we look at the distribution in the number of recommendations per product, shown in Figure6.15(b),
we observe an even more skewed distribution. 30% of the products have only a single recommendation
and the top 56,000 most recommended products (top 10%) account for 84%of all recommendations. This
is consistent with our previous observations some types of products,e.g. anime DVDs, are more heavily
recommended than others.
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Figure 6.16: Distribution of product recommendation success rates. Both plots show the same data: (a)
on a linear (lin-lin) scale, and (b) on a logarithmic (log-log) scale. The bold line presents the
moving average smoothing.

Next we examine the distribution of the product recommendation success rate. Out of more than half a
million products we took all the products with at least a single purchase, of which there are 41,000 (7%).
Figure6.16shows the success rate (purchases/recommendations). Notice that the distribution is not heavy
tailed and has a mode at around 1.3% recommendation success rate. 55% of the products have a success
rate bellow 5% and there are around 14% of the products that have a recommendation success rate higher
than 20%.

6.8.2 Modeling the product recommendation success

So far we have seen that some products generate many recommendations and some have a better re-
turn than others on those recommendations, but one question still remains: what determines the prod-
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uct’s viral marketing success? We present a model which characterizesproduct categories for which
recommendations are more likely to be accepted. We use a regression of the following product attributes
to correlate them with recommendation success:

• N : number of nodes in the social network (number of unique senders and receivers)

• Ns: number of senders of recommendations

• Nr: number of recipients of recommendations

• r: number of recommendations

• E: number of edges in the social network (number of unique (sender, receiver) pairs)

• p: price of the product

• v: number of reviews of the product

• t: average product rating

From the original set of the half-million products, we compute a success rates for the 8,192 DVDs
and 50,631 books that had at least 10 recommendation senders and for which a price was given. In
section6.7.2we defined recommendation success rates as the ratio of the total number purchases made
through recommendations and the number of senders of the recommendations. We decided to use this
kind of normalization, rather than normalizing by the total number of recommendations sent, in order not
to penalize communities where a few individuals send out many recommendations(figure6.3(b)). Note
that in generals could be greater than 1, but in practice this happens extremely rarely (there are only 107
products wheres > 1 which were discarded for the purposes of this analysis).

Since the variables follow a heavy tailed distribution, we use the following model:

s = exp(
∑

i

βi ln(xi) + εi) (6.7)

wherexi are the product attributes (as described on previous page), andεi is random error.

We fit the model using least squares and obtain the coefficientsβi shown in table6.9. With the exception
of the average rating, they are all significant, but just the number of recommendations alone accounts
for 15% of the variance (taking all eight variables into consideration yieldsan R2 of 0.30 for books and
0.81 for DVDs). We should also note that the variables in our model are highly collinear, as can be seen
from the pairwise correlation matrix (table6.8). For example, the number of recommendationsr is highly
negatively correlated with the dependent variable (ln(s)) but in the regression model it exhibits positive
influence on the dependent variable. This is probably due to the fact thatthe number of recommendations
is naturally dependent on the number of senders and number of recipients, but it is the high number of
recommendations relative to the number of senders that is of importance.

To illustrate the dependencies between the variables we train a Bayesian dependency network [Chickering,
2003], and show the learned structure for the combined (Books and DVDs) data in figure6.17. In this
a directed acyclic graph where nodes are variables, and directed edges indicate that the distribution of a
child depends on the values taken in the parent variables.

Notice that the average rating (t) is not predictive of the recommendation success rate (s). It is no surprise
that the number of recommendationsr is predictive of number of sendersns. Similarly, the number of
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ln(s) ln(N) ln(Ns) ln(Nr) ln(r) ln(E) ln(p) ln(v) ln(t)

ln(s) 1
ln(N) 0.275 1
ln(Ns) 0.103 0.907 1
ln(Nr) 0.310 0.994 0.864 1.000
ln(r) 0.396 0.979 0.828 0.988 1
ln(E) 0.392 0.981 0.831 0.990 0.999 1
ln(p) 0.185 0.098 0.088 0.098 0.107 0.106 1
ln(v) -0.050 0.465 0.490 0.449 0.421 0.423 -0.053 1
ln(t) -0.031 0.064 0.071 0.061 0.056 0.056 -0.019 0.269 1

Table 6.8: Pairwise Correlation Matrix of the Books and DVD Product Attributes. ln(s): log recom-
mendation success rate,ln(N): log number of nodes,ln(Ns): log number of senders of
recommendations,ln(Nr): log number of receivers,ln(r): log number of recommendations,
ln(E): log number of edges,ln(p): log price,ln(v): log number of reviews,ln(t): log average
rating.

Books DVD
Variable Coefficientβi Coefficientβi

const 1.317 (0.0038) ** 0.929 (0.0100) **
N -0.579 (0.0060) ** 0.171 (0.0124) **
Ns 0.144 (0.0018) ** -0.070 (0.0023) **
Nr -0.006 (0.0064) -0.360 (0.0104) **
r 0.062 (0.0084) ** -0.002 (0.0083)
E 0.383 (0.0106) ** 0.251 (0.0088) **
p 0.013 (0.0003) ** 0.007 (0.0016) **
v -0.003 (0.0001) ** -0.003 (0.0006) **
t -0.001 (0.0006) * 0.000 (0.0009)

R2 0.30 0.81

Table 6.9: Regression Using the Log of the Recommendation Success Ratelog(s), as the Dependent Vari-
able for Books and DVDs separately. For each coefficient we provide the standard error and
the statistical significance level (**:0.001, *:0.1). We fitseparate models for books and DVDs.

edgese is predictive of number of sendersns. Interestingly, pricep is only related to the number of
reviewsv. Number of recommendationsr, number of sendersns and pricep, are directly predictive of
the recommendation success rates.

Returning to our regression model, we find that the numbers of nodes and receivers have negative coef-
ficients, showing that successfully recommended products are actually more likely to be not so widely
popular. The only attributes with positive coefficients are the number of recommendationsr, number of
edgese, and pricep. This shows that more expensive and more recommended products have ahigher suc-
cess rate. These recommendations should occur between a small number ofsenders and receivers, which
suggests a very dense recommendation network where lots of recommendations are exchanged between
a small community of people. These insights could be of use to marketers — personal recommendations
are most effective in small, densely connected communities enjoying expensive products.

173



v

r

e

p

nr

ns

t

s

n

Figure 6.17: A Bayesian network showing the dependencies between the variables.s: recommendation
success rate,n: number of nodes,ns: number of senders of recommendations,nr: log
number of receivers,r: number of recommendations,e: number of edges,p: price, v:
number of reviews,t: average rating.

6.9 Cascade shapes in viral marketing

Information cascades are phenomena whereby individuals adopt a newaction or idea due to influence
by others. As such a process spreads through an underlying social network, it can result in widespread
adoption overall. We consider information cascades in the context of recommendations, and in particular
study the patterns of cascading recommendations that arise in large social networks. We investigate a large
person-to-person recommendation network, consisting of four million people who made sixteen million
recommendations on half a million products. Such a dataset allows us to pose a number of fundamental
questions: What cascades arise frequently in real life? What featuresdistinguish them? We enumerate and
count cascade subgraphs on large directed graphs; as one component of this, we develop a novel efficient
heuristic based on graph isomorphism testing that scales to large datasets. We discover novel patterns: the
distribution of cascade sizes and depths follows a power law. Generally, cascades tend to be shallow, but
occasional large bursts of propagation can occur. Cascade subgraphs are mainly tree-like, but we observe
variability in connectivity and branching across recommendations for different types of products.

6.9.1 Cascades

The social network of interactions between a group of individuals plays afundamental role in the spread of
information, ideas, innovation, and influence among its members. The networkeffect has been observed
in many cases, where an idea or action gains sudden widespread popularity through word of mouth or
viral marketing. For example, some movies become widely popular through word-of-mouth advertising.
Google’s Gmail service captured a significant market share in spite of the fact that up to recently theonly
way to obtain a free email account is through a referral. One can also findmany examples in weblogs
(blogs), where a story or piece of information gets widely referred to by the blogger community and is
eventually picked up by the mass media.
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Information cascades are phenomena where an action or idea becomes widely adopted due to influence by
others, as opposed to individual reasoning in isolation [Bikhchandani et al., 1992]. Cascades are also
known as “fads” or “resonance.” There has been significant workdone in modeling the spread and
adoption of ideas and influence through a social network [Goldenberg et al., 2001, Granovetter, 1978,
Domingos and Richardson, 2001, Kempe et al., 2003, Richardson and Domingos, 2002b].

The formalism for cascades is activation of nodes in a graph where nodes represent individuals, edges
relationships, and a binary node state shows whether a person is part ofthe cascade. The chance that a
node is activated is influenced by the state of its neighbors. A related formalism is a graph where the
nodes are agents and a directed edge(i, j, t) indicates thati influencedj at timet.

Cascades have been studied for many years by sociologists concernedwith the diffusion of innova-
tion [Rogers, 1995]; more recently, researchers have investigated cascades for the purpose of select-
ing trendsetters [Domingos and Richardson, 2001, Richardson and Domingos, 2002b], finding inocula-
tion targets in epidemiology [Newman, 2002], and explaining trends in blogosphere [Adar and Adamic,
2005, Adar et al., 2004, Gruhl et al., 2004, Kumar et al., 2003]. To our knowledge, however, the difficulty
in obtaining data has limited the extent of analysis on large-scale, complete datasets representing cascades.
Here we look at the patterns of influence in a large-scale, real recommendation network and examine the
topological structure of cascades.

Here we ask the question: What cascades arise frequently in real life? Are they like trees, stars, or
something else? We describe a large person-to-person recommendation network, consisting of 4 million
people who made 16 million recommendations on half a million products in section6.9.2. To analyze
the data, we first create graphs where incoming edges influenced the creation of outgoing edges. We
remove edges that violate the temporal requirement of a cascade (i.e., influence must be exerted before
the effect). Then, we enumerate and count all possible cascade subgraphs using an algorithm developed
in section6.9.3. Therein, we propose a heuristic for graph isomorphism involving the degree distribution
and the eigenvalues of the adjacency matrix that scales to large datasets. Weapply the algorithm to the
recommendation dataset, and analyze it in section6.9.4.

We find novel patters and the analysis of the results gives us insight into thecascade formation process.
We find that distribution of sizes and depths of cascades follows a heavy-tailed distribution. Generally
cascades are shallow but occasional large bursts also occur. The cascade sub-patterns reveal mostly small
tree-like subgraphs; however we observe differences in connectivity and the shape of cascades across
product groups. We find common cases when people who do not link to each other recommend to the same
set of friends; and cases where recommendation propagates but then returns to the same people.

6.9.2 The recommendation network

We study a recommendation network dataset from a large on-line retailer we described earlier in the
chapter. In brief, the recommendation network consists of 15,646,121 recommendations made among
3,943,084 distinct users from June 2001 to May 2003 (711 days). A totalof 542,719 different products
belonging to four product categories (Books, DVDs, Music and Videos) were recommended.

We represent this relational dataset as a directed multigraph: nodes represent customers, and a directed
edge(i, j, p, t) means that nodei recommended productp to customerj at time t. The typical edge
generation process is as follows: a node (person)i first buys productp at timet, and then recommends it
to nodes{j1, . . . , jn}. Thej nodes can then buy the product (with the option to recommend it to others).
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Note that even if all nodesj buy the product, only the first purchaser will get the discount, which is marked
by a purchase flag (buy-bit). We cannot directly use the buy-bit to determine whether a recommendation
caused a purchase. In addition to the buy-bit, we also record the number of customers who recommended
the product (since they had to buy the product to recommend it). We extractper-group recommendation
networks by taking the edge-induced subgraph formed by all the products of a given category. Table6.2
gives the basic network statistics and observations.

6.9.3 Proposed method

In this section we present the algorithms and techniques developed to efficiently enumerate and count
frequent recommendation patterns in a large graph, including a heuristic for subgraph isomorphism.

Ideally one would expect cascades to be trees or near-trees. We soonfound out that recommendations
create arbitrary graphs: there are multiple recommendations on the same product or multiple products
between the nodes, there are multiple purchases of the same product, and one finds many cycles.

To find cascades one first needs to identify cases when incoming recommendations could cause purchases
and further outgoing recommendations. Recommendations into nodeu that precede a purchase can be
posited to have influenced the purchase. There are two ways to establish this. If an edge is marked by a
purchase flag, we assume the recommendation influenced the purchase. Alternately, the existence of two
directed edges(i, j, p, t) and(j, k, p, t′) for t′ > t suggests cascade behavior. That is, nodej receives a
recommendation for productp at timet and then makes recommendation for the same product at a later
time t′.

First we create a separate graph of recommendations for each product.To find cascades we propose the
following two-step procedure:

Delete late recommendations:

To keep only recommendations that influenced the purchase wedelete late recommendations: given a
single product recommendation network, for every node we delete all incoming recommendations (edges)
that happened after the first purchase of a product. This procedureremoves all recommendations of the
product a person received after the first purchase. This guarantees that for every node the time of all
incoming edges is strictly smaller than the time of all outgoing edges.

Delete no-purchase nodes:

Preliminary data analysis showed that the majority of recommendations do not produce cascades. We also
observed many star-like patterns where the center node recommends to a large number of people, none of
whom purchase the product. This occurs frequently in DVD subgraphs. To prevent this type of large but
shallow pattern, we delete all nodes that did not purchase the product.

After deleting late recommendations each connected component corresponds to a cascade. All paths in the
component are time-increasing (i.e., a cascade subgraph contains only directed paths with strictly increas-
ing edge times). Deleting no-purchase nodes ensures that we detect onlytrue cascade patterns.

176



Cascade enumeration:

Next we enumerate all possible cascades. In preliminary experiments we first enumerated the maximal
cascades, which after the steps described above reduces down to enumerating all connected components of
the network. This approach works well and is very fast, but suffers from the fact that the counts are small.
Here we take a different approach. Since we are interested in purely topological properties of the cascades,
rather than enumerating all possible connected subgraphs, we enumerateall local cascades.This means
that for every node we explore the cascade in the neighborhood around the node. For every noden, we
create a graph induced on nodes up toH hops away fromn, whereH ranges from 1 up to the distance to
the farthest node. One can think of this as exploring noden’s neighborhood 1, 2, 3,... steps away. This
way for every node we capture the local structure of the cascade around it at various distances.

Approximate graph isomorphism:

An essential step in counting cascades is determining whether a new cascade is isomorphic to a previously
discovered graph. No polynomial-time algorithm is known for the graph isomorphism problem, and so
we resort to an approximate, heuristic solution. For each graph we createa signature. A good signature
is one where isomorphic graphs have the same signature, but where few non-isomorphic graphs share the
same signature.

We propose a multi-level approach where the computational complexity (and accuracy) of the graph iso-
morphism resolution depends on the size of the graph. For smaller graphs we perform an exact isomor-
phism test; as the size of the graph increases this becomes prohibitively expensive so we use gradually
simpler but faster techniques which give only approximate solutions. Another trick is that for each graph
we create an efficiently computable signature, use hashing, and then use more expensive isomorphism
tests only on graphs with the same signature.

For every graph we create a signature which is composed of the number ofnodes, the number of edges, and
the sorted in- and out-degree sequence. For graphs with fewer than 500 nodes, we also include the singular
values of the adjacency matrix (via singular value decomposition). As singularvalues are continuous we
round them to 4 most significant digits and then hash the values.

We then hash the graphs using the signatures. Additionally, for graphs withfewer than 9 nodes we perform
exact isomorphism checking. When the isomorphism check is used, we keep a list of all variants of graphs
that collided. Since we first hash signatures, we then check for isomorphism only the graphs with the same
signature. So the number of true isomorphism checks is very small.

Note that a small minority of cascades are larger than 9 nodes, so for most of the subgraphs we get the
exact solution; as the cascade size increases the number of occurrences decreases, and this is where we
make use of an approximate solution.

We performed a small set of experiments to evaluate the proposed approximate graph isomorphism algo-
rithm. Given a graph with 8 nodes and 12 edges 100,000 brute-force evaluations of graph-isomorphism
took under 40 seconds on a standard desktop. In the second experiment we generated 100,000 random
graphs (Erd̋os-Ŕenyi model), each of them with a randomly chosen number of nodes between4 to 20 and
twice as many edges (average degree of 2). The counting took 50 seconds. In this experiment we observed
at most 53 non-isomorphic graphs (5 nodes, 10 edges) with the same signature. At the end the random
generation created a total of 6,194 5-node graphs, of which 1,601 werenon-isomorphic.
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Figure 6.18: Size and depth distribution of the cascades for the four product groups. Top row shows the
size distribution of the cascades (log size of cascade vs. log count). Bottom row shows the
distribution of the depths of the cascades (log depth of the cascade vs. log count). Bold line
presents a power-law fit.

This analysis shows that we are able to efficiently find and enumerate cascades even in a large recommen-
dation network. The graph isomorphism checking is fast and scalable to serve our purpose.

6.9.4 Patterns of recommendation

Size and depth distribution of cascades

We measure the size of the cascade in terms of the number of nodes and the depth, which is the length
of the longest directed path in the cascade. As in all experiments we create per-product recommendation
networks, delete late recommendations and no-purchase nodes, and thenperform the analysis.

Figure6.18shows the distribution of cascade sizes (top row) and depths (bottom row)for the four product
groups. The size of cascades follows a power law. For books the largest cascade has 95 nodes and 231
edges. For DVDs the largest cascade is eight times larger (N = 791, E = 5544). The cascades involving
music or videos are much smaller, the largest cascades areN = 13, E = 56 andN = 37, E = 169
respectively.

The slopes of the power-fits (top row of figure6.18) reveal that DVDs had the highest proportion of large
cascades, as its power coefficient is the largest. For music the fraction oflarge cascades is much smaller.
While the first part of the size distribution for DVDs (figure6.18(b)) has slope−4.5, which is close to the
other three product groups, the curve then flattens to−1.5.

The depth distribution, figure6.18, shows that cascades are generally shallow except for DVDs. The
maximum depth of a cascade is 6 for books, 15 for DVDs, 4 for music, and 6for videos. So DVDs have
the strongest evidence for cascades.
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Figure 6.19: Distribution of recommendations and purchases over the products: number of
recommendations of the product vs. count (left); number of purchases vs. count (right).

One might posit that cascades are branching processes. However it isknown that for a particular run of a
branching process, the distribution of depths, conditioned on the size being finite, is exponential. In other
words, if cascades were purely branching processes, then the depths should be exponentially distributed.
Figure6.18shows that the depth distribution follows a power law; that is, we are observing more of deep
cascades than expected under a branching process.

There are a number of possible explanations for this phenomena: cascades can collide, increasing the
probability of success in some part of the social network [Leskovec et al., 2006a, 2007a]. Cascade sizes
also reflect an underlying power law in sales frequencies, as shown in figure6.19. The number of pur-
chases decays faster than the recommendations. And in the stochastic cascade generation process we
proposed here the cascade size distribution follows a power law with the exponent−1.

Frequent cascade subgraphs

What cascades arise frequently in real life? Are they like trees, stars, long chains, or something else? We
now explore the building blocks of the cascades, by performing the following procedure. For each product
recommendation graph, we first identify cascades (delete late recommendations and no-purchase nodes).
Then for each node we create a subgraph on nodes at distance at mosth hops, whereh varies from 1 up
to the value where all nodes in the cascade are reached. We then count the graphs using the approximate
graph isomorphism technique described in section6.9.3.

General observations:For books we identified a total of 122,657 cascades, of which 959 are topolog-
ically different. There are 213 cascades that occur at least ten times. For DVDs we identified 289,055
cascades, of which 87,614 are topologically different. There are 3,015cascades that occur at least ten
times. For music we identified 13,330 cascades, of which 158 were topologically different. Only 23 cas-
cades occurred at least ten times. Videos contained the least evidence for cascades, with 1,928 subgraphs
containing 109 unique patterns. Only 12 subgraphs occurred more than ten times.

The number of cascades concur with observations made from figure6.18and table6.2, where DVDs had
the largest and richest set of cascades. Since DVDs contain the deepest cascade, there is more opportunity
for topological variety than on the other products types. Even though the music network is three times
larger than the video network, it does not exhibit much larger topological variety.
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Book DVD Music Video
Id Graph Nodes Edges R F R F R F R F

G1 2 1 1 86,430 1 36,863 1 11,518 1 1,425

G2 3 2 2 10,573 4 3,238 2 492 5 33
G3 3 2 3 5,089 2 5,147 3 389 3 61

G4 3 2 6 1,593 5 2419 5 115 22 4

G5 3 3 4 3,115 3 4746 4 201 2 63

G6 4 3 5 2,769 15 505 6 55 20 5

G7 4 3 8 726 25 416 7 30 27 4

G8 4 3 10 598 7 909 8 25 0 0

G9 4 3 12 398 33 312 13 12 0 0
G10 4 3 13 362 22 424 9 18 26 4

G11 4 3 18 156 37 276 53 4 0 0

G12 4 3 29 82 24 418 28 8 0 0

G13 4 3 92 21 12 549 54 4 0 0

G14 4 4 9 625 11 552 31 7 13 8

G15 4 4 22 112 16 495 10 15 0 0

G16 4 4 23 111 20 435 57 3 0 0

G17 4 4 26 85 17 485 83 2 0 0

G18 4 4 30 79 9 706 32 7 29 3

G19 4 4 37 64 38 273 24 9 0 0

G20 4 4 47 51 955 28 0 0 0 0

G21 4 4 90 21 857 31 0 0 0 0

G22 4 4 91 21 1368 20 0 0 0 0

Table 6.10:Frequent cascades for the 4 product groups. We show all graphs up to 4 nodes and 4 edges.
Ordered by size. For each graph we show rank (R) and frequency (F ).

Analysis of frequent cascade patterns:Table6.10shows ranksR and frequenciesF of 22 cascades for
the 4 product groups. Cascades are ordered by size. The table also includes all sub-cascades with at most
four nodes and four edges. Interesting, 14 cascade patterns can beobserved in all the product groups.
Table6.10shows ten of them.

The most common cascade,G1, represents a single recommendation. This pattern accounts for 70% of all
book cascades, 86.4% of all music cascades, 74% of all video cascades, but just 12.8% of DVD cascades.
The chain of three nodes (G3) is the most common depth two cascade, accounting for 4.1% of book
cascades, about 3% of video and music cascades, but only 1.8% of DVDcascades. DVD cascades tend to
be most densely linked.

ComparingG2 andG4 shows that simple splits are more frequent than collisions. For books there are
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Book DVD Music Video
Id Graph Nodes Edges R F R F R F R F

G23 4 5 14 274 23 422 0 0 0 0

G24 4 5 34 77 75 171 38 5 28 3

G25 4 5 84 23 52 216 0 0 109 1

G26 4 6 24 105 6 1299 27 8 6 29

G27 5 4 7 1024 74 174 20 10 0 0

G28 5 4 16 211 332 62 47 5 0 0

G29 5 4 50 47 333 62 64 3 0 0

G30 5 4 53 41 282 69 48 5 0 0

G31 5 4 60 31 1045 26 158 1 0 0

G32 5 4 72 27 822 32 21 10 0 0

G34 5 9 137 14 131 119 55 3 15 7

G35 5 10 125 15 18 452 155 1 10 16

Table 6.11:Some larger frequent cascades for 4 product groups. Orderedby size. For each graph we
show rank (R) and frequency (F ).

6.6 times more splits than collisions; for DVDs this factor drops to 1.3; and it is 4.2 and 8.25 for music
and videos respectively. Very similar observations hold for splits and collisions on 4 nodes (G6 andG13);
however notice that for DVDs the collision of 3 nodes (G13) is slightly more frequent than the split (G6).
Another such example of reversed graphs areG7, G11 andG8, G12. Again, the split pattern is more
frequent than the collision. The ratio is more unbalanced for books (1 collision per 7 splits) than for
DVDs (1 to 2).

Graphs fromG14 to G19 all have a triangle, with one additional node attached. Again, except for DVDs,
splits of recommendations (G14 andG15) are more frequent than collisions (G18, G19). For DVDs the
most frequent sub-graph of the set isG18 (a collision), followed byG14 andG15.

A common observation is that simpler graphs, like chains and trees, tend to be more frequent in book
recommendation networks, while for DVDs we observe richer and more diverse graphs all with relatively
high counts.

Table6.11shows larger graph patterns. Various types of collisions are becoming more frequent. For book
cascadesG27 is very frequent, while a version with reversed edges can only be foundin DVDs. Graphs
G34 andG35 are the two largest that can be found in recommendation networks from all 4product groups.
Larger DVD cascades tend to be frequent –G35 ranks 18 among DVD cascades.
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Figure 6.20: Typical classes of cascades.G36, G40: nodes recommending to the same set of people,
but not each other.G38, G41: a flat cascade.G37, G39: nodes recommending to same
community.G43 is an example of a large cascade.

Last, figure6.20shows typical classes of cascades. GraphsG36 andG40 show the case when two people
have the same set of friends but do not recommend to each other. A similar case is represented by cascades
G37 andG39, where the top node recommends to a set of people, and then one of the people in this set
purchases and recommends to the same set of people. Flat cascades arealso found (G38, G41, G42) –
a person recommends, a number of people respond (and purchase a product), but the cascade does not
propagate. GraphG43 shows cascade that is quite intricate, but which nonetheless occurred 12times for
DVDs.

6.10 Conclusion

Although the retailer may have hoped to boost its revenues through viral marketing, the additional pur-
chases that resulted from recommendations are just a drop in the bucket of sales that occur through the
website. Nevertheless, we were able to obtain a number of interesting insights into how viral marketing
works that challenge common assumptions made in epidemic and rumor propagation modeling.

Firstly, it is frequently assumed in epidemic models (e.g., SIRS type of models) that individuals have equal
probability of being infected every time they interact [Anderson and May, 2002, Bailey, 1975]. Contrary
to this we observe that the probability of infection decreases with repeated interaction. Marketers should
take heed that providing excessive incentives for customers to recommend products could backfire by
weakening the credibility of the very same links they are trying to take advantage of.

Traditional epidemic and innovation diffusion models also often assume that individuals either have a
constant probability of “converting” every time they interact with an infectedindividual [Goldenberg et al.,
2001], or that they convert once the fraction of their contacts who are infected exceeds a node specific
threshold [Granovetter, 1978]. In both cases, an increasing number of infected contacts results in an
increased likelihood of infection. Instead, we find that the probability of purchasing a product increases
with the number of recommendations received, but quickly saturates to a constant and relatively low
probability. This means individuals are often impervious to the recommendationsof their friends, and
resist buying items that they do not want.

In network-based epidemic models, extremely highly connected individuals play a very important role.
For example, in needle sharing and sexual contact networks these nodes become the “super-spreaders” by
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infecting a large number of people. But these models assume that a high degree node has as much of a
probability of infecting each of its neighbors as a low degree node does. In contrast, we find that there
are limits to how influential high degree nodes are in the recommendation network. As a person sends out
more and more recommendations past a certain number for a product, the success per recommendation
declines. This would seem to indicate that individuals have influence over afew of their friends, but not
everybody they know.

We also presented a simple stochastic model (Section6.4.3) that allows for the presence of relatively
large cascades for a few products, but reflects well the general tendency of recommendation chains to
terminate after just a short number of steps. Aggregating such cascadesover all the products, we obtain
a highly disconnected network, where the largest component grows over time by aggregating typically
very small but occasionally fairly large components. We observed that themost popular categories of
items recommended within communities in the largest component reflect differing interests between these
communities. We presented a model which shows that these smaller and more tightly knit groups tend to
be more conducive to viral marketing.

We saw that the characteristics of product reviews and effectivenessof recommendations vary by category
and price, with more successful recommendations being made on technical or religious books, which
presumably are placed in the social context of a school, workplace or place of worship. A small fraction
of the products accounts for a large proportion of the recommendations. Although not quite as extreme
in proportions, the number of successful recommendations also varies widely by product. Still, a sizeable
portion of successful recommendations were for a product with only onesuch sale - hinting at a long tail
phenomenon.

The premise behind the study of social networks is that interaction leads to complex collective behavior.
Cascades are a form of collective behavior that has been studied theoretically, but for which the study of
complete, large-scale datasets has been limited. We have shown that cascades exist in a large real-world
recommendation dataset, and investigated some of their structural features.

We developed a practical algorithm and set of techniques to illustrate the existence of cascades, and
to measure their frequency. On a large real-life dataset we found novelpatterns and our experiments
showed that most cascades are small, but large bursts can occur. The cascade sizes and depths follow a
power law. Cascade behavior varies a lot among different product types. Topologically, most products
(books, music, videos) tend to exhibit small and shallow tree-like cascades, while some (DVDs) can
exhibit larger, more complex, and farther-reaching patterns of influence with collisions and expansion
across communities.

Since viral marketing was found to be in general not as epidemic as one mighthave hoped, marketers
hoping to develop normative strategies for word-of-mouth advertising should analyze the topology and
interests of the social network of their customers. Our study has provideda number of new insights which
we hope will have general applicability to marketing strategies and to future models of viral information
spread.
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Chapter 7

Information propagation on the
blogosphere

How do blogs cite and influence each other? How do such links evolve? Does the popularity of old blog
posts drop exponentially with time? These are some of the questions that we address in this work. Our
goal is to build a model that generates realistic cascades, so that it can helpus with link prediction and
outlier detection.

Blogs (weblogs) have become an important medium of information because oftheir timely publication,
ease of use, and wide availability. In fact, they often make headlines, by discussing and discovering evi-
dence about political events and facts. Often blogs link to one another, creating a publicly available record
of how information and influence spreads through an underlying social network. Aggregating links from
several blog posts creates a directed graph which we analyze to discover the patterns of information propa-
gation in blogspace, and thereby understand the underlying social network. Not only are blogs interesting
on their own merit, but our analysis also sheds light on how rumors, viruses, and ideas propagate over
social and computer networks.

Here we report some surprising findings of the blog linking and information propagation structure, after
we analyzed one of the largest available datasets, with45, 000 blogs and≈ 2.2 million blog-postings.
We also present a simple model that mimics the spread of information on the blogosphere, and produces
information cascades very similar to those found in real life.

7.1 Introduction

Blogs have become an important medium of communication and information on the World Wide Web.
Due to their accessible and timely nature, they are also an intuitive source fordata involving the spread of
information and ideas. By examining linking propagation patterns from one blog post to another, we can
infer answers to some important questions about the way information spreads through a social network
over the Web. For instance, does traffic in the network exhibit bursty, and/or periodic behavior? After a
topic becomes popular, how does interest die off – linearly, or exponentially?

In addition to temporal aspects, we would also like to discover topological patterns in information prop-
agation graphs (cascades). We explore questions like: do graphs of information cascades have common
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shapes? What are their properties? What are characteristic in-link patterns for different nodes in a cas-
cade? What can we say about the size distribution of cascades?

Finally, how can we build models that generate realistic cascades?

7.1.1 Summary of findings and contributions

Temporal patterns: For the two months of observation, we found that blog posts donot have a bursty
behavior; they only have a weekly periodicity. Most surprisingly, the popularity of posts drops with
a power law, instead of exponentially, that one may have expected. Surprisingly, the exponent of the
power law is≈-1.5, agreeing very well with Barabasi’s theory of heavy tails in human behavior [Barab́asi,
2005].

Patterns in the shapes and sizes of cascades and blogs:Almost every metric we measured, followed a
power law. The most striking result is that the size distribution of cascades (= number of involved posts),
follows a perfect Zipfian distribution, that is, a power law with slope =-2. The other striking discovery
was on the shape of cascades. The most popular shapes were the “stars”, that is, a single post with several
in-links, but none of the citing posts are themselves cited.

Generating Model: Finally, we design a flu-like epidemiological model. Despite its simplicity, it gener-
ates cascades that match several of the above power law properties of real cascades. This model could be
useful for link prediction, link-spam detection, and “what-if” scenarios.

7.1.2 Chapter organization

In section7.2we briefly survey related work. We introduce basic concepts and terminology in section7.3.
Next, we describe the blog dataset, and discuss the data cleaning steps. Wedescribe temporal link patterns
in section7.5, and continue with exploring the characteristics of the information cascades. We develop
and evaluate the Cascade generation model in section7.6. We discuss implications of our findings in
section7.7, and conclude in section7.8.

7.2 Connection to temporal modeling and epidemiology

To our knowledge this work presents the first analysis of temporal aspects of blog link patterns, and gives
detailed analysis about cascades and information propagation on the blogosphere. As we explore the
methods for modeling such patterns, we will refer to concepts involving power laws and burstiness, social
networks in the blog domain, and information cascades.

7.2.1 Burstiness and power laws

How often do people create blog posts and links? Extensive work has been published on patterns relat-
ing to human behavior, which often generates bursty traffic. Disk accesses, network traffic, web-server
traffic all exhibit burstiness. Wang et al. in [Wang et al., 2002] provide fast algorithms for modeling such
burstiness. Burstiness is often related to self-similarity, which was studied in the context of World Wide
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Web traffic [Crovella and Bestavros, 1997]. Vazquez et al. [Vazquez et al., 2006] demonstrate the bursty
behavior in web page visits and corresponding response times.

Self-similarity is often a result of heavy-tailed dynamics. Human interactions maybe modeled with net-
works, and attributes of these networks often followpower lawdistributions [Faloutsos et al., 1999]. Such
distributions have a PDF (probability density function) of the formp(x) ∝ xγ , wherep(x) is the proba-
bility to encounter valuex andγ is the exponent of the power law. In log-log scales, such a PDF gives
a straight line with slopeγ. Forγ < −1, we can show that the Complementary Cumulative Distribution
Function (CCDF) is also a power law with slopeγ + 1, and so is the rank-frequency plot pioneered by
Zipf [Zipf, 1949], with slope1/(1 + γ). Forγ = −2 we have the standard Zipf distribution, and for other
values ofγ we have the generalized Zipf distribution.

Human activity also follows periodicities, like daily, weekly and yearly periodicities, often in combination
with the burstiness.

7.2.2 Blogs

Most work on modeling link behavior in large-scale on-line data has been done in the domain of blogs
and social media [Kumar et al., 2003, Adamic and Glance, 2005, Adar and Adamic, 2005]. The authors
note that, while information propagates between blogs, examples of genuine cascading behavior appeared
relatively rare. This may, however, be due in part to the Web-crawling and text analysis techniques used
to infer relationships among posts [Adar and Adamic, 2005, Gruhl et al., 2004]. Our work here differs in
a way that we concentrate solely on the propagation of links, and do not infer additional links from text of
the post, which gives us more accurate information.

There are several potential models to capture the structure of the blogosphere. Work on information diffu-
sion based on topics [Gruhl et al., 2004] showed that for some topics, their popularity remains constant in
time (“chatter”) while for other topics the popularity is more volatile (“spikes”).Authors in [Kumar et al.,
2003] analyze community-level behavior as inferred from blog-rolls – permanent links between “friend”
blogs. Analysis based on thresholding as well as alternative probabilistic models of node activation is con-
sidered in the context of finding the most influential nodes in a network [Kempe et al., 2003], and for viral
marketing [Richardson and Domingos, 2002b]. Such analytical work posits a known network, and uses
the model to find the most influential nodes; in the current work we observereal cascades, characterize
them, and build generative models for them.

7.2.3 Information cascades and epidemiology

Information cascades are phenomena in which an action or idea becomes widely adopted due to the influ-
ence of others, typically, neighbors in some network [Bikhchandani et al., 1992, Goldenberg et al., 2001,
Granovetter, 1978]. Cascades on random graphs using a threshold model have been theoretically ana-
lyzed [Watts, 2002]. Empirical analysis of the topological patterns of cascades in the contextof a large
product recommendation network is in [Leskovec et al., 2006b] and [Leskovec et al., 2006a].

The study of epidemics offers powerful models for analyzing the spreadof viruses. Our topic propa-
gation model is based on theSIS(Susceptible-Infected-Susceptible) model of epidemics [Bailey, 1975].
This models flu-like viruses, where an entity begin as “susceptible”, may become “infected” and in-
fectious, and then heals to become susceptible again. A key parameter is the infection probabilityβ,
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SYMBOL DESCRIPTION

N Number of nodes in a cascade
E Number of edges in a cascade
β Probability of cascade propagation
tu Time that postu was published
∆ Propagation delay on edge(u, v), ∆ = tu − tv

Table 7.1: Table of symbols.
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(a) Blogosphere (b) Blog network (c) Post network

Figure 7.1: The model of the blogosphere (a). Squares represent blogs and circles blog-posts. Each post
belongs to a blog, and can contain hyper-links to other postsand resources on the web. We
create two networks: a weighted blog network (b) and a post network (c). Nodesa, b, c, d are
cascade initiators, and nodee is aconnector.

that is, the probability of a disease transmission in a single contact. Of high interest is theepidemic
threshold, that is, the critical value ofβ, above which the virus will spread and create an epidemic, as
opposed to becoming extinct. There is a huge literature on the study of epidemics on full cliques, ho-
mogeneous graphs, infinite graphs (see [Hethcote, 2000] for a survey), with recent studies on power law
networks [Equiluz and Klemm, 2002] and arbitrary networks [Wang et al., 2003].

7.3 Preliminaries

In this section we introduce terminology and basic concepts regarding the blogosphere and information
cascades.

Blogs (weblogs) are web sites that are updated on a regular basis. Blogshave the advantage of being
easy to access and update, and have come to serve a variety of purposes. Often times individuals use
them for online diaries and social networking, other times news sites have blogs for timely stories. Blogs
are composed of posts that typically have room for comments by readers – this gives rise to discussion
and opinion forums that are not possible in the mass media. Also, blogs and posts typically link each
other, as well as other resources on the Web. Thus, blogs have becomean important means of trans-
mitting information. The influence of blogs was particularly relevant in the 2004U.S. election, as they
became sources for campaign fundraising as well as an important supplement to the mainstream me-
dia [Adamic and Glance, 2005]. The blogosphere has continued to expand its influence, so understanding
the ways in which information is transmitted among blogs is important to developing concepts of present-
day communication.
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Figure 7.2: Cascades extracted from Figure7.1. Cascades represent the flow of information through
nodes in the network. To extract a cascade we begin with an initiator with no out-links to
other posts, then add nodes with edges linking to the initiator, and subsequently nodes that
link to any other nodes in the cascade.

We model two graph structures emergent from links in the blogosphere, which we call theBlog network
and thePost network. Figure7.1illustrates these structures. Blogosphere is composed of blogs, which are
further composed of posts. Posts then contain links to other posts and resources on the web.

From Blogosphere (a), we obtain the Blog network (b) by collapsing all links between blog posts into
weighted edges between blogs. A directed blog-to-blog edge is weighted withthe total number of links
occurring between posts in source blog pointing to posts in destination blog. From the Blog network we
can infer a social network structure, under the assumption that blogs thatare “friends” link each other
often.

In contrast, to obtain the Post network (c), we ignore the posts’ parent blogs and focus on the link structure.
Associated with each post is also the time of the post, so we label the edges in Post network with the time
difference∆ between the source and the destination posts. Lettu andtv denote post times of postsu and
v, whereu links tov, then the link time∆ = tu− tv. Note∆ > 0, since a post can not link into the future
and there are no self-edges.

From the Post network, we extract information cascades, which are induced subgraphs by edges repre-
senting the flow of information. A cascade (also known as conversation tree) has a single starting post
called thecascade initiatorwith no out-links to other posts (e.g., nodesa, b, c, d in Figure7.1(c)). Posts
then join the cascade by linking to the initiator, and subsequently new posts join by linking to members
within the cascade, where the links obey time order (∆ > 0). Figure7.2gives a list of cascades extracted
from Post network in Figure7.1(c). Since a link points from the follow-up post to the existing (older)
post, influence propagates following the reverse direction of the edges.

We also define anon-trivial cascade to be a cascade containing at least two posts, and therefore atrivial
cascadeis an isolated post. Figure7.2 shows all non-trivial cascades in Figure7.1(c), but not the two
trivial cascades. Cascades form two main shapes, which we will refer toasstarsandchains. A star occurs
when a single center posts is linked by several other posts, but the links donot propagate further. This
produces a wide, shallow tree. Conversely, a chain occurs when a root is linked by a single post, which
in turn is linked by another post. This creates a deep tree that has little breadth. As we will later see
most cascades are somewhere between these two extreme points. Occasionally separate cascades might
be joined by a single post – for instance, a post may summarize a set of topics, or focus on a certain
topic and provide links to different sources that are members of independent cascades. The post merging
the cascades is called aconnector node. Nodee in Figure7.2(c) is a connector node. It appears in two
cascades by connecting cascades starting at nodesb andc.
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7.4 Experimental setup

7.4.1 Dataset description

We extracted our dataset from a larger set which contains 21.3 million posts from 2.5 million blogs from
August and September 2005 [Glance et al., 2005]. Our goal here is to study temporal and topological
characteristics of information propagation on the blogosphere. This meanswe are interested in blogs and
posts that actively participate in discussions, so we biased our dataset towards the more active part of the
blogosphere.

We collected our dataset using the following procedure. We started with a listof the most-cited blog posts
in August 2005. For all posts we traversed the full conversation tree forward and backward following
post’s in- and out-links. For practical reasons we limited the depth of such conversation trees to 100 and
the maximum number of links followed from a single post to 500. This process gave us a set of posts
participating in conversations. From the posts we extracted a list of all blogs. This gave us a set of about
45, 000 active blogs. Now, we went back to the original dataset and extracted allposts coming from this
set of active blogs.

This process produced a dataset of2, 422, 704 posts from44, 362 blogs gathered over a two-month period
from beginning of August to end of September 2005. There are the total of 4, 970, 687 links in the dataset
out of which245, 404 are among the posts of our dataset and the rest point to other resources(e.g., images,
press, news, web-pages). For each post in the dataset we have the following information: unique Post ID,
the URL of the parent blog, Permalink of the post, Date of the post, post content (html), and a list of all
links that occur in the post’s content. Notice these posts are not a random sample of all posts over the
two month period but rather a set of posts biased towards active blogs participating in conversations (by
linking to other posts/blogs).

In Figure7.3we plot the number of posts per day over the span of our dataset. The periodicities in traffic
on a weekly basis will be discussed in section7.5. Notice that our dataset has no “missing past” problem,
i.e., the starting points of conversation are not missing due to the beginning of data collection, since we
followed the conversation all the way to its starting point and thus obtained complete conversations. The
posts span the period from July to September 2005 (90 days), while the majority of the data comes from
August and September. The July posts in the dataset are parts of conversations that were still active in
August and September.

7.4.2 Data preparation and cleaning

We represent the data as a cluster graph where clusters correspond toblogs, nodes in the cluster are posts
from the blog, and hyper-links between posts in the dataset are represented as directed edges. Before
analysis, we cleaned the data to most clearly represent the structures of interest.

Only consider out-links to posts in the dataset.We removed links that point to posts outside our dataset
or other resources on the web (images, movies, other web-pages). Themajor reason for this is that we
only have time-stamps for the posts in the dataset while we know nothing about creation time of URLs
outside the dataset, and thus we cannot consider these links in our temporalanalysis.

Use time resolution of one day.While posts in blogspace are often labeled with complete time-stamps,
many posts in our dataset do not have a specific time stamp but only the date is known. Additionally,
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Figure 7.3: Number of posts by day over the three-month period.

there are challenges in using time stamps to analyze emergent behaviors on anhourly basis, because posts
are written in different time zones, and we do not normalize for this. Using a coarser resolution of one
day serves to reduce the time zone effects. Thus, in our analysis the time differences are aggregated into
24-hour bins.

Remove edges pointing into the future.Since a post cannot link to another post that has not yet been
written, we remove all edges pointing into the future. The cause may be human error, post update, an
intentional back-post, or time zone effects; in any case, such links do notrepresent information diffu-
sion.

Remove self edges.Again, self edges do not represent information diffusion. However, we do allow a
post to link to another post in the same blog.

7.5 Observations, patterns and laws

Next we present our experiments and observations on the blog and postnetwork topology and cascading
patterns of information diffusion on the blogosphere.

7.5.1 Temporal dynamics of posts and links

Traffic in blogosphere is not uniform; therefore, we consider traffic patterns when analyzing influence
in the temporal sense. As Figure7.3 illustrates, there is a seven-day periodicity. Further exploring the
weekly patterns, Figure7.4shows the number of posts and the number of blog-to-blog links for different
days of the week, aggregated over the entire dataset. Posting and blog-to-blog linking patterns tend to
have aweekend effectof sharply dropping off at weekends.

Next, we examine how a post’s popularity grows and declines over time. We collect all in-links to a
post and plot the number of links occurring after each day following the post. This creates a curve that
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Figure 7.4: Activity counts (number of posts and number of links) per dayof week, from Monday to
Sunday, summed over entire dataset.

indicates the rise and fall of popularity. By aggregating over a large set of posts we obtain a more general
pattern.

Top left plot of Figure7.5 shows number of in-links for each day following a post for all posts in the
dataset, while top right plot shows the in-link patterns for Monday posts only(in order to isolate the
weekly periodicity). It is clear that the most links occur on the first 24 hours after the post, after that the
popularity generally declines. However, in the top right plot, we note that there are “spikes” occurring
every seven days, each following Monday. It almost appears as if there is compensatory behavior for the
sparse weekend links. However, this is not the case. Mondays do not have an unusual number of links;
Monday only appears to spike on these graphs because the natural drop-off of popularity in the following
days allows Monday to tower above its followers.

Thus, fitting a general model to the drop-off graphs may be problematic, since we might obtain vastly
different parameters across posts simply because they occur at different times during the week. Therefore,
we smooth the in-link plots by applying a weighting parameter to the plots separatedby day of week.
For each delay∆ on the horizontal axis, we estimate the corresponding day of weekd, and we prorate
the count for∆ by dividing it by l(d), wherel(d) is the percent of blog links occurring on day of week
d.

This weighting scheme normalizes the curve such that days of the week with less traffic are bumped up
further to meet high traffic days, simulating a popularity drop-off that might occur if posting and linking
behavior were uniform throughout the week. A smoothed version of the post drop-offs is shown in the
middle row of Figure7.5.

We fit the power law distribution with a cut-off in the tail (bottom row). We fit on 30 days of data,
since most posts in the graph have complete in-link patterns for the 30 days following publication. We
performed the fitting over all posts and for all days of the week separately, and found a stable power law
exponent of around−1.5, which is exactly the value predicted by the model where the bursty nature of
human behavior is a consequence of a decision based queuing process[Barab́asi, 2005] – when individuals
execute tasks based on some perceived priority, the timing of the tasks is heavy tailed, with most tasks
being rapidly executed, whereas a few experience very long waiting times.
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Figure 7.5: Number of in-links vs. the days after the post in log-linear scale; when considering all posts
(top left), only Monday posts (top right). After removing the day-of-the week effects (middle
row). Power law fit to the data with exponents−1.6 and−1.46 (bottom row).

Observation 7.5.1.The probability that a postu written at timet(u) acquires a link at timet(u) + ∆ is:

p(t(u) + ∆) ∝ ∆−1.5
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Figure 7.7: Distribution of the number of posts per blog (a); Distribution of the number of blog-to-blog
links, i.e., the distribution over the Blog network edge weights (b).

7.5.2 Blog network topology

The first graph we consider is the Blog network. As illustrated in Figure7.1(c), every node represents
a blog and there is a weighted directed edge between blogsu andv, where the weight of the edge cor-
responds to the number of posts from blogu linking to posts at blogv. The network contains44, 356
nodes and122, 153 edges. The sum of all edge weights is the number of all post to post links (245, 404).
Connectivity-wise, half of the blogs belong to the largest connected component and the other half are
isolated blogs.

We show the in- and out-degree distribution in Figure7.6. Notice they both follow a heavy-tailed distri-
bution. The in-degree distribution has a very shallow power law exponentof −1.7, which suggests strong
rich-get-richer phenomena. One would expect that popular active blogs that receive lots of in-links also
sprout many out-links. Intuitively, the attention (number of in-links) a blog gets should be correlated with
its activity (number of out-links). This does not seem to be the case. The correlation coefficient between a
blog’s number of in- and out-links is only0.16, and the scatter plot in Figure7.6suggests the same.

The number of posts per blog, as shown in Figure7.7(a), follows a heavy-tailed distribution. The deficit
of blogs with low number of posts and the knee at around 40 posts per blog can be explained by the fact
that we are using a dataset biased towards active blogs. However, ourbiased sample of the blogs still
maintains the power law in the number of blog-to-blog links (edge weights of the Blog network) as shown
in 7.7(b). The power law exponent is−2.7.
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Figure 7.9: Common cascade shapes ordered by the frequency. Cascade with labelGr has the frequency
rankr.

7.5.3 Post network topology

In contrast to Blog network the Post network is very sparsely connected. It contains 2.2 million nodes
and only205, 000 edges.98% of the posts are isolated, and the largest connected component accounts
for 106, 000 nodes, while the second largest has only 153 nodes. Figure7.8 shows the in- and out-
degree distributions of the Post network which follow a power law with exponents−2.1 and−2.9, re-
spectively.

7.5.4 Patterns in the cascades

We continue with the analysis of the topological aspects of the information cascades formed when certain
posts become popular and are linked by the other posts. We are especially interested in how this process
propagates, how large are the cascades it forms, and as it will be shownlater, what are the models that
mimic cascading behavior and produce realistic cascades.

Cascades are subgraphs of the Post network that have a single root post, are time increasing (source
links an existing post), and present the propagation of the information fromthe root to the rest of the
cascade.
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Given the Post network we extracted all information cascades using the following procedure. We found
all cascade initiator nodes,i.e., nodes that have zero out-degree, and started following their in-links. This
process gives us a directed acyclic graph with a single root node. As illustrated in Figure7.2it can happen
that two cascades merge,e.g., a post gives a summary of multiple conversations (cascades). For cascades
that overlap our cascade extraction procedure will extract the nodes bellow the connector node multiple
times (since they belong to multiple cascades). To obtain the examples of the commonshapes and count
their frequency we used the algorithms as described in [Leskovec et al., 2006b].

Common cascade shapes

First, we give examples of common Post network cascade shapes in Figure7.9. A node represents a post
and the influence flows from the top to the bottom. The top post was written first,other posts linking
to it, and the process propagates. Graphs are ordered by frequencyand the subscript of the label gives
frequency rank. Thus,G124 is 124th most frequent cascade with 11 occurrences.

We find the total of2, 092, 418 cascades, and 97% of them are trivial cascades (isolated posts), 1.8%
are smallest non-trivial cascades (G2), and the remaining 1.2% of the cascades are topologically more
complex.

Most cascades can essentially be constructed from instances of stars and trees, which can model more
complicated behavior like that shown in Figure7.9. Cascades tend to be wide, and not too deep. Structure
G107, which we call acite-all chain, is especially interesting. Each post in a chain refers to every post
before it in the chain.

We also find that the cascades found in the graph tend to take certain shapes preferentially. Also notice
that cascade frequency rank does not simply decrease as a function of the cascade size. For example, as
shown on Figure7.9, a 4-star (G4) is more common than a chain of 3 nodes (G5). In general stars and
shallow bursty cascades are the most common type of cascades.

Cascade topological properties

What is the common topological pattern in the cascades? We next examine the general cascade behavior
by measuring and characterizing the properties of real cascades.

First we observe the degree distributions of the cascades. This means that from the Post network we
extract all the cascades and measure the overall degree distribution. Essentially we work with abag of
cascades, where we treat a cascade as separate disconnected sub-graph in a large network.

Figure7.10(a) plots the out-degree distribution of the bag of cascades. Notice the cascade out-degree
distribution is truncated, which is the result of not perfect link extraction algorithm and the upper bound
on the post out-degree (500).

Figure7.10(b) shows the in-degree distribution of the bag of cascades, and (c) plots the in-degree distri-
bution of nodes at levelL of the cascade. A node is at levelL if it is L hops away from the root (cascade
initiator) node. Notice that the in-degree exponent is stable and does not change much given the level in
the cascade. This means that posts still attract attention (get linked) even if they are somewhat late in the
cascade and appear towards the bottom of it.
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Figure 7.11: Size distribution over all cascades (a), only stars (b), andchains (c). They all follow heavy
tailed distributions with increasingly steeper slopes.

Next, we ask what distribution do cascade sizes follow? Does the probabilityof observing a cascade on
N nodes decreases exponentially withN? We examine theCascade Size Distributionsover the bag of
cascades extracted from the Post network. We consider three different distributions: over all cascade size
distribution, and separate size distributions of star and chain cascades. We chose stars and chains since
they are well defined, and given the number of nodes in the cascade, there is no ambiguity in the topology
of a star or a chain.

Figure7.11gives the Cascade Size Distribution plots. Notice all follow a heavy-tailed distribution. We
fit a power law distribution and observe that overall cascade size distribution has power law exponent of
≈ −2 (Figure7.11(a)), stars have≈ −3.1 (Figure7.11(b)), and chains are small and rare and decay with
exponent≈ −8.5 (Fig. 7.11(c)). Also notice there are outlier chains (Fig.7.11(c)) that are longer than
expected. We attribute this to possible flame wars between the blogs, where authors publish posts and
always refer to the last post of the other author. This creates chains longer than expected.

Observation 7.5.2.Probability of observing a cascade onN nodes follows a Zipf distribution:

p(N) ∝ N−2

As suggested by Figure7.9 most cascades follow tree-like shapes. To further verify this we examine
how the diameter, defined as the length of the longest undirected path in the cascade, and the relation
between the number of nodes and the number of edges in the cascade change with the cascade size in
Figure7.12.
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This gives further evidence that the cascades are mostly tree-like. We plot the number of nodes in the
cascade vs. the number of edges in the cascade in Figure7.12(a). Notice the number of edgesE in
the cascade increases almost linearly with the number of nodesN (E ∝ N1.03). This suggests that the
average degree in the cascade remains constant as the cascade grows, which is a property of trees and
stars. Next, we also measure cascade diameter vs. cascade size (Figure7.12(b)). We plot on linear-log
scales and fit a logarithmic function. Notice the diameter increases logarithmicallywith the size of the
cascade, which means the cascade needs to grow exponentially to gain linear increase in diameter, which
is again a property of the balanced trees and very sparse graphs.

Collisions of cascades

By the definition we adopt in this chapter, the cascade has a single initiator node, but in real life one
would also expect that cascades collide and merge. There are connector nodes which are the first to bring
together separate cascades. As the cascades merge, all the nodes bellow the connector node now belong
to multiple cascades. We measure the distribution over the connector nodes and the nodes that belong to
multiple cascades.

First, we consider only the connector nodes and plot the distribution over how many cascades a connector
joins (Figure7.13(a)). We only consider nodes with out-degree greater than 1, since nodes with out-degree
1 are trivial connectors – they are connecting the cascade they belong to. But there are still posts that have
out-degree greater than 1, and connect only one cascade. These are the posts that point multiple out-links
inside the same cascade (e.g.G12 andG107 of Figure7.9). The dip the at the number of joined cascades
equal to 1 in Figure7.13(a) gives the number of such nodes.

As cascades merge, all the nodes that follow belong to multiple cascades. Figure7.13(b) gives the distri-
bution over the number of cascades a node belongs to. Here we considerall the nodes and find out that
98% of all nodes belong to a single cascade, and the rest of distribution followsa power law with exponent
−2.2.
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Figure 7.13: Distribution of joined cascades by the connector nodes (a).We only consider nodes with
out-degree greater than 1. Distribution of a number of cascades a post belongs to (b);98%
of posts belong to a single cascade.

7.6 Proposed model and insights

What is the underlying hidden process that generates cascades? Our goal here is to find a generative model
that generates cascades with properties observed in section7.5.4(Figures7.10and7.11). We aim for a
simple and intuitive model with the least possible number of parameters.

7.6.1 Cascade generation model

We present a conceptual model for generating information cascades that produces cascade graphs match-
ing several properties of real cascades. Our model is intuitive and requires only a single parameter that
corresponds to how interesting (easy spreading) are the conversations in general on the blogosphere.

Intuitively, cascades are generated by the following principle. A post is posted at some blog, other blog-
gers read the post, some create new posts, and link the source post. This process continues and creates a
cascade. One can think of cascades being a graph created by the spread of the virus over the Blog net-
work. This means that the initial post corresponds to infecting a blog. As thecascade unveils, the virus
(information) spreads over the network and leaves a trail. To model this process we use a single parameter
β that measures how infectious are the posts on the blogosphere. Our model isvery similar to the SIS
(susceptible – infected – susceptible) model from the epidemiology [Hethcote, 2000].

Next, we describe the model. Each blog is in one of two states:infectedor susceptible. If a blog is in the
infected state this means that the blogger just posted a post, and the blog now has a chance to spread its
influence. Only blogs in the susceptible (not infected) state can get infected. When a blog successfully
infects another blog, a new node is added to the cascade, and an edge is created between the node and
the source of infection. The source immediately recovers,i.e., a node remains in the infected state only
for one time step. This gives the model the ability to infect a blog multiple times, which corresponds to
multiple posts from the blog participating in the same cascade.

More precisely, a single cascade of theCascade generation modelis generated by the following pro-
cess.
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Figure 7.14: Top 10 most frequent cascades as generated by the Cascade generation model. Notice similar
shapes and frequency ranks as in Figure7.9.

(i) Uniformly at random pick blogu in the Blog network as a starting point of the cascade, set its state
to infected, and add a new nodeu to the cascade graph.

(ii) Blog u that is now in infected state, infects each of its uninfected directed neighbors in the Blog
network independently with probabilityβ. Let {v1, . . . , vn} denote the set of infected neighbors.

(iii) Add new nodes{v1, . . . , vn} to the cascade and link them to nodeu in the cascade.

(iv) Set state of nodeu to not infected. Continue recursively with step (ii) until no nodes are infected.

We make a few observations about the proposed model. First, note that the blog immediately recovers and
thus can get infected multiple times. Every time a blog gets infected a new node is added to the cascade.
This accounts for multiple posts from the blog participating in the same cascade.Second, we note that in
this version of the model we do not try to account for topics or model the influence of particular blogs.
We assume that all blogs and all conversations have the same value of the parameterβ. Third, the process
as describe above generates cascades that are trees. This is not big limitation since we observed that most
of the cascades are trees or tree-like. In the spirit of our notion of cascade we assume that cascades have
a single starting point, and do not model for the collisions of the cascades.

7.6.2 Validation of the model

We validate our model by extensive numerical simulations. We compare the obtained cascades towards
the real cascades extracted from the Post network. We find that the model matches the cascade size and
degree distributions.

We use the real Blog network over which we propagate the cascades. Using the Cascade generation model
we also generate the same number of cascades as we found in Post network (≈ 2 million). We tried several
values ofβ parameter, and at the end decided to useβ = 0.025. This means that the probability of cascade
spreading from the infected to an uninfected blog is2.5%. We simulated our model 10 times, each time
with a different random seed, and report the average.

First, we show the top 10 most frequent cascades (ordered by frequency rank) as generated by the Cascade
generation model in Figure7.14. Comparing them to most frequent cascades from Figure7.9 we notice
that top 7 cascades are matched exactly (with an exception of ranks ofG4 andG5 swapped), and remaining
cascades can also be found in real data.

Next, we show the results on matching the cascade size and degree distributions in Figure7.15. We
plot the true distributions of the cascades extracted from the Post networkwith dots, and the results of
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Figure 7.15: Comparison of the true data and the model. We plotted the distribution of the true cascades
with circles and the estimate of our model with dashed line. Notice remarkable agreement
between the data and the prediction of our simple model.

our model are plotted with a dashed line. We compare four properties of cascades: (a) overall cascade
size distribution, (b) size distribution of chain cascades, (c) size distributionof stars, and (d) in-degree
distribution over all cascades.

Notice a very good agreement between the reality and simulated cascades in all plots. The distribution
over of cascade sizes is matched best. Chains and stars are slightly under-represented, especially in the tail
of the distribution where the variance is high. The in-degree distribution is also matched nicely, with an
exception of a spike that can be attributed to a set of outlier blogs all with in-degree 52. Cascades generated
by the Cascade generation model are all trees, and thus the out-degree for every node is 1.

7.6.3 Variations of the model

We also experimented with other, more sophisticated versions of the model. Namely, we investigated
various strategies of selecting a starting point of the cascade, and using edge weights (number of blog-to-
blog links) to further boost cascades.

We considered selecting a cascade starting blog based on the blog in-degree, in-weight or the number of
posts. We experimented with variants where the probabilityβ of propagating via a link is not constant
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but also depends on the weight of the link (number of references between the blogs). We also considered
versions of the model where the probabilityβ exponentially decays as the cascade spreads away from the
origin.

We found out that choosing a cascade starting blog in a biased way resultsin too large cascades and non-
heavy tailed distributions of cascade sizes. Intuitively, this can be explained by the fact that popular blogs
are in the core of the Blog network, and it is very easy to create large cascades when starting in the core.
A similar problem arises when scalingβ with the edge weight. This can also be explained by the fact that
we are not considering specific topics and associate each edge with a topic(some blog-to-blog edges may
be very topic-specific) and thus we allow the cascade to spread over all edges regardless of the particular
reason (the topic) that the edge between the blogs exists. This is especially true for blogs like BoingBoing
(www.boingboing.net ) that are very general and just a collection of “wonderful things”.

7.7 Discussion

Our finding that the popularity of posts drops off with a power law distributionis interesting since intuition
might lead one to believe that people would “forget” a post topic in an exponential pattern. However,
since linking patterns are based on the behaviors of individuals over several instances, much like other
real-world patterns that follow power laws such as traffic to Web pages and scientists’ response times
to letters [Vazquez et al., 2006], it is reasonable to believe that a high number of individuals link posts
quickly, and later linkers fall off with a heavy-tailed pattern.

Our findings have potential applications in many areas. One could argue that the conversation mass metric,
defined as the total number of posts in all conversation trees below the point inwhich the blogger con-
tributed, summed over all conversation trees in which the blogger appears,is a better proxy for measuring
influence. This metric captures the mass of the total conversation generatedby a blogger, while number
of in-links captures only direct responses to the blogger’s posts.

For example, we found that BoingBoing, which a very popular blog aboutamusing things, is engaged in
many cascades. Actually, 85% of all BoingBoing posts were cascade initiators. The cascades generally
did not spread very far but were wide (e.g., G10 andG14 in Fig. 7.9). On the other hand53% of posts
from a political blog MichelleMalkin (www.michellemalkin.com ) were cascade initiators. But the
cascade here were deeper and generally larger (e.g., G117 in Fig. 7.9) than those of BoingBoing.

7.8 Conclusion

We analyzed one of the largest available collections of blog information, trying to find how blogs behave
and how information propagates through the blogosphere. We studied two structures, the “Blog network”
and the “Post network”. Our contributions are two-fold: (a) The discovery of a wealth of temporal and
topological patterns and (b) the development of a generative model that mimics the behavior of real cas-
cades. In more detail, our findings are summarized as follows:

• Temporal Patterns:The decline of a post’s popularity follows a power law. The slope is≈-1.5, the
slope predicted by a very recent theory of heavy tails in human behavior [Barab́asi, 2005]
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• Topological Patterns:Almost any metric we examined follows a power law: size of cascades,
size of blogs, in- and out-degrees. To our surprise, the number of in- and out-links of a blog are
not correlated. Finally, stars and chains are basic components of cascades, with stars being more
common.

• Generative model:Our idea is to reverse-engineer the underlying social network of blog-owners,
and to treat the influence propagation between blog-posts as a flu-like virus, that is, the SIS model
in epidemiology. Despite its simplicity, our model generates cascades that match very well the
real cascades with respect to in-degree distribution, cascade size distribution, and popular cascade
shapes.
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Chapter 8

Outbreak and cascade detection

Given a water distribution network, where should we place sensors to quickly detect contaminants? Or,
which blogs should we read to avoid missing important stories?

These seemingly different problems share common structure: Outbreak detection can be modeled as se-
lecting nodes (sensor locations, blogs) in a network, in order to detect thespreading of a virus or informa-
tion as quickly as possible.

In this chapter we present a general methodology for near optimal sensor placement in these and related
problems. We demonstrate that many realistic outbreak detection objectives (e.g., detection likelihood,
population affected) exhibit the property of “submodularity”. We exploit submodularity to develop an
efficient algorithm that scales to large problems, achieving near optimal placements, while being 700
times faster than a simple greedy algorithm. We also derive online bounds on thequality of the placements
obtained byanyalgorithm. Our algorithms and bounds also handle cases where nodes (sensor locations,
blogs) have different costs.

We evaluate our approach on several large real-world problems, including a model of a water distribution
network from the EPA, and real blog data. The obtained sensor placements are provably near optimal, pro-
viding a constant fraction of the optimal solution. We show that the approachscales, achieving speedups
and savings in storage of several orders of magnitude. We also show how the approach leads to deeper
insights in both applications, answering multicriteria trade-off, cost-sensitivity and generalization ques-
tions.

8.1 Introduction

We explore the general problem of detecting outbreaks in networks, where we are given a network and a
dynamic process spreading over this network, and we want to select a set of nodes to detect the process as
effectively as possible.

Many real-world problems can be modeled under this setting. Consider a city water distribution network,
delivering water to households via pipes and junctions. Accidental or malicious intrusions can cause
contaminants to spread over the network, and we want to select a few locations (pipe junctions) to install
sensors, in order to detect these contaminations as quickly as possible. InAugust 2006, the Battle of Water
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Sensor Networks (BWSN) [Ostfeld et al., 2006] was organized as an international challenge to find the
best sensor placements for a real (but anonymized) metropolitan area water distribution network. As part
of this chapter, we present the approach we used in this competition. Typical epidemics scenarios also
fit into this outbreak detection setting: We have a social network of interactions between people, and we
want to select a small set of people to monitor, so that any disease outbreakcan be detected early, when
very few people are infected.

In the domain of weblogs (blogs), bloggers publish posts and use hyper-links to refer to other bloggers’
posts and content on the web. Each post is time stamped, so we can observethe spread of information on
the “blogosphere”. In this setting, we want to select a set of blogs to read(or retrieve) which are most up
to date,i.e., catch (link to) most of the stories that propagate over the blogosphere. Figure8.1 illustrates
this setting. Each layer plots the propagation graph (also calledinformation cascade[Bikhchandani et al.,
1992]) of the information. Circles correspond to blog posts, and all posts at thesame vertical column
belong to the same blog. Edges indicate the temporal flow of information: the cascade starts at some post
(e.g., top-left circle of the top layer of Figure8.1) and then the information propagates recursively by other
posts linking to it. Our goal is to select a small set of blogs (two in case of Figure 8.1) which “catch” as
many cascades (stories) as possible1.A naive, intuitive solution would be to select the big, well-known
blogs. However, these usually have a large number of posts, and are time-consuming to read. We show,
that, perhaps counterintuitively, a more cost-effective solution can be obtained, by reading smaller, but
higher quality, blogs, which our algorithm can find.

There are several possible criteria one may want to optimize in outbreak detection. For example, one
criterion seeks to minimizedetection time(i.e., to know about a cascade as soon as possible, or avoid
spreading of contaminated water). Similarly, another criterion seeks to minimize the population affected
by an undetected outbreak (i.e., the number of blogs referring to the story we just missed, or the population
consuming the contamination we cannot detect). Optimizing these objective functions is NP-hard, so for
large, real-world problems, we cannot expect to find the optimal solution.

In this chapter, we show, that these and many other realistic outbreak detection objectives aresubmodular,
i.e., they exhibit a diminishing returns property: Reading a blog (or placing a sensor) when we have only
read a few blogs provides more new information than reading it after we have read many blogs (placed
many sensors).

We show how we can exploit this submodularity property toefficiently obtainsolutions which areprovably
closeto the optimal solution. These guarantees are important in practice, since selecting nodes is expensive
(reading blogs is time-consuming, sensors have high cost), and we desiresolutions which are not too far
from the optimal solution.

The main contributions of this part of thesis are:

• We show that many objective functions for detecting outbreaks in networksare submodular, includ-
ing detection time and population affected in the blogosphere and water distribution monitoring
problems. We show that our approach also generalizes work by [Kempe et al., 2003] on selecting
nodes maximizing influence in a social network.

• We exploit the submodularity of the objective (e.g., detection time) to develop an efficient approxi-
mation algorithm, CELF, which achieves near-optimal placements (guaranteeing at least a constant
fraction of the optimal solution), providing a novel theoretical result for non-constant node cost

1In real-life multiple cascades can be on the same or similar story, but we stillaim to detect as many as possible.
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Figure 8.1: Spread of information between blogs. Each layer shows an information cascade, and all posts
at the same vertical column belong to the same blog. Edges represent the flow of information.
We want to pick a few blogs quickly capture most cascades.

SYMBOL DESCRIPTION

G Graph,G = (V, E)
V Vertex set
E Edge set
i ∈ I Set of all possible outbreaks (set of all possible cascades)
T (i, s) Time it takes an outbreak (cascade)i to reach nodes
c(s) Cost of monitoring (placing a sensor, reading a blog)s
c(A) Cost of placementA, c(A) =

∑
s∈A c(s)

π(A) Expected penalty over all possible outbreaksI
R(A) Reward,i.e., penalty reductionR(A) = π(∅)− π(A)
δs Marginal reward (gain),δs = R(A ∪ s)−R(A)
sk Location with highest marginal reward or benefit/cost ratio

Table 8.1: Table of symbols.

functions. CELF is up to 700 times faster than simple greedy algorithm. We also derive novel
online bounds on the quality of the placements obtained byanyalgorithm.

• We extensively evaluate our methodology on the applications introduced above – water quality
and blogosphere monitoring. These are large real-world problems, involving a model of a water
distribution network from the EPA with millions of contamination scenarios, and real blog data
with millions of posts.

• We show how the proposed methodology leads to deeper insights in both applications, including
multicriterion, cost-sensitivity analyses and generalization questions.

8.2 Outbreak Detection

8.2.1 Problem statement

The water distribution and blogosphere monitoring problems, even though in very different domains, share
essential structure. In both problems, we want to select a subsetA of nodes (sensor locations, blogs) in a
graphG = (V, E), which detect outbreaks (spreading of a virus/information) quickly.
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Figure 8.2: Blogs have posts, and there are time stamped links between the posts. The links point to the
sources of information and the cascades grow (information spreads) in the reverse direction
of the edges. Reading only blogB6 captures all cascades, but late.B6 also has many posts,
so by readingB1 andB2 we detect cascades sooner.

Figure8.2presents an example of such a graph for blog network. Each of the six blogs consists of a set of
posts. Connections between posts represent hyper-links, and labels show the time difference between the
source and destination post,e.g., postp41 linkedp12 one day afterp12 was published).

These outbreaks (e.g., information cascades) initiate from a single node of the network (e.g., p11, p12 and
p31), and spread over the graph, such that the traversal of every edge(s, t) ∈ E takes a certain amount
of time (indicated by the edge labels). As soon as the event reaches selected node, alarm is triggered.
E.g., selecting blogB6, would detect the cascades originating from postp11, p12 andp31, after 6, 6 and 2
timesteps after the start of the respective cascades.

Depending on which nodes we select, we achieve a certain placement score. Figure8.2 illustrates several
criteria one may want to optimize. If we only want to detect as many stories as possible, then reading
just blog B6 is best. However, readingB1 would only miss one cascade (p31), but would detect the
other cascades immediately. In general, this placement score (representing, e.g., the fraction of detected
cascades, or the population saved by placing a sensor) is a set functionR, mapping every placementA to
a real numberR(A) (our reward), which we intend to maximize.

Since sensors are expensive, we also associate acostc(A) with every placementA, and require, that this
cost does not exceed a specified budgetB which we can spend. For example, the cost of selecting a blog
could be the number of posts in it (i.e., B1 has cost 2, whileB6 has cost 6). In the water distribution setting,
accessing certain locations in the network might be more difficult (expensive) than other locations. Also,
we could have several types of sensors to choose from, which vary in their quality (detection accuracy)
and cost. We associate a nonnegative costc(s) with every sensors, and define the cost of placementA:
c(A) =

∑
s∈A c(s).

Using this notion of reward and cost, our goal is to solve the optimization problem

max
A⊆V

R(A) subject toc(A) ≤ B, (8.1)

whereB is a budget we can spend for selecting the nodes.
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8.2.2 Placement objectives

An eventi ∈ I from setI of scenarios (e.g., cascades, contaminant introduction) originates from a node
s′ ∈ V of a networkG = (V, E), and spreads through the network, affecting other nodes (e.g., through
citations, or flow through pipes). Eventually, it reaches a monitored nodes ∈ A ⊆ V (i.e., blogs we
read, pipe junction we instrument with a sensor), and gets detected. Depending on the time of detection
t = T (i, s), and the impact on the network before the detection (e.g., the size of the cascades missed,
or the population affected by a contaminant), we incurpenaltyπi(t). Note that the penalty function
πi(t) depends on the scenario. We discuss concrete examples of penalty functions below. Our goal is to
minimize the expected penalty over all possible scenariosi:

π(A) ≡
∑

i

P (i)πi(T (i,A)),

where, for a placementA ⊆ V, T (i,A) = mins∈A T (i, s) is the time until eventi is detected by one of
the sensors inA, andP is a (given) probability distribution over the events.

We assumeπi(t) to be monotonically nondecreasing int, i.e., we never prefer late detection if we can
avoid it. We also setT (i, ∅) = ∞, and setπi(∞) to some maximum penalty incurred for not detecting
eventi.

Proposed alternative formulation. Instead of minimizing the penaltyπ(A), we can consider the scenario
specificpenalty reductionRi(A) = πi(∞)− πi(T (i,A)), and the expected penalty reduction

R(A) =
∑

i

P (i)Ri(A) = π(∅)− π(A),

describes the expected benefit (reward) we get from placing the sensors. This alternative formulation has
crucial properties which our method exploits, as described below.

Examples used in our experiments.Even though the water distribution and blogosphere monitoring
problems are very different, similar placement objective scores make sense for both applications. The de-
tection timeT (i, s) in the blog setting is the time difference in days, until blogs participates in the cascade
i, which we extract from the data. In the water network,T (i, s) is the time it takes for contaminated water
to reach nodes in scenarioi (depending on outbreak location and time). In both applications we consider
the following objective functions (penalty reductions):

(a) Detection likelihood (DL): fraction of information cascades and contamination events detected by the
selected nodes. Here, the penalty isπi(t) = 0, andπi(∞) = 1, i.e., we do not incur any penalty if we
detect the outbreak in finite time, otherwise we incur penalty 1.

(b) Detection time (DT)measures the time passed from outbreak till detection by one of the selected
nodes. Hence,πi(t) = min{t, Tmax}, whereTmax is the time horizon we consider (end of simulation /
data set).

(c) Population affected (PA)by scenario (cascade, outbreak). This criterion has different interpretations
for both applications. In the blog setting, the affected population measures the number of blogs involved
in a cascade before the detection. Here,πi(t) is the size of (number of blogs participating in) cascade
i at time t, andπi(∞) is the size of the cascade at the end of the data set. In the water distribution
application, the affected population is the expected number of people affected by not (or late) detecting a
contamination event.
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Note, that optimizing each of the objectives can lead to very different solutions, hence we may want to
simultaneously optimize all objectives at once. We deal with this multicriterion optimization problem
in Section8.2.4.

8.2.3 Properties of the placement objectives

The penalty reduction function2 R(A) has several important and intuitive properties: Firstly,R(∅) = 0,
i.e., we do not reduce the penalty if we do not place any sensors. Secondly, R is nondecreasing,i.e.,
R(A) ≤ R(B) for all A ⊆ B ⊆ V. Hence, adding sensors can only decrease the incurred penalty.
Thirdly, and most importantly, it satisfies the following intuitive diminishing returnsproperty: If we add a
sensor to a small placementA, we improve our score at least as much, as if we add it to a larger placement
B ⊇ A. More formally, we can prove that

Theorem 8.2.1.For all placementsA ⊆ B ⊆ V and sensorss ∈ V \ B, it holds that

R(A ∪ {s})−R(A) ≥ R(B ∪ {s})−R(B).

A set functionR with this property is calledsubmodular.

Proof. Our proof is similar to the analysis of [Nemhauser et al., 1978]. Fix scenarioi. We first show that
the functionRi(A) = πi(∞) − πi(T (A, i)) is submodular. ConsiderA ⊆ B ⊆ V. Let s ∈ V \ B.
We have three cases. (i)T (s, i) ≥ T (A, i). ThenT (A ∪ {s}) = T (A) andT (B ∪ {s}) = T (B) and
henceRi(A ∪ {s}) − Ri(A) = 0 = Ri(B ∪ {s}) − Ri(B). (ii) T (B, i) ≤ T (s, i) < T (A, i). In this
case,Ri(A ∪ {s}) − Ri(A) ≥ 0 = Ri(B ∪ {s}) − Ri(B). Finally, (iii), T (s, i) < T (B, i). In this case,
Ri(A ∪ {s}) − Ri(A) = [πi(∞) − πi(T (s, i))] − Ri(A) ≥ [πi(∞) − πi(T (s, i))] − Ri(B) = Ri(B ∪
{s}) − Ri(B), where the inequality is due to the nondecreasingness ofRi(·). Hence, for each scenario
i, the functionRi is submodular. Now,R(A) =

∑
i P (i)Ri(A) is a nonnegative linear combination of

submodular functions, and hence submodular too.

Hence, both the blogosphere and water distribution monitoring problems can be reduced to the problem
of maximizing a nondecreasing submodular function, subject to a constrainton the budget we can spend
for selecting nodes. More generally, any objective function that can beviewed as an expected penalty
reduction is submodular. Submodularity ofR will be the key property exploited by our algorithms.

8.2.4 Multicriterion optimization

In practical applications, such as the blogosphere and water distribution monitoring, we may want to
simultaneouslyoptimize multiple objectives. Then, each placement has a vector of scores,R(A) =
(R1(A), . . . , Rm(A)). Here, the situation can arise that two placementsA1 andA2 are incomparable,
e.g., R1(A1) > R1(A2), but R2(A1) < R2(A2). So all we can hope for arePareto-optimal solu-
tions [Boyd and Vandenberghe, 2004]. A placementA is called Pareto-optimal, if there does not exist
another placementA′ such thatRi(A′) ≥ Ri(A) for all i, andRj(A′) > Rj(A) for somej (i.e., there

2The objective R is similar to one of the examples of submodular functions described by [Nemhauser et al., 1978]. Our
objective, however, preserves additional problem structure (sparsity) which we exploit in our implementation, and which we
crucially depend on to solve large problem instances.
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is no placementA′ which is at least as good asA in all objectivesRi, and strictly better in at least one
objectiveRj).

One common approach for finding such Pareto-optimal solutions is by usingscalarization(see for ex-
ample, [Boyd and Vandenberghe, 2004]). Here, one picks positive weightsλ1 > 0, . . . , λm > 0, and
optimizes the objectiveR(A) =

∑
i λiRi(A). Any solution maximizingR(A) is guaranteedto be

Pareto-optimal [Boyd and Vandenberghe, 2004], and by varying the weightsλi, different Pareto-optimal
solutions can be obtained. One might be concerned that, even if optimizing the individual objectivesRi

is easy (i.e., can be approximated well), optimizing the sumR =
∑

i λiRi might be hard. However,
submodularity is closed under nonnegative linear combinations and thus the new scalarized objective is
submodular as well, and we can apply the algorithms we develop in the following section.

8.3 Proposed algorithm

Maximizing submodular functions in general is NP-hard [Khuller et al., 1999]. A commonly used heuris-
tic in the simplercase, where every node hasequalcost (i.e., unit cost,c(s) = 1 for all locationss) is
thegreedy algorithm, which starts with the empty placementA0 = ∅, and iteratively, in stepk, adds the
locationsk which maximizes themarginal gain

sk = argmax
s∈V\Ak−1

R(Ak−1 ∪ {s})−R(Ak−1). (8.2)

The algorithm stops, once it has selectedB elements. Considering the hardness of the problem, we might
expect the greedy algorithm to perform arbitrarily badly. However, in thefollowing we show that this is
not the case.

8.3.1 Bounds for the algorithm

Unit cost case. Perhaps surprisingly – in the unit cost case – the simple greedy algorithm is near-
optimal:

Theorem 8.3.1([Nemhauser et al., 1978]). If R is a submodular, nondecreasing set function andR(∅) =
0, then the greedy algorithm finds a setAG, such thatR(AG) ≥ (1− 1/e)max|A|=B R(A).

Hence, the greedy algorithm is guaranteed to find a solution which achievesat least a constant fraction(1−
1/e) (≈ 63%) of the optimal score. The penalty reductionR satisfies all requirements of Theorem8.3.1,
and hence the greedy algorithm approximately solves the maximization problem Eq. (8.1).

Non-constant costs.What if the costs of the nodes are not constant? It is easy to see that the simple greedy
algorithm, which iteratively adds sensors using rule from Eq. (8.2) until the budget is exhausted, can fail
badly, since it is indifferent to the costs (i.e., a very expensive sensor providing rewardr is preferred over
a cheaper sensor providing rewardr − ε. To avoid this issue, the greedy rule Eq. (8.2) can be modified to
take costs into account:

sk = argmax
s∈V\Ak−1

R(Ak−1 ∪ {s})−R(Ak−1)

c(s)
, (8.3)
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i.e., the greedy algorithm picks the element maximizing the benefit/cost ratio. The algorithm stops once
no element can be added to the current setA without exceeding the budget. Unfortunately, this intuitive
generalization of the greedy algorithm can perform arbitrarily worse thanthe optimal solution. Consider
the case where we have two locations,s1 and s2, c(s1) = ε and c(s2) = B. Also assume we have
only one scenarioi, andR({s1}) = 2ε, andR({s2}) = B. Now, R(({s1}) − R(∅))/c(s1) = 2,
andR(({s2}) − R(∅))/c(s2) = 1. Hence the greedy algorithm would picks1. After selectings1, we
cannot affords2 anymore, and our total reward would beε. However, the optimal solution would picks2,
achieving total penalty reduction ofB. As ε goes to 0, the performance of the greedy algorithm becomes
arbitrarily bad.

However, the greedy algorithm can be improved to achieve a constant factor approximation. This new
algorithm, CEF (Cost-Effective Forward selection), computes the solutionAGCB using the benefit-cost
greedy algorithm, using rule (8.3), and also computes the solutionAGUC using the unit-cost greedy al-
gorithm (ignoring the costs), using rule (8.2). For both rules, CEF only considers elements which do not
exceed the budgetB. CEF then returns the solution with higher score. Even though both solutionscan be
arbitrarily bad, the following result shows that there is at least one of themwhich is not too far away from
optimum, and hence CEF provides a constant factor approximation.

Theorem 8.3.2.LetR be the a nondecreasing submodular function withR(∅) = 0. Then

max{R(AGCB), R(AGUC)} ≥ 1

2
(1− 1/e) max

A,c(A)≤B
R(A).

Proof. The proof is presented in our technical report [Krause and Guestrin, 2005]

Theorem8.3.2was proved by [Khuller et al., 1999] for the special case of the Budgeted MAX-COVER
problem3, and here we prove this result forarbitrary nondecreasing submodular functions. Theorem8.3.2
states that the better solution ofAGBC andAGUC (which is returned by CEF) is at most a constant factor
1
2(1− 1/e) of the optimal solution.

Note that the running time of CEF isO(B|V|) in the number of possible locations|V| (if we consider a
function evaluationR(A) as atomic operation, and the lowest cost of a node is constant). In [Sviridenko,
2004], it was shown that even in the non-constant cost case, the approximation guarantee of(1 − 1/e)
can be achieved. However, their algorithm isΩ(B|V|4) in the size of possible locations|V| we need to
select from, which is prohibitive in the applications we consider. In the following, we show, that even the
solutions of CEF are provably very close to the optimal score.

8.3.2 Online bounds for any algorithm

The approximation guarantees of(1 − 1/e) and 1
2(1 − 1/e) in the unit- and non-constant cost cases

are offline, i.e., we can state them in advance before running the actual algorithm. We can also use
submodularity to acquire tightonlinebounds on the performance of anarbitrary placement (not just the
one obtained by the CEF algorithm).

Theorem 8.3.3. For a placementÂ ⊆ V, and eachs ∈ V \ Â, let δs = R(Â ∪ {s}) − R(Â). Let
rs = δs/c(s), and lets1, . . . , sm be the sequence of locations withrs in decreasing order. Letk be such

3In MAX-COVER, we pick from a collection of sets, such that the union of thepicked sets is as large as possible.
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thatC =
∑k−1

i=1 c(si) ≤ B and
∑k

i=1 c(si) > B. Letλ = (B − C)/c(sk). Then

max
A,c(A)≤B

R(A) ≤ R(Â) +

k−1∑

i=1

δsi
+ λδsk

. (8.4)

Proof. For all nodess ∈ V \ A, let δs = R(A ∪ {s}) − R(A). Let us assume the costsc(s) andB are
rational . Without loss of generality, we can multiply costs and budget by theirleast common multiple,
and hence we are left with integral costs and budget. Let us replicate all elements according to their cost,
and assign weights to them according to their benefit cost ratio,i.e., for all replicas′ of elements, set
weightδ′s′ = δs/c(s). Also, letA′ be the set of all replicas corresponding to the nodes inA. LetB′ be the
replicas of all elements in the optimal solutionB. SinceR is monotonic,R(A′ ∪ B′) ≥ R(B′) = OPT .
Due to submodularity,

R(A′ ∪ B′) ≤ R(A′) +
∑

s′∈B′

δ′s′ .

Furthermore, ∑

s′∈B′

δ′s′ ≤ max
C′:|C′|≤B

∑

s′∈C′

δ′s′ .

Now we have a unit-cost modular optimization problem: We want to pick the best set C′ of B elements,
maximizing the sum of their weightsδ′s′ . The ordinary unit cost greedy algorithm solves this optimally.
More specifically, we can sort the new weightsδ′s′ in decreasing order (in case of ties we keep the replicas
of the elements in contiguous blocks), and pick theB first elements. Hence, the greedy algorithm on
the replicated unit cost problem will have to integrally pick the firstk − 1 original elements, and will
fractionally pick the last(k − th) element, selectingM = (B −∑k−1

i=1 c(sj)) elements. Summing up the
weights of the unit cost elements will give us

∑
i = 1k−1δsi

+ λ ∗ δsk
, whereλ = M/c(sk).

Theorem8.3.3presents a way of computing how far any given solutionÂ (obtained using CEF orany
other algorithm) is from the optimal solution. This theorem can be readily turnedinto an algorithm, as
formalized in Algorithm 2.

We empirically show that this bound is much tighter than the bound1
2(1 − 1/e), which is roughly

31%.

8.4 Scaling up the algorithm

8.4.1 Speeding up function evaluations

Evaluating the penalty reductionsR can be very expensive. For example, in the water distribution appli-
cation, we need to run physical simulations, in order to estimate the effect of acontamination at a certain
node. In the blog networks, we need to consider several millions of posts,which make up the cascades.
However, in both applications, most outbreaks are sparse,i.e., affect only a small area of the network (c.f.,
[Krause et al., 2008, Leskovec et al., 2007d]), and hence are only detected by a small number of nodes.
Hence, most nodess do not reduce the penalty incurred by an outbreak (i.e., Ri({s}) = 0). Note, that
this sparsity isonlypresent if we consider penaltyreductions. If for each sensors ∈ V and scenarioi ∈ I
we store the actual penaltyπi(s), the resulting representation is not sparse. Our implementation exploits
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Function:LazyForward( G = (V, E),R,c,B,type)

A ← ∅; foreachs ∈ V do δs ← +∞;
while ∃s ∈ V \ A : c(A ∪ {s}) ≤ B do

foreachs ∈ V \ A do curs ← false;
while true do

if type=UC then s∗ ← argmax
s∈V\A,c(A∪{s})≤B

δs;

if type=CBthen s∗ ← argmax
s∈V\A,c(A∪{s})≤B

δs

c(s)
;

if curs then A ← A∪ s∗; break ;
else δs ← R(A ∪ {s})−R(A); curs ← true;

end
end
return A;

Algorithm 8.1: The CELF algorithm.

Algorithm: CELF(G = (V, E),R,c,B)

AUC ←LazyForward( G, R, c, B,UC) ;
ACB ←LazyForward( G, R, c, B,CB) ;
return argmax{R(AUC), R(ACB)}

this sparsity by representing the penalty functionR as aninverted index4, which allows fast lookup of the
penalty reductionsby sensor indexs. By looking up all scenarios detected by all sensors in our placement
A, we can quickly compute the penalty reduction

R(A) =
∑

i:i detected byA

P (i)max
s∈A

Ri({s}),

without having to scan the entire data set.

The inverted index is the main data structure we use in our optimization algorithms. After the problem
(water distribution network simulations, blog cascades) has been compressed into this structure, we use
the same implementation for optimizing sensor placements and computing bounds.

In the water distribution network application for example, exploiting this sparsityallows us to fit the set of
all possible intrusions considered in the BWSN challenge in main memory (16 GB), which leads to several
orders of magnitude improvements in the running time, since we can avoid hard-drive accesses.

8.4.2 Reducing function evaluations

Even if we can quickly evaluate the scoreR(A) of any given placement, we still need to perform a large
number of these evaluations in order to run the greedy algorithm. If we select k sensors among|V|
locations, we roughly needk|V| function evaluations. We can exploit submodularity further to require

4The index is inverted, since the data set facilitates the lookupby scenario indexi (since we need to consider cascades, or
contamination simulations for each scenario).
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Algorithm 8.2: Getting boundR̂ on optimal solution.

Algorithm: GetBound( G = (V, E),A,R,c,B)

A ← ∅; B ← ∅; R̂ = R(A);
foreachs ∈ V do δs ← R(A ∪ {s})−R(A); rs = δs

c(s) ;

while ∃s ∈ V \ (A ∪ B) : c(A ∪ B ∪ {s}) ≤ B do
s∗ ← argmax

s∈V\{A∪B},c(A∪B∪{s})≤B
rs;

R̂← R̂ + δs∗ ; B ← B ∪ {s∗};
end

s∗ ← argmax
s∈V\{A∪B},c(A∪B∪{s})≤B

rs; λ← B−c(A∪B)
c(s∗) ;

return R̂ + λδs∗ ;

far fewer function evaluations in practice. Assume we have computed the marginal incrementsδs(A) =
R(A ∪ {s}) − R(A) (or δs(A)/c(s)) for all s ∈ V \ A. The key idea is to realize that, as our node
selectionA grows, the marginal incrementsδs′ (andδs′/c(s)) (i.e., the benefits for adding sensors′) can
never increase: ForA ⊆ B ⊆ V, it holds thatδs(A) ≥ δs(B). So instead of recomputingδs ≡ δs(A) for
every sensor after addings′ (and hence requiring|V|−|A| evaluations ofR), we performlazyevaluations:
Initially, we mark allδs as invalid. When finding the next location to place a sensor, we go through the
nodes in decreasing order of theirδs. If the δs for the top nodes is invalid, we recompute it, and insert
it into the existing order of theδs (e.g., by using a priority queue). In many cases, the recomputation of
δs will lead to a new value which is not much smaller, and hence often, the top element will stay the top
element even after recomputation. In this case, we found a new sensor to add, without having reevaluated
δs for every locations. The correctness of this lazy procedure follows directly from submodularity, and
leads to far fewer (expensive) evaluations ofR. We call this lazy greedy algorithm5 CELF (Cost-Effective
Lazy Forward selection). In our experiments, CELF achieved up to a factor 700 improvement in speed
compared to CEF when selecting 100 blogs. Algorithm8.1provides pseudo-code for an implementation
of CELF.

When computing the online bounds discussed in Section8.3.2, we can use a similar lazy strategy. The
only difference is that, instead of lazily ensuring that the bestδs is correctly computed, we ensure that the
topk (wherek is as in Eq. (8.4)) δs improvements have been updated.

8.5 Case study: Blog Network

We begin by describing the blog network dataset, experimental setup, and objective function we consider.
We then present results on solution quality, scalability and generalization to future data. We also explore
various ways of assigning costs to blogs.

5[Robertazzi and Schwartz, 1989] suggested a similar algorithm for theunit costcase.
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Figure 8.3: Cascade and outbreak size distributions for blog network and the water distribution network.

8.5.1 Experimental setup

In this work we are not explicitly modeling the spread of information over the network, but rather consider
cascades asinput to our algorithms.

Here we are interested in blogs that actively participate in discussions, we biased the dataset towards the
active part of the blogosphere, and selected a subset from the largerset of 2.5 million blogs of [Glance et al.,
2005]. We considered all blogs that received at least 3 in-links in the first 6 months of 2006, and then took
all their posts for the full year 2006. So, the dataset that we use has 45,000 blogs, 10.5 million posts,
and 16.2 million links (30 GB of data). However, only 1 million links point inside the set of 45,000
blogs.

Posts have rich metadata, including time stamps, which allows us to extract information cascades,i.e.,
subgraphs induced by directed edges representing the temporal flow ofinformation. We adopt the follow-
ing definition of a cascade [Leskovec et al., 2007d]: every cascade has a single starting post, and other
posts recursively join by linking to posts within the cascade, whereby the linksobey time order. We detect
cascades by first identifying starting post and then following in-links. We discover 346,209 non-trivial
cascades having at least 2 nodes. Since the cascade size distribution is heavy-tailed, we further limit our
analysis to only cascades that had at least 10 nodes. The final datasethas 17,589 cascades, where each
blog participates in9.4 different cascades on average.

8.5.2 Objective functions

We use the penalty reduction objectives DL, DT and PA as introduced in Section 8.2.2. We normalize the
scores of the solution to be between 0 and 1. For the DL (detection likelihood)criterion, the quality of
the solution is the fraction of all detected cascades (regardless of when we detect it). The PA (population
affected) criterion measures what fraction of the population included in thecascade after we detect it,i.e.,
if we would be reading all the blogs initiating the cascades, then the quality of thesolution is 1. In PA
our reward depends on which fraction of the cascades we detect, and big cascades count more than small
cascades.
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Figure 8.4: (a) Performance of CELF algorithm and off-line and on-line bounds for PA objective function.
(b) Compares objective functions.

8.5.3 Solution quality

First, we evaluate the performance of CELF, and estimate how far from optimal the solution could be.
Note, that obtaining the optimal solution would require enumeration of245,000 subsets. Since this is
impractical, we compare our algorithm to the bounds we developed in Section8.3. Figure8.4(a) shows
scores for increasing budgets when optimized the PA (population affected) criterion. As we select more
blogs to read, the proportion of cascades we catch increases (bottom line). We also plot the two bounds.
The off-line bound (Section8.3.1) shows that the unknown optimal solution lies between our solution
(bottom line) and the bound (top line). Notice the discrepancy between the lines is big, which means the
bound is very loose. On the other hand, the middle line shows the online bound(Section8.3.2), which
again tells us that the optimal solution is somewhere between our current solution and the bound. Notice,
the gap is much smaller. This means (a) that the our on-line bound is much tighter than the traditional
off-line bound. And, (b) that our CELF algorithm performs very close tothe optimum.

In contrast to off-line bound, the on-line bound isalgorithm independent, and thus can be computed
regardless of the algorithm used to obtain the solution. Since it is tighter, it gives a much better worst case
estimate of the solution quality. For this particular experiment, we see that CELF works very well: after
selecting 100 blogs, we are at most13.8% away from the optimal solution.

Figure 8.4(b) shows the performance using various objective functions (from topto bottom: DL, DT,
PA). DL increases the fastest, which means that one only needs to read a few blogs to detect most of the
cascades, or equivalently that most cascades hit one of the big blogs. However, the population affected
(PA) increases much slower, which means that one needs many more blogs toknow about stories before
the rest of population does. By using the on-line bound we also calculated that all objective functions are
at most 5% to 15% from optimal.

8.5.4 Cost of a blog

The results presented so far assume that every blog has the same cost. Under thisunit costmodel, the
algorithm tends to pick large, influential blogs, that have many posts. For example,instapundit.com
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Figure 8.5: (a) Comparison of the unit and the number of posts cost models. (b) For fixed value of PAR,
we get multiple solutions varying in costs.

is the best blog when optimizing PA, but it has 4,593 posts. Interestingly, mostof the blogs among
the top 10 are politics blogs like:instapundit.com , blogometer.nationaljournal.com ,
michellemalkin.com , andsciencepolitics.blogspot.com . Some popular aggregators of
interesting things on the blogosphere are also selected:boingboing.net , themodulator.org
andbloggersblog.com . The top 10 PA blogs had more than 21,000 thousand posts in 2006. They
account for 0.2% of all posts, 3.5% of all in-links, 1.7% of out-links inside the dataset, and 0.37% of all
out-links.

Under unit cost model large blogs are important, but reading a blog with manyposts is time consuming.
This motivates thenumber of posts (NP)cost model, where we set the cost of a blog to the number of
posts it had in 2006.

First, we compare the NP cost model with the unit cost in Figure8.5(a). The top curve shows the value
of the PA criterion for budgets ofB posts,i.e., we optimize PA such that the selected blogs can have at
mostB posts total. Note, that under the unit cost model, CELF chooses expensive blogs with many posts.
For example, to obtain the same PA objective value, one needs to read 10,710posts under unit cost model.
The NP cost model achieves the same score while reading just 1,500 posts.Thus, optimizing the benefit
cost ratio (PA/cost) leads to drastically improved performance.

Interestingly, the solutions obtained under the NP cost model are very different from the unit cost model.
Under NP, political blogs are not chosen anymore, but rather summarizers (e.g., themodulator.org ,
watcherofweasels.com , anglican.tk ) are important. Blogs selected under NP cost appear
about 3 days later in the cascade as those selected under unit cost, whichfurther suggests that summarizer
blogs tend to be chosen under NP model.

In practice, the cost of reading a blog is not simply proportional to the number of posts, since we also
need to navigate to the blog (which takes constant effort per blog). Hence, a combination of unit and
NP cost is more realistic. Figure8.5(b) interpolates between these two cost models. Each curve shows the
solutions with the same valueR of the PA objective, but using a different number of posts (x-axis) and
blogs (y-axis) each. For a givenR, the ideal spot is the one closest to origin, which means that we want
to read the least number of posts from least blogs to obtain desired scoreR. Only at the end points does
CELF tend to pick extreme solutions: few blogs with many posts, or many blogs withfew posts. Note,
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Figure 8.6: Heuristic blog selection methods. (a) unit cost model, (b) number of posts cost model.

there is a clear knee on plots of Figure8.5(b), which means that by only slightly increasing the number of
blogs we allow ourselves to read, the number of posts needed decreasesdrastically, while still maintaining
the same valueR of the objective function.

8.5.5 Comparison to heuristic blog selection

Next, we compare our method with several intuitive heuristic selection techniques. For example, instead
of optimizing the DT, DL or PA objective function using CELF, we may just wantto select the most
popular blogs and hope to detect many cascades. We considered several such heuristics, where we order
blogs by some “goodness” criteria, and then pick top blogs (until the budget is exhausted). We consider
the following criteria: the number posts on the blog, the cumulative number of out-links of blog’s posts,
the number of in-links the blog received from other blogs in the dataset, andthe number of out-links to
other blogs in the dataset.

As Figure8.6(a) shows, the CELF algorithm greatly outperforms all the heuristic selectiontechniques.
More interestingly, the best heuristics (doing 45% worse than CELF) pick blogs by the number of in- or
out-links from/to other blogs in the dataset. Number of posts, the total number ofout-links and random
blog selection do not perform well.

Number of in-links is the indicator of a blog’s tendency to create cascades,while number of out-links (to
other blogs) indicates blog’s tendency to summarize the blogosphere. We also note, that the surprisingly
good performance of the number of out-links to blogs in the dataset is an artefact of our “closed-world”
dataset, and in real-life we can not estimate this. The results also agree well with our intuition that the
number of in-links is a good heuristic, since it directly indicates the of propagation of information.

Figure8.6(b) explores the same setting under the NP cost model. Here, given a budget of B posts, we
select a set of blogs to optimize PA objective. For the heuristics, we select aset of blogs to optimize
chosen heuristic,e.g., the total number of in-links of selected blogs while still fitting inside the budget
of B posts. Again, CELF outperforms the next best heuristics by 41%, and again the number of in- and
out-links are the best heuristics.

These results show that simple heuristics that one could use to identify blogs to read do not really work
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well. There are good summarizer blogs that may not be very popular, but which, by using few posts, catch
most of the important stories propagating over the blogosphere.

8.5.6 Fractionally selecting blogs

Our framework also allows fractional selection of blogs, which means that instead of reading a large blog
every day, we can read it,e.g., only one day per week. This also allows us to ask: what is the best day of
the week to read blogs?

In order to study whether fractional selection allows to achieve better benefit cost ratio, we split the blogs
which had at least one post per day into 7 blogs, one for each day of theweek. Figure8.7(a) shows, that
by splitting big blogs, the population affected (PA) objective function increases for 12% over the setting
where only whole blogs can be selected.

Returning to the original question, we performed the following experiment: given a budget of 1000 posts,
what is the best day of the week to read posts (optimizing PA)? We found thatFriday is the best day to
read blogs. The value of PA for Friday is 0.20, while it is 0.13 for the rest of the week. We consider this
surprising, since the activity of the blogosphere (number of posts and links created) drops towards the end
of the week, and especially over the weekend [Leskovec et al., 2007d].

8.5.7 Generalization to future data

Since the influence and popularity of the blogs also evolves over time we also want to know how well the
selected blogs will detect cascades in the future. To evaluate the generalization to unknown future, we use
the first 6 months of the dataset as historic data to select a set of blogs, andthen use second 6 months of
the dataset to evaluate the performance of selected blogs on unseen future cascades.

Figure8.8compares the performance on the unknown future data. Top dashed curve in both plots shows
the optimal performance on future data,i.e., we select the blogs directly using the (unknown) future data.
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Figure 8.8: Generalization to future data when CELF can select any blog (a), or only big blogs (b).

The bottom curve presents the realistic case where we select the blogs using historic data and evaluate
using hidden future data.

As Figure8.8(a) shows, CELF overfits when evaluated on the future data,i.e., it selects small blogs with
very few posts that just by chance participate in cascades, and then these blogs do not generalize well for
the second half of the year. One way to overcome this overfitting is to prevent CELF from picking very
small blogs. To understand this restriction we show in Figure8.8(b) the performance when CELF can
only select blogs with at least one post per day (365 posts per year).

Comparing Figure8.8(a) and Figure8.8(b) we see that the optimal performance (top curve) drops if CELF
is limited on only picking big blogs. This is expected since CELF has less choice of which blogs to pick,
and thus performs worse. However, when limiting the selection to only big blogs(Figure8.8(b)) the gap
between the curves is very small (compared to the big gap of Figure8.8(a)). Moreover, the performance
on the future data does not drop, and the method generalizes well.

8.5.8 Scalability

Figure8.5(b) plots the running time of selectingk blogs. We see that exhaustively enumerating all possible
subsets ofk elements is infeasible (the line jumps out of the plot fork = 3). The simple greedy algorithm
scales asΩ(k|V|), since for every increment ofk we need to consider selecting all remaining|V|−k blogs.
The bottom line overlapping the x-axis of Figure8.5(b) shows the performance of our CELF algorithm.
For example, for selecting 100 blogs, greedy algorithm runs 4.5h, while CELF takes 23 seconds (700
times faster). Calculation of the on-line bounds while running CELF takes 54s.

Exploiting the sparsity of the problem (c.f., Section8.4) allowed us to reduce the size of the inverted index
from originally 3.5 GB to 50 MB, easily fitting it in main memory.
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8.6 Case study: Water networks

Next we present our results on water distribution networks, where instead of information cascades the task
is to detect contamination cascades.

8.6.1 Experimental setup

In the water distribution system application, we used the data and rules introduced by the Battle of Water
Sensor Networks (BWSN) challenge [Ostfeld et al., 2006]. We considered both the small network on
129 nodes (BWSN1), and a large, realistic, 12,527 node distribution network (BWSN2) provided as part
of the BWSN challenge. In addition we also consider a third water distribution network (NW3) of a
large metropolitan area in the United States. The network (not including the household level) contains
21,000 nodes and 25,000 pipes (edges). To our knowledge, this is the largest water distribution network
considered for sensor placement optimization so far. The networks consist of a static description (junctions
and pipes) and dynamic parameters (time-varying water consumption demand patterns at different nodes,
opening and closing of valves, pumps, tanks, etc.)

As Figure8.3(b) shows, the distribution of outbreak sizes for the water network is rather different than for a
blog network. The blog network is a typical scale free network with small diameter and power law degree
distribution. On the other hand, the water networks are composed of several connected grid networks
corresponding to different neighborhoods, and thus the outbreak size distribution is different.

8.6.2 Objective functions

In the BWSN challenge, we want to select a set of 20 sensors, simultaneously optimizing the objective
functions DT, PA and DL, as introduced in Section8.2.2. To obtain cascades we use a realistic disease
model defined by [Ostfeld et al., 2006], which depends on the demands and the contaminant concentra-
tion at each node. In order to evaluate these objectives, we use the EPANET simulator [Rossman, 1999],
which is based on a physical model to provide realistic predictions on the detection time and concentration
of contaminant for any possible contamination event. We consider simulations of 48 hours length, with
5 minute simulation timesteps. Contaminations can happen at any node and any time within the first 24
hours, and spread through the network according to the EPANET simulation. The time of the outbreak is
important, since water consumption varies over the day and the contamination spreads at different rates
depending on the time of the day. Altogether, we consider a set of 3.6 million possible contamination sce-
narios and each of these is associated with a “cascade” of contaminant spreading over the network.

8.6.3 Solution quality

We first used CELF to optimize placements of increasing size, according to thethree criteria DL, DT, PA.
We again normalized the scores to be between 0 and 1, where 1 is the best achievable score when placing
sensors at every node.

Figure8.9 (a) presents the CELF score, the off-line and on-line bounds for PA objective on the BWSN2
network. Consistently with the blog experiments, the on-line bound is much tighterthan the off-line
bound, and the solutions obtained by our CELF algorithm are very close to the optimum.
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Figure 8.9: (a) CELF with offline and online bounds for PA objective. (b) Different objective functions.

Figure8.9 (b) shows CELF’s performance on all 3 objective functions. Similarly to theblog data, the
population affected (PA) score increases very quickly. The reason isthat most contamination events only
impact a small fraction of the network. Using few sensors, it is relatively easy to detect most of the high
impact outbreaks. However, if we want to detect all scenarios, we needto place a large number of sensors
(2,263 in our experiment). Hence, the DL (and correspondingly DT) increase more slowly than PA.

Figure8.10shows two 20 sensor placements after optimizing DL and PA respectively on BWSN2. When
optimizing the population affected (PA), the placed sensors are concentrated in the dense high-population
areas, since the goal is to detect outbreaks which affect the population the most. When optimizing the
detection likelihood, the sensors are uniformly spread out over the network. Intuitively this makes sense,
since according to BWSN challenge [Ostfeld et al., 2006], outbreaks happen with same probability at
every node. So, for DL, the placed sensors should be as close to all nodes as possible.

We also compared the scores achieved by CELF with several heuristic sensor placement techniques, where
we order nodes by some “goodness” criteria, and then pick top nodes. We consider the following criteria:
population at the node, water flow through the node, and the diameter and thenumber of pipes at the node.
Figure8.13(a) shows the results for PA objective function. CELF outperforms bestheuristic for 45%. Best
heuristics are placing nodes at random, by degree or their population. Wesee heuristics perform poorly,
since nodes which are close in the graph tend to have similar flow, diameter andpopulation, and hence
the sensors will be spread out too little. Even the maximum over one hundred random trials performs
far worse than CELF. Figure8.11(a) shows the statistics of choosing 100 random placements on the
water distribution network for the PA objective function. Notice that even best out of 100 random trials
performs far worse than CELF. Figure8.11(b) shows how many outbreaks one needs so that the score
approaches the true score that one obtains if data on all outbreaks is available. Notice that estimates soon
converge to true score and data on less than 100,000 outbreaks is needed. See [Krause et al., 2008] for
more details.

8.6.4 Multicriterion optimization

Using the theory developed in Section8.2.4, we traded-off different objectives for the water distribution
application. We selected pairs of objectives,e.g., DL and PA, and varied the weightsλ to produce (approx-
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(a) PA (b) DL

Figure 8.10: Water network sensor placements: (a) when optimizing PA, sensors are concentrated in high
population areas. (b) when optimizing DL, sensors are uniformly spread out.
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Figure 8.11: (a) Performance of 100 random placements on the water distribution network for the PA
objective function. (b) Performance with the number of simulated outbreaks. As more
outbreaks are available we get better performance.

imately) Pareto-optimal solutions. In Figure8.12(a) we plot the tradeoff curves for different placement
sizesk. By adding more sensors, both objectives DL and PA increase. The curves also show, that if
we, e.g., optimize for DL, the PA score can be very low. However, there are pointswhich achieve near-
optimal scores in both criteria (thekneein the curve). This sweet spot is what we aim for in multi-criteria
optimization.

We also traded off the affected population PA and a fourth criterion defined by BWSN, theexpected
consumption of contaminated water. Figure8.12(b) shows the trade-off curve for this experiment. Notice
that the curves (almost) collapse to points, indicating that these criteria are highly correlated, which we
expect for this pair of objective functions. Again, the efficiency of ourimplementation allows to quickly
generate and explore these trade-off curves, while maintaining strong guarantees about near-optimality of
the results.
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Figure 8.13: (a) Solutions of CELF outperform heuristic selections. (b)Running time of exhaustive
search, greedy and CELF.

8.6.5 Scalability

In the water distribution setting, we need to simulate 3.6 million contamination scenarios, each of which
takes approximately 7 seconds and produces 14KB of data. Since most ofthe computer cluster scheduling
systems break if one would submit 3.6 million jobs into the queue, we developed a distributed architec-
ture, where the clients obtain simulation parameters and then confirm the successful completion of the
simulation. We run the simulation for a month on a cluster of around 40 machines. This produced 152GB
of outbreak simulation data. By exploiting the properties of the problem described in Section8.4, the
size of the inverted index (which represents the relevant information for evaluating placement scores) is
reduced to 16 GB which we were able to fit into main memory of a server. The fact that we could fit the
data into main memory alone sped up the algorithms by at least a factor of 1000.

Figure8.13 (b) presents the running times of CELF, the naive greedy algorithm and exhaustive search
(extrapolated). We can see that the CELF is 10 times faster than the greedy algorithm when placing 10
sensors. Again, a drastic speedup.
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8.7 Discussion and connection to previous work

Next we briefly discuss connections to previous work on influence maximization, optimization of sub-
modular functions and modeling cascading behaviors in general.

8.7.1 Relationship to Influence Maximization

In [Kempe et al., 2003], a Triggering Modelwas introduced for modeling the spread of influence in a
social network. As the authors show, this model generalizes the Independent Cascade, Linear Threshold
and Listen-once models commonly used for modeling the spread of influence.Essentially, this model
describes a probability distribution over directed graphs, and the influence is defined as the expected
number of nodes reachable from a set of nodes, with respect to this distribution. Kempe et al. showed that
the problem of selecting a set of nodes with maximum influence is submodular, satisfying the conditions
of Theorem8.3.1, and hence the greedy algorithm provides a(1 − 1/e) approximation. The problem
addressed in this chapter generalizes this Triggering model:

Theorem 8.7.1. The Triggering Model [Kempe et al., 2003] is a special case of our network outbreak
detection problem.

In order to prove Theorem8.7.1, we consider fixed directed graphs sampled from the Triggering distribu-
tion. If we revert the arcs in any such graph, then our PA objective corresponds exactly to the influence
function of [Kempe et al., 2003] applied to the original graph.

Proof. LetP be a distribution over directed graphsG1 = (V, E1), . . . ,GN (V, EN ) on a fixed set of vertices
V, defined according to the Triggering Model. For eachi, letG′i be the graph obtained fromG′i by reverting
the arcsEi. Then, the penalty reductionRi(A) by the set of nodesA using the population affected score
(PA) corresponds exactly to the number of nodes influenced by setA under the Triggering Model. Hence,
also the expected penalty reductionR(A) =

∑
i P (i)Ri(A) is exactly equal to the influence function

σ(A) of [Kempe et al., 2003].

Theorem8.7.1shows that spreading influence under the general Triggering Model can be considered a
special case of our outbreak detection formalism. The problems are fundamentally related since, when
spreading influence, one tries to affect as many nodes as possible, whilewhen detecting outbreak, one
wants to minimize the effect of an outbreak in the network. Secondly, note thatin the example of reading
blogs, it is not necessarily a good strategy to affect nodes which are very influential, as these tend to
have many posts, and hence are expensive to read. In contrast to influence maximization, the notion of
cost-benefit analysis is crucial to our applications.

8.7.2 Optimizing submodular functions

The fundamental result about the greedy algorithm for maximizing submodular functions in the unit-cost
case goes back to [Nemhauser et al., 1978]. [Nemhauser and Wolsey, 1981] present a Mixed Integer Pro-
gramming approach or maximizing submodular functions, which however doesnot provide running time
guarantees. The first approximation results about maximizing submodular functions in the non-constant
cost case were proved by [Sviridenko, 2004]. They developed an algorithm with approximation guarantee
of (1−1/e), which however requires a number of function evaluationsΩ(B|V|4) in the size of the ground
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setV (if the lowest cost is constant). In contrast, the number of evaluations required by CELF isO(B|V|),
while still providing a constant factor approximation guarantee. A lazy greedy algorithm for optimizing
submodular functions in the context of experimental design was describedby [Robertazzi and Schwartz,
1989]. Their work however did not consider the case of non-constant cost functions, as we consider in
this chapter.

8.7.3 Virus propagation and outbreak detection

Work on spread of diseases in networks and immunization mostly focuses on determining the value of
theepidemic threshold[Bailey, 1975, Chakrabarti et al., 2007b, 2008], a critical value of the virus trans-
mission probability above which the virus creates an epidemic. Several strategies for immunization have
also been proposed. Uniform node immunization and targeted immunization of high degree nodes was
proposed by [Pastor-Satorras and Vespignani, 2002], acquaintance immunization, which focuses on highly
connected nodes by [Cohen et al., 2003], and immunization on based on spectral properties of the network
was proposed by [Giakkoupis et al., 2005]. In the context of our work, uniform immunization strategy cor-
responds to randomly placing sensors in a water network. Similarly, targetedimmunization corresponds
to selecting blogs based on their in- or out-degree. As we have seen in Figures8.6and8.13, both strategies
perform much worse than direct optimization of thepopulation affectedcriterion.

8.7.4 Information cascades and blog networks.

Cascades have been studied for many years by sociologists concernedwith the diffusion of innova-
tion [Rogers, 1995]; more recently, cascades we used for studying viral marketing [Goldenberg et al.,
2001, Leskovec et al., 2006a], selecting trendsetters in social networks [Richardson and Domingos, 2002b],
and explaining trends in blogspace [Gruhl et al., 2004, Kumar et al., 2003]. Studies of blogspace either
spend effort mining topics from posts [Gruhl et al., 2004] or consider only the properties of blogspace as
a graph of unlabeled URLs [Kumar et al., 2003]. Recently, [Leskovec et al., 2007d] studied the properties
and models of information cascades in blogs. While previous work either focused on empirical analyses
of information propagation and/or provided models for it, we develop a general methodology for node
selection in networks while optimizing a given criterion.

8.7.5 Water distribution network monitoring.

A large number of approaches have been proposed for optimizing water sensor networks (c.f., [Berry et al.,
2006, Guan et al., 2006, Ostfeld and Salomons, 2004, Dorini et al., 2006] for a concise overview of the
prior literature). Most of these approaches are only applicable to small networks up to approximately
500 nodes. Many approaches are based on heuristics (such as genetic algorithms [Ostfeld and Salomons,
2004], cross-entropy selection [Dorini et al., 2006], predator-prey heuristics [Gueli, 2006], etc.) that can-
not provide provable performance guarantees about the solutions. Closest to ours is an approach by
[Berry et al., 2006], who equate the placement problem with ap-median problem, and make use of a large
toolset of existing algorithms for this problem. The problem instances solved by [Berry et al., 2006] are a
factor 72 smaller than the instances considered in this chapter. In order to obtain bounds for the quality of
the generated placements, the approach in [Berry et al., 2006] needs to solve a complex (NP-hard) mixed-
integer program. Our approach is the first algorithm for the water networkplacement problem, which is
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guaranteed to provide solutions which achieve at least a constant fraction of the optimal solution within
polynomial time. Additionally, it handles orders of magnitude larger problem instances than previously
considered.

8.8 Conclusions

In this chapter, we presented a novel methodology for selecting nodes to detect outbreaks of dynamic
processes spreading over a graph. We showed that many important objective functions, such as detection
time, likelihood and affected population aresubmodular. We then developed the CELF algorithm, which
exploits submodularity to findnear-optimalnode selections – the obtained solutions are guaranteed to
achieve at least a fraction of12(1 − 1/e) of the optimal solution, even in the more complex case where
every node can have anarbitrary cost. Our CELF algorithm is up to 700 times faster than standard
greedy algorithm. We also developed novel online bounds on the quality of the solution obtained byany
algorithm. We used these bounds to prove that the solutions we obtained in ourexperiments achieve 90%
of the optimal score (which is intractable to compute).

We extensively evaluated our methodology on two large real-world problems: (a) detection of contami-
nations in the largestcity water distributionnetwork considered so far in the literature, and (b) selection
of informative blogsin a network of more than 10 million posts. We showed how our CELF algorithm
greatly outperforms intuitive heuristics. We also demonstrated that our methodology can be used to study
complex application-specific questions such as multicriteria tradeoff, cost-sensitivity analyses and gen-
eralization behavior. In addition to demonstrating the effectiveness of ourmethod, we obtained some
counterintuitive results about the problem domains, such as the fact that the popular blogs might not be
the most effective way to catch relevant information cascades.

We are convinced that the methodology introduced in this chapter can apply tomany other applications,
such as computer network security, immunization and viral marketing.
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Part 2 – Network cascades: Conclusion

In this chapter we presented our work on the processes that spread from node to node in the network like
viruses. We investigated two such examples where propagations naturally form cascades and we were
able to directly measure and observe them on a large scale.

Observations:We found that most cascades are small, but large bursts can occur; thatcascade sizes follow
a heavy-tailed distribution; that the frequency of different cascade subgraphs depends on the product or
blog type; and that these frequencies donot simply decrease monotonicallyfor denser subgraphs, but rather
reflect more subtle features of the domain in which the diffusion and propagations are operating.

Models: Moreover, we were able to obtain a number of interesting insights into how viral marketing and
information propagation on the blogosphere work that challenge common assumptions made in epidemic
and rumor propagation modeling. For example, on a large dataset we showed thediminishing returns
property of human adoption curve as opposed to critical threshold that is often assumed. Moreover,
it is frequently assumed in epidemic models that individuals have equal probability of being infected
every time they interact. Contrary to this we observe that the probability of infection decreaseswith
repeated interaction. Marketers should take heed that providing excessive incentives for customers to
recommend products could backfire by weakening the credibility of the verysame links they are trying to
take advantage of.

On the information propagation side of things we also analyzed one of the largest available collections
of blog information, trying to find how blogs behave and how information propagates through the blogo-
sphere. In contrast with viral marketing stars and chains are basic components of blog cascades, with stars
being more common.

Algorithms: We presented a novel methodology for selecting nodes to detect outbreaks of dynamic pro-
cesses spreading over a graph. We showed that many important objective functions, such as detection
time, likelihood and affected population aresubmodular. We then developed the CELF algorithm, which
exploits submodularity to find near-optimal node selections. Our CELF algorithm is up to700 times faster
than a standard greedy algorithm. We also developed novel online boundson the quality of the solution
obtained byanyalgorithm. We used these bounds to prove that the solutions we obtained in ourexper-
iments achieve90% of the optimal score (which is intractable to compute). We extensively evaluated
our methodology on two large real-world problems: (a) detection of contaminations in thelargest water
distributionnetwork considered so far, and (b) selection of informative blogs in a network of more than
10 million posts. We showed that the proposed CELF algorithm greatly outperforms intuitive heuristics.
We also demonstrated that our methodology can be used to study complex application-specific questions
such as multicriteria tradeoff, cost-sensitivity analyses and generalizationbehavior.
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Part III

Large data

What are the properties of world’s social network?

How to quantify network community structure?

How to predict web search result quality without

page content?
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Part 3 – Large data: Overview

In the last part of the thesis we present case studies that demonstrate the value and importance of working
with large data. We examine three different aspects of analysis of very large networks: (a) observations on
the largest social network ever analyzed, (b) modeling of network community structure, and (c) machine
learning for web search. In all three cases there will be two common topics.First, we show how large
amounts of data give us opportunities to observe phenomena that are practically invisible when working
with small data, and how this leads to new counterintuitive discoveries. Second, we will be exploring how
microscopic behaviors can be used to make statements about the global structure.

Observations:We present a study of a month of high-level communication activities within the whole of
the Microsoft Messenger instant-messaging network. We examine patternsthat emerge from the collective
dynamics of large numbers of people. The dataset contains 255 billion messages in 30 billion conversa-
tions among 240 million people. From the data, we construct a communication graph with 180 million
nodes and 1.3 billion undirected edges, creating thelargest social networkanalyzed to date. We report
on multiple aspects of the dataset and synthesized graph. We investigate on aplanetary-scale the oft-cited
report that people are separated by “six degrees of separation” andfind that the average path length among
Messenger users is6.6. We also find that the graph is well-connected and robust to node removal.

Models: Second example that “large data matters” is our work on statistical propertiesof community
structure in networks. Researchers commonly assume the presence of “network communities”, where
the intuition is that networks contain clusters of nodes that interact more strongly with each other than
with the remainder of the network. Most often this has been only verified on very small networks of
hundreds of nodes. On the other hand, we look at networks of millions of nodes, and find very different
network structure. We find that network communities exist only up to asize scale of≈ 100 nodes, and
beyond that point small communities merge into the large densely interlinked network core of very little
community structure. This closely agrees with Dunbar’s observation [Dunbar, 1998] that predicted 150 is
the upper bound on the human community size. We develop and analyze models and explanations why
such structures occur in real life.

Algorithms: We study how linking relationships among web pages can be leveraged as sources of infor-
mation in methods for ranking search results. We show how local structure of the web graph can be used
to make globally accurate predictions about relevancy of web pages. We introduceweb projections, where
we extract context sensitive subgraphs of the web, and then use machine learning to construct predictive
models that consider graphical properties as evidence. We describe themethod and present experiments
that illustrate the construction of predictive models ofsearch result qualityanduser modeling.
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Chapter 9

MSN Messenger communication
network

We present a study of anonymized data capturing a month of high-level communication activities within
the whole of the Microsoft Messenger instant-messaging system. We examine characteristics and patterns
that emerge from the collective dynamics of large numbers of people, rather than the actions and charac-
teristics of individuals. The dataset contains summary properties of 30 billionconversations among 240
million people. From the data, we construct a communication graph with 180 million nodes and 1.3 bil-
lion undirected edges, creating the largest social network constructed and analyzed to date. We report on
multiple aspects of the dataset and synthesized graph. We find that the graph is well-connected and robust
to node removal. We investigate on a planetary-scale the oft-cited report that people are separated by “six
degrees of separation” and find that the average path length among Messenger users is 6.6. We also find
that people tend to communicate more with each other when they have similar age, language, and location,
and that cross-gender conversations are both more frequent and oflonger duration than conversations with
the same gender.

9.1 Introduction

Large-scale web services provide unprecedented opportunities to capture and analyze behavioral data
on a planetary scale. We discuss findings drawn from aggregations of anonymized data representing
one month (June 2006) of high-level communication activities of people usingthe Microsoft Messenger
instant-messaging (IM) network. We did not have nor seek access to the content of messages. Rather,
we consider structural properties of a communication graph and study howstructure and communication
relate to user demographic attributes, such as gender, age, and location.The data set provides a unique
lens for studying patterns of human behavior on a wide scale.

We explore a dataset of 30 billion conversations generated by 240 million distinct users over one month.
We found that approximately 90 million distinct Messenger accounts were accessed each day and that
these users produced about 1 billion conversations, with approximately 7 billion exchanged messages per
day. 180 million of the 240 million active accounts had at least one conversation on the observation period.
We found that 99% of the conversations occurred between 2 people, and the rest with greater numbers of
participants. To our knowledge, our investigation represents the largestand most comprehensive study
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to date of presence and communications in an IM system. A recent report [IDC Market Analysis, 2005]
estimated that approximately 12 billion instant messages are sent each day. Given the estimate and the
growth of IM, we estimate that we captured approximately half of the world’s IM communication during
the observation period.

We created an undirectedcommunication networkfrom the data where each user is represented by a node
and an edge is placed between users if they exchanged at least one message during the month of observa-
tion. The network represents accounts that were active during June 2006. In summary, the communication
graph has 180 million nodes, representing users who participated in at least one conversation, and 1.3 bil-
lion undirected edges among active users, where an edge indicates that apair of people communicated.
We note that this graph should be distinguished from a buddy graph wheretwo people are connected if
they appear on each other’s contact lists. The buddy graph for the datacontains 240 million nodes and 9.1
billion edges. On average each account has approximately 50 buddies ona contact list.

To highlight several of our key findings, we discovered that the communication network is well connected,
with 99.9% of the nodes belonging to the largest connected component. We evaluated the oft-cited finding
by Travers and Milgram that any two people are linked to one another on average via a chain with “6-
degrees-of-separation” [Milgram, 1967, Travers and Milgram, 1969]. We found that the average shortest
path length in the Messenger network is 6.6 (median 6), which is half a link more than the path length
measured in the classic study. However, we also found that longer paths exist in the graph, with lengths
up to 29. We observed that the network is well clustered, with a clustering coefficient [Watts and Strogatz,
1998] that decays with exponent−0.37. This decay is significantly lower than the value we had expected
given prior research [Ravasz and Barabási, 2003]. We found stronghomophily[McPherson et al., 2001,
Rogers and Bhowmik, 1970] among users; people have more conversations and converse for longer du-
rations with people who are similar to themselves. We find the strongest homophilyfor the language
used, followed by conversants’ geographic locations, and then age. We found that homophily does not
hold for gender; people tend to converse more frequently and with longerdurations with the opposite
gender. We also examined the relation between communication and distance, and found that the number
of conversations tends to decrease with increasing geographical distance between conversants. However,
communication links spanning longer distances tend to carry more and longer conversations.

9.2 Instant Messaging

The use of IM has been become widely adopted in personal and businesscommunications. IM clients
allow users fast, near-synchronous communication, placing it between synchronous communication medi-
ums, such as real-time voice interactions like telephone, and asynchronouscommunication mediums like
mail or email [Voida et al., 2002]. IM users exchange short text messages with one or more users from
their list of contacts, who have to be on-line and logged into the IM system at the time of interaction.
As conversations and messages exchanged within them are usually very short, it has been observed
that users employ informal language, loose grammar, numerous abbreviations, with minimal punctua-
tion [Nardi et al., 2000]. Contact lists are commonly referred to asbuddy listsand users on the lists are
referred to asbuddies.
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SYMBOL DESCRIPTION

di Duration ofith conversation
mi Number of exchanged messages inith conversation
li Geographical distance between the a pair of users inith conversation
mu,i Number of exchanged messages inith conversation of useru
Ca,b Set of all conversations between users of agea andb
Cg,h Set of all conversations between users of gendersg andh
tij Time of jth login of a user
toj Time of jth logout of a user
tsu,i Start time ofith conversation of useru
teu,i End time ofith conversation of useru

Table 9.1: Table of symbols.

9.2.1 Research on Instant Messaging

Several studies on smaller datasets are related to this work. Avrahami and Hudson [Avrahami and Hudson,
2006] explored communication characteristics of 16 IM users. Similarly, Shi et al.[Shi et al., 2007]
analyzed IM contact lists submitted by users to a public website and explored astatic contact network of
140,000 people. Recently, Xiao et al. [Xiao et al., 2007] investigated IM traffic characteristics within a
large organization with 400 users of Messenger. Our study differs from the latter study in that we analyze
the full Messenger population over a one month period, capturing the interaction ofuser demographic
attributes, communication patterns, and network structure.

9.2.2 Data description

To construct the Microsoft Instant Messenger communication dataset, wecombined three different sources
of data: (1) user demographic information, (2) time and user stamped eventsdescribing the presence of a
particular user, and (3) communication session logs, where, for all participants, the number of exchanged
messages and the periods of time spent participating in sessions is recorded.

We use the termssessionandconversationinterchangeably to refer to an IM interaction among two or
more people. Although the Messenger system limits the number of people communicating at the same
time to 20, people can enter and leave a conversation over time. We note that, for large sessions, people
can come and go over time, so conversations can be long with many differentpeople participating. We
observed some very long sessions with more than 50 participants joining overtime.

All of our data was anonymized; we had no access to personally identifiableinformation. Also, we had
no access to text of the messages exchanged or any other information thatcould be used to uniquely
identify users. We focused on analyzing high-level characteristics andpatterns that emerge from the
collective dynamics of 240 million people, rather than the actions and characteristics of individuals. The
analyzed data can be split into three parts:presence data, communication data, anduser demographic
information:

• Presence events:These include login, logout, first ever login, add, remove and block a buddy, add
unregistered buddy (invite new user), change of status (busy, away,be-right-back, idle, etc.). Events
are user and time stamped.
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• Communication: For each user participating in the session, the log contains the following tuple:
session id, user id, time joined the session, time left the session, number of messages sent, number
of messages received.

• User data: For each user, the following self-reported information is stored: age, gender, location
(country, ZIP), language, and IP address. We use the IP address todecode the geographical coordi-
nates, which we then use to position users on the globe and to calculate distances.

We gathered data for 30 days of June 2006. Each day yielded about 150 gigabytes of compressed text
logs (4.5 terabytes in total). Copying the data to a dedicated eight-processorserver with 32 gigabytes of
memory took 12 hours. Our log-parsing system employed a pipeline of four threads that parse the data in
parallel, collapse the session join/leave events into sets of conversations, and save the data in a compact
compressed binary format. This process compressed the data down to 45 gigabytes per day. Processing
the data took an additional 4 to 5 hours per day.

A special challenge was to account for missing and dropped events, andsession “id recycling” across
different IM servers in a server farm. As part of this process, we closed a session 48 hours after the last
leave session event. We closed sessions automatically if only one user was left in the conversation.

9.3 Usage & population statistics

We shall first review several statistics drawn from aggregations of users and their communication activi-
ties.

9.3.1 Levels of activity

Over the observation period, 242,720,596 users logged into Messengerand 179,792,538 of these users
were actively engaged in conversations by sending or receiving at least one IM message. Over the month
of observation, 17,510,905 new accounts were activated. As a representative day, on June 1 2006, there
were almost 1 billion (982,005,323) different sessions (conversations among any number of people), with
more than 7 billion IM messages sent. Approximately 93 million users logged in with 64million different
users becoming engaged in conversations on that day. Approximately 1.5 million new users that were not
registered within Microsoft Messenger were invited to join on that particularday.

We consider event distributions on a per-user basis in Figure9.1. The number of logins per user, displayed
in Figure9.1(a), follows a heavy-tailed distribution with exponent 3.6. We note spikes in logins at 20
minute and 15 second intervals, which correspond to an auto-login functionof the IM client. As shown in
Figure9.1(b), many users fill up their contact lists rather quickly. The spike at 600 buddies undoubtedly
reflects the maximal allowed length of contact lists.

Figure9.2(a) displays the number of users per session. In Messenger, multiple people can participate
in conversations. We observe a peak at 20 users, the limit on the number ofpeople who can participate
simultaneously in a conversation. Figure9.2(b) shows the distribution over the session durations, which
can be modeled by a power law distribution with exponent3.6.

Next, we examine the distribution of the durations of periods of time when peopleare logged on to the
system. Let(tij , toj) denote a time ordered (tij < toj < tij+1) sequence of online and offline times
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Figure 9.1: Distribution of the number of events per user. (a) Number of logins per user. (b) Number of
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Figure 9.2: (a) Distribution of the number of people participating in a conversation. (b) Distribution of
the durations of conversations. The spread of durations canbe described by a power law
distribution.

of a user, wheretij is the time of thejth login, andtoj is the corresponding logout time. Figure9.3(a)
plots the distribution oftoj − tij over allj over all users. Similarly, Figure9.3(b) shows the distribution
of the periods of time when users are logged off,i.e., tij+1 − toj over all j and over all users. Fitting
the data to power law distributions reveals exponents of 1.77 and 1.3, respectively. The data shows that
durations of being online tend to be shorter and decay faster than durations that users are offline. We also
notice periodic effects of login durations of 12, 24, and 48 hours, reflecting daily periodicities. We observe
similar periodicities for logout durations at multiples of 24 hours.

Weekly dynamics of MSN Messenger is also quite interesting. Figure9.4 shows the number of logins,
status change and add buddy events by day of the week over a period of5 weeks starting in June 2006. We
count the number of particular events per day of the week, and we use thedata from 5 weeks to compute
the error bars. Figure9.4(a) shows the average number of logins per day of the week over a 5 week period.
Note that number of login events is larger than the number of distinct users logging in, since a user can
login multiple times a day. Figure9.4(b) plots the average number of status change evens per day of the
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Figure 9.4: Number of events per day of the week. We collected the data over a period of 5 weeks starting
on May 29 2006.

week. Status events include a group of 8 events describing the current status of the users,i.e., away, be
right back, online, busy, idle, at lunch, and on the phone. Last, Figure9.4(c) shows the average number of
add buddy events per day of the week. Add buddy event is triggered every time user adds a new contact
to their contact list.

9.3.2 Demographic characteristics of the users

We compared the demographic characteristics of the Messenger populationwith 2005 world census data
and found differences between the statistics for age and gender. The visualization of this comparison
displayed in Figure9.5shows that users with reported ages in the 15–35 span of years are strongly over-
represented in the active Messenger population. Focusing on the differences by gender, females are over-
represented for the 10–14 age interval. For male users, we see overallmatches with the world population
for age spans 10–14 and 35-39; for women users, we see a match for ages in the span of 30–34. We note
that 6.5% of the population did not submit an age when creating their Messenger accounts.
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To further illustrate the points above Figure9.6shows self-reported user age distribution and the percent
difference of particular age-group between MSN and the world population. The distribution is skewed to
the right and has a mode at age of 18. We also note that the distribution has exponential tails.
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9.4 Communication characteristics

We now focus on characteristics and patterns with communications. We limit the analysis to conversations
between two participants, which account for 99% of all conversations.

We first examine the distributions over conversation durations and times between conversations. Let user
u haveC conversations in the observation period. Then, for every conversation i of useru we create
a tuple(tsu,i, teu,i, mu,i), wheretsu,i denotes the start time of the conversation,teu,i is the end time
of the conversation, andmu,i is the number of exchanged messages between the two users. We order
the conversations by their start time (tsu,i < tsu,i+1). Then, for every useru, we calculate the average
conversation duration̄d(u) = 1

C

∑
i teu,i − tsu,i, where the sum goes over all theu’s conversations.

Figure9.7(a) shows the distribution of̄d(u) over all the usersu. We find that the conversation length can
be described by a heavy-tailed distribution with exponent -3.7 and a mode of4 minutes.

Figure9.7(b) shows the intervals between consecutive conversations of a user.We plot the distribution
of tsu,i+1 − tsu,i, wheretsu,i+1 andtsu,i denote start times of two consecutive conversations of useru.
The power law exponent of the distribution over intervals is− 1.5. This result is similar to the temporal
distribution for other kinds of human communication activities,e.g., waiting times of emails and letters
before a reply is generated [Barab́asi, 2005]. The exponent can be explained by a priority-queue model
where tasks of different priorities arrive and wait until all tasks with higher priority are addressed. This
model generates a task waiting time distribution described by a power law with exponent−1.5.

However, the total number of conversations between a pair of users (Figure9.8(a)), and the total number
of exchanged messages between a pair of users (Figure9.8(b)) does not seem to follow a power law. The
distribution seems still to be heavy tailed but not power law. The fits represent the MLE estimates of a
log-normal distribution.
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9.5 Communication demographics

Next we examine the interplay of communication and user demographic attributes, i.e., how geography,
location, age, and gender influence observed communication patterns.

9.5.1 Communication by age

We sought to understand how communication among people changes with the reported ages of participat-
ing users. Figures9.9(a)-(d) use a heat-map visualization to communicate properties for different age–age
pairs. The rows and columns represent the ages of both parties participating, and the color at each age–age
cell captures the logarithm of the value for the pairing. The color spectrumextends from blue (low value)
through green, yellow, and onto red (the highest value). Because of potential misreporting at very low and
high ages, we concentrate on users with self-reported ages that fall between 10 and 60 years.

Let a tuple(ai, bi, di, mi) denote theith conversation in the entire dataset that occurred among users of
agesai andbi. The conversation had a duration ofdi seconds during whichmi messages were exchanged.
Let Ca,b = {(ai, bi, di, mi) : ai = a ∧ bi = b} denote a set of all conversations between users of agesa
andb, respectively.

Figure9.9(a) shows the number of conversations among people of different ages. For every pair of ages
(a, b) the color indicates the size of setCa,b, i.e., the number of different conversations between users of
agesa andb. We note that, as the notion of a conversation is symmetric, the plots are symmetric.Most
conversations occur between people of ages 10 to 20. The diagonal trend indicates that people tend to talk
to people of similar age. This is true especially for age groups between 10 and 30 years. We shall explore
this observation in more detail in Section9.6.

Figure9.9(b) displays a heat map for the average conversation duration, computedas 1
|Ca,b|

∑
i∈Ca,b

di.
We note that older people tend to have longer conversations. We observea similar phenomenon when
plotting the average number of exchanged messages per conversation, computed as 1

|Ca,b|

∑
i∈Ca,b

mi,
displayed in Figure9.9(c). Again, we find that older people exchange more messages, and we observe
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Figure 9.9: Communication characteristics of users by reported age. Weplot age vs. age and the color
(z-axis) represents the intensity of communication.

a dip for ages 25–45 and a slight peak for ages 15–25. Figure9.9(d) displays the number of exchanged
messages per unit time; for each age pair,(a, b), we measure 1

|Ca,b|

∑
i∈Ca,b

mi

di
. Here, we see that younger

people have faster-paced dialogs, while older people exchange messages at a slower pace.

We note that the younger population (ages 10–35) are strongly biased towards communicating with peo-
ple of a similar age (diagonal trend in Figure9.9(a)), and that users who report being of ages 35 years
and above tend to communicate more evenly across ages (rectangular pattern in Fig. 9.9(a)). Moreover,
older people have conversations of the longest durations, with a “valley”in the duration of conversations
for users of ages 25–35. Such a dip may represent shorter, faster-paced and more intensive conversations
associated with work-related communications, versus more extended, slower, and longer interactions as-
sociated with social discourse.

9.5.2 Communication by gender

We report on analyses of properties of pairwise communications as a function of the self-reported gender
of users in conversations in Table9.2. Let Cg,h = {(gi, hi, di, mi) : gi = g ∧ hi = h} denote a set
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Unknown Female Male

Unknown 1.3 3.6 3.7
Female 21.3 49.9
Male 20.2

Unknown Female Male

Unknown 277 301 277
Female 275 304
Male 252

(a) Conversations (b) Conversation duration

Unknown Female Male

Unknown 5.7 7.1 6.7
Female 6.6 7.6
Male 5.9

Unknown Female Male

Unknown 1.25 1.42 1.38
Female 1.43 1.50
Male 1.42

(c) Exchanged messages per conversation (d) Conversation intensity

Table 9.2: Cross-gender communication. Data is based on all two-person conversations from June 2006.
(a) Percentage of conversations among users of different self-reported gender; (b) average con-
versation length in seconds; (c) number of exchanged messages per conversation; (d) number
of exchanged messages per minute of conversation.

of conversations where the two participating users are of gendersg andh. Note thatg takes 3 possible
values: female, male, and unknown (unreported).

Table9.2(a) relays|Cg,h| for combinations of gendersg andh. The table shows that approximately 50%
of conversations occur between male and female and 40% of the conversations occur among users of the
same gender (20% for each). A small number of conversations occur between people who did not reveal
their gender.

Similarly, Table9.2(b) shows the average conversation length in seconds, broken down by the gender of
conversant, computed as1|Cg,h|

∑
i∈Cg,h

di. We find that male–male conversations tend to be shortest, last-
ing approximately 4 minutes. Female–female conversations last 4.5 minutes on the average. Female–male
conversations have the longest durations, taking more than 5 minutes on average. Beyond taking place
over longer periods of time, more messages are exchanged in female–male conversations. Table9.2(c) lists
values for 1

|Cg,h|

∑
i∈Cg,h

mi and shows that, in female–male conversations, 7.6 messages are exchanged
per conversation on the average as opposed to 6.6 and 5.9 for female–female and male–male, respectively.
Table9.2(d) shows the communication intensity computed as1|Cg,h|

∑
i∈Cg,h

mi

di
. The number of messages

exchanged per minute of conversation for male–female conversations is higher at 1.5 messages per minute
than for cross-gender conversations, where the rate is 1.43 messagesper minute.

We examined the number ofcommunication ties, where a tie is established between two people when
they exchange at least one message during the observation period. We computed 300 million male–
male ties, 255 million female–female ties, and 640 million cross-gender ties. The Messenger population
consists of 100 million males and 80 million females by self report. These findings demonstrate that ties
are not heavily gender biased; based on the population, random chance predicts 31% male–male, 20%
female–female, and 49% female–male links. We observe 25% male–male, 21% female–female, and 54%
cross-gender links, thus demonstrating a minor bias of female–male links.

The results reported in Table9.2 run counter to prior studies reporting that communication among in-
dividuals who resemble one other (same gender) occurs more often (see[McPherson et al., 2001] and
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Figure 9.10: Number of users at a particular geographic location. Color represents the number of users.
Notice the map of the world appears.

references therein). We identified significant heterophily, where people tend to communicate more with
people of the opposite gender. However, we note that link heterogeneity was very close to the popu-
lation value [Marsden, 1987], i.e., the number of same- and cross-gender ties roughly corresponds to
random chance. This shows there is no significant bias in linking for gender. However, we observe that
cross-gender conversations tend to be longer and to include more messages, suggesting that more effort is
devoted to conversations with the opposite sex.

9.5.3 World geography and communication

We now focus on the influence of geography and distance among participants on communications. Fig-
ure 9.10 shows the geographical locations of Messenger users. The generallocation of the user was
obtained via reverse IP lookup. We plot all latitude/longitude positions linked tothe position of servers
where users log into the service. The color of each dot corresponds tothe logarithm of the number of lo-
gins from the respective location, again using a spectrum of colors ranging from blue (low) through green
and yellow to red (high). Although the maps are built solely by plotting these positions, a recognizable
world map is generated. We find that North America, Europe, and Japan are very dense, with many users
from those regions using Messenger. For the rest of the world, the population of Messenger users appears
to reside largely in coastal regions.

We can condition the densities and behaviors of Messenger users on multiplegeographical and socioeco-
nomic variables and explore relationships between electronic communications and other attributes. As an
example, harnessed the United Nations gridded world population data to provide estimates of the number
of people living in each cell. Given this data, and the data from Figure9.10, we calculate the number of
users per capita, displayed in Figure9.12. Now we see transformed picture where several sparsely popu-
lated regions stand out as having a high usage per capita. These regionsinclude the center of the United
States, Canada, Scandinavia, Ireland, Australia, and South Korea.
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Figure 9.11: Number of users at particular geographic location superimposed on the map of the world.
Color represents the number of users.

Figure 9.12: Number of Messenger users per capita. Color intensity corresponds to the number of users
per capita in the cell of the grid.

Figure9.13shows a heat map that represents the intensities of Messenger communications on an interna-
tional scale. To create this map, we place the world map on a fine grid, where each cell of the grid contains
the count of the number of conversations that pass through that point byincreasing the count of all cells
on the straight line between the geo-locations of pairs of conversants. The color indicates the number
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Figure 9.13: Communication heat map. For each conversation we increase the intensity of the color along
the line between two conversation endpoints on the planet.

of conversations crossing each point, providing a visualization of the keyflows of communication. For
example, Australia and New Zealand have communications flowing towards Europe and United States.
Similar flows hold for Japan. We see that Brazilian communications are weightedtoward Europe and
Asia. We can also explore the flows of transatlantic and US transcontinentalcommunications.

9.5.4 Communication among countries

Communication among people within different countries also varies dependingon the locations of conver-
sants. We examine two such views. Figure9.14shows the top countries by the number of conversations
between pairs of countries. We examined all pairs of countries with more than10 million conversations
per month. The width of edges in the figure is proportional to the logarithm of the number of conversa-
tions among the countries. We find that the United States and Spain appear to serve as hubs and that edges
appear largely between historically or ethnically connected countries. As examples, Spain is connected
with the Spanish speaking countries in South America, Germany links to Turkey, Portugal to Brazil, and
China to Korea.

Figure9.15displays a similar plot where we consider country pairs by the average duration of conversa-
tions. The width of the edges are proportional to the mean length of conversations between the countries.
The core of the network appears to be Arabic countries, including SaudiArabia, Egypt, United Arab
Emirates, Jordan, and Syria.

Comparing the number of active users with the country population reveals interesting findings. Table9.3
shows the top 10 countries with the highest fraction of population using Messenger. These are mainly
northern European countries and Canada. Countries with most of the users (US, Brazil) tend to have
smaller fraction of population using Messenger.
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Figure 9.14: Communication among countries with at least 10 million conversations in June 2006. Edge
widths correspond to logarithms of intensity of links.

Similarly, Table9.4 shows the top 10 countries by the number of conversations per user per day. Here
the countries are very diverse with Afghanistan topping the list. The Netherlands Antilles appears on
top 10 list for both the fraction of the population using Messenger and the number of conversations per
user.

Last, Table9.5 shows the top 10 countries by the number of messages and minutes talking per user per
day. We note that the list of the countries is similar to those in Table9.4. Afghanistan still tops the list but
now most of the talkative counties come from Eastern Europe (Serbia, Bosnia, Bulgaria, Croatia).

9.5.5 Communication and geographical distance

We were interested in how communications change as the distance between people increases. We had
hypothesized that the number of conversations would decrease with geographical distance as users might
be doing less coordination with one another on a daily basis, and where communication would likely
require more effort to coordinate than might typically be needed for peoplesituated more locally. We also
conjectured that, once initiated, conversations among people who are farther apart would be somewhat
longer as there might be a stronger need to catch up when the less-frequent conversations occurred.
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Figure 9.15: Countries by average length of the conversation. Edge widths correspond to logarithms of
intensity of links.

Figure9.16plots the relation between communication and distance. Figure9.16(a) shows the distribution
of the number of conversations between conversants at distancel. We found that the number of conversa-
tions decreases with distance. However, we observe a peak at a distance of approximately 500 kilometers.
The other peaks and drops may reveal geographical features. For example, a significant drop in commu-
nication at distance of 5,000 km (3,500 miles) may reflect the width of the Atlantic ocean or the distance
between the east and west coasts of the United States. The number of links rapidly decreases with dis-
tance. This finding suggests that users may use Messenger mainly for communications with others within
a local context and environment. We found that the number of exchangedmessages and conversation
lengths do not increase with distance (see plots (b)–(d) and (f) of Figure 9.16). Conversation duration
decreases with the distance, while the number of exchanged messages remains constant before decreasing
slowly. Figure9.16(f) shows the communications per link versus the distance among participants.The
plot shows that longer links,i.e., connections between people who are farther apart, are more frequently
used than shorter links. We interpret this finding to mean that people who arefarther apart use Messenger
more frequently to communicate.

In summary, we observe that the total number of links and associated conversations decreases with in-
creasing distance among participants. The same is true for the duration of conversations, the number of
exchanged messages per conversation, and the number of exchangedmessages per unit time. However,
the number of times a link is used tends to increase with the distance among users.This suggests that
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Figure 9.16: Communication with the distance. (a) Number of links (pairsof people that communicate)
with the distance. (b) Number of conversations between people at particular distance. (c)
Average conversation duration. (d) Number of exchanged messages per conversation. (e)
Number of conversations per link (per pair of communicatingusers). (f) Number of ex-
changed messages per unit time.
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Country Fraction of population

Iceland 0.35
Spain 0.28

Netherlands 0.27
Canada 0.26
Sweden 0.25
Norway 0.25

Bahamas, The 0.24
Netherlands Antilles 0.24

Belgium 0.23
France 0.18

United Kingdom 0.17
Brazil 0.08

United States 0.08

Table 9.3: Top 10 countries with most the largest number of Messenger users. Fraction of country’s
population actively using Messenger.

Country Conversations per user per day

Afghanistan 4.37
Netherlands Antilles 3.79

Jamaica 2.63
Cyprus 2.33

Hong Kong 2.27
Tunisia 2.25
Serbia 2.15

Dominican Republic 2.06
Bulgaria 2.07

Table 9.4: Top 10 countries by the number of conversations per user per day.

Country Messages per user per dayMinutes talking per user per day

Afghanistan 32.00 20.91
Netherlands Antilles 24.12 17.43

Serbia 22.41 12.01
Bosnia and Herzegovina 22.40 11.41

Macedonia 19.52 10.46
Cyprus 19.33 12.37
Tunisia 19.17 13.54
Bulgaria 18.94 11.38
Croatia 17.78 10.05

Table 9.5: Top 10 countries by the number of messages and minutes talking per user per day.

people who are farther apart tend to converse with IM more frequently, which perhaps takes the place of
more expensive long-distance voice telephony; voice might be used more frequently in lieu of IM for less
expensive local communications.
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Correlation Probability
Attribute Rnd Comm Rnd Comm

Age -0.0001 0.297 0.030 0.162
Gender 0.0001 -0.032 0.434 0.426
ZIP -0.0003 0.557 0.001 0.23
County 0.0005 0.704 0.046 0.734
Language -0.0001 0.694 0.030 0.798

Table 9.6: Correlation coefficients and probability of users sharing an attribute for random pairs of people
versus for pairs of people who communicate.

9.6 Homophily of communication

We performed several experiments to measure the level at which people tend to communicate with similar
people. First, we consider all 1.3 billion pairs of people who exchanged atleast one message in June 2006,
and calculate the similarity of various user demographic attributes. We contrast this with the similarity of
pairs of users selected via uniform random sampling across 180 million users. We consider two measures
of similarity: the correlation coefficient and the probability that users have the same attribute value,e.g.,
that users come from the same countries.

Table9.6compares correlation coefficients of various user attributes when pairs of users are chosen uni-
formly at random with coefficients for pairs of users who communicate. We can see that attributes are
not correlated for random pairs of people, but that they are highly correlated for users who communi-
cate. As we noted earlier, gender and communication are slightly negatively correlated; people tend to
communicate more with people of the opposite gender.

Another method for identifying association is to measure the probability that a pair of users will show
an exact match in values of an attribute,i.e., identifying whether two users come from the same country,
speak the same language, etc. Table9.6 shows the results for the probability of users sharing the same
attribute value. We make similar observations as before. People who communicate are more likely to
share common characteristics, including age, location, language, and theyare less likely to be of the same
gender. We note that the most common attribute of people who communicate is language. On the flip
side, the amount of communication tends to decrease with increasing user dissimilarity. This relationship
is highlighted in Figure9.16, which shows how communication among pairs of people decreases with
distance.

Figure9.17further illustrates the results displayed in Table9.6, where we randomly sample pairs of users
from the Messenger user base, and then plot the distribution over reported ages. As most of the population
comes from the age group 10–30, the distribution of random pairs of people reaches the mode at those
ages but there is no correlation. Figure9.17(b) shows the distribution of ages over the pairs of people who
communicate. Note the correlation, as represented by the diagonal trend onthe plot, where people tend to
communicate more with others of a similar age.

Next, we further explore communication patterns by the differences in the reported ages among users.
Figure9.18(a) plots the number links in the communication network vs. the age difference of the commu-
nicating pair of users. Similarly, Figure9.18(b) plots on a log-linear scale the number of conversations in
the social network with participants of varying age differences. Again wesee that links and conversations
are strongly correlated with the age differences among participants. Figure9.18(c) shows the average con-
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Figure 9.17: Numbers of pairs of people of different ages. (a) Randomly selected pairs of people; (b)
people who communicate. Correlation between age and communication is captured by the
diagonal trend.

versation duration with the age difference among the users. Interestingly,the mean conversation duration
peaks at an age difference of 20 years between participants. We speculate that the peak may correspond
roughly to the gap between generations.

The plots reveal that there is strong homophily in the communication network forage; people tend to
communicate more with people of similar reported age. This is especially salient for the number of
buddies and conversations among people of the same ages. We also observe that the links between people
of similar attributes are used more often, to interact with shorter and more intense(more exchanged
messages) communications. The intensity of communication decays linearly with thedifference in age.
In contrast to findings of previous studies, we observe that the number of cross-gender communication
links follows a random chance. However, cross-gender communication takes longer and is faster paced as
it seems that people tend to pay more attention when communicating with the opposite sex.

Recently, using the data we generated, Singla and Richardson further investigated the homophily within
the Messenger network and found that people who communicate are also more likely to search the web
for content on similar topics [Singla and Richardson, 2008].

9.7 The communication network

So far we have examined communication patterns based on pairwise communications. We now create
a more general communication network from the data. Using this network, we can examine the typical
social distancebetween people,i.e., the number of links that separate a random pair of people. This
analysis seeks to understand how many people can be reached within certain numbers of hops among
people who communicate. Also, we test the transitivity of the network,i.e., the degree at which pairs with
a common friend tend to be connected.

We constructed a graph from the set of all two-user conversations, where each node corresponds to a
person and there is an undirected edge between a pair of nodes if the users were engaged in an active
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Figure 9.18: Communication characteristics with age difference between the users. (a) Number of links
(pairs communicating) with the age difference. (b) Number of conversations. (c) Average
conversation duration with the age difference. (d) Averagenumber of exchanged messages
per conversation as a function of the age difference betweenthe users. (e) Number of conver-
sations per link in the observation period with the age difference. (f) Number of exchanged
messages per unit time as a function of age difference between the users.
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Figure 9.19: (a) Degree distribution of communication network (number of people with whom a person
communicates). (b) Degree distribution of the buddy network (length of the contact list).

conversation during the observation period (users exchanged at least 1 message). The resulting network
containsN =179,792,538 nodes, andE =1,342,246,427 edges. Note that this is not abuddy network; we
only connect people who are buddiesandhave communicated during the observation period.

Figures9.19–9.20 show the structural properties of the communication network. The network degree
distribution shown in Figure9.19(a) is heavy tailed but does not follow a power law distribution. Using
maximum likelihood estimation, we fit a power law with exponential cutoffp(d) ∝ d−ae−bd, whered
denotes node degree. The fitted parameter values area = 0.8 andb = 0.03. We found a strong cutoff
parameter and low power law exponent, suggesting a distribution with high variance.

Figure9.19(b) displays the degree distribution of a buddy graph. We did not have access to the full buddy
network; we only had access to data on the length of the user contact list which allowed us to create the
plot. We found a total of 9.1 billion buddy edges in the graph with 49 buddies per user. We fit the data
with a power law distribution with exponential cutoff and identified parameters of a = 0.6 andb = 0.01.
The power law exponent now is even smaller. This model described the datawell. We note a spike at
600 which is the limit on the maximal number of buddies imposed by the Messenger software client. The
maximal number of buddies was increased to 300 from 150 in March 2005, and was later raised to 600.
With the data from June 2006, we see only the peak at 600, and could not identify bumps at the earlier
constraints.

Social networks have been found to be highly transitive,i.e., people with common friends tend to be
friends themselves. The clustering coefficient [Watts and Strogatz, 1998] has been used as a measure of
transitivity in the network. The measure is defined as the fraction of trianglesaround a node of degree
d [Watts and Strogatz, 1998]. Figure9.20(a) displays the clustering coefficient versus the degree of a node
for Messenger. Previous results on measuring the web graph as well astheoretical analyses show that
the clustering coefficient decays asd−1 (exponent−1) with node degreed [Ravasz and Barabási, 2003].
For the Messenger network, the clustering coefficient decays very slowly with exponent−0.37 with the
degree of a node and the average clustering coefficient is 0.137. This result suggests that clustering in
the Messenger network is much higher than expected—that people with commonfriends also tend to be
connected. Figure9.20(b) displays the distribution of the connected components in the network. Thegiant
component contains 99.9% of the nodes in the network against a background of small components, and
the distribution follows a power law.
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Figure 9.21: (a) Distribution over the shortest path lengths. Average shortest path has length 6.6, the dis-
tribution reaches the mode at 6 hops, and the 90% effective diameter is 7.8; (b) distribution
of sizes of cores of orderk.

9.7.1 How small is the small world?

Messenger data gives us a unique opportunity to study distances in the social network. To our knowledge,
this is the first time a planetary-scale social network has been available to validate the well-known “6
degrees of separation” finding by Travers and Milgram [Milgram, 1967]. The earlier work employed a
sample of 64 people and found that the average number of hops for a letterto travel from Nebraska to
Boston was 6.2 (mode 5, median 5), which is popularly known as the “6 degrees of separation” among
people. We used a population sample that is more than two million times larger than the group studied
earlier and confirmed the classic finding.

Figure9.21(a) displays the distribution over the shortest path lengths. To approximate the distribution
of the distances, we randomly sampled 1000 nodes and calculated for eachnode the shortest paths to all
other nodes. We found that the distribution of path lengths reaches the modeat 6 hops and has a median at
7. The average path length is 6.6. This result means that a random pair of nodes in the Messenger network
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Figure 9.22: k-core decomposition of a small graph. Nodes contained in each closed line belong to a
given k-core. Inside eachk-core all nodes have degree larger thank (after removing all
nodes with degree less thank.

is 6.6 hops apart on the average, which is half a link longer than the length measured by Milgram. The
90th percentile (effective diameter [Tauro et al., 2001]) of the distribution is 7.8. 48% of nodes can be
reached within 6 hops and 78% within 7 hops. So, we might say that, via the lensprovided on the world
by Messenger, we find that there are about “7 degrees of separation” among people. We note that long
paths,i.e., nodes that are far apart, exist in the network; we found paths up to a length of 29 links.

It is an interesting question to hypothesize what could be the true degree ofseparation of the human race.
At first sight one would think that if one could consider all the Earth’s population then diameter of such
network would increase a bit. On the other hand we made observations in Chapter3 from where we know
that as networks grow they densify and the diameter shrinks, which would suggest that the true number of
degrees of separation of human race is probably a bit smaller than what wefound. On the other hand, our
network is not complete. It is missing nodes and edges in particular geographic parts of the world. For
example, as we saw in Figure9.10MSN population in Africa or South America is concentrated mostly
on the coasts. This means the network has “holes” and one plausible hypothesis would be that the filling
in these holes would further bring down the diameter and the average degree of separation.

9.7.2 Network cores

We further study connectivity of the communication network by examining thek-core decomposition of a
network [Batagelj and Zaveršnik, 2002]. The concept ofk-core is a generalization of the giant connected
component. Thek-core of a network is a set of verticesK, where each vertex inK has at leastk edges to
other vertices inK (see Figure9.22). The distribution ofk-core sizes gives us an idea of how quickly the
network shrinks as we move towards the core.

Thek-core of a graph can be obtained by deleting from the network all verticesof degree less thank. This
process will decrease degrees of some non-deleted vertices, so more vertices will have degree less than
k. We keep pruning vertices until all remaining vertices have degree of at leastk. We call the remaining
vertices ak-core.

253



Figure9.21plots the number of nodes in a core of orderk. We note that the core sizes are remarkably stable
up to a value ofk ≈ 20; the number of nodes in the core drops for only an order of magnitude. Afterk >
20, the core size rapidly drops. The central part of the communication network is composed of 79 nodes,
where each of them has more than 68 edges inside the set. The structure ofthe Messenger communication
network is quite different from the Internet graph; it has been observed [Alvarez-Hamelin et al., 2005] that
the size of ak-core of the Internet decays as a power law withk. Here we see that the core sizes remains
very stable up to a degree≈ 20, and only then start to rapidly degrease. This means that the nodes with
degrees of less than 20 are on the fringe of the network, and that the core starts to rapidly decrease as
nodes of degree 20 or more are deleted.

9.7.3 Strength of the ties

It has been observed by Albert et al. [Albert et al., 2000] that many real-world networks are robust to
node-level changes orattacks. Researchers have showed that networks like the World Wide Web, Internet,
and several social networks display a high degree of robustness to random node removals,i.e., one has
to remove many nodes chosen uniformly at random to make the network disconnected. On the contrary,
targeted attacks are very effective. Removing a few high degree nodescan have a dramatic influence on
the connectivity of a network.

Let us now study how the Messenger communication network is decomposed when “strong,”i.e., heavily
used, edges are removed from the network. We consider several different definitions of “heavily used,”
and measure the types of edges that are most important for network connectivity. We note that a similar
experiment was performed by Shi et al. [Shi et al., 2007] in the context of a small IM buddy network.
The authors of the prior study took the number of common friends at the endsof an edge as a measure of
the link strength. As the number of edges here is too large (1.3 billion) to removeedges one by one, we
employed the following procedure: We order the nodes by decreasing value per a measure of theintensity
of engagementof users; we then delete nodes associated with users in order of decreasing measure and
we observe the evolution of the properties of the communication network as nodes are deleted.

We consider the following different measures of engagement:

• Average sent: The average number of sent messages per user’s conversation

• Average time: The average duration of user’s conversations

• Links: The number of links of a user (node degree),i.e., number of different people he or she
exchanged messages with

• Conversations: The total number of conversations of a user in the observation period

• Sent messages: The total number of sent messages by a user in the observation period

• Sent per unit time: The number of sent messages per unit time of a conversation

• Total time: The total conversation time of a user in the observation period

At each step of the experiment, we remove 10 million nodes in order of the specific measure of engagement
being studied. We then determine the relative size of the largest connected component,i.e., given the
network at particular step, we find the fraction of the nodes belonging to thelargest connected component
of the network.
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Figure 9.23: Relative size of the largest connected component as a function of number of nodes removed.

Figure9.23plots the evolution of the fraction of nodes in the largest connected component with the number
of deleted nodes. We plot a separate curve for each of the seven different measures of engagement. For
comparison, we also consider the random deletion of the nodes.

The decomposition procedure highlighted two types of dynamics of network change with node removal.
The size of the largest component decreases rapidly when we use as measures of engagement the number
of links, number of conversations, total conversation time, or number of sent messages. In contrast, the
size of the largest component decreases very slowly when we use as a measure of engagement the average
time per conversation, average number of sent messages, or number of sent messages per unit time. We
were not surprised to find that the size of the largest component size decreases most rapidly when nodes
are deleted in order of the decreasing number of links that they have,i.e., the number of people with whom
a user at a node communicates. Random ordering of the nodes shrinks thecomponent at the slowest rate.
After removing 160 million out of 180 million nodes with the random policy, the largest component still
contains about half of the nodes. Surprisingly, when deleting up to 100 millionnodes, the average time per
conversation measure shrinks the component even more slowly than the random deletion policy.

Figure9.24displays plots of the number of removed edges from the network as nodes are deleted. Similar
to the relationships in Figure9.23, we found that deleting nodes by the inverse number of edges removes
edges the fastest. As in Figure9.24, the same group of node ordering criteria (number of conversations,
total conversation time or number of sent messages) removes edges from the networks as fast as the
number of links criteria. However, we find that random node removal removes edges in a linear manner.
Edges are removed at a lower rate when deleting nodes by average time perconversation, average numbers
of sent messages, or numbers of sent messages per unit time. We believe that these findings demonstrate
that users with long conversations and many messages per conversation tend to have smaller degrees—
even given the findings displayed in Figure9.23, where we saw that removing these users is more effective

255



0 2 4 6 8 10 12 14 16

x 10
7

0

2

4

6

8

10

12

14
x 10

8

Deleted nodes

D
el

et
ed

 e
dg

es

Avg. sent
Avg. time
Links
Conversations
Sent messages
Sent per unit time
Total time
Random

Figure 9.24: Number of removed edges as nodes are deleted by order of different measures of engage-
ment.

for breaking the connectivity of the network than for random node deletion. Figure9.24also shows that
using the average number of messages per conversation as a criterion removes edges in the slowest manner.
We believe that this makes sense intuitively: If users invest similar amounts of timeto interacting with
others, then people with short conversations will tend to converse with morepeople in a given amount of
time than users having long conversations.

9.8 Conclusion

We have reviewed a set of results stemming from the generation and analysisof an anonymized dataset
representing the communication patterns of all people using a popular IM system. The methods and
findings highlight the value of using a large IM network as a worldwide lens onto aggregate human be-
havior.

We described the creation of the dataset, capturing high-level communicationactivities and demographics
in June 2006. The core dataset contains more than 30 billion conversationsamong 240 million people.
We discussed the creation and analysis of a communication graph from the data containing 180 million
nodes and 1.3 billion edges. The communication network is largest social network analyzed to date. The
planetary-scale network allowed us to explore dependencies among userdemographics, communication
characteristics, and network structure. Working with such a massive dataset allowed us to test hypotheses
such as the average chain of separation among people across the entire world.

We discovered that the graph is well connected, highly transitive, and robust. We reviewed the influence
of multiple factors on communication frequency and duration. We found strong influences of homophily
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in activities, where people with similar characteristics tend to communicate more, withthe exception of
gender, where we found that cross-gender conversations are bothmore frequent and of longer duration than
conversations with users of the same reported gender. We also examined the path lengths and validated on
a planetary scale earlier research that found “6 degrees of separation” among people.

We note that the sheer size of the data limits the kinds of analyses one can perform. In some cases, a
smaller random sample may avoid the challenges with working with terabytes of data. However, it is
known that sampling can corrupt the structural properties of networks,such as the degree distribution and
the diameter of the graphs [Stumpf et al., 2005]. Thus, while sampling may be valuable for managing
complexity of analyses, results on network properties with partial data sets may be rendered unreliable.
Furthermore, we need to consider the full data set to reliably measure the patterns of age and distance
homophily in communications.

In other directions of research with the dataset, we have pursued the useof machine learning and inference
to learn predictive models that can forecast such properties as communication frequencies and durations
of conversations among people as a function of the structural and demographic attributes of conversants.
Our future directions for research include gaining an understanding ofthe dynamics of the structure of the
communication network via a study of the evolution of the network over time.

We hope that our studies with Messenger data serves as an example of directions in social science research,
highlighting how communication systems can provide insights about high-level patterns and relationships
in human communications without making incursions into the privacy of individuals. We hope that this
first effort to understand a social network on a genuinely planetary scale will embolden others to explore
human behavior at large scales.
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Chapter 10

Network community structure

How well do real networks partition into communities? What is a good way to measure and characterize
presence or absence of community structure in networks? What are typical community sizes and typical
community scores?

A large body of work has been devoted to identifying community structure in networks. A community is
often though of as a set of nodes that has more connections between its members than to the remainder of
the network. In this chapter, we characterize as a function of size the statistical and structural properties of
such sets of nodes. We define thenetwork community profile plot, which characterizes the “best” possible
community—according to the conductance measure—over a wide range of size scales, and we study over
100 large sparse real-world networks taken from a wide range of applicationdomains. Our results suggest
a significantly more refined picture of community structure in large real-world networks than has been
appreciated previously.

Our most interesting finding is that in nearly every network dataset we examined, we observe tight but
almost trivial communities at very small size scales, and at larger size scales, the best possible commu-
nities gradually “blend in” with the rest of the network and thus become less “community-like.” This
behavior is not explained, even at a qualitative level, by most of the commonly-used network generation
models. Moreover, this behavior is exactly the opposite of what one would expect based on experience
with and intuition from expander graphs, from graphs that are well-embeddable in a low-dimensional
structure, and from small social networks that have served as testbedsof community detection algorithms.
We have found, however, that a generative model, in which new edges are added via an iterative Forest
Fire burning process, is able to produce graphs exhibiting a network community structure similar to our
observations.

10.1 Introduction

Defining and identifying communities or densely linked clusters in social and information networks,i.e., in
graphs where nodes represent underlying social entities and the edges represent interaction between pairs
of nodes, has been studied in great detail. Most this research begins withthe premise that a community
should be thought of as a set of nodes that has more and/or better connections between its members than
between members of that set and the remainder of the network. Here, we explore from a novel perspective
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several questions related to identifying meaningful communities in large socialand information networks.
As we analyze large networks were are able to observe phenomena practically invisible in small networks
and we come to several surprising conclusions that have implications for community detection in such
networks.

Rather than define a procedure to extract a set of nodes from a graphand then attempt to interpret that set
as a meaningful community, we will employ approximation algorithms for the graph partitioning problem
in an attempt to characterize as a function of size the statistical and structuralproperties of partitions
of graphs that could plausibly be interpreted as meaningful communities. In particular, we define the
network community profile plot, which attempts to characterize the “best” possible community—according
to the conductance measure—over a wide range of size scales. We study over100 large sparse real-world
networks taken from a wide range of application domains (ranging from traditional and on-line social
networks, to technological and information networks and web graphs, and ranging in size from thousands
of nodes up to tens of millions of nodes), and for each of these networks we compute a wide range
of statistics, including “regularized” and “non-regularized” versions of the network community profile
plot.

Our results suggest a significantly more refined picture of community structure in large networks than has
been appreciated previously. Our observations agree with previous work on small networks, but we show
that large networks have a very different structure. In particular, weobserve tight communities that are
barely connected to the rest of the network at very small size scales (up to≈ 100 nodes); and communities
of size scale beyond≈ 100 nodes gradually “blend into” the expander-like core of the network and thus
become less “community-like,” with a roughly inverse relationship between community size and optimal
community quality. This observation agrees well with the so-called Dunbar number which gives a limit to
the size of a well-functioning community.

This behavior is not explained, even at a qualitative level, by any of the commonly-used network genera-
tion models. Moreover, this behavior is exactly the opposite of what one would expect based on experi-
ence with and intuition from expander graphs, from graphs that are well-embeddable in a low-dimensional
structure, and from small social networks that have served as testbedsof community detection algorithms.
Certain aspects of it,e.g., the existence of deep cuts or well-defined “communities” at small size scales and
the non-existence of them at very large scales, are a consequence ofthe extreme sparsity of the networks,
as we demonstrate by analyzing sparse random graph models. Other aspects of it, e.g., the relatively
gradual increase of the network community profile plot as a function of increasing size scale, depend in a
subtle manner on the way in which local clustering information is propagated from smaller to larger size
scales in the network. We have found that a generative graph model, in which new edges are added via an
iterative Forest Fire burning process (we originally introduced it in Section 3.4), is able to produce graphs
exhibiting a network community profile plot similar to what we observe in our network datasets.

10.1.1 Overview of our approach

Lots of effort has been devoted to the task of defining and identifying communities networks. Most recent
papers on the subject of community detection in large networks begin by notingthat it is a matter of
common experience that communities exist in such networks. These papers then note that, although there
is no agreed-upon definition for a community, a community should be thought of as a set of nodes that
has more and/or better connections between its members than between its membersand the remainder of
the network. These papers then apply a range of algorithmic techniques and intuitions to extract subsets

259



of nodes and then interpret these subsets as meaningful communities corresponding to some underlying
“true” real-world communities. In this chapter, we explore from a novel perspective several questions
related to identifying meaningful communities in large sparse networks, and wecome to several striking
conclusions that have implications for community detection and graph partitioningin such networks. We
emphasize that, in contrast to most of the previous work on this subject, we look at very large networks
of up to millions of nodes, and we observe very different phenomena thanis seen in small commonly-
analyzed networks.

At the risk of oversimplifying the large and often intricate body of work on community detection in
complex networks, the following five-part story describes the general methodology:

(1) Data are modeled by an “interaction graph.” In particular, part of theworld gets mapped to a graph
in which nodes represent entities and edges represent some type of interaction between pairs of
those entities. For example, in a social network, nodes may represent individual people and edges
may represent friendships, interactions or communication between pairs ofthose people.

(2) The hypothesis is made that the world contains groups of entities that interact more strongly amongst
themselves than with the outside world, and hence the interaction graph shouldcontain sets of nodes,
i.e., communities, that have more and/or better-connected “internal edges” connecting members of
the set than “cut edges” connecting the set to the rest of the world.

(3) A objective function or metric is chosen to formalize this idea of groups withmore intra-group than
inter-group connectivity.

(4) An algorithm is then selected to find sets of nodes that exactly or approximately optimize this
or some other related metric. Sets of nodes that the algorithm finds are then called “clusters,”
“communities,” “groups,” “classes,” or “modules”.

(5) The clusters or communities or modules are evaluated in some way. For example, one may map the
sets of nodes back to the real world to see whether they appear to make intuitive sense as a plausible
“real” community. Alternatively, one may attempt to acquire some form of “ground truth,” in which
case the set of nodes output by the algorithm may be compared with it.

With respect to points (1)–(4), we follow the usual path. In particular, weadopt points (1) and (2), and
we then explore the consequence of making such a choice,i.e., of making such an hypothesis and mod-
eling assumption. For point (3), we choose a natural and widely-adoptednotion of community goodness
(community quality score) calledconductance, which is also known as the normalized cut metric [Chung,
1997, Shi and Malik, 2000, Kannan et al., 2004]. Informally, the conductance of a set of nodes (defined
and discussed in more detail in Section10.2.3) is the ratio of the number of “cut” edges between that set
and its complement divided by the number of “internal” edges inside that set. Thus, to be a good com-
munity, a set of nodes should have small conductance,i.e., it should have many internal edges and few
edges pointing to the rest of the network. Conductance is widely used to capture the intuition of a good
community; it is a fundamental combinatorial quantity; and it has a very naturalinterpretation in terms
of random walks on the interaction graph. Moreover, since there exist arich suite of both theoretical and
practical algorithms [Hendrickson and Leland, 1995, Spielman and Teng, 1996, Leighton and Rao, 1988,
1999, Arora et al., 2004b, Karypis and Kumar, 1998b,a, Zhao and Karypis, 2004, Dhillon et al., 2007],
we can for point (4) compare and contrast several methods to approximately optimize it. To illustrate
conductance, note that of the three5-node setsA, B, andC illustrated in the graph in Figure10.1, B has
the best (the lowest) conductance and is thus the most community-like.
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Figure 10.1: Network communities. Of the three5-nodes sets that have been marked,B has the best (i.e.,
the lowest) conductance, as it has the lowest ratio between the number of edges cut and the
number of edges inside. So, setB is the best5-node community or the most community-like
set of5 nodes in this particular network.

However, it is in point (5) that we deviate from previous work. Instead of focusing on individual groups
of nodes and trying to interpret them as “real” communities, we investigate statistical properties of a large
number of communities over a wide range of size scales in over100 large sparse real-world social and
information networks. We take a step back and ask questions such as: Howwell do real graphs split
into communities? What is a good way to measure and characterize presence or absence of community
structure in networks? What are typical community sizes and typical community qualities?

To address these and related questions, we introduce the concept of anetwork community profile (NCP)
plot that we define and describe in more detail in Section10.3.1. Intuitively, the network community pro-
file plot measures the score of “best” community as a function of community size ina network. Formally,
we define it as the conductance value of the minimum conductance set of cardinality k in the network,
as a function ofk. As defined, the NCP plot will be NP-hard to compute exactly, so operationally we
will use several natural approximation algorithms for solving the Minimum Conductance Cut Problem
in order to compute different approximations to it. By comparing and contrasting these plots for a large
number of networks, and by computing other related structural properties, we obtain results that suggest a
significantly more refined picture of the community structure in large real-worldnetworks than has been
appreciated previously.

We have gone to a great deal of effort to be confident that we are computing quantities fundamental to
the networks we are considering, rather than artifacts of the approximationalgorithms we employ. In
particular:

• We use several classes of graph partitioning algorithms to probe the networks for sets of nodes that
could plausibly be interpreted as communities. These algorithms, including flow-based methods,
spectral methods, and hierarchical methods, have complementary strengths and weaknesses that are
well understood both in theory and in practice. For example, flow-based methods are known to have
difficulties with expanders [Leighton and Rao, 1988, 1999], and flow-based post-processing of other
methods are known in practice to yield cuts with extremely good conductance values [Lang, 2004,
Lang and Rao, 2004]. On the other hand, spectral methods are known to have difficulties when
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they confuse long paths with deep cuts [Spielman and Teng, 1996, Guattery and Miller, 1998], a
consequence of which is that they may be viewed as computing a “regularized” approximation to
the network community profile plot. (See Section10.5for a more detailed discussion of these and
related issues.)

• We compute spectral-based lower bounds and also semidefinite-programming-based lower bounds
for the conductance of our network datasets.

• We compute a wide range of other structural properties of the networks,e.g., sizes, degree distri-
butions, maximum and average diameters of the purported communities, internalversus external
conductance values of the purported communities, etc.

• We recompute statistics on versions of the networks that have been modified inwell-understood
ways,e.g., by removing small barely-connected sets of nodes or by randomizing the edges.

• We compare our results across not only over100 large social and information networks, but also
numerous commonly-studied small social networks, expanders, and low-dimensional manifold-like
objects, and we compare our results on each network with what is known from the field from which
the network is drawn. To our knowledge, this makes ours the most extensive such analysis of the
community structure in large real-world social and information networks.

• We compare results with analytical and/or simulational results on a wide range of commonly and
not-so-commonly used network generation models [Newman, 2003, Bollobas and Riordan, 2003,
Barab́asi and Albert, 1999, Kumar et al., 2000, Ravasz and Barabási, 2003, Leskovec et al., 2005b,
Flaxman et al., 2004, 2007].

10.1.2 Summary of our results

Main Empirical Findings: Taken as a whole, the results we present in this chapter suggest a rather
detailed and somewhat counterintuitive picture of the community structure in large social and information
networks. Several qualitative properties of community structure, as revealed by the network community
profile plot, are nearly universal:

• Up to a size scale, which empirically is roughly100 nodes, there not only exist cuts with relatively
good conductance,i.e., good communities, but also the slope of the network community profile
plot is generally sloping downward. This latter point suggests that smaller communities can be
combined into meaningful larger communities, a phenomenon that we empirically observe in many
cases.

• At the size scale of roughly100 nodes, we often observe the global minimum of the network com-
munity profile plot; these are the “best” communities, according to the conductance measure, in
the entire graph. These are, however, rather interestingly connected tothe rest of the network; for
example, in most cases, we observe empirically that they are a small set of nodes barely connected
to the remainder of the network by just asingleedge.

• Above the size scale of roughly100 nodes, the network community profile plot gradually increases,
and thus there is a nearly inverse relationship between community size and community quality. As
a function of increasing size, the best possible communities become more and more “blended into”
the remainder of the network. Intuitively, communities blend in with one another and gradually
disappear as they grow larger. In particular, in many cases, larger communities can be broken
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(a) Typical NCP plot (b) Caricature of network structure

Figure 10.2: (a) Typical network community profile plot for a large socialor information network: net-
works have better and better communities up to a size scale of≈ 100 nodes, and after that
size scale communities “blend-in” with the rest of the network (red curve). However, real
networks still have more structure than their randomized (conditioned on the same degree
distribution) counterparts (black curve). Even more surprisingly, if one allows for discon-
nected communities (blue curve), the community quality scores often get even better (even
though such communities have no intuitive meaning). (b) Network structure for a large so-
cial or information network, as suggested by our empirical evaluations. See the text for more
information on the “core” and “whiskers,” and note that the core in our real-world networks
is actually extremely sparse.

into smaller and smaller pieces, often recursively, each of which is more community-like than the
original supposed community.

• Even up to the largest size scales, we observe significantly more structurethan would be seen, for
example, in an expander-like random graph on the same degree sequence.

A schematic picture of a typical network community profile plot is illustrated in Figure 10.2(a). In red
(labeled as “original network”), we plot community size vs. community quality score for the sets of
nodes extracted from the original network. In black (rewired network), we plot the scores of communities
extracted from a random network conditioned on the same degree distribution as the original network.
This illustrates not only tight communities at very small scales, but also that at larger and larger size
scales (the precise cutoff point for which is difficult to specify precisely) the best possible communities
gradually “blend in” more and more with the rest of the network and thus gradually become less and less
community-like. Eventually, even the existence of large well-defined communitiesis quite questionable
if one models the world with an interaction graph, as in point (1) above, and ifone also defines good
communities as densely linked clusters that are weakly-connected to the outside, as in hypothesis (2)
above. Finally, in blue (bag of whiskers), we also plot the scores of communities that are composed of
disconnected pieces (found according to a procedure we describe in Section10.4). This blue curve shows,
perhaps somewhat surprisingly, that one can often obtain better community quality scores by combining
unrelated disconnected pieces.

To understand the properties of generative models sufficient to reproduce the phenomena we have ob-
served, we have examined in detail the structure of our social and information networks. Although
nearly every network is an exception to any simple rule, we have observedthat an “octopus” or “jellyfish”
model [Chung and Lu, 2006a, Tauro et al., 2001, Siganos et al., 2006] provides a rough first approxima-
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tion to structure of many of the networks we have examined. That is, most networks may be viewed as
having a “core,” with no obvious underlying geometry and which contains aconstant fraction of the nodes,
and then there is a periphery consisting of a large number of relatively small“whiskers” that are only ten-
uously connected to the core. Figure10.2(b)presents a caricature of this network structure. Of course,
our network datasets are far from random in numerous ways—e.g., they have higher edge density in the
core; the small barely-connected whisker-like pieces are generally larger, denser, and more common than
in corresponding random graphs; they have higher local clustering coefficients; and this local clustering
information gets propagated globally into larger clusters or communities in a subtleand location-specific
manner. More interestingly, as shown in Figure10.13in Section10.4.4, the core itself consists of a nested
core-periphery structure.

Main Modeling Results: The behavior that we observe is not reproduced, at even a qualitativelevel, by
any of the commonly-used network generation models we have examined, including but not limited to
preferential attachment models, copying models, small-world models, and hierarchical network models.
Moreover, this behavior is qualitatively different than what is observedin networks with an underlying
mesh-like or manifold-like geometry (which may not be surprising, but is significant insofar as these
structures are often used as a scaffolding upon which to build other models), in networks that are good ex-
panders (which may be surprising, since it is often observed that large social networks are expander-like),
and in small social networks such as those used as testbeds for community detection algorithms (which
may have implications for the applicability of these methods to detect large community-like structures in
these networks). For the commonly-used network generation models, as well as for expander-like, low-
dimensional, and small social networks, the network community profile plots aregenerally downward
sloping or relatively flat.

Although it is well understood at a qualitative level that nodes that are “far apart” or “less alike” (in some
sense) should be less likely to be connected in a generative model, understanding this point quantitatively
so as to reproduce the empirically-observed relationship between small-scale and large-scale community
structure turns out to be rather subtle. We can make the following observations:

• Very sparse random graph models with no underlying geometry have relatively deep cuts at small
size scales, the best cuts at large size scales are very shallow, and there is a relatively abrupt tran-
sition in between. (This is shown pictorially in Figure10.2(a)for a randomly rewired version of
the original network.) This is a consequence of the extreme sparsity of the data: sufficiently dense
random graphs do not have these small deep cuts; and the relatively deep cuts in sparse graphs are
due to small tree-like pieces that are connected by a single edge to a core which is an extremely
good expander.

• A Forest Fire generative model [Leskovec et al., 2005b, 2007b], in which edges are added in a man-
ner that imitates a fire-spreading process, reproduces not only the deep cuts at small size scales and
the absence of deep cuts at large size scales but other properties as well: the small barely connected
pieces are significantly larger and denser than random; and for appropriate parameter settings the
network community profile plot increases relatively gradually as the size of the communities in-
creases.

• The details of the “forest fire” burning mechanism are crucial for reproducing how local clustering
information gets propagated to larger size scales in the network, and those details shed light on
the failures of commonly-used network generation models. In the Forest Fire Model, a new node
selects a “seed” node and links to it. Then with some probability it “burns” or adds an edge to the
each of the seed’s neighbors, and so on, recursively. Although there are elements of a “preferential

264



attachment” and also a “copying” flavor to this mechanism, two factors are particularly important:
first is the local (in a graph sense, as there is no underlying geometry in themodel) manner in which
the edges are added; and second is that the number of edges that a new node can add can vary
widely, depending on the local structure around the seed node. Depending on the neighborhood
structure around the seed, small fires will keep the community well-separatedfrom the network, but
occasional large fires will connect the community around the seed node to the rest of the network
and make it blend into the network core.

Thus, intuitively, the structure of the whiskers (components connected to the rest of the graph via a single
edge) are responsible for the downward part of the network community profile plot, while the core of the
network and the manner in which the whiskers root themselves to the core helps to determine the upward
part of the network community profile plot. Due to local clustering effects, whiskers in real networks are
larger and give deeper cuts than whiskers in corresponding randomized graphs, fluctuations in the core are
larger and deeper than in corresponding randomized graphs, and thusthe network community profile plot
increases more gradually and levels off to a conductance value well belowthe value for a corresponding
rewired network.

Main Methodological Contributions: To obtain these and other conclusions, we have employed ap-
proximation algorithms for graph partitioning to investigate structural properties of our network datasets.
Briefly, we have done the following:

• We have used what we refer to as Metis+MQI, which consists of using the popular graph parti-
tioning package Metis [Karypis and Kumar, 1998b] followed by a flow-based MQI post-processing
[Lang and Rao, 2004]. With this procedure, we obtain sets of nodes that have really good conduc-
tance scores. (As we will later see mostly at the expense of cluster compactness.) This method
heavily optimizes the conductance and does not consider the internal cluster structure. So, at very
small size scales, these sets of nodes could plausibly be interpreted as good communities, but at
larger size scales, we often obtain tenuously-connected (and in some cases unions of disconnected)
pieces, which perhaps do not correspond to intuitive communities.

• Thus, we have also used the Local Spectral method of Anderson, Chung, and Lang [Andersen et al.,
2006] to obtain sets of nodes with good conductance value that are “compact” ormore “regularized”
than those pieces returned by Metis+MQI. Since spectral methods confuse long paths with deep
cuts [Spielman and Teng, 1996, Guattery and Miller, 1998], empirically we obtain sets of nodes
that have worse conductance scores than sets returned by Metis+MQI,but which are “tighter” and
more “community-like.” For example, at small size scales the sets of nodes returned by the Local
Spectral Algorithm agrees with the output of Metis+MQI, but at larger cluster sizes this algorithm
returns sets of nodes with substantially smaller diameter and average diameter.Such clusters are
more compact and thus seem plausibly more community-like.

We have also used what we call the Bag-of-Whiskers Heuristic to identify small barely connected sets of
nodes that exert a surprisingly large influence on the network community profile plot.

Both Metis+MQI and the Local Spectral Algorithm scale well and thus either may be used to obtain sets
of nodes from very large graphs. For many of the small to medium-sized networks, we have checked our
results by applying one or more other spectral, flow-based, or heuristic algorithms, although these do not
scale as well to very large graphs. Finally, for some of our smaller networkdatasets, we have computed
spectral-based and semidefinite-programming-based lower bounds, andthe results are consistent with the
conclusions we have drawn.
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Broader implications: Our observation that, independently of the network size, compact communities
exist only up to a size scale of around100 nodes agrees well with the “Dunbar number” [Dunbar, 1998],
which predicts that roughly150 individuals is the upper limit on the size of a well-functioning human
community. Moreover, we should emphasize that our results do not disagree with the literature at small
sizes scales. One reason for the difference in our findings is that previous studies mainly focused on small
networks, which are simply not large enough for the clusters to gradually blend into one another as one
looks at larger size scales. In order to make our observations, one needs to look at large number (due to
the complex noise properties of real graphs) of large networks. It is only when Dunbar’s limit is exceeded
by several orders of magnitude that it is relatively easy to observe largecommunities blurring together
and eventually vanishing. A second reason for the difference is that previous work did not measure and
examine thenetwork community profileof cluster size vs. cluster quality. Finally, we should note that
our explanation also aligns well with thecommon bondvs. common identitytheory of group attach-
ment [Ren et al., 2007] from social psychology, where it has been noted that bond communities tend to be
smaller and more cohesive [Back, 1951], as they are based on interpersonal ties, while identity communi-
ties are focused around common theme or interest. We discuss these implicationsand connections further
in Section10.7.

10.1.3 Outline of the chapter

The rest of the chapter is organized as follows. In Section10.2 we describe some useful background,
including a brief description of the network datasets we have analyzed. Then, in Section10.3we present
our main results on the properties of the network community profile plot for ournetwork datasets. We
place an emphasis on how the phenomena we observe in large social and information networks are qual-
itatively different than what one would expect based on intuition from andexperience with expander-like
graphs, low-dimensional networks, and commonly-studied small social networks. Then, in Sections10.4
and10.5, we summarize the results of additional empirical evaluations. In particular, inSection10.4, we
describe some of the observations we have made in an effort to understand what structural properties of
these large networks are responsible for the phenomena we observe; and in Section10.5, we describe some
of the results of probing the networks with different approximation algorithmsin an effort to be confident
that the phenomena we observed really are properties of the networks westudy, rather than artifactual
properties of the algorithms we chose to use to study those networks. We follow this in Section10.6with
a discussion of complex network generation models. We observe that the commonly-used network gener-
ation models fail to reproduce the counterintuitive phenomena we observe.We also notice that very sparse
random networks reproduce certain aspects of the phenomena, and that a generative model based on an
iterative “forest fire” burning mechanism reproduces very well the qualitative properties of the phenomena
we observe. Finally, in Section10.7we provide a discussion of our results in a broader context, and in
Section10.8we present a brief conclusion.

10.2 Background on communities and overview of our methods

In this section, we will provide background on our data and methods. We start in Section10.2.1with
a description of the network datasets we will analyze. Then, in Section10.2.2, we review related com-
munity detection and graph clustering ideas. Finally, in Section10.2.3, we provide a brief description
of approximation algorithms that we will use. There exist a large number of reviews on topics related
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to those discussed in this chapter. For example, see the reviews on community identification [Newman,
2004, Danon et al., 2005], data clustering [Jain et al., 1999], graph and spectral clustering [Gaertler, 2005,
von Luxburg, 2006, Schaeffer, 2007], graph and heavy-tailed data analysis [Chakrabarti and Faloutsos,
2006, Newman, 2005, Clauset et al., 2007], surveys on various aspects of complex networks [Newman,
2003, Albert and Barab́asi, 2002, Dorogovtsev and Mendes, 2002a, Bollobas and Riordan, 2003, Li et al.,
2005, da F. Costa et al., 2007, Boccaletti et al., 2006], the monographs on spectral graph theory and com-
plex networks [Chung, 1997, Chung and Lu, 2006a], and the book on social network analysis methods
and applications [Wasserman and Faust, 1994]. See Section10.7 for a more detailed discussion of the
relationship of our work with some of this prior work.

10.2.1 Social and information network datasets we analyze

We have examined a large number of real-world complex networks. See TablesA.2, A.3, andA.4 for a
summary. For convenience, we have organized the networks into the following categories: Social net-
works; Information/citation networks; Collaboration networks; Web graphs; Internet networks; Bipartite
affiliation networks; Biological networks; Low-dimensional networks; IMDB networks; and Amazon net-
works. We have also examined numerous small social networks that have been used as a testbed for com-
munity detection algorithms (e.g., Zachary’s karate club [Zachary, 1977, Network data, 2007], interactions
between dolphins [Lusseau et al., 2003, Network data, 2007], interactions between monks [Sampson,
1968, Network data, 2007], Newman’s network science network [Newman, 2006a, Network data, 2007],
etc.), numerous simple network models in which by design there is an underlyinggeometry (e.g., power
grid and road networks [Watts and Strogatz, 1998], simple meshes, low-dimensional manifolds includ-
ing graphs corresponding to the well-studied “swiss roll” data set [Tenenbaum et al., 2000], a geometric
preferential attachment model [Flaxman et al., 2004, 2007], etc.), several networks that are very good
expanders, and many simulated networks generated by commonly-used network generation models(e.g.,
preferential attachment models [Newman, 2003], copying models [Kumar et al., 2000], hierarchical mod-
els [Ravasz and Barabási, 2003], etc.).

Social networks: The class of social networks in TableA.2 is particularly diverse and interesting. It in-
cludes several large on-line social networks: a network of professional contacts from LinkedIn (LINKED IN);
a friendship network of a LiveJournal blogging community (LIVEJOURNAL01); and a who-trusts-whom
network of Epinions (EPINIONS). It also includes an email network from Enron (EMAIL -ENRON) and
from a large European research organization. For the latter we generated three networks: EMAIL -INSIDE

uses only the communication inside organization; EMAIL -INOUT also adds external email addresses
where email has been sent both way; and EMAIL -ALL adds all communication inside the organization
and to the outside world. Also included in the class of social networks are networks that are not the cen-
tral focus of the websites from which they come, but which instead serve as a tool for people to share
information more easily. For example, we have: the networks of a social bookmarking site Delicious
(DELICIOUS); a Flickr photo sharing website (FLICKR); and a network from Yahoo! Answers question
answering website (ANSWERS). In all these networks, a node refers to an individual and an edge is used
to indicate that means that one person has some sort of interaction with another person,e.g., one person
subscribes to their neighbor’s bookmarks or photos, or answers their questions.

Information and citation networks: The class of Information/citation networks contains several differ-
ent citation networks. It contains two citation networks of physics papers on arxiv.org , (CIT-HEP-TH

and CIT-HEP-PH), and a network of citations of US patents (CIT-PATENTS). (These paper-to-paper cita-
tion networks are to be distinguished from scientific collaboration networks and author-to-paper bipartite
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networks, as described below.) It also contains two types of blog citation networks. In the so-called
post networks, nodes are posts and edges represent hyperlinks between blog posts (POST-NAT05-6M and
POST-NAT06ALL ). On the other hand, the so-called blog network is the blog-level-aggregation of the
same data,i.e., there is a link between two blogs if there is a post in first that links the post in asecond
blog (BLOG-NAT05-6M and BLOG-NAT06ALL ).

Collaboration networks: The class of collaboration networks contain academic collaboration (i.e., co-
authorship) networks between physicists from various categories inarxiv.org (CA-ASTRO-PH, etc.)
and between authors in computer science (CA-DBLP). It also contains a network of collaborations be-
tween pairs of actors in IMDB (ATA-IMDB), i.e., there is an edge connecting a pair of actors if they
appeared in the same movie. (Again, this should be distinguished from actor-to-movie bipartite networks,
as described below.)

Web graphs: The class of Web graph networks includes four different web-graphs in which nodes rep-
resent web-pages and edges represent hyperlinks between those pages. Networks were obtained from
Google (WEB-GOOGLE), the University of Notre Dame (WEB-NOTREDAME), TREC (WEB-TREC), and
Stanford University (WEB-BERKSTAN). The class of Internet networks consists of various autonomous
systems networks obtained at different sources, as well as a Gnutella and eDonkey peer-to-peer file sharing
networks.

Bipartite networks: The class of Bipartite networks is particularly diverse and includes: authors-to-
papers graphs from both computer science (ATP-DBLP) and physics (ATP-ASTRO-PH, etc.); a network
representing users and the URLs they visited (CLICKSTREAM); a network representing users and the
movies they rated (NETFLIX); and a users-to-queries network representing query terms that users typed
into a search engine (QUERYTERMS). (We also have analyzed several bipartite actors-to-movies networks
extracted from the IMDB database, which we have listed separately below.)

Biological networks: The class of Biological networks include protein-protein interaction networks of
yeast obtained from various sources.

Low dimensional grid-like networks: The class of Low-dimensional networks consists of graphs con-
structed from road (ROAD-CA, etc.) or power grid (POWERGRID) connections and as such might be
expected to “live” on a two-dimensional surface in a way that all of the other networks do not. We also
added a “swiss roll” network, a2-dimensional manifold embedded in3-dimensions, and a “Faces” dataset
where each point is an64 by 64 gray-scale image of a face (embedded in4, 096 dimensional space) and
where we connected the faces that were most similar (using the Euclidean distance).

IMDB, Yahoo! Answers and Amazon networks:Finally, we have networks from IMDB, Amazon, and
Yahoo! Answers, and for each of these we have separately analyzedsubnetworks. The IMDB networks
consist of actor-to-movie links, and we include the full network as well as subnetworks associated with
individual countries based on the country of production. For the Amazonnetworks, recall that Ama-
zon sells a variety of products, and for each itemA one may compile the list the up to ten other items
most frequently purchased by buyers ofA. This information can be presented as a directed network in
which vertices represent items and there is a edge from itemA to another itemB if B was frequently
purchased by buyers ofA. We consider the network as undirected. We use five networks from a study of
Clausetet al. [Clauset et al., 2004], and two networks from the viral marketing study from Leskovecet
al. [Leskovec et al., 2007a]. Finally, for the Yahoo! Answers networks, we observe several deep cuts at
large size scales, and so in addition the full network, we analyze the top six most well-connected subnet-
works.
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In addition to providing a brief description of the network, TablesA.2, A.3 andA.4 show the number of
nodes and edges in each network, as well as other statistics which will be described in Section10.4.1.
(In all cases, we consider the network as undirected, and we extract and analyze the largest connected
component.) The sizes of these networks range from about5, 000 nodes up to nearly14 million nodes,
and from about6, 000 edges up to more than100 million edges. All of the networks are quite sparse—their
densities range from an average degree of about2.5 for the blog post network, up to an average degree
of about400 in the network of movie ratings from Netflix, and most of the other networks, including
the purely social networks, have average degree around10 (median average degree of6). In many cases,
we examined several versions of a given network. For example, we considered the entire IMDB actor-
to-movie network, as well as sub-pieces of it corresponding to different language and country groups.
Detailed statistics for all these networks are presented in TablesA.2, A.3 andA.4 and are described in
Section10.4. In total, we have examined over100 large real-world social and information networks,
making this, to our knowledge, the largest and most comprehensive study of such networks.

10.2.2 Clusters and communities in networks

Hierarchical clustering or linkage clustering is a common approach to communityidentification in social
sciences [Wasserman and Faust, 1994], but it has also found application more generally [Hopcroft et al.,
2004, Girvan and Newman, 2002]. In this procedure, one first defines a distance metric between pairs of
nodes and then produces a tree (in either a bottom-up or a top-down manner) describing how nodes group
into communities and how these group further into super-communities. A quite different approach that
has received a great deal of attention (and that will be central to our analysis) is based on ideas fromgraph
partitioning [Schaeffer, 2007, Brandes et al., 2007]. In this case, the network is a modeled as simple
undirected graph, where nodes and edges have no attributes, and a partition of the graph is determined
by optimizing a merit function. The graph partitioning problem is find some numberk groups of nodes,
generally with roughly equal size, such that the number of edges betweenthe groups, perhaps normalized
in some way, is minimized.

Let G = (V, E) denote a graph, then theconductanceφ of a set of nodesS ⊂ V , (whereS is assumed to
contain no more than half of all the nodes), is defined as follows. Letv be the sum of degrees of nodes in
S, and lets be the number of edges with one endpoint inS and one endpoint inS, whereS denotes the
complement ofS. Then, the conductance ofS is φ = s/v, or equivalentlyφ = s/(s + 2e), wheree is the
number of edges with both endpoints isS. More formally:

Definition 10.2.1. Given a graphG with adjacency matrixA the conductance of a setof nodesS is
defined as:

φ(S) =

∑
i∈S,j /∈S Aij

min{A(S), A(S)}
, (10.6)

whereA(S) =
∑

i∈S

∑
j∈V Aij , or equivalentlyA(S) =

∑
i∈S d(i), whered(i) is a degree of nodei in

G.

Moreover, in this case, theconductance of the graphG is:

φG = min
S⊂V

φ(S). (10.7)
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(a) Three communities (b) Conductance bottleneck

Figure 10.3: (a) Caricature of the traditional view of communities as being sets of nodes with more and/or
better intra-connections than inter-connections. (b) A graph with its minimum conductance
bottleneck illustrated.

Thus, the conductance of a set provides a measure for the quality of the cut (S, S), or relatedly the
goodness of a communityS.1

Indeed, it is often noted that communities should be thought of as sets of nodes with more and/or better
intra-connections than inter-connections; see Figure10.3for an illustration. When interested in detecting
communities and evaluating their quality, we prefer sets with small conductances, i.e., sets that are densely
linked inside and sparsely linked to the outside. Although numerous measureshave been proposed for how
community-like is a set of nodes, it is commonly noted—e.g., see Shi and Malik [Shi and Malik, 2000]
and Kannan, Vempala, and Vetta [Kannan et al., 2004]—that conductance captures the “gestalt” notion
of clustering [Zahn, 1971], and as such it has been widely-used for graph clustering and community
detection [Gaertler, 2005, von Luxburg, 2006, Schaeffer, 2007].

There are many other density-based measures that have been used to partition a graph into a set of com-
munities [Gaertler, 2005, von Luxburg, 2006, Schaeffer, 2007]. One that deserves particular mention is
modularity [Newman and Girvan, 2004, Newman, 2006b]. For a given partition of a network into a set of
communities, modularity measures the number of within-community edges, relative toa null model that
is usually taken to be a random graph with the same degree distribution. Thus,modularity was originally
introduced and it typically used to measure the strength or quality of a particular partition of a network.
We, however, are interested in a quite different question than those that motivated the introduction of
modularity. Rather than seeking to partition a graph into the “best” possible partition of communities, we
would like to know how good is a particular element of that partition,i.e., how community-like are the
best possible communities that modularity or any other merit function can hope tofind, in particular as a
function of the size of that partition.

1 Throughout this chapter we consistently use shorthand phrases like “thispiece has good conductance” to mean “this piece
is separated from the rest of the graph by a low-conductance cut.”
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10.2.3 Approximation algorithms for finding low-conductance cuts

In addition to capturing very well our intuitive notion of what it means for a set of nodes to be a good
community, the use of conductance as an objective function has an added benefit: there exists an extensive
theoretical and practical literature on methods for approximately optimizing it. (Finding cuts with exactly
minimal conductance is NP-hard.) In particular, the theory literature containsseveral algorithms with
provable approximation performance guarantees.

First, there is the spectral method, which uses an eigenvector of the graph’s Laplacian matrix to find
a cut whose conductance is no bigger thanφ if the graph actually contains a cut with conductance
O(φ2) [Cheeger, 1969, Donath and Hoffman, 1972, Fiedler, 1973, Mohar, 1991, Chung, 1997]. The spec-
tral method also produces lower bounds which can show that the solution for a given graph is closer to op-
timal than promised by the worst-case guarantee. Second, there is an algorithm that uses multi-commodity
flow to find a cut whose conductance is within anO(log n) factor of optimal [Leighton and Rao, 1988,
1999]. Spectral and multi-commodity flow based methods are complementary in that the worst-case
O(log n) approximation factor is obtained for flow-based methods on expander graphs [Leighton and Rao,
1988, 1999], a class of graphs which does not cause problems for spectral methods, whereas spectral
methods can confuse long path with deep cuts [Guattery and Miller, 1998, Spielman and Teng, 1996], a
difference that does not cause problems for flow-based methods. Third, and very recently, there exists
an algorithm that uses semidefinite programming to find a solution that is withinO(

√
log n) of opti-

mal [Arora et al., 2004b]. This paper sparked a flurry of theoretical research on a family of closely related
algorithms including [Arora et al., 2004a, Khandekar et al., 2006, Arora and Kale, 2007], all of which can
be informally described as combinations of spectral and flow-based techniques which exploit their com-
plementary strengths. However, none of those algorithms are currently practical enough to use in our
study.

Of the above three theoretical algorithms, the spectral method is by far the mostpractical. Also very com-
mon are recursive bisection heuristics: recursively divide the graph into two groups, and then further sub-
divide the new groups until the desired number of clusters groups is achieved. This may be combined with
local improvement methods like the Kernighan-Lin and Fiduccia-Mattheyses procedures [Kernighan and Lin,
1970, Fiduccia and Mattheyses, 1982], which are fast and can climb out of some local minima. The latter
was combined with a multi-resolution framework to create Metis [Karypis and Kumar, 1998b,a], a very
fast program intended to split mesh-like graphs into equal sized pieces. The authors of Metis later cre-
ated Cluto [Zhao and Karypis, 2004], which is better tuned for clustering-type tasks. Finally we mention
Graclus [Dhillon et al., 2007], which uses multi-resolution techniques and kernelk-means to optimize a
metric that is closely related to conductance.

While the preceding were all approximate algorithms for finding the lowest conductance cut in a whole
graph, we now mention MQI [Gallo et al., 1989, Lang and Rao, 2004], anexactalgorithm for the slightly
different problem of finding the lowest conductance cut inhalf of a graph. This algorithm can be com-
bined with a good method for initially splitting the graph into two pieces (such as Metisor the Spectral
method) to obtain a surprisingly strong heuristic method for finding low conductance cuts in the whole
graph [Lang and Rao, 2004]. The exactness of the second optimization step frequently results in cuts with
extremely low conductance scores, as will be visible in many of our plots. MQIcan be implemented
by solving single parametric max flow problems, or sequences of ordinary max flow problems. Para-
metric max flow (with MQI described as one of the applications) was introducedby [Gallo et al., 1989],
and recent empirical work is described in [Babenko et al., 2007], but currently there is no publicly avail-
able code that scales to the sizes we need. Ordinary max flow is a very thoroughly studied problem.
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Currently, the best theoretical time bounds are [Goldberg and Rao, 1998], the most practical algorithm
is [Goldberg and Tarjan, 1988], while the best implementation ishi pr by [Cherkassky and Goldberg,
1995]. Since Metis+MQI using thehi pr code is very fast and scalable, while the method empirically
seems to usually find the lowest or nearly lowest conductance cuts in a wide variety of graphs, we have
used it extensively in this study.

We will also extensively use Local Spectral Algorithm of Andersen, Chung, and Lang [Andersen et al.,
2006] to find node sets of low conductance,i.e., good communities, around a seed node. This algo-
rithm is also very fast, and it can be successfully applied to very large graphs to obtain more “well-
rounded”, “compact,” or “evenly-connected” communities than those returned by Meits+MQI. The latter
observation (described in more detail in Section10.5) is since local spectral methods also confuse long
paths (which tend to occur in our very sparse network datasets) with deepcuts. This algorithm takes
as input two parameters—the seed node and a parameterε that intuitively controls the locality of the
computation—and it outputs a set of nodes. Local spectral methods were introduced by Spielman and
Teng [Spielman and Teng, 2004, Andersen et al., 2006], and they have roughly the same kind of quadratic
approximation guarantees as the global spectral method, but they have computational cost is proportional
to the size of the obtained piece [Chung, 2007a,c,b].

10.3 The Network Community Profile Plot (NCP plot)

In this section, we discuss thenetwork community profile plot(NCP plot), which measures the quality
of network communities at different size scales. We start in Section10.3.1by introducing it. Then, in
Section10.3.2, we present the NCP plot for several examples of networks which inform peoples’ intuition
and for which the NCP plot behaves in a characteristic manner. Then, in Sections10.3.3and10.3.4we
present the NCP plot for a wide range of large real world social and information networks. We will see
that in such networks the NCP plot behaves in a qualitatively different manner.

10.3.1 Definitions for the network community profile plot

In order to more finely resolve community structure in large networks, we introduce thenetwork commu-
nity profile plot(NCP plot). Intuitively, the NCP plot measures the quality of the best possiblecommunity
in a large network, as a function of the community size. Formally, we may define itas the conductance
value of the best conductance set of cardinalityk in the entire network, as a function ofk.

Definition 10.3.1. Given a graphG with adjacency matrixA, thenetwork community profile plot (NCP
plot) plotsΦ(k) as a function ofk, where

Φ(k) = min
S⊂V,|S|=k

φ(S), (10.8)

where|S| denotes the cardinality of the setS, and where the conductanceφ(S) of S is given by equa-
tion (10.6).

Since this quantity is intractable to compute, we will employ well-studied approximationalgorithms
for the Minimum Conductance Cut Problem to approximate it. In particular, operationally we will
use several natural heuristics based on approximation algorithms to do graph partitioning in order to
compute different approximations to the NCP plot. Although other procedures will be described in
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Section10.5, we will primarily employ two procedures. First, Metis+MQI,i.e., the graph partition-
ing package Metis [Karypis and Kumar, 1998b] followed by the flow-based post-processing procedure
MQI [Lang and Rao, 2004]; this procedure returns sets that have very good conductance values. Sec-
ond, the Local Spectral Algorithm of Andersen, Chung, and Lang [Andersen et al., 2006]; this procedure
returns sets that are somewhat more “compact” or “smoothed” or “regularized,” but that often have some-
what worse conductance values.

Just as the conductance of a set of nodes provides a quality measure ofthat set as a community, the shape
of the NCP plot provides insight into the community structure of a graph as a whole. For example, the
magnitude of the conductance tells us how well clusters of different sizes are separated from the rest
of the network. One might hope to obtain some sort of “smoothed” measure ofthe notion of the best
community of sizek (e.g., by considering an average of the conductance value over all sets of agiven
size or by considering a smoothed extremal statistic such as a95-th percentile) rather than conductance
of the best set of that size. We have not defined such a measure since there is no obvious way to average
over all subsets of sizek and obtain a meaningful approximation to the minimum. On the other hand, our
approximation algorithm methodology implicitly incorporates such an effect. Although Metis+MQI finds
sets of nodes with extremely good conductance value, empirically we observe that they often have little
or no internal structure—they can even be disconnected. On the other hand, since spectral methods in
general tend to confuse long paths with deep cuts [Spielman and Teng, 1996, Guattery and Miller, 1998],
the Local Spectral Algorithm finds sets that are “tighter” and more “well-rounded” and thus in many
ways more community-like. (See Sections10.2.3and10.5 for details on these algorithmic issues and
interpretations.)

10.3.2 NCP plots for small social networks, expander and low-dimensional graphs

The NCP plot behaves in a characteristic manner for graphs that are “well-embeddable” into an underlying
low-dimensional geometric structure. To illustrate this, consider Figure10.4. In Figure10.4(a), we show
the results for a1-dimensional chain, a2-dimensional grid, and a3-dimensional cube. In each case,
the NCP plot is steadily downward sloping as a function of the number of nodes in the smaller cluster.
Moreover, the curves are straight lines with a slope equal to−1/d, whered is the dimensionality of the
underlying grids. In particular, as the underlying dimension increases then the slope of the NCP plot gets
less steep. Thus, we observe:

Observation 10.3.2.If the network under consideration corresponds to ad-dimensional grid, then the
NCP plot shows that

− 1

d
=

log(φ(k))

log(k)
. (10.9)

This is simply a manifestation of the isoperimetric (i.e., surface area to volume) phenomenon: for a grid,
the “best” cut is obtained by cutting out a set of adjacent nodes, in which case the surface area (number of
edges cut) increases asO(md−1), while the volume (number of vertices/edges inside the cluster) increases
asO(md).

This qualitative phenomenon of a steadily downward sloping NCP plot is quite robust for networks that
“live” in a low-dimensional structure,e.g., on a manifold or the surface of the earth. For example, Fig-
ure10.4(b)shows the NCP plot for a power grid network of Western States Power Grid[Watts and Strogatz,
1998], and Figure10.4(c)shows the NCP plot for a road network of California. These two networkshave
very different sizes—the power grid network has4, 941 nodes and6, 594 edges, and the road network has
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Figure 10.4: Network community profile plots for expander-like graphs and several networks that “live”
in low-dimensional spaces. (10.4(a)) A large clique graph, a cube (3d mesh), a grid (2d
mesh) and a chain (line). Note that the slope of community profile plot directly corresponds
to dimensionality of the graph. (10.4(b)) and (10.4(c)) Two networks on the Earth’s surface
and thus that are reasonably well-embeddable in two dimensions. (10.4(d)) A 2d “swiss roll”
manifold embedded in3 dimensions, where every we connected every point to10 nearest
neighbors. (10.4(e)) and (10.4(f)) Two networks that are very good expanders.
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1, 957, 027 nodes and2, 760, 388 edges—and they arise in very different application domains. In both
cases, however, we see predominantly downward sloping NCP plot, verymuch similar to the profile of a
simple2-dimensional grid. Indeed, the “best-fit” line for power grid gives the slope of≈ −0.45, which
by (10.9) suggests thatd ≈ 2.2, which is not far from the “true” dimensionality of2. Moreover, empiri-
cally we observe that minima in the NCP plot correspond to community-like sets, which are occasionally
nested. This corresponds to hierarchical community organization. For example, the nodes giving the dip
atk = 19 are included in the nodes giving the dip atk = 883, while dips atk = 94 andk = 105 are both
included in the dip atk = 262.

In a similar manner, Figure10.4(d)shows the profile plot for a graph generated from a “swiss roll” dataset
which is commonly examined in the manifold and machine learning literature [Tenenbaum et al., 2000].
In this case, we still observe a downward sloping NCP plot that corresponds to internal dimensionally of
the manifold (2 in this case). Finally, Figures10.4(e)and10.4(f)show NCP plots for two graphs that are
very good expanders. The first is aGnm graph with100, 000 nodes and a number of edges such that the
average degree is4, 6, and8. The second is a constant degree expander: to make one with degreed, we
take the union ofd disjoint but otherwise random complete matchings, and we have plotted the results for
d = 4, 6, 8. In both of these cases, the NCP plot is roughly flat, which we also observed in Figure10.4(a)
for a clique, which is to be expected since the minimum conductance cut in the entire graph cannot be too
small for a good expander [Hoory et al., 2006].

Somewhat surprisingly (especially when compared with large networks in Section 10.3.3), a steadily de-
creasing downward NCP plot is seen for small social networks that havebeen extensively studied in
validating community detection algorithms. Several examples are shown in Figures 10.5. For these net-
works, the interpretation is similar to that for the low-dimensional networks: thedownward slope indicates
that as potential communities get larger and larger, there are relatively moreintra-edges than inter-edges;
and empirically we observe that local minima in the NCP plot correspond to sets of nodes that are plau-
sible communities. Consider,e.g., Zachary’s karate club [Zachary, 1977] network (ZACHARYKARATE),
an extensively-analyzed social network [Newman, 2004, 2006b, Karrer et al., 2008]. The network has
34 nodes, each of which represents a member of a karate club, and78 edges, each of which represent a
friendship tie between two members. Figure10.5(a)depicts the karate club network, and Figure10.5(b)
shows its NCP plot. There are two local minima in the plot: the first dip atk = 5 corresponds to the
Cut A, and the second dip atk = 17 corresponds to CutB. Note that CutB, which separates the graph
roughly in half, has better conductance value than CutA. This corresponds with the intuition about the
NCP plot derived from studying low-dimensional graphs. Note also that the karate network corresponds
well with the intuitive notion of a community, where nodes of the community are densely linked among
themselves and there are few edges between nodes of different communities.

In a similar manner: Figure10.5(c)shows a social network (with62 nodes and159 edges) of interactions
within a group of dolphins [Lusseau et al., 2003]; Figure10.5(e)shows a social network of monks (with
18 nodes representing individual monks and41 edges representing social ties between pairs of monks)
in a cloister [Sampson, 1968]; and Figure10.5(g)depicts Newman’s network (with914 collaborations
between379 researchers) of scientists who conduct research on networks [Newman and Girvan, 2004].
For each network, the NCP plot exhibits a downward trend, and it has local minima at cluster sizes that
correspond to good communities: the minimum for the dolphins network (Figure10.5(d)) corresponds to
the separation of the network into two communities denoted with different shapeand color of the nodes
(gray circles versus red squares); the minima of the monk network (Figure10.5(f)) corresponds to the split
of 7 Turks (red squares) and the so-called loyal opposition (gray circles)[Sampson, 1968]; and empirically
both local minima and the global minimum in the network science network (Figure10.5(h)) correspond to
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Figure 10.5: Depiction of several small social networks that are common test sets for community de-
tection algorithms and their network community profile plots. (10.5(a)–10.5(b)) Zachary’s
karate club network. (10.5(c)–10.5(d)) A network of dolphins. (10.5(e)–10.5(f)) A network
of monks. (10.5(g)–10.5(h)) A network of researchers researching networks.
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plausible communities. Note that in the last case, the figure also displays hierarchical structure in which
case the community defined by CutC is included in a larger community that has better conductance
value.

At this point, we can observe that the following two general observations hold for networks that are well-
embeddable in a low-dimensional space and also for small social networks that have been extensively
studied and used to validate community detection algorithms. First, minima in the NCP plots, i.e., the
best low-conductance cuts of a given size, correspond to communities-like sets of nodes. Second, the
NCP plots are generally relatively gradually sloping downwards, meaning that smaller communities can
be combined into larger sets of nodes that can also be meaningfully interpreted as communities.

10.3.3 NCP plots for large social and information networks

We have examined NCP plots for each of the networks listed in TablesA.2, A.3 andA.4. In Figure10.6, we
present NCP plots for six of these networks. (These particular networks were chosen to be representative
of the wide range of networks we have examined, and for ease of comparison we will compute other
properties for them in future sections. See Figures10.7, 10.8, and10.9 in Section10.3.4for the NCP
plots of other networks listed in TablesA.2, A.3 andA.4, and for a discussion of them.) The most striking
feature of these plots is that the NCP plot is steadily increasing for nearly its entire range.

Consider, first, the NCP plot for the LIVEJOURNAL01 social network, as shown in Figure10.6(a), and
focus first on the red curve, which presents the results of applying the Local Spectral Algorithm.2 We
make the following observations:

• Up to a size scale, which empirically is roughly100 nodes, the slope of the NCP plot is generally
sloping downward.

• At that size scale, we observe the global minimum of the NCP plot. This set of nodes as well as
others achieving local minima of the NCP plot in the same size range are the “best” communities,
according to the conductance measure, in the entire graph.

• These best communities (the best denoted by a square) are barely connected to the rest of the graph,
e.g., they are typically connected to the rest of the nodes by asingleedge.

• Above the size scale of roughly100 nodes, the NCP plot gradually increases over several orders of
magnitude. The “best” communities in the entire graph are quite good (in that theyhave size roughly
102 nodes and conductance scores less than10−3) whereas the “best” communities of size105 or
106 have conductance scores of about10−1. In between these two size extremes, the conductance
scores get gradually worse, although there are numerous local dips and even one relatively large dip
between105 and106 nodes.

2 The algorithm takes as input two parameters—the seed node and the parameterε that intuitively controls the locality of
the computation—and it outputs a set of nodes. For a given seed node and resolution parameterε we obtain a local community
profile plot, which tells us about conductance of cuts in vicinity of the seed node. By taking the lower-envelope over community
profiles of different seed nodes andε values we obtain the global network community profile plot. For our experiments, we
typically considered100 different values ofε. Since very local random walks discover small clusters, in this case we considered
every node as a seed node. As we examine larger clusters, the randomwalk computation spreads farther away from the seed
node, in which case the exact choice of seed node becomes less important. Thus, in this case, we sampled fewer seed nodes.
Additionally, in our experiments, for each value ofε we randomly sampled nodes until each node in the network was visited by
random walks starting from,10 different seed nodes on average.
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Figure 10.6: Network community profile plots for a representative sampleof large networks listed in
TablesA.2, A.3 andA.4. The red curves plot the results of the Local Spectral Algorithm
on the specified network; green curves plot the results of Metis+MQI; blue curves plot the
results of the Bag-of-Whiskers Heuristic; and black curves plot the results of the Local
Spectral Algorithm applied to a randomly rewired version ofthe same network. Notice that
in all cases the “best” communities are quite small (typically between10 and100 nodes) and
that the network community profile plot steadily increases for nearly its entire range. See
Figures10.7, 10.8, and10.9for the NCP plots of other networks.
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Note that both axes in Figure10.6 are logarithmic, and thus the upward trend of the NCP plot is over
a wide range of size scales. Note also that the green curve plots the resultsof Metis+MQI (that returns
disconnected clusters), and the blue curve plots the results of applying theBag-of-Whiskers Heuristic, as
described in Section10.4.3. These procedures will be discussed in detail in Sections10.4and10.5.

The black curve in Figure10.6(a)plots the results of the Local Spectral Algorithm applied to arewired
versionof the LIVEJOURNAL01 network,i.e., to a random graph conditioned on the same degree distribu-
tion as the original network. (We obtain such random graph by starting with the original network and then
randomly selecting pairs of edges and rewiring the endpoints. By doing the rewiring long enough, we ob-
tain a random graph that has the same degree sequence as the original network [Milo et al., 2004].)

Interestingly, the NCP of a rewired network first slightly decreases but then increases and flattens out.
Several things should be noted:

• The original LIVEJOURNAL01 network has considerably more structure,i.e., deeper/better cuts,
than its rewired version, even up to the largest size scales. That is, we observe significantly more
structure than would be seen, for example, in an random graph on the samedegree sequence.

• Relative to the original network, the “best” community in the rewired graph,i.e., the global min-
imum of the conductance curve, shifts upward and towards the left. This means that in rewired
networks the best conductance clusters get smaller and have worse conductance scores.

• Sets at and near the minimum are small trees that are connected to the core of the random graph by
a single edge.

• After the small dip at a very small size scale (≈ 10 nodes), the NCP plot increases to a high level
rather quickly. This is due to the absence of structure in the core.

Finally, also note that the variance in the rewired version of the NCP plot (data not shown) is not much
larger than the width of the curve in the figure.

We have observed qualitatively similar results in nearly every large social and information network we
have examined. For example, several additional examples are presentedin Figure10.6: another network
from the class of social networks (EPINIONS, in Figure10.6(b)); an information/citation network (CIT-
HEP-TH, in Figure10.6(c)); a Web graph (WEB-GOOGLE, in Figure10.6(d)); a Bipartite affiliation net-
work (ATP-DBLP, in Figure10.6(e)); and an Internet network (GNUTELLA -31, in Figure10.6(f)).

Qualitative observations are consistent across the range of network sizes, densities, and different domains
from which the networks are drawn. Of course, these six networks arevery different than each other—
some of these differences are hidden due to the definition of the NCP plot, whereas others are evident.
Perhaps the most obvious example of the latter is that even the best cuts in GNUTELLA -31 are not sig-
nificantly smaller or deeper than in the corresponding rewired network, whereas for WEB-GOOGLE we
observe cuts that are orders of magnitude deeper.

Intuitively, the upward trend in the NCP plot means that separating large clusters from the rest of the
network is especially expensive. It suggests that larger and larger clusters are “blended in” more and
more with the rest of the network. The interpretation we draw, based on these data and data presented in
subsequent sections is that, if a density-based concept such as conductance captures our intuitive notion
of community goodness and if we model large networks with interaction graphs, then the best possible
communities get less and less community-like as they grow in size.
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10.3.4 More community profile plots for large social and information networks

Figures10.7, 10.8, and10.9show additional examples of NCP plots for networks from TablesA.2, A.3
andA.4. In the first two rows of Figure10.7, we have several examples of purely Social networks and
two email networks, in the third row we have patent and blog Information/citationnetworks, and in the
final row we have three examples of actor and author Collaboration networks. In Figure10.8, we see three
examples each of Web graphs, Internet networks, Bipartite affiliation networks, and Biological networks.
Finally, in the first row of Figure10.9, we see Low-dimensional networks, including two road and a man-
ifold network; in the second row, we have an IMDB Actor-to-Movie graphs and two subgraphs induced
by restricting to individual countries; in the third row, we see three Amazon product co-purchasing net-
works; and in the final row we see a Yahoo! Answers networks and two subgraphs that are large good
conductance cuts from the full network.

For most of these networks, the same four versions of the NCP plot are plotted that were presented in
Figure10.6. Note that, as before, the scale of the vertical axis in these graphs is not all the same; the
minima range from10−2 to 10−5. These network datasets are drawn from a wide range of areas, and
these graphs contain a wealth of information, a full analysis of which is well beyond the scope of the
chapter. Note, however, that the general trends we discussed in Section 10.3.3still manifest themselves in
nearly every network.

The IMDB-RAW07 network is interesting in that its NCP plot does not increase much (at leastnot the ver-
sion computed by the Local Spectral Algorithm) and we clearly observe large sets with good conductance
values. Upon examination, many of the large good conductance cuts seem tobe associated with different
language groups. Two things should be noted. First, and not surprisingly, in this network and others,
we have observed that there is some sensitivity to how the data are prepared. For example, we obtain
somewhat stronger communities if ambiguous nodes (and there are a lot of ambiguous nodes in network
datasets with millions of nodes) are removed than if,e.g., they are assigned to a country based on a voting
mechanism of some other heuristic. A full analysis of these data preparationissues is beyond the scope of
this chapter, but our overall conclusions seem to hold independent of the preparation details. Second, if
we examine individual countries—two representative examples are shown—then we see substantially less
structure at large size scales.

The Yahoo! Answers social network (see ANSWERS) also has several large cuts with good conductance
value—actually, the best cut in the network has more105 nodes. (It is likely that exogenous factors
are responsible for these large deep cuts.) Using standard graph partitioning procedures, we obtained
four large disjoint clusters consisting of ca.5, 300, 25, 400, 27, 000, and290, 000 nodes, respectively,
corresponding to the four dips (two of which visually overlap) in the NCP plot. We then examined the
community profile plots for each of these pieces. The two representative examples of which we show
clearly indicate a NCP plot that is much more like other network datasets we haveexamined.

10.4 More structural observations of our network datasets

We have examined in greater detail our network datasets in order to understand which structural properties
are responsible for the observed properties of the NCP plot. We first present statistics for our network
datasets in Section10.4.1. Then, in Section10.4.2we describe a heuristic to identify small sets of nodes
that have strong connections amongst themselves but that are connectedto the remainder of the network
by only a single edge. In Section10.4.3, we show that these “whiskers” (or disjoint unions of them) are
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Figure 10.7: Community profile plots of networks from TableA.2.
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Web graphs
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Figure 10.8: Community profile plots of networks from TableA.3.
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Figure 10.9: Community profile plots of networks from TableA.4, as well as ANSWERSand two sub-
pieces of ANSWERS.
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often the “best” conductance communities in the network. Last, in Section10.4.4we examine NCP plots
for networks in which these whiskers have been removed.

10.4.1 General statistics on our network datasets

In TablesA.2, A.3, and A.4, we also present the following statistics for our network datasets: the
number of nodesN ; the number of edgesE; the fraction of nodes in the largest biconnected com-
ponentNb/N ; the fraction of edges in the largest biconnected componentEb/E; the average degree
d̄ = 2E/N ; the empirical second-order average degree [Chung and Lu, 2006a] d̃; average clustering co-
efficient [Watts and Strogatz, 1998] C̄; the estimated diameterD; and the estimated average path length
D̄. (The diameter was estimated using the following algorithm: pick a random node,find the farthest
nodeX (via shortest path); move toX and find the farthest node fromX; iterate this procedure until the
distance to the farthest node does not increase anymore. The averagepath length was estimated based on
10, 000 randomly sampled nodes.)

In nearly every network we have examined, there is a substantial fractionof nodes that are barely con-
nected to the main part of the network,i.e., that are part of a small cluster of ca.10 to 100 nodes that are
attached to the remainder of the network via one or a small number of edges. In particular, a large fraction
of the network is made out of nodes that are not in the biconnected core.3

For example, the EPINIONS network has75, 877 nodes and405, 739 edges, and the core of the network
has only36, 111 (47%) nodes and365, 253 (90%) edges. For DELICIOUS, the core is even smaller: it
contains only40% of the nodes, and65% of the edges. Averaging over our network datasets, we see
that the largest biconnected component contains around only60% of the nodes and80% of the edges
of the original network. This is somewhat akin to the so-called “Jellyfish” model [Tauro et al., 2001,
Siganos et al., 2006] (which was proposed as a model for the graph of internet topology) and also to
the “Octopus” model (for random power law graphs [Chung and Lu, 2006a], which is described in more
detail in Section10.6.2). Moreover, the global minimum of the NCP plot is nearly always one of these
pieces that is connected by only a single edge. Since these small barely-connected pieces seem to have a
disproportionately large influence on the community structure of our networkdatasets, we examine them
in greater detail in the next section.

10.4.2 Network “whiskers” and the “core”

We definewhiskers, or more precisely1-whiskers, to be maximal subgraphs that can be detached from
the rest of the network by removing asingleedge. (Occasionally, we use the term whiskers informally
to refer to barely connected sets of nodes more generally.) To find1-whiskers, we employ the following
algorithm. Using a depth-first search algorithm, we find the largest biconnected componentB of the graph
G. (A graph is biconnected if the removal of any single edge does not disconnect the graph.) We then
delete all the edges inG that have one of their end points inB. We call the connected components of this
new graphG′ 1-whiskers, since they correspond to largest subgraphs that can be disconnected fromG by
removing just a single edge. Recall that Figure10.2(b)contains a schematic picture a network, including
several of its whiskers.

3 In this chapter, we are slightly abusing standard terminology by using the term bi-connectivity to mean 2-edge-connectivity.
We are running the classic DFS-based bi-connectivity algorithm, which identifies both bridge edges and articulation nodes, but
then we are only knocking out the bridge edges, not the articulation nodes, so we end up with 2-edge-connected pieces.
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There is a wide range of whisker sizes and shapes. Figure10.10shows the distribution of1-whisker sizes
for a representative selection of our network datasets. Empirically,1-whisker size distribution is heavy-
tailed, with the largest whisker size ranging from around less than10 to well above100. The largest
whiskers in co-authorship and citation networks have around10 nodes, whiskers in bipartite graphs also
tend to be small, and very large whiskers are found in a web graph. Figure10.10also compares the size of
the whiskers with the sizes of whiskers in a rewired version of the same network. (The first thing to note
is that due to the sparsity of the networks, the rewired versions all have whiskers.) In rewired networks
the whiskers tend to be much smaller than in the original network. A particularly noteworthy exception is
found in the Autonomous systems networks and the GNUTELLA -31 network. (See Figure10.10(f)for an
example of the latter.) In these cases, the whiskers are so small that even therewired version of the network
has more and larger whiskers. This makes sense, given how those networks were designed: clearly, many
large whiskers would have negative effects on the Internet connectivity in case of link failures.

Figure10.11shows the ten largest whiskers of the EPINIONS social network, the full size distribution of
which was plotted in Figure10.10(b), and Figure10.12shows the ten largest whiskers of the CA-COND-
MAT co-authorship network. In these networks, the whiskers have on the order of10 nodes, and they are
seen to have a rich internal structure. Similar but substantially more complex figures could be generated
for networks with larger whiskers. In general, the results we observe are consistent with a knowledge of
the fields from which the particular datasets have been drawn. For example, in WEB-GOOGLE we see
very large whiskers. This probably represents a well-connected network between the main categories of
a website (e.g., different projects), while the individual project websites have a main index page that then
points to the rest of the documents.

The discrepancy between the sizes of the whiskers in the original and the rewired networks gives hints
that real networks have much richer structure than that imposed by their heavy-tailed degree distribution.
One might ask whether the conclusion from this is that real-world graphs should be thought of as being
somewhat like sparse random graphs, since,e.g., both have whiskers, or should be thought of as very
different than sparse random graphs, since,e.g., the whiskers have much more internal structure. We will
return to this issue in Section10.6.

10.4.3 Bags of whiskers and communities of composed whiskers

Empirically, if one looks at the sets of nodes achieving the minimum in the NCP plot (green Metis+MQI
curve), then before the global NCP minimum communities are whiskers and above that size scale they are
often unions of disjoint whiskers. To understand the extent to which thesewhiskers and unions of whiskers
are responsible for the “best” conductance sets of different sizes, we have developed theBag-of-Whiskers
Heuristic. We artificially compose “communities” from disconnected whiskers and measure conductance
of such clusters. Clearly, interpreting and relating such communities to real-world communities makes
little sense as these communities are in fact disconnected.

In more detail, we performed the following experiment: suppose we have a set W = {w1, w2, . . .} of
whiskers. In order to construct the optimal conductance cluster of sizek, we need to solve the following
problem: find a setC of whiskers such that

∑
i∈C N(wi) = k and

∑
i∈C

d(wi)
|C| is maximized, where

N(wi) is the number of nodes inwi andd(wi) is its total internal degree. We then use a dynamic pro-
gramming to get an approximate solution to this problem. This way, for each sizek, we find a cluster
that is composed solely from (disconnected) whiskers. Figure10.6as well as Figures10.7, 10.8and10.9
show the results of this heuristic applied to many of our network datasets (bluecurve).
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Figure 10.10:Distribution of whisker sizes in the true network and the rewired network (random graph
with same degree distribution) for the six networks presented in Figure10.6. The ten largest
whiskers for the EPINIONS social network (the full distribution of which is presentedhere
in panel (b)) are presented in Figure10.11.
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Figure 10.11:Ten largest whiskers of the EPINIONS social network. The green square node is the node
from the bi-connected core of the network to which the whisker is connected. For visual
clarity, the whisker node that connects to the core of the network is displayed in red, and
thus it is the edge between the red circle and the green squarenode that if cut disconnects
the whisker from the core. The distribution of whisker sizesand comparison to rewired
network is plotted in Figure10.10(b).

Figure 10.12:Ten largest whiskers of the CA-COND-MAT co-authorship network. The green square node
belongs to the network core, and by cutting the edge connecting it with red circular node
we separate the community of circles from the rest of the network (depicted as a green
square).
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There are several observations we can make:

• The largest whisker (denoted with a red square) is the lowest point in nearly all NCP plots. This
means that the best conductance community is in a sense trivial as it cuts just asingle edge, and in
addition that a very simple heuristic can find this set.

• For community size below the critical size of≈ 100 nodes (i.e., of size smaller than the largest
whisker), the best community in the network is actually a whisker and can be cut by a single edge
(blue and red curve overlap).

• For community size larger than the critical size of≈ 100, the Bag-of-Whiskers communities
have better scores than the internally well-connected communities extracted byLocal Spectral (red
curve). The shape of this blue curve in that size region depends on the distribution of sizes of
whiskers, but in nearly every case it is seen to yield better conductance sets than the Local Spectral
Algorithm.

Moreover, the Bag-of-Whiskers Heuristic often almost exactly agrees with results from Metis+MQI (green
curve). In particular, the best conductance sets of a given size are often disconnected, and when they are
connected they are often only tenuously connected. Thus, if one only cares about finding good cuts
then the best cuts in these large sparse graphs are obtained by composingunrelated disconnected pieces.
Intuitively, a compact cluster is internally well and evenly connected. Possible measures for cluster com-
pactness include: cluster connectedness, diameter, conductance of thecut inside the cluster, ratio of con-
ductance of the cut outside versus the cut inside. We discuss this in more detail in Section10.5.

10.4.4 NCP of networks with no1-whiskers

Given the surprisingly significant effect on the community structure of real-world networks that whiskers
and unions of disjoint whiskers have, one might wonder whether we see something qualitatively different
if we consider a real-world network in which these barely-connected pieces have been removed. To study
this, we found all1-whiskers and removed them from our networks, using the procedure we described in
Section10.4.2, i.e., we selected the largest biconnected component for each of our network datasets. This
way, we kept only the network core, and we then computed the NCP plots forthese modified networks.
Figure10.13shows the NCP plots of networks constructed when we remove whiskers (i.e., keep only the
network core) for the six networks we studied in detail before.

Notice that whisker removal does not change the NCP plot much: the plot shifts slightly upward, but the
general trends remain the same. Upon examination, the global minimum occurs with a “2-whisker” that is
connected by two edges to the remainder of the graph. Intuitively, the largest biconnected core has a large
number of barely connected pieces—connected now by two edges ratherthan by one edge—and thus the
“core” itself has a core-periphery structure. Since the “volume” for these pieces is similar to that for the
original whiskers, whereas the “surface area” is a factor of two larger, the conductance value is roughly
a factor of two worse. Thus, although we have been discussing1-whiskers in this section, one should
really view them as the simplest example of weakly-connected pieces that exert a significant effect on the
community structure in large real-world networks.
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Figure 10.13:Network community profile plots with (in red) and without (ingreen)1-whiskers, for each
of the six networks shown Figure10.6. Whiskers were removed as described in the text. In
the former case, we plot results for the full network, and in the latter case, we plot results
for the largest bi-connected component.
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10.5 Comparison to other algorithms

So far, we have been primarily relying on two graph partitioning algorithms: a Local Spectral Algorithm
and Metis+MQI. Next, we want to demonstrate that what we are observing isa true structural property of
our network datasets, rather than properties of our algorithms; and we want to use the differences between
different approximation algorithms to further highlight structural properties of our network datasets. In
this section we discuss several meta-issues related to this, including whetheror not our algorithms are
sufficiently powerful to recover the true shape of the minimal conductancecurves, and whether we should
actually be trying to optimize a slightly different measure that combines conductance of the separating cut
with the piece compactness.

Recall that we defined the NCP plot to be a curve showing the minimum conductanceφ as a function of
piece sizek. Finding the points on this curve is NP-hard. Any cut that we find will only provide an upper
bound on the true minimum at the resulting piece’s size. Given that fact, how confident can we be that the
curve of upper bounds that we have computed has the same rising or fallingshape as the true curve?

One method for finding out whether any given algorithm is doing a good job of pushing down the upper
bounding curve in a non-size-biased way is to compare its curves for numerous graphs with those pro-
duced by other algorithms. In such experiments, it is good if the algorithms arevery powerful and also
independent of each other. We have done extensive experiments alongthese lines, and our choice of Local
Spectral and Metis+MQI as the two algorithms for the main body of this chapter was based on the results.
In Section10.5.1we mention a few interesting points related to this.

A different method for reducing our uncertainty about the shape of the true curve would be to also compute
lower bounds on the curve. Ideally, one would compute a complete curve oftight lower bounds, leaving a
thin band between the upper- and lower-bounding curves, which would make the rising or falling shape of
the true curve obvious. In Section10.5.2we discuss some experiments with lower bounds. Although we
only obtained a few lower bounds rather than a full curve, the results areconsistent with our main results
obtained from upper-bounding curves.

Finally, in Section10.5.3we will discuss our decision to use the Local Spectral algorithm in addition to
Metis+MQI in the main body of the chapter, despite the fact that Metis+MQI clearly dominates Local
Spectral at the nominal task of finding the lowest possible upper boundingcurve for the minimal conduc-
tance curve. The reason for this decision is that Local Spectral often returns “nicer” and more “compact”
pieces because rather than minimizing conductance alone, it optimizes a slightly different measure that
produces a compromise between the conductance of the bounding cut andthe “compactness” of the re-
sulting piece.

10.5.1 Cross-checking between algorithms

As just mentioned, one way to gain some confidence in the upper bounding curves produced by a given
algorithm is to compare them with the curves produced by other algorithms that are as strong as possible,
and as independent as possible. We have extensively experimented with several variants of the global
spectral method, both the usual eigenvector-based embedding on a line, and an SDP-based embedding on
a hypersphere, both with the usual hyperplane-sweep rounding methodand a fancier flow-based rounding
method which includes MQI as the last step. In addition, special post-processing can be done to obtain
either connected or disconnected sets. After examining the output of those8 comparatively expensive al-
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gorithms on more than100 graphs, we found that our two cheaper main algorithms did miss an occasional
cut on an occasional graph, but nothing at all serious enough to change our main conclusions. All of those
detailed results are suppressed in this chapter.

We have also done experiments with a practical version of the Leighton-Raoalgorithm [Leighton and Rao,
1988, 1999], similar to the implementation described in [Lang and Rao, 1993] and [Lang and Rao, 2004].
These results are especially interesting because the Leighton-Rao algorithm, which is based on multi-
commodity flow, provides a completely independent check on Metis, and on Spectral Methods generally,
and therefore on our two main algorithms, namely Metis+MQI and Local Spectral. The Leighton-Rao
algorithm has two phases. In the first phase, edge congestions are produced by routing a large number of
commodities through the network. We adapted our program to optimize conductance (rather than ordinary
ratio cut score) by letting the expected demand between a pair of nodes be proportional to the product of
their degrees. In the second phase, a rounding algorithm is used to convert edge congestions into actual
cuts. Our method was to sweep over node orderings produced by running Prim’s MST algorithm on the
congestion graph, starting from a large number of different initial nodes, using a range of different scales
to avoid quadratic run time. We used two variations of this method, one that only produces connected sets,
and another one that can also produce disconnected sets.

In the second row of Figure10.14, we show Leighton-Rao curves for three example graphs. Our standard
Local Spectral and Metis+MQI curves are drawn in black, while the Leighton-Rao curves for connected
and possibly disconnected sets are drawn in green and magenta respectively. We note that for small to
medium scales, the Leighton-Rao curves for connected sets resemble the Local Spectral curves, while
the Leighton-Rao curves for possibly disconnected sets resemble the Metis+MQI curves. This is big hint
about the structure of the sets produced by Local Spectral and Metis+MQI, that we will discuss further in
Section10.5.3.

At large scales, the Leighton-Rao curves for these example graphs shoot up and become much worse than
our standard curves. This is not surprising because expander graphs are known to be the worst case input
for the Leighton-Rao approximation guarantee, and we believe that these graphs contain an expander-like
core that is necessarily encountered at large scales. We remark that Leighton-Rao does not work poorly at
large scales on every kind of graph. (In fact, for large low-dimensional mesh-like graphs, Leighton-Rao is
a very cheap and effective method for finding cuts at all scales, while our local spectral method becomes
impractically slow at medium to large scales. We will not discuss this point further, except to note that in
the main body of the chapter we have silently substituted Leighton-Rao curvesfor local spectral curves
for the large road networks and similar graphs.)

We have now covered the main theoretical algorithms that are practical enough to actually run, which are
based on spectral embeddings and on multi-commodity flow. Starting with [Arora et al., 2004b], there has
been a recent burst of theoretical activity showing that spectral and flow-based ideas, which were already
known to have complementary strengths and weaknesses, can in fact be combined to obtain the best ever
approximations. At present none of the resulting algorithms are sufficientlypractical at the sizes that we
require, so they were not included in this study.

Finally, we mention that in addition to the above theoretically-based practical methods for finding low-
conductance cuts, there exist a very large number of heuristic graph clustering methods. We have tried a
number of them, including Graclus [Dhillon et al., 2007] and Newman’s modularity optimizing program
(we refer to it as Dendrogram) [Girvan and Newman, 2002]. Graclus attempts to find a partitioning of a
graph into pieces bounded by low-conductance cuts using a kernel k-means algorithm. We ran Graclus
repeatedly, asking for2, 3, . . . , i, . . . , i ∗

√
2, ... pieces. Then we measured the size and conductance of

291



Lower bounds on the conductance of best cut in the network.

Leighton-Rao: connected clusters (green), disconnected clusters (magenta).

NCP plots obtained by Graclus and Newman’s Dendrogram algorithm.

Figure 10.14:Result of other algorithms for three networks: EPINIONS, EMAIL -ENRON, and CA-
ASTRO-PH. Top row plots (in black) conductance curves as obtained by Local Spectral
and Metis+MQI. Top row also shows lower bounds on conductance of any cut (Spectral
lower bound, dashed line) and the cut separating the graph inhalf (SDP lower bound, red
triangle). Middle row shows NCP plots for connected (green)and disconnected (magenta)
pieces from our implementation of the Leighton-Rao algorithm. Bottom row shows the
conductance of some cuts found by Graclus and by Newman’s Dendrogram algorithm.
The overall conclusion is that the qualitative shape of the NCP plots is a structural property
of large networks and the plot remains practically unchanged regardless of what particular
community detection algorithm we use.

all of the resulting pieces. Newman’s Dendrogram program constructs arecursive partitioning of a graph
(that is, a dendrogram) from the bottom up by repeatedly deleting the surviving edge with the highest
betweenness centrality. A flat partitioning could then be obtained by cutting atthe level which gives the
highest modularity score, but instead of doing that, we measured the size ofconductance of every piece
defined by a subtree in the dendrogram.
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In the bottom row of Figure10.14, we present these results as scatterplots. Again our two standard curves
are drawn in black. No Graclus or Dendrogram point lies below the Metis+MQI curve. The lower-
envelopes of the points are roughly similar to those produced by Local Spectral.

Our main point with these experiments is that the lowest points produced by either Graclus or Dendrogram
gradually rise as one moves from small scales to larger scales, so in principle we could have made the same
observations about the structure of large social and information networks by running one of those easily
downloadable programs instead of the algorithms that we did run. We chose the algorithms we did due to
their speed and power, although they may not be as familiar to many readers.

10.5.2 Lower bounds on cut conductance

As mentioned above, our main arguments are all based on curves which areactually upper bounds
on the true minimum conductance curve. To get a better idea of how good those upper bounds are,
we also compute some lower bounds. Here we will discuss the spectral lowerbound [Chung, 1997]
on the conductance of cuts of arbitrary balance, and we will also discussa related SDP-based lower
bound [Burer and Monteiro, 2003] on the conductance of any cut that divides the graph into two pieces of
equal volume.

First, we introduce the following notation:~d is a column vector of the graph’s node degrees;D is a square
matrix whose only nonzero entries are the graph’s node degrees on the diagonal; A is the adjacency
matrix of G; L = D − A is then the non-normalized Laplacian matrix ofG; 1 is vector of 1’s; and
A •B = trace(AT B) is the matrix dot-product operator.

Now, consider the following optimization problem (which is well known to be equivalent to an eigenprob-
lem):

λG = min

{
xT Lx

xT Dx
: x ⊥ ~d, x 6= 0

}
.

Let x̂ be a vector achieving the minimum valueλG. ThenλG

2 is the spectral lower bound on the conduc-
tance of any cut in the graph, regardless of balance, whilex̂ defines a spectral embedding of the graph on
a line, to which rounding algorithms can be applied to obtain actual cuts that canserve as upper bounds at
various sizes.

Next, we discuss an SDP-based lower bound on cuts which partition the graph into two sets of exactly
equal volume. Consider:

CG = min

{
1

4
L • Y : diag(Y ) = 1, Y • (~d ~dT ) = 0, Y � 0

}
,

and letŶ be a matrix achieving the minimum valueCG. ThenCG is a lower bound on the weight of any
cut with perfect volume balance, and2CG/Vol(G) is a lower bound on the conductance of any cut with
perfect volume balance. We briefly mention that sinceY � 0, we can viewY as a Gram matrix that can
be factored can be factored asRRT . Then the rows ofR are the coordinates of an embedding of the graph
on a hypersphere. Again, rounding algorithms can be applied to the embedding to obtain actual cuts that
can server as upper bounds.

The spectral and SDP embeddings defined here were the basis for the extensive experiments with global
spectral partitioning methods that were alluded to in Section10.5.1. However, in this section, it is the
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lower bounds that concern us. In the top row of Figure10.14, we present the spectral and SDP lower
bounds for three example graphs. The spectral lower bound, which applies to cuts of any balance, is
drawn as a horizontal line which appears near the bottom of each plot. TheSDP lower bound, which only
applies to cuts separating a specific volume, namelyVol(G)/2, appears as an upwards-pointing triangle
near the right side of the each plot. (Note that plotting this point required us touse volume rather than
number of nodes for the x-axis of these three plots.)

Clearly, for these graphs, the lower bound atVol(G)/2, is higher than the spectral lower bound which
applies at smaller scales. More importantly, the lower bound atVol(G)/2, is higher than ourupper
bounds at many smaller scales, so the true curve must go up, at least at thevery end, as one moves from
small to large scales.

Take, for example, the top left plot of Figure10.14where in black we plot the conductance curves obtained
by our (Local Spectral and Metis+MQI) algorithms. With a red dashed line we also plot the lower bound
of best possible cut in the network, and with red triangle we plot the lower bound for the cut that separates
the graph in two equal volume parts. Thus, the true conductance curve (which is intractable to compute)
lies below black but above red line and red triangle. This also demonstrates that the conductance curve
which starts at upper left corner of the NCP plot first goes down and reaches the minimum close to the
horizontal dashed line (Spectral lower bound) and then sharply rise and ends up above the red triangle
(SDP lower bound). This verifies that our conductance curves and obtained NCP plots are not the artifacts
of community detection algorithms we employed.

Finally, in Table10.1we list for about 40 graphs the spectral and SDP lower bounds on overall conduc-
tance and on volume-bisecting conductance, and also the ratio between the two. It is interesting to see
that for these graphs this ratio of lower bounds does a fairly good job of discriminating between falling-
NCP-plot graphs, which have a small ratio, and rising-NCP-plot graphs, which have a large ratio. Small
networks (like COLLEGEFOOTBALL, ZACHARYKARATE and MONKSNETWORK) have downward NCP
plot and a small ratio of the SDP and Spectral lower bounds. On the other hand large networks (e.g., EPIN-
IONS or ANSWERS-3) that have downward and then upward NCP plot (as in Figure10.2(a)) have large
ratio of the two lower bounds. This is further evidence that small networks have fundamentally different
community structure from large networks and that one has to examine very large networks to observe the
gradual absence of communities of size above≈ 100 nodes.

10.5.3 Local Spectral and Metis+MQI

In this section we discuss our rationale for using Local Spectral in additionto Metis+MQI as one of our two
main algorithms for finding sets bounded by low conductance cuts. This choice requires some justification
because the NCP plots are intended to show the tightest possible upper bound on the lowest conductance
cut for each piece size, while the curve for Local Spectral is generallyabove that for Metis+MQI.

Our reason for using Local Spectral in addition to Metis+MQI is that LocalSpectral returns pieces that are
internally “nicer”. For graphs with a rising NCP plot, we have found that many of the low conductance sets
returned by Metis+MQI (or Leighton-Rao, or the Bag-of-Whiskers Heuristic) are actuallydisconnected.
Since internally disconnected sets are not very satisfying “communities”, it isnatural to wonder about
NCP plot-style curves with the additional requirement that pieces must be internally well connected. In
Section10.5.1, we generated such a curve using Leighton-Rao, and found that the curve corresponding to
connected pieces was higher than a curve allowing disconnected sets.
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Spectral SDP ratio
lowerbnd lowerbnd of

onφ, onφ, at lower
Network any size. Vol(G)/2 bnds

COLLEGEFOOTBALL 0.068402 0.091017 1.330624
MONKSNETWORK 0.069660 0.117117 1.681269
ZACHARYKARATE 0.066136 0.127625 1.929736
POWERGRID 0.000136 0.000268 1.978484
POLITICAL BOOKS 0.018902 0.038031 2.011991
POLITICAL BLOGS 0.040720 0.084052 2.064157
RB-HIERARCHICAL 0.011930 0.030335 2.542792
EMAIL -INOUT 0.038669 0.113367 2.931752
NETWORKSCIENCE 0.001513 0.004502 2.974695
AS-OREGON 0.012543 0.042976 3.426417
BLOG-NAT05-6M 0.031604 0.108979 3.448250
IMDB-INDIA 0.009104 0.033318 3.659573
CIT-HEP-PH 0.007858 0.029243 3.721553
BIO-PROTEINS 0.033714 0.126137 3.741358
AS-ROUTEV IEWS 0.018681 0.070462 3.771821
GNUTELLA -31 0.029946 0.118711 3.964127
IMDB-JAPAN 0.003327 0.013396 4.026721
GNUTELLA -30 0.030621 0.124929 4.079853
DOLPHINSNETWORK 0.019762 0.103676 5.246171
AS-NEWMAN 0.009681 0.058952 6.089191
ATP-GR-QC 0.000846 0.006040 7.141270
CIT-HEP-TH 0.009193 0.068880 7.492522
ATP-COND-MAT 0.001703 0.013452 7.897650

Spectral SDP ratio
lowerbnd lowerbnd of

onφ, onφ, at lower
Network any size. Vol(G)/2 bnds

GNUTELLA -25 0.014185 0.131032 9.237332
ANSWERS-2 0.009660 0.107422 11.120081
CA-COND-MAT 0.003593 0.047064 13.098027
ANSWERS-1 0.011896 0.159251 13.386528
IMDB-FRANCE 0.003462 0.048010 13.867591
ANSWERS-5 0.008714 0.124703 14.311255
IMDB-MEXICO 0.003893 0.070345 18.067513
CA-GR-QC 0.000934 0.017421 18.659710
ATP-HEP-TH 0.000514 0.009714 18.899660
ATP-HEP-PH 0.000723 0.013770 19.040287
IMDB-WGERMANY 0.003025 0.065158 21.538867
ATP-ASTRO-PH 0.001183 0.027256 23.036835
CA-HEP-TH 0.001561 0.041125 26.350412
CA-ASTRO-PH 0.003143 0.086890 27.648094
IMDB-UK 0.001283 0.036572 28.514376
IMDB-GERMANY 0.000661 0.021017 31.810460
BLOG-NAT06ALL 0.002361 0.092908 39.350874
IMDB-ITALY 0.000679 0.031954 47.077242
EMAIL -ENRON 0.001763 0.089876 50.965424
CA-HEP-PH 0.000889 0.052249 58.755927
EPINIONS 0.002395 0.150242 62.739252
ANSWERS-3 0.002636 0.185340 70.306807
IMDB-SPAIN 0.000562 0.046327 82.397702

Table 10.1:Lower bounds on the conductance for our network datasets. Recall that the spectral lower
bound applies to any cut, while the SDP lower bound applies tocuts at a specified volume
fraction, taken here to be half. See the top row of Figure10.14for plots for three of these
networks.

In the top row of Figure10.15, we show scatter plots illustrating a similar comparison between the con-
ductance of the cuts bounding connected pieces generated by Local Spectral and by Metis+MQI. Our
method for getting connected pieces from Metis+MQI here is simply to separately measure each of the
pieces in a disconnected set. The blue points in the figures show the conductance of some cuts found by
Local Spectral. The red points show the conductance of some cuts foundby Metis+MQI. Apparently,
Local Spectral and Metis+MQI find similar pieces at very small scales, butat slightly larger scales a gap
opens up between the red cloud and the blue cloud. In other words, at those scales Metis+MQI is finding
lower conductance cuts than Local Spectral, even when the pieces must be internally connected.

However, there is still a measurable sense in which the Local Spectral pieces are “nicer” and more “com-
pact,” as shown in the second row of scatter plots in Figure10.15. For each of the same pieces for which
we plotted a conductance in the top row, we are now plotting the average shortest path length between
random node pairs in that piece. In these plots, we see that in the same size range where Metis+MQI is
generating clearly lower conductance connected sets, we now see that Local Spectral is generating pieces
with clearly shorter internal paths. In other words, the Local Spectral pieces are more “compact”.

Last, in Figure10.16, we further illustrate this point with drawings of some example subgraphs. The
two subgraphs shown on the left of Figure10.16were found by Local Spectral, while the two subgraphs
shown on the right of Figure10.16were found by Metis+MQI. Clearly, these two pairs of subgraphs have a
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Conductance of connected clusters found by Local Spectral (blue) and Metis+MQI (red)

Cluster compactness: average shortest path length

Cluster compactness: external vs. internal conductance

Figure 10.15:Result of comparing Local Spectral (blue) and Metis+MQI (red) on connected clusters for
three networks: ATP-DBLP, EMAIL -ENRON, and CA-ASTRO-PH. In the top row, we plot
the conductance of the bounding cut. In the middle row, we plot the average shortest path
length in the cluster. In the bottom row, we plot the ratio of the external conductance to the
internal conductance. Observe that generally Metis+MQI yields better (lower conductance)
cuts while Local Spectral yields pieces that are more compact: they have shorter path
lengths and internal connectivity.

qualitatively different appearance, with the Metis+MQI pieces looking longer and stringier than the Local
Spectral pieces. All of these subgraphs contain roughly 500 nodes, which is a bit more than the natural
cluster size for that graph, and thus the differences between the algorithms start to show up. In these cases,
Local Spectral has grown a cluster out a bit past its natural boundaries (thus the spokes), while Metis+MQI
has strung together a couple of different sparsely connected clusters. (We remark that the tendency of
Local Spectral to trade off cut quality in favor of piece compactness isn’t just an empirical observation, it
is a well understood consequence of the theoretical analysis of spectral partitioning methods.)
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Figure 10.16:Two examples of “communities” found by the LocalSpectral algorithm (on the left) and
two from the Metis+MQI algorithm (on the right). Note that the Local Spectral “commu-
nities” are more compact—they are tighter and have smaller diameter since the algorithm
has difficulty pushing probability mass down long extended paths—while the Metis+MQI
“communities” are more sprawling—they have larger diameterand more diverse internal
structure, but better conductance scores. In both cases, wehave shown communities with
ca. 500 nodes (many of which overlap at resolution of this figure),i.e., just above the
“whisker” size scale.

Finally, in the bottom row of Figure10.15we briefly introduce the topic of internal vs. external cuts, which
is something that none of our algorithms are explicitly trying to optimize. These areagain scatter plots
showing the same set of Local Spectral and Metis+MQI pieces as before, but now the y-axis is external
conductance divided by internal conductance. External conductance is the quantity that we usually plot,
namely the conductance of the cut which separates the piece from the graph. Internal conductance is the
score of a low conductance cutinside the piece (that is, in the induced subgraph on the piece’s nodes).
Intuitively, good communities should have small ratios, ideally below 1.0, which would mean that they
are well separated from the rest of the network, but that they are internally well-connected. However, the
three bottom-row plots show that for these three sample graphs, there are mostly no ratios well below 1.0
except at small sizes. (Of course, any given graph could happen to contain a very distinct piece of any
size, and the roughly thousand-node piece in the EMAIL -ENRON network is a good example.)

This demonstrates another aspect of our findings: small communities of size below ≈ 100 nodes are
internally compact and well separated from the remainder of the network, whereas larger pieces are so hard
to separate that separating them from the network is more expensive than separating them internally.

10.6 Models for network community structure

In this section, we use results from previous sections to devise a model thatexplains the shape of NCP
plots. In Section10.6.1, we examine the NCP plot for a wide range of existing commonly-used network
generation models, and we see that none of them reproduces the observed properties, at even a qualitative
level. Then, in Section10.6.2, we analytically demonstrate that certain aspects of the NCP plot,e.g., the
existence of deep cuts at small size scales, can be explained by very sparse random graph models. Then,
in Section10.6.3, we present a simple toy model to develop intuition about the effect we must reproduce
with a realistic generative model. Finally, in Section10.6.4, we will combine these and other ideas to
describe a Forest Fire graph generation model that reproduces quite well our main observations.
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10.6.1 NCP plots for commonly-used network generation models

We have studied a wide range of commonly-used network generative models inan effort to reproduce
the upward-sloping NCP plots and to understand the structural propertiesof the real-world networks that
are responsible for this phenomenon. In each case, we have experimented with a range of parameters,
and in no case have we been able to reproduce our empirical observations, at even a qualitative level. In
Figure10.17, we summarize these results.

There has been a large body of work subsequent to that of Albert andBarab́asi [Barab́asi and Albert, 1999]
on models in which edges are added via a preferential-attachment or rich-gets-richer mechanism [Newman,
2003, Bollobas and Riordan, 2003]. Much of this work aims at reproducing properties of real-world
graphs such as heavy-tailed degree distributions [Albert et al., 1999, Broder et al., 2000, Faloutsos et al.,
1999]. In these preferential attachment models, one typically connects each new node to the existing net-
work by adding exactlym edges to existing nodes with a probability that depends on the current degree of
that existing node. Figure10.17(a)shows the NCP plot for a10, 000 node network generated according
to the original preferential attachment model [Barab́asi and Albert, 1999], where at each time step a node
joins the graph and connects tom = 2 existing nodes. Note that the NCP plot is very shallow and flat
(more even than the corresponding rewired graph), and thus the network that is generated is expander-like
at all size scales.

A different type of generative model is one in which edges are added viaa copying mechanism [Kumar et al.,
2000]. In this copying model, a new node joins the network by attaching exactlym edges to existing nodes
as follows: the new node first selects uniformly at random a “seed” or “ambassador” nodeu; then, for
each of itsm edges, with probabilityβ the new node links to an existing node chosen randomly, and with
probability1 − β it links to a random neighbor of nodeu. In Figure10.17(b), we show the results for
a network with50, 000 nodes, generated withm = 2 andβ = 0.05. Although intuitively the copying
model aims to produce communities by linking a new node to neighbors of a existingnode, this does not
seem to be the right mechanism to reproduce the NCP plot since potential ambassador nodes are all treated
similarly and since new nodes always create the same number of edges.

Next, in Figure10.17(c), we consider an example of a network that was designed to have a recursively
hierarchical community structure [Ravasz et al., 2002, Ravasz and Barabási, 2003]. In this model, we start
with a 5-node square-like structure with a central node, and then recursivelyexpand the square and link
it to the middle node of the network. This network has power-law degree distribution, and clustering
coefficient that decays as in a characteristic manner [Ravasz and Barabási, 2003]. In this case, however,
the NCP plot is sloping downwards. The local dips in the plot correspond tomultiples of the size of the
basic module of the graph. Although the model generates links such that nodes that are farther apart in
the hierarchy link less frequently, the NCP plot clearly indicates that in aggregate larger communities are
easily separated than smaller communities.

A different way to generate hierarchical networks with power-law degree distributions is the Community
Guided Attachment model [Leskovec et al., 2005b]. Here we decompose the nodes of a graph into a nested
groups of nodes, such that the difficulty of forming links between nodes indifferent groups increases
exponentially with the distance in the community hierarchy. Graphs generated by this principle have both
power-law degree distributions and they also obey the Densification PowerLaw [Leskovec et al., 2005b,
2007b]. As Figure10.17(d)shows, though, the NCP plot is sloping downward. Qualitatively this plot
from CGA is very similar to the plot of the recursive hierarchical construction in Figure10.17(c), which
is not surprising given the similarities of the models.
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Figure 10.17:Network community profile for networks generated from commonly-used procedures to
generate graphs with heavy-tailed degree distributions: (10.17(a)) Preferential attachment;
(10.17(b)) Copying model; (10.17(c)) Hierarchical model; (10.17(d)) Community guided
attachment; (10.17(e)) Geometric preferential attachment; and (10.17(f)) Nested commu-
nity model. See the text for details. Red curves plot the results of the Local Spectral
Algorithm on the specified network, and black curves plot theresults of the Local Spectral
Algorithm applied to a randomly rewired version of the same network.
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Figure10.17(e)shows the NCP plot for a geometric preferential attachment model [Flaxman et al., 2004,
2007]. This model aims to achieve a heavy-tailed degree distribution as well edge locality, and it does
so by making the connection probabilities depend both on the two-dimensional geometry and on the
preferential attachment scheme. As we see, the effect of the underlyinggeometry eventually dominates the
NCP plot since the best bi-partitions are fairly well-balanced [Flaxman et al., 2004]. Intuitively, geometric
preferential attachment graphs look locally expander-like, but at larger size scales the union of such small
expander graphs behaves like a geometric mesh. We also experimented with the small-world model by
Watts and Strogatz [Watts and Strogatz, 1998], in which the NCP plot in some sense behaves exactly the
opposite (plot not shown): first the NCP plot decreases, and then it flattens out. Intuitively, a small-world
network looks locally like a mesh, but when one reaches larger size scales, the randomly rewired edges
start to appear and the graph looks like an expander.

Finally, we explored in more detail networks with explicitly planted community structure. For example,
we started with10 isolated communities generated using theGn,p model, and then we generated a random
binary tree. For each internal node at heighth we link the nodes in both sides of the tree with probability
ph, for a probability parameterp. This and other related networks gives a graph of nested communities
resembling the hierarchical clustering algorithm of Newman and Girvan [Newman and Girvan, 2004].
We see, however, from Figure10.17(f)that the NCP plot slopes steadily downward, and furthermore we
observe that dips correspond to the cuts that separate the communities.

These experiments demonstrate that hierarchically nested networks and networks with underlying geo-
metric or expander like structure exhibit very different NCP plots than observed in real networks. So the
question still remains: what causes NCP plot to decrease and then start to increase?

10.6.2 Very sparse random graphs have very unbalanced deep cuts

In this section, we will analyze a very simple random graph model which reproduces relatively deep cuts at
small size scales and which has a NCP plot that then flattens out. Understanding why this happens will be
instructive as a baseline for understanding the community properties we have observed in our real-world
networks.

Here we work with the random graph model with given expected degrees,as described by Chung and
Lu [Chung and Lu, 2006a, 2002b, Chung et al., 2003a, Chung and Lu, 2002a, 2003, Chung et al., 2003b,
2004, Chung and Lu, 2006b]. Let n, the number of nodes in the graph, and a vectorw = (w1, . . . , wn),
which will be the expected degree sequence vector (where we will assumethatmaxi w

2
i <

∑
k wk), be

given. Then, in this random graph model, an edgeeij between nodesi andj is added, independently,
with probability pij = wiwj/

∑
k wk. Thus,P (eij = 1) = pij andP (eij = 0) = 1 − pij . We use

G(w) to denote a random graph generated in this manner. (Note that this model is different than the
so-called “configuration model” in which the degree distribution is exactly specified and which was stud-
ied by Molloy and Reed [Molloy and Reed, 1995, 1998] and also Aiello, Chung, and Lu [Aiello et al.,
2000, 2001]. This model is also different than generative models such as preferential attachment mod-
els [Barab́asi and Albert, 1999, Newman, 2003, Bollobas and Riordan, 2003] or models based on opti-
mization [Doyle and Carlson, 2000, 2002, Fabrikant et al., 2002], although common to all of these gen-
erative models is that they attempt to reproduce empirically-observed power-law behavior [Albert et al.,
1999, Faloutsos et al., 1999, Broder et al., 2000, Newman, 2005, Clauset et al., 2007].)

In this random graph model, the expected average degree iswav = 1
n

∑n
i=1 wi and the expected second-

order average degree is̃w =
∑n

i=1 w2
i /
∑

k wk. LetwG =
∑

i wi denote the expected total degree. Given
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a subsetS of nodes, we define the volume ofS to bewS =
∑

v∈S wv and we say thatS is c-giant if its
volume is at leastcwG, for some constantc > 0. We will denote the actual degrees of the graphG by
{d1, d2, . . . , dn}, and will defined(S) to be the sum of the actual degrees of the vertices inS. Clearly, by
linearity of expectation, for any subsetS, E(d(S)) = wS .

The special case of theG(w) model in whichw has a power law distribution is of interest to us here. (The
other interesting special case, in which all the expected degreeswi are equal tonp, for somep ∈ [0, 1],
corresponds to the classical Erdös-RenyiGnp random graph model [Bollobás, 1985].) Given the number
of nodesn, the power-law exponentβ, and the parametersw andwmax, Chung and Lu [Chung and Lu,
2006a] give the degree sequence for a power-law graph:

wi = ci−1/(β−1) for i s.t. i0 ≤ i < n + i0, (10.10)

where, for the sake of consistency with their notation, we index the nodes from i0 to n+ i0−1, and where
c = c(β, w, n) andi0 = i0(β, w, n, wmax) are as follows:

c = αwn1/(β−1) andi0 = n

(
α

w

wmax

)β−1

, (10.11)

where we have definedα = β−2
β−1 . It is easy to verify that:wmax = maxi wi is the maximum expected

degree; the average expected degree is given bywav = 1
n

∑n
i=1 wi = w(1+o(1)); the minimum expected

degree is given bywmin = mini wi = wα(1−o(1)); and the number of vertices that have expected degree
in the range(k − 1, k] is proportional tok−β .

The following theorem characterizes the shape of the NCP plot for thisG(w) model when the degree dis-
tribution follows Equation (10.10), with β ∈ (2, 3). The theorem makes two complementary claims. First,
there exists at least one (small but moderately deep) cut in the graph of size Θ(log n) and conductance
Θ( 1

log n). Second, for some constantsc′ andε, there are no cuts in the graph of size greater thanc′ log n
having conductance less thanε. That is, this model has clusters of logarithmic size with logarithmically
deep cuts, and once we get beyond this size scale there do not exist anysuch deep cuts.

Theorem 10.6.1. Consider the random power-law graph modelG(w), wherew is given by Equa-
tion (10.10), wherew > 5.88, and the power-law exponentβ satisfies2 < β < 3. Then, then with
probability1− o(1):

1. There exists a cut of sizeΘ(log n) whose conductance isΘ
(

1
log n

)
.

2. There existsc′, ε > 0 such that there are no sets of size larger thanc′ log n having conductance
smaller thanε.

Proof. Combine the results of Lemma10.6.2and Lemma10.6.4.

The two claims of Theorem10.6.1are illustrated in Figure10.18(a). Note that whenw ≥ 4
e andβ ∈ (2, 3)

then a typical graph in this model is not fully connected but does have a giant component [Chung and Lu,
2006a]. (The well-studiedGn,p random graph model [Bollobás, 1985] has a similar regime whenp ∈
(1/n, log n/n), as will be discussed in Section10.7.4.)

In addition, under certain conditions on the average degree and secondorder average degree, the aver-
age distance between nodes is inO (log log n) and yet the diameter of the graph isΘ (log n). Thus, in
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(a) NCP plot suggested by our main theorem (b) Structure ofG(w) model

Figure 10.18:The G(w) model in the sparseβ ∈ (2, 3) parameter regime. (a) Network community
profile plot, as suggested by our main theorem. (b) Caricature of network structure.

this case, the graph has an “octopus” structure, with a subgraph containing nc/(log log n) nodes constitut-
ing a deep core of the graph. The diameter of this core isO(log log n) and almost all vertices are at
a distance ofO(log log n) from this core. However, the pairwise average distance of nodes in the en-
tire graph isO(log n/ log w̃). A schematic picture of theG(w) model whenβ ∈ (2, 3) is presented in
Figure10.18(b).

Our first lemma claims that for theG(w) model, if the degree distributionw follows the above power-law,
then there exists a moderately large cut with small conductance. In order to prove the existence of a cut
of sizeΘ(log n) and conductanceΘ( 1

log n), it is sufficient to concentrate on the existence of whiskers that
are large enough. In particular, to prove the following lemma, we compute the probability that there exists
a cut of both volume and sizeΘ(log n) and cut-size1. (Note that although we formally state the lemma
in terms of the power-law random graph model, the proof will show that the mainclaim holds for a more
general representation of the heavy-tailed degree distribution.)

Lemma 10.6.2.For theG(w) model, wherew follows a power-law degree distribution with2 < β < 3
then, with probability1− o(1) there exists a set of sizeΘ(log n) with conductanceΘ( 1

log n).

Proof. Let S be a subset with the following description.S = {v0, v1, . . . , vk}, wherek = c1 log n. Let
wi denote the degree ofvi. We have thatw0 ∈ [c2 log n, 2c2 log n] andwi ≤ w for all i > 0. Thus the
expected volume ofS is wS ∈ [(2αwc2 + c1) log n, (2αwc2 + c1) log n], and the size ofS is c1 log n + 1.
Note that the expected volume of the graph can be computed aswG = wn, and henceρ = 1

wG
= 1

wn .

Now, let n1 denote the number of vertices of expected degree at most2αw. By simple calculation,
n1 ≥ n/2. The number of possible choices for the vertexv0 can be computed as follows. LetB be
the set of vertices having degree greater than2αwc2 log n andA be the set of vertices with degree at
most2αwc2 log n. Then the number of nodes with degree in[c2 log n, 2c2 log n] is given by the size of
V \ (A ∪B) which is

αw

(
n

c2 log n

)β−1

− αw

(
n

2c2 log n

)β−1

≥ αw

(
n

c2 log n

)β−1

,

sinceβ > 2. Thus the number of possible such subsetsS is given by the number of choices forv0 times
the number of possible choices for the nodesv − 1, . . . , vk. Thus, the numberN of possible such subsets
S is at least

N =

(
n1

c1 log n

)
× α

(
n

2c2 log n

)β−1

.
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We say thatS is good if, after instantiating all the edges,S has a star of sizec1 log n centered atv0, and
v0 is connected tōS by exactly one edge, and none of the other vertices inS have any edge tōS. The
probability that a particular setS is good is the product of the following terms: the probabilityp1 that
there is star of sizec1 log n with v0 at the center, the probabilityp2 that none of the nodesv1, . . . , vk link
to any nodes in̄S, and the probabilityp3 thatv0 connects tōS using exactly one edge. We now calculate
the three probabilities as follows. First,

p1 =
∏

i∈[1...k]

w0wiρ ≥ (w0αwρ)c1 log n,

since eachwi ≥ wmin ≥ αw. Next,

p2 =
∏

i=1,...k

∏

j /∈S

(1− wjρ) ≥
∏

i=1,...k

∏

j /∈S

e−wiρ/2 = e−(c1ρ2αwwS̄ log n)/2,

obtained by using1 − x ≥ e−x/2 for 0 < x < 1, andwi ≤ 2αw for i ∈ S, i > 1. Finally, we getp3 as
follows. First note

p3 =
∑

j∈S̄

w0wjρ
∏

k 6=j,k∈S̄

(1− wkw0ρ)

≥
∑

j∈S̄

w0wjρe−(wS̄ −wj)w0ρ/2

= w0ρe−wS̄w0ρ/2(
∑

j∈S̄

wje
wjw0ρ/2).

Then, sincewjw0ρ� 1 and sinceex ≥ 1 + x, we have that

p3 ≥ w0ρe−wS̄w0ρ/2(
∑

j∈S̄

wj(1 +
wjw0ρ

2
))

≥ w0ρe−wS̄w0ρ/2(wS̄ + w0ρw̃S̄/2),

wherew̃S̄ =
∑

j∈S̄ w2
j . So the final probability of goodness ofS is

p = p1 × p2 × p3 ≥ (w0αwρ)c1 log n × e−(c1ρ2αwwS̄ log n)/2 × w0ρe−wS̄w0ρ/2(wS̄ + w0ρw̃S̄/2)

= (w0αwρ)c1 log n × e−(c1γ2αw log n) × w0ρe−γw0(wS̄ + w0ρw̃S̄/2),

usingγ = ρwS̄/2. So the expected number of such good subsetsS is

Np ≥
(

n1

c1 log n

)
× αw

(
n

2c2 log n

)β−1

× (w0αwρ)c1 log n × e−(c1γ2αw log n) × w0ρe−γw0(wS̄ + w0ρw̃S̄/2)

≥
(

n1

c1 log n

)c1 log n

× αwnβ−1

(2c2 log n)β−1
× (w0αwρ)c1 log n × e−(c1γ2αw log n) × w0ρe−γw0 × nw/2,

using Stirling’s formula and the fact thatwS̄ ≥ nw/2. Using the value ofn1 and sincenwρ = 1,

Np ≥
(

n

2c1 log n

)c1 log n

× αwnβ−1

(2c2 log n)β−1
× (w0αwρ)c1 log n × e−(c1γ2αw log n) × e−γw0 × w0/2

≥
(

w0α

2c1 log n

)c1 log n

× αwnβ−1

(2c2 log n)β−1
× (w0αwρ)c1 log n × e−(c1γ2αw log n) × e−γw0 × w0/2.
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Usingw0 ≥ c2 log n, we have that have that

Np ≥
(

c2α

2c1

)c1 log n

× αwnβ−1

2(2c2 log n)β−2
× e−(c1γ2αw log n) × e−γw0

≥ eΘ log n × αw

2(2c2 log n)β−2
,

whereΘ = c1 log( c2α
2c1

) + (β − 1)− γαwc1 − 2γc2. Note that for2 < β < 3, we have that0 < α < 1
2 .

Also, γ = 1
2 − o(1). Thus, choosingc2 = 2ec1/α andc1 = β−2

2γαw+4γe/α−1 , we getΘ = 1. So,

Np ≥ elog n × αw

2(2c2 log n)β−2
= Ω(log n)

Then, the probability is a particular setS is good isp ≥ Ω
(

(log n)
N

)
. Hence the probability of getting a

good set is

1− (1− p)N ≥ 1−
(

1− Ω

(
(log n)β−2

N

))N

≥ 1− o(1)

We next state the well-known Chernoff bound [Chung and Lu, 2006a], which we will use below.

Lemma 10.6.3.LetX =
∑

i Xi where theXi are independent random variables withXi ≥ −M . Define
‖X‖2 =

∑
i E(X2

i ). Then,

Pr(X ≥ E(X)− λ) ≤ exp

(
− λ2

2(‖X‖2 + Mλ/3)

)
. (10.12)

Finally, we show that there are no deep cuts with size greater thanΘ(log n). To state this lemma, define a
connected setS to beε-deficit set if it has actual volumed(S) ≤ 1

2d(G) and if the conductance of the cut
(S, S̄) is at mostε, i.e., if the number of edges leavingS is at mostεd(S).

Lemma 10.6.4.For theG(w) model, wherew follows a power-law degree distribution with2 < β < 3,
if the average degreew satisfiesw ≥ 5.88, then with probability1− o(1) there exists constantsc′, ε such
that there is noε-deficit set of size more thanc′ log n.

Proof. Let e(S, S̄) denote the actual number of edges betweenS andS̄. First we compute the probability
that a given setS is ε-deficit, that is,S satisfiese(S, S̄) < εd(S). Let δ = 2ε

1−ε . For our case, define
the variablesX(i,j) = eij for (i, j) ∈ (S, S̄) andX(i,j) = −δeij for (i, j) ∈ (S, S). Then the sum
X =

∑
X(i,j) =

∑
(i,j)∈(S,S̄) eij − δ

∑
(i,j)∈(S,S̄) eij . Note thate(S, S̄) < εd(S) ⇐⇒ X ≤ 0. Using

the fact thatE(eij) = wiwjρ, we have‖X‖2 =
∑

E(X2
ij) = wSwS̄ρ + δ2w2

Sρ. Furthermore, exploiting
the fact that eachXi ≥ −δ, we get that

Pr(X ≤ 0) = Pr(X ≤ E(X)−E(X))

≤ exp

(
− E(X)2

2(‖X‖2 + δE(X)/3)

)

= exp

(
− ρ2w2

S(wS̄ − δwS)2

2(wSρ(wS̄ + δ2wS) + δwSρ(wS̄ − δwS)/3)

)
.
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CancelingρwS from both numerator and denominator,

Pr(X ≤ 0) ≤ exp

(
− ρwS(wS̄ − δwS)2

2(wS̄ + δ2wS + δwS̄/3− δ2wS/3)

)

≤ exp

(
− ρwS(wS̄ − δwS)2

2(1 + δ/3 + 2δ2/3)wS̄

)
≤ exp

(
−ρwSwS̄(1− 2δwS/wS̄)

2(1 + δ/3 + 2δ2/3)

)

≤ exp

(
− ρwSwS̄(1− 2δ)

2(1 + δ/3 + 2δ2/3)

)
≤ exp (−ρwSwS̄Aδ/2) ,

whereAδ = 1−2δ
(1+2δ/3+2δ2/3)

. So this bounds the probability that a particular setS of sizek is ε-deficit. We
will bound the expected number of suchε-deficit subsets of sizek. First, letNk,ε,γ denote the expected
number ofε-deficit sets of sizek that have expected volumewS ≤ γwG. By linearity of expectation,

Nk,ε,γ ≤
∑

S:|S|=k

wS≤γwG

wi1 . . . wikwk−2
S ρk−1 exp (−ρwSwS̄Aδ/2)

≤
∑

S:|S|=k

wS≤γwG

w2k−2
S

kk
ρk−1 exp((−wS(1− γ)Aδ)),

where we used the fact thatγ = ρwS̄/2 and also the AM-GM inequality to say that
∏

i∈S wi ≤
(∑

i∈S wi

k

)k
.

Now, F (x) = x2k−2e−xAδ(1−γ) is maximized atx = 2k−2
Aδ(1−γ) . Thus, the above sum is maximized when

wS = 2k−2
Aδ(1−γ) . Hence,

Nk,ε,γ ≤ nk

k!

ρk−1

kk

2(2k−2) · (k − 1)(2k−2)

(Aδ(1− γ))(2k−2)
exp(−2k + 2)

≤ (nρ)k

ρ
√

k(k/e)k

1

kk

2(2k−2) · (k − 1)(2k−2)

(Aδ(1− γ))(2k−2)
exp(−2k + 2).

Using(1− 1
k )2k ≤ e−2, it follows that

Nk,ε,γ ≤ 1

4e
√

k(k − 1)2

(
4

ewA2
δ(1− γ)2

)k

.

We would like
∑cn

k=c log n Nk,ε,γ to beo(1), for which we need

4

ewA2
δ(1− γ)2

< 1,

which gives a bound on average degree:

w ≥ 4

A2
δ(1− γ)2e

.

For sets of volumewS ≥ γwG, we have the following. From the double-sided Chernoff bound, for any
fixed setS,

|wS − d(S)| ≤ λ with probability1− 2 exp

(
− λ2

2(wS + λ/3)

)
.
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So if λ =
√

wS log n, we have the above statement with probability1− 2 exp(−3 log2 n/8). Similarly,

|e(S, S̄)−E(e(S, S̄))| ≤ λ with probability1− 2 exp

(
− λ2

2(ρwSwS̄ + λ/3)

)
.

By havingλ =
√

ρwSwS̄ log n the above probability becomes1−2 exp(−3 log2 n/8). Now, if both these
events occur, then the conductance of the setS is at least1/3. So the only way we can get anε-deficit set
is at by having one of these conditions to be invalid. The total number of sets of expected volumeγwG is
bounded by

(
wG

γwG

)
. So, the expected number ofε-deficit sets of volume at leastγwG is bounded by

∑

γ≤θ≤1/2

(
wG

θwG

)
4 exp(−3 log2 n/8) ≤

∫

γ≤θ≤1/2

1√
θwG

(
1

θ

)θwG

4 exp(−3 log2 n/8) ≤ o(1).

Thus, putting the two bounds together, the expected number ofε-deficit sets of size greater thatc log n
is at mosto(1). Thus with probability1 − o(1) there does not exist anε-deficit set of size greater than
c log n.

10.6.3 An intuitive toy model for generating an upward-sloping NCP plot

We have seen that commonly-studied models, including preferential attachment models, copying models,
simple hierarchical models, and models in which there is an underlying mesh-likeor manifold-like geom-
etry are not the right way to think out the community structure of large social and information networks.
We have also seen that the extreme sparsity of the networks, coupled with randomness, can be responsible
for the deep cuts at small scales.

To build intuition as to what the gradually increasing NCP plot might mean, consider Figure10.19. This
is a toy example of a network construction in which the NCP plot has a deep dip at a small size scale
and then steadily increases. The network shown in Figure10.19(a)is an infinite tree that has two parts.
The top part, a subtree (with one node in this example, but more generally consisting ofnT nodes) is
indicative of the whiskers, or the “small scale” structure of the graph. The remaining tree has the property
that the number of children increases monotonically with the level of the node.This property is indicative
of the fact that as the size of a cluster grows, the number of neighbors that it has also increases. The key
insight in this construction is that the best conductance cuts first cut at thetop of the growing tree and then
gradually work their way “down” the tree, starting with the small subtrees andmoving gradually down the
levels, as depicted in Figure10.19(a).

Thus, intuitively, one can think of small well-separated communities—those below thenT size scale that
consist of subsets of the small trees—starting to grow, and as they pass thenT size scale and become
bigger and bigger, they blend in more and more with the central part of the network, which (since it ex-
hibits certain expander-like properties) does not have particularly well-defined communities. Note (more
generally) that if there arenT nodes in the small tree at the top of the graph, then the dip in the NCP plot
in Figure10.19(b)is of depth2/(nT + 1). In particular, ifnT = Θ(log n) then the depth of this cut is
Θ(1/ log n).

Intuitively, the NCP plot increases since the “cost” per edge for every additional edge inside a cluster
increases with the size of the cluster. For example, in cutA in Figure10.19(a), the “price” for having3
internal edges is to cut6 edges,i.e., 2 edges cut per edge inside. To expand the cluster by just a single
edge, one has to move one level down in the tree (toward the cutB) where now the price for a single edge
is 4 edges, and so on.
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Figure 10.19:Schematic picture of the properties of a network responsible for the upward-sloping com-
munity profile plot. (a) This toy model is designed so that theoptimal conductance cuts
are achieved by cutting nodes from the top of the tree. (b) Theminimum of the NCP plot
is achieved by cutting the single top node, and then larger and larger cuts have gradually
worse and worse conductance values.

10.6.4 A more realistic model of network community structure

The question arises now as to whether we can find a simple generative model that can explain both the
existence of small well-separated whisker-like clusters and also an expander-like core whose best clusters
get gradually worse as the purported communities increase in size. Intuitively, a satisfactory network
generation model must successfully take into account the following two mechanisms:

(a) The model should produce a relatively large number of relatively small—but still large when com-
pared to random graphs—well connected and distinct whisker-like communities. (This should re-
produce the downward part of the community profile plot and the minimum at smallsize scales.)

(b) The model should produce a large expander-like core, which may bethought of as consisting of
intermingled communities, perhaps growing out from the whisker-like communities, the boundaries
of which get less and less well-defined as the communities get larger and larger and as they gradually
blend in with rest of the network. (This should reproduce the gradual upward sloping part of the
community profile plot.)

The so-calledForest Fire Model[Leskovec et al., 2005b, 2007b] captures exactly these two competing
phenomena. The Forest Fire Model is a model of graph generation (thatgenerates directed graphs—an
effect we will ignore) in which new edges are added via a recursive “burning” mechanism in an epidemic-
like fashion. Since the details of the recursive burning process are critical for the model’s success, we
explain it in some detail.

To describe the Forest Fire Model of [Leskovec et al., 2005b, 2007b], let us fix two parameters, aforward
burning probabilitypf and abackward burning probabilitypr. We start the entire process with a single
node, and at each time stept > 1, we consider a new nodev that joins the graphGt constructed thus far.
The nodev forms out-links to nodes inGt as follows:

(i) Nodev first choose a nodew, which we will refer to as a “seed” node or an “ambassador” node,
uniformly at random and forms a link tow.
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Figure 10.20:The Forest Fire burning process. Left: a new nodev joins the network and selects a
seed nodew. Middle: v then attaches itself by recursively linking tow’s neighbors,w’s
neighbor-neighbors, and so on, according to the “forest fire” burning mechanism described
in the text. Right: a new nodev′ joins the network, selects seedw′, and recursively adds
links using the same “forest fire” burning mechanism. Noticethat if v′ causes a large “fire,”
it links to a large number of existing nodes. In this way, as potential communities around
nodew grow, the NCP plot is initially decreasing, but then larger communities aroundw
gradually blend-in with the rest of the network, which leadsthe NCP plot to increase.

(ii) Nodev selectsx out-links andy in-links of w that have not yet been visited. (x andy are two geo-
metrically distributed random numbers with meanspf/(1−pf ) andpr/(1−pr), respectively. If not
enough in-links or out-links are available, thenv selects as many as possible.) Letw1, w2, . . . , wx+y

denote the nodes at the other ends of these selected links.

(iii) Node v forms out-links tow1, w2, . . . , wx+y, and then applied step (ii) recursively to each of the
w1, w2, . . . , wx+y, except that nodes cannot be visited a second time during the process.

Thus, burning of links in the Forest Fire Model begins at nodew, spreads tow1, w2, . . . , wx+y, and
proceeds recursively until the process dies out. One can view such a process intuitively as corresponding
to a model in which a person comes to the party and first meets an ambassador who then introduces him or
her around. If the person creates a small number of friendships these will likely be from the ambassadors
“community,” but if the person happens to create many friendships then these will likely go outside the
ambassador’s circle of friends. This way, the ambassador’s community might gradually get intermingled
with the rest of the network.

Two properties of this model are particularly significant. First, although manynodes might form one or
a small number of links, certain nodes can produce large conflagrations,burning many edges and thus
forming a large number of out-links before the process ends. Such nodes will help generate a skewed
out-degree distribution, and they will also serve as “bridges” that connect formerly disparate parts of the
network. This will help make the NCP plot gradually increase. Second, there is a locality structure in that
as each new nodev arrives over time, it is assigned a “center of gravity” in some part of the network, i.e.,
at the ambassador nodew, and the manner in which new links are added depends sensitively on the local
graph structure around nodew. Not only does the probability of linking to other nodes decrease rapidly
with distance to the current ambassador, but because of the recursiveprocess regions with a higher density
of links tend to attract new links.

Figure10.20illustrates this. Initially, there is a small community around nodew. Then, nodev joins
and using the Forest Fire mechanism locally attaches to nodes in the neighborhood of seed nodew. The
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Figure 10.21:Community profile plots for the Forest Fire Model at various parameter settings. The back-
ward burning probability ispb = 0.3, and we increase (left to right, top to bottom) the
forward burning probabilitypf = {0.26, 0.31, 0.33, 0.35, 0.37, 0.40}. Note that the largest
and smallest values forpf lead to less realistic community profile plots, as discussedin the
text.

growth of the community aroundw corresponds to downward part of the NCP plot. However, if a nodev′

then joins and causes a large fire, this has the effect of larger and larger communities aroundw blending
into and merging with the rest of the network.
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Figure 10.22:Examples of whiskers from a simulation of the Forest Fire Model with parameter settings
pf = 0.37 andpb = 0.3. The green square node belongs to the network core, and by
cutting the edge connecting it with red circular node we separate the community of circles
from the rest of the network (depicted as a green square).

Not surprisingly, however, the Forest Fire Model is sensitive to the choice of the burning probabilities
pf andpb. We have experimented with a wide range of network sizes and values for these parameters,
and in Figure10.21, we show the community profile plots of several10, 000 node Forest Fire networks
generated withpb = 0.3 and several different values ofpf . The first thing to note is that since we are
varying pf the six plots in Figure10.21, we are viewing networks with very different densities. Next,
notice that if,e.g., pf = 0.33 or pf = 0.35 then we observe a very natural behavior: the conductance
nicely decreases, reaches the minimum somewhere between10 and100 nodes, and then slowly but not
too smoothly increases. Not surprisingly, it is in this parameter region wherethe Forest Fire Model
has been shown to exhibit realistic time evolving graph properties such as densification and shrinking
diameters [Leskovec et al., 2005b, 2007b].

Next, also notice that ifpf is too low or too high, then we obtain qualitatively different results. For
example, ifpf = 0.26, then the community profile plot gradually decreases for nearly the entire plot. For
this choice of parameters, the Forest Fire does not spread well since theforward burning probability is too
small, the network is extremely sparse and is tree-like with just a few extra edges, and so we get large well
separated “communities” that get better as they get larger. On the other hand, when burning probability
is too high,e.g., pf = 0.40, then the NCP plot has a minimum and then rises extremely rapidly. For
this choice of parameters, if a node which initially attached to a whisker successfully burns into the core,
then it quickly establishes many successful connections to other nodes in the core. Thus, the network has
relatively large whiskers that failed to establish such a connection and a very expander-like core, with no
intermediate region, and the increase in the community profile plot is quite abrupt.

We have examined numerous other properties of the graphs generated bythe Forest Fire Model and have
found them to be broadly consistent with the social and information networkswe have examined. One
property, however, that is of particular interest is what the whiskers look like. Figure10.22shows an
example of several whiskers generated by the Forest Fire Model if we choosepb = 0.30 andpf = 0.37.
They are larger and more well-structured than the tree-like whiskers fromthe random graph model of
Section10.6.2. Also notice that they all look plausibly community-like with a core of the nodes densely
linked among themselves and the bridge edge then connects the whisker to the rest of the network.

We conclude by noting that there has also been interest in developing hierarchical graph generation mod-
els, i.e., models in which a hierarchy is given and the linkage probability between pairs of nodes de-
creases as a function of their distance in the hierarchy [Ravasz et al., 2002, Ravasz and Barabási, 2003,
Chakrabarti et al., 2004, Abello, 2004, Leskovec et al., 2005a, Clauset et al., 2006, Xuan et al., 2006,
Leskovec and Faloutsos, 2007]. The motivation for this comes largely from the intuition that nodes in
social networks and are joined in to small relatively tight groups that are then further join into larger
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groups, and so on. As Figures10.17(c)and10.17(d)make clear, however, such models do not immedi-
ately lead to community structure similar to what we have observed and which hasbeen reproduced by
the Forest Fire Model. On the other hand, although there are significant differences between hierarchical
models and the Forest Fire Model, [Leskovec et al., 2005b, 2007b] notes that there are similarities. In
particular, in the Forest Fire Model a new nodev is assigned an ambassadorw as an entry point to the
network. This is analogous to a child having a parent in the hierarchy whichhelps to determine how
that node links to the remainder of the network. Similarly, many hierarchical models have a connection
probability that decreases exponentially in the hierarchical tree distance.In the Forest Fire Model, the
probability that a nodev will burn along a particular path to another nodeu′ is exponentially small in the
path length, although the analogy is not perfect since there may exist many possible paths.

10.7 Discussion

In this section, we discuss several aspects of our main results in a broader context. In particular, in
Section10.7.1, we compare to several data sets in which there is some notion of “ground truth” community
and we also describe several broader non-technical implications of ourresults. Then, in Section10.7.3,
we describe recent work on community detection and identification. Finally, in Section10.7.4, we discuss
several technical and algorithmic issues and questions raised by our work.

10.7.1 Comparison with “ground truth” and sociological communities

In this subsection, we examine the relationship between network communities of the sort we have been
discussing so far and some notion of “ground truth.” When considering areal network, one hopes that the
output of a community finding algorithms will be “real” communities that exist in some meaningful sense
in the real world. For example, in the Karate club network in Figure10.5(a), the cut found by the algorithm
corresponds in some sense to a true community, in that it splits the nodes almost precisely as they split into
two newly formed karate clubs. In this section, we take a different approach: we take networks in which
there are explicitly defined communities, and we examine how well these communitiesare separated from
the rest of the network. In particular, we examine a minimum conductance profile of several network
datasets, where we can associate with each node one or more community labelswhich are exogenously
specified. Note that we are overloading the term “community” here, as in this context the term might mean
one of two things: first, it can refer to groups of nodes with good conductance properties; second, it can
refer to groups of nodes that belong to the same self-defined or exogenously-specified group.

We consider the following five datasets:

• L IVEJOURNAL12 [Backstrom et al., 2006]: LiveJournal is an on-line blogging site where users can
create friendship links to other users. In addition, users can create groups which other users can
then join. In LiveJournal, there are385, 959 such groups, and a node belongs to3.5 groups on the
average. Thus, in addition to the information in the interaction graph, we havelabels specifying
those groups with which a user is associated, and thus we may view each such group as determining
a “ground truth” community.

• CA-DBLP [Backstrom et al., 2006]: We considered a co-authorship network in which nodes are
authors and there is an edge if authors co-authored at least one paper. Here, publication venues (e.g.,
journals and conferences) can play the role of “ground truth” communities. That is, an author is a
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member of a particular group or community if he or she published at a particularconference or in
a particular journal. In our DBLP network, there are2, 547 such groups, with a node belonging to
2.6 on the average.

• AMAZONALL PROD [Clauset et al., 2004]: This is a network of products that are commonly pur-
chased together atamazon.com . (Intuitively one might expect that,e.g., gardening books are
frequently purchased together, so the network structure might reflect awell-connected cluster of
gardening books.) Here, each item belongs to one or more hierarchically organized categories
(book, movie genres, product types, etc.), and products from the samecategory define a group
which we will view as a “ground truth” community. Items can belong to49, 732 different groups,
and each item belongs to14.3 groups on the average.

• ATM-IMDB: This network is a bipartite actors-to-movies network composed from IMDB data, and
an actorA is connected to movieB if A appeared inB. For each movie we also know the language
and the country where it was produced. Countries and languages may betaken as “ground truth”
communities or groups, where every movie belongs to exactly one group andactors belongs to all
groups to which movies that they appeared in belong. In our dataset, we have393 language groups
and181 country groups.

• EMAIL -INSIDE and EMAIL -INOUT [Leskovec et al., 2007b]: This is an email communication net-
work from a large European research organization conducting research in natural sciences: physics,
chemistry, biology and computer science. Each of986 members of the organization belongs to
exactly one of45 departments, and we use the department memberships to define “ground truth”
communities.

Although none of these notions of “ground truth” is perfect, many community finding algorithms use
precisely this form of anecdotal evaluation: a network is taken, network communities are found, and
then the correspondence of network communities to “ground truth” communitiesis evaluated. Note, in
contrast, we are evaluating how “ground truth” communities behave at different size scales with respect
to our methodology, rather than examining how the groups we find relate to “ground truth” communities.
Furthermore, note that the notions of “ground truth” are not all the same—we might expect that people
publish papers across several different venues in a very different way than actors appear in movies from
different countries. More detailed statistics for each of these networks may be found in TablesA.2, A.3
andA.4.

To examine the quality of “ground truth” communities in the these network datasets, we take all groups
and measure the conductance of the cut that separates that group fromthe rest of the network. Thus,
we generated NCP plots in the following way. For every “ground truth” community, we measure the
conductance of the cut separating it from the rest of the graph, from which we obtain a scatter plot of
community size versus conductance. Then, we take the lower-envelope ofthis plot, i.e., for every integer
k we find the conductance value of the community of sizek that has the lowest conductance. Figure10.23
shows the results for these network datasets; the figure also shows the NCP plot obtained from using the
Local Spectral Algorithm on both the original network (plotted in red) and on the rewired network (plotted
in black).

Several observations can be made:

• The conductance of “ground truth” communities follows that for the networkcommunities up to un-
til size 10-100 nodes,i.e., larger communities get successively more community-like. As “ground
truth” communities get larger, their conductance values tend to get worse and worse, in agreement
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Figure 10.23:Network community profile plots for explicitly “ground truth” communities (green), com-
pared with that for the original network (red) and a rewired version of the network (black):
(a) LIVEJOURNAL12; (b) CA-DBLP; (c) AMAZONALL PROD; (d) EMAIL -INSIDE; and
(e-f) ATM-IMDB.
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with network communities discovered with graph partitioning approximation algorithms. Thus, the
qualitative trend we observed in nearly every large sparse real-world network (of the best commu-
nities blending in with the rest of the network as they grow in size) is seen to holdfor small “ground
truth” communities.

• One might expect that the NCP plot for the “ground truth” communities (the green curves) will
be somewhere between the NCP plot of the original network (red curves)and that for the rewired
network (black curves), and this is seen to be the case in general. The NCP plot for network
communities goes much deeper and rises more gradually than for “ground truth” communities.
This is also consistent with our general observation that only small communitiestend to be dense
and well separated, and to separate large groups one has to cut disproportionately many edges.

• For the two social networks we studied (LIVEJOURNAL12 and CA-DBLP), larger “ground truth”
communities have conductance scores that get quite “random”,i.e., they are as well separated as
they would be in a randomly rewired network (green and black curves overlap). This is likely
associated with the relatively weak and overlapping notion of “ground truth” we associated with
those two network datasets. On the other hand, for AMAZONALL PROD and ATM-IMDB networks,
the general trend still remains but large “ground truth” communities have conductance scores that
lie well below the rewired network curve.

Our email network illustrates a somewhat different point. The NCP plot for EMAIL -INSIDE should be
compared with that for EMAIL -INOUT, which is displayed in Figure10.7. The EMAIL -INSIDE email
network is rather small, and so it has a decreasing community profile plot, in agreement with the results
for small social networks. Since communication is mainly focused between the members of the same
department, both network and “ground truth” communities are well expressed. Next, compare the NCP
plot of EMAIL -INSIDE with that of EMAIL -INOUT (Figure10.7). We see that the NCP plot of EMAIL -
INSIDE slopes downwards (as we consider only the communication inside the organization), but as soon
as we consider the communication inside the organization and to the outside world(EMAIL -INOUT, or
alternatively, see EMAIL -ENRON) then we see a completely different and more familiar picture—the NCP
plot drops and then slowly increases. This suggests that the organizational structure, (e.g., departments)
manifest themselves in the internal communication network, but as soon as we put the organization into the
broader context (i.e., how it communicates to the rest of the world) then the internal department structure
seems to disappear.

10.7.2 Connections and broader implications

In contrast to numerous studies of community structure, we find that there is anatural size scale to com-
munities. Communities are relatively small, with sizes only up to about100 nodes. We also find that
above size of about100, the “quality” of communities gets worse and worse and communities more and
more “blend into” the network. Eventually, even the existence of communities (at least when viewed as
sets with stronger internal than external connectivity) is rather questionable. We show that large social
and information networks can be decomposed into a large number of small communities and a large dense
and intermingled network “core”—we empirically establish that the “core” contains on average60% of
the nodes and80% of all edges. But, as demonstrated by Figure10.13, the “core” itself has a non-
trivial structure—in particular, it has a core-whisker structure that is analogous to the original complete
network.
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The Dunbar number: Our observation on the limit of community size agrees with Dunbar [Dunbar,
1998] who predicted that roughly150 is the upper limit on the size of a well-functioning human commu-
nity. Moreover, Allen [Allen, 2004] gives evidence that on-line communities have around60 members,
and on-line discussion forums start to break down at about80 active contributors. Church congregations,
military companies, divisions of corporations, all are close to the sum of150 [Allen, 2004]. We are thus
led to ask: Why, above this size, is community quality inversely proportional to itssize? And why are
NCP plots of small and large networks so different?

Previous studies mainly focused on small networks (e.g., see [Danon et al., 2005]), which are simply not
large enough for the clusters to gradually blend into one another as one looks at larger size scales. Our
results do not disagree with literature at small sizes. But it seems that in order to make our observations one
needs to look at large networks. It is only when Dunbar’s limit is passed that we find large communities
blurring and eventually vanishing. A second reason is that previous work did not measure and examine
thenetwork community profileof cluster size vs. cluster quality.

Common bond vs. common identity communities:Dunbar’s explanation aligns well with the common
bond vs. common identity theory of group attachment [Ren et al., 2007] from social psychology. Common
identity theory makes predictions about people’s attachment to the group as awhole, while common
bond theory predicts people’s attachment to individual group members. The distinction between the two
refers to people’s different reasons for being in a group. Becausethey like the group as a whole we get
identity-based attachment, or because they like individuals in the group we get bond-based attachment.
Anecdotally, bond-based groups are based on social interaction with others, personal knowledge of them,
and interpersonal attraction to them. On the other hand, identity-based groups are based on common
identity of its members,e.g., liking to play a particular on-line game, contributing to Wikipedia, etc. It
has been noted that bond communities tend to be smaller and more cohesive [Back, 1951], as they are
based on interpersonal ties, while identity communities are focused around common theme or interest.
See [Ren et al., 2007] for a very good review of the topic.

Translating this to our context, the bond vs. identity communities mean that small, cohesive and well-
separated communities are probably based on common bonds, while bigger groups may be based on
common identity, and it is hard to expect such big communities to be well-separatedor well-expressed in
a network sense. This further means the transition between common bond (i.e., maintaining close personal
ties) and common identity (i.e., sharing a common interest or theme) occurs at around one hundred nodes.
It seems that at this size the cost of maintaining bond ties becomes too large andthe group either dies or
transitions into a common identity community. It would be very interesting as a futureresearch topic to
explore differences in community network structure as the community grows and transitions from common
bond to common identity community.

Edge semantics:Another explanation could be that in small, carefully collected networks, the semantics
of edges is very precise while in large networks we know much less about each particular edge,e.g., espe-
cially when online people have very different criteria for calling someone afriend. Traditionally scientists
through surveys “normalized” the links by making sure each link has the samesemantics/strength.

Evidence in previous work: There has also been some evidence that hints towards the findings we
make here. For example, Clausetet al. [Clauset et al., 2004] analyzed community structure of a graph
related to the AMAZONALL PROD, and they found that around50% of the nodes belonged to the largest
“miscellaneous” community. This agrees with the typical size of the network core, and one could conclude
that the largest community they found corresponds to the intermingled networkcore, and most of the rest
of the communities are whisker-like.
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In addition, recently there have been several works hinting that the network communities subject is more
complex than it seems at the first sight. For example, it has been found that even random graphs can have
good modularity scores [Guimer̀a et al., 2004]. Intuitively, random graphs have no community structure,
but there can still exist sets of nodes with good community scores, at least as measured by modularity
(due to random fluctuations about the mean). Moreover, very recently astudy of robustness of community
structure showed that the canonical example of presence of community structure in networks [Zachary,
1977] may have no significant community structure [Karrer et al., 2008].

More general thoughts: Our work also raises an important question of what is a natural community
size and whether larger communities (in a network sense) even exist. It seems that when community size
surpasses some threshold, the community becomes so diverse that it stops existing as a traditionally under-
stood “network community.” Instead, it blends in with the network, and intuitions based on connectivity
and cuts seem to fail to identify it. Approaches that consider both the network structure and node attribute
data might help to detect communities in these cases.

Also, conductance seems like a very reasonable measure that satisfies intuition about community quality,
but we have seen that if one only worries about optimizing conductance, then bags of whiskers and other
internally disconnected and sparsely connected sets have the best scores. This raises interesting questions
about cluster compactness, regularization, and smoothness: what is a good definition of compactness,
what is the best way to regularize these noisy networks, and how should this be connected to the notion of
community separability?

A common assumption is that each node belongs to exactly one community. Our approach does not
make such an assumption. Instead, for each given size, we independently find best set of nodes, and
“communities” of different sizes often overlap. As long there is a boundary between communities (even
if boundaries overlap), cut- and edge-density- based techniques (likemodularity and conductance) may
have the opportunity to find those communities. However, it is the absence of clear community boundaries
that makes the NCP plot go upwards.

10.7.3 Relationship with community identification methods

A great deal of work has been devoted to finding communities in large networks, and much of this has been
devoted to formalizing the intuition that a community is a set of nodes that has more and/or better intra-
linkages between its members than inter-linkages with the remainder of the network. Very relevant to our
work is that of Kannan, Vempala, and Vetta [Kannan et al., 2004], who analyze spectral algorithms and
describe a community concept in terms of a bicriterion depending on the conductance of the communities
and the relative weight of inter-community edges. Flake, Tarjan, and Tsioutsiouliklis [Flake et al., 2003]
introduce a similar bicriterion that is based on network flow ideas, and Flakeet al. [Flake et al., 2000,
2002] defined a community as a set of nodes that has more intra-edges than inter-edges. Similar edge-
counting ideas were used by Radicchiet al. [Radicchi et al., 2004] to define and apply the notions of a
strong community and a weak community.

Within the “complex networks” community, Girvan and Newman [Girvan and Newman, 2002] proposed
an algorithm that used “centrality” indices to find community boundaries. Following this, Newman and
Girvan [Newman and Girvan, 2004] introducedmodularity as a posteriori measure of the strength of
community structure. Modularity measures inter- (and not intra-) connectivity, but it does so with ref-
erence to a randomized null model. Modularity has been very influential in therecent community de-
tection literature [Newman, 2004, Danon et al., 2005], and one can use spectral techniques to approxi-
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mate it [White and Smyth, 2005, Newman, 2006b]. On the other hand, Guimerà, Sales-Pardo, and Ama-
ral [Guimer̀a et al., 2004] and Fortunato and Barthélemy [Fortunato and Barth́elemy, 2007] showed that
random graphs have high-modularity subsets and that there exists a size scale below which communi-
ties cannot be identified. In part as a response to this, some recent workhas had a more statistical fla-
vor [Hastings, 2006, Reichardt and Bornholdt, 2007, Rosvall and Bergstrom, 2007, Airoldi et al., 2007,
Karrer et al., 2008, Newman and Leicht, 2007]. In light of our results, this work seems promising, both
due to potential “overfitting” issues arising from the extreme sparsity of the networks, and also due to the
empirically-promising regularization properties exhibited by local spectral methods.

We have made extensive use of the Local Spectral Algorithm of Andersen, Chung, and Lang [Andersen et al.,
2006]. Similar results were originally proven by Spielman and Teng [Spielman and Teng, 2004], who an-
alyzed local random walks on a graph; see Chung [Chung, 2007a,c,b] for an exposition of the relationship
between these methods. Andersen and Lang [Andersen and Lang, 2006] showed that these techniques can
find (in a scalable manner) medium-sized communities in very large social graphs in which there exist rea-
sonably well-defined communities. In light of our results, such methods seempromising more generally.
Other recent work that has focused on developing local and/or near-linear time heuristics for community
detection include [Clauset et al., 2004, Wu and Huberman, 2004a, Clauset, 2005, Bagrow and Bollt, 2005,
Raghavan et al., 2007].

In addition to this work we have cited, there exists work which views communities from a very different
perspective. For example, Kumaret al. [Kumar et al., 1999b] view communities as a dense bipartite sub-
graph of the Web; Gibson, Kleinberg, and Raghavan [Gibson et al., 1998] view communities as consisting
of a core of central authoritative pages linked together by hub pages; Hopcroft et al. [Hopcroft et al.,
2003, 2004] are interested in the temporal evolution of communities that are robust when the input data to
clustering algorithms that identify them are moderately perturbed; and Pallaet al. [Palla et al., 2005] view
communities as a chain of adjacent cliques and focus on the extent to which they are nested and overlap.
The implications of our results for this body of work remain to be explored.

10.7.4 Relationship with other theoretical work

In this section, we describe the relationship between technical aspects of graph partitioning and finding
good cuts in our work and the recent work with similar flavor in graph partitioning, algorithms, and graph
theory.

Recent work has focused on the expansion properties of power law graphs and the real-world networks
they model. For example, Mihail, Papadimitriou, and Saberi [Mihail et al., 2006], as well as Gkantsidis,
Mihail, and Saberi [Gkantsidis et al., 2003], studied Internet routing at the level of Autonomous Systems
(AS), and showed that the preferential attachment model and a random graph model with power law
degree distributions each have good expansion properties if the minimum degree is greater than2 or 3,
respectively. This is consistent with the empirical results, but as we have seen the AS graphs are quite
unusual, when compared with nearly every other social and information network we have studied. On
the other hand, Estrada has made the observation that although certain communication, information, and
biological networks have good expansion properties, social networksdo not [Estrada, 2006]. This is
interpreted as evidence that such social networks have good small highly-cohesive groups, a property
which is not attributed to the biological networks that were considered. From the perspective of our
analysis, these results are interesting since it is likely that these small highly-cohesive groups correspond
to sets near the global minimum of the network community profile plot. Reproducingdeep cuts was also a

317



motivation for the development of the geometric preferential attachment models of Flaxman, Frieze, and
Vera [Flaxman et al., 2004, 2007]. Note, however, that the deep cuts they obtain arise from the underlying
geometry of the model and thus are nearly bisections.

Consider also recent results on the structural and spectral propertiesof very sparse random graphs. Re-
call that theGnp random graph model [Bollobás, 1985] consists of those graphs onn nodes, in which
there is an edge between every pair vertices with a probabilityp, independently. Recall also that if
p ∈ (1/n, log n/n), then a typical graph inGnp has a giant component,i.e., connected subgraph consist-
ing of a constant fraction of the nodes, but the graph is not fully connected [Bollobás, 1985]. (If p < 1/n,
the a typical graph is disconnected and there does not exist a giant component, while ifp > log n/n, then
a typical graph is fully connected.) As noted,e.g., by Feige and Ofek [Feige and Ofek, 2005], this latter
regime is particularly difficult to analyze since with fairly high probability there exist vertices with degrees
that are much larger than their expected degree. As reviewed in Section10.6.2, however, this regime is
not unlike that in a power law random graph in which the power law exponent β ∈ (2, 3) [Chung and Lu,
2001, Lu, 2001, Chung and Lu, 2006a].

Chakrabartiet al. [Chakrabarti et al., 2007a] defined the “min-cut” plot which has similarities with our
NCP plot. They used a different approach in which a network was recursively bisected and then the
quality of the obtained clusters was plotted against as a function of size; andthe “min-cut” plots were only
used as yet-another statistic to test when assessing how realistic are synthetically generated graphs. Note,
however, that the “min-cut” plots have qualitatively similar behavior to our NCPplots, i.e., they initially
decrease, reach a minimum, and then increase.

Of particular interest to us are recent results on the mixing time of random walks in thisp ∈ (1/n, log n/n)
regime of theGnp (and the relatedGnm) random graph model. Benjaminiet al. [Benjamini et al., 2006]
and Fountoulakis and Reed [Fountoulakis and Reed, 2007b,a] have established rapid mixing results by
proving structural results about these very sparse graphs. In particular, they proved that these graphs
may be viewed as a “core” expander subgraph, whose deletion leaves alarge number of “decorations,”
i.e., small components such that a bounded number are attached to any vertex inthe core. The particu-
lar constructions in their proofs is complicated, but they have a similar flavor tothe core-and-whiskers
structure we have empirically observed. Similar results were observed by Fernholz and Ramachan-
dran [Fernholz and Ramachandran, 2007], whose analysis separately considered the2-core of these graphs
and then the residual pieces. They show that a typical longest shortestpath between two verticesu and
v consists of a path of lengthO(log n) from u to the2-core, then a path of lengthO(log n) across the
2-core, and finally a path of lengthO(log n) from the 2-core tov. Again, this is reminiscent of the
core-and-whiskers properties we have observed. In all these cases, the structure is very different than
traditional expanders [Hoory et al., 2006], which we also empirically observe. Eigenvalues of power law
graphs have also been studied by Mihail and Papadimitriou [Mihail and Papadimitriou, 2002], Chung, Lu,
Vu [Chung et al., 2003a,b, 2004], and Flaxman, Frieze, and Fenner [Flaxman et al., 2005].

10.8 Conclusion

We investigated statistical properties of community-like sets of nodes in large real-world social and in-
formation networks. We discovered that community structure in these networks is very different than
what we expected from the experience with small networks and from whatcommonly-used models would
suggest.
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In particular, we defined anetwork community profile plot (NCP plot), and we observed that good network
communities exist only up to a size scale of≈ 100 nodes. This agrees well with the observations of
Dunbar. For size scales above≈ 100 nodes, the NCP plot slopes upwards as the conductance score of
the best possible set of nodes gets gradually worse and worse as thosesets increase in size. Thus, if the
world is modeled by a sparse “interaction graph” and if a density-based notion such as conductance is an
appropriate measure of community quality, then the “best” possible “communities” innearly every real-
world network we examined gradually gets less and less community-like and instead gradually “blends in”
with the rest of the network, as the purported communities steadily grow in size.Although this suggests
that large networks have acore-peripheryor jellyfish type of structure, where small “whiskers” connect
themselves into a large dense intermingled network “core,” we also observed that the “core” itself has an
analogous core-periphery structure.

None of the commonly-used network generation models, including preferential-attachment, copying, and
hierarchical models, generates networks that even qualitatively reproduce this community structure prop-
erty. We found, however, that a model in which edges are added recursively, via an iterative “forest fire”
burning mechanism, produces remarkably good results. Our work opensseveral new questions about the
structure of large social and information networks in general, and it has implications for the use of graph
partitioning algorithms on real-world networks and for detecting communities in them.
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Chapter 11

Web projections: Learning from contextual
subgraphs of the web

Graphical relationships among web pages have been leveraged as sources of information in methods for
ranking search results. To date, specific graphical properties have been used in these analyses. We intro-
duceweb projections, a methodology that generalizes prior efforts on exploiting graphical relationships
of the web in several ways. With the approach, we create subgraphs byprojecting sets of pages and
domains onto the larger web graph, and then use machine learning to construct predictive models that
consider graphical properties as evidence. We describe the method andpresent experiments that illustrate
the construction of predictive models of search result quality and user query reformulation.

11.1 Introduction

Information retrieval methods have traditionally considered documents as independent. A key insight
coming to the fore with the pursuit of effective web search is that inferences about relevance can be
enhanced by considering the hyperlink relationships among documents [Kleinberg, 1999a, Page et al.,
1998]. We present a methodology we refer to asweb projectionsthat centers on the creation and the use
of graphical properties of subgraphs of the web. With the approach, we project a set of web pages of
interest, such as the results generated by a search engine for queries,on the larger web graph to extract a
subgraph, which we call theweb projection graph. We then identify and exploit graph-centric properties
of this subgraph for a variety of search-related tasks. The method can be viewed as a general approach of
using context-sensitive collections of web pages to define and focus attention on relevant subsets of the
web graph, and then using graph-theoretic features within this subgraphas input to statistical models that
can provide predictions about content, relevance, and user behavior.

We highlight in this chapter the use of the subgraphs for analyzing searchresult quality and for predicting
user behavior in reformulating queries. Specifically, we investigate the following questions:

• How do query search results project onto the underlying web graph?

• What can we say about the quality of a set of search results, given the graph-theoretical properties
of their projection on the web graph?
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Figure 11.1: Web projection methodology. Given a query and respective search results, a query projection
graph is generated and graph-theoretic features are then used for building predictive models.

• Can we predict the difficulty of the query given the projection graph?

• Can we predict users’ behaviors with issuing and reformulating queries given the query projection
graph?

• How do query reformulations reflect on the query projection graphs?

The rest of the chapter is organized as follows. In Section11.2, we introduce web projections and explain
the methodology and the attributes used to model query projection graphs. InSection11.3, we describe
the data used in our studies. We then describe applications of our approach to predict the quality of sets
of search results (Section11.4), and to model user behavior when reformulating queries (Section11.5).
In Section11.6, we compare our work to prior research. Finally, we summarize and conclude in Sec-
tion 11.7.
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Figure 11.2: Query projection graph and query connection graph for the top 20 results of the queryYahoo
search engineprojected on the URL graph.

11.2 Query projections

We begin by describing the main steps with building web projections and then provide formal definitions
of the key components. Figure11.1shows the basic steps of applying the method to analyze search results.
We start with a query and a set of results for the query, generated by some procedure, typically via the
use of a preexisting search engine (a). We project the search results on the web graph (b), by finding
the search results (square nodes) in the larger web graph and then inducing a subgraph based on these
identified nodes (c). We name the induced subgraph thequery projection graph.

Given the typical distances among search results, the query projection graph often contains disconnected
components. We connect the nodes of query projection graph to create aquery connection graph(d). The
disconnected components of the query projection graph are connected by identifying web pages that join
the components via shortest paths. Theconnection nodesthat are introduced during the connecting of the
projection graph (circular nodes in Fig.11.1) are not drawn from the search result set.

Given the query projection graph and query connection graph we generate a set of evidential features
describing the topology of the graph for use in the creation of predictive models via machine learning (e).
We provide details about sample topological features in Section11.2.2. Finally, we build a case library
from a consideration of the topological properties for multiple queries for different outcomes (e.g., high-
quality versus low-quality sets of results), and use the case library of graph-theoretic relationships and
outcomes to train models that can make predictions about the outcomes. We shallfocus in this chapter
on the tasks that harness graphical properties of web projections generated from sets of results. Two such
tasks are the construction of statistical models for predicting quality of a set of search results and modeling
user behavior in reformulating queries. As we shall discuss later, there are also opportunities to use the web
projection approach to assist with the ranking of individual search results. In such applications, properties
and relationships of single results to the subset of pages in the query projection are of interest.

Figure11.2shows an example of a query projection graph and query connection graph for the queryYahoo
search engine. Square nodes represent web pages and directed edges represent hyperlinks. Circular nodes
represent connection nodes. The number in each square representsthe rank of the search result in the list
returned by a search engine. The color (monochromatic shade) of the node indicates a human-evaluated
relevance score of the result to the query. The most relevant results are colored dark (red), the next most
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relevant orange, then yellow, green, blue and purple. Figure11.3shows the projection of results for the
querySubaruonto the domain graph rather than the URL graph. For both projections, the most relevant
nodes (colored dark) appear in central locations in the graph and are pointed at by other search results.
In contrast, the least relevant nodes (colored bright) are usually not as well connected, often requiring
connection nodes to join them to the subgraph.

11.2.1 Query projection and connection graphs

We now present formal definitions of query projection graph and queryconnection graph. Consider a
directedweb graphG(N, E) with node setN and directed edge setE, and a given set of search resultsS.
First, we project the results on the web graphG to obtain a set ofprojection nodesNp, whereNp = S∩N .
Note that, ideally, we would likeNp = S but since the coverage of the web graph may not be complete,
some search results may not be found in the graph. Thus, in general,Np ⊆ S. We define:

• Query projection graph is a subgraphGp(Np, Ep) of G induced onNp nodes,i.e., edge setEp =
{(u, v) ∈ E; u ∈ Np ∧ v ∈ Np}

• Query connection graphis a subgraphGc(Nc, Ec) of G induced onNc nodes, whereNc = Np∪C,
i.e., edge setEc = {(u, v) ∈ E; u ∈ Nc∧v ∈ Nc}. SetC is a set of connection nodes,i.e., minimal
set of nodes that makes graphGp connected.

Note that finding the minimal set of connection nodesC is NP-hard, since the problem of finding a Steiner
tree [Karp, 1972] reduces to this problem. In our experiments, we used a heuristic policy to find the set
C, i.e., to connect the components ofGp. We found that the heuristic policy was reliable and performed
well on the datasets that we considered. The policy is as follows:

Let Di denote the node sets of connected components ofGp ordered by decreasing size (|Di| ≥ |Di+1|).
We connect each component via the shortest path to the largest component and continue until all compo-
nents are connected. More precisely, we start withD2 and connect it via a shortest path on nodesC2 to
D1. This creates a new largest componentD12 = D1 ∪ C2 ∪ D2. Now, we proceed and connectD3 to
D12 via shortest pathC3, creatingD123 = D12 ∪C3 ∪D3, and so on until all components are connected.
A set ofconnection nodesC is thenC = ∪Ci. We define a shortest path between the sets of nodesU and
V as theshortest undirected pathover all pairs of nodes(u, v), u ∈ U, v ∈ V .

11.2.2 From graph to evidential features

Given query projection and connection graphs, we seek to extract a set of features that captures key
properties of the topology of the graphs. In all, we considered 55 features to describe the characteristics
of the projection and connection graphs, and of the query.

Table 11.1 presents representative features drawn from the larger set of attributes that we used in our
experiments. The majority of the features are graphical properties, including the number of nodes and
edges, the number and size of connected subgraphs, etc. See [Wasserman and Faust, 1994] for a review
of basic graph-theoretic concepts and detailed definitions of the featureswe use in this work. In one set of
experiments, we also considered non-topological properties derived solely from the text of the query and
results.
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(a) Projection graph (b) Connection graph

Figure 11.3: Query projection graph and query connection graph for the top 20 results of the querySubaru
projected on the domain graph. Notice that projection on thedomain graph is denser than
projection on the URL graph (figure11.2).

We group the evidential features into four classes:Query projection graph features(GF-PROJ, 12 fea-
tures) are calculated from the projection graph. These features measure various aspects of the connectivity
of Gp. Similarly,query connection graph features(GF-CONN, 16 features) are obtained fromGc and aim
to capture the relations between the projection nodesNp in the context of connection nodesC. We also
considercombination features(GF-COMB, 17 features), defined as compositions of features from the
other groups. They largely include various ratios and normalizations of moreatomic features contained
in the other categories. Last,Query features(F-QUERY, 10 features) represent non-graphical properties
of the result set, calculated from the text of the query and a list of returned search results, including the
number of results and domains in the result set.

11.3 Generating case libraries

We now present details on constructing libraries of cases consisting of sets of topological properties that
characterize the projections of queries onto the web graph. We used two different representations of the
web as a graph. For the study of relevance, we constructed projectionsfrom nearly 30 thousand queries,
each with a corresponding set of search results. Most of the search results were labeled with a human-
assigned relevancy score. For our study of query reformulations, weemployed a set of 42 million query-
to-query transitions with corresponding lists of search results generatedat each step in the search session.
For all of the experiments, the search results were obtained from a state-of-the-art ranking algorithm
which considers a large number of content features as well as some topological properties on the web as a
whole.
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GF-PROJ: query projection graph (Gp) features (12)

GpNodes number of nodes inGp

GpEdges number of edges inGp

GpComponents number of connected components
GpLccNodes nodes in largest component
GpLccEdges edges in largest component
GpMxDeg maximal node degree
GpDeg0Nodes number of isolated nodes
GpDeg1Nodes number of degree 1 nodes
GpTriads number of triangles inGp

GpDensity density ofGp (|Ep|/(|Np|(|Np| − 1)))
GpLccSize size of largest component (|D1|/|Np|)
GpClustering clustering coefficient ofGp

GF-CONN: query connection graph (Gc) features (16)

GcNodes number of nodes inGc

GcEdges number of edgesGc

GcCNodes number of connector nodesC
GcCEdges number of edges incident toC
GcMxCnDeg maximal connector nodeC degree
GcMxCnOutDeg maximal connector nodeC out-degree
GcMxPnDeg max projection node (Np) degree inGc

GcAvgPnPath mean path length ofNp nodes inGc

GcMxPnPath max path length ofNp nodes inGc

GcAvgPath mean path length ofNc nodes inGc

GcMxPath max path length ofNc nodes inGc

GcTriads number of triangles inGc

GcDensity density ofGc (|Ec|/(|Nc|(|Nc| − 1)))
GcClustering clustering coefficient ofGc

GF-COMB: Combined features (17 features)

DomsToUrls Ratio of domains to urls in result set
Coverage Coverage of the projection (Np/S)
GpGcNodes Node ratio(|Np|/|Nc|)
GpGcEdges Edge ratio(|Ep|/|Ec|)
GpGcAvgPath Path ratio (AvgPnPath/GcAvgPath)
GpGcMxPath Path ratio (MxPnPath/GcMxPath)

F-QUERY: query features (10 features)

QueryChLen number of characters in the query
QueryWrdLen number of query words
QuerySrcRes number of search results
QueryNDoms number of domains in result set
QueryNUrl number of URLs in result set
QueryNRated number of results with human rating

Table 11.1:Sample features used to represent query projection, and connection graphs, and the query.
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11.3.1 Web as a graph

We now present the web graphs that provided the substrate for the query-focused projections. We use two
variants of the web graph: a URL graph and a domain graph.

URL graph

URL graphs are the most commonly used representation of the web as a directed graph. Nodes represent
web pages, and there is a directed edge from nodeu to nodev if there is a hyperlink from web pagesu to
web pagesv. We created our web graph based on a sample of 22 million web pages from acrawl of the
web performed in March 2006. We used a sample of the web considered to be of high quality. We started
crawling from a seed set of popular, high quality web pages with good reputation. The graph contains 345
million edges and is well connected; the largest weakly connected componentcontains 21 million nodes,
while the second largest has less than a thousand nodes. The strongly connected component is also large,
containing 14 million nodes. The second largest component has 7000 nodes. The graph has diameter of
8, and node degrees follow a power law distribution.

For some prediction tasks, we focused on subsets of these URLs, e.g., those for which we have human
relevance judgments. When we project the URLs tagged with relevance judgments onto this URL graph,
results may be missing. URLs may be absent for several reasons, including the limited nature of the sample
of URLs that we worked with, changes in pages that are returned and judged over time, and the volatile
nature of dynamically generated pages. For some tasks, (e.g., predicting the top 20 versus bottom 20
results set, described in detail in Section11.4.3), the difference in coverage alone can be a good predictor
of class. As we wanted to focus more on the graphical properties than on coverage per se, we normalized
the number of projected results in the graph for the different classes. Wedid this by first noting how many
URLs for the top 20 results were in the projection graph, then considering as many results as needed from
the bottom to get the same coverage.

Domain graph

In the domain graph, nodes represent domain names, (e.g, cmu.edu or microsoft.com ), and there is
a directed edge from nodeu to nodev, if there is are web pages inside domainu that contain a hyperlink to
web pages inside domainv. It is important to note that nodes in a domain graph are not arbitrary domains;
all sub-domains are collapsed into a second-level domain name. For example, web pages from domains
cs.cmu.edu , ml.cmu.edu , andlti.cs.cmu.edu are merged into a single node (domain name)
cmu.edu .

We considered a complete domain graph of the web from February 2006. The graph contains 39 million
domain names and 720 million directed edges. The graph is densely connected, has a diameter of 4, and
the largest component contains 99.9% of the nodes. Since this is a complete domain graph we have no
problems with projection coverage. The domain of every search result in our dataset can be found in this
graph.

Figure11.4shows the differences between projections on URL and the domain graph when projecting the
top 20 results for the queryencyclopedia. Domain graph projections are usually denser and much better
connected than the URL graph projections. Domain graphs also have bettercoverage of the search results,
with very few missing nodes.
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Figure 11.4: Query projection graph for the top 20 results of the queryencyclopediaprojected on the
URL and domain graphs.

11.3.2 Human-rated search results

In one set of experiments, we explored the use of the web-projection methodology for the task of predicting
the quality of a set of search results. This task requires assessments of result quality, which we obtained
from human judges. For each query, the topk results from one or more systems were presented to the
judges for evaluation. The quality of a query-result pair was explicitly labeled by the judges using a six
point scale ranging from “Perfect” to “Bad”. We note that the labeling wasperformed over the results
already highly ranked by a web search engine, and thus correspondsto a typical user experience. Out of
30,000 total available queries, we focused our experiments on a set of 13,000 queries with at least 40 rated
results, with averages of 57 results (URLs) and 46 domains per query.

11.3.3 Query reformulation corpus

In a second set of experiments, we used web projections to explore patterns of query reformulation. We
examined a sample of query logs captured over a six week period by a popular web search engine. We
obtained query-query transitions from the logs as described in [Radlinski and Dumais, 2006]. For each
queryqi, we measuredni, the number of times the query was observed. For a pair of queries(qi, qj),
we also measured the probability of reformulation or transition from queryi to j, pij . If we let nij be
the number of times thatqi was followed byqj within a thirty-minute window, thenpij = nij/ni is the
probability ofqi being followed byqj . And similarly, probabilitypi of queryqi participating in a transition
is defined aspi =

∑
j nij/ni.

We started with a set of 35 million queries and 80 million query transitions as definedabove. For the
analysis described below, we considered only queries and reformulations that appeared at least 10 times
in our corpus. Our analyses used 48,458 queries and 120,914 query transitions. We then used the top
20 search results for each of the 48 thousand queries and projected them on the URL and the domain
graphs.

327



11.4 Quality of search results

For predicting the quality of search results, we asked the following questions: By analyzing the projection
of a query onto the web graph, what can we tell about the quality of the returned result set? What can we
tell about the difficulty of the query? More specifically, we explored the following two tasks:

1. Discriminate good (top 20) versus poor (bottom 20) search result sets.

2. Given a set of results, predict how good the set is,i.e., predict the highest human relevancy rating in
the set.

We now describe the problem setting and experimental setup as well as the baseline method.

11.4.1 Problem definition

We focus on the following general setting: We are given a queryqi with a set of search resultsSi. Each
queryqi belongs to classyi. A class is a categorical value that can be, as an example, the rating of the most
relevant search result in the set, or an indicator of whether the result set Si is composed of the top-ranked
or bottom-ranked search results.

We start withSi and project it on both the URL and the domain graphs (see Section11.3.1), create both
projection and connection graphs, and extract the attributes as described in Section11.2.2. This means
that we project every queryqi onto two different graphs of the web, and for each projection, we extract a
set of features as defined in table11.1. We generate a case library of training examplesqi described with
features and we learn a model to predict classyi via a machine learning procedure.

11.4.2 Experimental setup

For learning the models, we used the WinMine toolkit [Chickering, 2002] that uses the GES [Chickering,
2003] algorithm in Bayesian structure search to learn a Bayesian network. We model the continuous
features as Gaussians and discrete features with a multinomial distribution. For all experiments we report
the average classification accuracy over a 10-fold cross validation.

We compare the predictive power of the learned models with two baseline methods. The first baseline
model is the marginal model, which predicts the most common class. The second baseline algorithm we
use is based on a ranking algorithm that uses a large number of textual andglobal graph features to rank
search results. For the classification tasks, we learn a threshold on the score to predict the class.

The baseline ranking algorithm we used is RankNet [Burges et al., 2005], a supervised machine-learning
technique developed to learn a ranking function. The learning methodologyis a neural net algorithm that
optimizes feature weights to best match explicitly provided pairwise user preferences. Over 350 input
features are used to train RankNet. These features include various aspects of document content, anchor
text features, and basic hyperlink features. The output of RankNet isused to rank results. Since the output
of RankNet is a combination of state of the art features for ranking, we use it as a discriminatory feature
that serves as input to the Bayesian-network classifier. We think this serves as a strong baseline.
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Figure 11.5: Domain graph projections of good and poor result sets for query medline.

11.4.3 Relative quality of result sets

The first task we consider is the classification of good (top 20) versus poor (bottom 20) result sets. For this
task, we used the explicit relevance judgments described in11.3.2. For each query, we order the search
results from best to worst using the human judgments. We note that this ordering can be different than the
output of the search engine.

We then project the top 20 search results, and bottom 20 results ordered by human judgments onto the
URL and domain graphs, and compute the features described in table11.1for the two graphs. We learn a
model that can predict, for a previously unseen query with a set of search results, whether it is good (top
20) or poor (bottom 20). Given the average number of judged search results per query, we are effectively
learning to discriminate the top 20 results versus the search results with ranks40 to 60. Note that this task
involves predicting the relative quality of results for a given query. We examine predicting the absolute
quality of the results in the next section.

First, we point to Figure11.5which displays examples of projections of good and poor result sets for the
querymedlineon the domain graph. We can see that results in a good set are tightly clustered, while those
in the poor result set are more spread out, requiring many connection nodes to connect the components
of the projection graph. Also notice that the results marked by humans as mostrelevant (darkest nodes)
appear as the central (high-degree) nodes in the graph (Figure11.5(a)). Similarly, Figure11.6shows the
good and poor result sets for the queryWisconsinprojected on the URL graph. The central node in the
good result set (panel a) is one of the search results, whereas in poor set (panel b) the central node is a
derived connector node.

Table11.2shows the results for the task of predicting good versus poor result setsusing several different
methods and feature sets. Results are shown separately for URL and domain graph projections.

The Baseline–Marginals row displays the classification accuracy of predicting the most common class.
Baseline–RankNet is the second baseline where only the RankNet scoreis used for learning. We are using
a combination of about 350 textual features to discriminate the good and the poor result sets. GF-PROJ
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Figure 11.6: Projections of good and poor result sets for queryWisconsinprojected on the URL graph.

Feature set URL graph Domain graph
Baseline–Marginals 0.50 0.50
Baseline–RankNet 0.74 0.74
GF-PROJ 0.62 0.82
GF-CONN 0.60 0.86
GF-PROJ+GF-CONN 0.87 0.90
GF-ALL 0.88 0.88

Table 11.2:Classification accuracy for predicting good versus poor result sets.

uses the 12 features extracted from the projection graph, GF-CONN uses the 16 connection graph features,
GF-PROJ+GF-CONN uses both of these feature sets (28 features), and GF-ALL refers the case where all
55 features, most of which are described in table11.1, are used for learning.

We were not surprised to find that RankNet and the new graphical features outperformed the marginal
baseline. The RankNet output reflects the extent to which human judgments agree with the output of
the learned ranking function. The “GF-” results reflect the extent to which graphical features of the
results subset are predictive of human relevance judgments. For the URLgraph, the RankNet baseline
outperforms models trained only on projection or connection graph features, but the models trained on
both sets of features shows substantial improvement over RankNet (18%relative improvement). For
the domain graph, all models trained on graphical features outperform RankNet. We obtained the best
classification accuracy of 90% when combining projection and connection graph features. We note that we
obtained higher classification accuracies when projecting on the domain graph than for URL projections.
This is likely due to the sparser coverage of the URL graph.

We found interesting the performance of the “GF-” models, considering only topological features of the
web projections, and bypassing analysis of content matches between the query and web pages.

Figure11.7shows a simple model learned from the query projections on the domain graphusing the GF-
PROJ feature set. The model has a classification accuracy of 0.82. The figure shows the decision tree
for the output variable Top 20 vs. Bottom 20. Nodes correspond to inputfeatures, and each leaf node
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Figure 11.7: Learned model for discriminating good versus poor search result sets based on query pro-
jection on the domain graph.

shows the probability distribution for the output variable, which is shown as ahistogram. In this case, the
variable has only two possible values; the green (darker) area indicatesthe proportion of good (top 20)
sets and the grey area poor (bottom 20) sets. Labels on the edges show the splitting criteria of the parent
node variable, and the numbers in parenthesis show the number of training examples routed over the edge.
The projection graphs of good result sets (shown as large green (dark) area of the histograms) have few
isolated nodes (low values ofGpDeg0Nodes) and results are coming from a few domains (low values of
GpNodes). On the other hand, poor result sets have many domains and many isolated nodes.

11.4.4 Absolute quality of a result set

In the previous section, we considered the problem of discriminating between good and poor result sets.
Now we focus only on top-rated (top 20) results for each query and aim topredict the absolute quality
of a query result set. More specifically, we label each query with the highest human-assigned rating for
any result in the set. We note that we could use other measures to summarize thequality of result sets.
The highest human rating is easy to describe and is of practical importance.Since the human relevance
judgments were on a 6-point scale (Section11.3.2), we can examine the problem at several granularities.
Here, we present results for the 6-class problem (predict top label exactly) and the 2-class problem (predict
whether the top label is from the three highest or three lowest rating categories).
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Feature set URL graph Domain graph
Baseline–Marginals 0.36 0.36
Baseline–RankNet 0.48 0.44
GF-PROJ 0.51 0.53
GF-CONN 0.50 0.52
GF-PROJ+GF-CONN 0.54 0.54
GF-ALL 0.55 0.55

Table 11.3:Result set quality classification accuracy for a 6-way classification problem.

Feature set URL graph Domain graph
Baseline–Marginals 0.55 0.55
Baseline–RankNet 0.63 0.60
GF-PROJ 0.80 0.64
GF-CONN 0.79 0.66
GF-PROJ+GF-CONN 0.82 0.69
GF-ALL 0.83 0.71

Table 11.4:Result set quality classification accuracy for a binary classification problem.

First, we consider the 6-class task of predicting the exact rating of the highest rated document in the set of
top 20 results. Table11.3shows the classification results. For the URL graph, we obtained a 15% relative
improvement over using the RankNet to predict the quality when using all attributes. For the domain
graph the improvement was even larger, 25%. Note that all methods using any combination of graphical
attributes outperform both baseline methods.

The model (not displayed per space limitations) for the 6-level result set quality classification problem
is more complex. The first split of the induced decision tree is on the node ratioof the projection and
connection graphs. If the connection graph is much larger than the projection graph, the results are likely
to be of poor quality. Moving down the tree, we see that if maximum degree in a graph is relatively small,
the results are likely to be of medium quality, with results getting worse as the number of domains in a
top 20 set increases. The model revealed that high quality search resultsets are associated with projection
nodes with large degrees, few domains, small domains to URL ratios, and arewell connected.

Next, we examine the same problem at a coarser granularity. The task is to predict whether the set contains
a result with the rating in the top or the bottom half of the 6 point rating scale. Table 11.4shows the classi-
fication accuracies for the classification problem. We note that the difference in performance between the
domain and URL graph projections increased even further and that the relative increase in performance
over the RankNet baseline increased (31% for the URL and 18% for the domain graph).

This task is similar to that of discriminating the good versus poor result sets (asdescribed in Section11.4.3).
However, it is also more difficult since we are only working with top 20 resultsfor each query and pre-
dicting the absolute quality of the set. The good versus poor prediction requires only a relative judg-
ment.

For the task of distinguishing good versus poor result sets, we found that projections on the domain graph
outperformed the projections on the URL graph. For the case of predictingthe exact quality of a result
set, the projections on the URL graph generally performed better even in cases where the URL graph has

332



the problems with coverage. This may be explained by the difference in the goals and representation. For
good versus poor discriminations, the quality of the whole set is important andthe domain graph likely
represents an appropriate level of abstraction for handling this challenge. In contrast, the quality of a
result set is a single result (single node) property. Here the domain graph may be too coarse to capture
fine-grained properties of the high quality nodes (search results). A projection on the URL graph may be
needed to capture necessary properties.

11.5 Query reformulations

As a second illustration of the use of web projections, we explore the learning of models to predict users’
query-reformulation behavior and characteristics. Web searchers often refine their queries one or more
times, as they seek information on the web. Prior research has explored query reformulations, considering
such issues as the timing and type of reformulation seen. For example, Lau and Horvitz [Lau and Horvitz,
1999] build models to predict the likelihood that searchers will specialize, generalize, or reformulate
queries within a search session, considering the history and timing of actions. Joneset al. [Jones et al.,
2006] examine substitutions that searchers make to their queries.

We explore the use of web projections to build models that predict if and how users reformulate their
queries. We used a set of 48 thousand queries that were reformulated at least 10 times. For every query,
we took the top 20 search results returned by the search engine, and created the query projection and
connection graphs, extracted the graph features, and trained predictive models.

More specifically, we consider the following tasks:

1. Distinguish queries with high versus low reformulation probability.

2. Given a transition from queryqs to queryqd, predict whether it is a specialization or generalization.

3. Given a query that is likely to be reformulated, predict whether it is goingto be generalized or
specialized.

Next, we describe the experimental setup and give more detailed descriptionof our results and find-
ings.

11.5.1 Experimental setup

Using the query reformulation data described in Section11.3.3, we defined several binary classification
tasks. For each selected query, we took the top 20 search results as returned by the search engine, projected
them on the domain and URL graphs, and extracted the features. For some of the tasks, the training
datasets were quite imbalanced where one outcome was significantly more likely than the other. In order
to focus on the key discriminations rather than basic marginal frequencies,we sub-sampled the majority
class, so that both classes had roughly the same number of training examples.

11.5.2 Probability of query reformulation

First, we considered the problem of learning whether a query is likely to be reformulated or not. We split
our set of queries into two classes: queries with high reformulation probability ( pi ≥ 0.6) and queries with
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Feature set URL graph Domain graph

Baseline–Marginals 0.54 0.56
GF-PROJ 0.59 0.58
GF-CONN 0.63 0.59
GF-PROJ+GF-CONN 0.63 0.60
GF-ALL 0.71 0.67

Table 11.5:Classification accuracy of predicting whether the query is likely to be reformulated.

low reformulation probability (pi ≤ 0.15). We selected these values so that the two classes were about the
same size.

Table11.5shows the classification accuracies when projecting on URL and domain graphs. We found
gradual improvement with increasing the numbers of topological features under consideration. We also
found that cases drawn from projections on the URL graph provided better performance than cases gen-
erated from projections on the domain graph. We note the baselines for predicting the most common
class are slightly different between the URL and the domain graph since we discarded a few queries that
produced very small URL projection graphs.

Examining the model (not shown as the model is too large) we see that, queriesthat are likely to get
reformulated come from many domains, are generally longer than queries that are not reformulated, and
have relatively high degree (> 4) connection nodes. Such findings again suggest that queries whose
results are tightly knit together on the web are of higher quality, given that such queries are less likely to
be reformulated. The findings also suggest result sets with central high degree nodes and a small number
of connector nodes are of higher quality.

In another set of experiments, we explored transitions between queries.For this task, we took pairs of
queries where there is a strong tendency of transition in only one direction,and then trained a model that
learns whether a given query is likely to be the transitionsourceor destination. Figure11.8shows two
examples of source and destination graphs. Our models were able to predict whether a given query is a
source or a destination of the transition with an 85% classification accuracy.The learned model provided
insights about the relationship between topological properties and the likelihood of the direction of a tran-
sition. We saw that sources of query transitions tend to have some isolated nodes, short query strings, many
connected components, and nodes that lie far apart in the connection graph, which indicates the returned
search results are not satisfactory. In contrast, reformulation destinations (especially specializations) tend
to be better connected, and to have higher in-degrees of projection nodes. Intuitively, these results make
sense: a searcher probably wants to specify a new query if the searchresults are somewhat “random”,i.e.,
are scattered widely around on the web. The results of this experiment led another question, which we
explore in the following section.

11.5.3 Query specialization versus generalization

We have just described how we can reliably learn whether a given queryis the source or destination of
a reformulation. Now, we pursue models that can predict the nature of reformulations. We shall explore
in particular whether a reformulation is likely to be a specialization or a generalization of the source
query. Given a pair of queries, whereqs is often reformulated intoqd, we want to learn characteristics of
projection graphs for queries that are specialized versus generalized.
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Figure 11.8: Sources and destinations of query transitions. Projections (a) and (b) show an example of a
generalization from queryfree house plansto the queryhouse plans. Projections (c) and (d)
show the specialization fromstrawberry shortcaketo strawberry shortcake pictures. Notice
how the reformulated queries result in more connected graphs and bring result nodes into
the center.

For this task, we define query specialization as the addition of more words to an existing query, and
similarly define generalization as removing words from the query (richer characterizations have been
considered Lau and Horvitz [Lau and Horvitz, 1999] and by Joneset al. [Jones et al., 2006].) Given the
query transition data, we extracted all pairs of queries where a specialization or generalization transition
had occurred at least 10 times. Then we separately projected the sourceqs and the destination queryqd and
extracted the features. We created transition features by simply taking the difference of the corresponding
feature values:Fi(qs)−Fi(qd), whereFi() denotesith feature. Note that in this experiment we do not use
the query text attributes (length of the query string) as it would be possible todirectly identify the type of
transition by the change in the length of the query.

We show the classification performance in Table11.6. Here, using only the projection graph features
performs slightly better than using solely the connection graph features. Wesee consistent increases in
performance by combining the projection graph and derived features. We obtain the best accuracy of 87%
using projections on the domain graph and all features for learning the predictive models.
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Feature set URL graph Domain graph

Baseline–Marginals 0.50 0.50
GF-PROJ 0.71 0.84
GF-CONN 0.69 0.83
GF-PROJ+GF-CONN 0.71 0.85
GF-ALL 0.80 0.87

Table 11.6:Classification accuracy of predicting whether a given querytransition is a specialization or a
generalization.

Figure 11.9: Model learned on URL graph projections for predicting whether transitions between queries
are generalizations or specializations.

The learned decision tree for predicting reformulation using GF-PROJ+GF-CONN features with projec-
tions on the URL graph is displayed in Figure11.9. Note that the splitting criteria (e.g., GpComponents)
here are not the values of the attributes but rather the changes in attribute values,i.e., the difference in
the attribute values of the source and the destination of the transition. The model shows that query spe-
cializations are characterized by the decrease in the number of connectedcomponents of projection graph
(first split of the tree). It also shows that the number of nodes and edges in the projection graph increases
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Feature set URL graph Domain graph

Baseline–Marginals 0.50 0.50
GF-PROJ 0.71 0.68
GF-CONN 0.62 0.65
GF-PROJ+GF-CONN 0.70 0.68
GF-ALL 0.78 0.76

Table 11.7:Classification accuracy of predicting whether a reformulation will likely lead to a specializa-
tion or generalization.

for generalizations. For specializations, we see that the number of isolatednodes decreases, results are
gathered in few connected components, and the size of largest connected component is increases, while
the number of connector nodes decreases. These results correspond with the intuition that, when a query
is generalized, the list of results will get richer and more diverse. The findings revealed in the learned
models suggest that the projection graphs associated with generalizations are sparser and less connected
than those associated with specializations, where the projection is likely to be more concentrated, denser,
requiring fewer connector nodes.

It may seem that the results here do not go along with those in section11.5.2, where we find characteristics
of query projection graphs that lead to query reformulation,i.e. learn characteristics of badly formulated
queries and transitions as query is formulated. On contrary, we see herethat in general specializations
narrow down the search, while generalizations tend to lead to higher diversity and larger coverage.

11.5.4 Predicting type of query reformulation

Finally, we examine the type of reformulation associated with a query. We seekto predict whether it is
more likely to see specific queries generalized or specialized, and how this reflects on the properties of
the query projections. For this task, we learn models that consider specificproperties of queries that are
reformulated in a certain way. Again, we do not use the features derivedfrom the query string (length of
the query, number of words, etc.) as the change in the length of the query provides information about the
type of reformulation.

Table 11.7 gives the classification performance for these models. We found that the performance of
models learned from cases generated from the URL and domain graph projections is about the same.
The projection graphs provided models with better performance than those using only the features of
connection graph. Using all features, we obtained a classification performance of 78%.

The learned probabilistic decision tree model shows that the most discriminatory property for this task
is the maximum degree of a node in the projection graph. If the maximum degree islow, the query is
likely to be specialized. If there is no central node in the projection graph, the user will likely specialize
the query. On the other hand, generalizations occur when the largest connected component of projection
graph is large (more than 10 nodes, for the top 20 results) and where nodes are close together (low average
path length in connector graph).
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11.6 Connections to prior research

In prior research, investigators have explored the use of query terms toidentify properties and relationships
among specific parts of the web graph. In the HITS work by Kleinberg [Kleinberg, 1999a], eigenvectors
are used to identify authoritative nodes using the notion of focused subgraphs defined by a query and as-
sociated links, and mutually reinforcing hubs and authorities. The work is similar to ours in that it extracts
and operates on a query-defined subset of the web graph. In contrast to methods we have presented, HITS
calculates a single property of a node (the corresponding component ofthe 1st singular vector of graph
adjacency matrix), which is used to rank search results. We use a much wider range of graphical features
that characterize whole subgraphs.

Variants of PageRank that work with subgraphs of the web have also been explored in prior research. This
work includes explorations of domain-specific or person-specific PageRank [Richardson and Domingos,
2002a, Haveliwala, 2002], and on the use of non-random jump vectors for personalization [Jeh and Widom,
2003]. Related work on identifying web spam has examined methods for propagating from trusted-
pages [Wu et al., 2006]. Recent work by Nieet al. [Nie et al., 2006] focused on eigenvectors or counts to
set node priors.

In the content domain, Cronen-Townsend et al. [Cronen-Townsend et al., 2002] have looked at techniques
for predicting the quality of results (what they callquery difficulty) by computing the entropy between
the language model for the results and the collection as a whole, but they do not consider any graphical
properties. Several efforts have combined links and content in different ways. For example, Charkrabarti
et al. [Chakrabarti et al., 1999] use link information on classes of neighbors to improve text classifica-
tion accuracy of a target page. Dean and Henzinger [Dean and Henzinger, 1999] use links and content
to find related pages, making use of information about the simple existence of links, rather than the rich
topological characteristics of subgraphs that we represent and exploit. There has been research on con-
sidering multiple objectives, for example examining relationships among papers, authors, and institutions.
In this work, relationships have been computed globally, based on one or more sets of similarity mea-
sures [Xi et al., 2004, Nie et al., 2005].

Related work also includes research on citation analysis, including Garfield’s early work on the impact fac-
tor [Garfield, 1972], and later refinements by Pinski and Narin [Pinski and Narin, 1976]. Vassilvitskii and
Brill have recently explored the use of distance (and direction) in the web graph for relevance feedback in
web search [Vassilvitskii and Brill, 2006]. Minkov et al. [Minkov et al., 2006] have examined contextual
search and name disambiguation in email messages using graphs, employing random walks on graphs to
disambiguate names. In the context of machine learning on graphs, researchers have sought to predict the
labels of vertices in a graph, given the known labels of vertices in training data [Kondor and Lafferty, 2002,
Leskovec et al., 2005c, Brank and Leskovec, 2003]. A similar formulation has recently been explored in
the context of kernel methods [Kashima et al., 2003], and approaches based on extracting subgraphs as
features [Kudo et al., 2004].

In contrast to previous efforts, we examine a broad set of graph-theoretic properties of subgraphs, rather
than, for example, only examining a single feature such as the eigenvalue associated with individual nodes.
The richer characterization of the topological properties of subgraphsas a whole—or of individual nodes
relative to the subgraph—allows us to investigate the discriminability of multiple features, to learn models
for diverse classification goals, and, more generally, to provide useful analytical tools for exploring the
web.
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11.7 Summary and directions

We presented a methodology for learning predictive models and attributes from a rich set of topological
characteristics of sets of web pages, based on their projection on the larger web graph. First, we consid-
ered patterns of connectivity among the set of pages returned as search results by projecting them onto the
web graph, and analyzed the topological properties of the induced subgraphs. Using these graph-theoretic
features, we performed machine learning to build classifiers that discriminategood and poor sets of re-
sults. Then, we learned models that predict user behavior when reformulating queries, including whether
queries are likely to be reformulated, and the nature of the reformulation. The experimental results for the
two problem domains highlight the potential value of employing contextual subgraphs for understanding
search-related tasks.

The web-projection method is scalable as demonstrated by the sizes of datasets used in our analyses.
Calculating the graph features is fast since projected graphs are fairly small. The most computationally
expensive operation is obtaining the query connection graph. Here a shortest-path algorithm is performed
to connect the components of query projection graph. If the components are far apart and the graph is
densely linked, the shortest-path algorithm will have to traverse most of the graph. In rare cases, this
problem arises in the domain graph and, the algorithm can take up a minute to complete. On average,
however, less than three seconds were required to project a query and produce the projection and connec-
tion graphs. In case of URL graph, which is not as densely connected,we did not see visible delays in the
production of the graph projections.

The method of projecting sets of results on the underlying graph of the web and then using machine
learning with graph-theoretic features can be applied in many settings. For example, prior work has noted
that spam web pages have distinct linkage patterns. We can use the web-projection method to identify
either sets of results that are likely to contain many spam pages, or more specifically to identify pages that
are likely to be spam (using graphical features of individual nodes as we will discuss next).

Applying our ideas to enhance ranking is especially interesting as it involveslooking at features of in-
dividual nodes relative to a subset, which is interesting and has wider applicability than ranking itself.
There are several ways one could approach this opportunity. One of the approaches we have been pursu-
ing considers the inclusion of additional node-centric features from the projection and connection graphs,
including those describing the position of the node with regard to the rest of the graph. These node-centric
features can then be used to train existing ranking algorithms (e.g., RankNet). Another application of our
work is to discover missing human relevance scores. Given a projection graph where we have human
relevance judgments for a few nodes, we would like to predict the judgments that would be assigned to
the rest of the nodes.

Another promising direction for research is exploring the role of the connector nodes. We used these nodes
to connect disconnected components of the projection graph. However,we observed that the connector
nodes often become hubs holding the network together. As an example, seeFigure11.5(b) where the
central connector node is a hub. However, there are also cases where no such patterns emerge, (e.g.,
Figure 11.6(b)). To explore these questions, a better understanding of the quality ofour heuristics to
connect components of projection graph is needed. In the analyses described, we used a greedy heuristic
that randomly chooses connections from the set of competing paths of the same length. We do not yet
understand the sensitivity this heuristic in the overall procedure for selecting nodes.

With regard to modeling users and their queries, we are excited about exploring clusters of queries and
query transitions based on graphical properties of their projection and connection graphs. The rich eviden-
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tial patterns provided by graph-theoretic features promise to be valuable indescribing different character-
istics of queries, determining the classes of queries, and mapping query transitions to these classes.

One could also apply the ideas for modeling web searchers’ behaviors in other ways. Web projections
might be used to construct predictive models that infer paths that the searchers will likely take when
reformulating a query from an initial query. Predictive models could be used to suggest likely query
reformulations, specializations, generalizations and avoid transitions that would not likely lead to good
sets of results, as captured by the graphical properties of projections associated with the sets.

Other applications include using the graph projections to explore the dynamicsand evolution of the web,
where models learned from features capturing topology and topological dynamics could help us to under-
stand how sites and pages that created or removed over time relate to the restof the web. Such models
promise to be valuable in predicting the conceptual links and quality of new content and sites.

We believe that the represented work captures a starting point with the use of web projections. We found
that the methods complement existing textual and graphical analyses and provoke tantalizing questions
and interesting directions for future research in web search and retrieval, including efforts on enhancing
result quality and on better understanding and supporting human behavior. We hope that the ideas will be
of value to others pursuing insights about the nature and use of graphical properties of the web.
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Part 3 – Large data: Conclusion

Working with large data presents several engineering, systems and implementation challenges. Moreover,
it forces us to develop scalable algorithms and tools that scale to large data and allow for measurement
and analysis. As these challenges are worth exploring for themselves there is a twofold benefit. In addi-
tion large data gives us opportunities to make observations and models of phenomena that is practically
invisible on smaller scales.

Observations:First, we have reviewed a set of results stemming from the analysis of the communication
patterns of all people using a popular IM system that provides a worldwidelens onto aggregate human be-
havior. We described capturing high-level communication activities and demographics in June 2006 with
more than 30 billion conversations among 240 million people. Our communication network is largest
social networkanalyzed to date. The planetary-scale network allowed us to explore dependencies among
user demographics, communication characteristics, and network structurelike the6.6 degrees of separa-
tion. Working with such a massive dataset allowed us to test hypotheses such as the degrees of separation
among people across the entire world.

Models: Next, we investigated statistical properties of community structure in large real-world social and
information networks. We find communities existonly up to size scale≈ 100 nodes and then “blended
in” an intermingled network core. This is interesting as it agrees well with the Dunbar’s number[Dunbar,
1998] of 150 which gives an upper bound on the human community size. As most of previous works
on community detection focused on small networks they did not hit the Dunbar’s limit. By analyzing
networks of millions of nodes, we discovered that community structure in thesenetworks is very different
than what we expected from the literature and from commonly-used models. Our work opens several new
questions about the structure of large social and information networks in general, and it has implications
for the use of graph partitioning algorithms on real-world networks and fordetecting communities in
them.

Algorithms: Last, we showed how in large networks local network structure can be used to make predic-
tions about the whole network. We presented a methodology for learningpredictive modelsand attributes
from a rich set of topological characteristics of sets of web pages, based on their projection on the larger
web graph. Using these context sensitive subgraphs we learned modelsthat predictsearch result quality,
web search spam, anduser behaviorwhen reformulating queries, including whether queries are likely to
be reformulated, and the nature of the reformulation.
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Part IV

Conclusion and future directions
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Chapter 12

Conclusion

The ubiquity and the emergence of the web and rich social computing applications provide computer
science with a unique opportunity to not only study but also design and build such complex computing
systems and applications. Indeed, we are not just observers that measure and model, but we can also
design, create and impose rules and incentives on such systems. Via systems like Facebook or Google that
are used by millions of people we can influence each individual’s behavior. However, decisions we make
at the level of an individual user will have global effects on a system likethe Facebook and the structure
of their social network. So, it is important to understand how such systems work, what is their structure,
and understand the global consequences of our micro-level decisions.

Our thesis presents a combination of (a) empirical work, measurements and experiments, (b) explanatory
modeling and analysis of mathematical models, (c) design of algorithmic and machine learning tools. This
naturally closes the loop between design and engineering on one hand, and empirical measurement and
modeling on the other hand.

The research focus of this thesis is to analyze and model the structure, evolution and dynamics of large
real-world networks. Our contributions so far are the following: we discovered novel structural properties
of time evolving networks, namely the Densification Power Law and Shrinking Diameters. We developed
simple models that explain the behavior we observed. We introduced the Kronecker graph model that
can accurately mimic the structural properties of real networks, and developed algorithms for efficiently
estimating its parameters.

On the information cascade side, we presented analyses of information propagation in large blog and
product recommendation networks. We showed that cascade frequency does not simply decrease mono-
tonically for denser cascade subgraphs, but rather reflects more subtle features of the domain in which
the behavior is propagating. We also developed scalable algorithms for cascade and outbreak detection in
networks that provably achieve near optimal solutions.

Last, we also showed how working with large datasets gives us opportunitiesto observe phenomena
that are practically invisible at small scales. We demonstrated this by analyzingthe planetary scale social
network of Microsoft Messenger, and made novel observations about network community structure.

In the long run, outside the scope of this thesis, we would like to build tools for modeling the evolution
of large networks both on a global scale and also on the micro-scale of nodes or small communities. We
want to study how information flows through the network and how local communities or groups influence
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Thesis Steps of the thesis

part 1: Observations 2: Models 3: Algorithms

Part 1: Network evolution chapter 3 chapter 4 chapter 5

Part 2: Network cascades chapter 6 chapter 7 chapter 8

Part 3: Large data chapter 9 chapter 10 chapter 11

Table 12.1:Structure of the thesis with references to the chapters.

the global network and its evolution. Ideally, we want to bring these two viewstogether, so that we can
describe the evolution of the network as a whole, and at the same time also of its subparts.

Next, we give a summary of contributions and our vision for future research.

12.1 Summary of contributions

We summarize our contributions by grouping them by the columns of the thesis structure as summarized
in table12.1. The thesis adheres to the following three steps. (1) We start with describing novel empirical
observations and studies. (2) These observations led us to revisit existing models and either improve
on them or invent completely new models that incorporate our empirical findings. (3) Given intuitions
coming from the models, we then develop novel algorithms that help us harness the empirical observations
we made.

Observations:

• We discovered the networkdensificationandshrinking diameterthat influenced the thinking about
fundamental structural properties of networks varying over time.

• We analyzed the properties of the planetary MSN Messenger social network, the largest social
networkexamined to date and found the“6.6 degrees of messaging”, i.e., that people are on average
separated by only 6.6 friendships.

• Our work on the shape of the human adoption curve and cascades in viralmarketing and the bl-
ogosphere was the first to observe, measure and analyze cascading behavior in a large real-world
setting. We also found that the human adoption curve followsdiminishing returns(Figure6.8).

Models:

• We developed the Kronecker graph model, which is amathematically tractablemodel of network
generation and evolution. Moreover, the Kronecker graph is the first model that is able to capture
severaltemporal (densification, shrinking diameter) and static (heavy tailed degreedistributions,
and other power laws) network properties at the same time.

• By observing the exact edge creation sequence of large social networks, we also developed a Triad
Closing model that firstfully specifies the network evolution: node arrival process, edge arrival
process and the edge creation process.

344



Algorithms:

• We developed KRONFIT, the algorithm for estimating parameters of a Kronecker graphs model.
Naive parameter estimation takesO(N !N2) time, while our approach scaleslinearly O(E), which
allows us to fit large graphs with millions of nodes and edges. Once the parameters are estimated
they can be naturally used to generate synthetic realistic-looking networks.

• We also developed the CELF algorithm for sensor placement to detect disease and information out-
breaks in networks. We proved that CELF placements are near optimal, andobtained data dependent
bounds that show our obtained solutions are at≈ 90% of NP-hard to compute optima, while being
700 times fasterthan a simple non-optimal greedy algorithm.

12.2 Vision for the future

Our long-term research goal is to harness large-scale networks to understand, predict, and ultimately,
enhance social and technological systems. We would like to create explanatory and predictive models
of actions of large groups of people and societies, and biological and technological systems. Although
the actions of a particular individual or component may be too difficult to model, machine learning and
statistics can be applied to large groups or ensembles, which can yield effective models with the ability
to predict the flow of future events. Based on our recent results and research experience, we believe that
the study of large networks is a promising approach to developing such understandings, as graphs capture
local dependencies, and also reveal large-scale structure and phenomena arising from the multitude of
local interactions. Seemingly “random” local behavior can propagate to themacro scale where global
regularities and patterns emerge,e.g., power law degree distributions and small-diameters.

On the way to achieving this long-term goal, our research consists of:

(1) Analyzing theoretical models of network structure and evolution.

(2) Developing statistical machine learning models and algorithms to efficiently estimate the network
properties and parameters from data.

(3) Working with massive datasets of gigabyte and terabyte scale, as certain behaviors and patterns are
observable only when the amount of data is large enough.

(4) Working with richer types of networks of different modalities and with different types of data at-
tached to nodes and edges to capture the complex behaviors in finer detail that will allow for novel
observations and models.

The long-term goal of our research is to build and harness models of natural and synthetic systems to make
predictions about future events. We believe that it will be feasible in the long-term to predict events and
overall dynamics of the behavior of networked systems, such as large groups of people, web, communica-
tion, and biological networks. The idea is that actions of an individual aretoo hard to model but machine
learning can be applied to large groups to predict the general flow of future events. We believe the right
approach is through networks where local dependencies and behavior propagate to global patterns and
trends. The key is to connect local to global, complement the topology information with other types of
data, and choose the right scale where micro behaviors propagate to macroscopic structure.

In our thesis research, we made several steps towards this long-term goal. We now better understand
microscopic and macroscopic network evolution and models that connect thetwo. Moreover, we can
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efficiently fit the network models to the data and predict prior and future states of the network. We also
have a better understanding of how information and influence propagate over the network, what the traces
of propagation are, and how to select influential nodes or detect disease outbreaks.

On the road towards the long-term goal, our research will focus acrossthree dimensions: (1) structure and
dynamics of networks, designing networked systems and influencing their evolution, (2) encompassing
richer types of networked data, and (3) scaling up the analyses to massive datasets and internet-scale
computing.

12.2.1 Medium term goals

We first present medium term goals for future work that builds on the workpresented in the thesis.

Network structure and communities

The online world is a rich testbed for our research as web media and socialnetworking sites are used by
hundreds of millions of users and contain very detailed traces of human social activity, people’s profiles,
interests, groups, etc. We want to understand how network topology, user profiles, and past actions deter-
mine the future of particular groups or events, and, more abstractly, how links arise and decay. We want
to define and explorethe “health” of a social network or a community, which is important, fore.g., social
network web sites like Facebook, where it is crucial that the social network be healthy and “organic”.
Intuitively, in healthy networks users get utility from links and communities don’t diminish, separate or
die. A natural next step is then to suggest actions and mechanisms that one could apply to improve the
network health. In this context, we are collaborating with LinkedIn and Facebook; we plan to perform
large-scale data mining and machine learning for social network analysis.

Actively analyzing and influencing the network

Beyond simply observing and characterizing a network, one can try to influence the activities and overall
evolution of a network. For example, we can explore mechanisms that would help a community to evolve
in a healthy manner and continue to grow organically. The key here is to make astep from passive
observations and modeling to actively trying to steer and influence the development of the network or
community. Basically, one would hope to run live real-time experiments over large populations to test
hypotheses, build models and test their predictive powers. As the experiments run they would actively
change the behavior of the users, which in turn would change the networkstructure. Explorations in this
realm could lead to strategies that help networked communities to survive and serve as richer resources
for people. For example, one such way is to studyhow to introduce incentive mechanisms in networks?.
Incentives are necessarily local in that they stimulate behavior of each individual user, but the goal here
is to achieve a global change in the network structure. For this reason it is important to study how local
micro behaviors propagate to global macro scale.

Information propagation

Another important aspect is the online media and information propagation:How do people (sites) con-
sume and alter information, and how do they influence propagation?For example, information from the
New York Times probably spreads in a different way than Slashdot posts. Moreover, when a story is
posted on Slashdot, it is given a special boost. A certain community starts discussing it, which further
diffuses the story. Most of our knowledge about such phenomena is either based on anecdotal evidence or
small studies. On the other hand we wish to simultaneously analyze millions of newssources and build
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predictive modelsof such behavior. Natural case studies here are predicting opinion formation and its
outcomes, finding trendsetters, predicting election results, the success ofa new product, and the evolution
of content on Wikipedia.

12.2.2 Long-term goals

Last, we present the long-term goals of our research.

Massive data and scalability

One of our primary research agendas focuses on large scale data andcomputing architectures formassive
datamanipulation and analysis. We plan to exploremap-reducetype programming abstractions for large
scale computing and extend our software library to distributed “share nothing” architectures. The question
here is what kinds of analyses are suitable for such architectures, andhow to parallelize data mining and
machine learning algorithms to scale to thousands of machines. Here, we are collaborating with the CMU
Parallel Data Lab and Yahoo Research, who recently gave us access toa 4,000 processor Hadoop cluster.
This line of research will allow us to perform near real-time analysis of planetary and internet scale data
and find patterns that are practically unobservable at smaller scales.

Richer types of graphs

Most algorithms and models today work on simple undirected graphs. We plan toextend generative
models and mining algorithms to graphs with multiple edges between pairs of nodes and to graphs with
different types of nodes and weights or attributes on nodes and edges.Incorporating otherdata modalities
like textual information, and historical and communication data, will allow for richer and more accurate
models.

These steps capture our sense for the beginning of an evolving research framework that will allow us to
tackle these challenging problems in a unique way. Our research on networks is theoretically grounded and
spans several areas of computer science as diverse as machine learning, theory and systems. Implications
of our research have direct applications well beyond computer science— to social sciences, physics,
economics and marketing. In short, the vision for future work is on patterns, scalability and predictive
modeling in large real networked systems.
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Appendix A

Appendix

A.1 Table of symbols

TableA.1 defines the symbols used in the thesis. For reader’s convenience each of the chapters of the
thesis also lists symbols related to that particular chapter.

SYMBOL DESCRIPTION

A Set of elements,A = {a1, . . . , an}
E Edge set of a graph
G Graph,G = (V, E)
I Set of all possible outbreaks (set of all possible cascades)

P = P [k]
1 = Pk kth Kronecker power of Stochastic Kronecker initiator matrixP1

V Vertex set of a graph

Ca,b Set of all conversations between users of agea andb
Cg,h Set of all conversations between users of gendersg andh
D Diameter of a graph as defined in def.2.1.1
D∗ Effective diameter of the graph as defined in def.2.1.3
E Number of edges in a graph
E1 Number of edges in Kronecker initiatorK1

E(t) Number of edges in a graph at timet
Ec Number of edges in largest component
Eh Number of edges that at the time of creation spanh hop path
G Graph or graph adjacency matrix
Gt Graph composed of nodes and edges that arrived before timet
G⊗H Kronecker product of adjacency matrices of graphsG andK
HΓ Height of the treeΓ
K Kronecker graph (synthetic estimate of graphG)
K1 Initiator of a Kronecker Graph

K
[k]
1 = Kk = K kth Kronecker power ofK1

Continued on next page. . .
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SYMBOL DESCRIPTION

K1[i, j] Entry at rowi and columnj of K1

N Number of nodes in a graph
N1 Number of nodes in Kronecker initiatorK1

N(t) Number of nodes in a graph at timet
Nc Number of nodes in the largest weakly connected component of a graph
Ns Number of senders of recommendations
Nr Number of recommendation receivers
Nt Size of the cascade at timet
R(P) Realization of a Stochastic Kronecker graphP
R(A) Reward for detecting a cascade,i.e., penalty reductionR(A) = π(∅)− π(A)
S Set of nodes (smaller side of the cut)
T Time span of a graph
T (i, s) Time it takes an outbreak (cascade)i to reach nodes

a Densification power law exponent,E(t) ∝ N(t)a

at(u) Age of a nodeu at timet, at(u) = t− t(u)
b Community hierarchy branching factor in Community Guided Attachment
br Purchases per recommender,br = (bb + be)/r
bb Number of purchases with buy-bit turned on
be Number of purchases as determined via buy-edges
c Difficulty Constant in Community Guided Attachment
cav Average number of people recommending a product
c(s) Cost of monitoring (placing a sensor, reading a blog) nodes
c(A) Cost of placementA, c(A) =

∑
s∈A c(s)

d Node degree,i.e., number of adjacent nodes
di Duration ofith conversation on instant messenger
dt(u) Degree of nodeu at timet
d(u) Final degree of nodeu (number of edges incident to nodeu)
d̄ Average node degree in a graph
dmax Maximum node degree in a graph
e = (u, v) Edge connecting nodesu andv in a graph
et tth edge in a graph
f(h) Difficulty Function in Community Guided Attachment
h Number of hops, path length, distance
h(u, v) Length of the shortest path between nodesu andv
hΓ(v, w) Least common ancestor height of leavesv, w in Γ
l(Θ) Log-likelihood of parametersΘ generating real graphG, log P (G|Θ)
li Geographical distance between the a pair of users in conversationi
mi Number of exchanged messages inith conversation
mu,i Number of exchanged messages inith conversation of useru
np Number of products
p Forest Fire forward burning probability
pb Forest Fire backward burning probability
pij Probability of edge(i, j)

Continued on next page. . .
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SYMBOL DESCRIPTION

pij = Pk[i, j] Probability of an edge(i, j) in Pk , entry at rowi and columnj of Pk

pe(d) Probability of new edge linking to node of degreed
pl(a) Node lifetime distribution,i.e., prob. of node being alive at agea
pm Median product price
pt Probability of a recommendation causing a purchase
rp1 Average number of reviews per product in 2001–2003
r Forest Fire ratio of backward and forward probability,r = p/pb

rr Number of recommendations
rc Number of recommendation in the largest component
sk Location with highest marginal reward or benefit/cost ratio
t(e) Time of creation of an edgee
t(v) Time when nodev joined the network (created its first edge)
tu Time when postu was published
ti(u) Time of creation ofith edge of a nodeu
tij Time of jth login of a user
toj Time of jth logout of a user
tsu,i Start time ofith conversation of useru
teu,i End time ofith conversation of useru
vav Average star rating of a product or set of products
u, v, w Nodes in a graph
wk Weight (expected degree) of nodek in a graph

Γ Community hierarchy (tree) in Community Guided Attachment
∆ Propagation delay on edge(u, v), ∆ = tu − tv
Θ = P1 Stochastic Kronecker initiator
Θ̂ Parameter values at maximum likelihood
Φ(k) Minimum conductance of all sets onk elements
γ Power law degree exponent,p(d) ∝ d−γ

δu(d) Edge gap, time betweendth andd + 1th edge ofu, δu(d) = td+1(u)− td(u)
δs Marginal reward (gain),δs = R(A ∪ s)−R(A)
θij = P1[i, j] Entry at rowi and columnj of P1

κ Decay exponent inEh ∝ exp(−κh)
λ Node lifetime distribution parameter (exponential distribution)
π(A) Expected penalty over all possible outbreaks (cascades)I
σ Permutation defining node correspondences,i.e., maps node ids ofG to those ofP
φ(S) Conductance of setS as defined in def.10.2.1
ω Proportion of timesSwapNodes permutation proposal distribution is used

Table A.1: Table of all symbols used in this thesis. Symbols are sorted alphabetically.

A.2 Datasets and basic statistics

Last, tablesA.2, A.3 andA.4 list and briefly describe the network datasets used in this thesis. We also
report some of the basic properties and statistics of each of the datasets.
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Network N E Nb Eb d̄ d̃ C̄ D D̄ Description

Social networks

DELICIOUS 147,567 301,921 0.40 0.65 4.09 48.44 0.30 24 6.28 del.icio.us collaborative tagging social network
EPINIONS 75,877 405,739 0.48 0.90 10.69 183.88 0.26 15 4.27 Who-trusts-whom graph of epinions.com [Richardson et al., 2003]
FLICKR 404,733 2,110,078 0.33 0.86 10.43 442.75 0.40 18 5.42 Flickr photo sharing social network [Kumar et al., 2006]
L INKED IN 6,946,668 30,507,070 0.47 0.88 8.78 351.66 0.23 23 5.43 Social network of professional contacts [Leskovec et al., 2008a]
L IVEJOURNAL01 3,766,521 30,629,297 0.78 0.97 16.26 111.24 0.36 23 5.55 Blogging community friendship network [Backstrom et al., 2006]
L IVEJOURNAL11 4,145,160 34,469,135 0.77 0.97 16.63 122.44 0.36 23 5.61 Blogging community friendship network [Backstrom et al., 2006]
L IVEJOURNAL12 4,843,953 42,845,684 0.76 0.97 17.69 170.66 0.35 20 5.53 Blogging community friendship network [Backstrom et al., 2006]
MESSENGER 1,878,736 4,079,161 0.53 0.78 4.34 15.40 0.09 26 7.42 Instant messenger social network [Leskovec et al., 2008b]
EMAIL -ALL 234,352 383,111 0.18 0.50 3.27 576.87 0.50 14 4.07 Research organization email network [Leskovec et al., 2007b]
EMAIL -INOUT 37,803 114,199 0.47 0.82 6.04 165.73 0.58 8 3.74 (email has to be sent both ways) [Leskovec et al., 2007b]
EMAIL -INSIDE 986 16,064 0.90 0.99 32.58 74.66 0.45 7 2.60 (only addresses inside the organization) [Leskovec et al., 2007b]
EMAIL -ENRON 33,696 180,811 0.61 0.90 10.73 142.36 0.71 13 3.99 Enron email dataset [Klimt and Yang, 2004]
ANSWERS 488,484 1,240,189 0.45 0.78 5.08 251.78 0.11 22 5.72 Yahoo Answers social network [Leskovec et al., 2008a]
ANSWERS-1 26,971 91,812 0.56 0.87 6.81 59.17 0.08 16 4.49 Cluster 1 from Yahoo Answers
ANSWERS-2 25,431 65,551 0.48 0.80 5.16 56.57 0.10 15 4.76 Cluster 2 from Yahoo Answers
ANSWERS-3 45,122 165,648 0.53 0.87 7.34 417.83 0.21 15 3.94 Cluster 3 from Yahoo Answers
ANSWERS-4 93,971 266,199 0.49 0.82 5.67 94.48 0.08 16 4.91 Cluster 4 from Yahoo Answers
ANSWERS-5 5,313 11,528 0.41 0.73 4.34 29.55 0.12 14 4.75 Cluster 5 from Yahoo Answers
ANSWERS-6 290,351 613,237 0.40 0.71 4.22 57.16 0.09 22 5.92 Cluster 6 from Yahoo Answers

Information (citation) networks

CIT-PATENTS 3,764,105 16,511,682 0.82 0.96 8.77 21.34 0.09 26 8.15 Citation network of all US patents [Leskovec et al., 2005b]
CIT-HEP-PH 34,401 420,784 0.96 1.00 24.46 63.50 0.30 14 4.33 Citations between arXivhep-th papers [Gehrke et al., 2003]
CIT-HEP-TH 27,400 352,021 0.94 0.99 25.69 106.40 0.33 15 4.20 Citations between arXivhep-ph papers [Gehrke et al., 2003]
BLOG-NAT05-6M 29,150 182,212 0.74 0.96 12.50 342.51 0.24 10 3.40 Blog citation network (6 months of data) [Leskovec et al., 2007d]
BLOG-NAT06ALL 32,384 315,713 0.87 0.99 19.50 153.08 0.20 18 3.94 Blog citation network (1 year of data) [Leskovec et al., 2007d]
POST-NAT05-6M 238,305 297,338 0.21 0.34 2.50 39.51 0.13 45 10.34 Blog post citation network (6 months) [Leskovec et al., 2007d]
POST-NAT06ALL 437,305 565,072 0.22 0.38 2.58 35.54 0.11 54 10.48 Blog post citation network (1 year) [Leskovec et al., 2007d]

Collaboration networks

ATA-IMDB 883,963 27,473,042 0.87 0.99 62.16 517.40 0.79 15 3.48 IMDB actor collaboration network from Dec 2007
CA-ASTRO-PH 17,903 196,972 0.89 0.98 22.00 65.70 0.67 14 4.21 Co-authorship inastro-ph of arxiv.org [Leskovec et al., 2005b]
CA-COND-MAT 21,363 91,286 0.81 0.93 8.55 22.47 0.70 15 5.36 Co-authorship incond-mat category [Leskovec et al., 2005b]
CA-GR-QC 4,158 13,422 0.64 0.78 6.46 17.98 0.66 17 6.10 Co-authorship ingr-qc category [Leskovec et al., 2005b]
CA-HEP-PH 11,204 117,619 0.81 0.97 21.00 130.88 0.69 13 4.71 Co-authorship inhep-ph category [Leskovec et al., 2005b]
CA-HEP-TH 8,638 24,806 0.68 0.85 5.74 12.99 0.58 18 5.96 Co-authorship inhep-th category [Leskovec et al., 2005b]
CA-DBLP 317,080 1,049,866 0.67 0.84 6.62 21.75 0.73 23 6.75 DBLP co-authorship network [Backstrom et al., 2006]

Table A.2: Network datasets we analyzed. Statistics of networks we consider: number of nodesN ; number of edgesE; fraction nodes not in
whiskers (size of largest biconnected component)Nb/N ; fraction of edges in biconnected componentEb/E; average degreēd = 2E/N ;
second order average degreed̃; average clustering coefficient̄C; diameterD; and average path length̄D.
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Network N E Nb Eb d̄ d̃ C̄ D D̄ Description

Web graphs

WEB-BERKSTAN 319,717 1,542,940 0.57 0.88 9.65 1,067.55 0.32 35 5.66 Stanford and Berkeley [Khalil and Liu, 2004]
WEB-GOOGLE 855,802 4,291,352 0.75 0.92 10.03 170.35 0.62 24 6.27 Web graph Google released in 2002 [Google, 2002]
WEB-NOTREDAME 325,729 1,090,108 0.41 0.76 6.69 280.68 0.47 46 7.22 Web graph of Uni. of Notre Dame [Albert et al., 1999]
WEB-TREC 1,458,316 6,225,033 0.59 0.78 8.54 682.89 0.68 112 8.58 Web graph of TREC WT10G web corpus [NIST, 2000]

Internet networks

AS-ROUTEV IEWS 6,474 12,572 0.62 0.80 3.88 164.81 0.40 9 3.72 AS from Oregon Route View [Leskovec et al., 2005b]
AS-CAIDA 26,389 52,861 0.61 0.81 4.01 281.93 0.33 17 3.86 CAIDA AS Relationships Dataset
AS-SKITTER 1,719,037 12,814,089 0.99 1.00 14.91 9,934.01 0.17 5 3.44 AS from traceroutes run daily in 2005 by Skitter
AS-NEWMAN 22,963 48,436 0.65 0.83 4.22 261.46 0.35 11 3.83 AS graph from Newman [Network data, 2007]
AS-OREGON 13,579 37,448 0.72 0.90 5.52 235.97 0.46 9 3.58 Autonomous systems [RouteViews, 1997]
GNUTELLA -25 22,663 54,693 0.59 0.83 4.83 10.75 0.01 11 5.57 Gnutella network on 3/25 2000 [Ripeanu et al., 2002]
GNUTELLA -30 36,646 88,303 0.55 0.81 4.82 11.46 0.01 11 5.75 Gnutella P2P network on 3/30 2000 [Ripeanu et al., 2002]
GNUTELLA -31 62,561 147,878 0.54 0.81 4.73 11.60 0.01 11 5.94 Gnutella network on 3/31 2000 [Ripeanu et al., 2002]
EDONKEY 5,792,297 147,829,887 0.93 1.00 51.04 6,139.99 0.08 5 3.66 P2P eDonkey graph for a period of 47 hours in 2004

Bi-partite networks

IPTRAFFIC 2,250,498 21,643,497 1.00 1.00 19.23 94,889.05 0.00 5 2.53 IP traffic graph a single router for 24 hours
ATP-ASTRO-PH 54,498 131,123 0.70 0.87 4.81 16.67 0.00 28 7.78 Affiliation network ofastro-ph [Leskovec et al., 2007d]
ATP-COND-MAT 57,552 104,179 0.65 0.79 3.62 10.54 0.00 31 9.96 Affiliation network ofcond-mat [Leskovec et al., 2007d]
ATP-GR-QC 14,832 22,266 0.47 0.60 3.00 9.72 0.00 35 11.08 Affiliation network ofgr-qc [Leskovec et al., 2007d]
ATP-HEP-PH 47,832 86,434 0.60 0.76 3.61 16.80 0.00 27 8.55 Affiliation network ofhep-ph [Leskovec et al., 2007d]
ATP-HEP-TH 39,986 64,154 0.53 0.68 3.21 13.07 0.00 36 10.74 Affiliation network ofhep-th [Leskovec et al., 2007d]
ATP-DBLP 615,678 944,456 0.49 0.64 3.07 13.61 0.00 48 12.69 DBLP authors-to-papers bipartite network
SPENDING 1,831,540 2,918,920 0.34 0.58 3.19 1,536.35 0.00 26 5.62 Users-to-keywords they bid [Leskovec et al., 2008c]
HW7 653,260 2,278,448 0.99 0.99 6.98 346.85 0.00 24 6.26 Downsampled advertiser-query bid graph
NETFLIX 497,959 100,480,507 1.00 1.00 403.57 28,432.89 0.00 5 2.31 Users-to-movies they rated. Netflix prize [Netflix, 2006]
QUERYTERMS 13,805,808 17,498,668 0.28 0.41 2.53 14.92 0.00 86 19.81 Users-to-queries they submit to a search engine
CLICKSTREAM 199,308 951,649 0.39 0.87 9.55 430.74 0.00 7 3.83 Users-to-visited URLs [Montgomery and Faloutsos, 2001]

Biological networks

BIO-PROTEINS 4,626 14,801 0.72 0.91 6.40 24.25 0.12 12 4.24 Yeast protein interaction network [Colizza et al., 2005]
BIO-YEAST 1,458 1,948 0.37 0.51 2.67 7.13 0.14 19 6.89 Yeast protein interaction network data [Jeong et al., 2001]
BIO-YEASTP0.001 353 1,517 0.73 0.93 8.59 20.18 0.57 11 4.33 Yeast protein-protein interaction map [Qi et al., 2005]
BIO-YEASTP0.01 1,266 8,511 0.79 0.97 13.45 47.73 0.44 12 3.87 Yeast protein-protein interaction map [Qi et al., 2005]

Table A.3: Network datasets we analyzed. Statistics of networks we consider: number of nodesN ; number of edgesE; fraction nodes not in
whiskers (size of largest biconnected component)Nb/N ; fraction of edges in biconnected componentEb/E; average degreēd = 2E/N ;
second order average degreed̃; average clustering coefficient̄C; diameterD; and average path length̄D.
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Network N E Nb Eb d̄ d̃ C̄ D D̄ Description

Nearly low-dimensional networks

ROAD-CA 1,957,027 2,760,388 0.80 0.85 2.82 3.17 0.06 865 310.97 California road network
ROAD-USA 126,146 161,950 0.97 0.98 2.57 2.81 0.03 617 218.55 USA road network (only main roads)
ROAD-PA 1,087,562 1,541,514 0.79 0.85 2.83 3.20 0.06 794 306.89 Pennsylvania road network
ROAD-TX 1,351,137 1,879,201 0.78 0.84 2.78 3.15 0.06 1,064 418.73 Texas road network
POWERGRID 4,941 6,594 0.62 0.69 2.67 3.87 0.11 46 19.07 Western States Power Grid [Watts and Strogatz, 1998]
MANI -FACES7K 696 6,979 0.98 0.99 20.05 37.99 0.56 16 5.52 Faces (64x64 grayscale images) (connect 7k closest pairs)
MANI -FACES4K 663 3,465 0.90 0.97 10.45 20.20 0.56 29 8.96 Faces (connect 4k closest pairs) [Tenenbaum et al., 2000]
MANI -FACES2K 551 1,981 0.84 0.94 7.19 12.77 0.54 32 11.07 Faces (connect 2k closest pairs)
MANI -FACESK10 698 6,935 1.00 1.00 19.87 25.32 0.51 6 3.25 Faces (connect every to 10 nearest neighbors)
MANI -FACESK3 698 2,091 1.00 1.00 5.99 7.98 0.45 9 4.89 Faces (connect every to 5 nearest neighbors)
MANI -FACESK5 698 3,480 1.00 1.00 9.97 12.91 0.48 7 4.03 Faces (connect every to 3 nearest neighbors)
MANI -SWISS200K 20,000 200,000 1.00 1.00 20.00 21.08 0.59 103 37.21 Swiss-roll (connect 200k nearest pairs of nodes)
MANI -SWISS100K 19,990 99,979 1.00 1.00 10.00 11.02 0.59 162 58.32 Swiss-roll (connect 100k pairs) [Tenenbaum et al., 2000]
MANI -SWISS60K 19,042 57,747 0.93 0.96 6.07 7.03 0.59 243 89.15 Swiss-roll (connect 60k nearest pairs of nodes)
MANI -SWISSK10 20,000 199,955 1.00 1.00 20.00 25.38 0.56 10 5.47 Swiss-roll (every node connects to 10 nearest neighbors)
MANI -SWISSK5 20,000 99,990 1.00 1.00 10.00 12.89 0.54 13 8.34 Swiss-roll (every node connects to 5 nearest neighbors)
MANI -SWISSK3 20,000 59,997 1.00 1.00 6.00 7.88 0.50 17 6.89 Swiss-roll (every node connects to 3 nearest neighbors)

IMDB Actor-to-Movie graphs

ATM-IMDB 2,076,978 5,847,693 0.49 0.82 5.63 65.41 0.00 32 6.82 Actors-to-movies graph from IMDB (imdb.com )
IMDB-TOP30 198,430 566,756 0.99 1.00 5.71 18.19 0.00 26 8.32 Actors-to-movies graph heavily preprocessed
IMDB-RAW07 601,481 1,320,616 0.54 0.79 4.39 20.94 0.00 32 8.55 Country clusters were extracted from this graph
IMDB-FRANCE 35,827 74,201 0.51 0.76 4.14 14.62 0.00 20 6.57 Cluster of French movies
IMDB-GERMANY 21,258 42,197 0.56 0.78 3.97 13.69 0.00 34 7.47 German movies (to actors that played in them)
IMDB-INDIA 12,999 25,836 0.57 0.78 3.98 31.55 0.00 19 6.00 Indian movies
IMDB-ITALY 19,189 37,534 0.55 0.77 3.91 11.66 0.00 30 6.91 Italian movies
IMDB-JAPAN 15,042 34,131 0.60 0.82 4.54 16.98 0.00 19 6.81 Japanese movies
IMDB-MEXICO 13,783 36,986 0.64 0.86 5.37 24.15 0.00 19 5.43 Mexican movies
IMDB-SPAIN 15,494 31,313 0.51 0.76 4.04 14.22 0.00 28 6.44 Spanish movies
IMDB-UK 42,133 82,915 0.52 0.76 3.94 15.14 0.00 23 7.04 UK movies
IMDB-USA 241,360 530,494 0.51 0.78 4.40 25.25 0.00 30 7.63 USA movies
IMDB-WGERMANY 12,120 24,117 0.56 0.78 3.98 11.73 0.00 22 6.26 West German movies

Amazon product co-purchasing networks

AMAZON0302 262,111 899,792 0.95 0.97 6.87 11.14 0.43 38 8.85 Amazon products from 2003 03 02 [Clauset et al., 2004]
AMAZON0312 400,727 2,349,869 0.94 0.99 11.73 30.33 0.42 20 6.46 Amazon products from 2003 03 12 [Clauset et al., 2004]
AMAZON0505 410,236 2,439,437 0.94 0.99 11.89 30.93 0.43 22 6.48 Amazon products from 2003 05 05 [Clauset et al., 2004]
AMAZON0601 403,364 2,443,311 0.96 0.99 12.11 30.55 0.43 25 6.42 Amazon products from 2003 06 01 [Clauset et al., 2004]
AMAZONALL 473,315 3,505,519 0.94 0.99 14.81 52.70 0.41 19 5.66 Amazon products (all 4 graphs merged) [Clauset et al., 2004]
AMAZONALL PROD 524,371 1,491,793 0.80 0.91 5.69 11.75 0.35 42 11.18 Products (all products, source+target) [Leskovec et al., 2007a]
AMAZONSRCPROD 334,863 925,872 0.84 0.91 5.53 11.53 0.43 47 12.11 Products (only source products) [Leskovec et al., 2007a]

Table A.4: Network datasets we analyzed. Statistics of networks we consider: number of nodesN ; number of edgesE; fraction nodes not in
whiskers (size of largest biconnected component)Nb/N ; fraction of edges in biconnected componentEb/E; average degreēd = 2E/N ;
second order average degreed̃; average clustering coefficient̄C; diameterD; and average path length̄D.
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R. Gibrat. Les ińegalit́esÉconomiques.Paris: Librairie du Recueil Sirey, 1931.

D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring web communitiesfrom link topology. InHT ’98:
Proceedings of the 9th ACM Conference on Hypertext and Hypermedia, pages 225–234, 1998.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks.Proceedings of
the National Academy of Sciences, 99(12):7821–7826, June 2002.

C. Gkantsidis, M. Mihail, and A. Saberi. Conductance and congestion in power law graphs. InProceedings
of the 2003 ACM SIGMETRICS International Conference on Measurement and modeling of computer
systems, pages 148–159, 2003.

N. Glance, M. Hurst, K. Nigam, M. Siegler, R. Stockton, and T. Tomokiyo. Deriving marketing intel-
ligence from online discussion. InKDD ’05: Proceeding of the 11th ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 419–428, 2005.

361



A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier.Journal of the ACM, 45:783–797,
1998.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of the ACM,
35:921–940, 1988.

J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying
process of word-of-mouth.Marketing Letters, 3(12):211–223, 2001.

L. Gomes. It may be a long time before the long tail is wagging the web.The Wall Street Jounal, 2006.
July 26 2006.

Google. Google Programming Contest.http://www.google.com/programming-contest/ ,
2002.

M. S. Granovetter. The strength of weak ties.American Journal of Sociology, 78:1360–1380, 1973.

M. S. Granovetter. Threshold models of collective behavior.American Journal of Sociology, 83(6):
1420–1443, 1978.

D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. InWWW
’04: Proceedings of the 13th international conference on World Wide Web, pages 491–501, 2004.

J. Guan, M. M. Aral, and et al. Optimization model and algorithms for design ofwater sensor place-
ment in water distribution systems. In8th Annual Symposium on Water Distribution Systems Analysis,
Cincinnati, Ohio, 2006.

S. Guattery and G. L. Miller. On the quality of spectral separators.SIAM Journal on Matrix Analysis and
Applications, 19:701–719, 1998.

R. Gueli. Predator-prey model for discrete sensor placement. In8th Annual Symposium on Water Distri-
bution Systems Analysis, Cincinnati, Ohio, 2006.

R. Guimer̀a, M. Sales-Pardo, and L. A. N. Amaral. Modularity from fluctuations in random graphs and
complex networks.Physical Review E, 70:025101, 2004.

B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The nber patent citation datafile: Lessons, insights and
methodological tools. NBER Working Papers 8498, National Bureau of Economic Research, Inc, Oc-
tober 2001.

M. B. Hastings. Community detection as an inference problem.Physical Review E, 74:035102, 2006.

T. H. Haveliwala. Topic-sensitive pagerank. InWWW ’02: Proceedings of the 11th international confer-
ence on World Wide Web, 2002.

B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE Conference on Supercomputing (CDROM), 1995.

H. W. Hethcote. The mathematics of infectious diseases.SIAM Rev., 42(4):599–653, 2000.

S. Hill, F. Provost, and C. Volinsky. Network-based marketing: Identifying likely adopters via consumer
networks.Statistical Science, 21(2):256–276, 2006.

P. Holme. Core-periphery organization of complex networks.Physical Review E, 72:046111, 2005.

P. Holme and M. E. J. Newman. Nonequilibrium phase transition in the coevolution of networks and
opinions.Physical Review E, 74:056108, 2006.

S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.Bulletin of the American
Mathematical Society, 43:439–561, 2006.

362

http://www.google.com/programming-contest/


J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Natural communities in large linked networks. InKDD
’03: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 541–546, 2003.

J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking evolving communities in large linked networks.
Proceedings of the National Academy of Sciences, 101:5249–5253, 2004.

B. A. Huberman and L. A. Adamic. Growth dynamics of the world-wide web.Nature, 399:131, 1999.

IDC Market Analysis. Worldwide enterprise instant messaging applications2005–2009 forecast and 2004
vendor shares: Clearing the decks for substantial growth, 2005.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.ACM Computing Surveys, 31:264–323,
1999.

G. Jeh and J. Widom. Scaling personalized web search. InWWW ’03: Proceedings of the 12th interna-
tional conference on World Wide Web, 2003.

H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein networks.
Nature, 411:41–42, 2001.

N. L. Johnson, S. Kotz, and N. Balakrishnan.Continuous univariate distributions: Vol. 1, 2nd Edition.
John Wiley, New York, 1994.

R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. InWWW ’06: Proceedings
of the 15th international conference on World Wide Web, 2006.

S. Jurvetson. What exactly is viral marketing?Red Herring, 78:110–112, 2000.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral. Journal of the ACM, 51
(3):497–515, 2004.

R. M. Karp. Reducibility among combinatorial problems. InComplexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

B. Karrer, E. Levina, and M. E. J. Newman. Robustness of community structure in networks.Physical
Review E, 77:046119, 2008.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregulargraphs.J. Parallel Distrib.
Comput., 48:96–129, 1998a.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20:359–392, 1998b.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. InICML ’03:
Proceedings of the 20th international conference on Machine learning, 2003.

J. S. Katz. Scale independent bibliometric indicators.Measurement: Interdisciplinary Research and
Perspectives, 3:24–28, 2005.

J. S. Katz. The self-similar science system.Research Policy, 28:501–517, 1999.

D. Kempe, J. M. Kleinberg, and́E. Tardos. Maximizing the spread of influence through a social network.
In KDD ’03: Proceedings of the 9th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 137–146, 2003.

J. Kepner. Kronecker theory of power law graphs. InSIAM PP ’08: Workshop for HPC on Large Graphs,
2008.

B. Kernighan and S. Lin. An effective heuristic procedure for partitioning graphs. The Bell System
Technical Journal, pages 291–308, 1970.

363



A. Khalil and Y. Liu. Experiments with PageRank computation. Technical Report 603, Indiana University
Department of Computer Science, December 2004.

R. Khandekar, S. Rao, and U. Vazirani. Graph partitioning using single commodity flows. InSTOC ’06:
Proceedings of the 38th annual ACM Symposium on Theory of Computing, pages 385–390, 2006.

S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Information Processing
Letters, 70(1):39–45, 1999.

P. Killworth and H. Bernard. Reverse small world experiment.Social Networks, 1:159–192, 1978.

J. M. Kleinberg. Small-world phenomena and the dynamics of information. InNIPS ’02: Advances in
Neural Information Processing Systems 14, 2002.

J. M. Kleinberg. Authoritative sources in a hyperlinked environment.Journal of the ACM, 46(5):604–632,
1999a.

J. M. Kleinberg. The small-world phenomenon: an algorithmic perspective.Technical Report 99-1776,
Cornell Computer Science Department, 1999b.

J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The web as a graph:
Measurements, models and methods. InCOCOON ’99: Proceedings of the International Conference
on Combinatorics and Computing, 1999.

B. Klimt and Y. Yang. Introducing the enron corpus. InCEAS ’04: Proceedings of the 1st Conference on
Email and Anti-Spam, pages 1–2, 2004.

R. I. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete input spaces. InICML ’02:
Proceedings of the 19th international conference on Machine learning, 2002.

G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network. Science, 311(5757):
88–90, January 2006.

D. Krackhardt and M. Handcock. Heider vs. Simmel: Emergent featuresin dynamic structure. InStatis-
tical Network Analysis: Models, Issues, and New Directions, pages 14–27, 2007.

P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63(6):066123,
May 2001.

P. L. Krapivsky and S. Redner. Network growth by copying.Physical Review E, 71(036118):036118,
2005.

A. Krause and C. Guestrin. A note on the budgeted maximization of submodularfunctions. Technical
Report CMU-CALD-05-103, Carnegie Mellon University, 2005.

A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient sensor placement opti-
mization for securing large water distribution networks.Accepted to the Journal of Water Resources
Planning an Management, 0:0, 2008.

T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph classification. InNIPS ’04:
Advances in Neural Information Processing Systems 17, 2004.

S. Kullback and R. A. Leibler. On information and sufficiency.Annals of Math. Stat., 22(1):79–86, 1951.

R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic models for
the web graph. InFOCS ’00: Proceedings of the 41st Annual Symposium on Foundationsof Computer
Science, page 57, 2000.

R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the bursty evolution of blogspace. InWWW ’02:
Proceedings of the 11th international conference on World Wide Web, pages 568–576, 2003.

364



R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks. InKDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 611–617, 2006.

S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting large-scale knowledge bases from
the web. InProceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999a.

S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling theweb for emerging cyber-
communities.Computer Networks, 31(11-16):1481–1493, 1999b.

K. Lang. Finding good nearly balanced cuts in power law graphs. Technical Report YRL-2004-036,
Yahoo! Research Labs, Pasadena, CA, November 2004.

K. Lang and S. Rao. A flow-based method for improving the expansion or conductance of graph cuts.
In IPCO ’04: Proceedings of the 10th International IPCO Conference on Integer Programming and
Combinatorial Optimization, pages 325–337, 2004.

K. Lang and S. Rao. Finding near-optimal cuts: an empirical evaluation. InSODA ’93: Proceedings of
the 4th annual ACM-SIAM Symposium on Discrete algorithms, pages 212–221, 1993.

A. N. Langville and W. J. Stewart. The Kronecker product and stochastic automata networks.Journal of
Computation and Applied Mathematics, 167:429–447, 2004.

T. Lau and E. Horvitz. Patterns of search: analyzing and modeling web query refinement. InUM ’99:
Proceedings of the seventh international conference on User modeling, 1999.

T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow
problems with applications to approximation algorithms. InFOCS ’88: Proceedings of the 28th Annual
Symposium on Foundations of Computer Science, pages 422–431, 1988.

T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use indesigning approxi-
mation algorithms.Journal of the ACM, 46(6):787–832, 1999.

J. Leskovec and C. Faloutsos. Sampling from large graphs. InKDD ’06: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 631–636, 2006.

J. Leskovec and C. Faloutsos. Scalable modeling of real graphs using kronecker multiplication. InICML
’07: Proceedings of the 24th International Conference on Machine Learning, 2007.

J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network. InWWW ’08:
Proceedings of the 17th International Conference on World Wide Web, 2008.

J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic, mathematically tractable graph
generation and evolution, using kronecker multiplication. InPKDD ’05: Proceedings of the 9th Eu-
ropean Conference on Principles and Practice of Knowledge Discoveryin Databases, pages 133–145,
2005a.

J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters
and possible explanations. InKDD ’05: Proceeding of the 11th ACM SIGKDD international conference
on Knowledge discovery in data mining, pages 177–187, 2005b.

J. Leskovec, N. Milic-Frayling, and M. Grobelnik. Impact of linguistic analysis on the semantic graph
coverage and learning of document extracts. InAAAI ’05: Proceedings of the 20th National Conference
on Artificial Intelligence, pages 1069–1074, 2005c.

J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing. InEC ’06: Proceed-
ings of the 7th ACM conference on Electronic commerce, pages 228–237, 2006a.

365



J. Leskovec, A. Singh, and J. M. Kleinberg. Patterns of influence in a recommendation network. In
PAKDD ’06: Proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing, pages 380–389, 2006b.

J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing. ACM Transactions
on the Web (TWEB), 1(1):2, 2007a.

J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):2, 2007b.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,and N. Glance. Cost-effective outbreak
detection in networks. InKDD ’07: Proceeding of the 13th ACM SIGKDD international conference on
Knowledge discovery in data mining, 2007c.

J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst. Cascading behavior in large blog
graphs. InSDM ’07: Proceedings of the SIAM Conference on Data Mining, 2007d.

J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social networks. In
KDD ’08: Proceedings of the 14th ACM SIGKDD international conferenceon Knowledge discovery
and data mining, pages 462–470, 2008a.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statisticalproperties of community structure in
large social and information networks. InWWW ’08: Proceedings of the 17th International Conference
on World Wide Web, 2008b.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large networks:
Natural cluster sizes and the absence of large well-defined clusters.ArXiv, arXiv:0810.1355, Oct 2008c.

L. Li, D. Alderson, John C. Doyle, and W. Willinger. Towards a theory ofscale-free graphs: Definition,
properties, and implications.Internet Mathematics, 2(4):431–523, 2005.

D. Liben-Nowell and J. M. Kleinberg. The link prediction problem for social networks. In12th CIKM,
pages 556–559, 2003.

D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and A. Tomkins. Geographic routing in social
networks.Proceedings of the National Academy of Sciences, 102(33):11623–11628, 2005.

G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

C. F. Van Loan. The ubiquitous Kronecker product.Journal of Computation and Applied Mathematics,
123:85–100, 2000.

M. O. Lorenz. Methods of measuring the concentration of wealth.Publications of the American Statistical
Association, 9(70):209–219, 1905.

L. Lu. The diameter of random massive graphs. InSODA ’01: Proceedings of the 12th annual ACM-SIAM
Symposium on Discrete algorithms, pages 912–921, 2001.

D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson. The bottlenose dol-
phin community of doubtful sound features a large proportion of long-lasting associations.Behavioral
Ecology and Sociobiology, 54:396–405, 2003.

M. Mahdian and Y. Xu. Stochastic kronecker graphs. InWAW ’07: Proceedings of the 5th Workshop On
Algorithms And Models For The Web-Graph, pages 179–186, 2007.

P. V. Marsden. Core discussion networks of americans.American Sociological Review, 52(1):122–131,
1987.

366



M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks.
Annual Review of Sociology, 27(1):415–444, 2001.

F. Menczer. Growing and navigating the small world web by local content.Proceedings of the National
Academy of Sciences, 99(22):14014–14019, 2002.

M. Mihail and C. H. Papadimitriou. On the eigenvalue power law. InRANDOM ’02: Proceedings of the
6th International Workshop on Randomization and Approximation Techniques, pages 254–262, 2002.

M. Mihail, C.H. Papadimitriou, and A. Saberi. On certain connectivity properties of the internet topology.
Journal of Computer and System Sciences, 72(2):239–251, 2006.

S. Milgram. The small-world problem.Psychology Today, 2:60–67, 1967.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network Motifs: Simple
Building Blocks of Complex Networks.Science, 298(5594):824–827, 2002.

R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform generation of random
graphs with prescribed degree sequences.ArXiv, cond-mat/0312028, May 2004.

E. Minkov, W. W. Cohen, and A. Y. Ng. Contextual search and name disambiguation in email using graphs.
In SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, 2006.

M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions.Inter-
net Mathematics, 1(2):226–251, 2004.

B. Mohar. The Laplacian spectrum of graphs. In Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J.
Schwenk, editors,Graph Theory, Combinatorics, and Applications, Vol. 2, pages 871–898. Wiley, 1991.

M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence.Random
Structures and Algorithms, 6:161–180, 1995.

M. Molloy and B. Reed. The size of the giant component of a random graph with a given degree sequence.
Combinatorics, Probability and Computing, 7:295–305, 1998.

A. L. Montgomery. Applying quantitative marketing techniques to the internet.Interfaces, 30:90–108,
2001.

A. L. Montgomery and C. Faloutsos. Identifying web browsing trends andpatterns.IEEE Computer, 34
(7):94–95, 2001.

B. A. Nardi, S. Whittaker, and E. Bradner. Interaction and outeraction:instant messaging in action. In
CSCW ’00: Proceedings of the 2000 ACM conference on Computer supported cooperative work, pages
79–88, 2000.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular
set functions.Mathematical Programming, 14:265–294, 1978.

G. L. Nemhauser and L. A. Wolsey.Studies on Graphs and Discrete Programming, chapter Maximizing
Submodular Set Functions: Formulations and Analysis of Algorithms, pages 279–301. North-Holland,
1981.

Netflix. Netflix prize.http://www.netflixprize.com , 2006.

Network data. Collection of network datasets, mainly small networks used forcommunity detection.
http://www-personal.umich.edu/ ˜ mejn/netdata , 2007.

M. E. J. Newman. Clustering and preferential attachment in growing networks. Physical Review E, 64:
025102, 2001.

367

http://www.netflixprize.com
http://www-personal.umich.edu/~mejn/netdata


M. E. J. Newman. The spread of epidemic disease on networks.Physical Review E, 66:016128, 2002.

M. E. J. Newman. The structure and function of complex networks.SIAM Review, 45:167–256, 2003.

M. E. J. Newman. Detecting community structure in networks.The European Physical Journal B, 38:
321–330, 2004.

M. E. J. Newman. Power laws, pareto distributions and zipf’s law.Contemporary Physics, 46:323–351,
December 2005.

M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices.Physical
Review E, 74:036104, 2006a.

M. E. J. Newman. Modularity and community structure in networks.Proceedings of the National Academy
of Sciences, 103(23):8577–8582, 2006b.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical
Review E, 69:026113, 2004.

M. E. J. Newman and E. A. Leicht. Mixture models and exploratory analysis innetworks.Proceedings of
the National Academy of Sciences, 104(23):9564–9569, 2007.

M. E. J. Newman, S. Forrest, and J. Balthrop. Email networks and the spread of computer viruses.Physical
Review E, 66(3):035101, 2002.

C. L. M. Nickel. Random dot product graphs: A model for social networks. Ph.D. Thesis, Dept. of
Applied Mathematics and Statistics, Johns Hopkins University, 2008.

L. Nie, B. D. Davison, and X. Qi. Topical link analysis for web search. In SIGIR ’06: Proceedings
of the 29th annual international ACM SIGIR conference on Research and development in information
retrieval, 2006.

Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level ranking: bringing order to web objects. InWWW
’05: Proceedings of the 14th international conference on World Wide Web, 2005.

NIST. TREC Web Corpus: WT10g. http://ir.dcs.gla.ac.uk/testcollections/wt10g.html, 2000.

A. Ntoulas, J. Cho, and C. Olston. What’s new on the web? the evolution of the web from a search engine
perspective. InWWW ’04: Proceedings of the 13th international conference on World WideWeb, pages
1–12, 2004.

T. O’Reilly. O’reilly network: What is web 2.0, September 2005.

A. Ostfeld and E. Salomons. Optimal layout of early warning detection stationsfor water distribution
systems security.J. Water Resources Planning and Management, 130(5):377–385, 2004.

A. Ostfeld, J. G. Uber, and E. Salomons. Battle of water sensor networks: A design challenge for engineers
and algorithms. In8th Symposium on Water Distribution Systems Analysis, 2006.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Dig. Lib. Tech. Proj., 1998.
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