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Abstract

A basic premise behind the study of large networks is that interaction leadsriplex
collective behavior. In our work we found very interesting and coumtgitive patternsfor
time evolving networksvhich change some of the basic assumptions that were made in the
past. We then develomodelsthat explain processes which govern the network evolution,
fit such models to real networks, and use them to generate realistic gragihge formal
explanations about their properties. In addition, our work has a widgerahapplications:
it can help us spot anomalous graphs and outliers, forecast futysl gtaucture and run
simulations of network evolution.

Another important aspect of our research is the study of “local” patndsstructures
of propagation in networks. We aim to identify building blocks of the netwankd find
the patterns of influence that these blocks have on information or virgagation over the
network. Our recent work included the study of the spread of influémeelarge person-
to-person product recommendation network and its effect on pureh&ge also model the
propagation of informatioron the blogosphere, and propaagorithmsto efficiently find
influential nodes in the network.

A central topic of our thesis is also the analysidarfe datasetss certain network prop-
erties only emerge and thus become visible when dealing with lots of data. \Iyzeaiize
world’s largest social and communication network of Microsoft Instaesd&nger with 240
million people and 255 billion conversations. We also made interesting and cotunite/e
observations about network community structure that suggest that onllyngtwveork clusters
exist, and that they merge and vanish as they grow.
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Chapter 1

Introduction

The main interest of our research has been in understanding the sitymtyerties and patterns in the
evolution of large graphs and networks. What does a “normal” netwoiklike? How will it evolve over
time? How can we spot “abnormal” interactioresd, spam) in a time-evolving e-mail graph? How do
information and viruses spread over the network? How can we identiffirshthfluential nodes or select
nodes to immunize in networks? Answers to such questions are vital to achagglication areas from
the identification of illegal money-laundering rings, misconfigured routetfie Internet, viral marketing
and protein-protein interactions to disease outbreak detection.

A basic premise behind the study of large networks is that interaction leadsg&x collective behavior.
We study three such cases where complex collective behavior emeavgebfral interaction:

¢ Network evolution: The study of statistical properties and models that govern the generation an
evolution of large real-world networks. Evolution of network structure fsren of collective be-
havior, where our studies are the first to examine network evolution ougrtlime periods both
at the macroscopic level of statistical network properties and at the mopiadevel by analyzing
individual arrivals and attachments of millions of edges. We view the netasr& big complex
system, and observe its static and temporal properties and patterns to mesiglis that capture
and help us understand the temporal and static patterns of real-worldrketwo

¢ Network cascades:The study of the network by starting from individual nodes and small com-

munities. Cascades are a form of collective behavior that has beerzeddlgth empirically and
theoretically, but for which the study of complete, large-scale datasetekadimited. We examine
two examples where it is possible to directly observe and measure largecasasaling behavior.
We show that cascades exist in large real-world networks, and inviestigee of their structural
features. We aim to find common and abnormal sub-network patterns aedstemd the propa-
gation of influence, information, diseases and computer viruses oveetivenk. Once we know
the propagation patterns and structure, we devise algorithms for efficigntiyg influential nodes
and detecting disease or virus outbreaks in networks.

e |arge data: The study of large real-world networks with hundreds of millions of nodeseaziges.
Working with such datasets is important in order to understand and take caarggerformance
and scalability issues and to discover patterns that may become appdyeint massive datasets.
For example, we demonstrate the value of large data in the case of quanti§fimgrk community
structure where most of the existing work focused on small networksvefalehundred nodes. On

1



the other hand we analyze large networks of millions of nodes and showsth&ture is funda-
mentally different from small networks. Basically, our observations oelgome possible when
working with enough data so that the behavior or the structural propewryges.

1.1 Motivation and applications

Traditionally small networks were analyzed from a “node centric” poinvi®iv where researchers wanted
to answer questions about behavior and properties of particular imodhesnetwork. Though such models
are very expressive, they often fail to scale to large networks with millibnea@es and edges. Moreover,
many times we need to work with a large network for a structural propertyeaid¢twork to emerge; thus,

the focus moves to the study of structural properties of the network aslawh

Today with the ubiquity of the web and with billions of its users there are skopprtunities to study
phenomena and computing systems at scales that were not possible Gé&fierean be summarized by
the following three points:

¢ On-line computing systeme.@, web, email) have detailed traces of human activity.

e Such applicationsg(g, Facebook, Second Life, blogs) have millions of users interacting with one
another and with the system.

e Such rich data can naturally be modeled and represented as a network.

For example, Web 2.00'Reilly, 2005 is a set of tools that enable the masses to easily create content
on the WWW, in the form of blogs, social networks, video and photo collestiand simple application
creation frameworks. In addition, Web 2.0 has amplified the importance dioredaips between users
that are represented in social networks. The emergence of this nevaded content has led to a flurry

of research activity that aims to mine the content and infer useful dataifr@@rg, sentiment analysis,
network analysis). Other such examples include: mobile caller networkshwitlude traces of calling

and mobility dynamics of millions of people; Instant messaging data that in a sipglieaion under a
single system captures communication patterns of basically the whole platiet@afor example, online
worlds and massively multiplayer online games which are capable of sugpbdimdreds or thousands

of players interacting simultaneously.

This presents many unigue opportunities and challenges. On one hanelsénts a shift in computer
science from engineering big systems to a more natural science apptidide other areas in the field,
we are not engineering a system over which we have complete controbaayWe are studying the real
world, adding local mechanisms to achieve certain global goals. On thetwhdy the emergence of
socially rich computing applications with millions of users allows us to ask quedt@isvere impos-
sible to answer before as large scale human social dynamics data whasafisaimpossible to collect.
Moreover, this also offers a unique opportunity for computer sciencestchrtowards other sciences like
social sciences, economics and mechanism design, and physics of xeygikEms.

To understand the complex behavior and dynamics of the web or the intexokibone one basically
follows the steps of the scientific method. Thus, throughout this thesis wavftitle following three
steps:



Thesis Steps of the thesis
part 1: Observations| 2: Models | 3: Algorithms
Part 1: Network evolution chapter 3 chapter 4 chapter 5
Part 2: Network cascades chapter 6 chapter 7 chapter 8
Part 3: Large data chapter 9 chapter 10 | chapter 11

Table 1.1: Structure of the thesis with references to the chapters.

e STEP 1 - Observations:Hypothesis and data analysié/e consider a problem of interest and form
a hypothesis. We collect real data, measure and observe the phenohetesiest, and perform
measurements and analyses that prove or disprove the hypothesis.

e STEP 2 — Models: Explanation/model desigrnGiven a novel observation we design models that
give intuitions, explanations and predictions about the system.

e STEP 3 — Algorithms: System and algorithm developmebtsing insights from the data analysis
and models that explain the observations, we develop new better ancalgstéthms and systems.

While the first two steps are part of usual scientific method, the last thirdsssepnewhat unique to com-
puter science as it introduces a feedback loop to the process. It ainmestdhe empirical observations
and intuitions coming from the models to develop better systems, applicationdgamithans. This is
also the primary reason why computer sciepee seis interested in asking and validating the empirical
guestions.

For example, recently the field of “internet measureme@¥olella and Bestavro4997, Zhang et al.
2002 emerged in the area of computer networks. It empirically explores, messurd models how
Internet as a whole looks, works, and behaves. This is shift fronitibadl engineering point of view.
If one engineers a system, there is usually no need to measure and madeldtdesigned it and thus
understand how it works. However, even though the physical Intevas designed and engineered, it
evolved into a large and complex system that one today needs to measumedeldo understand it and
make predictions about it. Thus also comparisons and parallels of the intetimeomplex physical and
biological systems.

This puts computer science a unique position as we not only study but aigm@ad build such complex
systems. We are not only silent observers that measure and model, loanvedso design, create and
impose rules and incentives on such systems. Via computing application wedatvol at micro level,
while the system is affected globally. So it is important to understand how systiems work, and
understand what consequences our micro decisions have globally) thieiec naturally closes the loop
between design and engineering on one hand, and empirical measumamemiodeling on the other
hand.

Thus, the thesis naturally breaks into nine pieces, as shown in Tabléhe rows correspond to the re-
search problems, and the columns correspond to the steps of the scieotiispas described above. Next
we give the motivation for each of the nine parts, following by the summaryotontributions.
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1.1.1 Network evolution

Ultimately we search for interesting measures that let us characterize therketwicture and the pro-
cesses spreading over the networks. Then we design models and atgdtitht take advantage of the
identified structural network properties.

The focus of analyzing and modeling the structure of large networks aimse thedfollowing three
things:

(1) Observations: What are interesting statistical properties of network structuféf® aim is to find
statistical properties, such as path lengths and degree distributionshénatterize the structure
and behavior of networks, and suggest appropriate ways to measaeegttoperties.

(2) Models: What is a good model that helps us understand these propektesdim to create models
of networks that can help us to understand the meaning of the statistica&rpespof networks.
How they come to be as they are, and how they interact with one another?

(3) Algorithms: Estimate the model and predict behavior of networks based on meastitetural
properties and local rules governing individual nodek®w, for example, will Internet structure
evolve and how does the network structure affect traffic on the Intemperformance of a web
crawler?

Applications:

¢ Models and parametersGenerative models and their parameters give us insight into the graph
formation process. Intuitions developed by the models are useful in stadeing the network
generation processes and reasoning about the structure of the ksetmvgeneral.

¢ Graph generationOur methods form means of assessing the quality of graph generatathety
graphs are important for “what if” scenarios where we need to exa#pa@and simulate graph
growth and evolution, since real graphs may be impossible to collect akdlika; e.g, a very large
friendship graph between people). Synthetic graphs can then bearga@dicting future network
evolution, hypothesis testing, and simulations and evaluation of algorithgissimulations of new
network routing protocols, virus propagation, etc.

e Extrapolations and predictionstor several real graphs, we have a lot of snapshots of their past.
What can we say about their future? Our results help form a basislfdatiag scenarios for graph
evolution.

1.1.2 Network cascades

The second part of the thesis deals with information propagation in largenetwThe social network
of interactions among a group of individuals plays a fundamental role imptie&ad of information, ideas,
and influence. Such effects have occurred in many cases, wherneaoridetion gains sudden widespread
popularity through word-of-mouth or “viral marketing” effects. To takeeaent example from the tech-
nology domain, free e-mail services such as Microsoft's Hotmail and ladeg@’s Gmail achieved wide
usage largely through referrals, rather than direct advertising. HHawdirectly measuring such behaviors
on a large scale proved difficult.



We would like to understand how the structure of the network affects teadmf information, influence
and viruses over the network. We monitor the spread of information on tigedpbere or recommenda-
tions in a product recommendation network. We aim to answer the followingtigus:

(1) Observations: What are the typical patterns of information propagatiofi?e aim is to find statis-
tical properties, such as how deep or wide are the propagation gr@pbxélledcascadesor how
fast is the information spreading? We want to characterize such bebavidrsuggest appropriate
ways to measure them.

(2) Models: What is a good model that helps us understand these properkesxample, we aim
to create models of information propagation on the web. Why information casksespread in a
particular way, and how does this interact with the network structure?

(3) Algorithms: How to identify influential nodes and detect disease outbred@?example, given
a fixed budget of attention, which blogs should we read to be most up to datemews? Or
similarly, in a big water distribution network, where shall we position the sertsodetect disease
outbreaks as quickly as possible?

Applications:

e Cascade formationlUnderstanding cascade formation helps to explain the propagation of infor
mation and viruses over the network. This allows for more accurate modeisisfpropagation,
which can be used in epidemiology for simulations.

e Qutbreak detectionOur work on cascades also gives us the means to study, for exampld, whic
nodes to inoculate to prevent a virus from spreading through the netaonkhere to place sensors
in a water distribution network to quickly detect disease outbreaks.

1.1.3 Large data

A basic premise behind the study of networks is that interaction leads to cadldmthavior. For such
collective behavior to become “visible” and detectable by statistical and mea&anning methods one
needs to analyze large datasets. As it turns out, many network propeltoesieavy-tailed distributions
that have infinite variances, which makes estimation hard and requires bdsaof

(1) Observations: What novel observations can we make from large dataddsi?y large datasets we
can more accurately measure and experiment at scales that were sibtegpbsfore. This can then
lead to observing novel patterns or answering questions that werieysgvpractically impossible
to answer due to lack of data and tools to analyze them.

(2) Models: What is a good model that explains the observatigvifen existing models fail to give an
explanation, novel observations give us opportunities to design new models

(3) Algorithms: How to handle and analyze large dataseW®arking with large datasets presents sev-
eral engineering, systems and implementation challenges. It forces ugelomlscalable parallel
and out-of-core algorithms and tools that scale to large datasets and atlome&surement and
analysis.



Applications:

e Data mining: Scaling data mining algorithms to large data is important by itself as it will allow us
to discover novel patterns not found in smaller datasets.

e Abnormality detection and computer network managemaninany network settings, “normal
behavior will produce subgraphs that obey properties of netwonkthroTo detect activity which
produces structures that deviate significantly from the normal pattemse®rds to efficiently pro-
cess lots of data. As the detections are made, we can flag them as abnorntiaiktieen potentially
help with the detection ok.g, fraud, spam, or distributed denial of service (DDoS) attacks.

1.2 Thesis overview and contributions

The thesis addresses a number of important questions regarding tieetigopnd patterns of large evolv-
ing networks by revealing how local behavior and structure lead to laae phenomena.

The dissertation focuses on dynamics of time evolving networks, and trendys of processes, like
virus propagation, that take place in networks. Our thesis has a “3-byr&ture: it focuses on three
problem domains where each of them is examined from three differeattsspe., there are three parts:
Network evolution, Network cascades and Large data, where eacarofithcomposed of three chapters:
Observations, Models and Algorithms. Tallel gives the overall structure of our research with the
mapping to the chapters of this thesis.

The the main questions this thesis asks and answers are the following. &{eslhich of them in the three
steps the thesis follows:

1.2.1 Part 1 — Network evolution: How do real-world networksevolve?

Accurate properties of network growth, information propagation, andaribeels supporting them, have
several possible consequences. Patterns give us ways for tamdiéng and building models, and models
help us to reason, monitor and predict features of the network in the future

Step 1 — Observations:How do network properties evolve over timghapter3)

Here we examine how the macroscopic network properties, like diameteremmdrk densification,
change over time as the network evolves. This work had influence on tgiakiout fundamental struc-
tural properties of networks varying over time. For example, to date, itawasmonly believed that
the average degree of graphs of natural phenomena remains cassthay grow over time. Moreover,
it was also assumed that the distances in networks slowly (logarithmically) seckeith the network
size. We showed that in fact networllensify over times the number of edgds(t) at timet is in-
creasing af/(t) o« N(t)* with the number of noded/(¢). The densification exponentis non-trivial,

a ~ 1.2-1.6 [Leskovec et a).20058. Even more surprisingly, the diameter of the netwskkinksas it
grows. These findings are fundamentally different from what wasvesli@and commonly assumed in
the past. A natural question to ask then is why do we observe these rggsfakWhat is the connection
between densification and shrinking diameters? As the existing intuitions arelswwnot explain these
types of behavior, we developed a “Forest Fire” generative modettkates graphs with these proper-
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ties [Leskovec et a).20078. We also showed that densification itself is not enough to observe gigink
diameters.

Step 2 — Models:How can we model the network growth and evoluti¢Ghapterd)

We examine network evolution by studying individual edge arrivals ancepients. It is the individual
edges that collectively give rise to observed macroscopic networkegiep. We use thenaximum-
likelihood principle to quantify the bias of new edges towards the degree and agele$,rand to objec-
tively compare various models such as preferential attachment. In factyasl is the first to directly
quantify the amount of preferential attachment in large social networks siWgw that most new edges
span very short distances, typicalijosing triangles Motivated by these observations, we develop a
completemodel of network evolutionincorporating node arrivals, edge initiation, and edge destination
selection processes. While node arrivals are mostly network-spec#iedte initiation process can be
captured by exponential node lifetimes and a “gap” model based on a pewevith exponential cutoff.
We arrive at an extremely simple yet surprisingly accurate descriptiore@dbe destination selection in
real networks.

Step 3 — Algorithms: How can we generate large synthetic realistic looking netwo(K&tapters)

Last, we examine a question of how one can generate realistic looking Sgmftaphs. This competency

is important as we often need good null-models for simulations, what-if Sosreard hypothesis testing.
We developed a Kronecker graph model that is based on the tensaicpoidjraph adjacency matrices.

In contrast to previous models, Kronecker graphs capture greatedtan of static and dynamic network
propertiesLeskovec et a] 20054, while being mathematically tractable. Moreover, we developed a max-
imum likelihood approach for parameter estimation of Kronecker grdmgskpvec and Faloutsp2007.
Naive approaches take super-exponential time, while we develofindaa time parameter estimation
algorithm. Using approximation and sampling we efficiently search the spau@ 819 states, and
estimate the model parameters for networks with millions of nodes in a matter &. hour

Contributions:

¢ We discovered the netwodensificatiorandshrinking diametethat influenced the thinking about
fundamental structural properties of networks varying over time.

¢ \We developed Kronecker graphs, which ammathematically tractablenodel of network genera-
tion and evolution. Moreover, Kronecker graphs are the first modeldhable to captureseveral
temporal and static network properties at the same time.

e We developed IRONFIT, an algorithm for estimating parameters of a Kronecker graphs model.
Naive parameter estimation tak@$/N! N?) time, while our approach scalésearly O(E), which
allows us to fit large graphs with millions on nodes and edges.

Impact:

e The work on densification and shrinking diameters received the bestrodspaper award at ACM
KDD 2005 [Leskovec et a).20054.

e Kronecker graphs have been harnessed by the high performanmgmitiog communitye.g, by
Jeremy KepnerKepner 200§ at MIT Lincoln Lab, and David Bader at Georgia Tech, and Mo-
hammad Mahdian from Yahoo! Researthghdian and Xu2007.
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1.2.2 Part 2 — Network cascades: How information spreads ingtworks?

To model the evolution of large networked systems one also needs to tamden®w influence and infor-
mation spread and propagate. Developing insights into such propagatiop®isant for selecting targets
for advertising and marketing, finding opinion makers with great influenshaping people’s opinions,
and to select nodes to monitor to best detect the potential epidemics.

The second part of the thesis presents our results on dynamics o$pesdbat cascade from node to node
like an epidemic. As the processes propagate they coaatadeshat are a form of collective behavior
that has been analyzed both empirically and theoretically, but for whichutg ef complete, large-scale
datasets has been limited. We investigated two examples of cascading béhaeiovorks where propa-
gations naturally form cascades and we were able to directly measuréseny® them on a large scale.
In our work on information propagation between blogegkovec et a].2007¢ and on product recom-
mendation networkd Jeskovec et a).2006a 20074, we developed macroscopic models of the spread of
influence in networkslleskovec et a).2007d, and found common and abnormal network substructures,
calledcascadesthat the propagation process creataesskovec et a).2007d 20064.

Step 1 — Observations\What are patterns of diffusion and cascades in netwo(dtapter6)

First we present a study of influence and recommendation propagatidargreaviral marketing network.
To the best of our knowledge, our research was the first to ansvirepiegjuestion: What is the probabil-
ity of a person adopting the behavierq, buying a product) as more friends have adoptekovec et a).
20064. Two competing theories are diminishing returns, which assumes that thakplity of adoption
increases slowly, and a critical threshold hypothesis, which assumehehaiobability of purchase sud-
denly jumps as a particular number of friends acquire the product. Theatiahdof these competing
models is only made possible with sufficient data. We observed 16 million progitammendations be-
tween 4 million people on half a million products from a large online retailer. Waddahat probability of
adoption follows aiminishing returngproperty, and that the probability of adoption saturates (and some-
times even starts to decrease) after around 20 network neighbors[adekbvec et a).20074. These
findings are important for advertising and viral marketing.

Step 2 — Models:How can we model information diffusion and cascad@sRapter7)

We also study the information propagation and the cascades this proseissireon the blogosphere. We
analyzed one of the largest available collections of blog information, tryifigdchow blogs behave and
how information propagates through the blogosphere. In contrast wahnagirketing, stars and chains
are basic components of blog cascades, with stars being more common.

Step 3 — Algorithms: How can we effectively detect epidemics and disease outbré@kspter8)

The diminishing returns property has also led us to efficient and theoretscaifyd algorithms for network
sensor placementgskovec et a).20074¢. Submodularitys the diminishing returns property that we ex-
ploited to develop new tighter bounds for greedy optimization of submodutatiitns and to devise new
efficient optimization algorithms. Our approagftovablyachievesiear optimalplacements, while being
700 timedaster on our dataset than a simple greedy algorithm. Our appriaahde et al.200§ ranked
firstin the “Battle of the Water Sensor Networks” competition where the taskovalace sensors in a city
water distribution network to effectively detect contaminants spreadingtbeenetwork PDstfeld et al,
2004. Beyond the task at hand, we showed that the same sensor placenceitihiadgan be used to decide
the best news sites on the internet to read to not miss important informagipto, detect “information epi-
demics” effectively. We tracked the information propagation on the bldwgrepfor 1 year, and used our
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algorithms to find the most informative blogs. Our project wehisityg//www.blogcascades.org
received more than 30,000 pageviews to date.

Contributions:

e Our work on the shape of the human adoption curve and cascades imanka@ting and blogosphere
was the first to measure and analyze cascading behavior in a largeadéisetting. We also found
that the human adoption curve followsninishing returns

¢ We developed the CELF algorithm for sensor placement to detect disetseaks in networks.
We proved that CELF placements are near optimal, and obtained data dapbodnds that show
our solutions are atz 90% of NP-hard to compute optimal, while beif®0 times fastethan a
simple non-optimal greedy algorithm.

Impact:

e Our work on the CELF algorithm received the best student reseapér pavard at ACM KDD
2007 conferencelfeskovec et a).20074.

e Our approach for contamination detection in water distribution netwétkaise et al.200g ranked
first in the “Battle of the Water Sensor Networks” competition where the taskta/glace sen-
sors in a city water distribution network to effectively detect contaminantsdprg over the net-
work [Ostfeld et al. 2004.

¢ Follow-up works by Duncan WattKpssinets and Watt2004, Jon Kleinberg, Daniel Hutten-
locher Backstrom et a).2009 and others later confirmed the diminishing returns behavior in a
number of other domains,g, the probability of joining a community, sending an email, or editing
an article on Wikipedia.

1.2.3 Part3 —Large data

The third part of the thesis presents our work on very large networksshaw how large amounts of data
give us opportunities to observe phenomena that were previously pictivisible.

Step 1 — Observations\What properties hold for a social network of the whole plan@&Rapter9)

We present the “planetary scale” Microsoft Instant Messenger mkfwlee largest social networlana-
lyzed to date Leskovec and Horvitz2008. We collected and analyzetl5 terabytesof network data.
The MSN network contain840 millionpeople, with more tha billion conversations per day. We inves-
tigate on a planetary scale the oft-cited report that people are sepaydtaxl hegrees of separation” and
find that the average path length among Messenger usei /e also examine homophily and patterns
of intra- and international conversation.

Step 2 — Models:What is community or cluster structure of real-world networkSBapterl0)

We present our work on community structure in networks. Researchtrs gocial sciences and physics
have long been excited about the existence of “network communities”aheintuition is that networks
contain sets of nodes that interact more strongly with each other than witartteender of the network.
We found behaviors that are fundamentally different from intuitionsdasesmall social networks, spa-
tial graphs or hierarchical community structure that has typically beemresgbtor social and biological
networks. Our observation is that, in large networks, tight communities axigtab smaller size scales.
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The limit on the community size is 100 nodes which agrees well with Dunbar’s observation that 150 is
the maximum human community siz@ynbar 1998. As community exceeds this critical size it vanishes
and blends with the rest of the netwolilkeskovec et a).20084. Our observations were only possible
since we examined large enough networks exceeding the size scale of nagresau-ormalization and
models of such behavior would have a wide range of implications for relsei@ in the social sciences
who want to discover communities from network data, and also for graptecing and partitioning
researchlleskovec et a).20081.

Step 3 — Algorithms: How can we predict web search result quality without looking at the wgbpa
content?(Chapterll)

Last, we present ways of how local web graph structure can be asprktlicting the quality of web search
results. We show how local structure of the web graph can be used togiwdiadly accurate predictions
about relevancy of web pages. We introduab projectionswhere we extract context sensitive subgraphs
of the web, and then usmachine learningon contextual subgraphs of the web that can be used for
search result qualityprediction,web spamdentification and predicting what search engine user will do
next.

Contributions:

e We analyzed the properties of the planetary MSN Messenger social nketihie largest social
networkexamined up to date, and found tf&6 degrees of messagingi.e., that people are on
average separated by only 6.6 hopsegkovec and Horvit2008§.

e Our analysis of community structure in large social and information netwiidwesd that there is
a maximum scale to a network community, which has many implications for clustertchgaam-
munity identification methods.

Impact:

e QOur analysis on of MSN Messenger network, the largest network agtlygz to date, and the “6.6
degrees of messaging” appeared in popular press like Nature negtZOnet (all in March '08),
Washington Post, MSNBC and BBC (all in August '08).

e Our work on the most influential bloggers generated lots of excitement agpegienced a “Slash-
dot effect” with more thai30,000 visitgo our project websitbttp://www.blogcascades.org .
Moreover, the work also appeared in ACM TechNews (November '68)an MSNBC (January
'08).

Next, we present basic concepts and preliminaries, introduce the notatidoriafly survey the related
work. We then proceed with each of the three main parts of the thesis: Neewvolution, Network
cascades, and Large data.
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Chapter 2

Overview and survey

In this chapter we review the basic concepts and terminology used in thisdahesigroduce the notation.
Next, we survey the works on properties of networks and models to expliinemergence, as well as
network diffusion, cascading behavior and information propagationtinor&s.

2.1 Basic concepts and definitions

Next, we briefly define concepts and terminology that we will be using throutghe thesis. We introduce
basic graph-theoretic concepts and review the power law distributions.

2.1.1 General graph-theoretic concepts

Network data is modeled or represented withraph A graphG = (V, €) is defined with a vertex set
V, whereN denotes the number of nodes, = |V|, and an edge sét, whereE denotes the number of
edgesFE = |£|. We interchangeably use terms vertex or node to refer to elements of thg set), and
similarly edge, link or connection to refer to elements of the edgé set

A convenient way to represent a gra@hs by using aradjacency matrixwhich is anN x N matrix A,
whereA; ; = 1if (i,j) € £ and0 otherwise.

Next we define the terminology and several basic graph-theoretic jgtsnce

Bipartite graph: graphdG is bipartite if its vertex set can be partitioned into two disjoint 34ts)s, so
that there are only edges connecting nodes across thg;satsl),. Or equivalently, there exist no edges
between the nodes of the same partition.

Directed and undirected graph: A graph isundirectedif (i,j) € £ < (j,i) € &, i.e, edges are
unordered pairs of nodes. If pairs of nodes are ordered,edges have direction, then the graph is
directed

Connectedness:We say that two nodes in a network arennectedf there exists an undirected path
between them.
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Weakly and strongly connected graph:A graph isconnectedf there is a path between all pairs of nodes
in a graph. If the graph is directed, then itneakly connecteifithere exists an undirected path connecting
any pair of nodes. Similarly graph $$rongly connectets there exists a directed path connecting any pair
of nodes in a graph.

Connected component:A connected component just a component is a maximal set of nodes where
for every pair of the nodes in the set there exist a path connecting theatogtusly, for directed graphs
we haveweaklyandstronglyconnected components.

Biconnected graph: A graph isbiconnectedf the removal of any single edge does not disconnect the
graph. This means that between any pair of nodes there exist at le&gbintdoaths. Edges whose
removal disconnects a connected graph are céllelfje edgesSimilarly, a node is aarticulation node

if its removal disconnects the graph.

Complete graph: A graph is complete if all pairs of nodes are connected.

Expander graph: An expander graph is a sparse graph which has high connectivitgpiepquantified
using vertex (or edge) expansion: A grafhon N nodes isa-vertex expander if for any C V where
|S| < N/2 we have|6(S)| > a|S|. Hered(S) denotes a set of all edges with one endiand the other
end inV\S.

Loosely speaking(= is an expander ity is “large”. Intuitively, an expander is a graph for which any
“small” subset of vertices has a relatively “large” neighborhood, or sityjlaemoving random edges
does not reduce the property of an expander by much.

Subgraph: A subgraphG, = (Vs, &) of a graphG = (V, £) is a subset of edges and all their endpoints:
EsCEandVs ={i,j: (i,)) € &}

Induced subgraph: An induced subgrapld:; = (Vs, &) of agraphG = (V, £) is a subset of nodes and
all their edgesys; C V and&; = {(4,j) : (4,)) € EANi,j € Vs}.

Node degree:We say that a node has degréd it has d incident nodes. For directed graphs we talk
about out-degred,,;, which is the number of edges pointing from the node. Similarly, in-dedsge
denotes the number of edges pointing towards the node. For undireafgtsdor every node d;,, (u) =
dout(u) = d(u). We also define the graph average degtee1/N >° .\, d(u) = 2E/N.

Triad: Atriad (or a triangle) is a triple of connected nodesv, w), i.e, (u, v), (v, w), (w,u) € &.

2.1.2 Diameter and effective diameter

For each natural numbeér let g(h) denote the fraction of connected node pairs whose shortest connecting
path has length at mogt, i.e, at mosth hops away. Théop-plotfor the network is the set of pairs
(h,g(h)); it thus gives the cumulative distribution of distances between connectedpairs. We extend

the hop-plot to a function defined over all positive real numbers by lineaterpolating between the
points(h, g(h)) and(h + 1, g(h + 1)) for eachh, and we define theffective diameteof the network to

be the value of. at which the functiory(h) achieves the value.9.

Definition 2.1.1. GraphG has thediameterD if the maximum length of undirected shortest path over all
connectedairs of nodes ig). The length of the path is the number of segments (edges, links, hops) it
contains.
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We also usdull diameterto refer to this quantity. Notice the difference between the usual and @ini-de
tion of the diameter. For a disconnected graph the diameter as usually deflsedhfinite, here we avoid
this problem by considering only pairs of nodes that are connected.natsone ignore the directionality
of an edge if the graph is directed.

Definition 2.1.2. For each natural numbet, let g(h) denote thdractionof connected node pairs whose
undirected shortest connecting path in a gra@ihas length at most. And letD’ be an integer for which
g(D'—1) < 0.9andg(D’) > 0.9. Then the grapltz has theinteger effective diameted’ [ Tauro et al,
2001.

In other words, thénteger effective diametés the smallest number of hod®' at which at least 90% of
all connected pairs of nodes can be reached.

Last we give the definition of theffective diameteas considered in this thesis. Originally we defined
g(h), a fraction of connected pairs of nodes at distance at moshly for natural numbers. Now we
extend the definition of to all positive reals: by linearly interpolating the function value betweg(h)
andg(h+1) (h <z <h+1): g(z) = g(h) + (9(h+ 1) — g(h))(x — h).

Definition 2.1.3. Let D* be a value wherg(D*) = 0.9, then graphG has theeffective diameteD*.

This definition varies slightly from an alternate definition of the effective diamesed in earlier work:
the minimum integer valugé such that at leas$t0% of the connected node pairs are at distance at most
Our variation smoothes this definition by allowing it to tak@n-integewalues.

The effective diameter is a more robust quantity than the diameter (defilee m&ximum distance over

all connected node pairs), since the diameter is prone to the effectsaiatade structures in the graph
(e.g, very long chains). However, our experiments show that the effedtarmeter and diameter tend
to exhibit qualitatively similar behavior. Note that under these definitions fleetafe diameter and the

diameter are well defined even if the graph is disconnected.

Calculating the exact diameter or effective diameter is infeasible for laryeories at it takesO(N?)
time. One way to overcome this would be to resort to samplirg sample a large number of node pairs
and calculate the length of the shortest paths between pairs. We cho$erentiipproach, and rather
used an approximation algorithm ANPdImer et al.2003 that is based on fast approximate counting
and hashing.

2.1.3 Power law distributions and heavy tails

Here we describe the power law and heavy-tailed distributions and then coakections to several
network properties that usually follow power law distributions. Furtherildet& mathematics of power
laws can be found inMlitzenmacher2004 Newman 2005 Clauset et a).2007.

A distribution is a Power law if it has a PDF (probability density function) of twerf
p(z) occz™?

wherep(x) is the probability to encounter valueand~ is the exponent of the power law.

If 2 is a continuous random variable thefw)dz = Pr(z < X < z +dz) = 22 7dz, whereZ is a
normalizing constant. The density divergesras: 0 so the equation cannot hold for all so there must
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be some lower bound,,,;,, to power law behavior. Provided that> 1 then calculating the normalizing
constant we find that:
y—17/ & \—7
p(z) = ( )

Tmin \NTmin

For the case whenis discrete and takes integer values we objéir) = Pr(X = z) = 22~ 7. Again the

distribution diverges at zero, so there must be a lower baund on the power law behavior. Calculating
the normalizing constant we find that
.’17_7
C(/}@ xmin)
where( (v, Tmin) = Y oop(i + Tmin) ~7 is the generalized zeta function.

p(x) =

In many cases it is useful to consider the Complementary Cumulative Distritfatioction (CCDF) of a
power law distributed random variable. In both discrete and continuaesites defined a®r (X > z).

For continuous casBr(X > z) = (——)~7*! and for discrete caser(X > z) = =22

Tmin CvsTmin)
Perhaps surprisingly, power law distributions can have infinite variaamugsven the mean can be infinite.
Basically, one can show that for a power law distribution with power law B&pty momentsn < v — 1
will exist and all higher moments will diverge. For example, for< 2 mean, variance and all other
moments are infinite; similarly, faz < v < 3 mean existsi(e,, is finite), while variance will be infinite,
and fory > 3 mean and variance will be finite, while third and all higher moments will diverge.

Heavy-tailed and scale-free distributions

A power law distribution is sometimes calledeale-freadistribution, which intuitively means that it looks
the same regardless of what scale we look at it on. More precisely,

Definition 2.1.4. Distribution p(z) for a quantityx is scale-free if there exists a functigi) such that
p(bx) = g(b)p(x) for all b andz.

The scale-free property means that when we increase the scale oryuwitéch we measure by factor

b the shape of the distribution(z) is unchanged except for the multiplicative constant. This means that
no matter what range af one looks at, the proportion of small to large events is the samethe slope

of the curve on any section of the log-log plot is the same.

Exponential family distributions (like Gaussian distribution) are not scale-fActually, power law is the
only scale-free distributiolNewman 2005.

Similarly, power law is also a heavy-tailed distribution. This means that its tails@rexponentially
bounded; that is, they have heavier tails than the exponential distributimre ptecisely, we define
heavy-tails in the following wayAsmussen2003:
Definition 2.1.5. The distribution of a random variabl& is heavy-tailed if

lim Pr(X > x)

T—00 e~ ¢r

forall e > 0.
In contrast, we say a distribution is light-tailed if the limit oo for somee.
Examples of heavy-tailed distributions include power law distributions, Parelathers which we ex-

amine next.
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Relation to Zipf and Pareto distributions

Zipf’'s law [Zipf, 1949 usually refers to the rank-frequency ploi€., “size” or magnitudey of an oc-
currence of an event relative to its rank Zipf’'s law is named after George Kingsley Zipf, a Harvard
linguistics professor, who tried to determine the “size” of tHemost common English word. Size here
denotes the frequency of use of the word in English text. Zipf's law staggdtib size of the” largest
occurrence of the event is inversely proportional to its rank: »—? with b ~ 1.

Pareto distribution is named after economist Vilfredo Pareto, who was itedresthe distribution of
income Lorenz 1903. Instead of asking what the” largest income is, Pareto asked how many people
have an income greater thanPareto’s law is given in terms of the complementary cumulative distribution
function (CCDF),i.e.,, the number of events larger tharis an inverse power of: Pr(X > z) oc 27",
Basically, it states that there are a few multi-billionaires, but most people mdieaanodest income.
When this distribution is used to model the distribution of wealth, then the paraiistealled the Pareto
index. In 1906 Pareto also made the observation that twenty percent pbgh#ation owned eighty
percent of the property in Italy,e., the80 — 20 rule (that occurs for power law exponent= 2).

Interestingly, power law, Pareto distributions and the Zipf's law are all intipattated. Relation be-
tween the power law scaling exponenand the Zipf's law exponeritis v = 1 4 (1/b). Similarly for the
relation of power law exponentand Pareto indek we obtainy = k + 1 [Adamic 200Q.

Estimating power law parameters from empirical data

Most commonly the parameters of the power law distribution are estimated frompéeshistogram.
Taking logs on both sides of the power law equation givegx) = ~Inx + const, which implies that

a histogram follows a straight line when plotted on log—log scales. We caldcb&mpirical probability
density function ofr (histogram of its frequency distribution) and plot the histogram on log-kig) &f a
distribution approximately follows a straight line, then one could assert ts@iodition follows a power

law with exponenty given by the slope of the line. Unfortunately this method shows some bias as the
independence and Gaussian noise assumption of least squares Igreasion are violated\lewman

2003.

A better but still not entirely correct way of parameter estimation is by fittingaagsit line on a log-log
plot of the CCDF. This gives less biased results as the visual form of @2Fds more robust against
fluctuations due to finite sample siz&Slquset et a.2007. To improve the accuracy one also bins the
data using the exponentially increasing bin widites, logarithmic binning.

The Maximum Likelihood Estimates (MLE) are unbiased. For the continuaes algpower law distribu-
tion for the power law exponentthe MLE is:

—1+n{21nx }

wherex;, i = 1,...,n, are the observed valuesuch thate > z,,;,.

For the discrete case there is no closed form solution for the MLE estimate pbthker law exponent.
The most convenient way to estimatés to directly optimize the log-likelihood function:

L(v) = —nInC(y, Zmin) ’YZNIH%Z
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Empirically MLE estimates work best and give unbiased results. Howevey titaas they give visually
unsatisfying estimates, especially as one has to estimate also the start of grdgyovail ,,,;, which in
practice is hard to estimat€fauset et a].2007.

2.2 Statistical properties of networks

Networks are composed of nodes and edges connecting them. Depending domain network data
comes from they can represented by directed or undirected netwarkmdtes of networks include the
Internet, World Wide Web, social networks of acquaintance, collaboratiather connections between
individuals, organizational networks, metabolic networks, languageankswfood webs, distribution

networks such as water distribution networks, blood vessels or po$targeoutes, networks of citations

between papers, software networks where edges representidepas or function calls.

Research over the past few years has identified classes of propleatiean be found in many real-world
networks from various domains. While many patterns have been discovereof the principal ones are
heavy-tailed degree distributions and small diameters.

Degree distributions: The degree-distribution of a graph is a power law if the number of ndgesf
degreed is given byN; o« d=7 (v > 1) wherev is called thepower law degree exponent

Such degree distributions have been identified in phone call gradiedld et al, 1999, the Internet
[Faloutsos et al.1999, the Web Kleinberg et al. 1999 Broder et al. 200Q Baratasi and Albert 1999
Huberman and Adamjcl999 Kumar et al, 19994, citation graphs Redney 1998, online social net-
works [Chakrabarti et al 2004, click-stream dataBi et al., 200]], and many others.

Typically for most datasets the degree exponernakes value < v < 3. For example, in-degree
distribution of web graph has;,, = 2.1 and out-degree,,; ~ 2.4 [Albert and Barabsi 2003, while
Autonomous systems havex 2.4 [Faloutsos et al1999. However, deviations from the power law pat-
tern have been notice®gnnock et a|2003, which can be explained by the “DGX” distributioBi et al.,,
2001.

Most of large real-world networks have heavy-tailed or power lawekedistributions, and are thus often
called scale-free networks. This discoveRaloutsos et al.1999 is important as it shows that real net-
works are not “random” (as we will more precisely define below). Meegoin scale-free networks there
are many vertices with a degree that greatly exceeds the average (aebrtdtof power law degree dis-
tributions). These highest-degree nodes are often called “hubsgraridought to serve specific purposes
in their networks, although this depends greatly on the domain.

The notion of self-similarity is implied in the name “scale-free”. Intuitively, a satfilar object con-
sists of miniature replicas of itselSghroeder199]. Several researchers have argued that especially
web graphsDill et al., 2002 Dorogovtsev et al2002 Crovella and Bestavro4997 and biological net-
works [Ravasz and Barasi 2003 tend to be self-similar and “fractal”.

Small diameter: Most real-world graphs exhibit relatively small diameter, which is also knaw the
“small-world” phenomenon: A graph has diametdf every pair of nodes can be connected by a path of
length at mostl. The diameter is susceptible to outliers. Thus, a more robust measure of the pair-
wise distances between nodes of a graph iseffiective diametefTauro et al. 2001 as we defined

it in definition 2.1.3 The effective diameter has been found to be small for large real-woalphg,
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like Internet, Web, and social networkalpert and Barahsi 2002 Milgram, 1967, Albert et al, 1999
Bollobas and Riordar2004 Broder et al.2000 Chung and Lu2002a Watts and Strogat4998).

Scree plot: This is a plot of the eigenvalues (or singular values) of the graph adjgoeatrix of the graph,
versus their rank, using a log-log scale. The scree plot for real mketvi® often found to approximately
obey a power lawporogovtsev et a].2002 Faloutsos et al.1999. The distribution of components of
the elements of the first eigenvector (indicators of “network value”) s lzeen found to be skewed
following a power law distributionChakrabarti et al2004.

Triads and clustering coefficient: Clustering coefficient is a measure of transitivity in networks and
especially in social network&Natts and Strogat4998, i.e., friend of a friend is more likely to be also
my friend. In many networks it is found that if nodeis connected t@ andw is further connected ta
then there is a higher probability that nodés connected tav. In terms of network topology, transitivity
means the presence of a heightened number of triangles in the neit@pdets of fully connected triples
of nodes.

Clustering coefficien,; of a vertex of degred is defined as follows. Let nodehaved neighbors; then

at mostd(d — 1)/2 edges can exist between them. K&t denote the fraction of these allowable edges
that actually exist. This basically means that clustering coefficigndf a vertexw is the proportion of
links between the vertices within its neighborhood divided by the number o lim&t could possibly
exist between them. Or equivalentty, is the fraction of triangles (triads) centered at nodamong the
d(d — 1)/2 triangles that could possibly exist. Thék is defined as the averagg over all nodes of
degreel, and the global clustering coefficie@tis the averag€’, over all nodes.

It has been found that clustering coefficient in real networks is sigmifig higher than for random net-
works (conditioned on same degree distribution). Moreover, it hasdlsemmbservedjorogovtsev et al.
2002 Ravasz and Baraisi 2003 that in real networks clustering coefficief; decreases as the node de-
greed increases. Moreove(,; scales as a power law; o« d—'. This observation has been somewhat
quickly used as an indication of hierarchical network organizafRavhsz et al2002 Ravasz and Barasi,
2003.

The idea is that the low-degree nodes belong to very dense sub-graghbhose sub-graphs are con-
nected to each other through hubs. Consider a social network in wha#sraye people and links are
acquaintance relationships between people. People tend to form commiueitissall groups in which
everyone knows almost everyone else; and such groups can th@ardaelhically nested or organized. In
addition, the members of a community also have a few acquaintance relatiottspgxsple outside that
community.

A variant of clustering coefficient for directed graphs has also beénetl and examined by Ahnert and
Fink [Ahnert and Fink200§. Authors found that different types of networks have various kindsgles
more expressed. For example, feed forward loops are very commomatctigation networks, while
cycles are most common in language networks.

Community structure: A large body of work has been devoted to defining and identifying communities
in social and information networks. Communities, modules or clusters are Ift@sttbought as sets of
nodes that has more and/or better-connected edges between its membdérstiveen members of that
set and the remainder of the netwoRRgdicchi et al. 2004 Girvan and Newman2003. Many times

it is also naturally assumed that the communities observe a recursive sttushere bigger commu-
nities can further be split into smaller and smaller communit@adset et a).2006 Sales-Pardo et al.
2007.
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The problem of community identification is often formulated as unsupervisedimgga some form of
clustering or graph partitioning where the idea is to partition the network intoilig)at sometime also
overlapping sets of nodes, where there few edges need to be cuaiatseipternally densely linked set
of nodes,.e., a community. For example, see the reviews on community identificalewinan 2004
Danon et al. 2005 Palla et al. 2005 Clauset et a).2008, data clusteringJain et al. 1999, and graph
and spectral clusteringzaertler 2005 Schaeffer2007, von Luxburg 2004.

It has been observed that community-like sets of nodes tend to corregpamdanizational units in
social networks lewman 20061, functional modules in biological networkRavasz et a].2003, and
scientific disciplines in collaboration networks between scient@isvan and Newmar2003.

A somewhat contrary concept to hierarchical community structure is the-fperiphery” structure of the
network Borgatti and Everett200Q Holme 2005, that in computer science also goes by the name of
thejellyfish[Siganos et al.2004, or the octopug Chung and Lu20064 structure of the network. All of
the above basically say that the network is composed of a large and damsdipked network core that
basically has no community structure. The remainder of the nodes is a fhd périphery, where the
periphery nodes have links towards the core, but are not conneut@uyahemselves.

Core-periphery structure suggests the opposite of the community structtine hierarchical network
structure. In core-periphery there is a densely linked and intermingleeriecore, and a number of
nodes on the periphery with their links pointing towards the core.

For example, Internet Autonomous Syster@ganos et al 200§ have been found to have this structure.
And as we will later see in Chapt&0 this network structure is present in almost all large networks with
more than several thousand nodes.

Network motifs: Network motifs Milo et al., 2002 Alon, 2007 are basic building blocks of complex
networks. They are of interest in gene regulatory and other biologeaVarks, like protein-protein
interaction networks, signal transduction networks and metabolic net®hs et al.2003.

The idea is to enumerate and count occurrences of all possible indulsgaphs of a given grapi up

to a small number of nodes. Usually, subgraphs of size up 0 5 nodes, as the combinatorial explosion
of the number of possible graphs and the graph isomorphism test thatischeben counting make the
computation unfeasible for largér.

The frequencies of motifs are then compared to those of a random graghicning on the same degree
distribution. (SeeWMilo et al., 2004 for how to generate such graphs.) This way a random graph with
same degree distribution is taken as a null-model and motifs that occur sigtijfinzore frequently in
real graph than in the null-model are then extracted. Different studiesdrgued that certain motifs are
found frequently in biological networks, and then tried to assign them adeabfunction.

For example, a node with a self-loop is the simplest possible motif in a regulastwprk. It is called the
autoregulation motif, and it has been argued that it controls for up-réguia down-regulation of its own
expression/activity. It has been shown that this motif appears at ledshd$ in the E. coli regulatory
network [Shai et al. 2003, which is much greater than what is expected by chance. Moreovest oth
motifs, like feed forward or feed backward loop, and have also besgrael biological functions.

Network motifs are interesting as they are exploring the basic building blooks Which networks are
composed. In chaptesand7 we will observe the cascading behavior in viral marketing and blogospher
and we will present similar analysis of cascade motiés, what do network cascades look like and what
are their building blocks.
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Additional network properties: Apart from these, several other patterns have been found in network
For example, the “resilience’Albert and Barahsi 2002 Palmer et al.2002 shows that real-networks
are resilient to random node attacks, one can remove many randomly selected nodes from the network
and the connectivity is notimpacted by much. However, if one performgatet attack by removing just

a few high degree hub nodes, the network connectivity gets severelypttid. Other properties are also
“stress” [Chakrabarti et al.2004, network navigation Kleinberg 1999h Watts et al. 2004, and many
more.

We point the reader tcAlbert and Barabsi 2002 Newman 2003 Li et al., 2005 Boccaletti et al.2006
Chakrabarti and Faloutsp200€ for overviews of the structural properties of networks. The book on
social network analysidfasserman and Fayd994 is also useful reading.

2.3 Models of network structure and evolution

In parallel with empirical studies of large networks, there has been @masilk work on models for
graph generation. Both deterministic and stochastic models have been dxpwst often the models
do not “force” the network to have a certain property but rather gemegal principles or mechanisms
of edge creation that consequently lead to the global statistical propedigtabution to arise in the
network.

Erd 6s—Renyi random graph model

The earliest probabilistic generative model for graphs was a randaph gnodel introduced by Eéd and
Rényi [Erdds and Rnyi, 196J. The model states that given a number of nodes each pair of nodes has
identical, independent probability of being joined by an edge. There aredawants of the model,, ,

is defined to have: nodes, and each edge appears independently with probabiBmilarly, theG,, ,,,

is defined to have nodes andn uniformly at random placed edges. There exists a close correspmden
between the models, as in practice most theorems hold for both variants.

The study of Er@s—Renyi random graph model has led to a rich mathematical theory. For exaongle,
can study the evolution a¥,, ,,,, where one starts with the empty graphronodes and then keeps adding
random edges one at a time. The graph will then b&, g, wherem is the number of edges added so far,
i.e,, if one draws(s,, ,,, at random and adds a random edge the new graph will,bg ;.

In evolution of G, ,,, there exists sharp thresholdspirase transitionsn emergence of certain network
properties. For example, there is a sharp threshold for the size of tlestagnnected component. Let
d = 2m/n denote the average degree, thes i 1 — ¢ then graph is disconnected and all components are
of sizeO(logn). Whend = 1 + ¢ there is exactly one component of si2én), i.e. the giant component,
and all other components are of si2€logn). This is exactly the point, the threshold, where the giant
connected component emerges. Moreover, one can also prove thiesltomponents are just trees plus
one edge so they have at most one cyBlelobas and Riordgr2003.

Similarly, one can show that degree distribution of &dRenyi random graph follows a binomial dis-
tribution with meand [Albert and Barabsi 2003. Moreover, the diameter (longest shortest path) of a
random graph increases with the number of nodes O(logn), and the average shortest path length
grows a0 (loglog n) [Chung and Lu2001.
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There is a rich mathematical theory about this model; however, the model isaitic as it produces
graphs that fail to match real-world networks in a number of respeasif does not produce power law
degree distributions).

Preferential attachment

The discovery of degree power laws led to the development of randaphgnodels that exhibited such
degree distributions, including the family of models basegreferential attachmerBaratasi and Albert
1999 Cooper and Frieze2003. The model operates in the following way. Nodes are arriving one at a
time. And when a new node arrives to the network it creates edges{n is a parameter and is constant
for all nodes). The edges are not placed uniformly at random bienergially,i.e., probability that a new
edge ofu is placed to a node of degreed(v) is proportional to its degree,,(v) o d(v).

This model was first described by Herb Sim@irfon 1959 and he uses the term Yule distribution to
refer to the power law distribution. Empirically power law degree distributioasewirst discovered in
citation networks by D.J. de Solla Pria#e Solla Price1969, where Price noticed that the number of new
citations a paper obtains is proportional to the current number of citatiomgalt this the “cumulative
advantage” or the “rich get richer” phenomenon.

This simple behavior leads to power law degree tails with expomesat 3. Moreover it also leads to
low diameters. The diameter in preferential attachment model grows slosvlypgarithmically with the
number of nodeslu, 2001. More precisely, diameter grows &s;(N) when a new node adds a single
edge (» = 1), and adog(NV)/ log log(N) for m > 2.

There are also many extensions to the Preferential attachment model. Wemtarg® of them: the
fitness model, Winners don't take all, and the geometric preferential attathme

In Preferential attachment model nodes that arrive early will end uvipgéighest degrees. However, one
could envision that each node has an inherent competitive factor thes noaly have, capable of affecting
the network’s evolution. This is called nodiéness[Bianconi and Baradisi 2001, Dorogovtsev et aJ.
200Q Ergun and Rodger2003. The idea is that intrinsic ability of a node to attract links in the network
varies from node to node. The most efficient (or “fit”) nodes are abggtber more edges at the expense
of others. In that sense, not all nodes are identical, and they claim gggieelincrease in the number of
edges accordingly to the fitness they possess every time. Fitness par@nustaally considered as not
varying over time and is multiplicative to the edge probability.

In spirit similar is theWinners don't take al[Pennock et al.2003 model where the intuition is taken
from the web. It has been observed that for web communities of interesdistribution of links no
longer follows a power law but rather resembles a normal distribuff@mmfiock et a].2003. Based on
this observation, the authors then propose a generative model that meteseptial attachment with a
baseline probability of gaining a link.

A last variant of Preferential Attachment that we also describe is@eemetric Preferential Attach-
ment[Flaxman et al.2004 2007, where the idea is to incorporate geography into the Preferential At-
tachment model. Intuition is that probability of linking to a node of degfsbould be higher if the node

is closer rather than farther. In this model nodes belong to some undeglyorgetry and then each node
connects preferentially to other nodes inside some local ball of radidr example, one can scatter
nodes uniformly on a sphere, and each node uses Preferential Attatchmaehanism to attach to other
nodes in some local neighborhood as defined by the sphere.
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Copying model

Similar in spirit to the above models is tleepying mode[Kleinberg et al. 1999 Kumar et al, 2004,
where a new node joins the network by uniformly at random choosing nadel then either linking to
u's neighbors or creating a random edges. More precisely, nodesraneg one at a time. A new node

v choosesk, the number of edges to add, and then with probability selectsk vertices uniformly at
random and links to them; and with probability- 5 nodev links to &k random neighbors of a uniformly at
random chosen node i.e., v copiesu’s links. Copying model generates power law degree distributions
with exponenty = 1/(1 — j3).

There are also many related models where a new node selects an existng awedl then starts a ran-
dom walk or breath first search type of procedure to create links tosniodgs vicinity. Such mod-
els include thegrowing network with copyingnodel Krapivsky and Redner2005, Recursive search
model[Vazquez 2007, and theRandom Surfer ModdBlum et al, 2004, that is based on starting a
random walk from node and after each step restarting or with some probability creating a link.

Other models of scale-free networks

There are many other ways to explain the emergence of scale-free ketirar exampleHeuristically
optimized tradeoff$Fabrikant et al. 2003 and Highly optimized toleranc¢Carlson and Doyle1999

Doyle and Carlson200Q 2002 are two models where power law degree distributions emerge as a result
of optimization. For example, on the internet one wishes to maximize the corityegting time), while
minimizing the cost of the physical connection. Power laws naturally emergelmcsisefabrikant et al.
2002.

Alternative models for generating scale-free networks with power lawegedistributions includeon-
figuration mode[Bollobas 198Q Aiello et al., 200Q Bollobas and Riordgr2003, where nodes have a
number of outward pointing spokes and then these spokes are conmeiftechly at random. This closely
resembles the E&d—Renyi random graph model so many tools developed for analysis of magdaphs
apply. The distribution of a number of spokes of a node defines degse#uation of a graph. Chung
and Lu [Lu, 2007 proposed a different model where node degree sequenisegeneratedg.g, sampled
from power law distribution) and the edge, v) appears with probabilitw,, - w,/ >, w;. In this model
the expected degree sequence will follow the sequence

Small-world model

Last family of network models we describe here strives for small diametetdazal structures, like
triangles, in networks that arise from geographical proximity or homoplt8lych models include the
small-worldmodel Watts and Strogat2998 and the Waxman generatdMaxman 1988. In a small-
world model one starts with a regular lattieed, a grid). The lattice models local short-range links. Then
for each edge with probability we move its endpoint to a uniformly at random chosen node. The model
offers a nice way of interpolating between regular 0) and random graph® (= 1). For lowp graphs

will have lots of local structure with many short range links, clustering wilhlzgh but the diameter will

be also large. As one increage®ng range edges will start to appear which will have the effect to destroy
the local structure (clustering will decrease) but at the same time the diaméeber metwork will also
decrease.
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Related to the small-world is the concept of “navigability” or “searchability” &tworks Kleinberg
1999 where the question is how to locally route a message to a target node sordaathies the target
as quickly as possible. In fact, it has been shown that the structuralaietvorks allows local routing
and navigationlliben-Nowell et al, 2003.

For a more extensive review of the topic of network models and generamint the reader to re-
cent works Albert and Barabsi 2002 Chakrabarti and Faloutsp2006 Bollobas and Riordgn2003
Newman 2003 that give a survey of the structural properties and statistics of reddvgraphs and
the underlying generative models for graphs.

2.4 Diffusion and cascading behavior in networks

Information cascades are phenomena in which an action or idea becoredg addpted due to influ-
ence by othersHikhchandani et al.1992. Cascades are also known as “fads” or “resonance.” Cascades
have been studied for many years by sociologists concerned wittlifftision of innovatiorfRogers
1999; more recently, researchers in several fields have investigatedd=sstor the purpose of selecting
trendsetters for viral marketingppmingos and RichardspB001], finding inoculation targets in epidemi-
ology [Newman et al.2003, and explaining trends in blogospheteumar et al, 2003. Despite much
empirical work in the social sciences on datasets of moderate size, theltiffit obtaining data has
limited the extent of analysis on very large-scale, complete datasets nejongsmscades. We look at the
patterns of influence in a large-scale, real recommendation networkkandre the topological structure

of cascades.

Most of the previous research on the flow of information or influenceutjinathe networks has been
done in the context of epidemiology and the spread of diseases or virvsethe networkBailey, 1975
Anderson and May2003. Classical disease propagation models are based on the stages chsedise
in a host: a person is firgusceptiblego a disease, then if she is exposed to an infectious contact she
can becoménfectedand thusinfectious After the disease ceases the person is then eidoerveredor
removed After that a person becom@amunefor some period. The immunity can also wear off and the
person becomes again susceptible. Thus SIR (susceptible — infectamlenerl) models diseases where a
recovered person never again becomes susceptible, while SIRS(Steptible — infected — (recovered)
— susceptible) models population in which recovered host can beconeptibkeagain. Given a network
and a set of infected nodes tapidemic thresholds studiedj.e., conditions under which the disease will
either dominate or die out.

Diffusion models that try to model the process of adoption of an idea ordupt@an generally be divided
into two groups:

e Threshold modelGranovetter1978 where each node in the network has a threshod [0, 1],
typically drawn from some probability distribution. We also assignnection weights,, ,, on the
edges of the network. A node adopts the behavior if a sum of the conm@gatights of its neighbors
that already adopted the behavior (purchased a product in ourisageater than the threshold:

t< Zadoptersu) Wy, -
¢ Independent cascade mod&oldenberg et al.200]] where whenever a neighbaer of node u

adopts, then node also adopts with probability,, ... In other words, every time a neighbor of
u purchases a product, there is a chancedhaill decide to purchase as well.
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While these models address the question of how influence spreads in algehey are based assumed
rather thammeasurednfluence effects. In contrast, our study tracks the actual diffusioera@mmenda-
tions through email, allowing us to quantify the importance of factors such agrésence of highly
connected individuals, or the effect of receiving recommendatioma fraltiple contacts. Compared
to previous empirical studies which tracked the adoption of a single innovatiproduct, our data en-
compasses over half a million different products, allowing us to model auptsdsuitability for viral
marketing in terms of both the properties of the network and the product itself.

2.4.1 Information cascades in blogosphere

Most work on extracting information cascades has been done in the binginl¢Adamic and Glance
2005 Adar and Adamic2005 Gruhl et al, 2004. The authors in this domain noted that, while informa-
tion propagates between blogs, examples of genuine cascading bedawéared relatively rarely. This
is possibly due to bias in the web-crawling and text analysis techniquesasetiect pages and infer
relationships. In our dataset, all the recommendations are stored assgati@vesactions, and we know
that no records are missing. Associated with each recommendation is thepimelved, and the time
the recommendation was made. Studies of blogosphere either spend affottafin@ning topics from
posts Adar and Adamic 2005 Gruhl et al, 2004 or consider only the properties of blogosphere as a
graph of unlabeled post or blog URLAdamic and Glance2003.

There are several potential models to capture the structure of the blegesWork on information dif-
fusion based on topic&gruhl et al, 2004 showed that for some topics, their popularity remains constant
in time (“chatter”) while for other topics the popularity is more volatile (“spikeg®umar et al, 2003
analyze community-level behavior as inferred from blog-rolls — permiivdes between “friend” blogs.

In their extensionkumar et al, 2004 performed analysis of several topological properties of link graphs
in communities, finding that much behavior was characterized by star liké gtaycturej.e., a single
charismatic individual linked to many users each with very few other cdiomsc

2.4.2 Cascades in viral marketing

Viral marketing can be thought of as a diffusion of information about tepect and its adoption over the
network. Primarily in social sciences there is a long history of researtiednfluence of social networks
on innovation and product diffusion. However, such studies have typécally limited to small networks
and typically a single product or service. For exampBrpjvn and Reingerl987 interviewed the fami-
lies of students being instructed by three piano teachers, in order to fitloeonetwork of referrals. They
found that strong ties, those between family or friends, were more likely sxtieated for information
flow and were also more influential than weak ti€dnovetter1973 between acquaintances.

In the context of the internet, word-of-mouth advertising is not restrictguhttwise or small-group in-
teractions between individuals. Rather, customers can share theiiemqesr and opinions regarding
a product with everyone. Quantitative marketing techniques have bepogad Montgomery 2007

to describe product information flow online, and the rating of productsnaethants has been shown
to effect the likelihood of an item being bouglRgsnick and Zeckhause&2002 Chevalier and Mayzlin
2004. More sophisticated online recommendation systems allow users to rate othéws, or directly
rate other reviewers to implicitly form a trusted reviewer network that may hemelittle overlap with a
person’s actual social circleRjchardson and Domingp2002H used Epinions’ trusted reviewer network
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SYMBOL || DESCRIPTION

G Graph or graph adjacency matrix

Gy Graph composed of nodes and edges that arrived before time
N Number of nodes in a graph

E Number of edges in a graph

N(t) Number of nodes in a graph at time

N{e) Number of nodes in a graph at time

Uy U, W Nodes in a graph

e = (u,v) || Edge in a graph

d(u) Degree of node: (number of edges incident to nodg
d Degree

d Average node degree in a graph

Aimaz Maximum node degree in a graph

v Power law degree exponept{d) o d~7

a Densification power law exponemft,(t) o< N (¢)®
h(u,v) Length of the shortest path between nodesdv

h Number of hops, path length, distance

D Diameter of a graph as defined2rl.1

D* Effective diameter of the graph as defineid.3

A Set of elementsd = {a1,...,a,}

Table 2.1: Table of common symbols.

to construct an algorithm to maximize viral marketing efficiency assuming thatidiigls’ probability

of purchasing a product depends on the opinions on the trusted petheirimetwork. Kempe et al.

2003 have followed up on the challenge of maximizing viral information spreadvajyuating several
algorithms given various models of adoption we discuss next.

2.5 Table of symbols

We list common symbols used in the thesis. Each chapter then also definesr-@paeific concepts and
symbols. For the comprehensive list of symbols refer to the appendixAahle

2.6 Table of datasets

In this thesis we use more than 100 different network datasets. TAt#e#.3, andA.4 give brief de-
scriptions and some of the basic statistics, like number of nodes and e@gestat, clustering coefficient
and so on.

24



Part |

Network evolution

How do large networks evolve and
how to model this?
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Part 1 — Network evolution: Overview

Networks, especially social networks and the web, are not static blueegwer time by additions and
deletions of nodes and edges. Here we examine such evolutionarggeecd the two levels: (1) the evo-
lution of macroscopic network properties, like diameter and network degisifi; via a series of network
snapshots over time. (2) The network evolution at the level of individdgéerrivals and placements.
Studying individual edge arrivals is important as it gives us clues to niops mechanisms that give rise
to the observed macroscopic network properties. We study large onlired setworks with individual
node and edge arrivals from the first to the “million-th” edge.

Observations: In both cases we make novel empirical observatidag)., the counterintuitive Densifi-
cation power law and shrinking diameters at the macroscopic level, to link loealtytriangle closure
mechanisms taking place at the level of individual edges.

Models: We then use these observations to develop novel generation and evohatitals that specify
individual microscopic node behavior and give raise to the macroscd@ngmena observed in net-
works.

Algorithms: We also introduce a more mathematical model of Kronecker graphs, whiotaisadytically
tractable network generation and evolution model. Moreover, we alsemrefficient algorithms to
estimate Kronecker model parameters from data and then use them totgesyerthetic graphs with
similar properties as the original network.
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Chapter 3

Macroscopic network evolution

How do real graphs evolve over time? What are “normal” growth pattersedial, technological, and
information networks? Many studies have discovered pattersigiit graphsidentifying properties in a

single snapshot of a large network, or in a very small number of snegshese include heavy tails for
in- and out-degree distributions, communities, small-world phenomena, aesotHowever, given the
lack of information about network evolution over long periods, it has eed to convert these findings
into statements about trends over time.

Here we study a wide range of real graphs, and we observe sonmsswymphenomena. First, most
of these graphs densify over time, with the number of edges growing-foparly in the number of
nodes. Second, the average distance between nodesbifteksover time, in contrast to the conventional
wisdom that such distance parameters should increase slowly as a fuofctinnumber of nodes (like
O(log N) or O(log N/loglog N), see Sectio2.3).

Existing graph generation models do not exhibit these types of behavéor,at a qualitative level. We

provide a new graph generator, based on a “forest fire” spregdougss, that has a simple, intuitive justi-
fication, requires very few parameters (like the “flammability” of nodes), roduces graphs exhibiting
the full range of properties observed both in prior work and in the ptesady.

3.1 Introduction

In recent years, there has been considerable interest in graptustguarising in technological, socio-
logical, and scientific settings: computer networks (routers or autononystesnss connected together);
networks of users exchanging e-mail or instant messages; citation ketaad hyperlink networks; so-
cial networks (who-trusts-whom, who-talks-to-whom, and so forthd;@untless moreéNewman 2003.
The study of such networks has proceeded along two related tracksethgurement of large network
datasets, and the development of random graph models that approximalbséneed properties.

Many of the properties of interest in these studies are based on twonfiemiial parameters: the nodes’
degreeqi.e., the number of edges incident to each node), andlistianceshetween pairs of nodes (as
measured by shortest-path length). The node-to-node distancesearstoiied in terms of théiameter
— the maximum distance — and a set of closely related but more robust quaintitieding the average
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distance among pairs and th#fective diametefthe 90" percentile distance, a smoothed form of which
we use for our studies).

Almost all large real-world networks evolve over time by the addition and deleticnodes and edges.
Most of the recent models of network evolution capture the growth psdnesway that incorporates two
pieces of “conventional wisdom:”

(A) Constant average degree assumptiorThe average node degree in the network remains constant
over time Barakasi and Albert1999 Kumar et al, 200qJ. (Or equivalently, the number of edges
grows linearly in the number of nodes.)

(B) Slowly growing diameter assumption The diameter is a slowly growing function of the net-
work size, as in “small world” graphsAJbert et al, 1999 Broder et al. 200Q Milgram, 1967,
Watts and Strogat4998§.

For example, the intensively-studipceferential attachment mod@arakasi and Albert1999 Newman
20093 posits a network in which each new node, when it arrives, attaches &xigting network by a con-
stant number of out-links, according to a “rich-get-richer” rule. Réeark has given tight asymptotic
bounds on the diameter of preferential attachment netw@ldbas and Riordar2004 Chung and Lu
20023; depending on the precise model, these bounds grow logarithmidathpivsky and Redner
2009 or even slower than logarithmically in the number of nodes.

How are assumptions (A) and (B) reflected in data on network growth? EmlEtudies of large networks

to date have mainly focused atatic graphs, identifying properties of a single snapshot or a very small
number of snapshots of a large network. For example, despite the intéasesinn the Web's link
structure, the recent work of Ntoulas et dtdulas et al.2004 noted the lack of prior empirical research
on the evolution of the Web. Thus, while one can assert based on theésesghat, qualitatively, real
networks have relatively small average node degrees and diametexrs,nbhbeen clear how to convert
these into statements about trends over time.

The present work: Densification laws and shrinking diameters Here we study a range of different
networks, from several domains, and we focus specifically on the waghich fundamental network
properties vary with time. We find, based on the growth patterns of thesemkstwhat principles (A)
and (B) need to be reassessed. Specifically, we show the followingdiaaa range of networks across
diverse domains.

(A’) Empirical observation: Densification power laws The networks are becomirgnserover time,
with the average degree increasing (and hence with the number of edgdésgsuper-linearly in
the number of nodes). Moreover, the densification follows a power |&smpa

(B’) Empirical observation: Shrinking diameters: The effective diameter is, in many cases, actually
decreasings the network grows.

We view the second of these findings as particularly surprising: Ratherstiedding light on the long-
running debate over exactly how slowly the graph diamgtewsas a function of the number of nodes,

it suggests a need to revisit standard models so as to produce graphlintiéheffective diameter is
capable of actuallghrinkingover time. We also note that, while densification and decreasing diameters
are properties that are intuitively consistent with one another (and dheboone out in the datasets
we study), they are qualitatively distinct in the sense that it is possible tdarachexamples of graphs
evolving over time that exhibit one of these properties but not the other.
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We can further sharpen the quantitative aspects of these findingstticufs, the densification of these
graphs, as suggested hy’}, is not arbitrary; we find that as the graphs evolve over time, they follow a
version of the relation

E(t) o« N(t)® (3.1)

whereE(t) and N (t) denote the number of edges and nodes of the graph at tiamela is an exponent
that generally lies strictly betweehand2. We refer to such a relation asleensification Power Law
(DPL). (Exponentz = 1 corresponds to constant average degree over time, wkie corresponds to an
extremely dense graph where each node has, on average, edgessteatfraction of all nodes.)

What underlying process causes a graph to systematically densify, wikbdaeikponent as in Equation
(3.1), and to experience a decrease in effective diameter even as its se&s@s? This question motivates
the second main contribution of this work: we present two families of probabitignerative models
for graphs that capture aspects of these properties. The first modieh we refer to asCommunity
Guided AttachmentCGA) [Leskovec et a).2005H, argues that graph densification can have a simple
underlying basis; it is based on a decomposition of the nodes into a nestdfdceenmunities, such that
the difficulty of forming links between communities increases with the community Bizethis model,

we obtain rigorous results showing that a natural tunable parameter in thécaodead to a densification
power law with any desired exponemt The second model, which is more sophisticated, exhibits both
densification and a decreasing effective diameter as it grows. This nvdadeh we refer to as thBorest

Fire Model is based on having new nodes attach to the network by “burning” threxgting edges

in epidemic fashion. The mathematical analysis of this model appears to leadeioguestions about
random graphs that are quite complex, but through simulation we find thatrémge of parameter values
the model exhibits realistic behavior in densification, distances, and ddigtgbutions. It is thus the first
model, to our knowledge, that exhibits this full set of desired properties.

Accurate properties of network growth, together with models supporting,thave implications in sev-
eral contexts.

e Graph generationOur findings form means for assessing the quality of graph gener&ymghetic
graphs are important for ‘what if’ scenarios, for extrapolations, fmdsimulations, when real
graphs are impossible to collect (likeg, a very large friendship graph between people).

e Graph sampling: Datasets consisting of huge real-world graphs are increasingly availaitie
sizes ranging from the millions to billions of nodes. There are many knowmidlges to compute
interesting measures (shortest paths, centrality, betweenness, etaerjodivof these algorithms
become impractical for large graphs. Thus sampling is essential — but sgrfolin a graph is a
non-trivial problem since the goal is to maintain structural properties afi¢fork. Densification
laws can help discard bad sampling methods, by providing means to rejededasupgraphs.

Our recent worklLeskovec and Faloutsg®00q proposed two views on sampling from large graphs.
For Back-in-timesampling the goal is to find a sequence of sampled subgraphs that matches the
evolution of the original graph and thus obey the temporal growth pattédmsthe other hand,
Scale-dowrsampling aims for a sample that matches the properties of the original larde gvep
considered various sampling strategies, propose evaluation techraqdesse the temporal graph
patterns presented in this chapter to evaluate the quality of the sampledghshgra

e Extrapolations:For several real graphs, we have a lot of snapshots of their pasit &&h we say
about their future? Our results help form a basis for validating scerfarigsaph evolution.
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¢ Abnormality detection and computer network manageniemtany network settings, “normal” be-
havior will produce subgraphs that obey densification laws (with a prdalesexponent) and other
properties of network growth. If we detect activity producing struduhat deviate significantly
from this, we can flag it as an abnormality; this can potentially help with the detestmg.fraud,
spam, or distributed denial of service (DDoS) attacks.

The rest of the chapter is organized as follows: SecB@wsurveys the related work on networks over
time. SectiorB.3gives our empirical findings on real-world networks across diveoseains. Sectio.4
describes our proposed models and gives results obtained both theoabfsis and simulation. Sec-
tion 3.3.4gives the formal and experimental analysis of the relationship betweeregieeddistribution
and the graph densification over time. We conclude and discuss the implicatioosfindings in Sec-
tion 3.5

3.2 Related work on graphs over time

Many network models are evolutionary in nature. For exampleptékerential attachmerjAbello et al,
2002 Baralasi and Albert1999 Cooper and Friez&003 is evolutionary as nodes arrive one at the time
and each node creates it edges before next node arrives. Similarisrtcopying modelKleinberg et al.
1999 Kumar et al, 200qd, which both produce graphs with constant average degree andtlogiar
cally increasing diameter. A relategfowing network with redirectioomodel Krapivsky and Redner
2007 produces networks with constant diameter dogarithmically increasing average degree over
time [Krapivsky and Redne2005.

Similar to our Forest Fire Model is the work of Vazqué&agquez 2001, 2003 where ideas based on
random walks and recursive search for generating networks wieoeirted. In a random walk model the
walk starts at a random node, follows links, and for each visited node witie probability an edge is
created between the visited node and the new node. It can be showndhatsdel will generate graphs
with power law degree distribution with exponent- 2. On the other hand, in the recursive search model
first a new node is added to the network, and the edge to a random nodatedc If an edge is created to
a node in the network, then with some probabititgn edge is also created to each of its 1-hop neighbors.
This rule is recursively applied until no edges are created. The ieewssarch model is similar to our
Forest Fire Model in a sense that it exploits current network structurestie new edges. However, there
is an important difference that in recursive search model the aveegealscales at mdsigarithmically
(and not as a power law) with the number of nodes in the network. Our simulexijperiments also
indicated that the diameter of networks generated by the recursivdskses not decrease over time, but
it either slowly increases or remains constant.

It is important to note the fundamental contrast between one of our main fsderg — that the average
number of out-links per node is growing polynomially in the network size — ay lof work on degree

power laws. This earlier work developed models that almost exclusivelg tiee assumption of node
degrees that were bounded by constants (or at most logarithmic functiertbe network grew; our
findings and associated model challenge this assumption, by showing tivarkeacross a number of
domains are becomindenserover time.

Dorogovtsev and Mendes in a series of worRefogovtsev and Mende2001ab, 2003 analyzed possi-
ble scenarios of nonlinearly growing networks while maintaining scalestreeture. Among considered
hypothetical scenarios were also those where the number of links gawsomially with the number
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of edges,.e., Densification Power Law, while maintaining power law degree distributiore dithors

call this anaccelerated growtland propose preferential attachment type models where densification is
forced by introducing an additional “node attractiveness” factor thabisonly degree-dependent but
also time-dependent. The motivation for their work comes from the fact thibes Broder et al.200Q
Faloutsos et al1999 reported the increase of the average degree over time on the Web dntetinet.

Our work differs in that it presents measurements on many time evolving fetw@isupport our find-
ings, and proposes generative models where densification is an emergpegty of the model. Besides
densification we also address the shrinking diameters and consider mmdgdsérating them.

The bulk of prior work on the empirical study of network datasets hasskatwnstatic graphs, identify-
ing patterns in a single snapshot, or a small number of network snapseesl$se the discussion of this
point by Ntoulas et al.Nitoulas et al. 2004). Two exceptions are the very recent work of Kakafz,
2004, who independently discovered densification power laws for citation avésy and the work of
Redner Redner 2004, who studied the evolution of the citation graphRifysical Revievover the past
century. Katz’'s work builds on his earlier research on power law relships between the size and the
recognition of professional communitielddtz, 1999; his work on densification is focused specifically
on citations, and he does not propose a generative network modeldorador the densification phe-
nomenon, as we do here. Redner’'s work focuses on a range of cigatttarns over time which are
different from the network properties we study here.

Our Community Guided Attachment (CGA) model, which produces densifyiaghg, is an example of
a hierarchical graph generation model, in which the linkage probability leztwedes decreases as a
function of their relative distance in the hierarci@§hakrabarti et al.2004 Kleinberg 2002 Watts et al,
2002 Leskovec et a).2005ha, Abello, 2004. Again, there is a distinction between the aims of this
past work and our model here; where these earlier network modelss@ekieng to capture properties
of individual snapshots of a graph, we seek to explain a time evolutioregsoinn which one of the
fundamental parameters, the average node degree, is varying a®tesgpunfolds. Our Forest Fire
Model follows the overall framework of earlier graph models in which ogleive one at a time and link
into the existing structure; like the copying model discussed above, fan@raa new node creates links
by consulting the links of existing nodes. However, the recursive gsobg which nodes in the Forest
Fire Model creates these links is quite different, leading to the new propeliseussed in the previous
section.

3.3 Observations

We study the temporal evolution of several networks, by observingsbioép of these networks taken
at regularly spaced points in time. We use datasets from seven differertes; for each, we have
information about the time when each node was added to the network oveod pkseveral years —
this enables the construction of a snapshot at any desired point in timeaélorof datasets, we find a
version of the densification power law from Equati@\, £ (t) o« N(t)%; the exponent differs across
datasets, but remains remarkably stable over time. We also find that th@veftihameter decreases in all
the datasets considered.

The datasets consist of two citation graphs for different areas in th&qshiterature, a citation graph for
U.S. patents, a graph of the Internet, five bipartite affiliation graphs obeathith papers they authored,
a recommendation network, an email communication network, and four onloed setworks. Overall,
then, we consider 16 different datasets from 11 different sources.
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SYMBOL | DESCRIPTION

Gy Graph composed of nodes and edges that arrived before time

N Total number of nodes in a graph

E Total number of edges in a graph

N(t) Number of nodes in a graph at time

N(e) Number of nodes in a graph at time

a Power law densification exponer(t) oc N (t)®

c Difficulty Constant

f(h) Difficulty Function

b Community hierarchy branching factor

d Expected average node out-degree in a graph

Amaz Maximum node out-degree in a graph

y Power law degree distribution exponepfd) oc d~7

r Community hierarchy (tree)

Hrp Height of the tred”

hr(v,w) || Least common ancestor height of leaves in T’

h(v,w) Length of the shortest path between nodes

P Forest Fire forward burning probability

Dy Forest Fire backward burning probability

r Ratio of backward and forward probability= p/p;
Diameter factor (We fiD*(t) = alogt + [ over timet).
a > 0 = increasingpn < 0 = decreasing diameter

Table 3.1: Table of symbols.

3.3.1 Densification Laws

Here we describe the datasets we used, and our findings related tocdgiosifi For each graph dataset,
we have, or can generate, several time snapshots, for which we studyrfber of noded/(¢) and the
number of edge& (¢) at each timestamfp We denote byV and E the final number of nodes and edges.
We use the terrbensification Power Law pldor just DPL plot) to refer to the log-log plot of number of
edgesE(t) versus number of nodes(t).

ArXiv citation graph

We first investigate a citation graph provided as part of the 2003 KDD Gghike et al.2003. The
HEP-TH (high energy physics theory) citation graph from the e-priXivasovers all the citations within
a dataset ofV = 29, 555 papers withE = 352,807 edges. If a papercites papeyj, the graph contains
a directed edge fromto j. If a paper cites, or is cited by, a paper outside the dataset, the grapimaloe
contain any information about this. We refer to this datasetiasHEP-TH.

This data covers papers in the period from January 1993 to April 2088 fhonths). It begins within

a few months of the inception of the arXiv, and thus represents essentiallyothplete history of its
HEP-TH section. For each month (1 < m < 124) we create a citation graph using all papers published
up to monthm. For each of these graphs, we plot the number of nodes versus thenafrdziges on a
logarithmic scale and fit a line.
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Figure 3.1: The average node out-degree over time for (a) ArXiv high gn@hysics citation network
(CIT-HEP-TH), (b) US patent citation network (@-PATENTS), (c) Autonomous Systems
network (As-RoUTEVIEWS), (d) ArXiv Astro-Physics authors-to-papers bipartitavmerk
(ATP-ASTRO-PH). Notice that it increases, in all 4 datasets. That is, abps arelensifying

Figure 3.2a) shows the DPL plot of the IC-HEP-TH; the slope isa = 1.68 and corresponds to the
exponent in the densification law. Notice thais significantly higher than 1, indicating a large deviation
from linear growth. As noted earlier, when a graph has 1, its average degree increases over time.
Figure3.1(a) exactly plots the average degreever time, and it is clear thatincreases. This means that
the average length of the bibliographies of papers increases over timasd\feund that the median of the
degree distribution over time also behaves in a qualitatively similar eyt increases over time.

There is a subtle point here that we elaborate next: With almost any netataged, one does not have
data reaching all the way back to the network’s birth (to the extent that thigédlalefined notion). We
refer to this as the problem of thenissing past Due to this, there will be some effect of increasing out-
degree simply because edges will point to nodes prior to the beginning olbfeevation period,e., over
time less references are pointing to papers outside the dataset. We refeh ttosles aphantom nodes
with a similar definition fophantom edgedn all our datasets, we find that this effect is relatively minor
once we move away from the beginning of the observation period; on tlee loémd, the phenomenon
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of increasing degree continues through to the present. For exampl&Ximramdes over the most recent
years are primarily referencing non-phantom nodes; we observea iknFigure3.1(a) in 1997 that
appears to be attributable in large part to the effect of phantom nodater,(lvhen we consider a graph
of the Internet and the online social networks, we will see a case wharparable properties hold in the
absence of any “missing past” issues.) A similar observation of growirgar€e lists over time was also
independently made by Krapivsky and Redr@rgpivsky and Rednef005.

We also experimented with a second citation graphKeP-PH, taken from the HEP—PH section of the
arXiv, which is about the same size as our first arXiv dataset. It exhibdtsame behavior, with the
densification exponent = 1.56. The plot is omitted but we show the summary of results on all 16
datasets we considered in taBl&

Patents citation graph

Next, we consider a U.S. patent citation dataset maintained by the NationaBafd&conomic Re-
search Hall et al, 200]. The data set spans 37 years (January 1, 1963 to December 3), 49@
includes all the utility patents granted during that period, totaling= 3,923,922 patents. The citation
graph includes all citations made by patents granted between 1975 anddi@fifg £ = 16, 522, 438
citations. For the patents dataset there are 1,803,511 nodes for whicvevadninformation about their
citations (we only have the in-links). Because the dataset begins in 1936 hias a “missing past” issue,
but again the effect of this is minor as one moves away from the first fansyé&Ve refer to this patent
citation network as @-PATENTS.

The QT-PATENTS patents data also contains citations outside the dataset. For patents outsataské d
the time is unknown. These patents have zero out-degree and are at soroieiihi®y the patents from
within the dataset. We set the time (grant year) of these out-of-datasetoptat¢he year when they were
first cited by a patent from the dataset. This is natural and is equivaleatyiog that patents for which
grant year is unknown are in the dataset from the beginning, but wiamting, we count only non-zero
degree nodes. So the time when we first count an unknown patent isivgegs a first link.

We follow the same procedure as with arXiv citation networks. For eachlydeom 1975 to 1999, we
create a citation network on patents up to yEarand give the DPL plot, in Figurd.2(b). As with the
arXiv citation network, we observe a high densification exponent, in tisis«ca: 1.66.

Figure3.1(b) illustrates the increasing out-degree of patents over time. Note that thidoge not incur
any of the complications of a bounded observation period, since the patémtsdataset include complete
citation lists, and here we are simply plotting the average size of these adiariusiche year.

Autonomous systems graph

The graph of routers comprising the Internet can be organized intgrsyihts called Autonomous Systems
(AS). Each AS exchanges traffic flows with some neighbors (peers)cal construct a communication
network of who-talks-to-whom from the BGP (Border Gateway Protdogl$.

We use thédutonomous Systems (AfRfaset from RouteViews project at University of OregloditeViews
1997. The dataset contains 735 daily instances which span an interval afi&&5from November 8
1997 to January 2 2000. The graphs range in size fdorme= 3,011 nodes and® = 10,687 edges to
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Figure 3.2: Number of edge& (¢) versus number of node$(¢), in log-log scales, for (a) ArXiv high en-

ergy physics citation network (C-HEP-TH), (b) US patent citation network (C-PATENTS),
(c) Autonomous Systems network $AROUTEVIEWS), (d) ArXiv Astro-Physics authors-
to-papers bipartite network @ -ASTRO-PH), (€) Email network (EAIL -INOuUT), and (f)
Actors-to-movies bipartite network from IMDB (@-IMDB). All 6 graphs obey the Den-
sification Power Law, with a consistently good fit. Slopes= 1.68, 1.66, 1.18, 1.15, 1.12,
and 1.11 respectively.
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the largest AS graph that haé = 6,474 nodes andy = 26,467 edges. We refer to this dataset as
AS-ROUTEVIEWS.

In contrast to citation networks, where nodes and edges only get #ddedeleted) over time, the AS
dataset also exhibits both the addition and deletion of the nodes and edgdisnz/

Figure3.2(c) shows the DPL plot for the &&«ROUTEV IEWS dataset. We observe a clear trend: Even in
the presence of noise, changing external conditions, and disruptidhs toternet we observe a strong
super-linear growth in the number of edges over more than 700 AS gréyhshow the increase in the
average node degree over time in FigBr#c). The densification exponentds= 1.18, lower than the
one for the citation networks, but still clearly greater than

Affiliation graphs

Using the arXiv data, we also constructed biparditi#liation graphs There is a node for each paper, a
node for each person who authored at least one arXiv papernaedge connecting people to the papers
they authored. Note that the more traditionatauthorship networis implicit in the affiliation network:
two people are co-authors if there is at least one paper joined by arniedgeh of them.

We studied affiliation networks derived from the five largest categorigsararXiv. We refer to these
Authors-to-Papers graphs agR-ASTRO-PH, ATP-HEP-TH, ATP-HEP-PH, ATP-COND-MAT and ATP-
GR-QC. See also the tabl&.3 for additional information about the datasets.

We place a time-stamp on each node: the submission date of each papen eadhf person, the date

of their first submission to the arXiv. The data for affiliation graphs cevee period from April 1992

to March 2002. The smallest of the graphs (category GR—QC) had 18Rt (5,855 authors, 13,454
papers) and 26,169 edgestAASTRO-PH s the largest graph, with 57,381 nodes (19,393 authors, 37,988
papers) and 133,170 edges. It has 6.87 authors per paper; mostolién categories also have similarly
high numbers of authors per paper.

For all these affiliation graphs we observe similar phenomena, and in partiga have densification
exponents betweeh08 and1.15. We present the complete set of measurements only for ASTRO-PH,
the largest affiliation graph. Figur&sl(d) and3.2(d) show the increasing average degree over time, and
a densification exponent af= 1.15. Table3.2 shows the sizes and Densification Power Law exponents
for other four affiliation graphs.

Email network

We also considered an email network from a large European reseayahization. For a period from
October 2003 to May 2005 (18 months) we have anonymized information albowcoming and outgoing
email of the research organization. For each sent or received emaihgeewe know the time, the sender
and the recipient of the email. All personally identifiable data was hasheuates were assigned random
ids. Overall we have 3,038,531 emails between 287,755 different emadssds. Note that we have a
complete email graph for only 1,258 email addresses that come from insidests@&ch organization.
Furthermore, there are 35,756 email addresses that both sent aivedemmail within the span of our
dataset. All other email addresses are either non-existing, mistypedror spa
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Given a set of email messages we need to create a graph. Since thbesroatiple emails sent between
same two addresses (nodes) we follow the practice of Kossinets and Wadtsr{ets and Watt2004.
Given a set of email messages, each node corresponds to an emefsaddie create an edge between
nodesi andj, if they exchanged messages both ways, node; sent at least one message to ngdand

Jj sent at least one message to

Similarly to citation networks, we take all email messages up to particularitand create a graph using
the procedure described above. So, in the first month we observe8R=htails between 38,090 different
addresses. Using the proceduke$sinets and Watt200§ of generating a graph from a set of emails,
we getN = 6,537 nodes and® = 18,812 edges. After 18 months, at the end of the dataset, we have
N = 35,756 nodes andE = 123,254 edges. We refer to this network asiEiL -INOUT. See also
tableA.2 for additional information about the dataset.

Figure 3.2(e) presents the DPL plot for theMAIL -INOUT network. Observe a clear trend: the email
network is densifying, regardless of the fact that it is growing and teatparts of social network (email
address space) are being explored. The densification exponenti$.12, lower than the one for the
citation networks but more similar to those from affiliation networks. Still clearater thar.

Note that there is one issue with this dataset: we have complete informationadb®erit and received
emails only for the core of the network (1258 email addresses from tteniaagion). For the rest of
the addresses, the nodes on the periphery, we only have their communi{tiakie) with the core of the
network.

Regardless of how we look at the email network it always densifies: Itevesider only the core of

the network, the densification is very high. This is expected, since the mwhibedes (people at the

research organization) basically remains constant over time and thecadgesly be added, not deleted,
and densification naturally occurs.

The BvAIL -INOUT network also densifies if we consider the core plus the periphery but weger-
mining edges we take a 2 month sliding windddogsinets and Watt2004. This means that for every
monthm, we take all email messages between- 1 andm, and create a graph, where there is an edge,
if nodes exchanged emails both ways in the last 2 months. This graph alsifiefewith densification
exponent = 1.21.

Interestingly, the sliding window email network has higher densification mapiothan the full evolving
email network. A possible explanation is that email usage is increasing oveatidieot all nodes (email
addresses) are active at all times. Over the 18 month time period the sizeafit®-sliding window
graphs increases from 7,000 to 10,000 nodes. On the other hand tieenaillgraph (composed of all
nodes up to monthn) grows from 3,000 to 38,000 nodes over the same time period. This means that
there is a large number of e-mail addresses that are active only foioa pétime. In a moving window
graph we observe only active users and thus more edges since emgailhzsaalso increased and people
communicate more. As opposed to the evolution of the full email network, the gnaxitdow graphs do

not have to accumulate the history., sparse graphs from the past, so they densify faster.

IMDB actors to movies network

The Internet Movie Data Base (IMDBitp://www.imdb.com ) is a collection of facts about movies
and actors. For every movie we know the year of production, gendeaetor names that appeared in the
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movie. From IMDB we obtained data about 896,192 actors and 334,084 sqanaduced between 1890
and 2004 (114 years).

Given this data we created a bi-partite graph of actors to movies the samesivatha case of affiliation
networks. We refer to this network asi-IMDB. This means that whenever a new movie appears, it
links to all the actors participating in it. We create a new actor node when thefast@ppears in any
movie. This way, when a new movie appears, we first create a movie ndam We introduce actor
nodes, but only for actors for whom this was their first appearancariovae. Then we link actors and
the movie.

In our experiment we started observing the graph in 1910, when thea@panected component started
to form. Before 1910 the largest connected component consisted dhBasd5% of the nodes. At the
beginning of our observation period the¥M-IMDB network had N = 7,690 nodes (4,219 actors and
3,471 movies) and = 12,243 edges. At the end of the dataset in 2004, we h&ve 1,230, 276 nodes
andFE = 3,790,667 edges. See also tab¥e4 for additional information about the dataset.

We follow the usual procedure: for every yedrwe take all the movies up to yeaf and actors that
appeared in them. We create a graph and measure how the number ofjsmgesvith the number of
nodes. Figurd.2(f) presents the DPL plot for the™-IMDB actors to movies network. Again, notice
the nontrivial densification exponent @f= 1.11.

Product recommendation network

We also report the analysis of the product recommendation netwedkpvec et al.20063 that we will
describe in greater detail in chapt&rWe measure the densification of a large person-to-person recom-
mendation network from a large on-line retailer. Nodes represent pangdledges represent recommen-
dations. The network generation process was as follows. Each timeamenshasesa book, music

CD, or a movie he or she is given the option of sending emails recommendingrth&ifeiends. Any

of the recipients of the recommendation that makes a purchase can fetbermend the item, and by
this propagation of recommendations the network forms. We refer to this neB8oRECOMMENDA-
TIONS.

The RECOMMENDATIONS network consists oy = 15,646, 121 recommendations made among =
3,943, 084 distinct users. The data was collected from June 5 2001 to May 16 20@8al, 548,523 prod-
ucts were recommended. We report the Densification Power Law exjporef.26 in table3.2

Online social networks

We also consider large online social networks that are parts of the paqmdil networking and photo
sharing websites like: IRCKR (flickr.com , @ photo-sharing website),HdIcIoUs (del.icio.us :

a collaborative bookmark tagging websiteproo! ANSWERS(answers.yahoo.com , a knowledge
sharing website), andINKEDIN (linkedin.com , a professional contacts website) — where nodes
represent people and edges represent social relationships. Ketnawe up to 8 million nodes and 31
million edges. Notice here we have complete data on the evolution of these doworks from the
inception of the service to the end. All personally identifiable data was Hasiet nodes were assigned
random ids. Refer to tabl& 2 for information on network sizes and densification exponents.
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flickr.com
del.icio.us
answers.yahoo.com
linkedin.com

DATASET | NobEs EDGES | TIME || DPL EXPONENT

CIT-HEP-PH 30,501 347,268 10 years 1.56
CIT-HEP-TH 29,555 352,807| 10years 1.68
CIT-PATENTS 3,923,922| 16,522,438 37 years 1.66
AS-ROUTEVIEWS 6,474 26,467| 785 days 1.18
ATP-ASTRO-PH 57,381 133,179 10 years 1.15
ATP-COND-MAT 62,085 108,182 10 years 1.10
ATP-GR-QC 19,309 26,169| 10years 1.08
ATP-HEP-PH 51,037 89,163| 10years 1.08
ATP-HEP-TH 45,280 68,695| 10 years 1.08
EMAIL -INOUT 35,756 123,254| 18 months 1.12
ATM-IMDB 1,230,276| 3,790,667 114 years 1.11
RECOMMENDATIONS || 3,943,084| 15,656,121 710 days 1.26
FLICKR 584,207| 3,554,130| 20 months 1.32
DELICIOUS 203,234 430,707| 10 months 1.15
ANSWERS 598,314| 1,834,217 4 months 1.25
LINKEDIN 7,550,955| 30,682,028/ 3.5years 1.20

Table 3.2: Dataset names with sizes, time lengths and DensificatiorePbaw exponents. Notice very
high densification exponent for citation networks 1.6), around1.2 for Autonomous Systems
and lower (but still significant) densification exponesnt1.1) for affiliation and collaboration
type networks.

3.3.2 Shrinking Diameters

We now discuss the behavior of the effective diameter over time, for thisctioleof network datasets.
Following the conventional wisdom on this topic, we expected the underlyiegtipn to be whether we
could detect the differences among competing hypotheses concerniggothih rates of the diameter
— for example, the difference between logarithmic and sub-logarithmic grofiths, it was with some
surprise that we found the effective diameters to be acta@ltyeasingver time (Figure3.3).

As mentioned earlier in Chapt@r a graph has diameté? if every pair of nodes can be connected by a
path of length at mosb. The diametelD is susceptible to outliers. Thus, a more robust measure of the
pairwise distances between nodes of a graph iseffextive diameterThis is defined as the minimum
number of hops in which 90% of all connected pairs of nodes can rezaih @her. See sectidhl

for more precise definitions of these concepts. The effective diamesebd®en found to be small for
large real-world graphs, like Internet, Web, and social netwoMbkdrt and Barabsi 2002 Milgram,
1967.

We follow the same procedure as in case of Densification Power Law nesasots. For each tinte we
create a graph consisting of nodes up to that time, and compute the effiatiweter of the undirected
version of the graph.

Figure3.3shows the effective diameter over time; one observes a decreasinddretithe graphs. We
performed a comparable analysis to what we describe here for all fib dediasets in our study, with very
similar results. For the citation networks in our study, the decreasing e#atihmeter has the following
interpretation: Since all the links out of a node are “frozen” at the momgihi the graph, the decreasing
distance between pairs of nodes appears to be the result of subisegpers acting as “bridges” by citing

39



10p 12¢

—=—Full graph —=—Full graph
-e-Post '95 subgraph 11r Q - e -Post '95 subgraph
9 =0~ Post '95 subgraph, no past v =¢0--Post 95 subgraph, no past

10

Effective diameter
~
Effective diameter
[ee)

7 L
6 L
6,
5 L
5,
4 ‘ ‘ ‘ ‘ ‘ ‘ 4 ‘ ‘ ‘ ‘ ‘
1992 1994 1996 1998 2000 2002 2004 1992 1994 1996 1998 2000 2002
Time [years] Time [years]
(@) QT-HEP-TH (b) ATP-ASTRO-PH
35; 5
—~—Ful graph
-e-Post '85 subgraph
307 ‘-0 Post '85 subgraph, no past
g 3
£ T
5 s
© ©
2 2
© S 4.4f
() (9]
§ &
4.2¢
‘ ‘ ‘ s | 4 ‘ ‘ ‘ ‘ ‘ ‘ |
1%75 1980 1985 1990 1995 2000 3000 3500 4000 4500 5000 5500 6000 6500
Time [years] Size of the graph [number of nodes]
(c) CIT-PATENTS (d) As-ROUTEVIEWS
7 161 '
[ \|—Full graph
— Full graph i g
‘‘‘‘‘ Post Jan '04 subgraph 15¢ . . _POSt ,40 subgraph
6.5r - - -Post Jan '04 subgraph, no past 1 Post 40 subgraph, no past
3 el 2
2 IS
S 3
S S
O 5.5¢ o
2 2
S 3
(9]
£ 5t i
4.5¢-
4 L L I J 8 L L L L L
0 5 10 15 20 1920 1940 1960 1980 2000
Time [months] Time [years]
(e) EMAIL -INOUT (H ATM-IMDB

Figure 3.3: The effective diameter over time for 6 different datasetstidé consistent decrease of the
diameter over time.

40



earlier papers from disparate areas. Note that for other graphs istuy, such as the AS dataset, it
is possible for an edge between two nodes to appear at an arbitrary timéhalie two nodes join the
graph.

We note that the effective diameter of a graph over time is necessarily edumain below, and the
decreasing patterns of the effective diameter in the plots of Figare consistent with convergence
to some asymptotic value. However, understanding the full “limiting behavidttieeffective diameter
over time, to the extent that this is even a well-defined notion, remains an apstian.

Validating the shrinking diameter conclusion

Given the unexpected nature of this result, we wanted to verify that theksig diameters were not
attributable to artifacts of our datasets or analyses. We explored this isaueuimber of ways, which
we now summarize; the conclusion is that the shrinking diameter appears toobast, and intrinsic,
phenomenon. Specifically, we performed experiments to account fpoés)ble sampling problems, (b)
the effect of disconnected components, (c) the effect of the “missisigj(pa in the previous subsection),
and (d) the dynamics of the emergence of the giant component.

¢ Possible sampling problems€Computing shortest paths among all node pairs is computationally
prohibitive for graphs of our scale. We used several different@apmate methods, obtaining al-
most identical results from all of them. In particular, we applied the Approtérhbeighborhood
Function (ANF) approachHalmer et a].2007 (in two different implementations), which can esti-
mate effective diameters for very large graphs, as well as a basic samaplimgach in which we
ran exhaustive breadth-first search from a subset of the nodserchuniformly at random. The
results using all these methods were essentially identical.

Plots on figure3.3were created by averaging over 100 runs of the ANF, the approximatestia
algorithm. For all datasets the standard error is less than 10%. For clapitgsgntation we do not
show the error bars.

e Disconnected component@ne can also ask about the effect of small disconnected components.
All of our graphs have a singlgiant componert a connected component (or a weakly connected
component in the case of directed graphs, ignoring the direction of tresgtitat accounts for a
significant fraction of all nodes. For each graph, we computed efeediameters for both the entire
graph and for just the giant component; again, our results are essetit@bame using these two
methods.

e “Missing Past” effects: A third issue is the problem of the “missing past,” the same general issue
that surfaced in the previous subsection when we considered detimifichn particular, we must
decide how to handle citations to papers that predate our earliest rddimte (Note that the
missing past is not an issue for the AS network and the four online sodiebriedata, where the
effective diameter also decreases.)

To understand how the diameters of our networks are affected by thimidahle problem, we
perform the following test. We pick some positive tiie> 0, and determine what the diameter
would look like as a function of timef this were the beginning of our dat&Ve then put back in the
nodes and the edges from before titheand study how much the diameters change. If this change
is small — or at least if it does not affect the qualitative conclusions — thproitides evidence
that the missing past is not influencing the overall result.
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Specifically, we set this cut-off timg) to be the beginning 0f995 for the arXiv (since we have
data from1993), and to bel 985 for the patent citation graph (we have data fro975). For Email
network we set the cut-off time to January 2004 and for IMDB to 1940 (&® experimented with
1920 and 1960 and findings were consistent). We then compared tlts oéshree measurements:

— Diameter of full graphFor each time we compute the effective diameter of the graph’s giant
component.

— Postiy subgraph.We compute the effective diameter of the passubgraph using all nodes
and edges. This means that for each tinfe > ¢,) we create a graph using all nodes dated
beforet. We then compute the effective diameter of the subgraph of the nodeatnezbrt)
andt. To compute the effective diameter we can use all edges and nodes ifigdiuose dated
beforety). This means that we are measuring distaradg among nodes dated betwegn
andt while also using nodes and edges befgras “shortcuts” or “bypasses”. The experiment
measures the diameter of the graph if we knew the full (pygeast — the citations of the
papers which we have intentionally excluded for this test.

— Posti, subgraph, no pastWe sett, the same way as in previous experiment, but then for
all nodes dated beforg we delete all their out-links. This creates the graph we would have
gotten if we had started collecting data only at titpe

In Figure 3.3, we superimpose the effective diameters using the three different teesnidf the
missing past does not play a large role in the diameter, then all three cinvekl die close to
one another. We observe this is the case for the arXiv citation graplhshéarXiv paper-author
affiliation graph, and for the patent citation graph, the curves are quftdit right at the cut-off
time tg (where the effect of deleted edges is most pronounced), but thellyailign with one
another. As a result, it seems clear that the continued decreasing tremdeffieittive diameter as
time runs to the present is not the result of these boundary effects.

e Emergence of giant componenA final issue is the dynamics by which the giant component
emerges. For example, in the standarddsrdRenyi random graph model (which has a substantially
different flavor from the growth dynamics of the graphs here), the diemw# the giant compo-
nent is quite large when it first appears, and then it shrinks as edgésuwmto be added. Could
shrinking diameters in some way be a symptom of emergence of giant contponen

It appears fairly clear that this is not the case. Figdieshows the fraction of all nodes that are
part of the largest connected component (LCC) over time. We plot thetthe LCC for the full
graph and for a graph where we had no pastes-where we delete all out-links of the nodes dated
before the cut-off time¢,. Because we delete the out-links of the pserodes the size of LCC is
smaller, but as the graph grows the effect of these deleted links beceglasiie.

We see that within a few years the giant component accounts for almost athdes in the graph.
The effective diameter, however, continues to steadily decrease ddyisrpoint. This indicates
that the decrease is happening in a “mature” graph, and not becaugesmalhdisconnected com-
ponents are being rapidly glued together.

Based on all this, we believe that the decreasing diameters in our studyt eeflendamental property of
the underlying networks. Understanding the possible causes of thisrproas well as the causes of the
densification power laws discussed earlier, will be the subject of theseetibn.
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Figure 3.4: The fraction of nodes that are part of the giant connectedoom@nt over time. We see that
after 4 years the 90% of all nodes in the graph belong to giamiponent.

3.3.3 Does densification cause shrinking diameter?

A natural question to ask next is whether densification itself is enough éaditmeter to shrink. Or, is
there something more that causes shrinking diameters. For example, it eaihlgtbhe edge attachment
changes and the edges attach less and less “locally” over time, whichsstivenketwork diameter.

In principle there are three possible answers to this question. We list tloemtlie simplest to the most
complex: (1) densification causes shrinking diameter; (2) densificatioanbimation with particularly
evolving degree sequence causes shrinking diameter; (3) densifieatiospecial evolution of edge at-
tachment cause shrinking diameter. Next, we examine which of these paassilers is true.

First, we examine the connection between the densification and the shrinangtdr. We generate a
densifying random grap&,, ,, and measure the effective diameter as we grow and densify the graph. If
solely the densification causes shrinking diameter, then the diameter of ifyohens,, , should also
shrink. Figure3.5a) shows the plot for a densifying random graph with densification resuta, = 1.3.
Notice the diameter is still slowly increasing which shows that densification itsetftisnough to obtain
shrinking diameter. Similarly, Figurg.5b) shows the diameter of a densifying Preferential Attachment
(PA) model. Here the diameter quickly fluctuates and then remains constarheitietwork size.

Now, we evaluate the hypothesis whether the densification and the evoltitttnaegree sequence could
cause the diameter to shrink. We measure the diameter over time of a realknebddhen compare this
with a diameter of a random network conditioning on the same degree distribilBasically, we take
a real network and then generate a random network with same degresnsequsing the configuration
model Bollobas 198(0. Figures3.5c) and (d) show the true network shrinking diameter for thé*A
ASTRO-PH affiliation network the US patent citation networkIfGPATENTS). Dots present the diameter
of the real network, while line shows the evolution of the diameter of a “ralinetwork,i.e., a random
network with same degree distribution. Notice the effective diameter nicelywsiiue diameter even if
we randomly rewire the edges. This shows that there is nothing special latw the edges attach but it
is the way the degree sequence evolves over time that gives rise to thaérghdiameter.

Next, we analyze exactly the connections between the densification pawanththe evolution of the
degree sequence.
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Figure 3.5: (Top row: (a) The effective diameter of a densifying &sdRenyi random grapld,, ,, with
densification exponent = 1.3. (b) Densifying Preferential Attachment (PA) model with
densification exponent = 1.2. In G, , the diameter is still slowly increasing regardless
of the fact that the network is densifying. In case of Prafgat Attachment the diameter is
basically constant. This means that densification itsetbisenough for diameter to shrink.
Bottom row compares the true effective diameter (red dott) the effective diameter of a
rewired networkj.e., a random graph with same degree distribution (solid lihgtice they
both match well. The rewiring process does not alter netiwat&gree sequence and densi-
fication. This shows one needs the right combination of thesifieation and the evolving
degree sequence to obtain shrinking diameter.

3.3.4 Densification and the degree distribution over time

Many real world graphs exhibit power law degree distributi@derplasi and Albert1999 Faloutsos et a|.
1999. As we saw in sectioi3.3the average degree increases over time, and the graphs densify follow-
ing the power law relationship between the number of nodes and the numbéeges. Here we analyze

the relation between the densification and the power law degree distributotiroe, and find evidence
that some of the real world graphs obey the relations we find. A similar asalgs also performed by
Dorogovtsev and Mende®progovisev and Mende2002h although without specific measurements or
comparison to real data.
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We analyze the following two cases: If the degree distribution of a time evobyiah is power law, and
it maintainsconstantpower law exponeny over time, then we show that fdr < v < 2 we obtain the
Densification Power Law exponent

a=2/.

arises. In this case the Densification Power Law is the consequencdadttieat a power law distribution
with exponenty < 2 has no finite expectatiomNewman 2009, and thus the average degree grows with
the number of sampleg€., nodes) while power law degree exponent is constant over time.

Our second result is for the case when temporally evolving graph densifie densification exponent
and follows a power law degree distribution with expongnt 2 that we alow tachangeover time. We
show that in this case for a given densification exporenhe power law degree exponeptV) has to
evolve with the size of the grapN as

ANt —1
N)y=-— =
’Y( ) 2Na_l _ 1

This shows that Densification Power Law and the degree distribution latedeand that one implies the
other.

Constant degree exponent over time

First, we analyze the case where the graph over time maintains power lagedsigtribution with a
constant exponent. Power law distributiorp(z) = cz~7 with exponenty < 2 has infinite expecta-
tion [Newman 2003, i.e., as the number of samples increases, the average also increasesingshiat
the exponent (slope) of the degree distribution deeischange over timea natural question to ask is:
what is the relation between the Densification Power Law exponent an@gneeddistribution over time?
The following theorem answers the question:

Theorem 3.3.1.In a temporally evolving graph with a power law degree distribution havingstant
degree exponent over time, the DPL exponeatis:

a = 1 ify>2 (3.2)
= 2/y f1<~y<2 (3.3)
= 2 ify<l1 (3.4)

Proof. Assume that at any timethe degree distribution of an undirected gragliollows a power law.
This means the number of nodag with degreed is Ny = cd~7, wherec is a constant. Now assume
that at some point in time the maximum degree in the graph,is.. Later as the graph grows we will
let d,,.. — oo. Using the previous power law relation, we can calculate the number osiodead the
number of edge® in the graph:

45



dmaz dmax
N o= S s /

g mak = 1

= d=1 1=~

1 dmaz dmazx d2—’7 -1
E = = Z cd ™~ / A e S—

2 i—1 d=1 2-9

Now, we let the graph grow, s6),,.. — oo. Then the DPL exponentis:

L loB(E) _ yloa(das) +lox(dka — 1)) ~ log(12 — 5))
dmaz—00 10g(N)  1og(dmaz) + 10g(|dmak — 1]) — log(|1 —~])

Note, that the degree distribution exponent jso we also have the relatidog(c) = ~ log(dimaz ). NOw,
we have 3 cases:

Case 1 v > 2. No densification:

o — VIOg(dmax) +o(1)

=1
vlog(dmaz) + o(1)

Case 21 < v < 2is the interesting case where densification arises:

- v1og(dmaz) + (2 — v) log(dmaz) + o(1) _ 2
Y10g(dmaz) + o(1) g

Case 3:v < 1. Maximum densification — the graph is basically a clique and the number o$ eulges
quadratically with the number of nodes:

o — v1og(dmaz) + (2 — ) log(dpmaz) + o(1)

7 108(dmaz) + (1= 7) 108 (dmaz) + 0(1)

O]

This shows that for cases when graph evolves by maintaining the copstaet law degree exponent
~ > 2 over time it does not densify. However, for cases when 2 we observe densification. This can
easily be explained. The densification means that the number of edges faster than the number of
nodes. So, for densification to appear the tail of the degree distributtoto lggiow,i.e. has to accumulate
more mass over time. Here, this is the case since power law distributions withespo< 2 have no
finite expectation. In the case of degree distribution this means that theedpecie degree grows as the
graph accumulates more nodés.( samples from degree distribution).
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Evolving degree distribution

There also exist graphs with degree distributiorr 2 which can also densify. Now, we allow the degree
distribution to change over time. In fact, the degree distribution has to flaterime to accumulate more
mass in the tail as more nodes are added to allow for densification. This isweteadplore next.

In the previous section we assumed that the expopeiithe power law degree distribution remains con-
stant over time, and then found the range for power law degree expppmérere it leads to densification.
Now, we assume Densification Power Law with exponeratlow degree distribution to change over time,
and askHow should the power law degree expone(lv) change over time (as the number of nodés
grows) to allow for densificationWe show the following result:

Theorem 3.3.2.Given a time evolving graph oN nodes that evolves according to Densification Power
Law with exponent > 1 and has a Power law degree distribution with exponefi) > 2, then the
degree exponent(N') evolves with the number of nodAsas

ANo—L 1

Y(N) = ONa-T _1 (3.5)

Proof. An undirected grapli: on N nodes hasv = %Na? edges, wherd is the average degree in graph
G. Then the DPL exponentis

. log(E) _ log(N) + log(d) — log(2)
log(N) log(N)

(3.6)
In a graph with power law degree distributigriz:) = 2=, with exponenty > 2, the average degrekis

o0

3 0 00 -1
d =~ / ap(x) dx = c/ ey = 2 =T (3.7)
1 1 2—7 1 v =2

Now, substituting in equatior3.6 with the result of equatioB.7, and solving fory, we obtain:

4N

1N) = oyeT 1 (3.8)

O]

Here we found the evolution pattern that degree distribution with expenen? has to follow in order to
allow for densification. As theore®.6 shows the degree distribution has to flatten over time, so that the
expected node degree increases, which is the result of densification.
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Figure 3.6: Degree distribution (a) and the degree exponemiter time (b) for the email networkneaiL -
INOuUT. The network maintains constant slopef degree distribution over time. Notice that
~v < 2. We observe a remarkably good agreement between the ré3Jiieorem3.3.1(DPL
exponent = 1.13), and our measurements (DPL exponent 1.11) in figure3.2(e).

Measurements on real networks

Next, given the analysis from the previous section, we went back to tiacati@ checked if graphs we
analyzed before behave according to the results of thed@e3rkand3.3.2

First, we show an example of a graph where the evolution of the degrebutistn and the DPL exponent
follow the results of theorer8.3.1 Using the email network described in sect@B.1we found that the
degree distribution follows a power law with exponerthat remains constant over time.

Figure3.6(a) shows the degree distribution of the email network for last snap§kize oetworkj.e., last

2 months of the data. We create the networks by using a 2 month sliding winde\it ihe power law
degree exponent using Maximum Likelihood Estimation (MLE), and plot its evolution over time in fig-
ure 3.6(b). Noticey remains practically constant over time, which is also in agreement with obsaiya
reported in Kossinets and Watt200§. Also notice that the power law degree exponent 1.76 < 2.
Given the degree exponentand using theorerd.3.1we obtain the theoretical value of the DPL exponent
a = 2/1.76 ~ 1.13. The value of DPL exponent we measured in sec8@figure3.2(e) isa = 1.11,
which is a remarkably good agreement. This shows that there exist grafitesreal world that densify
and have decreasing diameter while maintaining constant degree expuagtime.

Last, we show an example of a temporally evolving graph that densifiehathe power law degree
exponenty changing over time.

Figure 3.7(a) plots the degree distribution of the full HEP—PH citation network froniced.3.1 In
this case the degree distribution only follows a power law in the tail of the disitritpuiso we applied the
following procedure. For every year 1992 < y < 2002 we create a citation graph and measure the
exponent of the power law degree distribution. We apply logarithmic binmddiathe power law degree
distribution using MLE on the tail of the degree distribution starting at minimumege@®. \We plot the
resulting degree exponeftover time as a function of the size of the graph in figBréb).

Using dashed-lines we also plot the degree exponastobtained by theore13.2 Since the graph does
not exhibit power law degree distribution on the entire range, and due tinisast effects, we had to
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Figure 3.7: Degree distribution (a) and the degree exponent over timé(lihe HEP—PH citation net-
work (CIT-HEP-PH). The network follows power law degree distribution onlythre tail.
Degree distribution exponentis decreasing over time. Notice a good agreement of degree
distribution evolution (solid line) as predicted by thedhem3.3.2(dashed line).
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Figure 3.8: Rank Degree plot for the degree distribution of the emaily4E -INOUT) and the HEP—PH
(CiT-HEP-PH) networks. We use the same data as in fig@®.€&) and3.7(a) but plot node
degree vs. rank using the log-log scales. As a eye guideknglet the solid lines that present
the power law decay with exponent= 1.75 andy = 2.24, respectively.

appropriately scale time axis with a manually chosen value. Regardless of theinsaaling we think

this result indicates that for a class of temporally evolving graphs the eldigtibution flattens over time

as given by the theoref13.2 This seems to be the case for HEP—PH citation network where the evolution
of the degree exponent qualitatively follows the result of thedBe3r2

Figure 3.8 further investigates the degree distribution of the email and HEP-PH netwivk use the
same data as in figur&sg(a) and3.7(a), and plot the number of nodes of a certain degree against the rank.
The solid lines present the power law decay with exponents 1.75 and~y = 2.24, respectively. The
actual slope of the plotted line i5/(y — 1), which is the relation between the power law exponeand

the slope of the rank degree plot (sé&ldmic, 200q for more details on these relationships).
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In both plots of figure3.8 we observe linearity which suggests a power law relationship for a p#éneof
degree distribution. For the email network we observe linearity in the tail, anihé HEP—PH citation
network in the first part of the distribution. These two plots show that in oor datasets the power
law degree distribution does not hold for the entire range. Howevertilvelsserve a significant range
where power law relationship seems to hold. Regardless of these iriggalénere is still very good
agreement of the data with the results of theor8msland3.3.2 which suggests that there exists graphs
that densify by maintaining constant power law degree exponent (ine®®1), and also graphs that
densify by degree exponent flattening over time (theoBetD).

3.4 Proposed models

We have now seen that densification power laws and shrinking effetitiveeters are properties that hold
across arange of diverse networks. Moreover, existing modelstdapture these phenomena. We would
like to find some simple, local model of behavior, which could naturally lead toeroscopic phenom-
ena we have observed. We present increasingly sophisticated mddefsyhkich naturally achieve the
observed densification; the last one (the “Forest Fire” model) also iexBHrinking diameter and all the
other main patterns known (including heavy-tailed in- and out-degree distrnis).

3.4.1 Community Guided Attachment

What are the underlying principles that drive all our observed gr&pbbey a densification power law,
without central control or coordination? We seek a model in which theifilgat®on exponent arises from
intrinsic features of the process that generates nodes and edges.owiiteuld clearly define a graph
model in whichE(t) oc N(t)* by simply having each node, when it arrives at timgenerateV (¢)% 1
out-links — the equivalent of positing that each author of a paper in a citagomork has a rule like,
“Cite N*~! other documents,” hard-wired in his or her brain — such a model woulgrmtde any
insight into the origin of the exponent as the exponent is unrelated to the operational details by which
the network is being constructed. Instead, our goal is to see how uimdedyoperties of the network
evolution process itself can affect the observed densification behavior

We take the following approach. Power laws often appear in combinationseittsimilar structures.
Intuitively, a self-similar object consists of miniature replicas of its8iéfiroeder1991. Our approach
involves two steps, both of which are based on self-similarity.

We begin by searching for self-similar, recursive structures. In faetcan easily find several such
recursive sets: For example, computer networks form tight groeygs based on geography), which
consist of smaller groups, and so on, recursively. Similarly for patémes: also form conceptual groups
(“chemistry”, “communications”, etc.), which consist of sub-groupsl s on recursively. Several other
graphs feature such “communities within communities” patterns.

For example, it has been argued (seg [Watts et al. 2003 and the references therein) that social struc-
tures exhibit self-similarity, with individuals organizing their social contagesarchically. Moreover,
pairs of individuals belonging to the same small community form social ties maiky ¢laan pairs of
individuals who are only related by membership in a larger community. In areliffelomain, Menczer
studied the frequency of links among Web pages that are organized irgi &ierarchy such as the Open
Directory [Menczer 2004. He showed that link density among pages decreases with the heighirof the
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least common ancestor in the hierarchy. That is, two pages on closelydrialptes are more likely to be
hyperlinked than are two pages on more distantly related topics.

This is the first, qualitative step in our explanation for the Densification Pbaer The second step is
quantitative. We will need a numerical measure of the difficulty in crossimgnoonities. The extent
to which it is indeed difficult to form links across communities will be a propeftthe domain being

studied. We call this thBifficulty Constantand we define it more precisely below.

The basic version of the model

We represent the recursive structure of communities-within-communitiesrae 8, of height Hp. We
shall show that even a simple, perfectly balanced tree of constanttfaisoenough to lead to a densifica-
tion power law, and so we will focus the analysis on this basic model.

The node®’ in the graph we construct will be the leaves of the tree; thafis; |V|. (Note thatV = b1 )
Let hr(v, w) define the standard tree distance of two leaf nadasdw: that is,hr (v, w) is the height of
their least common ancestor (the height of the smallest sub-tree contairing dedw).

We will construct a random graph on a set of notieby specifying the probability that andw form

an edge as a functiofi of Ar(v,w). We refer to this functiory as theDifficulty Function What should

be the form off? Clearly, it should decrease with but there are many forms such a decrease could
take.

The form of f that works best for our purposes comes from the self-similarity argumenisade earlier:
We would like f to be scale-free; that ig(h)/f(h — 1) should be level-independent and thus constant.
The only way to achieve level-independence is to defifte = f(0)c~". Settingf(0) to 1 for simplicity,
we have:

f(h) =¢" (3.9)

wherec > 1. We refer to the constanrtas theDifficulty Constant Intuitively, cross-communities links
become harder to form asncreases.

This completes our development of the model, which we refer @amsmunity Guided Attachmerttthe
nodes of a graph belong to communities-within-communities, and if the costdss-community edges
is scale-free (Eq.3.9)), the Densification Power Law follows naturally. No central controbagenous
regulations are needed to force the resulting graph to obey this propersport, self-similarity itself
leads to the Densification Power Law.

Theorem 3.4.1.1n the Community Guided Attachment random graph model just definedx{rected
average out-degree of a node is proportional to:

Nlog(e) i 1 <e<b
log, (N) if c=0

= constant if ¢>b

S
|
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Proof. For a given node, the expected out-degree (number of links)f the node is proportional to

logy, (N) b_llogb(N) p\I1
. B L
d—;f(hp(x,v))— ; (b—1p~" e = — ; <C> . (3.10)

There are three different cases1iK ¢ < b then by summing the geometric series we obtain

T mo e

— @(Nl—logb(c)).

b log,(N)
d b_l‘ (7) -1 — (b_1> (Nl—logb(c)_l)

In the case when = b the series sums to

The last case is when Difficulty Constants greater than branching factér(c > b), then the sum in
Eqg. (3.10 converges to a constant even if carried out to infinity, and so we otbtaid(1). O

Note that where < b, we get a densification law with exponent greater thate expected out-degree is
N(t)'~leg(¢) and so the total number of edges grows\5s)* wherea = 2 — log, (c). Moreover, as:
varies over the intervdl, b), the exponent ranges over all values in the inten@l, 2].

Corollary 3.4.2. If the Difficulty Function is scale-fregf(h) = ¢ ", with 1 < ¢ < b), then the Community
Guided Attachment obeys the Densification Power Law with exponent

a=2—logy(c)

The Community Guided Attachment model above also leads to some intuitive extases c

* If the cross-community difficulty constant Difficulty Function is too low (), then every node can
easily connect to every other node, and the average degse®. That is, we have a near-clique.

e |f cross-community difficulty constant is too high then we obtain no densificgtio= 1), which
means that nodes only link inside their own subtree and do not create logg ealges to nodes
residing in other parts of the tree.

Dynamic Community Guided Attachment

So far we have discussed a model in which nodes are first organizealmetsted set of communities, and
then they start forming links. We now extend this to a setting in which nodesdaexlaover time, and
the nested structure deepens to accommodate them. We will assume that algpadteates out-links at
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the moment it is added (and hence, only to nodes already present); thigrial fiar domains like citation
networks in which a paper’s citations are written at the same time as the papier itse

Specifically, the model is as follows. Rather than having graph nodesresig at the leaves of the tree

I, there will now be a graph node corresponding to every internal nbfleas well. Initially, there is a
single nodev in the graph, and our treé consists just ob. In time stept, we go from a completé-ary

tree of deptht — 1 to one of deptlt, by addingb new leaves as children of each current leaf. Each of these
new leaves will contain a new node of the graph.

Now, each new node forms out-links according to a variant of the psdoeshich all graph nodes are
leaves. However, since a new node has the ability to link to internal nodhae ekisting tree, not just to
other leaves, we need to extend the model to incorporate this. Thus, we tiedtree-distancei(v, w)
between nodes andw to be the length of a path between theni'ir- this is the length of the path from

v up to the least common ancestoradndw, plus the length of the path from this least common ancestor
down tow. Note that ifv andw are both leaves, thei(v, w) = 2hr(v, w), following our definition of

hr (v, w) from before.

The process of forming out-links is now as follows: For a constambdev forms a link to each node
w, independently, with probability(:*)/2_ (Note that dividing by2 in the exponent means this model
gives the same probability as basic model in the case whenvtantdw are leaves.)

Like the first model, this process produces a densification law with expener2 — log, (¢) whenc < b.
However, forc < b?, it also yields a heavy-tailed distribution of in-degrees — something that tie ba
model did not produce. We describe this in the following theorem.

Theorem 3.4.3. The Dynamic Community Guided Attachment model just defined has theirigliorep-
erties.

e Whenc < b, the average node degree 1! °2:(¢) and the in-degrees follow a Zipf distribution
with exponent log, (c).

e Whenb < ¢ < b?, the average node degree is constant, and the in-degrees follow a Zijifution
with exponent — 3 log,(c).

e Whenc > b?, the average node degree is constant and the probability of an in-el@yeeeding
any constant bouné decreases exponentially in

Proof. In the proof, all logarithms will be expressed in baseless specified otherwise.

We begin with the following basic facts. If a node is at heighi the tree, then the number of nodes at
distanced < h from it is © (bd). Nodes at distanceé > h can be reached by going up fgisteps, and
then down ford — j steps (ifd — j < h+ 7). This is maximized foj = (d—h)/2, and so the total number
of nodes reachable at distan¢es © (b(4+7)/2).

Case 1l:c < b In this case, the expected out-degree for a leaf node is

2log N /2 log N
b _ b® o N _ 1—-logc
;) ®<cd/2> _@<ClogN> _G)(ClogN) _®<N )

53



Since the expected out-degree values for other nodes are smallenead sonstant fraction of all nodes
are leaves, it follows that the expected value of the out-degree takealbredes i©® (N 1-log C) as well.

Now we compute the expected in-degree of a node at heighhis is

So () ;@(%>:Ze< )bdxz Z@<6d/2>bm.

d<h d<h d>h

The largest term in this sum is the last, tb= 2log N — h. Here it takes the value

plos posNN 1—logc h/2
@<clogN—(h/2)> _®<clogN>C/ :@<N ® C/)‘

The maximum expected in-degreés achieved foh = log N, when we get

Py (Nl—logcc.SlogN) —0 (Nl—.510g0> )

So for a node at depth= log N — h, we get an expected in-degree of

o) (lelogcc(longt)/2) -0 (Zcft/2> '

Hence, to compute a Zipf exponent, we see that a node of degree ramkhas depttt, so it has degree
z z
0 (27) =© (502

Case 2:b < ¢ < b? In this case, the expected out-degree for a leaf node is
2log N bd/2
Z O a5 | =0

Since the expected out-degree values for other nodes are smaller)itSttlat the expected value of the
out-degree taken over all nodesdg1) as well.

Now we compute the expected in-degree of a node at heighhis is
pld+h)/2 pa/2 /2 p/2 /o
o ()Xo (o) -xo (b ) o (b )
d<h d>h d<h d>h

Sinceb < ¢ < b?, these terms increase geometrically ugte h, then decrease. Thus, the largest term is
for d = h, where itis® (b"c="/2).

Thus the maximum degreeis= © (N'~1¢¢) and for deptht = log N — h, we get a degree of
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Now, b/c!/? = bl =5108¢ 50 a node of degree rank= b* (at deptht) has degre® (z/rl=51¢).

Case 3:c > b? The expected out-degrees here are only smaller than they are in theusreaige, and
hence the expected value of the out-degree taken over all no@gd js

The node whose in-degree is most likely to exceed a fixed béusadhe root, at height = log N. The
in-degree of the root is a suXi of independend-1 random variables(,, where X, takes the valué if
nodev links to the root, andy, takes the valué otherwise. We have

EX:ZJ:EX = > @(CZC/;):@(D,

d<log N

and hence by Chernoff bounds, the probability that it exceeds a galaek > E X decreases exponen-
tially in . n

Thus, the dynamic Community Guided Attachment model exhibits three qualitatifieyedt behaviors
as the parametervaries: densification with heavy-tailed in-degrees; then constantgevelegree with
heavy-tailed in-degrees; and then constant in- and out-degrees withpfogability. Note also the in-
teresting fact that the power law degree exponent is maximized for the ohlueight at the onset of
densification.

Finally, we have experimented with versions of the dynamic Community Guidedhitixat model in
which the tree is not balanced, but rather deepens more on the lefhlsati@an the right (in a recursive
fashion). We have also considered versions in which a single grapi ceod“reside” at two different
nodes of the tred, allowing for graph nodes to be members of different communities. Expetainen
results and overall conclusions were all the time the same and consistardlesg of the particular
version (modification) of the dynamic Community Guided Attachment model used.

3.4.2 The Forest Fire Model

Community Guided Attachment and its extensions show how densification camatigally, and even in

conjunction with heavy-tailed in-degree distributions. However, it is natlagnough class of models to
capture all the properties in our network datasets. In particular, we vikelth capture both the shrinking

effective diameters that we have observed, as well as the fact thattearks tend to have heavy-tailed
out-degree distributions (though generally not as skewed as their realdigtributions). The Community
Guided Attachment models do not exhibit either of these properties.

Specifically, our goal is as follows. Given a (possibly empty) initial gréhhand a sequence of new
nodesv; ... vy, wWe want to design a simple randomized process to successively;littknodes of
G (i = 1,...N) so that the resulting grapfi s;,,; Will obey all of the following patterns: heavy-tailed
distributions for in- and out-degrees, the Densification Power Law, lamdkséng effective diameter.
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We are guided by the intuition that such a graph generator may arise fromlargation of the following
components:

e some type of “rich get richer” attachment process, to lead to heavy-taléegrees;
¢ some flavor of the “copying” modeKumar et al, 200(, to lead to communities;

e some flavor of Community Guided Attachment, to produce a version of the Dexiwifi Power
Law;

e and a yet-unknown ingredient, to lead to shrinking diameters.

Note that we willnot be assuming a community hierarchy on nodesl so it is not enough to simply vary
the Community Guided Attachment model.

Based on this, we introduce tikerest Fire Model which is capable of producing all these properties. To
set up this model, we begin with some intuition that also underpinned Community dcAittechment:
nodes arrive in over time; each node has a “center of gravity” in sont@ftie network; and its probabil-
ity of linking to other nodes decreases rapidly with their distance from thigcehgravity. However, we
add to this picture the notion that, occasionally, a new node will produceydarge number of out-links.
Such nodes will help cause a more skewed out-degree distribution; theglsailserve as “bridges” that
connect formerly disparate parts of the network, bringing the diameten.dow

The Basic Forest Fire Model

Following this plan, we now define the most basic version of the model. Edbgni@des arrive one at
a time and form out-links to some subset of the earlier nodes; to form out-dntesyw node attaches to

a nodew in the existing graph, and then begins “burning” links outward frominking with a certain
probability to any new node it discovers. One can view such a procaegug@s/ely corresponding to a
model by which an author of a paper identifies references to include inlihegoaphy. He or she finds a
first paper to cite, chases a subset of the references in this papezléudetre as random), and continues
recursively with the papers discovered in this way. Depending on the diblbic aids being used in
this process, it may also be possible to chase back-links to papers thaeqgi@pdr under consideration.
Similar scenarios can be considered for social networks: a new conguitecce (CS) graduate student
arrives at a university, meets some older CS students, who introduce himtheir friends (CS or non-
CS), and the introductions may continue recursively.

We formalize this process as follows, obtaining the Forest Fire Model. gmhbeith, we will need
two parameters, forward burning probabilityp, and abackward burning ratio-, whose roles will be
described below. Consider a nod@ining the network at time > 1, and letG; be the graph constructed
thus far. (G1 will consist of just a single node.) Nodeforms out-links to nodes idr; according to the
following process.

(i) v first chooses aambassador node uniformly at random, and forms a link to.

(i) We generate two random numbersandy that are geometrically distributed with meang1 — p)
andrp/(1 — rp) respectively. Node selectsr out-links andy in-links of w incident to nodes that
were not yet visited. Letvy, wo, ..., w,, denote the other ends of these selected links. If not
enough in- or out-links are available selects as many as it can.
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(i) v forms out-links tow, wo, . .., wz4y, and then applies step (ii) recursively to each of the nodes
wi, wa, . .., Wety- AS the process continues, nodes cannot be visited a second timentprg\tke
construction from cycling.

Thus, the “burning” of links in Forest Fire model beginsuatspreads tavy, ..., w,4,, and proceeds
recursively until it dies out. In terms of the intuition from citations in papers,atthor of a new paper
v initially consultsw, follows a subset of its references (potentially both forward and baakwo the
paperswi, . . ., w4y, and then continues accumulating references recursively by constiiéisg papers.
The key property of this model is that certain nodes produce large ‘agrations,” burning many edges
and hence forming many out-links before the process ends.

Despite the fact that there is no explicit hierarchy in the Forest Fire Madahere was in Community
Guided Attachment, there are some subtle similarities between the models. Wiele ia €ommunity
Guided Attachment was the child of a parent in the hierarchy, a nadé¢he Forest Fire Model also has
an “entry point” via its chosen ambassador nadeMoreover, just as the probability of linking to a node
in Community Guided Attachment decreased exponentially in the tree distanpepbability that a new
nodewv burnsk successive links so as to reach a nadging & steps away is exponentially smallin (Of
course, in the Forest Fire Model, there may be many paths that could feddvomuy to «, adding some
complexity to this analogy.)

In fact, our Forest Fire Model combines the flavors of several oldetatspand produces graphs qualita-
tively matching their properties. We establish this by simulation, as we des@iibwe, lbut it is also useful
to provide some intuition for why these properties arise.

e Heavy-tailed in-degreesOur model has a “rich get richer” flavor: highly linked nodes can easily
be reached by a newcomer, no matter which ambassador it starts from.

e Communities.The model also has a “copying” flavor: a newcomer copies severakaigighbors
of his/lher ambassador (and then continues this recursively).

¢ Heavy-tailed out-degreed.he recursive nature of link formation provides a reasonable chance f
a new node to burn many edges, and thus produce a large out-degree.

¢ Densification Power LawA newcomer will have a lot of links near the community of his/her am-
bassador; a few links beyond this, and significantly fewer farther alwyitively, this is analogous
to the Community Guided Attachment, although without an explicit set of communities.

e Shrinking diameter.lt is not a priori clear why the Forest Fire Model should exhibit a shnigk
diameter as it grows. Graph densification is helpful in reducing the dianbeteit, is important to
note that densification is certainly not enough on its own to imply shrinking diante&ieexample,
the Community Guided Attachment model obeys the Densification Power Laatibakperiments
also show that the diameter slowly increases (not shown here).

Rigorous analysis of the Forest Fire Model appears to be quite difficaltieder, in simulations, we find
that by varying just the two parameteysandr, we can produce graphs that densify ¥ 1), exhibit
heavy-tailed distributions for both in- and out-degrees (Bi§0), and have diameters that decrease. This
is illustrated in Figure3.9, which shows plots for the effective diameter and the Densification Poaxgr L
exponent as a function of the number of nodes for some selectignarafr.

We see that depending on the forward and backward burning pararttetdforest Fire Model is capable
of generating sparse or dense graphs with effective diameters thatieittease or decrease, while also
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Figure 3.9: The DPL plot and the effective diameter for the Forest Firadeho Row 1: sparse graph
(a = 1.01 < 2), with increasing diameter (forward burning probability= 0.35, backward
probability p, = 0.20). Row 2: (most realistic case:) densifying graph= 1.21 < 2) with
slowly decreasing diametep & 0.37, p, = 0.32). Row 3: densifying grapha(= 1.32 < 2)
with decreasing diametep (= 0.37, p, = 0.33). Row 4: dense graph with densification
exponent close to 2i(= 1.57) and decreasing diameter £ 0.38, p, = 0.35).
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Figure 3.11: Evolution of effective diameter of Forest Fire model whilengrating a large graph. Both
plots show the same data; left one plots on linear scalestandight one plots on log-

linear scales (effective diameter vs. log number of nodEs)or bars show the confidence
interval of the estimated effective diameter. Notice tinat ¢ffective diameter shrinks and

then slowly converges.

producing power law in- and out-degree distributions (figdiig). Informally, a dense graph has close to
a linear number of edges incident to each node, while a sparse graplyhidisantly fewer than a linear
number of edges incident to each node.

Also notice the high sensitivity of the parameter space. We fix the forwamirauprobabilityp, and
by increasing the backward burning probability(p, = r - p) for only a few percent we move from an
increasing to a slowly and then to more rapidly decreasing effective diaffigieme 3.9).

Figure3.11plots the evolution of the effective diameter of Forest Fire. We generatgdke large graph



on 250, 000 nodes and measured the effective diameter over time. Error bars ptesteandard deviation
of the estimated effective diameter over 10 runs. Both plots show the samé datkeft figure plots the
number of nodes on linear while the right plots the log number of nodes. Nbceonvergence of the
effective diameter. At first it shrinks more rapidly and then slowly cogestrto a low value.

Extensions to the Forest Fire Model

Our basic version of the Forest Fire Model exhibits rich structure withtyustparameters. By extending
the model in natural ways, we can fit observed network data even mae\cldVe propose two natural
extensions: 6rphans and multiple ambassadors.

“Orphans: In both the patent and arXiv citation graphs, there are many isolategsntitht is, documents
with no citations into the corpus. For example, many papers in the arXiv onlynaitearXiv papers. We
refer to them asrphans Our basic model does not produce orphans, since each nodesdimkesyat least
to its chosen ambassador. However, it is easy to incorporate orphatiseémtmdel in two different ways.
We can start our graphs withy > 1 nodes at time = 1; or we can have some probabiligy> 0 that a
newcomer will form no links (not even to its ambassador) and so becomeharo

We find that such variants of the model have a more pronounced dednetie effective diameter over
time, with large distances caused by groups of nodes linking to differphiaos gradually diminishing
as further nodes arrive to connect them together.

Multiple ambassadorsiVe experimented with allowing newcomers to choose more than one ambassado
with some positive probability. That is, rather than burning links starting frash one node, there is
some probability that a newly arriving node burns links starting from two aremdhis extension also
accentuates the decrease in effective diameter over time, as nodes linkindfifde ambassadors serve

to bring together formerly far-apart parts of the graph.

Burning a fixed percentage of neighborg/e also considered a version of Forest Fire where the fire
burns a fixed percentage of node’s edges, the number of burned edges is proportional to the node’s
degree. When a fire comes into a node, for each unburned neighlodeyeendentlylip a biased coin to
determine where to spread the fire. This continues recursively untilwwanodes are burned. In case of
forward and backward burning probabilities we have two coins, oneudtrand one for in-edges.

The problem with this version of the model is that, once there is a single lagghdirburns a large fraction
of the graph, many subsequent fires will also burn much of the gragh.r@$ults in a bell-shaped, non-
heavy-tailed degree distribution and gives two regimes of densification weslbensification before the
first big fire, and quadratiai(= 2) densification afterwards.

We also experimented with the model where burning probability decayederpally as the fire moves
away from the ambassador node.

Phase plot

In order to understand the densification and the diameter propertiespbisgpeoduced by the Forest Fire
Model, we explored the full parameter space of the basic model in termswithenderlying parameters:
the forward burning probability and the backward burning ratio
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Figure 3.12: We vary the forward burning probability while fixing burnimatio (a) or backward burning
probability (b). The plot gives a very precise cut throughgsp Fire parameter space. Notice
that each plot haswo vertical axes: DPL exponent on the left, and the diameteifitog
factor on the right. Observe a very sharp transition in DPhogent and a narrow region,
indicated by vertical dashed lines, where Forest Fire presslowly densifying graphs with
decreasing effective diameter.

Note, there are two equivalent ways to parameterize the Forest Fire rildelelin use the forward burning
probability p and the backward burning ratig or the forward burning probability and the backward
burning probabilityp, (p, = rp). We examine both and show two cuts through the parameter space.

Figure3.12shows how the densification exponent and the effective diameter depédiodwvard burning
probability p. In the left plot of figure3.12we fix the backward burning ratio = 0.5, and in the right
plot we fix the backward burning probability, = 0.3. We vary forward burning probability, and plot
the Densification Power Law exponent. The densification expanetomputed as in Sectiah3, by
fitting a relation of the formE'(¢) o« N (). Notice the very sharp transition between the regimes with no
densification and those with very high densification.

On the same plot we also show tB#ective diameter log-fit factar. We fit a logarithmic function of the
form D*(t) = alog t+ [ (wheret is the current time, and hence the current number of vertices) to the last
half of the effective diameter plot; we then report the facioiT hus, Diameter Factar < 0 corresponds

to decreasing effective diameter over time, ang 0 corresponds to increasing effective diameter.

Going back to Figur&.12 notice that at low values of forward burning probabijitywe observe increas-
ing effective diameter and no densificatian=£ 1). As p increases, the effective diameter grows slower
and slower. For a narrow band pive observelecreasing effective diameteregativer (the small valley
aroundp = 0.45). With high values op the effective diameter is constamt & 0), which means that the
generated graph is effectively a clique with effective diameter close ta D& exponent: ~ 2. Also
notice that the sharp transition in the DPL exponent and the decreasiug\effdiameter are very well
aligned.

This simulations indicate that even the basic Forest Fire Model is able to ggagharse and slowly
densifying (with densification exponent ndargraphs in which the effective diameter decreases.
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Figure 3.13: Contour plots: The Densification Power Law exponerfteft) and the effective diameter
log-fit factor « (right) over the parameter space (forward-burning prdigfaind backward
burning ratio) of the Forest Fire model.

Figure3.13shows how the densification exponent and the effective diameter depehé values of the
Forest Fire parametegsandr.

Figure3.13a) gives the contour plot of the densification exponenThe lower left part corresponds to

a = 1 (the graph maintains constant average degree), and in the upperaight$ 2 — the graph is
“dense”, that is, the number of edges grows quadratically with the nunilverdes, ase.g, in the case

of a cliqgue. The contours in-between correspond.ioincrease in DPL exponent: the left-most contour
corresponds ta = 1.1 and the right-most contour correspondsate= 1.9 The desirable region is in-
between; we observe that it is very narrowincreases dramatically along a contour line, suggesting a
sharp transition.

Figure 3.13b) gives the contour plot for the Effective diameter log-fit factoas defined above. Each
contour correspond to diameter facter We vary« in range—0.3 < a < 0.1, with step-sized.05.
Notice, the boundary in parameter space between decreasing andimgretiective diameter is very
narrow.

Do contour plots of Densification Power Law and Shrinking Diameters fraguarE 3.13follow the same
shape? More exactly, does the boundary between decreasing agasingrdiameters follow the same
shape as the transition in the densification exponent?

We answer this question on figuBel4 where we superimpose phase contours of DPL and the effec-
tive diameter over the Forest Fire parameter space. The left plot supsesphase contours for the
Densification Power Law exponeat= 1.3 and the diameter log-fit factet = —0.05. The right plot
superimposes contours far= 1.6 anda = —0.30. In both cases we observe very good alignment of
the two phase lines which suggests the same shape of the transition bolandlaeyDensification Power
Law exponent and the Effective Diameter.

We also observe similar behavior with orphans and multiple ambassadorse @dditional features in
the model help further separate the diameter decrease/increase lyduowhathe densification transition,
and so widen the region of parameter space for which the model prockassmnably sparse graphs with
decreasing effective diameters.
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Figure 3.14: We superimpose the Densification Power Law exponertd diameter log-fitv factor over
the Forest Fire Model parameter space. Notice that the sbfapansition boundary of the
densification and the shrinking diameter very much folloessame shape.

3.5 Discussion

Despite the enormous recent interest in large-scale network data, anahtie of interesting patterns
identified for static snapshots of graptesq heavy-tailed distributions, small-world phenomena), there
has been relatively little work on the properties of the time evolution of reghgraThis is exactly the
focus of this work. The main findings and contributions follow:

e The Densification Power Law: In contrast to the standard modeling assumiptibthe average
out-degree remains constant over time, we discover that real grapbsobidegrees that grow
over time, following a natural pattern (EQ.Q)).

e Shrinking diameters: Our experiments also show that the standard assuoipsiowly growing
diameters does not hold in a range of real networks; rather, the diameyeacnally exhibit a

gradual decrease as the network grows.

¢ We show that our Community Guided Attachment model leads to the Densificaticar Raw, and
that it needs only one parameter to achieve it.

e We give the Forest Fire model, based on only two parameters, which is absptiore patterns
observed both in previous work and in the current study: heavy-tailedrid out-degrees, the

Densification Power Law, and a shrinking diameter.

¢ We notice that the Forest Fire Model exhibits a sharp transition betweesespaaphs and graphs
that are densifying. Graphs with decreasing effective diameter asgaged around this transition

point.

¢ Finally, we find a fundamental relation between the temporal evolution of dyehty power law
degree distribution and the Densification Power Law exponent. We alsovebthat real datasets
exhibit this type of relation.



Our work here began with an investigation of the time-evolution of a set of legl-world graphs across
diverse domains. It resulted in the finding that real-world graphs aterbieg denser as they grow,
and that in many cases their effective diameters are decreasing. THengka some of the dominant
assumptions in recent work on random graph models, which assumeardof@s at most logarithmic)

node degrees, and diameters that increase slowly in the number of nBdiéding on these findings,

we have proposed a set of simple graph generation processeslecapptbducing graphs that exhibit
densification and exhibit decreasing effective diameter.

Our results have potential relevance in multiple settings, including 'what éhados; in forecasting
of future parameters of computer and social networks; in anomaly detemtiononitored graphs; in
designing graph sampling algorithms; and in realistic graph generators.

We just examined the evolution of macroscopic statistical properties of netviayr studying a set of
snapshots. Next, we continue examining network evolution but at much fiarulgrity. We examine
evolution of the online social networks by studying individual edge alsifrom the first to the “million-
th” edge.
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Chapter 4

Microscopic network evolution

In this chapter we present a microscopic analysis of the edge-by-edlgeien of four large online social
networks. The use of the maximume-likelihood principle allows us to quantify the dianew edges
towards the degree and age of nodes, and to objectively compare svanmdels such as preferential
attachment. In fact, our work is the first to directly quantify the amount depeatial attachment in large
social networks.

Our study shows that most new edges span very short distances|lyypioaing triangles. Motivated

by these observations, we develop a complete model of network evolutmrporating node arrivals,
edge initiation, and edge destination selection processes. While noddsaare mostly network-specific,
the edge initiation process can be captured by exponential node lifetimes“gag” model based on a
power law with exponential cutoff. We arrive at an extremely simple yeir&singly accurate description
of the edge destination selection in real networks. Our model of netwalkitean can be used to gen-
erate arbitrary-sized synthetic networks that closely mimic the macroscaogiaatéristics of real social
networks.

4.1 Introduction

In recent years a wide variety of models have been proposed fordhdlgof complex networks. These
models are typically advanced in order to reproduce statistical netwoplegires observed in real-world
data. They are evaluated on the fidelity with which they reproduce thesal gletwork statistics and
patterns. In many cases, the goal is to define individual node behakairsesult in a global structure
such as power law node degree distributions; in other cases, the goahstéh some other network
property such as small diameter.

For example, the observation of heavy-tailed degree distributfealelitsos et al1999 led to hypothesis
about edge creation processegy( preferential attachmenBpratasi and Albert1999) that could lead
to this observation. In fact, there are several edge creation pracidsgell lead to heavy-tailed degree
distributions and it is not clear which among them captures reality best.

Here we take a different approach. Instead of only focusing on theaglwetwork structure and then
hypothesizing about what kind of microscopic node behavior wouldrkme the observed macroscopic
network structure, we focudirectly on the microscopic node behaviper se For the first time at such
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a large scale, we study a sequence of millions of individual edge arriwdish allows us to directly
evaluate and compare microscopic processes that give rise to globarkstwcture.

4.1.1 Evaluation based on likelihood

Given that the microscopic behavior of nodes solely determines the mapioswetwork properties, a
good network model should match real-world data on global statistics, whilemzxg the likelihood
of the low-level processes generating the data. Towards this goal opeg® the use of model likelihood
of individual edges as a way to evaluate and compare various netwaltikiem models.

Likelihood has not been considered to date in the analysis of the evolutiargefsocial networks mainly
due to lack of data and computational issues. Many early network datasetsned only a single or a
small number of snapshots of the data, making likelihood computations fortievaty models infea-

sible. In contrast, we study four large social networks veitacttemporal information about individual
arrivals of millions of nodes and edges. Here we are therefore ablengidaw edge-by-edge evolution
of networks from their inception onwards, and hence efficiently competédikilinood that a particular

model would have produced a particular edge, given the current $tete network. In contrast to pre-
vious work on evolution of large networks that used a series of sn&pshoonsider patterns at global
scale, we study the exact edge arrival sequence, which means ablartedirectly observe and model

the fine-grained network evolutionary processes that are directlpmeipe for global network patterns
and statistics.

A likelihood-based approach has several advantages over appeda&sed purely on global statistics:

(1) Models may be compared directly in a unified way, rather than arguiethehfaithful reproduction
of, e.g, diameter is more important than clustering coefficient and so forth.

(2) As our understanding of real-world networks improves, the evaluatitterion, i.e., likelihood,
remains unchanged while the generative models improve to incorporate whanuerstanding.
Success in modeling can therefore be effectively tracked.

(3) Models may be meaningfully distinguished based on as-yet-undiszbpeoperties of real-world
data.

4.1.2 Data and model structure

We consider four large online social network datasets e+€kRr (flickr.com , a photo-sharing web-
site), DeELIcious (del.icio.us , a collaborative bookmark tagging website)aARO0! ANSWERS
(answers.yahoo.com , a knowledge sharing website), andNKeDIN (linkedin.com | a profes-
sional contacts website) — where nodes represent people and eggesent social relationships. In all
networks all personally identifiable data was hashed and nodes wageeassandom ids.

These networks are large with up to millions of nodes and edges, and the timefkthe data ranges
from four months to almost four years. All the networks are in early stafj@iseir evolution with the
connected component being small and the clustering coefficient incgeagntime.

We consider models that can be decomposed into three core processesitpietely describe the evolu-
tion of the network:
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(1) thenode arrival procesghat governs the arrival of new nodes into the network,
(2) theedge initiation procesthat determines for each node when it will initiate a new edge, and
(3) theedge destination selection procdbat determines the destination of a newly initiated edge.

Our networks do not include removal of nodes or edges, so we do nd¢lrdeletion (although we do
model the “death” of a node in the sense that it ceases producing ne@s)edg

4.1.3 Ourresults

We begin with a series of analyses of our four networks, capturing thletean of key network parame-

ters, and evaluation of the extent to which the edge destination selectiaspraubscribes to preferential
attachment. We show that the inherently non-local nature of preferetidahanent is fundamentally un-
able to capture important characteristics in these networks. To the baat ki@wledge, this is the first

direct large-scale validation of the preferential attachment model in suefabrks.

Next, we provide a detailed analysis of the data in order to consider parsinsomodels for edge desti-
nation selection that incorporate locality. We evaluate a wide variety of sudelsiasing the maximum-
likelihood principle and choose a simple triangle-closing model that is freeanpeters. Based on
the findings, we then propose a complete network evolution model thataaelyucaptures a variety of
network properties. We summarize our model based on the three pretistse earlier.

(1) Node arrival processWe find large variation in node arrival rates over the four networksgireg
from exponential to sub-linear growth. Thus we treat node arrivalas input to our model.

(2) Edge initiation processtUpon arrival, a node draws its lifetime and then keeps adding edges until
reaching its lifetime, with edges inter-arrival rate following a power law withaential cut-off
distribution. We find that edge initiations aaeceleratingvith node degree (age), and prove that this
leads to power law out degree distributions. The model produces &eéitsaand high likelihood.

(3) Edge destination selection procesdle find that most edges (30%—60%) are local as they close
triangles,i.e., the destination is only two hops from the source. We consider a varietianfte-
closing mechanisms and show that a simple scheme, where a source noslescaio intermediate
node uniformly from among its neighbors, and then the intermediate noddétdosame, has high
likelihood.

This scheme is easily and naturally expanded to capture non-local edgesdiag to the distribution of
source-destination distance observed in all networks.

Our model is simple and easy to implement. It precisely defines the networkiemofwocess, and we
also give parameter settings that allow others to generate networks aamgrbitale or to take a current
existing network and further evolve it. We show that our model prodweadsstic social network evolution
following the true evolution of network properties such as clustering @iefii and diameter; our purely
local model gives rise to accurate global properties.

Moreover, our model is also complete. In contrast to Preferential Attachjtbert et al, 1999, Copy-
ing model Kumar et al, 2000 or Forest Fire modelljeskovec et a).20058 where nodes arrive one at a
time, immediately create all their edges and then essentially die, our model ésstebevolution much
more precisely as in our model nodes appear, create one edge at a timgo tioesleep, wake up, create
next edge and so on until they die.
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4.2 Relation to previous work on network evolution

Many studies on online social networks, world wide web, and biologidataris focused on macroscopic
properties of static or evolving networks such as degree distributionsietiéa, clustering coefficient,
communities, densification and shrinking diametdfalgutsos et al.1999 Albert and Barabsi 2002
Strogatz 2001 Newman 2003 Dorogovtsev and Mende2003 Broder et al. 200Q Fetterly et al.2004
Leskovec et a).2007h Ntoulas et al.2004 Kumar et al, 2004. In contrast the following chapter focuses
on local microscopic processes that give raise to observed macroseip/ork properties, like heavy
tailed degree distributions or densification.

Recently, researchers examined the finer aspects of edge creati@cusinfy on a small set of net-
work snapshots. The role of common friends in community formation was athlyy Backstrom et

al. [Backstrom et a).2006. A similar study on the collaboration between scientists was done by New-
man Newman 200]. Kleinberg and Liben-Nowelll[iben-Nowell and Kleinberg2003 studied the pre-
dictability of edges in social networks. Later on Capaatcal.[Capocci et al.2004 focused on preferen-

tial attachment mechanism in Wikipedia. However, they used a series ofynsedpshots of Wikipedia,
while our results are much more precise as we use the exact edge sequednce. They observed the
(sublinear) preferential attachment up to page degreel 00 and ford > 100 linking probability actually
decreased with.

The role of triangle closure in small social networks was long studied bglsgists, but never on such a
large scale. Simmel theorized that people with common friends are more likelgatedriendships and
Krackhardt and HandcoclKfackhardt and Handco¢cR007 applied this theory to explain the evolution
of triangle closures. A network model based on closed triangles wasgeddy Shi et al.§hi et al,
2007.

The maximum-likelihood principle that will be a common theme throughout the chiagdreen typically
used to estimate network model parameté/agserman and Pattisd996 Leskovec and Faloutsd2007,
Wiuf et al,, 200§ or for model selectionBezakoa et al, 2004, which often requires expensive compu-
tations of high dimensional integrals over all possible node arrival segge In contrast, we use the
likelihood in a much more direct way to evaluate and compare different moddiiges at the level of
individual edge placements.

4.3 Preliminaries

Next, we briefly introduce the datasets we use in this chapter, the notatidgheegperimental method-
ology we adopt.

4.3.1 Datasets

For each of our four large network datasets, we know the exact timetbkallode/edge arrivals. Taldel
gives the basic statistics of the four networks. All the networks slowlyiflewith a densification expo-
nent Leskovec et aJ.20074 a =~ 1.2. All the networks, except BLicious, have shrinking diameter. In
FLICKR, ANSWERS and LNKEDIN, the effective diameter reaches the maximum value of 10 when the
network has around 50,000 nodes, and then slowly decreases totinel &.6; in DELICIOUS, the diam-

eter is practically constant. Also, in all the networks, a majority of edgesidiettional (columnEy).
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Network H FLICKR DELICIOUS ANSWERS LINKEDIN

Time span| 03/2003—09/2005 05/2006-02/2007 03/2007—06/2007 05/2003-10/2006
T 621 292 121 1294
N 584,207 203,234 598,314 7,550,955
E 3,554,130 430,707 1,834,217 30,682,028
by 2,594,078 348,437 1,067,021 30,682,028
E, 2,257,211 348,437 1,300,698 30,682,028
En 1,475,345 96,387 303,858 15,201,596
% 65.63 27.66 23.36 49.55
a 1.32 1.15 1.25 1.14
K 1.45 0.80 0.95 1.04

Table 4.1: Network dataset statisticés, is the number of bidirectional edgeis,, is the number of edges
in undirected networkF s is the number of edges that close triangl&sis the fraction of
triangle-closing edges; is the densification exponenE(t) o« N(t)*), andk is the decay
exponent £, « exp(—xh)) of the number of edgeE), closingh hop paths (see Sectigh5
and Figured.4).

The reciprocity is 73% in HCKR, 81% in DeLICIOUS, and 58% in AISWERS LINKEDIN is undirected,
but we know the edge initiator. The fraction of nodes that belongs to thedtwgeakly connected compo-
nent is 69% in EICKR, 72% in DeELICIOUS, 81% in ANSWERS and 91% in LNKEDIN. See TableA.2
for additional information and statistics of these networks.

We consider all networks as undirected but as the edges appear wguitibetween the edge initiator
and the edge target. For example, even though edgesikeD IN are undirected, the edge initiator is the
person that sent the link invitation, and edge target is the node that ad¢leetavitation.

4.3.2 Notation

Let N, E, andT denote the total number of nodes, edges, and the span of the data irLdags.be a
network composed from the earliestdgese,, ..., e fort € {1,..., E}. Lett(e) be the time when the
edgee is created, let(u) be the time when the nodejoined the network, and lef(u) be the time when
the k' edge of the node is created. Then,(u) = t — t(u) denotes the age of the nodeat timet. Let
d:(u) denote the degree of the nodat timet andd(u) = dr(u). We use]-] to denote a predicate (takes
value of 1 if expression is true, else 0). TaBlé& gives the rest of the symbols.

4.3.3 Maximume-likelihood principle

The maximum-likelihood estimation (MLE) principle can be applied to compare a fafplgrameterized
models in terms of their likelihood of generating the observed data, and aslf peck the “best” model
(and parameters) to explain the data. To apply the likelihood principle, wadmrthe following setting:
we evolve the network edge by edge, and for every edge that amiteethe network, we measure the
likelihood that the particular edge endpoints would be chosen under soma.nTdte product of these
likelihoods over all edges will give the likelihood of the model. A higher likeliloneans a “better”
model in the sense that it offers a more likely explanation of the obsentad BEar numerical purposes,
we use log-likelihoods.
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SYMBOL | DESCRIPTION

Graph composed of nodes and edges that arrived before time
Time span of a graph

Number of nodes in a graph

Number of edges in a graph

Number of nodes in a graph at time

Number of nodes in a graph at time

tth edge in a graph

Time of creation of edge

Time when node: joined the network (created its first edge)
Time of creation of'” edge of node:

Age of a nodey at timet, a;(u) =t — t(u)

Final degree of node

Degree of node: at timet

Power law degree exponem{d) o d~7

Densification power law exponerf(t) oc N (t)®

Length of the shortest path between nodesdv

Number of hops, path length, distance

Number of edges that at the time of creation spdrop path
Decay exponent ik, < exp(—xh)

Probability of new edge linking to node of degrée

Node lifetime distributioni.e., prob. of node being alive at age
Node lifetime distribution parameter (exponential distribution)

Edge gap, time betweefi” andd + 1** edge ofu, 6, (d) = a1 (u) — tq(u)

Power law parameter of edge gap distribution
Exponential parameter of edge gap distribution

Table 4.2: Table of symbols.

4.4 Preferential attachment

In this section we study the bias in selection of an edge’s source and diestipased on the degree and
age of the node.

4.4.1 Edge attachment by degree

The preferential attachment (PA) mod@8adrakasi and Albert 1999 postulates that when a new node
joins the network, it creates a constant number of edges, where theadiestinode of each edge is
chosen proportional to the destination’s degree. Using our data, weutertiie probability. (d) that a

new edge chooses a destination node of dedgrpg(d) is normalized by the number of nodes of degiee
that exist just before this step. We compute:

_ Siler = (wo) Adia() = d]
S lwsdia(w) =dy
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Figure 4.1: Probabilityp. (d) of a new edge choosing a destination at a node of degiee

First, Figure4.1(a) showsp.(d) for the Erds—Renyi [Erdds and Rnyi, 1960 random network,G,,,

with p = 12/n. In G,,;, since the destination node is chosen independently of its degree, the line is
flat. Similarly, in the PA model, where nodes are chosen proportionally to tegied, we get a linear
relationshipp.(d) « d; see Figuret.1(b).

Next we turn to our four networks and fit the functipp(d) o d”. In FLICKR, Figure4.1(c), degree 1
nodes have lower probability of being linked as in the PA model; the rest @dbes could be explained
well by PA. In DeLIcious, Figure4.1(d), the fit nicely follows PA. In AISWERS Figure4.1(e), the
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Figure 4.2: Average number of edges created by a node ofiage

presence of PA is slightly weaker, with(d) o d*°. LINKEDIN has a very different pattern: edges to the
low degree nodes do not attach preferentially (the fit’i8), whereas edges to higher degree nodes are
more “sticky” (the fit isd'2). This suggests that high-degree nodes iRKEDIN get super-preferential
treatment.

To summarize, even though there are minor differences in the exponémtgach of the four networks,
we can treat ~ 1, meaning, the attachment is essentially linear. This observation is a bit diffeven
than what was observed by Capoetal.[Capocci et a].200§ who observed the (sublinearnu = 0.9)
preferential attachment up to page degfee 100 and ford > 100 linking probability actuallydecreased
with node degred.

4.4.2 Edges by the age of the node
Next, we examine the effect of a node’s age on the number of edgesiesreThe hypothesis is that
older, more experienced users are also more engaged and thus creatzlges.

Figure4.2 plots the fraction of edges initiated by nodes of a certain age. #henthe average number
of edges created by nodes of agds the number of edges created by nodes ofagermalized by the
number of nodes that achieved age
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Figure 4.3: Log-likelihood of an edge selecting its source and destnamode. Arrows denote at
highest likelihood.

e(a) = He = (u,v) : t(e) — t(u) = a}|
O ORI

wheret, is the time when the last node in the network joined.

Notice a spike at nodes of age 0. These correspond to the people edigeran invite to join the network,
create a first edge, and then never come back. Typically these areettsewt® are not yet part of the
social network service, they receive an invitation to join as one of the existiembers invited them.
By accepting the invitation and registering they also create a link but newas back to use the service
again. For all other ages, the level of activity seems to be uniform over &roept for LNKEDIN, in
which activity of older nodes slowly increases over time.

4.4.3 Bias towards node age and degree

Using the MLE principle, we study the combined effect of node age anceddyy considering the fol-
lowing four parameterized models for choosing the edge endpoints at.time
e D: The probability of selecting a nodeis proportional to its current degree raised to power
dt(U)T.
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¢ DR: With probabilityr, the nodev is selected preferentially (proportionally to its degree), and with
probability (1 — 7), uniformly at randomz - d;(v) + (1 — 7) - 1/N ().

e A: The probability of selecting a node is proportional to its age raised to powefv)”

e DA: The probability of selecting a nodeis proportional the product of its current degree and its
age raised to the power d;(v)- a;(v)".

The experiment goes as follows. We unroll the evolution of the network éggedge. Then for each
edgee; we take current state of the graph_; at timet — 1 and we consider the probability of selecting
the source and destination nodeepiunder one of the above four models and fixedVe repeat this for
each value of- and plot the log-likelihood separately for selection of edge source agel @ekstination
node.

Figure 4.3 plots the log-likelihoods under different models, as a functiom.offhe red curve plots the
log-likelihood of selecting a source node and the green curve for sejettiendestination node of an
edge.

In FLICKR the selection of destination is purely preferential: maglachieves the maximum likelihood at
7 = 1, and modeDA is very biased to modd), i.e., 7 = 1. Model A has worse likelihood but modB8IA
improves the overall log-likelihood by around 10%. Edge attachmentin®@ous seems to be the most
“random”: modelD has worse likelihood than modBR. Moreover the likelihood of modd)R achieves
maximum atr = 0.5 suggesting that about 50% of theeDcious edges attach randomly. Mod&lhas
better likelihood than the degree-based models, showing edges are hagdyg howards young nodes.
For ANSWERS modelsD, A, andDR have roughly equal likelihoods (at the optimal choice-hfwhile
modelDA further improves the log-likelihood by 20%, showing some age biasINKEDIN, age-biased
models are worse than degree-biased models. We also note strong plegeeential bias of the edges.
As in FLICKR, modelDA improves the log-likelihood by 10%.

We notice that selecting an edge’s destination node is harder than selecsogrite (the green curve
is usually below the red). Also, selecting a destination appears more rahdonselecting a source —
the maximum likelihood- of the destination node (green curve) for modelandDR is shifted to the
left when compared to the source node (red), which means the degeeis biaaker. Similarly, there
is a stronger bias towards young nodes in selecting an edge’s sourcentbalecting its destination.
Based on the observations, we conclude that PA (mDjlglerforms reasonably well compared to more
sophisticated variants based on degree and age.

4.5 Locality of edge attachment

Even though our analysis suggests that PA is a reasonable model ®rdedtination selection, it is
inherently “non-local” in that edges are no more likely to form between s@dech already have friends
in common. In this section we perform a detailed study of the locality propertieslge destination
selection.

We first consider the following notion of edge locality: for each new gdge), we measure the number

of hops it spang,e., the length of the shortest path between nadesdw immediately before the edge
was created. In Figuré4.4 we study the distribution of these shortest path values induced by each new
edge forG,,, (with p = 12/n), PA, and the four social networks. (The isolated dot on the left cabets
number of edges that connected previously disconnected componémesnaftwork.)
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Figure 4.4: Number of edgeds;, created to nodek hops away.h = 0 counts the number of edges that
connected previously disconnected components.

For G, most new edges span nodes that were originally six hops away, and thewnirtiber decays
polynomially in the hops. In the PA model, we see a lot of long-range edgest;ofithem span four hops
but none spans more than seven. The hop distributions correspondimg fiour real-world networks
look similar to one another, and strikingly different from béth, and PA. The number of edges decays
exponentially with the distance between the nodes (see Fabier fitted decay exponents. This means
that most edges are created between nodes that are close. Therdigbdieeay suggests that the creation
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Figure 4.5: Probability of linking to a random node &thops from source node. Value/at= 0 hops is
for edges that connect previously disconnected components

of a large fraction of edges can be attributed to locality in the network stejatamely most of the times
people who are close in the netwokd, have a common friend) become friends themselves.

These results involve counting the number of edges that link nodes ced&inak away. In a sense, this
overcounts edge&:, w) for which v andw are far away, as there are many more distant candidates to
choose from — it appears that the number of long-range edges deqaysentially while the number of
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Figure 4.6: Triangle-closing model: node creates an edge by selecting intermediate nod¢hich then
selects target node to which the edgéu, w) is created.

long-range candidates grows exponentially. To explore this phenomemocount the number of hops
each new edge spans but then normalize the count by the total numbelesfaihb hops. More precisely,
we compute

(h) = > :le: connects nodes at distankén G;_]
Pel™ = 5= (# nodes at distandefrom the source node af)

First, Figures4.5a) and (b) show the results faf,,, and PA models. (Again, the isolated dotiat= 0
plots the probability of a new edge connecting disconnected componentss),,Inedges are created
uniformly at random, and so the probability of linking is independent of thaber of hopsh between

the edge endpoints and thpugh) is flat. In PA, due to degree correlations short (local) edges prevail.
However, a non-trivial amount of probability goes to edges that spae than two hops. (Notice the
logarithmicy-axis.)

Figures4.5(c)—(f) show the plots for the four networks. The probability of linking tm@de h hops
away decays very quickly, seemingly double-exponentiady,p.(h) x exp(exp(—h)) (fits not shown).
This behavior is drastically different from both the PA afg, models. Also note that almost all of the
probability mass is on edges that close length-two paths. This means thatagdgeost likely to close
triangles,.e., connect people with common friends.

ColumnFE in Table4.1further illustrates this point by presenting the number of triangle-closingsedge
FLICKR and LINKEDIN have the highest fraction of triangle-closing edges, whereesweRsand De-
LIclous have substantially less such edges. Note that here we are not measarfractton of nodes
participating in triangles. Rather, we unroll the evolution of the network fanevery new edge check to
see if it closes a new triangle or not.

4.5.1 Triangle-closing models

Given that such a high fraction of edges close triangles, we aim to modeahength-two path should
be selected. We consider a scenario in which a sourcembds decided to add an edge to some node
two hops away, and we are faced with various alternatives for the chbitedew. Figure4.6illustrates
the setting. Edges arrive one by one and the simplest model to close a t(edgég., w) in the figure)
is to haveu select a destinatiom randomly from all nodes at two hops from

To improve upon this baseline model we consider various models of choositgrw. We consider
processes in which first selects a neighbaeraccording to some mechanism, anithen selects a neighbor
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w according to some (possibly different) mechanism. The ddge) is then created and the triangle
(u,v,w) is closed. The selection of bothandw involves picking a neighbor of a node.

We consider five different models of choosing a neighbof «. Nodew is chosen:
e random: uniformly at random,
e deg”: proportional to degree raised to powerd(v)",
e com: prop. to the number of common friend&:, v) with w,
e last™: proportional to the time passed sincéast created an edge raised to power

e comlast™: proportional to the product of the number of common friends wignd the last activity
time, raised to power.

As stated before, we can compose any two of these basic models to chtvesédnap neighborj.e.,, a
way to close the triangle. For instance, thet’-!-com model will work as follows:u will employ the
last’-! model to select node, v will then employ thecom model to select node, and then, will add an
edge tow, closing the triangléu, v, w). We consider all 25 five possible composite models for selecting
a two-hop neighbor and evaluate them by the likelihood that the model gededathe edges that closed
length-two paths in the real network.

Table 4.3 shows the percent improvement of various triangle-closing models ovdodHeelihood of
choosing a two-hop neighbor uniformly at random as a destination of tpe @de baseline). The sim-
plest modelrandom-random, works remarkably well. Initially, we were somewhat surprised by this.
However, if one thinks about thrandom-random it has many desirable properties. For example, it gives
higher probability to nodes with more length-two paths, discounting each patughly1/d(v). More-
over, itis also biased towards high-degree nodes, as they have multiptdgeding towards them.

The deg!'’-random model weighs each node by roughly the number of length-two paths between
andw. However, we find that it performs worse theandom-random. For the more generaleg”-
random, the optimal value of varies from0.1 to 0.3 over all the four networks, and this model provides
meaningful improvements only for theNsSwERSnetwork.

The com model considers the strength of a tie betweesnd v, which we approximate by the number
of common friends:(u,v) of nodesu andv; the larger the value, the stronger the tie. By selecting
v with probability proportional ta:(u, v), we get a substantial gain in model likelihood. A factor that
further improves the model is the recency of activitydpgaptured byast™. By selecting nodes that have
recently participated in a new edge with higher probability, we get anothablsizmprovement in the
model likelihood. These two capture the finer details of network evolution.

In summary, while degree helps marginally, for all the networks,rémelom-random model gives a
sizable chunk of the performance gain over the baseline (10%). Due its stgpplie choose this as the
triangle-closing model for the rest of the chapter.

Note that the above methodology could be extended to edge creations athdriséimgle-closing. We
chose to focus on the triangle-closing edges for two reasons. Firsth&radion of all edges created fall
into this category, and hence an understanding of triangle-closing edgesmportant first step towards
understanding the overall network evolution. Second, with the excepfiguite simplistic models, it is
computationally infeasible to compute the likelihood at a distance greater tharopsak the number of
nodes and possible paths increases dramatically.
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FLIckR || random deg®? com last>* comlast—®

random 13.6 13.9 14.3 16.1 15.7
deg®! 13.5 142 137 16.0 15.6
last®-2 14.7 156 150 17.2 16.9

com 11.2 11.6 119 139 13.4
comlast®-! 11.0 11.4 117 136 13.2

DELicious | random deg’® com last™®? comlast~%-

random 11.7 12.4 13.8 13.2 15.1
deg®-2 12.2 12.8 14.3 13.7 15.6
last—03 13.8 146 16.0 15.3 17.2

com 13.6 14.4 15.8 15.2 17.1

comlast—0-2 14.7 156 16.9 16.3 18.2

ANSWERs || random deg’? com last™*? comlast~

random 6.80 10.1 11.8 9.70 13.3
deg®-2 7.18 105 122 101 13.7
last—03 9.95 134 15.0 12.8 16.4
com 6.82 10.3 11.8 9.80 13.4
comlast?-2 7.93 115 129 10.9 14.5

LINKEDIN | random deg®! com last™"! comlast=%!

random 16.0 16.5 18.2 17.2 18.5
deg®! 15.9 16.4 18.0 17.0 18.4
last—0-1 19.0 195 21.1 20.0 21.4

Table 4.3: Triangle-closing models. First pick intermediate naed@ix column), then target node (fix
row). The cell gives percent improvement over the log-ltkebd of picking a random node
two hops away (baseline).

4.6 Node and edge arrival process

In this section we turn our focus to the edge initiation process that determhiel mode is responsible
for creating a new edge (Sectidr6.1), and then to the process by which new nodes arrive into the network
(Section4.6.2.

4.6.1 Edge initiation

In the following we assume that the sequence and timing of node arrivalges, gand we model the
process by which nodes initiate edges. We begin by studying how longearaothins active in the social
network, and then during this active lifetime, we study the specific times at vitiechode initiates new
edges.
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Figure 4.7: Exponentially distributed node lifetimes.

Node lifetime

To avoid truncation effects, we only consider those nodes whose katiedredge is in the first half of
all edges in the data. Recall that the lifetime of a nads a(u) = t4¢,)(u) — t1(u). We evaluate the
likelihood of various distributions and observe that node lifetimes are begélex by an exponential
distribution,ps(a) = Aexp(—Aa). Figure4.7 gives the plot of the data and the exponential fits, where
time is measured in days. In Taldles, the row corresponding th gives the values of fitted exponents. We
note that the exponential distribution does not fit well the nodes with veat 8fetimes,i.e., nodes that

are invited into the network, create an edge and never return. But thibdlistin provides a very clean fit
for nodes whose lifetime is more than a week.

Time gap between the edges

Now that we have a model for the lifetime of a nageve must model that amount of elapsed time between
edge initiations fromu. Letd, (d) = t441(u) —t4(u) be the time it takes for the nodewith current degree

d to create its(d + 1)-st out-edge; we call, (d) the edge gap Again, we examine several candidate
distributions to model edge gaps. Tadld shows the percent improvement of the log-likelihood at the
MLE over the exponential distribution. The best likelihood is provided bypwgr law with exponential
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degreed power power law log stretched
law  exp. cutoff normal exp.

9.84 12.50 11.65 12.10
11.55 13.85 13.02 13.40
10.53 13.00 12.15 12.59
9.82 12.40 11.55 12.05

5 8.87 11.62 10.77 11.28
avg.,d <20 || 8.27 11.12 10.23 10.76

Table 4.4: Edge gap distribution: percent improvement of the logtiiieod at MLE over the exponential
distribution.

A OWDN P

cutoff: py((d); o, B) o< §(d)~*exp(—B4(d)), whered is the current degree of the node. (Note that
the distribution is neither exponential nor Poisson, as one might be temptesitoe@$ We confirm these
results in Figure.8, in which we plot the MLE estimates to gap distributi& ), i.e., distribution of times
that it took a node of degree 1 to add the second edge. In fact, we finallthaps distributions(d) are
best modeled by a power law with exponential cut-off (Tehkegives improvements in log-likelihoods
ford =1,...,5and the average fat= 1, ...,20.) The hump in LNKEDIN dataset can be explained by
external event and the way the LinkedIn service operates.

For eachy(d) we fit a separate distribution and Figut® shows the evolution of the parametersnd 3

of the gap distribution, as a function of the degrkef the node. Interestingly, the power law exponent
a(d) remainsconstantas a function ofl, at almost the same value for all four networks. On the other
hand, the exponential cutoff paramet&r!) increasesinearly with d, and varies by an order of magnitude
across networks; this variation models the extent to which the “rich getrfiphenomenon manifests in
each network. This means that the slopef power law part remains constant, only the exponential cutoff
part (parametes) starts to kick in sooner and sooner. So, nodes add (tieir1)** edge faster than their
d"" edge,.e., nodes start to create more and more edges (sleeping times get shdtiey) gt older (and
have higher degree). So, based on Figu& the overall gap distribution can be modeled by the power
law with exponential cutoff distribution where the exponential cutoff patanieincreases linearly with
current node degree p,(d|d; ar, B) ox 6~ exp(—/[dd).

This is interesting finding as it very accurately models node dynamics. Ntekgs, wake up, create edges
and go back to sleep. As nodes get older they keep adding edges lfastaver, the power-law slope of
gap time distribution remains constant with node degree. But it is the expdnauttéf parameter that
starts getting stronger and stronger and cuts the tail of the power law jpéch makes the sleeping times
shorter and shorter.

Given the above observation, a natural hypothesis would be that tiogewill attain high degree in
the network are in some way a priori speciat,, they correspond to “more social” people who would
inherently tend to have shorter gap times and enthusiastically invite friendsigler rate than others,
attaining high degree quickly due to their increased activity level. Howévisrphenomenon does not
occur in any of the networks. We computed the correlation coefficientdeeti(1) and the final degree
d(u) of a nodeu. The correlation values are(0.069 for DELICIOUS, —0.043 for FLICKR, —0.036 for
ANSWERS and—0.027 for LINKEDIN. Thus, there is almost no correlation, which shows that the gap
distribution is independent of a node’s final degree. It only dependsode lifetime,i.e., high degree
nodes are not a priori special, they just live longer, and accumulate ethygs.
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Figure 4.8: Edge gap distribution for a node to obtain the second eéide, and MLE power law with
exponential cutoff fits.
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Figure 4.9: Evolution of thea and 3 parameters with the current node degiee remains constant, and
0 linearly increases.

82



6
10 ‘ 2.2e5 oy L a2 R
5 / 7 5005 - N(t) £ 168 + 3e3 t + ded 7
107 - = = ] 1.8e5 ﬁ@g@“ f
f ] 1.6e5 & —
4 — 1 G
g 10 7 g@% : 8 1.4e5 - rd :
S 3l 4 B S 1.2e5 e —
10° ¢ : 5
1.0e5 Jp@‘ —
102 L J)" - 8.0e4 M —
i o 1 6.0e4 |- ”;Jf}& .
10t Le \ \ \ \ ] A0e4 1 L1 11 11|
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40
Time (months) Time (months)
(a) FLICKR (b) DELICIOUS
6.0e5 ¢ 7¢e6
N() L 284 7+ 4kat! 2.5e3 (‘) o N(t) = 3900 % + 7600 t - 1.3e5 1o
5.0e5 — PO 6e6 - &
4.0e5 | s - 5e6 |- g 7
g 3.0e5 A g 4e6 - & N
.0e5 — L _ e
2 QO g 3e6 — ,}@OQ N
- o - o
2.0e5 Ve 266 L P A _
1.0e5 — Q - 1€6 qp:p@# ]
0.0e0 A 060 lossodeere?™ | 1 1 1 1|
0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25 30 35 40
Time (weeks) Time (months)
(c) ANSWERS (d) LINKEDIN

45

Figure 4.10: Number of nodes over time.

Network || N(t)

FLICKR exp(0.25t)

DELICIOUS 16t2 + 3000t + 40000
ANSWERS || —284t2 + 40000t — 2500

L

INKEDIN || 3900¢2 + 76000t — 130000

45

Table 4.5: Node arrival functions for the four network datasets. FegudO plots the number of nodes
over time.

4.6.2 Node arrivals

Finally, we turn to the question of modeling node arrivals into the system. Fgli@shows the number
of users in each of our networks over time, and Tabfecaptures the best fits.LKEKR grows exponen-
tially over much of our network, while the growth of other networks is much sfoELICIOUS grows
slightly superlinearly, INKEDIN quadratically, and AsweRSsublinearly. Given these wild variations
we conclude the node arrival process needs to be specified in &daaiitcvaries greatly across networks
due to external factors.
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4.7 A network evolution model

Next we present our network evolution model. In contrast to Prefetekttechment, Copying or Forest
Fire model where nodes arrive one at a time, immediately create all their adddken essentially die,
our model describes the evolution much more precisely as in our model apdear, create one edge at a
time, then go to sleep, wake up, create next edge and so on until they die r8odel complete temporal
arrival and creation process of both nodes and edges.

First let’s take stock of what we measured and observed so far:

(a) In Sectiond.6.2 we analyzed the node arrival rates and showed that they are netependent
and can be succinctly represented by a node arrival funéfign that is either a polynomial or an
exponential.

(b) In Sectiord.6.1, we analyzed the node lifetimes and showed they are exponentially distrikitied
parameten.

(c) In Sectiord.4.1, we argued that the destination of the first edge of a node is choseorfiomal to
its degreei(e., preferentially attached).

(d) In Sectiord.6.], we analyzed the time gaps between edge creation at a node and shoyvearthe
be captured by a power law with exponential cutoff, with parametefs

(e) In Sectiom.5, we showed that most of the edges span two hops, and the siamglem-random
triangle-closing model works well.

Motivated by these observations, we now present a complete netwaktiemomodel. Our model is
parameterized by (-), A, a, 3, and operates as follows.

1. Nodes arrive using the node arrival functiyif-).
2. Nodeu arrives and samples its lifetimefrom the exponential distributiopy(a) = A exp(—Aa).
3. Nodeu adds the first edge to nodewith probability proportional to its degree.

4. A nodeu with degreed samples a time gap from the edge gap distributiop, (6|d; v, ) =
(1/Z2)5~*exp(—pdd) and goes to sleep fartime steps.

5. When a node wakes up, if its lifetime has not expired yet, it creates a dwatige using the
random-random triangle-closing model.

6. If a node’s lifetime has expired, then it stops adding edges; otherwisgdats from step 4.

The values ofN(-) for the four networks are given in Tab#e5 and the values of, 5, A are given in
Table4.6.

Note that one could also use more sophisticated edge destination selectiegiesréike the random
surfer model Blum et al, 2009 or other triangle-closing techniques as discussed in Sedtiord. For
example, in step 5, a nodecan pick a sequence of nodes= wy, w1, ..., w, = w), where eachw; is
picked uniformly from the neighbors af;_;, and the sequence lengthis chosen from the distribution
in Figure4.4. Nodew then links tow.
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4.7.1 Gaps and power law degree distribution

We now show that our model, node lifetime combined with gaps, produces paw®ut-degree distri-
bution. This is interesting as a model of temporal behavior (lifetime plus gages3 gse to a structural
network propertyi(e., power law out degree distribution).

Theorem 4.7.1.The out-degrees are distributed according to a power law with exponent

A2 — «)
=14+ —=—-—=. 4.1
y=1+ BT(1—a) (4.1)
Proof. We first compute the normalizing constanof the gap distributiom, (d|d; o, 5):
. 'l —a)
Z:/ 5 e Ply = 4.2
: (Bd) (2

Let a be the lifetime sampled from the exponential distributigfz) = Aexp(—Xa). Recall the edge
creation process: a node adds its first edge and samples the neXtlgagcording top,(-), sleeps for
d(1) time units, creates the second edge, samples a new(gapccording ta,(-), sleeps fol(2) units,
and so on until it uses up all of its lifetime This means that for a nodewith lifetime a = a(u) and
final degreeD = d(u), we have

D
> 6(k) < a. (4.3)

d=1
Analogous to4.2), we obtain the expected time g&{{é|d; «, 3) for a node of degreé:

I'2-—a)

E($|d; a, B) = m

(Bd)~L. (4.4)

Combining @.3) and @.4), we relate the lifetime and the expected final degréeof a node:

I'2-—a)

I'l—a)

D

L T@2—a) i
2 (Bd) 1—mﬂ 1;d '<a. (4.5)

Notice thatzfi):1 d~! = ©(In D). From @.5), the final degreé of a node with lifetimen is

D =~ exp (Eg:z;ﬁa).

Thus, D is an exponential function of the agei.e., D = r(a) = exp(pa), wherey = ?g:ggﬂ

Since node lifetimes are exponentially distributed with paramkgtare now compute the distribution of
D as a function of andy as follows:

W(D)‘ _ A —Omiegp _ ADIH

D~ (D)5~ | = ;

Thus, the degree distribution in our gap model follows a power law with exmtdr+- /i, completing
the proof. n
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| FLIcKR DELICIOUS

ANSWERS LINKEDIN

A 0.0092 0.0052 0.019 0.0018
! 0.84 0.85 0.78
16} 0.0020 0.00032 0.0038 0.00036
true~y 1.73 1.90 2.11
predictedy 1.74 1.75 2.08

Table 4.6: Predicted by Theorem.7.1vs. true degree exponents.
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Figure 4.11: Degree distribution and power law fits.

4.7.2 Validation of the model

We validate the accuracy of our modeling assumptions by empirically estimatingatiméf\, and gap
distribution «, 6 parameter values for each network. We then apply Theatéhi, which yields the
power law degree exponents produced by our model. Then we empiricadlgureethe true power law
degree exponents of the four networks and compare them to predictibhearend.7.1 Table4.6shows
the results. Note the predicted degree exponents remarkably agree withetleponents, validating our
model. This is interesting as we specified the model of temporal node befldetome+gaps) that results
in a accurate structural network property (power law degree distribution



Clustering coefficient, c(d)
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(a) Clustering coefficient (b) Degree distribution (c) Shortest paths

Figure 4.12: We take EICKR network at first half of its evolution. Then we simulate theletion using
our model and PA for the second half, and compare the obtaietglorks with the real
FLICKR network. Notice our model matches the macroscopic stadistiroperties of the
true ALICKR network very well, and in fact much better than PA.

Figure 4.11 plots degree distributions of four networks and gives the power law fighle®.6 shows

the values of parameters « and 8 measured from the evolution of the networks. We also show the
measured degree exponent (denoted as+4juend the degree exponent predicted from equadidn
Notice the remarkable agreement in degree exponent between the d#te amatel prediction.

For example, in EICKR we observe the following parameters (see Tdb& A = 0.0092, anda = 0.84,

6 = 0.0020. Using equatiod.1we obtain degree exponent= 1.74, which is very close to true exponent

of 1.73 (see figuret.11). See tablel.6for comparison of true degree exponents and the degree exponents
as predicted by out gap model.

We find this somewhat surprising as using only three parameters (1 pardonetede lifetime, and 2 for
the gap distribution) we can accurately model the temporal part of the reewvolution. Basically, with

just 3 parameters we can accurately describe the non-structuravphutien (.e., everything except the
selection of the edge destination).

4.7.3 Unfolding network evolution

To further our understanding of the network evolution, especially the edgation process, we perform
the following semi-simulation. We consider the real netwGfk/, and evolve it fromt = 7/2,...,T

using therandom-random model to obtain a networ&’.. At the end of the evolution, we compare the
macroscopic properties 6¥}, andG7. For completeness we also compare the results to the Preferential
Attachment (PA) model.

More precisely, we evolvé:r/, by considering all the edges that were created after fiif#ebetween
the nodes inG7/,. (We do not allow new nodes to joifi;/,.) We consider two different processes to
place these new edges. In the first process (PA), we select two posfesentially, with probabilities
proportional to their degrees, and add an edge. In the second pi@des we use theandom-random
triangle-closing model,e., we first select a node preferentially and then pick a node two hops asiry
therandom-random model.

Figure4.12 shows results for HCKR: clustering coefficient, degree distribution, and pairwise distance
histogram for the true data, and the two simulations. fEmeElom-random model matches the true net-
work well and outperforms the PA. Similar results also hold for other netsyavk omit these plots.
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4.8 Discussion

In this chapter we presented a microscopic analysis of the edge-byegdlygion of four large online
social networks. The use of the maximume-likelihood principle allowed us totidydhe bias of new
edges towards the degree and age of hodes, and to objectively corapates models such as preferential
attachment. In fact, our work is the first to directly quantify the amount diepeatial attachment that
occurs in the evolution of large networks.

Our study shows that most new edges span very short distances|lyypioaing triangles. Motivated
by these observations, we developed a complete model of network evolatorporating node arrivals,
edge initiation, and edge destination selection processes. While noddsaarie mostly network-specific,
the edge initiation process can be captured by exponential node lifetimes“ga@” model based on a
power law with exponential cutoff. We arrive at an extremely simple ygir&ingly accurate description
of the edge destination selection in real networks. Moreover, our mode¢ ifirst to accurately gives
the complete picture of network evolution from node and edge arrivalsge pthcement. Our model
of network evolution can be used to generate arbitrary-sized synthetiomks that closely mimic the
macroscopic characteristics of real social networks.
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Chapter 5

Kronecker graphs

How can we generate realistic network? In addition, how can we do so withtfeematically tractable
model that allows for rigorous analysis of network properties? Realarksaexhibit a long list of sur-
prising properties: Heavy tails for the in- and out-degree distributionyyhieals for the eigenvalues and
eigenvectors; small diameters; and over time the densification power lavwhenklisg diameters occur.
The present network models and generators either fail to match sef/énalabove properties, are com-
plicated to analyze mathematically, or both. In this chapter we propose aatjeeenodel for networks
that is both mathematically tractable and can generate networks that haveadbtreementioned struc-
tural properties. Our main idea here is to use a non-standard matrix opethg&ronecker produgtto
generate graphs that we refer to as “Kronecker graphs”.

First, we show that Kronecker graphs naturally obey common netwopepties; in fact, we rigorously
provethat they do so. We also provide empirical evidence showing that Krengc&phs can well mimic
the structure of real networks.

Then, given a large real network, we presemdfFIT, a fast and scalable algorithm for fitting the Kro-
necker graph generation model to real networks. A naive approdittirtg would take super-exponential

time. In contrast, RONFIT takeslinear time, by exploiting the structure of Kronecker matrix multiplica-
tion and by using statistical simulation technigues.

Experiments on large real and synthetic networks show tlrRONEIT finds accurate parameters that
indeed very well mimic the properties of target networks. Once fitted, the Inpad@meters can be used
to gain insights about the network structure, and the resulting synthetiecgycap be used for null-models,
anonymization, extrapolations, and graph summarization.

5.1 Introduction

What do real graphs look like? How do they evolve over time? How can wergée synthetic, but
realistic looking, time-evolving graphs? Recently network analysis has &ksecting much interest,
with an emphasis on finding patterns and abnormalities in social networks utemmetworks, e-mail
interactions, gene regulatory networks, and many more. Most of the feouses on static snapshots of
graphs, where fascinating “laws” have been discovered, includintj Simmeters and heavy-tailed degree
distributions.
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As such structural “laws” have been discovered a natural nextiquéas to find a model that produces
networks with such structure. Thus, a good realistic network generatidelisdmportant for at least two
reasons. The first is that it can generate graphs for extrapolatiwhgt-if” scenarios, and simulations,
when real graphs are difficult or impossible to collect. For example, hawvilea given protocol run
on the Internet five years from now? Accurate network models carupeochore realistic models for the
future Internet, on which simulations can be run. The second reason éssubtle: it forces us to think
about the network properties that a graph models should obey, to beicealis

In this chapter we introduce Kronecker graphs, a network genenaidgel which obeys all the main
static network patterns that have appeared in the literature. Our modeluags the temporal evolution
patterns that we described in chapBarAnd, contrary to other models that match this combination of
network properties, Kronecker graphs also lead to tractable analysiggamous proofs. Furthermore,
Kronecker graphs generative process also has a nice naturalétédign and justification.

Our model is based on a matrix operation, Krenecker product There are several known theorems on
Kronecker products, which correspond exactly to a significant podiavhat we want to prove: heavy-
tailed distributions for in-degree, out-degree, eigenvalues, and eigems. We also demonstrate how a
Kronecker Graph can match the behavior of several real netwark&(setworks, citations, web, inter-
net, and others). While Kronecker products have been studied by #ieraig combinatorics community
(see,e.g, [Chow, 1997), the present work is the first to employ this operation in the design of mktwo
models to match real data.

Then we also make a step further and tackle the following problem: Givegeareal network, we want to
generate a synthetic graph, so that our resulting synthetic graph matetpsplerties of the real network
as well as possible.

Ideally we would like: (a) A graph generation model that naturally produnetworks with many proper-
ties that are also found in real networks. (b) The model parameter estinshtioird be fast and scalable,
so that we can handle networks with millions of nodes. (c) The resulting patameters should generate
realistic-looking networks that match the statistical properties of the targéteevorks.

In general the problem of modeling network structure presents ses@reéptual and engineering chal-
lenges: Which generative model should we choose, among the many in tatulig® How do we measure
the goodness of the fit? (Least squares don’'t work well for powes,lfav subtle reasons!) If we use like-
lihood, (that we do), how to estimate it faster than in time quadratic on the nurhbedes? How do we
solve the node correspondence problem (which node of the real etawesponds to what node of the
synthetic one)?

To answer the above questions we preseROKFIT, a fast and scalable algorithm for fitting Kronecker
graphs by using the maximum likelihood principle. When calculating the likelihoeckthre two chal-
lenges: First, one needs to solve the node correspondence problaatdlying the nodes of the real and
the synthetic network. Essentially, one has to consider all mappings of mddiee network to the rows
and columns of the graph adjacency matrix. This becomes intractable fdirgnath more than a handful
of nodes. Even when given the “true” correspondences just duaiuhe likelihood is still prohibitively
expensive for the size of graphs we want to consider here. Wergrsslitions to both of these prob-
lems: We develop Metropolis sampling algorithm for sampling node correspoed, and approximate
the likelihood to obtain dinear time algorithm that scales to large networks with millions of nodes and
edges. IRONFIT gives orders of magnitude speed-ups against older methods (20 minge®mmodity
PC, versus 2 days on a 50-machine cluster).
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Our extensive experiments on synthetic and real networks show thaegker Graph can efficiently
model statistical properties of networks, like degree distribution and diamgtéde using only four pa-
rameters.

Once the model is fitted to the real network, there are several benefigpatications:
(a) The parameters give us insight into the structure of the network itself;

(b) Extrapolations: we can use the model to generate a larger graph, to help us understanideho
network will look like in the future;

(c) Sampling: conversely, we can also generate a smaller graph, which may be usefuinhing
simulation experimentse(g, simulating routing algorithms in computer networks, or virus/worm
propagation algorithms), when these algorithms may be too slow to run on lagiesy

(d) Null-model: when working with network data we would often like to assess the significamtte
extent to which a certain network property is expressed. We can usétéaeKronecker graph as
an accurate null-model.

(e) Simulations:given an algorithm working on a graph we would like to evaluate how its padace
depends on various properties of the network. Using our model ongerearate graphs that exhibit
various combinations of such properties, and then evaluate the algorithm.

() Graph compressionwe can compress the graph, by storing just the model parameters, and the
deviations between the real and the synthetic graph;

(g) Anonymization:suppose that the real graph cannot be publicized, &k, corporate e-mail net-
work; customer-product sales in arecommendation system. Yet, we woutd 8kare our network.
Our work gives ways to such a realistic, 'similar’ network.

The rest of the chapter is organized as follows: Sedi@riefly surveys the related literature. In section
5.3 we introduce the Kronecker graphs model, and give formal statemenis tigoproperties of net-
works it generates. We investigate the model using simulation in Seés#dand continue by introducing
KRONFIT, the Kronecker graphs parameter estimation algorithm, in Se&ibnWe present experimen-
tal results on real and synthetic networks in Secta® We close with discussion and conclusions in
sections.7and5.8

5.2 Relation to previous work on network modeling

Networks across a wide range of domains present surprising reguaikespower laws, small diameters,
communities, and so on. We use these patterns as sanity checks, thasygjthetic graphs should match
those properties of the real target graph.

Most of the related work in this field has concentrated on two aspectseiepand patterns found in
real-world networks, and then ways to find models to build understandimgt &ire emergence of these
properties. First, we will discuss the commonly found patterns in (static andteihypevolving) graphs,
and finally, the state of the art in graph generation methods. Refer to cRdptenore detailed discussion
of graph patterns and explanatory models.
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5.2.1 Graph Patterns

Here we briefly introduce the network patterns (also referred to asefiep or statistics) that we will
later use to compare the similarity between the real networks and their syntbetitegparts produced
by Kronecker graphs model. While many patterns have been discovereaf the principal ones are
heavy-tailed degree distributions and small diameters. Refer to ctiafaiemore details.

Degree distribution:The degree-distribution of a graph is a power law if the number of nddewith
degreed is given byN; o< d~7 (v > 0) where~y is called the power law exponent. Power laws have
been found in the InterneFaloutsos et al.1999, the Web Kleinberg et al. 1999 Broder et al. 2004,
citation graphsiRedner 1998, online social networksGhakrabarti et al2004 and many others.

Small diameterMost real-world graphs exhibit relatively small diameter (the “small- worltépomenon,

or “six degrees of separation”): A graph has diamédf every pair of nodes can be connected by a path
of length at mostD edges. The diametdp is susceptible to outliers. Thus, a more robust measure of
the pair wise distances between nodes in a graph igffeetive diametefTauro et al. 2001, which is

the minimum number of links (steps/hops) in which some fraction (or quaptitmy ¢ = 0.9) of all
connected pairs of nodes can reach each other. The effective didrasteeen found to be small for large
real-world graphs, like Internet, Web, and online social netwoftbdrt and Barahsi 2002 Milgram,
1967, Leskovec et a).20054.

Hop-plot: extends the notion of diameter by plotting the number of reachable g@iyswithin / hops,
as a function of the number of hops[Palmer et al.2003. It gives us a sense of how quickly nodes’
neighborhoods expand with the number of hops.

Scree plot: This is a plot of the eigenvalues (or singular values) of the graph adjpaeatrix, versus
their rank, using the logarithmic scale. The scree plot is also often foungbt@ximately obey a power
law [Chakrabarti et al.2004 Farkas et aJ.200]. Moreover, this pattern was also found analytically for
random power law graph€hung et al.20034.

Network valuesThe distribution of eigenvector components (indicators of “network valagSociated to
the largest eigenvalue of the graph adjacency matrix has also beentfob@dkewedChakrabarti et a|.
2004.

Node triangle participation:is a measure of transitivity in networks. It counts the number of triangles
a node participates in.e., the number of connections between the neighbors of a node. The pilee of
number of triangleg\ versus the number of nodes participating)rtriangles has also been found to be
skewed Tsourakakis200§.

Densification Power LawThe relation between the number of edd&g) and the number of node¥(¢)

in evolving network at time obeys thedensification power layDPL), which states thal () oc N (t)“.
Thedensification exponeiatis typically greater than, implying that the average degree of a node in the
network isincreasingover time. This means that real networks tend to sprout many more edgesties)
and thus densify as they grolgskovec et a].2005h 2007H. See chapteB for more details.

Shirking diameterThe effective diameter of graphs tends to shrink or stabilize as the nurhbedes in

a network grows over timd_gskovec et a).2005h 20074. This is somewhat counterintuitive since from
common experience as one would expect that as the volume of the objeap(g grows, the size.€.,
the diameter) would also grow. But for networks it seems this does not Bdlieadiameter shrinks and
then stabilizes as the network grows. See chapfer more details.
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5.2.2 Generative models of network structure

The earliest probabilistic generative model for graphs was thés=Rnyi [Erdds and Rnyi, 1960 ran-
dom graph model, where each pair of nodes has an identical, indepgmdbability of being joined by
an edge. The study of this model has led to a rich mathematical theory; hpweswle model was not
developed to model real-world networks it produces graphs that fail tolmmaal networks in a number
of respects (for example, it does not produce heavy-tailed degredbudli®ns).

The vast majority of recent network models involve some forpreferential attachmeriBaratasi and Albert
1999 Albert and Barahsi, 2002 Winick and Jamin2002 Kleinberg et al. 1999 Kumar et al, 19994
that employs a simple rule: new node joins the graph at each time step, anaddhtss@ connection to
an existing node: with the probability proportional to the degree of the nadeThis leads to the “rich
get richer” phenomena and to power law tails in degree distribution. Howtixeediameter in this model
grows slowly with the number of nod€g, which violates the “shrinking diameter” property mentioned
above.

There are also many variations of preferential attachment model all semehploying the “rich get
richer” type mechanism. For example, “copying modd&tmar et al, 2004, the “winner does not take
all” model [Pennock et al2003, the “forest fire” model Leskovec et a.20054, “random surfer model”
[Blum et al, 20049, etc.

A different family of network methods strives for small diameter and locadteling in networks. Ex-
amples of such models include temall-worldmodel Watts and StrogatZ.999 and the Waxman gen-
erator Waxman 1988. Another family of models shows that heavy tails emerge if nodes try to optimize
their connectivity under resource constrair@aflson and Doyle1999 Fabrikant et a].2007. Refer to
chapter2 for further details on network models.

In summary, most current models focus on modeling only one (static) nepvoperty, and neglect the
others. In addition, it is usually hard to analytically analyze properties ohéterork model. On the
other hand, Kronecker graphs model we describe in the next sectivesseés these issues as it matches
multiple properties of real networks at the same time, while being analytically btadending itself to
rigorous analysis.

5.2.3 Parameter estimation of network models

Until recently relatively little effort was made to fit the above network models &b data. One of the
difficulties is that most of the above models usually do not have a probabilistipietation, but rather
define a mechanism or a principle by which a network is constructed.

Most work in estimating network models comes from the area of social s&gmstatistics and so-
cial network analysis where thexponential random graphslso known ag+ model, were introduced
[Wasserman and Pattisdt®96. The model essentially defines a log linear model over all possible graphs
G, p(G|0) x exp(8T5(G)), whereG is a graph, and is a set of functions, that can be viewed as summary
statistics for the structural features of the network. phenodel usually focuses on “local” structural fea-
tures of networks (likeg.g, characteristics of nodes that determine a presence of an edge, lproody,

etc.). As exponential random graphs have been very useful forlmgdemall networks, and individual
nodes and edges our goal here is different in a sense that we ainutatetg model the structure of the
network as a whole. Moreover, we aim to model and estimate parametersaafrke with millions of
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nodes, while even for graphs of small size {00 nodes) the number of model parameters in exponen-
tial random graphs usually becomes too large, and estimation prohibitivegnsixve, both in terms of
computational time and memory.

Regardless of a particular choice of a network model, a common theme wiaatesy the likelihood
P(G) of a graphGG under some model is the challenge of finding the correspondence betveerodes

of the true network and its synthetic counterpart. The node correspoageoblem results in the facto-
rially many possible matchings of nodes. One can think of the correspomgeolclem as some kind of
graph isomorphism test. Two isomorphic graghandG’ with differently assigned node ids should have
same likelihoodP(G) = P(G’) so we aim to find an accurate mapping between the nodes of the two
graphs.

Ordering or a permutation defines the mapping of nodes in one network ¢s imothe other network. For
example, ButtsButts, 2005 used permutation sampling to determine similarity between two graph adja-
cency matrices, while Békoa et al. [Bezakowa et al, 200§ used permutations for graph model selec-
tion. Recently, an approach for estimating parameters of the “copying”Imasantroduced\Viuf et al.,,
2004, however authors also note that the class of “copying” models may mathbenough to accurately
model real networks. As we show later, Kronecker graphs model seehave the necessary expressive
power to mimic real networks well.

5.3 Kronecker graphs model

The Kronecker graphs model we propose here is based on a weccwsistruction. Defining the recursion
properly is somewhat subtle, as a number of standard, related gragtihumion methods fail to produce
graphs that densify according to the patterns observed in real netwamil they also produce graphs
whose diameters increase. To produce densifying graphs with conltanriitsg diameter, and thereby
match the qualitative behavior of a real network, we develop a procedatés best described in terms

of the Kronecker producbf matrices. To help in the description of the method, the accompanying table
provides a list of symbols and their definitions.

5.3.1 Mainidea

The main intuition behind the model is to create self-similar graphs, recursivégdybegin with arini-

tiator graph K1, with N7 nodes and®; edges, and by recursion we produce successively larger graphs
K, K3, ... such that thé'" graphK, is on N, = N nodes. If we want these graphs to exhibit a version
of the Densification Power Law_gskovec et al.2005H, then K, should have, = Ef edges. This is

a property that requires some care in order to get right, as standargivecconstructions (for example,

the traditional Cartesian product or the constructiorBarplasi et al, 2001]) do not satisfy it.

It turns out that theKronecker producbf two matrices is the right tool for this goal. The Kronecker
product is defined as follows:
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SYmMBOL | DESCRIPTION

G Real network

N Number of nodes iidr

E Number of edges idr

K Kronecker graph (synthetic estimate®yf

Ky Initiator of a Kronecker Graph

Ny Number of nodes in initiatoky

Ey Number of edges in initiatok';

G H Kronecker product of adjacency matrices of graphand H

K = K, = K | k" Kronecker power of<;

Kii, j] Entry at row: and columry of K3

0="P Stochastic Kronecker initiator

731[’“} =P, =P | k" Kronecker power o

0;; = P14, ] Entry at row: and columnj of P,

Pij = Prli, j] Probability of an edgé:, j) in Py, i.e., entry at row; and columry of Py,
K = R(P) Realization of a Stochastic Kronecker graph

1(©) Log-likelihood. Log-prob. tha® generated real gragh, log P(G|O)

) Parameters at maximum likelihoo8, = argmaxg P(G|©)

o Permutation that maps node ids@fto those ofP

a Densification power law exponertf,(¢) o« N (¢)*

D Diameter of a graph

N, Number of nodes in the largest weakly connected component of a graph
w Proportion of timesSwapNodes permutation proposal distribution is used

Table 5.1: Table of symbols.

Definition 5.3.1 (Kronecker product of matricesiGiven two matrices\ = [a; ;| and B of sizesn x m
andn’ x m’ respectively, the Kronecker product mat€ixof dimensiongn - n’) x (m - m’) is given by

CL1,1B al,gB e CLLmB
CL2,1B CLQQB e a27mB

C=A®B= _ , (5.1)
an1B a,2B ... ap,B

We then define the Kronecker product of two graphs simply as the Kkengcoduct of their correspond-
ing adjacency matrices.

Definition 5.3.2 (Kronecker product of graphs)f G and H are graphs with adjacency matrice§ G)
and A(H) respectively, then the Kronecker proddetw H is defined as the graph with adjacency matrix
AG)® A(H).

Observation 5.3.3(Edges in Kronecker-multiplied graphs)
Edge(X;, Xi) € G® H iff (X;, X)) € Gand(X;, X;) € H

where X;; and X}, are nodes inG ® H, and X;, X;, X;, and X; are the corresponding nodes @ and
H, asin Figure5.1
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sz
X3
Central no;ie is X 22
(a) GraphK; (b) Intermediate stage (c) Grapgty, = K1 ® K3
11 1] O K,|K,|O
111 1 K| Kyl Ky
01 1 0| K |K;
(d) Adjacency matrix (e) Adjacency matrix
OfK1 OfK2:K1®K1

Figure 5.1: Example of Kronecker multiplicationTop: a “3-chain” initiator graph and its Kronecker
product with itself; each of th&’; nodes gets expanded intaodes, which are then linked
using Observatios.3.3 Bottom row: the corresponding adjacency matrices. Seecflg@
for adjacency matrices df; and K .

(a) K3 adjacency matrix37 x 27) (b) K4 adjacency matrix§l x 81)

Figure 5.2: Adjacency matrices of{3 and K, the 3"¢ and4*" Kronecker power ofK; matrix as de-
fined in Figures.1 Dots represent non-zero matrix entries, and white spawresents zeros.
Notice the recursive self-similar structure of the adjayematrix.

The last observation is subtle, but crucial, and deserves elaboratsicaly, each node itvr @ H can
be represented as an ordered p&jf, with < a node ofG and;j a node off, and with an edge joining
X;; and Xy, precisely when(X;, X},) is an edge oft and (X, X;) is an edge offf. This is a direct
consequence of the hierarchical nature of the Kronecker prodigiireés.1(a—c) further illustrates this
by showing the recursive construction@f® H, whenG = H is a 3-node chain. Consider nodg » in
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1111111
1111010
1101110
110/01
1111111
111100
1101111
1101111
Initiator K K adjacency matrix ; K 3 :'Jtdjace'r;cy m.atl’IX

Figure 5.3: Two examples of Kronecker initiators on 4 nodes and thessiflar adjacency matrices they
produce.

Figure5.1(c): It belongs to thed graph that replaced nod€; (see Figuré.1(b)), and in fact is theXs
node {.e. the center) within this smalf-graph.

We propose to produce a growing sequence of matrices by iterating tineéker product:

Definition 5.3.4 (Kronecker power) The k" power of K is defined as the matriK{k] (abbreviated to
K}), such that:

KM=k, = KioKi®.. . Ki = K 10K
k times

Definition 5.3.5(Kronecker graph) Kronecker graph of ordek is defined by the adjacency matrzis?({k],
where K is the Kronecker initiator adjacency matrix.

The self-similar nature of the Kronecker graph product is clear: Tdymek, from Kj_1, we “expand”
(replace) each node df,_; by converting it into a copy of{;, and we join these copies together ac-
cording to the adjacencies i, _; (see Figureés.1). This process is very natural: one can imagine it as
positing that communities within the graph grow recursively, with nodes in themamity recursively
getting expanded into miniature copies of the community. Nodes in the sub-comrthentyink among
themselves and also to nodes from other communities.
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5.3.2 Analysis of Kronecker Graphs

We shall now discuss the properties of Kronecker graphs, specifitaiydegree distributions, diameters,
eigenvalues, eigenvectors, and time-evolution. Our ability to prove andlytisalts about all of these
properties is a major advantage of Kronecker graphs over other netmadels.

Degree distribution

The next few theorems prove that several distributions of intereshalt@momialfor our Kronecker graph
model. This is important, because a careful choice of the initial gfépimakes the resulting multinomial
distribution to behave like a power law or DGX distributidsi et al., 2001, Clauset et a).2007.

Theorem 5.3.6(Multinomial degree distribution)Kronecker graphs have multinomial degree distribu-
tions, for both in- and out-degrees.

Proof. Let the initiatork’; have the degree sequenteds, . . ., dy,. Kronecker multiplication of a node
with degreed expands it intaV; nodes, with the corresponding degrees being dy,d X ds,...,d x

dn,. After Kronecker powering, the degree of each node in g&phs of the formd;, x d;, x ...d;,,

with i1,142,...,i; € (1...Ny), and there is one node for each ordered combination. This gives us the
multinomial distribution on the degrees &f,. Note also that the degrees of nodedincan be expressed

as thek'™ Kronecker power of the vectdtl;, d, . .., dy, ). O

Spectral properties

Next we analyze the spectral properties of adjacency matrix of a Kkenggaph. We show that both
the distribution of eigenvalues and distribution of component values of esgtors of graph adjacency
matrix both follow multinomial distribution.

Theorem 5.3.7(Multinomial eigenvalue distribution)The Kronecker graplk’;, has a multinomial distri-
bution for its eigenvalues.

Proof. Let K; have the eigenvaluesg, A, ..., An,. By properties of the Kronecker multiplicatiobdan,
200Q Langville and Stewart2004, the eigenvalues ok, are thek!” Kronecker power of the vector of
eigenvalues of the initiator matrixjy, Ao, . . ., )\Nl)[’“]. As in Theorenb.3.6 the eigenvalue distribution
is a multinomial. O

A similar argument using properties of Kronecker matrix multiplication showsahening.

Theorem 5.3.8(Multinomial eigenvector distribution)The components of each eigenvector of the Kro-
necker graphi;, follow a multinomial distribution.

Proof. Let K; have the eigenvectofis, v, . . ., ¥y, . By properties of the Kronecker multiplicatiobdgan,

200Q Langville and Steway2004, the eigenvectors ok, are given by the!* Kronecker power of the
vector: (v, v, . . . , Un, ), Which gives a multinomial distribution for the components of each eigenvector
in K. O

We have just covered several of the static graph patterns. Notice thabibfs were a direct consequences
of the Kronecker multiplication properties.
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Connectivity of Kronecker graphs

We now present a series of results on the connectivity of Kroneclahgt We show, maybe a bit
surprisingly, that even if a Kronecker initiator graph is connected its &ker power can in fact be
disconnected.

Lemma 5.3.9.If at least one of7 and H is a disconnected graph, thén® H is also disconnected.

Proof. Without loss of generality we can assume tliahas two connected components, whikeis
connected. Figur&.4(a) illustrates the corresponding adjacency matrixGofUsing the notation from
observatiorb.3.3let graph letZ have nodes(y, ..., X,,, where node$ X, ... X, } and{ X, 1,..., X}

form the two connected components. N@wg H has at least two connected components as there are no
edges:(X;;, Xi) ¢ G@ Hfori e {1,...,r}, k€ {r+1,...,n}, and allj, I. This follows directly
from observatiorb.3.3as(X;, X) are not edges if. O

Actually it turns out that botlty and H can be connected bttt @ H is still disconnected. The following
theorem analyzes this case.

Theorem 5.3.10.1f both G and H are connected but bipartite, theék ® H is disconnected, and each of
the two connected components is again bipartite.

Proof. Again without loss of generality let’ be bipartite with two partitionsd = {X;,... X, } and

B = {X,41,...,X,}, where edges exists only between the partitions, and no edges exist timside
partition: (X;, Xy) ¢ G fori,k € Aori,k € B. Similarly, let H also be bipartite with two partitions
C = {X1,...X;} andD = {Xs41,...,X;n}. Figures5.4b) and (c) illustrate the structure of the
corresponding adjacency matrices.

Now, there will be two connected componentsGng H: 15° component will be composed of nodes
{X;;} € G® H, where(i € A,j € D)or(i € B,j € C). And similarly, 2*¢ component will be
composed of nodegX;; }, where(i € A,j € C) or (i € B,j € D). Basically, there exist edges between
node set$A, D) and(B, C), and similarly betweefA, C') and(B, D) but not across the sets. To see this
we have to analyze the cases using observaii8r8 For example, irG ® H there exist edges between
nodes(A, D) and(B, C) as there exist edgés, k) € G fori € A,k € B, and(j,1) € H for j € C and

[ € D. Similar is true for nodesA, C') and(B, D). However, there are no edges cross the two set,
nodes from(A, D) do not link to(A, C), as there are no edges between nodes {ginced is bipartite).
See Figure$.4(d) and5.4(e) for a visual proof. Ol

Note that bipartite graphs are triangle free and have no self-loops.xBorme, stars, chains, trees and
cycles of even length are all examples of bipartite graphs. This meansithaiay to generate a connected
Kronecker graphs is to require the initiath to be connected while not being bipartite. For example,
initiator K7 can have a self loops, or a triangles (a triple of connected nodes), wiaikbs it non-bipartite,
and ensures thdt;, will be connected.

For the remainder of the chapter we will focus on the initiator grafgihghat have self loops on all of
their nodes so that we ensuig, to be connected.
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X,
0 0o | A 0 C
0 B 0 D 0
(a) Adjacency matrix (b) Adjacency matrix (c) Adjacency matrix
whenG is disconnected whe@ is bipartite wherH is bipartite
0 (AC) O (a0
(A.D) (8,0) 0
B,C) (A,D)
(B,D) 0 0 50| O
(d) Kronecker product of (e) Rearranged adjacency
two bipartite graphgr and H matrix from panel (d)

Figure 5.4: Graph adjacency matrices. Dark parts present connectkstl (filith ones) and white parts
present empty (filled with zeros) parts of the adjacency imafa) Whend is disconnected,
Kronecker multiplication with any matri¥f will result in G ® H being disconnected. (b)
Adjacency matrix of a connected bipartite gra@hwith partitions A and B. (c) Adjacency
matrix of a connected bipartite graghwith partitionsC' and D. (e) Kronecker product of
two bipartite graph&s and H. (d) After rearranging the adjacency matéix® H we clearly
see the resulting graph is disconnected.

Temporal properties of Kronecker graphs

We continue with the analysis of temporal patterns of evolution of Kronegiaphs: the densification
power law, and shrinking/stabilizing diamet&egkovec et a].2005h 20074.

Theorem 5.3.11(Densification Power Law)Kronecker graphs follow the Densification Power Law
(DPL) with densification exponent= log(E1)/log(Ny).

Proof. Since thek'" Kronecker powek;, hasN, = N} nodes ands), = E{“ edges, it satisfieB), = IV,
wherea = log(F7)/log(NN1). The crucial point is that this exponents independent of, and hence the
sequence of Kronecker powers follows an exact version of theifieion Power Law. O

We now show how the Kronecker product also preserves the propegnstant diameter, a crucial
ingredient for matching the diameter properties of many real-world netwaidsdts. In order to establish
this, we will assume that the initiator grapgty has a self-loop on every node; otherwise, its Kronecker
powers may be disconnected.
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Lemma 5.3.12.If G and H each have diameter at moBY, and each has a self-loop on every node, then
the Kronecker grapli; @ H also has diameter at mos2.

Proof. Each node inG @ H can be represented as an ordered paitv), with v a node ofG andw a
node of H, and with an edge joinin@v, w) and(z, y) precisely wher(v, z) is an edge of> and (w, y)
is an edge off. (Note this exactly the Observati&n3.3) Now, for an arbitrary pair of node®, w) and
(v, w"), we must show that there is a path of length at m@stonnecting them. Sinc€ has diameter
at mostD, there is a path = vy, vs,...,v, = v/, wherer < D. If r < D, we can convert this into
a pathv = vy, v9,...,vp = v’ of length exactlyD, by simply repeating’ at the end forD — r times.
By an analogous argument, we have a path= w,ws,...,wp = w’. Now by the definition of the
Kronecker product, there is an edge joiniag, w;) and (v;y+1,w;4+1) forall1 < ¢ < D — 1, and so
(v,w) = (v1,w1), (v2,ws), ..., (vp,wp) = (v',w') is a path of lengthD connecting(v, w) to (v', w’),
as required. O

Theorem 5.3.13.1f K; has diameterD and a self-loop on every node, then for evérythe graphKj
also has diameteD.

Proof. This follows directly from the previous lemma, combined with inductiorkon O

As defined in sectio@.1.2we also consider theffective diameteD*; we defined thg-effective diameter

as the minimumD* such that, for at least @ fraction of the reachable node pairs, the path length is at
most D*. The g-effective diameter is a more robust quantity than the diameter, the latter bheing

the effects of degenerate structures in the grapd, (rery long chains); however, theeffective diameter
and diameter tend to exhibit qualitatively similar behavior. For reporting resutsbsequent sections,
we will generally consider the-effective diameter witly = 0.9, and refer to this simply as thedfective
diameter

Theorem 5.3.14(Effective Diameter) If K has diametelD and a self-loop on every node, then for every
q, theg-effective diameter ok, converges td (from above) a% increases.

Proof. To prove this, it is sufficient to show that for two randomly selected noélds,0 the probability
that their distance i®) converges td ask goes to infinity.

We establish this as follows. Each nodéeiip can be represented as an ordered sequencaades from
K1, and we can view the random selection of a nod&jnas a sequence &findependent random node
selections fronf(;. Suppose that = (vq,...,v;) andw = (w1, ..., wy) are two such randomly selected
nodes fromK,.. Now, if z andy are two nodes irk’; at distanceD (such a pai(z, y) exists sinces; has
diameterD), then with probabilityl — (1 — 2/N;)*, there is some index for which {v;, w;} = {z, y}.

If there is such an index, then the distance betweendw is D. As the expression — (1 — 2/Np)*
converges td ask increases, it follows that thgeffective diameter is converging 0. O

5.3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed so far yields graipihs range of desired properties,
its discrete nature produces “staircase effects” in the degrees artdedp@antities, simply because indi-
vidual values have large multiplicities. For example, degree distribution atribditon of eigenvalues of
graph adjacency matrix and the distribution of the principal eigenvector aoemts i.e., the “network”
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Figure 5.5: The “staircase” effect. Kronecker initiator and the degiestribution and network value plot
for the 6! Kronecker power of the initiator. Notice the non-smoottsnefsthe curves.

value) are all impacted by this. These quantities are multinomially distributed wtads te individual
values with large multiplicities. Figure.5illustrates the staircase effect.

Here we propose a stochastic version of Kronecker graphs that elisitmaseeffect. There are many
possible ways how one could introduce stochasticity into Kronecker graggiuel. Before introducing
the proposed model, we introduce two simple ways of introducing randonm&ssnecker graphs and
describe why they do not work.

Probably the simplest (but wrong) idea is to generate a large deterministietlter graph;,, and then
uniformly at random flip some edges., uniformly at random select entries of the graph adjacency matrix
and flip them { — 0,0 — 1). However, this will not work, as it will essentially superimpose a@srd
Rényi random graph, which would, for example, corrupt the degreaahiion — real networks usually
have heavy tailed degree distributions, while random graphs have Bindegede distributions. Second
idea could be to allow weighted initiator matrixg., values of entries of(; are not restricted to values
{0,1} but rather can be any non-negative real number. Using &ijcbne would generat&’;, and then
threshold the<;, matrix to obtain a binary adjacency maté i.e., for a chosen value aefsetK[i, j] = 1

if Kx[i,j] > eelseK[i,j] = 0. This also would not work as the mechanism would selectively remove
edges and thus the low degree nodes which would have low weight edgés get isolated first.

Now we defineStochastic Kronecker Grapimsodel that overcomes the above issues. A more natural way
to introduce stochasticity to Kronecker graphs is to relax the assumptiomthiaseof the initiator matrix
take only binary values. Now, we will allow cells of the initiator to take values aerural [0, 1]. This
means now each entry of the initiator matrix encodes the probability of that yartiedge appearing.
We then Kronecker power such initiator matrix to obtain a large stochasticesmjacnatrix, where again
each entry of the large matrix gives the probability of that particular edgeaamg in a big graph. Such
stochastic adjacency matrix effectively defines a probability distributiom allegraphs. To obtain a
graph we simply sample an instance from this distribution by sampling individigglss where each edge
appears independently with probability given by the entry of the large astichadjacency matrix. More
formally, we define:

Definition 5.3.15 (Stochastic Kronecker Graph)et P; be a Ny x N; probability matrix the value
9;; € P1 denotes the probability that edgg ;) is presentf;; € [0, 1].
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Thenk! Kronecker powerPl[k] = P, where each entry,,, € P, encodes the probability of an edge
(u,v).

To obtain a graph, amnstance(or realizatior), K = R(P)) we include edgéu, v) in K with probability
Puvs Puv € Pr.

First, note that sum of the entries Bf, Zij 0;;, can be greater than 1. Second, notice that in principle it
takesO(NZF) time to generate an instanéeof a Stochastic Kronecker graph from the probability matrix
Pr.. This means the time to get a realizatihis quadratic in the size dP; as one has to flip a coin for
each possible edge in the graph. Later we show how to generate Sto&masticker graphs much faster,
in the timelinear in the number of edges iRy.

Probability of an edge

For the size of the graphs we aim to model and generate here takirfgr /&) and then explicitly
performing the Kronecker product of the initiator matrix is infeasible. Tlasoa for this is thaP; is
usually dense, s®; is also dense and one can not store it in memory. However, due to the strattu
Kronecker multiplication one can easily computer the probability of an ed@g.in

The probabilityp,,, of an edge(u, v) occurring ink-th Kronecker powefP = P, can be calculated in
O(k) time as follows:

Puv = lﬁP“u]\_f{IJ (modN,) + 1, V];;J (modN,) + 1} (5.2)
i=0

The equation imitates recursive descent into the mariwhere at every levelthe appropriate entry of
P, is chosen. Sinc® hasN{ rows and columns it take@(k log V1) to evaluate the equation. Refer to
figure5.6for the illustration of the recursive structure Bf

5.3.4 Additional properties of Kronecker graphs

Stochastic Kronecker Graphs with initiator matrix of sixg = 2 were studied by Mahdian and Xu
[Mahdian and Xu2007. Authors show a phase transition for the emergence of the giant comipamne
another phase transition for connectivity, and prove that such greplesconstant diameters beyond the
connectivity threshold, but are not searchable using a decentralgmittam [Kleinberg 19994.

Moreover, recently Tsourakakis200§ gave a closed form expression for the number of triangles in a
Kronecker graph that depends on the eigenvalues of the initiator gfaph

5.3.5 Two interpretations of Kronecker graphs

Next, we present two natural interpretations of the generative proedssd the Kronecker Graphs that
go beyond the purely mathematical construction of Kronecker Graphsraduiced so far.

We already mentioned the first interpretation when we first defined Kkenegraphs. One intuition
is that networks and communities in them grow recursively, creating miniatyniesof themselves.
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Figure 5.6: Stochastic Kronecker initiatdP, and the corresponding*® Kronecker powerP,. Notice
the recursive nature of the Kronecker product, with edgégidities inP, simply being
products of entries dP; .

Figure 5.1 depicts the process of the recursive community expansion. In factasegsearchers have
argued that real networks are hierarchically organifRRavhsz et al.2002 Ravasz and Barasi 2003
and algorithms to extract the network hierarchical structure have alsodeseloped$ales-Pardo et al.
2007, Clauset et a).2008. Moreover, especially web graphBi[l et al., 2002 Dorogovtsev et al.2002
Crovella and Bestavrod997 and biological networksRavasz and Barasi 2003 were found to be
self-similar and “fractal”.

Second intuition comes from viewing every nodeFafas being described with an ordered sequende of
nodes fronP;. (This is similar to the Observatidn3.3and the proof of Theorerd.3.14)

Let’s label nodes of the initiator matri®;, ui, ..., uy,, and nodes oP;, asv, . .. s Uk Then every node
v; of Py, is described with a sequengg(1), . . ., v;(k)) of node labels ofP;, wherev; (1) € {uy, ..., ux}.
Similarly, consider also a second nadewith the label sequende; (1), ...,v;(k)). Then the probability

pe Of an edg€v;, v;) in Py, is exactly:

k
Pe(vi, vj) = Prlvi, vj] = le [vi (1), v;(1)]
=1

(Note this is exactly the Equatidn2)

Now one can look at the description sequence of nagdas ak dimensional vector of attribute val-
ues(vi(1),...,vi(k)). Thenp.(v;,v;) is exactly the coordinate-wise product of appropriate entries of
P1, where the node description sequence selects which entries to multiply, thiet®, matrix can be
thought of as the attribute similarity matrixe., it encodes the probability of linking given that two nodes
agree/disagree on the attribute value. Then the probability of an edge is sirppbduct of individual
attribute similarities over the N;-ary attributes that describe each of the two nodes.

This gives us a very natural interpretation of Stochastic KroneckgrhgraEach node is described by
a sequence of categorical attribute values or features. And then thehiity of two nodes linking
depends on the product of individual attribute similarities. This way Krk@egraphs can effectively
model homophily (nodes with similar attribute values are more likely to link)Ppyhaving high value
entries on the diagonal; or heterophily (nodes that differ are more likely thbyn#; having high entries
off the diagonal.
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Figure5.6shows an example. Let’s label nodesiyfuy, us as in Figures.6(a). Then every node @ is
described with an ordered sequence: difinary attributes. For example, Figuses(b) shows an instance
for k£ = 2 where nodes; of Ps is described byu, uz), and similarlyvs by (uz,u1). Then as shown in
Figure5.6(b), the probability of edge. (v2, v3) = b- ¢, which is exactlyP; [ug, u1] - Pyluy, us] =b-c—
the product of entries dP;, where the corresponding elements of the description of negasdvs act
as selectors of which entries Bf to multiply.

Figure5.6(c) further illustrates the recursive nature of Kronecker graph® €an see Kronecker product
as recursive descent into the big adjacency matrix where at each stage the entries or blocks is
chosen. For example, to get to entmy, v3) one first needs to dive into quadranfollowing by the
guadrant. This intuition will help us in sectio®.3.6to devise a fast algorithm for generating Kronecker
graphs.

However, there are also two notes to make here. First, using a single infilatee are implicitly as-
suming that there is one single and universal attribute similarity matrix that hotdssallk N;-ary
attributes. One can easily relax this assumption by taking a different initiatoixnfiaitreach attribute
(initiator matrices can even be of different sizes as attributes are ofdiffarity), and then Kronecker
multiplying them to obtain a large network. Here each initiator matrix plays the ra@ériute similarity
matrix for that particular attribute.

For simplicity and convenience we will work with a single initiator matrix but all outthnds can be
trivially extended to handle multiple initiator matrices. Moreover, as we will see ilatgection5.6 even
a single2 x 2 initiator matrix seems to be enough to capture large scale statistical properried-aforld
networks.

Second assumption is harder to relax. When describing everywmadth a sequence of attribute values
we are implicitly assuming the values of all attributes are uniformly distributece(bamne proportions),
and that every node has a unique combination of attribute values. So,salbjgocombinations of at-
tribute values are taken. For example, nogén a largeP;, has attribute sequenc¢e;, u1,...,u1), vy,

has (u1,u1,.. ., u1, un,), while the “last” nodev,. is has attribute valueguy,, un,, ..., uy,). One
can think of this as counting ifV;-ary number system, where node attribute descriptions rangefrom
(i.e., “leftmost” node with attribute descriptiofu;, u1, ..., u1)) to NF (i.e, “rightmost” node attribute
description(un, , uny, - - -, Uny ))-

A simple way to relax the above assumption is to take a larger initiator matrix with a smattgver of
parameters than the number of entries. This means that multiple entfigsvafl share the same value
(parameter). For example, if attributge takes one value 66% of the times, and the other value 33% of
the times, then one can model this by taking & 3 initiator matrix with only four parameters. Adopting
the naming convention of Figui6this means that parametenow occupies & x 2 block, which then
also make$ andc occupy2 x 1 and1 x 2 blocks, andf a single cell. This way one gets a four parameter
model with uneven feature value distribution.

We note that the view of Kronecker graphs where every node is dedcvilith a set of features and
the initiator matrix encodes the probability of linking given the attribute values ofrtades somewhat
resembles the Random dot product graphs modeliig and Scheinerma007, Nickel, 2008. The
important difference here is that we multiply individual linking probabilitiesilesin Random dot product
graphs one takes the sum of individual probabilities which seems somighkatatural.
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5.3.6 Fast generation of Stochastic Kronecker Graphs

The intuition for fast generation of Stochastic Kronecker Graphs conoes the recursive nature of
the Kronecker product and is closely related to the R-Mat graph gemdthakrabarti et al.2004.
Generating a Stochastic Kronecker graghon N nodes naively take®(N?) time. Here we present a
linear timeO(F) algorithm, where? is the (expected) number of edgesin

Figure5.6(c) shows the recursive nature of the Kronecker product. Tov&irto a particular edgév;, v;)
of P, one has to make a sequencekdiin our casek = 2) decisions among the entries Bf, multiply
the chosen entries @%;, and then placing the edde;, v;) with the obtained probability.

Instead of flippingO(N?) = O(N?#*) biased coins to determine the edges, we can plaeglges by
directly simulating the recursion of the Kronecker product. Basically warsiaeely choose sub-regions
of matrix K with probability proportional td@;;, 0;; € P: until in k£ steps we descend to a single cell of
the matrix and place an edge. For example(farvs) in Figure5.6(c) we first have to choogefollowing

by c.

As probability of each individual edge @, follows a Bernoulli distribution, as the edge occurrences
are independent, the number of edge®inis Binomially distributed with meany_ 6;;)* = E¥, where

0;; € P1. So, given a stochastic initiator matrfx; we first sample the expected number of edges

in P, from a Binomial distribution. Then we place edges in a grapli’, by applying the recursive
descent folk steps where at each step we choose efitry) with probabilityd;; / E1 whered;; € P, and

E, = Zij 0;;. Since we add? = EY edges, the probability that edge;, v;) appears inkK is exactly
Prvi, v;]. This basically means that in Stochastic Kronecker Graphs the initiator mataxies both the
total number of edges in a graph and their structdred;; encodes the number of edges in the graph,
while the proportions (ratios) of valués; define how many edges each part of graph adjacency matrix
will contain.

In practice it can happen that more than one edge lands in the @ame) cell of K. Even though
values ofP; are usually skewed, adjacency matrices of real network are sparsie mtigates the prob-
lem.

5.3.7 Observations and connections

Next, we describe several observations about the properties oégkengraphs and make connections to
other network models.

e Bipartite graphs:Kronecker Graphs can naturally model bipartite graphs. Instead ¢ihgtavith
a squareV; x Nj initiator matrix, one can choose arbitrai; x M initiator matrix, where rows
define “left”, and columns the “right” side of the bipartite graph. Kroneckeltiplication will then
generate bipartite graphs with partition siZé§ and MF.

e Graph distributions: P;, defines a distribution over all graphs, as it encodes the probability of all
possibleNZ* edges appearing in a graph by using exponentially smaller number of garargest
N2). As we will later see even a very small number of paramegegs,4 (2 x 2 initiator matrix) or
9 (3 x 3 initiator), is enough to accurately model the structure large networks.

¢ Natural extension of Eiis-Renyi random graph modelStochastic Kronecker Graphs represent a
natural extension of Efis-Renyi [Erdds and Rnyi, 1960 random graphs. If one take® = [0;;],
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where every;; = p then we obtain exactly the Ebd-Renyi model of random grapl,, ,,, where
every node appears independently with probabijlity

¢ Relation to R-mat modelhe recursive nature of Stochastic Kronecker Graphs makes thetedrela
to the R-mat generatoChakrabarti et al2004. The difference between the two models is that in
R-mat one needs to separately specify the number of edges, while in S&todt@necker Graphs
initiator matrix P; also encodes the number of edges in the graph. SeBt6 built on this
similarity to devise a fast algorithm for generating Stochastic Kroneck@hgra

¢ Densification:Similarly as with deterministic Kronecker graphs the number of nodes in a $tiicha
Kronecker Graph grows &g}, and the expected number of edges growsas; 0;;)F. This means
one would want to choose valuég of the initiator matrixP; so that_, . 6;; > Ny in order for the
resulting network to densify.

5.4 Simulations of Kronecker graphs

In previous section we proved and now we demonstrate using simulationititye @tKronecker graphs
to match the patterns of real-world networks. We will tackle the problem of estighthe Kronecker
Graphs model from real datieg., finding the most likely initiatofP;, in the next section. Instead here we
present simulation experiments using Kronecker graphs to explore tametar space, and to compare
properties of Kronecker Graphs to those found in large real networks

5.4.1 Comparison to real graphs

We observe two kinds of graph patterns — “static” and “temporal.” As meatia@arlier, common static
patterns include degree distribution, scree plot (eigenvalues of gdjpbeacy matrix vs. rank) and
distribution of components of the principal eigenvector of graph adjgceratrix. Temporal patterns
include the diameter over time, and the densification power law. For the diaroetputation, we use the
effective diameter as defined in Secti®i.2

For the purpose of this section consider the following setting. Given agreph G we want to find
Kronecker initiator that produces qualitatively similar graph. In principle oould try choosing each of
the N? parameters for the matriR; separately. However, we reduce the number of parametersifipm

to just two: « and 8. Let K7 be the initiator matrix (binary, deterministic); we create the corresponding
stochastic initiator matriP; by replacing each “1” and “0” of<; with « and 3 respectively § < «).

The resulting probability matrices maintain — with some random noise — the self-sstril@ture of the
Kronecker graphs in the previous section (which, for clarity, wedetérministic Kronecker graphswWe
defer the discussion of how to estimé&te from dataG to the next section.

The datasets we use here are:

e CIT-HEP-TH: This is a citation graph for High-Energy Physics Theory researclergapom pre-
print archive ArXiv, with a total ofN = 29, 555 papers and = 352, 807 citations [Gehrke et al.
2003. We follow its evolution from January 1993 to April 2003, with one dat&pper month.

e As-RoOUTEVIEWS. We also analyze a static dataset consisting of a single snapshot ottuitye
among Internet Autonomous SysteniRoteViews 1997 from January 2000, withV = 6,474
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Figure 5.7: Citation network CIT-HEP-TH): Patterns from the real graph (top row), the deterministic
Kronecker graph with; being a star graph on 4 nodes (center + 3 satellites) (midai, r
and the Stochastic Kronecker graph=€ 0.41, 5 = 0.11 — bottom row).Staticpatterns: (a)
is the PDF of degrees in the graph (log-log scale), and (bdigtabution of eigenvalues (log-
log scale).Temporalpatterns: (c) gives the effective diameter over time (lidagar scale),
and (d) is the number of edges versus number of nodes ovefltbguog scale). Notice that
the Stochastic Kronecker Graph qualitatively matchesallpatterns very well.

andE = 26, 467.

Results are shown in Figuge7 for the QT-HEP-TH graph which evolves over time. We show the plots of
two static and two temporal patterns. We see that the deterministic Kronecket ati@hdy captures the
gualitative structure of the degree and eigenvalue distributions, as viled smmporal patterns represented
by the Densification Power Law and the stabilizing diameter. However, thengatstic nature of this
model results in “staircase” behavior, as shown in scree plot for thendigistic Kronecker graph of
Figure 5.7 (column (b), second row). We see that the Stochastic Kronecker &mapboth out these
distributions, further matching the qualitative structure of the real data; alseymatch the shrinking-
before-stabilization trend of the diameters of real graphs.

Similarly, Figure5.8 shows plots for the static patterns in thatonomous systeni8 s-ROUTEV IEWS)
graph. Recall that we analyze a single, static network snapshot in tlds tasddition to the degree
distribution and scree plot, we also show two typical pl@dkrabarti et al.2004: the distribution of
network valuegprincipal eigenvector components, sorted, versus rank) andapglot(the number of
reachable pairg(h) within & hops or less, as a function of the number of hbpsNotice that, again, the
Stochastic Kronecker graph matches well the properties of the redl.grap
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Figure 5.9: Diameter over time for a 4-node chain initiator graph. Aféach consecutive Kronecker
power we measure the effective diameter. We use differdtinge of o parameter.a =
0.38,0.43,0.54 and3 = 0, respectively.

5.4.2 Parameter space of Kronecker Graphs

Last we present simulation experiments that investigate the parameter $pativastic Kronecker
Graphs.

First, in Figure5.9we show the ability of Kronecker Graphs to generate networks with incigasonstant
and decreasing/stabilizing effective diameter. We start with a 4-node chiator graph, setting each
“1” of K, to a and each “0” tog = 0 to obtain’P; that we then use to generate a growing sequence
of graphs. We plot the effective diameter of eadfP;.) as we generate a sequence of growing graphs
R(P2), R(P3),...,R(P1o). R(P1o) has exactlyl, 048, 576 nodes. Notice Stochastic Kronecker graphs
is a very flexible model. When the generated graph is very sparse (low @llu) we obtain graphs
with slowly increasing effective diameter (Figuse(a)). For intermediate values afwe get graphs with
constant diameter (Figui9(b)) and that in our case also slowly densify with densification exponent in
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Figure 5.10: Fraction of nodes in the largest weakly connected compo@®ntN) and the effective
diameter for 4-star initiator graph. (a) We fikx= 0.15 and varya. (b) We vary bothw
andg. (c) Effective diameter of the network, if network is disoacted or very dense path
lengths are short, the diameter is large when the networarislypconnected.

a = 1.05. Last, we see an example of a graph with shrinking/stabilizing effective démElere we

set thear = 0.54 which results in a densification exponent of 1.2. Note that these obsevaie not
contradicting Theorerb.3.12 Actually, these simulations here agree well with the analysis of Mahdian
and Xu Mahdian and Xu2007.

Last, we examine the parameter space of a Stochastic Kronecker grapihwédchoose a star on 4 nodes
as a initiator graph and use the familiar parameterization, usiagd 3. The initiator graph and the
structure of the corresponding (deterministic) Kronecker graph aujgiamatrix is shown in top row of
Figure5.3

Figure5.1Qa) shows the sharp transition in the fraction of the number of nodes tluigo® the largest
weakly connected component as we fix= 0.15 and slowly increasev. Such phase transitions on
the size of the largest connected component also occur isEHREnyi random graphs. Figue1Qb)
further explores this by plotting the fraction of nodes in the largest caad@omponent./N) over the
full parameter space. Notice a sharp transition between disconnectiéd énda) and connected graphs
(dark).

Last, Figure5.1Qc) shows the effective diameter over the parameter spacg) for the 4-node star
initiator graph. Notice that when parameter values are small, the effectineetéais small, since the
graph is disconnected and not many pairs of nodes can be reachedhdjme of the transition between
low-high diameter closely follows the shape of the emergence of the codnemteponent. Similarly,
when parameter values are large, graph is very dense, and the diansetadlisThere is a narrow band
in parameter space where we get graphs with interesting diameters.

5.5 Kronecker graphs model estimation

In previous sections we proved that shapes (parametric forms) ofigargtwork properties of Kronecker
graphs follow those found in real networks. Moreover, we also ghsed form expressions that allow
us to calculate a propertg.g, diameter, eigenvalue spectrum) of a network given just the initiator matrix.
So in principle, one could invert the equations and directly get from aeptpige.g, shape of degree
distribution) to the values of initiator matrix.
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However, in previous section we did not say anything about how vanietygork properties of a Kronecker
graph correlate and interdepend. For example, it could be the casedhatrthmutually exclusive. So
one could, for instance, only match the network diameter but not the ddggtedution or vice versa.

However, as we show later this is not the case.

Now we turn our attention to automatically estimating the Kronecker initiator grapk.s€tting is that
we are given a real netwoik and would like to find a Stochastic Kronecker initiaf@y that produces a
synthetic Kronecker grapH thatis “similar” toG. One way to measure similarity is to compare statistical
network properties, like diameter and degree distribution, of grépasd K.

Comparing statistical properties already suggests a very direct appim#ds problem: One could first
identify the set of statistics to match, then define an error metric and somehowizgpover it. For
example, one could use the KL divergenkellback and Leibler1951], or the sum of squared differences
between the degree distribution of the real netw@rknd its synthetic counterpaki. Moreover, as we
are interested in matching several such statistics between the network®oliehave to meaningfully
combine these individual error metrics into a global error metric. So, onddaltave to specify what
kind of properties he or she cares about and then combine them aagpgrdihis would be a hard task
as the patterns of interest have very different magnitudes and scate@soWér, as new network patterns
are discovered, the error functions would have to be changed andsweekstimated. And even then it
is not clear how to define the optimization procedure and how to perform optianizover the parameter
space.

Our approach here is different. Instead of committing to a set of netwopepties ahead of time, we will
try to directly match the adjacency matrices of real netw@nd its synthetic counterpaii. The idea is
that if the adjacency matrices are similar then the global statistical propettéist{ss computed ovek
and(@) will also match. Moreover, by directly working with the graph itself (and suwhmary statistics),
we do not commit to any particular set of network statistics (network progfstiderns) and as new
statistical properties of networks are discovered our models and estinzatedgiers still hold.

5.5.1 Preliminaries

Stochastic graph models introduce probability distributions over graphsen&rgtive model assigns a
probability P(G) to every graphG. P(G) is thelikelihood that a given model (with a given set of
parameters) generated gragh We concentrate on Stochastic Kronecker Graph model, and consider
fitting it to a real graphz, our data. We use maximum likelihood approadadh, we aim to find parameter
values, the initiato®;, that maximize the”(G) under the Stochastic Kronecker model.

This presents several challenges:

e Model selection: Graph is a single structure, and not a set of items drawn i.i.d. from some distrib
tion. So one can not split it into independent training and test sets. Thegddtadheters will thus
be best to generateparticular instance of a graph. Also, overfitting could be an issue since more
complex model generally fits better.

e Node correspondence:The second challenge is the node correspondence or node labeling prob
lem. GraphGG has a set ofV nodes, and each node has unique index (label, id). Labels do ngt carr
any particular meaning, they just uniquely denote or identify the nodesc&nthink of this as the
graph is first generated and then the labels (node ids) are randomlgexsithis means that two
isomorphic graphs that have different node ids should have the samedib@lilPermutatiom is

111



sufficient to describe the node correspondences as it maps labets (idsles of the graph. To com-
pute the likelihoodP(G) one has to consider all node correspondetit@s) = > P(G|o)P(o),
where the sum is over alV! permutationsr of N nodes. Calculating thisuper-exponentisgum
explicitly is unfeasible for any graph with more than a handful of nodesiitively, one can think
of this summation as some kind of graph isomorphism test where we are isgdiahbest corre-
spondence (mapping) between node&andP.

* Likelihood estimation: CalculatingP(G|o) naively takesD(N?) as one has to evaluate the prob-
ability of each of theV2 possible edges in the graph adjacency matrix. Again, for graphs of size w
want to model here, approaches with quadratic complexity are infeasible.

To develop our solution we use sampling to avoid super-exponential sentf@/node correspondences.
By exploiting the structure of the Kronecker matrix multiplication we develop aardhgn to evaluate
P(Glo)inlineartime O(E). Since real graphs asparsei.e., the number of edges is roughly of the same
order as the number of nodes, this makes fitting of Kronecker Graphgtoratworks feasible.

5.5.2 Problem formulation

Suppose we are given a grapgton N = N} nodes (for some positive integle), and aN; x N; Stochastic
Kronecker Graph initiator matri®;. HereP; is a parameter matrix, a set of parameters that we aim to
estimate. For now also assumg, the size of the initiator matrix, is given. Later we will show how to
automatically select it. Next, using; we create a Stochastic Kronecker Graph probability ma®ix
where every entry,,,, of P, contains a probability that node links to nodev. We then evaluate the
probability thatG is a realization ofP,. The task is to find suc#; that has the highest probability of
realizing (generating)-.

Formally, we are solving:

arg max P(G|P1) (5.3)
1

To keep the notation simpler we use standard syndbtd denote the parameter matf that we are
trying to estimate. We denote entries@f= P, = [¢;;], and similarly we denot® = P, = [p;;]. Note
that here we slightly simplified the notation: we #3¢o refer toP,, andd;; are elements ad. Similarly,
pi; are elements oP (= Px). Moreover, we denot& = R(P), i.e, K is a realization of the Stochastic
Kronecker graph sampled from probabilistic adjacency mé&rix

As noted before, the node ids are assigned arbitrary and they casignificant information, which means
that we have to consider all the mappings of nodes fédmo rows and columns of stochastic adjacency
matrix P. A priori all labelings are equally likely. A permutation of the set{1,..., N} defines this
mapping of nodes frorr to stochastic adjacency matrx To evaluate the likelihood af one needs to
consider all possible mappings &f nodes ofGG to rows (columns) ofP. For convenience we work with
log-likelihood!(©), and solve® = arg maxg [(©), wherel(©) is defined as:

1(©) = log P(G|®) =log ) P(G|O,0)P(c]0O)
= log) P(G|6,5)P(0) (5.4)
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' Kronecker
arg max P ( — @)

Figure 5.11: Kronecker parameter estimation as an optimization probl&we search over the initia-
tor matrices® (= P;). Using Kronecker multiplication we create probabilistidjacency
matrix ©*] that is of same size as real netwark Now, we evaluate the likelihood by si-
multaneously traversing and multiplying entries@fand©*! (see Eq5.5). As shown by
the figure permutatios plays an important role, as permuting rows and columrs obuld
make it look more similar t®*] and thus increase the likelihood.

The likelihood that a given initiator matri® and permutation gave rise to the real gragh, P(G|©, o),

is calculated naturally as follows. First, by usi@gwe create the Stochastic Kronecker graph adjacency
matrix P = P, = Ol¥l. Permutatiory defines the mapping of nodes 6fto the rows and columns of
stochastic adjacency matriR. (See Figurés.11for illustration.) We then model edges as independent
Bernoulli random variables parameterized by the parameter m@triso, each entry,, of P gives
exactly the probability of edgeu, v) appearing.

We then define the likelihood:

P(G|P, o) H Plow, o] H (1 = Plow,0v]), (5.5)
(u0)eG (u,0)¢G

where we denote; as thei’” element of the permutatian andP[i, j] is the element at rody and column
j of matrix P = Ok,

The likelihood is defined very naturally. We traverse the entries of adjga@atrix G and then based on
whether a particular edge appearedsior not we take the probability of edge occurring (or not) as given
by P, and multiply these probabilities. As one has to touch all the entries of the stachdjacency
matrix P evaluating Equatios.5takesO(N?).

We further illustrate the process of estimating Stochastic Kronecker initiatoixnmatin Figure5.11

We search over initiator matricé3 to find the one that maximizes the likelihodt| G|©). To estimate
P(G|©) we are given a concret® and now we use Kronecker multiplication to create probabilistic
adjacency matri®¥! that is of same size as real netwa@rk Now, we evaluate the likelihood by traversing
the corresponding entries 6f and©!*!. Equation5.5 basically traverses the adjacency matrix®fand
maps every entryu, v) of G to a corresponding entrfy,,, o,,) of P. Then in case that edde, v) exists

in G (i.e, G[u,v] = 1) likelihood that particular edge existing [0, 0,,], and similarly, in case the
edge(u, v) does not exists the likelihood is simply— P|o,, 0,]. This also demonstrates the importance
of permutations, as permuting rows and columns Gfcould make the adjacency matrix looking more
“similar” to ©*], and would increase the likelihood.

So far we showed how to asses the quality (likelihood) of a parti¢dla®o, naively one could perform
some kind of exhaustive grid search to find b@stHowevgr, this is very inefficient. A better way of
doing it is to compute the gradient of the Iog-IikeIiho%l(@), and then use the gradient to update the
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Algorithm 5.1: KRONFIT algorithm.

input : size of parameter matri¥;, graphG on N = N nodes, and learning rate
output: MLE parameter® (N7 x N; probability matrix)

initialize ©,
while not convergedio
evaluate gradientéi@l(ét)
update parameter estimatéy;, ;| = O, + )‘a%tl(ét)
end
return © = 6,

current estimate a and move towards a solution of higher likelihood. Algoritbm gives an outline of
the optimization procedure.

However, there are several difficulties with this algorithm. First, we arenaisgy gradient descent type
optimization will work,i.e. the problem does not have (too many) local minima. Second, we are summing
over exponentially many permutations in equatmd. Third, the evaluation of equatioh.5 as it is
written takesO(IN?) and needs to be evaluatéd times. So, just naively calculating the likelihood takes
O(N!N?).

Observation 5.5.1. The complexity of calculating the likelihoall(G|©) of the graphG naively is
O(N'!N?), whereN is the number of nodes .

Next, we show that all this can be dondimear time

5.5.3 Summing over the node labelings

To maximize equatioB.3using algorithnb.1we need to obtain the gradient of the Iog-IikeIihoﬁgl(@).
We can write:

) 1oy _ Lo (G0 0)P(0)
> P(Glo’,©)P(d’)
0log P(G|o, ©)

x, 2P0 b, 0)p(o)
- P(G|O)
_ o Qlos f;g'“ ) piolc, 0) (5.6)

e}

Note we are still summing over aN'! permutationgr, so calculating edb.6is computationally intractable
for graphs with more than a handful of nodes. However, the equat®a hice form which allows for use
of simulation techniques to avoid the summation over super-exponentially maleycoorespondences.
Thus, we simulate draws from the permutation distributitfior|G, ©), and then evaluate the quantities
at the sampled permutations to obtain the expected values of log-likelihoodaaidrg. Algorithm5.2
gives the details.
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Algorithm 5.2: Calculating log-likelihood and gradient
input : Parameter matri®, and graph
output: Log-likelihood!(©), and gradieng%l(@)
fort:=1toTdo
o .= SamplePermutation (G, ©)
l; =log P(Glo®, ©)
grad, := % log P(Glo®), ©)
end
return 1(©) = £ 37,1, and;51(0) = £ 3", grad,

Sampling permutations

Next, we describe the Metropolis algorithm to simulate draws from the permuthsivibution P (o |G, ©),
which is given by

. P(.G,®) Y, P(0,G.0)
Pl6.0) = sp ae) ~ Z,

whereZ, is the normalizing constant that is hard to compute since it involves the sunidveements.
However, if we compute the likelihood ratio between permutatioasdo’ (Equations.7) the normalizing
constants nicely cancel out:

P(d'|G,0) H Plow, 0u] H (1= Ploy,0u])
St = Sw e o Tw O] (5.7)
o _ o
P(U‘G’ 9) (u,v)eG P[UU7UU] (U,’L))%G P[UU7UU])
Plow, o4 H (1 = Ploy, ou])
= I == e (5.8)
(u,v)eG 'P[U{“ 0’2] (u,0)¢G (1 B ,P[U{u ‘71,;])
(UMUU)#(ULUD (Uu’gv)?ﬁ(U;’U{;)

This immediately suggests to use of Metropolis sampling algoritBamjerman1997 to simulate draws
from the permutation distribution since Metropolis is solely based on such i@iosre normalizing
constants cancel out). In particular, suppose that in the MetropoligthlgofAlgorithm 5.3) we consider
a move from permutatios to a new permutation’. Probability of accepting the move & is given by

Equation5.7 (if A%&s) < 1) or 1 otherwise.

Now we have to devise a way to sample permutati@risom the proposal distribution. One way to do
this would be to simply generate a random permutatioand then check the acceptance condition. This
would be very inefficient as we expect the distributiB(v |G, ©) to be heavily skewed,e., there will

be a relatively small number of good node mappings. Even more so as tree dégtributions in real
networks are skewed there will be many bad permutations with low likelihoodesngood ones that do

a good job in matching nodes of high degree.

To make the sampling process “smoothe, sample permutations that are not that different (and thus
are not randomly jumping across the permutation space) we design a Mdwdiov The idea is to stay in
high likelihood part of permutation space longer. We do this by making samefendenti.e., giveno’

we want to generate next candidate permutatiomo then evaluate the likelihood ratio. When designing
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Algorithm 5.3: SamplePermutation( G, ©) : Metropolis sampling of the node permutation.
input : Kronecker initiator matri© and a graplz on N nodes
output: Permutations) ~ P(o|G, ©)

o :=(1,...,N)

1=1
repeat
Draw j andk uniformly from (1,..., N)

o) := SwapNodes(c(— Y, j, k)
Draw v from U (0, 1)

P(c"|G,0)
P ICO) then

o = g1
end
izi+1l
until o) ~ P(c|G,0©)
return o

if u>

WhereU (0, 1) is a uniform distribution orf0, 1], ando’ := SwapNodes( o, j, k) is the
permutations’ obtained fronmo by swapping elements at positionandk.

the Markov chain step one has to be careful so that the proposal distnilsatisfies the detailed balance
condition. This means that probability of a generating a candidafeom o’ has to be same as transition
in the opposite wayP (¢’ — ¢”) = P(¢” — o’).

In algorithm 5.3 we use a simple proposal where given permutatibnve generater” by swapping
elements at two uniformly at random chosen positions’of\We refer to this proposal &&wapNodes.
While this is simple and clearly satisfies the detailed balance condition it is alsaieeffin a way
that most of the times low degree nodes will get swapped (a direct comsegjof heavy tailed degree
distributions). This has two consequences, (a) we will slowly convergmaa permutations (accurate
mappings of high degree nodes), and (b) once we reach a good pgomwary few permutations will
get accepted as most proposed permutatidngill swap low degree nodes (as they form the majority of
nodes).

A possibly more efficient way would be to swap elements dfiased based on corresponding node de-
gree. However, doing this directly does not satisfy the detailed balamzitiom. A way of sampling
labels biased by node degrees that at the same time satisfies the detailed baladiton is the fol-
lowing: we pick an edge it uniformly at random and swap the labels of the endpoints. Notice this
is biased towards swapping labels of nodes with high degrees simply asaheyrtore edges. The de-
tailed balance condition holds as edges are sampled uniformly at randomef&¥ear this proposal as
SwapEdgeEndpoints

However, the issue with this proposal is that if the gr&pls disconnected, we will only be swapping
labels of nodes that belong to the same connected component. This measmntkagparts of the per-
mutation space will never get visited. To overcome this problem we ex&wépNodes with some
probabilityw andSwapEdgeEndpoints  with probability 1 — w.

To summarize we consider the following two permutation proposal distributions:

e ¢’ = SwapNodes(¢’): we obtains” by takings’, uniformly at random selecting a pair of elements
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and swapping their positions.

e ¢’ = SwapEdgeEndpoints (¢’): we obtaine” from ¢’ by first sampling an edgg, k) from G
uniformly at random, then we také and swap the labels at positiopandk.

Speeding up the likelihood ratio calculation

We further speed up the algorithm by using the following observation. Atsanwrthe equatiors.7 takes
O(N?) to evaluate since we have to considéf possible edges. However, notice that permutations
ando’ differ only at two positionsi.e. elements at positios andk are swapped,e., ¢ ando’ map all
nodes except the two to the same locations. This means those elements ofregatamcel out. Thus

to update the likelihood we only need to traverse two rows and columns of niatimamely rows and
columnsj andk, since everywhere else the mapping of the nodes to the adjacency matris#srbdor
both permutations. This gives equatm8where the products now range only over the two rows/columns
of P whereo ando’ differ.

Graphs we are working with here are too large to allow us to explicitly createstme the stochastic
adjacency matri® by Kronecker powering the initiator matr2. Every time probabilityP[i, j] of edge
(i,7) is needed the equatidn2 is evaluated, which take@(k). So a single iteration of algorithrd.3
takesO(kN).

Observation 5.5.2. Sampling a permutatioa from P (|G, ©) takesO(kN).

This is gives us an improvement over th¢ N'!) complexity of summing over all the permutations. So
far we have shown how to obtain a permutation but we still need to evaluate éfiadidd and find the
gradients that will guide us in finding good initiator matrix. The problem hereasrihively evaluating
the network likelihood (gradient) as written in equat®s takes timeO(N?). This is exactly what we
investigate next and how to calculate the likelihoodimear time

5.5.4 Efficiently evaluating likelihood and gradient

We just showed how to efficiently sample node permutations. Now, givemaupation we show how to
efficiently evaluate the likelihood and it's gradient. Similarly as evaluating the likethratio, naively
calculating the log-likelihood(©) or its gradient%l(@) takes time quadratic in the number of nodes.
Next, we show how to compute this in linear tirog £).

We begin with the observation that real graphs are sparse, which mednsamumber of edges is not
quadratic but rather almost linear in the number of nodess N2. This means that majority of entries

of graph adjacency matrix are zer®,, most of the edges are not present. We exploit this fact. The idea is
to first calculate the likelihood (gradient) of an empty gragh, a graph with zero edges, and then correct
for the edges that actually appearin

To naively calculate the likelihood for an empty graph one needs to evakettgeell of graph adjacency
matrix. We consider Taylor approximation to the likelihood, and exploit the streof matrixP to devise
a constant time algorithm.

First, consider the second order Taylor approximation to log-likelihoodnofédge that succeeds with
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probability z but does not appear in the graph:

Calculatingl.(0©), the log-likelihood of an empty graph, becomes:

N N N1 N k 1 N1 Ny k
1e(©) = ZZlog(l — pij) = —<229@'j> - 2<ZZ%2> (5.9)

i=1 j=1 =1 j=1 =1 =1

Notice that while the first pair of sums ranges o¥eelements, the last pair only ranges oyarelements
(N1 = log;, N). Equation5.9holds due to the recursive structure of maffixyenerated by the Kronecker
product. We substitute theg(1 — p;;) with its Taylor approximation, which gives a sum over elements
of P and their squares. Next, we notice the sum of elemeni fuirms a multinomial series, and thus
>, i = (325, 05", whered;; denotes an element 6f, andp;; element of0*].

Calculating log-likelihood oiG now takesO(FE): First, we calculate the likelihood of an empty graph
in constant time, and then account for the edges that are actually piesenite., we subtract no-edge
likelihood and add the edge likelihoods:

() =1(0)+ > —log(l —Ploy,0u]) +log(Plow, 0u])
(u0)eG

5.5.5 Calculating the gradient

Calculation of the gradient of log-likelihood follows exactly the same pattedeasribed above. We first
calculate gradient as if grapghi would have no edges. Then we correct the gradient for the edgesréhat
present inG. As in previous section we speed up the calculations of the gradient lyitaxgp the fact
that two consecutive permutatioasando’ differ only at two positions, and thus given the gradient from
previous step one only needs to account for the swap of the two rowsodundns of the gradient matrix
JP /00 to update to the gradients of individual parameters.

5.5.6 Determining the size of initiator matrix

The question we answer next is how to determine the right number of parametewhat is the right
size of © matrix? This is a classical question of model selection where there is a tréddaten the
complexity of the model, and the quality of the fit. Bigger model with more paramesely fits better,
however it is also more likely to overfit the data.

For model selection to find the appropriate valuéVaf the size of matriX©, and choose the right tradeoff
between the complexity of the model and the quality of the fit, we propose to efayes Informa-
tion Criterion (BIC) [Schwarz 1978. Stochastic Kronecker Graphs model the presence of edges with
independent Bernoulli random variables, where the canonical nuailparameters isv2k which is a
function of a lower-dimensional parameter This is then aurved exponential familjefron, 1979, and

BIC naturally applies:

BIC = —(6) + %Nf log(N?)
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where® are maximum likelihood parameters under the model Witbf size Ny x Ny, and N is the
number of nodes id.

Similarly, to BIC one could also consider the Minimum Description Length (MDR)sfanen1978
principle where the model is scored by the quality of the fit plus the size ofakerightion that encodes
the model and the parameters.

5.6 Experiments on real and synthetic data

We divide the experiments into several subsections. First we examinerthergence and mixing of the
Markov chain of our permutation sampling scheme. Then we consider estintia¢imarameters of the
synthetic Kronecker graphs to see whetherd{FIT is able to recover the parameters used to generate
the network. Last, we consider fitting Stochastic Kronecker Graph to feajavorld networks.

5.6.1 Permutation sampling

In our experiments we considered both synthetic and real graphs.dun&gioned otherwise all synthetic
Kronecker graphs were generated usitfg= [0.8,0.6; 0.5, 0.3], andk = 14 which gives us a grapfy on

N = 16,384 nodes andr = 115, 741 edges. We chose this particufdf as it closely resembles a typical
initiator for real networks (that we show later).

Convergence of the log-likelihood and the gradient

First, we examine the convergence of Metropolis permutation sampling. Ag Begt permutation is
obtained from the previous one by locally modifying it this creates a Markamnc We want to assess
the convergence and mixing of the chaiie,, determine how many permutations one needs to draw to
reliably estimate the likelihood and the gradient, and also how long does it taketdhthples converge

to the stationary distribution. For the experiment we generated a synthetitaStiocKronecker Graph
using’P; as defined above. Then, starting with a random permutation we run alg&igend measure
how the likelihood and the gradients converge to their true values.

In this particular case we first generated Stochastic Kronecker Graph described above, but then
calculated the likelihood and the parameter gradientsofor= [0.8,0.75;0.45,0.3]. We average the
likelihoods and gradients over buckets of 1,000 consecutive sampleéglanhow the log-likelihood
calculated over the sampled permutations approaches the true log-likelthabaé can compute since
G is a Stochastic Kronecker Graph).

First, we present experiments that aim to answer how many sam@epérmutations) does one need

to draw to obtain a reliable estimate of the gradient (see Equéat®n Figure5.14a) shows how the
estimated log-likelihood approaches the true likelihood. Notice that estimateelsvallickly converge

to their true valuesi.e., Metropolis sampling quickly moves towards “good” permutations. Similarly,
Figure5.12b) plots the convergence of the gradients. Notice thatand6fs of © andP; match, so
gradients of these two parameters should converge to zero and indgelbtt@n the other hand;, and

62, differ between©’ andP;. Notice, the gradient for one is positive as the param@teof © should

be decreased, and similarly féy;, the gradient is negative as the parameter value should be increased to
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Figure 5.12: Convergence of the log-likelihood and gradients towardasrttiue values for Metropolis
permutation sampling (algorith3) with the number of samples.

match the®’. In summary, this shows that log-likelihood and gradients rather quicklyerge to their
true values.

Moreover, in Figure$.12c) and (d) we investigate the properties of the Markov Chain Monte Carlo
sampling procedure, and asses convergence and mixing criteria. Fargliotthe fraction of accepted
proposals. It stabilizes at around 15%, which is quite close to the rudetlofimb of 25%. Second,
Figure5.12d) plots the autocorrelation of the log-likelihood as a function of the lag. ¢artelationr,

of a signalX is a function of the lag: wherer;, is defined as the correlation of signsl at timet with

X att + k, i.e, correlation of the signal with itself at lalg High autocorrelations within chains indicate
slow mixing and, usually, slow convergence. On the other hand fasy d@éeaitocorrelation means better
the mixing and thus one needs less samples to accurately estimate the grathientkalihood. Notice
rather fast autocorrelation decay.

All'in all, these experiments show that one needs to sample an order of thmisinds of permutations
for the estimates to converge. We also verified that the variance of the estisatéficiently small. In
our experiments we start with a random permutation and use long burn-in tines When performing
optimization we use the permutation from previous step to initialize the permutatianrantstep of
gradient descent. The intuition is that small changeB(in|G, ©) also mean small changeséh
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Figure 5.13: Convergence of the log-likelihood and gradients for Metligppermutation sampling (al-
gorithm 5.3) for different choices ofv that interpolates between tissvapNodes (w = 1)
andSwapEdgeEndpoints (w = 0) permutation proposal distributions.

Different proposal distributions

In section5.5.3we defined two permutation sampling proposal distributi@wapNodes where we pick
two nodes uniformly at random and swap their labels (node ids);SsmapEdgeEndpoints  where
we pick a random edge in a graph and then swap the labels of the edgaréadpe also discussed
that one can interpolate between the two strategies by exechtirgpNodes with probability w, and
SwapEdgeEndpoints  with probabilityl — w.

So, given a Stochastic Kronecker Gragghon N = 16,384 and E = 115, 741 generated fronP; =
[0.8,0.7;0.5,0.3] we evaluate the likelihood &' = [0.8,0.75; 0.45, 0.3]. As we sample permutations we
observe how the estimated likelihood converges to the true likelihood. Mereay also vary parameter
w that interpolates between the two permutation proposal distributions. Theegthe converge towards
the true log-likelihood the better the proposal distribution.

Figure5.13plots the convergence of the log-likelihood with the number of sampled perrmgatide plot
the average over non-overlapping buckets of 1,000 consecutiweufegtions. Faster convergence means
better permutation proposal distribution. When we use 8mgpNodes (w = 1) or SwapEdgeEndpoints
(w = 0) convergence is rather slow. We obtain best convergence émound0.6.

Similarly, Figure5.14(a) plots the autocorrelation as a function of the kafpr different choices ofv.
Faster autocorrelation decay means better mixing of the Markov chain. Augatice that we get best
mixing forw = 0.6. (Notice logarithmic y-axis.)

Last, we diagnose how long the sampling procedure must be run befogetieeated samples can be
considered to be drawn (approximately) from the stationary distributioncalV¢his the burn-in time of
the chain. There are various procedures for assessing coneerdéere we adopt the approach of Gelman
et al.[Gelman et a].2003, that is based on running multiple Markov chains each from a diffetartiisg
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Figure 5.14: (a) Autocorrelation plot of the log-likelihood for the diffent choices of parameter Notice
we get best mixing withv = 0.6. (b) The potential scale reduction that compares the
variance inside- and across- independent Markov chairdifferent values of parameter.

point, and then comparing the variance within the chain and between the .ciibmsooner the within-
and between-chain variances become equal the faster the burn-in.gmthe sooner the samples are
drawn from the stationary distribution.

Let [ be the parameter that is being simulated witldifferent chains, and then IéJYC) denote thek!"
sample of thej*” chain, wherej = 1,...,J andk = 1,..., K. More specifically, in our case we
run separate permutation sampling chains. So, we first sample permutffiﬂcmnd then calculate the

corresponding Iog-likelihoobf).

First, we compute between and within chain varianégsand 63,, where between-chain variance is
obtained by

K
J-1

J

(ly—1.)°
1

J
6% =
wherel; = LS5 1 andl. = 1 327 1

Similarly the within-chain variance is defined by

Then, the marginal posterior variance/a$ calculated using

. K—-1, 1,
02:7[( 0124/4—?0%

And, finally, we estimate thpotential scale reductiofGelman et al.2003 of [ by
- 52
Vi=\Z
Ow
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Figure 5.15: (a) Distribution of log-likelihood of permutations samgleniformly at random, and (b)
when sampled fronP(c|©,G). Notice the space of good permutations is rather small
but our sampling quickly finds permutations of high likelitb (c) Convergence of log-
likelihood for 10 runs of gradient descent, each from a d#ifee random starting point.

Note that as the length of the chalti — oo \/E converges to 1 from above. A recommendation for
convergence assessment frad@eJman et al.2003 is that potential scale reduction is below 1.2.

Figure 5.14b) gives the Gelman-Rubin-Brooks plot, where we plot the potential srealiection\/ﬁ
over the increasing chain lengti for different choices of parameter. Notice that the potential scale
reduction quickly decays towards 1. Similarly as in Figbré4the extreme values af give slow decay,
while we obtain fastest potential scale reduction wies 0.6.

Properties of the permutation space

Next we explore the properties of the permutation space. We would like tifpuahat fraction of per-
mutations are “good” (have high likelihood), and how quickly do we disctivem. For the experiment
we took a real networky (As-RoUTEVIEWS network) and the MLE parametes for it that we esti-
mated before hand((é)) ~ —150,000). The networkG has6, 474 nodes which means the space of all
permutations has: 102290 elements.

First, we sampled 1 billion1(?) permutationsr; uniformly at randomj.e., P(o;) = 1/(6,474!) and for
each evaluated its log-likelihoddo|©;) = log P(©;|G, o). We ordered the permutations in deceasing
log-likelihood and plotted(c|©;) vs. rank. Figures.15a) gives the plot. Notice that very few random
permutations are very badd., they give low likelihood), similarly few permutations are very good, while
most of them are somewhere in between. Notice that best “random” permuttetsolog-likelihood of

~ —320, 000, which is far below true likelihood(©) ~ —150,000. This suggests that only a very small
fraction of all permutations gives good node labelings.

On the other hand, we also repeated the same experiment but now samptedatiens from the per-
mutation distributiors; ~ P(c|©, G) using our Metropolis sampling scheme. Figbt&é5b) gives the
plot. Notice the radical difference. Now tliés|©;) very quickly converges to the true likelihood of
~ —150,000. This suggest that while the number of “good” permutations (accurate maghpings) is
rather small, our sampling procedure quickly converges to the “gooddptre permutation space where
node mappings are accurate.
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5.6.2 Properties of the optimization space

In maximizing the likelihood we use stochastic approximation to the gradient. THs \&tiance to
the gradient and makes efficient optimization techniques, like conjugateegtadighly unstable. Thus
we use gradient descent, which is slower but easier to control. First, \ke tha following observa-
tion:

Observation 5.6.1. Given a real graphG then finding the maximum likelihood Stochastic Kronecker
initiator matrix ©

A~

O = arg max P(G|O)

iS a non-convex optimization problem.

Proof. By definition permutations of the Kronecker graphs initiator maéixall have the same log-
likelihood. This means that we have several global minima that corresp@urmtations of parameter
matrix ©, and then between them the log-likelihood drops. This means that the optimipatiolem is
non-convex. O

The above observation seem not to give much promise to estimatiaging gradient descent as it is
prone to local minima. To check for the presence of other local minima whatkemt descent could get
stuck we run the following experiment: we generated 100 synthetic Krenepiaphs on 16,382{%)
nodes and 1.4 million edges on the average, with a randomly cl2os@mparameter matri©*. For each
of the 100 graphs we run gradient descent starting from a diffeagwtom parameter matri®’, and try

to recover®*. In 98% of the cases the gradient descent converged to the true parsimidany times
the algorithm converged to a different global minima,, © is a permuted version of original parameter
matrix ©*. Moreover, the median number of gradient descent iterations was only 52

This suggests surprisingly nice structure of our optimization space: it seefmshave like a convex
optimization problem with many equivalent global minima. Moreover, this expetinsealso a good
sanity check as it shows that given a Kronecker graph we can neaodeidentify the parameters that
were used to generate it.

Moreover, Figures.15c) plots the log-likelihood (©,) of the current parameter estima®g over the
iterationst of the stochastic gradient descent. We plot the log-likelihood for 10 differuns of gra-
dient descent, each time starting from a different random set of panangie Notice that in all runs
gradient descent always converges towards the optimum, and none it gets stuck is some local
maxima.

5.6.3 Convergence of the graph properties

We approached the problem of estimating Stochastic Kronecker initiator néatoix defining the like-
lihood over the individual entries of the graph adjacency matrix. Howevieat we would really like is
to be given a real grapy’ and then generate a synthetic gragtthat has similar network properties as
G. By properties we mean network statistics that can be computed from the grgpdiameter, degree
distribution, clustering coefficient, etc. A priori it is not clear that ourraggh which tries to match in-
dividual entries of graph adjacency matrix will also be able to reproduesetlylobal network statistics.
However, as show next this is not the case.
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Figure 5.16: Convergence of graph patterns with the number of iteratidrgradient descent using the
synthetic dataset.

To get some understanding of the convergence of the gradient dés¢erms of the network properties
we performed the following experiment. After every stayg stochastic gradient descent, we compare the
true graph(@ with the synthetic Kronecker grapki; generated using the current parameter estinfates
Figure5.16a) gives the convergence of log-likelihood, and (b) gives absolute & parameter values
(3" 1055 — 05,1, whered;; € ©,, andb;; € ©7). Similarly, Figure5.16(c) plots the effective diameter, and
(d) gives the largest singular value of graph adjacency mafres it converges to largest singular value

of G.

Note how with progressing iterations of gradient descent propertiesaphgy; quickly converge to
those ofGG even though we are not directly optimizing the similarity in network propertieslikaegihood
increases, absolute error of parameters decreases, diameter astidargular value ok’; both converge
to G. This is a nice result as it shows that through maximizing the likelihood the reggitaphs become
more and more similar also in their structural properties (even though wetd&ectly optimizing over
them).
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Figure 5.17: Autonomous SystemA$-ROUTEVIEWS): Overlayed patterns of real graph and the fitted
Kronecker graph. Notice that the fitted Kronecker graph hmed@atterns of the real graph
while using only four parameter8 ( 2 initiator matrix).

5.6.4 Fitting to real-world networks

Next, we present experiments of fitting Kronecker Graphs model to redthmetworks. Given a real
networkG we aim to discover the most likely parametérshat ideally would generate a synthetic graph
K having similar properties as reél. This assumes that Kronecker Graphs is a good model of the
network structure, and thatRONFIT is able to find good parameters. In previous section we showed that
KRONFIT can efficiently recover the parameters. Now we examine how well cang€kan graphs model

the structure of real networks.

We consider several different networks, like a graph of connectivitgpng Internet Autonomous systems
(As-ROUTEVIEWS) with N = 6,474 and F =26,467; a who-trusts-whom type social network from
Epinions Richardson et 812003 (EPINIONS) with N =75,879 and’ =508,960 and many others. The
largest network we consider for fitting is. EKR photo-sharing online social network with 584,207 nodes
and 3,555,115 edges.

For the purpose of this section we take a real netw@rkind parameter® using KRONFIT, generate a
synthetic graph using®, and then compar€é and K by comparing their properties that we introduced
in section5.2 In all experiments we started from a random point (random initiator matckyan gradient
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descent for 100 steps. At each step we estimate the likelihood and thegtzaed on 510,000 sampled
permutations where we discard first 10,000 samples to allow the chain tarburn-

Fitting to Autonomous Systems network

First, we focus on the Autonomous Systems network obtained from the iditywwef Oregon Route Views
project RouteViews 1997. Given the AS networky we run KRONFIT to obtain parameter estimat®s
Using the® we then generate a synthetic Kronecker grdphand compare the properties 6f and
K.

Figure5.17shows properties of & ROUTEVIEWS, and compares them with the properties of a synthetic
Kronecker graph generated using the fitted paramédeo$ size2 x 2. Notice that properties of both
graphs match really well. The estimated parameter®are[0.987,0.571;0.571,0.049].

Figure5.17a) compares the degree distributions of tre ROUTEV IEWS network and its synthetic Kro-
necker estimate. In this and all other plots we use the exponential binning ighacstandard procedure
the de-noise the data when plotting on log—log scales. Notice a very close imategree distribution
between the real graph and its synthetic counterpart.

Figure5.17Db) plots the cumulative number of pairs of nodgs) that can be reached i / hops. The
hop plot gives a sense about the distribution of the shortest path lengths metwork and about the
network diameter. Last, Figur&sl7c) and (d) plot the spectral properties of the graph adjacency matrix.
Figure5.17c) plots largest singular values vs. rank, and (d) plots the componel&g singular vector
(the network value) vs. the rank. Again notice good agreement with thgnagzh while using only four
parameters.

Moreover, on all plots the error bars of two standard deviations showatfi@nce of the graph properties
for different realizations?(©¥1). To obtain the error bars we took the safeand generated 50 real-
izations of a Kronecker graph. As for the most of the plots the error dr@&so small to be practically
invisible, this shows that the variance of network properties when giémgeaStochastic Kronecker graph
is indeed very small.

Also notice that the A-ROUTEVIEWS is an undirected graph, and that the fitted parameter métrix

is in fact symmetric. This means that without a priori biasing the fitting toward&ected graphs, the
recovered parameters obey this aspect of the network. FittexRAUTEVIEWS graph from a random

set of parameters, performing gradient descent for 100 iterationgatagalch iteration sampling half a
million permutations, took less than 10 minutes on a standard desktop PC. Thigmfi@ant speedup
over [Bezakowa et al, 2004, where by using a similar permutation sampling approach for calculating the
likelihood of a preferential attachment model on similes-ROUTEV IEWS graph took about two days on

a cluster of 50 machines, while in our case the computation took 10 minutes sktageC.

Choice of the initiator matrix size Ny

As mentioned earlier for finding the optimal number of parametegs, selecting the size of initiator
matrix, BIC criterion naturally applies to the case of Kronecker Graphsiré23b) shows BIC scores
for the following experiment: We generated Kronecker graph with= 2,187 and £ = 8,736 using
Ny = 3 (9 parameters) anl = 7. For1l < N; < 9 we find the MLE parameters using gradient
descent, and calculate the BIC scores. Model with the lowest scoredgsrthas figuréd.23b) shows we
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N || w6 | Nf | EF ||{degu) >0}| | BIC score
2 [ 152,499 | 8,192 [ 25,023 5,675 152,506
3 | —127,066 | 6,561 | 28,790 5,683 127,083
4 | —153,260 | 16,384 24,925 8,222 153,290
5 | —149,949 | 15,625] 29,111 9,822 149,996
6 | —128,241 | 7,776 | 26,557 6,623 128,309
As-ROUTEVIEWS | 26,467 | 6,474

Table 5.2: Log-likelihood at MLE for different choices of the size ofetinitiator matrix/V; for the As-
RouTEVIEWS graph. Notice the Iog-likelihoodé) generally increases with the model com-
plexity N;. Also notice the effect of zero-paddinge. for Ny = 4 and N; = 5 the con-
straint of the number of nodes being an integer poweNopfdecreases the log-likelihood.
However, the columi{degu) > 0}| gives the number of non-isolated nodes in the network
which is much less thaivf* and is in fact very close to the true number of nodes in tise A
RouTEVIEWS. Using the BIC scores we see thst = 3 or N; = 6 are best choices for the
size of the initiator matrix.

recovered the true modaele., BIC score is the lowest for the model with the true number of parameters,
Ny = 3.

Intuitively we expect a more complex model with more parameters to fit the dti&a. bEhus we expect
larger N, to generally give better likelihood. On the other hand the fit will also departt® size of the
graphG. Kronecker graphs can only generate graphsVgimodes, while real graphs do not necessarily
have N} nodes (for some, preferably small, integdfsandk). To solve this problem we chooseso that
Nf’l < N(G) < N}, and then augmerd by addingN{ — N isolated nodes. Or equivalently, we pad
the adjacency matrix off with zeros until it is of the appropriate siz&F x NF. While this solves the
problem of requiring the integer power of the number of nodes it also nihkditing problem harder as
whenN < NF we are basically fitting plus a large number of isolated nodes.

Table5.2shows the results of fitting Kronecker graphs te-ROUTEV IEwS while varying the size of the
initiator matrix Ny. First, notice that in general largéf; results in higher Iog—likelihood(é) at MLE.
Similarly, notice (columnVF) that while As-ROUTEVIEWS has6, 474 nodes, Kronecker estimates have
up to16, 384 nodes (6, 384 = 47, which is the first integer power of 4 greater titan74). However, we
also show the number of non-zero degree (non-isolated) nodes indhedder graph (columddeq«) >
0}])- Notice that the number of non-isolated nodes well corresponds to tnéeruof nodes in A-
RoOUTEVIEWS network. This shows that KRONFIT is actually fitting the graph well, it successfully fits
the structure of the graph plus a number of isolated nodes. Last, cdlifngives the number of edges in
the corresponding Kronecker graph which is close to the true numbeigekeof the A-ROUTEVIEWS

graph.

Last, comparing the log-likelihood at MLE and the BIC score in T&bPawe notice that the log-likelihood
heavily dominates the BIC score. This means that the size of the initiator matmb@nof parameters)
is so small that one does not really have to care about overfitting. Thusmvgist choose the initiator
matrix that maximizes the likelihood. A simple calculation shows that one would netadtednitiator
matrices with thousands of entries before the model complexity part of Bite seould start to play a
significant role.

We further examine the sensitivity of the choice of the initiator size by the follpwXperiment. We
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Figure 5.18: 3 by 3 Stochastic Kronecker Grap@iven a Stochastic Kronecker Grapghgenerated from
N; = 3 (red curve), we fit a Kronecker gragity with N{ = 2 (green) and<”’ with Ni' =3
(blue). Not surprisinglyK” fits the properties o perfectly as the model is the of same
complexity. On the other hanll’ has only 4 parameters (instead of 9 agirand K'') and
still fits well.

generate a Stochastic Kronecker Grdpton 9 parameters\; = 3), and then fit a Kronecker grapk’
with a smaller number of parameters (4 instead oN9,= 2). And also a Kronecker grapR” of the
same complexity a& (N7 = 3).

Figure 5.18 plots the properties of all three graphs. Not surprisingly (blue) fits the properties of
K (red) perfectly as the initiator is of the same size. On the other E&n@reen) is a simpler model
with only 4 parameters (instead of 9 as/inhand K”’) and still generally fits well: hop plot and degree
distribution match well, while spectral properties of graph adjacency maspeaally scree plot, are not
matched that well. This shows that nothing drastic happens and that evteio@ $imple model still fits
the data well. In general we observe empirically that by increasing the Ginéiator matrix one does
not gain radically better fits for degree distribution and hop plot. On the ditwed there is usually an
improvement in the scree plot and the plot of network values when oneasesdhe initiator size.
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Snapshotattmd N | E | 1(©) | Estimatesat MLEQ
T 2,048] 8,794 | —40,535 | [0.981,0.633;0.633, 0.043]
15 4,088| 15,711 —82,675 | [0.934,0.623;0.622,0.044]
T3 6,474 | 26,467| —152,499 | [0.987,0.571;0.571,0.049]

Table 5.3: Parameter estimates of the three temporal snapshots ofstROATEV IEWS network. Notice
that estimates stay remarkably stable over time.
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Figure 5.19: Autonomous systems network over ti(As-ROUTEVIEWS): Overlayed patterns of real
As-ROUTEVIEWS network at timel’; and the Kronecker graphs with parameters estimated
from As-ROUTEVIEWS at timeT} andT5,. Notice good fits which means that parameters
estimated on historic snapshots can be used to estimateaple i the future.

Network parameters over time

Next we briefly examine the evolution of the Kronecker initiator for a temporalbhéng graph. The
idea is that given parameter estimates of a real-gapat timet, we can forecast the future structure of
the graphiz,, . at timet + z, i.e., using parameters obtained frai we can generate a larger synthetic
graphK that will be similar toG ..

As we have the information about the evolution of the-ROUTEV IEWS network, we estimated param-
eters for three snapshots of the network when it had aPbubdes. Tablé.3 gives the results of the
fitting for the three temporal snapshots of the-ROUTEV IEWS hetwork. Notice the parameter estimates
© remain remarkably stable over time. This means that Kronecker graphsecaset to estimate the
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Network | N E | Estimated parametes | 1(0) | Time
AS-ROUTEVIEWS 6,474 26,467 | [0.987,0.571;0.571,0.049 —152,499 8ml5s
ATP-GR-QC 19,177 26,169 [0.902,0.253;0.221, 0.582 —242,493 | 7m40s
B10-PROTEINS 4,626 29,602 | [0.847,0.641;0.641,0.072] —185,130 | 43m41ls
EMAIL -INSIDE 986 32,128/ [0.999,0.772;0.772,0.257] —107,283 | 1h07m
CA-GR-QC 5,242 28,980 [0.999,0.245; 0.245, 0.691] —160,902 | 14m02s
AS-NEWMAN 22,963 96,872 [0.954,0.594;0.594, 0.019] —593,747 | 28m48s
BLOG-NATO05-6M 31,600 271,377 [0.999,0.569; 0.502,0.221] —1,994,943 | 47m20s
BLOG-NATOBALL 32,443| 318,815/ [0.999,0.578;0.517,0.221] | —2,289,009 | 52m31s
CA-HEP-PH 12,008 237,010 [0.999,0.437;0.437,0.484] —1,272,629 1h22m
CA-HEP-TH 9,877 51,9711 [0.999,0.271;0.271,0.587] —343,614 | 21m17s
CIT-HEP-PH 30,567 | 348,721 [0.994,0.439;0.355,0.5206] —2,607,159 | 51m26s
CIT-HEP-TH 27,770 352,807 [0.990,0.440;0.347,0.538] —2,507,167 | 15m23s
EPINIONS 75,879 508,837/ [0.999,0.532;0.480,0.129] | —3,817,121 | 45m39s
GNUTELLA-25 22,687 54,705 | [0.746,0.496; 0.654, 0.183] —530,199 | 16m22s
GNUTELLA-30 36,682 88,328/ [0.753,0.489; 0.632,0.178] —919,235 | 14m20s
DELICIOUS 205,282| 436,735/ [0.999,0.327;0.348,0.391] | —4,579,001 | 27m51s
ANSWERS 598,314 | 1,834,200/ [0.994,0.384;0.414,0.249] | —20,508,982 | 2h35m
CA-DBLP 425,957| 2,696,489| [0.999,0.307;0.307,0.574] | —26,813,878 | 3h0lm
FLICKR 584,207 3,555,115 [0.999,0.474;0.485,0.144] | —32,043,787 | 4h26m
WEB-NOTREDAME || 325,729| 1,497,134| [0.999,0.414;0.453,0.229] | —14,588,217 | 02h59m

Table 5.4: Results of parameter estimation for 20 different networKsbles in SectiorA.2 give the
description and basic properties of the above network ditas

structure of the networks in the futuiiee., parameters estimated from the historic data can extrapolate the
graph structure in the future.

Figure5.19further explores this. It overlays the graph properties of the reaR&UTEV IEWS network at

time T3 and the synthetic graphs for which we used the parameters obtained aithEspshots of A-
RouTEVIEWS at timesT; andT,. The agreements are good which demonstrates that Kronecker graphs
can forecast the structure of the network in the future.

Moreover, this experiments also shows that parameter estimates do ronsuéh from the zero padding

of graph adjacency matrix.€., adding isolated nodes to mak& have Nf nodes). Snapshots ofsA
RouTEVIEWS at T} and T, have close t@* nodes, while we had to add 26% (1,718) isolated nodes to
the network aff; to make the number of nodes P& Regardless of this we see the parameter estimates
© remain basically constant over time, which seems to be independent of thenafibolated nodes
added. This means that the estimated parameters are not biased too muperr@adding the adjacency
matrix of G.

5.6.5 Fitting to other large real-world networks

Last, we present results of fitting Stochastic Kronecker Graph to 20 taggevorld networks: large on-
line social networks, like EINIONS, FLICKR and DeLIcIous, web and blog graphs (A8-NOTREDAME,
BLOG-NAT05-6M, BLOG-NATOGALL), internet and peer-to-peer networksSSXAIEWMAN, GNUTELLA -
25, GNUTELLA-30), collaboration networks of co-authorships from DBLP (CA-DBldnd various
areas of physics (CA#£P-TH, CA-HEP-PH, CA-GR-QC), physics citation networks (C-HEP-PH, CIT-
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Figure 5.20: Blog network(BLOG-NATO6ALL): Overlayed patterns of real network and the estimated
Kronecker graph using 4 paramete®sx 2 initiator matrix). Notice that the Kronecker
graph matches all properties of the real network.

HEP-TH), an email network (EAIL -INSIDE), a protein interaction network IB-PROTEINS, and a bi-
partite affiliation network (authors-to-papersTAGR-QC). Refer to tableA.2 in the appendix for the
description and basic properties of these networks.

For each dataset we started gradient descent from a random @oido(n initiator matrix) and run it for
100 steps. At each step we estimate the likelihood and the gradient basé&@,08Gsampled permuta-
tions where we discard first 10,000 samples to allow the chain to burn-in.

Table5.4 gives the estimated parameters, the corresponding log-likelihoods analitretosk times. All
experiments were carried out on standard desktop computer. Notice ¢hestimated initiator matrix
© seems to have almost universal structure with a big value in the top left anteyy low value at the
bottom right corner and intermediate values in the other two corners. \#efudiscuss the implications
of such structure of Kronecker initiator matrix on the global network stredtuthe next section.

Last, Figure$.20and5.21show overlays of various network properties of real and the estimateetic
networks. In addition to the network properties we plotted in Figui& we also separately plot in- and
out-degree distributions (as both networks are directed) and plot theetriadgle participation in panel
(c), where we plot the number of triangles a node participates in versuasithier of such nodes. (Again
the error bars show the variance of network properties over ditfeeatizationsk(6*]) of a Stochastic
Kronecker graph.)

Notice that for both networks and in all cases the properties of the reabrieand the synthetic Kronecker
coincide really well. Using Stochastic Kronecker Graph with just 4 parametermatch the scree plot,
degree distributions, triangle participation, hop plot and network values.

Given the experience from the Autonomous systems we only presentsihiesrior the simplest model
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Figure 5.21: EPINIONS who-trusts-whom social networkOverlayed patterns of real network and the
fitted Kronecker graph using only 4 parameté& (2 initiator matrix). Again, the synthetic
Kronecker graph matches all the properties of the real nétwo

with initiator size Ny = 2. Empirically we also observe thaf; = 2 gives surprisingly good fits and the
estimation procedure is the most robust and converges the fastest. Ugegtiator matricesv; > 2
generally helps improve the likelihood but not dramatically. In terms of matchmgeitwork properties
we also get a slight improvement by making the model more complex. Fga&gives the percent
improvement in log-likelihood as we make the model more complex. We use the &ipdikd of a2 x 2
model as a baseline and estimate the log-likelihood at MLE for larger initiator reatriggain, models
with more parameters tend to fit better. However, sometimes due to zero-gaafdimaph adjacency
matrix they actually have lower log-likelihood.

5.6.6 Scalability

Last we also empirically evaluate the scalability of thed&iFIT. The experiment confirms thatRONFIT
runtime scales linearly with the number of edgédsn a graphG. More precisely, we performed the
following experiment.

We generated a sequence of increasingly larger synthetic graptisiodes an@ N edges, and measured
the time of one iteration of gradient descerd, sample 1 million permutations and evaluate the gradients.
We started with a graph on 1,000 nodes, and finished with a graph on 8 millaesnand 64 million
edges. Figur®.23a) shows KRONFIT scaledinearly with the size of the network. We plot wall-clock
time vs. size of the graph. Dashed line presents linear fit to the data points.
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Figure 5.22: Percent improvement in log-likelihood over thex 2 model as we increase the model com-
plexity (size of initiator matrix). In general larger irdtor matrices that have more degrees
of freedom help improving the fit of the model.

4
1200 6.5X10
1000 o
w L
2 800- 49
Q .’ o
o L B
) 600 o &
o L / m
'E 400 o
200 ¢ .
d | :
0 5 10 1N2.3‘]E._5.67.89
Size of the graph | ;5 | (size of initiator matrix)
(a) Scalability (b) Model selection

Figure 5.23: (a) Processor time to sample 1 million gradients as the ggaplvs. Notice the algorithm
scales linearly with the graph size. (b) BIC score for moeéé&ction.

5.7 Discussion

Here we discuss several of the desirable properties of the propaoseddker Graphs.

Generality: Stochastic Kronecker Graphs include several other generatorg@alsgases: Fof;; = c,
we obtain classical Eis-Renyi random graph model; f@; ; € {0,1}, we obtain a deterministic Kro-
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(a) 2 x 2 initiator matrix  (b) Two recursive communities (c) Core-periphery

Figure 5.24: 2 x 2 Kronecker initiator matrix (a) can be thought of as two comitias where there are
a andd edges inside each of the communities arahdc edges crossing the communities
as illustrated in (b). The each sub-community can then berseely divided using the
same pattern. (c) The onion like core-periphery structurera the network gets denser and
denser as we move towards the center of the network.

necker graph; setting th&; matrix to a2 x 2 matrix, we obtain the RMAT generataChakrabarti et aJ.
2004. In contrast to Kronecker graphs, the RMAT cannot extrapolate irgduture, since it needs to
know the number of edges to insert. Thus, it is incapable of obeying thefidation power law.

Phase transition phenomenaThe Erdds-Renyi graphs exhibit phase transitiolg§iés and Rnyi, 1964.
Several researchers argue that real systems are “at the edgaosf’ {Bak, 1996 Sole and Goodwin
2004. Stochastic Kronecker Graphs also exhibit phase transitidasiflian and Xu2007 for the emer-
gence of the giant component and another phase transition for cavityecti

Implications to the structure of the large-real networks: Empirically we found thaR x 2 initiator
(N7 = 2) fits well the properties of real-world networks. Moreover, giveha2 initiator matrix, one can
look at it as a recursive expansion of two groups into sub-groupsiniduced this recursive view of
Kronecker graphs back in sectirB. So, one can then interpret the diagonal valugs aé the proportion
of edges inside each of the groups, and the off-diagonal valuestgivieaction of edges connecting the
groups. Figuré.24illustrates the setting for two groups.

For example, as shown in Figube24, largea, d and smalb, ¢ would imply that the network is composed
of hierarchically nested communities, where there are many edges instdea@amunity and few edges
crossing them. One could think of this structure as some kind of organizbtiooaiversity hierarchy,
where one expects the most friendships between people within same lakesstiietween people in the
same department, less across different departments, and the leashipsrio be formed across people
from different schools of the university.

However, parameter estimates for a wide range of networks presentall@b® suggests a very different
picture of the network structure. Notice that for most netwartks> b > ¢ > d. Moreover,a ~ 1,

b~ ¢~ 0.6 andd ~ 0.2. We empirically observed that the same structure of initiator métratso holds
when fitting3 x 3 or 4 x 4 models. Always the top left element is the largest and then the values on the
diagonal decay faster than off the diagonal.

This suggests a network structure which is also knowicas-periphery[Borgatti and Everett200Q
Holme, 2009, thejellyfish[Tauro et al.2001, Siganos et al2006, or theoctopug Chung and Lu20063
structure of the network as illustrated in Fig&r24(c).

All of the above basically say that the network is composed of a denselydlingavork core and the
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periphery. In our case this would imply the following structure of the initiator ma@ore is modeled by
parameter and the periphery by. The most edges are inside the core (latpeand the fewest between

the nodes of periphery (smal). Then there are many more edges between the core and the periphery
than inside the periphery.(c > d). This is exactly what we see. Many edges are inside the core (large
a), there are very few edges among the periphery nodes (dinalhile there are relatively many edges
connecting the core with the periphetly ¢ are relatively large). And in spirit of Kronecker graphs the
structure repeats recursively — core has again the dense core gretifiteery, and so on. And similarly

the periphery itself has the core and the periphery.

This suggest an “onion” like network structure as illustrated in Figu2ég(c), where the network is com-

posed of denser and denser layers as one moves towards the cémeanetfvork. We also observe similar
structure of the Kronecker initiator when fittirigx 3 or 4 x 4 initiator matrix. The diagonal elements
have large but decreasing values with off diagonal elements following danreasing pattern.

One of the implications of this is that networks do not break nicely into hiei@aliy organized sets of
communities that nicely allow themselves to partitioning and community identificationithigsr On
contrary, this suggests that large networks can be decomposed inteedydarked core with many small
periphery pieces hanging off the core. This is in accordance with @enteesults [[eskovec et aJ.
20084, that make similar observation (but based on a completely different mdtmda@bout the struc-
ture of large real-world networks. We further explore this in greatetildatehapterl0.

5.8 Conclusion

In conclusion, the main contribution of this work is a family of models of netwadrnkcsure that uses a
non-traditional matrix operation, th&onecker productThe resulting graphs (a) have all the static prop-
erties (heavy-tailed degree distribution, small diameter, etc.), (b) all the tahgyoperties (densification,
shrinking diameter) that are found in real networks. And in addition, &tan formally prove all of these
properties.

Several of the proofs are extremely simple, thanks to the rich theory efd€ker multiplication. We also
provide proofs about the diameter and effective diameter, and we slavBtibchastic Kronecker Graphs
can mimic real graphs well.

Moreover, we also presentedRNFIT, a fast, scalable algorithm to estimate Stochastic Kronecker ini-
tiator, which can be then used to create a synthetic graph that mimics thet@epémr given real net-
work.

In contrast to earlier work, our work has the following novelties: (a) inimag the few that estimates the
parameters of the chosen generator in a principled way, (b) it is amongpittadit has a concrete measure
of goodness of the fit (namely, the likelihood), (c) it avoids the quadraticptexity of computing the
likelihood by exploiting the properties of the Kronecker graphs, and (@yatds the factorial explosion
of the node correspondence problem, by using the Metropolis sampling.

The resulting algorithm matches well all the known properties of real gragshwe show with the Epinions
graph and the AS graph, it scales linearly on the number of edges, anoritess of magnitudes faster
than earlier graph-fitting attempts: 20 minutes on a commodity PC, versus 2 dey<laster of 50
workstations Bezakowa et al, 2004 .

The benefits of fitting a Kronecker graph model into a real graph aeralev
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Extrapolation Once we have the Kronecker generatofor a given real matrixG (such thatGy is
mimicked by©*), a larger version of? can be generated kg+1],

Null-model When analyzing a real network one often needs to asses the significance of the
observation©!*! that mimicsG can be used as an accurate modeFof

Network structurefitted parameters give insight into the global network and community structure
of the network.

Forecasting As we demonstrated one can obt&nfrom a graphG, at timet such thatG is
mimicked by@[’“]. Then® can be used to model the structure®f, .. in the future.

Sampling Similarly, if we want a realistic sample of the real graph, we could use a smeajenent
in the Kronecker exponentiation, lik@!*—1.

AnonymizationSince®*] mimics G, we can publist®*], without revealing information about the
nodes of the real grapf.
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Part 1 — Network evolution: Conclusion

Despite the enormous recent interest in large-scale network data, anahtie of interesting patterns
identified for static snapshots of graplesq, heavy-tailed distributions, small-world phenomena), there
has been relatively little work on the properties of the time evolution of re@hgraThis was exactly the
focus of this part of the thesis.

Observations: In contrast to the standard modeling assumption that the average oué-degnans con-
stant over time, we discovered that real graphs have out-degreegdheadver time, following éDensifi-
cation power law Moreover, our experiments also show that the standard assumptiomyf gimwing
diameters does not hold in a range of real networks; ratheditimaetermay actually exhibit gradual
decreaseas the network grows. We then developed the Forest Fire Model, basedlyptwo parame-
ters, where the observed patterns naturaftyergefrom simple local rules that govern individual edge
creation.

Models: We then presented a detailed study of network evolution by analyzing fme taline social
networks with full temporal information about individual node and edgeals. The use of thenaximum-
likelihoodprinciple allowed us to quantify the bias of new edges towards the degudesgarof nodes, and

to objectively compare various models such as preferential attachmerdct|rotir work is the first to
directly quantify the amount of preferential attachment that occurs in ksogal networks. Based on
our observations, we derived an extremely simple yet surprisingly aicorodel of network evolution,
thatfully specifies three essential procestddng place in evolving networks: (a) node arrivals, (b) edges
arrivals, and (c) edge placement.

Algorithms: Last, we presented a family of models of network structure that uses-aaditional ma-

trix operation, theKronecker product We show that resulting graphs (a) have all the static properties
(heavy-tailed degree distribution, small diameter), (b) all the temporakptiep (densification, shrinking
diameter), and in addition, (c) we can formally prove all of these properfiésreover, we also pre-
sented KRONFIT, a fast, scalable algorithm to estimate Kronecker initiator, which can be theghtas
create a synthetic graph that mimics the properties of a given real gragpre &bproach to fitting would
take super-exponential time, whileRONFIT takeslinear time, by exploiting the structure of Kronecker
matrix multiplication and by using sampling. In contrast to earlier work, Kroeegkaphs arenathemat-
ically tractablemodel of network generation satisfying many real network propertiege wie can also
efficiently fit it to graphs on millions of nodes and edges.
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Part |l

Network cascades

How do influence and information spread over
the network, and

how to detect this quickly?
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Part 2 — Network cascades: Overview

A basic premise behind the study of social networks is that interaction leadsplex collective behav-
ior. Cascades are a form of collective behavior that has been addipte empirically and theoretically,
but for which the study of complete, large-scale datasets has been limitee .wdeshow that cascades
exist in a large real-world networks, and investigate some of their strliétatares.

We present two studies of diffusion and cascading behavior in netywhere for the first time we are
able to directly measure millions of propagations individually.

Observations: First, we study the influence and recommendation propagation in a largendrkéting
network. And then present our work on the information propagation onvéieand the cascades this
process results in. We make observations on the shepesand temporal characteristics of the cascades.
We also explore what product and recommendation network factors plale én the propagation and
purchases of products, and notice that the human adoption curve fdiavisishing returngrend, as
opposed to the critical threshold conjecture.

Models: We also analyzed one of the largest available collections of blog informaiminvestigate
how blogs behave and hoinformation propagateshrough the blogosphere. We develop a simple but
accurate model of information propagation on the blogosphere. In somiith viral marketing stars and
chains are basic components of blog cascades, with stars being more common

Algorithms: As we observe the cascades spreading through the network a natasdiog is how to
detect them effectively. For example, given a water distribution netwuahkere should we place sensors
to quickly detect contaminants? Or, which blogs should we read to avoid misgiagtant stories? These
seemingly different problems share common struct@atbreak detectiowan be modeled as selecting
nodes (sensor locations, blogs) in a network, in order to detect thadspgeof a virus or information as
quickly as possible. We present a general methodologypdar optimalsensor placement in these and
related problems. We demonstrate that many realistic outbreak detectionvagecdibit the property of
“submodularity”. We exploit submodularity to develop an efficient algorithat sitales to large problems,
achieving near optimal placements, while bet) timedaster than a simple greedy algorithm. We also
derive online bounds on the quality of the placements obtaineanialgorithm. Our algorithms and
bounds also handle cases where nodes (sensor locations, blogsiifferent costs.
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Chapter 6

Diffusion and cascading behavior in viral
marketing

6.1 Introduction

With consumers showing increasing resistance to traditional forms ofte&ingrsuch as TV or newspa-
per ads, marketers have turned to alternate strategies, including viratmgrkviral marketing exploits
existing social networks by encouraging customers to share prodaotiation with their friends. Previ-
ously, a few in depth studies have shown that social networks affeatitygion of individual innovations
and products (for a review seRggers 1995 or [Strang and Sould998). But until recently it has been
difficult to measure how influential person-to-person recommendatidnallcare over a wide range of
products. Moreover, Subramani and Rajagopaubfamani and Rajagopala2003 noted that “there
needs to be a greater understanding of the contexts in which viral markétitggy works and the char-
acteristics of products and services for which it is most effective. Thisuiscularly important because
the inappropriate use of viral marketing can be counterproductive dating unfavorable attitudes to-
wards products. What is missing is an analysis of viral marketing that higblgylstematic patterns in the
nature of knowledge-sharing and persuasion by influencers apdmsss by recipients in online social
networks.”

Here we were able to in detail study the above mentioned problem. We wern® aliectly measure and
model the effectiveness of recommendations by studying one online rstait@ntivised viral marketing

program. The website gave discounts to customers recommending any aidte{® to others, and then
tracked the resulting purchases and additional recommendations.

Although word of mouth can be a powerful factor influencing purchadiegjsions, it can be tricky for
advertisers to tap into. Some services used by individuals to communicatataral rcandidates for
viral marketing, because the product can be observed or advertigettaof the communication. Email
services such as Hotmail and Yahoo had very fast adoption curvasgeeevery email sent through them
contained an advertisement for the service and because they werkldtesail spent a mere $50,000 on
traditional marketing and still grew from zero to 12 million users in 18 monilsvetson200d. The
Hotmail user base grew faster than any media company in history — fasteCtiidnfaster than AOL,
even faster than Seinfeld’s audience. By mid-2000, Hotmail had over 66 miliers with 270,000 new
accounts being established each dagohson 1998. Google’'s Gmail also captured a significant part of
market share in spite of the fact that threly way to sign up for the service was through a referral.
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Most products cannot be advertised in such a direct way. At the same &bhdlte of products available

to consumers has increased manyfold thanks to online retailers who galg aupuch wider variety of
products than traditional brick-and-mortar stores. Not only is the variefyraducts larger, but one
observes a ‘fat tail' phenomenon, where a large fraction of purshe®eof relatively obscure items. On
Amazon.com, somewhere between 20 to 40 percent of unit sales fall oofsitdetop 100,000 ranked
products Brynjolfsson et al.2003. Rhapsody, a streaming-music service, streams more tracks outside
than inside its top 10,000 tuneAjonymous2005. Some argue that the presence of the long tail indicates
that niche products with low sales are contributing significantly to overal gaiéne.

We find that product purchases that result from recommendationafarrfrom the usual 80-20 rule.
The rule states that the top twenty percent of the products account feréent of the sales. In our case
the top 20% of the products contribute to about half the sales.

Effectively advertising these niche products using traditional advertégpgoaches is impractical. There-
fore using more targeted marketing approaches is advantageous botherttfent and the consumer,
who would benefit from learning about new products.

The problem is partly addressed by the advent of online product anchardrreviews, both at retail sites
such as EBay and Amazon, and specialized product comparison sitesstpinions and CNET. Of
further help to the consumer are collaborative filtering recommendations futtim “people who bought
also boughy” feature [Linden et al, 2003. These refinements help consumers discover new products and
receive more accurate evaluations, but they cannot completely subsétstanplized recommendations
that one receives from a friend or relative. It is human nature to be mmested in what a friend buys
than what an anonymous person buys, to be more likely to trust their opamarto be more influenced
by their actions. As one would expect our friends are also acquainteduitheeds and tastes, and can
make appropriate recommendations. A Lucid Marketing survey found 8%td individuals consulted
friends and relatives before purchasing home electronics — more thaalfiveho used search engines to
find product informationBurke, 2003.

In our study we are able to directly observe the effectiveness of pergerson word of mouth advertising
for hundreds of thousands of products for the first time. We find that rosmmendation chains do not
grow very large, often terminating with the initial purchase of a product. @& occasionally a product
will propagate through a very active recommendation network. We peogpeBnple stochastic model that
seems to explain the propagation of recommendations.

Moreover, the characteristics of recommendation networks influenceutbbase patterns of their mem-
bers. For example, individuals’ likelihood of purchasing a product initialtyeases as they receive addi-
tional recommendations, but a saturation point is quickly reached. Ititeglysas more recommendations
are sent between the same two individuals, the likelihood that they will bestekztreases.

We find that communities (automatically found by a community finding algorithm) wauelly centered
around a product group, such as books, music, or DVDs, but alia$tthem shared recommendations
for all types of products. We also find patterns of homophily, the tendehlilge to associate with like,
with communities of customers recommending types of products reflecting tin@mon interests.

We propose models to identify products for which viral marketing is effecte find that the category
and price of product plays a role, with recommendations of expensbaupts of interest to small, well
connected communities resulting in a purchase more often. We also obsgteme in the timing of

recommendations and purchases corresponding to times of day whde pesfikely to be shopping
online or reading email.
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We report on these and other findings in the following sections. We firseguhe related work in
section6.2 We then describe the characteristics of the incentivised recommendategram and the
dataset in sectiof.3. Section6.3.3studies the temporal and static characteristics of the recommenda-
tion network. We investigate the propagation of recommendations and modeldt&ding behavior in
section6.4. Next we concentrate on the various aspects of the recommendatiorssticre the view-
point of the sender and the recipient of the recommendation in seg&fomhe timing and the time lag
between the recommendations and purchases is studied in sé@&idiVe study network communities,
product characteristics and the purchasing behavior in se@ffohast, in sectior6.8we present a model
that relates product characteristics and the surrounding recommendatiwork to predict the product
recommendation success. We discuss the implications of our findings acidd®in sectior.10

6.2 Connection to viral marketing

Viral marketing can be thought of as a diffusion of information about tleelypect and its adoption over
the network. Primarily in social sciences there is a long history of the r@dsearthe influence of social
networks on innovation and product diffusion. However, such studigs been typically limited to small
networks and typically a single product or service. For example, BrawdriReingenBrown and Reingen
1987 interviewed the families of students being instructed by three piano teaamerser to find out the
network of referrals. They found that strong ties, those between famflyemds, were more likely to be
activated for information flow and were also more influential than weak Gearjovetter1973 between
acquaintances. Similar observations were also made by DeBruyn and Lili@eBruyn and Lilien
2004 in the context of electronic referrals. They found that characteristidbe social tie influenced
recipients’ behavior but had different effects at different stadefeoision making process: tie strength
facilitates awareness, perceptual affinity triggers recipients’ interedtdamographic similarity had a
positive influence on each stage of the decision-making process.

Social networks can be composed by using various informaitien geographic similarity, age, similar
interests and so on. Yang and Allenbahg and Allenby2003 showed that the geographically defined
network of consumers is more useful than the demographic network fdaieig consumer behavior
in purchasing Japanese cars. A recent study by Hill etll ¢t al., 2006 found that adding network
information, specifically whether a potential customer was already “talkingni@xisting customer, was
predictive of the chances of adoption of a new phone service optianthE@ustomers linked to a prior
customer the adoption rate was 3-5 times greater than the baseline.

Factors that influence customers’ willingness to actively share the informaidiih others via word of
mouth have also been studied. Frenzen and Nakarkoémzen and Nakamat@993 surveyed a group
of people and found that the stronger the moral hazard presented lyfdh@ation, the stronger the
ties must be to foster information propagation. Also, the network structuderdmrmation character-
istics interact when individuals form decisions about transmitting informat®mwman and Narayan-
das Bowman and Narayanda®001] found that self-reported loyal customers were more likely to talk to
others about the products when they were dissatisfied, but not morevikely they were satisfied.

In the context of the internet word-of-mouth advertising is not restrictqehtowise or small-group in-
teractions between individuals. Rather, customers can share theiiegxes and opinions regarding
a product with everyone. Quantitative marketing techniques have bepogad Montgomery 2007

to describe product information flow online, and the rating of productsna@thants has been shown
to effect the likelihood of an item being bougtRdsnick and Zeckhaus&2002 Chevalier and Mayzlin
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20049. More sophisticated online recommendation systems allow users to rate’ atwesvs, or di-
rectly rate other reviewers to implicitly form a trusted reviewer network that hesae very little over-

lap with a person’s actual social circle. Richardson and DominBasnjngos and Richardspi2001,
Richardson and Domingp2002k used Epinions’ trusted reviewer network to construct an algorithm to
maximize viral marketing efficiency assuming that individuals’ probability afchasing a product de-
pends on the opinions on the trusted peers in their network. Kempe, KlgiahdrTardoskempe et al.
2003 have followed up on Richardson and Domingos’ challenge of maximizingjivif@mation spread

by evaluating several algorithms given various models of adoption wesdismxt.

Most of the previous research on the flow of information and influenamutiir the networks has been
done in the context of epidemiology and the spread of diseases oventharkeSee the works of Bai-
ley [Bailey, 1979 and Anderson and Mayynderson and May2003 for reviews of this area. The classi-
cal disease propagation models are based on the stages of a diseasstiragplrson is firgusceptible
to a disease, then if she is exposed to an infectious contact she can hatectedand thusnfectious
After the disease ceases the persoreveredor removed The person is themmmunefor some pe-
riod. The immunity can also wear off and the person becomes again suseeptibs SIR (susceptible —
infected — recovered) models diseases where a recovered perssragain becomes susceptible, while
SIRS (SIS, susceptible — infected — (recovered) — susceptible) mammiéaion in which recovered host
can become susceptible again. Given a network and a set of infected tioakpidemic thresholds
studied,i.e., conditions under which the disease will either dominate or die out. In oer 848 model
would correspond to the case where a set of initially infected nodesspamds to people that purchased a
product without first receiving the recommendations. A node can psech product only once, and then
tries to infect its neighbors with a purchase by sending out the recommemsla®its model corresponds
to the less realistic case where a person can purchase a product multipleasirmaegsult of multiple
recommendations. The problem with these type of models is that they assurowia gocial network
over which the diseases (product recommendations) are spreading@aity a single parameter which
specifies the infectiousness of the disease. In our context this would timetatme whole population is
equally susceptible to recommendations of a particular product.

There are numerous other models of influence spread in social netvimksof the first and most influ-
ential diffusion models was proposed by BaBags 1969. The model of product diffusion predicts the
number of people who will adopt an innovation over time. It does not expliaitount for the structure
of the social network but it rather assumes that the rate of adoption isadumf the current proportion
of the population who have already adopted (purchased a product itese). The diffusion equation
models the cumulative proportion of adopters in the population as a functtbe oftrinsic adoption rate,
and a measure of social contagion. The model describes an S-shapedxhere adoption is slow at first,
takes off exponentially and flattens at the end. It can effectively modedwf-mouth product diffusion
at the aggregate level, but not at the level of an individual persoichw$one of the topics we explore in
this chapter.

Diffusion models that try to model the process of adoption of an idea ordupt@can generally be divided
into two groups:

e Threshold mode]Granovetter1978 where each node in the network has a threshotd [0, 1],
typically drawn from some probability distribution. We also asssgnnection weights,, ,, on the
edges of the network. A node adopts the behavior if a sum of the connegights of its neighbors
that already adopted the behavior (purchased a product in ourisagg®@ater than the threshold:

t< Zadoptersu) Wa,p-
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e Cascade modgfGoldenberg et al200] where whenever a neighborof nodeu adopts, then node
u also adopts with probability,, ,,. In other words, every time a neighborwpurchases a product,
there is a chance thatwill decide to purchase as well.

In the independent cascade model, Goldenberg eGalldenberg et al.200] simulated the spread of
information on an artificially generated network topology that consisted Hattrang ties within groups
of spatially proximate nodes and weak ties between the groups. Theytlaindeak ties were important
to the rate of information diffusion. Centola and Ma&ehtola and Macy2009 modeled product adop-
tion on small world topologies when a person’s chance of adoption is depeaon having more than one
contact who had previously adopted. Wu and Hubernviln dind Huberman2004 modeled opinion
formation on different network topologies, and found that if highly caneeé nodes were seeded with a
particular opinion, this would proportionally effect the long term distributibominions in the network.
Holme and NewmanHolme and Newmar200§ introduced a model where individuals’ preferences are
shaped by their social networks, but their choices of whom to include in gbeial network are also
influenced by their preferences.

While these models address the question of how influence spreads in alkgehey are based assumed
rather thammeasurednfluence effects. In contrast, our study tracks the actual diffusiora@mmenda-
tions through email, allowing us to quantify the importance of factors such aprédsence of highly
connected individuals, or the effect of receiving recommendatioma fraultiple contacts. Compared
to previous empirical studies which tracked the adoption of a single innovatiproduct, our data en-
compasses over half a million different products, allowing us to model auptsdsuitability for viral
marketing in terms of both the properties of the network and the product itself.

6.3 The recommendation network

Here we briefly describe our viral marketing dataset and the propertidseaecommendation net-
work.

6.3.1 Recommendation program and dataset description

Our analysis focuses on the recommendation referral program rurdbgearetailer. The program rules
were as follows. Each time a person purchases a book, music, or a mosieshe is given the option
of sending emails recommending the item to friends. The first person toge&the same item through
a referral link in the email gets a 10% discount. When this happens thersahitie recommendation
receives a 10% credit on their purchase.

The following information is recorded for each recommendation
1. Sender Customer ID (shadowed)

. Receiver Customer ID (shadowed)

2

3. Date of Sending

4. Purchase flagoQy-bif)
5

. Purchase Date (error-prone due to asynchrony in the servers)
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SYMBOL || DESCRIPTION

np Number of products

N Number of senders of recommendations

N, Number of recommendation receivers

N Number of nodesN = N, U N,

T Number of recommendations

E Number of edged,e., unique pairs of nodes that exchanged recommendatios
buy-bit Whether a recommendation results in a purchase that received discount
by, Number of purchases with buy-bit turned on

buy-edge| If a node got a recommendation and then sent another one then it mustdayle
be Number of purchases as determined via buy-edges

N, Number of nodes in the largest weakly connected component

Te Number of recommendation in the largest component

E, Number of edges in largest component

cc Fraction of nodes in largest connected component; 100N,./N

0% Power law degree exponepld) o d~7

Ny Size of the cascade at time

Dt Probability of a recommendation causing a purchase

Tpl Average number of reviews per product in 2001-2003

Vaw Average star rating

Cav Average number of people recommending a product

Dm Median product price

b, Purchases per recommendgr= (b, + b.)/r

Table 6.1: Table of symbols.

6. Product identifier
7. Price

The recommendation dataset consists of 15,646,121 recommendations mame 388,084 distinct

users. The data was collected from June 5 2001 to May 16 2003. In t68&5Z3 products were recom-
mended, 99% of them belonging to 4 main product groups: Books, DVDsjdvnd Videos. In addition

to recommendation data, we also crawled the retailer’s website to obtain paadegories, reviews and
ratings for all products. Of the products in our data set, 5813 (1%) disontinued (the retailer no
longer provided any information about them).

Although the data gives us a detailed and accurate view of recommendatiamudyg, it does have its
limitations. The only indication of the success of a recommendation is the obiearethe recipient
purchasing the product through the same vendor. We have no wagwiaif the person had decided in-
stead to purchase elsewhere, borrow, or otherwise obtain the pratheatlelivery of the recommendation
is also somewhat different from one person simply telling another aborgdugt they enjoy, possibly
in the context of a broader discussion of similar products. The recomriends received as a form
email including information about the discount program. Someone readingnta@ might consider it
spam, or at least deem it less important than a recommendation given in tegtadra conversation. The
recipient may also doubt whether the friend is recommending the prodcatibe they think the recipient
might enjoy it, or are simply trying to get a discount for themselves. Finallyalsethe recommendation
takes place before the recommender receives the product, it might basbd on a direct observation of
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the product. Nevertheless, we believe that these recommendation neasernieslective of the nature of
word of mouth advertising, and give us key insights into the influence délsoeetworks on purchasing
decisions.

6.3.2 Identifying successful recommendations

For each recommendation, the dataset includes information about the rendadr@roduct, sender and
received or the recommendation, and most importantly, the success ofmegaation. See secti@n3.1
for more details.

We represent this data set as a directed multi graph. The nodes remes®mers, and a directed edge
contains all the information about the recommendation. The &dgep, t) indicates that recommended
productp to customey at timet. Note that as there can be multiple recommendations between the persons
(even on the same product) there can be multiple edges between two nodes.

The typical process generating edges in the recommendation networkoiboassf a node first buys a
productp at timet and then it recommends it to nodgs. . ., j,. Thej nodes can then buy the product
and further recommend it. The only way for a node to recommend a prodtetfiist buy it. Note
that even if all nodeg buy a product, only the edge to the noflethat first made the purchase (within
a week after the recommendation) will be marked Hyug-bit Because the buy-bit is set only for the
first person who acts on a recommendation, we identify additional pugstgsthe presence of outgoing
recommendations for a person, since all recommendations mystebededby a purchase. We call
this type of evidence of purchasebay-edge Note that buy-edges provide only a lower bound on the
total number of purchases without discounts. It is possible for a custtmmat be the first to act on a
recommendation and also to not recommend the product to others. Untefjuttas was not recorded in
the data set. We consider, however, the buy-bits and buy-edgesessdfar the total number of purchases
through recommendations.

As mentioned above the first buyer only gets a discount (the buy-bit ieduon) if the purchase is
made within one week of the recommendation. In order to account for as maioljases as possible,
we consider all purchases where the recommendation preceded thagri(buy-edge) regardless of the
time difference between the two events.

To avoid confusion we will refer to edges in a multi graph as recommenddomsulti-edges) — there
can be more than one recommendation between a pair of nodes. We will usenthedge (or unique
edge) to refer to edges in the usual sensg there is only one edge between a pair of people. And, to get
from recommendations to edges we create an edge between a pair ofipgapiexchanged at least one
recommendation.

6.3.3 Properties of the recommendation network

For each product group we took recommendations on all products fregrttup and created a network.
Table 6.2 shows the sizes of various product group recommendation networksyyitieing the total
number of products in the product grould,the total number of nodes spanned by the group recommen-
dation network, and, the number of recommendations (there can be multiple recommendations between
two nodes). ColumrE’ shows the number of (unique) edges — disregarding multiple recommendations
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Group | ny N y E by be

Book 103,161 2,863,977 5,741,611 2,097,809 65,344 17,769
DvD 19,829 805,285 8,180,393 962,341 17,232 58,189
Music 393,598 794,148 1,443,847 585,738 7,837 2,739
Video 26,131 239,583 280,270 160,683 909 467
Full network || 542,719 3,943,084 15,646,121 3,153,676 91,322 79,164

Table 6.2: Product group recommendation statisties: number of products)V: number of nodes;,.:
number of recommendationg;; number of edgesy,: number of buy bitsh.: humber of buy

edges.
Group | N, e E. e bee
Book 53,681 033,988 184,188 1,919 1,921
DVD 39,699 6,903,087 442,747 6,199 41,744
Music 22,044 295,543 82,844 348 456
Video 4,964 23,555 15,331 2 74
Full network || 100,460 8,283,753 521,803 8,468 44,195

Table 6.3: Statistics for the largest connected component of eachuptagtoup. N.: humber of nodes
in largest connected component, number recommendations in the componét, number
of edges in the componerit,.: number of buy bitsp..: humber of buy edges in the largest
connected component, amg. andb.. are the number of purchase through a buy-bit and a
buy-edge, respectively.

between the same source and recipiest, qfumber of pairs of people that exchanged at least one recom-
mendation).

In terms of the number of different items, there are by far the most music folbsyed by books and

videos. There is a surprisingly small number of DVD titles. On the other Hax®s account for more

half of all recommendations in the dataset. The DVD network is also the mosedeaving about 10
recommendations per node, while books and music have about 2 recontimesger node and videos
have only a bit more than 1 recommendation per node.

Music recommendations reached about the same number of people as DMi®t8 more than 5 times
fewer recommendations to achieve the same coverage of the nodes. d8oakmendations reached by
far the most people — 2.8 million. Notice that all networks have a very small nuofilb@ique edges. For
books, videos and music the number of unique edges is smaller than the mfmbees — this suggests
that the networks are highly disconnecté&udds and Rnyi, 1964.

Back to table6.2 given the total number of recommendationsand purchasedy + b.) influenced by
recommendations we can estimate how many recommendations need to be ieddpesaht over the
network to induce a new purchase. Using this metric books have the mosghnitidliurecommendations
followed by DVDs and music. For books one out of 69 recommendationdtedsin a purchase. For
DVDs it increases to 108 recommendations per purchase and furtheagsesrto 136 for music and 203
for video.

Table6.3gives more insight into the structure of the largest connected componeatioproduct group’s
recommendation network. We performed the same measurements as & 2atith the difference being
that we did not use the whole network but only its largest weakly connedegonent. The table shows
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Figure 6.1: (a) The size of the largest connected component of custoonerdime. The inset shows the
linear growth in the number of custome¥sover time.

the number of noded/, the number of recommendations and the number of (unique) edgés in
the largest component. The last two columig @ndb..) show the number of purchases resulting in
a discount (buy-bitp,.) and the number of purchases through buy-edgg3 ih the largest connected
component.

First, notice that the largest connected components are very small. DWeghme largest - containing
4.9% of the nodes, books have the smallest at 1.78%. One would alsa é&xgethe fraction of the

recommendations in the largest component would be proportional to its sigenotée that this is not

the case. For example, the largest component in the full recommendatioorkemntains 2.54% of the
nodes and 52.9% of all recommendations, which is the result of heavy bi2¢Dnrecommendations.

Breaking this down by product categories we see that for DVDs 84.3#eofecommendations are in
the largest component (which contains 4.9% of all DVD nodes), vs. 1608%ook recommendations
(component size 1.79%), 20.5% for music recommendations (compone@t&r2é), and 8.4% for video

recommendations (component size 2.1%). This shows that the dynamic ingastleaomponent is very
much different from the rest of the network. Especially for DVDs we sa@ that a very small fraction of
users generated most of the recommendations.

6.3.4 Recommendation network over time

The recommendations that occurred were exchanged over an existiegyang social network. In the
real world, it is estimated that any two people on the globe are connectedivatahain of acquaintances
- popularly known as the small world phenomendnayers and Milgram1969. We examined whether
the edges formed by aggregating recommendations over all products svmillarly yield a small world
network, even though they represent only a small fraction of a persmmplete social network. We
measured the growth of the largest weakly connected component ovestioven in Figures.1 Within
the weakly connected component, any node can be reached from anyotle by traversing (undirected)
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Figure 6.2: Growth of the largest connected component (LCC). (a) thieibligion of sizes of components
when they are merged into the largest connected comporignsae as (a), but restricted
to cases when a member of the LCC sends a recommendation émserautside the largest
component. (c) a sender outside the largest component agedemmendation to a member
of the component.

edges. For example, if recommended produgtto v, andw recommended produgtto v, thenu andw
are linked through one intermediary and thus belong to the same weaklyctedmemponent. Note that
connected components do not necessarily correspond to communitigsr&lughich we often think of
as densely linked parts of the networks. Nodes belong to same compotiaytéan reach each other via
an undirected path regardless of how densely they are linked.

Figure 6.1 shows the size of the largest connected component, as a fraction of theditark. The
largest component is very small over all time. Even though we compose tiverkausing all the rec-
ommendations in the dataset, the largest connected component containame2$5% (100,420) of the
nodes, and the second largest component has6dlyodes. Still, some smaller communities, number-
ing in the tens of thousands of purchasers of DVDs in categories swmbsdsrns, classics and Japanese
animated films (anime), had connected components spanning about 20% ofeh®ers.

The insert in figuré.1shows the growth of the customer base over time. Surprisingly it was lirdsing
on average 165,000 new users each month, which is an indication thatvtoe $iself was not spreading
epidemically. Further evidence of non-viral spread is provided by tlagvely high percentage (94%) of
users who made their first recommendation without having previouslyeztene.

Growth of the largest connected component

Next, we examine the growth of the largest connected component (LE@yure 6.1 we saw that the
largest component seems to grow quadratically over time, but at the end dath collection period is
still very small,i.e., only 2.5% of the nodes belong to largest weakly connected componem wéeare
not interested in how fast the largest component grows over time but Faifhebig other components are
when they get merged into the largest component. Also, since our grapléted we are interested in
determining whether smaller components become attached to the largest catijyomeecommendation
sent from inside of the largest component. One can think of these recatati@rs as being tentacles
reaching out of largest component to attach smaller components. Thepo®bility is that the recom-
mendation comes from a node outside the component to a member of the lamesinent and thus the
initiative to attach comes from outside the largest component.
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We look at whether the largest component grows gradually, addingsmmu® by one as the members
send out more recommendations, or whether a new recommendation mightaabtidge to a compo-
nent consisting of several nodes who are already linked by their pevécommendations. To this end
we measure the distribution of a component’s size when it gets merged to thstlarepkly connected
component.

We operate under the following setting. Recommendations are arrivingtioverone by one creating
edges between the nodes of the network. As more edges are beingthddstzk of largest connected
component grows. We keep track of the currently largest componehinaasure how big the separate
components are when they get attached to the largest component.

Figure6.2(a) shows the distribution of merged connected component (CC) sizetheOGnaxis we plot
the component size (number of nod®3 and on the y-axis the number of components of siz¢hat
were merged over time with the largest component. We see that a majority of the Single node
(component of size 1) merged with the currently largest component. Ortliee @xtreme is the case
when a component df, 568 nodes merged with the largest component.

Interestingly, out of all merged components, in 77% of the cases theesolitlte recommendation comes
from inside the largest component, while in the remaining 23% of the cases & sthller component
that attaches itself to the largest one. Figar&b) shows the distribution of component sizes only for
the case when the sender of the recommendation was a member of the langpshentj.e., the small
component was attached from the largest component. Lastly, Fig(® shows the distribution for the
opposite case when the sender of the recommendation was not a membelaajelse component.e.,
the small component attached itself to the largest.

Also naotice that in all cases the distribution of merged component sizes faltwavy-tailed distribution.
We fit a power law distribution and note the power law exponent of 1.906f#ja)) when considering all
merged components. Limiting the analysis to the cases where the source dféhthat attached a small
component to the largest is in the largest component we obtain power lamexipof 1.96 (figh6.2(b)),
and when the edge originated from the small component to attached it to thst/dhgp power law expo-
nentis 1.76. This shows that even though in most cases the LCC absodmsdh component, we see that
components that attach themselves to the LCC tend to be larger (smaller povexplament) than those
attracted by the LCC. This means that the component sometimes grows a bé efttaches itself to
the largest component. Intuitively, an individual node can get attachibé targest component simply by
passively receiving a recommendation. But if it is the outside node thds serecommendation to some-
one in the giant component, it is already an active recommender and cordébtieehave recommended
to several others previously, thus forming a slightly bigger componenistiia¢n merged.

From these experiments we see that the largest component is very adtiteg smaller components by
generating new recommendations. Most of the time these newly merged camtgarequite small, but
occasionally sizable components are attached.

6.3.5 Preliminary observations and discussion

Even with these simple counts and experiments we can already make a fawatibss. It seems that
some people got quite heavily involved in the recommendation program, anthélyatended to recom-
mend a large number of products to the same set of friends (since the noiinggue edges is so small
as shown on tablé.2). This means that people tend to buy more DVDs and also like to recommend
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Figure 6.3: Examples of two product recommendation networks: (a) Riidtstudy guiderirst Aid for
the USMLE Step(b) Japanese graphic novel (man@d) My Goddess!: Mara Strikes Back

them to their friends, while they seem to be more conservative with books.p@ssible reason is that
a book is a bigger time investment than a DVD: one usually needs sevemataagad a book, while a
DVD can be viewed in a single evening. Another factor may be how informedulstomer is about the
product. DVDs, while fewer in number, are more heavily advertised orbilNoards, and movie theater
previews. Furthermore, it is possible that a customer has already watchedie and is adding the DVD
to their collection. This could make them more confident in sending recommenslatdore viewing the

purchased DVD.

One external factor which may be affecting the recommendation patter3\/ios is the existence of
referral websitesvjww.dvdtalk.com ). On these websites people, who want to buy a DVD and get
a discount, would ask for recommendations. This way there would be recasatiers made between
people who don'’t really know each other but rather have an econongatime to cooperate.

In effect, the viral marketing program is altering, albeit briefly and mostyikaintentionally, the struc-
ture of the social network it is spreading on. We were not able to find singfarral sharing sites for
books or CDs.

6.4 Propagation of recommendations

6.4.1 Forward recommendations

Not all people who accept a recommendation by making a purchase alde tiegive recommendations.
In estimating what fraction of people that purchase also decide to reconfiowvetd, we can only use
the nodes with purchases that resulted in a discount. TakEhows that only about a third of the people
that purchase also recommend the product forward. The ratio of fdm@aommendations is much higher
for DVDs than for other kinds of products. Videos also have a higher of forward recommendations,
while books have the lowest. This shows that people are most keen on rendingienovies, possibly
for the above mentioned reasons, while more conservative when recalimgd&ooks and music.

Figure 6.4 shows the cumulative out-degree distribution, that is the number of peomeserit out at
leastk,, recommendations, for a product. We fit a power law to all but the tail of thellison. Also,

152


www.dvdtalk.com

Number of nodes
Group || Purchases Forward Percent
Book 65,391 15,769 24.2
DVD 16,459 7,336 44.6
Music 7,843 1,824 23.3
Video 909 250 27.6
Total 90,602 25,179 27.8

Table 6.4: Fraction of people that purchase and also recommend forviRutthases number of nodes
that purchased as a result of receiving a recommenddfmward: nodes that purchased and
then also recommended the product to others.

+ level O
—y=2.6|3
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—vy=2.0
+ level 2|1
—y=15
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—y=12
= |evel 4
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kp (recommendations by a person for a product)

Figure 6.4: The number of recommendations sent by a user with each cejpvesenting a different depth
of the user in the recommendation chain. A power law exponéafitted to all but the tail,
which shows an exponential drop-off at around 100 recommtgmas sent). This drop-off
is consistent across all depth levels, and may reflect e@th®atural disinclination to send
recommendation to over a hundred people, or a technica ibsl might have made it more
inconvenient to do so. The fitted lines follow the order of tbeel number ice., top line
corresponds to level 0 and bottom to level 4).

notice the exponential decay in the tail of the distribution which could be, armitey reasons, attributed
to the finite time horizon of our dataset. (Note that the reasons for exponeetiay here are different
than in Chapted where we investigated microscopic network evolution. There the powerd{ponents
remained constant and the exponential decay factor got strongedasiegree increased.)

The figure6.4 shows that the deeper an individual is in the cascade, if they choose wra@mmenda-
tions, they tend to recommend to a greater number of people on averagétéihdirfe has smaller slope
v, i.e,, the distribution has higher variance). This effect is probably due towatlyheavily recommended
products producing large enough cascades to reach a certain dept@iis®bbserve, as is shown in Ta-
ble 6.5, that the probability of an individual making a recommendation at all (whichocdy occur if they
make a purchase), declines after an initial increase as one gets ddepbeicascade.
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level || prob. buy & average
forward out-degree

0 N/A 1.99
1 0.0069 5.34
2 0.0149 24.43
3 0.0115 72.79
4 0.0082 111.75

Table 6.5: Statistics about individuals at different levels of theazate.
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(a) Recommendations (b) Purchases

Figure 6.5: Distribution of the number of recommendations and numbpuothases made by a customer.

6.4.2 ldentifying cascades

As customers continue forwarding recommendations, they contribute to rimatfon of cascades. In
order to identify cascadesge., the “causal” propagation of recommendations, we trawécessful rec-
ommendationss they influence purchases and further recommendations. We de&neramendation

to be successful if it reached a node befordiist purchase. We consider only the first purchase of an
item, because there are many cases when a person made multiple purétiasesame product, and in
between those purchases she may have received new recommendatibisscase one cannot conclude
that recommendations following the first purchase influenced the latengses.

Each cascade is a network consisting of customers (hodes) who pedctge same product as a result of
each other’'s recommendations (edges). We dédéterecommendations- all incoming recommenda-
tions that happened after the first purchase of the product. This wayake the networkime increasing

or causal— for each node all incoming edges (recommendations) occurred befaratgoing edges.
Now each connected component represents a time obeying propagatmowimendations.

Figure 6.3 shows two typical product recommendation networks: (a) a medical stuide gnd (b) a
Japanese graphic novel. Throughout the dataset we observeémday patters. Most product recommen-
dation networks consist of a large number of small disconnected compomeais we do not observe
cascades. Then there is usually a small number of relatively small compaviémi€commendations
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Figure 6.6: Size distribution of cascades (size of cascade vs. countyl IBe presents a power-fit.

successfully propagating. This observation is reflected in the heavy th#irtbution of cascade sizes
(see figures.6), having a power law exponent close to 1 for DVDs in particular. We detexd the power
law exponent by fitting a line on log-log scales using the least squares method.

We also notice bursts of recommendations (figbr&b)). Some nodes recommend to many friends,
forming a star like pattern. Figu@5shows the distribution of the recommendations and purchases made
by a single node in the recommendation network. Notice the power law distribudimhlong flat tails.

The most active customer made 83,729 recommendations and purchasedidle4ént items. Finally, we

also sometimes observe “collisions”, where nodes receive recommersl&tom two or more sources.

A detailed enumeration and analysis of observed topological cascadmpdtiethis dataset is made in
section6.9.

Last, we examine the number of exchanged recommendations betweenfgppaiple in figures.7. Over-

all, 39% of pairs of people exchanged just a single recommendation. Timberuwecreases for DVDs
to 37%, and increases for books to 45%. The distribution of the numbexcbbaged recommendations
follows a heavy tailed distribution. To get a better understanding of the distits we show the power
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Figure 6.7: Distribution of the number of exchanged recommendationsdxen pairs of people.

law decay lines. Notice that one gets much stronger decay exponenb(distr has weaker tail) of -2.7
for books and a very shallow power law exponent of -1.5 for DVD4ds Tireans that even a pair of people
exchanges more DVD than book recommendations.

6.4.3 The recommendation propagation model

A simple model can help explain how the wide variance we observe in the nwhbesommendations
made by individuals can lead to power laws in cascade sizes (f@g6reThe model assumes that each
recipient of a recommendation will forward it to others if its value exceedwhbitrary threshold that the
individual sets for herself. Since exceeding this value is a probabilistictelet’s callp; the probability
that at time step the recommendation exceeds the threshold. In that case the numbenmofrendations
Niy1 attime(t + 1) is given in terms of the number of recommendations at an earlier time by

Nip1 = (1+p) Ny (6.1)

where the probability; is defined over the unit interval.

Notice that, because of the probabilistic nature of the threshold beingded;eene can only compute the
final distribution of recommendation chain lengths, which we now proceed.to d

Subtracting from both sides of this equation the tévprand diving by it we obtain

N1y — N

= 6.2
N, b (6.2)

Summing both sides from the initial time to some very large tifnend assuming that for long times the
numerator is smaller than the denominator (a reasonable assumption) we ted, wpt constant

dN Niy1y — Ny
Wy NN, 6.3)

The left hand integral is just(/V'), and the right hand side is a sum of random variables, which in the limit
of a very large uncorrelated number of recommendations is normally distiibceatral limit theorem).

156



This observation was first made by Gibr&iprat 193] to model the growth rates of firms and is known
as the Law of Proportional Effect or simply Gibrat’s Law.

So, this means that the logarithm of the number of messages is normally distrilfiteztjuivalently,
the number of messages passed is log-normally distributed. So, the probadility for N is given
by
1 ~(In(N) — p)?
P(N) = ex
() NvV2mo? P 202
which, for large variances describes a behavior whereby the typicabar of recommendations is small
(the mode of the distribution) but there are unlikely events of large chairecommendations which are
also observable.

(6.4)

Furthermore, for large variances, the lognormal distribution can bdheva power law for a range of
values. In order to see this, take the logarithms on both sides of the equetjigualent to a log-log plot)
and one obtains

In(P(N)) = — In(N) — In(vZro?) — IOV =) (6.5)

202

So, for largeo, the last term of the right hand side goes to zero, and since the seconi t@rconstant

one obtains a power law behavior with exponent value of minus Bnet[al, 200]. There are other

models which produce power law distributions of cascade sizes, butesermrours for its simplicity,

since it does not depend on network topolo@yuhl et al, 2004 or critical thresholds in the probability
of a recommendation being accept®dits 2003. Also, similar derivation of lognormal distribution can
be found in Johnson et 811994 and is also known as the “law of proportional effect”.

6.5 Success of Recommendations

So far we only looked into the aggregate statistics of the recommendation kethext, we ask questions
about the effectiveness of recommendations in the recommendation nétsedirkFirst, we analyze the
probability of purchasing as one gets more and more recommendations. wéesieasure recommen-
dation effectiveness as two people exchange more and more recommesdatistly, we observe the
recommendation network from the perspective of the sender of the requatitn. Does a node that
makes more recommendations also influence more purchases?

6.5.1 Human adoption curve: the probability of buying versus number of incoming rec-
ommendations

First, we examine how the probability of purchasing changes as one getsanmbmore recommendations.
One would expect that a person is more likely to buy a product if she getsremrsmmendations. On the
other had one would also think that there is a saturation point — if a persort baught a product after a
number of recommendations, they are not likely to change their minds afeavirgceven more of them.
So, how many recommendations are too many?

Figure6.8 shows the probability of purchasing a product as a function of the nuailyecoming recom-
mendations on the product. Because we exclude late recommendationgh#tasere received after the
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Figure 6.8: Probability of buying a book (DVD) given a number of incomirecommendations. This
shows the human adoption curve has the diminishing retuoyepty.

purchase, an individual counts as having received three recomirmrganly if they did not make a pur-
chase after the first two, and either purchased or did not receitreefilecommendations after receiving
the third one. As we move to higher numbers of incoming recommendations, iitgenof observations
drops rapidly. For example, there were 5 million cases with 1 incoming recomti@mda a book, and
only 58 cases where a person got 20 incoming recommendations on alpatimok. The maximum was
30 incoming recommendations. For these reasons we cut-off the plot whetthber of observations
becomes too small and the error bars too large.

We calculate the purchase probabilities and the standard errors of thetestimiich we use to plot the
error bars in the following way. We regard each point as a binomial randwoiable. Given the number
of observations, let m be the number of successes, anfk = n — m) the number of failures. In our
case,m is the number of people that first purchased a product after receiviagpmmendations on it,
andk is the number of people that received the totat @@commendations on a product (till the end of
the dataset) but did purchase it, then the estimated probability of purchagirgqis/»n and the standard

error s, of estimatey is s, = /p(1 — p)/n.

Figure6.8(a) shows that, overall, book recommendations are rarely followed. Eeea surprisingly, as
more and more recommendations are received, their success decWasssserve a peak in probability
of buying at 2 incoming recommendations and then a slow drop. This implies thateifsan doesn’t
buy a book after the first recommendation, but receives another, thayare likely to be persuaded by
the second recommendation. But thereafter, they are less likely to retpaaditional recommenda-
tions, possibly because they perceive them as spam, are less sustemtibkrs’ opinions, have a strong
opinion on the particular product, or have a different means of accgeisin

For DVDs (figure6.8(b)) we observe a saturation around 10 incoming recommendations. Thismea
that with each additional recommendation, a person is more and more likely terbgaded - up to a
point. After a person gets 10 recommendations on a particular DVD, thdiapildy of buying does not
increase anymore. The number of observations is 2.5 million at 1 incomingnneendation and 100 at 60
incoming recommendations. The maximal number of received recommendatib#a (and that person
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did not buy), but someone purchased a DVD after 169 receivingmemmndations. The different patterns
between book and DVD recommendations may be a result of the recommeneetizenge websites
for DVDs. Someone receiving many DVD recommendations may have signéal neceive them for a
product they intended to purchase, and hence a greater numbeeiweerecommendations corresponds
to a higher likelihood of purchase (up to a point).

6.5.2 Success of subsequent recommendations

Next, we analyze how the effectiveness of recommendations changeg agceived more and more
recommendations from the same person. A large number of exchangedmnendations can be a sign of
trust and influence, but a sender of too many recommendations candegé/pdras a spammer. A person
who recommends only a few products will have her friends’ attention, feitnho floods her friends with
all sorts of recommendations will start to loose her influence.

We measure the effectiveness of recommendations as a function of theuotiaér of previously received
recommendations from a particular node. We thus measure how spendmgeshover time, where time
is measured in the number of received recommendations.

We construct the experiment in the following way. For every recommendat@nsome produch be-
tween nodes: and v, we first determine how many recommendations nedeceived fromw before
gettingr. Then we check whether, the recipient of recommendation, purchageafter the recommen-
dationr arrived. If so, we count the recommendation as successful sinceugintid the purchase. This
way we can calculate the recommendation success rate as more recommsndat®exchanged. For
the experiment we consider only node pditsv), where there were at least a total of 10 recommenda-
tions sent fromu to v. We perform the experiment using only recommendations from the samegbrod

group.

We decided to set a lower limit on the number of exchanged recommendatitinatsee can measure
how the effectiveness of recommendations changes amathetwo people exchange more and more rec-
ommendations. Considering all pairs of people would heavily bias our findiimge most pairs exchange
just a few or even just a single recommendation. Using the data from Bgimee see that 91% of pairs of
people that exchange at least 1 recommendation exchange less thar bOoks this number increases
to 96%, and for DVDs it is even smaller (81%). In the DVD network therel®2 thousand pairs that
exchanged more than 10 recommendations, and 70 thousand for thediookkn

Figure6.9shows the probability of buying as a function of the total number of rede®eommendations
from a particular person up to that point. One can think of x-axis as megdsime where the unit is the
number of received recommendations from a particular person.

For books we observe that the effectiveness of recommendation reatainsconstant up to 3 exchanged
recommendations. As the number of exchanged recommendations inctbaspsobability of buying
starts to decrease to about half of the original value and then levels @ffD¥Ds we observe an im-
mediate and consistent drop. We performed the experiment also for videmasic, but the number of
observations was too low and the measurements were noisy. This expesimogrg that recommenda-
tions start to lose effect after more than two or three are passed betwegedple. Also, notice that the
effectiveness of book recommendations show in Figu®&) decays much more slowly than that of DVD
recommendations (Figu&9(b)), flattening out at around 20 recommendations, compared to ar@und 1
DVD exchanged recommendations.
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Figure 6.9: The effectiveness of recommendations with the number @&ived recommendations.

This result has important implications for viral marketing practitioners as ivstibat by providing too
much incentive for people to recommend to one another can weaken thsoegaynetwork links that the
marketer is intending to exploit.

6.5.3 Success of outgoing recommendations

In previous sections we examined the data from the viewpoint of the exadithe recommendation. Now
we look from the viewpoint of the sender. The two interesting questionsheng does the probability

of getting a 10% credit change with the number of outgoing recommendatindggigen a number of

outgoing recommendations, how many purchases will they influence?

One would expect that recommendations would be the most effective velitemmended to the right
subset of friends. If one is very selective and recommends to too femds, then the chances of success
are slim. One the other hand, recommending to everyone and spamming theoeitimmendations may
have limited returns as well.

The top row of figure6.10 shows how the average number of purchases changes with the number of
outgoing recommendations. For books, music, and VHS videos the numperabifases soon saturates:
purchases grow fast up to around 10 outgoing recommendations anthth&end either slows down

or starts to drop. DVDs exhibit different behavior, with the expected rermolb purchases increasing
throughout.

These results are even more interesting since the receiver of the recdatioerdoes not know how

many other people also received the recommendation. Thus the plots of6idOrshow that there are

interesting dependencies between the product characteristics anddhemwender that manifest through
the number of recommendations sent. It could be the case that widely recaedneroducts are not
suitable for viral marketing (we find something similar in sec#08.2), or that the recommender did not
put too much thought into who to send the recommendation to, or simply that pspiestart to ignore

mass recommenders.
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Figure 6.10: Top row: Number of resulting purchases given a number of @ntgrecommendations.
Bottom row: Probability of getting a credit given a numbeiootgoing recommendations.

Plotting the probability of getting a 10% credit as a function of the number obinggecommendations,

as in the bottom row of figur6.10 we see that the success of DVD recommendations saturates as well,
while books, videos and music have qualitatively similar trends. The difterenthe curves for DVD
recommendations points to the presence of collisions in the dense DVD netwick has 10 recommen-
dations per node and around 400 per product — an order of magnituaetham other product groups.
This means that many different individuals are recommending to the sanmnparsl after that person
makes a purchase, even though all of them made a ‘successful recdatinahby our definition, only

one of them receives a credit.

6.5.4 Success of incoming recommendations

The collisions of recommendations are a dominant feature of the DVD reconati@mdetwork. Book
recommendations have the highest chance of getting a credit, but DVBinesodations cause the most
purchases. So far it seems people are very keen on recommendinggsvaYiDs, while very conservative
on recommending books. But how does the behavior of customers chatigey get more involved into
the recommendation network? We would expect that most of the peopletdreawly involved, so their
probability of buying is not high. In the extreme case we expect to findlpewpo buy almost everything
they get recommendations on.

There are two ways to measure the involvedness of a person in the nebydhe total number of incom-
ing recommendations (on all products) or the total number of differemtyats they were recommended.
For every purchase of a book at timewe count the number of different books (DVDs, ...) the person
received recommendations for before timeé\s in all previous experiments we delete late recommenda-
tions,i.e., recommendations that arrived after the first purchase of a product.

We show the probability of buying as a function of the number of differentipcts recommended in
Figure6.11 Figure6.12plots the same data but with the total number of incoming recommendations on
the x-axis. We calculate the error bars as described in se8tioh The number of observations is large
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Figure 6.11: The probability of buying a product given a number of differproducts a node got recom-
mendations on.

enough (error bars are sufficiently small) to draw conclusions abotrghds observed in the figures. For
example, there are more thah, 000 users that had 15 incoming DVD recommendations.

Notice that trends are quite similar regardless of whether we measure holwveidvs the user in the
network by counting the number of products recommended (figur® or the number of incoming rec-
ommendations (figs.12).

We observe two distinct trends. For books and music (figéiresand6.12 (a) and (c)) the probability of
buying is the highest when a person got recommendations on just 1 item,rasber of recommended
products increases to 2 or more the probability of buying quickly decsesasithen flattens.

Movies (DVDs and videos) exhibit different behavior (figéé1and6.12 (b) and (d)). A person is more
likely to buy the more recommendations she gets. For DVDs the peak is atatduncoming products,
while for videos there is no such peak — the probability remains fairly levétréstingly for DVDs the
distribution reaches its low at 2 and 3 items, while for videos it lies somewhéneebe 3 and 8 items.
The results suggest that books and music buyers tend to be consearadivocused. On the other hand
there are people who like to buy movies in general. One could hypothestaauttiag a book is a larger
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Figure 6.12: Probability of buying a product given a total number of indogirrecommendations on all
products.

investment of time and effort than buying a movie. One can finish a movie inemrey, while reading a
book requires more effort. There are also many more book and music tittesihae titles.

The other difference between the book and music recommendations in ésompr movies are the

recommendation referral websites where people could go to get recoratizersd One could see these
websites as recommendation subscription services — posting one’s emhdtaasults in a higher number

of incoming recommendations. For movies, people with a high humber of incoraamgmmendations

“subscribed” to them and thus expected/wanted the recommendations. ©thénehand people with

high numbers of incoming book or music recommendations did not “sign upthfem, so they may

perceive recommendations as spam and thus the influence of recommendabios.

Another evidence of the existence of recommendations referral websitedes the DVD recommenda-
tion network degree distribution. The DVDs follow a power law degree digioh with an exception of

a peak at out-degree 50. Other plots of DVD recommendation behavioexdoited abnormalities at
around 50 recommendations. These can be attributed to the recommendatiai veebsites.
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Figure 6.13: The time between the recommendation and the actual purcsase all purchases.
6.6 Timing of recommendations and purchases

The recommendation referral program encourages people to parakaoon as possible after they get
a recommendation, since this maximizes the probability of getting a discount. Wethtudime lag
between the recommendation and the purchase of different produgtgyreffectively how long it takes a
person to receive a recommendation, consider it, and act on it.

We present the histograms of the “thinking timeg,, the difference between the time of purchase and
the time the last recommendation was received for the product prior to ticbgae (figures.13. We
use a bin size of 1 day. Around 35%-40% of book and DVD purchasesred within a day after
the last recommendation was received. For DVDs 16% purchases mocarthan a week after the last
recommendation, while this drops to 10% for books. In contrast, if we cengiet lag between the
purchase and thirst recommendation, only 23% of DVD purchases are made within a day, while the
proportion stays the same for books. This reflects a greater likelihooa person to receive multiple
recommendations for a DVD than for a book. At the same time, DVD recommeteteido send out
many more recommendations, only one of which can result in a discountsidadis then often miss
their chance of a discount, which is reflected in the high ratio (78%) ofmezended DVD purchases that
did not a get discount (see tatBe2, columnsb, andb.). In contrast, for books, only 21% of purchases
through recommendations did not receive a discount.

We also measure the variation in intensity by time of day for three differentitaesiin the recommen-
dation system: recommendations (figéré4(a)), all purchases (figur@.14(b)), and finally just the pur-
chases which resulted in a discount (fig6r&4(c)). Each is given as a total count by hour of day.

The recommendations and purchases follow the same pattern. The only $i@edhde is that purchases
reach a sharper peak in the afternoon (after 3pm Pacific Time, 6pnritéiste). This means that the
willingness to recommend does not change with time, since about a constetitrfrof purchases also
result in recommendations sent (pl6td4(a) and (b) follow the same shape).

The purchases that resulted in a discount @ig@4(c)) look like a negative image of the first two figures.
If recommendations would have no effect then plot (c) should follow theesshape as (a) and (b), since
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a fraction of people that buy would become first buyées, the more recommendations sent, the more
first buyers and thus discounts. However, this does not seem to basbeThe number of purchases with
discount is high when the number of purchases is small. This means that htistaunted purchases
happened in the morning when the traffic (number of purchases/recoratierg] on the retailer's web-
site was low. This makes sense since most of the recommendations happengdite day, and if the
person wanted to get the discount by being the first one to purchaskadtihe highest chances when the
traffic on the website was the lowest.

There are also other factors that come into play here. Assuming that recatatioms are sent to people’s
personal (non-work) email addresses, then people probably ¢hesk email accounts for new email
less regularly while at work. So checking personal email while at wodkraacting to a recommenda-
tion would mean higher chances of getting a discount. Second, there aneetlgork effectsj.e., the
more recommendations sent, the higher chance of recommendation collisimwénehance of getting
discount, since one competes with the larger set of people.

6.7 Recommendations and communities of interest

Social networks are a product of the contexts that bring people togetier context can be a shared
interest in a particular topic or kind of a book. Sometimes there are circunestasiech as a specific job
or religious affiliation, that would make people more likely to be interested in thie sgpe of book or
DVD. We first apply a community discovery algorithm to automatically detect conitresrf individuals
who exchange recommendations with one another and to identify the kindsdfgis each community
prefers. We then compare the effectiveness of recommendations d&wok categories, showing that
books on different subjects have varying success rates.

6.7.1 Communities and purchases

In aggregating all recommendations between any two individuals in Segi®awe showed that the
network consists of one large component, containing a little over 100,086nceiss, and many smaller
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components, the largest of which has 634 customers. However, kntkdah@ hundred thousand cus-
tomers are linked together in a large network does not reveal whethedagbiin a particular category is
likely to diffuse through it. Consider for example a new science fiction beawkwould like to market by
word-of-mouth. If science fiction fans are scattered throughout ttveanlke, with very few recommenda-
tions shared between them, then recommendations about the new bookilely tm diffuse. If on the
other hand one finds one or more science ficiommunitieswhere sci-fi fans are close together in the
network because they exchange recommendations with one another,glmokrecommendation has a
chance of spreading by word-of-mouth.

In the following analysis, we use a community finding algorith@tauset et al.2004 in order to dis-
cover the types of products that link customers and so define a communéyaldorithm breaks up the
component into parts, such that the modularity Q,

@ = (number of edges within communities) — (expected number of such edges), (6.6)

is maximized. In other words, the algorithm identifies communities such that indilgdvithin those
communities tend to preferentially exchange recommendations with one another.

The results of the community finding analysis, while primarily descriptive, illtsstbmth the presence
of communities whose members are linked by their common interests, and thegeresess-cutting in-
terests between communities. Applying the algorithm to the largest componentemidyidnany small
communities and a few larger ones. The largest contains 21,000 node8,d5 @hom are senders of a
relatively modest 335,000 recommendations. More interesting than simplgvoigsthe size of commu-
nities is discovering what interests bring them together. We identify those#tsdny observing product
categories where the number of recommendations within the community is sigiyficeyiher than it is
for the overall customer population. Lgt be the proportion of all recommendations that fall within a
particular product category Then for a set of individuals sending recommendations, we would expect
by chance that, * p. + \/xg * pe * (1 — p.) would fall within categorye. We note the product categories
for which the observed number of recommendations in the community is manysdateliations higher
than expected. For example, compared to the background populationrgist leommunity is focused on
a wide variety of books and music. In contrast, the second largest comgriaadlving 10,412 individ-
uals (4,205 of whom are sending over 3 million recommendations), is predotlyifiacused on DVDs
from many different genres, with no particular emphasis on anime. The aummunity itself emerges
as a highly unusual group of 1,874 users who exchanged over 3 miltommaendations.

We find that large communities are very diverse and uninteresting. Peti@pnost interesting are the
medium sized communities, some of which are listed in Télehaving around 100 senders and often
reflecting specific interests. Among the hundred or so medium communitiesyume,ffor example,
several communities focusing on Christianity. While some of the Christian comnualie shared an
interest in children’s books, Broadway musicals, and travel to Italy,retfeeused on prayer and bibles,
still others also enjoyed DVDs of the Simpsons TV series, and others stilaioakerest in Catholicism,
occult spirituality and kabbalah.

Communities were usually centered around a product group, such ks, boasic, or DVDs, but almost
all of them shared recommendations for all types of products. The Dwramities ranged from bargain
shoppers purchasing discounted comedy and action DVDs to smaller anindependent movie com-
munities, to a group of customers purchasing predominantly children’s m@vies community focused
heavily on indie music, and imported dance and club music. Another seemeatdo amund intellectual
pursuits, including reading books on sociology, politics, artificial intelligemathematics, and media

166



# nodes| # sender# topics

735 74 | books: American literature, poetry

710 179 | sci-fi books, TV series DVDs, alternative rock music

667 181 | music: dance, indie

653 121 | discounted DVDs

541 112 | books: art & photography, web development, graphical design, sci-fi
502 104 | books: sci-fi and other

388 77 | books: Christianity and Catholicism

309 81 | books: business and investing, computers, Harry Potter

192 30 | books: parenting, women'’s health, pregnancy

163 48 | books: comparative religion, Egypt’s history, new age, role playing game

Table 6.6: A sample of the medium sized communities present in the $aig@mponent

culture, listening to classical music and watching neo-noir film. Several coitisrinentered around
business and investment books and frequently also recommended lmooksputing. One business and
investment community included fans of the Harry Potter fiction series, whildhanenjoyed science fic-
tion and adventure DVDs. One of communities with the most particular interestsireended not only
business and investing books to one another, but also an unusual moindmoks on terrorism, bacte-
riology, and military history. A community of what one can presume are welgues recommended
books to one another on art and photography, web development,igabgbasign, and Ray Bradbury’s
science fiction novels. Several sci-fi TV series such as Buffy the Vanglayer and Star Trek appeared
prominently in a few communities, while Stephen King and Douglas Clegg feataradcommunity
recommending horror, sci-fi, and thrillers to one another. One communitgéocpredominantly on par-
enting, women’s health and pregnancy, while another recommended ty\@frlmoks but especially a
collection of cookie baking recipes.

Going back to components in the network that were disconnected from tfestasomponent, we find
similar patterns of homophily, the tendency of like to associate with like. Two ofe@hgonents recom-
mended technical books about medicine, one focused on dance musg&sarhe others predominantly
purchased books on business and investing. Given more time, it is quéibledbat one of the customers
in one of these disconnected components would have received a recdatioprirom a customer within
the largest component, and the two components would have merged. FRaplexa disconnected com-
ponent of medical students purchasing medical textbooks might haverseteived a recommendation
from the medical community within the largest component. However, the medioahcnity may also
become linked to other parts of the network through a different interesh@fof its members. At the
very least many communities, no matter their focus, will have recommendationkifdren’s books or
movies, since children are a focus for a great many people. The commuulitygfialgorithm on the other
hand is able to break up the larger social network to automatically identifypgrotiindividuals with
a particular focus or a set of related interests. Now that we have shawcedmmunities of customers
recommend types of products reflecting their interests, we will examine whbtse different kinds of
products tend to have different success rates in their recommendations.
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6.7.2 Recommendation effectiveness by book category

Some contexts result in social ties that are more effective at conductiagtian. For example, in small
world experiments, where participants attempt to reach a target individoalgth their chain of acquain-
tances, profession trumped geography, which in turn was more usd@ddting a target than attributes
such as religion or hobbieKillworth and Bernard1978 Travers and Milgram1969. In the context of
product recommendations, we can ask whether a recommendation fokaffartion, which may be
made by any friend or neighbor, is more or less influential than a recomitiemdiar a technical book,
which may be made by a colleague at work or school.

Table 6.7 shows recommendation trends for all top level book categories by suljectclarity, we
group the results by 4 different category types: fiction, personal/iguofessional/technical, and non-
fiction/other. Fiction encompasses categories such as Sci-Fi and Rgnaasneell as children’s and
young adult books. Personal/Leisure encompasses everything &atergng, photography and cooking
to health and religion.

First, we compare the relative number of recommendations to reviews pastied site (columm,, /rp1

of table6.7). Surprisingly, we find that the number of people making personal recoiatiens was only
a few times greater than the number of people posting a public review on ttmteveld/e observe that
fiction books have relatively few recommendations compared to the numimiielvs, while professional
and technical books have more recommendations than reviews. This efialtt several factors. One is
that people feel more confident reviewing fiction than technical bookwth#er is that they hesitate to
recommend a work of fiction before reading it themselves, since the recataticem must be made at
the point of purchase. Yet another explanation is that the median pricevoifkaof fiction is lower than
that of a technical book. This means that the discount received foessftilly recommending a mystery
novel or thriller is lower and hence people have less incentive to senthreendations.

Next, we measure the per category efficacy of recommendations byolgséne ratio of the number
of purchases occurring within a week following a recommendation to the nuoflsecommenders for
each book subject category (colurbnof table6.7). On average, only 2% of the recommenders of a
book received a discount because their recommendation was accapdednother 1% made a recom-
mendation that resulted in a purchase, but not a discount. We obserkedbfferences in the response
to recommendation for different categories of books. Fiction in genermabtisvery effectively recom-
mended, with only around 2% of recommenders succeeding. The effiGcg bit higher (around 3%)
for non-fiction books dealing with personal and leisure pursuits. Psrpaople generally know what
their friends’ leisure interests are, or even have gotten to know themghriwse shared interests. On
the other hand they may not know as much about each others’ tastes in fkRlobommendation success
is highest in the professional and technical category. Medical boakes early double the average rate
of recommendation acceptance. This could be in part attributed to the higheampgtte of medical
books and technical books in general. As we will see in Se&i8r2, a higher product price increases the
chance that a recommendation will be accepted.

Recommendations are also more likely to be accepted for certain religiousiiased.3% for Christian
living and theology and 4.8% for Bibles. In contrast, books not tied tororga religions, such as ones
on the subject of new age (2.5%) and occult (2.2%) spirituality, have Imee@mmendation effectiveness.
These results raise the interesting possibility that individuals have grefitemioe over one another in
an organized context, for example through a professional contagetipeous one. There are exceptions
of course. For example, Japanese anime DVDs have a strong following ldShand this is reflected
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category H np N cc Tpl  Vav  Cav/Tpl Pm by * 100

BooksgeneralH 370,230 2,860,714 187 5.28 4.32 141 1495 3.12

Fiction |

Children 46,451 390,283 2.82 6.44 4.52 1.12 8.76 2.06**
Literature 41,682 502,179 3.06 13.09 4.30 0.57 11.87 2.82*
Mystery 10,734 123,392 6.03 20.14 4.08 0.36 9.60 2.40**
Science fiction|| 10,008 175,168 6.17 1990 4.15 0.64 10.39 2.34**
Romance 6,317 60,902 5.65 12.81 4.17 052 6.99 1.78*
Teens 5,857 81,260 5.72 20.52 4.36 0.41 9.56 1.94*
Comics 3,565 46,564 11.70 4.76 4.36 2.03 10.47 2.30*
Horror 2,773 48,321 9.35 21.26 4.16 0.44 9.60 1.81*
Personal |

Religion 43,423 441,263 1.89 3.87 4.45 1.73 9.99 3.13
Health/Body 33,751 572,704 154 434 4.41 239 1396 3.04
History 28,458 28,3406 2.74 4.34 4.30 1.27 18.00 2.84

Home/Garden| 19,024 180,009 291 1.78 431 3.48 15.37 2.26**
Entertainment| 18,724 258,142 3.65 3.48 4.29 2.26 13.97 2.66*

Arts/Photo 17,153 179,074 349 156 442 3.85 20.95 2.87
Travel 12,670 113,939 391 274 4.26 1.87 13.27 2.39**
Sports 10,183 120,103 1.74 3.36 4.34 1.99 1397 2.26**
Parenting 8,324 182,792 0.73 471 442 257 11.87 281
Cooking 7,655 146,522 3.02 3.14 4.45 3.49 13.97 2.38*
Outdoors 6,413 59,764 223 193 4.42 2,50 15.00 3.05

Professional H

Professional 41,794 459,889 1.72 191 4.30 3.22 3250 4.54**

Business 29,002 476,542 155 3.61 4.22 294 20.99 3.62**
Science 25,697 271,391 264 241 4.30 2.42 28.00 3.90**
Computers 18,941 375,712 222 451 3.98 3.10 34.95 3.61*
Medicine 16,047 175,520 1.08 1.41 4.40 4,19 39.95 b5.68**
Engineering 10,312 107,255 1.30 1.43 4.14 3.85 59.95 4.10**
Law 5,176 53,182 2.64 1.89 4.25 2.67 2495 3.66*
Other |

Nonfiction 55,868 560,552 2.03 3.13 4.29 1.89 18.95 3.28*
Reference 26,834 371,959 194 249 4.19 3.04 17.47 3.21

Biographies 18,233 277,356 2.80 7.65 4.34 0.90 14.00 2.96

Table 6.7: Statistics by book category:,:number of products in categord]: number of customers:
percentage of customers in the largest connected companentavg. # reviews in 2001 —
2003,v,,: average star rating,,: average number of people recommending proayct,r,::
ratio of recommenders to revieweys,: median pricep,.: ratio of the number of purchases
resulting from a recommendation to the number of recomnmsndehe symbol ** denotes
statistical significance at the 0.01 level, * at the 0.05lleve
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in their frequency and success in recommendations. Another example o tjeatdening. In general,
recommendations for books relating to gardening have only a modestecb&being accepted, which
agrees with the individual prerogative that accompanies this hobby.efgaime time, orchid cultivation
can be a highly organized and social activity, with frequent ‘shows’ anline communities devoted
entirely to orchids. Perhaps because of this, the rate of acceptancehad book recommendations is
twice as high as those for books on vegetable or tomato growing.

6.8 Products and recommendations

We have examined the properties of the recommendation network in relatiomtonarketing. Now we
focus on the products themselves and their characteristics that deternsnedkss of recommendations.

6.8.1 How long is the long tail?

Recently a ‘long tail’ phenomenon has been observed, where a laagiefraf purchases are of relatively
obscure items where each of them sells in very low numbers but there ayeofrtainse items. On Ama-
zon.com, somewhere between 20 to 40 percent of unit sales fall outsidetab 100,000 ranked prod-
ucts Brynjolfsson et al.2003. Considering that a typical brick and mortar store holds around 100,000
books, this presents a significant share. A streaming-music servicestneare tracks outside than inside
its top 10,000 tunesAinonymous 2004.

We performed a similar experiment using our data. Since we do not hawt siiles data we used the
number of successful recommendations as a proxy to the number ofageschFiguré.15 plots the
distribution of the number of purchases and the number of recommendagomsqgauct. Notice that
both the number of recommendations and the number of purchases pactpiotbw a heavy-tailed
distribution and that the distribution of recommendations has a heavier tail.

Interestingly, figures.15a) shows that just the top 100 products account for 11.4% of the all ale-
chases with discount), and the top 1000 products amount to 27% of tosatlsaagh the recommendation
system. On the other hand 67% of the products have only a single pur@heégtbey account for 30%
of all sales. This shows that a significant portion of sales come fromuptedhat sell very few times.
Recently there has been some debate about the longs@ihgs 2006 Anderson 200§. Some argue
that the presence of the long tail indicates that niche products with low salesmatributing significantly
to overall sales online. We also find that the tail is a bit longer than the ud20 8ule, with the top
20% of the products contributing to about half the sales. It is important tg hoteever, that our ob-
servations do not reflect the total sales of the products on the webste,te&y include only successful
recommendations that resulted in a discount. This incorporates both a biaskinthof product that
is likely to be recommended, and in the probability that a recommendation for itichok product is
accepted.

If we look at the distribution in the number of recommendations per productyrsin Figure6.15b),
we observe an even more skewed distribution. 30% of the products hfva single recommendation
and the top 56,000 most recommended products (top 10%) account farf@Ptecommendations. This
is consistent with our previous observations some types of prodegtgnime DVDs, are more heavily
recommended than others.
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Figure 6.16: Distribution of product recommendation success ratesh plaits show the same data: (a)
on a linear (lin-lin) scale, and (b) on a logarithmic (logy)scale. The bold line presents the
moving average smoothing.

Next we examine the distribution of the product recommendation succesOatef more than half a
million products we took all the products with at least a single purchase, ichvitiere are 41,000 (7%).
Figure6.16shows the success rate (purchases/recommendations). Notice thatrthetiia is not heavy
tailed and has a mode at around 1.3% recommendation success rate. 58%profdicts have a success
rate bellow 5% and there are around 14% of the products that haverameswlation success rate higher

than 20%.

6.8.2 Modeling the product recommendation success

So far we have seen that some products generate many recommendatiGmrenhave a better re-
turn than others on those recommendations, but one question still remaiasdetbrmines the prod-
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uct’s viral marketing success? We present a model which charactgriadact categories for which
recommendations are more likely to be accepted. We use a regressionafannfy product attributes
to correlate them with recommendation success:

e N: number of nodes in the social network (number of unique sendereaniyers)

N,: number of senders of recommendations

N,: number of recipients of recommendations

e r: number of recommendations

E: number of edges in the social network (number of unique (sendeiyes pairs)
e p: price of the product

e u: number of reviews of the product

e t: average product rating

From the original set of the half-million products, we compute a successsriiethe 8,192 DVDs
and 50,631 books that had at least 10 recommendation senders andi¢bravprice was given. In
section6.7.2we defined recommendation success kads the ratio of the total number purchases made
through recommendations and the number of senders of the recommend&tiertdecided to use this
kind of normalization, rather than normalizing by the total number of recomntiendasent, in order not

to penalize communities where a few individuals send out many recommendgditume 6.3(b)). Note
that in generak could be greater than 1, but in practice this happens extremely rarelg é&reeonly 107
products where > 1 which were discarded for the purposes of this analysis).

Since the variables follow a heavy tailed distribution, we use the following model:
5= eXp(Z Biln(x;) + ) (6.7)

wherex; are the product attributes (as described on previous page); s&whndom error.

We fit the model using least squares and obtain the coefficigrsisown in tables.9. With the exception
of the average rating, they are all significant, but just the number ohmemmdations alone accounts
for 15% of the variance (taking all eight variables into consideration yi@dR2 of 0.30 for books and
0.81 for DVDs). We should also note that the variables in our model ardyleghinear, as can be seen
from the pairwise correlation matrix (tab®8). For example, the number of recommendatiorshighly
negatively correlated with the dependent variabig<)) but in the regression model it exhibits positive
influence on the dependent variable. This is probably due to the fachthatimber of recommendations
is naturally dependent on the number of senders and number of recjpanisis the high number of
recommendations relative to the number of senders that is of importance.

To illustrate the dependencies between the variables we train a Bayes@amddapy networkThickering
2003, and show the learned structure for the combined (Books and DVDa)inldigure6.17. In this
a directed acyclic graph where nodes are variables, and directed iadiggate that the distribution of a
child depends on the values taken in the parent variables.

Notice that the average rating {s not predictive of the recommendation success rgtdt(is no surprise
that the number of recommendationss predictive of number of senders. Similarly, the number of
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H In(s) ‘ In(V) ‘ In(Ny) ‘ In(N,) ‘ In(r) ‘ In(E) ‘ In(p) ‘ In(v) ‘ In(t)

In(s) 1

In(N) | 0275| 1

In(Ng) || 0.103 | 0.907 1

In(N,) || 0.310 | 0.994 | 0.864 | 1.000

In(r) || 0.396 | 0.979 | 0.828 | 0.988 1

In(E) || 0.392 | 0.981| 0.831 | 0.990 | 0.999| 1

In(p) || 0.185| 0.098 | 0.088 | 0.098 | 0.107| 0.106 1

In(v) || -0.050| 0.465| 0.490 | 0.449 | 0.421| 0.423| -0.053| 1

In(¢) || -0.031| 0.064 | 0.071 | 0.061 | 0.056| 0.056 | -0.019| 0.269| 1

Table 6.8: Pairwise Correlation Matrix of the Books and DVD Productriiites. In(s): log recom-
mendation success rate(N): log number of nodesln(Ny): log number of senders of
recommendationsn(N,.): log number of receiverdn(r): log number of recommendations,
In(E): log number of edgedn(p): log price,ln(v): log number of reviewdn(t): log average
rating.

Books DVD
Variable Coefficients; Coefficients;
const || 1.317 (0.0038) ** | 0.929 (0.0100) **
N -0.579 (0.0060) **| 0.171 (0.0124) **
N, 0.144 (0.0018) ** | -0.070 (0.0023) **
N, -0.006 (0.0064) | -0.360 (0.0104) **
r 0.062 (0.0084) **| -0.002 (0.0083)
E 0.383 (0.0106) ** | 0.251 (0.0088) **
P 0.013 (0.0003) **| 0.007 (0.0016) **
v -0.003 (0.0001) **| -0.003 (0.0006) **
t -0.001 (0.0006) *| 0.000 (0.0009)
R? 0.30 0.81

Table 6.9: Regression Using the Log of the Recommendation Succesd$dgésg, as the Dependent Vari-
able for Books and DVDs separately. For each coefficient weige the standard error and
the statistical significance level (**:0.001, *:0.1). Wed#parate models for books and DVDs.

edgese is predictive of number of senders. Interestingly, pricep is only related to the number of
reviewsv. Number of recommendations number of senderss and pricep, are directly predictive of
the recommendation success rate

Returning to our regression model, we find that the numbers of nodeseeiders have negative coef-
ficients, showing that successfully recommended products are actuallylikely to be not so widely
popular. The only attributes with positive coefficients are the number ofmetendations, number of
edges, and pricep. This shows that more expensive and more recommended productsthigherasuc-
cess rate. These recommendations should occur between a small nusbedefs and receivers, which
suggests a very dense recommendation network where lots of recommesadaaxchanged between
a small community of people. These insights could be of use to marketers -enperecommendations
are most effective in small, densely connected communities enjoying expgsducts.
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Figure 6.17: A Bayesian network showing the dependencies between theles. s: recommendation
success ratep: number of nodesyp,: humber of senders of recommendations; log
number of receiversy: number of recommendations; number of edgesp: price, v:
number of reviewst: average rating.

6.9 Cascade shapes in viral marketing

Information cascades are phenomena whereby individuals adopt actewm or idea due to influence
by others. As such a process spreads through an underlying setiadri, it can result in widespread
adoption overall. We consider information cascades in the context ahmeeadations, and in particular
study the patterns of cascading recommendations that arise in large stwiatks. We investigate a large
person-to-person recommendation network, consisting of four millionlpe@ipo made sixteen million
recommendations on half a million products. Such a dataset allows us to pasgbamof fundamental
guestions: What cascades arise frequently in real life? What featistagyuish them? We enumerate and
count cascade subgraphs on large directed graphs; as one carhpitings, we develop a novel efficient
heuristic based on graph isomorphism testing that scales to large dataselisc@er novel patterns: the
distribution of cascade sizes and depths follows a power law. Genedlyades tend to be shallow, but
occasional large bursts of propagation can occur. Cascade pabgrge mainly tree-like, but we observe
variability in connectivity and branching across recommendations forrdifteypes of products.

6.9.1 Cascades

The social network of interactions between a group of individuals playsdamental role in the spread of
information, ideas, innovation, and influence among its members. The negffedk has been observed
in many cases, where an idea or action gains sudden widespread pggblaugh word of mouth or
viral marketing. For example, some movies become widely popular througi-efenouth advertising.
Google’s Gmail service captured a significant market share in spite cathéiat up to recently thenly
way to obtain a free email account is through a referral. One can alsonfamy examples in weblogs
(blogs), where a story or piece of information gets widely referred to bybtbgger community and is
eventually picked up by the mass media.
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Information cascades are phenomena where an action or idea becorasadinpted due to influence by
others, as opposed to individual reasoning in isolatBikijchandani et al.1993. Cascades are also
known as “fads” or “resonance.” There has been significant vamrke in modeling the spread and
adoption of ideas and influence through a social netw@tldenberg et al.2001, Granovetter 1978
Domingos and RichardspB001, Kempe et al.2003 Richardson and Domingp20021.

The formalism for cascades is activation of nodes in a graph wheresmegessent individuals, edges
relationships, and a binary node state shows whether a person is plaet cdscade. The chance that a
node is activated is influenced by the state of its neighbors. A related formelia graph where the
nodes are agents and a directed edgg ¢) indicates that influenced; at timet.

Cascades have been studied for many years by sociologists conaeithethe diffusion of innova-
tion [Rogers 1995; more recently, researchers have investigated cascades for thespuof select-
ing trendsettersfjomingos and Richardsp2001, Richardson and Domingp&0024, finding inocula-
tion targets in epidemiologyNewman 2002, and explaining trends in blogospher&dar and Adamic
2005 Adar et al, 2004 Gruhl et al, 2004 Kumar et al, 2003. To our knowledge, however, the difficulty
in obtaining data has limited the extent of analysis on large-scale, completetdatawesenting cascades.
Here we look at the patterns of influence in a large-scale, real reconati@maetwork and examine the
topological structure of cascades.

Here we ask the question: What cascades arise frequently in real life?th8y like trees, stars, or
something else? We describe a large person-to-person recommendatiorkneonsisting of 4 million
people who made 16 million recommendations on half a million products in se&#2 To analyze
the data, we first create graphs where incoming edges influenced #t@woref outgoing edges. We
remove edges that violate the temporal requirement of a cascagénfluence must be exerted before
the effect). Then, we enumerate and count all possible cascadeaphbgrsing an algorithm developed
in section6.9.3 Therein, we propose a heuristic for graph isomorphism involving theegeadjstribution
and the eigenvalues of the adjacency matrix that scales to large dataseapphVé¢he algorithm to the
recommendation dataset, and analyze it in se@io

We find novel patters and the analysis of the results gives us insight intatfitade formation process.
We find that distribution of sizes and depths of cascades follows a hedgg-distribution. Generally
cascades are shallow but occasional large bursts also occur. Stealesub-patterns reveal mostly small
tree-like subgraphs; however we observe differences in conigaind the shape of cascades across
product groups. We find common cases when people who do not linkico#aer recommend to the same
set of friends; and cases where recommendation propagates buethiersito the same people.

6.9.2 The recommendation network

We study a recommendation network dataset from a large on-line retaileeseilied earlier in the

chapter. In brief, the recommendation network consists of 15,646,12inreendations made among
3,943,084 distinct users from June 2001 to May 2003 (711 days). Adb&i2,719 different products

belonging to four product categories (Books, DVDs, Music and Vifle@se recommended.

We represent this relational dataset as a directed multigraph: nodeseepcustomers, and a directed
edge(i, j, p,t) means that nodé recommended produgt to customer; at timet. The typical edge
generation process is as follows: a node (persdingt buys producp at timet, and then recommends it

to nodes{ji, ..., jn}. Thej nodes can then buy the product (with the option to recommend it to others).
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Note that even if all nodegbuy the product, only the first purchaser will get the discount, which ikethar

by a purchase flago(iy-bif). We cannot directly use the buy-bit to determine whether a recommendation
caused a purchase. In addition to the buy-bit, we also record the nuiintiestomers who recommended
the product (since they had to buy the product to recommend it). We ep&agroup recommendation
networks by taking the edge-induced subgraph formed by all the piodfia given category. Tab&?2

gives the basic network statistics and observations.

6.9.3 Proposed method

In this section we present the algorithms and techniques developed torglfi@aumerate and count
frequent recommendation patterns in a large graph, including a heurissigtfgraph isomorphism.

Ideally one would expect cascades to be trees or near-trees. Wdosomhout that recommendations
create arbitrary graphs: there are multiple recommendations on the sanuetpoodnultiple products
between the nodes, there are multiple purchases of the same produatgdimtis many cycles.

To find cascades one first needs to identify cases when incoming recatatiogis could cause purchases
and further outgoing recommendations. Recommendations into mdluigt precede a purchase can be
posited to have influenced the purchase. There are two ways to estaldish #m edge is marked by a
purchase flag, we assume the recommendation influenced the purcltaseataly, the existence of two
directed edge$i, j, p,t) and(j, k, p,t') for t' > t suggests cascade behavior. That is, npdeceives a
recommendation for produgtat timet and then makes recommendation for the same product at a later
timet’.

First we create a separate graph of recommendations for each préduetd cascades we propose the
following two-step procedure:

Delete late recommendations:

To keep only recommendations that influenced the purchaseelete late recommendatiangiven a
single product recommendation network, for every node we delete athimgorecommendations (edges)
that happened after the first purchase of a product. This proceglm@ves all recommendations of the
product a person received after the first purchase. This guagattiat for every node the time of all
incoming edges is strictly smaller than the time of all outgoing edges.

Delete no-purchase nodes:

Preliminary data analysis showed that the majority of recommendations doodotgercascades. We also
observed many star-like patterns where the center node recommendsge auarber of people, none of
whom purchase the product. This occurs frequently in DVD subgrafihprevent this type of large but
shallow pattern, we delete all nodes that did not purchase the product.

After deleting late recommendations each connected component corlegp@ncascade. All paths in the
component are time-increasinge(, a cascade subgraph contains only directed paths with strictly increas-
ing edge times). Deleting no-purchase nodes ensures that we detettuerdpascade patterns.
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Cascade enumeration:

Next we enumerate all possible cascades. In preliminary experimentssiverfumerated the maximal
cascades, which after the steps described above reduces dowmterating all connected components of
the network. This approach works well and is very fast, but suffers the fact that the counts are small.
Here we take a different approach. Since we are interested in purelptppal properties of the cascades,
rather than enumerating all possible connected subgraphs, we enuaikl@tal cascadesThis means
that for every node we explore the cascade in the neighborhooddatbemode. For every nodeg we
create a graph induced on nodes ugftdiops away fromn, whereH ranges from 1 up to the distance to
the farthest node. One can think of this as exploring n@deneighborhood 1, 2, 3,... steps away. This
way for every node we capture the local structure of the cascadadiat various distances.

Approximate graph isomorphism:

An essential step in counting cascades is determining whether a neweasisaanorphic to a previously
discovered graph. No polynomial-time algorithm is known for the graph isphigm problem, and so
we resort to an approximate, heuristic solution. For each graph we esigprature A good signature
is one where isomorphic graphs have the same signature, but whererfieaamorphic graphs share the
same signature.

We propose a multi-level approach where the computational complexity (@udazy) of the graph iso-
morphism resolution depends on the size of the graph. For smaller grappsrform an exact isomor-
phism test; as the size of the graph increases this becomes prohibitivelysér so we use gradually
simpler but faster techniques which give only approximate solutions. Anttbk is that for each graph
we create an efficiently computable signature, use hashing, and then usexpensive isomorphism
tests only on graphs with the same signature.

For every graph we create a signature which is composed of the numimstes, the number of edges, and
the sorted in- and out-degree sequence. For graphs with fewer t@anm86s, we also include the singular
values of the adjacency matrix (via singular value decomposition). As singallags are continuous we
round them to 4 most significant digits and then hash the values.

We then hash the graphs using the signatures. Additionally, for graphfewithn than 9 nodes we perform
exact isomorphism checking. When the isomorphism check is used, waliseof all variants of graphs

that collided. Since we first hash signatures, we then check for isomsargmly the graphs with the same
signature. So the number of true isomorphism checks is very small.

Note that a small minority of cascades are larger than 9 nodes, so for fribst subgraphs we get the
exact solution; as the cascade size increases the number of ocesromweases, and this is where we
make use of an approximate solution.

We performed a small set of experiments to evaluate the proposed appt@xgiraph isomorphism algo-
rithm. Given a graph with 8 nodes and 12 edges 100,000 brute-forbatieas of graph-isomorphism
took under 40 seconds on a standard desktop. In the second expenimmgenerated 100,000 random
graphs (Erés-Renyi model), each of them with a randomly chosen number of nodes betine«20 and
twice as many edges (average degree of 2). The counting took 5@sedothis experiment we observed
at most 53 non-isomorphic graphs (5 nodes, 10 edges) with the sam&usggnat the end the random
generation created a total of 6,194 5-node graphs, of which 1,601ngaresomorphic.
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Figure 6.18: Size and depth distribution of the cascades for the fouryrbgroups. Top row shows the
size distribution of the cascades (log size of cascade gscdant). Bottom row shows the
distribution of the depths of the cascades (log depth of dseade vs. log count). Bold line
presents a power-law fit.

This analysis shows that we are able to efficiently find and enumeratedeaseaen in a large recommen-
dation network. The graph isomorphism checking is fast and scalablevi®@er purpose.

6.9.4 Patterns of recommendation
Size and depth distribution of cascades

We measure the size of the cascade in terms of the number of nodes angtthendech is the length
of the longest directed path in the cascade. As in all experiments we cegpegoluct recommendation
networks, delete late recommendations and no-purchase nodes, apéitoem the analysis.

Figure6.18shows the distribution of cascade sizes (top row) and depths (bottonfiaotlie four product
groups. The size of cascades follows a power law. For books thestargscade has 95 nodes and 231
edges. For DVDs the largest cascade is eight times lafget (791, E = 5544). The cascades involving
music or videos are much smaller, the largest cascade® ate 13, F = 56 and N = 37, FE = 169
respectively.

The slopes of the power-fits (top row of figuel8 reveal that DVDs had the highest proportion of large
cascades, as its power coefficient is the largest. For music the fractiaryefcascades is much smaller.
While the first part of the size distribution for DVDs (figuBel8 b)) has slope-4.5, which is close to the
other three product groups, the curve then flattensita.

The depth distribution, figuré.18 shows that cascades are generally shallow except for DVDs. The
maximum depth of a cascade is 6 for books, 15 for DVDs, 4 for music, dadvideos. So DVDs have
the strongest evidence for cascades.
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Figure 6.19: Distribution of recommendations and purchases over thedymts: number of
recommendations of the product vs. count (left); numbemotpases vs. count (right).

One might posit that cascades are branching processes. Howevanatia that for a particular run of a
branching process, the distribution of depths, conditioned on the sizg fiite, is exponential. In other
words, if cascades were purely branching processes, then thes ddyotlld be exponentially distributed.
Figure6.18shows that the depth distribution follows a power law; that is, we are oingemvore of deep
cascades than expected under a branching process.

There are a number of possible explanations for this phenomena: easca collide, increasing the
probability of success in some part of the social netwhsskovec et a).2006a 20073. Cascade sizes
also reflect an underlying power law in sales frequencies, as showguire6.19 The number of pur-
chases decays faster than the recommendations. And in the stochasdidecgsaeration process we
proposed here the cascade size distribution follows a power law with tlomexp-1.

Frequent cascade subgraphs

What cascades arise frequently in real life? Are they like trees, staggclmains, or something else? We
now explore the building blocks of the cascades, by performing the foltppiiacedure. For each product
recommendation graph, we first identify cascades (delete late recommesdatich no-purchase nodes).
Then for each node we create a subgraph on nodes at distance dt hapst, whereh varies from 1 up
to the value where all nodes in the cascade are reached. We then eographs using the approximate
graph isomorphism technique described in sedfi®n3

General observations: For books we identified a total of 122,657 cascades, of which 959 aoéotpp
ically different. There are 213 cascades that occur at least ten time€D\VEss we identified 289,055
cascades, of which 87,614 are topologically different. There are 84&ades that occur at least ten
times. For music we identified 13,330 cascades, of which 158 were topdlgglfterent. Only 23 cas-
cades occurred at least ten times. Videos contained the least evidenasdades, with 1,928 subgraphs
containing 109 unique patterns. Only 12 subgraphs occurred more thameés.

The number of cascades concur with observations made from gl8and tables.2, where DVDs had
the largest and richest set of cascades. Since DVDs contain thestieapeade, there is more opportunity
for topological variety than on the other products types. Even though tis&cmatwork is three times
larger than the video network, it does not exhibit much larger topologaridty.
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SL Book DVD Music Video

Id  Graph | Nodes Edges R | F R F R F R| F

G, e-e 2 1 1| 86,430 1] 36,863] 1| 11,518] 1] 1,425
Gy %o 3 2 2| 10573 4] 3238 2| 492| 5| 33
Gy  e-e-e 3 2 3| 5,089 2| 5147| 3| 389 3| 61
G, e 3 2 6| 1,593 5| 2419| 5| 115| 22 4
Gs  *e® 3 3 4| 3115 3| 4746 4| 201 2| 63
Gs  do% 4 3 5/ 2,769| 15| 05| 6 55| 20 5
Gr  *e-e 4 3 8| 726| 25| a16| 7 30| 27 4
Gy * % 4 3 || 10| 508 71 909| 8 25| 0 0
Go  ove 4 3 | 12| 398| 33| 312| 13 12| o 0
G e-e-e-e| 4 3 || 13| 362| 22| 424| 9 18| 26 4
Gn e 4 3 || 18] 16| 37| 276| 53 41 o 0
Gy o%® 4 3 | 29 82| 24| 418| 28 8| o 0
G 4 3 || 92 21| 12| 49| 54 4] o 0
G 4 4 9| 625 11| 52| 31 71 13 8
Gy e 4 4 | 22| 112| 16| 495| 10 15| 0 0
G **e*| 4 4 || 23] 111| 20| 435 57 3| o 0
G, *e**| 4 4 | 26 85| 17| 485 83 2| o 0
Gis .% 4 4 | 30 79 9| 706| 32 7| 29 3
Gro  e5e® 4 4 || 37 64| 38| 273| 24 9| o 0
Goy e 4 4 || 47 51| 955 28| o o| o 0
Gor  *o* 4 4 | 90 21| 857 31| o o| o 0
Gy ®o| 4 4 || 91 21| 1368 20| 0 o] o 0

Table 6.10: Frequent cascades for the 4 product groups. We show all gr@pko 4 nodes and 4 edges.
Ordered by size. For each graph we show rafikgnd frequency k).

Analysis of frequent cascade patternsTable6.10shows ranks? and frequencie$’ of 22 cascades for
the 4 product groups. Cascades are ordered by size. The tabledistemall sub-cascades with at most
four nodes and four edges. Interesting, 14 cascade patterns abséeed in all the product groups.
Table6.10shows ten of them.

The most common cascade,, represents a single recommendation. This pattern accounts for 70% of all
book cascades, 86.4% of all music cascades, 74% of all video castad@ist 12.8% of DVD cascades.
The chain of three node€) is the most common depth two cascade, accounting for 4.1% of book
cascades, about 3% of video and music cascades, but only 1.8% otBatades. DVD cascades tend to
be most densely linked.

ComparingGy and G4 shows that simple splits are more frequent than collisions. For books trere a
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SL Book DVD Music Video
Id Graph || Nodes Edgey R | F R | F R|F| R |F
Glas -, 4 5 14| 274 23| 422 0| 0| o O
Gaa ‘@' 4 5 34| 77| 75| 171| 38| 5| 28| 3
Goas = 4 5 84| 23| 52| 216| 0| o0 109| 1
Gag = 4 6 24| 105 6| 1299 27| 8| 6] 29
Gar Iz 5 4 7| 1024| 74| 174\ 20| 10| O] O
Goas é« 5 4 16| 211 332| 62| 47| 5| 0| 0
Gog  *e-e-e 5 4 50| 47| 333| 62| 64| 3| 0| O
Gy e 5 4 || 53| 41| 282| 69| 48| 5| o0 O
G 5 5 4 60| 31| 1045| 26| 158| 1| 0| O
Gis -t 5 4 72| 27| 822| 32| 21|10/ o] O
Y
e 5 9 | 137| 14| 131| 119| 55| 3| 15| 7
e
Gss 5 10 | 125| 15| 18| 452| 155| 1| 10| 16

Table 6.11: Some larger frequent cascades for 4 product groups. Ordgretze. For each graph we
show rank ) and frequencyk).

6.6 times more splits than collisions; for DVDs this factor drops to 1.3; and it isfd2a25 for music
and videos respectively. Very similar observations hold for splits and icoiion 4 nodes({s andG13);
however notice that for DVDs the collision of 3 nodés;{) is slightly more frequent than the spli&).
Another such example of reversed graphs @re G1; and Gg, GG12. Again, the split pattern is more
frequent than the collision. The ratio is more unbalanced for books (1ioallfger 7 splits) than for
DVDs (1 to 2).

Graphs fromG14 to G19 all have a triangle, with one additional node attached. Again, except\f@rsD
splits of recommendationg~(, andG15) are more frequent than collision&{s, G19). For DVDs the
most frequent sub-graph of the setiss (a collision), followed byG14 andGs.

A common observation is that simpler graphs, like chains and trees, tend torbefnequent in book
recommendation networks, while for DVDs we observe richer and moezs#graphs all with relatively
high counts.

Table6.11shows larger graph patterns. Various types of collisions are becomirgfrequent. For book
cascadesroy is very frequent, while a version with reversed edges can only be fouD¥Ds. Graphs
(34 andG5 are the two largest that can be found in recommendation networks fronpiadtdict groups.
Larger DVD cascades tend to be frequerttss ranks 18 among DVD cascades.
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Figure 6.20: Typical classes of cascade&iss, G4o: nodes recommending to the same set of people,
but not each otherGss, G41: a flat cascadeGsr, G39: nodes recommending to same
community.G43 is an example of a large cascade.

Last, figure6.20shows typical classes of cascades. GraghsandGyy show the case when two people
have the same set of friends but do not recommend to each other. A sirsiigiscapresented by cascades
G37 andGsg, Where the top node recommends to a set of people, and then one of file pethis set
purchases and recommends to the same set of people. Flat cascadles &wend (G35, G41, G42) —

a person recommends, a number of people respond (and purchasdguatprbut the cascade does not
propagate. Grapty,3 shows cascade that is quite intricate, but which nonetheless occurtedes2for
DVDs.

6.10 Conclusion

Although the retailer may have hoped to boost its revenues through virlketimay, the additional pur-
chases that resulted from recommendations are just a drop in the bficked¢® that occur through the
website. Nevertheless, we were able to obtain a number of interesting insighteim viral marketing
works that challenge common assumptions made in epidemic and rumor propagateling.

Firstly, itis frequently assumed in epidemic modegy( SIRS type of models) that individuals have equal
probability of being infected every time they interadnderson and May2002 Bailey, 1975. Contrary

to this we observe that the probability of infection decreases with repedtdétion. Marketers should
take heed that providing excessive incentives for customers to recanpmeducts could backfire by
weakening the credibility of the very same links they are trying to take advawatag

Traditional epidemic and innovation diffusion models also often assume thgidinals either have a
constant probability of “converting” every time they interact with an infeateld/idual [Goldenberg et al.
2001], or that they convert once the fraction of their contacts who are indleeteeeds a node specific
threshold (Granovetter 1978. In both cases, an increasing number of infected contacts results in an
increased likelihood of infection. Instead, we find that the probability olpasing a product increases
with the number of recommendations received, but quickly saturates tostacbrand relatively low
probability. This means individuals are often impervious to the recommendatfahegir friends, and
resist buying items that they do not want.

In network-based epidemic models, extremely highly connected individlejsapvery important role.
For example, in needle sharing and sexual contact networks these lmactame the “super-spreaders” by
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infecting a large number of people. But these models assume that a higle degte has as much of a
probability of infecting each of its neighbors as a low degree node doesoritrast, we find that there
are limits to how influential high degree nodes are in the recommendation nethsekperson sends out
more and more recommendations past a certain number for a product, tessper recommendation
declines. This would seem to indicate that individuals have influence diesv af their friends, but not
everybody they know.

We also presented a simple stochastic model (Se&idrd that allows for the presence of relatively
large cascades for a few products, but reflects well the generadriepaf recommendation chains to
terminate after just a short number of steps. Aggregating such casweasteall the products, we obtain
a highly disconnected network, where the largest component growsiowe by aggregating typically
very small but occasionally fairly large components. We observed thants popular categories of
items recommended within communities in the largest component reflect diffetargsts between these
communities. We presented a model which shows that these smaller and more tigihgiyokps tend to
be more conducive to viral marketing.

We saw that the characteristics of product reviews and effectivefiessommendations vary by category
and price, with more successful recommendations being made on techniedigmus books, which
presumably are placed in the social context of a school, workplace @& pfavorship. A small fraction
of the products accounts for a large proportion of the recommendatiditeough not quite as extreme
in proportions, the number of successful recommendations also variely\wigdproduct. Still, a sizeable
portion of successful recommendations were for a product with only\soake sale - hinting at a long tail
phenomenon.

The premise behind the study of social networks is that interaction leadsmol@o collective behavior.
Cascades are a form of collective behavior that has been studie@tibally, but for which the study of
complete, large-scale datasets has been limited. We have shown that sasdstli@ a large real-world
recommendation dataset, and investigated some of their structural features.

We developed a practical algorithm and set of techniques to illustrate thereeésof cascades, and
to measure their frequency. On a large real-life dataset we found pawerns and our experiments
showed that most cascades are small, but large bursts can occurasdaele sizes and depths follow a
power law. Cascade behavior varies a lot among different produestypopologically, most products
(books, music, videos) tend to exhibit small and shallow tree-like cascadel® some (DVDs) can
exhibit larger, more complex, and farther-reaching patterns of infeiith collisions and expansion
across communities.

Since viral marketing was found to be in general not as epidemic as one haghthoped, marketers
hoping to develop normative strategies for word-of-mouth advertisingldramalyze the topology and
interests of the social network of their customers. Our study has prosidachber of new insights which
we hope will have general applicability to marketing strategies and to futurelsiofiviral information
spread.
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Chapter 7

Information propagation on the
blogosphere

How do blogs cite and influence each other? How do such links evolve8 thegopularity of old blog
posts drop exponentially with time? These are some of the questions that vessaddthis work. Our
goal is to build a model that generates realistic cascades, so that it cansheith link prediction and
outlier detection.

Blogs (weblogs) have become an important medium of information becaukeiofimely publication,
ease of use, and wide availability. In fact, they often make headlines, bysding and discovering evi-
dence about political events and facts. Often blogs link to one anotbkatjray a publicly available record
of how information and influence spreads through an underlying soetalank. Aggregating links from
several blog posts creates a directed graph which we analyze to diiveyatterns of information propa-
gation in blogspace, and thereby understand the underlying socialnketMa@t only are blogs interesting
on their own merit, but our analysis also sheds light on how rumors, virasekideas propagate over
social and computer networks.

Here we report some surprising findings of the blog linking and informatiopamation structure, after
we analyzed one of the largest available datasets, 4%tH00 blogs and~ 2.2 million blog-postings.
We also present a simple model that mimics the spread of information on the ptegesand produces
information cascades very similar to those found in real life.

7.1 Introduction

Blogs have become an important medium of communication and information on thé Wmle Web.
Due to their accessible and timely nature, they are also an intuitive sourdatéoinvolving the spread of
information and ideas. By examining linking propagation patterns from orgegast to another, we can
infer answers to some important questions about the way information spifgadigh a social network
over the Web. For instance, does traffic in the network exhibit bursti/oaperiodic behavior? After a
topic becomes popular, how does interest die off — linearly, or expoligftia

In addition to temporal aspects, we would also like to discover topologicalrpatie information prop-
agation graphs (cascades). We explore questions like: do graphemwhation cascades have common
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shapes? What are their properties? What are characteristic in-linkrsatterdifferent nodes in a cas-
cade? What can we say about the size distribution of cascades?

Finally, how can we build models that generate realistic cascades?

7.1.1 Summary of findings and contributions

Temporal patterns: For the two months of observation, we found that blog postaatdave a bursty
behavior; they only have a weekly periodicity. Most surprisingly, theutemity of posts drops with
a power law instead of exponentially, that one may have expected. Surprisinglyxganent of the
power law is~-1.5, agreeing very well with Barabasi’s theory of heavy tails in humaavieh[Baralasi
2009.

Patterns in the shapes and sizes of cascades and blogémost every metric we measured, followed a
power law. The most striking result is that the size distribution of cascadesriber of involved posts),
follows a perfect Zipfian distribution, that is, a power law with slope =-2¢ ®lther striking discovery
was on the shape of cascades. The most popular shapes were tig tistdiis, a single post with several
in-links, but none of the citing posts are themselves cited.

Generating Model: Finally, we design a flu-like epidemiological model. Despite its simplicity, it gener-
ates cascades that match several of the above power law properiges cdiscades. This model could be
useful for link prediction, link-spam detection, and “what-if” scenarios

7.1.2 Chapter organization

In section7.2we briefly survey related work. We introduce basic concepts and ternginaisection7.3,
Next, we describe the blog dataset, and discuss the data cleaning stegessdfe temporal link patterns
in section7.5, and continue with exploring the characteristics of the information cascatlegevelop
and evaluate the Cascade generation model in se¢t®nWe discuss implications of our findings in
section?7.7, and conclude in section8.

7.2 Connection to temporal modeling and epidemiology

To our knowledge this work presents the first analysis of temporal tsp&blog link patterns, and gives
detailed analysis about cascades and information propagation on thegilegas As we explore the
methods for modeling such patterns, we will refer to concepts involving plawies and burstiness, social
networks in the blog domain, and information cascades.

7.2.1 Burstiness and power laws

How often do people create blog posts and links? Extensive work haspoddished on patterns relat-
ing to human behavior, which often generates bursty traffic. Disk aesesstwork traffic, web-server
traffic all exhibit burstiness. Wang et al. iMang et al. 2002 provide fast algorithms for modeling such
burstiness. Burstiness is often related to self-similarity, which was studie@ icotfitext of World Wide
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Web traffic [Crovella and Bestavro4997. Vazquez et al. Yazquez et a).2004 demonstrate the bursty
behavior in web page visits and corresponding response times.

Self-similarity is often a result of heavy-tailed dynamics. Human interactionsheagodeled with net-
works, and attributes of these networks often follgewer lawdistributions Faloutsos et al1999. Such
distributions have a PDF (probability density function) of the fgrfm) « x7, wherep(z) is the proba-
bility to encounter value: and~y is the exponent of the power law. In log-log scales, such a PDF gives
a straight line with slope. Fory < —1, we can show that the Complementary Cumulative Distribution
Function (CCDF) is also a power law with slopet 1, and so is the rank-frequency plot pioneered by
Zipf [Zipf, 1949, with slopel /(1 + 7). Fory = —2 we have the standard Zipf distribution, and for other
values ofy we have the generalized Zipf distribution.

Human activity also follows periodicities, like daily, weekly and yearly periiidis, often in combination
with the burstiness.

7.2.2 Blogs

Most work on modeling link behavior in large-scale on-line data has bepa oiothe domain of blogs
and social mediajumar et al, 2003 Adamic and Glance2005 Adar and Adamic2005. The authors
note that, while information propagates between blogs, examples of gemsiceeding behavior appeared
relatively rare. This may, however, be due in part to the Web-crawlidigtext analysis technigues used
to infer relationships among post&dar and Adamic2005 Gruhl et al, 2004. Our work here differs in

a way that we concentrate solely on the propagation of links, and do motdéitional links from text of
the post, which gives us more accurate information.

There are several potential models to capture the structure of the blagespVork on information diffu-
sion based on topic&jruhl et al, 2004 showed that for some topics, their popularity remains constant in
time (“chatter”) while for other topics the popularity is more volatile (“spikeglthors in Kumar et al,
2003 analyze community-level behavior as inferred from blog-rolls — permiligks between “friend”
blogs. Analysis based on thresholding as well as alternative probabilistielmof node activation is con-
sidered in the context of finding the most influential nodes in a netwSeknpe et al.2003, and for viral
marketing Richardson and Domingp2002. Such analytical work posits a known network, and uses
the model to find the most influential nodes; in the current work we obsealecascades, characterize
them, and build generative models for them.

7.2.3 Information cascades and epidemiology

Information cascades are phenomena in which an action or idea beconedgaddpted due to the influ-
ence of others, typically, neighbors in some netw@likhchandani et al.1992 Goldenberg et a12001,
Granovetter1978. Cascades on random graphs using a threshold model have beegtitadly ana-
lyzed [Watts 2003. Empirical analysis of the topological patterns of cascades in the cooftextarge
product recommendation network is ingskovec et a).2006 and [Leskovec et al.20064.

The study of epidemics offers powerful models for analyzing the spoéatgruses. Our topic propa-
gation model is based on tt®#S(Susceptible-Infected-Susceptible) model of epidenizsigy, 1975.
This models flu-like viruses, where an entity begin as “susceptible”, magnbecinfected” and in-
fectious, and then heals to become susceptible again. A key parameter isetttmimprobability 5,
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SYMBOL || DESCRIPTION

N Number of nodes in a cascade

E Number of edges in a cascade

I} Probability of cascade propagation

tu Time that post, was published

A Propagation delay on edde, v), A = ¢, — t,

Table 7.1: Table of symbols.
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Figure 7.1: The model of the blogosphere (a). Squares represent blapsirates blog-posts. Each post
belongs to a blog, and can contain hyper-links to other pastisresources on the web. We
create two networks: a weighted blog network (b) and a pdstaor& (c). Nodess, b, ¢, d are
cascade initiatorsand node: is aconnector

that is, the probability of a disease transmission in a single contact. Of higleshtiertheepidemic
threshold that is, the critical value off, above which the virus will spread and create an epidemic, as
opposed to becoming extinct. There is a huge literature on the study of epgddemiall cliques, ho-
mogeneous graphs, infinite graphs (ddethcote 200Q for a survey), with recent studies on power law
networks Equiluz and Klemm20024 and arbitrary networksWang et al.2003.

7.3 Preliminaries

In this section we introduce terminology and basic concepts regarding thedploere and information
cascades.

Blogs (weblogs) are web sites that are updated on a regular basis. l&lwegshe advantage of being
easy to access and update, and have come to serve a variety of gur@iten times individuals use
them for online diaries and social networking, other times news sites hayge folotimely stories. Blogs
are composed of posts that typically have room for comments by readeis giviss rise to discussion
and opinion forums that are not possible in the mass media. Also, blogs atsltppically link each
other, as well as other resources on the Web. Thus, blogs have becom®ortant means of trans-
mitting information. The influence of blogs was particularly relevant in the 20(Bl election, as they
became sources for campaign fundraising as well as an important supplentbe mainstream me-
dia [Adamic and Glanceg005. The blogosphere has continued to expand its influence, so undérgfan
the ways in which information is transmitted among blogs is important to developimegpts of present-
day communication.
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Figure 7.2: Cascades extracted from Figurel. Cascades represent the flow of information through
nodes in the network. To extract a cascade we begin with &aton with no out-links to
other posts, then add nodes with edges linking to the initi@nd subsequently nodes that
link to any other nodes in the cascade.

O

We model two graph structures emergent from links in the blogospherehwie call theBlog network
and thePost network Figure7.1illustrates these structures. Blogosphere is composed of blogs, which are
further composed of posts. Posts then contain links to other posts andaeson the web.

From Blogosphere (a), we obtain the Blog network (b) by collapsing alklinétween blog posts into
weighted edges between blogs. A directed blog-to-blog edge is weightedheitbtal number of links
occurring between posts in source blog pointing to posts in destination blom the Blog network we
can infer a social network structure, under the assumption that blogarthéfriends” link each other
often.

In contrast, to obtain the Post network (c), we ignore the posts’ pal@yg Bnd focus on the link structure.
Associated with each post is also the time of the post, so we label the edgest meRwork with the time
differenceA between the source and the destination postst,Lahdt, denote post times of postsand

v, Whereu links tov, then the link timeA = ¢, — ¢,,. Note A > 0, since a post can not link into the future
and there are no self-edges.

From the Post network, we extract information cascades, which areeddiubgraphs by edges repre-
senting the flow of information. A cascade (also known as conversatiehhies a single starting post
called thecascade initiatomwith no out-links to other post®(g, hodesa, b, ¢, d in Figure7.1(c)). Posts
then join the cascade by linking to the initiator, and subsequently new postsyjdiimking to members
within the cascade, where the links obey time order 0). Figure7.2gives a list of cascades extracted
from Post network in Figur&.1(c). Since a link points from the follow-up post to the existing (older)
post, influence propagates following the reverse direction of the edges.

We also define aon-trivial cascade to be a cascade containing at least two posts, and therefoia a
cascades an isolated post. Figuré.2 shows all non-trivial cascades in Figurel(c), but not the two
trivial cascades. Cascades form two main shapes, which we will refeistarsandchains A star occurs
when a single center posts is linked by several other posts, but the linkstgwopagate further. This
produces a wide, shallow tree. Conversely, a chain occurs whert &rotked by a single post, which
in turn is linked by another post. This creates a deep tree that has little hreasitive will later see
most cascades are somewhere between these two extreme points. Qdlgaséparate cascades might
be joined by a single post — for instance, a post may summarize a set of, topit&us on a certain
topic and provide links to different sources that are members of indepérdscades. The post merging
the cascades is calledcannector nodeNodee in Figure7.2(c) is a connector node. It appears in two
cascades by connecting cascades starting at ricatesc.
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7.4 Experimental setup

7.4.1 Dataset description

We extracted our dataset from a larger set which contains 21.3 million postis2f5 million blogs from
August and September 200&lance et al.2005. Our goal here is to study temporal and topological
characteristics of information propagation on the blogosphere. This nagaage interested in blogs and
posts that actively participate in discussions, so we biased our datasetisotive more active part of the
blogosphere.

We collected our dataset using the following procedure. We started withod tlee most-cited blog posts
in August 2005. For all posts we traversed the full conversation tneeafd and backward following
post’s in- and out-links. For practical reasons we limited the depth of stimvecsation trees to 100 and
the maximum number of links followed from a single post to 500. This procegs gs a set of posts
participating in conversations. From the posts we extracted a list of all.bldds gave us a set of about
45,000 active blogs. Now, we went back to the original dataset and extractpdsth coming from this
set of active blogs.

This process produced a datase?2of22, 704 posts fromd4, 362 blogs gathered over a two-month period
from beginning of August to end of September 2005. There are the fotah@0, 687 links in the dataset
out of which245, 404 are among the posts of our dataset and the rest point to other resg;esages,
press, news, web-pages). For each post in the dataset we hasédivn information: unique Post ID,
the URL of the parent blog, Permalink of the post, Date of the post, postbfhtml), and a list of all
links that occur in the post’s content. Notice these posts are not a rarafoplesof all posts over the
two month period but rather a set of posts biased towards active blo@geting in conversations (by
linking to other posts/blogs).

In Figure7.3we plot the number of posts per day over the span of our dataset. Tibdipities in traffic

on a weekly basis will be discussed in sectiof Notice that our dataset has no “missing past” problem,
i.e., the starting points of conversation are not missing due to the beginningatdléection, since we
followed the conversation all the way to its starting point and thus obtainedletemgonversations. The
posts span the period from July to September 2005 (90 days), while thetynajdhe data comes from
August and September. The July posts in the dataset are parts of satines that were still active in
August and September.

7.4.2 Data preparation and cleaning

We represent the data as a cluster graph where clusters corresgmoggonodes in the cluster are posts
from the blog, and hyper-links between posts in the dataset are rafgdsas directed edges. Before
analysis, we cleaned the data to most clearly represent the structurésresin

Only consider out-links to posts in the datasetWe removed links that point to posts outside our dataset
or other resources on the web (images, movies, other web-pagesmdjbereason for this is that we
only have time-stamps for the posts in the dataset while we know nothing atsatioo time of URLS
outside the dataset, and thus we cannot consider these links in our tepalyesis.

Use time resolution of one dayWhile posts in blogspace are often labeled with complete time-stamps,
many posts in our dataset do not have a specific time stamp but only the datenis. kAdditionally,
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Figure 7.3: Number of posts by day over the three-month period.

there are challenges in using time stamps to analyze emergent behaviorsaurlgasis, because posts
are written in different time zones, and we do not normalize for this. Usingaeser resolution of one
day serves to reduce the time zone effects. Thus, in our analysis the tiereddés are aggregated into
24-hour bins.

Remove edges pointing into the future.Since a post cannot link to another post that has not yet been
written, we remove all edges pointing into the future. The cause may be hummanpost update, an
intentional back-post, or time zone effects; in any case, such links deepogsent information diffu-
sion.

Remove self edgesAgain, self edges do not represent information diffusion. Howeverdw allow a
post to link to another post in the same blog.

7.5 Observations, patterns and laws

Next we present our experiments and observations on the blog andgiastrk topology and cascading
patterns of information diffusion on the blogosphere.

7.5.1 Temporal dynamics of posts and links

Traffic in blogosphere is not uniform; therefore, we consider traféitggns when analyzing influence
in the temporal sense. As Figure3 illustrates, there is a seven-day periodicity. Further exploring the
weekly patterns, Figuré.4 shows the number of posts and the number of blog-to-blog links for differe
days of the week, aggregated over the entire dataset. Posting and Hillogrtiinking patterns tend to
have aveekend effeaf sharply dropping off at weekends.

Next, we examine how a post’s popularity grows and declines over time. Wétcall in-links to a
post and plot the number of links occurring after each day following ttst. pbhis creates a curve that
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Figure 7.4: Activity counts (number of posts and number of links) per dayveek, from Monday to
Sunday, summed over entire dataset.

indicates the rise and fall of popularity. By aggregating over a largef gmisis we obtain a more general
pattern.

Top left plot of Figure7.5 shows number of in-links for each day following a post for all posts in the
dataset, while top right plot shows the in-link patterns for Monday posts @migrder to isolate the
weekly periodicity). It is clear that the most links occur on the first 24 batiter the post, after that the
popularity generally declines. However, in the top right plot, we note thaetaee “spikes” occurring
every seven days, each following Monday. It almost appears as & theompensatory behavior for the
sparse weekend links. However, this is not the case. Mondays dawetam unusual number of links;
Monday only appears to spike on these graphs because the natyraiftiod popularity in the following
days allows Monday to tower above its followers.

Thus, fitting a general model to the drop-off graphs may be problematice sie might obtain vastly
different parameters across posts simply because they occur agiiffienes during the week. Therefore,
we smooth the in-link plots by applying a weighting parameter to the plots sepdnateay of week.
For each delayA on the horizontal axis, we estimate the corresponding day of weakd we prorate
the count forA by dividing it by I(d), wherel(d) is the percent of blog links occurring on day of week
d.

This weighting scheme normalizes the curve such that days of the week vattrdéfic are bumped up
further to meet high traffic days, simulating a popularity drop-off that migicuoif posting and linking
behavior were uniform throughout the week. A smoothed version of dse grop-offs is shown in the
middle row of Figure7.5.

We fit the power law distribution with a cut-off in the tail (bottom row). We fit od @ays of data,
since most posts in the graph have complete in-link patterns for the 30 dboysifig publication. We
performed the fitting over all posts and for all days of the week separatadyfound a stable power law
exponent of around-1.5, which is exactly the value predicted by the model where the bursty nature of
human behavior is a consequence of a decision based queuing fBeegasi 2009 — when individuals
execute tasks based on some perceived priority, the timing of the tasksvisthdad, with most tasks
being rapidly executed, whereas a few experience very long waiting times.
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Figure 7.5: Number of in-links vs. the days after the post in log-linezaile; when considering all posts
(top left), only Monday posts (top right). After removingetday-of-the week effects (middle
row). Power law fit to the data with exponents.6 and—1.46 (bottom row).

Observation 7.5.1. The probability that a post written at timet(u) acquires a link at time(u) + A is:

p(t(u) + A) oc AP
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7.5.2 Blog network topology

The first graph we consider is the Blog network. As illustrated in Figuiéc), every node represents
a blog and there is a weighted directed edge between i@yl v, where the weight of the edge cor-
responds to the number of posts from bledinking to posts at blog). The network containg4, 356
nodes and 22, 153 edges. The sum of all edge weights is the number of all post to post Rrdks404).
Connectivity-wise, half of the blogs belong to the largest connected coempa@nd the other half are
isolated blogs.

We show the in- and out-degree distribution in Figdré Notice they both follow a heavy-tailed distri-
bution. The in-degree distribution has a very shallow power law expafent.7, which suggests strong
rich-get-richer phenomena. One would expect that popular actives Ithad receive lots of in-links also
sprout many out-links. Intuitively, the attention (number of in-links) a blog geould be correlated with
its activity (number of out-links). This does not seem to be the case. Thelaiton coefficient between a
blog’s number of in- and out-links is only;16, and the scatter plot in Figui®6 suggests the same.

The number of posts per blog, as shown in Figiiw&a), follows a heavy-tailed distribution. The deficit
of blogs with low number of posts and the knee at around 40 posts per &tolgecexplained by the fact
that we are using a dataset biased towards active blogs. Howevdrjased sample of the blogs still
maintains the power law in the number of blog-to-blog links (edge weights ofldgerietwork) as shown
in 7.7(b). The power law exponent is2.7.
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7.5.3 Post network topology

In contrast to Blog network the Post network is very sparsely connedtexntains 2.2 million nodes

and only205, 000 edges.98% of the posts are isolated, and the largest connected component accounts
for 106,000 nodes, while the second largest has only 153 nodes. Fig8rehows the in- and out-
degree distributions of the Post network which follow a power law with egptsr+-2.1 and —2.9, re-
spectively.

7.5.4 Patterns in the cascades

We continue with the analysis of the topological aspects of the informatioadasdormed when certain
posts become popular and are linked by the other posts. We are espet@thgtied in how this process
propagates, how large are the cascades it forms, and as it will be sammwhat are the models that
mimic cascading behavior and produce realistic cascades.

Cascades are subgraphs of the Post network that have a singleostpae time increasing (source
links an existing post), and present the propagation of the information tinennoot to the rest of the
cascade.
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Given the Post network we extracted all information cascades usinglibeifg procedure. We found
all cascade initiator nodese., nodes that have zero out-degree, and started following their in-lirfks. T
process gives us a directed acyclic graph with a single root node. Asalied in Figurer.2it can happen
that two cascades mergeg, a post gives a summary of multiple conversations (cascades). Fadessc
that overlap our cascade extraction procedure will extract the nalesvithe connector node multiple
times (since they belong to multiple cascades). To obtain the examples of the ca@hapms and count
their frequency we used the algorithms as describetlésKovec et a).20064.

Common cascade shapes

First, we give examples of common Post network cascade shapes in FiQufenode represents a post
and the influence flows from the top to the bottom. The top post was writtendtrstr posts linking
to it, and the process propagates. Graphs are ordered by freqameddiie subscript of the label gives
frequency rank. Thug724 is 124" most frequent cascade with 11 occurrences.

We find the total of2,092,418 cascades, and 97% of them are trivial cascades (isolated posts), 1.8%
are smallest non-trivial cascadeS,, and the remaining 1.2% of the cascades are topologically more
complex.

Most cascades can essentially be constructed from instances of refiaire@s, which can model more
complicated behavior like that shown in Figuat®. Cascades tend to be wide, and not too deep. Structure
G107, which we call acite-all chain is especially interesting. Each post in a chain refers to every post
before it in the chain.

We also find that the cascades found in the graph tend to take certairs givaferentially. Also notice
that cascade frequency rank does not simply decrease as a furictimnoascade size. For example, as
shown on Figuré’.9, a 4-star (4) is more common than a chain of 3 nodég). In general stars and
shallow bursty cascades are the most common type of cascades.

Cascade topological properties

What is the common topological pattern in the cascades? We next examinandralgascade behavior
by measuring and characterizing the properties of real cascades.

First we observe the degree distributions of the cascades. This meariothahe Post network we
extract all the cascades and measure the overall degree distributisentigaBy we work with éag of
cascadeswhere we treat a cascade as separate disconnected sub-grapfyereetavork.

Figure7.1Qa) plots the out-degree distribution of the bag of cascades. Notice thadeasut-degree
distribution is truncated, which is the result of not perfect link extractioorityn and the upper bound
on the post out-degree (500).

Figure7.1Qb) shows the in-degree distribution of the bag of cascades, and {s)tpwin-degree distri-
bution of nodes at level of the cascade. A node is at leveif it is L hops away from the root (cascade
initiator) node. Notice that the in-degree exponent is stable and doesaoge much given the level in
the cascade. This means that posts still attract attention (get linked) evew drihsomewhat late in the
cascade and appear towards the bottom of it.
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Figure 7.11: Size distribution over all cascades (a), only stars (b),@rans (c). They all follow heavy
tailed distributions with increasingly steeper slopes.

Next, we ask what distribution do cascade sizes follow? Does the probalfilityserving a cascade on
N nodes decreases exponentially wit? We examine th€ascade Size Distributiorever the bag of
cascades extracted from the Post network. We consider three diftiséributions: over all cascade size
distribution, and separate size distributions of star and chain cascadeshdse stars and chains since
they are well defined, and given the number of nodes in the cascadeidim® ambiguity in the topology
of a star or a chain.

Figure7.11gives the Cascade Size Distribution plots. Notice all follow a heavy-tailedllisbn. We

fit a power law distribution and observe that overall cascade size digbrbioas power law exponent of
~ —2 (Figure7.11(a)), stars have: —3.1 (Figure7.11(b)), and chains are small and rare and decay with
exponent~ —8.5 (Fig. 7.11(c)). Also notice there are outlier chains (Fig11(c)) that are longer than
expected. We attribute this to possible flame wars between the blogs, whieoesapublish posts and
always refer to the last post of the other author. This creates chaigerltman expected.

Observation 7.5.2. Probability of observing a cascade dvi nodes follows a Zipf distribution:

p(N) oc N2
As suggested by Figuré.9 most cascades follow tree-like shapes. To further verify this we examine
how the diameter, defined as the length of the longest undirected path insttexdea and the relation

between the number of nodes and the number of edges in the cascade whtmthe cascade size in
Figure7.12
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logarithmically with the cascade size, while the number dfes basically grows linearly
with the cascade size. This suggests cascades are mostlikegestructures.

This gives further evidence that the cascades are mostly tree-like. \Wéelaumber of nodes in the
cascade vs. the number of edges in the cascade in Figli#a). Notice the number of edgds in
the cascade increases almost linearly with the number of n¥d@s « N'9%). This suggests that the
average degree in the cascade remains constant as the cascadendriotvss a property of trees and
stars. Next, we also measure cascade diameter vs. cascade size TFig{lny. We plot on linear-log
scales and fit a logarithmic function. Notice the diameter increases logarithmig#ilyhe size of the
cascade, which means the cascade needs to grow exponentially to gaiiniimease in diameter, which
is again a property of the balanced trees and very sparse graphs.

Collisions of cascades

By the definition we adopt in this chapter, the cascade has a single initiater hadin real life one
would also expect that cascades collide and merge. There are carmmeads which are the first to bring
together separate cascades. As the cascades merge, all the nodeshgedonnector node now belong
to multiple cascades. We measure the distribution over the connector natidsearodes that belong to
multiple cascades.

First, we consider only the connector nodes and plot the distribution ovenfany cascades a connector
joins (Figurer.13a)). We only consider nodes with out-degree greater than 1, sinesmath out-degree

1 are trivial connectors — they are connecting the cascade they beldBgttinere are still posts that have
out-degree greater than 1, and connect only one cascade. Thdke posts that point multiple out-links
inside the same cascaded. G2 andG1g7 of Figure7.9). The dip the at the number of joined cascades
equal to 1 in Figur&.13a) gives the number of such nodes.

As cascades merge, all the nodes that follow belong to multiple cascadagse Fitdb) gives the distri-
bution over the number of cascades a node belongs to. Here we coalsither nodes and find out that
98% of all nodes belong to a single cascade, and the rest of distribution fall@ewer law with exponent
—2.2.
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out-degree greater than 1. Distribution of a number of dessa post belongs to (8%
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7.6 Proposed model and insights

What is the underlying hidden process that generates cascades@aDee is to find a generative model
that generates cascades with properties observed in s@chigh(Figures7.10and7.11). We aim for a
simple and intuitive model with the least possible number of parameters.

7.6.1 Cascade generation model

We present a conceptual model for generating information cascadgsddaces cascade graphs match-
ing several properties of real cascades. Our model is intuitive andrescpnly a single parameter that
corresponds to how interesting (easy spreading) are the convessatgemeral on the blogosphere.

Intuitively, cascades are generated by the following principle. A poshssaol at some blog, other blog-
gers read the post, some create new posts, and link the source postrotieisspcontinues and creates a
cascade. One can think of cascades being a graph created by the spthe virus over the Blog net-
work. This means that the initial post corresponds to infecting a blog. Asabeade unveils, the virus
(information) spreads over the network and leaves a trail. To model thiegsave use a single parameter
[ that measures how infectious are the posts on the blogosphere. Our meel 8milar to the SIS
(susceptible — infected — susceptible) model from the epidemioldgthicote 2004.

Next, we describe the model. Each blog is in one of two statésctedor susceptiblelf a blog is in the
infected state this means that the blogger just posted a post, and the blog®axhance to spread its
influence. Only blogs in the susceptible (not infected) state can get idfeden a blog successfully
infects another blog, a new node is added to the cascade, and an edemtesl etween the node and
the source of infection. The source immediately recoviegs,a node remains in the infected state only
for one time step. This gives the model the ability to infect a blog multiple times, whiglesponds to
multiple posts from the blog participating in the same cascade.

More precisely, a single cascade of tGascade generation modil generated by the following pro-
cess.
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Figure 7.14: Top 10 most frequent cascades as generated by the Cascadatmegnmodel. Notice similar
shapes and frequency ranks as in Figlu&e

() Uniformly at random pick blog: in the Blog network as a starting point of the cascade, set its state
to infected and add a new nodeto the cascade graph.

(i) Blog u that is now in infected state, infects each of its uninfected directed neiglibdine Blog
network independently with probability. Let {vy, ..., v,} denote the set of infected neighbors.

(i) Add new nodes{v,...,v,} to the cascade and link them to nodén the cascade.
(iv) Set state of node to not infected. Continue recursively with step (ii) until no nodes are iatkc

We make a few observations about the proposed model. First, note th&tghminediately recovers and
thus can get infected multiple times. Every time a blog gets infected a new nod#eid edthe cascade.
This accounts for multiple posts from the blog participating in the same cas8adend, we note that in
this version of the model we do not try to account for topics or model theeinfle of particular blogs.
We assume that all blogs and all conversations have the same value ofdheee. Third, the process

as describe above generates cascades that are trees. This is not bigtirsitece we observed that most
of the cascades are trees or tree-like. In the spirit of our notion odasee assume that cascades have
a single starting point, and do not model for the collisions of the cascades.

7.6.2 \Validation of the model

We validate our model by extensive numerical simulations. We compare theedtascades towards
the real cascades extracted from the Post network. We find that thd matides the cascade size and
degree distributions.

We use the real Blog network over which we propagate the cascadesg. tbis Cascade generation model
we also generate the same number of cascades as we found in Poskiget@anillion). We tried several
values ofg parameter, and at the end decided to@ise 0.025. This means that the probability of cascade
spreading from the infected to an uninfected blog@.i&%. We simulated our model 10 times, each time
with a different random seed, and report the average.

First, we show the top 10 most frequent cascades (ordered by fregtenk) as generated by the Cascade
generation model in Figuré.14 Comparing them to most frequent cascades from Fig@e&ve notice
that top 7 cascades are matched exactly (with an exception of ratksasfdGs swapped), and remaining
cascades can also be found in real data.

Next, we show the results on matching the cascade size and degree disigbatigigure7.15 We
plot the true distributions of the cascades extracted from the Post newitbrklots, and the results of
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Figure 7.15: Comparison of the true data and the model. We plotted thelaision of the true cascades
with circles and the estimate of our model with dashed linetid¢ remarkable agreement
between the data and the prediction of our simple model.

our model are plotted with a dashed line. We compare four properties cdaes (a) overall cascade
size distribution, (b) size distribution of chain cascades, (c) size distribofistars, and (d) in-degree
distribution over all cascades.

Notice a very good agreement between the reality and simulated cascadlgsiatsa The distribution
over of cascade sizes is matched best. Chains and stars are slighthreprdsented, especially in the tail
of the distribution where the variance is high. The in-degree distributionasnaégched nicely, with an
exception of a spike that can be attributed to a set of outlier blogs all withgredé2. Cascades generated
by the Cascade generation model are all trees, and thus the out-degeeery node is 1.

7.6.3 Variations of the model

We also experimented with other, more sophisticated versions of the model. \aeeanvestigated
various strategies of selecting a starting point of the cascade, and dgjagveights (number of blog-to-
blog links) to further boost cascades.

We considered selecting a cascade starting blog based on the blog @&degweight or the number of
posts. We experimented with variants where the probabiliof propagating via a link is not constant
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but also depends on the weight of the link (number of references betivedlogs). We also considered
versions of the model where the probabilityexponentially decays as the cascade spreads away from the
origin.

We found out that choosing a cascade starting blog in a biased way liedoltslarge cascades and non-
heavy tailed distributions of cascade sizes. Intuitively, this can be explainthe fact that popular blogs
are in the core of the Blog network, and it is very easy to create largadesavhen starting in the core.

A similar problem arises when scalifigwith the edge weight. This can also be explained by the fact that
we are not considering specific topics and associate each edge with éstmpie blog-to-blog edges may
be very topic-specific) and thus we allow the cascade to spread oveigalt eegardless of the particular
reason (the topic) that the edge between the blogs exists. This is espeuarlfigrtblogs like BoingBoing
(www.boingboing.net ) that are very general and just a collection of “wonderful things”.

7.7 Discussion

Our finding that the popularity of posts drops off with a power law distribusonteresting since intuition
might lead one to believe that people would “forget” a post topic in an exgigattern. However,
since linking patterns are based on the behaviors of individuals overadgustances, much like other
real-world patterns that follow power laws such as traffic to Web pagdsseientists’ response times
to letters Mazquez et a).2004, it is reasonable to believe that a high number of individuals link posts
quickly, and later linkers fall off with a heavy-tailed pattern.

Our findings have potential applications in many areas. One could argubeltmnversation mass metric,
defined as the total number of posts in all conversation trees below the pewhich the blogger con-
tributed, summed over all conversation trees in which the blogger apjmeansetter proxy for measuring
influence. This metric captures the mass of the total conversation genbyaseblogger, while number
of in-links captures only direct responses to the blogger’s posts.

For example, we found that BoingBoing, which a very popular blog ahouising things, is engaged in
many cascades. Actually, 85% of all BoingBoing posts were cascade irstiaibe cascades generally
did not spread very far but were wide.§, G1p andG14 in Fig. 7.9). On the other hand3% of posts
from a political blog MichelleMalkin yww.michellemalkin.com ) were cascade initiators. But the
cascade here were deeper and generally lasgr (117 in Fig. 7.9) than those of BoingBoing.

7.8 Conclusion

We analyzed one of the largest available collections of blog informationgttgifind how blogs behave
and how information propagates through the blogosphere. We studiedrtwtuges, the “Blog network”

and the “Post network”. Our contributions are two-fold: (a) The discpwf a wealth of temporal and
topological patterns and (b) the development of a generative model thatsrtimeidehavior of real cas-
cades. In more detail, our findings are summarized as follows:

e Temporal PatternsThe decline of a post’s popularity follows a power law. The slope-%.5, the
slope predicted by a very recent theory of heavy tails in human beh@&aoalfisi 2005

201


www.boingboing.net
www.michellemalkin.com

e Topological Patterns:Almost any metric we examined follows a power law: size of cascades,
size of blogs, in- and out-degrees. To our surprise, the number ohdheat-links of a blog are
not correlated. Finally, stars and chains are basic components ofleasedth stars being more
common.

e Generative modelOur idea is to reverse-engineer the underlying social network of bloters,
and to treat the influence propagation between blog-posts as a flu-lile that is, the SIS model
in epidemiology. Despite its simplicity, our model generates cascades that mayctvelé the
real cascades with respect to in-degree distribution, cascade sizleutiistr, and popular cascade
shapes.
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Chapter 8

Outbreak and cascade detection

Given a water distribution network, where should we place sensors t&lydietect contaminants? Or,
which blogs should we read to avoid missing important stories?

These seemingly different problems share common structure: Outbreaitide can be modeled as se-
lecting nodes (sensor locations, blogs) in a network, in order to detegptbading of a virus or informa-
tion as quickly as possible.

In this chapter we present a general methodology for near optimalrsgiasement in these and related
problems. We demonstrate that many realistic outbreak detection objeaigesiétection likelihood,
population affected) exhibit the property of “submodularity”. We explaibreodularity to develop an
efficient algorithm that scales to large problems, achieving near optimamkas, while being 700
times faster than a simple greedy algorithm. We also derive online bounds guetlity of the placements
obtained byanyalgorithm. Our algorithms and bounds also handle cases where nodssr(Eeations,
blogs) have different costs.

We evaluate our approach on several large real-world problems, ingladnodel of a water distribution
network from the EPA, and real blog data. The obtained sensor platearemprovably near optimal, pro-
viding a constant fraction of the optimal solution. We show that the appreealles, achieving speedups
and savings in storage of several orders of magnitude. We also shwwhbapproach leads to deeper
insights in both applications, answering multicriteria trade-off, cost-seitgiind generalization ques-
tions.

8.1 Introduction

We explore the general problem of detecting outbreaks in networksewieare given a network and a
dynamic process spreading over this network, and we want to seleabfanseles to detect the process as
effectively as possible.

Many real-world problems can be modeled under this setting. Consider aatigy distribution network,
delivering water to households via pipes and junctions. Accidental or madididrusions can cause
contaminants to spread over the network, and we want to select a few techtipe junctions) to install
sensors, in order to detect these contaminations as quickly as possiblegust 2006, the Battle of Water
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Sensor Networks (BWSN)Jstfeld et al. 2009 was organized as an international challenge to find the
best sensor placements for a real (but anonymized) metropolitan areadigdribution network. As part

of this chapter, we present the approach we used in this competition. Tegpidemics scenarios also
fit into this outbreak detection setting: We have a social network of interactietween people, and we
want to select a small set of people to monitor, so that any disease outtaredle detected early, when
very few people are infected.

In the domain of weblogs (blogs), bloggers publish posts and use hggsrto refer to other bloggers’
posts and content on the web. Each post is time stamped, so we can dheepeead of information on
the “blogosphere”. In this setting, we want to select a set of blogs to(mradtrieve) which are most up
to date,i.e., catch (link to) most of the stories that propagate over the blogosphignereB.lillustrates
this setting. Each layer plots the propagation graph (also calfednation cascadgBikhchandani et al.
1997) of the information. Circles correspond to blog posts, and all posts atahee vertical column
belong to the same blog. Edges indicate the temporal flow of information: thedmstarts at some post
(e.g, top-left circle of the top layer of Figui@ 1) and then the information propagates recursively by other
posts linking to it. Our goal is to select a small set of blogs (two in case of &Rydy which “catch” as
many cascades (stories) as possiBlenaive, intuitive solution would be to select the big, well-known
blogs. However, these usually have a large number of posts, and aredimeeming to read. We show,
that, perhaps counterintuitively, a more cost-effective solution can tanell, by reading smaller, but
higher quality, blogs, which our algorithm can find.

There are several possible criteria one may want to optimize in outbreattidete For example, one
criterion seeks to minimizeetection timgi.e., to know about a cascade as soon as possible, or avoid
spreading of contaminated water). Similarly, another criterion seeks to miningp®gulation affected

by an undetected outbrealkeg(, the number of blogs referring to the story we just missed, or the population
consuming the contamination we cannot detect). Optimizing these objectivitofusiis NP-hard, so for
large, real-world problems, we cannot expect to find the optimal solution.

In this chapter, we show, that these and many other realistic outbreakioletagjectives araubmodulayr
i.e., they exhibit a diminishing returns property: Reading a blog (or placingnscswhen we have only
read a few blogs provides more new information than reading it after we fead many blogs (placed
many sensors).

We show how we can exploit this submodularity propertgffaciently obtairsolutions which ar@rovably
closeto the optimal solution. These guarantees are important in practice, sincérgpiedes is expensive
(reading blogs is time-consuming, sensors have high cost), and we sl@sitiens which are not too far
from the optimal solution.

The main contributions of this part of thesis are:

¢ We show that many objective functions for detecting outbreaks in netveoeksubmodular, includ-
ing detection time and population affected in the blogosphere and water distnilbaonitoring
problems. We show that our approach also generalizes worKéype et al.2003 on selecting
nodes maximizing influence in a social network.

¢ We exploit the submodularity of the objectiveg, detection time) to develop an efficient approxi-
mation algorithm, CELF, which achieves near-optimal placements (guaraggadaast a constant
fraction of the optimal solution), providing a novel theoretical result fon4gonstant node cost

1In real-life multiple cascades can be on the same or similar story, but waistitb detect as many as possible.
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Figure 8.1: Spread of information between blogs. Each layer shows annrdtion cascade, and all posts
at the same vertical column belong to the same blog. Edgessent the flow of information.
We want to pick a few blogs quickly capture most cascades.

SYmMBOL H DESCRIPTION

g Graph,G = (V,€)

1% Vertex set

£ Edge set

1€1 Set of all possible outbreaks (set of all possible cascades)
T(i,s) Time it takes an outbreak (cascadéd reach node

c(s) Cost of monitoring (placing a sensor, reading a blog)

c(A) Cost of placement, c(A) = > . 4 c(s)

m(A) Expected penalty over all possible outbredks

R(A) Reward,.e., penalty reductioi?(A) = 7(0) — w(A)

ds Marginal reward (gain}s = R(A U s) — R(A)

Sk Location with highest marginal reward or benefit/cost ratio

Table 8.1: Table of symbols.

functions. CELF is up to 700 times faster than simple greedy algorithm. We als@ devel
online bounds on the quality of the placements obtainedryalgorithm.

e We extensively evaluate our methodology on the applications introduceat abwater quality
and blogosphere monitoring. These are large real-world problems, ingadvmodel of a water
distribution network from the EPA with millions of contamination scenarios, aatl skng data
with millions of posts.

¢ We show how the proposed methodology leads to deeper insights in bothagippks including
multicriterion, cost-sensitivity analyses and generalization questions.

8.2 Outbreak Detection

8.2.1 Problem statement

The water distribution and blogosphere monitoring problems, even thougiimlifferent domains, share
essential structure. In both problems, we want to select a subsehodes (sensor locations, blogs) in a
graphg = (V, £), which detect outbreaks (spreading of a virus/information) quickly.
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Figure 8.2: Blogs have posts, and there are time stamped links betweeguots. The links point to the
sources of information and the cascades grow (informatioeagls) in the reverse direction
of the edges. Reading only bldgy captures all cascades, but lafg; also has many posts,
so by reading3; and B, we detect cascades sooner.

Figure8.2 presents an example of such a graph for blog network. Each of the gig bdmsists of a set of
posts. Connections between posts represent hyper-links, and labeisre time difference between the
source and destination postg, postp4; linked p12 one day aftep;» was published).

These outbreak®(g, information cascades) initiate from a single node of the netwaxk {11, p12 and
ps1), and spread over the graph, such that the traversal of every(edgec £ takes a certain amount
of time (indicated by the edge labels). As soon as the event reaches deledis alarm is triggered.
E.qg., selecting blod3s, would detect the cascades originating from past p1» andps;, after 6, 6 and 2
timesteps after the start of the respective cascades.

Depending on which nodes we select, we achieve a certain placement Bigure8.2 illustrates several
criteria one may want to optimize. If we only want to detect as many storiessssbpe then reading
just blog Bg is best. However, reading; would only miss one cascadgs(), but would detect the
other cascades immediately. In general, this placement score (reprgsergirthe fraction of detected
cascades, or the population saved by placing a sensor) is a set fuR¢ctizapping every placement to
areal numberRR(.A) (our reward), which we intend to maximize.

Since sensors are expensive, we also associaista(.4) with every placementi, and require, that this
cost does not exceed a specified budgethich we can spend. For example, the cost of selecting a blog
could be the number of posts initd,, B; has cost 2, whilé3s has cost 6). In the water distribution setting,
accessing certain locations in the network might be more difficult (expenisian other locations. Also,
we could have several types of sensors to choose from, which vargimaiality (detection accuracy)
and cost. We associate a nonnegative epstwith every sensos, and define the cost of placeme#t

C(A) = ZSGA C(S)'
Using this notion of reward and cost, our goal is to solve the optimization proble
ject t <B A
max R(A) subjecttac(A) < B, (8.1)
whereB is a budget we can spend for selecting the nodes.
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8.2.2 Placement objectives

An eventi € 7 from setZ of scenarios€.g, cascades, contaminant introduction) originates from a node
s’ € V of a networkg = (V, &), and spreads through the network, affecting other noeles through
citations, or flow through pipes). Eventually, it reaches a monitored nodeA C V (i.e., blogs we
read, pipe junction we instrument with a sensor), and gets detected. degem the time of detection

t = T(i,s), and the impact on the network before the detectmg,(the size of the cascades missed,
or the population affected by a contaminant), we inpanaltyr;(¢). Note that the penalty function
m;(t) depends on the scenario. We discuss concrete examples of penattgrfarimelow. Our goal is to
minimize the expected penalty over all possible scendrios

m(A) = ZP(z‘)m(T(zyA»,

where, for a placemend C V, T'(i, A) = minge 4 T'(i, s) is the time until event is detected by one of
the sensors iMd, and P is a (given) probability distribution over the events.

We assumer;(t) to be monotonically nondecreasingtni.e., we never prefer late detection if we can
avoid it. We also sef’(i,()) = oo, and setr;(co0) to some maximum penalty incurred for not detecting
eventi.

Proposed alternative formulation. Instead of minimizing the penalty(.A), we can consider the scenario
specificpenalty reductiorR;(A) = m;(o0) — m;(T(4,.A)), and the expected penalty reduction

R(A) = Z P(i)Ri(A) = m(0) — (A),

describes the expected benefit (reward) we get from placing thersefsis alternative formulation has
crucial properties which our method exploits, as described below.

Examples used in our experiments.Even though the water distribution and blogosphere monitoring
problems are very different, similar placement objective scores make g&risoth applications. The de-
tection timeT'(i, s) in the blog setting is the time difference in days, until biguarticipates in the cascade

i, which we extract from the data. In the water netwdrk;, s) is the time it takes for contaminated water

to reach node in scenaria (depending on outbreak location and time). In both applications we consider
the following objective functions (penalty reductions):

(a) Detection likelihood (DL)fraction of information cascades and contamination events detected by the
selected nodes. Here, the penaltyrjét) = 0, andm;(c0) = 1, i.e., we do not incur any penalty if we
detect the outbreak in finite time, otherwise we incur penalty 1.

(b) Detection time (DT)measures the time passed from outbreak till detection by one of the selected
nodes. Hencer;(t) = min{t, Tiax }, WhereT,,,x is the time horizon we consider (end of simulation /
data set).

(c) Population affected (PA)y scenario (cascade, outbreak). This criterion has different iet@tppns

for both applications. In the blog setting, the affected population measwesithber of blogs involved

in a cascade before the detection. Hergt) is the size of (number of blogs participating in) cascade

i at timet, and;(c0) is the size of the cascade at the end of the data set. In the water distribution
application, the affected population is the expected number of peopléeaffieg not (or late) detecting a
contamination event.
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Note, that optimizing each of the objectives can lead to very different sokjtitence we may want to
simultaneously optimize all objectives at once. We deal with this multicriterion optiimiz@roblem
in Section8.2.4

8.2.3 Properties of the placement objectives

The penalty reduction functidnR(.A) has several important and intuitive properties: Firsiy)) = 0,

i.e, we do not reduce the penalty if we do not place any sensors. Secdhdiynondecreasing,e.,

R(A) < R(B) for all A C B C V. Hence, adding sensors can only decrease the incurred penalty.
Thirdly, and most importantly, it satisfies the following intuitive diminishing retypreperty: If we add a
sensor to a small placemedt we improve our score at least as much, as if we add it to a larger placement
B 2 A. More formally, we can prove that

Theorem 8.2.1.For all placementsd C B C V and sensors € V \ B, it holds that

R(AU {s}) — R(A) > R(BU {s}) — R(B).

A set functionR with this property is calledubmodular

Proof. Our proof is similar to the analysis dNpmhauser et a11978. Fix scenarioi. We first show that
the functionR;(A) = m;(c0) — m;i(T'(A, 1)) is submodular. Consided C B C V. Lets € V\ B.
We have three cases. ({)(s,i) > T'(A,7). ThenT(A U {s}) = T'(A) andT(B U {s}) = T(B) and
henceR;(A U {s}) — Ri(A) = 0 = R;(BU{s}) — Ri(B). (i) T(B,i) < T(s,i) < T(A,7). Inthis
case,R;(AU{s}) — Ri(A) > 0= R;(BU{s}) — Ry(B). Finally, (iii), T'(s,7) < T'(B,1%). In this case,
Ri(AU{s}) = Ri(A) = [mi(00) — mi(T(s,4))] — Ri(A) > [mi(o0) — mi(T (s,1))] — Ri(B) = Ri(BU
{s}) — Ri(B), where the inequality is due to the nondecreasingneg$s ©j. Hence, for each scenario
i, the functionR; is submodular. NowR(A) = >, P(i)R;(A) is a nonnegative linear combination of

submodular functions, and hence submodular too. O

Hence, both the blogosphere and water distribution monitoring problemsecgedbced to the problem

of maximizing a nondecreasing submodular function, subject to a constrathe budget we can spend
for selecting nodes. More generally, any objective function that cavidveed as an expected penalty
reduction is submodular. Submodularity®fwill be the key property exploited by our algorithms.

8.2.4 Multicriterion optimization

In practical applications, such as the blogosphere and water distributiafiamiog, we may want to
simultaneouslyoptimize multiple objectives. Then, each placement has a vector of sdd(el, =
(R1(A),...,Ry(A)). Here, the situation can arise that two placemefitsand.4; areincomparable
e.g, Ri(A1) > Ri(As), but Ry(A41) < Rse(A2). So all we can hope for arBareto-optimal solu-
tions [Boyd and Vandenbergh004. A placementA is called Pareto-optimal, if there does not exist
another placement’ such thatR;(A’) > R;(A) for all ¢, andR;(A’) > R;(A) for somej (i.e., there

2The objective R is similar to one of the examples of submodular functiossribed by Nemhauser et 31197g. Our

objective, however, preserves additional problem structure (gpanghich we exploit in our implementation, and which we
crucially depend on to solve large problem instances.
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is no placementd’ which is at least as good a§ in all objectivesR;, and strictly better in at least one
objectiveR;).

One common approach for finding such Pareto-optimal solutions is by aealgrization(see for ex-
ample, Boyd and Vandenbergh@004). Here, one picks positive weights, > 0,...,\,, > 0, and
optimizes the objective?(A) = >, \iR;(A). Any solution maximizingR(A) is guaranteedto be
Pareto-optimalBBoyd and Vandenbergh2004, and by varying the weights;, different Pareto-optimal
solutions can be obtained. One might be concerned that, even if optimizingdilieliral objectivesk;
is easy i.e., can be approximated well), optimizing the sutn= }_. \; R; might be hard. However,
submodularity is closed under nonnegative linear combinations and thuswhscalarized objective is
submodular as well, and we can apply the algorithms we develop in the followatips.

8.3 Proposed algorithm

Maximizing submodular functions in general is NP-hatt{iller et al, 1999. A commonly used heuris-
tic in the simplercase, where every node hegualcost {.e., unit cost,c(s) = 1 for all locationss) is
the greedy algorithmwhich starts with the empty placemed = (), and iteratively, in step, adds the
locationsy, which maximizes thenarginal gain

s = argmax R(Ap_1U{s}) — R(Ap_1). (8.2)
SQV\.Ak_l

The algorithm stops, once it has selecteéélements. Considering the hardness of the problem, we might
expect the greedy algorithm to perform arbitrarily badly. However, inféHewing we show that this is
not the case.

8.3.1 Bounds for the algorithm

Unit cost case. Perhaps surprisingly — in the unit cost case — the simple greedy algoritheais n
optimal:

Theorem 8.3.1([Nemhauser et al1978). If R is a submodular, nondecreasing set function &id) =
0, then the greedy algorithm finds a sét;, such that?(Ag) > (1 — 1/e) max 4 —p R(A).

Hence, the greedy algorithm is guaranteed to find a solution which ackitleast a constant fractigh—
1/e) (=~ 63%) of the optimal score. The penalty reductifirsatisfies all requirements of Theorén.1,
and hence the greedy algorithm approximately solves the maximization prolje{@® B.

Non-constant costsWhat if the costs of the nodes are not constant? Itis easy to see that the gisgaly
algorithm, which iteratively adds sensors using rule from B) (until the budget is exhausted, can fail
badly, since it is indifferent to the costisg(, a very expensive sensor providing rewarid preferred over
a cheaper sensor providing reward ¢. To avoid this issue, the greedy rule E§.3) can be modified to
take costs into account:

S = argmax R(Ax—1U{s}) - R(Ak1)

: (8.3)
SEV\Akfl C(S)
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i.e.,, the greedy algorithm picks the element maximizing the benefit/cost ratio. Tbethig stops once

no element can be added to the current4etithout exceeding the budget. Unfortunately, this intuitive
generalization of the greedy algorithm can perform arbitrarily worse tiwamptimal solution. Consider
the case where we have two locations,and s,, ¢(s1) = ¢ andc(s2) = B. Also assume we have
only one scenaria, and R({s1}) = 2¢, and R({s2}) = B. Now, R(({s1}) — R(0))/c(s1) = 2,

and R(({s2}) — R(0))/c(s2) = 1. Hence the greedy algorithm would piek. After selectings;, we
cannot affords, anymore, and our total reward would beHowever, the optimal solution would piclk,
achieving total penalty reduction &f. As e goes to 0, the performance of the greedy algorithm becomes
arbitrarily bad.

However, the greedy algorithm can be improved to achieve a constdot ggaproximation. This new
algorithm, CEF (Cost-Effective Forward selection), computes the solWignp using the benefit-cost
greedy algorithm, using rule3(3), and also computes the solutioty;;7¢ using the unit-cost greedy al-
gorithm (ignoring the costs), using rul8.p). For both rules, CEF only considers elements which do not
exceed the budgd?. CEF then returns the solution with higher score. Even though both solui@zmise
arbitrarily bad, the following result shows that there is at least one of thieich is not too far away from
optimum, and hence CEF provides a constant factor approximation.

Theorem 8.3.2.Let R be the a nondecreasing submodular function wi(f)) = 0. Then

max{ R(Acen), R(Acue)} > %(1 ~1/e)  max  R(A)
Proof. The proof is presented in our technical repéttduse and Guestrjr2005 O

Theorem8.3.2was proved byKhuller et al, 1999 for the special case of the Budgeted MAX-COVER
problent, and here we prove this result farbitrary nondecreasing submodular functions. Theo8Bi2
states that the better solution.df; s and Agy o (which is returned by CEF) is at most a constant factor
(1 — 1/e) of the optimal solution.

Note that the running time of CEF @(B|V|) in the number of possible locationg| (if we consider a
function evaluation?(.4) as atomic operation, and the lowest cost of a node is constan§viridenkaq
2004, it was shown that even in the non-constant cost case, the approxintatézantee ofl — 1/e)
can be achieved. However, their algorithnfi6B|V|*) in the size of possible location¥| we need to
select from, which is prohibitive in the applications we consider. In the fatigywe show, that even the
solutions of CEF are provably very close to the optimal score.

8.3.2 Online bounds for any algorithm

The approximation guarantees @f — 1/e) and (1 — 1/e) in the unit- and non-constant cost cases
are offling, i.e, we can state them in advance before running the actual algorithm. Welstanise
submodularity to acquire tighlinline bounds on the performance of arbitrary placement (not just the
one obtained by the CEF algorithm).

Theorem 8.3.3. For a placementd C V, and eachs € V \ A, let§, = R(A U {s}) — R(A). Let
rs = ds/c(s), and letsy, ..., s,, be the sequence of locations within decreasing order. Let be such

3In MAX-COVER, we pick from a collection of sets, such that the union offiteked sets is as large as possible.
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thatC = " e(s;) < BandY X ¢(s;) > B. LetA = (B — C)/c(sy). Then

k-1

< R(A . . .
e R(A) < R(A) + ; Ss; + Mg, (8.4)

Proof. For all nodess € V \ A4, letd; = R(AU {s}) — R(A). Let us assume the cost&) and B are
rational . Without loss of generality, we can multiply costs and budget by k&t common multiple,
and hence we are left with integral costs and budget. Let us replicatermiets according to their cost,
and assign weights to them according to their benefit cost riatipfor all replicas’ of elements, set
weightd’, = d5/c(s). Also, let A’ be the set of all replicas corresponding to the node4.ihet 5’ be the
replicas of all elements in the optimal solutiBin SinceR is monotonic,R(A' U B') > R(B') = OPT.
Due to submodularity,

RAUB) <RA)+ D> o

s'eB’
Furthermore,
E (5 < max E 52/.
c|c'|<B
s'eB’ s'eC’

Now we have a unit-cost modular optimization problem: We want to pick the best sf B elements,
maximizing the sum of their weight,. The ordinary unit cost greedy algorithm solves this optimally.
More specifically, we can sort the new weightsin decreasing order (in case of ties we keep the replicas
of the elements in contiguous blocks), and pick fRdirst elements. Hence, the greedy algorithm on
the replicated unit cost problem will have to integrally pick the fks% 1 original elements, and will
fractionally pick the lastk — th) element, selecting/ = (B Zz ! ¢(s7)) elements. Summing up the
weights of the unit cost elements will give §S, = 15714, + A * J5,, whereh = M/c(sy). O

Theorem8.3.3 presents a way of computing how far any given soluti@mobtained using CEF acany
other algorithm) is from the optimal solution. This theorem can be readily tumntecan algorithm, as
formalized in Algorithm 2.

We empirically show that this bound is much tighter than the boélmj— 1/e), which is roughly
31%.

8.4 Scaling up the algorithm

8.4.1 Speeding up function evaluations

Evaluating the penalty reductiotiscan be very expensive. For example, in the water distribution appli-
cation, we need to run physical simulations, in order to estimate the effectarftamination at a certain
node. In the blog networks, we need to consider several millions of pekish make up the cascades.
However, in both applications, most outbreaks are spaesggffect only a small area of the networkf,
[Krause et al.2008 Leskovec et a).2007d), and hence are only detected by a small number of nodes.
Hence, most nodesdo not reduce the penalty incurred by an outbreak, (R;({s}) = 0). Note, that

this sparsity i®nly present if we consider penaltgductions If for each sensos € V and scenario € 7

we store the actual penalty(s), the resulting representation is not sparse. Our implementation exploits
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Function:LazyForward( G = (V,€&),R,c,B,typ8

A — (); foreachs € V do d; — +o0;

while 3s e V\ A : ¢(AU {s}) < Bdo
foreachs € V \ Ado cur, < false
while true do

if type=UCthen s* «— argmax Os;
seEV\A,c(AU{s})<B

if type=CBthen s* «+—  argmax % ;
seV\A,e(AU{s})<B C(5)
if curgthen A «— AU s*; break ;
else 6 — R(AU {s})—R(A); curs < true;
end
end
return A;

Algorithm 8.1: The CELF algorithm.
Algorithm: CELF(G = (V, €),R,c,B)
Ayc «LazyForward( G, R, ¢, B,UC);
Acp —LazyForward( G, R,c, B,CB);
return argmax{R(Ayc), R(Acs)}

this sparsity by representing the penalty functidas aninverted inde%, which allows fast lookup of the
penalty reductionby sensor index. By looking up all scenarios detected by all sensors in our placement
A, we can quickly compute the penalty reduction

R(A) = ' ;

(A= > PliymaxRi({s}),
1:1 detected byA

without having to scan the entire data set.

The inverted index is the main data structure we use in our optimization algorithftes. tile problem
(water distribution network simulations, blog cascades) has been comgriess this structure, we use
the same implementation for optimizing sensor placements and computing bounds.

In the water distribution network application for example, exploiting this spaadiityvs us to fit the set of
all possible intrusions considered in the BWSN challenge in main memory (161BRh leads to several
orders of magnitude improvements in the running time, since we can avoidihgedaccesses.

8.4.2 Reducing function evaluations

Even if we can quickly evaluate the scaré.A) of any given placement, we still need to perform a large
number of these evaluations in order to run the greedy algorithm. If wetdelsensors among)|
locations, we roughly need|V| function evaluations. We can exploit submodularity further to require

“The index is inverted, since the data set facilitates the lodkugcenario index (since we need to consider cascades, or
contamination simulations for each scenario).
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Algorithm 8.2: Getting bound? on optimal solution.
Algorithm: GetBound( G = (V,€),A,R,c,B)
A—0;B—0; R=R(A);
foreachs € Vdod, — R(AU {s}) — R(A); rs = %
while 3s € V\ (AUB) : c(AUBU{s}) < Bdo

% «— argmax Ts
sEV\{AUB},c(AUBU{s})<B

R— R+6s;B—BU{s*};
end

§* «— argmax Ter N — %;

seV\{AUB},c(AUBU{s})<B
return R + Mg«

far fewer function evaluations in practice. Assume we have computed ttggnakincrements,(A) =

R(A U {s}) — R(A) (or 65(A)/c(s)) for all s € V \ A. The key idea is to realize that, as our node
selectionA grows, the marginal increments (anddy /c(s)) (i.e., the benefits for adding sensdj can
never increase: Fod C B C V), it holds thaty;(.A) > 65(B). So instead of recomputing = J,(.A) for
every sensor after adding(and hence requiring’| — |.A| evaluations of?), we performazyevaluations:
Initially, we mark all§, asinvalid. When finding the next location to place a sensor, we go through the
nodes in decreasing order of théir. If the §, for the top nodes is invalid, we recompute it, and insert

it into the existing order of thé;, (e.g, by using a priority queue). In many cases, the recomputation of
05 will lead to a new value which is not much smaller, and hence often, the top elevilestay the top
element even after recomputation. In this case, we found a new senslat, teithout having reevaluated

05 for every locations. The correctness of this lazy procedure follows directly from submoitlyland
leads to far fewer (expensive) evaluationgbfWe call this lazy greedy algoritthCELF (Cost-Effective
Lazy Forward selection). In our experiments, CELF achieved up totarfd®0 improvement in speed
compared to CEF when selecting 100 blogs. Algoriuhprovides pseudo-code for an implementation
of CELF.

When computing the online bounds discussed in Se@&i8t2 we can use a similar lazy strategy. The

only difference is that, instead of lazily ensuring that the best correctly computed, we ensure that the
top k (wherek is as in Eq. 8.4)) J, improvements have been updated.

8.5 Case study: Blog Network

We begin by describing the blog network dataset, experimental setupbgadice function we consider.
We then present results on solution quality, scalability and generalizatiotuie fdata. We also explore
various ways of assigning costs to blogs.

®[Robertazzi and Schwart¥989 suggested a similar algorithm for theit costcase.
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Figure 8.3: Cascade and outbreak size distributions for blog netwodktla@ water distribution network.

8.5.1 Experimental setup

In this work we are not explicitly modeling the spread of information over theowk, but rather consider
cascades asputto our algorithms.

Here we are interested in blogs that actively participate in discussionsapaedithe dataset towards the
active part of the blogosphere, and selected a subset from thedatgd2.5 million blogs ofGlance et al.
2009. We considered all blogs that received at least 3 in-links in the firsttnsoof 2006, and then took
all their posts for the full year 2006. So, the dataset that we use haBMbl6gs, 10.5 million posts,
and 16.2 million links (30 GB of data). However, only 1 million links point inside tké &f 45,000
blogs.

Posts have rich metadata, including time stamps, which allows us to extract itifmmroascades,e.,
subgraphs induced by directed edges representing the temporal floferofiation. We adopt the follow-

ing definition of a cascadd_gskovec et a).2007d: every cascade has a single starting post, and other
posts recursively join by linking to posts within the cascade, whereby thedindgg time order. We detect
cascades by first identifying starting post and then following in-links. Weaver 346,209 non-trivial
cascades having at least 2 nodes. Since the cascade size distributamyigdiled, we further limit our
analysis to only cascades that had at least 10 nodes. The final deaskt,589 cascades, where each
blog participates 9.4 different cascades on average.

8.5.2 Objective functions

We use the penalty reduction objectives DL, DT and PA as introduced iio8&c2.2 We normalize the
scores of the solution to be between 0 and 1. For the DL (detection likelilasideljion, the quality of
the solution is the fraction of all detected cascades (regardless of widetect it). The PA (population
affected) criterion measures what fraction of the population included ioabeade after we detectiig.,

if we would be reading all the blogs initiating the cascades, then the quality siologon is 1. In PA
our reward depends on which fraction of the cascades we detectjgaoddeades count more than small
cascades.
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8.5.3 Solution quality

First, we evaluate the performance of CELF, and estimate how far from dgtieaolution could be.
Note, that obtaining the optimal solution would require enumeratiop*®f?° subsets. Since this is
impractical, we compare our algorithm to the bounds we developed in Sé&8ofigure8.4(a) shows
scores for increasing budgets when optimized the PA (population afjemrigstion. As we select more
blogs to read, the proportion of cascades we catch increases (bottgmlealso plot the two bounds.
The off-line bound (Sectio®.3.1) shows that the unknown optimal solution lies between our solution
(bottom line) and the bound (top line). Notice the discrepancy between tiseiditéy, which means the
bound is very loose. On the other hand, the middle line shows the online i§Senton8.3.2), which
again tells us that the optimal solution is somewhere between our current s@ntiche bound. Notice,
the gap is much smaller. This means (a) that the our on-line bound is much tiginethth traditional
off-line bound. And, (b) that our CELF algorithm performs very closéh@®optimum.

In contrast to off-line bound, the on-line boundagyorithm independentand thus can be computed
regardless of the algorithm used to obtain the solution. Since it is tightergi givnuch better worst case
estimate of the solution quality. For this particular experiment, we see that CBtéswery well: after
selecting 100 blogs, we are at ma& 8% away from the optimal solution.

Figure 8.4(b) shows the performance using various objective functions (fromddmttom: DL, DT,
PA). DL increases the fastest, which means that one only needs to reacbéofys to detect most of the
cascades, or equivalently that most cascades hit one of the big bloggevEr, the population affected
(PA) increases much slower, which means that one needs many more blogsvi@bout stories before
the rest of population does. By using the on-line bound we also calculatedltiobjective functions are
at most 5% to 15% from optimal.

8.5.4 Costof a blog

The results presented so far assume that every blog has the same cdst.thisunit costmodel, the
algorithm tends to pick large, influential blogs, that have many posts. Ronge instapundit.com

215


instapundit.com

300

o
o

Optirﬁizing
benefit/cost ratio

o
o
!

Score R=0.4

R=0.3

\

Ignoring cost
in optimization

Number of blogs
=
(o]
o

o
[N

Reduction in population affected
o
SN

R=0.2

on—o | | | |
0 1 2 3 4 5 0 ‘
Cost (number of posts) x 10" 0 5000 10000 15000
Number of posts
(a) Cost of a blog (b) Cost tradeoff

Figure 8.5: (a) Comparison of the unit and the number of posts cost mo¢®I§or fixed value of PAR,
we get multiple solutions varying in costs.

is the best blog when optimizing PA, but it has 4,593 posts. Interestingly, aidsie blogs among

the top 10 are politics blogs likenstapundit.com , blogometer.nationaljournal.com ,
michellemalkin.com , andsciencepolitics.blogspot.com . Some popular aggregators of
interesting things on the blogosphere are also seledteithgboing.net , themodulator.org
andbloggersblog.com . The top 10 PA blogs had more than 21,000 thousand posts in 2006. They
account for 0.2% of all posts, 3.5% of all in-links, 1.7% of out-links insidedataset, and 0.37% of all
out-links.

Under unit cost model large blogs are important, but reading a blog with p@stg is time consuming.
This motivates theaumber of posts (NPJost model, where we set the cost of a blog to the number of
posts it had in 2006.

First, we compare the NP cost model with the unit cost in Fi@ubéa). The top curve shows the value
of the PA criterion for budgets aB posts,i.e., we optimize PA such that the selected blogs can have at
mostB posts total. Note, that under the unit cost model, CELF chooses expdnags with many posts.
For example, to obtain the same PA objective value, one needs to read p6std@nder unit cost model.
The NP cost model achieves the same score while reading just 1,500 Plogss.optimizing the benefit
cost ratio (PA/cost) leads to drastically improved performance.

Interestingly, the solutions obtained under the NP cost model are veeyatifffrom the unit cost model.
Under NP, political blogs are not chosen anymore, but rather summea@gr themodulator.org ,
watcherofweasels.com , anglican.tk ) are important. Blogs selected under NP cost appear
about 3 days later in the cascade as those selected under unit costfutiiehsuggests that summarizer
blogs tend to be chosen under NP model.

In practice, the cost of reading a blog is not simply proportional to the nuibgosts, since we also
need to navigate to the blog (which takes constant effort per blog). ddencombination of unit and

NP cost is more realistic. FiguB5b) interpolates between these two cost models. Each curve shows the
solutions with the same valug of the PA objective, but using a different number of posts (x-axis) and
blogs (y-axis) each. For a giveR, the ideal spot is the one closest to origin, which means that we want
to read the least number of posts from least blogs to obtain desired Bc@aly at the end points does
CELF tend to pick extreme solutions: few blogs with many posts, or many blogdevitiposts. Note,
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there is a clear knee on plots of Fig@&(b), which means that by only slightly increasing the number of
blogs we allow ourselves to read, the number of posts needed dealeastésally, while still maintaining
the same valu& of the objective function.

8.5.5 Comparison to heuristic blog selection

Next, we compare our method with several intuitive heuristic selection teakmidtor example, instead
of optimizing the DT, DL or PA objective function using CELF, we may just wamselect the most
popular blogs and hope to detect many cascades. We considereal sewdrheuristics, where we order
blogs by some “goodness” criteria, and then pick top blogs (until the huslgxhausted). We consider
the following criteria: the number posts on the blog, the cumulative numbertdinks of blog’s posts,
the number of in-links the blog received from other blogs in the datasetthendumber of out-links to
other blogs in the dataset.

As Figure8.6(a) shows, the CELF algorithm greatly outperforms all the heuristic seletg@imiques.
More interestingly, the best heuristics (doing 45% worse than CELF) perskoy the number of in- or
out-links from/to other blogs in the dataset. Number of posts, the total numloert-dihks and random
blog selection do not perform well.

Number of in-links is the indicator of a blog’s tendency to create cascadugle, number of out-links (to

other blogs) indicates blog’s tendency to summarize the blogosphere. deads that the surprisingly
good performance of the number of out-links to blogs in the dataset is dacinté our “closed-world”

dataset, and in real-life we can not estimate this. The results also agreeithetiurintuition that the

number of in-links is a good heuristic, since it directly indicates the of pratpag of information.

Figure 8.6(b) explores the same setting under the NP cost model. Here, given athafdg posts, we
select a set of blogs to optimize PA objective. For the heuristics, we sekmtt @ blogs to optimize
chosen heuristice.g, the total number of in-links of selected blogs while still fitting inside the budget
of B posts. Again, CELF outperforms the next best heuristics by 41%, aamd &t number of in- and
out-links are the best heuristics.

These results show that simple heuristics that one could use to identify blogadao not really work
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well. There are good summarizer blogs that may not be very popular,Hicihwy using few posts, catch
most of the important stories propagating over the blogosphere.

8.5.6 Fractionally selecting blogs

Our framework also allows fractional selection of blogs, which means thtgad of reading a large blog
every day, we can read #,g, only one day per week. This also allows us to ask: what is the best day of
the week to read blogs?

In order to study whether fractional selection allows to achieve betteffibeast ratio, we split the blogs
which had at least one post per day into 7 blogs, one for each day ofdble Figure8.7(a) shows, that

by splitting big blogs, the population affected (PA) objective function ineesdor 12% over the setting
where only whole blogs can be selected.

Returning to the original question, we performed the following experimengngh budget of 1000 posts,
what is the best day of the week to read posts (optimizing PA)? We foundFtity is the best day to
read blogs. The value of PA for Friday is 0.20, while it is 0.13 for the rétt@week. We consider this
surprising, since the activity of the blogosphere (number of posts argldiglated) drops towards the end
of the week, and especially over the weekebelskovec et a).2007d.

8.5.7 Generalization to future data

Since the influence and popularity of the blogs also evolves over time we algaovknow how well the
selected blogs will detect cascades in the future. To evaluate the geaialio unknown future, we use
the first 6 months of the dataset as historic data to select a set of bloghesmdse second 6 months of
the dataset to evaluate the performance of selected blogs on unseercagcades.

Figure8.8 compares the performance on the unknown future data. Top dashediciooth plots shows
the optimal performance on future daite,, we select the blogs directly using the (unknown) future data.
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The bottom curve presents the realistic case where we select the blogshisioric data and evaluate
using hidden future data.

As Figure8.8(a) shows, CELF overfits when evaluated on the future da&tait selects small blogs with
very few posts that just by chance participate in cascades, and therblbgs do not generalize well for
the second half of the year. One way to overcome this overfitting is to pr&koF from picking very
small blogs. To understand this restriction we show in FigiBb) the performance when CELF can
only select blogs with at least one post per day (365 posts per year).

Comparing Figur®.8(a) and Figure3.8(b) we see that the optimal performance (top curve) drops if CELF
is limited on only picking big blogs. This is expected since CELF has less chbighich blogs to pick,
and thus performs worse. However, when limiting the selection to only big lfkigare8.8(b)) the gap
between the curves is very small (compared to the big gap of FBy8f&)). Moreover, the performance
on the future data does not drop, and the method generalizes well.

8.5.8 Scalability

Figure8.5(b) plots the running time of selectirkigologs. We see that exhaustively enumerating all possible
subsets ok elements is infeasible (the line jumps out of the plotier 3). The simple greedy algorithm
scales a$)(k|V|), since for every increment éfwe need to consider selecting all remainjig— & blogs.

The bottom line overlapping the x-axis of Figugex(b) shows the performance of our CELF algorithm.
For example, for selecting 100 blogs, greedy algorithm runs 4.5h, whild=G&kes 23 seconds (700
times faster). Calculation of the on-line bounds while running CELF takes 54s

Exploiting the sparsity of the problem.{, Section8.4) allowed us to reduce the size of the inverted index
from originally 3.5 GB to 50 MB, easily fitting it in main memory.
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8.6 Case study: Water networks

Next we present our results on water distribution networks, where theféaformation cascades the task
is to detect contamination cascades.

8.6.1 Experimental setup

In the water distribution system application, we used the data and rules io¢dhy the Battle of Water
Sensor Networks (BWSN) challeng®#$tfeld et al. 200§. We considered both the small network on
129 nodes (BWSN1), and a large, realistic, 12,527 node distribution netBWSN2) provided as part
of the BWSN challenge. In addition we also consider a third water distributedwork (NW3) of a
large metropolitan area in the United States. The network (not including theehold level) contains
21,000 nodes and 25,000 pipes (edges). To our knowledge, this isdlestlarater distribution network
considered for sensor placement optimization so far. The networkstoha static description (junctions
and pipes) and dynamic parameters (time-varying water consumption deehe at different nodes,
opening and closing of valves, pumps, tanks, etc.)

As Figure8.3(b) shows, the distribution of outbreak sizes for the water network isrdifierent than for a
blog network. The blog network is a typical scale free network with small dianaad power law degree
distribution. On the other hand, the water networks are composed ofabeoemected grid networks
corresponding to different neighborhoods, and thus the outbreaklsitzibution is different.

8.6.2 Objective functions

In the BWSN challenge, we want to select a set of 20 sensors, simulslpamiimizing the objective
functions DT, PA and DL, as introduced in Secti®2.2 To obtain cascades we use a realistic disease
model defined byQstfeld et al. 200§, which depends on the demands and the contaminant concentra-
tion at each node. In order to evaluate these objectives, we use theEHPgiulator Rossman1999,
which is based on a physical model to provide realistic predictions on thetidetéme and concentration

of contaminant for any possible contamination event. We consider simulatigi&hours length, with

5 minute simulation timesteps. Contaminations can happen at any node and any timeheitiirst 24
hours, and spread through the network according to the EPANET simuldtientime of the outbreak is
important, since water consumption varies over the day and the contaminat@aust different rates
depending on the time of the day. Altogether, we consider a set of 3.6 milli@igp@sontamination sce-
narios and each of these is associated with a “cascade” of contamineats over the network.

8.6.3 Solution quality

We first used CELF to optimize placements of increasing size, according tiorteecriteria DL, DT, PA.
We again normalized the scores to be between 0 and 1, where 1 is thetliegahle score when placing
sensors at every node.

Figure8.9 (a) presents the CELF score, the off-line and on-line bounds for Réctive on the BWSN2
network. Consistently with the blog experiments, the on-line bound is much tigtderthe off-line
bound, and the solutions obtained by our CELF algorithm are very close tmptimum.
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Figure 8.9 (b) shows CELF’s performance on all 3 objective functions. Similarly tolilog data, the
population affected (PA) score increases very quickly. The reagbatisnost contamination events only
impact a small fraction of the network. Using few sensors, it is relativedy #éadetect most of the high
impact outbreaks. However, if we want to detect all scenarios, wetogadce a large number of sensors
(2,263 in our experiment). Hence, the DL (and correspondingly DTeams more slowly than PA.

Figure8.10shows two 20 sensor placements after optimizing DL and PA respective WWSBIN2. When
optimizing the population affected (PA), the placed sensors are contszhiinghe dense high-population
areas, since the goal is to detect outbreaks which affect the populagiondst. When optimizing the
detection likelihood, the sensors are uniformly spread out over the netimuitively this makes sense,
since according to BWSN challeng®#tfeld et al. 2006, outbreaks happen with same probability at
every node. So, for DL, the placed sensors should be as close talak as possible.

We also compared the scores achieved by CELF with several heuristimrggacement techniques, where
we order nodes by some “goodness” criteria, and then pick top nodesolgider the following criteria:
population at the node, water flow through the node, and the diameter amghtioer of pipes at the node.
Figure8.13a) shows the results for PA objective function. CELF outperformshmmstistic for 45%. Best
heuristics are placing nodes at random, by degree or their populatiose®\eeuristics perform poorly,
since nodes which are close in the graph tend to have similar flow, diamet@oanthtion, and hence
the sensors will be spread out too little. Even the maximum over one hunainedm trials performs

far worse than CELF. Figur8.11(a) shows the statistics of choosing 100 random placements on the
water distribution network for the PA objective function. Notice that evest bat of 100 random trials
performs far worse than CELF. Figu8ll(b) shows how many outbreaks one needs so that the score
approaches the true score that one obtains if data on all outbreak#abkeveNotice that estimates soon
converge to true score and data on less than 100,000 outbreaks isl. n&egeKrause et al.200g for

more details.

8.6.4 Multicriterion optimization

Using the theory developed in SectiBr2.4 we traded-off different objectives for the water distribution
application. We selected pairs of objectivesgy, DL and PA, and varied the weighito produce (approx-
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imately) Pareto-optimal solutions. In FiguBel2 (a) we plot the tradeoff curves for different placement
sizesk. By adding more sensors, both objectives DL and PA increase. Thesaiso show, that if
we, e.g, optimize for DL, the PA score can be very low. However, there are paihtsh achieve near-
optimal scores in both criteria (thaeein the curve). This sweet spot is what we aim for in multi-criteria

optimization.

We also traded off the affected population PA and a fourth criterion difayeBWSN, theexpected
consumption of contaminated wat&igure8.12(b) shows the trade-off curve for this experiment. Notice
that the curves (almost) collapse to points, indicating that these criteria dnlg bigrelated, which we
expect for this pair of objective functions. Again, the efficiency of imuplementation allows to quickly
generate and explore these trade-off curves, while maintaining stramgrgaes about near-optimality of

the results.
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8.6.5 Scalability

In the water distribution setting, we need to simulate 3.6 million contamination sceneaids of which
takes approximately 7 seconds and produces 14KB of data. Since ntlostawimputer cluster scheduling
systems break if one would submit 3.6 million jobs into the queue, we developisttiauted architec-
ture, where the clients obtain simulation parameters and then confirm thessiut@mmpletion of the
simulation. We run the simulation for a month on a cluster of around 40 machih&sprbduced 152GB
of outbreak simulation data. By exploiting the properties of the problem itbescm SectiorB.4, the
size of the inverted index (which represents the relevant informatiorvdua&ting placement scores) is
reduced to 16 GB which we were able to fit into main memory of a server. Théhat we could fit the
data into main memory alone sped up the algorithms by at least a factor of 1000.

Figure8.13 (b) presents the running times of CELF, the naive greedy algorithm amausikive search
(extrapolated). We can see that the CELF is 10 times faster than the gilgedthan when placing 10
sensors. Again, a drastic speedup.
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8.7 Discussion and connection to previous work

Next we briefly discuss connections to previous work on influence maxiimizaoptimization of sub-
modular functions and modeling cascading behaviors in general.

8.7.1 Relationship to Influence Maximization

In [Kempe et al. 2003, a Triggering Modelwas introduced for modeling the spread of influence in a
social network. As the authors show, this model generalizes the Indepe@ascade, Linear Threshold
and Listen-once models commonly used for modeling the spread of influétssmntially, this model
describes a probability distribution over directed graphs, and the infusndefined as the expected
number of nodes reachable from a set of nodes, with respect to thibutistin. Kempe et al. showed that
the problem of selecting a set of nodes with maximum influence is submodatiafysg the conditions

of Theorem8.3.1 and hence the greedy algorithm provide§la- 1/e) approximation. The problem
addressed in this chapter generalizes this Triggering model:

Theorem 8.7.1. The Triggering Model Kempe et a].2003 is a special case of our network outbreak
detection problem.

In order to prove Theorer®.7.1 we consider fixed directed graphs sampled from the Triggering distribu-
tion. If we revert the arcs in any such graph, then our PA objectiveesponds exactly to the influence
function of [Kempe et al.2003 applied to the original graph.

Proof. Let P be a distribution over directed graplis= (V,&1),...,Gn(V, Ex) on afixed set of vertices
V, defined according to the Triggering Model. For eadetG! be the graph obtained frogj by reverting
the arcsg;. Then, the penalty reductioR;(A) by the set of nodesgl using the population affected score
(PA) corresponds exactly to the number of nodes influenced by seder the Triggering Model. Hence,
also the expected penalty reducti®iA) = >, P(i)R;(A) is exactly equal to the influence function
o(A) of [Kempe et al.2003. O

Theorem8.7.1shows that spreading influence under the general Triggering Matiebe considered a
special case of our outbreak detection formalism. The problems arenfiemdally related since, when
spreading influence, one tries to affect as many nodes as possible,whigitedetecting outbreak, one
wants to minimize the effect of an outbreak in the network. Secondly, notéttiee example of reading
blogs, it is not necessarily a good strategy to affect nodes which ayeinfluential, as these tend to
have many posts, and hence are expensive to read. In contrast ema&lmaximization, the notion of
cost-benefit analysis is crucial to our applications.

8.7.2 Optimizing submodular functions

The fundamental result about the greedy algorithm for maximizing submoiduletions in the unit-cost
case goes back ttNemhauser et gl1978. [Nemhauser and Wolse$981 present a Mixed Integer Pro-
gramming approach or maximizing submodular functions, which howeverrddgsovide running time
guarantees. The first approximation results about maximizing submodulidins in the non-constant
cost case were proved bgyiridenkq 2004. They developed an algorithm with approximation guarantee
of (1—1/e), which however requires a number of function evaluating|V|*) in the size of the ground
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setV (if the lowest cost is constant). In contrast, the number of evaluationgregpy CELF isO(B|V|),
while still providing a constant factor approximation guarantee. A lazydyreégorithm for optimizing
submodular functions in the context of experimental design was desdrjbgRbbertazzi and Schwartz
1989. Their work however did not consider the case of non-constaritfoostions, as we consider in
this chapter.

8.7.3 Virus propagation and outbreak detection

Work on spread of diseases in networks and immunization mostly focusestemmihing the value of
the epidemic threshol{Bailey, 1975 Chakrabarti et al.2007h 2008, a critical value of the virus trans-
mission probability above which the virus creates an epidemic. Severabstsafer immunization have
also been proposed. Uniform node immunization and targeted immunizationtotibgyzee nodes was
proposed byPastor-Satorras and Vespign&002, acquaintance immunization, which focuses on highly
connected nodes bZphen et al.2003, and immunization on based on spectral properties of the network
was proposed byGiakkoupis et al.2005. In the context of our work, uniform immunization strategy cor-
responds to randomly placing sensors in a water network. Similarly, targeitednization corresponds

to selecting blogs based on their in- or out-degree. As we have seen ne$8gbiand8.13 both strategies
perform much worse than direct optimization of fhapulation affectedriterion.

8.7.4 Information cascades and blog networks.

Cascades have been studied for many years by sociologists conaeithethe diffusion of innova-
tion [Rogers 1995; more recently, cascades we used for studying viral marketdwjdenberg et a|.
2001, Leskovec et a] 20064, selecting trendsetters in social networRéghardson and Domingp20024,
and explaining trends in blogspad@ruhl et al, 2004 Kumar et al, 2003. Studies of blogspace either
spend effort mining topics from post&fuhl et al, 2004 or consider only the properties of blogspace as
a graph of unlabeled URL&Kumar et al, 2003. Recently, Leskovec et a).2007d studied the properties
and models of information cascades in blogs. While previous work eitheséacon empirical analyses
of information propagation and/or provided models for it, we develop argéngethodology for node
selection in networks while optimizing a given criterion.

8.7.5 Water distribution network monitoring.

A large number of approaches have been proposed for optimizing veaissranetworksa(f, [Berry et al,
2006 Guan et al.2006 Ostfeld and Salomon2004 Dorini et al, 200§ for a concise overview of the
prior literature). Most of these approaches are only applicable to snatbries up to approximately
500 nodes. Many approaches are based on heuristics (such #is gigurithms Dstfeld and Salomons
2004, cross-entropy selectiomprini et al, 200§, predator-prey heuristickqueli, 200§, etc.) that can-
not provide provable performance guarantees about the solutionse<CItw ours is an approach by
[Berry et al, 2004, who equate the placement problem with-enedian problem, and make use of a large
toolset of existing algorithms for this problem. The problem instances solwvg8drry et al, 2004 are a
factor 72 smaller than the instances considered in this chapter. In ordetiaio bounds for the quality of
the generated placements, the approacBetry et al, 200§ needs to solve a complex (NP-hard) mixed-
integer program. Our approach is the first algorithm for the water netpladement problem, which is
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guaranteed to provide solutions which achieve at least a constant fra€tibe optimal solution within
polynomial time. Additionally, it handles orders of magnitude larger probleitaircgs than previously
considered.

8.8 Conclusions

In this chapter, we presented a novel methodology for selecting nodexteot @utbreaks of dynamic
processes spreading over a graph. We showed that many importagtivebfenctions, such as detection
time, likelihood and affected population aaebmodular We then developed the CELF algorithm, which
exploits submodularity to finshear-optimalnode selections — the obtained solutions are guaranteed to
achieve at least a fraction gf(1 — 1/e) of the optimal solution, even in the more complex case where
every node can have arbitrary cost. Our CELF algorithm is up to 700 times faster than standard
greedy algorithm. We also developed novel online bounds on the qualitg aiollation obtained bgny
algorithm. We used these bounds to prove that the solutions we obtainederpmiiments achieve 90%

of the optimal score (which is intractable to compute).

We extensively evaluated our methodology on two large real-world probléhsletection of contami-
nations in the largestity water distributionnetwork considered so far in the literature, and (b) selection
of informative blogsn a network of more than 10 million posts. We showed how our CELF algorithm
greatly outperforms intuitive heuristics. We also demonstrated that our mébigydzmmn be used to study
complex application-specific questions such as multicriteria tradeoff, easitwity analyses and gen-
eralization behavior. In addition to demonstrating the effectiveness ofmeatinod, we obtained some
counterintuitive results about the problem domains, such as the fact ¢ghpogular blogs might not be
the most effective way to catch relevant information cascades.

We are convinced that the methodology introduced in this chapter can appigrp other applications,
such as computer network security, immunization and viral marketing.
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Part 2 — Network cascades: Conclusion

In this chapter we presented our work on the processes that spoeaddide to node in the network like
viruses. We investigated two such examples where propagations natoratiychscades and we were
able to directly measure and observe them on a large scale.

Observations: We found that most cascades are small, but large bursts can occaggbatle sizes follow
a heavy-tailed distribution; that the frequency of different cascatigraphs depends on the product or
blog type; and that these frequenciesxdbsimply decrease monotonicality denser subgraphs, but rather
reflect more subtle features of the domain in which the diffusion and patioag are operating.

Models: Moreover, we were able to obtain a number of interesting insights into howwaeketing and
information propagation on the blogosphere work that challenge commompatens made in epidemic
and rumor propagation modeling. For example, on a large dataset we dshioadiminishing returns
property of human adoption curve as opposed to critical threshold thdteis assumed. Moreover,
it is frequently assumed in epidemic models that individuals have equal lplibpaf being infected
every time they interact. Contrary to this we observe that the probability oftinfedecreaseswith
repeated interaction. Marketers should take heed that providing @edéssentives for customers to
recommend products could backfire by weakening the credibility of thesaamge links they are trying to
take advantage of.

On the information propagation side of things we also analyzed one of thestaagailable collections
of blog information, trying to find how blogs behave and how information agapes through the blogo-
sphere. In contrast with viral marketing stars and chains are basic cemisoof blog cascades, with stars
being more common.

Algorithms: We presented a novel methodology for selecting nodes to detect owglwedynamic pro-
cesses spreading over a graph. We showed that many important abjectotions, such as detection
time, likelihood and affected population aaebmodular We then developed the CELF algorithm, which
exploits submodularity to find near-optimal node selections. Our CELF algoiitlip to700 times faster
than a standard greedy algorithm. We also developed novel online boarttis quality of the solution
obtained byany algorithm. We used these bounds to prove that the solutions we obtained éxymrr
iments achiev®0% of the optimal score (which is intractable to compute). We extensively evaluate
our methodology on two large real-world problems: (a) detection of contdimisain thelargest water
distribution network considered so far, and (b) selection of informative blogs in aanktef more than
10 million posts. We showed that the proposed CELF algorithm greatly outperfimtuitive heuristics.
We also demonstrated that our methodology can be used to study complexatmplgpecific questions
such as multicriteria tradeoff, cost-sensitivity analyses and generalizstwavior.
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Part Il

Large data

What are the properties of world’s social network?

How to quantify network community structure?

How to predict web search result quality without
page content?
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Part 3 — Large data: Overview

In the last part of the thesis we present case studies that demonstraaéuhand importance of working
with large data. We examine three different aspects of analysis of vge/hatworks: (a) observations on
the largest social network ever analyzed, (b) modeling of network contymgtructure, and (c) machine
learning for web search. In all three cases there will be two common topicst, we show how large
amounts of data give us opportunities to observe phenomena that atiegslamvisible when working
with small data, and how this leads to new counterintuitive discoveries. 8eaerwill be exploring how
microscopic behaviors can be used to make statements about the gloliarstruc

Observations: We present a study of a month of high-level communication activities within tiudendt
the Microsoft Messenger instant-messaging network. We examine pdtiatesnerge from the collective
dynamics of large numbers of people. The dataset contains 255 billion gesssa30 billion conversa-
tions among 240 million people. From the data, we construct a communication gitp180 million
nodes and 1.3 billion undirected edges, creatingldihgest social networlanalyzed to date. We report
on multiple aspects of the dataset and synthesized graph. We investigaiaoetary-scale the oft-cited
report that people are separated by “six degrees of separatiofihdritiat the average path length among
Messenger users &6. We also find that the graph is well-connected and robust to node removal.

Models: Second example that “large data matters” is our work on statistical propeftEsmmunity
structure in networks. Researchers commonly assume the presencetwdri communities”, where
the intuition is that networks contain clusters of nodes that interact moregstrasith each other than
with the remainder of the network. Most often this has been only verifiedeoy small networks of
hundreds of nodes. On the other hand, we look at networks of millionedds) and find very different
network structure. We find that network communities exist only up $@a scale ofz 100 nodes and
beyond that point small communities merge into the large densely interlinked nketoie of very little
community structure. This closely agrees with Dunbar’s observabanlpar 1999 that predicted 150 is
the upper bound on the human community size. We develop and analyze modiesmanations why
such structures occur in real life.

Algorithms: We study how linking relationships among web pages can be leveragedrassof infor-
mation in methods for ranking search results. We show how local strudttine web graph can be used
to make globally accurate predictions about relevancy of web pages.tivduoeweb projectionswhere
we extract context sensitive subgraphs of the web, and then use maehining to construct predictive
models that consider graphical properties as evidence. We describethed and present experiments
that illustrate the construction of predictive modelseérch result qualitanduser modeling
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Chapter 9

MSN Messenger communication
network

We present a study of anonymized data capturing a month of high-level coitation activities within
the whole of the Microsoft Messenger instant-messaging system. We exdmiaeteristics and patterns
that emerge from the collective dynamics of large numbers of peopley tatethe actions and charac-
teristics of individuals. The dataset contains summary properties of 30 hilioversations among 240
million people. From the data, we construct a communication graph with 180 millideshand 1.3 bil-
lion undirected edges, creating the largest social network constructieainalyzed to date. We report on
multiple aspects of the dataset and synthesized graph. We find that tiegvegll-connected and robust
to node removal. We investigate on a planetary-scale the oft-cited repopiethile are separated by “six
degrees of separation” and find that the average path length amongridessisers is 6.6. We also find
that people tend to communicate more with each other when they have similaragmda, and location,
and that cross-gender conversations are both more frequent lnmdyef duration than conversations with
the same gender.

9.1 Introduction

Large-scale web services provide unprecedented opportunities tareagnd analyze behavioral data
on a planetary scale. We discuss findings drawn from aggregationsoolmized data representing
one month (June 2006) of high-level communication activities of people tisenlylicrosoft Messenger

instant-messaging (IM) network. We did not have nor seek access tmtient of messages. Rather,
we consider structural properties of a communication graph and studgthogture and communication

relate to user demographic attributes, such as gender, age, and loddtedata set provides a unique
lens for studying patterns of human behavior on a wide scale.

We explore a dataset of 30 billion conversations generated by 240 millionafiggers over one month.
We found that approximately 90 million distinct Messenger accounts weessed each day and that
these users produced about 1 billion conversations, with approximatdlyoid bxchanged messages per
day. 180 million of the 240 million active accounts had at least one convearsatithe observation period.
We found that 99% of the conversations occurred between 2 peopléhamest with greater numbers of
participants. To our knowledge, our investigation represents the lamgdsinost comprehensive study
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to date of presence and communications in an IM system. A recent répariMarket Analysis 2005
estimated that approximately 12 billion instant messages are sent each gay. ti& estimate and the
growth of IM, we estimate that we captured approximately half of the world’sdmmunication during
the observation period.

We created an undirectedmmunication networkkom the data where each user is represented by a node
and an edge is placed between users if they exchanged at least oagengssng the month of observa-
tion. The network represents accounts that were active during J@6e ROsummary, the communication
graph has 180 million nodes, representing users who participated in b heasonversation, and 1.3 bil-
lion undirected edges among active users, where an edge indicategtiiaioé people communicated.
We note that this graph should be distinguished from a buddy graph whiengeople are connected if
they appear on each other’s contact lists. The buddy graph for thea@ttins 240 million nodes and 9.1
billion edges. On average each account has approximately 50 buddaesooitact list.

To highlight several of our key findings, we discovered that the comratinitnetwork is well connected,
with 99.9% of the nodes belonging to the largest connected component.aiMated the oft-cited finding
by Travers and Milgram that any two people are linked to one another enage via a chain with “6-
degrees-of-separationMilgram, 1967, Travers and Milgram1969. We found that the average shortest
path length in the Messenger network is 6.6 (median 6), which is half a link manethilegpath length
measured in the classic study. However, we also found that longer pash&nethe graph, with lengths
up to 29. We observed that the network is well clustered, with a clustergfjaent Watts and Strogajz
1999 that decays with exponent0.37. This decay is significantly lower than the value we had expected
given prior researchHavasz and Barasi 2003. We found stronchomophily[McPherson et al2001,
Rogers and Bhowmik197(0 among users; people have more conversations and converse fer ldung
rations with people who are similar to themselves. We find the strongest homdphilye language
used, followed by conversants’ geographic locations, and then agefoMidd that homophily does not
hold for gender; people tend to converse more frequently and with |lahgations with the opposite
gender. We also examined the relation between communication and distath¢eyad that the number
of conversations tends to decrease with increasing geographicalodidgtatween conversants. However,
communication links spanning longer distances tend to carry more and langearsations.

9.2 Instant Messaging

The use of IM has been become widely adopted in personal and busmmssunications. IM clients
allow users fast, near-synchronous communication, placing it betweehmnous communication medi-
ums, such as real-time voice interactions like telephone, and asynchroomosunication mediums like
mail or email Moida et al, 2003. IM users exchange short text messages with one or more users from
their list of contacts, who have to be on-line and logged into the IM systenedirtie of interaction.

As conversations and messages exchanged within them are usuallyhegty is has been observed
that users employ informal language, loose grammar, numerous abbmsjaiith minimal punctua-

tion [Nardi et al, 200Q. Contact lists are commonly referred to lmsddy listsand users on the lists are
referred to adbuddies
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SYMBOL || DESCRIPTION

d; Duration ofi’" conversation

m; Number of exchanged messages‘ihconversation

l; Geographical distance between the a pair of useid ioonversation
Moy i Number of exchanged messages‘fhconversation of user

Cap Set of all conversations between users of agadb

Cy.n Set of all conversations between users of gengensd/

ti; Time of j** login of a user

to; Time of j®* logout of a user

1Sy Start time ofi!” conversation of user

tey i End time ofit" conversation of user

Table 9.1: Table of symbols.

9.2.1 Research on Instant Messaging

Several studies on smaller datasets are related to this work. AvrahamuasdiHAvrahami and Hudsagn
20069 explored communication characteristics of 16 IM users. Similarly, Shi efSdi et al, 2007
analyzed IM contact lists submitted by users to a public website and explatatiacontact network of
140,000 people. Recently, Xiao et aXi@o et al, 2007 investigated IM traffic characteristics within a
large organization with 400 users of Messenger. Our study diffens fne latter study in that we analyze
the full Messenger population over a one month period, capturing the interactiaseofdemographic
attributes, communication patterns, and network structure.

9.2.2 Data description

To construct the Microsoft Instant Messenger communication datasegmined three different sources
of data: (1) user demographic information, (2) time and user stamped elesaisbing the presence of a
particular user, and (3) communication session logs, where, for all iparits, the number of exchanged
messages and the periods of time spent participating in sessions is recorded

We use the termsessiorand conversationinterchangeably to refer to an IM interaction among two or
more people. Although the Messenger system limits the number of people conatmmiat the same
time to 20, people can enter and leave a conversation over time. We note tHatgéosessions, people
can come and go over time, so conversations can be long with many diffexeple participating. We
observed some very long sessions with more than 50 participants joiningroeer

All of our data was anonymized; we had no access to personally identifidblenation. Also, we had
no access to text of the messages exchanged or any other informatiaotiiitoe used to uniquely
identify users. We focused on analyzing high-level characteristicspattérns that emerge from the
collective dynamics of 240 million people, rather than the actions and chaséiceof individuals. The
analyzed data can be split into three papsesence datacommunication dataanduser demographic
information

e Presence eventsThese include login, logout, first ever login, add, remove and block dyhadid
unregistered buddy (invite new user), change of status (busy, aeright-back, idle, etc.). Events
are user and time stamped.
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e Communication: For each user participating in the session, the log contains the following tuple:
session id, user id, time joined the session, time left the session, number ofjesessat, number
of messages received.

e User data: For each user, the following self-reported information is stored: agejegelocation
(country, ZIP), language, and IP address. We use the IP addrdssdde the geographical coordi-
nates, which we then use to position users on the globe and to calculate elstanc

We gathered data for 30 days of June 2006. Each day yielded ab@wgidabytes of compressed text
logs (4.5 terabytes in total). Copying the data to a dedicated eight-prosesser with 32 gigabytes of
memory took 12 hours. Our log-parsing system employed a pipeline of freadhk that parse the data in
parallel, collapse the session join/leave events into sets of conversationsaze the data in a compact
compressed binary format. This process compressed the data downiga#$tgs per day. Processing
the data took an additional 4 to 5 hours per day.

A special challenge was to account for missing and dropped eventseasibn “id recycling” across
different IM servers in a server farm. As part of this process, weetl@a session 48 hours after the last
leave session event. We closed sessions automatically if only one useftiraghe conversation.

9.3 Usage & population statistics

We shall first review several statistics drawn from aggregations a§w@s®l their communication activi-
ties.

9.3.1 Levels of activity

Over the observation period, 242,720,596 users logged into Messaendel79,792,538 of these users
were actively engaged in conversations by sending or receivingsdtdea IM message. Over the month
of observation, 17,510,905 new accounts were activated. As a espagige day, on June 1 2006, there
were almost 1 billion (982,005,323) different sessions (conversatimosgany number of people), with
more than 7 billion IM messages sent. Approximately 93 million users logged in withilédn different
users becoming engaged in conversations on that day. Approximately 1.;ymaousers that were not
registered within Microsoft Messenger were invited to join on that particldgr

We consider event distributions on a per-user basis in Figrel' he number of logins per user, displayed
in Figure9.1(a), follows a heavy-tailed distribution with exponent 3.6. We note spikesgimsoat 20
minute and 15 second intervals, which correspond to an auto-login furaftibe IM client. As shown in
Figure9.1(b), many users fill up their contact lists rather quickly. The spike at é@glies undoubtedly
reflects the maximal allowed length of contact lists.

Figure 9.2(a) displays the number of users per session. In Messenger, multiplée peopparticipate

in conversations. We observe a peak at 20 users, the limit on the numpeope who can participate
simultaneously in a conversation. Figu@&(b) shows the distribution over the session durations, which
can be modeled by a power law distribution with expongrit

Next, we examine the distribution of the durations of periods of time when peopl®gged on to the
system. Lef(ti;,to;) denote a time orderedif < to; < tij; ) sequence of online and offline times
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Figure 9.1: Distribution of the number of events per user. (a) Numbenogfrs per user. (b) Number of
buddies added per user.
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Figure 9.2: (a) Distribution of the number of people participating ina@eersation. (b) Distribution of
the durations of conversations. The spread of durationsbeadescribed by a power law
distribution.

of a user, wherei; is the time of thejth login, andto; is the corresponding logout time. Figude3(a)
plots the distribution ofo; — ti; over allj over all users. Similarly, Figur@.3(b) shows the distribution
of the periods of time when users are logged o, ti;.1 — to; over all j and over all users. Fitting
the data to power law distributions reveals exponents of 1.77 and 1.3ctiespe The data shows that
durations of being online tend to be shorter and decay faster than derttatrusers are offline. We also
notice periodic effects of login durations of 12, 24, and 48 hours atédilg daily periodicities. We observe
similar periodicities for logout durations at multiples of 24 hours.

Weekly dynamics of MSN Messenger is also quite interesting. Fi§uwtshows the number of logins,
status change and add buddy events by day of the week over a pebioceeks starting in June 2006. We
count the number of particular events per day of the week, and we udaténérom 5 weeks to compute

the error bars. Figur@.4(a) shows the average number of logins per day of the week over al&peeaed.

Note that number of login events is larger than the number of distinct usegstpm, since a user can
login multiple times a day. Figur@.4(b) plots the average number of status change evens per day of the
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Figure 9.4: Number of events per day of the week. We collected the datasoperiod of 5 weeks starting
on May 29 2006.

week. Status events include a group of 8 events describing the cutaiarg of the users,e., away, be
right back, online, busy, idle, at lunch, and on the phone. Last, F@4(e) shows the average number of
add buddy events per day of the week. Add buddy event is triggerg @ne user adds a new contact
to their contact list.

9.3.2 Demographic characteristics of the users

We compared the demographic characteristics of the Messenger popwitic2005 world census data
and found differences between the statistics for age and gender. iStization of this comparison
displayed in Figurd®.5shows that users with reported ages in the 15-35 span of years argl\stwoer-
represented in the active Messenger population. Focusing on theeddts by gender, females are over-
represented for the 10—14 age interval. For male users, we see ovateltles with the world population
for age spans 10-14 and 35-39; for women users, we see a matgefinahe span of 30-34. We note
that 6.5% of the population did not submit an age when creating their Messsaogpunts.
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population with the world population. (a) Age distributitor all users, females, males and
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Ages 15-30 are over-represented in the Messenger usergtiopul

To further illustrate the points above Fig8e shows self-reported user age distribution and the percent
difference of particular age-group between MSN and the world populafibe distribution is skewed to
the right and has a mode at age of 18. We also note that the distributiongaseetial tails.
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9.4 Communication characteristics

We now focus on characteristics and patterns with communications. We limitahesesto conversations
between two participants, which account for 99% of all conversations.

We first examine the distributions over conversation durations and timesdietwaversations. Let user

u haveC' conversations in the observation period. Then, for every convemsatd useru we create

a tuple (ts, i, teyi, my ), Wherets, ; denotes the start time of the conversation,; is the end time

of the conversation, angh,, ; is the number of exchanged messages between the two users. We order
the conversations by their start tim&{; < ts, ;+1). Then, for every uset, we calculate the average
conversation duratiod(u) = % > iteuwi — tsyi, where the sum goes over all thés conversations.
Figure9.7(a) shows the distribution af(«) over all the users. We find that the conversation length can

be described by a heavy-tailed distribution with exponent -3.7 and a matimufutes.

Figure9.7(b) shows the intervals between consecutive conversations of a\eeplot the distribution

of tsyi+1 — tsy,i, Wherets, ;11 andts, ; denote start times of two consecutive conversations ofuser
The power law exponent of the distribution over intervals-s1.5. This result is similar to the temporal
distribution for other kinds of human communication activitiegy, waiting times of emails and letters
before a reply is generateBgrakasi 2005. The exponent can be explained by a priority-queue model
where tasks of different priorities arrive and wait until all tasks with kigpriority are addressed. This
model generates a task waiting time distribution described by a power law witimerp-1.5.

However, the total number of conversations between a pair of usergé@d(a)), and the total number
of exchanged messages between a pair of users (Fg8(l®) does not seem to follow a power law. The
distribution seems still to be heavy tailed but not power law. The fits représeMLE estimates of a
log-normal distribution.
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Figure 9.8: Conversation statistics: (a) Number of conversations ofex in a month; (b) Number of
messages exchanged per conversation;

9.5 Communication demographics

Next we examine the interplay of communication and user demographic attribatelsow geography,
location, age, and gender influence observed communication patterns.

9.5.1 Communication by age

We sought to understand how communication among people changes withdhniedeages of participat-
ing users. Figure8.9a)-(d) use a heat-map visualization to communicate properties for diffegerage
pairs. The rows and columns represent the ages of both parties pdirigj@ad the color at each age—age
cell captures the logarithm of the value for the pairing. The color speatsiends from blue (low value)
through green, yellow, and onto red (the highest value). Becaus#eriml misreporting at very low and
high ages, we concentrate on users with self-reported ages thattfedidre10 and 60 years.

Let a tuple(a;, b;, d;, m;) denote theth conversation in the entire dataset that occurred among users of
agesu; andb;. The conversation had a durationdyfseconds during whichn; messages were exchanged.
Let Cop = {(as,bi, di,m;) = a; = a A by = b} denote a set of all conversations between users of ages
andb, respectively.

Figure9.9(a) shows the number of conversations among people of different &gegvery pair of ages
(a, b) the color indicates the size of s€f, ;, i.e., the number of different conversations between users of
agesa andb. We note that, as the notion of a conversation is symmetric, the plots are symriviist.
conversations occur between people of ages 10 to 20. The diagorhirickcates that people tend to talk
to people of similar age. This is true especially for age groups betweendl®0ayears. We shall explore
this observation in more detail in Sectiérb.

Figure9.9(b) displays a heat map for the average conversation duration, corrmfgék diec,,

We note that older people tend to have longer conversations. We olzssir@lar phenomenon when
plotting the average number of exchanged messages per conversatigmjted aﬁm Zzeca,b my,
displayed in Figur®.9(c). Again, we find that older people exchange more messages, antsee/e
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Figure 9.9: Communication characteristics of users by reported agepldleage vs. age and the color
(z-axis) represents the intensity of communication.

a dip for ages 25-45 and a slight peak for ages 15-25. F@&(d) displays the number of exchanged
messages per unit time; for each age fairp), we measur(?cl—b| > icC,, ’Z}— Here, we see that younger

people have faster-paced dialogs, while older people exchange regsdagslower pace.

We note that the younger population (ages 10-35) are strongly biasatdgaommunicating with peo-
ple of a similar age (diagonal trend in Fig®eXa)), and that users who report being of ages 35 years
and above tend to communicate more evenly across ages (rectangular pakgy. 9.9a)). Moreover,
older people have conversations of the longest durations, with a “valiegie duration of conversations
for users of ages 25—-35. Such a dip may represent shorter, fested- and more intensive conversations
associated with work-related communications, versus more extendedr,sdmddonger interactions as-
sociated with social discourse.

9.5.2 Communication by gender

We report on analyses of properties of pairwise communications as tdiut the self-reported gender
of users in conversations in Tab®e2 LetCy;, = {(g:, hi,di,ms) © 9 = g A hy = h} denote a set
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| Unknown | Female| Male | Unknown | Female| Male

Unknown 1.3 3.6 3.7 Unknown 277 301 277
Female 21.3 49.9 Female 275 304
Male 20.2 Male 252

(a) Conversations (b) Conversation duration
| Unknown | Female| Male | Unknown | Female| Male

Unknown 5.7 7.1 6.7 Unknown 1.25 1.42 1.38
Female 6.6 7.6 Female 1.43 1.50
Male 5.9 Male 1.42

(c) Exchanged messages per conversation (d) Conversation intensity

Table 9.2: Cross-gender communication. Data is based on all two-persoversations from June 2006.
(a) Percentage of conversations among users of differegmrted gender; (b) average con-
versation length in seconds; (c¢) number of exchanged mesgsg conversation; (d) number
of exchanged messages per minute of conversation.

of conversations where the two participating users are of gergdansi 2. Note thatg takes 3 possible
values: female, male, and unknown (unreported).

Table9.2(a) relays|C|, ;| for combinations of gendergandh. The table shows that approximately 50%
of conversations occur between male and female and 40% of the caiwmessaccur among users of the
same gender (20% for each). A small number of conversations octwedre people who did not reveal

their gender.

Similarly, Table9.2(b) shows the average conversation length in seconds, broken dotkie gender of
conversant, computed % > iec, , di- We find that male—male conversations tend to be shortest, last-
ing approximately 4 minutes. Female—female conversations last 4.5 minutes orithgea Female—male
conversations have the longest durations, taking more than 5 minutes ragevéeyond taking place
over longer periods of time, more messages are exchanged in female—madesations. Tabl®.2(c) lists
values form Ziecm m; and shows that, in female—male conversations, 7.6 messages are exichange
per conversation on the average as opposed to 6.6 and 5.9 for femaad%h&m\d male—male, respectively.
Table9.2(d) shows the communication intensity computeqaé& ZZECQ i . The number of messages
exchanged per minute of conversation for male—female conversationés higl.5 messages per minute
than for cross-gender conversations, where the rate is 1.43 megsagsisute.

We examined the number abmmunication tigswhere a tie is established between two people when
they exchange at least one message during the observation periodonvgeited 300 million male—
male ties, 255 million female—female ties, and 640 million cross-gender ties. TheeMge population
consists of 100 million males and 80 million females by self report. These findemgsmstrate that ties
are not heavily gender biased; based on the population, randomechesticts 31% male—male, 20%
female—female, and 49% female—male links. We observe 25% male—male, 21%-fmale, and 54%
cross-gender links, thus demonstrating a minor bias of female—male links.

The results reported in Tab®2 run counter to prior studies reporting that communication among in-
dividuals who resemble one other (same gender) occurs more oftefMsBaerson et gl.2001 and
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Figure 9.10: Number of users at a particular geographic location. Caprasents the number of users.
Notice the map of the world appears.

references therein). We identified significant heterophily, wherelpagepd to communicate more with
people of the opposite gender. However, we note that link heterogenagyery close to the popu-
lation value Marsden 1987, i.e., the number of same- and cross-gender ties roughly corresponds to
random chance. This shows there is no significant bias in linking foragemtbwever, we observe that
cross-gender conversations tend to be longer and to include more mgssaggesting that more effort is
devoted to conversations with the opposite sex.

9.5.3 World geography and communication

We now focus on the influence of geography and distance among pantipa communications. Fig-
ure 9.10 shows the geographical locations of Messenger users. The géoeatbn of the user was
obtained via reverse IP lookup. We plot all latitude/longitude positions linkédeosition of servers
where users log into the service. The color of each dot corresportids togarithm of the number of lo-
gins from the respective location, again using a spectrum of colorgngfrgm blue (low) through green
and yellow to red (high). Although the maps are built solely by plotting theskigus, a recognizable
world map is generated. We find that North America, Europe, and Japamer dense, with many users
from those regions using Messenger. For the rest of the world, théatagn of Messenger users appears
to reside largely in coastal regions.

We can condition the densities and behaviors of Messenger users on nydtigeaphical and socioeco-
nomic variables and explore relationships between electronic communicatidmsteer attributes. As an
example, harnessed the United Nations gridded world population data td@estimates of the number

of people living in each cell. Given this data, and the data from Figut§ we calculate the number of
users per capita, displayed in Fig@d2 Now we see transformed picture where several sparsely popu-
lated regions stand out as having a high usage per capita. These riegiode the center of the United
States, Canada, Scandinavia, Ireland, Australia, and South Korea.
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Figure 9.11: Number of users at particular geographic location supessag on the map of the world.
Color represents the number of users.

Figure 9.12: Number of Messenger users per capita. Color intensity spareds to the number of users
per capita in the cell of the grid.

Figure9.13shows a heat map that represents the intensities of Messenger commusioataminterna-

tional scale. To create this map, we place the world map on a fine grid, wheneell of the grid contains
the count of the number of conversations that pass through that pointt®asing the count of all cells
on the straight line between the geo-locations of pairs of conversanes.cdlbr indicates the number
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Figure 9.13: Communication heat map. For each conversation we increasetensity of the color along
the line between two conversation endpoints on the planet.

of conversations crossing each point, providing a visualization of thdl&es of communication. For
example, Australia and New Zealand have communications flowing towardp&and United States.
Similar flows hold for Japan. We see that Brazilian communications are weighead Europe and
Asia. We can also explore the flows of transatlantic and US transcontimemtahunications.

9.5.4 Communication among countries

Communication among people within different countries also varies depeoditig locations of conver-
sants. We examine two such views. Fig@r&4shows the top countries by the number of conversations
between pairs of countries. We examined all pairs of countries with morelthanillion conversations
per month. The width of edges in the figure is proportional to the logarithmeohtimber of conversa-
tions among the countries. We find that the United States and Spain appe&etashubs and that edges
appear largely between historically or ethnically connected countries x&m@es, Spain is connected
with the Spanish speaking countries in South America, Germany links to Turketpgal to Brazil, and
China to Korea.

Figure9.15displays a similar plot where we consider country pairs by the averagéialuof conversa-
tions. The width of the edges are proportional to the mean length of cariers between the countries.
The core of the network appears to be Arabic countries, including Ssadhia, Egypt, United Arab
Emirates, Jordan, and Syria.

Comparing the number of active users with the country population revealsstitey findings. Tabl8.3
shows the top 10 countries with the highest fraction of population usingéviges. These are mainly
northern European countries and Canada. Countries with most of the (Us®, Brazil) tend to have
smaller fraction of population using Messengetr.
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Figure 9.14: Communication among countries with at least 10 million @sations in June 2006. Edge
widths correspond to logarithms of intensity of links.

Similarly, Table9.4 shows the top 10 countries by the number of conversations per useaypeHdre
the countries are very diverse with Afghanistan topping the list. The Natios Antilles appears on
top 10 list for both the fraction of the population using Messenger and titdeuof conversations per
user.

Last, Table9.5 shows the top 10 countries by the number of messages and minutes talkinrgepeeu
day. We note that the list of the countries is similar to those in TaldleAfghanistan still tops the list but
now most of the talkative counties come from Eastern Europe (SerbiajB@ulgaria, Croatia).

9.5.5 Communication and geographical distance

We were interested in how communications change as the distance betweds ipeceases. We had
hypothesized that the number of conversations would decrease witragbazal distance as users might
be doing less coordination with one another on a daily basis, and where cooation would likely
require more effort to coordinate than might typically be needed for pestfpigted more locally. We also
conjectured that, once initiated, conversations among people who arerfapart would be somewhat
longer as there might be a stronger need to catch up when the lessAfreqoeersations occurred.
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Figure 9.15: Countries by average length of the conversation. Edge widtirespond to logarithms of
intensity of links.

Figure9.16plots the relation between communication and distance. FRyd&a) shows the distribution
of the number of conversations between conversants at distavéefound that the number of conversa-
tions decreases with distance. However, we observe a peak at a distapproximately 500 kilometers.
The other peaks and drops may reveal geographical featuresxdapke, a significant drop in commu-
nication at distance of 5,000 km (3,500 miles) may reflect the width of the Atlao&aroor the distance
between the east and west coasts of the United States. The number ofpitky decreases with dis-
tance. This finding suggests that users may use Messenger mainly for oarations with others within

a local context and environment. We found that the number of exchangedages and conversation
lengths do not increase with distance (see plots (b)—(d) and (f) of &®&u6. Conversation duration
decreases with the distance, while the number of exchanged messagies i@natant before decreasing
slowly. Figure9.16f) shows the communications per link versus the distance among participdres.
plot shows that longer links,e., connections between people who are farther apart, are more ftgguen
used than shorter links. We interpret this finding to mean that people wliarérer apart use Messenger
more frequently to communicate.

In summary, we observe that the total number of links and associatedrsativas decreases with in-
creasing distance among participants. The same is true for the durationvefrsations, the number of
exchanged messages per conversation, and the number of excinaeggates per unit time. However,
the number of times a link is used tends to increase with the distance among Tsisrsuggests that
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Country | Fraction of population

Iceland 0.35
Spain 0.28
Netherlands 0.27
Canada 0.26
Sweden 0.25
Norway 0.25
Bahamas, The 0.24
Netherlands Antilles 0.24
Belgium 0.23
France 0.18
United Kingdom 0.17
Brazil 0.08
United States 0.08

Table 9.3: Top 10 countries with most the largest number of MessengersusFraction of country’s
population actively using Messenger.

Country H Conversations per user per day
Afghanistan 4.37
Netherlands Antilles 3.79
Jamaica 2.63
Cyprus 2.33
Hong Kong 2.27
Tunisia 2.25
Serbia 2.15
Dominican Republic 2.06
Bulgaria 2.07

Table 9.4: Top 10 countries by the number of conversations per userger d

Country H Messages per user per deIinutes talking per user per day
Afghanistan 32.00 20.91
Netherlands Antilles 24.12 17.43
Serbia 22.41 12.01
Bosnia and Herzegovina 22.40 11.41
Macedonia 19.52 10.46
Cyprus 19.33 12.37
Tunisia 19.17 13.54
Bulgaria 18.94 11.38
Croatia 17.78 10.05

Table 9.5: Top 10 countries by the number of messages and minutesdaikinuser per day.

people who are farther apart tend to converse with IM more frequentiighaperhaps takes the place of
more expensive long-distance voice telephony; voice might be used regreehitly in lieu of IM for less
expensive local communications.
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Correlation Probability
Attribute Rnd | Comm| Rnd | Comm

Age -0.0001| 0.297 || 0.030| 0.162
Gender 0.0001 | -0.032 || 0.434| 0.426
ZIP -0.0003| 0.557 || 0.001| 0.23

County 0.0005| 0.704 || 0.046| 0.734
Language| -0.0001| 0.694 | 0.030| 0.798

Table 9.6: Correlation coefficients and probability of users sharing#tiribute for random pairs of people
versus for pairs of people who communicate.

9.6 Homophily of communication

We performed several experiments to measure the level at which peopl® tssmmunicate with similar
people. First, we consider all 1.3 billion pairs of people who exchangedsitone message in June 2006,
and calculate the similarity of various user demographic attributes. We cothisawith the similarity of
pairs of users selected via uniform random sampling across 180 millios. Werconsider two measures
of similarity: the correlation coefficient and the probability that users hageséime attribute value,qg,
that users come from the same countries.

Table9.6 compares correlation coefficients of various user attributes when gaises are chosen uni-
formly at random with coefficients for pairs of users who communicate. &vesee that attributes are
not correlated for random pairs of people, but that they are highlseleded for users who communi-
cate. As we noted earlier, gender and communication are slightly negatimelated; people tend to
communicate more with people of the opposite gender.

Another method for identifying association is to measure the probability thair afpasers will show

an exact match in values of an attribute,, identifying whether two users come from the same country,
speak the same language, etc. Taheshows the results for the probability of users sharing the same
attribute value. We make similar observations as before. People who comieuaieamore likely to
share common characteristics, including age, location, language, aratélegs likely to be of the same
gender. We note that the most common attribute of people who communicate iadangOn the flip
side, the amount of communication tends to decrease with increasing usenldigty. This relationship

is highlighted in Figure9.16 which shows how communication among pairs of people decreases with
distance.

Figure9.17further illustrates the results displayed in TaBl6, where we randomly sample pairs of users
from the Messenger user base, and then plot the distribution oveted@mes. As most of the population
comes from the age group 10-30, the distribution of random pairs ofl@eeaches the mode at those
ages but there is no correlation. Fig@&7b) shows the distribution of ages over the pairs of people who
communicate. Note the correlation, as represented by the diagonal tréimel giot, where people tend to
communicate more with others of a similar age.

Next, we further explore communication patterns by the differences in fiertesl ages among users.
Figure9.18a) plots the number links in the communication network vs. the age differdrisce oommu-
nicating pair of users. Similarly, Figu@&18b) plots on a log-linear scale the number of conversations in
the social network with participants of varying age differences. Agaiseecthat links and conversations
are strongly correlated with the age differences among participants eRidic) shows the average con-
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Figure 9.17: Numbers of pairs of people of different ages. (a) Randomlgcsed pairs of people; (b)
people who communicate. Correlation between age and coiation is captured by the
diagonal trend.

versation duration with the age difference among the users. Interestimgiy)ean conversation duration
peaks at an age difference of 20 years between participants. Walaeethat the peak may correspond
roughly to the gap between generations.

The plots reveal that there is strong homophily in the communication networkgir people tend to
communicate more with people of similar reported age. This is especially salietiiefamaumber of
buddies and conversations among people of the same ages. We als@ dbsktthe links between people
of similar attributes are used more often, to interact with shorter and more infgrese exchanged
messages) communications. The intensity of communication decays linearly wiliférence in age.
In contrast to findings of previous studies, we observe that the nuniloeogs-gender communication
links follows a random chance. However, cross-gender communicakies langer and is faster paced as
it seems that people tend to pay more attention when communicating with the oppgsite s

Recently, using the data we generated, Singla and Richardson furtestigated the homophily within
the Messenger network and found that people who communicate are aledikedy to search the web
for content on similar topicsSingla and Richardsg200§.

9.7 The communication network

So far we have examined communication patterns based on pairwise communsicalie now create

a more general communication network from the data. Using this networkawexamine the typical
social distancebetween peoplé,e., the number of links that separate a random pair of people. This
analysis seeks to understand how many people can be reached within pertebers of hops among
people who communicate. Also, we test the transitivity of the netwarkthe degree at which pairs with

a common friend tend to be connected.

We constructed a graph from the set of all two-user conversationsiewgach node corresponds to a
person and there is an undirected edge between a pair of nodes if tsengge engaged in an active
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Figure 9.18: Communication characteristics with age difference betwibe users. (a) Number of links
(pairs communicating) with the age difference. (b) Numbfecanversations. (c) Average
conversation duration with the age difference. (d) Avenagmber of exchanged messages
per conversation as a function of the age difference bettreusers. (e) Number of conver-
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messages per unit time as a function of age difference battireeusers.
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Figure 9.19: (a) Degree distribution of communication network (numbipeople with whom a person
communicates). (b) Degree distribution of the buddy nekwangth of the contact list).

conversation during the observation period (users exchanged i leassage). The resulting network
containsN =179,792,538 nodes, artd =1,342,246,427 edges. Note that this is nbuddy networkwe
only connect people who are buddiesd have communicated during the observation period.

Figures9.19-9.20 show the structural properties of the communication network. The netweyked
distribution shown in Figur®.19a) is heavy tailed but does not follow a power law distribution. Using
maximum likelihood estimation, we fit a power law with exponential cutdtf) oc d~%e~%¢, whered
denotes node degree. The fitted parameter values aré).8 andb = 0.03. We found a strong cutoff
parameter and low power law exponent, suggesting a distribution with higinecar

Figure9.190b) displays the degree distribution of a buddy graph. We did not hasasado the full buddy
network; we only had access to data on the length of the user contact ic$t alfowed us to create the
plot. We found a total of 9.1 billion buddy edges in the graph with 49 buddiesiger. We fit the data
with a power law distribution with exponential cutoff and identified parametess=6 0.6 andb = 0.01.
The power law exponent now is even smaller. This model described theveitaWe note a spike at
600 which is the limit on the maximal number of buddies imposed by the Messarftygare client. The
maximal number of buddies was increased to 300 from 150 in March 2@@d5yas later raised to 600.
With the data from June 2006, we see only the peak at 600, and couldembifydoumps at the earlier
constraints.

Social networks have been found to be highly transitive, people with common friends tend to be
friends themselves. The clustering coefficiealtts and Strogat21998 has been used as a measure of
transitivity in the network. The measure is defined as the fraction of triamgtesd a node of degree
d [Watts and Strogaf4999. Figure9.2(0(a) displays the clustering coefficient versus the degree of a node
for Messenger. Previous results on measuring the web graph as vikb@stical analyses show that
the clustering coefficient decays @s' (exponent-1) with node degred [Ravasz and Bardlsi 2003.

For the Messenger network, the clustering coefficient decays vemjysiath exponent—0.37 with the
degree of a node and the average clustering coefficient is 0.137. &l suggests that clustering in
the Messenger network is much higher than expected—that people with cofriemais also tend to be
connected. Figur@.2Qb) displays the distribution of the connected components in the networlgidhe
component contains 99.9% of the nodes in the network against a baokigpbgmall components, and
the distribution follows a power law.
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Figure 9.20: (a) Clustering coefficient; (b) distribution of connecteahrgonents. 99.9% of the nodes
belong to the largest connected component.
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Figure 9.21: (a) Distribution over the shortest path lengths. Averagetsist path has length 6.6, the dis-
tribution reaches the mode at 6 hops, and the 90% effectaraeter is 7.8; (b) distribution
of sizes of cores of orde.

9.7.1 How small is the small world?

Messenger data gives us a unique opportunity to study distances in thlerstwork. To our knowledge,
this is the first time a planetary-scale social network has been available tateaiite well-known “6

degrees of separation” finding by Travers and Milgraviilram, 1967. The earlier work employed a
sample of 64 people and found that the average number of hops for attettavel from Nebraska to
Boston was 6.2 (mode 5, median 5), which is popularly known as the “6 eegfeseparation” among
people. We used a population sample that is more than two million times larger tharothesgudied

earlier and confirmed the classic finding.

Figure 9.21(a) displays the distribution over the shortest path lengths. To approximatdidtribution

of the distances, we randomly sampled 1000 nodes and calculated fon@deithe shortest paths to all
other nodes. We found that the distribution of path lengths reaches thean®deps and has a median at
7. The average path length is 6.6. This result means that a random paitex im the Messenger network
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is 6.6 hops apart on the average, which is half a link longer than the lengunedaby Milgram. The
90th percentile (effective diameteFduro et al. 2001)) of the distribution is 7.8. 48% of nodes can be
reached within 6 hops and 78% within 7 hops. So, we might say that, via therevised on the world
by Messenger, we find that there are about “7 degrees of sepdratimng people. We note that long
paths,.e., nodes that are far apart, exist in the network; we found paths up t@thlen29 links.

It is an interesting question to hypothesize what could be the true degsepafation of the human race.
At first sight one would think that if one could consider all the Earth’sydation then diameter of such
network would increase a bit. On the other hand we made observationspte€8&rom where we know
that as networks grow they densify and the diameter shrinks, which woggest that the true number of
degrees of separation of human race is probably a bit smaller than whiatiaet On the other hand, our
network is not complete. It is missing nodes and edges in particular gdogizgrts of the world. For
example, as we saw in FiguB10MSN population in Africa or South America is concentrated mostly
on the coasts. This means the network has “holes” and one plausible hsipatloaild be that the filling

in these holes would further bring down the diameter and the averagesd&geparation.

9.7.2 Network cores

We further study connectivity of the communication network by examining:tbere decomposition of a
network Batagelj and Zavénik, 2003. The concept ok-core is a generalization of the giant connected
component. Thé-core of a network is a set of verticés, where each vertex ik has at least edges to
other vertices ik (see Figur®.22). The distribution oft-core sizes gives us an idea of how quickly the
network shrinks as we move towards the core.

Thek-core of a graph can be obtained by deleting from the network all vediodsgree less thath This
process will decrease degrees of some non-deleted vertices, so entices/will have degree less than
k. We keep pruning vertices until all remaining vertices have degree oésitde\We call the remaining
vertices ak-core.
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Figure9.21plots the number of nodes in a core of orédekMe note that the core sizes are remarkably stable
up to a value ok ~ 20; the number of nodes in the core drops for only an order of magnituder /At>

20, the core size rapidly drops. The central part of the communication netezoomposed of 79 nodes,
where each of them has more than 68 edges inside the set. The stru¢hgdaissenger communication
network is quite different from the Internet graph; it has been olesHAMvarez-Hamelin et a).2009 that

the size of a-core of the Internet decays as a power law witlHere we see that the core sizes remains
very stable up to a degree 20, and only then start to rapidly degrease. This means that the nodes with
degrees of less than 20 are on the fringe of the network, and that teestzots to rapidly decrease as
nodes of degree 20 or more are deleted.

9.7.3 Strength of the ties

It has been observed by Albert et aAllpert et al, 20070 that many real-world networks are robust to
node-level changes attacks Researchers have showed that networks like the World Wide Welnétter
and several social networks display a high degree of robustnessdomanode removals.e., one has
to remove many nodes chosen uniformly at random to make the network dested. On the contrary,
targeted attacks are very effective. Removing a few high degree waddsave a dramatic influence on
the connectivity of a network.

Let us now study how the Messenger communication network is decompdeed strong,'i.e., heavily
used, edges are removed from the network. We consider severkdiffdefinitions of “heavily used,”
and measure the types of edges that are most important for networkctoitpeWe note that a similar
experiment was performed by Shi et a&hfi et al, 2007 in the context of a small IM buddy network.
The authors of the prior study took the number of common friends at thecdraaisedge as a measure of
the link strength. As the number of edges here is too large (1.3 billion) to regtges one by one, we
employed the following procedure: We order the nodes by decreading par a measure of thietensity
of engagememf users; we then delete nodes associated with users in order of siagrezeasure and
we observe the evolution of the properties of the communication networkdes roe deleted.

We consider the following different measures of engagement:
¢ Average sent: The average number of sent messages per useessanion

e Average time: The average duration of user’s conversations

Links: The number of links of a user (node degraey,, number of different people he or she
exchanged messages with

e Conversations: The total number of conversations of a user in thevaltiserperiod
e Sent messages: The total number of sent messages by a user in tvatatrs@eriod
e Sent per unit time: The number of sent messages per unit time of a caimersa

e Total time: The total conversation time of a user in the observation period

At each step of the experiment, we remove 10 million nodes in order of thdispeeasure of engagement
being studied. We then determine the relative size of the largest connectgzbeent,.e., given the
network at particular step, we find the fraction of the nodes belonging tariest connected component
of the network.
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Figure 9.23: Relative size of the largest connected component as a umatinumber of nodes removed.

Figure9.23plots the evolution of the fraction of nodes in the largest connected compaita the number
of deleted nodes. We plot a separate curve for each of the severediffeeasures of engagement. For
comparison, we also consider the random deletion of the nodes.

The decomposition procedure highlighted two types of dynamics of netvwankge with node removal.
The size of the largest component decreases rapidly when we use sireseaf engagement the number
of links, number of conversations, total conversation time, or numbermfrsessages. In contrast, the
size of the largest component decreases very slowly when we use asarmef engagement the average
time per conversation, average number of sent messages, or numbket ofessages per unit time. We
were not surprised to find that the size of the largest component sireades most rapidly when nodes
are deleted in order of the decreasing number of links that they hayéhe number of people with whom
a user at a node communicates. Random ordering of the nodes shrirtksrthenent at the slowest rate.
After removing 160 million out of 180 million nodes with the random policy, the largemponent still
contains about half of the nodes. Surprisingly, when deleting up to 100 miltides, the average time per
conversation measure shrinks the component even more slowly than tleeraeletion policy.

Figure9.24displays plots of the number of removed edges from the network as nidldslated. Similar

to the relationships in Figur@.23 we found that deleting nodes by the inverse number of edges removes
edges the fastest. As in Figude24 the same group of node ordering criteria (number of conversations,
total conversation time or number of sent messages) removes edges &amtitorks as fast as the
number of links criteria. However, we find that random node removal vesiedges in a linear manner.
Edges are removed at a lower rate when deleting nodes by average tiooapersation, average numbers

of sent messages, or numbers of sent messages per unit time. We baidhese findings demonstrate
that users with long conversations and many messages per conversatido teave smaller degrees—
even given the findings displayed in Fig@@3 where we saw that removing these users is more effective
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Figure 9.24: Number of removed edges as nodes are deleted by order afediffmeasures of engage-
ment.

for breaking the connectivity of the network than for random node delefrigure9.24also shows that
using the average number of messages per conversation as a criterovesadges in the slowest manner.
We believe that this makes sense intuitively: If users invest similar amounts otdiimgeracting with
others, then people with short conversations will tend to converse with peage in a given amount of
time than users having long conversations.

9.8 Conclusion

We have reviewed a set of results stemming from the generation and ardlgsissnonymized dataset
representing the communication patterns of all people using a popular dnsysThe methods and
findings highlight the value of using a large IM network as a worldwide leris aggregate human be-
havior.

We described the creation of the dataset, capturing high-level communieatieities and demographics
in June 2006. The core dataset contains more than 30 billion conversatimr gy 240 million people.
We discussed the creation and analysis of a communication graph fromtéhecddaining 180 million
nodes and 1.3 billion edges. The communication network is largest sociankeawalyzed to date. The
planetary-scale network allowed us to explore dependencies amondamegraphics, communication
characteristics, and network structure. Working with such a massiveadati#owed us to test hypotheses
such as the average chain of separation among people across the eritite w

We discovered that the graph is well connected, highly transitive, angtoWe reviewed the influence
of multiple factors on communication frequency and duration. We foundgirdluences of homophily
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in activities, where people with similar characteristics tend to communicate morethsitxception of
gender, where we found that cross-gender conversations armbaoglfrequent and of longer duration than
conversations with users of the same reported gender. We also exanarpadhtiengths and validated on
a planetary scale earlier research that found “6 degrees of sepamationg people.

We note that the sheer size of the data limits the kinds of analyses one campelh some cases, a
smaller random sample may avoid the challenges with working with terabytegaf However, it is
known that sampling can corrupt the structural properties of netwsucs as the degree distribution and
the diameter of the graphS&fumpf et al. 2005. Thus, while sampling may be valuable for managing
complexity of analyses, results on network properties with partial data sgtbeneendered unreliable.
Furthermore, we need to consider the full data set to reliably measure tthenpaof age and distance
homophily in communications.

In other directions of research with the dataset, we have pursued tbémsehine learning and inference
to learn predictive models that can forecast such properties as comtmmitaquencies and durations
of conversations among people as a function of the structural and daphigattributes of conversants.
Our future directions for research include gaining an understanditigeafynamics of the structure of the
communication network via a study of the evolution of the network over time.

We hope that our studies with Messenger data serves as an exampletdd#e social science research,
highlighting how communication systems can provide insights about high-lattelrps and relationships
in human communications without making incursions into the privacy of indivgdu&/e hope that this
first effort to understand a social network on a genuinely planetate sdll embolden others to explore
human behavior at large scales.
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Chapter 10

Network community structure

How well do real networks partition into communities? What is a good way to measul characterize
presence or absence of community structure in networks? What arel typioenunity sizes and typical
community scores?

A large body of work has been devoted to identifying community structuretimargs. A community is
often though of as a set of nodes that has more connections between itera¢naim to the remainder of
the network. In this chapter, we characterize as a function of size thdistd@snd structural properties of
such sets of nodes. We define tiegwork community profile plpivhich characterizes the “best” possible
community—according to the conductance measure—over a wide range stsies, and we study over
100 large sparse real-world networks taken from a wide range of applicétiorains. Our results suggest
a significantly more refined picture of community structure in large real-watd/orks than has been
appreciated previously.

Our most interesting finding is that in nearly every network dataset we eradmive observe tight but
almost trivial communities at very small size scales, and at larger size stteddsest possible commu-
nities gradually “blend in” with the rest of the network and thus become lessifftunity-like.” This
behavior is not explained, even at a qualitative level, by most of the comruselg network generation
models. Moreover, this behavior is exactly the opposite of what one wopleice based on experience
with and intuition from expander graphs, from graphs that are well-eddi#d in a low-dimensional
structure, and from small social networks that have served as testbaatmmunity detection algorithms.
We have found, however, that a generative model, in which new edgesdded via an iterative Forest
Fire burning process, is able to produce graphs exhibiting a network coitynstructure similar to our
observations.

10.1 Introduction

Defining and identifying communities or densely linked clusters in social andirdtion networkg, e., in
graphs where nodes represent underlying social entities and the regigesent interaction between pairs
of nodes, has been studied in great detail. Most this research beginthevphemise that a community
should be thought of as a set of nodes that has more and/or bettectionadetween its members than
between members of that set and the remainder of the network. Herepleessikom a novel perspective
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several questions related to identifying meaningful communities in large sowahformation networks.
As we analyze large networks were are able to observe phenometiagihamvisible in small networks
and we come to several surprising conclusions that have implications rimmaoaity detection in such
networks.

Rather than define a procedure to extract a set of nodes from agndghen attempt to interpret that set
as a meaningful community, we will employ approximation algorithms for the grapitipning problem

in an attempt to characterize as a function of size the statistical and strustaparties of partitions
of graphs that could plausibly be interpreted as meaningful communitiesarticydar, we define the
network community profile plpivhich attempts to characterize the “best” possible community—according
to the conductance measure—over a wide range of size scales. We gtudg®large sparse real-world
networks taken from a wide range of application domains (ranging frodititaal and on-line social
networks, to technological and information networks and web grapldsaaging in size from thousands
of nodes up to tens of millions of nodes), and for each of these netwogksompute a wide range
of statistics, including “regularized” and “non-regularized” versiohshe network community profile
plot.

Our results suggest a significantly more refined picture of community steuictlarge networks than has
been appreciated previously. Our observations agree with previaksowesmall networks, but we show
that large networks have a very different structure. In particularplserve tight communities that are
barely connected to the rest of the network at very small size scales4upd0 nodes); and communities
of size scale beyong 100 nodes gradually “blend into” the expander-like core of the network aunsl th
become less “community-like,” with a roughly inverse relationship between caontynsize and optimal
community quality. This observation agrees well with the so-called Dunbar @uwtiich gives a limit to
the size of a well-functioning community.

This behavior is not explained, even at a qualitative level, by any of theramnly-used network genera-
tion models. Moreover, this behavior is exactly the opposite of what onddvenypect based on experi-
ence with and intuition from expander graphs, from graphs that areandileddable in a low-dimensional
structure, and from small social networks that have served as testbaatmmunity detection algorithms.
Certain aspects of ig.g, the existence of deep cuts or well-defined “communities” at small size scales a
the non-existence of them at very large scales, are a consequetheeeafreme sparsity of the networks,
as we demonstrate by analyzing sparse random graph models. Othetsadpi, e.g, the relatively
gradual increase of the network community profile plot as a function oéasing size scale, depend in a
subtle manner on the way in which local clustering information is propagated $maller to larger size
scales in the network. We have found that a generative graph modeligh néw edges are added via an
iterative Forest Fire burning process (we originally introduced it in Se&id), is able to produce graphs
exhibiting a network community profile plot similar to what we observe in our nétwatasets.

10.1.1 Overview of our approach

Lots of effort has been devoted to the task of defining and identifying caritiesi networks. Most recent
papers on the subject of community detection in large networks begin by rbtngt is a matter of

common experience that communities exist in such networks. These pagerstie that, although there
is no agreed-upon definition for a community, a community should be thouglst @fset of nodes that
has more and/or better connections between its members than between its neerdlibesremainder of
the network. These papers then apply a range of algorithmic technigdestaitions to extract subsets

259



of nodes and then interpret these subsets as meaningful communitiespooding to some underlying
“true” real-world communities. In this chapter, we explore from a novegjpective several questions
related to identifying meaningful communities in large sparse networks, ammbmve to several striking
conclusions that have implications for community detection and graph partitionswgch networks. We
emphasize that, in contrast to most of the previous work on this subject, Wala@ry large networks
of up to millions of nodes, and we observe very different phenomenaishseen in small commonly-
analyzed networks.

At the risk of oversimplifying the large and often intricate body of work omoaunity detection in
complex networks, the following five-part story describes the genertidodelogy:

(1) Data are modeled by an “interaction graph.” In particular, part owtwd gets mapped to a graph
in which nodes represent entities and edges represent some type attiotetetween pairs of
those entities. For example, in a social network, nodes may represevitiraipeople and edges
may represent friendships, interactions or communication between p#issef people.

(2) The hypothesis is made that the world contains groups of entities thatdhiteore strongly amongst
themselves than with the outside world, and hence the interaction graph sbatdéh sets of nodes,
i.e., communities, that have more and/or better-connected “internal edgesécting members of
the set than “cut edges” connecting the set to the rest of the world.

(3) A objective function or metric is chosen to formalize this idea of groups mithe intra-group than
inter-group connectivity.

(4) An algorithm is then selected to find sets of nodes that exactly or aippaely optimize this
or some other related metric. Sets of nodes that the algorithm finds are theh “célisters,”
“communities,” “groups,” “classes,” or “modules”.

(5) The clusters or communities or modules are evaluated in some way. Foplexane may map the
sets of nodes back to the real world to see whether they appear to makgeérdaiise as a plausible
“real” community. Alternatively, one may attempt to acquire some form of “gdbotuuth,” in which
case the set of nodes output by the algorithm may be compared with it.

With respect to points (1)—(4), we follow the usual path. In particularadept points (1) and (2), and
we then explore the consequence of making such a chicégepf making such an hypothesis and mod-
eling assumption. For point (3), we choose a natural and widely-adoptézh of community goodness
(community quality score) callecbnductancewhich is also known as the normalized cut met@ting
1997, Shi and Malik 2000 Kannan et al.2004. Informally, the conductance of a set of nodes (defined
and discussed in more detail in Sectith2.3 is the ratio of the number of “cut” edges between that set
and its complement divided by the number of “internal” edges inside that $eis, To be a good com-
munity, a set of nodes should have small conductaneg |t should have many internal edges and few
edges pointing to the rest of the network. Conductance is widely used tiaredbe intuition of a good
community; it is a fundamental combinatorial quantity; and it has a very natieapretation in terms
of random walks on the interaction graph. Moreover, since there exish guite of both theoretical and
practical algorithmsHendrickson and Leland 995 Spielman and Tend 996 Leighton and Rao1988
1999 Arora et al, 2004k Karypis and Kumar1998ha, Zhao and Karypis2004 Dhillon et al, 2007,

we can for point (4) compare and contrast several methods to appteknegtimize it. To illustrate
conductance, note that of the thie@ode setsi, B, andC illustrated in the graph in Figurk0.1, B has
the best (the lowest) conductance and is thus the most community-like.
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Figure 10.1: Network communities. Of the thréenodes sets that have been markBdhas the besi.g.,
the lowest) conductance, as it has the lowest ratio betweenumber of edges cut and the
number of edges inside. So, g&is the besb-node community or the most community-like
set of5 nodes in this particular network.

However, it is in point (5) that we deviate from previous work. Instefibousing on individual groups
of nodes and trying to interpret them as “real” communities, we investigatetistatigroperties of a large
number of communities over a wide range of size scales in ti@targe sparse real-world social and
information networks. We take a step back and ask questions such aswelbwdo real graphs split
into communities? What is a good way to measure and characterize presaimsence of community
structure in networks? What are typical community sizes and typical commuuatitigs?

To address these and related questions, we introduce the concepetwiak community profile (NCP)
plot that we define and describe in more detail in Sec1i0r8.1 Intuitively, the network community pro-
file plot measures the score of “best” community as a function of community sezaétwork. Formally,
we define it as the conductance value of the minimum conductance sedofaldy & in the network,
as a function oft. As defined, the NCP plot will be NP-hard to compute exactly, so operdiffone
will use several natural approximation algorithms for solving the Minimum Qotathce Cut Problem
in order to compute different approximations to it. By comparing and contptgse plots for a large
number of networks, and by computing other related structural propesigesbtain results that suggest a
significantly more refined picture of the community structure in large real-watd/orks than has been
appreciated previously.

We have gone to a great deal of effort to be confident that we areworgpguantities fundamental to
the networks we are considering, rather than artifacts of the approximationthms we employ. In
particular:

¢ \We use several classes of graph partitioning algorithms to probe the kstf@osets of nodes that
could plausibly be interpreted as communities. These algorithms, includingofieed methods,
spectral methods, and hierarchical methods, have complementary ssrandtiveaknesses that are
well understood both in theory and in practice. For example, flow-bas#tbaieare known to have
difficulties with expanderdfeighton and Rad 988 1999, and flow-based post-processing of other
methods are known in practice to yield cuts with extremely good conductahgs\laang 2004
Lang and Rap2004. On the other hand, spectral methods are known to have difficulties when
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they confuse long paths with deep cugpjelman and Tendl996 Guattery and Miller 1999, a
consequence of which is that they may be viewed as computing a “regdfasgproximation to
the network community profile plot. (See Sectibd.5for a more detailed discussion of these and
related issues.)

e We compute spectral-based lower bounds and also semidefinite-prograimasied lower bounds
for the conductance of our network datasets.

¢ We compute a wide range of other structural properties of the netweidkssizes, degree distri-
butions, maximum and average diameters of the purported communities, intersa external
conductance values of the purported communities, etc.

e \We recompute statistics on versions of the networks that have been modifiezliuanderstood
ways,e.g, by removing small barely-connected sets of nodes or by randomizinglfes e

e \We compare our results across not only ol&® large social and information networks, but also
numerous commonly-studied small social networks, expanders, androenisional manifold-like
objects, and we compare our results on each network with what is knowrtffre field from which
the network is drawn. To our knowledge, this makes ours the most extesisih analysis of the
community structure in large real-world social and information networks.

e We compare results with analytical and/or simulational results on a wide rdrogenmmonly and
not-so-commonly used network generation modbBleWman 2003 Bollobas and Riordgr2003
Barakasi and Albert1999 Kumar et al, 2000 Ravasz and Barasi 2003 Leskovec et a).2005h
Flaxman et a].2004 2007.

10.1.2 Summary of our results

Main Empirical Findings: Taken as a whole, the results we present in this chapter suggest a rather
detailed and somewhat counterintuitive picture of the community structure mdaigal and information
networks. Several qualitative properties of community structure, aslevdy the network community
profile plot, are nearly universal:

¢ Up to a size scale, which empirically is roughl§0 nodes, there not only exist cuts with relatively
good conductance,e., good communities, but also the slope of the network community profile
plot is generally sloping downward. This latter point suggests that smalilememities can be
combined into meaningful larger communities, a phenomenon that we empiricaiywetin many
cases.

e At the size scale of roughly00 nodes, we often observe the global minimum of the network com-
munity profile plot; these are the “best” communities, according to the condigctaeasure, in
the entire graph. These are, however, rather interestingly connedteel test of the network; for
example, in most cases, we observe empirically that they are a small setesf barely connected
to the remainder of the network by justmgleedge.

e Above the size scale of roughly)0 nodes, the network community profile plot gradually increases,
and thus there is a nearly inverse relationship between community size and naynquality. As
a function of increasing size, the best possible communities become more amthieaded into”
the remainder of the network. Intuitively, communities blend in with one anothérgaadually
disappear as they grow larger. In particular, in many cases, larger coitiesucan be broken
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Figure 10.2: (a) Typical network community profile plot for a large soaalinformation network: net-
works have better and better communities up to a size scate 160 nodes, and after that
size scale communities “blend-in” with the rest of the netwed curve). However, real
networks still have more structure than their randomizexhditioned on the same degree
distribution) counterparts (black curve). Even more ssipgly, if one allows for discon-
nected communities (blue curve), the community qualityessoften get even better (even
though such communities have no intuitive meaning). (b)gek structure for a large so-
cial or information network, as suggested by our empirival@ations. See the text for more
information on the “core” and “whiskers,” and note that tloeecin our real-world networks
is actually extremely sparse.

into smaller and smaller pieces, often recursively, each of which is more coityatike than the
original supposed community.

e Even up to the largest size scales, we observe significantly more strtitamrgvould be seen, for
example, in an expander-like random graph on the same degree sequenc

A schematic picture of a typical network community profile plot is illustrated in Edux.2(a) In red
(labeled as “original network”), we plot community size vs. community qualityesdor the sets of
nodes extracted from the original network. In black (rewired netwavk)plot the scores of communities
extracted from a random network conditioned on the same degree distilagtithe original network.
This illustrates not only tight communities at very small scales, but also thatgarland larger size
scales (the precise cutoff point for which is difficult to specify precistige best possible communities
gradually “blend in” more and more with the rest of the network and thusugithdbecome less and less
community-like. Eventually, even the existence of large well-defined commuistipgite questionable
if one models the world with an interaction graph, as in point (1) above, aodéfalso defines good
communities as densely linked clusters that are weakly-connected to theepwsith hypothesis (2)
above. Finally, in blue (bag of whiskers), we also plot the scores of canitimsi that are composed of
disconnected pieces (found according to a procedure we describetinrEL0.4). This blue curve shows,
perhaps somewhat surprisingly, that one can often obtain better commualtygcores by combining
unrelated disconnected pieces.

To understand the properties of generative models sufficient to nepedtie phenomena we have ob-
served, we have examined in detail the structure of our social and iniormaetworks. Although
nearly every network is an exception to any simple rule, we have obstraean “octopus” or “jellyfish”
model [Chung and Lu2006a Tauro et al. 2001, Siganos et al.200§ provides a rough first approxima-
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tion to structure of many of the networks we have examined. That is, mosbrkstmay be viewed as
having a “core,” with no obvious underlying geometry and which contactatant fraction of the nodes,
and then there is a periphery consisting of a large number of relatively Smiadlkers” that are only ten-
uously connected to the core. Figur®.2(b)presents a caricature of this network structure. Of course,
our network datasets are far from random in numerous wayg-they have higher edge density in the
core; the small barely-connected whisker-like pieces are generalbr]alenser, and more common than
in corresponding random graphs; they have higher local clusteriefficents; and this local clustering
information gets propagated globally into larger clusters or communities in a sutstl®cation-specific
manner. More interestingly, as shown in Figa13in Section10.4.4 the core itself consists of a nested
core-periphery structure.

Main Modeling Results: The behavior that we observe is not reproduced, at even a qualiatele by
any of the commonly-used network generation models we have examinediimchut not limited to
preferential attachment models, copying models, small-world models, aratdhigal network models.
Moreover, this behavior is qualitatively different than what is obseimanetworks with an underlying
mesh-like or manifold-like geometry (which may not be surprising, but is s@mifiinsofar as these
structures are often used as a scaffolding upon which to build other maddeistworks that are good ex-
panders (which may be surprising, since it is often observed that lacigd setworks are expander-like),
and in small social networks such as those used as testbeds for commuedtjotealgorithms (which
may have implications for the applicability of these methods to detect large comntilgistructures in
these networks). For the commonly-used network generation models |lasvier expander-like, low-
dimensional, and small social networks, the network community profile plotgererally downward
sloping or relatively flat.

Although it is well understood at a qualitative level that nodes that areaffart” or “less alike” (in some

sense) should be less likely to be connected in a generative model, tandéng this point quantitatively
so as to reproduce the empirically-observed relationship between snilallaschlarge-scale community
structure turns out to be rather subtle. We can make the following observatio

¢ \ery sparse random graph models with no underlying geometry havevedyatieep cuts at small
size scales, the best cuts at large size scales are very shallow, améstheelatively abrupt tran-
sition in between. (This is shown pictorially in Figui®.2(a)for a randomly rewired version of
the original network.) This is a consequence of the extreme sparsity oathe sufficiently dense
random graphs do not have these small deep cuts; and the relativplgutsen sparse graphs are
due to small tree-like pieces that are connected by a single edge to a dofeisvhn extremely
good expander.

e A Forest Fire generative modeléskovec et aJ.2005h 200714, in which edges are added in a man-
ner that imitates a fire-spreading process, reproduces not only thedeseat small size scales and
the absence of deep cuts at large size scales but other propertidé dsermmall barely connected
pieces are significantly larger and denser than random; and for ajieoparameter settings the
network community profile plot increases relatively gradually as the sizeeo€dmmunities in-
creases.

¢ The details of the “forest fire” burning mechanism are crucial foradpcing how local clustering
information gets propagated to larger size scales in the network, and thtasks ghed light on
the failures of commonly-used network generation models. In the ForesMeidel, a new node
selects a “seed” node and links to it. Then with some probability it “burnstddsan edge to the
each of the seed’s neighbors, and so on, recursively. Althougé #érerelements of a “preferential
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attachment” and also a “copying” flavor to this mechanism, two factors atiegarly important:
firstis the local (in a graph sense, as there is no underlying geometryrnmatiel) manner in which
the edges are added; and second is that the number of edges that adeewan add can vary
widely, depending on the local structure around the seed node. Diegem the neighborhood
structure around the seed, small fires will keep the community well-sepdiratethe network, but
occasional large fires will connect the community around the seed node teghof the network
and make it blend into the network core.

Thus, intuitively, the structure of the whiskers (components connectee tesh of the graph via a single
edge) are responsible for the downward part of the network commurufyepplot, while the core of the
network and the manner in which the whiskers root themselves to the cosetbalptermine the upward
part of the network community profile plot. Due to local clustering effectdskeérs in real networks are
larger and give deeper cuts than whiskers in corresponding randbgriaghs, fluctuations in the core are
larger and deeper than in corresponding randomized graphs, anthéhustwork community profile plot
increases more gradually and levels off to a conductance value well liedovalue for a corresponding
rewired network.

Main Methodological Contributions: To obtain these and other conclusions, we have employed ap-
proximation algorithms for graph partitioning to investigate structural progeofieur network datasets.
Briefly, we have done the following:

¢ \We have used what we refer to as Metis+MQI, which consists of usingdpal@r graph parti-
tioning package Meti{arypis and Kumarl9984 followed by a flow-based MQI post-processing
[Lang and Rap2004. With this procedure, we obtain sets of nodes that have really goodicend
tance scores. (As we will later see mostly at the expense of cluster coragsgtmThis method
heavily optimizes the conductance and does not consider the internal clustgure. So, at very
small size scales, these sets of nodes could plausibly be interpreteddasayomunities, but at
larger size scales, we often obtain tenuously-connected (and in soetewdasns of disconnected)
pieces, which perhaps do not correspond to intuitive communities.

¢ Thus, we have also used the Local Spectral method of AndersongCéuneh LangfAndersen et al.

2004 to obtain sets of nodes with good conductance value that are “compauntirer‘regularized”
than those pieces returned by Metis+MQI. Since spectral methods eodoiug paths with deep
cuts [Spielman and Tendl996 Guattery and Milley 199§, empirically we obtain sets of nodes
that have worse conductance scores than sets returned by Metisbit@lhich are “tighter” and
more “community-like.” For example, at small size scales the sets of nodesedthy the Local
Spectral Algorithm agrees with the output of Metis+MQI, but at largertelusizes this algorithm
returns sets of nodes with substantially smaller diameter and average diaBwtarclusters are
more compact and thus seem plausibly more community-like.

We have also used what we call the Bag-of-Whiskers Heuristic to idemtifl arely connected sets of
nodes that exert a surprisingly large influence on the network commuioitjepplot.

Both Metis+MQI and the Local Spectral Algorithm scale well and thus either Ibeaused to obtain sets
of nodes from very large graphs. For many of the small to medium-sizednretywwe have checked our
results by applying one or more other spectral, flow-based, or heuldigtiagtams, although these do not
scale as well to very large graphs. Finally, for some of our smaller netdatdsets, we have computed
spectral-based and semidefinite-programming-based lower boundbeamdults are consistent with the
conclusions we have drawn.
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Broader implications: Our observation that, independently of the network size, compact communities
exist only up to a size scale of arouh@ nodes agrees well with the “Dunbar numbebunbar 199§,
which predicts that roughly50 individuals is the upper limit on the size of a well-functioning human
community. Moreover, we should emphasize that our results do not désagfte the literature at small
sizes scales. One reason for the difference in our findings is thabpsestudies mainly focused on small
networks, which are simply not large enough for the clusters to graduelhdbnto one another as one
looks at larger size scales. In order to make our observations, ods t@mok at large number (due to
the complex noise properties of real graphs) of large networks. Itysvdmen Dunbar’s limit is exceeded

by several orders of magnitude that it is relatively easy to observe tangenunities blurring together
and eventually vanishing. A second reason for the difference is tkaigps work did not measure and
examine thenetwork community profilef cluster size vs. cluster quality. Finally, we should note that
our explanation also aligns well with tr@dmmon bond/s. common identitytheory of group attach-
ment Ren et al.2007 from social psychology, where it has been noted that bond communitidddde
smaller and more cohesivB4ck 1951, as they are based on interpersonal ties, while identity communi-
ties are focused around common theme or interest. We discuss these impliaatiazenections further

in Sectionl0.7.

10.1.3 Ouitline of the chapter

The rest of the chapter is organized as follows. In Secti0r2 we describe some useful background,
including a brief description of the network datasets we have analyzesh, TihSectiorl0.3we present
our main results on the properties of the network community profile plot fometwork datasets. We
place an emphasis on how the phenomena we observe in large social@nuaibidn networks are qual-
itatively different than what one would expect based on intuition fromexperience with expander-like
graphs, low-dimensional networks, and commonly-studied small sociabrietwThen, in Section0.4
and10.5 we summarize the results of additional empirical evaluations. In particul8gétion10.4, we
describe some of the observations we have made in an effort to undevetan structural properties of
these large networks are responsible for the phenomena we obsethwe Sectiorll0.5 we describe some
of the results of probing the networks with different approximation algoritimas effort to be confident
that the phenomena we observed really are properties of the networksige rather than artifactual
properties of the algorithms we chose to use to study those networks. We fbitin Sectionl0.6with

a discussion of complex network generation models. We observe thatrtireardy-used network gener-
ation models fail to reproduce the counterintuitive phenomena we ob3&evalso notice that very sparse
random networks reproduce certain aspects of the phenomena, aadgemeerative model based on an
iterative “forest fire” burning mechanism reproduces very well theditative properties of the phenomena
we observe. Finally, in Sectiob0.7we provide a discussion of our results in a broader context, and in
Section10.8we present a brief conclusion.

10.2 Background on communities and overview of our methods

In this section, we will provide background on our data and methods. Weirstdection10.2.1with

a description of the network datasets we will analyze. Then, in Setfdh2 we review related com-
munity detection and graph clustering ideas. Finally, in Secti@2.3 we provide a brief description
of approximation algorithms that we will use. There exist a large humbervigws on topics related
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to those discussed in this chapter. For example, see the reviews on commaenttfiadtion Newman
2004 Danon et al.2009, data clusteringJain et al.1999, graph and spectral clusterinGaertler 2005

von Luxburg 2006 Schaeffer 2007, graph and heavy-tailed data analys@hpkrabarti and Faloutsos
2006 Newman 2005 Clauset et a).2007], surveys on various aspects of complex netwoitevyman
2003 Albert and Barahsi, 2002 Dorogovtsev and Mende2002a Bollobas and Riordar2003 Li et al.,
2005 da F. Costa et al2007, Boccaletti et al.2006, the monographs on spectral graph theory and com-
plex networks Chung 1997 Chung and Lu20064, and the book on social network analysis methods
and applicationsWasserman and Faudt994. See Sectiorl0.7 for a more detailed discussion of the
relationship of our work with some of this prior work.

10.2.1 Social and information network datasets we analyze

We have examined a large number of real-world complex networks. SéesTaB, A.3, andA.4 for a
summary. For convenience, we have organized the networks into the iftjj@mategories: Social net-
works; Information/citation networks; Collaboration networks; Web gsapfiternet networks; Bipartite
affiliation networks; Biological networks; Low-dimensional networks DBl networks; and Amazon net-
works. We have also examined numerous small social networks that bemeubed as a testbed for com-
munity detection algorithm(g, Zachary'’s karate clutachary 1977 Network data2007, interactions
between dolphinsljusseau et al.2003 Network data 2007, interactions between monk&ampson
1968 Network data2007, Newman'’s network science networkléwman 2006a Network data2007,
etc.), numerous simple network models in which by design there is an undeggorgetry é.g, power
grid and road networksWatts and StrogatZ1998, simple meshes, low-dimensional manifolds includ-
ing graphs corresponding to the well-studied “swiss roll” data Benénbaum et 312000, a geometric
preferential attachment moddflaxman et al.2004 2007, etc.), several networks that are very good
expanders, and many simulated networks generated by commonly-usextingéemeration models(g,
preferential attachment modeNg¢wman 2003, copying modelsKumar et al, 2000, hierarchical mod-
els [Ravasz and Bardlsi 2003, etc.).

Social networks: The class of social networks in Tab#e2 is particularly diverse and interesting. It in-
cludes several large on-line social networks: a network of profeaktmntacts from LinkedIn (INKEDIN);

a friendship network of a LiveJournal blogging community\(EJOURNALO1); and a who-trusts-whom
network of Epinions (EINIONS). It also includes an email network from EnronMElL -ENRON) and
from a large European research organization. For the latter we ged¢hace networks: BAIL -INSIDE
uses only the communication inside organizatiomjA -INOUT also adds external email addresses
where email has been sent both way; anglaE -ALL adds all communication inside the organization
and to the outside world. Also included in the class of social networks &nries that are not the cen-
tral focus of the websites from which they come, but which instead sengetaol for people to share
information more easily. For example, we have: the networks of a socidnerting site Delicious
(DELIcious); a Flickr photo sharing website (FEKR); and a network from Yahoo! Answers question
answering website (RSWERS. In all these networks, a node refers to an individual and an edgeed u
to indicate that means that one person has some sort of interaction with petsen e.g, one person
subscribes to their neighbor’'s bookmarks or photos, or answers trestigns.

Information and citation networks: The class of Information/citation networks contains several differ-
ent citation networks. It contains two citation networks of physics papessxav.org , (CIT-HEP-TH

and AQT-HEP-PH), and a network of citations of US patentsi{€PATENTS). (These paper-to-paper cita-
tion networks are to be distinguished from scientific collaboration netwarisaathor-to-paper bipartite
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networks, as described below.) It also contains two types of blog citatitworles. In the so-called
post networks, nodes are posts and edges represent hyperlinkeehélog posts (BsT+NAT05-6M and

POST-NATO6ALL). On the other hand, the so-called blog network is the blog-level-agipagaf the

same datai.e., there is a link between two blogs if there is a post in first that links the possatand
blog (BLOG-NAT05-6M and BLOG-NATO6ALL).

Collaboration networks: The class of collaboration networks contain academic collaboraitiendo-
authorship) networks between physicists from various categoriascin.org (CA-ASTRO-PH, etc.)
and between authors in computer science (CA-DBLP). It also contaiesnaaork of collaborations be-
tween pairs of actors in IMDB (BA-IMDB), i.e, there is an edge connecting a pair of actors if they
appeared in the same movie. (Again, this should be distinguished fromtaatoovie bipartite networks,
as described below.)

Web graphs: The class of Web graph networks includes four different web-graphlvhich nodes rep-
resent web-pages and edges represent hyperlinks between Hygese pfNetworks were obtained from
Google (WeB-GOOGLE), the University of Notre Dame (WB-NOTREDAME), TREC (WEB-TREC), and
Stanford University (VEB-BERKSTAN). The class of Internet networks consists of various autonomous
systems networks obtained at different sources, as well as a Gnukk®ankey peer-to-peer file sharing
networks.

Bipartite networks: The class of Bipartite networks is particularly diverse and includes: eaxtioe
papers graphs from both computer scienceRADBLP) and physics (AP-ASTRO-PH, etc.); a hetwork
representing users and the URLs they visited I STREAM); a network representing users and the
movies they rated (NTFLIX); and a users-to-queries network representing query terms thattyped

into a search engine (@RYTERMS). (We also have analyzed several bipartite actors-to-movies networks
extracted from the IMDB database, which we have listed separately below.)

Biological networks: The class of Biological networks include protein-protein interaction nedsvof
yeast obtained from various sources.

Low dimensional grid-like networks: The class of Low-dimensional networks consists of graphs con-
structed from road (BAD-CA, etc.) or power grid (BWERGRID) connections and as such might be
expected to “live” on a two-dimensional surface in a way that all of theratbevorks do not. We also
added a “swiss roll” network, 2-dimensional manifold embedded3rdimensions, and a “Faces” dataset
where each point is afd by 64 gray-scale image of a face (embedded.jn96 dimensional space) and
where we connected the faces that were most similar (using the Euclidéamceis

IMDB, Yahoo! Answers and Amazon networks: Finally, we have networks from IMDB, Amazon, and
Yahoo! Answers, and for each of these we have separately anaybeatworks. The IMDB networks
consist of actor-to-movie links, and we include the full network as welludmestworks associated with
individual countries based on the country of production. For the Amamtworks, recall that Ama-
zon sells a variety of products, and for each itdnone may compile the list the up to ten other items
most frequently purchased by buyersAf This information can be presented as a directed network in
which vertices represent items and there is a edge from ietm another itemB if B was frequently
purchased by buyers of. We consider the network as undirected. We use five networks frontg stu
Clausetet al. [Clauset et a).2004, and two networks from the viral marketing study from Leskoetc
al. [Leskovec et a).20073. Finally, for the Yahoo! Answers networks, we observe severapdrits at
large size scales, and so in addition the full network, we analyze the top sixwet-connected subnet-
works.
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In addition to providing a brief description of the network, Tab#eg, A.3 andA.4 show the number of
nodes and edges in each network, as well as other statistics which willsbaksal in Sectiori0.4.1

(In all cases, we consider the network as undirected, and we extrddralyze the largest connected
component.) The sizes of these networks range from ah@00 nodes up to nearly4 million nodes,
and from abou6, 000 edges up to more thar0 million edges. All of the networks are quite sparse—their
densities range from an average degree of abdutor the blog post network, up to an average degree
of about400 in the network of movie ratings from Netflix, and most of the other networkduding
the purely social networks, have average degree ardOifichedian average degree @t In many cases,
we examined several versions of a given network. For example, wedsyed the entire IMDB actor-
to-movie network, as well as sub-pieces of it corresponding to diffdesrgyuage and country groups.
Detailed statistics for all these networks are presented in T&b®sA.3 andA.4 and are described in
Section10.4 In total, we have examined ovéf0 large real-world social and information networks,
making this, to our knowledge, the largest and most comprehensive dtadglonetworks.

10.2.2 Clusters and communities in networks

Hierarchical clustering or linkage clustering is a common approach to commidaittification in social
sciences\[Vasserman and Faud994, but it has also found application more generaopcroft et al,
2004 Girvan and Newmar2004. In this procedure, one first defines a distance metric between pairs of
nodes and then produces a tree (in either a bottom-up or a top-down mdeseribing how nodes group
into communities and how these group further into super-communities. A quitgatiffapproach that
has received a great deal of attention (and that will be central to @lysas) is based on ideas fragnaph
partitioning [Schaeffer 2007, Brandes et al.2007. In this case, the network is a modeled as simple
undirected graph, where nodes and edges have no attributes, artitianpaf the graph is determined
by optimizing a merit function. The graph partitioning problem is find some nurhlggoups of nodes,
generally with roughly equal size, such that the number of edges bethegnoups, perhaps normalized
in some way, is minimized.

Let G = (V, E) denote a graph, then tlkenductance) of a set of node$ C V, (whereS is assumed to
contain no more than half of all the nodes), is defined as followsw lbet the sum of degrees of nodes in
S, and lets be the number of edges with one endpoinfiand one endpoint i¥, whereS denotes the
complement of5. Then, the conductance Sfis ¢ = s/v, or equivalentlyp = s/(s + 2¢), wheree is the
number of edges with both endpointsiisMore formally:

Definition 10.2.1. Given a graphG with adjacency matrix4 the conductance of a seif nodesS is
defined as:
> ics,jgs Aij

S min{A(S), A(S)}’

(10.6)

where A(S) = 3 ,cq > ey Aij, OF equivalentlyA(S) = >~ ¢ d(i), whered(i) is a degree of nodein
G.

Moreover, in this case, theonductance of the graghis:

éa = min o(S). (10.7)
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(@) Three communities (b) Conductance bottleneck

Figure 10.3: (a) Caricature of the traditional view of communities asigesets of nodes with more and/or
better intra-connections than inter-connections. (b) &p@rwith its minimum conductance
bottleneck illustrated.

Thus, the conductance of a set provides a measure for the quality ofitHe,cS), or relatedly the
goodness of a community.*

Indeed, it is often noted that communities should be thought of as sets e$ math more and/or better
intra-connections than inter-connections; see Fig@&for an illustration. When interested in detecting
communities and evaluating their quality, we prefer sets with small conductaecesets that are densely
linked inside and sparsely linked to the outside. Although numerous medmwebeen proposed for how
community-like is a set of nodes, it is commonly notee-g; see Shi and Malik$hi and Malik 2000

and Kannan, Vempala, and Vettdgnnan et al.2004—that conductance captures the “gestalt” notion
of clustering gahn 1971, and as such it has been widely-used for graph clustering and community
detection (Gaertler 2005 von Luxburg 2006 Schaeffer2007.

There are many other density-based measures that have been useiitm gegraph into a set of com-
munities [Gaertler 2005 von Luxburg 2006 Schaeffey2007. One that deserves particular mention is
modularity Newman and Girvare004 Newman 20061. For a given partition of a network into a set of
communities, modularity measures the number of within-community edges, relatveuib model that
is usually taken to be a random graph with the same degree distribution. rbdslarity was originally
introduced and it typically used to measure the strength or quality of a partzaration of a network.
We, however, are interested in a quite different question than those thiatatad the introduction of
modularity. Rather than seeking to partition a graph into the “best” possiligranf communities, we
would like to know how good is a particular element of that partitios, how community-like are the
best possible communities that modularity or any other merit function can hdpeltdn particular as a
function of the size of that partition.

! Throughout this chapter we consistently use shorthand phrases likgttiis has good conductance” to mean “this piece
is separated from the rest of the graph by a low-conductance cut.”
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10.2.3 Approximation algorithms for finding low-conductance cuts

In addition to capturing very well our intuitive notion of what it means for acfenodes to be a good
community, the use of conductance as an objective function has an aelulefit there exists an extensive
theoretical and practical literature on methods for approximately optimizingintdiffe cuts with exactly
minimal conductance is NP-hard.) In particular, the theory literature consawvesral algorithms with
provable approximation performance guarantees.

First, there is the spectral method, which uses an eigenvector of the'gytaggiacian matrix to find
a cut whose conductance is no bigger thaif the graph actually contains a cut with conductance
O(¢?) [Cheegerl969 Donath and Hoffmar972 Fiedler, 1973 Mohar, 1991, Chung 1997. The spec-
tral method also produces lower bounds which can show that the solutiamgieen graph is closer to op-
timal than promised by the worst-case guarantee. Second, there is athaigbat uses multi-commodity
flow to find a cut whose conductance is within @flog n) factor of optimal Leighton and Rao1988
1999. Spectral and multi-commodity flow based methods are complementary in thatotis¢-case
O(logn) approximation factor is obtained for flow-based methods on expandengaeighton and Rao
1988 1999, a class of graphs which does not cause problems for spectral nsetivbéreas spectral
methods can confuse long path with deep c@sdttery and Milley 1998 Spielman and Tendl994, a
difference that does not cause problems for flow-based methodsd, Bmd very recently, there exists
an algorithm that uses semidefinite programming to find a solution that is withirlog n) of opti-
mal [Arora et al, 20048. This paper sparked a flurry of theoretical research on a family setyaelated
algorithms including Arora et al, 2004a Khandekar et al2006 Arora and Kale2007, all of which can
be informally described as combinations of spectral and flow-basedige&swhich exploit their com-
plementary strengths. However, none of those algorithms are curreatifigad enough to use in our
study.

Of the above three theoretical algorithms, the spectral method is by far thegraostal. Also very com-
mon are recursive bisection heuristics: recursively divide the graphwo groups, and then further sub-
divide the new groups until the desired number of clusters groups isvachi€his may be combined with
local improvement methods like the Kernighan-Lin and Fiduccia-MattheysesguresKernighan and Lin
197Q Fiduccia and Mattheyse$983, which are fast and can climb out of some local minima. The latter
was combined with a multi-resolution framework to create Mdfiarfypis and Kumar1998ha], a very
fast program intended to split mesh-like graphs into equal sized pied¢esadthors of Metis later cre-
ated Cluto Zhao and Karypis2004, which is better tuned for clustering-type tasks. Finally we mention
Graclus Dhillon et al, 2007, which uses multi-resolution techniques and ker@heans to optimize a
metric that is closely related to conductance.

While the preceding were all approximate algorithms for finding the lowesdwtiance cut in a whole
graph, we now mention MQIGallo et al, 1989 Lang and Rap2004, an exactalgorithm for the slightly
different problem of finding the lowest conductance cubaif of a graph. This algorithm can be com-
bined with a good method for initially splitting the graph into two pieces (such as Metise Spectral
method) to obtain a surprisingly strong heuristic method for finding low caadge cuts in the whole
graph Lang and Rap2004. The exactness of the second optimization step frequently results in cuts with
extremely low conductance scores, as will be visible in many of our plots. &4@Ibe implemented
by solving single parametric max flow problems, or sequences of ordinaxyflowa problems. Para-
metric max flow (with MQI described as one of the applications) was introdbgd@allo et al, 1989,
and recent empirical work is described Babenko et a).2007, but currently there is no publicly avail-
able code that scales to the sizes we need. Ordinary max flow is a verydihdyetudied problem.
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Currently, the best theoretical time bounds d@®ldberg and Rgal999g, the most practical algorithm

is [Goldberg and TarjariL98g, while the best implementation is _pr by [Cherkassky and Goldberg
1993. Since Metis+MQI using théi _pr code is very fast and scalable, while the method empirically
seems to usually find the lowest or nearly lowest conductance cuts in a aiiggyvof graphs, we have
used it extensively in this study.

We will also extensively use Local Spectral Algorithm of Andersen, righuand LangAndersen et al.
2004 to find node sets of low conductandeg., good communities, around a seed node. This algo-
rithm is also very fast, and it can be successfully applied to very largehgrto obtain more “well-
rounded”, “compact,” or “evenly-connected” communities than thosemetliby Meits+MQI. The latter
observation (described in more detail in Sectidn?) is since local spectral methods also confuse long
paths (which tend to occur in our very sparse network datasets) withagsp This algorithm takes
as input two parameters—the seed node and a paraméteat intuitively controls the locality of the
computation—and it outputs a set of nodes. Local spectral methods weydliced by Spielman and
Teng [Spielman and Ten@004 Andersen et al2004, and they have roughly the same kind of quadratic
approximation guarantees as the global spectral method, but they hapetadional cost is proportional
to the size of the obtained piedghiung 2007ac,b].

10.3 The Network Community Profile Plot (NCP plot)

In this section, we discuss theetwork community profile pldfNCP plot), which measures the quality
of network communities at different size scales. We start in Sediib&.1by introducing it. Then, in
Section10.3.2 we present the NCP plot for several examples of networks whichnmpaoples’ intuition
and for which the NCP plot behaves in a characteristic manner. Thenciio&&10.3.3and10.3.4we
present the NCP plot for a wide range of large real world social armtrimdtion networks. We will see
that in such networks the NCP plot behaves in a qualitatively different arann

10.3.1 Definitions for the network community profile plot

In order to more finely resolve community structure in large networks, wednt® thenetwork commu-
nity profile plot(NCP plot). Intuitively, the NCP plot measures the quality of the best possilolenunity
in a large network, as a function of the community size. Formally, we may defasetiie conductance
value of the best conductance set of cardindlity the entire network, as a function bf

Definition 10.3.1. Given a graphG with adjacency matrix4, the network community profile plot (NCP
plot) plots® (k) as a function of;, where

d(k) = i S 10.8
(k) = ; min | #(5), (10.8)
where|S| denotes the cardinality of the s&t and where the conductanegg.S) of S is given by equa-
tion (10.6).

Since this quantity is intractable to compute, we will employ well-studied approximalgorithms
for the Minimum Conductance Cut Problem to approximate it. In particularratipaally we will

use several natural heuristics based on approximation algorithms to po paatitioning in order to
compute different approximations to the NCP plot. Although other procedwik be described in
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Section10.5 we will primarily employ two procedures. First, Metis+tMQle., the graph partition-
ing package MetisKarypis and Kumar1998H followed by the flow-based post-processing procedure
MQI [Lang and Rap2004; this procedure returns sets that have very good conductancesvaiex-
ond, the Local Spectral Algorithm of Andersen, Chung, and L&xglprsen et a]2008§; this procedure
returns sets that are somewhat more “compact” or “smoothed” or “régedklt but that often have some-
what worse conductance values.

Just as the conductance of a set of nodes provides a quality meashae sét as a community, the shape
of the NCP plot provides insight into the community structure of a graph asotewlror example, the
magnitude of the conductance tells us how well clusters of different sizeseparated from the rest
of the network. One might hope to obtain some sort of “smoothed” measute afotion of the best
community of sizek (e.g, by considering an average of the conductance value over all setgioéra
size or by considering a smoothed extremal statistic such9astla percentile) rather than conductance
of the best set of that size. We have not defined such a measure sneéstho obvious way to average
over all subsets of sizeand obtain a meaningful approximation to the minimum. On the other hand, our
approximation algorithm methodology implicitly incorporates such an effect. AghdMetis+MQI finds
sets of nodes with extremely good conductance value, empirically we @betvithey often have little
or no internal structure—they can even be disconnected. On the otheéy $iace spectral methods in
general tend to confuse long paths with deep cBEdlman and Tend 996 Guattery and Miller1998§,

the Local Spectral Algorithm finds sets that are “tighter” and more “wallhded” and thus in many
ways more community-like. (See Sectiob®.2.3and 10.5 for details on these algorithmic issues and
interpretations.)

10.3.2 NCP plots for small social networks, expander and lowlimensional graphs

The NCP plot behaves in a characteristic manner for graphs that altegiwiseddable” into an underlying
low-dimensional geometric structure. To illustrate this, consider FigQré In Figure10.4(a) we show
the results for al-dimensional chain, &-dimensional grid, and 8-dimensional cube. In each case,
the NCP plot is steadily downward sloping as a function of the number ofsniodéne smaller cluster.
Moreover, the curves are straight lines with a slope equalltod, whered is the dimensionality of the
underlying grids. In particular, as the underlying dimension increaseslhiesslope of the NCP plot gets
less steep. Thus, we observe:

Observation 10.3.2.If the network under consideration corresponds td-dimensional grid, then the
NCP plot shows that
1 _ log(¢(k))

R (10.9)

This is simply a manifestation of the isoperimetrie( surface area to volume) phenomenon: for a grid,
the “best” cut is obtained by cutting out a set of adjacent nodes, in whmh the surface area (number of
edges cut) increases @m?~!), while the volume (number of vertices/edges inside the cluster) increases
asO(m?).

This qualitative phenomenon of a steadily downward sloping NCP plot is quiitest for networks that
“live” in a low-dimensional structureg.g, on a manifold or the surface of the earth. For example, Fig-
ure10.4(b)shows the NCP plot for a power grid network of Western States Powe[Wdtls and Strogatz
1998, and Figurel0.4(c)shows the NCP plot for a road network of California. These two netwoake
very different sizes—the power grid network ha941 nodes and, 594 edges, and the road network has
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and thus that are reasonably well-embeddable in two dirmeas{0.4(d) A 2d “swiss roll”
manifold embedded i8 dimensions, where every we connected every poiritoearest
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1,957,027 nodes an, 760, 388 edges—and they arise in very different application domains. In both
cases, however, we see predominantly downward sloping NCP plotiuesly similar to the profile of a
simple2-dimensional grid. Indeed, the “best-fit” line for power grid gives theslof~ —0.45, which

by (10.9 suggests that ~ 2.2, which is not far from the “true” dimensionality @ Moreover, empiri-
cally we observe that minima in the NCP plot correspond to community-like setshate occasionally
nested. This corresponds to hierarchical community organization. Bonpg, the nodes giving the dip
atk = 19 are included in the nodes giving the dipkat 883, while dips atk = 94 andk = 105 are both
included in the dip ak = 262.

In a similar manner, Figur#0.4(d)shows the profile plot for a graph generated from a “swiss roll” dataset
which is commonly examined in the manifold and machine learning literaf@egnbaum et a12004.

In this case, we still observe a downward sloping NCP plot that cormelspio internal dimensionally of
the manifold (2 in this case). Finally, Figur#8.4(e)and10.4(f) show NCP plots for two graphs that are
very good expanders. The first ig3,,, graph with100, 000 nodes and a number of edges such that the
average degree i§ 6, and8. The second is a constant degree expander: to make one with degvee
take the union ofl disjoint but otherwise random complete matchings, and we have plotted this fes

d = 4,6,8. In both of these cases, the NCP plot is roughly flat, which we also obdémFigurel0.4(a)

for a clique, which is to be expected since the minimum conductance cut intihre gnaph cannot be too
small for a good expandeHpory et al, 2004.

Somewhat surprisingly (especially when compared with large networksciinm84.0.3.3, a steadily de-
creasing downward NCP plot is seen for small social networks that bega extensively studied in
validating community detection algorithms. Several examples are shown in &uge For these net-
works, the interpretation is similar to that for the low-dimensional networksddlenward slope indicates
that as potential communities get larger and larger, there are relativelyimi@edges than inter-edges;
and empirically we observe that local minima in the NCP plot correspond to setgles that are plau-
sible communities. Consideg,g, Zachary's karate clutZachary 1977 network (ZACHARY KARATE),

an extensively-analyzed social netwotewman 2004 2006h Karrer et al, 200§. The network has
34 nodes, each of which represents a member of a karate cluly;8agdiges, each of which represent a
friendship tie between two members. Figli@5(a)depicts the karate club network, and Figae5(b)
shows its NCP plot. There are two local minima in the plot: the first dip at 5 corresponds to the
Cut A, and the second dip &= 17 corresponds to CuB. Note that CutB, which separates the graph
roughly in half, has better conductance value than £uflhis corresponds with the intuition about the
NCP plot derived from studying low-dimensional graphs. Note also tieek@inate network corresponds
well with the intuitive notion of a community, where nodes of the community areedgtiasked among
themselves and there are few edges between nodes of different communitie

In a similar manner: Figur&0.5(c)shows a social network (witb2 nodes and 59 edges) of interactions
within a group of dolphinsl{usseau et al2003; Figure 10.5(e)shows a social network of monks (with
18 nodes representing individual monks atidedges representing social ties between pairs of monks)
in a cloister Bampson196§; and Figurel0.5(g)depicts Newman’s network (with14 collaborations
between379 researchers) of scientists who conduct research on netwidegwgman and Girvan2004.
For each network, the NCP plot exhibits a downward trend, and it hakridnoana at cluster sizes that
correspond to good communities: the minimum for the dolphins network (FiguE£d) corresponds to
the separation of the network into two communities denoted with different sdrapeolor of the nodes
(gray circles versus red squares); the minima of the monk network (FI§uséf)) corresponds to the split
of 7 Turks (red squares) and the so-called loyal opposition (gray cif@aeshpson1968; and empirically
both local minima and the global minimum in the network science network (Fifuggh) correspond to
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plausible communities. Note that in the last case, the figure also displayschiegdistructure in which
case the community defined by CGtis included in a larger community that has better conductance
value.

At this point, we can observe that the following two general observatiolusfor networks that are well-
embeddable in a low-dimensional space and also for small social netwartkbabe been extensively
studied and used to validate community detection algorithms. First, minima in the NCPigothe
best low-conductance cuts of a given size, correspond to communiteesdik of nodes. Second, the
NCP plots are generally relatively gradually sloping downwards, meanatgsthaller communities can
be combined into larger sets of nodes that can also be meaningfully interpsetemmunities.

10.3.3 NCP plots for large social and information networks

We have examined NCP plots for each of the networks listed in T&bB#\.3 andA.4. In Figurel0.6 we
present NCP plots for six of these networks. (These particular nesweeke chosen to be representative
of the wide range of networks we have examined, and for ease of cmopave will compute other
properties for them in future sections. See Figur@s, 10.8 and10.9in Section10.3.4for the NCP
plots of other networks listed in Tabl@s2, A.3 andA.4, and for a discussion of them.) The most striking
feature of these plots is that the NCP plot is steadily increasing for nearliytite eange.

Consider, first, the NCP plot for thelve JOURNALO1 social network, as shown in Figut®.6(a) and
focus first on the red curve, which presents the results of applying abal [Spectral Algorithnf. We
make the following observations:

e Up to a size scale, which empirically is roughlg0 nodes, the slope of the NCP plot is generally
sloping downward.

e At that size scale, we observe the global minimum of the NCP plot. This seidg#fsnas well as
others achieving local minima of the NCP plot in the same size range are thé ¢basnunities,
according to the conductance measure, in the entire graph.

e These best communities (the best denoted by a square) are barelgteaihioehe rest of the graph,
e.g, they are typically connected to the rest of the nodes singleedge.

e Above the size scale of roughly)0 nodes, the NCP plot gradually increases over several orders of
magnitude. The “best” communities in the entire graph are quite good (in thatdleysize roughly
102 nodes and conductance scores less fltart) whereas the “best” communities of siz@® or
10% have conductance scores of abd0t!. In between these two size extremes, the conductance
scores get gradually worse, although there are numerous local digven one relatively large dip
betweenl 0> and10°® nodes.

2 The algorithm takes as input two parameters—the seed node and thesfemrathat intuitively controls the locality of
the computation—and it outputs a set of nodes. For a given seed nddesaiution parameterwe obtain a local community
profile plot, which tells us about conductance of cuts in vicinity of the seelé nBy taking the lower-envelope over community
profiles of different seed nodes andralues we obtain the global network community profile plot. For our exparim we
typically considered 00 different values ot. Since very local random walks discover small clusters, in this cas@nsdered
every node as a seed node. As we examine larger clusters, the ravalbroomputation spreads farther away from the seed
node, in which case the exact choice of seed node becomes less impdttas, in this case, we sampled fewer seed nodes.
Additionally, in our experiments, for each value«fve randomly sampled nodes until each node in the network was visited by
random walks starting fron1,0 different seed nodes on average.
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Figure 10.6: Network community profile plots for a representative sanufléarge networks listed in
TablesA.2, A.3 andA.4. The red curves plot the results of the Local Spectral Atyari
on the specified network; green curves plot the results ofd¥iBtQl; blue curves plot the
results of the Bag-of-Whiskers Heuristic; and black curvix fhe results of the Local
Spectral Algorithm applied to a randomly rewired versioritef same network. Notice that
in all cases the “best” communities are quite small (typydagétweenl 0 and100 nodes) and
that the network community profile plot steadily increasmsrfearly its entire range. See
Figures10.7, 10.8 and10.9for the NCP plots of other networks.



Note that both axes in Figur0.6 are logarithmic, and thus the upward trend of the NCP plot is over
a wide range of size scales. Note also that the green curve plots the oéduietis+MQI (that returns
disconnected clusters), and the blue curve plots the results of applyiBatief-Whiskers Heuristic, as
described in Sectioh0.4.3 These procedures will be discussed in detail in Sectlngand10.5

The black curve in Figur&0.6(a)plots the results of the Local Spectral Algorithm applied t@waired
versionof the LIVEJOURNALO1 networkj.e., to a random graph conditioned on the same degree distribu-
tion as the original network. (We obtain such random graph by starting vétbariginal network and then
randomly selecting pairs of edges and rewiring the endpoints. By doingwigng long enough, we ob-
tain a random graph that has the same degree sequence as the origiogk fidilo et al., 2004.)

Interestingly, the NCP of a rewired network first slightly decreases lat thcreases and flattens out.
Several things should be noted:

e The original LVEJOURNALOL network has considerably more structure, deeper/better cuts,
than its rewired version, even up to the largest size scales. That is, seevelsignificantly more
structure than would be seen, for example, in an random graph on thedsgnee sequence.

¢ Relative to the original network, the “best” community in the rewired gragh,the global min-
imum of the conductance curve, shifts upward and towards the left. Thiagrbat in rewired
networks the best conductance clusters get smaller and have wotkectance scores.

e Sets at and near the minimum are small trees that are connected to the cereapictbm graph by
a single edge.

e After the small dip at a very small size scate (0 nodes), the NCP plot increases to a high level
rather quickly. This is due to the absence of structure in the core.

Finally, also note that the variance in the rewired version of the NCP pltd ¢z shown) is not much
larger than the width of the curve in the figure.

We have observed qualitatively similar results in nearly every large sawihirdormation network we
have examined. For example, several additional examples are presehrtgdre10.6 another network
from the class of social networks gENIONS, in Figure10.6(b); an information/citation network (G-
HEP-TH, in Figure10.6(c); a Web graph (W¥B-GOOGLE, in Figure10.6(d); a Bipartite affiliation net-
work (ATP-DBLP, in Figurel0.6(e); and an Internet network (GJTELLA-31, in FigurelO0.6(f)).

Qualitative observations are consistent across the range of netwesk densities, and different domains
from which the networks are drawn. Of course, these six networkseayedifferent than each other—
some of these differences are hidden due to the definition of the NCP pleteasothers are evident.
Perhaps the most obvious example of the latter is that even the best cuts&JiTEG A-31 are not sig-
nificantly smaller or deeper than in the corresponding rewired networ&resls for VEB-GOOGLE we
observe cuts that are orders of magnitude deeper.

Intuitively, the upward trend in the NCP plot means that separating largeerdusom the rest of the
network is especially expensive. It suggests that larger and largeteduare “blended in” more and
more with the rest of the network. The interpretation we draw, based oe tla¢a and data presented in
subsequent sections is that, if a density-based concept such asomducaptures our intuitive notion
of community goodness and if we model large networks with interaction graipés the best possible
communities get less and less community-like as they grow in size.
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10.3.4 More community profile plots for large social and infomation networks

Figures10.7, 10.8 and10.9show additional examples of NCP plots for networks from Talles A.3
andA.4. In the first two rows of Figurd 0.7, we have several examples of purely Social networks and
two email networks, in the third row we have patent and blog Information/citatatworks, and in the
final row we have three examples of actor and author Collaboration netwlorFigurel0.8 we see three
examples each of Web graphs, Internet networks, Bipartite affiliationank$ywand Biological networks.
Finally, in the first row of Figurd.0.9 we see Low-dimensional networks, including two road and a man-
ifold network; in the second row, we have an IMDB Actor-to-Movie grajaimd two subgraphs induced
by restricting to individual countries; in the third row, we see three Amazoduyxt co-purchasing net-
works; and in the final row we see a Yahoo! Answers networks and tlvgraphs that are large good
conductance cuts from the full network.

For most of these networks, the same four versions of the NCP plot atedpotbat were presented in
Figure10.6 Note that, as before, the scale of the vertical axis in these graphs id tiee aame; the
minima range froml0~2 to 10~°. These network datasets are drawn from a wide range of areas, and
these graphs contain a wealth of information, a full analysis of which is vegibihd the scope of the
chapter. Note, however, that the general trends we discussed inrBB2i83still manifest themselves in
nearly every network.

The IMDB-RAWO7 network is interesting in that its NCP plot does not increase much (atlettste ver-
sion computed by the Local Spectral Algorithm) and we clearly observe &et$ with good conductance
values. Upon examination, many of the large good conductance cuts seéemassociated with different
language groups. Two things should be noted. First, and not surgyisinghis network and others,
we have observed that there is some sensitivity to how the data are prefameexample, we obtain
somewhat stronger communities if ambiguous nodes (and there are a lotiguandnodes in network
datasets with millions of nodes) are removed thaa.i, they are assigned to a country based on a voting
mechanism of some other heuristic. A full analysis of these data prepaisgiaes is beyond the scope of
this chapter, but our overall conclusions seem to hold independeng giréiparation details. Second, if
we examine individual countries—two representative examples are shtvem we see substantially less
structure at large size scales.

The Yahoo! Answers social network (se&idWERS also has several large cuts with good conductance
value—actually, the best cut in the network has mtde nodes. (It is likely that exogenous factors
are responsible for these large deep cuts.) Using standard graph pegitprocedures, we obtained
four large disjoint clusters consisting of c&, 300, 25,400, 27,000, and290, 000 nodes, respectively,
corresponding to the four dips (two of which visually overlap) in the NCR. plde then examined the
community profile plots for each of these pieces. The two representatarepges of which we show
clearly indicate a NCP plot that is much more like other network datasets weskam@ned.

10.4 More structural observations of our network datasets

We have examined in greater detail our network datasets in order to tartevehich structural properties
are responsible for the observed properties of the NCP plot. We fesept statistics for our network
datasets in Sectioh0.4.1 Then, in Sectior10.4.2we describe a heuristic to identify small sets of nodes
that have strong connections amongst themselves but that are contoetttedemainder of the network
by only a single edge. In Sectidi9.4.3 we show that these “whiskers” (or disjoint unions of them) are
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Figure 10.7: Community profile plots of networks from Tabbe2.
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Figure 10.8: Community profile plots of networks from Tabbe3.
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often the “best” conductance communities in the network. Last, in Setfigh4we examine NCP plots
for networks in which these whiskers have been removed.

10.4.1 General statistics on our network datasets

In TablesA.2, A.3, and A.4, we also present the following statistics for our network datasets: the
number of nodesV; the number of edge#’; the fraction of nodes in the largest biconnected com-
ponentN,/N; the fraction of edges in the largest biconnected compogpt; the average degree

d = 2F/N; the empirical second-order average degf@eung and Lu20063 d; average clustering co-
efficient [Watts and Strogat2999 C' the estimated diametdp; and the estimated average path length
D. (The diameter was estimated using the following algorithm: pick a random fiodethe farthest
nodeX (via shortest path); move t& and find the farthest node frofd; iterate this procedure until the
distance to the farthest node does not increase anymore. The apathdength was estimated based on
10,000 randomly sampled nodes.)

In nearly every network we have examined, there is a substantial frawtioodes that are barely con-
nected to the main part of the networle,, that are part of a small cluster of ce) to 100 nodes that are

attached to the remainder of the network via one or a small number of edgesticular, a large fraction

of the network is made out of nodes that are not in the biconnected core.

For example, the EINIONS network hasr5, 877 nodes andl05, 739 edges, and the core of the network
has only36, 111 (47%) nodes and65, 253 (90%) edges. For BLICIOUS, the core is even smaller: it
contains only40% of the nodes, an@5% of the edges. Averaging over our network datasets, we see
that the largest biconnected component contains around6dfifyof the nodes an@0% of the edges
of the original network. This is somewhat akin to the so-called “Jellyfish” rmf@auro et al. 2001,
Siganos et al.200§4 (which was proposed as a model for the graph of internet topology)adso to
the “Octopus” model (for random power law grapl@&hung and Lu20064, which is described in more
detail in Sectionl0.6.9. Moreover, the global minimum of the NCP plot is nearly always one ofethes
pieces that is connected by only a single edge. Since these small banelyeted pieces seem to have a
disproportionately large influence on the community structure of our netdatdsets, we examine them
in greater detail in the next section.

10.4.2 Network “whiskers” and the “core”

We definewhiskers or more preciselyl-whiskers to be maximal subgraphs that can be detached from
the rest of the network by removingsingleedge. (Occasionally, we use the term whiskers informally
to refer to barely connected sets of nodes more generally.) Td fimdiskers, we employ the following
algorithm. Using a depth-first search algorithm, we find the largest bicvetieomponenB of the graph

G. (A graph is biconnected if the removal of any single edge does notrdigch the graph.) We then
delete all the edges i@d that have one of their end points By We call the connected components of this
new graphG’ 1-whiskers, since they correspond to largest subgraphs that casdomdected fronds by
removing just a single edge. Recall that FigliBe2(b)contains a schematic picture a network, including
several of its whiskers.

3 In this chapter, we are slightly abusing standard terminology by using tineiezonnectivity to mean 2-edge-connectivity.
We are running the classic DFS-based bi-connectivity algorithm, which identifi¢ls bridge edges and articulation nodes, but
then we are only knocking out the bridge edges, not the articulation nsdege end up with 2-edge-connected pieces.
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There is a wide range of whisker sizes and shapes. Figudé®shows the distribution of-whisker sizes
for a representative selection of our network datasets. Empiridallfhisker size distribution is heavy-
tailed, with the largest whisker size ranging from around less flfato well abovel00. The largest
whiskers in co-authorship and citation networks have ardindodes, whiskers in bipartite graphs also
tend to be small, and very large whiskers are found in a web graph. Fi§utalso compares the size of
the whiskers with the sizes of whiskers in a rewired version of the same ret{ide first thing to note
is that due to the sparsity of the networks, the rewired versions all haigkevk.) In rewired networks
the whiskers tend to be much smaller than in the original network. A particulatgnworthy exception is
found in the Autonomous systems networks and they@=LLA-31 network. (See Figurg0.10(f)for an
example of the latter.) In these cases, the whiskers are so small that evewitieel version of the network
has more and larger whiskers. This makes sense, given how thosekeetvere designed: clearly, many
large whiskers would have negative effects on the Internet conitgadtivcase of link failures.

Figure10.11shows the ten largest whiskers of theiEIONS social network, the full size distribution of
which was plotted in Figur&0.10(b) and Figurel0.12shows the ten largest whiskers of the CAND-
MAT co-authorship network. In these networks, the whiskers have on dee of10 nodes, and they are
seen to have a rich internal structure. Similar but substantially more complerdigould be generated
for networks with larger whiskers. In general, the results we obseeseansistent with a knowledge of
the fields from which the particular datasets have been drawn. For exampéeB-GOOGLE we see
very large whiskers. This probably represents a well-connected rietvebween the main categories of
a website €.g, different projects), while the individual project websites have a maiexnhge that then
points to the rest of the documents.

The discrepancy between the sizes of the whiskers in the original anéwlired networks gives hints
that real networks have much richer structure than that imposed by tlaiy-t&iled degree distribution.
One might ask whether the conclusion from this is that real-world graphddie thought of as being
somewhat like sparse random graphs, simcg, both have whiskers, or should be thought of as very
different than sparse random graphs, simcg, the whiskers have much more internal structure. We will
return to this issue in Sectidi0.6

10.4.3 Bags of whiskers and communities of composed whiskers

Empirically, if one looks at the sets of nodes achieving the minimum in the NCPgregi§ Metis+MQI
curve), then before the global NCP minimum communities are whiskers and #iat size scale they are
often unions of disjoint whiskers. To understand the extent to which thlesiers and unions of whiskers
are responsible for the “best” conductance sets of different sizzbawe developed tHgag-of-Whiskers
Heuristic We artificially compose “communities” from disconnected whiskers and neasmductance
of such clusters. Clearly, interpreting and relating such communities to @éd-e@ommunities makes
little sense as these communities are in fact disconnected.

In more detail, we performed the following experiment: suppose we haveld& se {w;,ws, ...} of
whiskers. In order to construct the optimal conductance cluster ofksize need to solve the following
problem: find a seC of whiskers such tha} . - N(w;) = kand}_, - % is maximized, where

N (w;) is the number of nodes im; andd(w;) is its total internal degree. We then use a dynamic pro-
gramming to get an approximate solution to this problem. This way, for eaclk siwe find a cluster
that is composed solely from (disconnected) whiskers. FigjQréas well as Figure0.7, 10.8and10.9
show the results of this heuristic applied to many of our network datasetsdinue).
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Figure 10.11: Ten largest whiskers of theFENIONS social network. The green square node is the node
from the bi-connected core of the network to which the whiskeconnected. For visual
clarity, the whisker node that connects to the core of thevort is displayed in red, and
thus it is the edge between the red circle and the green sqodeethat if cut disconnects
the whisker from the core. The distribution of whisker siaesl comparison to rewired
network is plotted in Figur&0.10(b)

Figure 10.12: Ten largest whiskers of the CAoND-MAT co-authorship network. The green square node
belongs to the network core, and by cutting the edge comedtivith red circular node
we separate the community of circles from the rest of the otwWdepicted as a green
square).
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There are several observations we can make:

e The largest whisker (denoted with a red square) is the lowest point iyredaNCP plots. This
means that the best conductance community is in a sense trivial as it cutsingteaedge, and in
addition that a very simple heuristic can find this set.

e For community size below the critical size of 100 nodes (.e., of size smaller than the largest
whisker), the best community in the network is actually a whisker and canti®/@usingle edge
(blue and red curve overlap).

e For community size larger than the critical size =of 100, the Bag-of-Whiskers communities
have better scores than the internally well-connected communities extracteddlySpectral (red
curve). The shape of this blue curve in that size region depends origtnibdution of sizes of
whiskers, but in nearly every case it is seen to yield better conductatsthan the Local Spectral
Algorithm.

Moreover, the Bag-of-Whiskers Heuristic often almost exactly agrébs@sults from Metis+MQI (green
curve). In particular, the best conductance sets of a given sizdtaredisconnected, and when they are
connected they are often only tenuously connected. Thus, if one orégg edout finding good cuts
then the best cuts in these large sparse graphs are obtained by compusiated disconnected pieces.
Intuitively, a compact cluster is internally well and evenly connected. iBlessieasures for cluster com-
pactness include: cluster connectedness, diameter, conductanceof itgde the cluster, ratio of con-
ductance of the cut outside versus the cut inside. We discuss this in maildrd&ection10.5

10.4.4 NCP of networks with nol-whiskers

Given the surprisingly significant effect on the community structure dfweald networks that whiskers
and unions of disjoint whiskers have, one might wonder whether weoseetking qualitatively different
if we consider a real-world network in which these barely-connecteapikave been removed. To study
this, we found alll-whiskers and removed them from our networks, using the procedeidgescribed in
Sectionl10.4.2 i.e., we selected the largest biconnected component for each of our ketataisets. This
way, we kept only the network core, and we then computed the NCP plotisese modified networks.
Figure10.13shows the NCP plots of networks constructed when we remove whisler&éep only the
network core) for the six networks we studied in detail before.

Notice that whisker removal does not change the NCP plot much: the jifiet slightly upward, but the
general trends remain the same. Upon examination, the global minimum odtiues"@whisker” that is
connected by two edges to the remainder of the graph. Intuitively, thestebp®nnected core has a large
number of barely connected pieces—connected now by two edges ttehdry one edge—and thus the
“core” itself has a core-periphery structure. Since the “volume” fos¢hgieces is similar to that for the
original whiskers, whereas the “surface area” is a factor of two fatbe conductance value is roughly
a factor of two worse. Thus, although we have been discudsinbiskers in this section, one should
really view them as the simplest example of weakly-connected pieces thaaesignificant effect on the
community structure in large real-world networks.
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10.5 Comparison to other algorithms

So far, we have been primarily relying on two graph partitioning algorithmsoaalLSpectral Algorithm
and Metis+MQI. Next, we want to demonstrate that what we are observantyug structural property of
our network datasets, rather than properties of our algorithms; and meouwase the differences between
different approximation algorithms to further highlight structural propsrtieour network datasets. In
this section we discuss several meta-issues related to this, including wbethetr our algorithms are
sufficiently powerful to recover the true shape of the minimal conductamees, and whether we should
actually be trying to optimize a slightly different measure that combines conthectd the separating cut
with the piece compactness.

Recall that we defined the NCP plot to be a curve showing the minimum comdectas a function of
piece sizek. Finding the points on this curve is NP-hard. Any cut that we find will onlyjate an upper
bound on the true minimum at the resulting piece’s size. Given that fact, tifident can we be that the
curve of upper bounds that we have computed has the same rising or $hléipg as the true curve?

One method for finding out whether any given algorithm is doing a goodfigushing down the upper

bounding curve in a non-size-biased way is to compare its curves forrousmgraphs with those pro-
duced by other algorithms. In such experiments, it is good if the algorithmgeayepowerful and also

independent of each other. We have done extensive experimentdiasedines, and our choice of Local
Spectral and Metis+MQI as the two algorithms for the main body of this chaptebased on the results.
In Section10.5.1we mention a few interesting points related to this.

A different method for reducing our uncertainty about the shape oftieectirve would be to also compute
lower bounds on the curve. ldeally, one would compute a complete cutighbfower bounds, leaving a
thin band between the upper- and lower-bounding curves, which wolkld the rising or falling shape of
the true curve obvious. In Sectid®.5.2we discuss some experiments with lower bounds. Although we
only obtained a few lower bounds rather than a full curve, the resultsoasstent with our main results
obtained from upper-bounding curves.

Finally, in Section10.5.3we will discuss our decision to use the Local Spectral algorithm in addition to
Metis+MQI in the main body of the chapter, despite the fact that Metis+MQlrigieminates Local
Spectral at the nominal task of finding the lowest possible upper bounding for the minimal conduc-
tance curve. The reason for this decision is that Local Spectral aftams “nicer” and more “compact”
pieces because rather than minimizing conductance alone, it optimizes a sliffietlgrd measure that
produces a compromise between the conductance of the bounding dinedftdmpactness” of the re-
sulting piece.

10.5.1 Cross-checking between algorithms

As just mentioned, one way to gain some confidence in the upper boundivesquoduced by a given
algorithm is to compare them with the curves produced by other algorithmsréhas strong as possible,
and as independent as possible. We have extensively experimentecewatialssariants of the global
spectral method, both the usual eigenvector-based embedding on antires 8DP-based embedding on
a hypersphere, both with the usual hyperplane-sweep rounding meetldafancier flow-based rounding
method which includes MQI as the last step. In addition, special postgsingecan be done to obtain
either connected or disconnected sets. After examining the output of8@rmmaparatively expensive al-
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gorithms on more thaih00 graphs, we found that our two cheaper main algorithms did miss an ocdasiona
cut on an occasional graph, but nothing at all serious enough t@elm main conclusions. All of those
detailed results are suppressed in this chapter.

We have also done experiments with a practical version of the Leighto@Bathm [Leighton and Rao
1988 1999, similar to the implementation described iteng and Rap1993 and [Lang and Rap2004.
These results are especially interesting because the Leighton-Rao atgosittich is based on multi-
commodity flow, provides a completely independent check on Metis, and ectrapMethods generally,
and therefore on our two main algorithms, namely Metis+MQI and Local Sgeclihe Leighton-Rao
algorithm has two phases. In the first phase, edge congestions dueedoby routing a large number of
commodities through the network. We adapted our program to optimize condedtather than ordinary
ratio cut score) by letting the expected demand between a pair of nodesgmetpnal to the product of
their degrees. In the second phase, a rounding algorithm is used tercedge congestions into actual
cuts. Our method was to sweep over node orderings produced by guRrim’'s MST algorithm on the
congestion graph, starting from a large number of different initial nag&iag a range of different scales
to avoid quadratic run time. We used two variations of this method, one that mdyges connected sets,
and another one that can also produce disconnected sets.

In the second row of Figur&0.14 we show Leighton-Rao curves for three example graphs. Our sthndar
Local Spectral and Metis+MQI curves are drawn in black, while the LieigtiRao curves for connected
and possibly disconnected sets are drawn in green and magenta respedie note that for small to
medium scales, the Leighton-Rao curves for connected sets resembleddleSpectral curves, while
the Leighton-Rao curves for possibly disconnected sets resemble the-M&i<urves. This is big hint
about the structure of the sets produced by Local Spectral and Mef)$+tiat we will discuss further in
Section10.5.3

At large scales, the Leighton-Rao curves for these example grapbsighand become much worse than
our standard curves. This is not surprising because expanddrsgaeg known to be the worst case input
for the Leighton-Rao approximation guarantee, and we believe that thegstesgcontain an expander-like
core that is necessarily encountered at large scales. We remark itplatidreRao does not work poorly at
large scales on every kind of graph. (In fact, for large low-dimensimesh-like graphs, Leighton-Rao is
a very cheap and effective method for finding cuts at all scales, whiltooal spectral method becomes
impractically slow at medium to large scales. We will not discuss this point fyrtixeept to note that in
the main body of the chapter we have silently substituted Leighton-Rao davksal spectral curves
for the large road networks and similar graphs.)

We have now covered the main theoretical algorithms that are practicajetoactually run, which are
based on spectral embeddings and on multi-commodity flow. Starting Aviting et al, 20041, there has
been a recent burst of theoretical activity showing that spectral ewdbfased ideas, which were already
known to have complementary strengths and weaknesses, can in fachbiaed to obtain the best ever
approximations. At present none of the resulting algorithms are sufficiprabtical at the sizes that we
require, so they were not included in this study.

Finally, we mention that in addition to the above theoretically-based practicabawefor finding low-
conductance cuts, there exist a very large number of heuristic gragterihg methods. We have tried a
number of them, including GracluPhillon et al, 2007 and Newman’s modularity optimizing program
(we refer to it as Dendrogram@jrvan and Newma2003. Graclus attempts to find a partitioning of a
graph into pieces bounded by low-conductance cuts using a kernehksnaggorithm. We ran Graclus
repeatedly, asking fa?,3,...,4,...,i * /2, ... pieces. Then we measured the size and conductance of
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NCP plots obtained by Graclus and Newman’s Dendrogram algorithm.
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Figure 10.14:Result of other algorithms for three networks:PIEIONS, EMAIL -ENRON, and CA-
ASTRO-PH. Top row plots (in black) conductance curves as obtained dyal Spectral
and Metis+MQI. Top row also shows lower bounds on condu&afcany cut (Spectral
lower bound, dashed line) and the cut separating the grapalif{SDP lower bound, red
triangle). Middle row shows NCP plots for connected (gresm) disconnected (magenta)
pieces from our implementation of the Leighton-Rao aldonit Bottom row shows the
conductance of some cuts found by Graclus and by Newman'sifogram algorithm.
The overall conclusion is that the qualitative shape of t@#Nblots is a structural property
of large networks and the plot remains practically unchdrrggardless of what particular
community detection algorithm we use.

all of the resulting pieces. Newman'’s Dendrogram program construetsuasive partitioning of a graph
(that is, a dendrogram) from the bottom up by repeatedly deleting thevswg\edge with the highest
betweenness centrality. A flat partitioning could then be obtained by cuttitng &vel which gives the

highest modularity score, but instead of doing that, we measured the Soadidictance of every piece
defined by a subtree in the dendrogram.
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In the bottom row of Figurd0.14 we present these results as scatterplots. Again our two standard curve
are drawn in black. No Graclus or Dendrogram point lies below the Met@@kburve. The lower-
envelopes of the points are roughly similar to those produced by Locati@pe

Our main point with these experiments is that the lowest points produced by®itheus or Dendrogram
gradually rise as one moves from small scales to larger scales, so in [@weipould have made the same
observations about the structure of large social and information nedviagrkunning one of those easily
downloadable programs instead of the algorithms that we did run. We choafgtirithms we did due to
their speed and power, although they may not be as familiar to many readers.

10.5.2 Lower bounds on cut conductance

As mentioned above, our main arguments are all based on curves whiccttaedly upper bounds

on the true minimum conductance curve. To get a better idea of how good tipper bounds are,
we also compute some lower bounds. Here we will discuss the spectral bmued Chung 1997

on the conductance of cuts of arbitrary balance, and we will also discuetated SDP-based lower
bound Burer and Monteirp2003 on the conductance of any cut that divides the graph into two pieces of
equal volume.

First, we introduce the following notatiod:is a column vector of the graph’s node degrdess a square
matrix whose only nonzero entries are the graph’s node degrees omatfemadl; A is the adjacency
matrix of G; L = D — A is then the non-normalized Laplacian matrix@f 1 is vector of 1's; and
A e B = trace(AT B) is the matrix dot-product operator.

Now, consider the following optimization problem (which is well known to beiegjant to an eigenprob-
lem):

. T Lx -
)\G—mln{xTDx.xJ_d,x;éO}.

Let 2 be a vector achieving the minimum valdg. Then%" is the spectral lower bound on the conduc-
tance of any cut in the graph, regardless of balance, whilefines a spectral embedding of the graph on
a line, to which rounding algorithms can be applied to obtain actual cuts thatcamas upper bounds at
various sizes.

Next, we discuss an SDP-based lower bound on cuts which partition thh g two sets of exactly
equal volume. Consider:

1 .
CG:min{4LoY:diag(Y):1,Yo(dJT):0,Yt0},

and letY” be a matrix achieving the minimum val@g;. ThenCy is a lower bound on the weight of any
cut with perfect volume balance, agds/Vol(G) is a lower bound on the conductance of any cut with
perfect volume balance. We briefly mention that siice- 0, we can viewY as a Gram matrix that can
be factored can be factored A%’ . Then the rows oR? are the coordinates of an embedding of the graph
on a hypersphere. Again, rounding algorithms can be applied to the embedabtain actual cuts that
can server as upper bounds.

The spectral and SDP embeddings defined here were the basis fotdhsiex experiments with global
spectral partitioning methods that were alluded to in Secti@.1 However, in this section, it is the
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lower bounds that concern us. In the top row of Figlifel4 we present the spectral and SDP lower