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Abstract 
 

I introduce topic evolution models for longitudinal epochs of word documents. The models employ 
marginally dependent latent state-space models for evolving topic proportion distributions and topicspecific 
word distributions; and either a logistic-normal-multinomial or a logistic-normal-Poisson model for 
document likelihood. These models allow posterior inference of latent topic themes over time, and topical 
clustering of longitudinal document epochs. I derive a variational inference algorithm for nonconjugate 
generalized linear models based on truncated Taylor approximation, and I also outline formulae for 
parameter estimation based on variational EM principle. 
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1 Introduction

Text information, such as media documents, journal articles and emails, often come as temporal streams.
Current information retrieval systems working on corpora collected over time make little use of the time
stamps associated with the documents. They often merely pool all the documents into a single collection,
in which each document is treated as an iid sample from some topical distribution [Hofmann, 1999; Blei
et al., 2003; Griffiths and Steyvers, 2004]; or model the topics of each time-specific epoch separately and
then examine relationships among the independently inferred time-specific topics [Steyvers et al., 2004].
In practice, topic themes that generate the documents can evolve over time, and there exist dependencies
among documents over time. In this report, I develop a principled statistical framework for modeling topic
evolution and extracting high-level insights of the topic history based on latent space dynamic processes,
and I derive the formulae for posterior inference and parameter estimation.

2 Topic Evolution

Let {D1, . . . ,DT } represent a temporal series of corpus, where Dt ≡ {x(t)

d }Nt

d=1 denotes the set of Nt

documents available at time t, xd denotes a document consisting of word sequence (xd,1, . . . , xd,Nd
), and

~nd = (nd,1, . . . , nd,M ) denotes an M -dimensional count vector corresponding to the frequencies of M words
(defined by a fixed vocabulary) in document d. We assume that every document xd can express multiple
topics coming from a predefined topic space, and the weights of every topic can be represented by a nor-
malized vector θd of fixed dimension. Furthermore, we assume that each topic can be represented by a set
of parameters that determine how words from a fixed vocabulary can be drawn in a topic-specific manner
to compose the document (for simplicity, here we assume a bag-of-word model for the word-to-document
relationship, so that topic-specific semantics only translate to measures on word rates, but not to non-trivial
syntactic grammars).

Under a topic evolution model, the prior distributions of topic proportions of every document, and the
representations of each of the topics themselves, are evolving over time. In the following, I present two topic
evolution models defined on two different kinds of topic representations, and derive the variational inference
formulas in each case.

2.1 A Dynamic Logistic-Normal-Multinomial Model

In this model we assume that each document is an admixture of topics resulting from a bag of topic-specific
instances of words, each of which is marginally a mixture of topics. Each topic, say topic k, is represented by
an M -dimensional normalized word frequency vector ~βk, which parameterizes a topic-specific multinomial
distribution of word. Here is an outline of a generative process under such a model (a graphical model
representation of this model is illustrated in Figure 1):

• We assume that the topic proportion vector ~θ for each document follows a time-specific logistic normal
prior LN (~µt,Σt), whose mean ~µt is evolving over time according to a linear Gaussian model: (For
simplicity, we assume that the Σt’s capturing time-specific topic correlations are independent across
time.)

– ~µ1 ∼ Normal(ν, Φ), sample the mean of the topic mixing prior at time 1.

– ~µt = Normal(A~µt−1,Φ), sample the means of the topic mixing priors over time.

– ~θ(t)

d ∼ LogisticNormal(~µt,Σt),

for each document, sample a topic proportion vector (for
simplicity, in the sequel we will omit the time index t and/or
document index d when describing a general law that ap-
plies to all time points and/or all documents).

Notice that the last step above can be broken into two sub-steps:

∗ ~γ(t)

d ∼ Normal(~µt,Σt),
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∗ θ(t)

d,k =
exp(γ

(t)
d,k)P

k′ exp(γ
(t)
d,k′ )

, ∀k = 1, . . . ,K.

Furthermore, due to the normalizability constrain of the multinomial parameters, ~θ
only has K − 1 degree of freedom. Thus, as described in detail in the sequel, we only
need to draw the first K−1 components of ~γ from a (K−1)-dimensional multivariate
Gaussian, and leave γK = 0. But for simplicity, we omit this technicality in the forth
coming general description of our model.

• We further assume that the representation of each topic, in this case a topic-specific multinomial
vector ~β of word frequencies, is also evolving over time. By defining ~β as a logistic transformation of
a multivariate normal random vector ~η, we can model the temporal evolution of ~β in a simplex via a
linear Gaussian dynamics model:

– ~η(1)

k ∼ Normal(ιk,Ψk), sample the topic k at time 1.

– ~η(t)

k ∼ Normal(Bk~η(t−1)

k ,Ψk), sample topic k over subsequent time points.

– β(t)

k,w =
exp(η

(t)
k,w)P

w′ exp(η
(t)
k,w′ )

, ∀w = 1, . . . ,M , compute word probabilities via logistic transformation.

• Now we assume that each occurrence of word, e.g., the nth word in document d at time t, x(t)

d,n, is
drawn from a topic-specific word distribution ~β(t)

k , specified by a latent topic indicator z(t)

d,n = k.

– z(t)

d,n ∼ Multinomial(θ(t)

d )
sample the latent topic indicator (again, for simplicity, in-
dices t and d will be omitted in the sequel where no confu-
sion arises.)

– x(t)

d,n|z
(t)

d,n = k ∼ Multinomial(~β(t)

k ), sample the word from a topic-specific word distribution.

In principle, we can use the above topic evolution model to capture not only topic correlation among
documents at a specific time (as did in [Blei and Lafferty, 2006]), but also dynamic coupling (i.e., co-
evolution) of topics via covariance matrix Φ, and topic-specific word-coupling via covariance matrices {Ψk}.
In the simplest scenario, when A = I, B = I, Φ = σI, and Ψk = ρI, this model reduces to random walk
in both the topic spaces, and the topic-mixing space. Since in most realistic temporal series of corpus, both
the proportions of topics, and the semantic representations of topics are unlikely to be invariant over time,
we expect that even a random walk topic evolution model can provide a better fit of the data than a static
model that ignores the time stamps of all documents.

2.2 A Dynamic Log-Normal-Poisson Model

The above topic evolution process assumes an admixture likelihood model for documents belonging to a
specific time interval, and the admixing is realized at the word level, i.e., the marginal probability of each
word in the document is defined by a mixture of topic-specific word distributions.

Now we present another text likelihood model employing a different topic mixing mechanism, which can
be also plugged into the topic evolution model. Note that in a bag-of-word model all we observed are counts
of words in the documents. Instead of assuming each occurrence of a word is sampled from the topic-specific
word distribution, we can directly assume that the total count nw of word w is made up of fractions each
contributed by a specific topic according to a topic-specific Poisson distribution Poisson(ωθkτw,k), where
ω denotes the length of the document, θk denotes the proportion of topic k in the document as defined
before, and τw,k is a rate measure for word w associated with topic k. Specifically, nw =

∑
k nw,k, nw,k ∼

Poisson(ωθkτw,k). It can be shown that under this model we have:

nw ∼ Poisson(ω
∑

k

θkτw,k) = exp{nw log(ω
∑

k

θkτw,k)− ω
∑

k

θkτw,k − Γ(nw + 1)}.
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Figure 1: A graphical model representation of the dynamic logistic-normal-multinomial model for topic evolution.

Note that in the above setting for each word w we have a row vector of rates each associated with a specific
topic: ~τw,· = (τw,1, . . . , τw,K). For each topic k, we have a column vector of rates each associated with a spe-
cific word, ~τ·,k = (τ1,k, . . . , τM,k)′. Unlike the multinomial topic model parameterized by column-normalized
topic matrix β = [ ~β1, . . . , ~βK ], the Poisson topic model is parameterized by matrix τ = [~τ·,1, . . . , ~τ·,K ] that
does not have to be column- or row-normalized. Thus we can directly use a Log-Normal distribution to
model ~τ , which is simpler than the logistic-normal distribution. This leads to the following generative model
for topic evolution (assuming we are interested in modeling cross-topic coupling of word rates):

• – ~µ1 ∼ Normal(ν, Φ), sample the mean of the topic mixing prior at time 1.

– ~µt = Normal(A~µt−1,Φ), sample the means of the topic mixing priors over time.

– ~θ(t)

d ∼ LogisticNormal(~µt,Σt), for each document, sample a topic proportion vector.

• – ~ζ(1)
w ∼ Normal(0,Ψw), sample rates for word w at time 1.

– ~ζ(t)
w ∼ Normal(Bw

~ζ(t−1)
w ,Ψw), sample rates for word w over subsequent time points.

– τ (t)

w,k = exp(ζ(t)

w,k), ∀w = 1, . . . ,M , compute word rates.

• – n(t)

d,w ∼ Poisson(ω
∑

k θkτw,k) sample the word counts.

Figure 2 illustrates a graphical model representation of such a dynamic log-normal-Poisson model.

3 Variational Inference

3.1 Variational Inference for the Logistic-Normal-Multinomial Model

Under the Logistic-Normal-Multinomial topic evolution model, the complete likelihood function can be
written as follows:
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Figure 2: A graphical model representation of the dynamic log-normal-Poisson model for topic evolution. Note that the topic
representations evolve as M independent word-rate vectors, each of which defines the rates of a word of a fixed set of topics.

p(D, {~µt}, {~θ(t)

d }, {~η(t)

k }, {z(t)

d,n, })

= p({~µt})p({~θ(t)

d }|{~µt})p({~η(t)

k })p({z(t)

d,n}|{~θ
(t)

d })p({x(t)

d,n}|{z
(t)

d,n}, {~η
(t)

k })

=
(

p(~µ1|ν, Φ)
T∏

t=2

p(~µt|~µt−1)
)
×

( T∏
t=1

∏
d

p(~θ(t)

d |µt)
)
×

( ∏
k

(
p(~η(1)

k |ιk,Ψk)
T∏

t=2

p(~η(t)

k |~η(t−1)

k )
))

×
( T∏

t=1

Nt∏
d=1

Nd∏
n=1

p(z(t)

d,n|~θ
(t)

d )p(x(t)

d,n|z
(t)

d,n, {~η(t)

k })
)

=
(
N (~µ1|ν, Φ)

T∏
t=2

N (~µt|A~µt−1,Φ)
)
×

( T∏
t=1

∏
d

LN (~θ(t)

d |~µt,Σt)
)
×

( ∏
k

(
N (~η(1)

k |ιk,Ψk)
T∏

t=2

N (~η(t)

k |B~η(t−1)

k ,Ψ)
))

×
( T∏

t=1

Nt∏
d=1

Nd∏
n=1

Multinomial(z(t)

d,n|~θ
(t)

d )Multinomial(x(t)

d,n|z
(t)

d,n, {Logistic(~η(t)

k )})
)

. (1)

The posterior of
{
{~µt}, {~θ(t)

d }, {~η(t)

k }, {z(t)

d,n}
}

under the above model is intractable, therefore we approxi-
mate p({~µt}, {~θ(t)

d }, {~η(t)

k }, {z(t)

d,n}) with a product of simpler marginals, each on a cluster of latent variables:
q = qµ({µt})qθ({~θ(t)

d })qη({~η(t)

k })qz({z(t)

d,n}). Based on the generalized mean field theorem [Xing et al., 2003],
the optimal parameterization of each marginal, q(·|Θ), can be derived by plugging the generalized mean
field (GMF) messages received by the cluster of variables (say, XC) under each marginal to the original
conditional distribution of each variable cluster given its Markov blanket (MB); the GMF messages can be
thought of as surrogates of the dependent variables XMB in the Markov blanket of the cluster of variables
under the marginal (e.g., XC), and they will be used to replace the original values of the dependent variables
in the MB, e.g., p(XC |XMB) ⇒ p

(
XC |GMF(XMB)

)
. [Xing et al., 2003] showed that in case of generalized

linear model, the generalized mean field message corresponds to an expectation of the sufficient statistics
of the relevant Markov blanket variables under its associated GMF cluster marginal. In the sequel, we use
〈Sx〉qx to denote the GMF message due to latent variable x; and the optimal GMF approximation to p(XC)
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is:
q∗(XC) = p

(
XC |〈Sy〉qy : ∀y ∈ XMB

)
(2)

As a prelude for detailed derivations, we first rearrange some relevant local conditional distributions in our
model into the canonical form of generalized linear models. As mentioned before, the multinomial parameters
θk are logistic transformations of elements of a multivariate normal vector ~γ: θt = eγk/

∑
l e

γl . In fact, since
~θ is a multinomial parameter vector, it has only K−1 degree of freedom. Therefore, we only need to model a
K−1 dimensional normal vector, and pad it with an vacuous element γK = 0. Under this parameterization,
the logistic transformation from ~γ to ~θ remains the same, but the inverse of this transformation takes a
simple form: γk = ln θk

1−
PK−1

i=1 θi
= ln θk

θK
. Assuming that z is a normalized K-dimensional random binary

vector, that is, when z indicate the kth event, we have zk = 1, zi 6=k = 0, and
∑

i zi = 1; the exponential
family representation of a multinomial distribution for a topic indicator z is:

p(z|~θ) = exp{
K∑

k=1

zk ln θk} = exp
{ K−1∑

k=1

zk

(
γk − ln(1 +

K−1∑
k=1

eγk)
)
− zK ln(1 +

K−1∑
k=1

eγk)
}

= exp
{ K−1∑

k=1

zkγk −
K∑

k=1

zk ln
(
1 +

K−1∑
k=1

eγk
)}

. (3)

For a collection of topic indicators {z(t)

d,n}, we have the following conditional likelihood at time t:

p({z(t)

d,n : ∀n}|~θ(t)

d ) = exp
{ K−1∑

k=1

∑
n

z(t)

d,n,kγ(t)

d,k −
K∑

k=1

∑
n

z(t)

d,n,k ln
(
1 +

K−1∑
k=1

exp{γ(t)

d,k}
)}

= exp
{ K−1∑

k=1

n(t)

d,kγ(t)

d,k −
K∑

k=1

n(t)

d,k ln
(
1 +

K−1∑
k=1

exp{γ(t)

d,k}
)}

= exp
{

~m(t)

d ~γ(t)

d − ~n(t)

d 1× c(~γ(t)

d )

= exp
{

~m(t)

d ~γ(t)

d −N t
dc(~γ

(t)

d )
}

(4)

where n(t)

d,k =
∑

n z(t)

d,n,k is the number of words from topic k in document d at time t, ~m(t)

d = (n(t)

d,1, . . . , n
(t)

d,K−1)
denotes the row vector of total word-counts from topics 1 to K − 1 at time t; ~n(t)

d = (~m(t)

d , n(t)

d,K) denotes
the row vector of total word-counts in document d from all topics; 1 is a column vector of all ones; and
c(~γ(t)

d ) = ln
(
1 +

∑K−1
k=1 exp{γ(t)

k }
)

is a scalar determined by ~γ(t)

d .
Similarly, the local conditional probability of the data {x(t)

d,n}, where x is also defined as a M -dimensional
norm-1 binary indicator vector, can be written as:

p({x(t)

d,n : ∀n, d}|{z(t)

d,n : ∀n, d}, {~η(t)})

= exp
{ K∑

k=1

M−1∑
w=1

∑
d,n

x(t)

d,n,wz(t)

d,n,kη(t)

k,w −
K∑

k=1

M∑
w=1

∑
d,n

x(t)

d,n,wz(t)

d,n,k ln
(
1 +

M−1∑
w=1

exp{η(t)

k,w}
)}

= exp
{ K∑

k=1

M−1∑
w=1

n(t)

k,wη(t)

k,w −
K,M∑

k=1,w=1

n(t)

k,w ln
(
1 +

M−1∑
w=1

exp{η(t)

k,w}
)}

= exp
{ K∑

k=1

~m(t)

k ~η(t)

k −
K∑

k=1

~n(t)

k 1× c(~η(t)

k )
}

= exp
{ K∑

k=1

~m(t)

k ~η(t)

k −
K∑

k=1

N t
k × c(~η(t)

k )
}

, (5)
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where n(t)

k,w =
∑

d,n x(t)

d,n,wz(t)

d,n,k is the count for word w from topic k at time t; ~m(t)

k = (n(t)

k,1, . . . , n
(t)

k,M−1)
denotes the row vector of total word-counts of all but the last word of topic k at time t; ~n(t)

k = (~m(t)

k , n(t)

k,M )
denotes the row vector of counts of every word generated from topic k at time t; and c(~η(t)

k ) is a scalar
determined by ~η(t)

k . Note that we have the following identity: ~nt =
∑

k ~n(t)

k =
∑

d ~n(t)

d .
With the above specifications of local conditional probability distributions, in the following we can write

down one by one the GMF approximations to marginal posteriors of subsets of latent variables.

3.1.1

We first show that the marginal posterior of {~µt} can be approximated by a re-parameterized state-space
model.

qµ({~µt})
= p({~µt}|〈Sθ〉qθ

) = p({~µt}|〈Sγ〉qγ
)

∝ 1
(2π)K−1/2|Φ|1/2

exp{−1
2
(~µ1 − ν)′Φ−1(~µ1 − ν)} ×

( 1
(2π)K−1/2|Φ|1/2

)T

exp{−1
2

T∑
t=2

(~µt −A~µt−1)′Φ−1(~µt −A~µt−1)}

×
T∏

t=1

Nt∏
d=1

1
(2π)K−1/2|Σt|1/2

exp{−1
2
(〈~γ(t)

d 〉 − ~µt)′Σ−1
t (〈~γ(t)

d 〉 − ~µt)} (6)

where 〈~γ(t)

d 〉 = (〈γ(t)

d,1〉, . . . , 〈γ
(t)

d,K−1〉) is the expected topic vector of document d at time t, in which 〈γ(t)

d,k〉
denotes the expectation of γ(t)

d,k = ln θd,k

θd,K
under variational marginal qγ({~γ(t)

d }). For simplicity, we define

~yt
d = 〈~γ(t)

d 〉 as a short hand for the expected topic vector, and Yt = {〈~γ(t)

d 〉}Nt

d=1 as a short hand for all such
vectors at time t.

Note that the above Eq. 6 is a linear Gaussian SSM, except that at each time the output is not a single
observation 〈~γ(t)

d 〉, but a set of observations {〈~γ(t)

d 〉}Nt

d=1. It is well known that under a standard SSM, the
posterior distribution of the centroid ~µt given the entire observation sequence is still a normal distribution, of
which the mean and covariance matrix can be readily estimated using the Kalman filtering (KF) and Rauch-
Tung-Striebel (RTS) smoothing algorithms. Here we give the modified Kalman filter “measurement-update”
equations that take into account multiple rather than single output data points 1. The RTS equations and
the “time-update” equations of KF is identical to the standard case for single output. Let µ̂t|t denote the
mean of ~µt conditioned on partial sequence Y1, . . . ,Yt. The convariance matrix of ~µt conditioned on partial
sequence Y1, . . . ,Yt is denoted Pt|t; that is:

µ̂t|t ≡ E[~µt|Y1, . . . ,Yt]
Pt|t ≡ E[(~µt − µ̂t|t)× (~µt − µ̂t|t)′|Y1, . . . ,Yt].

Similarly, we let µ̂t+1|t denotes the mean of µt+1 conditioned on the partial sequence Y1, . . . ,Yt; Pt+1|t
denotes the covariance matrices of µt+1|t conditioned of partial sequences Y1, . . . ,Yt; and so on. Thus, the
SSM inference formulae are as follows:

• Time update:

µ̂t+1|t = Aµ̂t|t (8)
Pt+1|t = APt|t + Φ (9)

1This can be derived using the fact that the posterior mean and covariance matrix of the mean of a normal distribution
N (µ, Σ) given data Y and prior of the mean N (µ0, Σ0) is:

Σp = (nΣ−1 + Σ−1
0 )−1, µp = (nΣ−1 + Σ−1

0 )−1(nΣ−1ỹ + Σ−1
0 µ0) (7)
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• Measurement update:

µ̂t+1|t+1 = µ̂t+1|t + Pt+1|t(Pt+1|t + Σt/Nt)−1(γ̃t+1 − µ̂t+1|t) (10)

Pt+1|t+1 = Pt+1|t − Pt+1|t(Pt+1|t + Σt/Nt)−1Pt+1|t, (11)

• RTS smoothing:

Lt ≡ Pt|tA′Pt+1|t (12)
µ̂t|T = µ̂t|t + Lt(µ̂t+1|T − µ̂t+1|t) (13)

Pt|T = Pt|t + Lt

(
Pt+1|T − Pt+1|t

)
L′t (14)

where γ̃t+1 denote the sample mean of observations at time t + 1: γ̃t+1 = 1
Nt+1

∑
d ~yt+1

d .
To estimate the state dynamic matrix A, we also need to compute the cross-time convariance matrix

about ~µt and ~µt−1 conditioned on complete sequence Y1, . . . ,YT : Pt,t−1|T ≡ E[(~µt − µ̂t|T ) × (~µt−1 −
µ̂t−1|T )′|Y1, . . . ,Yt]. It can be shown that Pt−1→t|T satisfies the following backward recursion:

Pt−1→t|T = Pt|tL
′
t−1 + Lt(Pt→t+1|T −APt|t)L′t−1, (15)

which is initialized by PT−1→T |T = (I−KT )APT−1|T−1, where KT ≡ Pt+1|t(Pt+1|t+Σt/Nt)−1 is the Kalman
gain matrix.

3.1.2

Now we move on to the variational marginal qγ({~γ(t)

d }).

qγ({~γ(t)

d })
= p({~γ(t)

d }|〈Sµ〉qµ
, 〈Sz〉qz

)

=
T∏

t=1

Nt∏
d=1

p(~γ(t)

d |〈Sµt
〉qµ

, 〈Szt,d
〉
qz

)

∝
T∏

t=1

Nt∏
d=1

1
(2π)K−1/2|Σt|1/2

exp{−1
2
(~γ(t)

d − 〈~µt〉)′Σ−1
t (~γ(t)

d − 〈~µt〉)} exp
{
〈~m(t)

d 〉~γ(t)

d − 〈~n(t)

d 〉1× c(~γ(t)

d )
}

, (16)

where 〈~n(t)

d 〉 = (〈n(t)

d,1〉, . . . , 〈n
(t)

d,K〉) (c.f. 〈~m(t)

d 〉), and 〈n(t)

d,k〉 =
∑

n〈z
(t)

d,n,k〉 denotes the sum of expected topic-
specific counts for each word in document d under qz({z(t)

d,n}) (which will be specified in the sequel).
Due to the complexity of c(~γ(t)

d ) = ln
(
1 +

∑K−1
k=1 exp{γ(t)

d,k}
)
, the q(~γ(t)

d ) defined above is not integratable
during inference (e.g., for computing an expectation of ~γ). In [Blei and Lafferty, 2006], an variational
approximation based on optimizing a relaxed bound of the KL-divergence between q(·) and p(·) is used to
approximate q(~γ(t)

d ). In the following, we present a different approach that overcome the non-conjugacy
between the multinomial likelihood and the logistic-normal prior, and make the joint tractable. We seek
a normal approximation to q(~γ(t)

d ) using Taylor expansion technique. Let’s take a second-order Taylor
expansion of c(~γ) with respect to ~γ:

∂c

∂γi

=
eγi

1 +
∑K−1

k=1 eγk

≡ gi

∂2c

∂γi∂γi
=

∂

∂γi

( eγi

1 +
∑K−1

k=1 eγk

)
=
−eγieγi +

(
1 +

∑K−1
k=1 eγk

)
eγi(

1 +
∑K−1

k=1 eγk

)2

=

(
1 +

∑K−1
k=1,k 6=i eγk

)
eγi(

1 +
∑K−1

k=1 eγk

)2 ≡ hii

∂2c

∂γi∂γj
=

∂

∂γj

( eγi

1 +
∑K−1

k=1 eγk

)
=

−eγj eγi(
1 +

∑K−1
k=1 eγk

)2 ≡ hij . (17)
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Therefore, the 2nd-order Taylor series of c(~γ) = ln
(
1 +

∑K−1
k=1 exp{γk}

)
with respect to some γ̂ is:

c(~γ) = c(γ̂) + ~g′γ(~γ − γ̂) +
1
2
(~γ − γ̂)′Hγ(~γ − γ̂) + R2, (18)

where ~g′γ = ∇γc(~γ) = (g1, . . . , gK−1) denotes the gradient vector of c(~γ), Hγ = {hij} denotes the Hessian
matrix, and R2 is the Lagrange remainder. Assuming that γ̂ is close enough to the true γ for each document
at each time (e.g., the posterior mean of all γ), we have:

c(~γ) ≈ c(γ̂) + ~g′γ(γ̂)(~γ − γ̂) +
1
2
(~γ − γ̂)′Hγ(γ̂)(~γ − γ̂). (19)

It can be shown that since c(~γ) is convex w.r.t. ~γ, the above approximation is a 2nd-order polymornial lower
bound of c(~γ) [Jordan et al., 1999].

Now we have:

p(~γ(t)

d |〈Sµt
〉qµ

, 〈Szt,d
〉
qz

)

∝ 1
(2π)K−1/2|Σt|1/2

exp{−1
2
(~γ(t)

d − 〈~µt〉)′Σ−1
t (~γ(t)

d − 〈~µt〉)} exp
{
〈~m(t)

d 〉′~γ(t)

d − 〈~n(t)

d 〉1× c(~γ(t)

d )
}

≈ 1
(2π)K−1/2|Σt|1/2

exp
{
− 1

2
~γ′

(t)

d Σ−1
t ~γ(t)

d + ~γ′
(t)

d Σt〈~µt〉 −
1
2
〈~µt〉′Σt〈~µt〉+ ~γ′

(t)

d 〈~m(t)

d 〉

−N t
d

(
c(γ̂) + ~g′γ(γ̂)(~γ(t)

d − γ̂) +
1
2
(~γ(t)

d − γ̂)′Hγ(γ̂)(~γ(t)

d − γ̂)
)}

∝ exp
{
− 1

2
~γ′

(t)

d

(
Σ−1

t + N t
dHγ(γ̂)

)
~γ(t)

d + ~γ′
(t)

d

(
Σ−1

t 〈~µt〉+ 〈~m(t)

d 〉 −N t
d~gγ(γ̂) + N t

dHγ(γ̂)γ̂
)}

(20)

Rearranging the terms, and setting γ̂ = 〈~µt〉 = µ̂t|T (from §2.1.1), we have the following multivariate-normal
approximation:

p(~γ(t)

d |〈Sµt
〉qµ

, 〈Szt,d
〉
qz

) ≈ N (~γ(t)

d |µ̃t
d, Σ̃

t
d), (21)

where

Σ̃t
d = inv

(
Σ−1

t + N t
dHγ(µ̂t|T )

)
, (22)

µ̃t
d = (Σ̃t

d)
−1

(
(Σ−1

t µ̂t|T + N t
dHγ(µ̂t|T )µ̂t|T + 〈~m(t)

d 〉 −N t
d~gγ(µ̂t|T )

)
= µ̂t|T + (Σ̃t

d)
−1

(
〈~m(t)

d 〉 −N t
d~gγ(µ̂t|T )

)
. (23)

3.1.3

Now we compute variational marginal qβ({~β(t)

k }).

qβ({~β(t)

k }) =
K∏

k=1

p(~β(1)

k , . . . , ~β(T )

k |〈Sz〉qz
) (24)

This is a product of conditionally independent SSMs (given sufficient statistics 〈Sγ〉qγ
, 〈Sz〉qz

, model param-
eters {ιk,Ψk,Bk}, and data D). The variational marginal of a single chain of a evolving topic represented
in pre-transformed normal vector ~η(1)

k , . . . , ~η(T )

k is:

p(~η(1)

k , . . . , ~η(T )

k |〈Sz〉qz
)

∝
( 1

(2πk)(M−1)/2|Φk|1/2

)T

exp
{
− 1

2
(~η(1)

k − ιk)′Ψ−1
k (~η(1)

k − ιk)− 1
2

T∑
t=2

(~η(t)

k −Bk~η(t−1)

k )′Ψ−1(~η(t)

k −Bk~η(t−1)

k )
}

×
T∏

t=1

exp
{
〈~m(t)

k 〉~η(t)

k − 〈~n(t)

k 〉1× c(~η(t)

k )
}

. (25)
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Recall that we can approximate c(~η(t)

k ) with its second-order truncated Taylor series with respect to an
estimate of ~η(t)

k , say :

c(~η(t)

k ) ≈ c(~̂η(t)

k ) + g(~̂η(t)

k )(~η(t)

k − ~̂η(t)

k ) +
1
2
(~η(t)

k − ~̂η(t)

k )′H(~̂η(t)

k )(~η(t)

k − ~̂η(t)

k ). (26)

In the following we first outline a normal approximation to a multinomial distribution of count vector n.
In particular, we assume that the multinomial parameters are logistic transformations of a real vector η:

p(n|η) = exp
{

n′η + N ln(1−
M−1∑
w=1

ηw)
}

≈ exp
{

(n′ −Ng′ + η̂′NH)η − 1
2
η′NHη − 1

2
η̂′NHη̂′ −N ln(1 +

M−1∑
w=1

η̂w) + Nη̂′g
}

= exp
{
− 1

2
(
(NH)−1(n−Ng + NHη̂)− η

)′
NH

(
(NH)−1(n−Ng + NHη̂)− η

)
−

N ln(1 +
M−1∑
w=1

η̂w) +
1
2
(n−Ng)′(NH)−1(n−Ng) + n′η̂

}
≈ N (v|η, (NH)−1) (27)

where g = ∇ηc|η=η̂, H = Hessianηc|η=η̂, v = (NH)−1(n − Ng + NHη̂) = η̂ + (NH)−1(n − Ng); and the
Taylor expansion point η̂ can be set at the empirical estimate or just a guess of η.

With this approximation, we can approximate Eq. 25 by an SSM with linear Gaussian emission models:

p(~η(1)

k , . . . , ~η(T )

k |〈Sz〉qz
)

≈
( 1

(2πk)(M−1)/2|Φk|1/2

)T

exp
{
− 1

2
(~η(1)

k − ιk)′Ψ−1
k (~η(1)

k − ιk)− 1
2

T∑
t=2

(~η(t)

k −Bk~η(t−1)

k )′Ψ−1(~η(t)

k −Bk~η(t−1)

k )
}

×
T∏

t=1

exp
{
〈~m(t)

k 〉~η(t)

k − 〈Nk〉c(~̂η(t)

k )− 〈Nk〉g(~̂η(t)

k )(~η(t)

k − ~̂η(t)

k )− 〈Nk〉
2

(~η(t)

k − ~̂η(t)

k )′H(~̂η(t)

k )(~η(t)

k − ~̂η(t)

k ))

≈ N (~η(1)

k |ιk,Φk)
T∏

t=2

N (~η(t)

k |Bk~η(t−1)

k ,Φk)×
T∏

t=1

N (~v(t)

k |~η(t)

k , (NH)−1), (28)

where the ”observation” ~v(t)

k = η̂(t)

k +
(
〈N (t)

k 〉H(~̂η(t)

k )
)−1

(
〈~m(t)

k 〉 − 〈N (t)

k 〉g(~̂η(t)

k )
)
, η̂(t)

k can be set to be its

estimate in the previous round of GMF iteration (see §2.1.5); and the expectation of the count vector 〈~m(t)

k 〉
and total word count 〈N (t)

k 〉 associated with topic k at time t can be computed using variation marginal
qz(·), specifically, 〈n(t)

k,w〉 =
∑

d,n x(t)

d,n,w〈z
(t)

d,n,k〉 is the expected count for word w from topic k at time t;
〈~m(t)

k 〉 = (〈n(t)

k,1〉, . . . , 〈n
(t)

k,M−1〉) denotes the expected row vector of total word-counts of all but the last word
of topic k at time t; 〈~n(t)

k 〉 = (〈~m(t)

k 〉, 〈n(t)

k,M 〉) denotes the row vector of counts of every word generated from
topic k at time t; 〈N (t)

k 〉 = |〈~n(t)

k 〉|.
Now the posterior of ~η(t)

k can be approximate by a multivariate Gaussian N (·|η̂k,t|T , Pk,t|T ), here we
give the formula for the KF time/measurement update, and the RTS smoothing of the topics distribution
parameters at time t:

• Time update:

η̂k,t+1|t = Bkη̂k,t|t

Pk,t+1|t = BkPk,t|t + Ψk (29)
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• Measurement update:

η̂k,t+1|t+1 = η̂k,t+1|t + Pk,t+1|t
(
Pk,t+1|t + (NH)−1

)−1
(~v(t)

k − η̂k,t+1|t)

Pk,t+1|t+1 = Pk,t+1|t − Pk,t+1|t
(
Pk,t+1|t + (NH)−1

)−1
Pk,t+1|t (30)

• RTS smoothing:

Lk,t ≡ Pk,t|tB′kPk,t+1|t

η̂k,t|T = η̂k,t|t + Lk,t(η̂k,t+1|T − η̂k,t+1|t)

Pk,t|T = Pk,t|t + Lk,t

(
Pk,t+1|T − Pk,t+1|t

)
L′k,t

Pk,t−1→t|T = Pk,t|tL
′
k,t−1 + Lk,t(Pk,t→t+1|T −BkPk,t|t)L′k,t−1, (31)

We can estimate the parameters ιk, Ψk and Bk using an EM algorithm.

3.1.4

Now we compute variational marginal qz({z(t)

d,n}).

p(z|D, 〈Sγ〉qγ
, 〈Sη〉qη

)

=
∏
d,n,t

p(z(t)

d,n|x
(t)

d,n, 〈S(γ(t)

d )〉
qγ

, {〈S(η(t)

k )〉
qη
}) (32)

For notational simplicity, we omit indices, and give bellow a generic formula for the variational approxi-
mation for singleton marginal: (Recall that z is a unit base vector, thus |z| =

∑
k zk = 1. Similar definition

applies to x.)

p(z|x, 〈Sγ〉, 〈Sη〉) ∝ p(z|〈Sγ〉)p(x|z, 〈Sη〉)

= exp
{
z′〈~γ〉 − 〈c(~γ)〉+ x′〈Ξ〉z −

∑
k

zk〈c(~ηk)〉
}
, (33)

where γ follows a Gaussian distribution, and Ξ is an (M − 1) × K matrix whose column vectors ~ηk also
follows a Gaussian distribution.

The close form solutions of 〈c(~γ)〉 and 〈c(~ηk)〉 under normal distribution is not available. Note that
the multinomial parameter vector θ = 1P

k πk
(π1, . . . , πK−1, πK), where vector ~π = (π1, . . . , πK−1) follows a

multivariate log-normal distribution, and πK = 1. To better approximate 〈c(~γ)〉 (and similarly also 〈c(~ηk)〉),
we rewrite c(~γ) = ln(1+

∑K−1
k=1 exp γk) = c(~π) = ln(|~π|), where ~π is the unnormalized version of multinomial

parameter vector ~θ. Now we expand c(~π) w.r.t. to ~π around the mean of ~π up to the second order.
The gradient of c(~π) w.r.t. to ~π is:

∂

∂πi
ln(|~π|) =

1
|~π|

⇒ ∇π ln(|~π|) =
1
|~π|

1 ≡ ~gπ. (34)

The Hessian of c(~π) w.r.t. to ~π is:

∂2

∂πi∂πi
ln(|~π|) =

∂

∂πi

( 1
|~π|

)
= − 1

|~π|2

∂2

∂πi∂πj
ln(|~π|) = − 1

|~π|2

⇒ Hπ ln(|~π|) = − 1
|~π|2

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

∣∣∣∣∣∣∣∣∣ = − 1
|~π|2

1× 1′, (35)
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where 1× 1′ represents an outer product of the two one-vectors.
Therefore,

c(~π) ≈ ln(|π̂|) + ~g′π(π − π̂) +
1
2
(π − π̂)′Hπ(π − π̂). (36)

Let π̂ = E[~π] under ~π ∼ LNK−1(~µ, Σ), then we have:

〈c(~π)〉 ≈ ln(|E[~π]|) +
1
2
Tr

(
Hπ(E[~π]) · E[(~π − E[~π])(~π − E[~π])′]

)
= ln(|E[~π]|) +

1
2
Tr

(
Hπ(E[~π]) · Σ̂~π

)
, (37)

where Σ̂~π is the covariance of ~π under a multivariate log-normal distribution. It can be shown that [Kleiber
and Kotz, 2003]:

cov(πi, πj) = exp
{
µi + µj +

1
2
(σii + σjj)

}(
exp(σij)− 1

)
(38)

E(πi) = exp
{
µi +

1
2
σii

}
(39)

E[~π] = exp{~µ +
1
2
Diag(Σ)}. (40)

This computation can be applied to the expectation of both the pre-normalized topic proportion vector
~π and the pre-normalized topic-specific word frequency vector ~ξk corresponding to ~βk. So, we have

p(z|x, 〈Sγ〉, 〈Sη〉) ∝ exp
{
z′〈~γ〉 − 〈c(~π)〉+ x′〈Ξ〉z −

∑
k

zk〈c(~ξk)〉
}

= exp
{

z′E[~γ]− ln(|E[~π]|)− 1
2
Tr

(
Hπ(E[~π]) · Σ̂~π

)
+x′E[Ξ]z −

∑
k

zk

(
ln(|E[~ξk]|)− 1

2
Tr

(
Hξ(E[~ξk]) · Σ̂~ξk

))}
, (41)

where Hξ(E[~ξk]) = 1

|E[~ξk]|2
1 × 1′, E[~ξk] and Σ̂~ξk

are the mean and covariance of ~ξk under a log-normal
distribution as in Eqs. (38)-(40), E[Ξ] consists of column-by-column expectation, E[~ηk], under a normal dis-
tribution of ~ηk. Note that in the above computation, one must be careful about appropriately recovering the
K-dimensional multinomial distribution of z from the (K−1)-dimensional pre-tranformed natural parameter
vector ~γ, and the (M − 1) × K dimensional pre-tranformed natural parameter matrix Ξ = (~η1, . . . , ~ηK). I
omit details of such manipulations.

We need to compute the above singleton marginal for each z(t)

d,n given 〈~γ(t)

d 〉, 〈~π(t)

d 〉, {〈~η(t)

k 〉}, and {〈~ξ(t)

k 〉};
where ~π(t)

d ∼ LN(µ̃(t)

d , Σ̃(t)

d ), ~γ(t)

d ∼ N(µ̃(t)

d , Σ̃(t)

d ), ~ξ(t)

k ∼ LN(η̂k,t|T , Pk,t|T ), and ~η(t)

k ∼ N(η̂k,t|T , Pk,t|T ).

3.1.5 Summary

The above 4 variational marginals are coupled and thus constitute a set of fixed-point equations, computing
the GMF message for one marginal require the marginals of other sets of variables. Thus, we can iteratively
update each marginal until convergence (i.e., all the GMF messages stop changing). This approximation
scheme can be shown to minimize the KL divergence between the variational posterior and the true posterior
of latent variables.

We can use a variational EM scheme to estimate the parameters in our model, which are essentially the
SSM parameters. Operationally, VEM is no different from a standard EM for SSM—we have observation
sequence γ̃t = 1

Nt

∑
d〈~γ

(t)

d 〉 for the topic mixing SSM (as defined by qµ(·)), and observation sequence ~u(k)

k for
each of the K topic representation (i.e., word-frequency) SSMs (as defined by qηk

(·)); and we can use the
standard learning learning rules for SSM parameter estimation.
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In the E step, we use Eqs.(13)-(14), and Eqs.(31)-(31) to estimate the expected sufficient statistics of the
latent states; In the M step, we update the parameters Φ, A, Σt of the topic mixing SSM, and Ψk, Bk of the
topic representation SSM (see [Ghahramani and Hinton, 1996; Ghahramani and Hinton, 1998] for details).

3.2 Variational Inference for Log-Normal-Poisson model

Now we need to approximate

nw ∼ Poisson(N
∑

k

θkτw,k) = exp{nw ln(N
∑

k

θkτw,k)−N
∑

k

θkτw,k − Γ(nw + 1)}.

Again, let ~π denote the unnormalized version of the multinomial parameter vector ~θ. Note that the
Jacobian of vector ~θ with respect to ~π is:

∂θi

∂πi
=

∑
k πk − πi

(
∑

k πk)2
=

∑
k 6=i πk

(
∑

k πk)2

∂θi

∂πj
= − πi

(
∑

k πk)2

J(θ) =
1

(
∑

k πk)2

∣∣∣∣∣∣∣∣∣

∑
k 6=1 πk −π1 · · · −π1

−π1

∑
k 6=2 πk · · · −π1

...
...

. . .
...

−πK −πK · · ·
∑

k 6=K πk

∣∣∣∣∣∣∣∣∣ (42)

From this derivation, we know that

∂~θ

∂πi
=

−1
(
∑

k πk)2
(π1, . . . ,

∑
k 6=i

πk, . . . , πK)′

=
−1

(
∑

k πk)2
(
|~π|ei − ~π

)
⇒ ∂~θ′~τw

∂πi
=

−1
(
∑

k πk)2
(
|~π|ei − ~π

)′
~τw =

−1
|~π|2

(
|~π|τw,i − ~π′~τw

)
⇒

∂ ln
(
N~θ′~τw

)
∂πi

=
N

N~θ′~τw

∂~θ′~τw

∂πi
=

1
~θ′~τw

× −1
|~π|2

(
|~π|τw,i − ~π′~τw

)
=

1
~θ′~τw

× −1
|~π|

(
τw,i − ~θ′~τw

)
=

1
|~π|

(
1− τw,i/~θ′~τw)

=
1
|~π|

− τw,i

~π′~τw
. (43)

similarly,

∂2 ln
(
N~θ′~τw

)
∂πi∂πi

=
∂

∂πi

( 1
|~π|

− τw,i

~π′~τw

)
= − 1

|~π|2
+

τ2
w,i

(~π′~τw)2

∂2 ln
(
N~θ′~τw

)
∂πi∂πj

=
∂

∂πj

( 1
|~π|

− τw,i

~π′~τw

)
= − 1

|~π|2
+

τw,iτw,j

(~π′~τw)2
. (44)

Therefore, here is the matrix form of the gradient and Hessian of the Poisson log-likelihood with respect
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to θ:

∇π ln
(
N~θ′~τw

)
=

1
|~π|

1− 1
~π′~τw

~τw

Hπ ln
(
N~θ′~τw

)
=

1
(~π′~τw)2

∣∣∣∣∣∣∣∣∣
τ2
w,1 τw,1τw,2 · · · τw,1τw,K

τw,1τw,2 τ2
w,2 · · · τw,2τw,K

...
...

. . .
...

τw,1τw,K τw,K−1τw,K · · · τ2
w,K

∣∣∣∣∣∣∣∣∣−
1
|~π|2

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

∣∣∣∣∣∣∣∣∣
=

1
(~π′~τw)2

~τw × ~τ ′w − 1
|~π|2

1× 1′, (45)

where ~τw × ~τ ′w represents an outer product of the two vectors.
The gradient and Hessian with respect to τ is:

∂ ln
(
N~θ′~τw

)
∂τi

=
θi

~θ′~τw

∂2 ln
(
N~θ′~τw

)
∂τi∂τi

=
∂

∂τi

( θi

~θ′~τw

)
= − θ2

i

(~θ′~τw)2

∂2 ln
(
N~θ′~τw

)
∂τi∂τj

=
∂

∂τj

( θi

~θ′~τw

)
= − θiθj

(~θ′~τw)2
. (46)

In matrix form:

∇τ ln
(
N~θ′~τw

)
=

1
~π′~τw

~θ

Hτ ln
(
N~θ′~τw

)
= − 1

(~π′~τw)2
~θ × ~θ′. (47)

Assume that θ and τ are independent, i.e., cov(τ, θ) = 0, we have the following approximation of
ln

(
N~θ′~τw

)
:

ln
(
N~θ′~τw

)
≈ ln

(
Nθ̂′τ̂w

)
+∇τ [τ̂w](~τw − τ̂w) +∇π[π̂](~π − π̂)

+
1
2
(~τw − τ̂w)′Hτ [τ̂w](~τw − τ̂w) +

1
2
(~π − π̂)′Hπ[π̂](~π − π̂)

(48)

where π̂ and τ̂w are some estimates of the true π and τ . Note that under this approximation, computing
the expectation

〈
ln

(
N~θ′~τw

)〉
under q(~θ) and q(~τw) can be done (approximately) in close-from by using the

variational marginals of ~γ and ~ζw.
Now, the variational marginal for {~ζ(t)

w } (the inverse logistic-transformation of {~τ (t)
w }, also known as the

natural parameter of the multinomial) and {~γ(t)

d } (the inverse logistic-transformation of {~θ(t)

d }) can be derived
from the following GMF approximations to the marginal posterior of {~ζ(t)

w } and {~τ (t)
w }, respectively.

p(~ζ(1)
w , . . . , ~ζ(T )

w |〈Sθ〉qθ
)

∝
( 1

(2π)K/2|Ψw|1/2

)T

exp
{
− 1

2
~ζ ′

(1)

w Ψ−1
w

~ζ(1)
w − 1

2

T∑
t=2

(~ζ(t)
w −Bw

~ζ(t−1)
w )′Ψ−1

w (~ζ(t)
w −Bw

~ζ(t−1)
w )

}
×

T∏
t=1

exp
{

n(t)
w

〈
log(ωt

∑
k

θkτw,k)
〉

qθ

− ωt

∑
k

〈θk〉τw,k − Γ(n(t)
w + 1)

}
; (49)
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and

qγ({~γ(t)

d })
= p({~γ(t)

d }|〈Sµ〉qµ
, 〈Sτ 〉qτ

)

=
T∏

t=1

Nt∏
d=1

p(~γ(t)

d |〈Sµt〉qµ
, 〈Szt,d

〉
qz

)

∝
T∏

t=1

Nt∏
d=1

1
(2π)K−1/2|Σt|1/2

exp{−1
2
(~γ(t)

d − 〈~µt〉)′Σ−1
t (~γ(t)

d − 〈~µt〉)}

× exp
{

n(t)
w

〈
log(ωt

∑
k

θkτw,k)
〉

qτ

− ωt

∑
k

θk〈τw,k〉 − Γ(n(t)
w + 1)

}
. (50)

Note that by introducing the taylor approximation to ln
(
N~θ′~τw

)
, and using the laws for computing

the means and covariance of ~τw and ~π under multivariate log-normal distribution (i.e., Eqs. (38)-(40), the
expectation terms in the above equations can be approximately solved. Using similar techniques employed
in §2.1, they can be approximated by standard SSMs with Gaussian emissions.

4 Parameter Estimation

As mentioned before, we can use a variational EM scheme to estimate the parameters in our model, which
are essentially the SSM parameters. Operationally, VEM is no different from a standard EM for SSM—we
have observation sequence γ̃t = 1

Nt

∑
d〈~γ

(t)

d 〉 for the topic mixing SSM (as defined by qµ(·)), and observation
sequence ~u(k)

k for each of the K topic representation (i.e., word-frequency) SSMs (as defined by qηk
(·)); and

we can use the standard learning learning rules for SSM parameter estimation.
In the E step, we use Eqs.(13)-(14), and Eqs.(31)-(31) to estimate the expected sufficient statistics of

the latent states; In the M step, we update the parameters Φ, A, Σt of the topic mixing SSM, and Ψk,
Bk of the topic representation SSM. Following [Ghahramani and Hinton, 1996; Ghahramani and Hinton,
1998], which gave detailed derivations for the MLE standard SSM and switching SSM, bellow we give the
relevant formulae of MLE for the parameters in our model. Each of the estimate can be derived by taken
the corresponding partial derivative of the expected loglikelohood under the our variational approximation
to the true posterior, setting to zero and solving.

• Topic mixing dynamic matrix:

A∗ =
( T∑

2

Vt|t−1(µ)
)( T∑

2

Vt−1(µ)−1
)
, (51)

where Vt(µ) = E[~µt~µ
′
t|Y1, . . . ,Yt] (not to be confused with the center moment Pt in Eq. (??)), and

Vt|t−1(µ) = E[~µt~µ
′
t−1|Y1, . . . ,Yt]. From RTS smoother, it is easy to see:

Vt(µ) = Pt|T + µ̂t|T µ̂′t|T

Vt|t−1(µ) = Pt←t−1|T + µ̂t|T µ̂′t−1|T (52)

where the posterior estimate of the self and cross-time covariance matrices Pt|T and Pt,t−1|T can be
computed from Eqs. (13)-(15).

• Noise covariance matrix for topic mixing state:

Φ∗ =
1
T

( T∑
2

Vt(µ)−A∗
T∑
2

Vt|t−1(µ)
)
. (53)
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• Output covariance matrix for topic mixing vectors:

Σ∗t =
1
Nt

Nt∑
d=1

(〈~γ(t)

d 〉 − µ̂t|T )(〈~γ(t)

d 〉 − µ̂t|T )′. (54)

• Topic representation (i.e., topic-specific word frequency vector) dynamic matrix:

B∗k =
( T∑

2

Vk,t|t−1(η)
)( T∑

2

Vk,t−1(η)−1
)
, (55)

where

Vk,t(η) = Pk,t|T + η̂k,t|T η̂′k,t|T

Vk,t|t−1(η) = Pk,t←t−1|T + η̂k,t|T η̂′k,t−1|T (56)

• Noise covariance matrix for topic representation vector:

Ψ∗k =
1
T

( T∑
2

Vk,t(η)−B∗
T∑
2

Vk,t|t−1(η)
)
. (57)

We set the initial vectors ιk and ν to be zero vectors instead of estimating them from the data. Finally,
note that what are given above are the most general form of transition and correlations of topics and words.
In practice, to avoid over-parameterization, we can choose to reduce, for example, the transition matrices
Bk’s and the covariance matrices Ψk’s of the topic representations to be sparse or diagonal matrix to model
only random walk effects.

5 Conclusion

In this report I introduce topic evolution models for longitudinal epochs of word documents. The models
employ marginally dependent latent state-space models for evolving topic proportion distributions and topic-
specific word distributions; and both a logistic-normal-multinomial and a logistic-normal-Poisson model for
document likelihood. These models allow posterior inference of latent topic themes over time, and topical
clustering of longitudinal document epochs. I derive a variational inference algorithm for non-conjugate
generalized linear models based on truncated Taylor approximation, and I also outline formulae for parameter
estimation based on variational EM principle. In the current model, I assume all topics coexist over time,
and no new topic will emerge over time. In a companion report, I present a birth-death process model
that capture more complicated and realistic behaviors of topic evolution, such as aggregation, emergence,
extinction, and split of topics over time.
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