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Abstract

Cyber-physical systems (CPSs) combining discrete control and continuous
physical dynamics are pervasive in modern society: examples include driver as-
sistance in cars, industrial robotics, airborne collision avoidance systems, and
the electrical grid. Many of these systems are safety-critical because they op-
erate in close proximity to humans. Formal safety verification of these systems
is important because it is a key tool for attaining the strongest possible safety
guarantees.

Hybrid systems models, in particular, are a successful formalism for CPS.
Hybrid systems theorem-proving in differential dynamic logic (dL) and its gen-
eralization differential game logic (dGL) are notable for strong logical foun-
dations and successful application in case studies using the theorem provers
KeYmaera and KeYmaera X. However, safety verification of models does not
imply safety of implementations, which might not be faithful to the model.
Moreover, a machine-checked proof is only as trustworthy as the software which
checks it, thus correctness of proof-checkers is crucial.

This thesis addresses implementation and soundness gaps by using con-
structive logic and programming languages as the foundation of an end-to-end
verification toolchain. That is: Constructive Differential Game Logic (CdGL)
enables practical, end-to-end verification of cyber-physical systems. CdGL en-
ables synthesis of implementations with bulletproof theoretical foundations.
Logic is the keystone of the end-to-end connection from high-level proofs and
foundations to implementations. Our pursuit of practical proving includes in-
novations in the proof language itself.

CdGL proofs, in contrast to dGL, are suitable for synthesizing controllers
which determine safe actions for a CPS and monitors which check the com-
pliance of the external environment with model assumptions. The synthesized
code is automatically proven correct down to machine-code level. The foun-
dations are also strengthened by our formalization of classical dL’s soundness
in Isabelle/HOL, allowing hybrid systems proofs in dL to be exported and
rechecked. We evaluate the toolchain on a 2D robot which follows arcs. The
model and implementation cross-validate each other: monitors catch incorrect
code and assumptions, while testing with monitors enabled allows us to assess
the realism of the model.
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Chapter 1

Introduction

Cyber-physical systems (CPSs) combining discrete control and continuous physical dynam-
ics are pervasive in modern society: examples include driver assistance in cars, industrial
robots, airborne collision avoidance systems, the electrical grid, and medical devices. Many
of these systems are safety-critical or even life-critical because they operate in close prox-
imity to humans and in some cases perform life-sustaining functions. Formal verification of
these systems is a key tool for attaining the strongest possible guarantees that they meet
their safety and correctness objectives. Therefore, as the importance of CPSs in society
grows, so does the importance of their formal verification. Hybrid systems models com-
bining discrete transitions with continuous differential equations (ODEs), in particular,
have succeeded in providing a common formalism for the discrete and continuous aspects
of a CPS. Hybrid systems theorem-proving in differential dynamic logic (dL) (Platzer,
2018a, 2008a, 2017a, 2011, 2010b, 2012c) is a notable approach for verification of cyber-
physical systems, in particular its strong logical foundations and successful application in
a number of case studies (Jeannin et al., 2017; Loos, Platzer, & Nistor, 2011; Mitsch,
Ghorbal, Vogelbacher, & Platzer, 2017; Platzer & Quesel, 2008b) using the theorem prover
KeYmaera (Platzer & Quesel, 2008a) and its successor, the KeYmaera X (Fulton, Mitsch,
Quesel, Volp, & Platzer, 2015) theorem prover. Proofs in dL are compared to other verifi-
cation approaches in Section 1.2.

While dL has many successful applications to date, there are always new verification
challenges. As CPSs have become pervasive in society, their implementation complexity has
grown greatly, as shown by publicly available size estimates for well-known CPSs. NASA’s
Curiosity mission required roughly 3 million lines of code (Holzmann, 2013), a number
dwarfed by aircraft, and automotives: well over 6.5 million lines for the Boeing 787 (Wagner
& Norris, 2009), and at least tens of millions of lines in modern automotives (Greengard,
2015). Many modern CPS controllers even include machine-learned components whose
complexity is measured not in lines of code but in the size of data tables that drive the
controller: the ACAS X airborne collision avoidance system is driven by tables containing
millions of entries that lead to trillions of combinations (Jeannin et al., 2015).

This thesis builds on the dL tradition and its ModelPlex monitoring approach (Mitsch
& Platzer, 2016b) to develop an end-to-end verification approach which can cope with
the complexity of modern CPS implementations. End-to-end verification is best under-



stood as a grand challenge problem, meaning that its scope is expansive and that diverse
technical approaches can contribute to the same broad goal. All end-to-end verification
approaches recognize that today’s formal models leave out important aspects of reality, and
that bridging the gaps between model and reality is crucial to improving the correctness of
real systems. Because end-to-end verification is a grand challenge problem, no single thesis
can address every relevant research front. This thesis addresses end-to-end verification on
three fronts: design and implementing the VeriPhy approach for end-to-end verification
through synthesis of sandbox controllers!, developing logical foundations which support
general-case synthesis with rigorous correctness guarantees, and developing a proof lan-
guage Kaisar which assists with the complex models are proofs needed by VeriPhy. Other
research fronts are beyond our scope but are also important. For example, the verification
of sensing and actuation is a crucial and philosophically challenging problem. Verification
of fundamental system software such as compilers and operating systems also plays a key
role in constructing complete, correct systems. To arrive at a precise thesis statement, we
first summarize the specific contributions of this thesis to end-to-end verification.

The first major applied contribution of the thesis is VeriPhy: an approach and synthesis
tool for end-to-end CPS verification based on dL. Two implementations of VeriPhy will be
given: a classical implementation of VeriPhy based on dL is given first. The limitations of
classical VeriPhy will inspire an investigation of constructive foundations that culminate
in a constructive implementation of VeriPhy whose strengths and weaknesses complement
the classical version.

(Classical) VeriPhy takes a proven-correct dL model as its input and produces a sandbox
controller which monitors an untrusted controller for compliance with the model, replacing
any potentially-safe decisions with proven-safe fallback decisions. The monitoring formulas
are generated by invoking KeYmaera X’s correct-by-construction ModelPlex (Mitsch &
Platzer, 2016b) monitor synthesis tool. ModelPlex provides a correctness proof for the
monitoring formulas, which VeriPhy extends to a proof of correct sandbox control. Fallback
controllers generally ensure safety by sacrificing secondary liveness objectives: for example,
a car may engage its emergency brake to remain safe, causing it to not reach its destination.
VeriPhy’s strengths are a high degree of automation, a rigorous argument that the final
system implementation is safe, and support for hybrid systems models with non-trivial
(e.g., non-linear) differential ODEs. VeriPhy achieves these goals by adopting a structure
similar to a verified compiler: synthesis is divided into simple passes, each of which is
proven correct with a refinement-like or simulation-like argument.

Classical VeriPhy provides a particularly thorough proof argument with formal proof
artifacts throughout each transformation pass. In practice, its limitations include strict
fixed modeling and proof formats for controller models, limited precision for arithmetic
computations, and dependence on automated proofs which are not guaranteed to succeed.
Constructive VeriPhy is motivated by the desired to overcome these limitations while also
adding greater functionality. Specifically, classical VeriPhy can only synthesize and guaran-

!The VeriPhy monitoring approach exploits the existing ModelPlex (Mitsch & Platzer, 2016b) method
for correct-by-construction monitoring of system compliance with dL models, but goes further by extending
safe monitoring to safe sandbox control.



tee safety of sandbox controllers. While sandbox control is a crucial paradigm for managing
controller implementation complexity, classical VeriPhy has no hope of proving controller
liveness because sandbox controllers intentionally sacrifice liveness when the alternative
is sacrificing safety. The only hope for proving liveness is to allow (optional) support for
whitebox controllers, meaning controller models with explicit control calculations that are
amenable to both safety and liveness proof. Because a verified whitebox controller gives
an explicit control calculation which can be proved safe, no fallback controller is needed,
allowing the system to make progress in every case so long as the verified controller is
also proved live. We consider liveness guarantees an important part of the broader end-to-
end verification philosophy because the end-to-end philosophy emphasizes comprehensive
guarantees and liveness is a crucial element of functional correctness. Moreover, we will
find that the same work which enables support for whitebox liveness guarantees will help
address classical VeriPhy’s limitations which arose even when proving safety guarantees,
such as restrictions on proof formats and reliance on incomplete automated proof methods.

Logical foundations are the second major focus of the thesis: new logical foundations
are the key enabling factor which will support constructive VeriPhy in addressing the lim-
itations of classical VeriPhy. Because the VeriPhy synthesis algorithm is driven by hybrid
system models and their proofs, it is only natural that advances in modeling and proof
foundations can enable advances in synthesis. We develop Constructive Differential Game
Logic (CdGL), the extension of dL to constructive hybrid games. Because there exists a
logic dGL (Platzer, 2015a) which extends dL to classical hybrid games, CdGL is also the con-
structive variant of dGL. In developing CdGL, we show that reasoning principles from dGL
extend smoothly to an entirely new constructive semantics once the nuances of constructive
arithmetic have been confronted. Our semantic developments for CdGL provide a roadmap
for synthesis: an explicit proof term language and its operational semantics provide a clear
input language for tools which process proofs, while an operational semantics for strategies
of games describes how controllers and monitors should actually be executed. In short, we
show that games help support safe, live whitebox controllers while constructivity ensures
that all CdGL proofs can be translated to code. By supporting games, VeriPhy also in-
herits existing benefits of hybrid games, including easier modeling of adversarial systems
and easier high-level modeling of controllers. CdGL features a refinement calculus, which
supports the correctness argument for constructive VeriPhy.

The third focus of the thesis is proof language design and implementation. We introduce
Kaisar, a language of structured proofs for CdGL from which constructive VeriPhy can
synthesize code. We demonstrate how Kaisar’s structured paradigm alleviates usability,
maintainability, and scalability challenges present in current-generation proof languages.
Lastly, constructive VeriPhy is implemented with Kaisar as its inputs and a low-level
executable intermediate language as its output, as of this writing. We evaluate constructive
VeriPhy against its classical counterpart, showing that the constructive implementation’s
strengths include input language flexibility and support for liveness guarantees, but its
larger trusted code base and mathematically complex foundations? mean its correctness
argument is an informal one as of this writing, as opposed to the rigorous proof for classical

2Formalization challenges presented by the foundations are discussed in Chapter 5 and Chapter 6.



VeriPhy with extensive formal proof artifacts. Classical VeriPhy also provides a lower-lever
target language for synthesis: machine code.

The three research thrusts of the thesis are not isolated from each other: the clas-
sical implementation of end-to-end verification and its example applications respectively
inspire our new constructive foundations and new proof language design principles. Those
principles are put to the test when Kaisar and constructive VeriPhy are implemented and
evaluated. More precisely, our experience with classical VeriPhy inspires the remaining
research thrusts of the thesis by inspiring us to meet three competing sets of needs. For
the narrow purposes of a thesis statement,

* Verification means that we establish a high degree of confidence in correctness, backed

by formal proof.

* FEnd-to-end means that the correctness properties which were verified of the model
(the input end) are extended to hold of implementation-level code (the output end).

* Practical means that the effort required for modeling and proof, including mainte-
nance effort, is modest compared to the literature, particularly when the approach is
scaled to models and implementations that are of applied interest. Regarding practi-
cality of models and their high-level proofs, our focuses include maintainability and
readability of model and proof artifacts. Regarding practicality of implementation-
level guarantees, our focus is on automating the correctness proofs of implementation-
level code given proofs of high-level models.

Given these definitions, we can give a concise thesis statement:

Constructive Differential Game Logic (CdGL) enables practical, end-to-end
verification of cyber-physical systems.

non

Our definitions of "verification," "end-to-end," and "practical" are not the only possible
definitions, as "end-to-end" and 'practical" are notoriously vague terms. Our definitions
are not arbitrary either, as they reflect the competing needs of different people who partic-
ipate in development of verified software. To emphasize the competing goals of end-to-end
verification, we introduce a cast of characters and show how their needs can be met simul-
taneously, to a far greater extent than prior work. In showing how the competing needs
can be met, we show how the thesis meets the needs of practical, end-to-end verification
which are listed above.

The Cast. The contributions of this thesis are united by their common goal of resolving
three competing needs: rigorous formal foundations, easy-to-use implementation code,
and easy-to-use verification technology. We introduce three characters which represent the
respective needs: the Logician, the Engineer, and the Logic-User. Though constructed by
the author, the characters are a stylized way to emphasize and resolve real differences of
perspective and priority on the spectrum between theorists and practitioners.

The Logician follows in the formalist tradition of David Hilbert: to know something is
to have a proof of it. The Logician holds mathematics to the highest standard possible,
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and they do so with good reason. CPSs are often life-critical, and if all the Logician’s
paranoia can prevent defects in CPSs, it has been worthwhile. Through the history of
CPS, a variety of safety incidents (MacKenzie, 1994) have occurred, showing that safety
is a practical and not merely theoretical concern. Because safety is crucial and proofs
by humans are not immune from errors, today’s Logician seeks the most rigorous, formal
proofs possible. The gold standard is a machine-checkable proof in a formal proof calculus
along with strong evidence that the proof calculus and proofchecker are sound. In some
cases, it is even feasible to prove one proofchecker sound using another, a process which
sometimes resolves bugs in proofchecking tools (Chapter2). The Logician’s commitment
to formal proof yields highly trustworthy results, but the human effort required for those
results is significant and can increase rapidly with system complexity.

The Engineer places their focus elsewhere, recognizing the potentially high cost of
formal verification. The Engineer is the one tasked with designing, building, and delivering
a production CPS under time and budget constraints. The Engineer will gladly use formal
methods, but only if they can show concrete safety benefits on realistic systems in a short
timeframe and with limited specialist training. Techniques that appeal to the Logician
might appall the Engineer because they are time-consuming or only guarantee safety of an
ideal model. The Engineer would rather fix one bug in the implementation than ten bugs
in an ideal model, since fixing a bug in the model is not guaranteed to improve the quality
of shipped code.

The Logic-User is oft-forgotten, and sits between the Logician and Engineer on the
spectrum from theory to practice. The Logic-User (called the Proof Engineer (Ringer,
Palmskog, Sergey, Gligoric, & Tatlock, 2019) or Verification Engineer (Mitsch, Passmore,
& Platzer, 2014) by other authors), is the person tasked with employing verification tools at
scale. Unlike the Logician, the Logic-User does not obsess with the soundness of proof rules,
because they trust that the Logician has implemented the verification tool correctly. The
Logic-User believes in the value of a verified model, but sympathizes with the Engineer’s
plea that only a nuanced model could hope to capture the difficulties faced in practice.
Verification takes time, but the Logic-User needs to spend verification time wisely: time
should not be wasted on verification tasks that could easily be automated away, and no
unnecessary barriers to learning the tool should be erected.

As other authors have noted (Ringer et al., 2019), the productivity of the Logic-User
takes on growing significance today as the scale of verification efforts increases. In hybrid
systems specifically, we additionally note that scalability challenges can set in at surpris-
ingly small scales, with “large” case studies taking a hundreds of lines of proof (Mitsch et
al., 2017) and the largest known proofs being on the order of a thousand lines (Jeannin
et al., 2017). Thus, while we will speak of scalability as something the Logic-User cares
about, the scale of modern hybrid systems proofs is modest when compared to the largest
extant formal proofs, let alone largest known codebases. It is an explicit non-goal of this
thesis to present models and proofs of larger scale than prior work. We instead seek to
diagnose factors which have limited proof scale to date, then propose, implement, and
evaluate technologies which can alleviate those underlying factors.

As shown in Table 1.1, no prior approach satisfies all characters to the same extent as
our new approach based on CdGL and VeriPhy:



Approach | Logician Engineer Logic-User
GPITP formal manual effort labor-intensive
Automata paper monitors, controls €rror-prone
dL before paper sound monitor formula | less error-prone, less labor-intensive
dL after formal | sound monitor program | less error-prone, less labor-intensive
CdGL formal monitors, controls least error-prone, less labor-intensive

Table 1.1: Comparison of verification approaches. Cells are colored based on how well each
approach meets the need of each character, with green being best and orange being worst.

* General-purpose interactive theorem provers (GPITP) such as the HOL family and
Coq satisfy the Logician’s desire for solid logical foundations because their founda-
tions have been studied extensively, with various degrees of formalization (Barras,
2010; Kumar, Arthan, Myreen, & Owens, 2016). Even so, the Logician may have
some skepticism of the code extractors provided in GPITPs, because verification ef-
forts for code extractors (Mullen, Pernsteiner, Wilcox, Tatlock, & Grossman, 2018;
Anand et al., 2017; Toannidis, Kaashoek, & Zeldovich, 2019; Hupel & Nipkow, 2018)
typically do not cover all (Hupel, 2019a) features needed in practice. The Logic-User’s
concerns are more extensive: in a general-purpose logic, it may be more difficult to
write correct models, and correctness proofs certainly require more effort when there
is no specialized support for CPS. The Engineer typically does not interact directly
with a theorem prover, but would still be dissatisfied if the generated code cannot
be easily integrated with the codebase of an existing implementation of the system.

In hybrid automata-based approaches, safety checking and code synthesis (Toom,
Naks, Pantel, Gandriau, & Wati, 2008; Henzinger, Horowitz, & Majumdar, 1999;
Kloetzer & Belta, 2008; Nilsson et al., 2016; Taly & Tiwari, 2010; Tomlin, Lygeros,
& Sastry, 2000; Althoff & Dolan, 2014) typically do not have formal soundness proofs.
The lack of formal proofs is arguably more significant for automata-based tools than
theorem provers for two reasons. First, the automata-based verification algorithm
may be harder to implement soundly because it must bridge a wide conceptual gap
between hybrid system semantics and low-level operations on the data structures
that represent system state. Second, code generation for automata-based tools may
be harder to implement soundly because the code generated by theorem provers
follows its formal model more closely by comparison: the formal model is already a
programmatic model in logics such as dL. If a particular Logic-User is more familiar
with program verification, there may also be a learning curve for automata-based
approaches. The converse holds for a Logic-User with a background in automata-
based tools.

Of the available choices, dL assists the Logic-User with a program-like syntax that
helps avoid modeling mistakes and with domain-specific proof rules that are less labo-
rious than proofs embedded in a GPITP. However, the Engineer would find that dL’s
state-of-the-art synthesis tools for dL (Mitsch & Platzer, 2016b) only synthesize mon-
itor formulas as opposed to executable controllers, which also frustrates the Logician



because a comprehensive correctness argument requires a concrete controller. Sup-
port for non-linear differential equations in those tools is also experimental. Before
this thesis, the Logician might also complain that dL’s foundations were developed
and proved only on paper and not with a machine-checked proof. As a contribution
of the thesis, dL’s soundness theorem is now machine-checkable (Chapter 2).

* VeriPhy synthesizes executable controllers as desired by the Engineer, while main-
taining strong formal guarantees as desired by the Logician. Upon introducing Veri-
Phy in Chapter 3, we will see that the choice of foundations and proof language play a
key role in whether VeriPhy can scale to the complex models needed by the Engineer
without compromising the proof simplicity desired by the Logic-User. We develop
CdGL and show that by adopting it as the basis of a second VeriPhy implementation
(Chapter 8) with a new proof language (Chapter7), we provide the flexibility that
the Engineer needs for practical models while supporting high-level proofs for the
Logic-User and supporting extraction of whitebox controllers from proven-live hybrid
games for the first time ever, as desired by the Engineer.

In every approach, model validation is also an area of concern: the Logician knows that a
real system is only safe if the model accurately describes reality. Model validation is also
important to the Logic-User and Engineer because the Logic-User does not want to spend
time proving an inaccurate model and the Engineer wants the system implementation to
benefit from the formal efforts. The VeriPhy approach serves to both verify and validate
models, as violations of physical modeling assumptions are detected at runtime.

The goal of the thesis is to meet the needs of the Logician, Engineer, and Logic-User
at once. This is our contribution to “Practical End-to-End Verification of CPSs”.

Foundations | Lowic § Artifacts
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Figure 1.1: Goals of the thesis.



1.1 Outline and Contributions

The relationships between the chapters of the thesis are laid out in Fig. 1.1. Each chapter
develops new formal foundations for the Logician, produces software artifacts for the Engi-
neer, and/or addresses usability needs of the Logic-User. Note that the three parts of the
thesis do not correspond to our three characters but to a three-act structure. Part I develops
the VeriPhy end-to-end approach for classical hybrid systems using existing foundations
and proof languages. Our experience with VeriPhy reveals the limitations of synthesis built
on a classical dL foundation. PartII proposes a new foundational solution: constructive
hybrid games with refinement (CdGL). Part III shows that the new foundations resolve the
limitations of classical VeriPhy: we build a new proof language Kaisar and new VeriPhy
implementation for CdGL, whose architecture is crucially built on insights about game
refinement and whose informal correctness crucially appeals to formal theorems about re-
finement. Throughout the thesis, the work is evaluated with a series of driving (or wheeled
robotics) case studies. The case studies cover safety, liveness, and reach-avoid correctness
for straight and curved driving in 1 and 2 dimensions. The code synthesized from the
driving models is evaluated on a Raspberry Pi-based robot and in the simulator AirSim.

Part I begins by formalizing dL in Isabelle/HOL (Chapter2), which satisfies the Lo-
gician by increasing our trust in the dL foundations. When possible, the Isabelle/HOL
formalization follows the KeYmaera X proof calculus for dL, increasing confidence in KeY-
maera X as well. Chapter3 introduces the design and classical implementation of the
monitor synthesis tool VeriPhy (Bohrer, Tan, Mitsch, Myreen, & Platzer, 2018) which
connects a dL model to implementation code while transferring formal safety guarantees to
the real world. Part I concludes by discussing the limitations of classical VeriPhy for dL, in-
cluding a brittle implementation, inability to synthesize whitebox controllers from liveness
proofs, and model complexity which increases quickly with control scheme complexity.

The constructive game logic of Part II provides a foundational solution to the limitations
of classical VeriPhy. Game proofs combine control and monitor reasoning in a common
artifact. Constructivity gives a Curry-Howard isomorphism for constructive games which
demonstrates that proofs correspond to monitoring and control code in every case. Proofs
about our player are interpreted as executable strategies which specify the moves (or con-
trol decisions) taken by our player, while proofs about our opponent are interpreted as
executable strategies which make no moves but check (monitor) whether the opponent’s
moves follow the rules of the game. Thus, game logic and constructivity combine to provide
a basis for monitor and control synthesis which admits a robust, general-case implementa-
tion. Game models also stay simple even as control grows complex, which reduces the risk
of safety-critical modeling mistakes by the Logic-User. Chapter6 develops a refinement
logic for constructive hybrid games. Refinement is used to show a reduction from proven
hybrid games to hybrid systems, which in theory reduces end-to-end verification of games
to end-to-end verification of systems.

Part ITI implements proof and synthesis tools for constructive games, thus reaping the
practical benefits of our new foundations. Along the way, we see that refinement is a con-
venient organizing principle for correctness proofs about game verification and synthesis.
As the most applied part of the thesis, Part IIT has the strongest focus on the Logic-User.



Chapter 7 develops Kaisar, a language of structured proofs for CdGL, where proofs are game
models annotated with constructive first-order reasoning. The Kaisar design is informed
by limitations encountered while proving case studies for use with classical VeriPhy and
the solutions to those limitations are informed by the author’s work on hybrid dL (Bohrer
& Platzer, 2018). Kaisar is integrated with a new implementation of VeriPhy to provide
a truly "end-to-end" approach. Chapter8 provides the completely new implementation
of constructive VeriPhy, which synthesizes controllers and monitors from Kaisar proofs.
Kaisar is evaluated by rewriting the VeriPhy case studies in Kaisar and comparing metrics
including proof script length and number of lines changed when adding new model features,
the latter being a proxy for maintainability. Constructive VeriPhy is evaluated by synthe-
sizing code from the Kaisar proofs, which is tested in an interpreter, both on hardware
and in simulation. These evaluations demonstrate how constructive VeriPhy supports the
needs of Engineer and Logic-User. While Constructive VeriPhy emphasizes the Logic-User
and Engineer over the Logician, the deep relationship of constructive VeriPhy with game
logic and game refinement is discussed to suggest how the Logician’s high standards of
rigor from classical VeriPhy might be achieved for constructive VeriPhy as well.

The following works completed during the PhD are not discussed at length in this
thesis, in order to keep the focus on end-to-end verification. The author’s works on definite
description in dL (Bohrer, Fernandez, & Platzer, 2019) and hybrid logic (Bohrer & Platzer,
2018) respectively serve to provide a unifying framework for the several term languages of
the thesis and to provide an understanding of labeled reasoning in Kaisar (Chapter 7).

1.2 Related Work

This section discusses related works that are broadly related to the thesis as a whole: works
on verification of cyber-physical systems, synthesis, and end-to-end correctness. Works
which are relevant primarily to one chapter are discussed in the corresponding chapter.
Verification and synthesis are both broad topics, but we show that our approach has
unique strengths among end-to-end CPS verification approaches.

1.2.1 Verification of CPS

Verification of CPSs is a broad and actively studied field. While CPS verification and
hybrid systems verification are not synonymous, hybrid systems are the heart of CPS ver-
ification because they can represent the interacting discrete and continuous dynamics that
distinguish CPSs from other computing systems. Discrete models can be applied to CPSs,
but discrete formalisms oversimplify crucial continuous dynamics and common discrete
formalisms such as state machines (Rabin & Scott, 1959), process calculi (Hoare, 1978),
and dynamic logic programs (Harel, Tiuryn, & Kozen, 2000) are strict fragments of more
expressive hybrid formalisms. Within the field of hybrid systems, verification approaches
vary in several ways: formalisms range from automata to programming languages, verifi-
cation techniques range from model checking to theorem proving, and the theorem provers
range from general-purpose to special-purpose. We survey the range of hybrid systems ver-



ification technologies and discuss why this thesis uses theorem-proving in special-purpose
dL-style logics with programmatic models of hybrid systems. Verification and synthesis are
often studied separately, but our approach fundamentally exploits proofs to drive synthesis.
We now discuss the above classes of works in greater detail.

1.2.1.1 Formalisms for Hybrid Systems

There are several prevalent representations for hybrid systems which, even when equiva-
lent, lend themselves to different modeling and verification approaches. Because hybrid
systems reachability is only decidable for narrow classes such as initialized rectangular au-
tomata (Henzinger, Kopke, Puri, & Varaiya, 1998), all major hybrid systems verification
approaches must confront the limits of decidability, e.g., by adopting approximations or
by using human insight to drive verification.

This thesis models hybrid systems as hybrid programs (Platzer, 2018a, 2008a, 2017a,
2012b), the modeling language of dL, where hybrid systems are written in a program-
ming language that includes differential equation evolutions as program statements. Other
authors have used closely-related programmatic models to investigate hybrid systems infor-
mation flow (Prabhakar & Kopf, 2013) and to analyze invariants of differential equations
by reducing differential equations to loops with infinitesimal timesteps (Suenaga & Hasuo,
2011). Programmatic models are well-suited for syntactic, deductive proof, and have the
advantage that their use can be taught by analogy to other programming languages. Pro-
grams naturally express a broad class of hybrid systems including nonlinear differential
equations and nonlinear discrete assignments and guards.

Hybrid automata (Henzinger, 1996) are a widely-used representations for hybrid sys-
tems. Hybrid automata are well-suited for model checking and, as with programs, can be
used to express non-linear differential equations, assignments, and guards. Model checkers
typically target a specific fragment of hybrid automata or specific fragment of safety prop-
erties, which we list when we discuss each model checker. Automata are well-known in
theoretical computer science, but their use may pose a learning curve for lay practitioners.

Process calculi have been developed for hybrid systems and excel at modeling concur-
rent or communicating CPSs with events. They include Hybrid CSP (Zhou, Wang, &
Ravn, 1995; Liu et al., 2010), HyPA (Cuijpers & Reniers, 2005), and Hybrid x (Schiffelers,
van Beek, Man, Reniers, & Rooda, 2003), which have been used for both model-checking
and theorem-proving. As with automata, process calculi may require a learning curve for
practitioners, but their syntax is more programmatic and even shares some operators with
hybrid programs.

A notable practical approach for event-based models is Event-B (Abrial, 2010), which
makes crucial use of refinement to reduce verification of more complex event-based models
to simpler event-based models. Compared to our definition of refinement (Chapter 6), theirs
includes a more aggressive treatment of ghost variables: relational arguments between ghost
and non-ghost state allow refinement properties to hold between systems with differing sets
of state variables. Our definition of refinement fixes the dimension of the state, which leads
to a simpler definition but means that extra dummy assignments are sometimes necessary
when comparing programs whose state spaces differ. Extensions of Event-B have been
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proposed for hybrid systems (Banach, Butler, Qin, Verma, & Zhu, 2015; Su, Abrial, &
Zhu, 2014; Banach, 2013; Dupont, Ameur, Pantel, & Singh, 2018) but not hybrid games.
Among proposed hybrid systems extensions, those which have been implemented (Dupont
et al., 2018) require non-trivial setup effort by the user, to the best of our knowledge. While
it does not have hybrid games today, Event-B remains a viable platform for development
of new refinement reasoning technology for CPS in the long term.

Regardless, the logical and semantic foundations of game refinement remain of inde-
pendent interest, as do implementation approaches other than Event-B. In this thesis, we
first study foundations that should be of interest regardless of tool choice (Chapter 6), then
design and implement the Kaisar language (Chapter 7) which can verify hybrid games by
refining them to systems which perform the game’s winning strategy.

Programmatic models (Harel et al., 2000), automata (Rabin & Scott, 1959), and process
calculi (Hoare, 1978) are all commonly used for discrete programs in addition to hybrid
systems. Verification of CPS can be pursued using discrete models (Lecomte, Déharbe,
Prun, & Mottin, 2020; Akella, Tang, & McMillin, 2010; Cousot et al., 2005), but the
drawback is that discrete models are less faithful to a real CPS and thus verification
results do not translate as easily to real systems: a theorem is only as good as the model.
One approach to bridge the modeling gap between discrete models and hybrid systems
models is to generate a conservative discrete approximation of a hybrid system (Alur,
Henzinger, Lafferriere, & Pappas, 2000) where every safety theorem of the discrete system
is also a safety property of the hybrid system that it approximates. However, discrete
approximations of hybrid systems are often far too conservative in practice, i.e., there are
many safe systems whose discrete approximations cannot be shown to be safe. Additionally,
the size of the discrete approximation grows quickly with the complexity of the hybrid
system, presenting scalability challenges for nontrivial hybrid system models.

Interoperation between different modeling languages and between different automata-
based tools are areas of active research. The modeling language IPL (Ruchkin, Sunshine,
Iraci, Schmerl, & Garlan, 2018) was developed to provide interoperation between different
modeling languages which address different levels of system abstraction or different as-
pects of system correctness. Works which address interoperation between automata-based
tools with differing modeling notations and semantics include HyST (Bak, Bogomolov, &
Johnson, 2015) and HSIF (Pinto, Carloni, Passerone, & Sangiovanni-Vincentelli, 2006).

1.2.1.2 Model-Checking by Reachability Analysis

Model-checking for hybrid systems by reachability analysis is thoroughly studied. Well-
known model-checkers include SpaceEx (Frehse et al., 2011), Flow* (X. Chen, Abraham, &
Sankaranarayanan, 2013), and CORA (Althoff, 2015), as well as C2E2 (Duggirala, Mitra,
Viswanathan, & Potok, 2015).

These tools adopt different underlying data structures and algorithms which result in
support for different classes of hybrid systems, different verification properties, and different
levels of scalability.

SpaceEx supports piecewise affine automata (Guernic, 2009), a broader class than
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the earlier PHAVer® (Frehse, 2005). SpaceEx emphasizes scalability for this relatively
simple class of hybrid systems; it achieves scalability to =100 continuous variables by
combining polyhedra and support functions in its representation of (sets of) system states.
SpaceEx pursues unbounded-time safety guarantees using invariant arguments. Because
SpaceEx conservatively approximates the reachable states of a system, it may reject a set
which is invariant under the true dynamics of a hybrid system but not invariant under the
approximate semantics. Stable systems are a potential application domain for approximate
invariant analyses: if all system states converge toward an equilibrium point over time, it
is possible for an invariant check to succeed even under a conservative semantics.

C2E2, Flow*, and CORA all support nonlinear differential equations. C2E2 performs
bounded analysis of nonlinear systems by simulating them repeatedly with progressively
tighter error bounds until a property is proved or falsified, a process which is not guaranteed
to terminate for safety properties which hold with a low degree of robustness, e.g., for exact
safety bounds as opposed to conservative safety bounds. Flow* performs bounded-time
safety analysis using Taylor models which conservatively approximate solutions of ODEs
with polynomial upper and lower bounds. CORA is a MATLAB toolbox for both set-
based analysis and point-based simulation with an emphasis on flexibility regarding choice
of set representation and reachability analysis algorithm. CORA supports nonlinear ODEs
by conservatively abstracting them to polynomial difference inclusions (Althoff, 2013). In
each of C2E2, Flow*, and CORA, the emphasis on bounded-time guarantees helps offset
the mathematical complexity of non-linear ODEs.

Compared to theorem-provers, the implementation of reachability checkers typically
entails the design and implementation of complex data structures and algorithms for the
representation of sets of system states and system evolution over time. Those data struc-
tures and algorithms are an important contributor to the trusted code base of reachability
checkers, a contributor which is not present in the trusted computing base of a theorem-
prover. For example, the trusted core of SpaceEx has been estimated? (Fulton et al., 2015)
at 100 K lines of code.

Compared to theorem provers, the existing model checkers consider narrower classes
of systems or narrower classes of system properties. For example, SpaceEx only considers
piecewise affine systems and the only safety regions it supports are convex sets that can be
represented with polyhedra or support functions. C2E2 and Flow™ only consider bounded-
time safety, with C2E2 only supporting polyhedral sets of initial system states.

As with theorem-proving, hybrid systems model-checking is canonically used today
for offline verification of safety properties. Model-checking has been applied to many
application domains, including ground robotics (X. Chen et al., 2015), which is also the
area of focus for the case studies in this thesis. While offline safety verification is a canonical
use of model-checkers, other uses have also received attention:

* Runtime reachability analysis has been performed in real time on cars (Althoff &

3PHAVer supported linear hybrid automata (Henzinger, 1996), where differential inequalities have
piecewise-constant bounds. Linear hybrid automata should not be confused with automata whose dif-
ferential equations are linear, a class which is far more expressive than linear hybrid automata and which
constitutes a significant subset of affine automata.

4The estimate is in the conference presentation slides, not the paper.
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Dolan, 2014; Lin, Chen, Khurana, & Dolan, 2020), which enables the use of fallback
controllers for safety (Pereira & Althoff, 2015) (see discussion in Section 1.2.2.2).

* Liveness analysis (Cimatti, Griggio, Mover, & Tonetta, 2014) is available in some
solvers (Cimatti, Griggio, Mover, & Tonetta, 2015), albeit fewer than safety.

To better support the use of reachability analysis algorithms in trusted contexts, a set-
based reachability checker for ODEs has been verified (Immler, 2015) using Isabelle/HOL’s
differential equations library (Immler & Traut, 2016). A verified integrator for ODEs based
on computable reals has also been developed in Coq (Makarov & Spitters, 2013). While
ODE reachability is a fundamental building block for hybrid systems reachability, the
verified checker does not support hybrid systems.

1.2.1.3 Theorem-Provers

Interactive theorem-proving is one of the major approaches to hybrid systems verification,
and is characterized by high expressiveness, which can come at the cost of increased verifi-
cation effort. Hybrid systems theorem proving has been pursued both in existing general-
purpose interactive theorem provers (GPITPs) (Rouhling, 2018; S. Foster, 2019; Huerta y
Munive & Struth, 2019) and in domain-specific provers (Platzer & Quesel, 2008a; Fulton
et al., 2015; Liu et al., 2010) for domain-specific logics (Platzer, 2008a). GPITPs excel
at flexibility because they provide access to large libraries of general-purpose mathematics
and are capable of modeling diverse system dynamics beyond hybrid systems. Because
GPITP modeling is flexible, a given CPS is sometimes modeled directly rather than using
a specific representation of hybrid systems (Rizaldi, Immler, Schiirmann, & Althoff, 2018;
Rizaldi et al., 2017; Chan, Ricketts, Lerner, & Malecha, 2016). Mathematical libraries have
also been built to address background topics relevant to CPS, including geometry (Affeldt
& Cohen, 2017) and dynamical systems (Cohen & Rouhling, 2017). The downside of using
a GPITP is that specialized support for hybrid systems is not provided out-of-the-box,
which may result in less effective use of automation or a steeper learning curve. Efforts
have been made to provide hybrid system proofs as a library within GPITPs (S. Foster,
2019; Huerta y Munive & Struth, 2019), but automation for differential equations is highly
specialized, which can cause automation in libraries to lag behind specialized tools. For
example, there is a notable line of work (S. Foster, 2019; Huerta y Munive & Struth,
2019; Hickman, Laursen, & Foster, 2021) which provides a hybrid systems library in Is-
abelle/HOL based on Unifying Theories of Programming (UTP) (Hoare & He, 1998) and
refinement calculi. As this line of work improves its automated support for integration of
ODE solvers (Hickman et al., 2021) and its support for crucial invariant-based reasoning
methods (Huerta y Munive & Struth, 2019), important gaps in automation relative to
domain-specific approaches still remain, such as the lack of access to real arithmetic deci-
sion procedures (e.g. (G. E. Collins & Hong, 1991)) and lack of advanced ODE invariant
search procedures (e.g. (Sogokon, Mitsch, Tan, Cordwell, & Platzer, 2019)). On the other
hand, a notable strength of this approach is its easy access to the wide variety of math-
ematics that has been formalized in Isabelle/HOL. Even the avoidance of real arithmetic
decision procedures has its advantages, because it means that the decision procedures need
not be added to the trusted computing base of the verification effort, with the tradeoff
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being that absence of such procedures significantly inhibits scalability of verification due
to the extensive effort required for interactive verification of arithmetic properties.

Domain-specific hybrid systems provers include KeYmaera (Platzer & Quesel, 2008a)
and its successor KeYmaera X (Fulton et al., 2015) as well as the Hybrid Hoare Prover (Liu
et al., 2010). KeYmaera X supports dL and its extension dGL (Platzer, 2015a), while
Hybrid Hoare Prover supports a Hybrid Hoare Logic for Hybrid CSP. Specialized provers
typically provide superior automation and a relatively gentle learning curve, but cannot
model systems outside their chosen domain at all.

Not to be confused with dGL, the original KeYmaera supported its earlier relative called
dDGL (Quesel, 2013, Ch. 4). A key technical limitation of dDGL compared to GL, dGL, and
CdGL is that it employs an advance-notice semantics for loops, meaning that the player
who controls a loop must decide the number of loop repetitions before the loop starts,
a restriction which is significant because it precludes the commonly-desired (Chapter5)
feature of allowing loop repetition logic to react to the moves the opponent has made
throughout earlier loop repetitions. The standard loop semantics used by GL, dGL, and
CdGL can be used to implement advance-notice loops but not vice-versa.

The logic dDGL is also notable because its original motivations fit within the philosophy
of end-to-end verification: dDGL was used to state and prove similarity properties between
hybrid systems (Quesel, 2013, Ch. 5) under the motivation that a high-level and low-level
hybrid system model of the same CPS might have similar but not identical behavior. If a
high-level model is proved safe and a similarity proof allows its safety guarantee to transfer
to a lower-level model that is easier to implement, then progress has been made toward
end-to-end verification.

While we and dDGL share high-level motivations, dDGL only shows similarity proper-
ties between hybrid systems and does not address lower levels of abstraction such as com-
piled code that uses approximate arithmetic, thus prior work on dDGL does not present
guarantees for executable code as we do. Their notion of similarity allows scaling or trans-
lating time (Quesel, 2013, Ch. 5) because low-level and high-level models may differ in
their treatment of time. Our refinement calculus (Chapter6) addresses a more general
refinement property where one system refines another if all safety properties of the former
are safety properties of the latter®. However, their work would provide a useful roadmap
if we were to try to prove time translation and scaling properties in our system.

Differential Dynamic Logics This thesis continues a long line of work using differential
dynamic logic (dL) (Platzer, 2008a, 2012¢, 2017a), its relatives, and its implementations in
the KeYmaera (Platzer & Quesel, 2008a) and KeYmaera X (Fulton et al., 2015) theorem
provers. We now discuss that work in greater detail. Verification in dL is symbolic and
expressive, excelling at general-case correctness theorems without reliance on conservative
numeric analysis. Assignments, guards, and differential equations can all be non-linear.
Hybrid systems can have symbolic parameters: for example, an abstract driving model can
be proved safe independent of any particular car’s acceleration and braking rates. Safety

5Qur system can prove refinements for both games and systems, but the description given here is
phrased for systems because the case for systems requires less explanation.
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guarantees are typically unbounded-time. The range of hybrid systems supported by dL
and KeYmaera X is well outside decidable fragments (Henzinger et al., 1998). Rather than
adopt conservative approximations, dL overcomes undecidability through manual proof
interactions from the proof author, which are often necessary in nontrivial case studies
across many application domains (Platzer, 2016). While user interaction is typically re-
quired, KeYmaera X does provide significant proof automation, allowing the user to focus
their efforts on identifying core insights such as safety invariants. For example, invariants
of differential equations can often be checked automatically using an algorithm which is in
theory® able to decide semianalytic invariants of semianalytic differential equations (Platzer
& Tan, 2020). The Bellerophon (Fulton, Mitsch, Bohrer, & Platzer, 2017) proof script lan-
guage provides a combinator-style notation for expressing dL proofs in KeYmaera X as
combinations of (often high-level, automated) proof steps. A benefit of deductive proof
relative to approximation methods is its higher degree of completeness: there are fewer
true properties that have no proof. Specifically, there are relative completeness results for
dL (Platzer, 2008a, 2012b, 2017a) which reduce completeness of dL to completeness of fully
discrete or fully continuous logics. The high-level takeaway of the relative completeness
theorems is that dL is “as complete as possible”.

The examples and case studies presented in this thesis focus on driving. Ours (Sec-
tion 3.7.3) are not the first dL driving case studies: prior work (Mitsch, Ghorbal, & Platzer,
2013; Mitsch et al., 2017) has studied both 2D safety in the presence of sensor uncertainty
and actuator disturbance and 1D liveness. This thesis includes a case study which we
use to assess VeriPhy’s ability to verify realistic systems. Our case study generalizes dL
proofs of 1D straight-line motion (with direct velocity control) (Bohrer et al., 2018), of 2D
obstacle avoidance, and 1D liveness (Mitsch et al., 2013, 2017). A separate effort proved
liveness with dL rules and assumed perfect sensing and constant speed, but did not result
in a machine-checkable proof (Martin, Ghorbal, Goubault, & Putot, 2017). Both their
controllers and ours are closely related to the classic DyNaAMIC-WINDOW (Fox, Burgard,
& Thrun, 1997) control algorithm. Our driving case study improves upon prior efforts by
providing 2D liveness guarantees and an explicit model of waypoint-following. Moreover,
we have used our driving model to evaluate our end-to-end verification tool VeriPhy and
the evaluation process informs the model design: we know with confidence that our model
is flexible enough to capture realistic system behaviors, because the model has actually
been validated against a realistic simulation at runtime.

1.2.2 Synthesis

Our VeriPhy approach for end-to-end verification relies fundamentally on synthesizing cor-
rect controllers and monitors from a hybrid system model that has been proved correct
in dL. We discuss the broader context of synthesis in CPS: synthesis can be applied to
high-level planning and control tasks, synthesis can be used for online verification via mon-
itors, and synthesized code can contribute to end-to-end verification approaches, including

6The implementation does not allow arbitrary semianalytic invariants because the only terms it allows
are those of KeYmaera X.
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ours. However, the approaches vary greatly in which artifacts are synthesized and what
correctness properties they guarantee. In particular, (classical) VeriPhy is distinguished by
its formal implementation-level guarantees about physical safety of the CPS at runtime.

On the flip side, synthesis approaches vary widely in their input material: it is more
difficult to synthesize code when only provided a model rather than provided both a model
and proof. VeriPhy assumes availability of both a model and proof, which makes the
synthesis task easier. The synthesis problem is also called code extraction in the case that
a proof is provided.

1.2.2.1 Offline Synthesis for Planning and Control

The design and implementation of CPSs is typically divided into several levels of abstrac-
tion: high-level plans are developed first, then controllers ensure that the plans are followed.
Synthesis can be applied at both the planning and control layers and the correctness of
each layer is important. Equally important is the observation that hybrid system models
support a natural decoupling between planning and control (Nerode & Kohn, 1993): our
case study (Section 3.7.3) will assume a planner has been given and will prove control cor-
rectness with respect to a planner. Our work could then be combined with any approach
that verifies correct planning.

We discuss works which synthesize plans or controllers, but do not pursue end-to-end
verification in our sense. Specifically: ) they focus on correctness of simple concrete
control laws rather than an architecture which can ensure correctness in the presence
of complex untrusted codebases, i) they synthesize plans or controllers which are safe
under the assumption that real physics perfectly match a model, rather than enforcing
compliance at runtime, and i) they do not extend their guarantees to low-level code
and its interactions with the physical world. While the following works are not end-
to-end, they could potentially serve as components of an end-to-end verified system: a
concrete controller synthesized with the following approaches could be used as an untrusted
controller within an end-to-end approach based on sandbox control. Synthesis for planning
and control have been pursued in the following ways:

* Hybrid systems models have been used in the synthesis of high-level robot motion
plans (Bhatia, Kavraki, & Vardi, 2010; Fainekos, Girard, Kress-Gazit, & Pappas,
2009) to ensure that the synthesized plan is physically feasible according to the
model. The cited works synthesize plans to satisfy a correctness specification given
in temporal logic.

* Controllers have been synthesized: i) for rectangular hybrid games (Henzinger et al.,
1999), ) from temporal logic specifications for linear systems (Kloetzer & Belta,
2008), i) for adaptive cruise control (Nilsson et al., 2016), tested in simulation and
on hardware 7v) from safety proofs (Taly & Tiwari, 2010) for switched systems using
templates, and v) by generating hybrid game specifications (Tomlin et al., 2000).

* The tools LTLMoP (Finucane, Jing, & Kress-Gazit, 2010) and TuLiP (Filippidis,
Dathathri, Livingston, Ozay, & Murray, 2016) can synthesize robot controls that
satisfy a high-level temporal logic specification. Their strength is that they provide
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easy-to-learn user interfaces for modeling and verification. Their weaknesses are that
their models discretize space and time, and there is not a chain of formal artifacts for
each step of synthesis. Thus, even though their contributions to a broader agenda of
end-to-end verification are noteworthy, they do not provide end-to-end guarantees in
the narrower sense which we seek.
Of the above techniques, only two involve hybrid games. In the former (Henzinger et
al., 1999), the highly restrictive class of rectangular hybrid games is considered. The lat-
ter (Tomlin et al., 2000) uses games as an intermediate language, not its source. Many
automatic techniques are restricted to simplistic ODEs for good reason: only simple
classes (Shakernia, Pappas, & Sastry, 2001; Shakernia, Sastry, & Pappas, 2000) have de-
cidability guarantees, so synthesizers for more complex classes are usually incomplete.

Our end-to-end approach (Chapter 3) varies in several key ways. We do not assume
that physical reality perfectly matches a model because it never does. Instead, we monitor
the real world’s compliance with the model so that fallback controllers can be used as a
best-effort to restore compliance and so that we can detect model violations. Detecting
model violations is an important ingredient in end-to-end verification because it improves
model realism in the long term: assuming an iterative development process, models can
often be revised to eliminate violations which are present in an initial version. Lastly, we
provide end-to-end formal proof artifacts which not only show safe execution of low-level
code but show that the physical system under its control satisfies physical safety properties,
e.g., collision avoidance.

Our approach ensures safety by sacrificing liveness when untrusted code proposes unsafe
actions or when the physical world does not meet assumptions. Safety takes priority over
liveness because controller liveness violations can rarely cause harm to humans, but liveness
is still a fundamental aspect of functional correctness. In Chapter 8, we address synthesis
of controllers from liveness proofs. Liveness guarantees ensure that system objectives are
actually achieved, such as a car reaching its destination.

1.2.2.2 Online Verification

The related works discussed in Section 1.2.2.1 are offline: i.e., they are used before-the-
fact to ascertain correctness. In contrast, online verification (or runtime verification) uses
runtime monitor checks to enforce correctness. Online verification excels both at providing
safety for control systems which are too complex to model and prove in their entirety and
at reacting to a physical world that is only known in full at runtime, where sensor data are
available. The value of runtime validation cannot be overstated because system modeling
would otherwise present a Gordian knot: without real-world data, it is impossible to truly
know whether a proposed model matches reality. By simply checking observed data against
a model, runtime verification can cut that Gordian knot.

While the advantages of online verification are substantial, so are the limitations and
subtleties. Even online verification approaches can only ensure safety if they incorporate
predictions about future physical behavior: detecting that our car has crashed will not
make us safe, rather we must check whether braking is necessary now to avoid future
crashes. When online approaches incorporate untrusted controllers, they must respond in
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a provably safe way when untrusted controllers fail to propose safe control actions, which
often violates secondary liveness objectives. More broadly, liveness can never be guaranteed
by observing runtime behavior, because liveness is a prediction about future behaviors that
have not yet been observed.

Our work builds on a robust tradition of online verification, which we survey below. The
key ingredients of our end-to-end safety guarantees are correct construction of monitoring
conditions, formal correctness proofs for controllers which employ monitors, and transfer
of correctness guarantees from high-level to low-level controller implementations. None of
the prior works listed below feature all of these necessary ingredients which enable a formal
safety theorem for low-level code and its interaction with a physical system.

* The basis of online verification is the SIMPLEX (Seto, Krogh, Sha, & Chutinan, 1998)
method, which uses a trusted monitor to decide between an untrusted controller and
trusted fallback. SIMPLEX is most helpful when untrusted controllers are complex,
but monitors and fallback controllers are simple. The key insight of SIMPLEX is
that the controller need not be trusted because safety depends only on the control
decision which it outputs, and the output is only executed if the monitor approves
it, else the trusted fallback controller is executed. The SIMPLEX method explains
at a high level why controllers based on monitoring are correct, but does not come
with a formal proof.

* ModelPlex (Mitsch & Platzer, 2016b, 2014) is a feature of the KeYmaera X prover
which synthesizes dL monitor formulas from proven-safe dL models of controllers
and physics (plant models). ModelPlex proves that the formula it produces is a
correct monitor in the sense that states which satisfy the formula correspond to state
transitions permitted by models of respective control or plant models. However,
ModelPlex only returns a formula, not a controller, and does not consider how the
formula should be executed; VeriPhy picks up where ModelPlex leaves off in order
to build verified controllers from correct monitors. In short, ModelPlex provides the
knife with which VeriPhy cuts the Gordian knot.

Our experience with ModelPlex has highlighted the importance of exploiting proof
content such as invariants during synthesis. While ModelPlex’s support for invari-
ants (Mitsch & Platzer, 2018) is not a contribution of this thesis, our logic CdGL
provides a rigorous foundation for computations over proofs, ensuring robust han-
dling of proof invariants in constructive VeriPhy (Chapter 8).

* Our VeriPhy synthesis tool (Chapter3, Chapter8) builds on SIMPLEX and Mod-
elPlex. Unlike SIMPLEX, ModelPlex gives correct-by-construction monitor condi-
tions, but ModelPlex only provides a formula over real numbers which provably
captures the transitions of a program and does not show how the monitor should be
incorporated into a controller or executed. Classical VeriPhy uses ModelPlex mon-
itor conditions in its correct controllers and proves that the controllers stay correct
as they are compiled and executed, while constructive VeriPhy generates its own
monitors. Classical VeriPhy uses the verified compiler CakeML (Kumar, Myreen,
Norrish, & Owens, 2014) for correctness of the final compilation step. As of this
writing, constructive VeriPhy uses an unverified interpreter for the final step.
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* Both ModelPlex and VeriPhy fall under the paradigm of predictive runtime verifica-
tion: they enforce safety invariants which are strong enough to make safe control pos-
sible indefinitely so long as model compliance continues. A number of other predictive
runtime verification approaches have been developed for discrete software (Ehlers &
Finkbeiner, 2011; Meredith & Rosu, 2010) and CPSs (Bartocci et al., 2012; Pinisetty
et al., 2017; K. Yu, Chen, & Dong, 2014; Babaee, Gurfinkel, & Fischmeister, 2018)
as well, but they do not come with foundational end-to-end system safety proofs as
classical VeriPhy does.

* High-Assurance SPIRAL (HA-SPIRAL) (Franchetti et al., 2017) is a pragmatic com-
pilation toolchain for ModelPlex-synthesized monitors for dL a la SPIRAL (Piischel
et al., 2005), but struggles to provide formal end-to-end guarantees. It is discussed
at greater length in Section 1.2.2.3.

* Runtime reachability analysis has been used for car control (Althoff & Dolan, 2014;
Lin et al., 2020), but relies on correctness both of the plant model and of the analysis
implementation. These assumptions present a gap which stands in the way of an
end-to-end guarantee because models of driving and implementations of reachability
analysis tools are difficult to get right.

* Separately, the study of conformance investigates when models at different levels of
abstraction are faithful to one another, so that guarantees at one abstraction level
transfer to the other. A survey of the literature is available (Roehm, Oehlerking,
Woehrle, & Althoff, 2019).

* MOP (F. Chen & Rosu, 2007) is a runtime verification framework which allows
correctness contracts to be annotated on (object-oriented) programs and then auto-
matically generates runtime monitors for those specifications using aspect-oriented
techniques. Its implementation in ROS is called ROSRV (J. Huang et al., 2014). Be-
cause ROS emphasizes message-passing communication in robotic systems, ROSRV
emphasizes monitoring of correctness contracts for system events, including moni-
toring of secure access control policies. ROSRV’s evaluation (J. Huang et al., 2014)
demonstrated its usefulness on a commercial wheeled robotics platform. While the
correctness contracts provided by MOP can help eliminate implementation bugs, the
contracts are an arbitrary specification provided by the developer and have no partic-
ular relationship to any dynamical model nor any particular relationship to a given
safety guarantee for system control. Thus, MOP contracts do not directly amount
to enforcement of physical safety.

In conclusion, while classical VeriPhy’s correctness argument is crucially structured around
a sandbox controller which is built using a runtime verification approach, existing run-
time verification techniques would not on their own prove physical safety of the sandbox
controller. Rather, past work in runtime verification provides the fundamental building
blocks which allow VeriPhy to ¢) provide guarantees for controller programs ii) guarantee
safety when real physics matches modeling assumptions and alert us when it does not, and
i11) preserve those guarantees throughout compilation.

Runtime verification remains a topic of active research and ongoing interest. Of the
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many active lines of runtime verification research, we remark that VeriPhy would stand to
verify from future research that seeks to ensure hybrid systems monitors are as permissive
as possible without compromising safety:.

1.2.2.3 End-to-End Approaches

The grand challenge problem of end-to-end verification encompasses any effort which ex-
tends formal verification from high-level models to concrete implementations. Among
end-to-end efforts, this thesis emphasizes the importance of formal guarantees linking the
model to real-world safety at runtime. Runtime verification (Section 1.2.2.2) is essential to
providing those guarantees because it cuts the Gordian knot of modeling: a safety argu-
ment does not need to assume that a physical model is correct if it can instead observe that
a physical model is complied with at runtime. We furthermore emphasize that the formal
link between model and implementation should be provided for a broad class of models
with as much automation as possible, and that new proof technologies serve an important
enabling role for the development of systems that are correct end-to-end.

We discuss several works which pursue an end-to-end philosophy but do not provide end-
to-end guarantees in our sense. We first discuss HA-SPIRAL separately because it requires
the most detailed comparison, then discuss several approaches which cannot bridge the gap
between physics and models of physics because they do not employ runtime monitoring.

High-Assurance SPIRAL (HA-SPIRAL) (Franchetti et al., 2017) may appear similar
to VeriPhy at first: it takes a verified dL model as its input and generates code using
a ModelPlex monitor. However, not only does HA-SPIRAL lack our end-to-end guar-
antees, but its approach makes such guarantees impossible. HA-SPIRAL never reasons
semantically about hybrid systems, choosing to argue compilation correctness by syntactic
transformation alone. Any end-to-end correctness guarantee for CPS must be semantic
because it must transfer guarantees from the high-level semantics of hybrid systems to the
low-level semantics of implementation code. An end-to-end approach must also crucially
prove that its controller has a safe impact on the physical behavior of the system. Because
HA-SPIRAL forgets about hybrid systems as soon as ModelPlex hands it a monitor for-
mula, its architecture fundamentally precludes showing that its control program has a safe
effect on the physical dynamics of the CPS. Lastly, the correctness proofs in HA-SPIRAL
stop short of verifying machine code (Zaliva & Franchetti, 2018).

HA-SPIRAL is not without its strengths. It has been applied to geo-fencing and
dynamic-window control (Low & Franchetti, 2017), both of which are important applica-
tions. One of its most notable strengths is that it places a strong emphasis on specialized
compiler optimizations inherited from SPIRAL such as those which optimize vector opera-
tions to use special-purpose vector instructions. That reliance on SPIRAL’s optimizations
could however make provable compilation difficult in the long term: verification of compiler
optimizations is known (e.g. in CakeML (Tan et al., 2016)) to require significant effort, and
SPIRAL features many optimizations which do not come with formal correctness proofs
or formal semantics.

The following works are notable because they start with formal safety proofs about
CPSs and end with executable code, but they are not end-to-end because they do not en-
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force compliance with physical models at runtime and do not have foundational arguments
linking models of code to executable extracted code. In the first work, the proved property
does not imply safe avoidance of collisions; in the second, implementation code was written
entirely by hand.

* ROSCoq (Anand & Knepper, 2015) is a framework based on the Logic of Events
for reasoning about distributed CPSs in Coq with constructive reals and generating
verified controllers. Their use of constructive reals is a predecessor to the use of
constructive reals in Chapter 5, though VeriPhy does not use computable reals for
execution because of their limited performance. The ROSCoq robot model includes
ODEs which model physical motion, but the invariant rules provided in their frame-
work are relatively low-level properties of constructive real analysis and constructive
ODEs, resulting in significant manual proof. Though the manual proof effort is non-
trivial, their case study shows how constructive proofs can be performed in Coq for
both discrete control and continuous physical dynamics. They synthesize controllers
using Coq’s built-in code extraction feature, which does not have an exhaustive for-
mal proof of code extraction correctness.

ROSCoq does confront the fact that real-world system behavior can diverge from a
model, but takes a different approach compared to VeriPhy. Instead of monitoring
whether system behavior complies with a model, ROSCoq proves bounds on the
magnitude of position error as a function of all error sources in the system. One
strength of their approach is that it accounts for error while keeping simple exact
ODE dynamics, but the downside is that they do not explicitly prove canonical safety
properties such as collision avoidance because, for example, a collision could actually
occur when system error is large.

* VeriDrone (Ricketts, Malecha, Alvarez, Gowda, & Lerner, 2015) is a framework for
verifying hybrid systems in Coq that relies on a discrete-time temporal logic called
RTLA, inspired by TLA (Lamport, 1992). Their framework provides an invariant rule
for ODEs, but does not include rules comparable to the other dL proof rules for ODEs.
Thus, complex proofs about ODEs likely require greater manual effort in this system.
As the name suggests, VeriDrone was used to prove safety of a UAV drone model,
specifically safe geofencing: the drone remains within a 3D region constructed as a
union of intersections of half-volumes. VeriDrone emphasizes a compositional safety
argument where safety of a complex 3D region is reduced to a safety argument for the
half-volume primitive. Their semantics use discrete time, which would complicate
any potential end-to-end argument because real time is not discrete. Moreover, their
proofs are not end-to-end because their experiments are based on control code hand-
written in C based on floating-point calculations (Ricketts, 2017, §2.4.2) rather than
code automatically generated from a formalization.

In short, while all of the above seek to apply verified controllers on real systems, none
of them have our end-to-end guarantees, and neither ROSCoq nor VeriDrone has been
successfully applied to ODEs which exercise the full range of reasoning available in the dL
family, nor did they directly synthesize correct code from models for which they proved
safety in the sense of collision-freedom.
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This chapter introduced the thesis statement that Constructive Differential Game Logic
(CdGL) enables practical, end-to-end verification of cyber-physical systems. We elaborated
on the notions of practicality and end-to-end verification by introducing three characters:
the Logician, the Engineer, and the Logic-User. These characters respectively represent
the competing needs of theoretical foundations, system implementation, and modeling
and verification at scale. We discussed how the thesis’ end-to-end verification approach,
VeriPhy, resolves these competing needs to significantly greater degree than related work.

22



Part 1

End-to-End Verification of Classical
Hybrid Systems
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Chapter 2

Formalization of Classical dL

Throughout this thesis, we use differential dynamic logic (dL) (Platzer, 2018a, 2008a, 2017a,
2012b) and its relatives to prove safety, liveness, and correctness of hybrid models of cyber-
physical systems (CPS’s). Much of the value of a formal proof comes from the certainty it
provides: if a fact has a proof, we are confident that it is true. We are especially confident
when our proof is written in a formal logic which can be mechanically checked by a proof
assistant on a computer because, unlike a human, a computer does not grow tired or miss
details. A proof system is sound if all proved formulas are valid, meaning that they are
true in all cases.

It is common to prove soundness of a logic using human-readable arguments, and dL
has had such a soundness proof since its inception (Platzer, 2007a, 2008a). Specifically,
dL is proved sound by introducing a denotational (or model-theoretic) semantics which
serves as a ground notion of truth, then proving that dL proof rules are sound with respect
to the denotational semantics. However, a human-readable argument for soundness could
be incorrect for all the same reasons that a human-readable proof about a CPS could be
incorrect: the author might apply a reasoning step incorrectly or skip an important step.
The Logician in particular knows that human reasoning is fallible and thus prefers the
trustworthiness of formal, machine-checkable reasoning in a proof assistant. Trustworthy
proofs are especially important for soundness: the dL proof calculus serves as a gatekeeper
for dL proof attempts, so our confidence in every dL proof relies on our confidence in
the dL soundness proof. The gatekeeper role served by the dL proof calculus justifies the
significant investment of effort required to prove soundness formally: effort is invested in
proving soundness once, but the benefit of increased trust is paid back every time a proof
is performed in the dL calculus.

We formalize the soundness theorem of dL in Isabelle/HOL, a general-purpose proof
assistant which is strong enough to represent logics and their soundness theorems. The
formalization first defines the syntax, semantics, axioms, and rules of dL, then states and
proves the soundness theorem. The particular presentation of dL which we formalize is
called its uniform substitution calculus (Platzer, 2017a), a style of calculus which is noted
for its use of concrete formulas as axioms rather than axiom schemata. A strength of
uniform substitution calculi is their modularity, a modularity which is kept both by the
formalized soundness proof in Isabelle/HOL and the implementation of the KeYmaera X
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theorem prover for dL. Our formalization follows KeYmaera X when possible, and we
comment on any differences and the reasons for them. To the extent that our uniform
substitution calculus agrees with that of KeYmaera X, our effort can also be understood
as the cross-verification of KeYmaera X in Isabelle/HOL. To demonstrate the extent of
our cross-verification, we instrumented KeYmaera X to generate proof-terms which were
successfully rechecked in a proofchecker extracted from the formalization (Section 2.8). We
discuss the extent to which different parts of KeYmaera X can or cannot be concluded as
sound from the proofchecking experiments (Section 2.10).

As reflected in Section 2.10, it is important to take a skeptical perspective when showing
soundness of a proof calculus. A particularly skeptical Logician might observe that if it is
possible for the dL calculus to contain soundness bugs, it is possible for Isabelle/HOL to
contain soundness bugs as well. Likewise, if Isabelle/HOL were cross-verified in another
proof assistant, that proof assistant’s code would have to be trusted: because soundness
of a system can only be shown in a stronger system, any formal proof of soundness will
rely on soundness of another system. However, the theoretical possibility of a soundness
bug in Isabelle/HOL cannot invalidate the demonstrated benefits of our formalization: for
example, our effort exposed a previously-unknown and easily-fixed soundness bug in the
KeYmaera X prover core (Section2.10). Because we have written a single Isabelle/HOL
proof which gives assurance for all dL proofs, we are far more likely to find and fix a
soundness bug in dL than we are to first silently encounter an Isabelle/HOL soundness bug
and then fail to address that bug. Our own soundness bug arose in a subtle edge case,
reinforcing the folklore wisdom that soundness is most challenging for edge cases, and
that proofs which avoid edge cases of the proof calculus are the least likely to encounter
proofchecking bugs. If a skeptic remains concerned about the possibility of a soundness
bug in Isabelle/HOL compromising our conclusion, the skeptic can further eliminate doubt
by providing an independent soundness proof in another proof assistant whose design and
foundations differ. Our coauthors did exactly that in one of the publications corresponding
to this chapter (Bohrer, Rahli, Vukotic, Vélp, & Platzer, 2017), showing soundness of dL
in the proof assistant Coq. Subsequent to our work, Platzer independently formalized dGL
in Isabelle/HOL (Platzer, 2019a) with an emphasis on simplicity over practicality. His
formalization often makes different design decisions from our own, thus it provides a useful
point for comparison.

While following chapters of this thesis will introduce new logics which extend dL (Chap-
ter 5, Chapter 6), formalized soundness of dL takes priority over those logics because the
reasoning principles used in dL are needed in its extensions as well. In chapters which intro-
duce extensions of dL and prove them sound on paper, we do not mechanize the soundness
proofs but instead discuss the challenges that formalization would pose. The major reason
that we do not mechanize those results is that formalization of constructive games (Chap-
ter 5) and their refinements (Chapter 6) introduces unique foundational challenges beyond
those posed by classical games (Platzer, 2019a). Conversely, our soundness formalization
for dL is also a testament to the usefulness of real analysis and differential equation libraries
provided by Isabelle/HOL: those libraries are complete enough that our own work focuses
on the specifics of dL rather than general-purpose theorems of differential equations on
which soundness relies.
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Within the broader context of the thesis, this chapter serves several purposes. Firstly,
Classical VeriPhy (Chapter 3) can use the verified proofchecker implemented in this chapter
to provide a high degree of confidence in the correctness of a dL proof, which is crucial
because Classical VeriPhy’s implementation-level correctness guarantees are dependent on
the soundness of dL proofchecking. While Constructive VeriPhy (Chapter8) does not
employ the verified proofchecker (because the logic it is based on, called CdGL, differs
from dL), a soundness proof for dL helps increase our confidence in fundamental hybrid
systems verification principles which arise in multiple logics. Lastly, because this chapter
discusses dL formulas and their meaning in detail, this chapter serves a secondary purpose
as an introduction to dL. However, the full, formalized uniform substitution calculus for dL
also includes some advanced features and implementation details which are not needed to
understand the models and proofs used in the rest of the thesis, and thus may be of lesser
interest on a first reading. We point out advanced features and implementation details
when they arise, but encourage readers unfamiliar with dL to focus on the main features
during a first reading.

Section 2.1 introduces basic Isabelle/HOL syntax used in this chapter. Section 2.2 in-
troduces the syntax of the dL uniform substitution calculus we formalized, which is given
a denotational semantics in Section 2.3. The dL static semantics of Section 2.4 are used to
state side conditions for rules and in a handful of axiom schemata. Section 2.5 introduces
the dL axioms and axiom schemata. Section 2.6 introduces the dL rules and rule schemata.
Axioms, rules, and schemata are proved sound in Section 2.7. Section 2.8 wraps the proof
calculus in a verified proof term checker, from which code is extracted and applied to
proof terms extracted from KeYmaera X. Section2.10 discusses the implications of the
formalization for the soundness of dL as implemented in KeYmaera X.

Version Differences. There exist several versions of the Isabelle/HOL formalization dis-
cussed here. In addition to multiple published versions (Bohrer et al., 2017, 2018; Bohrer,
2017), some features present in our development repository have not been published to the
Archive of Formal Proofs (AFP) as of this writing. The main reason the latest revision
has not been published is because its new, more general treatment of identifiers leads to
generated code that is unrunnable in practice, while the treatment in the current AFP
release can generate runnable code. Our presentation matches the development version
most closely because the latest revisions have less syntactic boilerplate than the AFP re-
lease. Our code generation and proofchecking experiments are an exception: we use an
older version (Bohrer et al., 2018) with the original treatment of identifiers to generate
runnable code for the experiments.

In principle, the two versions of the Isabelle/HOL formalization could be unified by
adapting the data structures for dL expressions and substitutions to admit efficient rep-
resentations in the presence of large identifier sets. Specifically, substitutions would be
represented as lists of replacement pairs, the same design choice which was taken in the
Coq formalization of dL (Bohrer et al., 2017). The expression data structure would be
modified to make the arity of functions (Section2.2.1) and predicates (Section2.2.4) not
depend on the set of available identifiers. While these changes would be useful for the
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long-term maintainability of the formalization, they have not been pursued in this chapter
because they would constitute a large maintenance task but would not significantly change
the conclusions of the chapter.

We explicitly mention when there are major differences between the public release and
the development version. In summary, the major implication of the version differences
is that when verified proofchecking is desired, one must use the AFP release, which has
a greater amount of boilerplate in the formalization and which lacks several convenient
extensions provided by the development version such as nondeterministic assignments,
strings as identifiers, and a more extensive term language.

2.1 Isabelle/HOL Primer

We introduce basic Isabelle/HOL notation used in this chapter and refer the reader to
the literature (Nipkow, Paulson, & Wenzel, 2002; Nipkow & Klein, 2014) for a thorough
introduction to Isabelle/HOL. We will use type, term, and predicate definitions, for which
purpose we also introduce Isabelle/HOL syntax for terms and formulas. Isabelle/HOL
syntax makes heavy use of double quotes ", which must be wrapped around all non-
trivial top-level terms and formulas. It will suffice an uninitiated reader to read the quotes
as parentheses. Whitespace is not significant, except for its standard role of separating
identifiers. We typeset mathematical symbols from Isabelle/HOL code using Unicode for
readability; Isabelle/HOL’s internal representation differs.
Logical notation in Isabelle/HOL requires special attention for two reasons:

* Isabelle/HOL distinguishes terms from propositions

* Isabelle is a logical framework which can define many logics. In this framework,
different notations are used for the metalogic (Isabelle/Pure) and object logic (HOL).
The reader of this chapter need not concern themself with the distinctions between Pure
and HOL, but each syntax is needed at times for technical reasons, and we introduce all
notations that we use. For example, a universal quantifier in Pure is written A while a
universal quantifier in HOL is written V. The Pure universal quantifier is easily confused
with the HOL conjunction operator A. Pure quantifiers and HOL conjunctions can be dis-
tinguished by their arity: conjunction (A) is an infix binary operator while Pure’s universal
quantification (A) uses prefix notation, followed by the quantified variable and quantified
formula. An implication in Pure is written with a long double arrow = while a function
uses a shorter double arrow = and HOL implications (likewise, equivalences) use single
arrows —. Rather than an equality sign, definitions may use the equal-by-definition sign =.
Set operations can use standard notations such as membership €, binary union u, n-ary
union U, and binary intersection n. Set complement is prefix —, the set of all values (of
some type 'a) is UNIV whose type is 'a set, and the image of S under function f is
£ S. The closed interval [a, b] is written {a..b}. Set comprehensions are supported. We
give several examples with increasing complexity:

* {x, vy}, the finite set containing exactly x and v,

* {x. p(x)}, the set of elements x satisfying characteristic formula p (x), and
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e {x | x y. y?* = x} (with an existentially quantified characteristic formula), the
set of values x that are the square of any number y, i.e., the set of nonnegative
numbers x. This notation deserves special attention because, compared to the
previous examples, it is more distinct from standard textbook notation for math-
ematical set comprehensions. Formally, an existential set comprehension is defined
by introducing a ghost variable standing for the left-hand side, i.e., comprehen-

sion {x | x y. y? = x} is mathematically defined as {u | *+ = uand y*> =
x for some z,y}. All variables which appear in the left-hand side must appear in the
list of quantified variables. The set comprehension {x | x y. y? = x} should

not be confused with the mathematical set {u | 4> = z for some z,y}, which is the
universal set {u | true}.

Product and disjoint sum types are supported with infix notation * and +. Pairs
are constructed (1, r) and their components are projected by functions fst and snd,
respectively. The constructors of the sum type are named Inl and Inr and, like any other
datatype, can be discriminated with a case expression. Vectors are a wrapper around
functions from indices to elements, and new vectors are introduced with an expression
(x 1. e) which defines each element e in terms of its index i. The ith element of
vector e is projected by writing e $ i. A function value is introduced as a A-expression
(Ax. e) with a body e that can mention an argument x.

Isabelle/HOL supports definitions of inductive (sum-of-products) datatypes using the
datatype keyword. Datatypes in Isabelle/HOL mirror those of typed functional lan-
guages such as Standard ML, but the datatype syntax is not identical between the two.
The constructors of the datatype are separated by | and each constructor name is separated
by spaces from its arguments, which are curried:

datatype typeName =
ConstructorA
| ConstructorB int "int list"
| ConstructorC int

For type constructors with type parameters, the type constructor is written after the ar-
gument, as in Standard ML. For example, int 1ist isa list of integers. Type int list
is written with quotes " in the datatype definition to distinguish it because it is a non-trivial
type family, i.e., not a single identifier. Removing the quotes would result in two arguments
whose respective types are int and the nonsensical type 1ist. The and keyword is used

to separate any mutually recursive definitions, including datatype definitions:
(. 1
datatype typeNameA =

ConstructoraA

| ConstructorB typeNameB
and typeNameB =
ConstructorC

| ConstructorD typeNameA

Names can be given to abbreviate types whose length makes them inconvenient to write
in full. Abbreviations use the type_synonym keyword. The type_synonym keyword,
like the type definitions of Standard ML and typedef keyword of C, abbreviates types

29



in a non-abstract way that leaves definitions visible during typechecking. In the example
below, the right-hand side is wrapped in quotes because, as a rule, Isabelle/HOL requires
double quotes around top-level expressions (and type families).

[type_synonym fiveInts = "int * int * int * int * int" }

The type_synonym keyword should not be confused with Isabelle/HOL’s typedef
keyword, which constructs a new type 7" given an existing type 7 and guard predicate P.
The new type 7’ contains all values = : 7 that satisfy the guard P(x). This chapter can
be read without an understanding of typedef, but the full formalization uses typedef
to define an integral numeric type bword containing machine words in a bounded range.
Every typedef comes with Rep and Abs functions which map 7" to 7 and vice-versa.
For example, this chapter makes limited use of a function Rep_bword which extracts the
underlying numeric value of a word. Our treatment of words also uses a function sint
which converts a machine word to its value as a signed integer.

Recursive functions are introduced with the keywords fun or primrec!, which share
a common syntax for type signatures and function bodies. Types are annotated with
: :, the keyword where separates the signature from the body, and the keyword and
separates the signatures of mutually recursive functions, before writing the body. In the
following example, functionA and functionB are nonsensical computations on lists
which demonstrate mutually recursive function syntax. Used in this example, [] is the
empty list and x # xs prepends element x to list xs.

fun functionA::"int list = int"

and functionB::"int list = int"

where

"functionA [] = 1"

| "functionA (x # []) = OV

| "functionA (x # y # xs) = x + functionB (y # xs)"

| "functionB [] = 5"

| "functionB (x # xs) = functionB xs * functionA xs"
_ J

Because the logic of Isabelle/HOL is classical, function definitions are checked for to-
tality rather than termination. In this chapter, when we speak of termination, we speak
specifically of the executable code extracted from a definition.

Isabelle/HOL has an analogous syntax for defining inductive predicates rather than
recursive functions. Predicates can be defined inductively by writing the inductive
keyword and the introduction rules of the predicate. The following example inductively
defines what it means for all elements of an integer list to be positive:

inductive allPositive::"int list = bool"
where NilPos:"allPositive []"
| ConsPos:"x > 0 = allPositive xs = allPositive (x # xs)"

!The fun keyword is standard practice for most definitions. Our formalization uses primrec for
recursive functions over datatypes containing functions, as its totality checker happens to handle these
recursion patterns better than fun does.
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The double colon symbol :: should not be confused with the single colon symbol :
which serves a very different role. The former is used to ascribe a type to an expression,
while the latter is used to assign names. In the allPositive example, single colons :
are used to assign names to each case NilPos and ConsPos. Naming of cases is used in
both functions and inductive predicates so that the name can be used later in proofs to
appeal to the definition of the case.

We use the lemma keyword to introduce Isabelle/HOL statements which we have
proved. Isabelle/HOL’s notion of 1lemma and theorem are interchangeable from a logical
standpoint, and merely indicate significance for the sake of documentation. In the full
formalization, the statement is followed by a formal proof.

A lemma can optionally use the keywords fixes, assumes, and shows to specify ar-
gument terms, assumptions, and conclusions, respectively. The notation fixes n::int
universally quantifies a variable n: : int. The notation assumes pos:"n>0" introduces
an assumption n>0 which can mention n and which can be used as an assumption in a proof
step by accessing it via the name pos. The notation shows "n > 0" says the conclusion
is the formula n > 0, so the overall theorem statement isA n. (n > 0 = n > 0).

lemma posNonneg
fixes n::int
assumes pos:"n > 0"
shows "n > 0"

2.2 Syntax

We begin introducing our dL formalization. Any formalization of dL must define the syntax
of dL expressions. Expressions in dL are divided into:

* terms, which express real-valued calculations,
* hybrid programs, which are a programmatic syntax for hybrid system models, and

* formulas, which are essential both for stating theorems about hybrid programs and
for stating conditions that hold at various points within the program.

In our presentation, we also distinguish a class of differential programs which describe
the dynamics of ordinary differential equation (ODE) systems; differential programs are
often subsumed under hybrid programs in other presentations. As with any uniform sub-
stitution calculus, the dL uniform substitution calculus includes explicit syntax for rigid
symbols that range over expressions, which in our case are terms, formulas, hybrid pro-
grams, and differential programs. This chapter uses Greek letters for metavariables ranging
over expressions and bold Latin variables for uniform substitution symbols in the dL object
language. Differential programs are the exception, where metavariables begin with ODE
and object variables are lowercase Latin variables such as ¢. We define the syntax of dL
both as a recursive grammar and as Isabelle/HOL datatype declarations. Uniform sub-
stitution symbols, such as function applications f and functionals F, crucially allow most
axioms and rules to be stated with concrete formulas, as in Section 2.5.
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As discussed in Section 2.3, program state is a fundamental concept in the semantics
of dL. A state assigns a real-number value to each program variable z and differential
symbol z’. As a hybrid program is executed, the state is modified. States are discussed in
greater detail in Section 2.3; this section discusses state informally to explain the meaning
of expressions.

2.2.1 Term Syntax

We discuss the syntax of terms.
Definition 2.1 (Terms of dL). Terms 6,7 of dL are defined recursively according to the
following grammar:

O,n=qlzla"[0+n]0-n]6/n|—0]max(0,n)|min(0,n) |abs(6) | (0)" | £(6r,....0.) | F

Here, the literal ¢ € Q is a rational constant and x € V is a real-valued scalar program
variable where V is the (at most countable) set of all base variable identifiers. In the
formalization, V is further restricted to be an arbitrarily large finite set, which simplifies
proofs? and is no more restrictive in practice. For every base variable x € V, there is a
differential variable ' € V'’ which exists in every state but is primarily used to track the
time-derivative of x within an ODE. Our syntax uses distinct constructors for base and
differential variables; the choice between distinct constructors (Platzer, 2015b) and a shared
constructor (Platzer, 2017a) is an incidental design decision which results in less nesting of
proof cases in the former design and fewer top-level proof cases in the latter design. Terms
0+n and 6-n are the sum and product of # and n. The differential term (#)" denotes the total
differential of 6, which agrees (Platzer, 2017a, Lem. 35) with the time-derivative of 6 within
an ODE but has the advantage that it is well-defined in every state. The total differential
is the sum of partial derivatives with respect to each variable x € V, where each partial
derivative is scaled by the corresponding x’. The negation of 6 is written —f, quotients
are 0/n, and special functions for minimums min, maximums max, and absolute values
abs are supported. An uninterpreted function symbol f stands for an uninterpreted C*
smooth real function with n arguments, while functionals F are like functions that depend
on the whole state, rather than positional arguments. When describing the substitution
data structure, we will want a symbol which refers to the argument(s) of a function. In the
written description of the dL calculus, we use +; as a reserved nullary uninterpreted function
symbol which stands for the ith argument of a function®. Positive integer exponents 6% are
derived from multiplication as 6 - --- - # and negative integer exponents are derived with

1

division as 7% = 775 Roots and rational exponents are not formalized, but are available

2Specifically, real vectors can be indexed by variable identifiers. Finite-dimension real vector spaces are
always Banach spaces under a FEuclidean norm, allowing differentiation of real vector functions, but the
set of all infinite real vectors is not a Banach space.

31n the formalization, there are always as many arguments as identifiers, and they are distinguished from
standard function symbols by a sigil character at the start of their name. Our high, fixed arity was chosen
in order to support arbitrarily many arguments without introducing a type system for dL expressions, as
may be required when allowing multiple function arities. The downside is that code generation becomes
difficult, even practically impossible when the number of variable identifiers is large.
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in KeYmaera X. Simple functionals which depend only on base variables x can be derived
from functions in the Isabelle/HOL formalization because functions in the formalization
can have as many arguments as there are identifiers. We write f(Z) in the text for simple
functionals to represent that their argument vector is the vector z of all (base) variables.
Simple functionals are only used to formally define a handful of axioms.

Division by zero is prohibited, so that all terms are defined in every state (i.e., total).
Presentations of dL vary in their assumptions on totality and continuity. When needed, our
formalization will distinguish between simple terms which are guaranteed to be C'! smooth
(continuous to the first derivative) and full terms which need not be smooth. Simple
terms contain only polynomial operations, base variables z, and C! function symbols,
while full terms can use all term operators. When a full term contains a differential term
(0)', the differentiated term 6 must be simple, so that nested differentials never occur.
By distinguishing simple terms from full terms, we provide sound support for differentials
without prohibiting non-smooth operators entirely. Simple terms are required to be C*
rather than merely differentiable so that ODEs with simple terms on their right-hand sides
have unique solutions by Picard-Lindel6f.

Throughout the Isabelle/HOL formalization, we use well-formedness predicates to rule
out nested differentials. Predicate dfree 6 says term 6 is free of differentials, i.e., simple.
Predicate dsafe © says term 6 is well-formed because it contains no nested differentials.
Predicates osafe ODE, fsafe u, hpsafe a, and ssafe o are the respective well-
formedness predicates for ODE systems, formulas, hybrid programs, and substitutions.
They ensure all terms within the respective expressions are dsafe. We describe any addi-
tional well-formedness conditions when we describe the corresponding syntactic class. We
do not give Isabelle/HOL listings for the full definitions of the well-formedness conditions
since the definitions contain many repetitive cases.

In (Bohrer, Ferndndez, & Platzer, 2019), the present author shows how to define more
general terms in an extension of dL with Hilbert’s definition description operator, enabling
many more term constructs that are convenient in practical proving, the most common of
which include roots, trigonometric functions, and conditionals.

In our Isabelle/HOL formalization, dL terms are defined by a datatype trm:

datatype trm =
Const 1it

| Var ident

| Diffvar ident

| Plus trm trm

| Times trm trm

| Div trm trm

| Neg trm

| Max trm trm

| Min trm trm

| Abs trm

| Differential trm

| Function ident "ident = trm"

| Functional ident
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The constructors Functional, Div, Neg, Max, Min, and Abs are currently only
available in the development version of the formalization. The type of numeric literals is
written 1it and the type of identifiers is written ident. The formalization uses fixed-
length words as numeric literals for the sake of generating simple code. Rational-number
literals are definable from word literals. The remaining cases of trm are in direct corre-
spondence with the recursive grammar definition, except for functions. The arguments of
a function symbol are formalized with type "ident => trm", meaning that the formal-
ization treats all functions as having the same number of arguments n, where n = |ident|.
A fixed arity avoids the need to check type agreement between the types of functions and
their argument terms. In the formalization, a derived syntax for low-arity (e.g. unary)
functions is defined by setting the remaining arguments to the constant term 0. The major
limitation of fixed-arity functions is that when generating code, the space of identifiers
must be kept small to avoid allocating unusably-large argument vectors.

The formalization of identifiers is remarkably involved and is a major point of departure
between the AFP version and development version. Our formalization requires that the
identifier type is finite for two reasons:

* The semantics of differential equations (ODEs) involves calculus over state vectors
containing as many elements as there are identifiers. The semantics thus require a
Banach space, which is most easily shown by showing finite support. In turn, the
easiest way to show finite support is to show that state vectors are finite, meaning
there are finitely many identifiers.

* Qur dL proofchecker involves computations over data structures which have as many
elements as there are identifiers. We can only execute code from our definitions if
the type of identifiers is finite?.

The AFP release uses finite enumeration datatypes for identifiers, while the development
version uses bounded-length strings. Even bounded-length strings make code generation
impractical, so the code generation experiments (Section 2.9) use the older release.

Setting aside the need for a finite identifier type, substitution (Section 2.6.2) introduces
additional considerations for the choice of identifiers. Some cases of the substitution al-
gorithm use reserved identifiers which must not appear elsewhere. One seemingly elegant
way to implement reserved identifiers is to treat the identifier type as a type argument
and allow the type argument to vary throughout the formalization, with the substitution
algorithm using a richer identifier type that can syntactically distinguish reserved symbols.
The AFP release takes this approach, but the development version abandons it because of
the large number of boilerplate polymorphic type annotations it required. The develop-
ment version uses a sigil character to distinguish reserved symbols instead, which is closer
to the presentation used on paper (Platzer, 2017a) and requires less annotations, but re-
quires additional operations which pack and unpack sigil characters. This chapter assumes
the sigil approach, but renames some definitions from the development version for the sake
of readability.

4Tt must also satisfy the enum locale.
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2.2.2 Differential Program Syntax

We now discuss ordinary differential equation systems (ODEs), which are a crucial building
block for hybrid systems. Before integrating ODEs into hybrid systems, it is useful for the
sake of precision to introduce the class of differential programs, which describe an ODE
system standing alone. Specifically, a differential program specifies the rates at which
variables change in an ODE system:

ODE1,0DE2 :=2' =0 | ODE1,ODE?2 | c{spacel}

A singleton differential equation is written 2’ = 6. The right-hand side 6 of a singleton
ODE 2’ = 0 must be a simple term so that it does not mention differentials and thus
ODEs are always in explicit form. A compound ODE system is built by composing two
systems in parallel as ODFE1, ODFE2. Next, we describe differential program constants,
which stand for differential programs, and their optional space constraints. We write ¢
for a differential program constant with no space constraint. We write ¢{/!x[} when the
constraint is {|!z[}, which means ¢ must not bind® variable z, nor 2’. Space constraints
{!z|} are only used in our formalization of one axiom (DEsys in Fig. 2.1), so they can safely
be skipped during a first reading of this chapter, despite being essential for the soundness
of DEsys. Unannotated constants ¢ are also primarily used in axioms of dL, as opposed to
theorems stated and proved by users of dL.

Recall that the type_synonym keyword in Isabelle/HOL introduces a transparent
type synonym, like typedef in C or type in ML. Space specifier A11 indicates an
unannotated symbol ¢ where all variables may be bound while specifier NB indicates ¢{!x[}
where x and 2’ are not bound.

As with the other syntactic classes of dL, ODE systems feature a well-formedness pred-
icate (osafe ODE in Section2.2.1), whose full definition is elided because it is verbose.
Predicate osafe ODE checks that the right-hand side of each differential equation is sim-
ple (dfree in Section2.2.1) and no variable is bound twice by the left-hand sides of two
difference equations.

(. 1
type_synonym space = "ident option"

definition All::space = None

definition NB::"ident = space" = Some

datatype ODE =
0Sing ident trm
| OProd ODE ODE

| OVar ident space
- J

Space specifiers are only available in the development version.

5In the corresponding KeYmaera X feature, these variables must also not appear as free variables. Both
notions are useful, but the formalization uses the weaker notion because it suffices for the rules that have
been formalized, with the stronger restriction only needed for differential ghost reasoning on ODE systems
containing multiple equations.
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2.2.3 Hybrid Program Syntax

Hybrid programs «, § and formulas ¢, 1 are defined by a simultaneous induction and are
modeled with mutually-inductive datatypes. Recall that hybrid programs are a program-
matic syntax for the hybrid systems which we use to model CPSs. Hybrid systems thus
combine discrete constructs such as assignments, conditionals, branching, and repetition
with a continuous construct for evolution of ODEs. Formulas are used to state safety
([a]¢) and liveness ({a)¢) theorems of a hybrid system a which respectively say that all
executions or some execution of « satisfy postcondition ¢. Formulas and hybrid programs
have a simultaneous inductive definition because formulas also appear in hybrid programs
within conditional statements and differential equation statements.

Definition 2.2 (Hybrid programs). Hybrid programs are defined by this grammar:

a,fr=x:=0|7|x:=*x|aUf|a;f| ODE&Y |a*|a

Discrete state changes are provided by z := 6, which stores the current value of real-
valued (full) term 6 in program variable x. Conditionals are expressed with the discrete
test 7¢, which is a no-op when ¢ is true, or has no executions if ¢ is false. When ¢ is
false, one can informally say that the current branch of execution has aborted or failed.
Programs can be nondeterministic, and the nondeterministic assignment = := % chooses
any value r € R to assign to x. In program o U 3, either a or [ is executed, and the
choice between them is made nondeterministically. In program «; [ the left program «
runs first, followed by S, which starts from any resulting state of a. While if-then-else
conditional programs are not part of the core dL syntax, they are easily derived from
choices, sequencing, and tests: if (p){a}else {f} =7¢;a U ?(—¢); 5. When ¢ is true, the
first branch « has executions and the § branch does not, or vice versa when ¢ is false.
Crucially, if a failing test 7¢ is understood as an abort, it is a local one: other branches of
a surrounding choice can still be executed. Program ODFE & v evolves ODE continuously
for a nondeterministically-chosen duration d > 0 for which 1) remains true as ODFE evolves
for time d. The formula v is called the domain constraint and must not mention any
differential variables ' = V. In the iterated program o*, the body « is run sequentially
any finite number of times, including 0. Uniform substitution symbol a stands for an
arbitrary program. We parenthesize hybrid programs {a} for clarity and disambiguation
as needed.

The Isabelle/HOL definition of programs closely matches the grammar, except that
assignments 2/ := 6 of differential variables 2’ are given their own constructor®. Our
program grammar uses the same constructors used in KeYmaera X to represent hybrid
programs, albeit with different constructor names.

datatype hp =

EvolveODE ODE formula (* means x'=f&yp in dL ¥*)
| Assign ident trm (* means x:=0 in dL *)
| AssignAny ident (* means x:=* in dL *)

5The other incidental difference is that the constructors were written in a different order in the Is-
abelle/HOL code. This difference has zero impact on the meaning or use of the defined type.
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* means x':=06 in dL *)
* means ?p in dL *)
means aup in dL *)
means a;p in dL *)

DiffAssign ident trm
Test formula

Choice hp hp
Sequence hp hp

Loop hp

Pvar ident

*

*

(
(
(
(
(* means a* in dL *)
(* means a in dL *)

Nondeterministic assignments AssignAny are only available in the development ver-
sion, as of this writing.

2.2.4 Formula Syntax

We discuss formulas of dL.
Definition 2.3 (Formulas of dL). Formulas are defined by this (minimal) grammar:

QY u=02>n]-¢| oA [3xe| ()¢ |p(br,... 0h) | C(e)

Formula 6 > 1 compares the terms 6 and 7, negation is —¢, conjunction is ¢ A v, real
existential quantifiers are 3z ¢, and (a)¢ is a dL (diamond, or liveness) modality. Modality
(o) ¢ says there exists some execution of « where ¢ is true in the final state. Program
modalities are the distinguishing feature of any dynamic logic, including dL. The predicate
symbol p(fy, ..., 6,) stands for a predicate with n real arguments, while the context symbol
C(¢) takes a formula for its argument. C is also sometimes called a predicational or
quantifier symbol because, like a quantifier, its truth may depend on the meaning of ¢
in every state, not just the current state. Nullary predicational symbols are written P, Q
and are context symbols that ignore their formula arguments, equivalently they stand for
arbitrary formulas. Analogously to simple functionals, simple nullary predicationals can be
defined as predicates that depend on all the base variables x. Simple nullary predicationals
are implicitly used for the domain constraints of ODEs. They reuse the names P, Q.

Many other dL connectives are derived from this syntax, including comparisons <, <
,=,#, >, first-order connectives, and the dL (box, or safety) modality [«]¢ saying that all
executions of a end in states satisfying ¢. Both diamond and box modalities are essential,
but our initial examples will emphasize box modalities because they are so widely used in
practice. The basic usage of a box modality is a Hoare-like safety specification ¢ — [a]v
which says that from every initial state satisfying formula ¢, every execution of program «
satisfies ¢ in its final state. We include diamond modalities in the core syntax not because
they are more fundamental than box modalities, but because they make certain proofs
convenient and because boxes and diamonds are interdefinable in dL:

()¢ < —la]=¢
The type for formulas in Isabelle/HOL differs from the minimal grammar most notably in
its representation of predicates. As with functions, the arguments are modeled by a func-
tion from identifiers to terms, equivalently a term vector with one entry per legal identifier.
This representation supports high-arity predicates; low-arity predicates are derivable by
setting the remaining arguments to the term 0. As with functions, the major limitation is
that code generation is impractical when the set of legal identifiers is large.
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and formula =

Geg trm trm * means 62>n in dL*)
* means !y in dL *)
means p&Y in dL *)
means Ixyp in dL *)

Not formula

*

And formula formula

*

*

Diamond hp formula
Prop ident "ident = trm"

InContext ident formula * means C(yp) in dL *)
. J

means <a>p in dL *)

(
(
(
Exists ident formula (
(
(* means p(61...6n) in dL *)
(

The well-formedness predicates fsafe v and hpsafe a check that every term and
differential program contained in a formula or hybrid program is well-formed.

2.2.5 Example Model

Having defined the dL syntax, we take a brief detour to give an example usage of dL syntax
before returning to the discussion of the Isabelle/HOL formalization in Section2.3. For
our example, we give a hybrid system model of 1-dimensional robotic driving and its safety
specification. While the same example will be studied in Chapter 3, its main purpose in the
present chapter is merely to demonstrate how the connectives of dL are used together to
express a model and specification. Secondarily, the model presented in this section is also
used as a test case for the verified proofchecker which is extracted from the Isabelle/HOL
formalization in Section 2.9.

We use a simplified physical model where the robot has instantaneous control over its
velocity v and can change its velocity at least once each timestep T' > 0, meaning it is time-
triggered. The robot’s safety goal is to stop while the signed distance d to some destination
is nonnegative. That is, we define safety as collision avoidance, which is a common and
fundamental safety specification for any mobile CPS.

The driving model follows a common modeling idiom called a control-plant loop: hybrid
program ctrl implements the control logic that determines velocity v, while a plant is a model
of physics which describes continuous system evolution with ODEs. The plant can evolve
for bounded time per loop iteration. The loop repeats any finite number of times, including
0. Formula (2.1) expresses safety of the model in a dL formula ¢ — [{ctrl; plant}*]¢) where ¢
is an initial condition and ¢ a postcondition. An intuitive reading of ¢ — [{ctrl; plant}*]¢
says that 1 holds for all time, assuming ¢ initially. This intuitive reading is correct only
because the nondeterminism in {ctrl; plant}* allows it to evolve for an indefinite length of
time. In general, well-designed hybrid programs « should be able to evolve indefinitely, to
support an intuitive temporal reading.

The initial condition ¢ specifies the signs of system variables and parameters. The
signed distance d to the destination, maximum velocity V, and maximum time between
control decisions T" are all nonnegative. Formula (2.1) says that under these assumptions,
all system behaviors result in nonnegative (signed) distance d, representing the notion that
the robot has not crashed through its destination.

The controller (2.2) either drives or stops (drive Ustop), then resets a local timer ¢ :=0
for use in the plant. The drive action is only run when the test d > TV passes in (2.3),
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which ensures it is safe to keep driving for 7" time at speed V. In the drive case, the robot
can choose any velocity v := % up to the maximum velocity (70 < v < V). The robot is
can always choose to stop (2.4) by setting velocity v to 0.
o v
d>0AV>0AT >0 — [{ctrl; plant}*]Zl_;;a
ctrl = {drive U stop}; t:=0

drive=2d >TV; vi=%;, 0<ov<V

stop=v:=0

plant={d' = —v, ' =1&t < T}

A~~~ /N /N /~
Ol = W NN =
~— ~— — ~— ~—

Finally, the plant (2.5) changes the distance according to the chosen velocity v via the
differential equation d’ = —v. Time advances at the rate ¢ = 1, for any duration ¢ < 7.
The ODE must finish by time 7', after which the program ctrl; plant can optionally repeat
and the controller can make its next decision.

2.3 Semantics

The canonical denotational semantics of dL (Platzer, 2008a, 2017a) is a Kripke (Kripke,
1972) semantics, which we use in our formalization. We assume a finite set V of base
identifiers (ident in Isabelle/HOL). We define program states w, v, u that assign a real-
number value w(z) or w(z’) to every x and 2’ for z € V. We also assume interpretations
I, J which assign meanings to all rigid symbols f, F, p, C,a, and c.

In the Isabelle/HOL formalization, the state is a pair of maps which respectively
assign real numbers to the base variables x and differential variables z’. Each component
of the pair is called a simple_state, in reference to the fact that only the x component
of the state is used when evaluating a simple term. In the Isabelle/HOL formalization,
the interpretation is a record. The record fields Functions, Contexts, Predicates,
ODEs, and Programs describe the interpretations of functions, predicationals, predicates,
differential programs, and hybrid programs, respectively. The field ODEBV is discussed to-
gether with the semantics of EvolveODE, where it helps faithfully model edge cases of the
ODE semantics. In Isabelle/HOL, record fields are accessed with function-like syntax, e.g.,
Programs I for the field of T which assigns the interpretations of hybrid programs. Note
that the interpretations of functions and predicates accept the simple_state type as
arguments because functions and predicates have as many arguments in our formalization
as there are base variables in the program state.

record interp =

Functions ::"id = simple_state = real"

Predicates ::"id = simple_state = bool"

Contexts ::"i1d = state set = state set”

Programs ::"id = (state * state) set"

ODEs ::"id = space = simple_state = simple_state"
ODEBV ::"id = id set”
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The semantic well-formedness predicate for interpretations is named is_interp. It
ensures that the interpretation of every function symbol is C' continuous and that the
interpretations of ODEs respect their space constraints, if any. Because the differential
of any differentiable function is unique, there is no need to provide an interpretation field
for the derivatives of interpretations of functions. Thus, when we investigate Fréchet
derivatives in the semantics of differential terms (), we will ultimately just define an
Isabelle/HOL function for the Fréchet derivatives of interpretations of functions, named
FunctionFrechet. However, there is no harm in thinking of FunctionFrechet as a
derived field of the interpretation if you find it helpful to do so.

In the dL uniform-substitution calculus, the value Iw[f] of a term € in a state w and
interpretation I is a real number”. The semantics of a formula ¢ is written w € I[¢] to say
¢ is true in state w and interpretation I. The semantics of a hybrid program « is written
(v,w) € I[a] to say it is possible to reach final state w starting from v when executing o
with interpretation I.

2.3.1 Term Semantics

We discuss the semantics of terms.
Definition 2.4 (Interpretation of dL terms). The (real-number) value of a term 6 in state
w, written Jw[f], is defined as follows:

1. Iw[q] = ¢
]w var] = w(var) for var =z or 2’ for some x € V

Iw[f @ n] = [w]f] ® Iw[n] for @ € {+,—,*,/}

Tw[-0] = (1' wo])

Iw[f(0y,...,0,)] = I(f)({w]b1], ..., Iw][0.])

Tw[F] = ( )(w)

1e1(0)] = X (25 - (@)

eV

The value of a term is defined inductively. Literals ¢ denote themselves. The values
of variables x and 2’ are looked up in the state. Mathematical operators are evaluated by
applying them to the value of each subterm. Functions work like mathematical operators
whose meaning is determined by the interpretation. The built-in interpreted functions
min(6,7n), max(#,n), and abs(f) are subsumed under the function case f(6y,...,6,) but
their interpretations (e.g. I(max)) are fixed to the corresponding mathematical functions.
The value of a functional F is looked up from the interpretation I as with functions f, but
takes the entire state as a parameter because functionals represent arbitrary terms and can
thus depend on the entire state. The value of a differential term ()" is the total spatial
differential of the value of 8, which is the sum of the partial derivatives of Iw[0] as each
base variable z of w changes. When the differential (0)" appears in the postcondition of
an ODE, it is often intuitively read as the time derivative of #. However, a compositional
semantics must define ()’ in isolated states and not only in the context of ODEs, for which

.\'.@97‘%99!\9

"Note that later chapters of this thesis will drop the interpretation I because it is used to define the
meaning of uniform substitution symbols, which are not a feature of those chapters.

40



reason the differential variables 2’ are used to stand in for the rate at which each variable
x changes. In isolation, (0)" has a well-defined meaning of the rate at which 6 changes
assuming each x changes at rate w(z’). The intuitive reading of (#)" within an ODE is
restored by a lemma (Platzer, 2017a, Lem. 35) showing that an ODE program assigns the
time derivative of each bound variable = of the ODE to the corresponding z'.

The Isabelle/HOL formalization of term semantics is divided into two functions which
represent two classes of functions. The sterm_sem function considers simple terms, those
whose variable dependencies are only base variables = and which are guaranteed to be C'*°-
smooth. The dterm_sem function considers full terms which can contain differentials
and non-smooth operators. A differential term (#)" can only differentiate a simple term
6. We distinguish full terms from simple terms to support term operators which do not
have differentials, while ensuring every differential term (6)" is well-defined. We present
dterm_sem here; the polynomial cases of sterm_sem are identical and the remaining
cases of sterm_sem are undefined (keyword undefined in Isabelle/HOL).

(primrec dterm_sem::"interp = trm = state = real" )
where
"dterm_sem I (Var x) = (Av. fst v $ x)"
| "dterm_sem I (DiffVar x) = (Av. snd v $ x)"

| "dterm_sem I (Function f args) =
(Av. Functions I f (xy 1. dterm_sem I (args i) wv))"

| "dterm_sem I (Neg t) = (Av. - (dterm_sem I t wv))"
| "dterm_sem I (Plus tl t2) =

(Av. (dterm_sem I tl v) + (dterm_sem I t2 v))"
| "dterm_sem I (Times tl1 t2) =

(Av. (dterm_sem I tl v) * (dterm_sem I t2 v))"
| "dterm_sem I (Div tl t2) =

(Av. (dterm_sem I tl v) / (dterm_sem I t2 v))"

| "dterm_sem I (Differential t) =
(Av. directional_derivative I t v)"
| "dterm_sem I (Functional f) = (Av. Funls I f wv)"
| "dterm_sem I (Const b) = (Av. sint (Rep_bword b))"
| "dterm_sem I (Max tl t2) =
(Av. max (dterm_sem I tl1 v) (dterm_sem I t2 v))"
| "dterm_sem I (Min tl t2) =
(Av. min (dterm_sem I tl v) (dterm_sem I t2 v))"
| "dterm_sem I (Abs tl) = (Av. abs (dterm_sem I tl1 wv))"

The Var and DiffVar cases project  and x’ from the base state fst v and dif-
ferential state snd v, respectively, where fst and snd are the standard Isabelle/HOL
functions for projecting components of a pair. Functions and functionals consult the state
using function-like record syntax for the interpretation components Function and Funls.
Literals Const b interpret the underlying bounded word b as a signed integer. The cases
for Neg, Plus, Times, Div, Max, Min, and Abs apply the respective mathematical
operation to the results of recursive calls.

A helper function directional_derivative is used in the semantics of differential
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terms to bridge the total differentials of dL’s semantics with the closely-related concepts
of directional differential and Fréchet derivative. When T is an interpretation and t is a
simple term, then directional_derivative I t isa function which accepts a state
v whose components fst v and snd v assign respective values to each x € Vand 2’ € V'.
The helper function directional_derivative says that the total derivative in state
v is equivalent to the directional differential at point £st v in direction® snd v. Because
the state space in dL is always some Euclidean space, the directional differential can always
be expressed as a Fréchet derivative, which expresses the derivative at point fst v as a
bounded linear operator over a direction vector.

definition directional_derivative::"interp = trm = state = real"
where "directional derivative I t = (Av. frechet I t (fst v) (snd v))"

)

In this chapter, we refer to different kinds of differentials in order to place a different em-
phasis: total differentials emphasize the close relationship between differentials in dL and
differential forms (Platzer, 2017a), directional differentials emphasize the intuition that
snd v captures the instantaneous direction and rate of change, and Fréchet derivatives
emphasize that dL states are Euclidean vectors which admit vector calculus. The techni-
cal differences between Fréchet derivatives and total or directional differential are minor
when operating over Euclidean spaces, as the key difference is that total and directional
differentials are applicable in more general contexts such as differentiable manifolds.

The frechet function determines the Fréchet derivative of (the semantics of) a simple
term in a given (simple) state v. We define frechet by recursion on the term argument;
in each case, the derivative is expressed as a bounded linear operator over the direction
vector v'. Function frechet only specifies cases for simple terms Var, Function,
Plus, Times, and Const. We leave the other cases undefined because the remaining
terms operators are not guaranteed to preserve differentiability in general.

(primrec frechet::"interp = trm = simple_state = simple_state = real" )
where
"frechet I (Var x) v = (Av'. v' « axis x 1)"
| "frechet I (Function f args) v =

(Av'. FunctionFrechet I f (yx i. sterm_sem I (args i) V)
(y 1. frechet I (args i) v v'))"
| "frechet I (Plus tl t2) v = (Av'. frechet I tl1 v Vv'
+ frechet I t2 v v")"
| "frechet I (Times tl t2) v =
(Av'. sterm_sem I tl1 v * frechet I t2 v Vv'
+ frechet I tl v v' * sterm_sem I t2 v)"

| "frechet I (Const r) v (Av'. 0O)™"
. J

The Fréchet derivative of Var x is an operator which returns the value of 2’ specified
by v'. For the sake of proof convenience, the Var x case is defined by taking the dot
product of v' with axis x 1, where the axis function provided by the Isabelle/HOL

8The so-called direction vector is not a unit vector in general. Each component 2’ will be the time-
derivative of variable = in typical use, thus their magnitude can be arbitrarily large.
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analysis library yields a vector whose x component is 1 and whose other components are
uniformly zero. The P1lus and Time cases are the standard rules for derivatives of sums
and products. The Function f args case relies on a symbol FunctionFrechet
which represents the Fréchet derivative of the interpretation of £ in I as a function of
the args and their Fréchet derivatives. Throughout the formalization, proofs about term
derivatives explicitly assume that interpretations I always interpret function symbols as
C! smooth functions, so our formalization expresses FunctionFrechet as a definite
description, i.e., as the function which is the derivative of the interpretation of f:

fun FunctionFrechet::"interp=ident=simple_state=simple_state=real"
where "FunctionFrechet I i =
(THE f'. V x. (Functions I 1 has_derivative f' x) (at x))"

where (_ has_derivative _) at _ is a mixfix notation from the analysis li-
brary (Holzl, Immler, & Huffman, 2013) which we use to express that a function has a
specific derivative at a certain point.

The correctness lemma for frechet says that frechet yields the Fréchet deriva-
tive of the interpretation of a term, assuming that all functions have C! interpretations
(is_interp) and the term is simple (dfree).

lemma frechet_correctness:
fixes I::interp and v::simple_state
assumes "is_interp I"
assumes "dfree 6"
shows " ((sterm_sem I ©O) has _derivative (frechet I 6 v)) (at wv)''

The Fréchet derivative correctness lemma is useful because it allows us to characterize
the derivative of a term by cases.

This completes the discussion of the interpretation of terms as functions from states
to real numbers. A major challenge when formalization terms was tracking which terms
are differentiable and reasoning about their derivatives. The following sections employ the
term semantics in defining the semantics of formulas and hybrid programs. In particular,
differentiability is fundamental to defining the semantics of ODEs.

2.3.2 Formula Semantics

Definition 2.5 (Interpretation of dL formulas). Truth of dL formula ¢ in state v and
interpretation I, written v € I[¢], is defined as follows:

1. veI[f > 0s] iff Tv][0,] > Iv]0s]

2. vel[-¢]itv ¢ I]g],

3. vellpny]iff ve I[p] and v € I[Y],

4. v € I[3x ¢] iff w € I[¢] for some state w that agrees with v except for the value (in
R) of x
v e I[{a)¢] iff w € I[¢] for some v with (v,w) € I[a]
vellp(b,....0,)] it I(p)(Iv[6],...,Iv][0,])
7. v e I[C(¢)] iff v € I(C)(I]9])

SN
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A formula ¢ is valid, written F ¢, if v € I[¢] for all states v and interpretations I.

The semantics of first-order connectives agree with their usual definitions: comparison
formulas compare the values of terms while propositional connectives compose the truth
values of subformulas. While our definition of the quantifier Jz ¢ is also standard, we
remark on the fact that several standard treatments of quantifiers exist, owing to different
treatments of variables:

* The dL semantics treat the set of variables as fixed, with every variable defined in
every state. Quantifiers simply modify the value of a variable which already exists.
Variables in dL work like mutable variables in a program: if a variable x is bound
twice, the state’s assignment for z is updated each time. A mutable understanding
of variables allows us to faithfully model looping programs which modify a variable
multiple times.

* In logics where the set of variables is not fixed, quantifiers can be understood as
introducing fresh variables. When necessary, quantifiers 3z ¢(x) are a-renamed to
Jy ¢(y) for some fresh variable y. The semantics of Jy ¢(y) can then assign a value
for the fresh variable y. A fresh understanding of variables is natural for lexically-
scoped variables, such as function arguments in functional programs or variables in
mathematical quantifiers.

* Because global variables are well-suited to imperative programs and lexical variables
are well-suited to mathematical quantifiers, some dynamic logics (Ahrendt et al.,
2016) employ both semantics and differentiate between a class of (global) program
variables and a class of (lexical) mathematical variables. This approach is not taken
in dL so that two distinct classes of variables do not become a source of confusion.
The Isabelle/HOL formalization of formula semantics depends on several helper func-
tions: dterm_sem is the interpretation of a term, repv v x r updates the value of base
variable x to r in base state v, and (xi. €) introduces a vector by defining each element e in
terms of its index i. Recall that function-like syntax is used to access fields (Predicates
and Contexts) of the interpretation, which is a record. Recall that is_interp is
the well-formedness condition for interpretations which ensures for example that the in-
terpretations of functions are C'! smooth. It also ensures that the interpretations of ODE
symbols respect their space constraints, i.e., is_interp captures all well-formedness con-
straints for interpretations. The Exists and Diamond cases use Isabelle/HOL’s syntax
for existentially-quantified set comprehensions. We recall the meaning of existentially-
quantified set comprehensions by using the Exists case as an example. Let p(v,r)
be the mathematical predicate which holds when (repv v x r) € fml_sem I 1,
then {v | v r. (repv v x r) € fml_sem I y} represents the mathematical set
{u | w=wvand p(v,r), exists v,r} which simplifies to {v | p(v,r) for some r} as desired.

The semantics of formulas and programs are described by fml_sem and prog_sem,
whose definitions are mutually recursive. For the sake of exposition, we discuss the formula
cases first and return to this definition again when we discuss the program cases.

fun fml_sem::"interp = formula = state set"
and prog_sem::"interp = hp = (state * state) set"
where
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"fml_sem I (Geg tl t2) = {v. dterm_sem I tl v > dterm_sem I t2 v}"
| "fml_sem I (Not w) = {v. v € fml_sem I up}"
| "fml_sem I (And v V) = fml_sem I p n fml_sem I yY"
| "fml_sem I (Exists x ) = {v | v r. (repv v x r) € fml_sem I p}"
| "fml_sem I (Diamond a yp) =
{v | vw. (v, w) € prog_sem I a A w € fml_sem I w}"

| "fml_sem I (Prop P terms) =
{v. Predicates I P (y i. dterm_sem I (terms i) v)}"

| "fml_sem I (InContext c y) = Contexts I c¢ (fml_sem I up)"
|

definition valid::"formula = bool"

where "valid p = (V I. V v. is_interp I - v € fml_sem I )"

A syntactic proof of a dL formula shows validity, meaning it shows that a formula is
true in every state and every interpretation. For that reason, our dL soundness proof will
show validity, i.e., it will show that provable formulas are true everywhere.

2.3.3 Hybrid Program Semantics

We discuss the semantics of hybrid programs.

Definition 2.6 (Transition semantics of hybrid programs). The transition relation I[«]
specifies which states w are reachable from a state v by operations of o under an interpre-
tation I. It is defined as follows:

1. (rv,w) € I[x:=0] iff w(x) = Iv[d], and for all other variables z # x, w(z) = v(2)
(v,w) € I[x =] iff w(z) = v(z) for all variables z # x
(v,w) € I[M] iff v =w and v € I[Y]

I U B] = I[a] U TTA]

o ] = {(v,w) : (v, p) € I[a], (p,w) € I[B], for some p}

I[a*] = (I[a]), the transitive, reflexive closure of I[a]

(v,w) € IJODE & ] iff exists solution ¢:[0,r] — S for r > 0 which satisfies the
conditions ¢(0) = v on {z' | ODE binds 2/}, ¢(r) = w, and ¢ = ODE &1 where
¢ = ODE &1 means there exists a duration d > 0 such that for all s € [0,d] the
vector field of ODE and time derivative of ¢ agree at s and ¢(s) € I[¢]

8. (v,w) € I[a] iff (v,w) € I(a)

The corresponding Isabelle/HOL function is prog_sem, which is defined by mutual
recursion with fml_sem. The Isabelle/HOL code introduces several helper functions:
repd is the counterpart to repv which updates a differential variable 2’ and the func-
tion O is relation composition. The differential program semantics ODE_sem recursively
defines the vector field of the differential program ODE at a given state. In ODE_sem,
ODE constants c{space[} derive their meaning from the interpretation I. For ODE con-
stants c{|space[} where the optional “space” constraint {!z[} is given, a well-formed inter-
pretation must interpret ¢ as a differential program which does not modify = or z/. In
the EvolveODE case, the mk_v helper function (mnemonic: make v, i.e., make a state)

NS Otk W N
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implements edge cases regarding the final values of differential variables. The relation
solves_ode is provided by the ODE library (Immler & Traut, 2016). The relation
(sol solves_ode (At. der t)) {0..t} X holds if for all s € [0,¢] we have that
der s is the time derivative of sol at time s and sol s is an element of X. That is, sol
is the solution function, (At. der t) is the vector field of an ODE which is permitted
to depend on time, {0. .t} is the time interval on which the ODE is solved, and X is a
set representing a domain constraint. The equation sol 0 = fst v indicates that the
base variables of the initial state must agree with the solution; the values of differential
variables are allowed to differ, however. The cases for AssignAny and EvolveODE use
existentially-quantified set comprehensions, which have their standard meaning.

fun fml_sem::"interp = formula = state set”
and prog_sem::"interp = hp = (state * state) set"
where
| "prog_sem I (Assign x t) = {(v, w). w = repv v x (dterm_sem I t v)}"
| "prog_sem I (DiffAssign x t) = {(v, w). w =
repd v x (dterm_sem I t wv)}"
| "prog_sem I (AssignAny x) = {(v, w) | wv r. w = repv v x r}"
| "prog_sem I (Test w) = {(v, v). v € fml_sem I p}"
| "prog_sem I (Choice a pB) = prog_sem I a U prog_sem I (B"
| "prog_sem I (Sequence a pB) = prog_sem I a O prog_sem I B"
| "prog_sem I (Loop a) = (prog_sem I a)*"
| "prog_sem I (EvolveODE ODE yp) =
({(v, mk_v I ODE v (sol t)) | v sol t.

t >0 A
(sol solves_ode (A_. ODE_sem I ODE)) {0..t}
{x. mk_v I ODE v x € fml_sem I w} A
sol 0 = fst v}i)"
| "prog_sem I (Pvar p) = Programs I p"

The helper function mk_v implements the rule that when x is not mentioned in ODE,
then 2’ is never modified, else it is modified so that the ODE (for instance, 2’ = 0) is a
true equality. Importantly, unmentioned variables are treated differently from variables
2’ where the ODE contains the equation z’ = 0, because the latter program sets z’ to 0
while the other leaves it unchanged. In the following discussion, we call the first class of
variables implicitly constant because they are not mentioned in the program text, while
the latter class are explicitly constant. In Section 2.4, it is important that the final state of
an ODE only updates z’ for explicitly-mentioned variables, not implicit constants, so that
the set of bound variables modified by a program is not needlessly large and can admit an
intuitive recursive definition. The exact definition of mk_v is surprisingly subtle because
implicit and explicit constants must be distinguished both syntactically and semantically.
Because the differential program symbol OVar c¢ sp must range over arbitrary differential
programs, the interpretation I must distinguish implicit and explicit constant variables.
Specifically, the interpretation field ODEBV specifies for each differential program symbol
c the set of bound (base) variables. For all variables z specified by ODEBV, the semantics
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of ¢ will update 2" as if x were an explicit variable. This subtle treatment is important
because it means that when substitution (Section 2.6.2) replaces ¢ with an ODE that does
explicitly bind x, the meaning of the ODE is preserved. The full definition of mk_v is
divided into four definitions.

The function ODE_vars computes the set of (base) variables bound by a given ODE
in a given interpretation.

fun ODE_vars::"interp = ODE = ident set"

where
"ODE_vars I (OVar c sp) = ODEBV I c sp"
| "ODE_vars I (0Sing x 0) = {x}"
| "ODE_vars I (OProd ODE1l1 ODE2) = ODE_vars I ODEl u ODE _vars I ODE2"

The function semBV extends the bound variable set to include both base variables
(encoded as left injections) and differential variables (right injections). Recall that the
notation £ ° S stands for the image of S under function f, where Inl and Inr are the
left and right injection constructors.

fun semBV::"interp = ODE = (ident + ident) set"
where "semBV I ODE = Inl ~ (ODE_vars I ODE) uU Inr ~ (ODE_vars I ODE)"

The function mk_xode computes the hypothetical final state which would arise if every
variable were explicitly bound.

fun mk_xode::"interp = ODE = simple_state = state"
where "mk_xode I ODE sol = (sol, ODE_sem I ODE sol)"

The function mk_v assembles the final state by determining which variables are bound,
taking the bound variables from the state proposed by mk_xode, and taking all other
variables from the initial state v. A definite description (keyword THE) defines the final
state w as the state that agrees (Vagree) with initial state v on variables that are not
semantically bound and agrees with (mk_xode I ODE sol) on all other variables.

definition mk_v::"interp = ODE = finite state = simple_state = state"
where "mk_v I ODE v sol = (THE w.
Vagree w v (- semBV I ODE)

A Vagree w (mk_xode I ODE sol) (semBV I ODE))"

The choice to define mk_v is not an essential one. This definition was used because
it is common to reason about the final state of an ODE program by comparing it to
the initial state v and to the simplified semantics described by mk_xode. Though the
definition of ODE semantics is subtle, past work (Platzer, 2017a) has demonstrated the
value of the present semantics: practical use of substitution (Section 2.6.2) demands strong
notions of variable binding. Moreover, by dividing the semantics of ODEs into several
helper functions, we make it possible for our formalization to prove lemmas about each
helper function and thus minimize proof redundancy.
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2.4 Static Semantics

A significant soundness advantage of uniform substitution (Platzer, 2015b, 2017a) is that
axioms are not schemata with subtle side conditions, but rather side conditions are captured
once and for all in the substitution rule®. Those side conditions employ notions of free and
bound variables and signatures, which we collectively call the static semantics of dL. The
functions described in this section are the same functions used in prior work (Platzer
2015b, 2017a), expressed in Isabelle/HOL.

The signature ¥(e) of an expression e is the set of uniform substitution identifiers which
appear free in e. The Isabelle/HOL formalization distinguishes term symbols, formula sym-
bols, and hybrid-program-or-differential-program symbols using disjoint sums (+): In the
signature definition, the comprehension {Inl x | x. x € (Ui. SIGT (args 1))}
represents (for example) the set of all In1 x where the argument x belongs to the n-ary
union (Ui. SIGT (args 1i)).

The signature function for terms is given first:

primrec SIGT::"trm = ident set”
where
"SIGT (Var var) = {}"
"SIGT (Const r) = {}"
"SIGT (Function var args) = {var} u (Ui. SIGT (args 1i))"
"SIGT (Functional wvar) = {var}"
"SIGT (Plus tl1 t2) = SIGT tl u SIGT t2"
"SIGT (Times t1 t2) = SIGT tl1 u SIGT t2"

|

|

|

|

|

| "SIGT (Div tl t2) = SIGT tl u SIGT t2"
| "SIGT (Max tl t2) = SIGT tl u SIGT t2"
| "SIGT (Min tl t2) SIGT tl u SIGT t2"
|

|

|

|

"SIGT (Abs tl1) = SIGT t1"
"SIGT (DiffVar x) = {}"
"SIGT (Differential t) = SIGT t"
"SIGT (Functional wvar) = {var}"
. J

The signature function for ODEs follows the function for terms:

( I
primrec SIGO::"ODE = (ident + ident) set"

where
"SIGO (OVar c¢ _) = {Inr c}"
| "SIGO (0Sing x 6) = {Inl x | x. x € SIGT 6}"

| "SIGO (OProd ODEl ODEZ2) = SIGO ODEl u SIGO ODE2"
N J

The signature functions for programs and formulas are mutually recursive:

( N
primrec SIGP::"hp = (ident 4+ ident + ident) set"

and SIGF::"formula = (ident + ident + ident) set"

where

90ur calculus is not purely uniform-substitution based, in the sense that a few axioms must be formu-
lated as schemata for soundness.
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"SIGP (Pvar var) = {Inr (Inr var)}"
| "SIGP (Assign var t) = {Inl x | x. x € SIGT t}"
| "SIGP (DiffAssign var t) = {Inl x | x. x € SIGT t}"
| "SIGP (AssignAny var) = {}"
| "SIGP (Test p) = SIGF p"
| "SIGP (EvolveODE ODE p) = SIGF p U
{Inl x | x. Inl x € SIGO ODE} U
{Inr (Inr x) | x. Inr x € SIGO ODE}"
| "SIGP (Choice a b) = SIGP a u SIGP b"
| "SIGP (Sequence a b) = SIGP a u SIGP b"
| "SIGP (Loop a) = SIGP a"
| "SIGF (Geg tl t2) = {Inl x | x. x € SIGT tl u SIGT t2}"
| "SIGF (Prop var args) = {Inr (Inr var)} U
{Inl x | x. x € (Ui. SIGT (args
| "SIGF (Not p) = SIGF p"
| "SIGF (And pl p2) = SIGF pl u SIGF p2"
| "SIGEF (Exists var p) = SIGF p"
| "SIGF (Diamond a p) = SIGP a u SIGFEF p"
| "SIGEF (InContext var p) = {Inr (Inl var)} u SIGEF p"

i)) "

The free variables FV(e) of an expression e are those variables x that appear free, i.e.,
not under a binder of x. Base variables x are distinguished from differential variables z’.

Individual variables are collected at leaves and collected inductively.

Differential terms

depend on both base variables and their primed counterparts, which indicate the change
rates of each base variable. Symbols which stand for arbitrary terms, formulas, or programs
may depend on every variable. In a modality, a free variable of the postcondition is no
longer free if it is uniquely determined (must-bound) by the modal program, likewise for
sequential composition programs.

The free variable function for terms is given first. In the differential term case (6)’,
recall that the value of a differential term depends on both base variables and differential
variables; for that reason, the differential term case ensures for all free variables of 6 that
both the base variable and differential variable are considered free variables of ()’

p
primrec

where
"FVT
| "FVT
| "FVT
| "EVT
| "FVT
| "FEVT
| "FVT
| "EVT
| "FVT
| "FVT
| "FVT

FVT::"trm = (ident + ident) set"

Var x) = {Inl x}"

Const x) = {}"

Function f args) = (Ui. FVT (args 1))"
Functional f) = UNIV"

Plus f g) = FVT £ U FVT g"

Times £ g) = FVT £ u FVT g"

Div f g) = FVT f U FVT g"

Max £ g) = FVT £ u FVT g"

Min f g) = FVT £ u FVT g"

Abs f) = FVT £"

leferentlal f) =

(Uxe{x. Inl x € (FVT f)}. {Inl x,Inr x})
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u(Uxe{x. Inr x € (FVT f)}. {Inl x,Inr x})"
| "FVT (DiffVar x) = {Inr x}"

The free variable function for ODEs is given second:

primrec FVO::"ODE = ident set"”
where
"FVO (OVar c¢ sp) = UNIV"
| "EFVO (0Sing x ©) {x} U {x. Inl x € FVT 6}"
| "FVO (OProd ODEl1 ODEZ2) = FVO ODEl1 u FVO ODE2"

The free variable functions for formulas and programs are mutually recursive:

r

primrec FVF::"formula = (ident + ident) set"
and FVP::"hp = (ident + ident) set"
where
"FVE (Geq £ g) = FVT £ u FVT g"
| "FVE (Prop p args) = (Ui. FVT (args 1))"
| "FVF (Not p) = FVF p"
| "FVF (And p gq) = FVF p U FVF g"
| "FVF (Exists x p) = FVF p - {Inl x}"
| "FVF (Diamond a p) = FVP a u (FVF p - MBV a)"
| "FVE (InContext C p) = UNIV"
| "FVP (Pvar a) = UNIV"
| "FVP (Assign x 6) = FVT 6"
| "FVP (DiffAssign x 6) = FVT 8"
| "FVP (AssignAny x) = {}"
| "FVP (Test yp) = FVFE p"
| "FVP (EvolveODE ODE y) = BVO ODE u (Inl ° FVO ODE) u FVF p"
| "FVP (Choice a pB) = FVP a U FVP B"
| "FVP (Sequence a pB) = FVP a u (FVP B — MBV a)"
| "FVP (Loop a) = FVP a"

J

The bound variables BV(«) of a program « (or formula ¢) are those modified on at least
one execution path, while the must-bound variables MBV(«) are bound on every path.

The bound variables of ODEs are given first:

P
fun BVO::"ODE = (ident + ident) set"

where
"BVO (OVar c¢ (Some x)) = —-{Inl x, Inr x}"
| "BVO (OVar c None) = UNIV"
| "BVO (0Sing x 6) = {Inl x, Inr x}"
| "BVO (OProd ODE1 ODE2) = BVO ODEl1l u BVO ODE2"

The bound variables of programs are given second:

-
fun BVP::"hp = (ident + ident) set"”

where
"BVP (Pvar a) = UNIV"
| "BVP (Assign x 0) = {Inl x}"
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| "BVP (DiffAssign x 6) = {Inr x}"
| "BVP (AssignAny x 6) = {Inl x}"
| "BVP (Test y) = {}"
| "BVP (EvolveODE ODE w) = BVO ODE"
| "BVP (Choice a pB) = BVP a U BVP B"
| "BVP (Sequence a p) = BVP a u BVP 3"
| "BVP (Loop a) = BVP a"
. J

The bound variables of formulas are given next. In contrast to free variables of formulas,
bound variables of formulas will not be essential to the proof of soundness.

(fun BVF::"formula = (ident + ident) set" )
where
"BVF (Geq f g) = {}"

| "BVF (Prop p dfun_args) = {}"

| "BVEF (Not p) = BVF p"

| "BVE (And p q) = BVEF p U BVF g"

| "BVF (Exists x p) = {Inl x} u BVF p"

| "BVF (Diamond a p) = BVP a U BVE p"

| "BVEF (InContext C p) = UNIV"

. J

The must-bound variables of a program are given last:

rfun MBV::"hp = (ident + ident) set" )
where
"MBV (Pvar a) = {}"

| "MBV (Choice a p) = MBV a n MBV B"

| "MBV (Sequence a p) = MBV a u MBV (B"

| "MBV (Loop a) = {}"

| "MBV (EvolveODE ODE _) =

(Inl ° (ODE_dom ODE)) uU (Inr °~ (ODE_dom ODE))"

| "MBV a = BVP a"
- J

Program symbols a might bind any variable, but need bind none. Assignments and
quantifiers bind their left-hand side. Loops only bind variables sometimes, because they
might run for zero iterations. The must-bound variables of an ODE are those that explicitly
appear on the left-hand side of some singleton equation, a notion expressed by the (omitted)
helper function ODE_dom. A differential program symbol ¢ has no must-bound variables,
but may bind any variable that is not explicitly taboo (Some x).

2.5 Axioms

A dL formula is proved by decomposing a formula with axioms until the proof is complete
or any remaining goals belong to decidable languages such as first-order arithmetic. In the
dL uniform substitution calculus, axioms are simply individual formulas, many of which are
listed in Fig.2.1. Axiom [-] says that the diamond and box modalities are interdefinable,
so it suffices to give axioms for one of [a|P or (a)P. The following rules decompose hybrid
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programs syntactically, in harmony with their semantics. Axioms (:=) and (:*) respectively
reduce deterministic assignments using substitution and reduce nondeterministic assign-
ments to quantifiers. Tests (axiom (7)) and choices (axiom (U)) reduce propositionally,
and sequential composition becomes a nested modality (axiom (;)). Loops are more sub-
tle. Simple proofs can case on whether the loop evolves for at least one iteration (axiom
(%)), but loop proofs often need (co-)inductive reasoning (axiom I), in which case sound-
ness demands that the (co-)inductive step holds no matter how many executions have
already occurred. We present the (coinductive) invariant-based axiom for box loop prop-
erties [a*]P, which is interderivable with an inductive variant-based axiom for diamonds
(a*)P. Modal modus ponens (axiom K) applies implications under modalities and vacuity
(axiom V) says that nullary predicates are preserved under modalities. Axiom V is an
excellent example of how predicates and predicationals differ. It would be unsound if p()
were replaced by a predicational P because most dL modalities modify program variables,
and do not preserve the truth of all formulas ¢, but they do preserve formulas such as
1 > 0 that mention no variables. Axiom V is much more useful when realizing that the
substitution rule (Section2.6.2) permits p() to mention variables so long as they are not
modified in a.

In contrast to some connectives, there is no single axiom that captures all reasoning for
ODEs, so a combination of axioms are used. Axioms DC, DI, DEsys, and DW are often
used together: we identify a series of invariants for an ODE, then cut each invariant into
the domain constraint, prove it by induction, then conclude the postcondition by applying
any differential effect and finally weakening away the ODE, which is no longer needed
once the domain constraint is strong enough to entail the postcondition. The differential
effect axiom DEsys uses the syntax ¢{!x[} to formalize the intuitive fact that the composed
system 2’ = f(Z), ¢{!x[} cannot bind z twice. In DEsys, it is important that the space
specifier ¢{!x[} allows free occurrences of x, since DEsys is applied to a wide variety of
ODEs, many of which feature such free occurrences. In DEsys, f(Z) is a simple functional
which can depend on all base variables and no differential variables. The explicit space
c{!x[} is necessary in the semantic soundness proof of DEsys but not in the KeYmaera X
implementation of DEsys where syntactic data structure invariants ensure uniqueness of
bound ODE variables. Advanced proofs can use differential ghosts (axiom DG) to introduce
continuously-changing variables for the sake of the proof, which are often used to establish
invariants regarding exponential decay properties. In DG, note that a and b are unary
function symbols which are used to define a linear equation, not to be confused with the
typical use of these identifiers as program symbols. The KeYmaera X core features a
generalization of (axiom DG) to systems, which has not been formalized as of this writing.
Axiom DI is a sound, simplified axiom for ODEs of a single variable. In contrast to
past descriptions of dL on paper (Platzer, 2017a), our Isabelle/HOL formalization cannot
directly express the simplified axiom DI because it uses a notion of differential formula (¢)’
which we lack. The absence of differential formulas (¢)’ is overcome using the observation
that DI arguments for formulas of form 6 > n and 0 > n suffice to derive (Platzer & Tan,
2020; Platzer, 2018a) all instances of the general DI axiom. A deeper issue, however, is
that the natural generalization of axiom DI to ODE systems, used in KeYmaera X, is
unsound unless a side condition is added. Adding those side conditions results in an axiom
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([]) [a]P & —~(a)-P () (ab)P ¢ (a)(b)P
(=) (z:=f0)p(x) < p(f() ((x)) PV (a)@)P — (a")P
() (z:=#p(x) ¢ Iorp(z) () PA[Q]P — [@]P) — [P
((7) (PQP <« (QAP) (V) p() = [alp()
(1) (aUb)P « (a)P V (b)P (K) [a)(P — Q) = ([a]P — [a]Q)
(DW) [c&Q)(Q = P) + [c& QP
(DC) ([c&QIP + [c&QACJP) + [c&Q|C
(DEsys) [/ = £(z), e{!x]} & QP > [c{!x]}, 2" = f(z) & Q][+ := f(z)]P)
(DI) [¢' = f(z) &p(w)|p(z) « (p(z) = p(z) A [’ = f(z) & p(2)](p(x)))
(DIsys>) [ODE& )0 >n <« ((¢ = 0 >n) A[ODE&](0) > (n)') !
(DIsys>) [ODE& 0 >n < ((v — 0 >n) A[ODE&4](0) > (1)) !
(DG)  [2" = f(z) &p(2)lp(x) <> Ty 2" = f(z),y = a(2)y + b(z) &p(2)]p(v)
(DS) [2' = () &p(x)]p(x) > V=0 (V0<s<tp(z + £()s)) = [z :=z + £()¢]p(x))
(¢) (@) = () () =2 (+)  (£(z) +g(@) = (@) + (g(2))’

Figure 2.1: Axioms of dL.
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schema. To ensure soundness while remaining within the formalized fragment of dL, our
formalization contains two axiom schemata DIsys> and DIsys> which soundly implement
the > and > cases of differential induction, from which the general case is derivable. Axioms
q, x', +', —' and - syntactically compute the differential of a term, which is a key step
for completing a differential invariant argument of axiom DI. Because only simple terms
have differentials, axioms +’, —', and - use simple functionals f(Z) which can depend on
all base variables and no differential variables. While KeYmaera X supports an axiom for
syntactic differentiation of division terms, we do not formalize that axiom because division
lies outside the simple fragment, i.e., not every division term has a derivative in every state.
Reasoning about an ODE by inspecting its solution is a natural alternative to invariant
reasoning, but an ODE solver is far too complicated to make ODE-solving an axiom in a
minimalistic calculus, so axiom DS expresses the solution of a constant, singleton ODE.
Instead of providing a single axiom schema for ODE solving, the dL uniform substitution
calculus allows solution reasoning to be derived from the core ODE axioms (Platzer, 2017a),
so that ODE solving is not soundness-critical. KeYmaera X uses the core ODE axioms to
implement a solution rule for ODEs that do have some simple closed-form solution y(¢):

() (@' =0)¢ < F>0(x:=y(t))¢ wherey(t) =10

Solution reasoning is convenient for systems with simple solutions, though invariant rea-
soning scales better to ODEs whose solutions are complex or not closed-form. In KeY-
maera X, a large library of tactics (Fulton et al., 2017) provides extensive automation
for invariant proofs too, ranging from automation of steps such as DEsys to generating
invariants (Sogokon et al., 2019). The Isabelle/HOL formalization of the dL axioms is
straightforward: each axiom is declared as a formula, which is proved valid in Section 2.7.

2.6 Rules

The dL substitution calculus has a handful of deduction rules, which can be classified as
axiomatic rules, sequent rules, renaming, and substitution. Like axioms, the axiomatic
rules are concrete, not schematic, and are defined in the Isabelle/HOL formalization by
listing the conclusion and premise formulas. The axiomatic rule data structure is also used
as KeYmaera X’s notion of proof state!”: the conclusion represents the theorem being
proved, while premises represent the open goals of the proof. A proof is finished when no
open goals remain, represented by a rule with no premises (i.e., a derived axiom). In every
rule except substitution!!, the premises and conclusions are local validity statements. A
formula ¢ is locally valid in interpretation I if w € I[@] for all states w. A rule is locally
sound if for all interpretations I, local validity of all premises in interpretation I implies
local validity of the conclusion in interpretation I. That is, the premises and conclusion
use the same interpretation, but free program variables are universally quantified in the
premises and universally quantified again in the conclusion. Every locally sound rule is

103]s0 a called a Provable in KeYmaera X terminology
1Tn substitution, the premise and conclusion are simple validity statements, meaning their interpreta-
tions may differ.
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Figure 2.2: Axiomatic rules.

sound. Universal quantification of free program variables is essential to the correct reading
of certain rules. Rule G is one example: if P is true in every state, then [a]P is true in
every state. Local soundness means that P stands for the same formula in the premise and
conclusion. Universal quantification is essential to soundness of G because, in general, a
formula P could be true initially and become false after running a. That is, the formula
P — [a]P is not a valid formula of dL. Soundness of rule G relies crucially on the assumption
that P is true in every state and thus in every final state of program a.

Monotonicity M says valid implications can be moved under modalities. In KeY-
maera X, both rule G and rule M are primarily used internally as generalization principles
inside some other high-level user-facing proof tactic. Likewise, in paper proofs, rules G
and M are often not written explicitly but are used to derive high-level versions of other
dL reasoning principles. Rules CE and CQ say that valid equalities and equivalences can
be applied in context, and in practice are mostly used for performance.

Modus ponens is conspicuously absent: while modus ponens can be expressed as an
axiomatic rule, it can be (and in practice, is) derived from the dL sequent rules. Like the
axiomatic rules, the sequent rules could be formulated concretely in principle, but operate
on sequents rather than formulas. A rule application specifies which formula a sequent
rule is applied to, and we formulate sequent rules as schemata so they can be applied
to arbitrary formulas from the proof context rather than the formula at a fixed position.
Propositional (classical) sequent calculus is standard, so we give only a few examples here.
In classical sequent calculus, the antecedent and succedent are both contexts, and the
sequent I' F A is equivalent to the formula AT' — \/ A.

TFA G o TFA koA Tk A
=L — S UTra \R) —F Ao a
F’(bl_A’w F7¢7¢FA
SR ST L) S U TFA

Figure 2.3: Selected classical sequent calculus rules.

For example, implications are proved on the left (rule —L) by proving the assumption
in order to gain the conclusion, or proved on the right (rule —R) by assuming the assump-
tion to prove the conclusion. Conjunctions are proved on the left (rule AL) by decomposing
the assumed conjunction into two assumptions, or proved on the right (rule AR) by proving
each conjunct. The sequent rules are widely used both for propositional reasoning in prac-
tical proofs and to discharge assumptions when applying an axiom. The implementation
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of the sequent rules is concise, comprising only 212 lines of the KeYmaera X core (Mitsch
& Platzer, 2020). Nonetheless, the soundness proofs for sequent rules require care (Sec-
tion 2.8). For example, the sequent calculus rules allow random access to an antecedent or
succedent represented as an ordered list, so the soundness proofs must carefully capture
the impact of list operations on the semantics of a sequent.

2.6.1 Renaming Rules

The uniform renaming rule says that valid formulas and sequents remain valid when re-
naming a variable x to a variable y and vice versa. That is, we rename by swapping
(or transposing) the names of variables, so that uniform renaming is sound with no side
conditions. The notation e¥ represents expression e with variables z and y swapped. We
also support bound renaming, analogous to a-conversion, which renames a variable binder
(assignment) and the bound occurrences. The idea of bound renaming can be generalized
to any binder, but is most often used for assignments in practice. Note that the renaming
rules use Greek variables because they are rule schemata which take expressions as argu-
ments, rather than axiomatic rules defined by concrete formulas. In contrast to uniform

(UR) 9 (BR) LE[z:=0]¢,A |

oY Ik [y:=6]gL, A

Yy, o 2’} NEV([z:=0]¢) = 0

Figure 2.4: Renaming rules.

renaming, bound renaming has a soundness side condition expressed in terms of the free
variables FV(¢) of the postcondition ¢. Notably, a soundness bug in the implementation
of the bound renaming rule in KeYmaera X was discovered and fixed in the process of
formalization (Bohrer et al., 2017). We discuss the bug and the fix in Section 2.10.

2.6.2 Substitution Rule

The uniform substitution (rule US) rule is the heart of the dL proof calculus. We first
describe the substitution rule and its side conditions at a high level, then give its non-
mechanized definition and finally the formal Isabelle/HOL definition. We begin with a
brief description because the definitions are long and the formalization longer still.
Uniform substitution is most easily understood as it applies to formulas: a valid for-
mula remains valid under any admissible substitution o (rule US), where the substitution
o is a partial mapping from uniform substitution symbols to their replacements. The
substitution algorithm works by structural recursion on expressions. We write o(e) with
parentheses for the result of applying the substitution ¢ uniformly throughout e. Differen-
tial program symbols (c{|spacel}) are replaced with differential programs, program symbols
a are replaced with programs, predicates and predicationals p(fy,...,6,) and C(¢) are re-
placed with formulas, and functions and functionals f(6y,...,0,) and F are replaced with
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terms. We write o f without parentheses for the term that replaces function f in o, likewise
for other uniform substitution symbols. We write Dom(o) for the set of replaced symbols.

(US)

i where ¢ is admissible for ¢
o (o)

In short, the substitution of ¢ in ¢ is admissible if for every symbol f (likewise p)
that gets replaced in o(¢), the replacement o(f) does not introduce new free references to
variables that are bound in the surrounding context. Because functionals, predicationals,
and program symbols already treat every variable as free, substituting them would never
introduce a new free reference. Admissibility is implemented as a recursive syntactic check.

Recall that a proof state consists of open goals and a conclusion (a derived axiomatic
rule), thus it is useful to apply substitution to entire rules (Platzer, 2017a, Thm. 27).

Lemma 2.1 (Rule substitution). If a rule % is locally sound and FV (o) = 0 then

J(le) o U(an)
o(¥)

For example, axiomatic rules are applied to a premise by first applying Lemma 2.1 to
the axiomatic rule, then applying the resulting rule to the premise.

rule

is locally sound.

Substitution and Admissibility Definitions. We present the substitution algorithm
(based on (Platzer, 2017a)) in Fig. 2.5 with inline admissibility checking at each recursive
call. We call each step of the admissibility check a U-admissibility check: when U is a set
of variables, the substitution ¢ is U-admissible for expression e if applying the substitution
o to e introduces no free references to any variable x € U. Every time we substitute inside
a connective that binds variables, we let U be the set of variables bound by the connective.
Thus, the sum total of the U-admissibility checks amounts to checking that no substitution
ever introduces a free reference to a program variable under a binder of that variable, which
is what admissibility requires to ensure sound substitutions.

The dx ¢ case demonstrates an admissibility check in its purest form: the formula ¢
appears under a binder of z, thus the substitution must introduce no new free reference to
x in ¢. In the sequential composition «; 5, program (5 is executed after «, thus it is “under
the binders” of a. For that reason, the «;f case checks that ¢ is BV(o(«))-admissible
for 5, meaning that no bound variable of (the result of substituting in) o may have a
free reference introduced when substituting in . The cases for a* and (a)¢ reflect the
same intuition: in the former, o may be run repeatedly in sequence, while in the latter
case ¢ is under all binders of o because it is a postcondition. The ODE case follows the
same intuition as a loop which repeats continuously often, i.e., the ODE checks BV(ODE)-
admissibility'? because the vector field of an ODE depends on the state, which in turn
depends on the past evolution of the ODE. The (f)' case has a very strict admissibility

12We check BV(ODE)-admissibility for consistency with the Isabelle/HOL formalization, though a
tighter check for BV(c(ODE))-admissibility would also be sound. While the tighter condition is use-
ful both in a theoretical development and to ensure generality of the implementation, it did not arise in
the experiments discussed in this chapter.
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Case  Replacement Admissible when:

olq) =q
olx)=x
a((0)") = (o(0))’ oV UV-adm. in 6
o@+n)=0c(0)+c(n)
o(0-n) =0o(0)-o(n)
o(8/n) =o(6)/o(n)
o(0 —n) =o(0) —a(n)
o(max(0,n)) = max(c(6),0(n))
o(min(#,n)) = min(c(6),0(n))
o(abs(#)) = abs(o(6))

o(c{!xl}) = o c{!x[}, c{!x[} € Dom(o), else c{!x[} x ¢ BV(oc)
o(c) =oc,c € Dom(o), else ¢
#(ODE1,0DE?2) = 0(ODE1),5(ODE?) BV(ODE1) N BV(ODE2) = {
o(a) = ca,a € Dom(o), else a

o(?(¢)) =?(c(9))
c({ODE &}) = {2’ = o (0) & o()} o BV(ODE)-adm. in ODE )
o(a; B) = o(a);o(B) o BV(o(a))-adm. in 3
olaUpB)=oc(a)Ua(p)
o(a®) =o(a) o BV(o(a))-adm. in «
o0 =n)=0(0) =a(n)
o(p(#)) = 16— o(6:)}(7p). p € Dom(a) clse p(o(9))
o(P) = (oP),P € Dom(o), else P
o(=¢) = —o(¢)
o(@AY)=0() No(¥)
o(Jz @) =Jro(9) o {z}-adm. in ¢
o({a)¢) = (o(a))o(9) o BV(o(a))-adm. in ¢

Figure 2.5: Uniform substitution algorithm.
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condition: no free reference to any variable can be introduced. Intuitively, every variable
is bound in (@) because its semantics is defined as a differential. The differential of a
function at a state is determined by finding the partial derivatives as the state varies in
any dimension.

In contrast to the other cases, the function and predicate cases require a more careful
totality argument to reason about the substitution of concrete arguments for parameters
of functions and predicates. We call the argument substitution a first-order substitution
whereas general substitutions ¢ are called second-order substitutions. In the cases for

functions and predicates, § is the vector of arguments, 0(9; is the vector of second-order

substitution results from applying o to the arguments, and {-; — o(6;)} is a first-order sub-
stitution which maps each distinguished function argument symbol -; to the corresponding

o(6;). Taking the function case as an example, the recursive call {-; — o(6;)}(of) features

—

a term o f which may be larger than f(6). The substitution function is total: even if of

—

is larger than f(#), the substitution has become simpler because first-order substitution

{-i = o(6;)} only specifies replacements of nullary function symbols -;, but ¢ must have
featured a function f which had arguments, else we would not have entered the function
argument substitution case. By definition of a nullary function symbol, the recursive call

on {+; — o(6;)}(cf) will never recursively re-enter the function argument substitution case.

Our use of the phrases second-order and first-order substitution is inspired by substi-
tution in NuPRL (Constable et al., 1986; Anand & Rahli, 2014; Rahli & Bickford, 2016).

Second-order substitution functions are commonly organized in two ways:

* In the second-order substitution approach, there is a single, second-order substitution
function, which handles all substitutions, including argument substitutions. In this
approach, inductive proofs about substitution must employ a lexicographic complex-
ity metric: substitution complexity followed by expression complexity.

* In the first-order substitution approach, a separate helper function handles first-
order substitution and is called by the main second-order substitution function. In
this approach, simple induction over expressions can be used. In Isabelle/HOL, no
special metric is needed for such inductive principles. The downside is that multiple
substitution functions must be written, each with their own theorem statements,
admissibility conditions, and proofs.

The second-order approach is used in Platzer’s dGL formalization (Platzer, 2019a),
in the original paper description of the dL uniform substitution calculus (Platzer, 2017a,
Lem. 23-25), and in KeYmaera X to reduce the number of function definitions and lemmas.
The presentation in Fig.2.5 implies a second-order approach, but can be read as a first-

order approach if one assumes that the function argument substitutions {-; — o(6; ;}(O’f)
are performed by a separate helper function. The formalization in this chapter uses the
first-order approach so that simple induction techniques suffice. We will see that the
increase in the number of substitution functions and lemmas may outweigh the benefit
of enabling simple induction principles, but at the very least our formalization provides
concrete evidence of the cost of the first-order approach.
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2.6.3 Isabelle/HOL Formalization

We give the Isabelle/HOL function definitions for the substitution algorithm first, followed
by the admissibility predicates. In contrast to the paper presentation, we perform the ad-
missibility checks out-of-line with the substitution. Both approaches are equally viable; we
chose our approach in hopes of avoiding excessive case analyses in proofs about substitu-
tion, while the inline admissibility checks of the paper likely generate more efficient code.
While admissibility is fundamental to soundness of substitution, we present the substi-
tution formalization first, primarily since the Isabelle/HOL formalization of admissibility
requires a large number of incidental helper predicates, which may be more understandable
after reading the corresponding substitution helper functions.

Substitution functions are separated by syntactic class and separated between second-
order and first-order. The second-order substitution functions are Fsubst, Psubst,
Osubst, and Tsubst, which respectively implement substitution of formulas, programs,
ODEs, and terms. The entry point is Fsubst, which is used in rule US. The first-
order functions FsubstFO, PsubstFO, OsubstFO, and TsubstFO perform first-order
replacement of function or predicate arguments in formulas, programs, ODEs, and terms,
respectively. The first-order substitution of predicational arguments is implemented by
PPsubst and PFsubst for programs and formulas, respectively. We give the second-
order functions first.

The Isabelle/HOL type of substitutions is a record whose fields SFunctions, SFunls,
SPredicates, SContexts, SPrograms, and SODEs specify replacements of func-
tions, functionals, predicates, predicationals, programs, and ODEs, respectively. The well-
formedness predicate for substitutions is named ssafe o. It checks that every right-hand
side (i.e., every expression replacement) in o satisfies the well-formedness predicate for its
syntactic class. In contrast to expressions elsewhere, replacements of functions, predicates,
and predicationals in a substitution can mention reserved identifiers which represent the
arguments of functions, predicates, and predicationals. As is standard in Isabelle/HOL,
we access the fields using function application syntax.

primrec Tsubst::"trm = subst = trm"
where

"Tsubst (Var x) o = Var x"
| "Tsubst (DiffVar x) o = Diffvar x"
| "Tsubst (Const r) o = Const r"

| "Tsubst (Function f args) o =
(case SFunctions o f of Some f' = TsubstFO f' | None = Function f)
(A 1. Tsubst (args i) o)"

| "Tsubst (Functional f) o =

(case SFunls o £ of Some f' = f£' | None = Functional f)"
| "Tsubst (Neg 61) o = Neg (Tsubst 61 o)"
| "Tsubst (Plus 061 62) o = Plus (Tsubst 061 o) (Tsubst 62 o)"
| "Tsubst (Times 61 62) o = Times (Tsubst 61 o) (Tsubst 62 o)"
| "Tsubst (Div 061 62) o = Div (Tsubst 61 o) (Tsubst 62 o)"
| "Tsubst (Max 061 062) o = Max (Tsubst 61 o) (Tsubst 62 o)"
| "Tsubst (Min 61 62) o = Min (Tsubst 61 o) (Tsubst 62 o)"
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| "Tsubst (Abs 681) o = Abs (Tsubst 61 o)"
| "Tsubst (Differential ©) o = Differential (Tsubst 6 o)"

The function and functional cases check whether the given uniform substitution symbol
is replaced by the substitution. If a functional symbol is found which has a replacement in
the substitution, the replacement is immediately returned. If a function is found which has
a replacement, we apply second-order substitution to each argument, then apply first-order
substitution to replace the arguments within the replacement of the function symbol. The
anonymous function (A i. Tsubst (args i) o) is a first-order substitution (data
structure); as we will see in the first-order substitution algorithm, we represent first-order
substitutions as total functions from identifiers to replacements. We do so throughout the
formalization. The other cases for composite terms apply substitution homomorphically
to subterms, while the base cases return the input.

Function Osubst substitutes in ODEs.

( 1
primrec Osubst::"ODE = subst = ODE"

where
"Osubst (OVar c sp) o =
(case SODEs o c¢c sp of Some c' = c¢' | None = OVar c)"
| "Osubst (0Sing x 6) o = 0Sing x (Tsubst 6 o)"

| "Osubst (OProd ODE1 ODE2) o = OProd (Osubst ODEl o) (Osubst ODE2 o)"
_ J

The OVar c sp case checks whether the substitution defines a replacement for the
given differential program symbol and returns the replacement if there is one. Note that
the substitution treats OVar ¢ spl and OVar c sp2 as entirely independent symbols
when sp1 differs from sp2. We do not recommend depending on this behavior, which was
added only because it was easy to do so.

The substitution functions for programs and formulas are mutually recursive.

fun Psubst::"hp = subst = hp"
and Fsubst::"formula = subst = formula"
where

"Psubst (Pvar a) o =

(case SPrograms o a of Some a' = a' | None = Pvar a)"
"Psubst (Assign x 6) o = Assign x (Tsubst 6 o)"
"Psubst (AssignAny x) o = AssignAny x"

| (

| (

| "Psubst (DiffAssign x 6) o = DiffAssign x (Tsubst 6 o)"

| "Psubst (Test yw) o = Test (Fsubst v o)"

| "Psubst (EvolveODE ODE y) o = EvolveODE (Osubst ODE o) (Fsubst p o)"
| (

| (

| (

"Psubst (Choice a B) o = Choice (Psubst a o) (Psubst B o)"
"Psubst (Sequence a p) o = Sequence (Psubst a o) (Psubst p o)"
"Psubst (Loop a) o = Loop (Psubst a o)"

| "Fsubst (Geqg 61 62) o = Geg (Tsubst 61 o) (Tsubst 62 o)"
| "Fsubst (Prop p args) o =
(case SPredicates o p of
Some p' = FsubstFO p' (Ai. Tsubst (args i) o)
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| None = Prop p (Ai. Tsubst (args i) o))"

(
| "Fsubst (Not w) o = Not (Fsubst v o)"
| "Fsubst (And v ¢) o = And (Fsubst v o) (Fsubst ¢ o)"
| "Fsubst (Exists x yp) o = Exists x (Fsubst v o)"
| "Fsubst (Diamond a w) o = Diamond (Psubst a o) (Fsubst yp o)"
| "Fsubst (InContext C yp) o =
(case SContexts o C of Some C' = PFsubst C' (A _. (Fsubst vy 0))
| None = InContext C (Fsubst v o))"
_ J

Every constituent formula, program, ODE, and term has the corresponding substitution
function applied. The program constant case returns the replacement of the program
symbol, if any. When the predicate case finds a replacement for a given predicate, first-
order substitution is used to replace the arguments in the replacement of the predicate
symbol. Note that the FsubstFO function used in the predicate case belongs to the same
family of functions as the TsubstFO function used in the function symbol case, which
serves as a helper function to it. That is, both functions replace term arguments in an
expression. In contrast, the InContext case uses PFsubst for first-order replacement of
a formula argument in a formula. Recall that every predicational in the core grammar is
unary. The first-order substitution (A _. (Fsubst v o)) is expressed as a function
for the sake of symmetry with first-order term substitutions, but the domain of a first-order
substitution data structure for a unary symbol is the unit type, meaning the argument can
safely be ignored with a wildcard pattern _.

We give a select subset of the first-order substitution functions. The TsubstFO func-
tion performs replacement of function arguments in terms.

( N
primrec TsubstFO::"trm = (id = trm) = trm"

where
"TsubstFO (Var v) o = Var v"
| "TsubstFO (DiffVar v) o = Diffvar v"
| "TsubstFO (Const r) o = Const "
| "TsubstFO (Function f args) o =
(case (as_reserved_or_ other f£f)

Inl reserved = o reserved
| Inr other = Function other (A i. TsubstFO (args i) o))"
| "TsubstFO (Functional f) o =
(case (as_reserved_or_other f) of
Inl reserved = o reserved
| Inr other = (Functional other))"
| "TsubstFO (Plus 61 62) o = Plus (TsubstFO 061 o) (TsubstFO 62 o)"
| "TsubstFO (Times 61 62) o = Times (TsubstFO 61 o) (TsubstFO 62 o)"
| "TsubstFO (Div 61 62) Div (TsubstFO 61 o) (TsubstFO 62 o)"
| "TsubstFO (Max 61 62 Max (TsubstFO 61 o) (TsubstFO 62 o)"
|
|
|

)
o
) O
"TsubstFO (Min 61 62) o = Min (TsubstFO 61 o) (TsubstFO 62 o)"
"TsubstFO (Abs 6) o = Abs (TsubstFO 6 o)"

"TsubstFO (Differential ©6) o = Differential (TsubstFO 6 o)"
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The crucial case is the Function case, which checks whether the given function
symbol is a reserved function argument symbol, and replaces it with the replacement
specified by the first-order substitution, if so. The development version of the formal-
ization uses sigil characters to distinguish arguments from non-arguments. The func-
tion as_reserved_or_other!? parses an identifier and handles the sigil character or
lack thereof. Platzer’s dGL formalization (Platzer, 2019a) and previous paper presenta-
tions (Platzer, 2019a) take an analogous approach, but only support unary functions and
thus have a single reserved identifier. In contrast, the AFP version (Bohrer, 2017) treats
the identifier type as type variable which locally assumes a disjoint union type within
the substitution algorithm. In the AFP version, the function as_reserved_or_other
can be eliminated, because the substitution already distinguishes reserved and unreserved
symbols as left and right injections, respectively. The Functional case is written by
analogy to the Function case, though its reserved case is dead code because function
arguments are never functionals.

The definitions of the PsubstFO and FsubstFO functions are not listed here because
each function simply applies TsubstFO to every constituent term.

The mutually recursive functions PPsubst and PFsubst perform first-order substi-
tution of formulas into programs and formulas.

(fun PPsubst::"hp = (id = formula) = hp"

and PFsubst::"formula = (id = formula) = formula"

where

"PPsubst (Pvar a) o = Pvar a"

| "PPsubst (Assign x 6) o = Assign x 9"
| "PPsubst (DiffAssign x 06) o = DiffAssign x 6"
| "PPsubst (AssignAny x) o = AssignAny x"
| "PPsubst (Test w) o = Test (PFsubst yp o)"
| "PPsubst (EvolveODE ODE w) o = EvolveODE ODE (PFsubst v o)"
| "PPsubst (Choice a B) o = Choice (PPsubst a o) (PPsubst B o)"
| (
| (

"PPsubst (Sequence a B) o = Sequence (PPsubst a o) (PPsubst B o)"
"PPsubst (Loop a) o = Loop (PPsubst a o)"

| "PFsubst (Geg 61 62) o = (Geg 61 62)"

| "PFsubst (Prop p args) o = Prop p args"

| "PFsubst (Not w) o = Not (PFsubst v o)"

| "PFsubst (And v ¥) o = And (PFsubst v o) (PFsubst ¢y o)"

| "PFsubst (Exists x p) o = Exists x (PFsubst v o)"

| "PFsubst (Diamond a W) o = Diamond (PPsubst a o) (PFsubst v o)"

| "PFsubst (InContext C w) o =

(case as_reserved_ formula or other of
Inl C' = InContext C' (PFsubst v o) | Inr p' = o p")"

Substitutions are performed in the case InContext. As with first-order substitutions,
the function as_reserved_formula_or_other stands for a helper function that dis-
tinguishes the reserved argument symbol from other symbols. In the AFP version, symbols

13The function has been renamed in this chapter for the sake of readability.
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are already distinguished as disjoint unions, but the repository version distinguishes them
using identifier sigils.

The other cases map through. This completes the substitution function listings.

We now describe the (extensive list of admissibility) predicates which capture the no-
tions of U-admissibility, first order substitution admissibility, and second-order substitution
admissibility. We present a representative subset of them here.

The definitions TUadmit, PUadmit, and Fadmit define U-admissibility for terms,
programs, and formulas respectively. There is not a separate U-admissibility definition for
ODEs, because all necessary checks are captured in the main ODE admissibility predicate.
In the Isabelle/HOL formalization, SDom o implements Dom(c) and SFV o i represents
the subset of FV(o) containing free variables introduced by o (i) for identifier . That is,
the function FVS which implements FV (o) is defined as a union over SFV:

( N
definition FVS::"subst = (ident + ident) set"

where "FVS o = (Ui. SFV o i)"
. J

As usual, the sum ident + ident distinguishes base and differential variables.

definition TUadmit::"subst = trm = (ident + ident) set = bool"
where "TUadmit o 6 U <
((Ui € SIGT 8.
(case SFunctions o 1 of Some f' = FVT f£' | None = {})) n U) = {}"

definition PUadmit::"subst = hp = (ident + ident) set = bool"

where "PUadmit o 6 U <« ((Ui € (Shom o n SIGP 6). SFV o i) n U) = {}"
definition FUadmit::"subst = formula = (ident + ident) set = bool"
where "FUadmit o 6 U <« ((Ui € (Shom o n SIGF B). SFV o i) n U) = {}"

. J

A family of predicates including TadmitFO ensure first-order substitution admissibility
for terms and other classes, respectively. A first-order substitution is modeled by type
ident = trm which replaces every argument function symbol with an argument term.
The only case with a U-admissibility check is TadmitFO_Diff. The remaining cases just
inductively check first-order admissibility of subterms.

inductive TadmitFO::" (ident = trm) = trm = bool"
TadmitFO Diff:"TadmitFFO o 6 = NTUadmit o 6 UNIV =
dfree (TsubstFO 6 o) = TadmitFO o (Differential 0)"

The TadmitFO_Diff case has several helper functions. The checks TadmitFFO o 6
and dfree (TsubstFO 6 o) are redundant with each other and one of them could be
safely removed, but they provide an opportunity to compare different ways of ensuring
that substitution preserves various syntactic constraints. Recall that differentials must not
be nested in our formalization of dL. While the substitution algorithm assumes that the
input is well-formed and thus free of nested differentials, we must ensure through the ad-
missibility checks that substitution does not introduce nested differentials where there were
none before. One approach (TadmitFFO o ) instruments the admissibility predicate to
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check that whenever a function argument symbol is mentioned in 6, the replacement of the
argument in o is simple. The second approach (dfree (TsubstFO 6 o)) just substi-
tutes o in 6 and checks that the result is simple. Code generated from the latter could be
slower in theory if substitution greatly increases the size of a term, but the former is likely
slower in practice due to our naive representation of substitutions. The helper NTUadmit
says that no replacement which occurs under a differential symbol can introduce any free
variables, which is required for soundness in both first-order and second-order substitution.
We do not give definitions for TadmitFFO and NTUadmit because they provide little new
insight but do contain boilerplate for managing identifiers which could distract the reader.

The second-order term substitution admissibility predicate Tadmit uses a helper pred-
icate TUadmit to check that no free variables are introduced under differentials and
that all first-order admissibility checks succeed for all function applications. The fields
SFunctions and SFunls express the replacements of functions and functionals in sub-
stitution o, respectively. The function cases TadmitF_Funl and TadmitF_Fun2 re-
spectively check admissibility of functions that are or are not replaced by the substitution.
Both function cases include conditions that are best understood as well-formedness condi-
tions: only unreserved symbols can be replaced by a second-order substitution, and their
length must be strictly less than the global maximum MAX__STR, because proofs of identifier
lemmas are easier if we assume there is space left for a sigil.

( I
definition TUadmit::"subst = trm = (id + id) set = bool"
where "TUadmit ¢ 6 U < ((U i € SIGT 9.

(case SFunctions o 1 of Some f' = FVT f' | None = {})) n U) = {}"
inductive Tadmit::"subst = trm = bool"
where

Tadmit_Diff:
"Tadmit o 6 = TUadmit o 6 UNIV = Tadmit o (Differential 0)"
| TadmitF_Funl:" (Vi. TadmitF o (args 1)) - SFunctions o f = Some f' -
is_not_reserved f - ilength f < MAX_STR -
(Vi. dfree(Tsubst (args i)o))—-TadmitFFO(A i. Tsubst (args i) o) f' -
TadmitF o (Function f args)"
| TadmitF_Fun2:"(Vi. TadmitF o (args 1)) — SFunctions o f = None -
is_not_reserved f - ilength f < MAX_STR -
TadmitF o (Function f args)"
| Tadmit_Funl:"SFunls o f = Some f' = Tadmit o f'
= Tadmit o (Functional f)"
Tadmit Plus:"Tadmit o 61 = Tadmit o 62 = Tadmit o (Plus 61 62)"
Tadmit_Times:"Tadmit o 061 = Tadmit o 62 = Tadmit o (Times 061 62)"
Tadmit_Div:"Tadmit o 61 = Tadmit o 62 = Tadmit o (Div 61 62)"

|
|
|
| Tadmit_Max:"Tadmit o 61 = Tadmit o 62 = Tadmit o (Max 61 ©62)"
| Tadmit_Min:"Tadmit o 61 = Tadmit o 62 = Tadmit o (Min 61 ©62)"
| Tadmit_Abs:"Tadmit o 681 = Tadmit o (Abs 61)"
| Tadmit_DiffVar:"Tadmit o (DiffVar x)"
| Tadmit Var:"Tadmit o (Var x)"
| Tadmit_Const:"Tadmit o (Const r)"
. J
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ODE admissibility is defined as an inductive predicate Oadmit. Helper TadmitF
treats second-order substitutions whose results must be simple, thus it is similar to the
first-order helper TadmitFFO. Field SODEs specifies the differential program symbol sub-
stitutions provided by substitution o.

inductive Oadmit::"subst = ODE = (id + id) set = bool"
where

Oadmit_Var:"Oadmit o (OVar c) U"
| Oadmit_VarNB:

"(case SODEs o ¢ (Some x) of

Some ode = Inl x ¢ BVO ode

| None = False) = Oadmit o (OVar c (Some x)) U"
| Oadmit_Sing:"TUadmit o 6 U = TadmitF o 6 = Oadmit o (OSing x 6) U"
| Oadmit_Prod:"Oadmit o ODEl U = Oadmit o ODE2 U =

ODE_dom (Osubst ODEl o) n ODE_dom (Osubst ODE2 o) = {} =

Oadmit o (OProd ODE1 ODEZ2) U"
L J

In contrast to the term admissibility predicate, Oadmit is parameterized by the set
U of bound variables of the ODE: because all equations of an ODE system evolve in
parallel, every equation must respect the bound variable restrictions imposed by the others,
the result being that a single set U of bound variables can be used when checking the
entire system. The Oadmit_Var case says that differential program constants with no
space specifiers are always admissible. The Oadmit_VarNB case for differential program
constants with space specifiers assumes that the constant is replaced' and requires that the
taboo variable x is not a bound variable of the replacement of ¢{!x[}. The Oadmit_Prod
case checks admissibility of each component of a product system and also checks that no
variable is bound twice in the same system.

We give the main admissibility predicates for programs and formulas, only mentioning
the helpers briefly because their design is similar to those for terms. The helpers PUadmit
and FUadmit implement U-admissibility for programs and formulas. Helper PFadmit is
admissibility for the first-order substitution of formulas into formulas and NFadmit is
admissibility for first-order substitution of terms into formulas. Fields SPredicates
and SContexts contain the replacements for predicates and predicationals. Predicates
hpsafe, fsafe, and dsafe are the standard well-formedness predicates for hybrid pro-
grams, formulas, and terms. In each case, we apply admissibility checks inductively, check
well-formedness of expressions when needed, and apply the same U-admissibility checks
specified by the paper presentation of admissibility.

( N
inductive Padmit::"subst = hp = bool"

and Fadmit::"subst = formula = bool"

where

Padmit_Pvar:"Padmit o (Pvar a)"

| Padmit_Sequence:"Padmit o a = Padmit o b =
PUadmit o b (BVP (Psubst a o))= hpsafe (Psubst a o) =
Padmit o (Sequence a b)"

14 This condition is incidental to our formalization and thus is not mentioned in the paper presentation
of the admissibility condition.
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| Padmit_TLoop:"Padmit o a = PUadmit o a (BVP (Psubst a o)) =
hpsafe (Psubst a o) = Padmit o (Loop a)"

| Padmit_ODE:"Oadmit o ODE (BVO ODE) = Fadmit o yp =
FUadmit o v (BVO ODE) = Padmit o (EvolveODE ODE p)"

| Padmit_ Choice:"Padmit o a = Padmit o b = Padmit o (Choice a b)"

| Padmit_Assign:"Tadmit o 6 = Padmit o (Assign x 6)"

| Padmit_AssignAny:"Padmit o (AssignAny x)"

| Padmit_DiffAssign:"Tadmit o 6 = Padmit o (DiffAssign x 6)"

| Padmit_Test:"Fadmit o p = Padmit o (Test p)"

| Fadmit_Geqg:"Tadmit o 61 = Tadmit o 62 = Fadmit o (Geg 61 62)"

| Fadmit_Propl:" (Ai. Tadmit o (args i)) = SPredicates o p = Some p' =
NFadmit (A i. Tsubst (args i) o) p' =
(Ai. dsafe (Tsubst (args i) o)) =
Fadmit o (Prop p args)"
| Fadmit_Prop2:" (Ai. Tadmit o (args i)) = SPredicates o p = None =

Fadmit o (Prop p args)"

| Fadmit_Not:"Fadmit o p = Fadmit o (Not wu)"

| Fadmit_And:"Fadmit o v = Fadmit o ¢y = Fadmit o (And v y)"

| Fadmit_Exists:"Fadmit o p = FUadmit o v {Inl x} =
Fadmit o (Exists x up)"

| Fadmit_Diamond:"Fadmit o p = Padmit o a =
FUadmit o v (BVP (Psubst a o)) = hpsafe (Psubst a o) =
Fadmit o (Diamond a w)"

| Fadmit_Contextl:"Fadmit o p = FUadmit o yp UNIV =
SContexts o C = Some C' = PFadmit (A _. Fsubst p o) C' =
fsafe (Fsubst v o) = Fadmit o (InContext C up)"

| Fadmit_Context2:"Fadmit o w = FUadmit o p UNIV =

SContexts o C = None = Fadmit o (InContext C wy)"
- J

This completes the listing of admissibility predicates, each of which is used in correct-
ness lemmas for the corresponding substitution functions. The large number of substitution
functions and admissibility predicates exposes a major downside of providing separate func-
tions for first-order substitutions and a downside of prohibiting nested differentials: both
design choices greatly increase the number of inductive predicate definitions and lemmas
about them required. This is a limitation of our approach of separating the definition of
admissibility from the definition of substitution.

2.7 Soundness Proof

The soundness proof establishes soundness of individual axioms and axiomatic rules, lem-
mas about the static semantics and admissibility, and soundness of the renaming and
soundness rules. In Section 2.8, the axioms and rules are packaged into a proof term
checker and the soundness results of this section are composed to show that the entire
checker is sound.
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2.7.1 Static Semantics Proofs

The coincidence lemma (Platzer, 2017a, Lem. 10-12, Lem. 17) says that states and inter-
pretations which agree on the free variables and signature of a formula will assign it the
same truth value. Recall that £safe is a syntactic well-formedness (“safety”) condition
for formulas and is_interp is a semantic well-formedness condition for interpretations.
Predicates Tagree and Vagree check the agreement of two interpretations or two states
on a set of identifiers. Agreement properties are crucial for the static semantics lemmas.

lemma coincidence_formula:
"Av v' I J.
fsafe (p::formula) = is_interp I = is_interp J =
Iagree I J (SIGF w) = Vagree v v' (FVE ) =
(v € fml_sem I p < v' € fml_sem J p)"

The bound effect lemma (Platzer, 2017a, Lem. 9, Lem. 17) says that only bound vari-
ables can be modified by programs. Here, hpsafe is the well-formedness condition on
hybrid programs, which ensures that only simple terms are differentiated.
lemma bound_effect:

fixes I::"interp"

assumes :"is_interp I"

shows "Av::state. Aw::state. hpsafe a = (v, w) € prog_sem I a
= Vagree v w (—(BVP a))"

2.7.2 Adjoints and Substitution

The adjoint function captures the effect of a substitution as an interpretation, which is
called the adjoint interpretation. The adjoint lemma (Platzer, 2017a, Cor. 22) says that the
semantics of formula v is preserved between the adjoint interpretations of o with respect to
two states w and v so long as w and v differ only on some taboo set U (Vagree) such that
o is U-admissible for formula p as encoded by predicate FUadmit (Section2.6.3). Here
fsafe and ssafe are well-formedness conditions for formulas and substitutions: formulas
should only ever differentiate differentiable terms, while substitutions must replace symbols

only with well-formed expressions.
( 1
lemma uvadmit_fml_adjoint:

assumes "fsafe p"

assumes "ssafe o"

assumes "is_interp I"
assumes "FUadmit o yp U"
assumes "Vagree v w (-U)"

shows "fml_sem (adjoint I o v) v = fml_sem (adjoint I ¢ w) Wy
. J

These results culminate in the substitution lemma (Platzer, 2017a, Lem. 23-25), from
which soundness (Platzer, 2017a, Lem. 26) of rule US follows directly. The lemma for
formula substitution Fsubst states that a substituted formula holds in an interpretation
when the non-substituted formula holds in the adjoint.

n
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lemma subst_fml:
fixes I::interp and v::state
assumes good_interp:"is_interp I"
assumes Fadmit:"Fadmit o up"
assumes fsafe:"fsafe p"
assumes ssafe:"ssafe o"
shows

"(v € fml_sem I (Fsubst v o)) = (v € fml_sem (adjoint I o v) w)"
. J

Lemma subst_fml is proved by induction simultaneously with substitution for pro-
grams. In general, every substitution helper function (Section2.6.3) has its own substi-
tution lemma which assumes the corresponding notion of admissibility and proves that
syntactic substitutions have the same effect as adjoint interpretations. Lemmas about
first-order substitutions employ a corresponding notion of adjoint interpretations of first-
order substitutions.

While the volume of substitution functions, admissibility predicates, and substitution
lemmas is large, all lemmas implement the same notion that substitutions have the same
effect as adjoints. Our first-order substitution approach accepts a larger implementation in
order to ensure simple induction principles suffice to show the substitution lemmas. In each
inductive proof, we apply the adjoint and static semantics lemmas to show the claim. The
second-order approach taken in Platzer’s subsequent dGL formalization (Platzer, 2019a)
and elsewhere likely provides a better tradeoff by minimizing the number of functions and
lemmas. Nonetheless, it is useful that both formalizations exist so that the cost of a first-
order approach can be seen clearly. Moreover, Isabelle/HOL does not care whether a proof
is long or short; in either case, the substitution lemmas are true.

The formula substitution lemma is worth the effort invested because it yields soundness
of the substitution rule (US) as a corollary. Uniform substitution calculi are designed to
offload as much complexity as possible into the substitution rule, so that the rest of the
calculus can employ conceptually simple concrete axioms instead of axiom schemata with
nontrivial side conditions. Soundness of rule US and validity of the dL axioms amount to
the largest share of a comprehensive soundness proof for dL. Having completed the heart
of the proof, we turn to packaging the soundness proof in a verified proofchecker, from
which executable code can be extracted and used to cross-check real dL proof terms.

2.8 Proof Checker

We define a datatype of dL proof terms. We instrumented (Bohrer et al., 2018) the KeY-
maera X prover to record proofs in our proof term format and cross-check them using a
generated, verified proofchecker. The formalization of the proofchecker begins by enumer-
ating the names of rules and axioms, with arguments, if any. Composing the axioms and
rules will allow us to define a proof term datatype pt representing an entire dL proof.
The datatype definitions for sequents, rules, axioms, and proof terms are based on
corresponding data structures from the KeYmaera X implementation. As in KeYmaera X,
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we operate over sequents rather than formulas. A classical sequent’® contains a list of
antecedent formulas and a list of succedent formulas. As in KeYmaera X, we represent the
state of an ongoing proof as a derived rule: every proof state lists the conclusion of the
proof and a list of open goals which, if proved, entail validity of the conclusion. A finished
proof is simply a derived rule with zero premises, whose conclusion is thus a valid sequent.

type_synonym sequent = "formula list * formula list"
type_synonym rule = "sequent list * sequent"

The truth value of a sequent (I' - A) is defined as the truth value of the corresponding
formula AT -/ A:

fun seg2fml::"sequent = formula"
where
"seg2fml (ante,succ) = Implies (foldr And ante TT) (foldr Or succ FF)"

fun seg_sem::"interp = sequent = state set”
where "seq sem I S = fml_sem I (seg2fml S)"

The proofchecker maintains the invariant that the current proof state is always locally
sound, meaning that a common interpretation is used to interpret the uniform substitution
symbols of the premises and the conclusion. The Isabelle/HOL predicate sound captures
local soundness specifically.

-

definition sound::"rule = bool"

where "sound R < (VI. is_interp I - (Vi. i > 0 - 1 < length (fst R) -
seg_sem I (nth (fst R) i) = UNIV) - seqg_sem I (snd R) = UNIV)"

definition seqg_valid
where "seqg valid S = VI. is_interp I - seg_sem I S = UNIV"

Sound derived rules with no premises are valid derived axioms:

lemma sound_valid:
assumes "sound ([], C)"
shows "seq valid C"

We note several minor differences between our representation and the representation
used by KeYmaera X. KeYmaera X provides an object-oriented interface where proof
steps are applied by invoking methods of a proof object; our representation is functional.
KeYmaera X elides proof terms in the core and provides an optional user-space wrapper
around the core which remembers proof terms; our functional checker operates over proof
terms. Both we and KeYmaera X represent the built-in proof rules as a datatype, though
we factor our definitions differently: KeYmaera X defines rule constructors with positional
arguments, while we factor out positioning so that it can be treated only once in the proof.

We now enumerate the datatypes used in our proofchecker. The types 1rule and
rrule enumerate the left and right sequent calculus rules, such as first-order reasoning

15Tn contrast to constructive sequents which have a single formula in the succedent
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and bound renaming. Type axRule enumerates the axiomatic rules and type axiom
enumerates the axioms. In addition to the core hybrid program axioms, we include several
axioms which are derivable. Their proofs are simple, but if we did not wish to prove these
axioms semantically, we could add a definition mechanism to our proof term language and
export the KeYmaera X proofs of these derived axioms. The vast majority of axioms and
rules are identical to their counterparts in KeYmaera X so that KeYmaera X proofs can be
replayed in the verified checker. Differential invariants are an exception: our formalization
necessarily differs because we do not formalize differential formulas (¢)’, and we will use
schemata instead of axioms for soundness reasons.

datatype lrule = ImplyL | AndL | HideL | FalselL | NotL
| CutLeft formula | EquivL | BRenamel ident ident | OrL

datatype rrule = ImplyR | AndR | CohideR | TrueR | EquivR | Skolem
| NotR | HideR | CutRight formula | EquivifyR | CommuteEquivR
| BRenameR ident ident | ExchangeR nat | OrR

datatype axRule = CQ | CE | G | monb

datatype axiom =

AloopIter | AI | Atest | Abox | Achoice | AK | AV | Aassign
Adassign | Advar | AdConst | AdPlus | AdMult | ADW | ADE | ADC
ADS | AEquivReflexive | ADiffEffectSys | AAllElim | ADifflLinear
ABoxSplit | AImpSelf | Acompose | AconstFcong | AdMinus
AassignkEqg | AallInst AassignAny | AequalCommute | ATruelImply
Adiamond | AdiamondModusPonens | AequalRefl | AlessEqualRefl
Aassignd | Atestd | Achoiced | Acomposed | Arandomd

A lemma axiom_valid ensures that all supported axioms have been proved valid.

[lemma axiom_valid:"valid (get_axiom axiom)" }

Type ruleApp represents one rule application of any kind. The natural number argu-
ments of the constructors RightRule and LeftRule indicate the index of the respective
succedent or antecedent formula to which the right rule or left rule is applied.

Note that the KeYmaera X axiom for DI over systems with more than one ODE has a
known, albeit contrived soundness exploit. For this reason our checker uses axiom schemata
which check an additional side condition to ensure soundness. The KeYmaera X proof term
exporter translates applications of the unsound KeYmaera X axioms into applications of
the sound schemata, and likewise translates proofs that use differential formulas (¢)" into
ones that do not, because differential formulas are not in the language of our checker.

rdatatype ruleApp =
URename ident ident
| RightRule rrule nat
| LeftRule lrule nat
| CloseId nat nat
| Cohide2 nat nat
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Cut formula

DIGegSchema ODE trm trm
DIGrSchema ODE trm trm
DIEgSchema ODE trm trm

Type pt captures an entire KeYmaera X proof. An important limitation of our checker
is that it does not check first-order real arithmetic proofs, but rather treats them as as-
sumptions, represented by constructor FOLRConstant. We treat such proofs as out of
scope because verified arithmetic solvers are presently not competitive with unverified ones
despite extensive research (Harrison, 2007; Platzer, Quesel, & Riimmer, 2009; McLaughlin
& Harrison, 2005; Mahboubi, 2007; Li, Passmore, & Paulson, 2019; Cohen, 2012; Narkaw-
icz, Munoz, & Dutle, 2015; Cordwell, Tan, & Platzer, 2021). We find it more fruitful to
simply make our arithmetic assumptions explicit, so that they might be checked in the
solver of our choice. A proof is started by declaring the conclusion as an open subgoal in
constructor Start. Rules are applied with RuleApplication, while AxiomaticRule
and Ax state that every axiomatic rule and axiom are sound proof states and valid, proved
theorems, respectively. The numeric argument to RuleApplication indicates which
premise the rule is applied to. In the case that the ruleApp argument is a left or right
rule, the argument will further specify which antecedent or succedent formula the rule is
applied to. Uniform substitution is applied to proof states (rules) in PrUSubst. Proof
term Sub 1 r i is the main tool for composing multi-step proofs: first the proof terms
1 and r are checked, then the proof rule resulting from r is applied to subgoal i of the
proof state resulting from 1. The remaining constructors FNC and Pro are additional

composition principles, similar to Sub.
( I
datatype pt =

FOLRConstant formula

Start sequent

RuleApplication pt ruleApp nat
AxiomaticRule axRule

Ax axiom

PrUSubst pt subst

FNC pt sequent ruleApp
Pro pt pt

Sub pt pt nat

- J

The proofchecker is represented as function pt_result which traverses a proof term
and returns an option which, if successful, contains the final proof state.

[fun pt_result::"pt = rule option" }

Finally, we can state soundness of the proofchecker as a whole. Proofs which pass the
checker result in sound rules as proof states, so long as arithmetic assumptions hold:

[lemma proof_sound:"pt_result pt=Some rule = QEs_hold pt = sound rule" }

The predicate QEs_hold pt captures the assumption that arithmetic assumptions
hold. It is an inductively defined predicate over proof terms which says that for ev-
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ery constructor FOLRConstant formula that appears in the proof term, we assume
valid formula. Because FOLRConstant assumes a formula without proof, it is crucial
that FOLRConstant is only ever applied to formulas which belong to decidable fragments
for which trustworthy decision procedures are available, i.e., first-order real arithmetic.

Lemma proof_sound extends past dL soundness results (Platzer, 2017a, Lem. 23-25)
by additionally proving soundness of all the rules we formalized, including bound renaming
and sequent calculus rules which were not explicitly proved sound in the paper presentation
of the dL uniform substitution calculus.

2.9 Code Generation

Here we discuss the minutiae of generating code from our Isabelle/HOL formalization and
integrating that code with KeYmaera X. Isabelle/HOL supports several target languages
for generated code, of which we have performed experiments with Scala and limited exper-
iments with Standard ML.

To generate code, we must ensure all definitions use constructs that are supported by
the generator. For example, Isabelle/HOL only permits quantifiers to be code-generated
for types whose values can be finitely enumerated, represented by the locale’® enum. Our
formalization is parameterized by an enumerable identifier type, so a type of identifiers is
specified as part of the code generation process. The latest formalization allows bounded-
length strings for identifiers, but experiments were performed with bounded integer iden-
tifiers. Any experiment using strings would require broader changes to the representation
of expressions and substitutions, as some constructors consume space linear in the number
of available identifier names. The substitution data structure, for example, contains total
functions from identifiers to options of replacements, thus the space required to represent
the structure is linear in the number of available identifier names. A production-quality
proofchecker would represent a substitution as a list containing only substituted terms,
independent of the number of identifiers available. In some cases, simpler types are chosen
for stylistic reasons, even though Isabelle/HOL allows generating a more complicated type.
Specifically, we use machine words to represent numeric literals in order to better match
the formalization of interval arithmetic used in VeriPhy (Chapter 3). The rational literals
which are common in dL can be reconstructed using the division operator.

In addition to Scala, Standard ML was explored as a code generation target because
recent work (Hupel, 2019b) has developed a verified Standard ML code extractor for Is-
abelle/HOL, which would provide a strong argument that the results of executing our
proofchecker are trustworthy. To the best of the author’s knowledge (Hupel, 2019a), how-
ever, that extractor does not support the full range of features used by the dL formaliza-
tion in Isabelle/HOL, as our formalization relies heavily on the predicate compiler, locales,
typedef, and code generation for finite set data structures, all at the same time.

After configuring the code generator, we extracted the function pt_result to Scala.
The Scala function is a function from a proof term to (an option containing) the final proof

16 0cales are an Isabelle/HOL feature which support modularity and which can be loosely compared to
typeclasses that can contain theorems.
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state. Our proofchecker soundness theorem says that the proofchecking function in Scala
is correct, assuming that code generation and Scala compilation are correct. In order to
run the proofchecker, we still need to construct the Scala representation of a proof term.

In order to allow the proofchecker to run independently from KeYmaera X, we devel-
oped a textual format for proof terms and wrote by hand a trusted parser which builds the
Scala representation of the proof term in memory. Because we do not formalize or verify
the parser, our proofchecking program is only sound under the assumption that the parser
is correct. If we wish to eliminate this assumption, we could have KeYmaera X call our
generated code directly rather than generating a text file to be read by the checker. While
the parser is trusted, the code is simple since we represent proofs in an S-expression-like
format, i.e., in prefix notation with full parenthesization. Because all expressions and sub-
stitutions are represented as S-expressions, the format is so verbose that a full example
would not be instructive. Instead, we give small proof term fragments as syntax examples.

Program variables are numeric: the nth variable x; is written in, that is, it is pre-
fixed with the letter i. The term (Geq (Var 12) (Var 1i1)) represents the formula
x9 > x1. Recall that the Start rule is used to start a proof. Specifically, a proof term
of form (Start ((al ... aN) (sl ... sN))) is used to start a proof of the se-
quent whose antecedent formulas are all the formulas a1 .. aN and whose succedent
formulas are the formulas s1 ... sN. As another example, suppose we want to check
the steps contained in some proof term (pt) first, then apply AndL to some position
(pos) of premise (prem) as the next step. Then we would write the proof term syntax
(RuleApp (pt) (Lrule (AndL) (pos)) (prem)). While our proof term format
is verbose, the parser is fast enough that verbosity is not the bottleneck in practice. The
largest proof term generated in our tests was 56 MiB when represented in our textual for-
mat, but parsed in less than a second on the author’s workstation. Less time was spent
parsing the proof term than checking it. The speed is attributed to the fact that the parser
is one-pass and tail-recursive. Copying of large strings is also avoided, i.e., the parser
scans through the input string once and maintains the index of the current location as it
goes, rather than splitting the input string into substrings and allocating large amounts of
memory in the process.

While proof term parsing was simple, the greater challenge was to generate a proof
term to serve as input. We instrumented the KeYmaera X core to record every proof step
and generate the corresponding steps of a proof term. While the axioms and rules of the
Isabelle/HOL formalization follow the KeYmaera X implementation as closely as possible,
important challenges and limitations arise wherever the two differ:

* The (systems) differential invariant axiom of KeYmaera X has a soundness bug.
While that bug is only a concern for pathological proofs, a verified checker needs
sound rules. To ensure soundness, we use schemata for differential invariants rather
than an axiom.

* The Isabelle/HOL formalization does not have differential formulas (¢)’ because there
is not an obvious general-case semantic definition for them. Instead, we implement
the > and > cases of (¢)’ separately. The other cases are derivable (Platzer & Tan,
2020; Platzer, 2018a). In short, the Isabelle/HOL formalization uses a family of
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schemata rather than a single schema. While proofs using the schemata are not sig-
nificantly more difficult, we must automatically translate differential formula-based
KeYmaera X proofs to use the family of schemata. That translation is tightly cou-
pled with the implementation details of KeYmaera X tactics related to differential
invariants, and would likely break if those tactics ever change.

* The verified proofchecker expects numeric identifiers, but KeYmaera X uses alphanu-
meric identifiers. The exporter translates alphanumeric identifiers to numeric iden-
tifiers. The translation is not technically challenging, but poses a serious maintain-
ability issue. Recall that every KeYmaera X axiom is implemented as a concrete
formula and that our proof term format does not explicitly write the content of the
axioms, only their names. Because a proof term only specifies the names of axioms,
the axiom definitions are tightly coupled between KeYmaera X and the checker.

The issue is best demonstrated with a contrived example: suppose that KeYmaera X
contained two axioms 22 > 0 and 22 > 0 — 22 > —1 and we wished to check a proof
of 22 > —1 which uses both axioms. The implementer of the proofchecker must re-
member that both axioms use the same variable name x in KeYmaera X, ensure that
both axioms use a single identifier iK in the Isabelle/HOL formalization, and make
sure that the proof exporter consistently translates variable x in the KeYmaera X
proof to iK in the proof term. If they forget to do so, the proofchecker may (for
example) read the axioms as y?> > 0 and 22 > 0 — 22 > —1, in which case the
proof term will fail to check!”. In practice, the exporter’s identifier conversion logic
is tightly coupled to the choices of program variable names used in axioms of the
KeYmaera X core and Isabelle/HOL formalization. If variable names in either im-
plementation were to change without corresponding changes in the exporter, almost
all proofs that use the offending axiom will fail to check.

* If proof terms were adapted to use alphanumeric identifiers, the proof term exporter
would still need to know every axiom name and its corresponding proof term con-
structor name. That being said, a mapping from axiom names to constructor names
requires less surprising implementation coupling than a mapping for all identifiers.

* The Isabelle/HOL formalization uses a minimal language, knowing that many con-
nectives are definable. The exporter is responsible for expanding defined operators.
Many of the expansions are simple, e.g. (¢ V 1) <> = (=¢p A —).

* Recall that axiom DEsys is more precise in our calculus than in KeYmaera X because
the syntactic treatment in KeYmaera X can rely on data structure invariants to rule
out obviously unreasonable axiom instances, but our semantic treatment cannot.
Axioms such as DEsys must have these details filled in during the translation. For
the same reason, some of the formalized axioms constrain their arguments to be free
of primed variable dependencies 2’ when the KeYmaera X axiom does not. The

"When performing a proof in KeYmaera X, axiom instances are automatically renamed to use whatever
variable name is necessary. The same renaming rule is available in the proofchecker. Regardless, the
proofchecker only performs renaming when a proof term tells it explicitly to do so, for which reason the
example given here would fail to check.
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translator must resolve these axiom discrepancies.
The translation between KeYmaera X proof terms and the verified proofchecker’s input
language is not theoretically deep, but as the preceding points suggest, it is quite brittle
because it depends on many implementation details of KeYmaera X and the formalization.
For that reason, the proof term exporter is not part of the standard KeYmaera X release
and remains an experiment, albeit an insightful one.

In Section 3.4, the proof term exporter is used to export proof terms from proofs of
safety of the sandbox controllers generated by the VeriPhy synthesis tool. Those proof
terms contain ~10° proof steps, placing them on the same order of magnitude as recent
research case studies performed in KeYmaera X (Mitsch et al., 2017). The proof terms
were successfully rechecked by the verified proofchecker in ~1 second on the author’s
workstation, which is less than 2% the total time taken to check recent case studies of
similar scale (Mitsch et al., 2017). The speed of the proofchecker is attributed to the fact
that it assumes rather than checks the truth of arithmetic properties, whereas arithmetic
solving can dominate proofchecking time in KeYmaera X.

Not only did the proofchecker process proof terms of nontrivial size at a fast rate, but
it exercised a broad range of proof rules available in KeYmaera X because the VeriPhy
safety proofs use a broad range of proof rules. Notable exceptions include differential ghosts
and differential solutions for ODE systems as well as (derivable) liveness rules for diamond
modalities (a)¢. Despite the fragility of the proof term exporter, these experimental results
indicate that the fragment of the KeYmaera X core we verified is significant and that the
verified proofchecker scales to proof terms of significant size.

Trusted Code Base. Having presented the verified proofchecker, we summarize the
trusted computing base on which its correctness lies. We make standard assumptions on
the soundness of Isabelle/HOL and its code generator, as well as the correctness of the
Scala compiler and runtime. While verifying such components is interesting future work, it
is both a significant undertaking in its own right and orthogonal to the work discussed in
this chapter; if such components are verified in the future, the verified tools could simply
be applied to the work we have presented. We also assume correctness of a hand-written
parser for proof terms. As discussed earlier in this section, we deem the parsing assumption
acceptable because of the simplicity of the proof term format.

2.10 Discussion

Prior works (Platzer, 2015b, 2017a) proved on paper that the dL uniform substitution
calculus is sound (Platzer, 2017a), but because paper proofs are written and checked by
humans, they are vulnerable to the following errors: 7) soundness errors by human logical
blunder and ) completeness errors by omission: paper proofs often focus on the simplest
cases of the proof, but do not show that a prover implementation will continue to be correct
in the most difficult cases, exactly when it is most in need of formal assurance. Even
relative completeness results for the dL calculus (Platzer, 2017a) do not preclude errors
of omission. The issue is not whether our proof calculus can prove every dL formula; the
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issue is whether we have proved soundness for every proof principle which we implement.
The first kind of error was addressed by formalizing the soundness proof in Isabelle/HOL:
a proofchecker will reliably check our proof for logical missteps, so long as we have not
encountered a soundness bug in Isabelle/HOL itself, and so long as we define the semantics
of dL correctly. The definitions of the dL semantics are /100 lines of easy Isabelle/HOL
code which build on existing real analysis and ODE libraries. Thus, the dL semantics
are short enough to be checked by hand, so long as the reader is also careful to check
that the usage of those libraries in the semantics is correct. The second kind of error is
more subtle: now that we have formalized dL in another prover, how do we know that
our formalization did not leave out some important, yet unsound feature? After all, if we
forget to include a certain feature in our paper proof, we might very easily forget it in a
mechanized proof as well, and we cannot catch a soundness error in a rule which we have
not even stated. In the following discussion, we use the phrase “errors of the second kind”
specifically for axioms and rules which were not formalized, but are unsound. However, we
are also generally interesting in ensuring exhaustiveness because an inexhaustive checker
might contain errors of the second kind.

Errors of the second kind are addressed by Section2.9: we instrumented the KeY-
maera X prover for dL to export a proof term for each proof, which we then replayed in
an auto-generated proofchecker. If we forgot to formalize a key feature, we would notice
because our proofchecker would fail to check the terms produced from KeYmaera X. Then,
we are never left to wonder about the exhaustiveness of our formalization, because even if
the Isabelle/HOL proof forgot some feature of KeYmaera X, the implementation of KeY-
maera X certainly cannot forget. While the work involved in bringing a mechanization up
to speed with the practical implementation can be significant, there is also a second payoff
in theory: the resulting proofchecker is guaranteed sound by construction and can be used
as a backup for the standard KeYmaera X prover core, effectively removing the core from
the trusted computing base.

2.10.1 KeYmaera X Soundness Bug

One might ask whether errors of the first and second kind are both significant in practice.
Our experience suggests that both kinds are important, specifically our experience with
finding a soundness bug in the KeYmaera X implementation of the bound renaming rule
(rule BR). The verification of rule BR was planned before exhaustiveness test were per-
formed, yet there was no prior informal (Platzer, 2017a) proof nor formal proof. Within
the context of our formalization, the bug in rule BR is an error of the first kind because we
intended to verify this rule from the start. However the fact that previous proofs (Platzer,
2017a) did not address rule BR demonstrates that errors of the second kind are equally
crucial; had we neglected to formalize rule BR at first, its soundness bug would be an error
of the second kind.

We now discuss the details of the BR bug. The bound renaming of x to y in postcon-
dition ¢ is sound when:

{y, v, 2"y NEV(p) =0
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The need to include z’ in this condition is counter-intuitive and, until the Isabelle/HOL
formalization was developed, KeYmaera X was unsound because ' was not checked. Once
the bug is discovered, it is straightforward to construct an example where this bug leads
to a soundness violation, for example:

[x:=2alx =2

¢
ly=2aTy=y

The premise is valid, but the conclusion is not. Thankfully, no existing code in KeYmaera X
relied on the presence of this bug, so changing the precondition as indicated above was
sufficient to fix the bug.

Note that the bug we found is in rule BR, which was not proved sound in prior paper
proofs (Platzer, 2017a). This highlights the importance of exhaustiveness (and avoiding
errors of the second kind). It is crucial to identify and verify all rules which will be used in
practice. Next, we will discuss how the BR bug was found, which will lead into a discussion
of how errors of the second kind are addressed.

Before developing a verified proofchecker, we identified a list of axioms and rules which
are known to be used frequently in KeYmaera X. That list happened to include rule
BR, in which sense the BR bug is an error of the first kind. Upon starting the main
dL soundness proof, Isabelle/HOL will require us to prove a case for the validity of each
axiom and a case for the soundness of each rule. Typically, we organize the proof of
each case as a separate lemma. Our initial proof attempt for BR tried to show that
the soundness condition previously used in KeYmaera X ({y,y'} N FV(¢) = () makes
BR sound. As is typical, our proof attempt proceeded by manually stating several key
intermediate formulas and attempting an interactive proof of each. The crucial step which
failed was one which appealed to the static semantics lemmas (Section 2.4), each of which
have assumptions on variable occurrences. By inspecting the proof state, it was clear
that a stronger variable occurrence condition {y,y’, '} NFV(¢) = () was required to prove
the step, from which the proof of the lemma followed. While inspecting the failed proof
attempt required human expertise, the experience of debugging a proof both suggested
a fix for the code and suggested a strategy for finding a counterexample to the old rule:
choose any formula which satisfies the original side condition but not the revised one.

Because prior proofs (Platzer, 2017a) omit rules such as BR which we proved, it is nat-
ural to ask whether our formalization initially omitted other important rules and whether
those rules contained errors of the second kind. Our formalization did omit rules which
get used in practice, e.g., rules which will be used in Chapter3. Testing the verified
proofchecker led us to formalize such rules, all of which were sound and thus not errors
of the second kind. We believe such omissions to be common because KeYmaera X con-
tains many axioms beyond the core dL axioms (Platzer, 2017a). Firstly, KeYmaera X
features many derived axioms which are implemented in terms of the core dL axioms and
thus are not soundness-critical, but are often used for convenience. Secondly, prototypes
of new KeYmaera X features may employ experimental axioms which are not intended for
widespread use. Because omissions of axioms could continue to occur, it remains essential
that exhaustiveness testing is employed to prevent errors of the second kind, even if we
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caught BR without the use of testing. At the same time, it is also valuable that we man-
ually assessed which dL rules to verify, because even the proofchecker would not identify a
missing rule if that rule were not used in the cases which are tested.

Our verified proofchecker provides important cross-checking for the soundness of dL
proof rules, but it is important to acknowledge the one proof principle which is not verified
by the soundness theorem proof_sound: real arithmetic solving. The pragmatic decision
to assume rather than prove validity of real-arithmetic goals is motivated by the known
difficulty of verifying efficient real arithmetic solvers. On the other hand, the soundness-
critical core of KeYmaera X is less than 2,000 lines of code (Fulton et al., 2015), which
is significantly less than tools such as Mathematica that are commonly used for practical
real arithmetic solving. While the exact size of Mathematica’s trusted computing base is
not known, the Logician’s skeptical principles tell us we should not assume any code is
correct until we have formal, positive evidence of correctness. Thus, it is not our goal to
claim that a soundness violation could never occur in KeYmaera X, rather by verifying the
dL proof calculus we have verified the parts of the KeYmaera X codebase which are under
our direct control'®. Arithmetic confidence could be increased by cross-checking several
solvers, proving formulas interactively, or, when possible, by using verified solvers.

2.10.2 Implications for Developing and Formalizing Provers

Just as the formalization presented in this chapter is not the first work on the verification
of theorem provers (Section2.11), it is unlikely to be the last. We discuss lessons learned
which are applicable to future theorem prover verification efforts.

We start by discussing our theorem prover verification approach at a high level, i.e.,
discussing our decision to extract proof terms from an existing prover implementation and
cross-check them in a separate, verified program. A major benefit of this approach is that
it can be pursued with minimal changes to the existing implementation of a prover, so long
as that prover can be readily instrumented to record proof terms, as was the case with
KeYmaera X. While leaving the implementation of KeYmaera X intact, this approach
gave us complete control over the source code of the verified proofchecker, which is crucial
because the code of a verified program is typically optimized for simplicity of its correctness
argument and thus may differ significantly from other implementations.

Our approach was made feasible by two key facts: KeYmaera X is implemented with
a small core consisting of simple proof steps (Fulton et al., 2015) and the uniform substi-
tution calculus which underlies KeYmaera X is well-studied (Platzer, 2017a). Because the
verification of code is labor-intensive, the difficulty of verification increases with the size
of a prover core. For example, the proofchecker introduced in Chapter 7 takes a large-core
approach, which would complicate any effort towards verification of its soundness. Even
for simple code, verification can be challenging when the correctness of simple code relies
on deep mathematical results. Soundness arguments for logics are often complex; notably,
dL’s soundness argument relies on non-trivial theorems of real analysis (Platzer, 2017a).

8Notwithstanding a known bug in the KeYmaera X implementation of differential induction, which
discussed in Section 2.5
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The availability of a non-mechanized proof greatly accelerated the development of a mech-
anized proof. A general benefit of proving soundness on paper first is that one can avoid
wasting great effort attempting a mechanized proof of a false statement whose falsehood
might be determined more quickly on paper. That being said, one may wish to attempt a
formalized proof of a new logic in order to identify mistakes or deepen their understanding,
but one must be prepared for the possibility that changes to logic would require rewriting
large sections of formal proofs.

When developing an executable, verified proofchecker (Section2.9), the greatest chal-
lenges arose where the formalization differed from KeYmaera X. By its very nature, the
Isabelle/HOL formalization is based on the theory of the dL uniform substitution calculus,
so it is also the case that the greatest challenges arose where the implementation of the
theorem prover differed from the underlying theory. For example, special handling was
required for rules which reason about systems of (more than one) ODE and for differential
formulas (¢)’, both of which are crucial in KeYmaera X but have received less theoretical
attention than other features of dL.

One particularly subtle takeaway is that the soundness formalization will likely diverge
from the prover wherever the prover provides a feature whose semantics are difficult to
define formally. For example, differential formulas (¢)" may be easily explained on paper,
but the task of defining their semantics was so subtle, particularly in the presence of
uniform substitution symbols, that the formalization opted to omit differential formulas
from the core language of dL expressions. Such divergences greatly complicate maintenance,
limiting the long-term applicability of our proofchecker despite its support for non-trivial
dL proofs. For our approach to result in a maintainable proofchecker, we would want
the axioms, rules, and semantics from the theory to be general enough to support all
proofs that the theorem prover does. For provers such as KeYmaera X which currently
extend their underlying logic, our experience could serve as motivation for extending the
underlying logic to catch up with the features used in practice.

Alternative approaches include the verification of an existing codebase and the devel-
opment of an entirely new, production-quality verified codebase. Verification of existing
codebases is often complicated by the fact that most existing programs contain bugs. De-
velopment of entirely new verified programs, on the other hand, is complicated by the
simple fact that existing theorem prover codebases typically represent many person-years
of engineering effort. By discarding the entire codebase of a prover, one is likely to discard
too much. For example, the codebases of mature provers typically include features, such
as user interfaces, which provide important conveniences but are orthogonal to soundness
concerns and thus ought not be discarded in the name of soundness proofs. Though these
alternative approaches come with significant challenges, the benefits of their (successful)
application would also be notable. By verifying a prover’s soundness in its entirety, one
eliminates the need to maintain two separate proofcheckers and eliminates the possibility
that the soundness proof is inexhaustive with respect to the prover implementation.

No matter which approach is taken, mechanized soundness proofs for theorem provers
are nontrivial undertakings. Yet, our experience shows that the process of mechanizing the
soundness proof can provide valuable insights. A mechanized proof can catch soundness
bugs which have evaded detection despite extensive use (Section 2.10.1), explain the reason
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the code is unsound, and thus suggest counterexamples and solutions. Beyond improving
the soundness of a theorem prover, the formalization process demands confronting any
differences between a prover’s theory and implementation. By confronting those differences,
one might inspire generalizations of the theory or even implementation simplifications.

2.11 Related Work

Formal verification has been pursued for several theorem provers because their role of
proving other systems correct is critical. We compare our work to other works on theorem
prover verification. In general, the differences among formalizations mirror the differences
among the underlying logics, so the unique features of our work include real analysis proofs,
ordinary differential equations (ODEs), and an explicit treatment of substitution.

Barras and Werner (Barras & Werner, 1997) verified a typechecker for a fragment of
Coq in Coq. Harrison (Harrison, 2006b) verified (1) a weaker version of HOL Light’s
kernel in HOL Light and (2) HOL Light in a stronger variant of HOL Light. Myreen et
al. have extended this work, verifying HOL Light in HOL4 (Myreen, Owens, & Kumar,
2013; Kumar et al., 2016) and using their verified compiler CakeML (Kumar et al., 2014)
to ensure these guarantees apply at the machine-code level. Myreen and Davis proved
the soundness of the ACL2-like theorem prover Mitawa in HOL4 (Myreen & Davis, 2014).
Anand, Bickford, and Rahli (Anand & Rahli, 2014; Rahli & Bickford, 2016) proved the
relative consistency of NuPRL’s type theory (Constable et al., 1986; Allen et al., 2006)
in Coq with the goal of generating a verified prover core. Twelf (Pfenning & Schiirmann,
1999) was used to formalize the LF (Harper, Honsell, & Plotkin, 1993) logical framework
on which it is based (Martens & Crary, 2012). These works show that formalization is
feasible for a wide array of logics, but careful attention must be given to the foundations
of the host prover and the libraries it provides.

Like the above works, the goal of this chapter is to verify the correctness of a theorem
prover (KeYmaera X). This goal is one part of the thesis’ broader goal of bulletproof
foundations: formal proofs are only as trustworthy as their foundations. Since proof in dL
is a linchpin of the VeriPhy approach, it is crucial to show the soundness of dL’s foundations.
Chapter 2 exposed unique technical challenges because the foundations of dL differ greatly
from those of the other provers. Soundness for the differential equations of dL involved
significant proofs involving concepts of real analysis. The KeYmaera X core is based on a
uniform substitution calculus (Platzer, 2017a), so the formalization also includes significant
proofs about substitution.

Our verified checker supports a significant fragment of the KeYmaera X core, includ-
ing enough to recheck proofs of safety for monitor-based synthesized controllers (~100K
steps). Together, these two pieces provide a multifaceted argument how we can trust hy-
brid systems proofs as done in KeYmaera X. Recently, an independent formalization of
classical dGL has been made (Platzer, 2019a), which emphasizes uniform substitution and
simplicity of the formalization over suitability for extraction of a verified checker.

The verified dL proofchecker assumes rather than proves that first-order real arith-
metic subgoals are valid. While first-order arithmetic is known to be decidable (Tarski,
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1951), it has a tight (Davenport & Heintz, 1988) doubly-exponential (G. E. Collins, 1998)
time bound. The high complexity of first-order arithmetic means that optimized imple-
mentations are essential in practice, and the wide array of verified real arithmetic pro-
cedures (Harrison, 2007; Platzer et al., 2009; McLaughlin & Harrison, 2005; Mahboubi,
2007; Li et al., 2019; Cohen, 2012; Narkawicz et al., 2015; Cordwell et al., 2021) have not
achieved performance that can compete with the techniques used in production-quality
unverified solvers (G. E. Collins & Hong, 1991; Strzebonski, 2006). Because verification of
high-performance real arithmetic solvers is a major, long-standing open problem in its own
right, we simply identify the real-arithmetic assumptions so that one might check them
with verified solvers, unverified solvers, or interactive proofs as desired.
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Chapter 3

Monitor Synthesis for Classical
Hybrid Systems

This chapter introduces VeriPhy, a design approach and synthesis tool which provides the
first implementation of end-to-end verification for dL. We use the name VeriPhy to refer
to both the tool and the basic design architecture. In developing VeriPhy, we give the
Logician solid formal foundations while giving the Engineer a verified controller which can
formally guarantee safety of an untrusted implementation. After developing the approach
and a case study on wheeled ground robotics, we identify how the remainder of the the-
sis can additionally satisfy the Logic-User’s needs for robustness, flexibility, traceability
without compromising the Engineer’s needs and while maintaining a clear basis in logic
that suggests how the Logician’s needs could be met. The implementation of VeriPhy
presented in this chapter is called classical VeriPhy because it uses the classical logic dL
as its foundation. A second implementation will be presented in Chapter 8 with the goal
of addressing classical VeriPhy’s limitations. The second implementation will be called
constructive VeriPhy because of its constructive foundations.

Recall from Chapter 1 that end-to-end verification must resolve the needs of the Lo-
gician, Engineer, and Logic-User: the Engineer needs a controller implementation which
works in practice despite the presence of complex untrusted code, the Logician demands
a foundational argument why the controller is correct at every step of the way, and the
Logic-User wants to perform proofs at a high level of abstraction (e.g., hybrid systems)
without an excessive proof burden. This chapter contributes a synthesis approach and
implementation for dL aimed at resolving these conflicting needs. We evaluate the tool and
discuss the limitations that remain (Section 3.8). In short, classical VeriPhy places strong
emphasis on pleasing the Logician with a chain of formal proof artifacts, but imposes non-
trivial restrictions on the models, proofs, and code supported, which can leave the Engineer
and Logic-User wanting when the approach is used in nontrivial applications. Construc-
tive VeriPhy (Chapter 8) will emphasize the opposite design priorities, with the hope that
having both implementations available will best meet the needs of all three characters.

To extract implementation-level guarantees from high-level models while maintaining
strong foundations, VeriPhy takes a pipeline approach which divides the synthesis process
into steps, allowing us to gradually bridge the gap between hybrid systems models and
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executable code. The gap is bridged by starting from both ends and working towards the
middle: on the front end, we translate the safe input model into another safe model called
a sandbox which is easier to execute; on the back end, we show that executions of compiled
code simulate executions of the safe sandbox model and thus inherit its safety properties.

The inputs of the pipeline are a hybrid system model and its proof in dL. Each front-end
step of the VeriPhy pipeline brings its input closer to executable code while maintaining
formal proofs. In an informal sense, the correctness theorem for each of these steps is like
a refinement property that reduces a safety theorem of the output to safety of the input.
The result is a provably safe dL model which is easier to execute than the input because
its plant model only uses discrete constructs whose execution is well-understood and its
control model explicitly captures the desired sandbox algorithm. Each back-end step shows
a simulation argument: any program transition that occurs in compiled code simulates a
transition in the source code, which simulates a discrete semantics of dL and finally the
standard real-valued semantics of the sandbox in dL. Because the sandbox is proved safe
in dL, the ending state of each transition satisfies the postcondition of the safety theorem.
Assumptions on safe sensing imply that the real state of the physical world is one such
simulated dL state and thus inherits the safety property in the physical world. The formal
proofs described here satisfy the Logician’s desire for formal evidence of correctness.

The correctness of some steps has been proved in advance in the general case; the other
steps use automated proofs. Automation of transformation correctness proofs is important
because we wish to reduce work for the Logic-User: ideally, synthesis and its correctness
proof should be fully automatic once the input model has been proved. We will discuss
(Section 3.8) the challenges of conclusively achieving full automation in the classical setting
of dL and propose how the following chapters will alter their approach to achieving this
goal. Our other crucial goal is to minimize difficulty for the Engineer. An important feature
of our basic design is that VeriPhy is agnostic to low-level implementation details because
synthesis and correctness proofs are driven entirely by a dL model and its correctness proof,
which are free to ignore many low-level details from implementation code. By designing
VeriPhy to be agnostic to low-level details, we make it easy for the Engineer to change
those details on their own without having to change a model or its proof (or wait for the
Logic-User to do so). That is not to say that all difficulties for the Engineer have been
resolved. For example, the representation of arithmetic in classical VeriPhy (Section 3.4)
will prove to be an obstacle for the Engineer when models grow more complex.

VeriPhy takes a provable runtime monitoring approach. A key benefit of the approach
is that it yields a loose coupling between proofs and code, so that the Engineer’s code is
untrusted and can change as frequently as desired without additional verification work.
This loose coupling also leaves the Engineer free to use the language of their choice. For
instance, tools such as Stateflow/Simulink (Stateflow Documentation, 2021; Simulink Doc-
umentation, 2021) have extensive libraries that are widely used in control software, but
are not easily verified. Specifically, we monitor whether the implementation complies to
the source model. The Logic-User wants source model verification to be as simple as pos-
sible and the Logician wants safety of the model to closely match an intuitive notion of

real-world safety. For these reasons, the source model is a hybrid program, verified in
KeYmaera X with dL.
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Figure 3.1: High assurance artifacts and steps in the VeriPhy verification pipeline.

We list the steps of the (classical) VeriPhy pipeline. We use = as the bullet on steps
whose correctness arguments move in the forward direction by showing that safety of an
output model follows from safety of an input, while we write <= on steps whose correctness
argument works backward by showing that execution of the output simulates execution
of the input. We use a standard bullet on steps which are not on the critical path of
the pipeline. Pipeline steps, tools, and artifacts are graphically summarized in Fig. 3.1.
The Future Work section of Fig. 3.1 refers to the future work of virtualizing HOL4 inside
Isabelle/HOL for a smaller trusted code base if virtualization techniques (Immler, Radle,
& Wenzel, 2019), which are discussed in Section 3.1, become mature enough to support
our formalization.

= The ModelPlex (Mitsch & Platzer, 2016b) tool, which is implemented as a feature of
KeYmaera X, is invoked to synthesize a control monitor formula and plant monitor
formula, which determine whether control decisions and physical evolutions respec-
tively satisfy the assumptions made of them by the model. The use of monitors is
crucial for showing that implementation-level behavior matches a model and thus
inherits its safety guarantees. Automating monitor formula synthesis reduces the
amount of manual modeling and proof effort required by the Logic-User. Recall that
the plant models physics using systems of ordinary differential equations (ODEs).

= The monitors are combined with a proven-safe fallback controller (which is provided
as an input) to form a sandbox controller. Fallback controllers are crucial for allowing
safe control even when the control decisions of some untrusted controller implemen-
tation (henceforth called the external controller) fall outside the proven-safe model.
The sandbox controller applies the external controller’s decisions whenever those de-
cisions satisfy the controller monitor and otherwise invokes the fallback controller.
Sandbox controllers crucially allow extending proven safety guarantees from models
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to implementations that incorporate external controllers.

If the plant monitor fails, it means the laws of physics do not match modeling as-
sumptions, so an alarm is raised!.

The sandbox controller is automatically proven safe in KeYmaera X, in part by
reusing the contents of the hybrid system safety proof. Automating the sandbox
safety proof is crucial for reducing the Logic-User’s proof effort. Reusing components
of the system safety proof is a powerful approach for automating proofs despite the
undecidability of safety.

The sandbox safety proof is optionally rechecked in the verified proofchecker (Chap-
ter2) to eliminate the KeYmaera X core from the trusted base. Though optional,
removing the KeYmaera X core from the trusted base is useful to a Logician who
wants to trust fewer lines of code. Chapter?2 used these proof terms to assess ex-
haustiveness of the dL formalization.

The exact real arithmetic from hybrid systems semantics ([-]) is conservatively re-
cast as fixed-point interval arithmetic ([-)]), and this recasting is formally proven
in Isabelle to be sound. We used fixed-point interval arithmetic because its time,
space usage, and behavior are extremely predictable, which matters for application
domains such as aviation. Additionally, fixed-point numbers can be implemented in
every major theorem prover and programming language. Arithmetic translation is an
important compilation step, and its soundness proof is important to the correctness
of compilation. By automatically compiling high-level real arithmetic to low-level
arithmetic, we free the Engineer from implementing low-level arithmetic herself.

The resulting program is automatically proven equivalent (in HOL4) to a CakeML
program (Kumar et al., 2016). The heart of the proof says that sensing and actuation
in the model can be modeled by a CakeML state machine (Ho et al., 2018). By
transitioning to CakeML, we enable the use of the following verified compilation
steps. Proof automation avoids excessive proof effort.

The equivalent CakeML program ([cmlSandbox}]) is compiled to machine code in
the CakeML verified compiler. CakeML’s verified compilation guarantees are one
crucial step of the end-to-end correctness argument.

The machine code ({{CML(cmlSandbox)[}) is linked with the Engineer’s trusted
sensing and actuation code. By automating the synthesis and compilation of the
sandbox controller, we free the Engineer from writing the sandbox logic herself.

By combining forward and backward steps, we solve a subtle aspect of end-to-end veri-
fication: we wish to show an implementation safe by showing it complies with a model,
yet a hybrid system may be so strict that an implementation does not match it exactly.
For example, an ODE specifies the trajectory of each of its bound variables exactly, yet
real-world sensor values typically contain noise and will not match the trajectory exactly,

Tn practice, the fallback controller can also be applied in this case, but the important point is that
a formal safety guarantee is fundamentally impossible when physics violates our assumptions. Instead,
fallback would serve as a best effort.
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even when they come close. The forward steps transform the input model into a sandbox
model that is more permissive, thus easier for implementations to comply with, yet still
proven safe. The backward steps then ensure the implementation’s compliance with the
relatively permissive sandbox model.

Each step is a provable reduction: forward steps reduce safety of an output to safety of
an input, while backwards steps (listed in Fig. 3.2) show executions of the output simulate
executions of the input. The reductions culminate in the fact that any execution of the
machine-code running on the actual CPS corresponds to some execution of the sandbox.
Because all executions of the sandbox are proved to satisfy the same safety property as the
source hybrid system, then the execution of the actual CPS is also known to be safe. The
differing brackets at different levels represent different formal semantics owing to a change
in programming language, state type, or both. For example, the change from [-] to [-]
captures the change from real-valued variables to interval-valued variables. The simulation
theorem for this step bridges the gap between reals and intervals by showing that the
interval semantics of a program conservatively simulates the real-valued semantics. The
CakeML sandbox (cmlSandbox) is generated by importing the monitor conditions and
fallback used in the dL sandbox.

Note that the sensor and actuator drivers, which are provided by the Engineer, are
trusted. While verification of sensing and actuation is an important topic, it is also a
moving target and presents deep epistemological issues: Not only does hardware change
frequently, but any model of hardware requires assumptions on the physics of hardware
components, which would become the new trusted base. Our purpose is not to dismiss the
usefulness of sensing and actuation verification, but to present an approach whose sensing
and actuation assumptions are cleanly isolated so that our approach will stand to benefit
from any future advances in those areas. Our sensing and actuation interface consists of a
handful of CakeML foreign-functions (Ho et al., 2018) for reading from and writing to the
external world, which have precise specifications in HOL4 and can then be implemented
in the Engineer’s language of choice, often C.

Fig. 3.2 shows the chain of simulation properties proven for the (backward) steps given
in Fig.3.1. The chain of properties in Fig. 3.2 highlights a fundamental challenge of end-
to-end verification: we must cross multiple levels of abstraction, from hybrid systems
down to discrete arithmetic and finally machine code. Any approach which seeks to prove
compliance between low-level code and high-level models, regardless of how exactly in
divides an end-to-end proof into steps, would have to confront the same fundamental
challenge of crossing abstraction levels.

The use of multiple abstraction layers motivates our use of multiple theorem provers.
The KeYmaera X theorem prover for dL provides powerful automation for proofs of hy-
brid systems, yet dL is domain-specific and thus has no hope of reasoning about other
abstraction layers such as discrete arithmetic machine code. Formalizations of proof steps
which relate these different layers to one another rely on the ability to formalize languages
and their semantics, a task which is best-suited to general-purpose theorem provers. Con-
versely, general-purpose theorem provers do not provide the extensive out-of-the-box hybrid
systems automation that KeYmaera X does, despite their ability to formalize hybrid sys-
tems in depth, in principle. Because the domain-specific theorem prover KeYmaera X has
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Figure 3.2: End-to-end proof chain for end-to-end result.

strengths and weaknesses that complement general-purpose theorem provers, our choice to
employ multiple provers is a natural one.

The three specific provers we used are KeYmaera X, Isabelle/HOL, and HOL4. Our
choice to use both Isabelle/HOL and HOL4 is motivated by an accident of history: despite
both provers sharing closely-related foundations in higher-order logic, Isabelle/HOL has a
more comprehensive treatment of real analysis whereas HOL4 has access to unique work
on compiler verification. We use all three provers to benefit from each prover’s strengths:

* The input of VeriPhy is a dL model which has been verified in KeYmaera X.
* Isabelle/HOL is used to bridge the semantic gap between real numbers and intervals.

* HOL4 and its verified CakeML compiler are used to implement the interval program
in ML and compile it to machine code.

The downsides of this approach are an increased trusted base and increased conceptual
complexity. Another potential downside of using multiple provers is the need for expertise
in the use of each prover, but that was not a major obstacle in our case because each author
of VeriPhy contributed expertise with different provers.

In our biased opinion, the advantages of the approach outweighed the negatives. KeY-
maera X features extensive domain-specific automation for hybrid systems which does not
exist at present in the other provers. Because the translation between reals and inter-
vals must reason about the semantics of dL, it must use a general-purpose prover which
can define the semantics of logics. Among existing provers, Isabelle/HOL was a natural
choice because a formalization of dL semantics is already available (Chapter 2) and because
Isabelle/HOL has strong support for real analysis and sufficient support for discrete arith-
metic. CakeML was chosen as a backend not only because of the VeriPhy team’s expertise,
but because it has good support for foreign functions (Ho et al., 2018) and its correctness
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proofs (Tan et al., 2016) go all the way to machine code. Once the decision had been made
to use CakeML, the use of HOL4 was a given. If we wish to verify sensing and actuation
in the future, we could do so by proving in HOL4 that the hardware drivers implement
their specifications.

Different combinations of provers could have been used, with different tradeoffs. If
KeYmaera X were not used, we expect that the effort required for hybrid systems proofs
would increase. If only HOL4 or only Isabelle/HOL were used, we expect that significant
effort would need to be expended on the formalization of results from real analysis or
verified compilation, respectively.

To validate our claim that VeriPhy enables end-to-end verification for dL, we have
applied VeriPhy to a hardware implementation of a 1D robot model (Section3.6) and a
software implementation of a 2D robot model (Section 3.7.3). In this chapter, we: i) present
the design and implementation of the VeriPhy pipeline 7i) evaluate the pipeline on hardware
and in software with several models #i7) discuss limitations of the VeriPhy implementation
from the perspective of the Logician, Logic-User, and Engineer, and how the remaining
thesis chapters address the limitations.

Contributions. This chapter is based on joint works with Yong Kiam Tan, Stefan
Mitsch, Andrew Sogokon, Magnus O. Myreen, and André Platzer (Bohrer et al., 2018;
Bohrer, Tan, Mitsch, Sogokon, & Platzer, 2019).

3.1 Related Work

We discuss related works, specifically works on verified compilation, verification of machine
arithmetic, and simulation.

Verified Compilation. We use the CakeML (Tan et al., 2016) verified ML compiler
and its associated verification tools (Myreen & Owens, 2012; Guéneau, Myreen, Kumar,
& Norrish, 2017) based on HOL4, which is part of our trusted computing base. Re-
cent work (Hupel & Nipkow, 2018) provides verified extraction of CakeML code from Is-
abelle/HOL proofs as opposed to HOL4, but to our knowledge (Hupel, 2019a), its present
iteration does not support all features used in our formalization of dL, such as locales,
inductively defined predicates, and the built-in set type. Another approach (Immler et al.,
2019) allows running a verified HOL4 core inside of Isabelle/HOL, but to the best of our
knowledge it did not support all features used by CakeML as of the time this work was
performed. Thus, neither effort would allow us to fully remove HOL4 from our trusted
base at present, but potentially could in the future.

CakeML is higher-level than other languages that have verified compilers, such as
CompCert (Leroy, 2006) for C (for floating-point support, see (Boldo, Jourdan, Leroy, &
Melquiond, 2013)) or Jinja (Klein & Nipkow, 2006) for a Java-like language. The smaller
gap between CakeML source and Isabelle/HOL definitions makes the verification of sand-
box implementation in CakeML against hybrid systems semantics painless. We chose
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CakeML compilation over, e.g., translation validation with unverified compilers (Sewell,
Myreen, & Klein, 2013) since translation validation can be brittle.

Lustre (Halbwachs, Lagnier, & Ratel, 1992) is a reactive, synchronous language in-
tended for use in safety-critical CPS. It has static analyzers based on abstract interpre-
tation such as NBac (Jeannet, 2003), which eliminate many bugs in practice, but are
fundamentally conservative and also consider only the control code, not the physics in the
plant. Lustre has a verified compiler, Vélus (Bourke et al., 2017), but verified compilation
alone does not negate the fact that CPS verification must account for physics. One could
choose Lustre as an intermediate compilation target instead of CakeML, but the functional
style of CakeML is a much closer match to Isabelle/HOL definitions, while Lustre’s reactive
model is an entirely different paradigm from both HOL and hybrid programs.

Stateflow /Simulink is a prominent tool for modeling and simulation of hybrid systems.
Several approaches generate executable code from Stateflow /Simulink models (Toom et al.,
2008; Zou, Zhan, Wang, Frinzle, & Qin, 2013; Yan, Jiao, Wang, Wang, & Zhan, 2020; Tri-
pakis, Sofronis, Caspi, & Curic, 2005), but none of them provide foundational end-to-end
guarantees. Of the above approaches, one (Tripakis et al., 2005) is restricted to discrete
models. An approach based on Hybrid CSP (Zou et al., 2013; Yan et al., 2020) allows
Stateflow /Simulink models to be imported into Hybrid Hoare Prover and verified, after
which Hybrid Hoare Prover can export SystemC code. A strength that their approach
shares with VeriPhy is the ability to deductively prove safety properties of the system, but
their SystemC code generator and the SystemC compiler are not proved correct. In prin-
ciple, VeriPhy could be extended to support Stateflow/Simulink models as well by using
an existing (trusted) tool which translates Stateflow/Simulink models (Liebrenz, Herber,
& Glesner, 2018) to dL, but this approach would only work if the resulting hybrid program
models match the format expected by VeriPhy, which is unlikely. Gene-Auto (Toom et al.,
2008) does not consider safety proofs for Stateflow /Simulink models; its strengths include
its emphasis on additionally supporting Stateflow/Simulink’s open-source competitor Sci-
cos and its emphasis on generating code within a simple subset of C which would be easy
to reason about.

The Facade (Pit-Claudel, Wang, Delaware, Gross, & Chlipala, 2020) intermediate lan-
guage was developed to provide an extensible approach in Coq for verified compilation
from nondeterministic functional programs to machine-code programs which can interact
with external code using foreign-function interfaces (FFIs). Because hybrid programs are
nondeterministic and because external code is crucial in the implementation of CPSs, Fa-
cade would be a natural choice for the development of VeriPhy-like tools based on Coq.
On its own, however, Facade would not address the challenges of proving a source (hybrid
system) model correct, nor the challenge of soundly sandboxing a CPS implementation
against a model. Facade’s approach is based on generating proof scripts for correctness
of the compilation of each individual program. The authors note that robustness of proof
script generation was a challenge. Their conclusion is consistent with our own conclusion
that the design of classical VeriPhy, as presented in this chapter, makes the robustness of
code synthesis and proof generation a challenge.
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Machine Arithmetic Verification. Machine arithmetic correctness verification is a
major VeriPhy component. We verify arithmetic soundness foundationally. This is an ac-
tive research area with libraries available in HOL Light (Harrison, 2006a), in Coq (Boldo
& Melquiond, 2011; Daumas, Rideau, & Théry, 2001; Boldo, Filliatre, & Melquiond, n.d.;
Melquiond, 2012), and in Isabelle/HOL (L. Yu, 2013), for examples. The main results we
need are results saying that basic arithmetic operations round in the direction specified
by the rounding mode. While it is possible others have proved such results, only PFF
in Coq (Daumas et al., 2001) has documented such results explicitly. For this reason,
we proved rounding results ourselves in Isabelle/HOL using the seL4 (Klein et al., 2010)
machine word library. We chose Isabelle/HOL and HOL4 over Coq because their com-
bination of cutting-edge analysis libraries (Immler & Traut, 2016), mature formalization
of dL (Bohrer et al., 2017), proof-producing code extraction (Myreen & Owens, 2012),
and classical foundations positions them well for our end-to-end pipeline. Standalone pro-
grams (Beyer & Huisman, 2018) have also been verified in HOL and Coq (Becker et al.,
2018) which certify error-bounds on the outputs of arithmetic expressions. Static analysis
programs have been written (Martinez, Majumdar, Saha, & Tabuada, 2010; Majumdar,
Saha, & Zamani, 2012; Bouissou, Goubault, Putot, Tekkal, & Védrine, 2009) to detect
arithmetic errors in the context of hybrid systems, but none have foundational soundness
proofs. Other limitations of existing analyses include supporting linear ODEs (Majumdar
et al., 2012), (non-linear) switched systems only (Bouissou et al., 2009), or stability prop-
erties only (Martinez et al., 2010). While stability is a fundamental property of a control
system, safety is certainly fundamental as well.

Simulation. Simulation is an essential part of evaluating models and designs for any
robotic system. Multiple simulation platforms are available, of which AirSim (Shah, Dey,
Lovett, & Kapoor, 2018) is a recent platform for UAVs and autonomous cars. Other
simulators would likely have worked as well, but we chose AirSim because it is configured
with high-fidelity physical and visual models out of the box, which saves us from developing
our own simulation model and assessing its accuracy. A pre-existing physical model is
especially valuable because we wish to assess how well our own model conforms to other
accepted, reasonably realistic models. If we had developed our own simulation, our results
would risk an “overfitting” error wherein our safety monitors succeeded only because our
simulation and verification models were similar. By using an independently-developed
simulation, we reach more meaningful empirical results.

Despite the risk of over-fitting simulations to models, automated simulation of hybrid
systems remains a topic of interest because it would provide lightweight validation with
minimal time investment. A crucial stepping stone for verified simulation of hybrid systems
is the verified integration of ODEs, which has been done in Isabelle/HOL (Immler, 2015).

3.2 1D Robot Example

We introduce an abstract dL model of a ground robot in a 1D corridor. We use this as a
running example to describe the VeriPhy pipeline, culminating in a verified implementation
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running on commodity robot hardware. A waypoint-following model for curved 2D driving
is then considered in Section 3.7 as a larger-scale case study.

The robot can drive freely as long as it avoids hitting an obstacle. We model the
robot with instantaneous control of velocity v. This abstraction is reasonable as shown in
Section 3.6 because our robot drives slowly relative to its braking power. The controller is
time-triggered, i.e., the system delay between controller runs is bounded by some T.

Formula (3.1) expresses model safety as a dL formula P — [{ctrl; plant}"]Q. It says
all states satisfying assumptions P lead to safe states (@) no matter how many times the
system loop {ctrl; plant}” repeats. The program ctrl is a discrete time-triggered controller,
while the program plant describes physical environment assumptions as an ODE.

P Q
Ziz O/\VE ONT > 0— [{ctrl;plant}*]@ (3.1)
ctrl = {drive Ustop}; ¢t:=0 (3.2)
drive =7d > TV; v:i=%; 70<0v <V (3.3)
stop=v:=0 (3.4)
plant={d' = —v, ' =1&t < T} (3.5)

Initially, the robot is driving at a safe distance d > 0 from the obstacle. We also
know the system delay T > 0 and maximum driving speed V' > 0. Our safety condition
d > 0 says the robot does not drive through the obstacle. Its controller (3.2) can either
drive or stop (drive U stop), followed by setting a timer ¢ := 0 which, by (3.5), wakes the
robot controller again after at most time T. When the test in (3.3) passes, it is safe to
keep driving for T time, and the robot can choose any velocity v := % up to at most the
maximum velocity (70 < v < V). In each case, the controller is allowed to stop the robot
(3.4) by setting velocity v to 0. Finally, the plant (3.5) changes the distance according to
the chosen velocity v via the differential equation d’ = —v. Time advances at the rate
t' = 1, for any duration ¢ < T. The program ctrl; plant can then repeat and the controller
can make its next decision. The dL proof of formula (3.1) is elaborated next.

Proving Safety. The VeriPhy pipeline starts with a safety proof in dL of the partial
correctness assertion

P — [{ctrl; plant}*]Q (3.6)

in KeYmaera X (Fulton et al., 2015).

The proof of formula (3.6) is input as a proof script for dL in the Bellerophon language
(Fulton et al., 2017). Bellerophon scripts combine high-level automated search procedures
from a standard library with manual uses of dL axioms (Platzer, 2008a, 2012c, 2017a).
Typical scripts focus on key system insights, such as invariants for loops and differential
equations, and manually assisting automation with challenging sub-problems, like prov-
ing statements about real arithmetic. For simpler models like {ctrl; plant}”, the proof is
typically automatic once invariants are provided (Platzer, 2008a; Platzer & Tan, 2020).
Interactive proofs from the web-based Ul can also be exported to the Bellerophon (Mitsch
& Platzer, 2016a) proof script language, then passed to VeriPhy. The VeriPhy pipeline
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begins (leftmost column of Fig.3.1) by checking the Bellerophon script to establish that
the source model has been verified:

Definition 3.1 (Verified input). The hybrid program « = {ctrl; plant}" for time-triggered
ctrl is verified (with invariant J, precondition P, and postcondition @) if a dL formula
P — [a]@ has been proven valid via a loop invariant J, i.e., P — J, J — Q and J — [a]J]
have been proven valid.

3.3 ModelPlex Sandbox Synthesis

To enable abstraction in controller models, dL provides features which make it ill-suited
for direct execution, such as nondeterminism. Nondeterministic controller models are a
natural fit, however, for sandboxing the results of an external unverified controller by mon-
itoring it for compliance with the dL model and executing a safe deterministic fallback upon
compliance violation. The second step of the VeriPhy pipeline (second column of Fig.3.1)
synthesizes from the system safety proof and loop invariant J such a sandboz controller en-
forcing runtime safety by sandboxing untrusted controllers. Correct-by-construction mon-
itors detect controller bugs and environment model violations (Mitsch & Platzer, 2016b,
Thms. 142), invoking verified fallback control or signaling an error, respectively.

The shape of the synthesized sandbox controller is shown in Fig. 3.3. The fixed sandbox
controller shape reflects the fact that VeriPhy expects a fixed input model format: the input
must be a single loop containing a controller and a plant, where the controller is optionally
a choice (U) containing several control branches. For clarity, we denote by & the vector
of all variables in the current program state before executing ctrl; plant, and denote by
T the tentative next state. In all, the sandbox controller performs the following tasks:
It ) nondeterministically assigns (& := %) arbitrary values to configuration parameters
and initial system state from external sensors in (3.7), checking that they satisfy the
precondition P; i) checks that the untrusted controller decision Zt (3.8) satisfies the
monitor formula ctrlMon(Z, Z") in (3.9); i) else enforces a safe fallback action (3.10);
iv) actuates the decision ¥t by assigning it to state # (3.11); v) models sensing with
nondeterministic assignments '+ := x and monitors whether the sensor values comply with
the environment in (3.13), then stores them for the next iteration with #:= 7" (3.14).

Lines (3.9)—(3.10) correspond to a nondeterministic if-then-else statement where the
else branch in (3.10) is always allowed. This flexibility becomes important in Section 3.4
when machine arithmetic introduces uncertainty in the test of (3.9).

We first discuss the key ingredients of sandboxing: the control monitor ctrlMon (3.9)
for detecting errors in untrusted controllers and the plant monitor plantMon (3.13) for
detecting unexpected environment behavior. We then discuss their incorporation into the
verified sandbox controller (Fig. 3.3) with safe fallback control (3.10).

3.3.1 Controller Monitor Formula

We use nondeterminism in dL controller models to abstract away control algorithm details
that are not safety-relevant (e.g., optimizations to save power or ensure smooth travel).
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sandbox =
T:=x; 1P; read initial state (3.7)

{

= extCtrI(:i’); run external control (3.8)

{ ?ctriMon(Z, f—*_) check if safe action (3.9)
Uzt = faIIback(aZ*’)}; or fallback control (3.10)
=" actuate action (3.11)
Ti=x; sense next state (3.12)
?plantMon (7, #1); check safe environment (3.13)
7= store sensors (3.14)
+ repeat (3.15)

Figure 3.3: Sandbox controller overview.

Any such details are supplied by the untrusted controller, which can be implemented freely,
even in languages that were not designed for verification. The untrusted controller is only
known to be safe, however, if it behaves consistently with the verified controller model.
ModelPlex (Mitsch & Platzer, 2016b) synthesizes a real arithmetic formula ctrlMon(Z, #™)
over the model’s state variables to check control decisions for compliance with the model.
The condition ctrlMon(Z, #1) is efficiently checked at runtime for concrete values Z of a
start state (e.g., distance sensed before the controller runs) and ™ of an end state (e.g.,
new speed, chosen by the controller).

We give a brief overview of monitor synthesis here, and refer the reader to the liter-
ature (Mitsch & Platzer, 2016b) for full details on how monitor formulas can be auto-
matically synthesized from an input model and verified. ModelPlex composes the safety
theorem P — [{ctrl; plant}"]Q with offline transformation proofs (Mitsch & Platzer, 2016b,
Lem 4-8), reducing system safety to online monitor compliance. ModelPlex monitors the
precondition P when the system starts in state wy (check wy = P in equation (3.7) of the
sandbox) and the controller monitor condition ctrlMon(Z, 1) at every observed transition
(w,v) (check ctrlMon(Z,Z") in equation (3.9)). As a result, we get online safety (v = J
and thus v |= @) up through the current state v by (Mitsch & Platzer, 2016b, Thm 2).
Definition 3.2 (Compliance). The transition (w, v) complies with formula ctrlMon(Z, 1),
written (w,v) &= ctriMon(Z, Z1), iff ctrlMon(Z, %) holds using the values of state w for
plain variables x and the values of v for variables % in #*. Formally, let pu be the
unique state such that p(x) = w(z) for all w(x) and p(z™) = v(x) for all v(z). Then
(w,v) = ctriMon(Z, Z7) iff pu |= ctriMon(Z, Z1).

The equations in Fig.3.4 illustrate the offline transformation proof? for synthesizing
controller monitor conditions ctrlMon to check controller implementation correctness. The

2The offline transformation proofs are originally from ModelPlex (Mitsch & Platzer, 2016b).
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proof starts at the semantic statement (w,v) € [{ctrl; plant}"] and obtains an arithmetic
monitor condition ctrlMon(Z, #%). Let Dom stand for the evolution domain constraint of
the plant, then condition ctrlMon(Z, Z") also checks that Dom holds so that the controller
does not itself cause a plant violation upon actuating the output 7.

(w,v) € [{ctrl; plant}’] Semantical condition
0 by (Mitsch & Platzer, 2016b, Lem 4)
(w,v) = {ctrl;plant}*)(Z = #7)  Logical criterion
10 by (Mitsch & Platzer, 2016b, Lem 5)
(w,v) E {(ctrl; plant)(Z = 71) thus v E Q
1 by (Mitsch & Platzer, 2016b, Lem 6)
(w,v) | (ctrl)(Z = Z+ A Dom) by ModelPlex-generated dL proof, Lemma 3.1
fr
(w,v) [ ctriMon(Z, 71) by online monitoring

Figure 3.4: ModelPlex controller monitor synthesis.

Monitor Correctness Proof. ModelPlex’s synthesized controller monitor conditions
are correct by construction (Mitsch & Platzer, 2016b) from the process in Fig. 3.4, which
guarantees Lemma 3.1. The controller monitor synthesis process of Fiig. 3.4 starts by obtain-
ing logical criterion ({ctrl; plant}")(# = Z") from the proved property P — [{ctrl; plant}"]Q.
We denote by ¥ = T component-wise equality between vectors Z and 7.

Lemma 3.1 (Controller monitor correctness). The controller monitor ctrlMon(Z, Z1) re-
lating control input T to control output T+ guarantees that control output T+ is permitted by
the verified control model ctrl on input & and respects the plant evolution domain constraint
Dom, that is:

F ctriMon(%, Z1) — (ctrl)(Z = & A Dom)

Lemma 3.1 is a crucial lemma in the sandbox safety proof.

Example. In our running example, the monitor checks the bound variables d, v, and ¢:
(ctrl)(Z = " A Dom) =
<{?d >TV; vi=x%; 70<o<V U v:=0}
t:= 0>(d+:d AvT=v AtT=t At <T)
The offline monitor transformation proofs are implemented as automation in KeY-
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maera X, outside the trusted core. On the above formula, this monitor formula is output:

ctrIMonE((dZTV/\OSU+§V) V U+=O)
ANOSTAV>O0AtT =0Adt =d

The monitor checks both possible paths through the controller: the first disjunct cap-
tures the test conditions for driving with a new velocity v (nondeterministic assignment
v :=x followed by test 70 < v < V'), whereas the second disjunct captures the emergency
stop (v:=0), so v™ = 0. The conditions further state that the constants are chosen accord-
ing to the model assumptions (0 < T AV > 0), that both paths reset their clocks t* = 0
to correctly measure the duration until the next controller run, and that neither controller
path alters the distance measurement, so d* = d.

3.3.2 Plant Monitor Formula

ModelPlex also synthesizes a formula plantMon(Z, Z1) which holds only if the values Z and
71 sensed in successive states comply with the plant model. For example, the plant monitor
for our ground robot checks that sensed motion is consistent with the maximum speed V.
Plant monitoring is a key reason why synthesis must exploit proof insights. A real
implementation always has some uncertainty in timing, sensing, and actuation, so a monitor
would be doomed to fail (i.e., raise an alarm) if it required sensed values to exactly match
the solution of a differential equation. Proofs save us from over-restrictive monitors because
proofs need not employ the exact trajectory, but rather often employ invariant arguments
which specify a broader safety region. In our example, safety eschews the exact trajectory
dt = d — vt in favor of the looser invariant d* > o(T — ¢*). Tt suffices for safety to
construct plantMon from the plant model’s evolution domain Dom (e.g., t < T) and the
ODE invariants in the safety proof of Step 1 (e.g., d > v(T —t)). In the sandbox controller
from Fig. 3.3, the condition plantMon(Z, Z") checks that the observed evolution from the
sensed values Z of the previous iteration to the new values £+ is within this relaxed safety
region. If a plant monitor fails, a violation raises an alarm, upon which best-effort fallback
control is typically done. Unlike in the ctrl monitor case, however, fallback controller safety
cannot be guaranteed when all of the physical assumptions are violated.
Lemma 3.2 (Plant monitor correctness). Let {ctrl; plant}” be verified with invariant J,
and let ctrlMon(Z, %) be a correct controller monitor according to Lemma 3.1. Then, loop
invariant J is preserved when the plant monitor plantMon (¥, 1) is satisfied.

= ctriMon(Z, 1) — [?plantMon(Z, )] J

To conclude the plant monitor formula discussion, we review what the plant monitor
does and does not check. The plant monitor checks whether observed physical behavior at
runtime complies with the model. Monitoring compliance is crucial to our goal of rigorously
transferring safety guarantees from a verified model to an implementation.

If our goals had been different, one could also imagine other conditions whose moni-
toring could be of practical use in tasks such as debugging sensor code. Sanity conditions
such as nonnegativity of distance (d™ > 0) and bounded change in distance (|d — d*| < §
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for some bound ¢) might help in practice to catch bugs in sensor drivers, for example.
Because dL proofs about ODEs often happen to prove basic sanity conditions as lemmas,
those conditions may often happen to appear as components of a plant monitor. Thus,
plant monitors may incidentally detect sensor bugs when those bugs result in sensor values
that could not possibly fit the model. In a similar spirit, plant monitors would alert us
to the case where actuator disturbances are so great as to cause sensed data to diverge
from the model (Section 3.6). Regardless, the core purpose of the plant monitor is to assess
compliance between the implementation and the model.

3.3.3 Fallback Control

Unsafe control choices are detected by the controller monitor and replaced with provably
safe fallback control choices. Any controller that satisfies the controller monitor can be
used for safe fallback according to Lemma3.3. Concretely, we take the verified fallback
from the controller ctrl, e.g., v :=0;t:=0 for our ground robot in this example. In general,
VeriPhy allows the fallback controller to be specified explicitly as an input to the pipeline.
Lemma 3.3 (Fallback correctness). Let program {ctrl, plant}” be verified with loop invari-
ant J and let ctriMon(Z, Z%) be a controller monitor per Lemma 3.1. A fallback controller
is correct if ctriMon(Z, 1) holds at the end whenever J holds initially.

F J — [#1 :=fallback(Z)]ctrIMon(Z, 1)

3.3.4 Provably Safe Sandboxing

Theorem 3.4 says safety results transfer: from the theorem P — [{ctrl; plant}*]Q for pro-
gram {ctrl; plant}”, we obtain safety of the synthesized sandbox with the same postcondition
(). Theorem 3.4 is proven anew for each model using proof automation implemented in
KeYmaera X. The proof reuses invariants which are mined from the safety proof of the
input model by executing that proof. In the best case, this approach allows sandbox safety
proofs for systems where a fully automated proof would be difficult.

However, classical VeriPhy also reveals one of its fundamental limitations in the process
of exploiting safety proofs of input models. In practice, classical VeriPhy often fails with
cryptic error messages when input models fall outside rigid fixed formats or when the
shape of the input model safety proof differs from the shape of the input model. Two
root problems underlie this limitation. Firstly, the modeling and proof language were not
designed to ensure, from first principles, that code can be synthesized from all provable
systems. Secondly, models and proofs are separate artifacts, so it is not immediately
obvious which proof steps apply to which model statements when consuming a model and
proof in a tool like classical VeriPhy. These root problems are addressed in Part Il and
Part I1I respectively by ensuring proofs correspond to code and by developing an integrated
language for models and proofs which serves as the basis for a reimplementation of VeriPhy.

Limitations aside, the transfer of formal safety guarantees to implementation-level using
sandboxes is a crucial contribution of classical VeriPhy.
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Theorem 3.4 (Sandbox safety). Let program {ctrl; plant}”™ be verified (Def. 3.1) with some
precondition P and postcondition (). Assume a correct controller monitor, correct plant
monitor, and correct fallback. Then all runs of the sandbox program (from Fig. 3.3) starting
in P (from Def. 3.1) are safe (Q):

F P — [sandbox]Q

Moreover, sandbox is wverified with the same invariant precondition, postcondition, and
invariant as {ctrl; plant}”.

Proof. By dL proof from Lemma3.1, Lemma 3.2, and Lemma3.3. The tactic for the dL
proof is outlined in Section 3.8.3. O]

Running Example. The provable dL formula in Fig. 3.5 illustrates the controller and
plant monitor conditions of our running example embedded into their sandbox.

see (3.1):d>0ANV >0AT >0
I1;I—>[V::>x<;'|'::>x<;d::>|<;t::>|<; /] T:=x%

2>0AV >0AT > 0: /] 7P
{ thi=x v =% d" =4, /] Tt = extCtrl
{ ?ctriMon(d,t,v,d",t", v*}
Utt:=0; vt:=0); /] @+ :=fallback
ti=t"; vi=0" /] T:=x" (actuate)
dti=x*; t7:=x; /] T i=x (sense)
2(0<t*<T Ad*>v(T —t)); // ?plantMon(Z, Z7)
d:=d"; t:=t" /] T:=a" (store)
e
L

see (3.1): d>0
Figure 3.5: Sandbox of a velocity-controlled ground robot.

Truth of the monitor formula implies runtime safety of the CPS, but the monitor
formulas and sandboxes are hard to execute until we concretely implement the arithmetic
operations and nondeterministic approximations contained therein.

3.4 Interval Word Arithmetic Translation

Having shown safety of the sandbox controller in dL, we turn our attention toward correct
compilation, the first step of which is to formally justify implementing real numbers with
interval arithmetic over machine words. We formalize both real arithmetic and interval
arithmetic semantics for dL in an extension of the soundness formalization from Section 2.3.
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We show an arithmetic soundness theorem: any formula which holds in the interval se-
mantics holds in the real-number semantics. The opposite direction does not hold because
interval arithmetic is more conservative, meaning that many valid formulas of dL (e.g.
x <0V x> 0) are not valid over the interval semantics.

The formalization presented here is done in Isabelle/HOL? because semantic arguments
about dL are outside of KeYmaera X’s purview. Because we wish to soundly combine
results from multiple theorem provers, it is important that the provers are trustworthy and
that shared definitions have the same meaning in each prover. For this reason, we remove
the KeYmaera X prover core from the trusted base by using the verified proofchecker
implemented in Section2.8. See Section 2.8 for details and for the process of exporting
proof terms from KeYmaera X for cross-checking. The checker supports all sandbox safety
proofs in this chapter, on the scale of ~10° proof steps.

We have soundly transitioned from proofs of system safety in KeYmaera X to the truth
of system safety according to the semantics of dL in Isabelle/HOL. The standard semantics
of dL feature arithmetic on real numbers, which are crucial for physics but ill-suited to
efficient execution. Next, we soundly approximate the real semantics with a computable
32-bit integer interval arithmetic semantics, enabling efficient sandbox execution. Here, we
present our translation to interval arithmetic and prove it sound in Isabelle/HOL.

The work presented here only formalizes interval arithmetic for a fragment of dL: non-
deterministic assignment, ODEs, loops, division, modalities, and quantifiers are omitted.
Modalities, quantifiers, and ODEs are omitted because we expect they have been elimi-
nated before interval arithmetic is applied. Division is omitted because interval bounds
for division are often so conservative that rewriting models to use multiplication (without
changing their meaning) often results in tighter bounds. Loops and nondeterministic as-
signment are omitted for a more subtle reason. In the final compilation step, the CakeML
sandbox program (Section 3.5) uses hard-coded looping and nondeterministic assignment
which are handled as a special case in its correctness proof, rather than employing the
hybrid program connectives for loops and nondeterministic assignments.

The major design choice for the present stage of the VeriPhy pipeline is arithmetic
representation. We wish to keep compilation simple, support a wide variety of hardware,
and keep the arithmetic soundness proof simple. We chose fixed-precision integer (interval)
arithmetic because it is widely used in embedded software for its predictability and is
universally supported by hardware and compilers. Fixed-precision integer arithmetic is
conservative because of the limited precision available. Our evaluations show that our
limited precision is sufficient in the 1D example (Section 3.6) and can be made sufficient
in the 2D example (Section3.7) through careful manual choice of physical units. One
lesson learned (Section 3.8) is that fixed-precision arithmetic becomes a more significant
limitation as model complexity increases.

3The Isabelle/HOL formalization was ultimately ported to HOL4 in order to streamline the correctness
argument. The Isabelle/HOL version is presented here because the HOL4 formalization is a port of the
author’s work in Isabelle/HOL.
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Semantics. The transition to interval arithmetic does not require transforming the pro-
gram source; we merely assign a new semantics to the existing constructs of dL. Helper
functions for the semantics are listed in Fig. 3.6, the term semantics are listed in Fig. 3.7,
formulas semantics are in Fig. 3.8, and program semantics are in Fig.3.9. We write wy, vy
for interval states assigning to each variable x an interval [¢, u] of 32-bit machine words for
lower and upper bounds on the (real number) value of x, respectively. Machine words are
interpreted as signed integers in standard two’s-complement format, excepting sentinel val-
ues for negative (co;,) and positive (oo} ) infinity. Truth is written T, falsehood is written
L, and uncertainty is written U.

We write wr[(f)] : [R,R] for the value of term f in the interval state wy, which is an
interval in the extended reals where any finite endpoints are closed endpoints. Likewise, we
write (wy,vr) € [(@) when interval state w; can reach v; upon running hybrid program o.
Because interval arithmetic is conservative, the resulting formula semantics is three-valued:
we write wr[P)] = T when P is definitely true in interval state wy, L when it is definitely
false, or U when it is unknown. The author’s free-logic treatment of dL with definite
description (Bohrer, Fernandez, & Platzer, 2019) is related to our interval semantics in the
sense that both are three-valued. In the former, the third truth value is used to capture
formulas containing terms that are not defined in every (e.g., real-valued) state, while
we, the latter, use the third truth value to represent formulas whose values are unknown
because some terms are under-defined, i.e., the value of the term is an interval which is
too broad to ensure a definite truth value for a given formula.

trunc(w) = max(oo,,, min(oo,, w))
(—o)wy = if (w; = oco)) then oo/ else if (w; = co) then oo, else — w,

wy+wy = if max(wy,wy) € {o0, 0o, } then max(w;, wsy) else trunc(w; + ws)
Witws = if min(wy, wy) € {00}, 0o, } then min(w;,ws) else trunc(w; + ws)
Wy *y we = if (w; =0V wy = 0) then 0
else if isoco™,(wy, ws) then oo
else if isoo™ . (wy, wy) then oo,
else trunc(w; * ws)
(01, uq % [l ua) = ming (kg (01, o), ke (Ut €2), (01, Us), e (U1, us))

[fl,uﬂ%w[fz,uﬂ = maxw(*w(€1>€2)a*w(u1a€2)a*w(glau2)>*w(u1au2))

Figure 3.6: Interval arithmetic for executable dL, helper functions.

In Fig. 3.6, operation trunc(w) returns the argument w if it is in range, else positive
or negative infinity when w is out of range. We implement bounds checking by sign-
extending to 64-bit words, where our operations on 32-bit values are guaranteed not to
overflow, and then checking the result. This is done, e.g., in +,, and +,, (casts between
32- and 64-bit words are omitted for brevity). Rounding modes differ in handling of infinite
inputs, e.g., ooy, + 0o, is indeterminate, bounded below only by oo, and bounded above
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only by oof. Arithmetic operations augmented with overflow checks are written with a
subscript ., such as —,. The helper functions +,, and +, apply addition with upward
and downward rounding, respectively. Likewise, %, and %, perform multiplication with
upward and downward rounding, but they accept two intervals as arguments rather than
two words because both the upper and lower bounds of multiplication depend on the upper
and lower bounds of each operand as inputs. The upper and lower multiplication bounds
are written in terms of %,,, which performs exact multiplication with bounds checking on
both the inputs and outputs. The functions isco™, and isoo™, stand in for the input
bounds checks: isoot,(wy,wy) holds if the product of w; and wsy is positive infinity,
while isoo™,(wy, wy) holds when the product is negative infinity. We do not list their full
definitions because each one consists of a large number of uninformative cases.

In Fig. 3.7, we give the definitions for the fragment of dL programs whose interval
semantics have been formalized in Isabelle/HOL. The value of literal ¢ is the singleton
interval [q, q] and the value of variable x is the interval w;(z). The semantics of each
arithmetic operator is reduced to the helper functions from Fig.3.6. Note that division
is not formalized in the present release, one reason being that the most common uses of
multiplication in dL can be rewritten using multiplication and a second reason being that
the interval bounds for division are often far more conservative than the corresponding
bounds for multiplication.

wilq) = la,q|
wr(z) = wi(zx)
wil(fi + fo)]l = [1Fuwls, uyFous] where wi(fi)] = [6, ui

([€1, ua]% [C2, usl), ([£1, wr )% [l2, us])] where wr[(fi)] = [€i, ui]

[

[

wr[max(fi, f2) [
wrlmin(fi, fo))] = [ming (61, 62), ming(ug,us)] where wil(fi)] = [4i, wil

[—

[

max, (01, ), max, (ur, us)] where wy[ f;)] = [€;, wi]

)
)
)
wrlfi* f2)] =
)
)
wi(=(f)) = [—wu, —wl] where wi[(f)] = [(, u]
wrlabs(f))] = [maxy(l, —pu), max, (u, —¢)] where wil(f)] = [¢, u]

Figure 3.7: Interval arithmetic for executable dL, terms.

The formula semantics are given in Fig. 3.8 on the next page. The semantics for com-
parison formulas say that the comparison formula is true (T) if all pairs of elements from
respective intervals satisfy the comparison, false (L) if no pairs satisfy it, or unknown (U)
if some satisfy it and others do not. For example, the strict inequality = <,,  +, y could
be either true or false in the state v; = {x — [1,2],y — [0, 1]}, so the conservative truth
value is U. In contrast, the truth value of the nonstrict inequality z <,, = +, y is T.
Exact equalities are true (T) only when both intervals are the same singleton interval.
The propositional connective semantics are optimistic in the sense that a formula can be
true or false even when one subformula is unknown. For example, ¢ Ay is L when ¢ is U
and v is 1, because a false formula remains false when conjoined with any other formula.
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(T if W][(fl)] = (&,U,Z) and 51 > U
wilfi>f2)] = ¢ L ifw[(fi)] = (i, u) and uy < 6
\U otherwise
(T lf CL)][(fZ)] = (&,uz) and €1 Z U9
wil(fi2fe) = L fwilfi)] = (b, u) and vy < £,
\U otherwise
T ifwrfi) =wr(fo)] = (l,u) and £ =u
willfi=fo) = §L ifwfi)] = (4, u;) and (€1 > ug or by > uy)
\U otherwise
AT U L V[T U L
TIT U L TIT T 7T o || T U L
uyju U L UufT U U ﬁngJ_UT
1L L L 11T U L

Figure 3.8: Interval arithmetic for executable dL, formulas.

Likewise, ¢ V ¢ is T when ¢ is U and @ is T, because a true formula remains true when
disjoined with any other formula. Semantics for first-order quantifiers are not given be-
cause we wish to present an executable fragment and quantifiers over uncountable sets are
difficult to execute. Instead, we expect that real quantifier elimination (G. E. Collins &
Hong, 1991) has been applied to first-order real arithmetic formulas beforehand. Assuming
that implication is defined as ¢ — ¥ = 1)V ¢, then our interpretation of the propositional
connectives agrees with Kleene’s logic K3 (Kleene, 1938).

(wr,vp) € [(x:=f)] iff v; = wy except vi(x) = wi[(f)
(wr,vr) € [(79) iff wy = vy and wi(@)] =T

(wr,vr) € [@UB)]  iff (wr,vr) € (@] or (wr,vr) € [(B)]
(wr,vr) € [(a; B) iff (wr, 1) € (@) and (ur,vr) € [(B)

Figure 3.9: Interval arithmetic for executable dL, programs.

The program semantics are in Fig.3.9. Tests (7¢) are conservative in the sense that
they only pass when test conditions (¢) are definitely true (T), i.e., they treat unknown (U)
formulas the same as definitely false (L) ones. Tests collapse 3-valued truth into 2-valued
truth because they must: control flow must decided conclusively in order to decide which
statements are executed, unlike the formula semantics, which admit unknown values (U).
The semantics of assignment, choice, and sequential composition are written similarly to
their standard definitions in the real-valued semantics of dL. The most notable change
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regarding these constructs is the use of interval states. For example, in the semantics of
x := f, the value of f is an interval, which is assigned as the value of x in the final state v;.

Relating Real and Interval Semantics. We now formalize our notion of correctness:
the interval semantics is sound with respect to real-number semantics if all word intervals
contain their corresponding real numbers. Formally, we define a notation v € [v/)] meaning
the values of all variables in interval state vy contain their correspondents in real-number
state v. We likewise define the notation r € [(wy, w, ) to mean the real number r is in the

interval [wy, w,]. We first reduce the two-sided bounds to one-sided bounds (w, < r and

Wy, V§ r) before defining the one-sided bounds:

r € [we, w,) i wy Zrandw, > r
w € [wr) iff w(z) € [wi(z)) for all z € V

wr wr
We now give the one-sided safe bounds w < r and w > r meaning word w is a lower or
upper bound for real r, respectively:
wr . wro g /
w <7 iff w=7r"for somer <r

wr

. WwWr
w > riff w= 1" for some ' > r

The decomposition into one-sided bounds will be useful in the Isabelle/HOL proofs because
it allows us to build lemmas about two-sided bounds from simpler lemmas about one-sided
bounds. Inexact one-sided bounds are defined in terms of exact bounds w = r meaning
word w exactly represents real . Here, w2 r is the standard injection of two’s-complement
words into reals:

oot Z o iff r > w2r(co))
oo, = 1 iff r < w2r(ocoy)

w = w2r(w) otherwise

Soundness. We use the above definitions to state and prove soundness theorems that
conservatively relate the interval semantics to the real semantics.

Theorem 3.5 (Soundness for terms). Interval valuations of terms contain their real val-
uations. That is, if w[f] =r and w € [wy) then r € wi[ f).

Proof. In this proof and throughout many proofs in this thesis, we give facts names in
parentheses so that we may refer to them by name later on.

By induction on f. We give the representative case f = f; + fo. In this case, assume
w € [wr)] and w[b 4+ 05] = r for some r € R. Expand the semantics of + to get some r; and
r9 such that r = ry + ry and each w[d;] = r;. By the IHs, we have (Inl) each r; € w/[6;).
Let [¢1,u1] and [f5, us] be the intervals returned by w;[(0) and w;[62)), respectively. Then

(InI) expands to (LI) ¢; g r; and (RI) u; g T
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In order to show r € w;[0; + 62), it suffices by definition of w6y + 62) to show
7 € [l1Fwla, uitus], so by expanding definitions it suffices to show (LR) £;F,la = 1y + 19
and (RR) u1Fpus = 11 + 75

Facts (LR) and (RR) both follow by correctness of rounding modes, the former by
assumptions (LI) and the latter by assumptions (RI). Specifically, correctness of round-
ing means upward-rounding operations preserve upper bounds and downward-rounding
operations preserve lower bounds. Our Isabelle/HOL formalization proves rounding cor-

rectness properties as lemmas because, to our knowledge, they are not provided by existing
Isabelle/HOL arithmetic libraries (L. Yu, 2013).

For example the upper bound lemma for addition says that if w, > r1 and wy > 1o
then w;—+,ws 2 r1 + ry. The proof is by cases, following the structure of the definition
of w1 +,ws. When bound checks detect overflow, they soundly return infinities. When w,

and wy are both finite and bounds checks pass, it suffices to show that the casts are sound,
which they are. O

Theorem 3.6 (Soundness for formulas). If the interval semantics of a formula is true or
false, the real semantics agree.

e Ifw/[([P)=T and w € [wy) then w = P.

e Ifw/[(P) =1 and w € [wy) then w |~ P.

e Ifw/[P) =U we make no claim.

Proof. By induction on the proof of w; € [P), and by Theorem 3.5. We show a represen-
tative case P = (f; < f2). Comparisons f; < f, bridge terms to formulas. For soundness,
we conservatively compare the upper bound of f; with the lower bound of f, and con81der

comparisons of overlapping interval undefined (U). Formally: If w1 > r1 and ws < ro and

wy <, we then r; < ry. The proof is direct, by the definitions of g, 2, =, and <, ]

Theorem 3.7 (Soundness for programs). If (wyr,vr) € [a) and w € [wy)], then there exists
v € [vr) where (w,v) € [a].

Proof. By induction on programs «, using Theorem 3.6. O

Together, these theorems show that all program behaviors accepted by the sandbox

program in interval semantics correspond to behavior in the real semantics, which is safe
by Theorem 3.4:
Corollary 3.8 (Sandbox soundness). Let program {ctrl; plant}” be verified (Def. 3.1) with
some precondition P and postcondition Q. Assume sensing is sound (w € [wy)) and
assume the sandbox controller program has at least one program transition starting from
wr (wr[(P) =T and (wr,vy) € [sandbox) ). Then there is a real state v underlying the final
interval state (v € [vr)) which is safe, i.e., v € [Q].

Proof. By assumption, {ctrl;plant}” is verified with precondition P, postcondition @, and
invariant J. By Theorem 3.4, we have that sandbox is verified with the same formulas,
so the implications (A) P — J, (B) J — [sandbox]J, and (C) J — @ are valid in the
real-valued dL semantics by soundness of dL.
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Sensing soundness means the initial interval state contains the initial real state (w €
(wr)]). By Theorem 3.6 on assumption w;[P)] = T we have w € [P]. By (A) we have (Inv)
w € [J]. By Theorem 3.7 there exists (Contained) a v € [v;)] where (w,v) € [sandbox].
Then by (Inv) and (B) we have v € [J], which together with (Contained) is what we
wanted to prove. Il

Now the sandbox is executable at a high level and still safe. Next, we will soundly
implement the executable interval semantics at the machine level.

3.5 Sandbox Implementation in CakeML

The sandbox program (Fig.3.3) can now be understood with interval semantics, by Corol-
lary 3.8. Intervals help implement the monitoring checks (3.9) and (3.13) using machine
arithmetic. However, the sandbox still contains high-level abstract constructs. Nonde-
terministic assignments model sensing in (3.7) and (3.12) and external control in (3.8).
Control branching (between (3.9) and fallback (3.10)) and looping are nondeterministic.

In this section, we explain how the sandbox is implemented as a CakeML program (Sec-
tion 3.5.1). We resolve the aforementioned sources of nondeterminism, external controller
calls, and actuators, all with CakeML’s support for foreign function interfaces (FFIs). The
resulting program is then compiled down to machine code (ARMv6, x64, etc.) using the
verified CakeML compiler (Tan et al., 2016).

By employing the verified CakeML compiler, we know that the compiled machine code
soundly implements CakeML source programs. It remains to show (Section 3.5.3) that our
CakeML program soundly implements the sandbox. This verification step is made easier
because CakeML is itself a high-level programming language with an accompanying suite
of verification tools (Myreen & Owens, 2012; Guéneau et al., 2017). The CakeML program,
however, senses and actuates in the real world, so its soundness relies on assumptions about
the correctness of sensor and actuator FFIs (Section 3.5.2).

3.5.1 CakeML Sandbox

We first explain how we implement nondeterminism and external interaction. The follow-
ing pseudocode snippet illustrates the sandbox loop implementation. Lines are numbered
on the left with corresponding equation numbers from Fig.3.3. The pseudocode uses .
notation for fields of the state, where fields ending in * model variables of form z™.

fun cmlSandboxBody state =

if not (stop ()) then
state.ctrl® := extCtrl state;
state.ctrl := if intervalSem ctrlMon state = T

then state.ctrl”
else fallback state;
actuate state.ctrl;
state.sensors’ := sense ();
if intervalSem plantMon state = T then
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Runtime.fullGC ();
state.sensors := state.sensors’;
cmlSandboxBody state

else violation "Plant Violation"

The tail-recursive function cmlSandboxBody keeps track of a CakeML representation
of the current state (state). We use field-assignment notation for state, closely following
the assignments in Fig. 3.3. Loop termination is decided by the stop FFI wrapper. The
stop wrapper itself makes an FFI call to external code (££iStop) which decides whether
to stop the loop, e.g., upon user request or battery depletion.

Nondeterministic assignments for external control and actuation are implemented by
extCtrl and sense, which are FFI wrappers around external drivers. From the current
state variable vector #, we single out the sensor variables (state.sensors), actuated
variables (state.ctrl), and constants (state.consts); ' is treated likewise.

The actuate FFI wrapper executes the control decision state.ctrl, taken from
extCtrl when the controller monitor ctr1Mon is satisfied or the fallback otherwise.
Both extCtrl and fallback take state as their argument because the control deci-
sions which they output are allowed to depend on the entire state.

The above nondeterminism came from the environment and was thus resolved externally
with FFIs. The nondeterministic choice between (3.9) and (3.10), in contrast, simply pro-
vides us freedom in controller implementation. We exploit this freedom when the ternary
truth-value of ctrlMon in the interval semantics (intervalSem) is unknown (U): we
are free to use the fallback (3.10) even when ctrlMon is not definitely false (L), so we
conservatively use it in the unknown (U) case as well.

If the plant monitor fails, however, sandboxing can no longer guarantee safety. Here,
the function cmlSandboxBody exits the control loop by calling the violation function
with an error message. The function returns control to user code, which may initiate
(unverified) best-effort recovery measures in the case of plant violations. For time-triggered
controllers, the plant monitor only holds when the system delay is within our specified limit
T. We minimize the risk of a delay violation by garbage-collecting (Runtime.fullGC)
after each cycle, making runtimes predictable. The cost is negligible in practice because
each control cycle does minimal heap allocation.

The sandbox entry point cmlSandbox, elided here, simply invokes cm1 SandboxBody
on the initial state after checking initial conditions P. We have thus reduced implementa-
tion of the sandbox to implementation of the FFIs.

3.5.2 CakeML FFIs

We now specify and implement the FFIs. FFIs bridge CakeML to the external world:
physical sensing/actuation and untrusted control. Thus, the crucial specification step is
to model external behavior in HOL4: We write es:ext for an external state, a record
capturing all external state and effects, current and future. The external state is taken as
the ground truth of the world, which all (e.g. sensing/actuation) FFIs must read or change.
This makes the notion of sensing/actuation correctness precise. The 6 FFIs assumed by
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Table 3.1: External functions and their intended meaning.

External func. Intended Meaning

ffiConst Get the values of system constants
ffiSense Get the current sensor readings
ffiExtCtrl Get the next (untrusted) control decision
ffiActuate Actuate a control decision

ffiStop Check whether to run more control cycles

ffiviolation Exit control loop due to a fatal violation

VeriPhy are summarized in Table 3.1, along with their informal meanings. Of these, we
take ffiSense and ffiStop as our examples.

FFI Model. Each FFI specification consults the external state to determine the ground
truth of the current state and effect of external code. They each return a result r and
a new external state es when invoked safely (i.e. SOME (r,es')) or NONE if calling
conventions were violated. For example, the £fiSense calling convention expects one
word per sensor in the array bytes, then we specify that the values sensed by ffiSense
match the ground truth es.sensor_vals. In ffiSense, NSENSORS is the number of
sensor variables (i.e., elements of state.sensors) and word_to_bytes converts the
sensor values from machine words to a byte array as required by the CakeML FFT interface.

ffiSense bytes (es:ext) =
if LEN bytes = NSENSORS*WORD A
LEN es.sensor_vals = LEN bytes
then SOME (word_to_bytes es.sensor_vals, es)
else NONE

Unlike ffiSense, which must always return the current sensor values, ffiStop has
complete freedom to decide when the loop should stop. We assume that it eventually stops,
but we make no assumptions regarding when exactly it stops. In HOL4, this scenario is
modeled by querying an oracle (es.stop_oracle). The HOL4 oracle feature allows us
to model values that are entirely arbitrary (i.e., unknown to us), except that the oracle
eventually tells us to stop:

ffiStop bytes (es: ext) =
if LEN bytes =1
then SOME (query es.stop_oracle, es)
else NONE

When queried, the oracle returns a bit, with 1 telling the sandbox loop to stop.

Neither ffiSense nor £fiStop modifies the state of the external world, so the
external state es is unchanged. The external state is modified, e.g., when ffiActuate
sends control values to actuators.
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The full specification is ~150 lines of HOL4 and formally captures the assumed behavior
of each FFI from Table 3.1.

FFI Stub Implementation. The end-user must provide external FFI implementa-
tions. Here, we implement ffiSense by filling a VeriPhy-generated C stub with calls
to application-specific drivers. Per the specification, ffiSense populates sensor_vals
with the actual sensor values:

void ffiSense (int32_t *sensor_vals, long nSensors) {
sensor_vals[0] = distanceDriver(); // return d
sensor_vals[1l] = currentTime (); // return t

}

We discuss the assumption that ffiSense complies with its HOL specification. The spec-
ification says that the length of sensor_vals in machine words should be the number
NSENSORS of sensed variables in the system, e.g., 2 in our example. The length require-
ment is a basic and unsurprising well-formedness requirement without which ffiSense
could not return all the sensor values without violating memory safety. The second re-
quirement of the specification is that the sensor values returned by ffiSense must agree
with the ground truth of the world. The second requirement is nontrivial because accurate
sensing is a topic of active research in its own right. However, the requirement is a natural
one at the present layer of abstraction: while proving sensor accuracy would be interesting
future work, it is highly orthogonal to questions of correct FFI integration in CakeML.

CakeML FFI Wrapper. The CakeML sandbox program accesses the FFIs through
CakeML wrapper functions. The wrapper functions use arrays to communicate the values
of variables. A mapping between array indices and variable names is computed automat-
ically by VeriPhy when it generates stub implementations of the wrapper functions in C.
Specifically, VeriPhy’s generated stub code contains comments that indicate which variable
name is associated with each array index.

As an example of an FFI wrapper, the sense function wraps the ffiSense FFI:

fun sense () =

let val sensorArr = Word8Array.array (NSENSORS*WORD) 0
val () = #(ffiSense) sensorArr

in arr_to_list sensorArr end

The sense function first allocates a byte array sensorArr with one word per sensor
value. It then invokes ffiSense using CakeML’s FFI call syntax # (ffiSense). Once
sensorArr contains actual sensor values, sense returns them reformatted as a list.

The specification of £fiSense is helpful for understanding the correctness of sense.
Function sense allocates an array sensorArr of size NSENSORS*WORD to receive sensor
values because that is the size expected by ffiSense according to its specification.

The specification of ffiSense also promises that the final values in sensorArr
contain the ground truth, which is an essential assumption in order to prove that system
safety is satisfied in the physical world (i.e., in the ground truth state) rather than only a
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hypothetical world. An attentive reader will note that because real sensors are imperfect,
it is overoptimistic to assume that a scalar value provided by a sensor exactly matches
ground truth. In principle, the use of interval arithmetic can help relax this assumption to
a more realistic one: we could allow sensors to return any proper interval containing the
ground truth, so that a sensor can soundly and conservatively return a wider interval to
communicate its uncertainty. While the version of VeriPhy in this chapter happens to use
point intervals (equivalently, scalars) for simplicity, Chapter 8 will permit the use of proper
intervals, which could be used by a clever Engineer to soundly capture sensor uncertainty.

The remaining FFIs are modeled and implemented similarly to the representative ex-
amples shown above, with £fiCtrl and ffiActuate also having their own oracles to
model external control and actuation, respectively.

3.5.3 Verifying the CakeML Sandbox

Next, we verify the CakeML program cmlSandbox, assuming that the FFIs behave ac-
cording to our FFI model. The main verification work is carried out with CakeML’s
Characteristic Formulae (CF) framework (Guéneau et al., 2017), which allows reasoning
about the FFIs with assertions a la separation logic. As with interval arithmetic soundness,
our results are generic across all sandbox instances.

We write {w]] for a CakeML state containing an external state es:ext and a runtime
store. We write (fw}], {v}]) € [cmlsandbox}] to mean that executing the CakeML
sandbox (cmlSandbox) from the initial CakeML state {w}] terminates with the CakeML
state {v}], see (Guéneau et al., 2017) for formal details. The states implicitly agree with
cmlSandbox as to which variables are sensors/actuators, etc. For any CakeML state {w]],
the underlying interval state [w) represents each value fw}(x) = w exactly by a point-
interval [w,w|, which implies that sensing is exact. Sensor uncertainty could in principle
be encoded with non-point intervals.

Theorem 3.9 (CakeML sandbox correctness). For any initial CakeML state {w}], assum-
ing that its stop oracle eventually stops the loop (by returning the bit 1 when queried),
then we have a CakeML state {v}] such that ({w}], {v}]) € {emlSandbox}]. In addition,

1. If {w]] violates initial condition P, then cmlSandbox leaves the initial CakeML
state unchanged: {w}] = {v}.

2. Else, either the stop oracle of {v}] stopped the loop and ([w),[v)) € [sandbox]

holds for the corresponding interval states, or

3. There exists {p}] where ([w)], (1)) € [sandbox] and [v}] was obtained by actuating

(3.11) in [{u)] where (after sensing) intervalSem raises a violation of the plant
monitor plantMon (3.13).

We assume that the stop oracle eventually stops the loop because real systems do
not run forever. Under this assumption, soundness is verified by induction on known-
finite execution traces. The violation in case3 of Theorem 3.9 is raised conservatively
when plantMon has an unknown truth value (U), analogously to the control monitor
ctrlMon. The violation is guaranteed to be raised when plantMon first fails, ensuring
early detection of any model deviations.
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Using CakeML’s compiler correctness theorem (Tan et al., 2016), we extend Theo-

rem 3.9 to the machine code, written CML(cmlSandbox), which CakeML outputs from
input cmlSandbox. We write {{CML(cmlSandbox)[} for the output’s (machine code)
semantics, and accordingly {Jw[} for a machine-level program state.
Theorem 3.10 (Sandbox machine code correctness). Under the standard CakeML com-
piler correctness assumptions (Tan et al., 2016), let {jw[} be an initial machine state whose
stop oracle eventually stops the loop. Then we have a machine state {|v[} such that
({wlt. {lv}}) € {cML (cmisandbox) |}, and {wl}, {v]} satisfy one of the three cases listed
in the conclusion of Theorem 3.9. The machine code may also exit with an out-of-memory
error if the CakeML runtime exhausts its heap or stack.

VeriPhy’s end-to-end chain of correctness guarantees is a corollary.

Corollary 3.11 (End-to-end implementation guarantees). In addition to the assumptions
of Theorem 3.10, assume further that Case 2 of the theorem occurs and the CakeML runtime
does not run out of memory. Let {ctrl; plant}*be verified with postcondition Q, external
interaction be sound, then there is a real state v underlying state {{v|} which is safe, i.e.,
some v € [Q].

Proof. Let P be the initial condition, () the postcondition, and J the loop invariant.

By Case 2 of Theorem 3.10 we have some {w[} and {|Jv} s.t. w{ P} and ({wl}, {v[}) €
{CML (cm1Sandbox) [}. By soundness of CakeML compilation (Tan et al., 2016), the
machine states {Jw[} and {|v[} are the image under compilation of some fw}] and [r}] such
that wf{ P} and (fw}],{r}]) € {cmlsandbox}]. By Theorem3.9 we have ([w)],[r)) €
[sandbox)] where [w) and [¥) are the interval states underlying {w}| and {v}]. Because
[w) is the underlying state of [w]], we also have w[ P)]. By Theorem 3.6 and Theorem 3.7
we have w € [w)] and v € [v) such that w € [P] and (w,v) € [sandbox]|. By composing
Corollary 3.8 we have that sandbox is verified with precondition P, postcondition (), and
invariant J, yielding w € [J] by the base case, then v € [J] by the inductive step and
(w,v) € [sandbox], then finally v € [Q] by the postcondition step. To complete the proof,
observe that v € [v) and that [v) is the underlying state of [v}] which is the preimage
of {lv[} under CakeML compilation. By transitivity, v is an underlying real-valued state of
machine code state {v[}, which completes the proof.

When applying the CakeML correctness theorem, that theorem’s assumptions include
sensing soundness per Corollary 3.8, correctness of FFI with respect to the external state
model, the availability of sufficient memory, and any other CakeML compiler correctness
assumptions (Tan et al., 2016). O

3.6 Hardware Evaluation

The pipeline has successfully synthesized sandboxes for our velocity-controlled robot exam-
ple, a train safety controller (Platzer & Quesel, 2009), and acceleration-controlled motion,
both with (Section3.7) and without (Quesel, Mitsch, Loos, Aréchiga, & Platzer, 2016)
waypoint-following. This section evaluates the velocity-controlled robot on hardware and
in simulation, then Section 3.7.3 evaluates a waypoint-following model in simulation. First,
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the velocity-controlled robot is evaluated because it is a simpler, illustrative example that
demonstrates core concepts. Then, the waypoint-following system (Section 3.7.3) demon-
strates that the approach scales to non-trivial models.

The goal of the evaluations is to validate VeriPhy by observing its behavior when used
with software and hardware implementations. A successful evaluation of VeriPhy should
show that it detects control and plant monitor violations when they occur and that it then
correctly applies the sandbox logic. We should certainly also show safe behavior when
plant monitors hold, because we formally proved the safety of that case.

For VeriPhy to truly succeed, however, we should also explore non-safety properties
such as operational suitability. For VeriPhy to be useful in practice, we wish to minimize
any unnecessary violations of the monitors and minimize any unnecessary use of the fall-
back. For example, if the fallback were used so heavily that the vehicle stopped in place
rather than eventually driving to its goal, that would constitute failure of the operational
suitability objective. Thankfully, the vehicle did drive to its goal. One contributing factor
to operational suitability was the fact that our control code and machine arithmetic were
sufficiently fast. While no special effort was required to ensure the speed of control and
arithmetic code, it was important to check their performance because slow code would
have caused plant monitor violations by exceeding the time budget allowed by the model.
Those plant monitor violations would have interfered with operational suitability by in-
creasing the use of the fallback and would have potentially even compromised safety; it
is well-known that slow code could lead to unsafety in a CPS if slow performance forces
the controller to run so rarely or so late that it cannot enforce safety. The operational
suitability aspect of the evaluation is crucial because the Engineer would not be willing
to use programs which cannot reach their operational goals or whose code is so slow that
they become unsafe.

Our evaluations also contribute to a subjective assessment of VeriPhy by serving as
a proof-of-concept that the sandbox controllers generated by VeriPhy can be integrated
with real code and executed. For the velocity-controlled car, it may seem self-evident
that the generated sandbox code could be integrated with an implementation, but issues
could have hypothetically arisen if our model and robot were mismatched. For example, the
motors on our robot expect velocities as inputs, so it was important that we used a velocity-
controller model rather than an acceleration-controlled model, which would have been more
difficult to integrate with a velocity-based motor interface. The importance of integration
increases with system complexity, e.g., in Section3.7.3. In short, integration should not
pose a major programming hurdle if models are designed with implementation in mind,
but one contribution of Section 3.7 will be that it presents a model which is well-suited for
integration with the software implementation of the 2D vehicle. By demonstrating well-
suited models, we show that it is possible in practice for the Logic-User to build and prove
models that can serve as inputs to VeriPhy and result in useful code for the Engineer.

Before presenting the evaluation, we summarize the goals of the evaluation with respect
to each character. Since the Logician is concerned with formal proofs rather than experi-
ments, the experimental evaluation is orthogonal to his own priorities. The experiments do
however show that the Logician has fulfilled his safety promise to the Engineer. The En-
gineer also needed operational suitability and needed code which she could integrate with
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her hardware and software implementations of CPSs, which are respectively demonstrated
by our plant monitor compliance results and by the fact that it was possible to implement
the experiments. In this evaluation, the Logic-User shows she was able to build and prove
models that are suitable for use with VeriPhy. In Section 3.8.3, we will reflect on challenges
that the Engineer and especially the Logic-User encounter while respectively developing
the experiments and verified models, which will motivate the following parts of the thesis.

This section presents a robot evaluation and a simulated evaluation; the robot evalua-
tion is the primary evaluation of the two. We perform the robot evaluation on commodity
robot hardware with several controllers. This common platform minimizes hardware cost
while our multiple controls allow testing the approach’s generality. The controllers are
tested in several scenarios, of which some comply with the model and others do not.
Thus, we can both assess that the expected safe behavior occurred for compliant scenarios
and assess that our monitors detect non-compliant environments. We augment the robot
evaluation with simulations showing how the sandbox controller responds to various envi-
ronments with various untrusted controllers. Simulations are a useful supplement because
they offer a higher degree of reproducibility and fine-grained experimental control than
hardware-based experiments.

Hardware Platform and Calibration. We give details of our robot platform that are
relevant to the experiments. Our experiments use a GoPiGo3 Raspberry Pi-based robot.
It is equipped with two separately controlled motors and a laser distance sensor with
25° field-of-view and typical indoor measurement range on white background of 200 cm
with ~94% obstacle detection rate. Depending on operating temperature and voltage, the
distance measurements are off by at most £3 cm. The motors take speed commands in the
range —25 <% to 25 <, controlled internally with a proportional-integral-derivative (PID)
controller. It has a stopping margin of about 2.5cm from engaging “brakes” by setting
v = 0 until full stop from maximum speed. The sensed distance incorporates this margin,
closely mimicking instantaneous stopping per our model.

Drivers. We give performance details for the drivers for sensing and actuation on the
GoPiGo3, whose execution dominated the running time of the experiments. GoPiGo3
provides C drivers for the motors, but only Python drivers for the distance sensor. The vast
majority of execution time is spent calling the Python driver, though the reported running
time of the driver has varied between works. In the experiments performed during the
preparation of this thesis, the running of time of the sensor driver was ~370-400 ms, while
running times of ~180-220 ms were reported in the conference version of the work (Bohrer
et al., 2018). Thus, the system completes ~2.5-5 control cycles per second (Hz).

The high running time for the sensor can be attributed to the fact that our experiment
code creates a new Python process every time it calls the Python sensor driver. We expect
that it is possible to greatly reduce the sensing time and thus greatly increase control
frequency, for example by creating a single long-running Python program and calling it
repeatedly from C using inter-process communication or using the standard Python API
for C integration. Actuation and control each took less than 1ms, so reducing Python
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integration overhead would suffice to significantly increase control frequency. The default*
sensing time of the laser sensor is 30 ms, so we predict a control frequency of ~33 Hz could
be obtained if driver overhead were eliminated.

Experiment Setup. The robot is initially stationary, 75 cm from an obstacle, then drives
straight toward the obstacle with user-defined constant speeds 10,15, 20,25 <* (maximum
speed of the robot). Since the robot measures time in ms, we measure speed in =2 and
distance in gm. Thus, the greatest distance in the system, 75cm, can be represented in
20 bits, well within our 32-bit limit. We performed the experiment with both stationary
and moving obstacles. The robot stops close to a stationary obstacle, with ~3 cm safety
margin to account for sensor and actuator uncertainty. If the obstacle moves away, the
robot follows, stopping close to the obstacle’s final position. If the obstacle moves closer,
the robot stops before reaching the obstacle.

We tested two implementations of the untrusted external controller. Controller A
follows a user-defined speed when safe to do so and otherwise stops. This is safe and
thus does not violate the monitor. Controller B first sets a user-defined speed then spikes
to maximum speed near the obstacle. This is unsafe and violates the monitor, invoking
fallback control. Our experiments on both the real robot and a simulated plant record
distance, speed, and monitor violations vs. time.

Experimental Results. Fig.3.10 plots distance over time in simulation for maximum
speed V' = 255, system delay T = 220 ms, and initial distance 75 cm, with varying sensor
disturbance and both static and malicious obstacles. Solid lines indicate safe sandbox
controller executions, including those where fallback is engaged when a control violation
occurs. Dashed lines indicate plant violations where the environment caused a collision.
Symbols Ct,C# ,P#, and Cv indicate speed spike, control/plant violations, and restoration
of normal control, respectively.

Fig. 3.11 plots results on the real robot. We plot a correct controller approaching a sta-
tionary obstacle (blue line with circle markers), faulty controller approaching a stationary
obstacle (orange-red line with x markers), obstacle approaching the robot then receding
(yellow line with + markers), and robot following an obstacle which is stationary at first
before receding (black line with no markers). Symbols Ob+, Ob0, and Ob- indicate pro-
ceeding, stopped, and receding obstacles, respectively. The figures for both the simulation
and robot show that monitors correctly detect plant violations. Fallback is then engaged
as a safety best-effort, which ensured safety in simulation.

The robot engaged the fallback at ~4.6 cm from the obstacle, stopping at ~2.6 cm (due
to the safety margin). Under small disturbances, the plant monitor holds and safety is
assured. Malicious obstacles or dangerously high disturbances are detected as plant vio-
lations, triggering fallback. Plant violations represent scenarios where physical behavior
deviated from the model, thus where the system’s continued safety throughout the future
cannot be formally proved, thus fallback control is merely a best-effort for safety in this
scenario. When one encounters plant violations in practice, the appropriate approaches to

4The sensor is equipped with several presets ranging from 20-200 ms which vary in accuracy.
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Figure 3.10: Controller sandbox, simulated plant.

reduce or even eliminate them are to change the model (e.g., to account for malicious ob-
stacles) or change the implementation (e.g., to keep disturbances within a safe range). We
intentionally simulated controller faults at d ~ 50 cm by issuing v = V' = 25 continually.
The fallback engages right before the faulty controller would become unsafe (d < TV). The
fallback engaging is the desired behavior. In contrast to plant violations, provable safety
can be maintained when control violations occur because the violating control decision is
automatically replaced with the proven-safe fallback action.

Slightly different scenarios are tested in the simulated experiments (Fig.3.10) vs. the
robot experiments (Fig.3.11). The simulated results contain two similar-looking yellow
plots, but the plot arise from tests of different phenomena. In the first case (the plot with
+ markers), forward motion of the obstacle is simulated explicitly; in the latter (circle
markers), the simulation models actuation error wherein the robot moves at a velocity
different from the one which is commanded. In contrast, the robot experiments only con-
tain a single yellow plot because there is no separate test for actuator disturbance; any
disturbance present in the physical system would be present in all experiments. The yellow
plot of the robot experiments also differs incidentally from the simulated forward obstacle
motion because it tests forward and backward obstacle motion in the same run. Likewise,
in the receding case of the robot experiment, the obstacle waits before receding, whereas it
recedes from the beginning of the simulated case. These movements differ because the sim-
ulations were implemented with simplicity in mind, whereas the robot experiments could
easily incorporate more complex motion on the part of the experimenter. In any case,
it was not our goal to make the simulated and robotic motion agree. Rather, the robot
experiments serve as the primary evaluation of the real-world robotic behavior. The sim-
ulated evaluation supplements the robot experiments by providing greater reproducibility
and fine-grained experimental control.
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Figure 3.11: Controller sandbox, real robot.

3.7 2D Robot Case Study

The 1D robot model of Section 3.2 allowed us to validate the basic principles of VeriPhy, but
that simple model did not confront certain modeling and verification challenges that are
common to real robotic systems. This section studies a 2D wheeled robot model in order
to expose and resolve common 2D modeling, verification, and implementation challenges,
thus exposing the strengths and limitations of VeriPhy when applied to practical mod-
els. The vehicle model developed in this section follows piecewise curved (Dubins, 1957)
paths with speed limits and acceleration control. This is significantly more representative
of realistic driving scenarios than the 1D model, because speed limits, acceleration, and
steering are fundamental to driving. The resulting VeriPhy sandbox is tested in integration
with controllers and test environments that we developed for AirSim (Shah et al., 2018), a
simulator which is widely used for both ground and air robotics. In Section 3.8, we discuss
the challenges faced in realistic scenarios like 2D driving and how we will overcome them.

3.7.1 2D Robot Model

This section introduces our 2D robot model in dL. The circular Dubins dynamics are
bloated by a tolerance e, which accounts for imperfect actuation and for discrepancies be-
tween the Dubins dynamics and real dynamics of the implementation. That is, because
realistic robots never follow a path perfectly, we will bloat each arc to an annulus section
which is more easily followed, shown in Fig.3.13. In our relative coordinate system, the
robot’s position is always the origin, from which perspective the waypoint “moves toward”
the vehicle (Fig.3.13). The current position of the current waypoint is specified by coor-
dinates (x,y). The curvature of the path to the waypoint is k and the speed limits form
an interval [vl,vh] which the robot’s velocity v must satisfy by the time the waypoint is
approximately reached, i.e., when distance to the waypoint is at most €. Curvature pa-
rameter k # 0 yields curved arc sections while k = 0 yields line segments. Together, these
are the primitives of Dubins paths. The model is presented here without units for the sake
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of readability. The version used in simulation (Section3.7.3) includes unit conversions to
account for the units of the simulator, and has been verified as well. While our relative
coordinate system is a natural fit for vehicle-centric sensing and eliminates the need to
model a non-zero vehicle position, it does make enforcement of absolute paths more diffi-
cult. Because the comparison of relative and absolute coordinates requires familiarity with
the model, the comparison is deferred (Fig. 3.17) until after the model has been introduced.
Our hybrid program « is a time-triggered control-plant loop: « = {ctrl; plant}*. Rel-
ative coordinates simplify proofs (fewer variables) and implementation (real sensors and
actuators are vehicle-centric). The main variables of our model are depicted in Fig. 3.12.

LIMIT
[vl,vh]

k<0 -

-3 -2 -1 0 1 2 3 x

Figure 3.13: Trajectories of dynamics for different choices of k.

The plant is an ODE describing the robot kinematics:

plant={xX'=—vky, y=v(kx—1), V=acc, t' =1 (3.16)
Lt<T A v>0} (3.17)

The positive x axis points to the right of the vehicle and the positive y axis points forward®.
Here, acc is an input from the controller describing the acceleration with which the robot
is to follow the arc of curvature k to waypoint (x,y). In the equations for x',y": i) The v
factor models (x,y) moving at linear velocity v, ii) The k, x, y factors model circular motion
with curvature k, with k > 0 corresponding to counter-clockwise rotation of the waypoint,
k < 0 to clockwise rotation, and k = 0 to straight-line motion, #i) The additional —1
term in the y’ equation indicates that the center of rotation is (%, O). To explain why, we

This is a different coordinate system from the journal version (Bohrer, Tan, et al., 2019). Our coordi-

nate system was chosen to be accessible to readers unfamiliar with the driving literature, while the one in
the journal version was chosen to be accessible to readers familiar with the driving literature.

116



first introduce a standard idiom for representation of rotational motion in ODEs, an idiom
which is clearest in the simpler ODE {x’ = —y,y" = x}, whose solutions (call them z(¢) and
y(t)) will by definition satisfy 2/(t) = —y(t) and y'(t) = x(¢t) which are the derivative rules
for cosine and sine, respectively. From initial conditions where x? + y? = 1, the functions
x(t) = cos(t),y(t) = sin(t) satisfy the equations 2'(t) = —y(t) and y'(t) = z(t) and are
thus the solution, by uniqueness of solutions, meaning that the behavior of the ODE is
rotation along the unit circle centered at the origin.

In the more general setting of motion at speed v with the circle centered at (off, 0), we
define X' = —v k y and y’ = vk(x — off). Factor v describes the linear speed of the waypoint
(or vehicle). To ensure proper speed, multiplication by normalization factor k effectively
divides out the magnitude of position vector x,y. Factor x — off captures the fact that y’
should be proportional to the current relative x-coordinate, which is x — off. We confirm
our intuition by considering the behavior of x — off at several extremal points. For example,
x — off and thus y’ go to zero at the point where (x,y) is (off, ﬁ), the topmost point of the
circle and thus a point where the motion of the waypoint is tangent to the x axis. Likewise,
the circle intersects the x-axis when (x,y) is point (¢ — off,0), which maximizes |x — off]
and yields |y’| = v, which is desired because motion is perpendicular to the y-axis.

The equations v/ = acc and t' = 1 respectively say that acceleration is the derivative
of velocity and t is the current time. The domain constraint t < T Av > 0 says that the
duration of one control cycle shall never exceed a timestep parameter T > (0 representing
the maximum delay between control cycles and that the robot never drives in reverse.
Fig. 3.14 illustrates a goal of size € = 1 around the origin (equivalent to a goal around the
waypoint) and several trajectories which pass through the goal. Note that our assumption
on T is T > 0 as opposed to T > 0 in Section 3.2 because we are interested liveness, which
requires T > 0 whereas safety does not.
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Figure 3.14: Trajectories of plant for choices of k > 0 when ¢ = 1.

The controller’s task is to compute an acceleration acc which slows down (or speeds
up) soon enough that the speed limit v € [vl, vh] is ensured by the time the robot reaches
the goal. The controller model is given in Fig. 3.15.

Plan assignment (x,y) := * chooses the next 2D waypoint, assignment [vl,vh] := x
chooses the speed limit interval, and k := % chooses any curvature. The notations (x,y) :=
and |vl, vh] := x are suggestive notations for assignments which define 2D points and inter-
vals, but each is implemented as the sequential composition of two scalar nondeterministic
assignments. The feasibility test 7Feas determines whether or not the chosen waypoint,
speed limit, and curvature are physically attainable in the current state under the plant
dynamics (e.g., it checks that there is enough remaining distance to get within the speed
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Figure 3.15: Controller model for 2D circular driving.

limit interval). We also simplify plans so all waypoints satisfy y > 0, by subdividing any
violating path segments automatically. Assuming the arc is not a full circle, bisecting the
arc once always suffices the initial arc has angle strictly less than 27, so the bisected arc’s
angle is less than magnitude 7 and thus satisfies y > 0. It is worth this effort to gain the
assumption y > 0 because it simplifies the external controller and proofs. The abbrevia-
tion ctrl, names just the control code responsible for deciding how the waypoint is followed
rather than which waypoint is followed.

In Feas, formula Ann says we are within the annulus section (Fig.3.16) ending at the
waypoint (x,y) with the specified curvature k and width . In Fig. 3.16, trajectories from
the displaced green and red waypoints with slightly different curvatures remain within the
annulus. A larger choice of € yields more error tolerance in the sensed position and followed
curvature at the cost of an enlarged goal region. Formula Ann also makes a simplifying
assumption that the radius of the annulus is at least ¢, which is a modest assumption: it is
like assuming the radius of a turn is at least the width of a road. Feas also says the speed
limits are assumed distinct and large enough to not be crossed in one control cycle.

: '7//;‘
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Figure 3.16: Annular section through the (blue) waypoint (2.5,2.5).

The admissibility test ?7Go checks that the chosen acc will take the robot to its goal with
a safe speed limit, by predicting future motion of the robot. We illustrate this with the
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upper bound conditions. The bound will be satisfiable after one cycle if either the chosen
acceleration acc already maintains speed limit bounds (v < vh A v4accT < vh) or when
there is enough distance left to restore the limits before reaching the goal. For straight line
motion (k = 0), the required distance is found by integrating acceleration and speed:

speed in time T

acc (v+accT)? — vh?
VT+7T2+ 2B +€§H(X7y>‘|oo
—_————

distance in time T

where acc € [—B, A]. The extra factor of (1+ |k|¢)? in formula Go accounts for the fact that
an arc along the inner side of the annulus is shorter than one along the median (Fig. 3.16).

Figure 3.17: Relative model specifies non-unique motion.

Having discussed each section of the model, we now discuss the subtleties and limi-
tations that come with our relative coordinate system approach. Our relative coordinate
system is a natural choice from the perspective of implementation platforms where sensors
typically use relative coordinates and also reduces the number of variables compared to
an absolute coordinate system, which is associated with easier automated verification of
arithmetic proof goals. However, it is important to recognize that the use of relative coor-
dinates introduces a conceptual gap compared to the intuitive notion of an absolute path
as depicted in Fig.3.12 and that the conceptual gap has implications for the strength of
the results in our experimental evaluation (Section 3.7.3). We represent the path from the
vehicle to the waypoint using a curvature and endpoint, which notably do not uniquely
represent the current position and orientation of the robot, but rather represent a circle
centered on the waypoint. This phenomenon is depicted in Fig. 3.17, where the waypoint
is indicated (x,y). Consider the two states A (red) and B (orange) depicted in Fig. 3.17,
where the origin of the vehicle in each state is the labeled point and its orientation is the
same-colored vector drawn next to the labeled point. The points A and B are starkly
different in an absolute coordinate system but indistinguishable in our model because the
relative position of the waypoint is the same from each point: the path from A to the
waypoint is the solid arc segment while the path from B to the waypoint of the same cur-
vature is the thick dashed arc segment. By rotating the solid arc segment and orientation
vector around the waypoint, we observe that every point on the thin dashed circle appears
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identical to points A and B in relative coordinates. We refer to the points on the thin
dotted circle as ambiguous points and motion along the circle as ambiguous motion.

It is unclear whether ambiguous motion occurs much in practice. The direction of
motion in practice is typically similar to orientation, but ambiguous motion occurs in
the direction of the dashed circle, which is not tangent to the orientation. Ambiguous
motion would require not only an extreme difference between orientation and direction
of movement, but a matching change in orientation as well. In future work, one might
try to detect ambiguous motion by monitoring lower bounds on elapsed distance toward
the waypoint. A subtle feature of ambiguous motion is that it preserves distance to the
waypoint, while motion along the arc reduces remaining distance, thus a mismatch between
the vehicle’s sensed velocity and waypoint distance could indicate ambiguous motion.

Nonetheless, it is important to recognize that the possibility of ambiguous motion is a
limitation of our model. The plant monitor is responsible for assessing model compliance
as a means of assessing safety. The limitation of our model is that because the model’s
definition of safety allows ambiguous motion, the plant monitor will allow it too, regardless
of whether that motion is safe in an informal sense.

While it is important to categorize limitations of our model, the experimental evalu-
ation (Section3.7.3) will ultimately embrace the idea of monitoring whether there exist
feasible paths rather than checking whether a fixed path is satisfied. After all, the Veri-
Phy controller will apply emergency braking whenever monitors fail, so it is important for
liveness that monitors eventually pass. Monitoring compliance to a fixed path would allow
the system to get stuck if a path is ever violated, while monitoring existence of a path
provides an opportunity for the system to recover by identifying a new path.

3.7.2 Proofs

Our proofs for the 2D model include both safety and liveness properties. Safety says the
robot stays within its annulus section and maintains its speed limits, while liveness says
the robot eventually reaches the end of the section assuming it runs a particular control
algorithm and has perfect actuation. While classical VeriPhy only uses a safety proof
to synthesize its sandbox, the liveness proof serves several useful purposes. The liveness
theorem is invaluable because it validates the dL model: if it were not even possible at
the level of the dL model to achieve liveness, then it would be absolutely impossible at the
level of implementation to achieve liveness. Because it is undesirable to change the model
drastically once implementation has started (i.e., delays in modeling and verification will
trickle down to greater delays in implementation and testing), it is valuable to have this
confidence in the model before implementation even begins. Additionally, the safety and
liveness proofs for our 2D model serve as an important point of comparison for the proofs
of Part I, where game proofs combine safety and liveness reasoning.
Safety means speed limits are obeyed whenever the robot reaches a waypoint:

Theorem 3.12 (Safety). The following dL formula is valid when ctrl and plant are defined
according to Fig. 3.15 and (3.17) and when J is defined as in Section 3.7.3:

A>0AB>0A T>0Ae>0A J — [{ctrl; plant}*] (|| (x, y)|| <& — v € [vi, vh])
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Because the safety proof will show that some loop invariant J is preserved, we could
trivially strengthen the postcondition to J if we wish. The invariant will include facts such
as the robot always remaining within some annulus of width £ around an arc leading to the
waypoint, which is useful for safety, the limitations described in Fig. 3.17 notwithstanding.
The first four assumptions (A>0 A --- A >0) are basic sign conditions on the symbolic
constants used in the model. The final assumption, J, is the loop invariant. The full
definition of J is in Section 3.7.3. We write ||(x,y)|| for the Euclidean norm /x? + y? and
consider the robot “close enough” to the waypoint when ||(x,y)|| < e for our chosen goal
size €. While speed limits and loop invariants capture the desired notion of safety, they do
not prove that the robot ever reaches the goal, which is a liveness property:

Theorem 3.13 (Liveness). The following dL formula is valid when ctrl and plant are
defined according to Fig. 3.15 and (3.17) and when J is defined as in Section 3.7.3:

A>S0ANB>0ANT>0Ae>0NJ —
[{ ctrl, plant}”] <v>0 Ay>0 —

(etrl: plant}" ) (| )| <& A v e [vi,vh]) )

This theorem has the same assumptions as Theorem 3.12. It says that no matter how
long the robot has been running ([{ctrl; plant}*]), then if some simplifying assumptions®
still hold (v > 0 Ay > 0) the controller can be continually run (({ctrl,;plant}™)) with
admissible acceleration choices (ctrl,) to reach the present goal (||(x,y)|| < ¢) within the
desired speed limits (v € [vl, vh]).

3.7.3 Simulations

One crucial aspect of the notion of end-to-end verification pursued in this thesis is that
correctness guarantees must hold at implementation-level. In order to validate our claim of
implementation-level correctness, it is crucial to evaluate VeriPhy by implementing systems
with it, as we have done in Section 3.6. That evaluation does not tell the entire story,
however, because a crucial aspect of our practicality goal is ensuring that VeriPhy can
scale to models and proofs of non-trivial complexity.

In the evaluation, we simulate a car driving in several different environments under sev-
eral different controllers, during which we record the time taken to complete the course and
the percentage of time during which control and plant monitors respectively report non-
compliance. The details of the environments and controllers are incidental. Rather, we seek

6The simplifying assumptions v > 0 Ay > 0 say the robot is still moving forward and the waypoint
is still in the upper half-plane, i.e., we have not run past the waypoint. In the case that the waypoint
has not been reached, the assumption v > 0 can be proved by unrolling the loop once and accelerating.
We assume v > 0 for simplicity because it is intuitively obvious that acceleration is possible when the
waypoint has not been reached and liveness properties hold trivially if the goal has already been reached.
The assumption y > 0 is easily met in practice, which is best seen by observing y > 0 holds whenever the
angular length of the arc to the waypoint is strictly between 0 and 7 radians. Any curve of length at least
7 radians is equivalent to the concatenation of shorter arcs, so no generality is lost. In the experiments,
we satisfy the assumption by splitting long arc sections before passing them to the VeriPhy controller.
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to minimize monitor noncompliance, because a high degree of compliance indicates that
our verified model was accurate with respect to the simulated implementation and because
plant monitor compliance, in particular, is required in order for formal implementation-
level safety guarantees to be applicable. The Engineer would be unlikely to find VeriPhy
useful if the Logician can provide guaranteed safety to her for nontrivial systems. More-
over, the evaluation’s implementation serves as a proof-of-concept for the integration of
VeriPhy with existing codebases in settings where the physics are nontrivial. Such a proof-
of-concept is important to both the Engineer and the Logic-User because it both shows
that the Engineer can successfully integrate VeriPhy-generated code with her implemen-
tation and shows, more subtly, that the Logic-User can write a realistic-enough model to
generate that useful code when fed as the input to VeriPhy.

Given that this section’s emphasis is on model and proof complexity, it is appropriate
to use simulations rather than hardware for the present evaluation. Nonetheless, the sim-
ulation platform we chose, the autonomous driving mode of AirSim (Shah et al., 2018), is
known to have reasonable physical fidelity in addition to its high-quality visuals and an
open-source code base that is particularly friendly to modification. While absolute fidelity
of the physical simulation is not the primary goal of AirSim’s underlying Unreal Engine, it
is possible to model nontrivial mechanical systems in Unreal. For example, the AirSim car
independently models the physics of every tire and suspension, allowing customization of
details such as tire friction. Because AirSim models its car in significant detail and because
AirSim has been successfully applied in dozens of projects, we have good reason to believe
its physics model is more faithful than any purpose-built one-off simulation would be.

In AirSim, the author implemented several basic control algorithms known as bang-bang
and proportional-derivative control. The author developed several driving environments for
testing, shown in Fig. 3.18. Fig. 3.18a illustrates the plan data structure used to drive the
controller: a plan is represented as a graph. Our examples are cycle graphs because the
car drives in a repeatable loop, but the data structure allows higher degrees in order to
represent non-deterministic plans where the controller is allowed to choose their path. The
simulations showed that while it is rare to achieve zero monitor failures, failure rates were
kept low enough to complete all environments. The failure rate for the control monitor
captures the percentage of control cycles in which the fallback action was applied to ensure
safety. The failure rate for the plant monitor captures the percentage of control cycles
in which we cannot guarantee that the safety theorem applies indefinitely in the future,
i.e., we cannot guarantee that the vehicle will remain on its desired trajectory or maintain
the required speed limits in the future. The fallback was not applied when only the plant
monitor failed. Non-completion typically indicates that the fallback controller braked to a
stop and the monitor still failed in that state, leaving the system stationary forever.

When interpreting completion results and safety guarantees, it is important to acknowl-
edge how the planning code from our experiments computes the waypoint coordinates and
curvatures passed to the monitor. We do not strictly enforce that the vehicle is always
on the fixed, hard-coded path from each environment, rather when the vehicle begins to
deviate, the planner chooses a new arc which leads to the same hard-coded waypoint, i.e.,
it replans the path dynamically. The consequences of dynamic replanning for safety are
important: the safety property we monitor is compliance with a dynamically-chosen path,
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Figure 3.18: Implementation and environments built in AirSim.

which may not imply safety in the colloquial sense if the dynamic plan deviates signifi-
cantly from the initial hard-coded plan. The use of sandbox control does however make
the use of replanning important: sandbox controllers are only live if the use of the fallback
option eventually results in recovery, i.e., it eventually leads to a state in which monitors
succeed. If compliance to a fixed path is monitored, then deviation from the path could
cause monitors to fail indefinitely, no matter how long the fallback braking controller is
applied. Replanning results in a major improvement in liveness because it guarantees that
when the vehicle deviates from the initial path, there still exists a path which leads back
to the initial waypoint.

Failure rates and replanning aside, our results demonstrate that it was possible to
develop a simulation which worked seamlessly with VeriPhy monitors that were synthesized
from the model. The model and proof were iteratively developed using feedback from the
resulting monitors. In favorable conditions, the failure rates were as low as 0.1% for the
control monitor and 4.0% for the plant monitor, and in the worst case plant failures reached
66% while control failures remained under 5%.

Our initial hypothesis for the 66% failure rate was that high-speed drifting caused the
physical assumptions of the model to be verified, but the lower failure rates achieved in
the constructive reimplementation of VeriPhy (Chapter 8) suggest this is not the case, be-
cause the latter evaluation exhibits the same motion. While we do not have a conclusive
explanation for the failure rate, arithmetic overflow is one possible explanation because
classical VeriPhy uses fixed-precision integers and the Clover level happens to involve the
largest numeric values. Secondly, an idiosyncrasy of our untrusted controller caused ex-
cessive steering at the handoff point between two path segments, but the algorithm was
revised for smoother steering before the latter evaluation (Chapter 8) was performed. It is
possible that the improvement in failure rates owes to improved steering behavior. Despite
later changes in steering algorithm, we report the initial evaluation (Bohrer, Tan, et al.,
2019) here for the sake of transparency.
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Table 3.2: Average speed, monitor failure rates, plant violation rates, for AirSim and
human driver in Rectangle, Turns, and Clover for Patrol missions.

Avg. Speed (m/s)
World | BB | PD1 | PD2 | PD3 | Human
Rect |43 632 |[7.16 [126 |9.92

Turns | 3.78 3.95 4.43 | 4.69 9.66
Clover | X 29.5 295 | 295 28.9

Ctrl Fail.
World | BB ‘ PD1 ‘ PD2 ‘ PD3 ‘ Human

Rect 0.5% 10.1% | 01% | 0.19% | 1.14%
Turns | 1.0% | 1.0% |1.1% | 4.7% | 3.61%
Clover | X 0.2% | 0.2% | 0.19% | 0.29%

Plant Fail.
World | BB |PD1 | PD2 | PD3 | Human

Rect 36.8% | 8.23% | 8.5% | 14% 41.3%
Turns | 18.6% | 3.95% | 6.8% | 11% 21.1%
Clover | X 66% 66% | 66% 48%

While failure rates should not be dismissed, a strong point of the experimental results
is that every combination except for one completed the course, and our simple model was
still general enough to account for these practical control decisions and physical dynamics
in order to complete the course. Thus, our formal link from dL to CPS execution can be
made to work in practice for nontrivial driving scenarios, despite its caveats. Table 3.2 gives
the results of several controllers (PD1 is the slowest PD controller, PD3 the fastest) as well
as a human pilot (the author) on all environments. Overall, the slow PD controller had
the best monitor failure rates of any controller. Qualitatively, the results tell us that while
perfect failure 0% rates are not always attainable for the present model, low failure rates are
achievable in practice, where low control failure rates mean that the fallback controller will
rarely need to engage and low plant failure rates mean that because physical assumptions
are rarely violated, the formal guarantees provided by VeriPhy are applicable almost all the
time. On the flip side, the non-zero failure rates also indicate the value of developing less
conservative models in future work to reduce failure rates without compromising safety.
The completion times for the automated controllers were competitive with the human pilot
overall: the human performed better on the Turns map, which had high-angle low-speed
turning, while the automated controllers slightly outperformed the human on the large
Clover map where the human was less successful with low-precision high-speed turning.

The use of relative coordinates and replanning imply important limitations on our
safety guarantees, because we ultimately monitor compliance with a dynamically chosen
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path rather than a fixed one. During the test, the deviation between the fixed and dy-
namic paths was visually apparent during the cases that used the bang-bang tests, but
not the others. In future work, there are several potential ways to provide stricter safety
guarantees: absolute coordinates would more faithfully model compliance with an absolute
path, while development of a fallback controller for steering (not just braking as in our
current model) could make it possible for the fallback controller to recover reliably with-
out the use of replanning. Additionally, the use of more nuanced dynamical models could
improve compliance. For example, bicycle models, which provide a more detailed account
of steering dynamics, have seen success in the robotics literature (Althoff & Dolan, 2014),
yet their deductive verification would be a novel topic of study.

3.8 Discussion

We discuss limitations and challenges encountered in the case study, as well as how they
are addressed in the remaining chapters of this thesis. We divide the discussion into two
sections in order to discuss the lessons relevant to two different chapters. To guide the
development of our Kaisar proof language (Chapter7), we first discuss our experience
using Bellerophon in the 2D system safety proof (Theorem 3.12) in order to assess general
challenges in large-scale Bellerophon proofs, which are not specific to its usage in the
context of VeriPhy. While no single proof is representative of all practical usage, the proof
of Theorem 3.12 is a useful example because of its nontrivial length. The second section of
the discussion (Section 3.8.3) covers lessons learned about the design and implementation
of VeriPhy rather than the input proof language, in order to guide the eventual constructive
reimplementation of VeriPhy in Chapter 8.

3.8.1 Bellerophon Language Primer

We briefly introduce Bellerophon (Fulton et al., 2017), the proof script language of KeY-
maera X, because it is discussed in Section 3.8.2. A proof script is written in combinator
style by composing atomic proof steps:

ps = tac(arg,, ..., arg,) | ps;ps | <(ps,....ps) | (ps| ps) | ps* | ps"

Atomic built-in tactics tac can optionally take arguments of several types, the most common
of which are formula positions and expressions, as well as strings. KeYmaera X supports a
large, but fixed, vocabulary of built-in tactics including first-order sequent calculus rules,
hybrid systems axioms of dL, general proof search, and automation for first-order arithmetic
and differential equations. Expression arguments are written like strings, meaning they are
delimited with double quotes’, e.g., "expression". Exact formula positions are nonzero
integers (—1 for first antecedent formula, 1 for first succedent formula) and several other
position locators are supported: 'L and 'R search the left or right-hand side of the sequent
until an applicable position is found. A locator 1oc can be annotated with a formula using

"The following syntax is sometimes used in older proofs: {  expression’}
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the notation loc=="formula", meaning that the locator must find the given formula
or an error will be raised. Likewise, the locator loc~="formula" must find a formula
which unifies with the given formula or an error will be raised.

To apply tactics sequentially, we separate them with a semicolon. We write (ps; | ps,)
to try ps, first, then try the alternative ps, instead if ps, fails. We write <(ps,, ..., ps,)
when there are n open subgoals to apply each ps; to prove the ith subgoal. Most tactics
expect a single subgoal, so it is standard to use < immediately after branching. The
repetition ps* applies ps as many times as possible in sequence, until its next application
would either fail or make no progress. The finite repetition ps* applies ps k times.

A KeYmaera X proof file also lets the user declare or define functions, predicates, or
hybrid programs before writing their proof. Function definitions have form:

Type name(Typel argl, ... TypeN argN) = body;

Like in C, the return type is written first, and argument types, if any are written before
names. Declarations of uninterpreted functions use the same syntax for type signatures but
omit the body. Functions with no arguments are used to represent real-valued parameters
that never change, like in the dL uniform substitution calculus. Predicate and hybrid
program definitions and declarations are analogous, but respectively use <-> or ::= in
place of the equals sign.

3.8.2 Bellerophon Proof Script Examples

The proofs of safety and liveness were written in Bellerophon, the proof script language of
KeYmaera X. The proof scripts are of nontrivial length, with 279 manual steps for safety
and 589 manual steps for liveness. Thus, we can look to the safety and liveness proof
scripts as examples of Bellerophon proving at scale in order to assess the limitations of
Bellerophon proofs in the large. The final model used here features units of measure which
are not discussed in Section 3.7. We simply multiply by constant scaling factors kf and
df when converting curvatures and distances.

The KeYmaera X modeling language does support some important features which aid
scalability. Notably, the Logic-User can define named functions and predicates which
are then used in the model. The following snippet defines a predicate onCircle which
determines whether a point (z,y) is on a circle of curvature k through the origin, and does
so using helper functions sq and circle:

Real sg(Real x) = x*x;
Real circle(Real x, Real y, Real k) = k*(sg(x)+sqg(y))—-2*x*kf ()*df();
Bool onCircle(Real x, Real y, Real k) <-> circle(x,y,k) = 0;

Above, kf and df are unit-conversion scaling factors (both equal to 10), which are not
needed in a high-level unitless model but become necessary as soon as we wish to interact
with a simulator that has concrete units.

While definitions provide an important abstraction mechanism, the implementation of
that abstraction in Bellerophon can at times be leaky in practice. The definition mechanism
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in Bellerophon is implemented with uniform substitutions (Platzer, 2017a) that replace un-
interpreted symbols with their definitions. A uniform substitution approach makes it easy
to expand definitions (using a special tactic expandAl1Defs in Bellerophon), but there is
no provided tactic for reversing the expansion of definitions; if possible at all, unexpanding
definitions would require inconvenient manual cuts at the least. This phenomenon is not
problematic on its own, but can interact awkwardly with a major use case of Bellerophon:
performing proof steps in the KeYmaera X Ul and extracting proof scripts after-the-fact.
The automatic extraction of proof scripts often results in fully-expanded, unreadable, un-
maintainable expressions. As an intentionally-unreadable example®, we show a single loop
invariant step using our loop invariant J (xg, vg, k, v, vl, vh) applied at position
1, which is highly verbose when expanded:

(. N

loop ("v>=0&abs (k) *eps () <=100*1& ( (k* (eps () *eps () ) —2*100*eps () ) *(10*10)
< k* (xg*xg+yg*yqg) —2*xg*100*10
&k* (xg*xg+yg*yg) —2*xg*100*10 < (k* (eps () *eps())+2*100*eps())*(10*10))
& (0<=v1&vl < Vh&A () *T()<=10* (vh-v1)&B()*T()<=10* (vh-vl))
& (v<=vh| (1*100* (1*100)+2*eps () *abs (k) *1*100+eps () *eps () * (k*k))
* (v*10* (v*10) =vh*10* (vh*10) ) <=2*B () * (yg-10*eps () ) * (100*100) * (10*10)
| (1*100* (1*100)+2*eps () *abs (k) *1*100+eps () *eps () * (k*k) ) * (v*10*
(v*10) =vh*10* (vh*10) ) <=2*B () * (abs (xg) -10*eps () ) * (100*100) * (10*10))
& (v1<=v| (1*100* (1*100)+2*eps () *abs (k) *1*100+eps () *eps () * (k*k))
*(v1*10* (v1*10)-v*10* (v*10))<=2*A () * (yg-10*eps () ) * (100*100) * (10*10)
| (1*100* (1*100)+2*eps () *abs (k) *1*100+eps () *eps () * (k*k) ) * (v1*10*
(v1*10) =v*10* (v*10))<=2*A () * (abs (xg)—-10*eps () ) * (100*100) * (10*10))

"y 1)
- J

An additional class of maintenance challenges regards formula position. That is, it
can be challenging to give a clean and maintainable specification of which formula a rule
should be applied to. At their simplest, Bellerophon scripts use numbers to indicate sequent
positions (positive for succedent, negative for antecedent), which suffices for simple cases
such as rule applications that operate on a single succedent formula at position 1. For
example, the following step says to prove a conjunction on the right by proving each
conjunct. In the example, tacL and tacR stand for Bellerophon tactics that prove the
respective conjuncts.

[andR(l); <(tacL, tacR) }

However, positional arguments become fragile when used to select assumptions from
large contexts, whose contents frequently change between versions of a model and even
versions of KeYmaera X. The following step case-analyzes a disjunction, which happens to
be the 11th assumption.

[orL(—ll) ]

Positional proof steps will break whenever the position of an assumption changes, and
moreover cannot be read by humans except side-by-side with the proof state of a running

8Where eps is plaintext notation for € and abs is absolute value
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KeYmaera X prover. To alleviate this issue, Bellerophon allows proof steps to specify
a locator (formula, formula pattern, or 'L or 'R) with a formula: if the locator finds
no matching formula, the prover reports an error. The following weakening step hideR
expects a particular formula at succedent position 1:

( )

hideR (1=="[{xg'=—v*k*yg/ (100%10),yg'=v* (k*xg/ (100*10)-1),v'=a,t'=10
& ((v>=08&t<=T () ) &t>=0& (k* (eps () *eps () ) —2*100*eps () ) * (10*10)
< k* (xg*xg+yg*yg) —2*xg*100*10&k* (xg*xg+yg*yg) —2*xg*100*10
< (k* (eps () *eps () ) +2*100*eps () ) * (L0*10) ) &10*v+a* (T () —t)>=0}]
(1*100* (1*100) +2*eps () *abs (k) *1*100+eps () *eps () * (k*k) ) *
(V* (T ()—t)*10+a/2% ((T()—t) * (T()—t) )+ (v1*10* (v1*10) - (v*10+a* (T ()-t))
*(v¥10+a* (T()—t)))/ (2*A())) <=(yg-10%*eps () ) * (L00*100) * (10*10) ")

- J

Several issues are evident in the step above. The formula is quite long because it is
fully expanded, and because weakening steps are usually auto-generated by clicking on the
UI on a proof state where definitions have been expanded, it would be difficult to recover a
concise, abbreviated formula, thus this verbosity is typical of auto-generated steps. Unless
the Logic-User manually rewrites the step to use definitions, the step will have to be
changed whenever changes to the model or proof cause a different formula to appear at
position 1. Even when the Logic-User does choose to manually rewrite the step, it may
not always be trivial to do so because the content of the context can vary greatly from
the text of the model. In our hideR example, the domain constraint of the ODE contains
several conjuncts that were introduced by differential cuts and do not appear explicitly in
the source model. Before the Logic-User can decide how to write the proof step, they must
first trace the relationship between a model and its proof. Without knowing how to trace
that relationship, a novice user might read a line of Bellerophon and have no idea which
model statement is currently being proved.

Thus far we have identified expansion of definitions and applications of the cut rule as
sources of traceability challenges. Just as definition expansion works by substitution, rea-
soning about ODE solutions, deterministic assignments, and nondeterministic assignments
is often done using substitution and/or renaming, so that assignment-like reasoning is an-
other source of traceability challenges in a similar vein to definition expansion. Because
our 2D driving case study does not use solution-based reasoning for ODEs and the only
assignments which appear are simple, assignments were not the main challenge in our case
study, but are worth mentioning because they can present a challenge in examples that rely
heavily on assignment and ODE solutions. We discuss the modest impact of assignments
on our case study in order to explain the more significant impact they can have in other
cases. Consider the following snippet from our proof:

hideL (-21=="abs (k_0) *eps () <=100*1") ;
.. MR("a>=0&10*v+a* (T ()-t)<=10*vh", 1);

The former line hides a fact which mentions kg, a variable which does not appear in the
model but is rather automatically generated to refer to the value of k “in the old state.”
The later line (after several omitted intermediate steps) uses monotonicity reasoning to
prove the stated formula as a lemma “in the new state.” The Demonic nondeterministic
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assignment k := x featured in our model has a modest impact on the proof script because
reasoning about Demonic nondeterministic assignment only requires renaming and it is
relatively easy for a reader to understand that ky means an old value of k. Traceability
is more difficult if k& := * is assigned many times, leading to many subscripted variables
k;, or if deterministic assignments or ODE solutions are used. To reduce variable count,
KeYmaera X prefers to reason about deterministic assignments and ODEs by substitution
whenever possible. If our controller model explicitly computed acceleration a using some
complicated function f (v, v1, vh,xg, yg, k), then variable a would be eliminated
to the far more complicated term £ (v, v1, vh,xg, yg, k), which would then need
to be written in the formula of the MR step. The alternative approach (close to the approach
under the hood by Kaisar in Chapter 7) is to introduce a ghost variables ay analogous to
the use of ky and remember its relationship to the current value of a, if any. Without the
labeling syntax that will be provided by Kaisar, however, renaming and substitution both
deviate from the text of the model: the former causes the hide step to deviate while the
latter would cause the MR step to deviate.

Lastly, typical Bellerophon proof approaches have particularly high maintenance bur-
dens for arithmetic proofs. It is a common idiom to introduce simplified arithmetic as-
sumptions using cut and then weaken all unnecessary assumptions with hidelL before
applying an arithmetic solver. Because performance of arithmetic solvers depends greatly
on the number of assumptions used, the addition or modification of a single assumption
could lead many seemingly-unrelated arithmetic steps to slow down or hang because the
set of assumptions supplied to the solver has increased. Such slowdowns are typically re-
solved by inserting hideL calls which weaken the new assumption for proof branches in
which it is irrelevant. The problem is that many such changes could be necessary and
those changes could be nonlocal. In practice, the number of hides can be significant:
154 in our example, as many as 11 per arithmetic call. To alleviate this issue, the latest
release of Bellerophon provides a tactic (named using, but distinct from the keyword of
the same name introduced in Chapter 7) which searches the context for a list of formulas
and weakens all others. However, Bellerophon’s using tactic shares the limitations of
Bellerophon’s locators because it is search-based: during maintenance, many expressions
appearing in a model will be modified, which will result in the Bellerophon proof failing to
check unless all corresponding expressions in the proof script are maintained in lockstep.

In Chapter7, we will develop a new, structured proof design to resolve the above
Bellerophon issues, using features such as named assumptions, annotation-based proof, and
positive-style (as opposed to negative or weakening-style) arithmetic proofs as a default.
In Bellerophon’s defense, the comparison between our language and Bellerophon will not
be one-to-one because we do not pursue integration with the KeYmaera X Ul. As we have
discussed, the limitations of Bellerophon are most salient when using it in combination
with the Ul. However, those limitations are founded in more basic phenomena: changing
state causing changes in the context, the irreversibility of definition substitutions, and
an unstructured representation of contexts. That context representation makes hard-to-
maintain proof idioms (such as positional references and negative, hideL-based arithmetic
proofs) easier than their more maintainable counterparts such as search-based. Proofs
with named facts are particularly challenging for Bellerophon’s context representation,
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which is why they are unsupported in Bellerophon. The basic phenomena listed above
will inspire our language, resulting in a design that remains fundamentally distinct from
Bellerophon even as Bellerophon’s definition mechanism and formula locators improve over
time. Moreover, while it is possible for a Bellerophon expert to write proofs in a style
which minimizes the problems discussed here, it is a design goal of Kaisar to make such
problems outright difficult or even impossible to encounter, regardless of expertise. Though
Bellerophon features such as locators and the using tactic can support expert users in
improving proof maintainability, Kaisar targets the crucial goal of supporting all proof
authors, including novices, in writing proofs that are easy to read and maintain.

3.8.3 Limitations of Classical VeriPhy

In testing the VeriPhy sandbox, some of the challenges we encountered were incidental,
while some can only be addressed with deeper changes. By simple virtue of testing a
larger model and proof, we identified and fixed a number of bugs where VeriPhy made
overly strict assumptions on the input model or used excessively brute-force, slow proof
approaches. This same debugging process also exposed limitations which still persist in
classical VeriPhy. Before discussing limitations at greater length, we discuss the KeY-
maera X tactic for proving safety of VeriPhy sandbox controllers in order to observe the
challenges in proving sandbox safety. We give a very high-level outline in Fig.3.19. The
outline mixes Bellerophon code with pseudocode and is meant for explanatory use only.
The construction of the sandboxTactic is a function of the Bellerophon tactic that
proves safety of the input system (safeTac), the input system safety theorem statement
(safeFml) and fallback program. The first line pattern-matches on safeFml to
extract the initial conditions, controller, plant model odes&odeDom;, and safety
postcondition. Because double quotes are used to indicate dL expressions in the Bellerophon
syntax, the first line uses double quotes on the left-hand side as pseudo-code for the pattern-
match on the dL expression datatype. The key step of sandbox proof generation and
a key source of fragility in the classical VeriPhy implementation is the following line.
Function proveWithListener executes safeTac to prove safeFml, but listens in on
the execution of the tactic interpreter to collect additional 1istenerInfo, specifically
loop and differential invariants as well as proofs of important subgoals (1emmas). The
safety theorem statement and invariants provide enough information to determine the
monitors®?. Those lemmas will be reused in the proof of sandbox safety. The base
case shows that loopInv holds at the start of the loop, the postcondition step shows
that safe follows from loopInv, ctrlToInv shows that loopInv holds after the
controller, and plant ToInv shows that 1oopInv holds after the plant, roughly meaning
plantMon —-> ctrlInv. Note that loopInv must be proved to hold both after the
controller and after the loop body; this is a requirement of the sandbox tactic generator,
albeit a natural assumption because a loop invariant must be true after all executions of
the plant, including those of duration 0. The author of safeTac is required to use a

9We included plantMon here to emphasize that it can be computed from the theorem statement
and invariants. It is not actually mentioned explicitly in the following lines because the key lemma
plantToInv about the plant monitor has already been proved in the source model.
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variant of the loop tactic that additionally proves that the loop invariant holds between
the control and plant. An additional lemma fallbackCheck is proved (without listeners,
using automation) so that the control monitor provably holds after the fallback controller.
Once the necessary lemmas have been extracted or proved, the actual tactic expression for
the sandbox safety proof begins.

def sandboxTactic (safeTac, safeFml, fallback) = {
let "init -> [{ctrl;ode&odeDom; }*]safe" = safeFml
let listenerInfo = proveWithListener (safeTac, safeFml)
let (loopInv, diffInvs) = listenerInfo.invariants
let (plantMon, ctrlMon) = monitors(safeFml, inv, diffInvs)
let (base, post, ctrlToInv, plantToInv) = listenerInfo.lemmas
let fallbackCheck = prove(auto, "loopInv->[fallback]ctrlMon")
chase(1); ...; /* start of tactic */
loop ("loopInv", 1); <(
use (base) // base case
, use(post) // postcondition
, /* loop body */ ...;
generalize ("loopInv"),; <(
// untrusted controller and fallback
choiceb (1); andR(1); <( ...;
// untrusted controller
cut ("[ctrl]loopInv",1);

<(...;chase(l); ...; prop, use(ctrlToInv))
, /* fallback */ ... ;
cut ("[fallback]ctrlMon");
<(...; chase(l); ...; prop, use(fallbackCheck)))

, /* plant */
use (plantToInv)))

Figure 3.19: Outline: VeriPhy sandbox safety tactic.

We elide large, nontrivial sections of the proof using dots (.. .) in order to focus on
proof highlights which are essential to the following discussion. We use a variety of built-in
tactics such as chase (hybrid program simplification), prop (propositional reasoning),
the cut rule, andR (conjunction on the right), choiceb (box choice formula), loop
(invariant reasoning), and generalize (monotonicity).

The main proof is a 1oop invariant argument using the same invariant 1oopInv from
the system safety model. To prove the base case and postcondition step, we use the
lemmas which were already proved in the system safety proof. The rest of the tactic
proves that the loop body preserves the invariant. The proof of the body begins with the
generalize tactic which reasons by monotonicity, showing that the invariant holds after
the controller and that its truth at the beginning of the plant implies the invariant at the
end of the plant. The first branch following generalize considers the controller model
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of the sandbox, which consists of one branch for untrusted control and one branch for the
fallback controller. The crucial step for the untrusted controller is to show the invariant
(cut ("[ctrl]loopInv",1)) using the lemma use (ctrlToInv) and a number of
transformation steps which we omit for clarity. Likewise, the crucial step for the fallback
controller is to show the invariant using the lemma fallbackCheck. Once the proof of
the control model is complete, plant ToInv is used to show that the invariant is preserved
by the (discrete) plant model.

We discuss the implications of this sandbox tactic outline regarding issues of robustness
in classical VeriPhy:

The model is in a fixed format: control-plant loops with a single occurrence of the
ODE are required.

The proof is in a restricted format: the loop invariant must be proved to hold between
the control and plant.

Because the lemma plant ToInv is extracted by locating a single application of the
differential weakening tactic (dW), the single ODE proof must end in dw.

All di f fInvariants from the proof are flattened into one collection. Even for a single
ODE proof, flattening the invariants can be inaccurate when nested differential cuts
are used. When showing a differential cut ¢, Bellerophon permits performing a case
split and proving distinct cuts 17 or 15 as lemmas to ¢ in different cases. Because
of flattening, the sandbox tactic would generate a monitor which expects both of 1,
and ¥y to hold unconditionally, thus forgetting the branching structure.

The fallback controller lemma fallbackCheck is proved using full automation. If
the controller is too complex or its safety argument too subtle, the user has no way
to provide a manual proof. This poses a scalability issue for complex fallbacks.

The monitor correctness lemma (Lemma3.l from Section3.3) is also proven au-
tomatically, though we omitted it from the outline to simplify the presentation.
Large controller models could pose a challenge in principle for an automated proof
of Lemma 3.1, which is an automated proof of a theorem about the user-provided
non-fallback controller model.

The proof relies on several built-in tactics which can be unpredictable because of
their general-purpose, heuristic nature. The chase tactic, in particular, is applied to
complex programs in the sandbox safety proof. It has historically proved challenging
to debug the use of chase in VeriPhy and determine whether a given error message
constitutes a mistake in the system model or a bug in VeriPhy. Usability for the
Logic-User suffers if it is hard to distinguish flawed inputs from those which are
merely unsupported or merely expose bugs in the sandbox tactic. As a historical
example, early development versions of VeriPhy unexpectedly failed on models with
multiple controller branches, but the error messages simply indicated a failure in
the sandbox tactic without giving Logic-User insight into the fact that the VeriPhy
implementation was at fault.

We can ascribe a common theme to the limitations above: classical VeriPhy makes
surprising assumptions on model and proof structure, often silent assumptions which lead
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to tactic failures when not satisfied. It is unsurprising that classical VeriPhy makes these
awkward and implicit assumptions because the Bellerophon tactic language admits a wide
variety of proof styles and the structure of a tactic can in general vary wildly from the
structure of the input system. It would be convenient for the Logic-User if arbitrarily
nested loops and arbitrarily many ODEs were supported, but there is no straightforward
way for classical VeriPhy to inspect a Bellerophon tactic and match up different loops
and ODEs from a model with corresponding sections of a complex Bellerophon program.
Instead, the sandbox tactic opts to assume a single loop and ODE in the model, then hope
that loop and ODE rules are only used in the tactic in well-behaved ways. In the case of
the fallback, no manual proof is provided as input, let alone a well-structured proof.

The theme of structuring is not only useful for explaining limitations we discovered
during the development and use of classical VeriPhy, it is also useful for explaining a
new feature we desire for the constructive successor (Chapter8): synthesis of whitebox
controllers from liveness proofs. For controllers where direct safety and liveness proofs are
possible, we would rather have a controller which is both safe and live rather than rely
on a sandboxing approach which sacrifices liveness for safety. However, before pursuing
synthesis of whitebox controllers from liveness proofs, we would like our input format to
make it easy to state a model and its liveness theorem. However, our experience stating
and proving a liveness theorem (Theorem 3.13) reveals that it is surprisingly difficult to
state a theorem that captures both safety and liveness in dL, especially if we wish for
the theorem statement to be both correct and suitable for automated consumption. Our
theorem statement (Theorem 3.13) suggests that a formula of shape [o](safe A (a)goal)
might correctly combine safety and liveness, where safe holds when the current state is
in some safe region and goal holds when some liveness objective has been met. However,
such theorems do not faithfully capture the dynamics of a system featuring a safe, live
controller. Such a statement divides system dynamics into two phases: the first phase
shows safety only while giving up all system control, the second shows liveness when we
have total control. We desire a controller that satisfies a stronger notion of correctness:
a controller should remain correct as system execution alternates repeatedly between that
which we control (the controller) and that which we do not (the plant).

When stating liveness theorems of shape [o](safe A (a)goal), an additional hiccup is
that total control in the liveness proof is often far too strong an assumption. It is for that
very reason that our theorem statement (Theorem 3.13) uses distinct programs « and [
for the modalities [a] and (/3): the program [ appearing in the liveness modality should
express the fact that we do not get to choose our waypoint, even when we do choose
the acceleration. Theorem statements in the style of Theorem 3.13 are poorly suited for
automated consumption in the sense that the consumer would need to reconcile the two
programs « and 3 that are syntactically distinct but fulfill a morally equivalent purpose.

In short, an overarching theme of the following chapters is to provide the foundations
and structuring principles that make a more robust and general version of VeriPhy possible.
In Part IT in particular, great emphasis will be placed on foundations in order to provide a
thorough, systematic basis for synthesis in the reimplementation of VeriPhy, thus ensuring
from the start that it does not encounter the same robustness issues and format restric-
tions that arose in this chapter’s implementation. The new foundations and principles of
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Part IT serve a dual purpose because they will provide a robust basis not only for sandbox
controller synthesis but for new features including whitebox controller synthesis and, in
the input language, structured proof principles. Once the new foundations are complete,
Part III exploits those foundations for the reimplementation of VeriPhy along with a new,
structured proof language Kaisar that serves as its input.

The key structuring principles for a better synthesis tool include tight correspondences
between proofs and code, between liveness and control, and between proof and model. In
Part II, we develop the constructive logic of hybrid games to resolve two of these corre-
spondences. Game logics, in contrast to normal dynamic logics, provide a common proof
artifact for safety and liveness. A constructive game logic ensures that every safety proof
corresponds cleanly to monitoring code and every liveness proof'? corresponds cleanly to
control code. The natural-deduction calculi developed in PartII will also foreshadow a
clear connection between proof text and model text, but that connection will be provided
conclusively in Chapter 7, which presents the structured Kaisar proof language, which is
motivated by the limitations of Bellerophon that the Logic-User encountered.

Arithmetic will be another major theme in both our development of constructive game
logics (PartII) and our reimplementation of VeriPhy (Chapter8). Rather than interval
arithmetic, our constructive logic for hybrid games (Chapter 5) will use a more powerful
foundation: constructive real numbers that support arbitrarily precise approximations.
Constructive VeriPhy (Chapter 8) will take the middle ground between classical VeriPhy
and Chapter 5 by using arbitrary-precision rational intervals, which are less powerful than
constructive reals, but easier to implement than constructive reals and certainly more pow-
erful than the integer intervals used here. Rational intervals will, for practical purposes,
eliminate the overflow errors experienced in classical VeriPhy. Increasing arithmetic preci-
sion is important because our arithmetic constraints both required the Engineer to choose
units of measurement with extreme care and made debugging more difficult if the Engineer
encountered an overflow that they did not expect.

In all, we will remove limitations on model and proof structure, limitations on arith-
metic, and the limitation to safety of sandbox controllers. Removing model and proof
limitations will reduce the need for maintenance and rework by the Logic-User. The Engi-
neer will benefit from relaxed arithmetic guarantees especially, but also from the availability
of whitebox control and perhaps indirectly from unrestricted modeling. In exchange for
the new benefits on part of the Logic-User and Engineer, the constructive VeriPhy imple-
mentation presented in Chapter 8 will argue correctness informally by appeal to the major
theorems of Part IT rather than provide an extensive chain of formal artifacts for a rigorous
safety theorem. The Kaisar (Chapter 7) language’s complexity makes even a paper proof
significantly more involved than it was in the case of this chapter, while the entirely new
foundations used in Chapter 8 make full formal artifacts even more difficult to attain.

Ultimately however, there is no reason to despair. While the implementations of Ve-
riPhy from this chapter and Chapter 8 both aim to resolve the interests of the Logician,
Engineer, and Logic-User, they ultimately settle on different tradeoffs. Each is useful,

10Tn particular, dL allows case analysis on undecidable real arithmetic formulas, yet controller synthesis
must restrict controllers to only use decidable case analysis principles.
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with the present chapter being most useful when the Logician’s concerns are given top
priority and the implementation from Chapter 8 being most useful when the Engineer and
Logic-User are given higher priority.
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Part 11

Constructive Game Logics
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Chapter 4

Constructive Discrete (Game Logic

4.1 Introduction

Part I concluded (Section 3.8) with a discussion of the limitations of classical VeriPhy, which
we now review in order to motivate constructive game logic (CGL). A major practical
limitation of classical VeriPhy was its reliance on fixed formats for models and proofs;
without a systematic interpretation of dL proofs as programs, synthesis often fails with
cryptic error messages when the input lies outside the supported fragment, a fragment
which does not even have a precise definition. A second major limitation, albeit one that
exists by design, is that classical VeriPhy uses blackbox monitor-based controllers as its
only controller paradigm. Sandbox controllers are limiting in that they must sacrifice
liveness to ensure safety whenever their untrusted controller is noncompliant with their
controller monitor. An additional limitation is that they still require the Engineer to write
her own untrusted controller which is then sandboxed. To overcome the limitations of
sandboxes, additional support for synthesis of concrete whitebox controllers would be a
desirable feature both because synthesis of whitebox controllers can more readily preserve
liveness in addition to safety and because they relieve the Engineer from the obligation of
writing her own controller.

The above limitations motivate the development of a new logical foundation which both
serves as the basis for a reimplementation of the VeriPhy approach and stands as a first-class
theoretical contribution in its own right: constructive game logic (CGL). The foundations of
CGL are developed in Part IT of this thesis before serving as the basis for a reimplementation
of VeriPhy in Part I11. Because Part II focuses on developing new foundations, it is primarily
written from the Logician’s perspective, but we will occasionally mention the Engineer
and Logic-User in order to point out how the new foundations support them. To ease the
introduction of CGL, Chapter4 will first introduce discrete CGL, which is then extended
to hybrid games in Chapter5. As the name suggests, hybrid games are the extension of
hybrid systems to games, or equivalently the extension of games to hybrid systems.

We begin our discussion of constructive games by explaining why the limitations of
classical VeriPhy are sufficient motivation for new foundations and why CGL is the right
foundation to develop. Classical VeriPhy’s implementation fragility and reliance on fixed
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input formats stem from the fact that its processing of models and proofs is insufficiently
systematic. Though classical VeriPhy’s high-level architecture is built on generic, system-
atic concepts such as sandboxing and verified compilation, the input proof language is so
open-ended and allows proof and model structure to differ from each other so greatly as to
make a systematic treatment of the entire proof language untenable. Even the underlying
classical logic dL, though systematic in the development of its semantics and proof calculus,
does not feature a systematic treatment of the crucial challenge that underlies synthesis of
code from verified models: all proofs must correspond to programs. That is, our logic must
be constructive. The reason we pursue a foundational approach is that a robust implemen-
tation of VeriPhy demands logical foundations that provide a systematic correspondence
between proofs and code and which admit a systematic, synthesis-friendly proof language
design. By developing new foundations, we provide the necessary systematic treatment.

Constructivity is crucial to a systematic treatment of synthesis; games are crucial to sys-
tematic synthesis of concrete whitebox controllers specifically. The fundamental advantage
of games over systems is that they allow free alternation between existential and universal
choices: a game model can easily specify which aspects of the model are ours to control
and which are outside our control, then a game proof resolves our existential choices. A
typical game model provides an existential specification for control, i.e., it specifies that
it is up to our proof to resolve our control decisions (which must provably achieve their
stated goals for all actions of the opponent). A game proof then systematically specifies
the control algorithm, which can be translated to executable code by a synthesis algorithm.
Moreover, theorem statements in game logic (GL) can also freely combine existential and
universal quantification, meaning they excel at proving safety and liveness together in a
single proof artifact. Basing synthesis on foundations which readily combine safety and
liveness proofs greatly simplifies the task of synthesizing code that is simultaneously safe
and live.

Constructivity becomes particularly crucial in combination with games, particularly
games which feature existential specifications of control. Constructive game proofs con-
tain concrete existential witnesses, thus they contain concrete, executable control code.
In contrast, classical game proofs (e.g., using the original GL (Parikh, 1983)) would show
the existence of correct control decisions which in principle may depend on undecidable
properties and even in practice may not be readily synthesized from the proof artifact.
When Chapter 5 develops CdGL, a CGL for hybrid games, the use of real numbers will
make constructivity even more crucial to synthesis because, as that chapter will explain,
constructive proofs about reals, when compared to classical proofs about reals, greatly
simplify the challenge of simultaneously preserving safety and liveness in synthesized code
which performs arithmetic case analyses. We highlight these crucial benefits of construc-
tivity in order to emphasize that whenever CGL accepts fewer proofs than GL does, and
thus requires additional care on the part of the Logic-User, the added restrictions and
added efforts have the concrete benefit of enabling synthesis of code from every proof. For
CdGL specifically, the concrete benefits will also include improving the safety and liveness
of synthesized arithmetic code.

In addition to the fundamental advantages of constructivity and games in general,
our eventual tool developments Part I1I will benefit from our choice to develop a natural-
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deduction calculus specifically, which is a widely-used among constructive logics. A canon-
ical natural-deduction! proof closely follows the structure of the game being verified, sim-
plifying both synthesis tool implementation and high-level proof language design.

Beyond its motivations within the context of CPS, CGL is a first-class contribution of
the thesis and is of broader theoretical interest. The broader theoretical motivation for CGL
stems from the observation that program logics (such as GLs) and constructivity are both
fundamental tools in the theory of programming languages, yet constructive program logics
have received surprisingly little study (Section4.3). Game logics (Parikh, 1983; Platzer,
2015a) are a particularly expressive class of program logics that extend regular dynamic
logics (DLs) (Pratt, 1976) with games; just as DLs include Hoare calculi (Hoare, 1969) as
fragments, so do game logics. Thus, CGL includes constructive first-order DL and Hoare
calculus as fragments so that our results for CGL apply to those fragments as well. Those
fragments, let alone games, are also under-studied (Section 4.3).

Part IT studies constructive program logics in depth and consists of three chapters.
Chapter 4 develops a CGL for discrete games; when studying game logic, our results apply
to dynamic logic and Hoare logic, which can be expressed as fragments, while focusing
on generic CGL yields a presentation which might easily be extended to domains beyond
CPS. Chapter 5 specializes CGL to hybrid games, yielding a variant called CdGL which is
suitable for verification of CPSs. Chapter 6 develops a refinement calculus for CdGL and
provides a connection from CdGL back to dL, paving the way for implementation work in
Part III. The practical perspective will be addressed in Part I1I, not PartII.

While constructive program logics have received relatively little study, constructive
logics are widely used for verified functional programming. Programming in constructive
logic relies on the Curry-Howard correspondence (Curry & Feys, 1958; Howard, 1980),
wherein propositions correspond to types, proofs to functional programs, and proof term
normalization to program evaluation. Higher-order constructive logics (Coquand & Huet,
1988) obey the Curry-Howard correspondence and are used to develop verified functional
programs. Programming languages can also have their semantics formalized in constructive
proof assistants such as Coq (Coq Proof Assistant, 1989), after which constructive proof
rules from the metalogic can be used to reason about programs. Both are excellent ways
to develop verified software, but we study something else.

We study the computational content of a program logic itself. Every fundamental
concept of computation is expected to manifest in all three of logic, type systems, and
category theory (Harper, 2011). Because dynamics logics (DLs) such as GL have shown that
program execution is a first-class construct in modal logic, the Logician has an imperative
to explore the underlying notion of computation by developing a constructive GL with a
Curry-Howard interpretation.

The computational content of a proof is especially clear in GL, which generalizes DL
to programmatic models of zero-sum, perfect-information games between two players, tra-
ditionally named Angel and Demon. Both normal-play and miseére-play games can be

1 As opposed to the Hilbert axioms and classical sequent calculus rules used in KeYmaera X, which have
different strengths. Hilbert systems emphasize simplicity of axioms, sequent calculi have advantages for
automated proof search, and natural-deduction systems achieve a close relationship between proofs and
functional programs.
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modeled in GL. In both GL and CGL, the diamond modality (a)¢ and box modality [a]¢
say that some player has a strategy to ensure ¢ is true at the end of «, which is a model
of a game. The difference between classical GL and CGL is that classical GL allows proofs
that exclude the middle, which correspond to strategies which branch on undecidable con-
ditions. CGL proofs do not exclude the middle, thus they correspond to strategies which
are effective and can be executed by computer. Effective strategies are crucial because they
enable the synthesis of code that implements a strategy. Strategy synthesis is crucial be-
cause even simple games can have complicated strategies, and synthesis provides assurance
that the implementation correctly solves the game. A CGL strategy resolves the choices
inherent in a game: a diamond strategy specifies every move made by the current player,
while a box strategy specifies the moves, if any, made by the non-current player. Note
that our own terminology for players differs from standard terminology in the literature;
readers familiar with standard terminology are particularly encouraged to read Section 4.2
for a discussion of how and why our terminology differs.

In developing Constructive Game Logic (CGL), adding constructivity is at the same time
a huge change and a small change. On the one hand, the development of CGL includes the
development of entirely new semantics and a new natural deduction calculus; on the other
hand, our example proofs suggest that the difference between classical and constructive
(discrete) game proofs is almost entirely transparent to the proof author in practice because
non-contrived discrete game proofs rarely branch on undecidable properties. Thus, CGL
gives us the theoretical advantages of a constructive foundation while providing a proof-
writing experience which is expected to agree closely with its classical predecessor.

We outline the numerous ways in which constructivity requires new theoretical devel-
opments for CGL. We provide a natural deduction calculus for CGL (Section4.7) equipped
with proof terms and an operational semantics on the proofs (Section4.9), demonstrating
the meaning of strategies as functional programs and of winning strategies as functional
programs that are guaranteed to achieve their objective no matter what counter-strategy
the opponent follows. While the proof calculus of a constructive logic is often taken as
ground truth, we go a step further and develop a realizability semantics for CGL as pro-
grams performing winning strategies for game proofs, then prove the calculus sound against
it (Section4.8). We adopt realizability semantics in contrast to the winning-region se-
mantics of classical GL because it enables us to prove that CGL satisfies novel properties
(Section 4.10). Compared to the type-theoretic semantics which we will develop in Chap-
ter 5, realizability semantics are a natural choice for a first, most general presentation of
CGL because realizers easily admit an open-ended description: our semantics capture the
computational constructs needed in every CGL without excluding features which may be
desired by domain-specific variants such as CdGL. The proof of our Strategy Property
(Theorem4.20) constitutes an (on-paper) algorithm that computes a player’s (effective)
strategy from a proof that they can win a game. This is the key test of constructivity
for CGL, which would not be possible in classical GL, because GL proves classical exis-
tence of winning strategies, which need not be effective. We show that CGL proofs have
two computational interpretations: the operational semantics interpret an arbitrary proof
(strategy) as a functional program which reduces to a normal-form proof (strategy), while
realizability semantics interpret Angel strategies as programs which defeat arbitrary De-
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monic opponents. Normal-forms help characterize the fragment of proof terms which must
be handled in any static computation which consumes proofs, while the realizability se-
mantics characterize how games are executed dynamically.

This chapter emphasizes the theoretical motivations for CGL and a generic presenta-
tion of them. The example models of this chapter (Section4.5) are introductory discrete
games which can be understood without a background in CPS. In Chapter 5, hybrid game
verification in CdGL will be applied to an example CPS, before the practical advantages
of CdGL are exploited in Part III, whose synthesis algorithm is inspired by Theorem 4.20
from this chapter.

4.2 Player Terminology and Player Constructivity

We compare the terminology used for players in this thesis to various terminologies which
are used in the literature. The comparisons are summarized in Table4.1. The terminologies
vary between different logics which are discussed in greater detail in Section4.3.

A major difference between the logics is the choice of which players are classical vs.
constructive. For that reason, we elaborate on what it means for CGL’s Demon to be clas-
sical before describing the competing terminologies. As will be discussed in Section 4.6.2,
even a classical Demon must present constructive proofs when playing a test, because
CdGL is proof-relevant: Angel’s strategy may branch on the proof which Demon gave to
her. Rather, Demon’s classicality manifests in nondeterministic assignments, choices, and
loops. When Demon resolves a nondeterministic assignment, he is permitted to classically
choose any real number (which Angel, being constructive, is then only permitted to inspect
using inexact comparisons), as opposed to constructively choosing a number by presenting
a term which computes it. When Demon chooses which branch of a Demonic choice to
take, he makes his choice classically, i.e., his branches need not be decidable. His choice of
when to terminate a Demonic loop is classical in the same sense. When Demonic ODEs
are added in Chapter 5, the choice of ODE duration will be classical in the same sense as
nondeterministic assignments, but the proof of the domain constraint will be constructive
in the same sense as tests, so that Angel can inspect its proof.

The names used in each logic can be divided into three categories. Discrete GL and dGL
have two classical players named Angel and Demon, respectively. By making both players
classical, GL and dGL admit classical semantics, which may be desired for simplicity, yet
they unfortunately permit Angel to use strategies which have no interpretation as programs.
The logics CGL and CdGL introduced in this thesis (the latter in Chapter 5) name the players
Angel and Demon, but make Angel play constructively while Demon has more freedom
because he plays classically. It is crucial to make Angel constructive so that her strategies
will only ever use constructs for which code can be synthesized; as examples, any condition
on which she branches must be decidable and whenever she chooses the value assigned by
a nondeterministic assignment, she must give an explicit computation for it. Conversely,
classical Demons are an aesthetic choice which, in our experience thus far, had no major
implications on our semantics and proof calculus but helpfully emphasized that Demon
need not be a computer, particularly in the setting of CPS. Of course, Angel could be
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Logic Player Names Classical Players?

GL, dGL Angel, Demon Both

CGL, CdGL  Angel, Demon Demon

dDGL Verifier, Falsifier Both

Logic (o) Meaning [a]¢ Meaning

GL, dGL Angel moves first, Angel wins Angel moves first, Demon wins
CGL, CdGL  Angel moves first, Angel wins Demon moves first, Angel wins
dDGL Verifier moves first, Verifier wins Falsifier moves first, Verifier wins

Table 4.1: Terminologies for players.

made classical and Demon constructive, which would result in the same logic CdGL, but
with the names of the players reversed.

We also note the logic dDGL (which, as does dGL, targets some version of games) for
its unique player naming convention. The technical differences between dGL and dDGL
are discussed in Section4.3; the present section is solely interested in their terminology
choices. The logic dDGL calls its players Verifier and Falsifier because the first seeks to
make a postcondition true while the second seeks to make the postcondition false. Both
players in dDGL are classical, following the convention set by GL. The choice of the names
Verifier and Falsifier in dDGL is notable because the names directly describe each player’s
goals rather than relying on the reader’s intuitions about the competing goals of an Angel
and Demon.

Not only do the logics vary in the names and constructivity of their players, they also
differ in how their modalities are read or explained in terms of those players. While CGL and
CdGL use the same names Angel and Demon that are used in GL and dGL, the modalities
are explained differently. In GL and dGL, Angel is always in control at the beginning of the
game (first-to-move), so that Demon (second-to-move) only controls choices which occur
under a? duality symbol -¢, where -¢ is a game connective which switches turns as explained
in Section4.4. Because Angel is always first-to-move in GL and dGL, the modalities (a)¢
and [a]¢ are respectively read to mean that Angel or Demon respectively has a strategy
to win game « where their goal is to make ¢ true at the end of gameplay.

In CGL and CdGL however, Angel is not always the player first-to-move, rather Angel
is always the constructively-controlled player, who might move first or second. Thus, CGL
and CdGL read the modalities differently from GL and dGL: modal formula («)¢ means
that Angel has a strategy to win a with goal ¢ when she moves first, while modal formula
[a]¢ means the same player Angel has a strategy to win a with goal ¢ when she moves
second, i.e., if Demon controls top-level choices and Angel controls decisions that appear
under a duality. Our difference in reading owes to the fact that one player is classical
but the other is constructive. As the players take turns throughout gameplay, we must

2The syntax of games allows dualities to be nested. The player first-to-move controls choices that
appear under an even number of dualities, including zero, while the player second-to-move controls those
which appear under an odd number.

144



remember whether the current player is classical vs. constructive, i.e., whether that player
is Angel vs. Demon. In the classical setting of GL and dGL, the players are both classical,
which enables those logics to uniformly call the first player Angel.

The logic dDGL (Quesel, 2013, Ch. 4) is unique in its use of the names Verifier and
Falsifier rather than Angel and Demon. For readers familiar with dDGL, it serves as a
valuable point of comparison because the dDGL reading of the modalities is closer to ours
than GL or dGL: in the dDGL reading, all modalities ask whether Verifier can make a goal
condition true, but ()¢ means that Verifier starts in control and [a]¢ means that Falsifier
starts in control.

If we had chosen the names Verifier and Falsifier, the readings used in dDGL would
work for us as well. Rather, we chose not to use the names Verifier and Falsifier for two
reasons. Constructive logic has no notion of a formula ¢ being false, nor does the absence
of a constructive proof of ¢ mean the negation —¢ is provable, thus the name “Falsifier”
could be misleading in the constructive context. Secondly, this thesis follows the players
from modeling and proof all the way to extraction and execution of strategies. The names
Verifier and Falsifier are primarily meaningful when discussing proofs, while the names
Angel and Demon have a consistent meaning from proof to code: Angel is the player
controlled by code while Demon is the classical adversary.

4.3 Related Work

This work is at the intersection of game logic and constructive modal logics. Individually,
they each have a rich literature, but little work has been done at their intersection. Com-
pared to the following works, we are the first for GL and the first with a proofs-as-programs
interpretation for a full first-order program logic.

Games in Logic. The propositional GL (Parikh, 1983) developed by Parikh was followed
by coalitional GL (Pauly, 2002). A first-order generalization of GL is the basis of differen-
tial game logic dGL (Platzer, 2015a, 2017b) for hybrid games. Separate to dGL, the logic
dDGL (Quesel, 2013, Ch. 4) was developed which also addresses hybrid games but uses a
weaker advance-notice semantics for loops. GLs are unique in their clear delegation of strat-
egy to the proof language rather than the model language, crucially allowing succinct game
specifications with sophisticated winning strategies. Succinct specifications are important:
specifications are trusted because proving the wrong theorem would not ensure correctness.
Relatives without this separation include Strategy Logic (Chatterjee, Henzinger, & Piter-
man, 2007), Alternating-Time Temporal Logic (ATL) (Alur, Henzinger, & Kupferman,
2002), CATL (van der Hoek, Jamroga, & Wooldridge, n.d.), Ghosh’s SDGL (Ghosh, 2008),
Ramanujam’s structured strategies (Ramanujam & Simon, 2008), dynamic-epistemic log-
ics (van Benthem, 2015; van Benthem, Pacuit, & Roy, 2011; Van Benthem, 2001), evidence
logics (van Benthem & Pacuit, 2011). Strategies are not delegated to the proof language in
process calculi (which do not support games) such as Hybrid CSP (Zhou et al., 1995; Liu
et al., 2010), HyPA (Cuijpers & Reniers, 2005), and Hybrid x (Schiffelers et al., 2003) ei-
ther, but process calculi do share some modeling capabilities with GL: specifically, two-way
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communication channels in process algebra can be compared to program variables whose
values can be modified by both players.

Angelic Hoare logic (Mamouras, 2016) features several proof systems, some of which
provide a GL-like separation between specification and proof, some of which do not. The
synthesis of strategies is only considered for the version of their calculus which combines
specification and proof by annotating programs with formulas. Moreover, in all versions of
Angelic Hoare logic, only a class of games called safety games are considered. Safety games
are a strict subset of those supported in GLs; notably, liveness and reach-avoid properties
are not supported.

Constructive Modal Logics. CGL introduces constructive semantics for games, not to
be confused with game semantics (Abramsky, Jagadeesan, & Malacaria, 2000), which are
used to give programs semantics in terms of games. We draw on work in semantics for
constructive modal logics, of which two main approaches are intuitionistic Kripke semantics
and realizability semantics.

An overview of Intuitionistic Kripke semantics is given by Wijesekera (Wijesekera,
1990). Intuitionistic Kripke semantics are parameterized over worlds, but in contrast to
classical Kripke semantics, possible worlds represent what is currently known of the state.
Worlds are preordered by w; > wy when w; contains at least the knowledge in wy. Kripke
semantics were used in Constructive Concurrent DL (Wijesekera & Nerode, 2005), where
both the world and knowledge of it change during execution. A key advantage of re-
alizability semantics (van Oosten, 2002; Lipton, 1992) is their explicit interpretation of
constructivity as computability by giving a realizer, a program which witnesses a fact.
Our semantics combine elements of both realizability semantics and traditional Kripke
semantics: strategies are represented by realizers, but the game state is a Kripke world.
Constructive set theory (Aczel & Gambino, 2006) helps understand which set operations
are allowed in constructive semantics.

Modal semantics have also exploited mathematical structures such as: i) neighbor-
hood models (van Benthem, Bezhanishvili, & Enqvist, 2017), topological models for spa-
tial logics (van Benthem & Bezhanishvili, 2007), and for temporal logics of dynamical
systems (Ferndndez-Duque, 2018), i) categorical (Alechina, Mendler, de Paiva, & Rit-
ter, 2001), sheaf (Hilken & Rydeheard, 1999), and pre-sheaf (Ghilardi, 1989) models, and
iii) coalgebraic semantics for classical Propositional Dynamic Logic (PDL) (Doberkat,
2011). While games are known to exhibit algebraic structure (Goranko, 2003), such laws
are not essential to this chapter. Our semantics are also notable for the seamless interaction
between a constructive Angel and a classical Demon.

CGL is first-order, so we must address the constructivity of operations that inspect game
state. We use rational numbers here, so equality is decidable, while Chapter 5 develops the
CdGL variant of CGL with constructive reals (Bishop, 1967; Bridges & Vita, 2007).

Intuitionistic modalities also appear in dynamic-epistemic logic (DEL) (Frittella, Greco,
Kurz, Palmigiano, & Sikimic, 2016), but DEL focuses on proof-theoretic semantics while
we use realizability semantics to focus on computation. Intuitionistic Kripke semantics
also appear in multimodal System K with iteration (Celani, 2001), a weak PDL fragment.
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Constructivity and Dynamic Logic. While constructive program logics have been
studied significantly less than other program logics or other constructive logics, there have
been several attempts to develop a constructive program logic. With CGL, we bring past
efforts to fruition. Prior work on PDL (Degen & Werner, 2006) sought an Existence Prop-
erty (also called Existential Property) for Propositional Dynamic Logic (PDL), but they
questioned the practicality of their own implication introduction rule, whose side condition
is non-syntactic. Degen cited a first-order Existence Property as an open problem beyond
the methods of their day (Degen & Werner, 2006), and a (weaker semantic counterpart to)
an Existence Property is one of our results. To our knowledge, only one approach (Kamide,
2010) considers Curry-Howard or functional proof terms for a program logic. While their
work is a notable precursor to ours, their logic is a weak fragment of PDL without tests,
monotonicity, or unbounded iteration. In contrast, we support not only PDL but the much
more powerful first-order GL. Lastly, we are preceded by Constructive Concurrent Dynamic
Logic, (Wijesekera & Nerode, 2005) which gives an intuitionistic Kripke semantics for Con-
current Dynamic Logic (Peleg, 1987), a proper fragment of CGL. Their work focuses on
an epistemic interpretation of constructivity, algebraic laws, and a tableaux calculus. We
differ in our use of realizability semantics and natural deduction, which were essential to
developing a Curry-Howard interpretation for CGL. In summary, we are justified in claim-
ing to have the first Curry-Howard interpretation with proof terms and a (weak) Existence
Property for an expressive program logic, the first constructive game logic, and the only
one with first-order proof terms.

While constructive natural deduction calculi map most directly to functional programs,
proof terms can be generated for any proof calculus, including a well-known interpretation
of classical logic as continuation-passing style (Griffin, 1990). Proof terms have been de-
veloped (Fulton & Platzer, 2016) for a Hilbert calculus for dL, but that work focuses on a
provably correct interchange format for classical dL proofs, not constructive logics.

Compared to previous constructive dynamic logics, CGL also supports first-order rea-
soning, assignment, iteration, and duality. The combination of first-order reasoning with
game reasoning is synergistic: for example, repetition games are known to be more expres-
sive than repetition systems (Platzer, 2015a). Our proof calculus (Section 4.7) also includes
a new natural-deduction formulation of monotonicity. Additionally, first-order games are
rife with changing state, which is an important consideration in the design of any (sound)
dynamic logic. Our calculus in particular is designed to provide persistent contexts through
the (automatic) use of ghost variables: when some variable x is modified, formulas of the
context which mention x are soundly renamed to use a fresh variable y standing for the
old value of x. Our use of ghost variables to remember old values of variables foreshadows
the design of the Kaisar proof language in Chapter 7, where the use of labels for references
to past states is reducible to the use of ghost variables. In the appendix (Appendix A.3),
we use our calculus to prove the example formulas.
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4.4 Syntax

We define the language of CGL, consisting of terms, games, and formulas. The syntax
of CGL overlaps greatly with the syntax of dL, but we present the syntax in full for the
sake of clarity. Furthermore, the CGL calculus, in contrast to the dL calculus of Chapter 2,
is not based on uniform substitution. This choice was made to ensure that we do not
distract from developing a constructive GL in the effort to constructively interpret uniform
substitution symbols.

The simplest terms are program variables x,y € V where V is the (at most countable)
set of variable identifiers. Globally-scoped mutable program variables contain the state of
the game, also called the position in game-theoretic terminology. All variables and terms
are rational-valued (Q); we also write B for the set of Boolean values {0, 1} meaning false
and true respectively. For the sake of precision, we inductively define a (closed) language
of terms. However, the term language of discrete CGL should be easily extensible with
any term operators that support basic properties such as coincidence (Lemma4.11) and
substitution (Lemma4.13). In CdGL (Chapter5, Chapter6), we will switch to an open-
ended term language in order to better exploit the term constructs available in type theory.

Definition 4.1 (Terms). A rational term f, g is inductively defined by the syntax
fgw=qla|f+glf-glfdivg|fmodyg

where ¢ € QQ is a rational literal, x a program variable, f + g a sum, f - g a product.

Division-with-remainder and modulus require special attention because they are typ-
ically associated with integers, but all terms in CGL have rational type. In CGL, these
operations are intended for use with values that happen to be integers, but we general-
ize the standard notion of division-with-remainder so that our definition is well-defined
on all rational arguments but agrees with the standard definition on integer arguments.
We define f div g as the integer k which maximizes k - g while satisfying the constraint
k-g < f, thus f div g is not the standard notion of rational division. For example,
2 div % = 2 because 2 - % <2<3- % Our definition also works for negative divisors, which
often require special attention in division-with-remainder. For example, 2 div ’75 = -2
because —2 - _75 <2< -3 _75 We define the remainder uniquely as the number such that
f=fmodg+g-(fdivg). For example, 2 mod % = % because 2 = %+ g - 2. Likewise,
2 mod _75 = % because 2 = $+ _75 -—2. Our division-with-remainder operator is not a focus
of this work, but is presented because it is an important component of classic example
games such as Nim, and because we find it simpler to use a single rational type rather than
introduce multiple arithmetic types. Divisors g are assumed to be nonzero. Negation — f
is defined as —1 - f and subtraction f — g is defined as f + (—g).

While only rational-valued terms are used in CGL models and proofs, Boolean-valued
terms are also used to define the realizer semantics (Section4.6.1). A Boolean term is
simply a propositional combination of comparisons of rational terms.

A game in CGL is played between a constructive player named Angel and a classical
player named Demon. In classical GL, Angel always refers to the current player and De-
mon always refers to the opposite player. In constructive GL and thus in this thesis, the
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meaning of the names Angel and Demon is subtly different: Angel always refers to the
player we control, whose strategy is determined by a proof, while Demon always refers
to the player we do not control. Demon is not required to resolve strategy choices con-
structively®. Because Demon is an adversary, Demon plays an adversarial strategy where
Angel’s worst-case scenario always comes true. In CPSs, for example (Chapter5), Demon
will represent an environment consisting of physics and any adversarial agents. While the
classical terminology is well-established, we find our terminology helpful when discussing
the relationship between proofs and code: classical GL has Angel and Demon switch iden-
tities when they switch turns, but we find it simpler to say that a proof provides a strategy
for a single player Angel who is not always in control, rather than a player who is sometimes
called Angel and sometimes called Demon. However, the classical meaning of Angel and
Demon provides a strong intuitive reading that Angelic choices are resolved existentially
while Demonic choices are resolved universally. We will continue to use the adjectives
Angelic and Demonic to refer to existential and universal choices, respectively. The CGL
definitions of Angel and Demon are also well-suited to the fact that the players in CGL are
asymmetric: Angel’s strategy must be computable while Demon’s strategy is not assumed
to be computable because Demon will often not be a computer, especially in the CPS
context. The author is unaware of any practical example where Angel’s strategy would
benefit from the assumption that Demon’s strategy is computable, rather the difference
between computable and noncomputable Demon strategies is seen as an aesthetic distinc-
tion: because Demon is not meant to be a computer, it is preferable that the semantics of
a Demonic strategy do not assume computability.

When we speak of how “a” player plays a given game, we mean the player who is
next-to-move, and say “opponent” for the other player. When discussing concrete example
games, we say ‘the first player” for the player that makes the first move, and “the second
player” for the other.

Definition 4.2 (Games). The set of games «, § is defined recursively as such:

a,fB =2 z=f|lr=x]aUB|aB]|a"]|a®

Compared to dL, the games of CGL add a duality operator a? and leave out differential
equations, which are rather reintroduced by CdGL (Chapter 5). Discrete systems (dual-free
games) have the same meaning in a GL as they do in the corresponding DL, but we describe
the shared operators of DL and GL using the more general game terminology. The test
game 7¢ is won by exhibiting a constructive proof that formula ¢ currently holds. If the
player does not exhibit a proof, the opponent wins by default: informally, the player who
lost “broke the rules”. In deterministic assignment games x := f, neither player makes a
choice, but the new value of program variable x is computed by evaluating a term f. The
nondeterministic assignment game x := * is played by constructively picking a value for
x : Q. The choice game U (8 is played by constructively choosing whether to play game «
or game [, informing the opponent of the choice, then playing the chosen branch. In the
sequential composition game «; 3, game « is played first, then J is played from the resulting

3In contrast with constructs which resolve strategy choices, tests ?¢ are always constructive in the sense
that they test constructive truth of ¢.
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state. The repetition game o* is played by repeatedly deciding whether to terminate the
loop or to play for (at least) one more round. Loop durations are finite but not bounded;
alternatively, we lose the game by default if we choose to repeat forever. Notably, the exact
number of repetitions can depend computably on the opponent’s moves, so a player need
not know, let alone announce, the exact number of iterations in advance. In the dual game
a?, the players switch between the “player” role and “opponent” role: if Angel was next-
to-move in a?, Demon is next-to-move in «, and vice versa. We parenthesize games with
braces {a} when necessary. Sequential and nondeterministic composition both associate
to the right, i.e., a UBU~vy = {aU{BU~}}. This does not affect their semantics as both
operators are associative, but aids in reading proof terms.

Definition 4.3 (CGL Formulas). The core grammar of CGL formulas ¢ (also 1, p) is given
recursively:

¢ = ()¢ [l ] f~yg

where ~ € {<,<,=,#,>,>} is a binary comparison predicate on rationals.

The defining constructs in CGL (and GL) are the modalities (a)¢ and [a]¢, which are
interdefinable in accordance with the axiom (a?)¢ <+ [a]¢. The CGL modalities (a)¢ and
[a]¢ both indicate that the constructive player Angel has an effective strategy to achieve
postcondition ¢ in game «. The difference is that Angel is the player next-to-move in (a)¢
while Demon is the player next-to-move in [a]¢. We do not develop modalities for the
existence of the Demon player’s classical strategies because classical strategies are already
studied in classical dGL (Platzer, 2015a) and by definition their existence does not imply
the existence of executable code implementing the strategy. That being said, studying the
various combinations of classical and constructive players in future work could be useful
as a way to crystallize the similarities and differences between GL and CGL (corr. dGL
and CdGL): one might wish to know which valid GL formulas are not valid in CGL and
one might also wish to know how the set of valid CGL formulas would be impacted by a
constructivity requirement for Demon. We assume the presence of interpreted comparison
predicates ~ € {<,<,=,%#,>,>}. Because CGL operates over rational numbers, the
comparison predicates are all decidable.

The standard connectives of first-order constructive logic can be derived from games
and comparisons. Verum (true) is defined 1 > 0 and falsum (false) is 0 > 1. Conjunction
oA is defined (?¢)1, disjunction ¢V is defined (?¢U?) true, implication ¢ — ) is defined
[?¢]1, universal quantification Vz ¢ is defined [z := %], and existential quantification 3z ¢
is defined (z:==x)¢. As usual in logic, equivalence ¢ < 1) can also be defined (¢ —
¥) A (¢ — ¢). As usual in constructive logics, negation —¢ is defined ¢ — false and
inequality is defined by f # g = —=(f = g). We will use the derived constructs freely but
present semantics and proof rules only for the core constructs to minimize duplication.
Indeed, it will aid in understanding of the proof term language to keep the definitions
above in mind, because the proof terms for many first-order programs follow those from
first-order constructive logic.

For convenience, we also write derived operators where the opponent is given control
of a single choice before returning control to the player. The dual choice a N 3, defined
{a? U p}4, says the opponent chooses which branch to take, then the player regains control
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of the subgames. We write ¢¥ (likewise for a and f) for the renaming of program variable
x for y and vice versa in formula ¢, and write ¢/ for the substitution of term f for program
variable x in ¢, if the substitution is admissible (Def. 4.14 in Section4.8). The full theory
(Appendix A.4) extends single term substitutions -/ to a (program variable) substitution o
that replaces any finite set of variables x with terms o(x). While the theory is developed
for program variable substitutions ¢ that can replace multiple variables, we primarily use
the singleton substitution -/ in this chapter.

4.5 Example Games

We provide example games to demonstrate the meaning and usage of the CGL constructs.
We start with contrived toy expressions and build to two classic introductory examples:
Nim and cake-cutting. While introductory, these examples are intended to ease the learning
curve of CGL before addressing full hybrid games in Chapter 5 in order to verify CPSs.

Nondeterministic Programs. Every (possibly nondeterministic) program is also a one-
player game. For example, the program n := 0;{n:=n + 1}" can nondeterministically
set n to any natural number because the player has a choice whether to continue after
every repetition of the loop, but is not allowed to continue forever. Conversely, games are
like programs where the environment (Demon) is adversarial, and the program (Angel)
strategically resolves nondeterminism to overcome the environment.

Demonic Counter. Angel’s choices often must react to Demon’s choices. Suppose Angel
moves first in the game ¢ := 10;{c:=c—1Nc:=c—2}";7(0 < ¢ < 2) where Demon
repeatedly decreases ¢ by 1 or 2, and Angel chooses when to stop. Angel only wins because
she can pass the test 7(0 < ¢ < 2), which she can do by simply repeating the loop until
0 < ¢ <2 holds. Because the initial value of ¢ is 10 > 2 and Demon must subtract either
1 or 2 at each step, there must exist a loop iteration in which 0 < ¢ < 2 holds. It is
crucial that Angel need not choose and announce the loop duration in advance, because
fixing or announcing the duration would allow Demon to falsify the test 7(0 < ¢ < 2).
For example, if Angel announces a duration of 5 turns, Demon can repeatedly choose the
branch ¢ := ¢ — 1 and achieve a final value of 5, or if Angel announces a duration of 10
turns, Demon can achieve a final value of —10 by choosing the ¢ := ¢ — 2 branch each time.

Coin Toss. Games are perfect-information and do not have randomness in a proba-
bilistic sense, only (possibilistic) nondeterminism. This standard limitation is shown by
attempting to express a coin-guessing game:

coin:=0Ncoin:=1};: {guess := 0 U guess :=1}: 7guess = coin
{ {g g ;78

The Demon player sets the value of a tossed coin, but does so adversarially, not randomly,
since strategies in CGL are not only computable strategies, but also pure strategies. The
Angel player has perfect knowledge of coin and can set guess equivalently, thus easily
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passing the test guess = coin, unlike a real blind coin toss. Partial-information games are
valuable future work and might be modeled by limiting the variables visible in a strategy.
Even though partial information is not modeled explicitly in CGL, careful ordering
of game statements allows us to approximate private decision-making with adversarial
decision-making. Consider the following rearrangement of the coin toss game:

{guess := 0 U guess := 1}; {coin := 0 N coin := 1}; ?guess = coin

In this game, Angel guesses first and announces the guess to Demon, after which Demon
adversarially chooses the coin value. This adversarial model is conservative in the sense
that Demon can always choose a value of coin that disagrees with guess because he can
simply view the value of guess. The conservative model does still accurately capture the
fact that Angel does not have a strategy to win blind coin toss because Angel does not
know the value of the coin when making her guess.

In a real blind coin toss, Demon’s best strategy is to play randomly and win half of
the time, rather than winning every time through perfect information. However, victory
in CGL is possibilistic rather than probabilistic: if Angel’s best random strategy would win
less than 100% of the time, she does not have a winning strategy according to CGL, where
strategies must be pure.

The possibilistic nature of victory in CGL serves to justify the use of adversarial choice
as an imperfect approximation of random choice. In a random strategy, Demon’s coin
flip would not always disagree with Angel’s guess, but any impure Demon strategy would
sometimes agree with the adversarial choice, i.e., the opposite of Angel’s guess. Because
the random choice would sometimes agree with the adversarial choice, an adversarial model
faithfully models the fact that Angel would not have a pure winning strategy which beats
a random Demon 100% of the time.

We discussed the impact of reordering game statements here because the same close
attention to statement ordering will prove helpful in CdGL when modeling and proving
systems that are simultaneously safe and live (Section 5.2.2).

Nim. Nim is the standard introductory example of a discrete, 2-player, zero-sum, perfect-
information game. We consider misere play (last player loses) for a version of Nim that
is also known as the subtraction game. The name NIM stands for the loop body from the
following CGL model of the game Nim:

NIM*:{{{c::c—1Uc::c—2Uc::c—3};?c>0};

{{c::c—1Uc::c—2Uc::c—3};?c>0}d}

The game state consists of a single counter ¢ containing a natural number, which each
player chooses (U) to reduce by 1, 2, or 3 (c:=c— k). So long as the counter is positive,
the game can repeat with a duration controlled by whichever player moved first. If the
loop repeats long enough, some player will empty the counter, at which point that player
is declared the loser (7¢ > 0).
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Proposition 4.1 (Second-player winning region). Suppose ¢ = 1 (mod 4) and Demon
moves first. The opponent Angel has a strategy to ensure ¢ = 1 (mod 4) as an invariant.
That is, the following CGL formula is provable in the CGL proof calculus (Section 4.7):

¢c>0—cmod4=1— [NIM|c mod4d=1

This implies that Angel wins the game because Demon violates the rules once ¢ = 1
and no move is valid. We now state the winning region in the case that Angel moves first.

Proposition 4.2 (First-player winning region). Suppose ¢ € {0,2,3} (mod 4) initially
and Angel moves first. Then Angel can achieve ¢ € {2,3,4}:

¢>0—cmod4e{0,23} - (NIM)ce {234}

At that point, Angel wins in the next turn by choosing whichever branch results in
¢ = 1 thus forcing Demon to set ¢ = 0 and fail the test 7¢ > 0.

Cake-cutting. Another classic 2-player game, from the study of equitable division, is
the cake-cutting problem (Pauly & Parikh, 2003): The first player cuts the cake in two,
then the opponent gets first choice of a piece. This is an optimal protocol for splitting the
cake in the sense that the first player is incentivized to split the cake evenly, else the second
player could take the larger piece. Cake-cutting is also a simple use of fractional numbers.
The constant CC defines the cake-cutting game. Here z is the relative size (from 0 to 1)
of the first piece, y is the size of the second piece, a is the size of the piece chosen by the
first player, and d is the size of the piece chosen by the second player.

CC=rx=x70<zrx<lLy=1—ux;
{a:=x;d:=yNa:=y;d:=x}
The game is played only once. The first player picks the division of the cake, which must
be a fraction 0 < 2 < 1. The second player then picks which slice goes to whom.

The first player has a tight strategy to get a 0.5 share, as stated in Proposition 4.3.
Proposition 4.3 (First-player winning region). The following formula is valid:

(CC)a > 0.5

The second player also has a computable strategy to get at least a 0.5 share (Proposi-
tion4.4). Division is fair since each player has a strategy to get a fair 0.5 share.
Proposition 4.4 (Second-player winning region). The following formula is valid:

[CCld > 0.5

Computability and Numeric Types. Perfect fair division is only achieved for a,d € Q
because rational equality is decidable. Trichotomy (¢ < 0.5V a = 05V a > 0.5) is a
tautology, so the second player’s strategy can inspect the first player’s choice of a. Notably,
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CdGL (Chapter5) uses constructive reals, for which exact equality is not decidable and
trichotomy is not an axiom. Chapter 5 employs approximate comparison techniques as is
typical for constructive reals (Bishop, 1967; Bridges & Vita, 2007; Weihrauch, 2000). The
examples in this section have been proven (Appendix A.3) using the proof calculus that
will be defined in Section 4.7.

4.6 Semantics

We now develop the semantics of CGL. In contrast to classical GL, whose semantics are
well-understood (Parikh, 1983), one semantic challenge for CGL is capturing the competi-
tion between a constructive Angel and classical Demon. Specifically, Angel must resolve
discrete choices, loops, and nondeterministic assignments constructively, while Demon need
not. We base our approach on realizability semantics (van Oosten, 2002; Lipton, 1992).
The basic idea of realizability semantics is that semantic truth of a formula is witnessed
by a program, called a realizer, which performs any computations that are necessary to
show its truth. For example, a realizer for a disjunction ¢ V ¢ would decide whether the
disjunction should be proved by showing the ¢ branch vs. the ¢ branch. We chose to use
realizability semantics because this chapter seeks to give a generic treatment of CGL and
realizability semantics allow us to express which computational constructs are fundamen-
tal to all CGLs while leaving the language open to future extension with domain-specific
constructs. In that sense, realizability semantics are well-suited to a generic presentation.
The realizability approach also makes the relationship between constructive proofs and
programs particularly clear, which is important because generating programs from CGL
proofs is one of our motivations.

Unlike previous applications of realizability, games feature two agents, and one could
imagine a semantics with two realizers, one for each of Angel and Demon. However,
we choose to use only one realizer, for Angel, which captures the fact that only Angel
is restricted to a computable strategy, not Demon. Moreover, a single realizer crucially
makes it clear that Angel cannot inspect the internal structure of Demon’s strategy, only
the game state and values explicitly passed to Angel by Demon. The single realizer also
simplifies notations and proofs. Because Angel is computable but Demon is classical, our
semantics has the flavor of both realizability semantics and Kripke semantics.

While the CdGL proof calculus (Chapter5) and refinement calculus (Chapter 6) will
ultimately adopt a type-theoretic semantics for the sake of technical elegance, the role of
realizers in CGL also foreshadows the refinement relationships that hold (Chapter6) be-
tween hybrid systems and hybrid games: A game proof specifies a single strategy, whose
possible behaviors are a subset (refinement) of the behaviors allowed by the game. Once
one player has committed to a strategy, all remaining decisions belong to their opponent,
and a system (one-player game) suffices (Chapter 6) to describe the remaining behaviors.
Once a player has committed to a realizer, CGL gameplay proceeds much like execution of a
system, as reflected in our semantics. The superficial similarity in appearance between CGL
and DL semantics does not alter their deep difference: game theorems ask whether there
exist strategies (Def. 4.8) of a game satisfying some property. Quantification over strategy
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existence (Def.4.8) entails significant differences in the proof rules available in DLs vs.
GLs and profound differences (Platzer, 2015a) in their expressive power. Constructivity
specifically entails differences in expressive power as well: as usual, the law of the excluded
middle cannot be applied to undecidable properties. For example, the winnability of a
given game is presumed to be undecidable by analogy to undecidability of first-order (clas-
sical) dynamic logic (Harel et al., 2000, Thm. 13.1). In the case of CGL for discrete games
however, the differences in expressive power between classical and constructive games are
not our focus because practical discrete game proofs rarely branch on undecidable proper-
ties. Rather, we are interested in the semantic difference between classical and constructive
games: in CGL semantics, realizers give explicit witnesses for computable strategies, which
will serve our goal of providing a computational interpretation for CGL proofs.

The semantic functions employ game states w € S where we write S for the set of all
states. Each state w € S maps each x € V to a value w(z) € Q. We use update notation
wl[z — v] to mean the state that agrees with state w except that z is assigned value v
where v € Q.

Definition 4.4 (Arithmetic and Boolean term semantics). The interpretation [f]w of ra-
tional term f in state w inductively applies each term operator (+, -, div, mod) to the values
of subterms, where rational literals are their own values and the value of variable z is w(x).
Division-with-remainder is defined as it is described in Section 4.4. The interpretation [f]w
of Boolean term f in state w employs the rational term semantics to evaluate terms, then
applies the standard semantics of propositional connectives to interpret the Boolean term.

4.6.1 Realizers

To define the semantics of games, we first define realizers, the programs which implement
strategies. The language of realizers is a higher-order lambda calculus where variables can
range over numbers or over realizers which realize a given proposition ¢. Realizers contain
arithmetic and Boolean terms which are used to resolve individual moves during gameplay.
Those terms are open in the sense that they can mention program variables, whose values
will be taken from the state at which a move is chosen. When one realizer accepts another
realizer as its argument, any open terms in the argument realizer are evaluated lazily, i.e.,
it is permissible to evaluate the argument realizer at multiple, arbitrary states. Gameplay
proceeds in continuation-passing style: invoking a realizer returns another realizer which
performs any remaining moves.

We describe the typing constraints for realizers informally, and say realizer b is a (a)¢-
realizer (written b € ()¢ Raz) if it provides strategic decisions exactly when (a)¢ demands
them. We colloquially say b is well-typed if b is a ¢-realizer for some ¢ where the choice
of ¢ is clear in context. The typing constraints for a realizer do not address whether
a given formula ¢ is true, but address whether the shape of the realizer is compatible
with the shapes expected by the formula semantics so that the truth or falsehood of ¢ as a
postcondition of o can be assessed. A major limitation of our realizability semantics is that
precise formal descriptions of the typing constraints are awkward. A major motivation for
our eventual adoption of type-theoretic semantics in Chapter5 is the fact that the typing
rules of existing type theories can more elegantly and implicitly capture the constraints
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which a realizer semantics must express explicitly. While one could argue that the use
of type-theoretic semantics in Chapter 5 will require us to embrace some complexity that
comes with the underlying type theory, the use of type theory will ultimately simplify the
semantics of Chapter 5 because it is simpler to appeal to a system whose complexities are
already well-studied than to reinvent the same complexities from scratch.

Definition 4.5 (Realizers). The syntax of realizers b, c,d, rz € Rz (where Rz is the set of
all realizers) is defined coinductively:

b,c,d (sometimes rz) ==z | f | €| (b,c) | mob | mb | (Az : Q. b)
| (Ax : ¢Rz.b) |bv|bc|if (f)belsec

where x is a variable over realizers and f is an open term which can be evaluated in any
ambient state w. The Roman b, c,d should not be confused with the Greek ,~,d which
range over games. Individual strategic decisions are realized by term realizers f of type
Q or B: rational realizers reuse the CGL term language, while Boolean terms can use
comparisons of rational terms and propositional connectives. The unit realizer ¢ makes
no choices and its value is understood as a unit tuple, written (). Units € realize f ~ g
because rational comparisons, in contrast to real comparisons, are decidable. Conditional
strategic decisions are realized by 1 f (f) belse c where f is a Boolean term; we execute
b if f returns truth when evaluated in ambient state w, else c.

The realizer constructs are not in one-to-one correspondence with the CGL connectives.
The base realizer f resolves both Angelic choices (with a Boolean term) and Angelic assign-
ments (with a rational term), for example. Conditional realizers i f (f)belsec can be used
in any CGL game: assuming f is a well-formed Boolean term, then 1 £(f)belsecisa (a)¢-
realizer whenever both b and c are, for any « and ¢. Realizer (f,b) is a (o« U 3)¢p-realizer if
([fJw,b) € ({0} x {(a)pRz) U ({1} x (8)¢ Rz) for all w. That is, the typing constraint for
(v U B)¢ models a tagged union. The first component determines which branch is taken,
while the second component is a continuation which must be able to play the corresponding
branch. In practice, it is a common idiom to use a conditional realizer i £(f)(0,b)else(1,c)
to decide which branch « or 8 should be played: if f holds, then (0, b) is used to play the
« branch, else (1,c) is used to play the 5 branch. No new typing constraints are needed
by this idiom: if b € (a)¢ Rz and ¢ € ()¢ Rz, then {(0,b),(1,¢)} C (U )¢ Rz by the
Angelic choice rule and 1 £ (f) (0,b) else (1,c) € (U B)¢ Rz by the conditional rule.

Pair realizer (f,b) is a (z:=x*)¢-realizer if [fJw € Q for all w and b € p Rz. The first
component determines a new value v of variable x while the second component demon-
strates the postcondition ¢ in state w[x +— v]. That is, a (x := *)¢ realizer is a pair realizer
(f,b) of a scalar function f of the state and a continuation realizer b for ¢. When a realizer
b computes a pair, the left and right projections are written myb and m b, respectively.

Realizer pairing, written (b, c), is also used to realize both Angelic tests (7¢)y) and
Demonic choices [aU f]¢. Angelic tests (7¢)1p are realized by pairs because Angel is
responsible for proving both ¢ and 1, while Demonic choices [ U §]¢ are realized by pairs
because Angel must prepare proofs of both [a|¢ and [B]¢ because she does not know in
advance which branch « or f Demon will choose to play. A pair realizer is identified with
a pair of realizers: (b,c) € Rz x Rz. In the Angelic test case, realizers b and ¢ must realize
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the test and postcondition formulas ¢ and 1), while the Demonic choice case requires b and
c to realize [a¢ and [f]¢. These typing constraints are a direct reflection of the proof rules
for tests and choices.

Angel’s realizers for box modalities [a]¢ are Demonic in the sense that Demon is al-
lowed to play an arbitrary classical strategy which Angel passively observes, remembering
Demon’s moves so that they can inform Angel’s computable strategy once Angel’s next
turn arrives. Once Angel’s turn arrives, her strategy uses computable functions over the
state to resolve her own strategic choices. The first-order realizer (Ax : Q. c) is a [x := *]¢-
realizer when ¢! is a ¢-realizer for every value v € Q that Demon might choose; Demon
tells Angel the desired value of x, which informs Angel’s continuation c¢. That is, the
typing constraints of first-order realizers are the typing constraints of dependent functions
with scalar arguments. The higher-order realizer (Az : ¢ Rz. c) realizes [?¢]i) when cd
realizes ¢ for every ¢-realizer d. That is, higher-order realizers are simply-typed anony-
mous functions. Demon announces the realizer for ¢ which Angel’s continuation ¢ may
use. Because Demon is entitled to classical strategies, Angel only uses Demon’s strategy
in blackbox fashion, typically by invoking it at the state of her choice or passing it as the
argument to another higher-order realizer. Two functional realizers are considered equal if
they are extensionally equivalent, i.e., if they agree on all arguments*. Tuples are inspected
with projections mob and 7b. An anonymous function is inspected by applying arguments
bv for first-order lambdas and bc for higher-order. Realizers for sequential compositions
(o; B)o (likewise [a; B]g) are (a)(B)¢-realizers: first « is played, and in every case the
continuation plays [ then shows ¢.

In principle, realizers for repetitions a* do not need new realizer language constructs,
as they can be implemented as coinductive streams. However, direct definitions of rep-
etition realizers as streams are awkward, so we will introduce derived realizer constructs
ind(b, ¢, d)p and gen(b, ¢, d) which closely follow the corresponding proof rules we de-
velop in Section 4.7, but which can be implemented as coinductive streams (Appendix A.4).
The implementations (Def. A.3) are in the appendix because their technically-involved con-
struction is best understood after gaining familiarity with realizer semantics and because
the construction uses a low-level implementation (Lemma A.2) of monotonicity (rule M),
which is best understood after reading the proof calculus (Section4.7).

For the sake of generality, we describe the typing constraints for arbitrary repetition
realizers, not only those which employ the derived constructs. The typing constraints for
repetition realizers work by unrolling the iterations of the loop. The realizers of [a*]¢ are
exactly the realizers of the infinite nested conjunction 1 which is the greatest fixed point
of the equation ¢ <> ¢ A [a]t), that is, the nested infinite conjunction which proves the
postcondition ¢ after every finite number of iterations. The realizers of (o*)¢ are realizers

4The presence of an extensionality rule does not mean that we assume an extensional meta-logic in
the sense of extensional type theory. In fact, the type-theoretic development of Chapter5 will use an
intensional type theory. In typical usage, the difference between an intensional and extensional theory
is whether or not the definition of type (or proposition) equivalence contains an extensionality rule. We
need not even distinguish between an intensional and extensional theory because we define no equivalence
judgement on propositions. The object-level equivalence reasoning used to show equivalence of realizers in
semantic proofs is a standard feature even in intensional theories.
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of the infinite disjunction v which is the greatest fixed point of the equation ¢ <+ ¢V ()1,
but only those realizers which always eventually take the left branch of some disjunction.
The requirement to eventually take the left branch amounts to a requirement that every
Angelic loop eventually terminates, which is a standard requirement in the semantics of
loops in DLs and GLs. The nested disjunctive structure is faithful to the requirement that
the duration of a loop is decided interactively rather than in advance: Angel repeatedly
decides whether to stop after each individual loop iteration, whereas a single top-level
infinite disjunction would be incorrect by forcing Angel to choose the exact duration before
playing even the first iteration.

Demonic loop realizers, in contrast, do not feature any special typing constraint to
ensure termination, because it is Demon’s job, not Angel’s job, to ensure they terminate.
If Angel happens to write a realizer for a Demon loop that is capable of playing infinitely
many loop iterations, she has exceeded her requirements, because she was only required to
support finite plays. Because it is Demon’s responsibility, termination of Demonic loops
will be implicitly enforced by the fixed-point definition of loop semantics (Def. 4.11) rather
than by a realizer typing constraint.

The derived realizer construct for Demonic loops is gen(b, ¢, d), which corresponds
directly to the loop invariant rule [%]I which we will introduce in Section4.7. Demonic
loop realizers are like coinductively-generated streams: the generator b proves the base
case of an invariant, the inductive step ¢ updates the generator (invariant proof) at each
loop iteration, and the postcondition step d generates a proof of the postcondition given
current generator value (i.e., current proof of the invariant).

The derived Angelic loop realizer construct ind(b, ¢, d),, corresponds directly to the
convergence rule (x)I which we will introduce in Section4.7. Both Angelic and Demonic
loop proofs work by invariant arguments, but Angelic proofs are additionally equipped with
termination metrics M which decrease under some ordering > after every loop iteration
until terminating when the metric reaches some bound 0. In an Angelic loop realizer, b
shows that some invariant condition holds initially, ¢ shows that the invariant is maintained
in each iteration while a termination metric M decreases, and d shows that a postcondition
follows from the invariant and termination of the metric.

We require that the termination metric M is effectively-well-founded (Hofmann, van
Oosten, & Streicher, 2006) under the ordering . Well-foundedness is the foundation
of sound loop induction rules. Our proof calculus (Section4.7) will introduce one such
rule (x)I, whose soundness proof relies on the effective well-foundedness property. Strictly
speaking, we only require an effective descending chain condition, which we derive from
effective-well-foundedness. Our effective descending chain condition is a constructive coun-
terpart to the standard notation of descending chain condition which can be used to show
well-foundedness of classical relations. Nonetheless, we discuss our condition in the context
of effective well-foundedness because effective well-foundedness is a more widely-known and
widely-studied condition than ours.

In Def. 4.6, we repeat the standard definition of effective well-foundedness from the
literature (Hofmann et al., 2006).

Definition 4.6 (Standard Definition of Effective Well-Foundedness). Let > be a relation
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on some set X, then the metric > is effectively well-founded iff the following induction
principle is sound constructively:

e Assume Y C X.

* Assume Ve (Vy (z>~y—y€eY)—zeY)

e Then X =Y.

We define a relation > on set S to have the effective descending chain condition if it is
constructively provable that every strictly descending sequence of elements of S is finite:
Definition 4.7 (Effective Descending Chain Condition). Let > be a relation on some
set X. Let Seq(X) be the set of sequences over X and S; be the ith element of S for
S € Seq(X). Element S; is defined for all i € Dom(S) where Dom(S) is the domain of S.
Set FiniteSeq stands for the set of finite sequences drawn from X. Then > has the effective
descending chain condition iff the following condition holds constructively:

(VS € Seq(X) (Vij € Dom(S) i< j— S; = Sj)) = S € FiniteSeq

That is, a relation has the effective descending chain condition if it is constructively prov-
able that every descending sequence is finite.

The literature (Hofmann et al., 2006) shows that effective-well-foundedness implies a
condition (which we call no-infinite-descent) which is classically equivalent to our effective
descending chain condition: there does not exist an infinite descending chain. Rather than
try to prove that the no-infinite-descent property implies the effective descending chain
condition, we directly show that effective well-foundedness implies the effective descending
chain condition. Note that the literature observes (Hofmann et al., 2006) that the effective-
well-foundedness condition is stronger than the no-infinite-descent condition, but we have
found the effective descending chain condition strong enough for our purposes of showing
that inductive reasoning on loops is sound.

Lemma 4.5 (Effectively Well-Founded Implies Effectively Descending). Let > be an ef-
fectively well-founded relation on some set X. Then > satisfies the effective descending
chain condition on X.

Proof sketch. The proof is in Appendix A.4. The proof is by induction on the value of
the first element of an arbitrary descending sequence using the induction principle on
effectively-well-founded relations. Assume that all descending sequences whose initial value
is lesser are finite. Every descending sequence is either at most one element (thus finite) or
has a head and nonempty tail. The tail has a smaller initial element and is thus finite by
the inductive hypothesis. To complete the induction, finiteness is preserved when adding
back the head.

The induction shows that all non-empty descending sequences are finite. The empty
sequence is clearly finite, which completes the proof. n

In this thesis, realizers are already a semantic concept, used to define the meaning
of games and formulas. For that reason, an in-depth semantics of realizers would likely
be circular or at least provide limited insight. Thus, we do not develop the semantics of
realizers in depth, yet the CGL soundness proof will necessarily include semantic lemmas
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about realizers, characterizing how their meaning changes across different states or under
syntactic transformations.

Those lemmas employ an eager forcing semantics of realizers: [b]w is the realizer value
that results from replacing the free variables x of b with w(x) and evaluating. Because
the realizer language includes functions with scalar arguments (for example), the result of
forcing could be a function. The body of the result is computed by forcing the original
body after updating the state in accordance with the value of the function argument.

The use of an eager semantics contrasts with the lazy use of realizers in CGL semantics,
but enables a simpler technical development. The gap between eager and lazy semantics
is bridged wherever realizer lemmas are applied by locally applying lemmas when the CGL
semantics do evaluate of a realizer. One prominent lemma for reasoning about realizer
forcing will be the realizer case of the coincidence lemma (Lemma4.11), which relies on a
notion of free variables FV(b) of a realizer b. The free variables FV(b) of a realizer b are
those which appear syntactically in a free position anywhere in realizer b, even in parts
of b which will not be used until future states. Thus, the set FV(b) can be surprisingly
large, but luckily the large size of FV(b) will not interfere with the key use of Lemma4.11:
reasoning about fresh ghost variables, which definitionally do not appear free.

4.6.2 Formula and Game Semantics

A state w paired with a (continuation) realizer b that plays any following game is called
a (proper) possibility. In addition to proper possibilities, the semantics also feature two
distinguished (pseudo-)possibilities T, L (not to be confused with formulas true and false)
indicating that Angel or Demon respectively has won the game early by forcing the other
to fail a test. Thus, the set Poss of all possibilities is defined by Poss = (Rz x S)U{T, L}.
We write variable poss for an arbitrary possibility which need not be proper.

A region (written X,Y,Z) is a set of possibilities, e.g., X C Poss. A region X is a
proper region if X N{T, L} = 0. We write [¢] C ¢ Rz x S for the proper region which
realizes formula ¢. We now define validity of formulas, which is an essential concept since
soundness of our proof calculus (Section4.7) shows all provable formulas are valid.
Definition 4.8 (Validity). A formula ¢ is valid iff there exists some realizer b that uni-
formly realizes formula ¢ in every state, i.e., {b} x & C [¢]. A sequent I' F ¢ is wvalid iff
the formula AT — ¢ is valid, where AT is the conjunction of all assumptions in T

The game semantics are region-oriented, i.e., they process possibilities in bulk, though
Angel chooses a possibility from a starting region X C Poss and commits to it before
gameplay begins. In contrast to the formula semantics, the game semantics allow initial
and final regions to contain T and L. The Angelic semantics X {(«)) C Poss and Demonic
semantics X [[a]] C Poss compute the game’s ending region as a union of possibilities which
Demon can achieve through adversarial play once Angel has committed at the start to
any possibility drawn from the starting region X. The semantics X (o)) and X[a] differ
only in whether Angel or Demon moves first. Recall that pseudo-possibilities T and L
represent early wins by each of Angel and Demon, respectively. For the sake of readability,
the definitions below describe the case where X is a proper region, but they extend to
the case L € X (likewise T € X) using the equations (X U {L})[a]] = X[a]] U{L} and
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(X U{L}){a) = X{a) U{L}. That is, if Demon has already won by forcing an Angel
violation initially, any remaining game can be skipped with an immediate Demon victory,
and vice-versa.

The game semantics exploit the Angelic projections Zp, Z(1y and Demonic projections
Zjo), Z|1), which represent binary decisions made by a constructive Angel and a classical De-
mon, respectively. The Angelic projections, which are defined Zy) = {(mb,w) | [mobJw =
0,(b,w) € Z} and Zyy = {(mb,w) | [mobJw = 1, (b,w) € Z}, first project mb to get a
Boolean term which encodes Angel’s strategy for choosing a branch. The projection in-
spects Angel’s choice [mob]w for the current state w to filter only those possibilities which
take the left or right branch, respectively, as determined by Angel’s strategy. The projection
mb gives the continuation realizer for any following game or formula. The Demonic pro-
jections, which are defined Zjg = {(mb,w) | (b,w) € Z} and Zp) = {(mb,w) | (b,w) € Z},
contain the same states as Z, but project the realizer to tell Angel which branch Demon
took. Every projection operator is a no-op when applied to a pseudo-possibility T or L,
returning the same pseudo-possibility T or L.

Definition 4.9 (Formula semantics). The formula semantics [¢] € Rz x S is inductively
defined, simultaneous with the definition of the semantics of games. Specifically, the for-
mula semantics are defined as:

w)t{a) < ([oJU{T})
b,w)}[e]] € ([¢]U{T})

Comparisons f ~ g defer to the term semantics, so the interesting cases are the game
modalities. The similarity between the semantics of [a]¢ and (a)¢ is almost startling
when compared to dynamic logics such as dL. The dynamic logic modalities ()¢ and [a]¢
respectively say that some or all behaviors of game « satisfy postcondition ¢, so it may be
surprising that the CGL semantics of both (a)¢ and [a]¢ say that all behaviors of the game
must satisfy postcondition ¢. The key difference between the dL semantics and the CGL
semantics is that nondeterminism in the CGL semantics always represents the opponent
Demon, while the realizer always captures the strategy of our player Angel. The semantics
of (a)¢p and [a]¢ both require that there constructively exists an Angel strategy which
achieves the postcondition ¢ for all classical Demon strategies, with the crucial difference
being whether Angel or Demon makes the first move. In both cases, early Angel wins T
are a special case which arises when Demon fails a Demonic test. Early Demon wins L are
a special case which arises when Angel fails an Angelic test which, though not explicitly
mentioned in the definition of [(a)¢] or [[a]¢], play an important role. If Angel fails a
test, then it will be the case (in the Angelic semantics, for example) that L € {(b,w)}{(«a))
and thus the inclusion {(b,w)}{a) C ([¢] U{T}) will not hold (because L never belongs
to [¢] for any ¢). This is exactly what we desire: if Angel loses a test, then the test failure
will cause her to lose the game early, in which case she should not be able to prove the
truth of a modal formula, because such formulas represent her victory.

Definition 4.10 (Angel game-playing forward semantics). We inductively define the region
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X {(«)) C Poss in which o can end when Angel plays first from X C Poss.

X((?¢) = {(mb,w) | (mob,w) € [¢] for some (b,w) € X }
U{J_|(7r0b w) ¢ [¢] for all (b,w) € X }
|

Xz :=[) = {(bwlz = [flw]) | (b,w) € X}

X (@ :=#)) = {(mb,w[z = [mob]w]) | (b,w) € X}
X{e; B) = (X {a))(B)

X{aUB) = X () U Xy (5)

Definition 4.11 (Demon game-playing forward semantics). We inductively define the
region X [[a]] C Poss in which « can end when Demon plays first from X C Poss:
X[[?¢]] = {(bc,w) | (b,w) € X, (c,w) € [¢], for some c € Rz}
U{T | (b,w) € X, but there is no (c,w) € [¢]}

X[z = f] = {(b,w[z = [f]w]) | (b,w) € X}
X[z:=+]] = {(bgwlzr —q]) | ¢ € Q}
Xa; 8] = (X[a][A]
XU ]| = Xpgy[[o]] U Xy [[6]
X[o] = (%) S Poss | X U (Zyle])) € 7}
X[[a®] = X (o))

Angelic tests 7¢ end in the current state w with remaining realizer mb if Angel can
realize ¢ with myb, else end in early Demon victory L. Demonic tests dually require Demon
to present a realizer ¢ as evidence that the precondition holds, which becomes the argument
to Angel’s higher-order realizer. While Demon is permitted to resolve choices classically,
tests require him to present constructive evidence because of proof-relevance: Angel’s
strategy may branch on how Demon proved a test condition. If Demon cannot present
a realizer (i.e., because none exists), then the game ends in T so Angel wins by default.
Angelic deterministic assignments consume no realizer and simply update the state, then
end. Demonic deterministic assignments x := f deterministically store the value of f in
x, just as Angelic assignments do. Angelic nondeterministic assignments = := % retrieve
from the realizer a term mob which is evaluated in the current state to compute a new
value for x. In Demonic nondeterministic assignment x := %, Demon chooses to set x to
any value, which is announced to Angel. Angelic compositions «; 3 first play «, then play
[ from the resulting state using the resulting continuation. Angelic choice games o U 3
use the Angelic projections, which appeal to the realizer (myb) to decide which branch is
taken because Angelic projection means Angel chooses the branch. When Demon plays
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the choice game o U 3, Demon chooses classically between o and 3. The realizer mb
may be reused between « and [, since mb could just invoke myb if it must decide which
branch has been taken. This definition of Angelic choice (corresponding to constructive
disjunction) captures the reality that realizers in CGL, in contrast with most constructive
logics, are entitled to observe a game state, but they must do so in computable fashion. In
contrast, Demonic choice (Def. 4.11) will use Demonic projections which represent the case
where Demon chooses the branch taken. The semantics of Demonic choices will require
that Angel is prepared to play either branch, rather than a specific branch of her choice
(mob). The semantics of dual game a? switches control to the opposite player and plays
a. Constructivity of Angelic duration control of CGL loops is enforced easily: it is an
immediate result of the fact that termination conditions (my(bc)) are computable.

The paragraphs that follow will discuss the semantics of repetition and duality in much

greater depth. Before doing so, we note that semantic functions satisfy a monotonicity
lemma which will prove useful in the discussion of repetition. For example, monotonicity
guarantees that the least fixed-point constructions for Angelic and Demonic loops have
least fixed points by Knaster-Tarski (Harel et al., 2000, Thm. 1.12).
Lemma 4.6 (Monotonicity). Assume X CY and let ¢ be an arbitrary CGL formula. In
each respective claim, let b € (a)p Rz or b € [a]¢p Rz for every realizer b in'Y so that the
realizers in' 'Y have the shapes expected by the semantic functions, e.g., realizers of Angelic
tests are pairs.

* X{o)) CY{)

* X[of) € Y[d]

Proof summary. By simultaneous induction on games « for Angel and Demon. For the
proof, see Appendix A 4. O]

Repetition Semantics. The semantics of Angelic and Demonic loops are defined as
(least) fixed points. The use of fixed points is motivated by the fact that, as in other
GLs (Platzer, 2015a, 2017b; Parikh, 1983) which also use fixed-point semantics, the se-
mantics of loops must carefully avoid giving an opponent advance notice of loop duration.
Notably, the loop game o is distinct from a game which chooses a finite duration k£ and
then plays for k repetitions, which we denote o!Y. In both CGL and GL, an advance-notice
loop is distinct from a no-advance-notice loop, and differs in its winning conditions. That
is, there exist games o and postconditions ¢ (such as the Demonic Counter example from
Section 4.5) such that

()¢ 4 (a)o
where the advance-notice loop can be defined by

N =k:=%{7k>0,a;k:=k—1};7k <0,

for fresh variable k representing the loop duration. The subtlety of game loop semantics
also manifests as differences in the set of axioms supported for games loops vs. system
loops. For example, the following axiom of DL holds in neither GL nor CGL, because on
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the left-hand side, the decision whether to repeat the loop body is made after running «,
but on the right-hand side, that decision is made before the final execution of «:

(@) (a™)¢ & (") (a)d

We first describe our own semantics and then discuss the relation to a different fixed-
point semantics for loops which is commonly used in GLs (Platzer, 2015a, 2017b; Parikh,
1983). The final region of Angelic loop a* from starting region X is the projection -
of the intersection of all regions Z which contain both X and Zy){(«)). We describe the
intuition behind this construction. The outer left Angelic projection Zy) says that the
final possibilities of the loop should only be possibilities where Angel actually decided
to stop the loop, i.e., (b,w) € Z such that Angel decided to stop the loop by returning
[mobJw = 0. Recall that the typing constraint for loops says that Angel will (always)
eventually terminate the loop. The fixed-point construction for Z captures intermediate
states of the loop, i.e., it captures loop execution until but not including the decision to
terminate, which is instead captured by Z. The intuition for this construction is that a
loop is allowed to either run for zero iterations (X C Z) or run for at least one iteration
Zy(o) € Z, where the latter case uses the right Angelic projection Z;;y to ensure the
loop body « is only played starting from (proper) possibilities (b,w) € Z where Angel’s
realizer decides to continue the loop ([mobJw = 1).

The Demonic loop semantics are also defined as a least fixed point, which is notable
because greatest fixed points® are often used in the semantics of Demonic loops (Platzer,
2015a, 2017b; Parikh, 1983). The semantics of Demonic loops is highly symmetric to the
Angelic semantics. The final states of the loop are defined by the left Demonic projection
Zjg). Recall that in contrast to Angelic projection, the Demonic projection Zy always
contains every state of Z. This is as it should be because Demon can choose to stop the
loop after any finite number of repetitions. Rather, the difference between Z and Zj
is that in Zjg, Demon tells Angel that he has chosen to stop the loop by projecting the
left element myb of each realizer b. In the fixed-point construction, X C Z indicates that
Demon can choose to run the loop for zero iterations, while Zpjj[[a]] € Z indicates that
Demon can choose to run for at least one execution, in which case he uses Zj to tell Angel
that he has chosen to continue playing the loop.

We briefly reflect on why Demon’s loop semantics are defined as least fixed points here,
rather than the greatest fixed points used in both the literature (Platzer, 2015a, 2017b;
Parikh, 1983) and in Chapter5. To do so, we briefly discuss the loop semantics from
dGL (Platzer, 2015a, 2017b), the classical predecessor of CdGL (Chapter5). In dGL, as in
proposition GL (Parikh, 1983), the semantics of games are defined in backward-chaining
fashion, in the sense that initial winning-region of a game is determined as a function of
the final goal region. For a game « and final region (of states) X C S, dGL writes ¢, (X)
for the initial Angelic winning region and d,(X) for the initial Demonic winning region. In

5The difference between our use of least fixed points and others’ use of greatest fixed points is unrelated
to the difference between our description of box modalities as modalities where Angel wins when she plays
second and others’ description of box modalities as modalities where Demon wins. It is a result, rather,
of the fact that our semantics determine final regions from initial regions and not vice versa.
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the backward-chaining, winning-region semantics, the semantics of loops are defined by:

w(X)=(NZ2CS|XUc(2)C 2z}

bur(X)=|J{ZC S| ZCXN6.(2)}

Angel’s winning region is constructed inductively as a least fixed point: Angel can either
win in zero turns if she is already in the goal region, or she can win in at least one round
if the first round takes her to another state from which the loop is winnable. Demon’s
winning region is constructed coinductively as a greatest fixed point: for Demon to win,
he must already be in the winning region and must remain able to win the loop game
(indefinitely into the future) after playing the body «. Coinduction is the natural choice
for Demonic loops because winning a Demonic loop requires staying in the goal region
indefinitely, no matter how many times we are forced to repeat the loop.

We introduced the dGL semantics of loop games because doing so makes it clear that
our forward-chaining definition looks significantly different on the surface, particularly in
the case of Demon. Our Demonic loop semantics are constructed using a least fixed point,
but the winning-region semantics use a greatest fixed point. Because (Angel’s) strategies
for Demonic loops are coinductive in nature, we should expect coinduction to make an
appearance in the semantics of Demonic loops, just as it did in dGL. It does, but CGL uses
coinduction in the realizer language rather than the definition of the semantic function.
Coinductive realizers allow writing strategies which can play a Demonic loop indefinitely.

The use of a least fixed point for Demonic loop semantics is made less surprising upon
remembering that we compute the final region as a function of the initial region, and that
realizers are given to the semantic function as an argument, i.e., as one component of each
proper possibility in the initial region. Given an initial state and realizer for Angel, the
set of final possibilities is naturally understood as inductive for both Angelic and Demonic
loops. Specifically, the forward-chaining semantics of both Angelic and Demonic loops
are constructed by splitting into two cases: either execution finishes in zero iterations or
one iteration is executed after which the loop potentially repeats. The least such set of
states is the set of all final states reached after a finite execution, regardless of whether the
loop is Angelic or Demonic. Rather, Angelic and Demonic loops differ in their projection
operators and in which player controls the body. Angelic projection operators consult
Angel’s strategy to decide whether to stop the loop, so that for a fixed realizer, the loop
duration will depend only on choices made by the opponent Demon during each iteration
of the loop body. In contrast, the use of Demonic projection in the Demonic semantics
means that the loop is always allowed to repeat for any finite number of repetitions,
without consulting Angel. Not only is an inductive definition natural, but any attempt
at a coinductive definition of the forward-chaining semantics would likely be incorrect,
because we wish to capture only execution traces where Demon eventually stops the loop,
and a coinductive definition of the final region would likely include infinite execution traces.

We now discuss how our fixed-point semantics can be related to an iterative semantics
which is sometimes more convenient for use in proofs: upon proving that every loop ex-
ecution terminates in finitely many steps, we can write a semantics which partitions the

165



execution traces of a loop by their duration. This iterative semantics is useful because it
allows inductive semantic proofs to use induction on the natural numbers, which is often
easier to understand than induction on fixed-point constructions. Before introducing the
iterative semantics and proving its equivalence, we prove a key formal result: our forward-
chaining semantics is Scott-continuous. Scott-continuity holds in the backward-chaining
dGL semantics when applied to systems (Platzer, 2015a, Lem. 3.7), but not all games.
Scott-continuity is important to understanding our semantics because Kleene’s fixed-point
theorem (Cousot & Cousot, 1979) guarantees that iteration of a Scott-continuous operator
reaches its (least) fixed point within at most w iterations (i.e., its closure ordinal is at most
w), thus the solution of the least fixed-point construction is equal to the union of all finite
iterations: i.e., the final region of a loop is the union of all finite-duration loop executions.

As alluded to in the introduction of Section 4.6, our forward-chaining semantics bridge
the worlds of games and systems by requiring Angel to commit to a strategy, after which
the execution of a fixed strategy behaves like a system. Because system semantics are
Scott-continuous, it is unsurprising that our semantics, which describe how a game evolves
once fixing Angel’s strategy has caused it to behave like a system, is as well.
Lemma 4.7 (Scott-continuity). Let a be a game and ¢ a formula. Let {X;} be a (non-
empty) family of regions where i ranges over some indez set J.

In each claim and for all i € J, respectively let b € (a)¢pRz or b € [a|p Rz for all
realizers b in each X;, to ensure the semantics of o are well-defined. Then

UXied) = (U X:) ()

ieJ ieJ
Uxilla]) = (X3l

In addition, the Angelic and Demonic projection operators are all Scott-continuous.

Proof summary. The proofs for the projection operators are direct. The proof of each
game claim shows that the set on each side includes the other as a subset, thus they are
equal. The converse directions (i.e., left-hand side is a subset of right-hand-side) hold by
Lemma4.6 because X; C Uie ; X; for each ¢ € J. The forward directions are proved by
simultaneous induction on games for Angel and Demon. Each of the two cases for loops
uses an inner induction on the fixed-point construction from the loop semantics. The full
proof is in Appendix A 4. O

Next, we will show that the fixed-point semantics of a loop is equivalent to the union of
finite iterations of the loop. To do so, we introduce an “iteration” operator which iterates
the semantics of a game:

Definition 4.12 (Iterative CGL semantics). We define the k-step Angelic and Demonic
iterations recursively for k € N, i.e.,
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Remark 4.1 (Pre-iteration and post-iteration). Pre-iteration and post-iteration agree in the
following sense:

(X ) fa)® = (X{a)™) oy o (Xpllal)[a]" = (X[a])) o]

Proof summary. By induction on k (Appendix A.4). [

The iterative semantics agree with the fixed-point semantics:
Lemma 4.8 (Alternative semantics). The CGL fized-point definition of repetition agrees
with the iterative definition with closure ordinal w:

Proof Summary. By Scott-continuity and Kleene’s fixed-point theorem. m

While winning-region semantics of GLs also admit an inflationary characterization along
the lines of our iterative semantics (Platzer, 2015a), closure ordinals in winning-region
semantics often exceed w (Platzer, 2015a) so that an inflationary characterization often
requires (Platzer, 2015a) unions indexed by large ordinals. Scott-continuity simplifies our
semantics in that we can characterize loop semantics with unions over natural numbers
and avoid the use of large ordinals. Because the iterative and fixed-point semantics are
equivalent, we could have chosen to simply define the semantics of a loop as the union of
finite repetitions of the loop body. However, we chose to define the semantics as a fixed-
point both in order to evoke a mental connection with the backward-chaining semantics
of loops and in order to force ourselves to explore the relationship between iterative and
fixed-point semantics.

We summarize our exploration of loop semantics by emphasizing that the fundamental
nature and fundamental challenges of game loop semantics are the same between GL and
CGL and that Lemma 4.8 does not imply an advance-notice semantics for CGL, nor is the
following loop-reordering axiom of DL a valid axiom of CGL:

(@) (a®)¢ & (") (a)d

In CGL, (and GL generally) winning the right-hand side of the loop-reordering axiom is
more difficult than the left because Angel is not allowed to decide to stop after ¢ is
achieved; she must commit to terminate one round before termination actually occurs.
Over systems in dL, in contrast, the two sides are equal because system loop durations are
only nondeterministic, not adversarial. Constructivity aside, the major difference between
GL and CGL is not the meaning of loops, but the style of semantic presentation. Because a
game with a fixed strategy acts much like a system, CGL is amenable to a forward-chaining
semantics which determines final states as a function of initial states. The missing link
between CGL semantics and DL semantics, and the reason for different axioms between DL
and CGL, lies in the definition of validity for CGL formulas: a CGL game modality (a)¢, is
valid iff there exists an Angelic strategy for a where postcondition ¢ holds for all classical
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Demon behaviors. To show a modality, Angel first picks her strategy, then analyzes the
system-like evolution of the game under the strategy. Needing to find a strategy can make
a formula harder to show: in the loop reordering axiom, for example, the right-hand side
does not always have a strategy for the postcondition when the left side does.

We have discussed this topic at length not because the forward-chaining semantics are
fundamentally more complicated, but because the departure from backward-chaining GL
semantics may come as a surprise to readers familiar with the backward-chaining semantics.
On the contrary, forward-chaining semantics allow our semantic proofs about games to use
techniques such as induction on natural numbers that are familiar from analysis of loops in
DL. Insofar as natural-number induction is simpler than fixed-point induction, we enable
simpler semantic proofs.

Duality Semantics. To play the dual game a¢, the players take turns: if Angel was
playing, Demon takes over gameplay of o with Angel in the “opponent” role, and vice-
versa. In classical GL, this characterization of duality is interchangeable with the definition
of a? as the game where Angel plays against herself as an adversary, i.e. Angel tries to
lose o and wins a? if o is not losable. The two characterizations are not interchangeable in
CGL because the Determinacy Axiom (all games have winners) of GL is not valid in CGL:
Remark 4.2 (Indeterminacy). The classically-equivalent determinacy axiom schemata of
classical GL, =(a)—¢ — [a]¢ and (a)—¢ V [a]p, are not valid in CGL, because they imply
double negation elimination. Intuitively, they should not be valid in CGL because if they
were, the existence of Angelic winning strategies for arbitrary games would be decidable.
Remark 4.3 (Classical duality). In classical GL, Angelic dual games are characterized by the
axiom schema (a?)¢ «+ —(a)—¢, which is not valid in in CGL. It is classically interdefinable
with (a?)¢ < [a]e.

The determinacy axiom is not valid in CGL, so CGL relies on the classically-equivalent
duality axiom (a?)¢ <+ [a]¢ which is valid in CGL. The difference between classical and
constructive duality axioms helps to explain the different terminologies for Angel and De-
mon in classical vs. constructive GL. In classical GL, two-player games can be understood
as games with one player who competes with themself, so it is natural to say that a single
player Angel is always the player next-to-move. In CGL, gameplay against an opponent
cannot be reduced to self-play, so we characterize duality as true turn-taking between dis-
tinct players Angel and Demon. In our player terminology, we read the axiom (a?)¢ « [a]¢
as saying that Angel has a winning strategy where she moves first in o with postcondition
¢ iff she has a winning strategy for a with postcondition ¢ where Demon moves first.

Semantics Examples. The realizability semantics of games are subtle on a first read, so
we provide examples of realizers. In these examples, the state argument w is implicit, and
we refer to w(x) simply as x for brevity. To understand the (defined) realizers for loops,
you are encouraged to read ahead to the definitions of rules (x)I and []I in Section4.7,
because the defined realizers follow the same structure as the proof rules.

Recall that [?¢]y and ¢ — 9 are equivalent. For any ¢, the identity function (Ax :
¢Rz. x) is a (¢ — ¢)-realizer: for every ¢-realizer x which Demon presents, Angel can
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present the same x as evidence of ¢. This confirms expected behavior per propositional
constructive logic: the identity function is the proof of self-implication.

In example formula ({z:=x}%{z: =2 Uz :=—x})z > 0, Demon gets to set x, then
Angel decides whether to negate x in order to make it nonnegative. It is realized by
(Az: Q. ((1f (z <0)1lelse0),¢)) where the comparison z < 0 is a rational comparison,
which is decidable. First, Demon announces a new value of x. Once the new value of x
has been updated in the state, Angel’s strategy is to check the sign of x, taking the right
branch when x is negative and the left branch otherwise. In general, a conditional realizer
tests the truth of a Boolean term (here, x < 0) in the current state, then reduces to the
corresponding branch. In this example, each branch contains a deterministic assignment
which consumes no realizer, then the postcondition x > 0 has trivial realizer e.

Consider the formula ({x :=x + 1}")z > y, where Angel’s winning strategy is to re-
peat the loop until x > y, which will occur as = increases. While Angelic loop realizers
can be defined manually, most realizers will follow a fixed format (Def. A.3) in practice.
The Angelic loop realizer ind(b, ¢, d)o( encodes a convergence argument built on a loop
termination metric M, a base case b, inductive step c, and postcondition step d. We now
identify which values of b, c,d, and M will realize formula ({z :=z + 1}")z > .

The base case establishes that some invariant predicate ¢ holds initially. In this exam-
ple, the trivial predicate ¢ = true suffices. Thus, b = € suffices to realize the base case,
which simply proves that ¢ holds initially.

The metric M is defined by a term z. Like all termination metrics, M has strict and
non-strict ordering relations = and >, which in this example are the reverse ordering:

TEY>r <y
rr-yrr<y—1

which decreases until terminating at x > y. The metric is effectively-well-founded because
M decreases by at least the constant amount 1 in each iteration and because the bound y
is constant with respect to the loop.

Realizers for the inductive step are more technically involved. They first accept an
argument M, : @Q which computes the value of the termination metric at the start of
the loop. They then take a realizer for the conjunction (¢ A (Mg = M A M > 0)) as
an argument, that is, a triple of realizers. After playing «, the inductive step realizer
must yield (¢ A My > M), meaning it must demonstrate the invariant predicate and
also show that the metric has decreased. In this example, the trivial loop body x :=
x + 1 contributes nothing to the realizer because no realizer is consumed by evaluating
a deterministic assignment which requires making no decisions. Thus, the body of our
inductive step realizer is simply a pair of trivial realizers which would realize ¢ and M, >
M when evaluated after the assignment:

c=(AMy: Q. Arz: (true N (Mo =z ANz <y)) Rz. (¢€))

where rz is a realizer variable name.
The postcondition realizer only needs to conclude = > y from (true A x > y), thus it
suffices to choose d = e.
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The implementation of ind(b, ¢, d), assembles the Angelic loop realizer from the com-
ponents b, c,d, and M. In short, it first tests whether the metric has terminated (z > y).
Recall that Angelic loop realizers return pairs whose first component is 0 when the loop
terminates or 1 when the loop continues, so the test z > y determines the first component.
In the case where the loop terminates immediately, b and d are used to show that the
postcondition already holds. In the case where the loop continues, c is applied to execute
one step of the loop, after which a corecursive call of ind continues execution. While termi-
nation arguments for loops are inductive, the realizer is constructed coinductively because
even though Angelic loops have finite durations, the duration can depend on dynamic
choices by Demon and thus there may not be a statically-knowable bound on duration.
A coinductive construction easily handles executions whose durations are not bounded in
advance because it is infinitary.

We now consider a subtle example of a Demonic loop realizer for the following formula:

7z > 0;{z:=2+1}]Fy(y<xAy>0)

Typical realizers for Demonic loops use the defined constructor gen(b, ¢, d) for invariant
arguments. The realizer b establishes that some invariant 1) holds initially, the coinductive
step ¢ shows that the invariant is maintained after any one iteration, and the postcondition
step d shows that a postcondition follows from the invariant. In this example, our strategy
for Angel is to record the initial value of = in y, then maintain a proof that y < z as
x increases. We maintain the invariant ¢ = Jy(y < x Ay > 0). Angel’s strategy is
represented by the realizer:

Aw : (x > 0) Rz. gen((x, (e,w)), Az :y < xRz (mz, (6, m1(m2))), Az:y < zRaz. 2)

Initially Demon announces a proof w of x > 0. Angel specifies the initial element of the
realizer stream by witnessing Jy(y < z Ay > 0) with b = (z,(¢,w)), where the first
component instantiates y = x, the trivial second component indicates that y < y trivially,
and the third component reuses w as a proof of y > 0. Demon can choose to repeat
the loop arbitrarily. When Demon demands the kth repetition, Demon must supply the
proof of repetition £ — 1, which is bound to z. The kth repetition is then computed by
the coinductive step c’s body (myz, (¢, m1(m12))), which plays the next iteration. Because
deterministic assignments do not consume a realizer, the body immediately witnesses the
invariant Jy(y < x Ay > 0) again by assigning the same value (stored in mz) to v,
reproving y < x with ¢, then reusing the proof (stored in m(mz)) that y > 0.

4.7 Proof Calculus

Having settled on the meaning of a game in Section 4.6, we proceed to develop a calcu-
lus for proving CGL formulas syntactically. The goal is twofold: the practical motivation,
as always, is that when verifying a concrete example, the realizability semantics provide
a notion of ground truth, but are impractical for proving large formulas. By developing
a syntactic proof calculus, we lay the groundwork for the development of a Logic-User-
facing proof language in Chapter 7. The theoretical motivation is that we wish to expose
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the computational interpretation of the modalities (a)¢ and [a]¢ as the types of winning
strategies for a game « that has ¢ as its goal condition, respectively when Angel moves first
or second. Since CGL is constructive, such a strategy constructs a proof of the postcon-
dition ¢ while playing the game. By developing a computational interpretation, we lay a
theoretical foundation on top of which we will reimplement the (Engineer-facing) synthesis
tool VeriPhy in Chapter 8.

As is standard for natural-deduction calculi, a proof in our calculus proves a natural-
deduction sequent (I' F ¢) where I' is a comma-separated list of named formulas. Because
the calculus is sound (Section 4.8), every provable sequent is valid, where sequent (I' - ¢)
is valid (Def. 4.8) iff formula AT — ¢ is, where AT is the conjunction of all elements of I'.

To study the computational nature of proofs, we write proof terms explicitly: the main
proof judgement I' = M : ¢ says proof term M is a proof of ¢ in context I', or equivalently
a proof of sequent (I' F ¢).

Definition 4.13 (Proof terms). We define the grammar of proof terms M, N, O (sometimes
A, B,C,D, E, F) here, before describing the meaning of each proof term when we describe
its corresponding proof rule:

MN:= X QM| Mf|Ip:¢. M| M N |{-M)]| (r-M)
| (case, Aof s= B|g=C)|(case Aof ¢l = B|r= C)
| for(p: (M) =A;q;B){a}C | FP(A,s. B,g. C)
| M rep p:1. N in O | [unroll M] | (stop M) | (go M)
| (% oep M) | {meM] | (maM] | (M, N) | {¢ M) | {yield M])
| {z:= f% in p. M) | unpack(M, py. N) | Mo,N | FO[g](M) | p

where p,q,?,r, s, and g are proof variables, that is, variables that range over proof terms
of a given proposition. In contrast to the assignable program variables, the proof variables
are given their meaning by substitution and are scoped lexically, not globally.

Metavariables M, N, O (sometimes A, B, C, D, E, F') range over arbitrary proof terms.
We adapt propositional proof terms such as pairing, disjoint union, and lambda-abstraction
to our context of game logic. To support first-order games, we include first-order proof
terms and new terms for new features: dual, assignment, and repetition games. Some
constructs, such as pairing, arise in proof terms for both box and diamond formulas. The
notation (M, N)), for example, is used when we wish to uniformly discuss pairing proof
terms for both diamond and box formulas.

We now develop the calculus by starting with standard constructs and working toward
the novel constructs of CGL. The assumptions p in I' are named, so that they may appear
as variable proof terms p. We write I'Y and MY for the renaming of program variable
x to y and vice versa in context I' or proof term M, respectively. Proof rules for state-
modifying constructs perform explicit renamings, which both ensures they are applicable
as often as possible and also ensures that references to proof variables support an intuitive
notion of lexical scope. Likewise, '/ and M/ are the substitutions of term f for program
variable . We use distinct notation to substitute proof terms for proof variables while
avoiding capture: [N /p|M substitutes proof term N for proof variable p in proof term M.
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Figure 4.1: CGL proof calculus: propositional rules.

Some proof terms such as pairs prove both a diamond formula and a box formula. We
write (M, N) and [M, N| respectively to distinguish the terms or (M, N)) to treat them
uniformly. Analogously, a handful of symmetric rules write (case Aof ¢ = B |r = C)
to range over (case Aof ¢ = B |r = C) and (case, Aof s = B | g = C), likewise
they write (¢ - M]) to range over ¢ - M and (stop A), and (r- M) to range over (r - M)
and (go M). That is, the brackets (-] are used in some rules for a uniform treatment
of the disjunction-style proof terms for Angelic choices and Angelic loops. In other rules,
however, a symmetric treatment is not possible.

Likewise, we abbreviate (a])¢ when the same rule works for both diamond and box
modalities. When the notation {a])¢ occurs multiple times in a single rule, each occurrence
refers to the same kind of modality: diamond or box. We write [«)]¢ to denote the dual
modality (box or diamond, respectively). For example, when (a)¢ is [a]¢, then [«)]¢ is
()¢ and vice-versa. The proof terms (x := f¥ in p. M) and [z := f¥ in p. M] introduce
an auxiliary ghost variable y for the old value of x, which improves completeness without
requiring manual ghost steps. In for(p: (M) = A;q; B) {a} C, the metric term M is not
literally an argument to formula ¢, rather the notation p(M) is suggestive of the fact
that ¢ and M both depend on changing state, and is convenient notation for making M
explicit in the proof term syntax.

The propositional proof rules of CGL are in Fig.4.1. Formula [?¢|¢ is constructive
implication, so rule [?]E with proof term M N eliminates M by supplying an argument
proof term N that proves the test condition. Lambda terms (Ap : ¢. M) are introduced by
rule [?]T by extending the context I". While this rule is standard, it is worth emphasizing
that here p is a proof variable for which a proof term (like IV in rule [?]E) may be substituted,
and that the game state is untouched by rule [7]I. Constructive disjunction (between the

172



I'EM:[a]¢ I'EM:pAa]lar]d

(+JE) ['F [unroll M]: ¢ A [a][a*]e (HR) 't [roll M]:[a*|¢
I'HM:¢ . I'= M :[a)o
(()9) 'k (stop M) : (a*)o (3 't {yield M] :{a?)¢
I+ M:{a){a*)¢ ‘ I'=M:(a)(B)¢
(NG T (go M) : {a*)¢ (G FF (e M) :(a; B)o
(5)C) 'CA:(a"¢ D,s:pFB:¢p T g:{a){a®ptC:¢
I'F (case, Aof s= B|g=C):v

CEM:{a)p F%,p:qﬁl—N:wl
' Mo,N : {a)yy

Wariables i are fresh and |§] = | BV(«)

Figure 4.2: CGL proof calculus: some non-propositional rules.

branches ()¢ and (8)¢) is the choice (o U )¢. The introduction rules for injections are
(U1 and (U)I2, and case-analysis is performed with rule (U)E, with two branches that
prove a common consequence from each disjunct. The modal formulas (?¢)1 and [ U )¢
are conjunctive. Conjunctions are introduced by rules (?)I and [U]I as pairs, and eliminated
by rules (?)E1, (?)E2, [UJE1, and [U]E2 as projections. Lastly, rule hyp says formulas in
the context hold by assumption.

We now begin considering non-propositional rules, starting with the simplest ones.
The majority of the rules in Fig. 4.2, while thoroughly useful in proofs, are computation-
ally trivial. The repetition rules ([*]E and [*|R) fold and unfold the notion of repetition as
iteration. The rolling and unrolling terms are named in analogy to the iso-recursive treat-
ment of recursive types (Vanderwaart et al., 2003), where an explicit operation is used to
expand and collapse the recursive definition of a type.

Rules (x)C,(x)S and (x)G are the destructor and injectors for (a*)¢, which are similar
to those for (o U 8)¢. The duality rules ({?)I) say the dual game is proved by proving the
game where roles are reversed, i.e., by alternating between box and diamond modalities.
The sequencing rules ({;)I) say a sequential game is played by playing the first game with
the goal of reaching a state where the second game is winnable.

Among these rules, monotonicity M is especially computationally rich. The notation
Fvaza) says that in the second premise, the assumptions in I have all bound variables of «
(written BV(«)) renamed to fresh variables i for completeness. The definition of BV(-) is
in Appendix A.4. In practice, I usually contains some assumptions on variables that are
not bound, which we wish to access without writing them explicitly in ¢. Rule M is used
to execute programs right-to-left, giving shorter, more efficient proofs. It can also be used
to derive the Hoare-style sequential composition rule, which is frequently used to reduce
the number of case splits. Note that like every GL, CGL is subnormal, so the modal modus
ponens axiom K and Godel generalization rule G (axiom K and rule G in Chapter 2) are
not sound, and rule M takes over much of the role they usually serve. On the surface, rule
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Figure 4.3: CGL proof calculus: first-order games.

M simply says games are monotonic: a game’s goal proposition may freely be replaced with
a weaker one. One might wonder whether rule M is essential to the expressive power of
the proof calculus, i.e., whether or not it can be implemented using the other rules. This
topic is explored in Section 4.9: while we do not go so far as to make rule M an admissible
rule whose instances all have derivations using other rules, the operational rules for proof
terms of rule M demonstrate how many of its instances can be reduced to other proof rules
which reason left-to-right. In future work, those rules suggest it is possible to design a
calculus where rule M would be admissible. Admissibility of rule M is interesting because
rule M reasons about programs from right-to-left while other rules reason left-to-right,
thus the admissibility of rule M would imply that right-to-left reasoning can be reduced to
left-to-right reasoning.

Note that in checking Mo, N, the context I' has the bound variables of o renamed
freshly to some g within N, as required to maintain soundness across execution of a.

Next, we consider first-order rules, i.e., those which deal with first-order programs
that modify program variables. The first-order rules are given in Fig.4.3. In rule (:x)E,
FV(¢) is the set of free variables of 1, the variables which can influence its meaning.
The definition of FV(-) is in Appendix A.4 and is identical to the discrete fragment of
the definition of syntactic free variables in classical dGL, for example as implemented in
KeYmaera X (Fulton et al., 2015). Rather, proofs of properties about free variables in CGL
(such as Lemma4.11 in Section 4.8) differ from those of dGL in their justification, because
CGL is constructive. Nondeterministic assignment provides quantification over rational-
valued program variables. Rule [:*]I is universal, with proof term (Az : Q. M). While this
notation is suggestive, the difference vs. the function proof term (Ap : ¢. M) is essential:
the proof term M is checked (resp. evaluated) in a state where the program variable = has
changed from its initial value. For soundness, rule [:x]I renames z to fresh program variable
y throughout context I', written T'Y. This means that M can freely refer to all facts of
the full context, but they now refer to the state as it was before x received a new value.
Elimination rule [:x|E then allows instantiating x to a term f. Existential quantification is
introduced by rule (:x)I whose proof term (f¥ :x p. M) is like a dependent pair plus bound
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Figure 4.4: CGL proof calculus: loops.

renaming of variable x to y. The witness f is a CGL term, as always. We write (f_ :* M)
for short when y is not referenced in M. It is eliminated in rule (:x)E by unpacking the
pair, with side condition = ¢ FV(¢)) for soundness. The assignment rules (:=)I do not
quantify, per se, but always update x to the value of the term f, and in doing so introduce
an assumption that x and f (suitably renamed) are now equal. Just as the assignment
rules do not directly correspond to quantifiers, their proof terms do not directly correspond
to any standard first-order proof term. The proof term (z := f¥ in p. M) indicates that
the old value of x will be remembered in fresh ghost variable y, then the equality induced
by assigning x := f will be remembered in proof variable p while proving the postcondition
with proof term M. The proof term (f¥ :x p. M) for rule (:x)I likewise says that x will
be assigned to the existential witness term f in the proof M of the postcondition, with y
storing the old value of x and with proof variable p remembering the equality induced by
the assignment. In rules (:x)I and (:=)I, program variable y is fresh.

The looping rules in Fig.4.4, especially (x)I, are arguably the most sophisticated in
CGL. Rule (x)I provides a strategy to repeat a game « until the postcondition ¢ holds.
That strategy provides a kind of correctness proof known as a convergence argument.

There exist several equivalent presentations of convergence arguments. In (x)I, a con-
vergence argument is divided into two parts: an invariant predicate ¢ which remains true
throughout the loop and a termination metric M which decreases under a well-ordering
> until reaching its termination condition 0. Our particular presentation of metrics was
chosen so that the text of the rule need not change if we wish to use advanced termination
metrics in the future. In other logics including dL (Platzer, 2008a, Rule G4), convergence
is encoded with a single variant predicate ¢(x) whose argument z decreases, typically by
a constant value of 1, in each iteration. Both presentations support computational inter-
pretations, and for example the convergence construct developed in Chapter 7 will follow
the traditional dL style more closely than it does ours. In this chapter, our motivation for
using an explicit term as a termination metric is mostly a subjective aesthetic preference,
though each presentation leads to different subtleties when developing a computational
interpretation. Rules in the traditional style bake in the modification of x, so their com-
putational interpretation must bake in code which modifies . In Chapter 7, for example,
x is understood as the index variable of a for loop, whose value is modified as part of
the for loop construct. Our rule also introduces a variable M which stands for the old
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value of the metric, but its computational interpretation is arguably simpler in the sense
that no special handling is required to modify the value of a special index variable x. On
the other hand, our rule can only express termination arguments in terms of pre-existing
variables, which means it cannot express (for example) a convergence argument for a loop
whose body is a no-op. The traditional style builds in an index variable, which makes it
easier to reason about loops which either do not change the state or which change the state
so little that a metric cannot be found in terms of existing variables. This is one reason
why Chapter 7 uses explicit index variables.

When making a convergence argument, one exhibits an invariant formula ¢ and termi-
nation metric M with terminal value 0 and well-ordering >. Proof term A shows ¢ holds
initially. Proof term B guarantees M decreases with every iteration where M, is a fresh
metric variable which is equal to M at the antecedent of B and is never modified. Proof
term C' allows any postcondition ¢ which follows from the invariant and the fact that the
metric has terminated (p A 0 = M). Proof term for(p: (M) =A4;q; B) {a} C suggests
the computational interpretation as a for-loop: proof A shows the invariant holds in the
initial state, B shows that each step reduces the termination metric while maintaining the
predicate, and C' shows that the postcondition follows from the invariant upon termina-
tion. In the proof term for(p: (M) = A;q; B) {a} C, the proof term C is written after the
closing brace as a reminder that it is a proof about the postcondition of the loop and is
applied after the induction. The game « repeats until convergence is reached (0 = M). By
the assumption that metrics are well-founded, convergence is guaranteed in finitely (but
arbitrarily) many iterations.

Recall from Section4.6.1 that our termination metrics must be strong enough to prove
loop termination constructively. To ensure loop termination, we require that termination
metrics have the effective descending chain condition (Def. 4.7), which is a consequence of
effective-well-foundedness (Hofmann et al., 2006). A metric has the effective descending
chain condition if it is constructively provable that every chain that is descending under the
strict ordering > is finite. The effective descending chain condition aids in the soundness
proof of rule (x¥)I. The intuition behind rule (x)I is that a* can be played by repeating
the strategy of B until the metric terminates. The effective descending chain condition
guarantees that the metric does eventually terminate and that we can detect when it does.

The values of our termination metrics are rational numbers, which are dense (in them-
selves), thus simple rational orderings x > y are not even classically well-founded, let
alone do they satisfy the effective descending chain condition. For any constant ¢ > 0, the
inflated comparison x > y + ¢ does induce an order with the effective descending chain
condition, call it >.. The order is effective because for any descending sequence S ordered
by >., a finite upper bound on its length can be computed as a function of its first ele-
ment Sy, proving that it is finite. Because each successive element decreases by at least
¢, the length is at most 1+ (Sy — 0)/c, where Sy = 0 because 0 is the terminal value. In
summary, the comparisons »= and > cannot merely test that the metric M has decreased,
but must typically test that it has decreased by at least some lower bound c¢. The lower
bound ¢ ensures the effective descending chain condition, which ensures a finite number of
iterations until metric M achieves terminal value 0, as desired because premise C' expects
the guard to have been reached in the final state of the loop which, as with any CGL loop,
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must occur after only finitely many iterations.

The same rule (x)I will be reused in Chapter5, so we briefly foreshadow the unique
challenges that arise when using (x)I in CdGL as opposed to discrete CGL. Because rational-
number comparisons are decidable, loop guards in discrete CGL are easily implemented by
comparing the metric term against the bound 0. Because the constructive real numbers
that will be used in CdGL do not admit exact comparisons, the loop guards in Chapter 5
will be significantly more subtle. That is, CGL assumes loop guards are decidable (because
doing so simplifies some semantic proofs), while CdGL does not.

We mention these future challenges now because one might wonder whether soundness
of (x)I relies on decidability of the exact comparison 0 = M V M > 0. We will see in
Chapter 5 that the text of the rule (x)I will remain unchanged and it will remain both
sound and useful, and that the challenges unique to CdGL will be offloaded into metrics
M and relations >, = which employ additional types and additional term constructs while
relaxing the guard decidability assumption.

Rule FP eliminates a loop (a*)¢ by working backwards from its final state. To show
that a formula ¢ holds in the initial state, rule FP says it suffices to show that 1 holds in
the final state and that it is preserved when executing the loop body « “in reverse,” so that
it (inductively) holds in the initial state. Rule [%]I is the well-understood invariant rule
for loops, which applies as well to repeated games. Premise O ensures rule [*|I supports
the generalization of postconditions, a feature which is used in the operational semantics
rules of proof terms (Section4.9), specifically when defining the interaction between rule
[]T and rule M. The elimination rule for [a*|¢ is simply rule [*]E. Note that rules such as
(x)I and [#]I represent a different design choice regarding ghost variables when compared
to rules such as (:=)I: the latter explicitly introduces ghosts for the old values of bound
variables, while the former do not. Both approaches are viable and the latter choice better
foreshadows the treatment of historical state in Chapter 7, but the former was chosen for
looping rules to reduce notational overhead.

Like any program logic, reasoning in CGL consists of first applying program-logic rules
to decompose a program until the program has been entirely eliminated, then applying
first-order logic principles at the leaves of the proof. The constructive theory of rationals
is undecidable because it can express® the undecidable (Robinson, 1949) classical theory
of rationals. Thus, facts about rationals can require proof in practice. For the sake of
space and since our focus is on program reasoning, we defer an axiomatization of rational
arithmetic to future work. We provide a (non-effective!) rule FO which says valid first-
order formulas are provable.

'EM:p
['FFO[¢](M): ¢

A special case of rule FO is rule splitRat, which is an effective rule in the setting of rational
numbers because all rational term comparisons are decidable.

(splitRat) D['F (split [f~g]):f<gVf>g

6By the standard Godel-Gentzen translation (Buss, 1998, §3.1.4) from classical first-order logic into
constructive first-order logic

(FO) where exists b s.t. {b} xS C [p — @], p, ¢ first-order
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The notation f ~ g in the proof term (split [f ~ g]) of rule splitRat is mnemonic of the
use of ~ to stand for an arbitrary comparison symbol in Section4.4. The notation f ~ g
was chosen rather than f < g because we do not know in advance whether f < ¢ holds
and the purpose of splitRat is rather to tell us whether f < g or f > ¢ is the case. Rule
splitRat can be generalized to decide termination metrics (0 = MV M > 0).

One useful derivable rule (rule iG) says the value of term f can be remembered in fresh
ghost variable x:

p:xa=fFM:¢

(iG) '+ Ghost[z = f](p. M): ¢

where z fresh except free in M, p fresh

Rule iG derives from the core proof terms (Def. A.1) using arithmetic and quantifiers:
Ghostlz = fl(p- M) = (A\z: Q. (Ap: (z = [). M)) f (FO[f = f]())

Closure Ordinals and Loop Expressiveness. The verification of loops in game log-
ics deserves special attention because loops in game logic are known (Platzer, 2015a) to
have a higher expressive power than they do in other dynamic logics. Formally speak-
ing, every loop in a dynamic logic or game logic can be assigned a closure ordinal, the
number of iterations after which the fixed-point construction of its (usually backward-
chaining (Platzer, 2015a)) semantics converges. More expressive logics can reason about
loops with higher closure ordinals. Loops in non-game dynamic logics like dL have closure
ordinals of at most w, while loops in game logics can have much higher closure ordinals,
such as the Church-Kleene ordinal (Platzer, 2015a). Thus, the verification of game loops
places greater demands on the loop convergence rule (x)I than does verification of non-
game loops. Loops with closure ordinal w can be verified using scalar termination metrics,
which is why it is sufficient for dynamic logic convergence rules to employ scalar termina-
tion metrics, such as in dL (Platzer, 2008a, Rule G4). In contrast, rule (x)I must support
larger closure ordinals in a game logic. The most direct way to support large closure or-
dinals is to support arbitrary well-founded relations or, in CGL, effectively-well-founded
relations. Because we wish to extract for-loops from convergence proofs (Chapter 8), we do
not directly support arbitrary effectively-well-founded relations, but rather express those
relations through well-founded termination metrics.

Simpler formulations of loop convergence for systems (Platzer, 2015a, 2012b) corre-
spond to the scalar-valued termination metrics that decrease at a fixed rate after each
iteration. For greater generality, the termination metric M of rule (x)I need not be read
as a single scalar variable. More general metrics such as lexicographic metrics are sup-
ported with a wvirtual reading which interprets o, My > M, and 0 = M as formulas over
several scalar variables. Lexicographic metrics in particular are sometimes desirable in
practical proofs. We conjecture that lexicographic metrics have a higher expressive power
(and higher closure ordinals) than scalar metrics, because lexicographic metrics enable dis-
junctive and conjunctive combinations of scalar metrics. Intuitively, the virtual reading
of termination metrics increases expressive power because it allows an arbitrary formula
for the termination condition (0 > M), not only comparisons, let alone scalar compar-
isons. See the discussion of “clockwork” formulas in the literature (Platzer, 2015a, App.
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C) for examples of properties which have high closure ordinals and thus might benefit from
lexicographic termination metrics.

In practice, useful examples and case studies can be proved with scalar metrics, but
non-scalar metrics are important for improving completeness. Even in our examples (Sec-
tion4.5), it will be important for soundness that scalar metrics allow inequalities rather
than exact equality comparisons in the termination condition: a decreasing metric M suf-
fices to show that the bound O is eventually crossed, but we cannot guarantee that the
exact equality M = 0 ever holds for a rational metric M without strong assumptions on
the initial value M. Chapter 5 will use a very minor generalization of scalar metrics: in
the context of constructive reals, it proves useful to extend termination metrics with a
distinguished value for 0 indicating that the loop is ready to terminate. Thus, the type of
a metric in Chapter 5 will not just be a scalar, but a disjoint union between a scalar and
a distinguished (unit) value.

4.8 Theory: Soundness

The full CGL soundness proof with additional lemmas is given in the appendix (Ap-
pendix A.4). We have introduced a proof calculus for CGL which can prove winning strate-
gies for NIM and cake-cutting. For any new proof calculus, it is essential to convince
ourselves of soundness, which can be done within several prominent schools of thought.
In proof-theoretic semantics, for example, the proof rules are taken as the ground truth,
but are validated by showing the rules obey expected properties such as harmony or, for
a sequent calculus, cut-elimination. While we will investigate proof terms separately (Sec-
tion4.10), we are already equipped to show soundness by direct appeal to the realizability
semantics (Section 4.6), which we take as an independent notion of ground truth. We show
soundness of CGL proof rules against the realizability semantics, i.e., that every provable
natural-deduction sequent is valid. An advantage of this approach is that it explicitly con-
nects the notions of provability and computability! We build up to the proof of soundness
by proving lemmas on structurality, renaming and substitution.
Lemma 4.9 (Structurality). The structural rules W, X, and C are admissible, i.e., the
conclusions are provable using existing rules whenever the premises are provable.

(W) 'EM:¢ x) Cip:p,q:vt=M:p ©) Cip:og,q:0M:p

Dyp:pbM:¢ Lyg:,p:o-M:p Cip:ob[p/glM:p

Proof summary. Each rule is proved admissible by induction on M. Observe that the
only premises regarding I' are of the form I'(p) = ¢, which are preserved under rule W.
Premises are trivially preserved under rule X because contexts are treated as sets, and
preserved modulo renaming by contraction (rule C) as it suffices to have any assumption
of a given formula, regardless of its name. The context I' is allowed to vary in applications
of the inductive hypothesis, e.g., in rules that bind program variables. Some rules discard
' in checking the subterms inductively, in which case the IH need not be applied at all. [

"This is in contrast to integral for-loops which commonly increment a natural-number index until it is
exactly equal to a bound.
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Lemma 4.10 (Uniform renaming). Let MY be the renaming of program variable x to y
(and vice-versa by transposition) within M, even if x and y are not fresh. If '+ M : ¢
then T'Y = MY : Y.

Proof summary. Straightforward induction on the structure of M. Renaming within proof
terms (whose definition we omit as it is quite tedious) follows the usual homomorphisms,
from which the inductive cases follow. In the case that M is a proof variable z, then
(T'¥) (2) = I'(z)¥ from which the case follows. The interesting cases are those which
modify program variables, e.g., (z := f% in p. M). The bound variable z is renamed to z¥.
If the renaming of x and y causes auxiliary variable w to no longer be fresh, it is renamed
to a new fresh variable. Renaming is applied recursively in M. O]

Substitution will use proofs of coincidence and bound effect lemmas. The lemmas are
phrased in terms of free variables (FV(e)) of expression e and bound and must-bound vari-
ables (BV(«) or MBV(«)) of a game o (Appendix A.4). The definitions of free, bound, and
must-bound variables, which agree with the definitions from dGL, are listed in Appendix A.4
for reference. As always, free variables are those which may influence the meaning of an
expression, bound variables are those which are written on at least one execution path,
and must-bound variables are those which are written on every execution path. We write
w =@ on V for states w,w and for V' C V when w(z) = @(x) for all x € V. For proper
regions X and Y, we write X =Y on V when for all (b,w) € X there exists @ where w = @
on V such that (b,w) € Y and vice versa. For (not necessarily proper) regions X and Y,
we write X =Y on Viff X \{T, L} =Y \{T,L}onVand X N{T,L} =Y Nn{T, L}
Lemma 4.11 (Coincidence). Only the free variables of an expression and of its realizer
influence its semantics. That is, assume w =@ on V D FV(e) (where e is f or ¢ or o or
b). In the claims for projections, games, and formulas, additionally assume V 2O FV(b).
Recall the free variables FV(b) of realizer b are those which appear syntactically free at any
point in b, not just components which get used in the current state. Then:

e Iflw=I[flo
e [blw = [b]@

o {(b.w)}o = {(b,@)}o) and {(b,w)}ky = {(b,@)}y
e {(b,w)}o) < {(b, >} and{<, >}<l>¥{<b,az>}u>

°
~=
—~

jon

* (bw)€[g] i
Proof summary. By induction on the expression, in analogy to (Platzer, 2017a). O]

Note that the simplicity of the statements of the coincidence claims for games is a
result of the fact that the CGL semantics are forward chaining, by comparison to backward-
chaining semantics such as those used in dGL (Platzer, 2015a).

Lemma 4.12 (Bound effect). Only the bound variables of a game are modified by execution.
Let X = {(b,w)}. Let (c,v) € X[a] or (c,v) € X{a). Then w = v on BV(a)C, the
complement of set BV(a).
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Proof summary. The proof is by induction on the expression. It is analogous to bound
effect for dL (Platzer, 2017a). O

Definition 4.14 (Term substitution admissibility). A program variable substitution o is
admissible for expression e (likewise for proof terms M and contexts I') if e does not bind
any variable = substituted by ¢ (any x € Dom(c)), nor mention that x free under any
binder that binds any free variable of o(z).

While the assumption that = € Dom(o) are not bound in ¢ may appear to be a strong
assumption, it is a reasonable assumption in the context of CGL, where substitutions are
often applied to ghost variables. Moreover, the assumption can be met in practice by a-
renaming any binders of x and introducing stuttering assignments x := z, if needed. Aside
from the restriction on binding x in ¢, our notion of admissibility is analogous to existing
admissibility notions for dL (Platzer, 2008a, Def. 6).

Lemma 4.13 (Arithmetic-term substitution). If 't M : ¢ and the program variable sub-
stitution o is admissible for I', M, and ¢, then o(I') F o(M):o(o).

Proof summary. By induction on M. Admissibility holds recursively, and so can be as-
sumed at each step of the induction. For non-atomic M that bind no variables, the proof
follows from the inductive hypotheses. For M that bind variables, we appeal to Lemma4.11
and Lemma4.12. O

Just as arithmetic terms are substituted for program variables, proof terms are substi-
tuted for proof variables.
Lemma 4.14 (Proof term substitution). Let [N/p|M by the result of (proof term) sub-
stitution of proof term N for p in M. Proof term substitution implicitly renames proof
variables if necessary to avoid (proof) variable capture. If T;p it M:¢p and ' F N4
then T'F [N /p|M : ¢.

Proof. By induction on M. When substituting N for p into a term that binds program
variables such as (z := f¥ in q. M), we avoid capture by renaming within occurrences of IV
in the recursive call, that is we rename [N /p](z := f¥ in ¢. M) = (z:= f¥ in q. [N /p|M),
preserving soundness by Lemma4.10. O

Soundness of the proof calculus exploits renaming and substitution.
Theorem 4.15 (Soundness of proof calculus). If the proof judgement I' = M : ¢ holds then
the CGL natural deduction sequent (I' b @) is valid. As a special case for empty context -,
if -+ M: ¢, then ¢ is valid.

Proof summary. By induction on M. Modus ponens case (A B) reduces to Lemma4.14.
Cases that bind program variables, e.g., assignment, hold by Lemma 4.13 and Lemma 4.10.
Rule W is employed when substituting under a binder. O]

We have now shown that the CGL proof calculus is sound, the sine qua mon condition
of any proof system. Because soundness was w.r.t. a realizability semantics, we have
shown CGL is constructive in the sense that provable formulas correspond to realizable
strategies, i.e., imperative programs executed in an adversarial environment. We will
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revisit constructivity again in Section 4.10 when we develop the theory of proof terms as
functional programs.

4.9 Operational Semantics

The Curry-Howard interpretation of games is not complete without exploring the inter-
pretation of proof simplification as normalization of functional programs. To this end, we
now introduce a structural operational semantics for CGL proof terms. This semantics pro-
vides a view complementary to the realizability semantics: not only do provable formulas
correspond to realizers, but proof terms can be directly executed as functional programs,
resulting in a mormal proof term. The chief subtlety of our operational semantics is that
in contrast to realizer execution, proof simplification is a static operation, so it does not
inspect game state. Thus, the normal form of a proof which branches on the game state
is, of necessity, also a proof which branches on the game state. This static-dynamic phase
separation need not be mysterious: the difference between proof term simplification and
game execution is analogous to the monadic phase separation between a functional program
which returns an imperative command vs. the execution of the returned command. While
the theoretical motivation for our operational semantics is to complete the Curry-Howard
interpretation of CGL, proof normalization is also of practical use when implementing soft-
ware tools which process proof artifacts, since code that consumes a normal proof is often
easier to implement than code that consumes an arbitrary proof.

The operational semantics consist of two main judgments: M normal says that M is in
normal form, while M +— M’ says that M reduces to term M’ in one step of evaluation.
The top-level connective of a normal proof must be either an introduction form (in which
case the normal form is also a canonical form) or a case operation (case A of { = B
| = C) over an Angelic choice proof A (as opposed to case analysis on an Angelic loop
proof). Nested top-level cases are permitted as well, as are cases which are not at top-level.
Normal proofs M without state-casing are called simple, written M simp. The requirement
that cases are top-level (when possible to soundly lift them there) ensures that proofs which
differ only in where the case was applied share a common normal form, and ensures that
[-reduction is never blocked by a case interceding between introduction-elimination pairs.
Top-level case analyses are analogous to case-tree normal forms in lambda calculi with
coproducts (Altenkirch, Dybjer, Hofmann, & Scott, 2001). Proof term reduction is eager.
Definition 4.15 (Normal forms). We say M is simple, written M simp, if proof terms of
elimination rules occur only under a binding (position within a) proof term. We say M is
normal, written M normal, if M simp or M has shape (case A of { = B |r = C) where
A is a term such as (split [f ~ g]) that inspects the state to prove a disjunction or other
Angelic choice (in contrast to case analysis over Angelic loops). Subterms B and C' need
not be normal since they occur under the binding of ¢ or r.

That is, a normal term has no top-level beta-redexes, and state-dependent cases are
top-level. We consider rules [«|R, [:+]I, [?]I, and (:=)I binding. The rule (x)I has multiple
premises but only the inductive step and postcondition step are binding. While rule [*]R
does not introduce a proof variable, it is still considered binding to prevent divergence,

182



which is in keeping with a coinductive reading of formula [a*]¢. If we did not care whether
terms diverge, we could make rule [¥]R non-binding.

We first give the -rules (Fig.4.5), then structural and commuting-conversion rules, as
well as what we call monotonicity conversion rules: a proof term Mo,N is simplified by

structural recursion on M. The capture-avoiding substitution of M for p in N is written
[M/p]N (Lemma4.14).

(A¢B) (Ap:¢. M) N — [N/pIM (meB)  {r(M,ND) — M
(AB) (\z:Q. M) f M/ (7rB)  (mr(M,N)) — N
(caseSL) (case (¢~ A) of p= B|q= C) — [A/p|B

(caseBR) (case (r-A) of p= B|q= C) s [A/q]C

(FOV3

)
)

(unrollg)  [unroll [roll M]] — M
) FOWNz ¢}(M) — (Az : Q. FO[¢](M))
)

(FOAB)  FO[p A¢](M) — (FO[¢](M), FO[y](M))

FO[Ex 6](M) = (2 ¢ p. FOIGI([FOLT® = f210/m(a ¥ )
FO[6 v/ (M) (case mub of p = (¢~ FOSI(M.p)) | ¢ = (r - FOWI(M, )} !

unpack((f ¥ = q. M), py. N) — (Ghost[z = f¥](q. [M/p]N))

T

)
)
)
(FPB) FP(A,s. B,g. C) + (case, Aof { = B |r = [(ro,FP(t,s. B,g. C))/g]C)
) (Mep p:o. Nin O) e [roll (M, ([M/p]N)oy(q rep p: . N in O))]
)

for(p: p(M) = A;q; B) {a} C =

(case split [M ~ 0] of
= (stop [(4,0)/(p,9)IC)
| 7= Ghost[Mo=M{](rr. (go (([A, (rr,r)/p, q| B)o(for(p: p(M) = (m.t); ¢; B) {a}C)))))

'Here, b is the realizer corresponding to M. Recall that rule FO is non-effective by design, hence the
reflection of semantic constructs (b) into a syntactic rule.

Figure 4.5: Operational semantics: [S-rules.

The propositional rules Ap3, \3, caseBL, caseSR, w13, and mr3 are standard reductions
for applications, cases, and projections. Projection terms (7, M) and (mrM] should not
be confused with projection realizers myb and mb. Rule unpack/ makes the witness of an
existential available in its client as a ghost variable.

Rules FPS, repf, and forf reduce introductions and eliminations of loops. Rule FPf,
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which reduces a proof FP(A,s. B,g. ('), says that if o* has already terminated according
to A, then B proves the postcondition. Else the inductive step C applies, but every
reference to the IH ¢ is transformed to a recursive application of FP. If A uses only
rules (x)S and (x)G, then FP(A,s. B,g. C) reduces to a simple term, else if A uses rule
()1, then FP(A,s. B,g. C) reduces to a case. Rule repf says loop invariant proof term
(M rep p: 1. N in O) reduces to a delayed pair of the “stop” and “go” cases, where the “go”
case first shows [a]t), for loop invariant v, then expands 1) — [a@*]¢ in the postcondition.
Note the treatment of the [roll] proof term as binding (i.e., its laziness) is essential for
normalization: when (M rep p : ¢. N in O) is understood as a coinductive proof, it is
clear that normalization would diverge if rule rep were applied indefinitely. Rule forf
with term for(p: p(M)=A4;q; B){a}C checks whether the termination metric M has
reached terminal value 0, which is indicated by proof term split [M ~ 0] whose notation
M ~ 0 is mnemonic for the use of ~ to range over the set of binary comparison operators
in Section4.4. If so, the loop (stop)’s and A proves it has converged. Else, we remember
M’s value in a ghost term My, and (go) forward, using A and (rr,r) to satisfy the
preconditions of inductive step B, then run the loop for(p: (M) = (mt); q; B) {a} C in the
postcondition. Rule forf reflects the fact that the number of iterations is state dependent.

We now list monotonicity, commuting conversion, and structural rules. Monotonic-
ity rules are listed in Fig.4.6. Commuting conversion rules are listed in Fig.4.7 and
Fig.4.8. Structural rules are listed in Fig.4.9. Operational rules are also listed again
in Appendix A.1. While the operational rules are many