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Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq�  1+ max ({logL[Q][ j].seq |

logL[Q][ j].cmd ⇠ �}[{0})
3: deps�  {(Q, j) | logL[Q][ j].cmd ⇠ �}
4: logL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to every

replica in F \{L}, where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + logR[Q][ j].seq |
logR[Q][ j].cmd ⇠ �}

7: update deps�  deps� [{(Q, j) |
logR[Q][ j].cmd ⇠ �}

8: logR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: logL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: logR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i
21: logL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: logR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.
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In contrast, Generalized Paxos’s fast quorum size when
N = 3 is three. Its latency is therefore determined by a
round-trip to the farthest replica. The high 99%ile la-
tency experienced by Generalized Paxos is caused by

checkpoint commits. Furthermore, conflicts cause two
additional round trips in Generalized Paxos (for any num-
ber of replicas). Thus, in this experiment, EPaxos is not
affected by conflicts, but Generalized Paxos experiences

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq�  1+ max ({cmdsL[Q][ j].seq | 9 instance Q. j

s.t. cmdsL[Q][ j].cmd ⇠ �}[{0})
3: deps�  {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][ j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
| 9 instance Q. j s.t. cmdsR[Q][ j].cmd ⇠ �})

7: update deps�  deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][ j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.
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and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.
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becomes the designated leader for command � (steps
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9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.
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and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.
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F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
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19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)
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and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.
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Command leader L, for (�,seq� ,deps�) at instance
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17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c
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AcceptOK’s:
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Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
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mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.
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becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
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other replicas
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19: reply AcceptOK(�,L.i) to L
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20: run Commit phase for (�,seq� ,deps�) at L.i

Commit
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22: send commit notification for � to client
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executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
| Q. j 2 InterfR,�})

7: update deps�  deps� [ InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
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Phase 1: Establish ordering constraints Phase 2: Paxos-Accept

Commit

Slow
Path

then

else

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq�  1+ max ({cmdsL[Q][ j].seq | 9 instance Q. j

s.t. cmdsL[Q][ j].cmd ⇠ �}[{0})
3: deps�  {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][ j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
| 9 instance Q. j s.t. cmdsR[Q][ j].cmd ⇠ �})

7: update deps�  deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][ j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.
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and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.

11

Phase 1

Replica L on receiving Request(�) from a client
becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
2: seq�  1+ max ({cmdsL[Q][ j].seq | 9 instance Q. j

s.t. cmdsL[Q][ j].cmd ⇠ �}[{0})
3: deps�  {(Q, j) | 9 instance Q. j s.t.

cmdsL[Q][ j].cmd ⇠ �}
4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
| 9 instance Q. j s.t. cmdsR[Q][ j].cmd ⇠ �})

7: update deps�  deps� [{(Q, j) | 9 instance Q. j s.t.
cmdsR[Q][ j].cmd ⇠ �}

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.
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and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.
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becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):
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2: seq�  1+ max ({cmdsL[Q][ j].seq | 9 instance Q. j

s.t. cmdsL[Q][ j].cmd ⇠ �}[{0})
3: deps�  {(Q, j) | 9 instance Q. j s.t.
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4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
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8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Multi-Paxos phase for (�,seq� ,deps�) at L.i

Multi-Paxos

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)
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and measure the commit and execute latency for each re-
quest. Figure 5 shows the median and 99%ile latencies for
EPaxos, Multi-Paxos, Mencius and Generalized Paxos.

With three replicas, an EPaxos replica can always com-
mit after one round trip to its nearest peer even if that
command interferes with other concurrent commands.
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becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):

1: increment instance number iL iL + 1
{InterfL,� is the set of instances Q. j such that the
command recorded in cmdsL[Q][ j] interferes w/ �}

2: seq�  1+ max ({cmdsL[Q][ j].seq |
Q. j 2 InterfL,�}[{0})

3: deps�  InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
| Q. j 2 InterfR,�})

7: update deps�  deps� [ InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L

Replica L (command leader for �), on receiving at
least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 2: The basic Egalitarian Paxos protocol for choosing commands.

replica can be regarded as a two-dimensional array with
N rows and an unbounded number of columns). At most
one command will be chosen in an instance. The ordering
of the instances is not pre-determined—it is determined
dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
mand has been committed. However, the client has no
information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.

To read (part of) the state, clients send Read(objectIDs)

messages and wait for ReadReplies. Read is a no-op com-
mand that interferes with updates to the objects it is read-
ing. Clients can also use RequestAndRead(�, objectIDs)
to propose command � and atomically read the machine
state immediately after � is executed—Read(objectIDs)
is equivalent to RequestAndRead(no-op, objectIDs).

Before describing Egalitarian Paxos in detail, we must
define command interference: Two commands � and
� interfere if there exists a sequence of commands ⌃
such that the serial execution ⌃,�,� is not equivalent
to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
clients are similar to those provided by other Paxos vari-
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becomes the designated leader for command � (steps
2, 3 and 4 executed atomically):
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command recorded in cmdsL[Q][ j] interferes w/ �}

2: seq�  1+ max ({cmdsL[Q][ j].seq |
Q. j 2 InterfL,�}[{0})

3: deps�  InterfL,�

4: cmdsL[L][iL] (�,seq� ,deps� ,pre-accepted)
5: send PreAccept(�,seq� ,deps� ,L.iL) to all other

replicas in F , where F is a fast quorum that
includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
| Q. j 2 InterfR,�})

7: update deps�  deps� [ InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: reply PreAcceptOK(�,seq� ,deps� ,L.i) to L
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least bN/2c PreAcceptOK responses:
10: if received PreAcceptOK’s from all replicas in

F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Command leader L, on receiving at least bN/2c
AcceptOK’s:
20: run Commit phase for (�,seq� ,deps�) at L.i

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)
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dynamically by the protocol, as commands are chosen.

It is important to understand that committing and exe-
cuting commands are different actions, and that the com-
mit and execution orders are not necessarily the same.

To modify the replicated state, a client sends Re-
quest(command) to a replica of its choice. A RequestRe-
ply from that replica will notify the client that the com-
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information about whether the command has been exe-
cuted or not: Only when the client reads the replicated
state updated by its previously committed commands is
it necessary for those commands to be executed.
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to ⌃,�,� (i.e., they result in different machine states
and/or different values returned by the reads within these
sequences).

4.2 Protocol Guarantees
The formal guarantees that Egalitarian Paxos offers
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includes L

Any replica R, on receiving
PreAccept(�,seq� ,deps� ,L.i) (steps 6, 7 and 8
executed atomically):

6: update seq�  max({seq�}[{1 + cmdsR[Q][ j].seq
| Q. j 2 InterfR,�})

7: update deps�  deps� [ InterfR,�

8: cmdsR[L][i] (�,seq� ,deps� ,pre-accepted)
9: send PreAcceptOK(�,seq� ,deps� ,L.i) to L and
bN/2c other replicas

Any non-leader replica R, after receiving at least
bN/2c+ 1 PreAcceptOK responses (possibly
including the initial PreAccept from the command
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9: send Accepted(�,seq� ,deps� ,L.i) to L
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F \{L}, with seq� and deps� the same in all
replies (for some fast quorum F) then

11: run Commit phase for (�,seq� ,deps�) at L.i
12: else
13: update deps�  Union(deps� from all replies)
14: update seq�  max({seq� of all replies})
15: run Paxos-Accept phase for (�,seq� ,deps�) at L.i

Paxos-Accept

Command leader L, on receiving at least bN/2c
identical Accepted(�,seq� ,deps�) or bN/2c
AcceptOK messages:
20: run Commit phase for (�,seq� ,deps�) at L.i

Command leader L, for (�,seq� ,deps�) at instance
L.i:
16: cmdsL[L][i] (�,seq� ,deps� ,accepted)
17: send Accept(�,seq� ,deps� ,L.i) to at least bN/2c

other replicas

Any replica R, on receiving
Accept(�,seq� ,deps� ,L.i):
18: cmdsR[L][i] (�,seq� ,deps� ,accepted)
19: reply AcceptOK(�,L.i) to L

Commit

Command leader L, for (�,seq� ,deps�) at instance
L.i:
21: cmdsL[L][i] (�,seq� ,deps� ,committed)
22: send commit notification for � to client
23: send Commit(�,seq� ,deps� ,L.i) to all other

replicas

Any replica R, on receiving
Commit(�,seq� ,deps� ,L.i):
24: cmdsR[L][i] (�,seq� ,deps� ,committed)

Figure 4: The basic Egalitarian Paxos protocol for choosing commands.

5 Practical Considerations

Command interference. For EPaxos to function ef-
ficiently, the implementation must be able to decide
whether two commands interfere before executing them
(it can, however, conservatively assume interference if un-
certain). Although there are many approaches that could

work, one that seems likely is to use explicitly-specified
dependency keys as in Google’s High Replication Datas-
tore [10] and Megastore [2]. Interference can easily be
inferred for NoSQL key-value stores where all (or most)
operations identify the keys they are targeting. Even for
relational databases, the transactions that usually con-
stitute the bulk of the workload are simple and can be
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