
Higher Inductive Types as Homotopy-Initial
Algebras

Kristina Sojakova
January 2014 (Revised July 2014)

CMU-CS-14-101R

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This report is a revised version of Technical Report CMU-CS-14-101.

Support for this research was provided by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) through the Carnegie Mellon Portugal Program under grant NGN-44 and by the National
Science Foundation Grant DMS-1001191.



Keywords: Homotopy Type Theory, higher inductive types, homotopy-initial algebras



Abstract

Homotopy Type Theory is a new field of mathematics based on the recently-discovered correspon-
dence between Martin-Löf’s constructive type theory and abstract homotopy theory. We have a
powerful interplay between these disciplines - we can use geometric intuition to formulate new
concepts in type theory and, conversely, use type-theoretic machinery to verify and often simplify
existing mathematical proofs. Higher inductive types form a crucial part of this new system since
they allow us to represent mathematical objects, such as spheres, tori, pushouts, and quotients, in
the type theory. We investigate a class of higher inductive types called W-suspensions which gen-
eralize Martin-Löf’s well-founded trees. We show that a propositional variant of W-suspensions,
whose computational behavior is determined up to a higher path, is characterized by the universal
property of being a homotopy-initial algebra. As a corollary we get that W-suspensions in the strict
form are homotopy-initial.





1 Introduction
Homotopy Type Theory (HoTT) has recently generated significant interest among type theorists
and mathematicians alike. It uncovers deep connections between Martin-Löf’s dependent type the-
ory ([16, 17]) and the fields of abstract homotopy theory, higher categories, and algebraic topology
([3, 5, 6, 7, 8, 11, 13, 23, 24, 25, 26]). Insights from homotopy theory are used to add new concepts
to the type theory, such as the representation of various geometric objects as higher inductive types.
Conversely, type theory is used to formalize and verify existing mathematical proofs using proof
assistants such as Coq [21] and Agda [18]. Moreover, type-theoretic insights often help us dis-
cover novel proofs of known results which are simpler than their homotopy-theoretic versions: the
calculation of πn(Sn) ([12, 10]); the Freudenthal Suspension Theorem [22]; the Blakers-Massey
Theorem [22], etc.

As a formal system, HoTT [22] is a generalization of intensional Martin-Löf Type Theory with
two features motivated by abstract homotopy theory: Voevodsky’s univalence axiom ([8, 25]) and
higher-inductive types ([14, 19]). The slogan in HoTT is that types are topological spaces, terms
are points, and proofs of identity are paths between points. The structure of an identity type in
HoTT is thus far more complex than just consisting of reflexivity paths, despite the definition of
IdA(x, y) as an inductive type with a single constructor reflA(x) : IdA(x, x). It is a beautiful, and
perhaps surprising, fact that not only does this richer theory admit an interpretation into homotopy
theory ([3], [8]) but that many fundamental concepts and results from mathematics arise naturally
as constructions and theorems of HoTT.

For example, the unit circle S1 is defined as a higher inductive type with a point base and a
loop loop based at base. It comes with a recursion principle which says that to construct a function
f : S1 → X , it suffices to supply a point x : X and a loop based at x. The value f(base) then
computes to x. Such definitional computation rules are convenient to work with but also pose some
conceptual difficulties. For instance, an alternative encoding of the circle as a higher inductive type
S1
a specifies two points south, north and two paths from north to south, called east and west. The

recursion principle then says that in order to construct a function f : S1
a → X , it suffices to supply

two points x, y : X and two paths between them. The values f(north) and f(south) then compute
to x and y respectively.

We have a natural way of relating these two representations via an equivalence: in one direction,
map base to north and loop to east; in the other direction, map both north and south to base and
map east to loop and west to the identity path at base. Unfortunately, the types S1, S1

a related
this way, while equivalent, do not satisfy the same definitional laws, which poses a compatibility
issue. Even more importantly, we do not have a way of internalizing these notions of a circle and
working with them inside the type theory, since we can only talk about definitional equalities on
the meta-level.

In this paper we thus study higher inductive types abstractly, as arbitrary types endowed with
certain constructors and propositional computation behavior: in the case of S1, for example, we
say that a type C with constructors b : C and l : c = c satisfies the recursion principle for a circle
if for any other type X , point x : X and loop based at x, there exists a function f : C → X for
which there is a path between f(b) and x (and which satisfies a higher coherence condition). We
note that we require no change to the underlying type theory: the particular higher inductive type
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S1 just becomes a specific instance of the abstract definition of a circle, one whose computation
rules happen to hold definitionally.

A major advantage of types with propositional computation rules is that we can internalize the
definitions and reason about them within the type theory - and in particular, use proof assistants
to verify the results. In this respect, our work is complementary to [15], which gives an external,
category-theoretic semantics for a certain class of higher inductives. Another advantage of propo-
sitional computation behavior is portability: relaxing the computation laws satisfied by the types
S1 and S1

a to their propositional counterparts results in two notions of a circle that are equivalent.
This in particular means that any type C which is a circle in one sense is also a circle in the alter-
nate sense. We can thus state and prove results about either of these specifications, knowing that
the proofs carry over to any particular implementation - be it S1, S1

a, or a third one.
It further turns out that types with propositional rules tend to keep many of their desirable

properties; for instance, it can be shown that the main result of [12], that the fundamental group of
the circle is the group of integers, carries over to the case when both the circle and the integer types
have propositional computational behavior. In addition, we can now show that higher inductive
types are characterized by the universal property of being a homotopy-initial algebra. This notion
was first introduced in [2], where an analogous result was established for the “ordinary” inductive
type of well-founded trees (Martin-Löf’s W-types). In the higher-dimensional setting, an algebra
is a type X together with a number of finitary operations f, g, h . . ., which are allowed to act not
only on X but also on any higher identity type over X . An algebra homomorphism has to preserve
all operations up to a higher homotopy. Finally, an algebra X is homotopy-initial if the type of
homomorphisms from X to any other algebra Y is contractible.

Our main theorem is stated for a class of higher inductive types which we call W-suspensions;
they generalize ordinary W-types as well as the higher inductive type S and others. We show that
the induction principle for W-suspensions is equivalent (as a type) to homotopy-initiality. This
extends the main result of [2] for “ordinary” inductive types to the important, and much more
difficult, higher-dimensional case.
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2 Basic Homotopy Type Theory
The core of HoTT is a dependent type theory with

• dependent pair types Σx:AB(x) and dependent function types Πx:AB(x) (with the non-
dependent versions A×B and A→ B). To stay consistent with the presentation in [22], we
assume definitional η-conversion for functions but do not assume it for pairs.

• a cumulative hierarchy of universes U0 : U1 : U2 : . . . in the style of Russell.

• intensional identity types IdA(x, y), also denoted x =A y. We have the usual formation and
introduction rules; the elimination and computation rules are recalled below:

E : Πx,y:AIdA(x, y)→ Ui d : Πx:AE(x, x, reflA(x))

J(E, d) : Πx,y:AΠp:IdA(x,y)E(x, y, p)

E : Πx,y:AIdA(x, y)→ Ui d : Πx:AE(x, x, reflA(x)) a : A

J(E, d)(a, a, reflA(a)) ≡ d(a) : E(a, a, reflA(a))

These rules are, of course, applicable in any context Γ; we follow the standard convention
of omitting it. If the type IdA(x, y) is inhabited, we call x and y equal. If we do not care
about the specific equality witness, we often simply say that x =A y or if the type A is clear,
x = y. A term p : x =A y will be often called a path and the process of applying the identity
elimination rule will be referred to as path induction. Definitional equality between x, y : A
will be denoted as x ≡ y : A.

We emphasize that apart from the aforementioned identity rules, univalence, and higher inductive
types there are no other rules governing the behavior of identity types - in particular, we assert
neither any form of Streicher’s K-rule [20] nor the identity reflection rule.

The rest of this section describes the univalence axiom and some key properties of identity
types; higher inductive types are discussed in Section. 3. For a thorough exposition of homotopy
type theory we refer the reader to [22].

2.1 Groupoid laws
Proofs of identity behave much like paths in topological spaces: they can be reversed, concate-
nated, mapped along functions, etc. Below we summarize a few of these properties:

• For any path p : x =A y there is a path p−1 : y =A x, and we have reflA(x)−1 ≡ reflA(x).

• For any paths p : x =A y and q : y =A z there is a path p � q : x =A z, and we have
reflA(x) � reflA(x) ≡ reflA(x).

• Associativity of composition: for any paths p : x =A y, q : y =A z, and r : z =A u we have
(p � q) � r = p � (q � r).
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• We have reflA(x) � p = p and p � reflA(y) = p for any p : x =A y.

• For any p : x =A y, q : y =A z we have p � p−1 = reflA(x), p−1 � p = reflA(y), and
(p−1)

−1
= p, (p � q)−1

= q−1 � p−1.

• For any type family P : A → Ui and path p : x =A y there are functions pP∗ : P (x) →
P (y) and p∗P : P (y) → P (x), called the covariant transport and contravariant transport,
respectively. We furthermore have reflA(x)P∗ ≡ reflA(x)∗P ≡ idP (x).

• We have (p−1)
P
∗ = p∗P , (p−1)

∗
P = pP∗ and (p � q)P∗ = qP∗ ◦ pP∗ , (p � q)∗P = p∗P ◦ q∗P for any

family P : A→ Ui and paths p : x =A y, q : y =A z.

• For any function f : A→ B and path p : x =A y, there is a path apf (p) : f(x) =B f(y) and
we have apf (reflA(x)) ≡ reflB(f(x)).

• We have apf (p
−1) = apf (p)

−1 and apf (p � q) = apf (p) � apf (q) for any f : A → B and
p : x =A y, q : y =A z.

• We have apg◦f (p) = apg(apf (p)) for any f : A→ B, g : B → C and p : x =A y.

• For a dependent function f : Πx:AB(x) and path p : x =A y, there are paths dapf (p) :

pB∗ (f(x)) =B(y) f(y) and dapf (p) : p∗B(f(y)) =B(x) f(x). We also have dapf (reflA(x)) ≡
dapf (reflA(x)) ≡ reflB(x)(f(x)).

• All constructs respect propositional equality.

2.2 Homotopies between functions
A homotopy between two functions is in a sense a “natural transformation”:

Definition 1. For f, g : Πx:AB(x), we define the type

f ∼ g := Πa:A(f(a) =B(a) g(a))

and call it the type of homotopies between f and g.

Definition 2. For f : A→ B and g : A′ → B, we define the type

f ∼H g := Πa:AΠa′:A(f(a) =B g(a′))

and call it the type of heterogeneous homotopies between f and g.

We now introduce some notation that will be needed later.

• For any f : Πx:XE(x), the identity homotopy on f is idH(f) := λx:XreflE(x)(f(x)).

4



• For any f, g : X → Y , h : Πx:XE(f(x)), α : f ∼ g, the composition of the homotopy α and
the function h is a function α ◦H h : Πx:XE(g(x)) defined as

α ◦H h := λx:Xα(x)E∗ h(x)

• For any f, g : X → Y , p : x =X y, α : f ∼ g, there is a path

nat(α, p) : α(x) � apg(p) = apf (p) � α(y)

defined in the obvious way by induction on p and referred to as the naturality of the homotopy
α. Pictorially, we have

nat(α, p)

f(x)

f(y)

g(x)

g(y)

apf (p)

α(x)

α(y)

apg(p)

• For any f, g : Πx:XY (x), p : x =X y, α : f ∼ g, there is a path

natF(α, p) : appY∗ (α(x)) � dapg(p) = dapf (p) � α(y)

defined in the obvious way by induction on p and referred to as the naturality of the “fibered”
homotopy α. Pictorially, we have

natF(α, p)

pY∗ (f(x))

f(y)

pY∗ (g(x))

g(y)

dapf (p)

appY∗ (α(x))

α(y)

dapg(p)

• For any f : X → Z, g : Y → Z, p : x1 =X x2, q : y1 =Y y2, α : f ∼H g, there is a path

natH(α, p, q) : α(x1, y1) � apg(q) = apf (p) � α(x2, y2)

defined in the obvious way by induction on p and q and referred to as the naturality of the
heterogeneous homotopy α. Pictorially, we have

natH(α, p, q)

f(x1)

f(x2)

g(y1)

g(y2)

apf (p)

α(x1, y1)

α(x2, y2)

apg(q)
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2.3 Truncation levels
In general, the structure of paths on a type A can be highly nontrivial - we can have many distinct
0-cells x, y, . . . : A; there can be many distinct 1-cells p, q, . . . : x =A y; there can be many distinct
2-cells γ, δ, . . . : p =x=Ay q; ad infinitum. The hierarchy of truncation levels describes those types
which are, informally speaking, trivial beyond a certain dimension: a type A of truncation level n
can be characterized by the property that all m-cells for m > n with the same source and target
are equal. From this intuitive description we can see that the hierarchy is cumulative.

It is customary to also speak of truncation levels−2 and−1, called contractible types and mere
propositions respectively:

Definition 3. A type A : Ui is called contractible if there exists a point a : A such that any other
point x : A is equal to a:

is-contr(A) := Σa:AΠx:A(a =A x)

A type A : Ui is called a mere proposition if all its inhabitants are equal:

is-prop(A) := Πx,y:A(x =A y)

Thus, a contractible type can be seen as having exactly one inhabitant, up to equality; a mere
proposition can be seen as having at most one inhabitant, up to equality. Clearly:

Lemma 4. If A is contractible then A is a mere proposition.

The existence of a path between any two points implies more than just path-connectedness:

Lemma 5. If A is a mere proposition, then x =A y is contractible for any x, y : A.

Thus, contractible types are in a sense the “nicest” possible: any two points are equal up to a
1-cell, which itself is unique up to a 2-cell, which itself is unique up to a 3-cell, and so on. Mere
propositions are the “nicest” ones after contractible spaces. We can now easily show:

Corollary 6. For any A, is-contr(A) and is-prop(A) are mere propositions.

2.4 Equivalences
A crucial concept in HoTT is that of an equivalence between types.

Definition 7. A map f : A→ B is called an equivalence if it has both a left and a right inverse:

iseq(f) :=
(
Σg:B→A(g ◦ f ∼ idA)

)
×
(
Σh:B→A(f ◦ h ∼ idB)

)
We define

(A ' B) := Σf :A→B iseq(f)

and call A and B equivalent if the above type is inhabited.
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Unsurprisingly, we can prove thatA andB are equivalent by constructing functions going back
and forth, which compose to identity on both sides1; this is also a necessary condition.

Lemma 8. Two types A and B are equivalent if and only if there exist functions f : A → B and
g : B → A such that g ◦ f ∼ idA and f ◦ g ∼ idB.

We will refer to such functions f and g as forming a quasi-equivalence and say that f and g
are quasi-inverses of each other. From this we can easily show:

Lemma 9. Equivalence of types is an equivalence relation.

We call A and B logically equivalent if there are exist functions f : A → B, g : B → A. It
is immediate that if both types are mere propositions then logical equivalence implies A ' B. For
example:

Corollary 10. For any A, is-contr(A) ' (A× is-prop(A)).

Many “diagram-like” operations on paths turn out to be equivalences. For instance:

• For any u : a =X b, v : b =X d, w : a =X c, z : c =X d there is a map

I1
� : (u = w � z � v−1)→ (u � v = w � z)

defined in the obvious way by induction on v and w. This map is an equivalence and we
denote its quasi-inverse by I−1

� .

• For any u : a =X b, v : b =X d, w : a =X c, z : c =X d there is a map

I2
� : (u = w � z � v−1)→ (w−1 � u = z � v−1)

defined in the obvious way by induction on v and w. This map is an equivalence and we
denote its quasi-inverse by I−2

� .

2.5 Structure of path types
Let us first consider the product type A × B. We would like for two pairs c, d : A × B to be
equal precisely when their first and second projections are equal. By path induction we can easily
construct a function

=E×c,d : (c = d)→ (π1(c) = π1(d))× (π2(c) = π2(d))

We can show:

Lemma 11. The map =E×c,d is an equivalence for any c, d : A×B.

1Although the type of such functions itself is not equivalent to A ' B, see Chpt. 4 of [22].
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We will denote the quasi-inverse of =E×c,d by ×E=
c,d. For brevity we will often omit the subscripts.

We have a similar correspondence for dependent pairs; however, the second projections of
c, d : Σx:AB(x) now lie in different fibers of B and we employ (covariant) transport. By path
induction we can define a map

=EΣ
c,d : (c = d)→ Σ(p:π1(c)=π1(d))(p

B
∗ (π2(c)) = π2(d))

Lemma 12. The map =EΣ
c,d is an equivalence for any c, d : Σx:AB(x).

We will denote the quasi-inverse of =EΣ
c,d by ΣE=

c,d. We also have an analogous correspondence
using a contravariant transport.

We would like for two types A,B : Ui to be equal precisely when they are equivalent. As
before, we can easily obtain a function

=E'A,B : (A = B)→ (A ' B)

The univalence axiom now states that this map is an equivalence:

Axiom 1 (Univalence). The map =E'A,B is an equivalence for any A,B : Ui.

We will denote the quasi-inverse of =E'A,B by 'E=
A,B.

It follows from univalence that equivalent types are equal and hence they satisfy the same
properties:

Lemma 13. For any type family P : Ui → Uj , and types A,B : Ui with A ' B, we have that
P (A) ' P (B). Thus in particular, P (A) is inhabited precisely when P (B) is.

Finally, two functions f, g : Πx:AB(x) should be equal precisely when there exists a homotopy
between them. Constructing a map

=EΠ
f,g : (f = g)→ (f ∼ g)

is easy. Showing that this map is an equivalence (or even constructing a map in the opposite
direction) is much harder, and is in fact among the chief consequences of univalence:

Lemma 14. The map =EΠ
f,g is an equivalence for any f, g : Πx:AB(x).

Proof. See Chpt. 4.9 of [22].

We will denote the quasi-inverse of =EΠ
f,g by ΠE=

f,g.
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3 Higher Inductive Types
An inductive type X can be understood as being freely generated by a collection of constructors:
in the familiar case of natural numbers, we have the two constructors for zero and successor. The
property of being freely generated can be stated as an induction principle: in order to show that a
property P : N → Ui holds for all n : N, it suffices to show that it holds for zero and is preserved
by the successor operation. As a special case, we get the recursion principle: in order to define a
map f : N→ C, is suffices to determine its value at zero and its behavior with respect to successor.

Higher inductive types generalize ordinary inductive types by allowing constructors involving
path spaces of X rather than just X itself, as the next example shows.

3.1 The circle
The unit circle S1 is represented as an inductive type S : U0 with two constructors [12]:

base : S
loop : base =S base

pictured as

base

loop

This in particular means that we have further paths, such as loop−1 � loop � loop � reflS(base) (which
is equal to loop).

We can reason about the circle using the principle of circle recursion, also called simple elim-
ination for S, which tells us that in order to construct a function out of S into a type C, it suffices
to supply a point c : C and a loop s : c =C c.

C : Ui c : C s : c =C c

recS(C, c, s) : S→ C

Furthermore, the recursor has the expected behavior on the 0-cell constructor base (we omit the
premises):

recS(C, c, s)(base) ≡ c : C

We also have a computation rule for the 1-cell constructor loop:

aprecS(C,c,s)(loop) =IdC(c,c) s

This rule type-checks by virtue of the previous one. We note that in order to record the effect of the
recursor on the path loop, we use the “action-on-paths” construct ap. Since this is a derived notion
rather than a primitive one, we state the rule as a propositional rather than definitional equality.
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We also have the more general principle of circle induction, also called dependent elimination
for S, which subsumes recursion. Instead of a type C : Ui we now have a type family E : S→ Ui.
Where previously we required a point c : C, we now need a point e : E(base). Finally, an obvious
generalization of needing a loop s : c =C c would be to ask for a loop d : e =E(base) e. However,
this would be incorrect: once we have our desired inductor of type Πx:SE(x), its effect on loop is
not a loop at e in the fiber E(base) but a path from loopE∗ (e) to e in E(base) (or its contravariant
version). The induction principle thus takes the following form:

E : S→ Ui e : E(base) d : loopE∗ (e) =E(base) e

indS(E, e, d) : Πx:SE(x)

We have the associated computation rules:

indS(E, e, d)(base) ≡ e : E(base)

dapindS(E,e,d)(loop) =IdE(base)(loop
E
∗ (e),e) d

3.2 The circle, round two
We could have alternatively represented the circle as an inductive type Sa : U0 with four construc-
tors:

north : Sa
south : Sa

east : north =Sa south

west : north =Sa south

pictured as

north

south

east west

We now have the recursion principle

C : Ui c : C d : C p : c =C d q : c =C d

recSa(C, c, d, p, q) : Sa → C

with the computation rules

recSa(C, c, d, p, q, north) ≡ c : C

recSa(C, c, d, p, q, south) ≡ d : C
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and

aprecSa (C,c,d,p,q)(east) = p

aprecSa (C,c,d,p,q)(west) = q

The corresponding induction principle is

E : Sa → Ui
u : E(north) v : E(south) µ : eastE∗ (u) =E(south) v ν : westE∗ (u) =E(south) v

indSa(E, u, v, µ, ν) : Πx:SaE(x)

with the associated computation rules

indSa(E, u, v, µ, ν, north) ≡ u : E(north)

indSa(E, u, v, µ, ν, south) ≡ v : E(south)

and

dapindSa (E,u,v,µ,ν)(east) = µ

dapindSa (E,u,v,µ,ν)(west) = ν

As expected, the two circle types are equivalent:

Lemma 15. We have S ' Sa.

Proof sketch. From left to right, map base to north and loop to east�west−1. From right to left, map
both north and south to base, east to loop, and west to reflS(base). Using the respective induction
principles, show that these two mappings compose to identity on both sides and apply Lem. 8.

3.3 Computation laws, revisited
By Lem. 15 the types S and Sa are equivalent and hence satisfy the same properties (see Lem. 13).
We would thus expect the induction principle for S to carry over to Sa, and vice versa. Indeed, with
a little effort we can show the former:

Lemma 16. The type Sa satisfies the induction and computation laws for S, with north acting as
the constructor base and east � west−1 acting as the constructor loop.

In the other direction, though, we hit a snag - the only obvious choice we have is to define both
points north and south to be base, one of the paths west and east to be loop, and the other one the
identity path at base. This, however, does not give us the desired induction principle: unless the
two given points u : E(base) and v : E(base) happen to be definitionally equal, we will not be
able to map base to both of them, as required by the computation rules.

This poses more than just a conceptual problem - in mathematics, we often have several pos-
sible definitions of a given notion, all of which are interchangeable from the point of view of a
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“user”. Having two definitions of a circle which are not (known to be) interchangeable, however,
can be problematic: any theorem we establish about or by appealing to Sa might no longer hold -
or even type-check! - when using S instead. To see this, take the second computation law for Sa,
dapindSa (E,u,v,µ,ν)(west) = ν. If we attempt to “implement” Sa using the circle S instead - by taking
north, south := base, east := loop, west := reflS(base) as in the proof of Lem. 15 - the computation
law is no longer well-typed since the left-hand side reduces to a reflexivity path whereas the right
hand side is a path from u to v.

This is one of the motivations for considering inductive types with propositional computation
behavior: we now want to investigate types which “act like the circle” up to propositional equality.
In the case of S, such a type C : Ui should come with a point b : C and loop l : c =C c. In the
case of Sa, such a type should come with two points n, s : C and two paths e, w : n =C s. We can
express this more concisely as follows:

Definition 17. Define the type of S-algebras on a universe Ui as

S-AlgUi := ΣC:UiΣb:C(b = b)

Definition 18. Define the type of Sa-algebras on a universe Ui as

Sa-AlgUi := ΣC:UiΣn,s:C(n = s)× (n = s)

We are now interested in maps between algebras which in a suitable sense preserve the distin-
guished points and paths, i.e., algebra homomorphisms. A homomorphism between two S-algebras
(C, c, p) and (D, d, q) should be a function f : C → D for which we have a path β : f(c) = d.
Furthermore, f should also appropriately relate p and q. To figure out what this means, we observe
that if we map p along f , we obtain a path apf (p) : f(c) = f(c). Each of the (identical) endpoints
is equal to d, via the path β. Thus, we now have another path β−1 � apf (p) � β : d = d. It is
reasonable to require that this path be equal to q, i.e., that the following diagram commutes:

f(c) f(c)

d d

apf (p)

β β

q

Likewise, a homomorphism between two Sa-algebras (C, a, b, p, q) and (D, c, d, r, s) should be a
function f : C → D for which we have paths β : f(a) = c, γ : f(b) = d and for which the
following diagrams commute:

f(a) f(b)

c d

apf (p)

β γ

r

f(a) f(b)

c d

apf (q)

β γ

s

We can express this as follows:
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Definition 19. For algebras X : S-AlgUi , Y : S-AlgUj , define the type of S-homomorphisms from
X to Y by

S-Hom (C, c, p) (D, d, q) := Σf :C→DΣβ:f(c)=d

(
apf (p) = β � q � β−1

)
Definition 20. For algebras X : Sa-AlgUi , Y : Sa-AlgUj , define the type of Sa-homomorphisms
from X to Y by

Sa-Hom (C, a, b, p, q) (D, c, d, r, s) := Σf :C→DΣβ:f(a)=cΣγ:f(b)=d(
apf (p) = β � r � γ−1

)
× (apf (q) = β � s � γ−1)

We note that to be able to form the type of homomorphisms as we just did, it is crucial to
have the computation laws stated propositionally. The recursion principle now becomes a property
internal to the type theory and can be expressed compactly as saying that there is a homomorphism
into any other algebra Y:

Definition 21. An algebra X : S-AlgUi satisfies the S-recursion principle on a universe Uj if for
any algebra Y : S-AlgUj there exists a homomorphism from X to Y:

has-S-recUj(X ) :=
(
ΠY : S-AlgUj

)
S-Hom X Y

Definition 22. An algebra X : Sa-AlgUi satisfies the Sa-recursion principle on a universe Uj if for
any algebra Y : Sa-AlgUj there exists a homomorphism from X to Y:

has-Sa-recUj(X ) :=
(
ΠY : Sa-AlgUj

)
Sa-Hom X Y

To express the induction principle in a similar fashion, we first need to introduce dependent or
fibered versions of algebras and algebra homomorphisms:

Definition 23. Define the type of fibered S-algebras on a universe Uj over an algebra X : S-AlgUi
by

S-Fib-AlgUj (C, c, p) := ΣE:C→UjΣe:E(c)

(
pE∗ (e) = e

)
Definition 24. Define the type of fibered Sa-algebras on a universe Uj over an algebra X :
Sa-AlgUi by

Sa-Fib-AlgUj (C, c, d, p, q) := ΣE:C→UjΣu:E(c)Σv:E(d)

(
pE∗ (u) = v

)
×
(
qE∗ (u) = v

)
Definition 25. For algebras X : S-AlgUi , Y : S-Fib-AlgUj X , define the type of fibered S-
homomorphisms from X to Y by

S-Fib-Hom (C, c, p) (E, e, q) := Σf :(Πx:C)E(x)Σβ:f(c)=e

(
dapf (p) = appE∗ (β) � q � β−1

)
Pictorially, the last component witnesses the commuting diagram
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pE∗ (f(c)) f(c)

pE∗ (e) e

dapf (p)

appE∗ (β) β

q

Definition 26. For algebras X : Sa-AlgUi , Y : Sa-Fib-AlgUj X , define the type of fibered Sa-
homomorphisms from X to Y by

Sa-Fib-Hom (C, a, b, p, q) (D, c, d, r, s) := Σf :(Πx:C)E(x)Σβ:f(a)=cΣγ:f(b)=d(
dapf (p) = appE∗ (β) � r � γ−1

)
× (dapf (q) = apqE∗ (β) � s � γ−1)

Pictorially, the last two components witness the commuting diagrams

pE∗ (f(a)) f(b)

pE∗ (c) d

dapf (p)

appE∗ (β) γ

r

pE∗ (f(a)) f(b)

pE∗ (c) d

dapf (q)

appE∗ (β) γ

s

The induction principle can now be expressed as saying that there is a fibered homomorphism into
any fibered algebra Y:

Definition 27. An algebra X : S-AlgUi satisfies the S-induction principle on a universe Uj if for
any fibered algebra Y : S-AlgUj X there exists a fibered homomorphism from X to Y:

has-S-indUj(X ) :=
(
ΠY : S-Fib-AlgUj

)
S-Fib-Hom X Y

Definition 28. An algebra X : Sa-AlgUi satisfies the Sa-induction principle on universe Uj if for
any fibered algebra Y : Sa-AlgUj X there exists a fibered homomorphism from X to Y:

has-Sa-indUj(X ) :=
(
ΠY : Sa-Fib-AlgUj

)
Sa-Fib-Hom X Y

3.4 Relating the two circles
We first note that the notions of S-algebras and Sa-algebras are in fact the same:

Lemma 29. We have a function

S-to-Sa-AlgUi : S-AlgUi → Sa-AlgUi

which is an equivalence.
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Proof. Define the equivalence between S-AlgUi and Sa-AlgUi by the quasi-inverses

(C, c, p) 7→ (C, c, c, p, refl(c))

(C, a, b, p, q) 7→ (C, a, p � q−1)

Next, we note that the notions of fibered S-algebras and fibered Sa-algebras are the same, in the
following sense:

Lemma 30. For any algebra X : S-AlgUi we have a function

S-to-Sa-Fib-AlgUi(X ) : S-Fib-AlgUi X → Sa-Fib-AlgUi
(
S-to-Sa-AlgUi X

)
which is an equivalence.

Proof. Fix algebra (C, c, p) : S-AlgUi . Define the equivalence between S-Fib-AlgUi (C, c, p) and
Sa-Fib-AlgUi (C, c, c, p, refl(c)) by the quasi-inverses

(E, e, q) 7→ (E, e, e, q, refl(e))

(E, a, b, r, s) 7→ (E, a, r � s−1)

The notions of S-homomorphisms and Sa-homomorphisms also coincide:

Lemma 31. For any algebras X : S-AlgUi , Y : S-AlgUj we have

S-Hom X Y ' Sa-Hom
(
S-to-Sa-AlgUi X

) (
S-to-Sa-AlgUi Y

)
Finally, the respective fibered versions of S-homomorphisms and Sa-homomorphisms coincide:

Lemma 32. For any algebras X : S-AlgUi , Y : S-Fib-AlgUj X we have

S-Fib-Hom X Y ' Sa-Fib-Hom
(
S-to-Sa-AlgUi X

) (
S-to-Sa-Fib-AlgUi(X ) Y

)
We can now show that S-recursion is the same as Sa-recursion, and likewise for induction:

Lemma 33. For any X : S-AlgUi we have

has-S-recUj(X ) ' has-Sa-recUj(S-to-Sa-AlgUi(X ))

has-S-indUj(X ) ' has-Sa-indUj(S-to-Sa-AlgUi(X ))

Corollary 34. The Sa-algebra (S, base, base, loop, reflS(base)) satisfies the Sa-induction principle
on any universe Uj .

Corollary 35. The S-algebra (Sa, north, east � west−1) satisfies the S-induction principle on any
universe Uj .
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4 Propositional Truncation
Another example of a higher inductive type is the propositional truncation ||A|| : Ui of a type
A : Ui, investigated in [1] in an extensional setting under the name bracket types. Intuitively, ||A||
represents the “squashing” of A which makes all the elements in A equal. The need for such a
type arises when we wish to hide information: having a term a : A is very different from having
a b : ||A||. In the latter case, we know that the provable failure of A to be inhabited, that is, a
term of type A → 0, would lead to a contradiction. However, we do not have a generic way of
constructing an inhabitant of A.

4.1 The type ||A||
We define ||A|| as the higher inductive type generated by a constructor | · |, which projects a given
element of A down to ||A||, and a truncation constructor, which states that ||A|| is indeed a mere
proposition2:

| · | : A→ ||A||
sq : Πx,y:||A||(x =||A|| y)

As usual, the recursion principle states that given a structure of the same form, we have a
function out of ||A|| which preserves the constructors:

C : Uj c : A→ C s : Πx,y:C(x =C y)

rec||A||(C, c, s) : ||A|| → C

where for each a : A we have

rec||A||(C, c, s, |a|) ≡ c(a) : C

and for each k, l : ||A|| we have

aprec||A||(C,c,s)
(sq(k, l)) = s

(
rec||A||(C, c, s, k), rec||A||(C, c, s, l)

)
We note that we are only able to eliminate into types which are themselves mere propositions. This
together with Lem. 5 implies that the second computation law always holds. We have included it
nonetheless to illustrate the general pattern.

To state the induction principle, we need to suitably generalize the last hypothesis. As before,
we note that once the desired map f : Πx:||A||E(x) is constructed, it will give us a path from
sq(k, l)E∗ (f(k)) to f(l) in E(l) for any k, l : ||A||. Hence, E should already come equipped with
such a family of paths - except, of course, we have no way of referring to f(k) and f(l) before f
is constructed. Thus, we simply require that such a path exists for all points u : E(k) and v : E(l):

E : ||A|| → Uj e : Πa:AE(|a|) q : Πx,y:||A||Πu:E(x)Πv:E(y)

(
sq(x, y)E∗ (u) =E(y) v

)
ind||A||(E, e, q) : Πx:||A||E(x)

2Hence the name propositional truncation; see Chpt. 6 of [22] for other kinds of truncation.
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where for each a : A we have

ind||A||(E, e, q, |a|) ≡ e(a) : E(|a|)

and for each k, l : ||A|| we have

dapind||A||(E,e,q)
(sq(k, l)) = q

(
k, l, ind||A||(E, e, q, k), ind||A||(E, e, q, l)

)
The second rule again turns out to always hold, as we will see shortly.

4.2 Propositional computation laws
We point out that the truncation ||A|| as defined has its share of unexpected behavior. For instance,
as the type N of natural numbers is inhabited, it follows that ||N|| = 1. It is not obvious, however,
how to turn 1 itself into a truncation of N, since the first computation law ought to hold definition-
ally. More surprising yet is the observation by N. Kraus in [9] that there exists a map f such that
f ◦ | · | ≡ idN; this is another somewhat strange side effect of the definitional computation law for
| · |.

In light of these issues, we follow our methodology from the previous section and investigate
types which “act like the type ||A||” up to propositional equality. We have the following:

Definition 36. Define the type of ||A||-algebras on a universe Uj as

||A||-AlgUj := ΣC:Uj(A→ C)× is-prop(A)

A natural definition of an algebra homomorphism between two ||A||-algebras (C, c, p) and
(D, d, q) is a map f : C → D together with path families

β : Πa:A

(
f(c(a)) = d(a)

)
γ : Πx,y:C

(
apf (p(x, y)) = q(f(x), f(y))

)
However, the typeD is a mere proposition. Thus by Lem. 5 and the fact that a family of contractible
types is itself contractible, it follows that both of the above types are equivalent to 1. Hence, we
have the simple definition:

Definition 37. Given algebras X : ||A||-AlgUj and Y : ||A||-AlgUk , we define the type of ||A||-
homomorphisms from X to Y by

||A||-Hom (C, c, p) (D, d, q) := C → D

As before, the recursion principle states that there is a homomorphism to any other algebra Y:

Definition 38. An algebra X : ||A||-AlgUj satisfies the recursion principle on a universe Uk if for
any algebra Y : ||A||-AlgUk there exists a ||A||-homomorphism from X to Y:

has-||A||-recUk(X ) :=
(
ΠY : ||A||-AlgUk

)
||A||-Hom X Y
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Based on the ||A||-elimination rule, a natural definition of a fibered algebra over (C, c, p) is a
family of types E : C → Uk endowed with a function e : Πa:AE(c(a)) and path family

q : Πx,y:CΠu:E(x)Πv:E(y)(p(x, y)E∗ (u) = v)

Using the fact that C is a mere proposition, we can show, however, that the above type is equivalent
to the condition that E is a family of mere propositions, Πx:C is-prop(E(x)). We can thus define:

Definition 39. Define the type of fibered ||A||-algebras on a universe Uk over X : ||A||-AlgUj by

||A||-Fib-AlgUk (C, c, p) := ΣE:C→Uk
(
Πa:AE(c(a))

)
×
(
Πx:C is-prop(E(x))

)
Analogously to the non-fibered case, a natural definition of a fibered ||A||-homomorphism from

(C, c, p) to (E, e, q) is a function f : Πx:CE(x) together with path families

β : Πa:A

(
f(c(a)) = e(a)

)
γ : Πx,y:C

(
dapf (p(x, y)) = q(x, y, f(x), f(y))

)
Since E is a family of mere propositions, by exactly the same reasoning we get that both of the
above types are equivalent to 1. Hence, we can define:

Definition 40. For algebras X : ||A||-AlgUj , Y : ||A||-AlgUk X , define the type of fibered ||A||-
homomorphisms from X to Y by

||A||-Fib-Hom (C, c, p) (E, e, q) := Πx:CE(x)

As before, the induction principle states that there is a fibered homomorphism to any fibered
algebra Y:

Definition 41. An algebra X : ||A||-AlgUj satisfies the ||A||-induction principle on a universe Uk
if for any fibered algebra Y : ||A||-AlgUk X there exists a fibered homomorphism from X to Y:

has-||A||-indUk(X ) :=
(
ΠY : ||A||-AlgUk X

)
||A||-Fib-Hom X Y

Finally, we can show that induction and recursion for ||A|| are in fact equivalent. We note that
since universe levels are cumulative, the technical restriction that k ≥ j does not pose a problem.

Theorem 42. For A : Ui, the following conditions on an algebra X : ||A||-AlgUj are equivalent:

• X satisfies the induction principle on the universe Uk

• X satisfies the recursion principle on the universe Uk
for k ≥ j. In other words, we have

has-||A||-indUk(X ) ' has-||A||-recUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

Proof. The fact that the types are mere propositions is clear. The direction from right to left is obvi-
ous. For the other direction, fix algebras (C, c, p) : ||A||-AlgUj , (E, e, q) : ||A||-Fib-AlgUk (C, c, p).
The total space Σx:CE(x) : Uk is a mere proposition, we can thus apply recursion with the projec-
tion map a 7→ (c(a), e(a)) to get a function f : C → Σx:CE(x). A homotopy α : fst ◦ f ∼ idC
exists as C is a mere proposition. Applying second projection and transporting gives us a map
x 7→ α(x)E∗ (π2f(x)) and we are done.
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5 W-Suspensions as Homotopy-Initial Algebras
Here we consider a class of higher inductive types which we call W-suspensions; informally, they
combine Martin-Löf’s W-types [17], also known as well-founded trees, with (a generalized form
of) suspensions ([22], Chpt. 6.5). Ordinary W-types allow proper induction on the level of points
but have no higher-dimensional constructors. Suspensions, on the other hand, only provide vacu-
ous induction on the point level, in the form of two nullary constructors; however, they allow us
to specify an arbitrary number of path constructors between these two points. A suitable combina-
tion of these two classes of types keeps the phenomenons of induction and higher-dimensionality
orthogonal, which gives us a well-behaved elimination principle.

5.1 W-suspensions
Formally, given types A,C : Ui, a type family B : A → Ui, and functions l, r : C → A, the
W-suspension W(A,B,C, l, r) : Ui is the higher inductive type generated by the constructors

sup : Πa:A

(
B(a)→ W(A,B,C, l, r)

)
→ W(A,B,C, l, r)

cell : Πc:CΠt:B(l c)→W(A,B,C,l,r)Πs:B(r c)→W(A,B,C,l,r) sup(l c, t) = sup(r c, s)

From now on we will keep the arguments A,B,C, l, r implicit, unless indicated otherwise.
As in the case of ordinary W-types, the type A can be thought of as the type of labels for points

and for any a : A, the type B(a) represents the arity of the label a, i.e., it is the index type for the
arguments of a. Similarly, the type C represents the type of labels for paths between points. For
any c : C, the terms l(c) and r(c) determine the respective labels of the left and right endpoints
of the paths labeled by c. As can be read off from the type of the constructor cell, each label c : C
determines a family of paths in W, one for each pair of terms t : B(l c)→ W and s : B(r c)→ W.

An ordinary W-type Wx:AB(x) arises as a W-suspension in the obvious way by taking A := A,
B := B, C := 0, and letting both l and r be the canonical function from 0 into A. We can encode
the circle S by taking A,C := 1, B := λ :10, l, r := λ :1?. The circle Sa arises when we take
A,C := 2, B := λ :20, l := λ :2>, r := λ :2⊥. Other types which can be represented in this form
include the interval type, suspensions - hence in particular all the higher spheres Sn - and of course
all ordinary inductive types arising as W-types, e.g., natural numbers, lists, and so on. For more
detail we refer to Sect. 5.3.

W-suspensions come with the expected recursion principle: Given terms

• E : Uj

• e : Πa:A(B(a)→ E)→ E

• q : Πc:CΠu:B(l c)→EΠv:B(r c)→E
(
e(l c, u) = e(r c, v)

)
there is a recursor recW(E, e, q) : W→ E. The recursor satisfies the computation laws

• recW(E, e, q, sup(a, t)) ≡ e
(
a, recW(E, e, q) ◦ t

)
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for any a : A, t : B(a)→ W and

• aprecW(E,e,q)(cell(c, t, s)) = q
(
c, recW(E, e, q) ◦ t, recW(E, e, q) ◦ s

)
for any c : C, t : B(l c)→ W, s : B(r c)→ W. Similarly, we have an induction principle: Given
terms

• E : W→ Uj

• e : Πa:AΠt:B(a)→W

(
Πb:B(a)E(t b)

)
→ E(sup(a, t))

• q : Πc:CΠt:B(l c)→WΠs:B(r c)→WΠu:(Πb:B(l c))E(t b)Πv:(Πb:B(r c))E(s b)(
cell(c, t, s)E∗ e(l c, t, u) = e(r c, s, v)

)
there is an inductor indW(E, e, q) : Πw:WE(w). The inductor satisfies the computation laws

• indW(E, e, q, sup(a, t)) ≡ e
(
a, t, indW(E, e, q) ◦ t

)
for any a : A, t : B(a)→ W and

• dapindW(E,e,q)(cell(c, t, s)) = q
(
c, t, s, indW(E, e, q) ◦ t, indW(E, e, q) ◦ s

)
for any c : C, t : B(l c)→ W, s : B(r c)→ W.

Following the now-familiar pattern, we define W-suspension algebras and homomorphisms,
together with their fibered counterparts. For convenience, we first introduce the corresponding
notions for ordinary W-types Wx:AB(x), which we refer to as W-trees, taking into account only
the 0-constructor sup; we subsequently extend the definitions to the more general case.

Definition 43. Define the type of W-tree algebras on a universe Uj by

W0-AlgUj(A,B) := ΣD:UjΠa:A(B(a)→ D)→ D

Definition 44. Define a type family over the type W0-AlgUj(A,B) by

W1-Alg (D, d) := Πc:CΠu:B(l c)→DΠv:B(r c)→D
(
d(l c, u) = d(r c, v)

)
Definition 45. Define the type of W-suspension algebras on a universe Uj by

W-AlgUj(A,B,C, l, r) :=
(

ΣX0 : W0-AlgUj(A,B)
)

W1-Alg X0

As before, we will keep the parameters A,B,C, l, r implicit if no confusion arises in doing so.

Definition 46. For an algebra X0 : W0-AlgUj , define the type of fibered W-tree algebras on a
universe Uk over X0 by

W0-Fib-AlgUk (D, d) := ΣE:D→UkΠa:AΠt:B(a)→D
(
Πb:B(a)E(t b)

)
→ E(d(a, t))
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Definition 47. For an algebraX : W-AlgUj , define a type family over the type W0-Fib-AlgUj π1(X )
by

W1-Fib-Alg (D, d, p) (E, e) := Πc:CΠt:B(l c)→DΠs:B(r c)→D

Πu:(Πb:B(l c))E(t b)Πv:(Πb:B(r c))E(s b)

(
p(c, t, s)E∗ e(l c, t, u) = e(r c, s, v)

)
Definition 48. For an algebra X : W-AlgUj , define the type of fibered W-suspension algebras on
a universe Uk over X by

W-Fib-AlgUk X :=
(

ΣY0 : W0-Fib-AlgUj π1(X )
)

W1-Fib-Alg X Y0

To express the type of homomorphisms between two W-type or W-suspension algebras, we
again need to use propositional instead of definitional equality.

Definition 49. For algebras X0 : W0-AlgUj and Y0 : W0-AlgUk , define the type of W-tree homo-
morphisms from X0 to Y0 by

W0-Hom (D, d) (E, e) := Σf :D→EΠa:AΠt:B(a)→D
(
f(d(a, t)) = e(a, f ◦ t)

)
Definition 50. For algebras X : W-AlgUj and Y : W-AlgUk , define a type family over the type
W0-Hom π1(X ) π1(Y) by

W1-Hom (D, d, p) (E, e, q) (f, β) := Πc:CΠt:B(l c)→DΠs:B(r c)→D(
apf (p(c, t, s)) = β(l c, t) � q(c, f ◦ t, f ◦ s) � β(r c, s)−1

)
Definition 51. For algebras X : W-AlgUj and Y : W-AlgUk , define the type of W-suspension
homomorphisms from X to Y by

W-Hom X Y :=
(

Σµ0 : W0-Hom π1(X ) π1(Y)
)

W1-Hom X Y µ0

Pictorially, the last component of a W-suspension homomorphism witnesses the following
commuting diagram for any c, t, s:

f(d(l c, t)) f(d(r c, s))

e(l c, f ◦ t) e(r c, f ◦ s)

apf (p(c, t, s))

β(l c, t) β(r c, s)

q(c, f ◦ t, f ◦ s)

Definition 52. For algebras X0 : W0-AlgUj and Y0 : W0-Fib-AlgUk X0, define the type of fibered
W-tree homomorphisms from X0 to Y0 by

W0-Fib-Hom (D, d) (E, e) := Σf :(Πx:D)E(x)Πa:AΠt:B(a)→D
(
f(d(a, t)) = e(a, t, f ◦ t)

)
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Definition 53. For algebras X : W-AlgUj and Y : W-Fib-AlgUk X , define a type family over the
type W0-Fib-Hom π1(X ) π1(Y) by

W1-Fib-Hom (D, d, p) (E, e, q) (f, β) := Πc:CΠt:B(l c)→DΠs:B(r c)→D(
dapf (p(c, t, s)) = app(c,t,s)E∗ (β(l c, t)) � q(c, t, s, f ◦ t, f ◦ s) � β(r c, s)−1

)
Definition 54. For algebras X : W-AlgUj and Y : W-Fib-AlgUk X , define the type of fibered
W-suspension homomorphisms from X to Y by

W-Fib-Hom X Y :=
(

Σµ0 : W0-Fib-Hom π1(X ) π1(Y)
)

W1-Fib-Hom X Y µ0

Pictorially, the last component of a W-suspension homomorphism witnesses the following
commuting diagram for any c, t, s:

p(c, t, s)E∗ (f(d(l c, t))) f(d(r c, s))

p(c, t, s)E∗ (e(l c, t, f ◦ t)) e(r c, s, f ◦ s)

dapf (p(c, t, s))

app(c,t,s)E∗ (β(l c, t)) β(r c, s)

q(c, t, s, f ◦ t, f ◦ s)

The recursion and induction principles for W-suspensions can now be defined as usual:

Definition 55. An algebra X : W-AlgUj satisfies the recursion principle on a universe Uk if for any
algebra Y : W-AlgUk there exists a W-suspension homomorphism from X to Y:

has-W-recUk(X ) :=
(
ΠY : W-AlgUk

)
W-Hom X Y

Definition 56. An algebra X : W-AlgUj satisfies the induction principle on a universe Uk if for any
fibered algebra Y : W-AlgUk X there exists a fibered W-suspension homomorphism from X to Y:

has-W-indUk(X ) :=
(
ΠY : W-Fib-AlgUk X

)
W-Fib-Hom X Y

We will also need the following uniqueness properties which state that any two (fibered) ho-
momorphisms into any (fibered) algebra Y are equal:

Definition 57. An algebra X : W-AlgUj satisfies the recursion uniqueness principle on a universe
Uk if for any other algebra Y : W-AlgUk the type of W-suspension homomorphisms from X to Y is
a mere proposition:

has-W-rec-uniqUk(X ) :=
(
ΠY : W-AlgUk

)
is-prop(W-Hom X Y)

Definition 58. An algebra X : W-AlgUj satisfies the induction uniqueness principle on a universe
Uk if for any fibered algebra Y : W-AlgUk X the type of W-suspension homomorphisms from X to
Y is a mere proposition:

has-W-ind-uniqUk(X ) :=
(
ΠY : W-Fib-AlgUk X

)
is-prop(W-Fib-Hom X Y)
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We now define the key concept of homotopy-initiality [2], which translates the notion of exis-
tence plus uniqueness into the homotopy type-theoretic setting as contractibility:

Definition 59. An algebra X : W-AlgUj is homotopy-initial on a universe Uk if for any other
algebra Y : W-AlgUk the type of W-suspension homomorphisms from X to Y is contractible:

is-W-hinitUk(X ) :=
(
ΠY : W-AlgUk

)
is-contr(W-Hom X Y)

Lemma 60. For any X : W-AlgUj we have

is-W-hinitUk(X ) ' has-W-recUk(X )× has-W-rec-uniqUk(X )

5.2 Main result
Our main result establishes the equivalence between the universal property of being homotopy-
initial and the satisfaction of the induction principle:

Theorem 61. For A,C : Ui, B : A → Ui, l, r : C → A, the following conditions on an algebra
X : W-AlgUj(A,B,C, l, r) are equivalent:

• X satisfies the induction principle on the universe Uk

• X is homotopy-initial on the universe Uk
for k ≥ j. In other words, we have

has-W-indUk(X ) ' is-W-hinitUk(X )

provided k ≥ j. Moreover, the two types above are mere propositions.

By Lem. 60, homotopy-intiality is equivalent to the principles of recursion plus recursion
uniqueness. The uniqueness condition is necessary since in general, the recursion principle does
not fully determine an inductive type: the recursion principle for the circle, for example, is also
satisfied by the disjoint union of two circles.

Before we proceed to the proof of the general case, we look at the analogue of the main theorem
for propositional truncations. We can define homotopy-initial ||A||-algebras as expected:

Definition 62. An algebra X : ||A||-AlgUj is homotopy-initial on a universe Uk if for any other
algebra Y : ||A||-AlgUk the type of ||A||-homomorphisms from X to Y is contractible:

is-||A||-hinitUk(X ) :=
(
ΠY : ||A||-AlgUk

)
is-contr(||A||-Hom X Y)

Since we operate in the setting of mere propositions, we do not have to formulate an analogous
uniqueness condition, which is uniquely satisfied and hence redundant. Instead, we have:

Lemma 63. For any X : ||A||-AlgUj we have

is-||A||-hinitUk(X ) ' has-||A||-recUk(X )

Thus, Lem. 42 is the analogue of our main result for truncations.
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Proof outline A crucial step of the proof is the characterization of the path space µ = ν between
two (fibered) W-suspension homomorphisms µ, ν : X → Y in a more explicit form. For simplicity
we only consider the non-fibered case here. We recall that a homomorphism between two algebras
(D, d, p), (E, e, q) is a triple (f, β, θ), where f : C → D is a function between the carrier types, β
specifies the behavior of f on the 0-cells, i.e., the value of f(d(a, t)), and θ specifies the behavior
of f on the 1-cells, i.e., the value of apf (p(c, t, s)).

Using the characterization of paths between tuples together with function extensionality, the
path space (f, β, θ) = (g, γ, φ) between two homomorphisms should be equivalent to a type of
triples (α, η, ψ), where α : f ∼ g is a homotopy relating the two underlying mappings, and η, ψ
relate β to γ resp. θ to φ in an appropriate way. We will call such a triple (α, η, ψ) a W-suspension
cell. The recursion uniqueness condition on an algebra X can then be equivalently expressed as
saying that for any algebra Y and homomorphisms µ, ν from X to Y , there exists a W-suspension
cell between µ and ν.

We point out that this uniqueness condition can itself be understood as a certain form of in-
duction, albeit a very specific one. The existence of a W-suspension cell between any two ho-
momorphisms (f, β, θ), (g, γ, φ) in particular guarantees the existence of a dependent function
α : Πx:X(f(x) = g(x)) - the “inductor”. The behavior of α on the 0-cells, i.e., the value of
α(d(a, t)), is specified by the term η, which thus serves as a witness for the first “computation
rule”. Finally, the behavior of α on the 1-cells, i.e., the value of dapα(p(c, t, s)), is specified by the
term ψ, which hence serves as a witness for the second “computation rule.” We observe the same
pattern in the case of propositional truncations: homomorphisms between ||A||-algebras are just
maps between the carrier types, hence there are no “computation rules” to speak of. A cell between
||A||-homomorphisms f and g would just be a homotopy α : Πx:X(f(x) = g(x)) - the “inductor”.
The existence of such α is of course a moot point since we work with mere propositions.

We can now see why the full induction principle for W-suspensions gives homotopy-initiality:
the latter essentially amounts to the recursion principle plus a specific form of induction, both of
which are implied by the general induction principle. The hardest part of the proof is showing the
converse, i.e., that the general induction principle can be recovered from homotopy-initiality.

We are now ready to give the formal definition of a W-suspension cell. There is an analogous
definition of a fibered W-suspension cell, which uses the fibered versions of W-algebras and homo-
morphisms. As before, we first introduce the corresponding notions for W-trees and then proceed
to the general case of W-suspensions.

Definition 64. Given algebras X0 : W0-AlgUj , Y0 : W0-AlgUk , and homomorphisms µ0, ν0 :
W0-Hom X0 Y0, define the type of W-tree cells between µ0 and ν0 by

W0-Cell (D, d) (E, e) (f, β) (g, γ) :=

W0-Fib-Hom (D, d)
(
x 7→ f(x) = g(x); a, t, u 7→ β(a, t) � ape(a)(

ΠE=(u)) � γ(a, t)−1
)

Pictorially, the second component of a W-tree cell witnesses the following commuting diagram
for any a, t:

24



f(d(a, t)) g(d(a, t))

e(a, f ◦ t) e(a, g ◦ t)

α(d(a, t))

β(a, t) γ(a, t)

ape(a)(
ΠE=(α ◦ t))

Definition 65. Given algebras X0 : W0-AlgUj , Y0 : W0-Fib-AlgUk X0, and fibered homomorphisms
µ0, ν0 : W0-Fib-Hom X0 Y0, define the type of fibered W-tree cells between µ0 and ν0 by

W0-Fib-Cell (D, d) (E, e) (f, β) (g, γ) :=

W0-Fib-Hom (D, d)
(
x 7→ f(x) = g(x); a, t, u 7→ β(a, t) � ape(a,t)(

ΠE=(u)) � γ(a, t)−1
)

Pictorially, the second component of a W-tree cell witnesses the following commuting diagram
for any a, t:

f(d(a, t)) g(d(a, t))

e(a, t, f ◦ t) e(a, t, g ◦ t)

α(d(a, t))

β(a, t) γ(a, t)

ape(a,t)(
ΠE=(α ◦ t))

We will generally omit all but the last two arguments to W0-Cell and W0-Fib-Cell.
Following the same methodology, we postulate that a W-suspension cell between (f, β, θ) and

(g, γ, φ) should consist of a W-tree cell (α, η) together with a proof that the value of dapα(p(c, t, s))
is the “obvious” one. However, the type of the term dapα(p(c, t, s)) involves a transport along the
fibers of the type family x 7→ f(x) = g(x), making it unwieldy to work with. Instead, we
axiomatize the value of nat(α, p(c, t, s)), which nevertheless specifies the value of dapα(p(c, t, s))
uniquely as the latter term is expressible using the former.

Determining (and stating!) what the value of nat(α, p(c, t, s)) should be requires a little work;
this is expected since we are now working with paths on a higher level. To state the crucial defini-
tions more compactly, we introduce the following notations.

Definition 66. Given

• functions e1 : X1 → Y , e2 : X2 → Y

• a heterogeneous homotopy q : e1 ∼H e2

• paths r1 : a1 =X1 b1, r2 : a2 =X2 b2 and δ1 : c1 =Y c2, δ2 : d1 =Y d2

• paths β1 : c1 =Y e1(a1), β2 : c2 =Y e2(a2) and γ1 : d1 =Y e1(b1), γ2 : d2 =Y e2(b2)
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• higher paths Θ : δ1 = β1
� q(a1, a2) � β−1

2 and Φ : δ2 = γ1
� q(b1, b2) � γ−1

2

we let P(q, r1, r2,Θ,Φ) be the higher path in Fig. 1.

Definition 67. Given

• a function F : Y1 → Y2

• functions e1 : X1 → Y1, e2 : X2 → Y2

• a heterogeneous homotopy q : (F ◦ e1) ∼H e2

• paths r1 : a1 =X1 b1, r2 : a2 =X2 b2 and δ1 : F (c1) =Y2 c2, δ2 : F (d1) =Y2 d2

• paths β1 : c1 =Y1 e1(a1), β2 : c2 =Y2 e2(a2) and γ1 : d1 =Y1 e1(b1), γ2 : d2 =Y2 e2(b2)

• higher paths Θ : δ1 = apF (β1) � q(a1, a2) � β−1
2 and Φ : δ2 = apF (γ1) � q(b1, b2) � γ−1

2

we let Q(q, r1, r2,Θ,Φ) be the higher path in Fig. 2.

Definition 68. For algebras X : W-AlgUj , Y : W-AlgUk and homomorphisms µ, ν : W-Hom X Y ,
define a type family over the type W0-Cell π1(µ) π1(ν) by

W1-Cell (D, d, p) (E, e, q) (f, β, θ) (g, γ, φ) (α, η) :=

Πc:CΠt:B(l c)→DΠs:B(r c)→D

(
nat(α, pc,t,s) = ap− � apg(p(c,t,s))(η(l c, t)) �

P
(
qc,

ΠE=(α ◦ t), ΠE=(α ◦ s), θc,t,s, φc,t,s
)
�
(
apapf (p(c,t,s)) �−(η(r c, s))

)−1
)

Definition 69. For algebras X : W-AlgUj , Y : W-AlgUk X and fibered homomorphisms µ, ν :
W-Fib-Hom X Y , define a type family over the type W0-Fib-Cell π1(µ) π1(ν) by

W1-Fib-Cell (D, d, p) (E, e, q) (f, β, θ) (g, γ, φ) (α, η) :=

Πc:CΠt:B(l c)→DΠs:B(r c)→D

(
natF(α, pc,t,s) = apap

p(c,t,s)E∗
(−) � dapg(p(c,t,s))(η(l c, t)) �

P
(
qc,t,s,

ΠE=(α ◦ t), ΠE=(α ◦ s), θc,t,s, φc,t,s
)
�
(
apdapf (p(c,t,s)) �−(η(r c, s))

)−1
)

We will usually leave out all but the last three arguments to W1-Cell and W1-Fib-Cell.

Definition 70. For algebras X : W-AlgUj , Y : W-AlgUk and homomorphisms µ, ν : W-Hom X Y ,
define the type of W-suspension cells between µ and ν by

W-Cell µ ν :=
(

ΣC0 : W0-Cell π1(µ) π1(ν)
)

W1-Cell µ ν C0
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Definition 71. For algebras X : W-AlgUj , Y : W-AlgUk X and fibered homomorphisms µ, ν :
W-Fib-Hom X Y , define the type of fibered W-suspension cells between µ and ν by

W-Fib-Cell µ ν :=
(

ΣC0 : W0-Fib-Cell π1(µ) π1(ν)
)

W1-Fib-Cell µ ν C0

Pictorially, the last component of a W-suspension cell witnesses the commuting diagram in
Fig. 3 for any c, t, s. The last component of a fibered W-suspension cell witnesses the commuting
diagram in Fig. 4 for any c, t, s.

Lemma 72. For algebras X : W-AlgUj , Y : W-AlgUk and homomorphisms µ, ν : W-Hom X Y ,
the path space µ = ν is equivalent to the type of W-suspension cells between µ and ν:

µ = ν ' W-Cell µ ν

Lemma 73. For algebras X : W-AlgUj , Y : W-AlgUk X and fibered homomorphisms µ, ν :
W-Fib-Hom X Y , the path space µ = ν is equivalent to the type of fibered W-suspension cells
between µ and ν:

µ = ν ' W-Fib-Cell µ ν

For the proof see Sect. A. The proof of the main result now consists of the following steps:

1) Show that the induction principle implies the recursion principle, that is:

has-W-indUk(X )→ has-W-recUk(X )

for any X : W-AlgUj . See Sect. B.

2) Show that the induction principle implies both uniqueness conditions, that is:

has-W-indUk(X )→ has-W-ind-uniqUk(X )

has-W-indUk(X )→ has-W-rec-uniqUk(X )

for any X : W-AlgUj . See Sect. C.

3) Show that the recursion plus recursion uniqueness principles imply the induction principle,
that is:

has-W-recUk(X )× has-W-rec-uniqUk(X )→ has-W-indUk(X )

for any X : W-AlgUj . See Sect. D.

Using Lem. 60 we thus have a logical equivalence between has-W-indUk(X ) and is-W-hinitUk(X ).
It remains to show that both of these types are mere propositions. The latter is a mere proposition
by Lem. 6. To show that has-W-indUk(X ) is a mere proposition, it is sufficient to do so under
the assumption that it is inhabited. Since X satisfies the induction principle, by the second step it
satisfies the induction uniqueness principle. This means that for any fibered algebra Y , the type
W-Fib-Hom X Y is a mere proposition. Since a family of mere propositions is itself a mere
proposition, this finishes the proof.
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(
β1

� ape1(r1) � γ−1
1

)
� δ2

(
β1

� ape1(r1)
)
�
(
γ−1

1
� δ2

)
(
β1

� ape1(r1)
)
�
(
q(b1, b2) � γ−1

2

)

β1
�
(
ape1(r1) � q(b1, b2)

)
� γ−1

2

β1
�
(
q(a1, a2) � ape2(r2)

)
� γ−1

2

(
β1

� q(a1, a2)
)
�
(
ape2(r2) � γ−1

2

)
(
δ1

� β2

)
�
(
ape1(r2) � γ−1

2

)

δ1
�
(
β2

� ape2(r2) � γ−1
2

)

via I2
�(Φ)

via natH(q, r1, r2)−1

via I1
�(Θ)−1

Figure 1: The path P(q, r1, r2,Θ,Φ)

apF
(
β1

� ape1(r1) � γ−1
1

)
� δ2

(
apF (β1) � apF (ape1(r1)) � (apF (γ1))−1

)
� δ2

(
apF (β1) � apF ◦ e1(r1) � (apF (γ1))−1

)
� δ2

δ1
�
(
β2

� ape2(r2) � γ−1
2

)P(q, r1, r2,Θ,Φ)

Figure 2: The path Q(q, r1, r1,Θ,Φ)
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α(d(l c, t)) � apg(pc,t,s)
(
βl(c),t

� ape(l c)(
ΠE=(α ◦ t)) � γ−1

l(c),t

)
� apg(pc,t,s)

apf (pc,t,s) � α(d(r c, s)) apf (pc,t,s) �
(
βr(c),s

� ape(r c)(
ΠE=(α ◦ s)) � γ−1

r(c),s

)

via η(l c, t)

nat(α, pc,t,s) P
(
qc,

ΠE=(α ◦ t),ΠE=(α ◦ s), θc,t,s, φc,t,s
)

via η(r c, s)

Figure 3: Commuting diagram for Def. 70

app(c,t,s)E∗
(α(d(l c, t))) � dapg(pc,t,s) app(c,t,s)E∗

(
βl(c),t

� ape(l c,t)(
ΠE=(α ◦ t)) � γ−1

l(c),t

)
� dapg(pc,t,s)

dapf (pc,t,s) � α(d(r c, s)) dapf (pc,t,s) �
(
βr(c),s

� ape(r c,s)(
ΠE=(α ◦ s)) � γ−1

r(c),s

)

via η(l c, t)

natF (α, pc,t,s) Q
(
qc,t,s,

ΠE=(α ◦ t),ΠE=(α ◦ s), θc,t,s, φc,t,s
)

via η(r c, s)

Figure 4: Commuting diagram for Def. 71
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5.3 Definability
We now show how to derive the analogue of our main result for the circle S; the cases of Sa
and other inductive types presentable as W-suspensions follow the same methodology. In the rest
of this section we work with a specific W-suspension W(A,B,C, l, r) : U0 where A,C := 1,
B := λ :10, l, r := λ :1?.

Definition 74. An algebra X : S-AlgUj is homotopy-initial on a universe Uk if for any other
algebra Y : S-AlgUk the type of S-homomorphisms from X to Y is contractible:

is-S-hinitUk(X ) :=
(
ΠY : S-AlgUk

)
is-contr(S-Hom X Y)

Lemma 75. We have a function

S-to-W-AlgUi : S-AlgUi → W-AlgUi

which is an equivalence.

Proof. We define the function by the mapping

(D, d, p) 7→
(
D,λaλtd, λcλtλsp

)
It is not hard to see that this is an equivalence.

Lemma 76. For any algebra X : S-AlgUi we have a function

S-to-W-Fib-AlgUi(X ) : S-Fib-AlgUi X → W-Fib-AlgUi
(
S-to-W-AlgUi X

)
which is an equivalence.

Proof. Fix an algebra (D, d, p) : S-AlgUi . We define the function by the mapping

(E, e, q) 7→
(
E, λaλtλue, λcλtλuλsλvq

)
It is not hard to see that this is an equivalence.

Lemma 77. For any algebras X : S-AlgUi , Y : S-AlgUj we have

S-Hom X Y ' W-Hom
(
S-to-W-AlgUi X

) (
S-to-W-AlgUi Y

)
Lemma 78. For any algebras X : S-AlgUi , Y : S-Fib-AlgUj X we have

S-Fib-Hom X Y ' W-Fib-Hom
(
S-to-W-AlgUi X

) (
S-to-W-Fib-AlgUi(X ) Y

)
Lemma 79. For any X : S-AlgUi we have

has-S-recUj(X ) ' has-W-recUj(S-to-W-AlgUi(X ))

has-S-indUj(X ) ' has-W-indUj(S-to-W-AlgUi(X ))

is-S-hinitUj(X ) ' is-W-hinitUj(S-to-W-AlgUi(X ))
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Corollary 80. For an algebra X : S-AlgUi , the following conditions are equivalent:

• X satisfies the induction principle on the universe Uj

• X is homotopy-initial on the universe Uj

In other words, we have

has-S-indUj(X ) ' is-S-hinitUj(X )

Moreover, the two types above are mere propositions.

Proof. We use Lem. 79 and 61.
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6 Conclusion
We have investigated higher inductive types with propositional computational behavior and shown
that they can be equivalently characterized as homotopy-initial algebras. We have stated and
proved this result for propositional truncations and for the so-called W-suspensions, which sub-
sume a number of other interesting cases - ordinary W-types, the unit circle S1, the interval type
I, all the higher spheres Sn, and all suspensions. The characterization of these individual types as
homotopy-initial algebras can be easily obtained as a corollary to our main theorem. Furthermore,
we can readily apply the method presented here to obtain an analogous result for set truncations
and set quotients. We conjecture that similar results can be established for other higher inductive
types - such as homotopy (co)limits, tori, group quotients, or real numbers - following the same
methodology. We are planning to formalize the results presented here in the Coq proof assistant.

Finally, we remark that the entire field of Homotopy Type Theory is a subject of intense re-
search and many questions pertaining to higher inductive types and univalence are yet to be sat-
isfactorily answered. Two important open problems are finding a unifying schema for general
higher inductive types (see [15] for progress towards this goal) and developing a computational
interpretation of HoTT (partially answered by the cubical set model [4]).
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A The path space of homomorphisms
In this section we prove lemmas 72 and 73. We start by showing the analogous statements for the
simpler case of W-trees.

Lemma 81. For algebras X0 : W0-AlgUj , Y0 : W0-Fib-AlgUk X0 and fibered homomorphisms
µ0, ν0 : W0-Fib-Hom X0 Y0, there is a function

W0-Fib-Hom-Path-to-Cell : µ0 = ν0 ' W0-Fib-Cell µ0 ν0

which is an equivalence.

Proof. Let the algebras (D, d) : W0-AlgUj and (E, e) : W0-Fib-AlgUk (D, d) be given. We define
the desired function by path induction: for a homomorphism (f, β) : W0-Fib-Hom (D, d) (E, d),
we put refl(f, β) 7→ (idH(f), η), where η(a, t) is the path

refl

β(a, t) � refl � β(a, t)−1

β(a, t) � ape(a,t)(
ΠE=(idH(f ◦ t))) � β(a, t)−1

It is not hard to see that this function is an equivalence.

Corollary 82. Given algebras X0 : W0-AlgUj , Y0 : W0-AlgUk and homomorphisms µ0, ν0 :
W0-Hom X0 Y0, there is a function

W0-Hom-Path-to-Cell : µ0 = ν0 ' W0-Cell µ0 ν0

which is an equivalence.

We now proceed to prove lemmas 72 and 73. Both proofs follow along the same lines; we only
treat the dependent case here.

Fix algebras (D, d, p) : W-AlgUj and (E, e, q) : W-Fib-AlgUk (D, d, p) and fibered homo-
morphisms (µ0, θ), (ν0, φ) : W-Fib-Hom (D, d, p) (E, e, q). We establish the following chain of
equivalences:

(µ0, θ) = (ν0, φ)

'
(

ΣC0 : µ0 = ν0

)
(C0)W1-Fib-Hom (D,d,p) (E,e,q)

∗ (θ) = φ

'
(

ΣC0 : µ0 = ν0

)
W1-Fib-Cell (µ0, θ) (ν0, φ)

(
W0-Fib-Hom-Path-to-Cell C0

)
'

(
ΣC0 : W0-Fib-Cell µ0 ν0

)
W1-Fib-Cell (µ0, θ) (ν0, φ) C0

≡ W-Fib-Cell (µ0, θ) (ν0, φ)
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refl � dapf (pc,t,s)

app(c,t,s)E∗
(T 1(l c, t)) � dapf (pc,t,s)

app(c,t,s)E∗
(T 2(l c, t)) � dapf (pc,t,s)

dapf (pc,t,s) � refl

dapf (pc,t,s) � T 1(r c, s)

dapf (pc,t,s) � T 2(r c, s)

A

B

Q
(
qc,t,s, refl, refl, θ′c,t,s, φ

′
c,t,s

)

Q
(
qc,t,s,

ΠE=
(
idH(f ◦ t)

)
,ΠE=

(
idH(f ◦ s)

)
, θ′c,t,s, φ

′
c,t,s

)

natF
(
idH(f), pc,t,s

)

Figure 5: Diagram to be shown equivalent to θ′c,t,s = φ′c,t,s

The first and third equivalences are clear. To prove the second equivalence, it suffices to establish
that for any fibered W-tree homomorphisms µ′0, ν

′
0 : W0-Fib-Hom (D, d) (E, e), path C0 : µ′0 = ν ′0,

and terms θ′ : W1-Fib-Hom (D, d, p) (E, e, q) µ′0 and φ′ : W1-Fib-Hom (D, d, p) (E, e, q) ν ′0, we
have

(C0)W1-Fib-Hom (D,d,p) (E,e,q)
∗ (θ′)

' W1-Fib-Cell (µ′0, θ
′) (ν ′0, φ

′)
(
W0-Fib-Hom-Path-to-Cell C0

)
We proceed by path induction on C0. Fix a homomorphism (f, β) : W0-Fib-Hom (D, d) (E, e) and
θ′, φ′ : W1-Fib-Hom (D, d, p) (E, e, q) (f, β). To show

θ′ = φ′ ' W1-Fib-Cell (f, β, θ′) (f, β, φ′)
(
W0-Fib-Hom-Path-to-Cell refl(f, β)

)
it suffices to show that for any c, t, s, the type θ′c,t,s = φ′c,t,s is equivalent to the commutativity of
the outer rectangle in Fig. 5, where

T 1(a, t) := β(a, t) � refl � β(a, t)−1

T 2(a, t) := β(a, t) � ape(a,t)
(

ΠE=
(
idH(f ◦ t)

))
� β(a, t)−1

Rectangle B commutes by easy path induction; it therefore suffices to show that θ′c,t,s = φ′c,t,s is
equivalent to the commutativity of the rectangle A. This is a simple exercise.
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B Induction implies recursion
In this section we want to show that

has-W-indUk(X )→ has-W-recUk(X )

for any X : W-AlgUj . Fix an algebra (D, d, p) : W-AlgUjand assume that has-W-indUk(D, d, p)
holds. To show that has-W-recUk(D, d, p) holds, fix any other algebra (E, e, q) : W-AlgUk . In order
to apply the induction principle, we need to turn this into a fibered algebra (E ′, e′, q′). The first
two components are easy: put E ′(x) := E and e′(a, t, u) := e(a, u). For the last component, we
note that the transport between any two fibers of a constant type family is constant. We can thus
define q′(c, t, s, u, v) to be the path

(pc,t,s)
7→Y
∗ (e(l c, u)) e(l c, u) e(r c, v)

qc,u,v

The induction principle then gives us a fibered homomorphism (f, β, θ), where f : D → E,

β(a, t) : f(d(a, t)) = e(a, f ◦ t)

and θ(c, t, s) implies the commutativity of the following diagram:

(pc,t,s)
7→Y
∗ (f(d(l c, t))) f(d(r c, s))

(pc,t,s)
7→Y
∗ (e(l c, f ◦ t)) e(r c, f ◦ s)e(l c, f ◦ t)

dapf (pc,t,s)

βr(c),sapp(c,t,s) 7→Y
∗

(βl(c),t)

qc,f◦t,f◦s

The terms f and β form the first two components of our desired homomorphism from (D, d, p) to
(E, e, q). For the last component, we note that using path induction we can express dapf (pc,t,s)
equivalently as the path

(pc,t,s)
7→Y
∗ (f(d(l c, t))) f(d(l c, t)) f(d(r c, s))

apf (pc,t,s)

Thus the outer rectangle in the following diagram commutes:

A B

(pc,t,s)
7→Y
∗ (f(d(l c, t))) f(d(l c, t)) f(d(r c, s))

(pc,t,s)
7→Y
∗ (e(l c, f ◦ t)) e(r c, f ◦ s)e(l c, f ◦ t)

apf (pc,t,s)

βr(c),sapp(c,t,s) 7→Y
∗

(βl(c),t)

qc,f◦t,f◦s

βl(c),t

Suitable path induction shows that rectangle A commutes; hence rectangle B commutes too and we
are done.
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C Induction implies uniqueness
In this section we want to show that

has-W-indUk(X )→ has-W-ind-uniqUk(X )

has-W-indUk(X )→ has-W-rec-uniqUk(X )

for any X : W-AlgUj . We first show the former.
Fix an algebra (D, d, p) : W-AlgUj and assume that has-W-indUk(D, d, p) holds. To show that

has-W-ind-uniqUk(D, d, p) holds, fix any fibered algebra (E, e, q) : W-Fib-AlgUk (D, d, p) and
fibered homomorphisms (f, β, θ), (g, γ, φ) : W-Fib-Hom (D, d, p) (E, e, q). By Lem. 73, to show
(f, β, θ) = (g, γ, φ) it suffices to exhibit a fibered W-cell between (f, β, θ) and (g, γ, φ). To do
so, we use the induction principle with an appropriate fibered algebra (E ′, e′, q′). Defining the first
component is easy: we put E ′(x) := IdE(x)(f(x), g(x)), which clearly still belongs to Uk. For the
second component, we put

e′(a, t, u) := β(a, t) � ape(a,t)(
ΠE=(u)) � γ(a, t)−1

For the last component, we first make some definitions: for any r : x =D y, z : f(x) = g(x) we
put

T 1
r (z) :=

(
dapf (r)

)−1 �
(
aprE∗ (z) � dapg(r)

)
and for any r : x =D y, z : f(y) = g(y) we put

T 2
r (z) :=

(
dapf (r)

)−1 �
(
dapf (r) � z

)
Clearly, we have T 1

r (z) = rE
′
∗ (z) and T 2

r (z) = z. We can thus define q′(c, t, s, u, v) to be the path
in Fig. 7 b).

The induction principle then gives us a fibered homomorphism (α, η, ψ), where α : f ∼ g,

η(a, t) : α(d(a, t)) = e′(a, t, α ◦ t)

and ψ(c, t, s) implies the commutativity of the diagram in Fig. 8. The terms α and η form the first
two components of the desired fibered W-cell (f, β, θ) and (g, γ, φ). For the last component, we
note that the term dapα(p(c, t, s)) can be expressed equivalently as the path in Fig. 7 a).

Thus, the outer rectangle in Fig. 9 commutes. We can easily show that the rectangles A and
C commute; thus B commutes as well. It is easy to see that this implies the commutativity of the
diagram in Fig. 4 as desired.

The non-dependent case proceeds by an entirely analogous argument, further simplified by the
fact that we no longer need to transport along the fibers of the codomain type E.

Remark: With some effort, we could obtain the non-dependent case from the result we have
just proved. However, due to the presence of superfluous transports, it is much simpler to establish
the non-dependent result directly, following the same methodology.
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p(c, t, s)E
′

∗ α(d(l c, t))

T 1
p(c,t,s)(α(d(l c, t)))

T 2
p(c,t,s)(α(d(r c, s)))

α(d(r c, s))

p(c, t, s)E
′

∗ e′(l c, t, u)

T 1
p(c,t,s)(e

′(l c, t, u))

T 2
p(c,t,s)(e

′(r c, s, v))

e′(r c, s, v)

a) b)

via Q
(
qc,t,s,

ΠE=(u),ΠE=(v), θc,t,s, φc,t,s

)
via natF (α, p(c, t, s))

Figure 6: Paths dapα(p(c, t, s)) and q′(c, t, s, u, v)

p(c, t, s)E
′

∗ α(d(l c, t))

α(d(r c, s))

(p(c, t, s))E
′

∗ e′(l c, t, α ◦ t)

T 1
p(c,t,s)(e

′(l c, t, α ◦ t))

T 2
p(c,t,s)(e

′(r c, s, α ◦ s))

e′(r c, s, α ◦ s)

dapα(p(c, t, s)) via Q
(
qc,t,s,

ΠE=(α ◦ t),ΠE=(α ◦ s), θc,t,s, φc,t,s
)

via η(l c, t)

η(r c, s)

Figure 7: Commuting diagram implied by ψ(c, t, s)
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p(c, t, s)E
′

∗ α(d(l c, t))

T 1
p(c,t,s)(α(d(l c, t)))

T 2
p(c,t,s)(α(d(r c, s)))

α(d(r c, s))

p(c, t, s)E
′

∗ e′(l c, t, u)

T 1
p(c,t,s)(e

′(l c, t, u))

T 2
p(c,t,s)(e

′(r c, s, v))

e′(r c, s, v)

via Q
(
qc,t,s,

ΠE=(u),ΠE=(v), θc,t,s, φc,t,s

)
via natF (α, p(c, t, s))

via η(l c, t)

via η(l c, t)

via η(r c, s)

η(r c, s)

A

B

C

Figure 8: Diagram from Fig. 8 after expansion
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D Recursion plus uniqueness implies induction
In this section we want to show that

has-W-recUk(X )× has-W-rec-uniqUk(X )→ has-W-indUk(X )

for anyX : W-AlgUj . Fix an algebra (D, d, p) : W-AlgUj and assume that has-W-recUk(D, d, p) and
has-W-rec-uniqUk(D, d, p) hold. To show that has-W-indUk(D, d, p) holds, fix any fibered algebra
(E, e, q) : W-Fib-AlgUk (D, d, p). In order to apply the recursion principle, we need to turn this
into a non-fibered algebra (E ′, e′, q′). The first component is easy: the only reasonable choice we
have is to put E ′ := Σx:DE(x); we note that since D : Uj , E : D → Uk, and j ≤ k, we indeed
have Σx:DE(x) : Uk as needed. For the second component, we put

e′(a, u) :=
(
d
(
a, π1 ◦ u

)
, e
(
a, π1 ◦ u, π2 ◦ u

))
For the last component, we define q′(c, u, v) to be the path(

d
(
l c, π1 ◦ u

)
, e
(
l c, π1 ◦ u, π2 ◦ u

))

(
d
(
r c, π1 ◦ v

)
, e
(
r c, π1 ◦ v, π2 ◦ v

))
ΣE=

(
p(c, π1 ◦ u, π1 ◦ v), q(c, π1 ◦ u, π1 ◦ v, π2 ◦ u, π2 ◦ v)

)

The recursion principle then gives us a homomorphism (f, β, θ), where f : D → Σx:DE(x),

β(a, t) : f(d(a, t)) = e′(a, f ◦ t)
θ(c, t, s) : apf (p(c, t, s)) = β(l c, t) � q′(c, f ◦ t, f ◦ s) � β(r c, s)−1

We now want to show that the function π1 ◦ f : D → D is in fact the identity on D (up to
a homotopy, of course). We can do this by endowing both of the functions π1 ◦ f and idD with
a homomorphism structure on the algebra (D, d, p); by the recursion uniqueness principle it will
follow that these homomorphisms are equal, and in particular they are equal as maps.

We have a homomorphism
(
idD; δ; c, t, s 7→ I−2

� (ϕc,t,s)
)

: W-Hom (D, d, p) (D, d, p) where
δ(a, t) := reflD(d(a, t)) and ϕ(c, t, s) is the obvious path

refl � apid(p(c, t, s))

p(c, t, s) � refl

We also have a homomorphism
(
π1◦f ; γ; c, t, s 7→ I−1

� (φ−1
c,t,s)

)
: W-Hom (D, d, p) (D, d, p) where

γ(a, t) := π1(=EΣ(β(a, t))) and φ(c, t, s) is the path in Fig. 10.
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By the recursion uniqueness rule, the homomorphisms
(
π1 ◦ f ; γ; c, t, s 7→ I−1

� (φ−1
c,t,s)

)
and(

idD; δ; c, t, s 7→ I−2
� (ϕc,t,s)

)
are equal. By Lem. 72 there exists a W-cell (α, η, ψ) between them,

where α : π1 ◦ f ∼ idD,

η(a, t) : α(d(a, t)) = π1(=EΣ(β(a, t))) � apd(a)(
ΠE=(α ◦ t)) � reflD(d(a, t))

and ψ(c, t, s) implies the commutativity of diagram in Fig. 11.
We observe that the path P

(
p(c), ΠE=(α ◦ t), ΠE=(α ◦ s), I−1

� (φ−1
c,t,s), I

−2
� (ϕc,t,s)

)
, shown in

Fig. 12 for reference, can be expressed equivalently as the path in Fig. 13.
Now we observe that for any a : A, path r : t =B(a)→D s, and u : Πb:B(a)E(t b), we have a

higher path (
apd(a)(r)

)E
∗ e(a, t, u)

e
(
a, s,

(
=EΠ(r) ◦H u

))ε(a, r, u)

defined by path induction on r.
The desired fibered homomorphism (fD, βD, θD) : W-Fib-Hom (D, d, p) (E, e, q) can now be

constructed as follows. We let fD(x) := α ◦H (π2 ◦ u) and βD(a, t) be the path in Fig. 14. To
construct θD, we first establish the following lemma.

Lemma 83. Let the following data be given:

• a1, a2 : D and u : a1 = a2

• d1, d2 : D and v : d1 = d2

• w1 : d1 = a1 and w2 : d2 = a2

• e1 : E(d1), e′1 : E(a1), e′′1 : E(a1) and e2 : E(d2), e′2 : E(a2), e′′2 : E(a2)

• z : vE∗ (e1) = e2 and z′ : uE∗ (e′1) = e′2 and z′′ : uE∗ (e′′1) = e′′2

• ε1 : (w1)E∗ (e1) = e′1 and ε2 : (w2)E∗ (e2) = e′2

• κ1 : e′1 = e′′1 and κ2 : e′2 = e′′2

• β1 : f(a1) = (d1, e1) and β2 : f(a2) = (d2, e2)

• η1 : α(a1) = π1(=EΣ(β1)) � w1
� refl(a1) and η2 : α(a2) = π1(=EΣ(β2)) � w2

� refl(a2)

• Θ : v � w2 = w1
� u

• Φ : apf (u) � β2 = β1
� ΣE=(v, z)
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such that the diagrams in Fig. 15 commute. Then the diagram below commutes:

uE∗
(
α(a1)E∗ π2(f(a1))

)
α(a2)E∗ π2(f(a2))

uE∗ (e′′1) e′′2

dapα ◦H(π2 ◦ f)(u)

βD2apuE∗ (βD1 )

z′′

where βD1 and βD2 are the paths in Fig. 16 a) and b) respectively.

Proof. We proceed by path induction on u. The diagrams in Fig. 15 reduce to those in Fig. 17. It is
not hard to see that the commutativity of the diagram in Fig. 17 c) is equivalent to the commutativity
of the diagram in Fig. 18.

The path dapα ◦H(π2 ◦ f)(u) � βD2 reduces to the path in Fig. 19. After a simple expansion we
obtain the path in Fig. 20.

The path apuE∗ (βD1 ) � z′′ reduces to the path in Fig. 21. Using commutativity of the diagram in
Fig. 17 a), we obtain the path in Fig. 22. A further rearrangement yields the path in Fig. 23. Using
the commutativity of the diagram in Fig. 17 b), we obtain the path in Fig. 24. After successive
rearrangements, we get the diagrams in Fig. 25, 26, and 27.

Finally, the commutativity of the diagram in Fig. 17 c) implies that the paths in Fig. 20 and 27
are equal as desired.

At last, to construct θD(c, t, s) we need to show that the following diagram commutes:

p(c, t, s)E∗
(
fD(d(l c, t))

)
fD(d(r c, s))

p(c, t, s)E∗
(
e(l c, t, fD ◦ t)

)
e(r c, s, fD ◦ s)

dapfD(p(c, t, s))

βD(r c, s)app(c,t,s)E∗ (βD(l c, t))

q(c, t, s, fD ◦ t, fD ◦ s)

We use Lem. 83 with the following data:

• a1 := d(l c, t), a2 := d(r c, s), u := p(c, t, s)

• d1 := d(l c, π1 ◦ f ◦ t), d2 := d(r c, π1 ◦ f ◦ s), v := p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s)

• w1 := apd(l c)(
ΠE=(α ◦ t)), w2 := apd(r c)(

ΠE=(α ◦ s))

• e1 := e
(
l c, π1 ◦ f ◦ t, π2 ◦ f ◦ t

)
, e2 := e

(
r c, π1 ◦ f ◦ s, π2 ◦ f ◦ s

)
• e′1 := e

(
l c, t,

(
=EΠ(ΠE=(α ◦ t)) ◦H (π2 ◦ f ◦ t)

))
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• e′2 := e
(
r c, s,

(
=EΠ(ΠE=(α ◦ s)) ◦H (π2 ◦ f ◦ s)

))
• e′′1 := e

(
l c, t,

(
(α ◦ t) ◦H (π2 ◦ f ◦ t)

))
, e′′2 := e

(
r c, s,

(
(α ◦ s) ◦H (π2 ◦ f ◦ s)

))
• z := q

(
c, π1 ◦ f ◦ t, π1 ◦ f ◦ s, π2 ◦ f ◦ t, π2 ◦ f ◦ s

)
• z′ := q

(
c, t, s,

(
=EΠ(ΠE=(α ◦ t)) ◦H (π2 ◦ f ◦ t)

)
,
(

=EΠ(ΠE=(α ◦ s)) ◦H (π2 ◦ f ◦ s)
))

• z′′ := q
(
c, t, s,

(
(α ◦ t) ◦H (π2 ◦ f ◦ t)

)
,
(

(α ◦ s) ◦H (π2 ◦ f ◦ s)
))

• ε1 := ε
(
l c, ΠE=(α ◦ t), π2 ◦ f ◦ t

)
, ε2 := ε

(
r c, ΠE=(α ◦ s), π2 ◦ f ◦ s

)
• κ1 := ape(l c,t)(rt), κ2 := ape(r c,s)(rs) where rt and rs are the obvious paths below:

=EΠ(ΠE=(α ◦ t)) ◦H (π2 ◦ f ◦ t)

(α ◦ t) ◦H (π2 ◦ f ◦ t)

=EΠ(ΠE=(α ◦ s)) ◦H (π2 ◦ f ◦ s)

(α ◦ s) ◦H (π2 ◦ f ◦ s)

• β1 := β(l c, t), β2 := β(r c, s)

• η1 := η(l c, t), η2 := η(r c, s)

• Θ := natH
(
p(c), ΠE=(α ◦ t), ΠE=(α ◦ s)

)−1

• Φ := I1
�(θ(c, t, s))

It thus suffices to show that the diagrams in Fig. 15 commute.

a) We note that we have app(c,t,s)E∗ (ape(l c,t)(rt)) = app(c,t,s)E∗ ◦ e(l c,t)(rt) and appeal to the higher
path natH

(
q(c, t, s), rt, rs

)
.

b) We generalize the setting as follows. Fix variables t1, t2 : B(l c)→ D, s1, s2 : B(r c)→ D,
υt : t1 = t2, υs : s1 = s2, x : Πb:B(l c)E(t1(b)), y : Πb:B(r c)E(s1(b)). Then the diagram
in Fig. 28 commutes by easy path induction on υt and υs. A suitable instantiation of the
variables yields the desired diagram.

c) This follows from Fig. 11, 12, and 13.
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π1

(
=EΣ(βl(c),t)

)
� p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s)

π1

(
=EΣ(βl(c),t)

)
� π1

(
=EΣ(q′(c, f ◦ t, f ◦ s))

)

π1

(
=EΣ

(
βl(c),t

� q′(c, f ◦ t, f ◦ s)
))

π1

(
=EΣ

(
apf (p(c, t, s)) � βr(c),s

))

π1

(
=EΣ

(
apf (p(c, t, s))

))
� π1

(
=EΣ(βr(c),s)

)

apπ1
(
apf (p(c, t, s))

)
� π1

(
=EΣ(βr(c),s)

)

apπ1◦f (p(c, t, s)) � π1

(
=EΣ(βr(c),s)

)

via I1
�(θ(c, t, s))−1

Figure 9: The path φ(c, t, s)

α(d(l c, t)) � apid(pc,t,s)
(
π1

(
ΣE=(βl(c),t)

)
� apd(l c)(

ΠE=(α ◦ t)) � refl
)
� apid(pc,t,s)

apπ1◦f (pc,t,s) � α(d(r c, s)) apπ1◦f (pc,t,s) �
(
π1

(
ΣE=(βr(c),s)

)
� apd(r c)(

ΠE=(α ◦ s)) � refl
)

via η(l c, t)

nat(α, pc,t,s) P
(
pc,

ΠE=(α ◦ t),ΠE=(α ◦ s), I−1
� (φ−1

c,t,s), I
−2
� (ϕc,t,s)

)

via η(r c, s)

Figure 10: Commuting diagram implied by ψ(c, t, s)
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(
π1

(
=EΣ(βl(c),t)

)
� apd(l c)(

ΠE=(α ◦ t)) � refl
)
� apid(p(c, t, s))

(
π1

(
=EΣ(βl(c),t)

)
� apd(l c)(

ΠE=(α ◦ t))
)
�
(

refl � apid(p(c, t, s))
)

(
π1

(
=EΣ(βl(c),t)

)
� apd(l c)(

ΠE=(α ◦ t))
)
�
(
p(c, t, s) � refl

)

π1

(
=EΣ(βl(c),t)

)
�
(

apd(l c)(
ΠE=(α ◦ t)) � p(c, t, s)

)
� refl

π1

(
=EΣ(βl(c),t)

)
�
(
p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s) � apd(r c)(

ΠE=(α ◦ s))
)
� refl

(
π1

(
=EΣ(βl(c),t)

)
� p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s)

)
�
(

apd(r c)(
ΠE=(α ◦ s)) � refl

)

(
apπ1◦f (p(c, t, s)) � π1

(
=EΣ(βr(c),s)

))
�
(

apd(r c)(
ΠE=(α ◦ s)) � refl

)

apπ1◦f (p(c, t, s)) �
(
π1

(
=EΣ(βr(c),s)

)
� apd(r c)(

ΠE=(α ◦ s)) � refl
)

via I2
�(I−2

� (ϕ(c, t, s)))

via natH
(
p(c),ΠE=(α ◦ t),ΠE=(α ◦ s)

)−1

via I1
�(I−1

� (φ(c, t, s)−1))−1

Figure 11: The path P
(
p(c),ΠE=(α ◦ t),ΠE=(α ◦ s), I−1

� (φ−1
c,t,s), I

−2
� (ϕc,t,s)

)
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(
π1

(
=EΣ(βl(c),t)

)
� apd(l c)(

ΠE=(α ◦ t)) � refl
)
� apid(p(c, t, s))

(
π1

(
=EΣ(βl(c),t)

)
� apd(l c)(

ΠE=(α ◦ t))
)
� apid(p(c, t, s))

(
π1

(
=EΣ(βl(c),t)

)
� apd(l c)(

ΠE=(α ◦ t))
)
� p(c, t, s)

π1

(
=EΣ(βl(c),t)

)
�
(

apd(l c)(
ΠE=(α ◦ t)) � p(c, t, s)

)

π1

(
=EΣ(βl(c),t)

)
�
(
p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s) � apd(r c)(

ΠE=(α ◦ s))
)

(
π1

(
=EΣ(βl(c),t)

)
� p(c, π1 ◦ f ◦ t, π1 ◦ f ◦ s)

)
� apd(r c)(

ΠE=(α ◦ s))

(
apπ1◦f (p(c, t, s)) � π1

(
=EΣ(βr(c),s)

))
� apd(r c)(

ΠE=(α ◦ s))

apπ1◦f (p(c, t, s)) �
(
π1

(
=EΣ(βr(c),s)

)
� apd(r c)(

ΠE=(α ◦ s))
)

apπ1◦f (p(c, t, s)) �
(
π1

(
=EΣ(βr(c),s)

)
� apd(r c)(

ΠE=(α ◦ s)) � refl
)

via natH
(
p(c),ΠE=(α ◦ t),ΠE=(α ◦ s)

)−1

via φ(c, t, s)

Figure 12: The path from Fig. 12 after some cleanup
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α(d(a, t))E∗ π2(f(d(a, t)))

(
π1

(
=EΣ(βa,t)

)
� apd(a)(

ΠE=(α ◦ t)) � refl
)E
∗
π2(f(d(a, t)))

(
π1

(
=EΣ(βa,t)

)
� apd(a)(

ΠE=(α ◦ t))
)E
∗
π2(f(d(a, t)))

(
apd(a)(

ΠE=(α ◦ t))
)E
∗

((
π1

(
=EΣ(βa,t)

))E
∗ π2(f(d(a, t)))

)

(
apd(a)(

ΠE=(α ◦ t))
)E
∗ e

(
a, π1 ◦ f ◦ t, π2 ◦ f ◦ t

)

e
(
a, t,

(
=EΠ(ΠE=(α ◦ t)) ◦H (π2 ◦ f ◦ t)

))

e
(
a, t,

(
(α ◦ t) ◦H (π2 ◦ f ◦ t)

))

via η(a, t)

via π2

(
=EΣ(βa,t)

)

ε
(
a,ΠE=(α ◦ t), π2 ◦ f ◦ t

)

Figure 13: The path βD(a, t)
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(a)

uE∗ (e′1) e′2

uE∗ (e′′1) e′′2

z′

κ2apuE∗ (κ1)

z′′

(b)

(v � w2)
E
∗ (e1)

(w2)E∗
(
vE∗ e1

)

(w2)E∗ (e2)

e′2

(w1
� u)

E
∗ (e1)

uE∗
(
(w1)E∗ e1

)

uE∗ (e′1)

via z

ε2

via ε1

z′

via Θ

(c)

α(a1) � apid(u)

(
π1

(
=EΣ(β1)

)
� w1

� refl
)
� apid(u)

(
π1

(
=EΣ(β1)

)
� w1

)
� apid(u)

(
π1

(
=EΣ(β1)

)
� w1

)
� u

π1

(
=EΣ(β1)

)
�
(
w1

� u
)

π1

(
=EΣ(β1)

)
�
(
v � w2

)
(
π1

(
=EΣ(β1)

)
� v

)
� w2

(
π1

(
=EΣ(β1)

)
� π1

(
=EΣ(ΣE=(v, z))

))
� w2

apπ1◦f (u) � α(a2)

apπ1◦f (u) �
(
π1

(
=EΣ(β2)

)
� w2

� refl
)

apπ1◦f (u) �
(
π1

(
=EΣ(β2)

)
� w2

)
(

apπ1◦f (u) � π1

(
=EΣ(β2)

))
� w2

(
apπ1(apf (u)) � π1

(
=EΣ(β2)

))
� w2

(
π1

(
=EΣ(apf (u))

)
� π1

(
=EΣ(β2)

))
� w2

π1

(
=EΣ

(
apf (u) � β2

))
� w2

π1

(
=EΣ

(
β1

� ΣE=(v, z)
))

� w2

nat(α, u)

via η1

via Θ

via η2

via Φ

Figure 14: Hypotheses of Lem. 83
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

)E
∗
π2(f(a1))

(w1)E∗

((
π1

(
=EΣ(β1)

))E
∗ π2(f(a1))

)

(w1)E∗ e1

e′1

e′′1

(a)

via η1

via π2

(
=EΣ(β1)

)

ε1

κ1

α(a2)E∗ π2(f(a2))

(
π1

(
=EΣ(β2)

)
� w2

� refl
)E
∗
π2(f(a2))

(
π1

(
=EΣ(β2)

)
� w2

)E
∗
π2(f(a2))

(w2)E∗

((
π1

(
=EΣ(β2)

))E
∗ π2(f(a2))

)

(w2)E∗ e2

e′2

e′′2

(b)

via η2

via π2

(
=EΣ(β2)

)

ε2

κ2

Figure 15: Paths βD1 and βD2 for Lem. 83
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(a)

e′1 e′2

e′′1 e′′2

z′

κ2κ1

z′′

(b)

(v � w2)
E
∗ (e1)

(w2)E∗
(
vE∗ e1

)

(w2)E∗ (e2)

e′2

(w1
� refl)

E
∗ (e1)

(w1)E∗ e1

e′1

via z

ε2

ε1

z′

via Θ

(c)

α(a1) � refl

(
π1

(
=EΣ(β1)

)
� w1

� refl
)
� refl

(
π1

(
=EΣ(β1)

)
� w1

)
� refl

π1

(
=EΣ(β1)

)
�
(
w1

� refl
)

π1

(
=EΣ(β1)

)
�
(
v � w2

)
(
π1

(
=EΣ(β1)

)
� v

)
� w2

(
π1

(
=EΣ(β1)

)
� π1

(
=EΣ(ΣE=(v, z))

))
� w2

refl � α(a1)

refl �
(
π1

(
=EΣ(β2)

)
� w2

� refl
)

refl �
(
π1

(
=EΣ(β2)

)
� w2

)
(

refl � π1

(
=EΣ(β2)

))
� w2

π1

(
=EΣ

(
refl � β2

))
� w2

π1

(
=EΣ

(
β1

� ΣE=(v, z)
))

� w2

via η1

via Θ

via η2

via Φ

Figure 16: Hypotheses of Lem. 83 after path induction
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α(a1)

π1

(
=EΣ(β1)

)
� w1

� refl

π1

(
=EΣ(β1)

)
�
(
w1

� refl
)

π1

(
=EΣ(β1)

)
�
(
v � w2

)
(
π1

(
=EΣ(β1)

)
� v

)
� w2

(
π1

(
=EΣ(β1)

)
� π1

(
=EΣ(ΣE=(v, z))

))
� w2

π1

(
=EΣ(β2)

)
� w2

� refl

π1

(
=EΣ(β2)

)
� w2

π1

(
=EΣ

(
refl � β2

))
� w2

π1

(
=EΣ

(
β1

� ΣE=(v, z)
))

� w2

η1

via Θ

η2

via Φ

Figure 17: Diagram from Fig. 17 c) after further reduction
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β2)

)
� w2

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β2)

)
� w2

)E
∗
π2(f(a1))

(w2)E∗

((
π1

(
=EΣ(β2)

))E
∗ π2(f(a1))

)

(w2)E∗ e2

e′2

e′′2

via η2

via π2

(
=EΣ(β2)

)

ε2

κ2

Figure 18: Path dapα ◦H(π2 ◦ f)(u) � βD2 after path induction

53



α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β2)

)
� w2

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β2)

)
� w2

)E
∗
π2(f(a1))

(
π1

(
=EΣ

(
refl � β2

))
� w2

)E
∗
π2(f(a1))

(
π1

(
=EΣ

(
β1

� ΣE=(v, z)
))

� w2

)E
∗
π2(f(a1))

(w2)E∗

((
π1

(
=EΣ

(
β1

� ΣE=(v, z)
)))E
∗ π2(f(a1))

)

(w2)E∗ e2

e′2

e′′2

via η2

via Φ

via π2

(
=EΣ

(
β1

� ΣE=(v, z)
))

ε2

κ2

Figure 19: Path from Fig. 19 after expansion
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

)E
∗
π2(f(a1))

(w1)E∗

((
π1

(
=EΣ(β1)

))E
∗ π2(f(a1))

)

(w1)E∗ e1

e′1

e′′1

e′′2

via η1

via π2

(
=EΣ(β1)

)

ε1

κ1

z′′

Figure 20: Path apuE∗ (βD1 ) � z′′ after path induction
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

)E
∗
π2(f(a1))

(w1)E∗

((
π1

(
=EΣ(β1)

))E
∗ π2(f(a1))

)

(w1)E∗ e1

e′1

e′2

e′′2

via η1

via π2

(
=EΣ(β1)

)

ε1

z′

κ2

Figure 21: Path from Fig. 21 after utilizing the diagram in Fig. 17 a)
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
w1

� refl
))E
∗
π2(f(a1))

(
w1

� refl
)E
∗

((
π1

(
=EΣ(β1)

))E
∗ π2(f(a1))

)

(w1
� refl)E∗ e1

(w1)E∗ e1

e′1

e′2

e′′2

via η1

via π2

(
=EΣ(β1)

)

ε1

z′

κ2

Figure 22: Path from Fig. 22 after further rearrangement
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
w1

� refl
))E
∗
π2(f(a1))

(
w1

� refl
)E
∗

((
π1

(
=EΣ(β1)

))E
∗ π2(f(a1))

)

(w1
� refl)E∗ e1

(v � w2)E∗ e1

(w2)E∗
(
vE∗ e1

)

(w2)E∗ e2

e′2

e′′2

via η1

via π2

(
=EΣ(β1)

)

via Θ

via z

ε2

κ2

Figure 23: Path from Fig. 23 after utilizing the diagram in Fig. 17 b)
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
w1

� refl
))E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
v � w2

))E
∗
π2(f(a1))

((
π1

(
=EΣ(β1)

)
� v

)
� w2

)E
∗
π2(f(a1))

(w2)E∗

(
vE∗

((
π1

(
=EΣ(β1)

))E
∗ π2(f(a1))

))

(w2)E∗ (vE∗ e1)

(w2)E∗ e2

e′2

e′′2

via η1

via Θ

via π2

(
=EΣ(β1)

)

via z

ε2

κ2

Figure 24: Path from Fig. 24 after rearrangement
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
w1

� refl
))E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
v � w2

))E
∗
π2(f(a1))

((
π1

(
=EΣ(β1)

)
� v

)
� w2

)E
∗
π2(f(a1))

((
π1

(
=EΣ(β1)

)
� π1

(
=EΣ

(
ΣE=(v, z)

)))
� w2

)E
∗
π2(f(a1))

(w2)E∗

((
π1

(
=EΣ

(
ΣE=(v, z)

)))E
∗

((
π1

(
=EΣ(β1)

))E
∗ π2(f(a1))

))

(w2)E∗

((
π1

(
=EΣ

(
ΣE=(v, z)

)))E
∗ e1

)

(w2)E∗ e2

e′2

e′′2

via η1

via Θ

via π2

(
=EΣ(β1)

)

via π2

(
=EΣ

(
ΣE=(v, z)

))

ε2

κ2

Figure 25: Path from Fig. 25 after further rearrangement
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α(a1)E∗ π2(f(a1))

(
π1

(
=EΣ(β1)

)
� w1

� refl
)E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
w1

� refl
))E
∗
π2(f(a1))

(
π1

(
=EΣ(β1)

)
�
(
v � w2

))E
∗
π2(f(a1))

((
π1

(
=EΣ(β1)

)
� v

)
� w2

)E
∗
π2(f(a1))

((
π1

(
=EΣ(β1)

)
� π1

(
=EΣ

(
ΣE=(v, z)

)))
� w2

)E
∗
π2(f(a1))

(
π1

(
=EΣ

(
β1

� ΣE=(v, z)
))

� w2

)E
∗
π2(f(a1))

(w2)E∗

((
π1

(
=EΣ

(
β1

� ΣE=(v, z)
)))E
∗ π2(f(a1))

)

(w2)E∗ e2

e′2

e′′2

via η1

via Θ

via π2

(
=EΣ

(
β1

� ΣE=(v, z)
))

ε2

κ2

Figure 26: Path from Fig. 26 after further rearrangement
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(
p(c, t1, s1) � apd(r c)(υs)

)E
∗
e(l c, t1, x)

(
apd(r c)(υs)

)E
∗

(
p(c, t1, s1)E∗ e(l c, t1, x)

)

(
apd(r c)(υs)

)E
∗ e(r c, s1, y)

e
(
r c, s2,

(
=EΠ(υs) ◦H y

))

(
apd(l c)(υt) � p(c, t2, s2)

)E
∗
e(l c, t1, x)

p(c, t2, s2)E∗

((
apd(l c)(υt)

)E
∗ e(l c, t1, x)

)

p(c, t2, s2)E∗ e
(
l c, t2,

(
=EΠ(υt) ◦H x

))

via natH(p(c), υt, υs)
−1

via q(c, t1, s1, x, y)via ε(l c, υt, x)

q
(
c, t2, s2,

(
=EΠ(υt) ◦H x

)
,
(

=EΠ(υs) ◦H y
))

ε(r c, υs, y)

Figure 27: Instantiation of the diagram in Fig. 15 b)
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