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Abstract

In the interest of designing a recursive module extension to ML that is as simple and general as possible, we
propose a novel type system for general recursion over effectful expressions. The presence of effects seems to
necessitate a backpatching semantics for recursion based on Scheme’s. Our type system ensures statically
that recursion is well-founded (that the body of a recursive expression will evaluate without attempting
to access the undefined recursive variable), which avoids some unnecessary run-time costs associated with
backpatching. To ensure well-founded recursion in the presence of multiple recursive variables and separate
compilation, we track the usage of individual recursive variables, represented statically by “names”. So
that our type system may eventually be integrated smoothly into ML’s, reasoning involving names is only
required inside code that uses our recursive construct and does not need to infect existing ML code.
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1 Introduction

A distinguishing feature of the programming languages in the ML family, namely Standard ML [18] and Ob-
jective Caml [22], is their strong support for modular programming. The module systems of both languages,
however, are strictly hierarchical, prohibiting cyclic dependencies between program modules. This restric-
tion is unfortunate because it means that mutually recursive functions and types must always be defined in
the same module, regardless of whether they belong conceptually in the same module. As a consequence,
recursive modules are one of the most commonly requested extensions to the ML languages.

There has been much work in recent years on recursive module extensions for a variety of functional
languages. One of the main stumbling blocks in designing such an extension for an impure language like
ML is the interaction of module-level recursion and core-level computational effects. Since the core language
of ML only permits recursive definitions of λ-abstractions (functions), recursive linking could arguably be
restricted to modules that only contain fun bindings. Banishing all computational effects, however, would
be quite a severe restriction on recursive module programming.

Some recursive module proposals attempt to ameliorate this restriction by splitting modules into a recur-
sively linkable section and an initialization section, and only subjecting the former to syntactic restrictions [8].
While such a construct is certainly more flexible than one that forbids effects entirely, it imposes a structure
on recursive modules that is rather arbitrary. Others have suggested abandoning ML-style modules alto-
gether in favor of mixin modules [2, 15] or units [11], for which recursive linking is the norm and hierarchical
linking a special case. For the purpose of extending ML, though, this would constitute a rather drastic
revision of the language in support of a feature that may only be needed on occasion.

1.1 Recursion and Effects

In the interest of designing a recursive module extension to ML that is as simple and general as possible,
suppose that we were to introduce a new form of structure declaration

structure rec X = M

in which the structure M may refer to itself recursively as X, and there are no a priori limitations on M.
How should recursion interact with the computational effects that may occur during evaluation of M?

Under the standard interpretation of recursion via a fixed-point operator, the new recursive structure
declaration would be tantamount to structure X = fix(X. M), where fix(X. M) evaluates to its unrolling
M[fix(X. M)/X].1 Such a fixed-point semantics has the property that any computational effects in M are
re-enacted at every recursive reference to X.

While there is nothing inherently wrong with this behavior, it is undesirable for many intended uses of
recursive modules. For example, consider the declaration of two mutually recursive structures A and B in
Figure 1. Here, debug and trace are externally-accessible debugging flags used by f and g, respectively.
Under the above fixed-point semantics, every recursive reference between f and g prompts a re-evaluation of
the entire module, including the creation of brand new ref cells for debug and trace. In other words, each
recursive call operates in an entirely different mutable state, so setting debug to true externally would not
alter the fact that !debug is false during all recursive calls to X.A.f and X.B.g.

An alternative semantics for recursion that exhibits more appropriate behavior with respect to computa-
tional effects is the backpatching semantics of Scheme [16], in which structure rec X = M would evaluate
as follows: First, X is bound to a fresh location containing an undefined value; then, M is evaluated to
a module value V; finally, X is backpatched with V. If the evaluation of M attempts to dereference X, a
run-time error is reported. Unlike the fixed-point semantics, backpatching ensures that the effects in M only
happen once.

One might argue that what the backpatching semantics really achieves is the ability to write “excessively
recursive” definitions. In the example in Figure 1, the effectful definitions of debug and trace do not really
participate in the recursion. One might therefore imagine a semantics for structure rec that models the
recursion via a fixed-point, but hoists the effects outside of the fixed-point so that they only occur once.
However, while hoisting the effects may result in the same behavior as the backpatching semantics when the

1We use M[N/X] to denote the capture-avoiding substitution of N for X in M.
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structure rec X = struct

structure A = struct

val debug = ref false

fun f(x) = ...X.B.g(x-1)...

end

structure B = struct

val trace = ref false

fun g(x) = ...X.A.f(x-1)...

end

end

Figure 1: Example of Recursive Module with Effects

functor myA (X : SIG) = ...

functor yourB (X : SIG) = ...

structure rec X = struct

structure A = myA(X)

structure B = yourB(X)

end

Figure 2: Separate Compilation of Recursive Modules

effect in question is state, it is well-known that the same is not true for continuations, as it matters whether
a continuation is captured inside or outside of the recursive definition [12].

Moreover, hoisting the effects is impossible in the context of separate compilation. In particular, consider
Figure 2, which shows how the structures A and B from Figure 1 may be developed apart from each other by
abstracting each one over the recursive variable X. The structure rec linking them may also be compiled
separately, in which case we do not have access to the implementations of myA and yourB and there is no way
to hoist the effects out of myA(X) and yourB(X). The backpatching semantics thus seems to be a simpler,
cleaner and more general approach.

1.2 Well-Founded Recursion

Russo employs the backpatching semantics described above in his recursive module extension to Moscow
ML [24]. Russo’s extension has the advantage of being relatively simple, largely because the type system
does not make any attempt to statically ensure that structure rec X = M is well-founded, i.e., that the
evaluation of M will not dereference X.

If possible, however, compile-time error detection is preferable. In addition, statically ensuring well-
foundedness would allow recursive modules to be implemented more efficiently. In the absence of static
detection, there are two well-known implementation choices: 1) the recursive variable X can be implemented
as a pointer to a value of option type (initially NONE), in which case every dereference of X must also perform
a tag check to see if it has been backpatched yet, or 2) X can be implemented as a pointer to a thunk (initially
fn () => raise Error), in which case every dereference of X must also perform a function call. Either
way, mutually recursive functions defined across module boundaries will be noticeably slower than ordinary
ML functions. If recursion is statically known to be well-founded, however, the value pointed to by X will
be needed only after X has been backpatched, so each access will require only a single pointer dereference.

In this paper we propose a type-theoretic approach to ensuring well-founded recursive definitions under a
backpatching semantics of recursion. The basic idea is to model recursive variables statically as names, and
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to use names to track the set of recursive variables that a piece of code may attempt to dereference when
evaluated. Our use of names is inspired by the work of Nanevski on a core language for metaprogramming
and symbolic computation [20], although it is closer in detail to his work (concurrent with ours) on using
names to model control effects [21]. While names are important for tracking uses of multiple recursive
variables in the presence of nested recursion, an equally important feature of our approach is that it does
not require any changes to or recompilation of existing ML code.

As there are a number of difficult issues surrounding static (type) components of recursive modules [4, 6],
we restrict our attention here to the dynamic (code) components of recursive modules. Correspondingly, we
develop our type system at the level of recursive (core-level) expressions. We intend this not, however, as an
extension to the core language of ML, but as the basis of a future extension to the module language.

1.3 Overview

The remainder of the paper is organized as follows: In Section 2 we introduce the notion of evaluability,
which ensures that a program is safe to evaluate even if it contains free references to undefined recursive
variables. Through a series of examples, we illustrate how a simple approach to tracking evaluability suffers
from a number of theoretical and practical problems. In Section 3, we present our core type system for
solving these problems, in the context of the (pure) simply-typed λ-calculus. While effects necessitate the
backpatching semantics of recursion, all of the subtleties involving names can in fact be explored here in the
absence of effects. We give the static and dynamic semantics of our core language, along with meta-theoretic
properties including type safety.

Then, in Section 5 we show how to encode an unrestricted form of recursion by extending the language
with memoized computations. While this unrestricted construct does not ensure well-founded recursion, it
is useful as a fallback in circumstances where our type system is too weak to observe that a recursive term is
well-founded. Finally, in Section 6 we compare our approach to related work, and in Section 7 we conclude
and suggest future work.

2 Evaluability

Consider a general recursive construct of the form rec(X : τ. e), representing an expression e of type τ that
may refer to its ultimate value recursively as X. What is required of e to ensure that rec(X : τ. e) is well-
founded? Crary et al. [4] require that e be valuable (that is, pure and terminating) in a context where x is
not. We generalize their notion of valuability to one permitting effects, which we call evaluability : a term
may be judged evaluable if its evaluation does not access an undefined recursive variable. Thus, to ensure
rec(X : τ. e) is well-founded, the expression e must be evaluable in a context where uses of the variable X are
non-evaluable. An expression can be non-evaluable and still well-formed, but only evaluable expressions are
safe to evaluate in the presence of undefined recursive variables.

Formally, we might incorporate evaluability into the type system by dividing the typing judgment into
one classifying evaluable terms (Γ ` e ↓ τ) and one classifying non-evaluable terms (Γ ` e ↑ τ). (There is
an implicit inclusion of the former in the latter.) In addition, we need to extend the language with a notion
of undefined variables, which we call names. We write names with capital letters, as opposed to variables
which appear in lowercase. The distinction between them can be seen from their typing rules:

x : τ ∈ Γ
Γ ` x ↓ τ

X : τ ∈ Γ
Γ ` X ↑ τ

Given these extensions, we can now give the following typing rule for recursive expressions:

Γ, X : τ ` e ↓ τ

Γ ` rec(X : τ. e) ↓ τ

2.1 The Evaluability Judgment

While true evaluability is clearly an undecidable property, there are certain kinds of expressions that we can
expect the type system to recognize as evaluable. For instance, recall the example from Figure 1, which
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recursively defines a pair of submodules, each of which is a pair of a ref expression and a λ-abstraction. In
general, all values and tuples of evaluable expressions should be considered evaluable. In addition, ref(e),
!e, and e1:= e2 should all be evaluable as long as their constituent expressions are. Evaluability is thus
independent of computational purity.

There is, however, a correspondence between non-evaluability and computational impurity in the sense
that both are hidden by λ-abstractions and unleashed by function applications. In ML we assume (for the
purpose of the value restriction) that all function applications are potentially impure. In the current setting
we might similarly assume for simplicity that all function applications are potentially non-evaluable.

Unfortunately, this assumption has one major drawback: it implies that we can never evaluate a function
application inside a recursive expression! Furthermore, it is usually unnecessary: while functions defined
inside a recursive expression may very well be hiding references to a name, functions defined in existing ML
code will not. For example, instead of defining local state with a ref expression, suppose that we wish to
define a mutable array in submodule A (of Figure 1) by a call to the array creation function:

...

structure A = struct

val a = Array.array(n,0)

fun f(x) = ...Array.update(a,i,m)...

fun g(x) = ...X.B.f(x-1)...

end

...

The call to Array.array is perfectly evaluable, while a call to the function A.g inside the above module
might not be. Lumping them together and assuming the worst makes the evaluability judgment far too
conservative.

2.2 A Partial Solution

At the very least, then, we must distinguish between the types of total and partial functions. For present
purposes, a total arrow type τ1 → τ2 classifies a function whose body is evaluable, and a partial arrow type
τ1 ⇀ τ2 classifies a function whose body is potentially non-evaluable:

Γ, x : σ ` e ↓ τ

Γ ` λx. e ↓ σ → τ

Γ, x : σ ` e ↑ τ

Γ ` λx. e ↓ σ ⇀ τ

Correspondingly, applications of total evaluable functions to evaluable arguments will be deemed evaluable,
whereas applications of partial functions will be assumed non-evaluable:

Γ ` e1 ↓ σ → τ Γ ` e2 ↓ σ

Γ ` e1(e2) ↓ τ

Γ ` e1 ↑ σ ⇀ τ Γ ` e2 ↑ σ

Γ ` e1(e2) ↑ τ

The total/partial distinction addresses the concerns discussed in the previous section, to an extent. Existing
ML functions can now be classified as total, and the arrow type τ1->τ2 in ML proper is synonymous with a
total arrow. Thus, we may now evaluate calls to existing ML functions in the presence of undefined names
(i.e., inside a recursive expression), as those function applications will be known to be evaluable.

However, there are still some serious problems.

Recursive Functions First, consider what happens when we use general recursion to define a recursive
function, such as factorial:

rec(F : int ⇀ int. fn x => ... x * F(x-1) ...)

Note that we are forced to give the recursive expression a partial arrow type because the body of the factorial
function uses the recursive name F. Nonetheless, exporting factorial as a partial function is bad because it
means that no application of factorial can ever be evaluated inside a recursive expression!

To mend this problem, we observe that while the factorial function is indeed partial during the evaluation
of the general recursive expression defining it, it becomes total as soon as F is backpatched with a definition.
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One way to incorporate this observation into the type system is to revise the typing rule for recursive terms
rec(X : τ. e) so that we ignore partial/total discrepancies when matching the declared type τ with the actual
type of e. For example, in the factorial definition above, we would allow the name F to be declared with
a total arrow int → int, since the body of the definition has an equivalent type modulo a partial/total
mismatch.

Unfortunately, such a revised typing rule is only sound if we prohibit nested recursive expressions. Oth-
erwise, it may erroneously turn a truly partial function into a total one, as the following code illustrates:

rec(X : τ.
let

val f = rec(Y : unit → τ. fn () => X)

in

f()

end

)

The problem here is that the evaluation of the recursive expression defining f results only in the backpatching
of Y, not X. It is therefore unsound for that expression to make the type of fn () => X total. The name-
based calculus we present in Section 3 will, however, employ a similar idea in a way that makes sense in the
presence of multiple names.

Higher-Order Functions Another problem with the total/partial distinction arises in the use of higher-
order functions. Suppose we wish to use the Standard Basis map function for lists, which can be given the
following type (for any σ and τ):

val map : (σ → τ) → (σ list → τ list)

Since the type of map is a pure ML type, all the arrows are total, which means that we cannot apply map to
a partial function, as in the following:

rec (X : SIG.

let

val f : σ ⇀ τ = ...

val g : σ list ⇀ τ list = map f

...

)

Given the type of map, this is reasonable: unless we know how map is implemented, we have no way of
knowing that evaluating map f will not try to apply f, resulting in a potential dereference of X.

Nevertheless, we should at least be able to replace map f with its eta-expansion fn xs => map f xs,
which is clearly evaluable since it is a value. Even the eta-expansion is ill-typed, however, because the type
of f still does not match the argument type of map. We would really like the type system to say that map f

is not ill-typed, but merely non-evaluable. This observation will fall out naturally from the name-based
semantics we present in Section 3.

Separate Compilation Russo points out a problem with separate compilation of recursive modules in
Moscow ML [24] that applies equally well to the system we have sketched thus far: there is no way to refer
to a recursive variable without dereferencing it. For instance, recall the separate compilation scenario from
Figure 2. The code in Figure 2 is ill-typed under our current setup because, under call-by-value semantics,
the functor applications myA(X) and yourB(X) will begin by evaluating the recursive variable X, which is
undefined.

What we really intended, however, was not for the functor applications to dereference the name X and
pass the resulting module value as an argument, but rather to pass the name X itself as an argument. The
way to account for this intended semantics is to treat a recursive variable not as a (potentially divergent)
expression but as a value (of a new location type) that must be dereferenced explicitly. This idea will be
fleshed out further in our name-based core calculus.
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Variables x, y, z ∈ Variables
Names X, Y, Z ∈ Names
Supports S, T ∈ Pfin(Names)

Types σ, τ ::= 1 | τ1 × τ2 | τ1
S

−→ τ2

| ∀X. τ | boxS(τ)
Terms e, f ::= x | 〈〉 | 〈e1, e2〉 | πi(e)

| λx. e | f(e) | λX. e | f(S)
| box(e) | unbox(e)
| rec(X . x : τ. e)

Values v ::= x | 〈〉 | 〈v1, v2〉 | λx. e | λX. e
Typing Contexts Γ ::= ∅ | Γ, x : τ | Γ, X

Figure 3: Core Language Syntax

3 A Name-Based Core Calculus

In order to address the problems enumerated in the previous section, our core calculus generalizes the
judgment of evaluability to one that tracks uses of individual names. This new judgment has the form
Γ ` e : τ [S], with the interpretation “under context Γ, term e has type τ and is evaluable modulo the
names in set S”. In other words, e will evaluate without dereferencing any names except possibly those in
S. Following Nanevski [20], we call a finite set of names a support. Our previous judgment of evaluability
(Γ ` e ↓ τ) would now correspond to evaluability modulo the empty support (Γ ` e : τ [∅]), while non-
evaluability (Γ ` e ↑ τ) would now correspond to evaluability modulo some non-empty support.

The other major difference between this calculus and the language sketched in Section 2 is that we make
a distinction here between names and recursive variables. In particular, a recursive variable is split into a
static component (a name) and a dynamic component (a variable). As a result, recursive expressions now
have the form rec(X . x : τ. e), where X is the static and x the dynamic component of the recursive variable.
The name X is used as a static representative of the recursive variable in supports, while the variable x
stands for the actual location used to store the recursive value.2

In its more limited role as a “static representative”, a name is no longer a term construct, nor is it
assigned a type in the context. Consequently, what we previously wrote as rec(X : τ. e) would now be written
as rec(X . x : τ. e′), where e′ replaces occurrences of the expression X in e with an explicit dereference of x
(written unbox(x)). Distinguishing the static and dynamic aspects of a recursive variable affords us a simple
solution to the separate compilation problem, as we will discuss in Section 3.3.

3.1 Syntax

The syntax of our core language is given in Figure 3. We assume the existence of countably infinite sets of
names (Names) and variables (Variables), and use S and T to range over supports. We often write the name
X as shorthand for the singleton support {X}.

The type structure of the language is as follows. Unit (1) and pair types (τ1 × τ2) require no explanation.

An arrow type (τ1
S

−→ τ2) bears a support on the arrow, which indicates the set of names whose associated
recursive variables must be defined before a function of this type may be applied. We will sometimes write

τ1 → τ2 as shorthand for an arrow type with empty support (τ1
∅

−→ τ2).
The language also provides the ability to abstract an expression over a name. The type ∀X. τ classifies

name abstractions λX. e, which suspend the evaluation of their bodies and are treated as values. Application

2Our notation here is inspired by, but not to be confused with, Harper and Lillibridge’s notation for labels and variables in
a module calculus [14]. They use labels to distinguish external names of module components from internal α-variable names.
In our recursive construct, both X and x are bound inside e.
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of a name abstraction, f(S), allows the name parameter of f to be instantiated with a support S, not just a
single name. The reasons for allowing names to be instantiated with supports are discussed in Section 3.3.

Lastly, the location type boxS(τ) classifies a memory location that will contain a value of type τ once
the recursive variables associated with the names in S have been defined. Locations are most commonly
introduced by recursive expressions—the dynamic component of a recursive variable is a location—but they
may also be introduced by box(e), which evaluates e and then “boxes” the resulting value, i.e., stores it at a
new location. Since each boxing may potentially create a new location, box(v) is not a value; the only values
of location type are variables. The elimination form for location types is unbox(e), which dereferences the
location resulting from the evaluation of e. We will sometimes write box(τ) as shorthand for box∅(τ).

Notational Conventions In the term λx. e, the variable x is bound in e; in the term λX. e and type
∀X. τ , the name X is bound in e and τ ; in the term rec(X . x : τ. e), the name X and variable x are bound
in e. As usual, we identify terms and types that are equivalent modulo α-conversion of bound variables.

For notational convenience, we enforce several implicit requirements on the well-formedness of contexts
and judgments. A context Γ is well-formed if (1) it does not bind the same variable/name twice, and (2) for
any prefix of Γ of the form Γ′, x : τ , the free names of τ are bound in Γ′. A judgment of the form Γ ` · · · is
well-formed if (1) Γ is well-formed, and (2) any free names appearing to the right of the turnstile are bound
in Γ. We assume and maintain the implicit invariant that all contexts and judgments are well-formed.

3.2 Static Semantics

The main typing judgment has the form Γ ` e : τ [S]. The support S represents the set of names whose
associated recursive variables we may assume have been defined (backpatched) by the time e is evaluated.
Put another way, the only recursive variables that e may dereference are those associated with the names in
S. The static semantics is carefully designed to validate this assumption.

The rules of the type system (Figure 4) are designed to make admissible the principle of support weakening,
which says that if Γ ` e : τ [S] then Γ ` e : τ [T] for any T ⊇ S. Thus, for instance, since a variable x
does not require any support, Rule 1 allows x to be assigned any support S ⊆ dom(Γ), not just the empty
support.

The remainder of the rules may be summarized as follows. Unit needs no support (Rule 2), but pairs
and projections require the support of their constituent expressions (Rules 3 and 4). A function λx. e has

type σ
T

−→ τ in any support S, so long as the body e is well-typed under the addition of support T (Rule 5).
To evaluate a function application f(e), the support must contain the supports of f and e, as well as the
support on f ’s arrow type (Rule 6).

Although a name abstraction λX. e suspends the evaluation of e, the body is typechecked under the same
support as the abstraction itself (Rule 7). In other words, one can view ∀X. τ as another kind of arrow
type that always bears empty support (compare with Rule 5 when T = ∅). Note also that our assumptions
about the well-formedness of judgments ensures that the support S cannot contain X, since S ⊆ dom(Γ) and
X 6∈ dom(Γ). Restricting name abstractions thus is motivated by the fact that, in all our intended uses of
name abstractions, the body of the abstraction is a value (with empty support).

Instantiating a name abstraction f of type ∀X. τ with a support T has the type resulting from substituting
T for X in τ (Rule 8). The substitution τ [T/X] is defined by replacing every support S appearing in τ with
S[T/X], which is in turn defined as follows:

S[T/X]
def

=

{

S ∪ T − {X} if X ∈ S
S if X 6∈ S

Since boxing an expression first evaluates it, box(e) has the same support as e (Rule 9). Furthermore,
box(e) may be given a location type boxT(τ) with arbitrary T since the resulting location contains a defined
value and may be unboxed immediately. Unboxing an expression e of type boxT(τ) is only permitted if the
recursive variables associated with the names in T have been defined, i.e., if T is contained in the support
S (Rule 10).

Rules 11 and 12 are the most interesting rules in the type system since they both make use of our type
equivalence judgment, defined in Figure 4. The judgment Γ ` τ1 ≡S τ2 means that τ1 and τ2 are equivalent
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Term well-formedness: Γ ` e : τ [S]

x ∈ dom(Γ)

Γ ` x : Γ(x) [S]
(1)

Γ ` 〈〉 : 1 [S]
(2)

Γ ` e1 : τ1 [S] Γ ` e2 : τ2 [S]

Γ ` 〈e1, e2〉 : τ1 × τ2 [S]
(3)

Γ ` e : τ1 × τ2 [S]

Γ ` πi(e) : τi [S]
(4)

Γ, x : σ ` e : τ [S ∪ T]

Γ ` λx. e : σ
T

−→ τ [S]
(5)

Γ ` f : σ
T

−→ τ [S] Γ ` e : σ [S] T ⊆ S

Γ ` f(e) : τ [S]
(6)

Γ, X ` e : τ [S]

Γ ` λX. e : ∀X. τ [S]
(7)

Γ ` f : ∀X. τ [S]

Γ ` f(T) : τ [T/X] [S]
(8)

Γ ` e : τ [S]

Γ ` box(e) : boxT(τ) [S]
(9)

Γ ` e : boxT(τ) [S] T ⊆ S

Γ ` unbox(e) : τ [S]
(10)

Γ, X, x : boxX(τ) ` e : σ [S] Γ, X ` σ ≡X τ

Γ ` rec(X . x : τ. e) : τ [S]
(11)

Γ ` e : σ [S] Γ ` σ ≡S τ

Γ ` e : τ [S]
(12)

Type equivalence: Γ ` τ1 ≡S τ2

Γ ` 1 ≡S 1
(13)

Γ ` σ1 ≡S σ2 Γ ` τ1 ≡S τ2

Γ ` σ1 × τ1 ≡S σ2 × τ2
(14)

S ∪ S1 = T = S ∪ S2 Γ ` σ1 ≡T σ2 Γ ` τ1 ≡T τ2

Γ ` σ1
S1−→ τ1 ≡S σ2

S2−→ τ2

(15)

Γ, X ` τ1 ≡S τ2

Γ ` ∀X. τ1 ≡S ∀X. τ2
(16)

S ∪ S1 = T = S ∪ S2 Γ ` τ1 ≡T τ2

Γ ` boxS1
(τ1) ≡S boxS2

(τ2)
(17)

Figure 4: Core Language Static Semantics

types modulo the names in support S, i.e., that τ1 are τ2 are identical types if we ignore all occurrences of the

names in S. For example, the types τ1
∅

−→ τ2 and τ1
X

−→ τ2 are equivalent modulo any support containing
X.

The intuition behind our type equivalence judgment is that, once a recursive variable has been back-
patched, its associated name can be completely ignored for typechecking purposes because we only care
about tracking uses of undefined recursive variables. If the support of e is S, then by the time e is evalu-
ated, the recursive variables associated with the names in S will have been defined. Thus, in the context

of typing e under support S, the types τ1
∅

−→ τ2 and τ1
S

−→ τ2 are as good as equivalent since they only
differ with respect to the names in S, which are irrelevant. (Note: when checking equivalence of arrow types

σ1
S1−→ τ1 and σ2

S2−→ τ2 modulo S, we compare the argument types and result types at the extended modulus
S ∪ S1 = S ∪ S2. This makes sense because a function of one of these types may only be applied with S ∪ S1
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in the support. The rule for box can be justified similarly.)
This notion of equivalence modulo a support is critical to the typing of recursive terms. Recall the

factorial example from Section 2.2, adapted to our core calculus:

rec(F . f : int → int.

fn x => ... x * unbox(f)(x-1) ...)

The issue here is that the declared type of F does not match the actual type of the body, int
F

−→ int. Once
F is backpatched, however, the two types do match modulo F. Correspondingly, our typing rule for recursive
terms rec(X . x : τ. e) works as follows. First, the context Γ is extended with the name X, as well as the
recursive variable x of type boxX(τ). This location type binds the name and the variable together because it
says that X must be in the support of any expression that attempts to dereference (unbox) x. The rule then
checks that e has some type σ in this extended context, under a support S that does not include X (since
x is undefined while evaluating e). Finally, it checks that σ and τ are equivalent modulo X. It is easiest to
understand this last step as a generalization of our earlier idea of ignoring discrepancies between partial and
total arrows when comparing σ and τ . The difference here is that we ignore discrepancies with respect to a
particular name X instead of all names, so that the rule behaves properly in the presence of multiple names
(nested recursion).

In contrast, Rule 12 appears rather straightforward, allowing a term with type σ and support S to be
assigned a type that is equivalent to σ modulo the names in S. In fact, this rule solves the higher-order
function problem described in Section 2.2! Recall that we wanted to apply an existing higher-order ML
function like map to a “partial” function, i.e., one whose arrow type bears non-empty support:

rec (X . x : SIG.

let

val f : σ
X

−→ τ = ...

val g : σ list
X

−→ τ list = fn xs => map f xs

...

)

The problem here is that the type of f does not match the argument type σ → τ of map. Intuitively, though,
this code ought to typecheck: if we are willing to add X to the support of g’s arrow type, then x must be
backpatched before g is ever applied, so X should be ignored when typing the body of g.

Rule 12 encapsulates this reasoning. Since g is specified with type σ list
X

−→ τ list, we can assume
support X when typechecking its body (map f xs). Under support X, Rule 12 allows us to assign f the type
σ → τ , as it is equivalent to f’s type modulo X. Thus, g’s body is well-typed under support X.

3.3 Name Abstractions and Non-strictness

We have so far illustrated how the inclusion of supports in our typing and equivalence judgments addresses
the problems with recursive and higher-order functions described in Section 2. Our system addresses the
problem of separate compilation as well by 1) making the dereferencing of a recursive variable an explicit
operation, and 2) providing the ability to abstract an expression over a name.

Recall the separate compilation scenario from Figure 2. Since recursive variables in our core language
are no longer dereferenced implicitly, we might attempt to rewrite the linking module as:

structure rec X . x : SIG =

structure A = myA(x)

structure B = yourB(x)

end

The recursive variable x is now a value of location type boxX(SIG), so passing it as an argument to myA and
yourB does not dereference it. Assuming then that myA and yourB are non-strict, i.e., that they do not
dereference their argument when applied, the recursion is indeed well-founded.

But what types can we give to myA and yourB to reflect the property that they are non-strict? Suppose
that myA’s return type is SIG A. We would like to give it the type boxX(SIG)→SIG A, so that 1) its argument

9



myA = λX. λx : boxX(SIG). ...

yourB = λX. λx : boxX(SIG). ...

structure rec X . x : SIG =

structure A = myA{X}(x)
structure B = yourB{X}(x)

end

Figure 5: Revised Separate Compilation Scenario

type matches the type of x, and 2) the absence of X on the arrow indicates that myA can be applied under
empty support. However, this type makes no sense where myA are defined, because the name X is not in
scope outside of the recursive module.

This is where name abstractions come in. To show that myA is non-strict, it is irrelevant what particular
support is required to unbox its argument, so we can use a name abstraction to allow any name or support
to be substituted for X. Figure 5 shows the resulting well-typed separate compilation scenario, in which the
type of myA is ∀X. boxX(SIG) → SIG A.

Our recursive construct is still not quite as flexible for separate compilation purposes as one might like.
In particular, suppose that we wanted to parameterize myA over just yourB instead of both myA and yourB.
There is no way in our system to extract a value of type boxX(SIG B) from x without unboxing it. It is easy

to remedy this problem, however, by generalizing the recursive construct to an n-ary one, rec(~X . ~x : ~τ . ~e),
where each of the n recursive variables xi is boxed separately with type boxXi

(τi).
Name abstractions can also be used to express non-strictness of core-level ML functions, which in turn

allows more well-founded recursive definitions to typecheck. For instance, suppose we had access to the code
for the map function. By wrapping the definition of map in a name abstraction, we can assign the function
the type

∀ X. (σ
X

−→ τ)
∅

−→ (σ list
X

−→ τ list)

The type indicates that map will turn a value of any arrow type into a value of the same arrow type, but will
not apply its argument in the process. Given this type for map, we can write our recursive module example
involving map the way we wanted to write it originally in Section 2:

rec (X . x : SIG.

let

val f : σ
X

−→ τ = ...

val g : σ list
X

−→ τ list = map {X} f

...

)

This results in better code than eta-expanding map f, but it also requires having access to the implementation
of map. Furthermore, it requires us to modify the type of map, infecting the existing ML infrastructure with
names. It is therefore important that, in the absence of this solution, our type system is strong enough
(thanks to Rule 12) to typecheck at least the eta-expansion of map f, without requiring changes to existing
ML code.

This example also illustrates why it is useful to be able to instantiate a name abstraction with a support

instead of a single name. In particular, suppose that f’s type were σ
S

−→ τ for some non-singleton support
S. The definition of g would become map S f, which is only possible given the ability to instantiate map

with a support.
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Continuations C ::= • | C ◦ F
Continuation Frames F ::= 〈•, e〉 | 〈v, •〉 | πi(•) | •(e) | v(•)

| •(T) | box(•) | unbox(•)
| rec(X . x : τ. •)

Small-step semantics: Ω 7→ Ω′

〈e1, e2〉 not a value

(ω; C; 〈e1, e2〉) 7→ (ω; C ◦ 〈•, e2〉; e1)
(18)

(ω; C ◦ 〈•, e〉; v) 7→ (ω; C ◦ 〈v, •〉; e)
(19)

(ω; C ◦ 〈v1, •〉; v2) 7→ (ω; C; 〈v1, v2〉)
(20)

(ω; C; πi(e)) 7→ (ω; C ◦ πi(•); e)
(21)

(ω; C ◦ πi(•); 〈v1, v2〉) 7→ (ω; C; vi)
(22)

(ω; C; e1(e2)) 7→ (ω; C ◦ •(e2); e1)
(23)

(ω; C ◦ •(e); v) 7→ (ω; C ◦ v(•); e)
(24)

(ω; C ◦ (λx. e)(•); v) 7→ (ω; C; e[v/x])
(25)

(ω; C; e(T)) 7→ (ω; C ◦ •(T); e)
(26)

(ω; C ◦ •(T); λX. e) 7→ (ω; C; e[T/X])
(27)

(ω; C; box(e)) 7→ (ω; C ◦ box(•); e)
(28)

x 6∈ dom(ω)

(ω; C ◦ box(•); v) 7→ (ω[x 7→ v]; C; x)
(29)

(ω; C; unbox(e)) 7→ (ω; C ◦ unbox(•); e)
(30)

ω(x) = v

(ω; C ◦ unbox(•); x) 7→ (ω; C; v)
(31)

x 6∈ dom(ω)

(ω; C; rec(X . x : τ. e)) 7→ (ω[x 7→ ?]; C ◦ rec(X . x : τ. •); e)
(32)

(ω; C ◦ rec(X . x : τ. •); v) 7→ (ω[x := v]; C; v)
(33)

Figure 6: Core Language Dynamic Semantics

3.4 Dynamic Semantics

We formalize the dynamic semantics of our core language in terms of a virtual machine. Machine states
(ω; C; e) consist of a store ω, a continuation C, and an expression e currently being evaluated. We sometimes
use Ω to stand for a machine state.

A continuation C consists of a stack of continuation frames F , as shown in Figure 6. A store ω is a
partial mapping from variables (of location type) to storable things. A storable thing θ is either a term (e)
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or nonsense (?). By ω(x) we denote the storable thing stored at x in ω, which is only valid if something
(possibly nonsense) is stored at x. By ω[x 7→ θ] we denote the result of creating a new name x in ω and
storing θ at it. By ω[x := θ] we denote the result of updating the store ω to store θ at x, where x is already
in dom(ω). We denote the empty store by ε.

The dynamic semantics of the language is shown in Figure 6 as well. It takes the form of a stepping
relation Ω 7→ Ω′. Rules 18 through 31 are all fairly straightforward. Rule 32 says that, in order to evaluate
rec(X . x : τ. e), we create a new location x in the store bound to nonsense, push the recursive frame
rec(X . x : τ. •) on the continuation stack, and evaluate e. (We can always ensure that x is not already
a location in the store by α-conversion.) Once we have evaluated e to a value v, Rule 33 performs the
backpatching step: it stores v at location x in the store and returns v. Finally, if a location is ever dereferenced
(unboxed), Rule 31 simply looks up the value it is bound to in the store.

3.5 Type Safety

Observe that the machine is stuck if we attempt to unbox a location that is bound to nonsense. The point
of the type safety theorem is to ensure that this will never happen for well-formed programs. We begin
by defining a notion of well-formedness for stores, which is dependent on a notion of a runtime context. A
runtime context is a context that only binds variables at types for which variables are the canonical forms,
which so far means only location types. In addition, we distinguish backpatchable locations and connect them
to their associated names by introducing a “new” context binding form X.x : τ , which behaves semantically
the same as the two bindings X, x : boxX(τ), but is distinguished syntactically.

Definition 3.1 (Runtime Contexts)
A context Γ is runtime if the only bindings in Γ take the form X . x : τ or x : boxT(τ).

Definition 3.2 (Store Well-formedness)
A store ω is well-formed, denoted Γ ` ω [S], if:

1. Γ is runtime and dom(ω) = vardom(Γ)

2. ∀X . x : τ ∈ Γ. if X ∈ S then ∃v. ω(x) = v and Γ ` v : τ [S]

3. ∀x : boxT(τ) ∈ Γ. ∃v. ω(x) = v and Γ ` v : τ [S]

Essentially, the judgment Γ ` ω [S] says that Γ assigns types to all locations in the domain of ω, and that all
locations map to appropriately-typed values except those backpatchable ones associated with names which
are not in the support S.

We define well-formedness of continuations and continuation frames via the judgments Γ ` C : τ cont [S]
and Γ ` F : τ1 ⇒ τ2 [S], defined in Figure 7. The former judgment says that continuation C expects a value
of type τ to fill in its •; the latter judgment says that F expects a value of type τ1 to fill in its • and that F
produces a value of type τ2 in return. The only rule that is slightly unusual is Rule 45 for recursive frames
rec(X . x : τ. •). Since this frame is not a binder for X or x, Rule 45 requires that X . x : τ be in the context.
This is a safe assumption since rec(X . x : τ. •) only gets pushed on the stack after a binding for x has been
added to the store.

We can now define a notion of well-formedness for a machine state, which requires that the type of its
expression component matches the type of the hole in the continuation component:

Definition 3.3 (Machine State Well-formedness)
A machine state Ω is well-formed, denoted Γ ` Ω [S], if Ω = (ω; C; e), where:

1. Γ ` ω [S]

2. ∃τ. Γ ` C : τ cont [S] and Γ ` e : τ [S]

We can now state the preservation and progress theorems leading to type safety:

12



Continuation well-formedness: Γ ` C : τ cont [S]

Γ ` • : τ cont [S]
(34)

Γ ` F : τ ⇒ σ [S] Γ ` C : σ cont [S]

Γ ` C ◦ F : τ cont [S]
(35)

Γ ` C : σ cont [S] Γ ` σ ≡S τ

Γ ` C : τ cont [S]
(36)

Continuation frame well-formedness: Γ ` F : τ1 ⇒ τ2 [S]

Γ ` e : τ2 [S]

Γ ` 〈•, e〉 : τ1 ⇒ τ1 × τ2 [S]
(37)

Γ ` v : τ1 [S]

Γ ` 〈v, •〉 : τ2 ⇒ τ1 × τ2 [S]
(38)

i ∈ {1, 2}

Γ ` πi(•) : τ1 × τ2 ⇒ τi [S]
(39)

Γ ` e : σ [S]

Γ ` •(e) : σ → τ ⇒ τ [S]
(40)

Γ ` v : σ → τ [S]

Γ ` v(•) : σ ⇒ τ [S]
(41)

Γ ` •(T) : ∀X. τ ⇒ τ [T/X] [S]
(42)

Γ ` box(•) : τ ⇒ boxT(τ) [S]
(43)

Γ ` unbox(•) : box(τ) ⇒ τ [S]
(44)

X . x : τ ∈ Γ Γ ` σ ≡X τ

Γ ` rec(X . x : τ. •) : σ ⇒ τ [S]
(45)

Figure 7: Well-formedness of Core Continuations

Theorem 3.4 (Preservation)
If Γ ` Ω [S] and Ω 7→ Ω′, then ∃Γ′, S′. Γ′ ` Ω′ [S′].

Definition 3.5 (Terminal States)
A machine state Ω is terminal if it has the form (ω; •; v).

Definition 3.6 (Stuck States)
A machine state Ω is stuck if it is non-terminal and there is no state Ω′ such that Ω 7→ Ω′.

Theorem 3.7 (Progress)
If Γ ` Ω [S], then Ω is not stuck.

Note that when Ω = (ω; C ◦ unbox(•); x), the well-formedness of Ω implies that Γ ` x : box(τ) [S] for
some type τ . The well-formedness of ω then ensures that there is a value v such that ω(x) = v, so Ω can
make progress by Rule 31.

Corollary 3.8 (Type Safety)
Suppose ∅ ` e : τ [∅]. Then for any machine state Ω, if (ε; •; e) 7→∗ Ω, then Ω is not stuck.
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Types τ ::= · · · | ref(τ) | cont(τ)
Terms e ::= · · · | ref(e) | get(e) | set(e1, e2)

| callcc(x. e) | throw(e1, e2)

Γ ` τ1 ≡S τ2

Γ ` ref(τ1) ≡S ref(τ2)
(46)

Γ ` e : τ [S]

Γ ` ref(e) : ref(τ) [S]
(47)

Γ ` e : ref(τ) [S]

Γ ` get(e) : τ [S]
(48)

Γ ` e1 : ref(τ) [S] Γ ` e2 : τ [S]

Γ ` set(e1, e2) : 1 [S]
(49)

Γ ` τ1 ≡S τ2

Γ ` cont(τ1) ≡S cont(τ2)
(50)

Γ, x : cont(τ) ` e : τ [S]

Γ ` callcc(x. e) : τ [S]
(51)

Γ ` e1 : cont(σ) [S] Γ ` e2 : σ [S]

Γ ` throw(e1, e2) : τ [S]
(52)

Figure 8: Static Semantics Extensions for Effects

The full meta-theory of our language (along with proofs) is given in Appendix A.

3.6 Effectiveness

It is important that our language admit a practical typechecking algorithm. In the implicitly-typed form of
the language that we have used here, it is not obvious that such an algorithm exists because terms do not

have unique types. For example, if λx. e has type σ
S

−→ τ , it can also be given σ
T

−→ τ for any T ⊇ S. It is
easy to eliminate this non-determinism, however, by making the language explicitly-typed. In particular, if
λ-abstractions are annotated as λT x : σ.e and boxed expressions are annotated as boxT(e), along with the
revised typing rules

Γ, x : σ ` e : τ [S ∪ T]

Γ ` λT x : σ.e : σ
T

−→ τ [S]

Γ ` e : τ [S]

Γ ` boxT(e) : boxT(τ) [S]

then it is easy to synthesize unique types for explicitly-typed terms up to equivalence modulo a given support
S. (See Appendix B for details.) It remains an important question for future work how much of the type
and support information in explicitly-typed terms can be inferred.

4 Adding Computational Effects

Since we have modeled the semantics of backpatching quite operationally in terms of a mutable store, it is
easy to incorporate some actual computational effects into our framework. The extensions are completely
straightforward and essentially oblivious to the presence of supports in typing judgments.

Figure 8 extends the syntax and semantics of our language with mutable state and continuations. The
primitives for the former are ref, get and set, and the primitives for the latter are callcc and throw, all with
the standard typing rules. Ref cells and continuations are allocated in the store, so the values of types ref(τ)
and cont(τ) are variables representing locations in the store.

If we think of a continuation as a kind of function with no return type, it may seem surprising that the

typing rules for continuations are oblivious to names. Moreover, while the arrow type τ1
S

−→ τ2 specifies the
support S required to call a function of that type, the continuation type cont(τ) does not specify a support,
and no support is required in order to throw to a continuation. (One can view cont(τ) as always specifying
empty support.)

To see why a support is unnecessary, consider what the machine state looks like when we are about to
evaluate a callcc: it has the form Ω = (ω; C; callcc(x. e)). Assuming that Ω is well-formed (Γ ` Ω [S]), we
know that Γ ` C : τ cont [S] and Γ ` callcc(x. e) : τ [S]. The current continuation is C and that is what
callcc will bind to x before evaluating e. Then what is the “type” of C? Explicit continuations are not part
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Continuation Frames F ::= · · · | ref(•) | get(•) | set(•, e)
| set(v, •) | throw(•, e) | throw(v, •)

(ω; C; ref(e)) 7→ (ω; C ◦ ref(•); e)
(53)

x 6∈ dom(ω)

(ω; C ◦ ref(•); v) 7→ (ω[x 7→ v]; C; x)
(54)

(ω; C; get(e)) 7→ (ω; C ◦ get(•); e)
(55)

ω(x) = v

(ω; C ◦ get(•); x) 7→ (ω; C; v)
(56)

(ω; C; set(e1, e2)) 7→ (ω; C ◦ set(•, e2); e1)
(57)

(ω; C ◦ set(•, e); v) 7→ (ω; C ◦ set(v, •); e)
(58)

(ω; C ◦ set(x, •); v) 7→ (ω[x := v]; C; 〈〉)
(59)

x 6∈ dom(ω)

(ω; C; callcc(x. e)) 7→ (ω[x 7→C]; C; e)
(60)

(ω; C; throw(e1, e2)) 7→ (ω; C ◦ throw(•, e2); e1)
(61)

(ω; C ◦ throw(•, e); v) 7→ (ω; C ◦ throw(v, •); e)
(62)

ω(x) = Cx

(ω; C ◦ throw(x, •); v) 7→ (ω; Cx; v)
(63)

Figure 9: Dynamic Semantics Extensions for Effects

Γ ` ref(•) : τ ⇒ ref(τ) [S]
(64)

Γ ` get(•) : ref(τ) ⇒ τ [S]
(65)

Γ ` e : τ [S]

Γ ` set(•, e) : ref(τ) ⇒ 1 [S]
(66)

Γ ` v : ref(τ) [S]

Γ ` set(v, •) : τ ⇒ 1 [S]
(67)

Γ ` e : σ [S]

Γ ` throw(•, e) : cont(σ) ⇒ τ [S]
(68)

Γ ` v : cont(σ) [S]

Γ ` throw(v, •) : σ ⇒ τ [S]
(69)

Figure 10: Well-Formedness of Continuations for Effects

of our language; nonetheless we can think of C as a function with argument type τ that, when applied,
may dereference any of the recursive variables associated with the names in S. Thus, the most appropriate

arrow-like type for C would be τ
S

−→ σ for some return type σ. Under support S, though, this arrow type
is equivalent to one bearing empty support, i.e., cont(τ).

Figure 9 gives the extensions to the dynamic semantics for mutable state and continuations. We extend
stores ω to contain mappings from locations x to continuations C. The rules for mutable state are com-
pletely straightforward. The rules for continuations are also fairly straightforward, since the machine state
already makes the current continuation explicit. Proving type safety for these extensions requires only a
simple, orthogonal extension of the proof framework from Section 3.5. The judgment on well-formedness
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Types τ ::= · · · | compS(τ)
Terms e ::= · · · | delay(e) | force(e)

S ∪ S1 = T = S ∪ S2 Γ ` τ1 ≡T τ2

Γ ` compS1
(τ1) ≡S compS2

(τ2)
(70)

Γ ` e : τ [S ∪ T]

Γ ` delay(e) : compT(τ) [S]
(71)

Γ ` e : compT(τ) [S] T ⊆ S

Γ ` force(e) : τ [S]
(72)

Figure 11: Static Semantics for Memoized Computations

of continuations is extended in the obvious way, as shown in Figure 10. The definition of runtime contexts
is extended to include variables of type ref(τ) and cont(τ), and the definition of store well-formedness is
extended as follows:

Definition 4.1 (Runtime Contexts)
A context Γ is runtime if the only bindings in Γ take the form X .x : τ , x : boxT(τ), x : ref(τ) or x : cont(τ).

Definition 4.2 (Store Well-formedness)
A store ω is well-formed, denoted Γ ` ω [S], if Γ ` ω [S] according to Definition 3.2 and also:

1. ∀x : ref(τ) ∈ Γ. ∃v. ω(x) = v and Γ ` v : τ [S]

2. ∀x : cont(τ) ∈ Γ. ∃C. ω(x) = C and Γ ` C : τ cont [S]

5 Encoding Unrestricted Recursion

Despite all the efforts of our type system, there will always be recursive terms rec(X . x : τ. e) for which we
cannot statically determine that e can be evaluated without dereferencing x. For such cases it is important
to have a fallback approach that would allow the programmer to write rec(X.x : τ. e) with the understanding
that the recursion may be ill-founded and dereferences of x will be saddled with a corresponding run-time
cost.

One option is to add a second unrestricted recursive term construct, with the following typing rule:

Γ, x : 1 → τ ` e : τ [S]

Γ ` urec(x : τ. e) : τ [S]

Note that we do not introduce any name X, so there are no restrictions on when x can be dereferenced.
Since the dereferencing of x may diverge and cannot therefore be a mere pointer dereference, we assign x
the thunk type 1→ τ instead of box(τ), with dereferencing achieved by applying x to 〈〉. Adding an explicit
urec construct, however, makes for some redundancy in the recursive mechanisms of the language. It would
be preferable, at least at the level of the theory, to find a way to encode unrestricted recursion in terms of
our existing recursive construct.

We achieve this by extending the language with primitives for memoized computations. The syntax and
static semantics of this extension are given in Figure 11. First, we introduce a type compS(τ) of locations

storing memoized computations. A value of this type is essentially a thunk of type 1
S

−→ τ whose result is
memoized after the first application.
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Machine States Ω ::= · · · | Error

Continuation Frames F ::= · · · | force(•) | memo(x, •)

x 6∈ dom(ω)

(ω; C; delay(e)) 7→ (ω[x 7→ e]; C; x)
(73)

(ω; C; force(e)) 7→ (ω; C ◦ force(•); e)
(74)

ω(x) = e

(ω; C ◦ force(•); x) 7→ (ω[x := ?]; C ◦ memo(x, •); e)
(75)

(ω; C ◦ memo(x, •); v) 7→ (ω[x := v]; C; v)
(76)

ω(x) = ?

(ω; C ◦ force(•); x) 7→ Error
(77)

Figure 12: Dynamic Semantics of Memoization

Γ ` force(•) : comp(τ) ⇒ τ [S]
(78)

Γ ` x : comp(τ) [S]

Γ ` memo(x, •) : τ ⇒ τ [S]
(79)

Figure 13: Well-formedness of Memoization Continuations

The primitive delay(e) creates a memoized location x in the store bound to the unevaluated expression
e. When x is forced (by force(x)), the expression e stored at x is evaluated to a value v, and then v is
written back to x. During the evaluation of e, the location x is bound to nonsense; if x is forced again
during this stage, the machine raises an error. Thus, every force of x must check to see whether it is bound
to an expression or nonsense. Despite the difference in operational behavior, the typing rules for memoized

computations appear just as if compS(τ), delay(e) and force(e) were shorthand for 1
S

−→ τ , λ〈〉. e and e 〈〉,
respectively. We use comp(τ) sometimes as shorthand for comp∅(τ).

We can now encode urec via a recursive memoized computation:

urec(x : τ. e)
def

=

force(rec(X . x : comp(τ). delay(e[λ〈〉. force(unbox(x))/x])))

It is easiest to understand this encoding by stepping through it. First, a new recursive location x is created,
bound to nonsense. Then, the delay creates a new memoized location y bound to the expression e[. . . /x].
Next, the rec backpatches x with the value y and returns y. Finally, y is forced, resulting in the evaluation of
e[. . . /x] to a value v, and y is backpatched with v. If the recursive variable (encoded as λ〈〉. force(unbox(x)))
is dereferenced (applied to 〈〉) during the evaluation of e[. . . /x], it will result in another forcing of y, raising
a run-time error.

Essentially, one can view the rec in this encoding as merely tying the recursive knot on the memoized
computation, while the memoization resulting from the force is what actually performs the backpatching.
Observe that if we were to give comp(τ) a non-memoizing semantics, i.e., to consider it synonymous with
1→ τ , the above encoding would have precisely the fixed-point semantics of recursion. Memoization ensures
that the effects in e only happen once, at the first force of the recursive computation.
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The dynamic semantics for this extension is given in Figure 12. To evaluate delay(e), we create a new
memoized location in the store and bind e to it (Rule 73). To evaluate force(e), we first evaluate e (Rule 74).
Once e evaluates to a location x, we look x up in the store. If x is bound to an expression e, we proceed
to evaluate e, but first push on the continuation stack a memoization frame to remind us that the result of
evaluating e should be memoized at x (Rules 75 and 76). If x is instead bound to nonsense, then we must be
in the middle of evaluating another force(x), so we step to an Error state which halts the program (Rule 77).

Extending the type safety proof to handle memoized computations is straightforward. Continuation
frame well-formedness is extended with the two rules in Figure 13. We must also update the definition of
runtime contexts to include memoized location bindings, well-formed and terminal states to include Error,
and store well-formedness to account for memoized locations:

Definition 5.1 (Runtime Contexts)
A context Γ is runtime if the only bindings in Γ take the form X . x : τ , x : boxT(τ), x : ref(τ), x : cont(τ)
or x : compT(τ).

Definition 5.2 (Machine State Well-formedness)
A machine state Ω is well-formed if either Ω = Error or Ω is well-formed according to Definition 3.3.

Definition 5.3 (Terminal States)
A machine state Ω is terminal if either Ω = Error or Ω is terminal according to Definition 3.5.

Definition 5.4 (Store Well-formedness)
A store ω is well-formed, denoted Γ ` ω [S], if Γ ` ω [S] according to Definition 4.2 and also:

• ∀x : compT(τ) ∈ Γ. either ω(x) = ? or Γ ` ω(x) : τ [S ∪ T]

6 Related Work

Well-Founded Recursion Boudol [3] proposes a type system for well-founded recursion that, like ours,
employs a backpatching semantics. Boudol’s system tracks the degrees to which expressions depend on their
free variables, where the degree to which e depends on x is 1 if x appears in a guarded position in e (i.e., under
an unapplied λ-abstraction), and 0 otherwise. What we call the “support” of an expression corresponds in
Boudol’s system to the set of variables on which the expression depends with degree 0. Thus, while there
is no distinction between recursive and ordinary variables in Boudol’s system, his equivalent of rec(x : τ. e)
ensures that the evaluation of e will not dereference x by requiring that e depend on x with degree 1.

In our system an arrow type indicates the recursive variables that may be dereferenced when a function of
that type is applied. An arrow type in Boudol’s system indicates the degree to which the body of a function

depends on its argument. Thus, σ
0

−→ τ and σ
1

−→ τ classify functions that are strict and non-strict in
their arguments, respectively. As we discussed in Section 3.3, the ability to identify non-strict functions is
especially important for purposes of separate compilation. For example, in order to typecheck our separate
compilation scenario from Figure 2, it is necessary to know that the separately-compiled functors myA and
yourB are non-strict.

In contrast to our system, which requires the code from Figure 2 to be rewritten as shown in Figure 5,
Boudol’s system can typecheck the code in Figure 2 essentially as is. The reason is that function applications
of the form f(x) (where the argument is a variable) are treated as a special case in his semantics: while
the expression x depends on the variable x with degree 0, f(x) merely passes x to f without dereferencing
it. What this implies, however, is that ordinary λ-bound variables may be instantiated at run time with
recursive variables. Whereas our system only “boxes” recursive variables, it seems that an implementation
of Boudol’s system will be forced to box all variables.

The simplicity of Boudol’s system is achieved at the expense of being rather conservative. In particular,
a function application f(e) is considered to depend on all the free variables of f with degree 0. Suppose that
f is a curried function λy.λz.e, where e dereferences a recursive variable x. In our type system, f can be

given a type such as τ1
∅

−→ τ2
X

−→ τ3, which would allow its first argument (y) to be instantiated under the
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empty support. In Boudol’s system, any application of f will depend on x with degree 0 and thus cannot
appear unguarded in the recursive term defining x.

To address the limitations of Boudol’s system, Hirschowitz and Leroy [15] propose a generalization of it,
which they use as the target language for compiling their mixin module calculus. Specifically, they extend
Boudol’s notion of degrees to be arbitrary integers: the degree to which e depends on x becomes, roughly,
the number of λ-abstractions under which x appears in e. Thus, continuing the above example, the function
λy.λz.e would depend on x with degree 2, so instantiating the first argument would only decrement that
degree to 1, not 0.

For the purpose of compiling mixin modules, the primary feature required of Hirschowitz and Leroy’s
target language is the ability to link mutually recursive λ-abstractions that have been compiled separately.
As we have illustrated in Section 3.3, our calculus provides this feature as well. In addition, there are
simple examples that our name-based system easily accounts for but the strictness analysis of Hirschowitz
and Leroy’s does not. For instance, if f is a variable of thunk type, both the expressions f and f〈〉 are
considered strict in f , so both the identity function λf.f and the “apply” function λf.f〈〉 are considered
strict functions. As a result, applying either function to the thunk λ〈〉.x will be considered strict in x, even
though the identity function will clearly not apply the thunk. In contrast, our type system observes that the
identity is total, so it can be applied under the empty support.

Weak Polymorphism and Effect Systems There seems to be an analogy between the approaches
discussed here for tracking well-founded recursion and the work on combining polymorphism and effects in
the early days of ML. Boudol’s 0-1 distinction is reminiscent of Tofte’s distinction between imperative and
applicative type variables [26]. Hirschowitz and Leroy’s generalization of Boudol is similar to the idea of
weak polymorphism [13] (implemented by MacQueen in earlier versions of the SML/NJ compiler), wherein
a type variable α carries a numeric “strength” representing, roughly, the number of function applications
required before a ref cell is created storing a value of type α. Our system has ties to effect systems in the
style of Talpin and Jouvelot [25], in which an arrow type indicates the set of effects that may occur when a
function of that type is applied. For us, the effect in question is the dereferencing of an undefined recursive
variable, represented statically as a name.

A common criticism leveled at both effect systems and weak polymorphism is that functional and impera-
tive implementations of a polymorphic function have different types, and it is impossible to know which type
to expect when designing a specification for a module separate from its implementation [27]. Our system,
however, avoids this problem: names only infect types within recursive modules (or their separately-compiled
parts), so one may completely ignore names when designing the external interface for a recursive module.
This is made possible by our notion of type equivalence modulo a support, which appears to be novel and
specific to the well-founded recursion problem.

Names The idea of using names in our core calculus is inspired by Nanevski’s work on using a modal logic
with names to model a “metaprogramming” language for symbolic computation [20]. (His use of names was
in turn inspired by Pitts and Gabbay’s FreshML [23].) Nanevski uses names to represent undefined symbols
appearing inside expressions of a modal

�
type. These expressions can be viewed as pieces of uncompiled

syntax whose free names must be defined before they can be compiled.
Our use of names is conceptually closer to Nanevski’s more recent work (concurrent with ours) on using

names to model control effects for which there is a notion of handling [21]. As mentioned earlier, one
can think of the dereferencing of a recursive variable as an effect that is in some sense “handled” by the
backpatching of the variable. Formally, though, Nanevski’s system is quite different, not least in that it does
not employ any judgment of type equivalence modulo a support, which plays a critical role in our system.

Monadic Recursion There has been considerable work recently on adding effectful recursion to Haskell.
Since effects in Haskell are isolated in monadic computations, adding a form of recursion over effectful
expressions requires an understanding of how recursion interacts with monads. Erkök and Launchbury [9]
propose a monadic fixed-point construct mfix for defining recursive computations in monads that satisfy a
certain set of axioms. They later show how to use mfix to define a recursive form of Haskell’s do construct [10].
Friedman and Sabry [12] argue that the backpatching semantics of recursion is fundamentally stateful, and
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thus defining a recursive computation in a given monad requires the monad to be combined with a state
monad. This approach allows recursion in monads that do not obey the Erkök-Launchbury axioms, such as
the continuation monad.

The primary goal of our type system is to statically ensure well-founded recursion in an impure call-by-
value setting, and thus the work on recursive monadic computations for Haskell (which avoids any static
analysis) is largely orthogonal to ours. Nevertheless, the dynamic semantics of our language borrows from
recent work by Moggi and Sabry [19], who give an operational semantics for the monadic metalanguage
extended with the Friedman-Sabry mfix.

Recursive Modules Most recursive module proposals restrict the form of the recursive module construct
so that recursion is not defined over effectful expressions. One exception is Russo’s extension to Moscow
ML [24], which employs an unrestricted form of recursion similar to our urec construct from Section 5. An-
other is Leroy’s experimental extension to O’Caml [17], which permits arbitrary effects in recursive modules
but restricts backpatching to modules of pointed type, i.e., modules that export only functions and lazy
computations. This restriction enables more efficient implementation, since for pointed types there is an
appropriate “bottom” value with which to initialize the recursive variable. One can apply the same opti-
mization to our urec(x : τ. e) in the case that τ is pointed. Our system, however, permits examples like the
one in Figure 1, which Leroy’s extension does not.

Crary, Harper and Puri [4] give a foundational account of recursive modules that models recursion via
a fixed-point at the module level. For the fixed-point semantics to make sense, they require that the body
of a fixed-point module is valuable (i.e., pure and terminating) in a context where the recursive variable is
non-valuable. Our judgment of evaluability from Section 2 can be seen as a generalization of valuability.
Similarly, Flatt and Felleisen’s proposal for units [11] divides the recursive module construct into a recursive
section, restricted to contain only valuable expressions, and an unrestricted initialization section evaluated
after the recursive knot is tied. Duggan and Sourelis [7, 8] study a mixin module extension to ML, which
allows function and datatype definitions to span module boundaries. Like Flatt and Felleisen, they confine
such extensible function definitions to the “mixin” section of a mixin module, separate from the effectful
initialization section.

There have also been several proposals based on Ancona and Zucca’s calculus CMS for purely functional
call-by-name mixin modules [2]. In one direction, recent work by Ancona et al. [1] extends CMS with com-
putational effects encapsulated by monads. They handle recursive monadic computations using a recursive
do construct based on Erkök and Launchbury’s [10]. In another direction, Hirschowitz and Leroy [15] transfer
CMS to a call-by-value setting. Their type system does perform a static analysis of mixin modules to ensure
well-founded recursive definitions, but it requires the strictness dependencies between module components
to be written explicitly in the interfaces of modules. It is not clear how interfaces containing dependency
graphs will be incorporated into a practical programming language.

7 Conclusion and Future Work

We have proposed a novel type system for general recursion over effectful expressions, to serve as the foun-
dation of a recursive module extension to ML. The presence of effects seems to necessitate a backpatching
semantics for recursion based on Scheme’s. Our type system ensures statically that recursion is well-founded,
which avoids some unnecessary run-time costs associated with backpatching. To ensure well-founded recur-
sion in the presence of multiple recursive variables and separate compilation, we track the usage of individual
recursive variables, represented statically by names. Our core system is easily extended to account for the
computational effects of mutable state and continuations. In addition, we extend our language with a form
of memoized computation, which allows us to write arbitrary recursive definitions at the expense of an
additional run-time cost.

The explicitly-typed version of our type system admits a straightforward typechecking algorithm, and
could serve as a target language for compiling a recursive extension to ML. An important direction for future
work is to determine the extent to which names should be available to the ML programmer. This will depend
heavily on the degree to which types involving names can be inferred when typechecking recursive modules.

Another key direction for future work is to scale our approach to the module level. In addition to the
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issues involving recursion at the level of types [6], there is the question of how names and recursion interact
with other module-level features such as type generativity. We are currently investigating this question by
combining the language presented here with our previous work on a type system for higher-order modules [5].
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A Meta-theory and Proof of Type Safety

Definition A.1 (Context Inclusion)
A context Γ is included in another context Γ′, denoted Γ ⊆ Γ′, if Γ′ contains all the bindings in Γ (and
possibly others).

Proposition A.2 (Type Equivalence is an Equivalence Relation)
Type equivalence modulo S is an equivalence relation on well-formed types.

Proof: Straightforward. �

Proposition A.3 (Exchange)
If Γ ` J , then for any well-formed permutation Γ′ of Γ, we have Γ′ ` J .

Proof: Straightforward. �

Proposition A.4 (Weakening)
Suppose Γ ⊆ Γ′ and S ⊆ S′.

1. If Γ ` e : τ [S], then Γ′ ` e : τ [S′].

2. If Γ ` τ1 ≡S τ2, then Γ′ ` τ1 ≡S′ τ2.
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3. If Γ ` C : τ cont [S], then Γ′ ` C : τ cont [S′].

4. If Γ ` F : τ1 ⇒ τ2 [S], then Γ′ ` F : τ1 ⇒ τ2 [S′].

Proof: By straightforward induction on derivations. �

Lemma A.5 (Substitution)
1. If Γ, x : τ, Γ′ ` e′ : τ ′ [S] and Γ ` e : τ [T] and T ⊆ S, then Γ, Γ′ ` e′[e/x] : τ ′ [S].

2. If Γ, x : τ1, Γ
′ ` e : τ [S] and Γ ` τ1 ≡T τ2 and T ⊆ S, then Γ, x : τ2, Γ

′ ` e : τ [S].

3. If Γ, x : τ, Γ′ ` τ1 ≡S τ2, then Γ, Γ′ ` τ1 ≡S τ2.

4. If Γ, X, Γ′ ` e : τ [S] and T ⊆ dom(Γ), then Γ, Γ′[T/X] ` e[T/X] : τ [T/X] [S[T/X]].

5. If Γ, X, Γ′ ` τ1 ≡S τ2 and T ⊆ dom(Γ), then Γ, Γ′[T/X] ` τ1[T/X] ≡S[T/X] τ2[T/X].

Proof: By straightforward induction on the derivation of the first premise. The invariant T ⊆ S in Parts 1
and 2 is maintained inductively because the supports of the premises in every typing rule are supersets of
the support of the conclusion. �

Lemma A.6 (Inversion)
1. If Γ ` x : τ [S], then Γ ` τ ≡S Γ(x).

2. If Γ ` 〈〉 : τ [S], then τ = 1.

3. If Γ ` 〈e1, e2〉 : τ [S], then Γ ` e1 : τ1 [S] and Γ ` e2 : τ2 [S], where τ = τ1 × τ2.

4. If Γ ` πi(e) : τ [S], then Γ ` e : τ1 × τ2 [S], where τ = τi.

5. If Γ ` λx. e : τ [S], then Γ, x : τ1 ` e : τ2 [S ∪ T], where τ = τ1
T

−→ τ2.

6. If Γ ` e1(e2) : τ [S], then Γ ` e1 : σ → τ [S] and Γ ` e2 : σ [S].

7. If Γ ` λX. e : τ [S], then Γ, X ` e : σ [S], where τ = ∀X. σ.

8. If Γ ` e(T) : τ [S], then Γ ` e : ∀X. σ [S], where Γ ` τ ≡S σ[T/X].

9. If Γ ` box(e) : τ [S], then Γ ` e : σ [S], where Γ ` τ ≡S boxT(σ).

10. If Γ ` unbox(e) : τ [S], then Γ ` e : box(τ) [S].

11. If Γ ` rec(X . x : τ. e) : τ ′ [S], then Γ ` τ ≡S τ ′ and Γ, X . x : τ ` e : σ [S] and Γ, X ` σ ≡X τ .

12. If Γ ` ref(e) : τ [S], then Γ ` e : σ [S], where τ = ref(σ).

13. If Γ ` get(e) : τ [S], then Γ ` e : ref(τ) [S].

14. If Γ ` set(e1, e2) : τ [S], then Γ ` e1 : ref(σ) [S] and Γ ` e2 : σ [S] and τ = 1.

15. If Γ ` callcc(x. e) : τ [S], then Γ, x : cont(τ) ` e : τ [S].

16. If Γ ` throw(e1, e2) : τ [S], then Γ ` e1 : cont(σ) [S] and Γ ` e2 : σ [S].

17. If Γ ` delay(e) : τ [S], then Γ ` e : σ [S ∪ T], where τ = compT(σ).

18. If Γ ` force(e) : τ [S], then Γ ` e : comp(τ) [S].
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Proof: For each language construct, the bottom of the typing derivation consists of an instance of the
typing rule for that construct followed by a sequence of applications of type equivalence (Rule 12). This
latter sequence can always be reduced to one application of Rule 12 by transitivity of equivalence. Thus,
given any derivation of Γ ` e : τ [S], we know that there exists a derivation of Γ ` e : τ ′ [S], where the last
inference rule applied is the typing rule corresponding to e’s outermost construct, and where Γ ` τ ≡S τ ′.
The rest is completely straightforward, except for Parts 5 and 15, which use Part 2 of Substitution. �

Theorem A.7 (Preservation)
If Γ ` Ω [S] and Ω 7→ Ω′, then ∃Γ′, S′. Γ′ ` Ω′ [S′].

Proof: By cases on the second premise.

• Case: Rule 18.
〈e1, e2〉 not a value

(ω; C; 〈e1, e2〉) 7→ (ω; C ◦ 〈•, e2〉; e1)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` 〈e1, e2〉 : τ [S].

2. By Inversion, τ = τ1 × τ2, Γ ` e1 : τ1 [S] and Γ ` e2 : τ2 [S].

3. By Rule 37, Γ ` C ◦ 〈•, e2〉 : τ1 cont [S].

• Case: Rule 19.
(ω; C ◦ 〈•, e〉; v) 7→ (ω; C ◦ 〈v, •〉; e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ1 × τ2 cont [S], Γ ` e : τ2 [S] and Γ ` v : τ1 [S].

2. By Rule 38, Γ ` C ◦ 〈v, •〉 : τ2 cont [S].

• Case: Rule 20.
(ω; C ◦ 〈v1, •〉; v2) 7→ (ω; C; 〈v1, v2〉)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ1 × τ2 cont [S], Γ ` v1 : τ1 [S] and Γ ` v2 : τ2 [S].

2. By Rule 3, Γ ` 〈v1, v2〉 : τ1 × τ2 [S].

• Case: Rule 21.
(ω; C; πi(e)) 7→ (ω; C ◦ πi(•); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` πi(e) : τ [S].

2. By Inversion, Γ ` e : τ1 × τ2 [S], where τ = τi.

3. By Rule 39, Γ ` C ◦ πi(•) : τ1 × τ2 cont [S].

• Case: Rule 22.
(ω; C ◦ πi(•); 〈v1, v2〉) 7→ (ω; C; vi)

1. By well-formedness, Γ ` ω [S], Γ ` C : τi cont [S] and Γ ` 〈v1, v2〉 : τ1 × τ2 [S].

2. By Inversion, Γ ` vi : τi [S].

• Case: Rule 23.
(ω; C; e1(e2)) 7→ (ω; C ◦ •(e2); e1)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` e1(e2) : τ [S].

2. By Inversion, Γ ` e1 : σ → τ [S] and Γ ` e2 : σ [S].

3. By Rule 40, Γ ` C ◦ •(e2) : σ → τ cont [S].

• Case: Rule 24.
(ω; C ◦ •(e); v) 7→ (ω; C ◦ v(•); e)
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1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S], Γ ` e : σ [S] and Γ ` v : σ → τ [S].

2. By Rule 41, Γ ` C ◦ v(•) : σ cont [S].

• Case: Rule 25.
(ω; C ◦ (λx. e)(•); v) 7→ (ω; C; e[v/x])

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S], Γ ` λx. e : σ → τ [S] and Γ ` v : σ [S].

2. By Inversion, Γ, x : σ ` e : τ [S].

3. By Substitution, Γ ` e[v/x] : τ [S].

• Case: Rule 26.
(ω; C; e(T)) 7→ (ω; C ◦ •(T); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` e(T) : τ [S].

2. By Inversion, Γ ` e : ∀X. σ [S] and Γ ` τ ≡S σ[T/X].

3. By Rule 42, Γ ` C ◦ •(T) : ∀X. σ cont [S].

• Case: Rule 27.
(ω; C ◦ •(T); λX. e) 7→ (ω; C; e[T/X])

1. By well-formedness, Γ ` ω [S], Γ ` C : τ [T/X] cont [S] and Γ ` λX. e : ∀X. τ [S].

2. By Inversion, Γ, X ` e : τ [S], and X 6∈ S.

3. By Substitution, Γ ` e[T/X] : τ [T/X] [S].

• Case: Rule 28.
(ω; C; box(e)) 7→ (ω; C ◦ box(•); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` box(e) : τ [S].

2. By Inversion, Γ ` e : σ [S], where Γ ` τ ≡S boxT(σ).

3. By Rule 43, Γ ` C ◦ box(•) : σ cont [S].

• Case: Rule 29.
x 6∈ dom(ω)

(ω; C ◦ box(•); v) 7→ (ω[x 7→ v]; C; x)

1. By well-formedness, Γ ` ω [S], Γ ` C : boxT(τ) cont [S] and Γ ` v : τ [S].

2. By Weakening, Γ, x : boxT(τ) ` ω[x 7→ v] [S] and Γ, x : boxT(τ) ` C : boxT(τ) cont [S].

3. By Rule 1, Γ, x : boxT(τ) ` x : boxT(τ) [S].

• Case: Rule 30.
(ω; C; unbox(e)) 7→ (ω; C ◦ unbox(•); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` unbox(e) : τ [S].

2. By Inversion, Γ ` e : box(τ) [S].

3. By Rule 44, Γ ` C ◦ unbox(•) : box(τ) cont [S].

• Case: Rule 31.
ω(x) = v

(ω; C ◦ unbox(•); x) 7→ (ω; C; v)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` x : box(τ) [S].

2. By Inversion, x is either bound in Γ as x : boxT(σ) (where T ⊆ S) or as X . x : σ (where X ∈ S),
and in either case Γ ` σ ≡S τ .

3. By store well-formedness, Γ ` v : τ [S].
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• Case: Rule 32.
x 6∈ dom(ω)

(ω; C; rec(X . x : τ. e)) 7→ (ω[x 7→ ?]; C ◦ rec(X . x : τ. •); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ ′ cont [S], and Γ ` rec(X . x : τ. e) : τ ′ [S].

2. By Inversion, Γ ` τ ≡S τ ′ and Γ, X . x : τ ` e : σ [S] and Γ, X . x : τ ` σ ≡X τ .

3. By Weakening, Γ, X . x : τ ` C : τ cont [S].

4. By Rule 45, Γ, X . x : τ ` C ◦ rec(X . x : τ. •) : σ cont [S].

5. By Weakening and since X 6∈ S, we have Γ, X . x : τ ` ω[x 7→ ?] [S].

• Case: Rule 33.
(ω; C ◦ rec(X . x : τ. •); v) 7→ (ω[x := v]; C; v)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S], Γ ` v : σ [S], Γ ` σ ≡X τ and X . x : τ ∈ Γ.

2. By Weakening and Rule 12, Γ ` C : τ cont [S ∪ X] and Γ ` v : τ [S ∪ X].

3. Thus, also by Weakening, Γ ` ω[x := v] [S ∪ X].

• Case: Rule 53.
(ω; C; ref(e)) 7→ (ω; C ◦ ref(•); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` ref(e) : τ [S].

2. By Inversion, τ = ref(σ) and Γ ` e : σ [S].

3. By Rule 64, Γ ` C ◦ ref(•) : σ cont [S].

• Case: Rule 54.
x 6∈ dom(ω)

(ω; C ◦ ref(•); v) 7→ (ω[x 7→ v]; C; x)

1. By well-formedness, Γ ` ω [S], Γ ` C : ref(τ) cont [S] and Γ ` v : τ [S].

2. By Weakening, Γ, x : ref(τ) ` ω[x 7→ v] [S].

3. By Rule 1, Γ, x : ref(τ) ` x : ref(τ) [S].

• Case: Rule 55.
(ω; C; get(e)) 7→ (ω; C ◦ get(•); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` get(e) : τ [S].

2. By Inversion, Γ ` e : ref(τ) [S].

3. By Rule 65, Γ ` C ◦ get(•) : ref(τ) cont [S].

• Case: Rule 56.
ω(x) = v

(ω; C ◦ get(•); x) 7→ (ω; C; v)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` x : ref(τ) [S].

2. By Inversion, x : ref(σ) ∈ Γ, where Γ ` σ ≡S τ .

3. By store well-formedness, Γ ` v : τ [S].

• Case: Rule 57.
(ω; C; set(e1, e2)) 7→ (ω; C ◦ set(•, e2); e1)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` set(e1, e2) : τ [S].

2. By Inversion, τ = 1 and Γ ` e1 : ref(σ) [S] and Γ ` e2 : σ [S].

3. By Rule 66, Γ ` C ◦ set(•, e2) : ref(σ) cont [S].
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• Case: Rule 58.
(ω; C ◦ set(•, e); v) 7→ (ω; C ◦ set(v, •); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : 1 cont [S], Γ ` e : τ [] and Γ ` v : ref(τ) [S].

2. By Rule 67, Γ ` C ◦ set(v, •) : τ cont [S].

• Case: Rule 59.
(ω; C ◦ set(x, •); v) 7→ (ω[x := v]; C; 〈〉)

1. By well-formedness, Γ ` ω [S], Γ ` C : 1 cont [S], Γ ` x : ref(τ) [S] and Γ ` v : τ [S].

2. By Inversion, x : ref(σ) ∈ Γ, where Γ ` σ ≡S τ .

3. Thus, Γ ` v : σ [S] and Γ ` ω[x := v] [S].

4. By Rule 2, Γ ` 〈〉 : 1 [S].

• Case: Rule 60.
x 6∈ dom(ω)

(ω; C; callcc(x. e)) 7→ (ω[x 7→C]; C; e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ ′ cont [S] and Γ ` callcc(x. e) : τ ′ [S].

2. By Inversion, Γ ` τ ≡S τ ′ and Γ, x : cont(τ) ` e : τ [S].

3. By Weakening, Γ, x : cont(τ) ` C : τ cont [S] and Γ, x : cont(τ) ` ω[x 7→C] [S].

• Case: Rule 61.
(ω; C; throw(e1, e2)) 7→ (ω; C ◦ throw(•, e2); e1)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` throw(e1, e2) : τ [].

2. By Inversion, Γ ` e1 : cont(σ) [S] and Γ ` e2 : σ [S].

3. By Rule 68, Γ ` C ◦ throw(•, e2) : cont(σ) cont [S].

• Case: Rule 62.
(ω; C ◦ throw(•, e); v) 7→ (ω; C ◦ throw(v, •); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S], Γ ` e : σ [S] and Γ ` v : cont(σ) [S].

2. By Rule 69, Γ ` C ◦ throw(v, •) : σ cont [S].

• Case: Rule 63.
ω(x) = Cx

(ω; C ◦ throw(x, •); v) 7→ (ω; Cx; v)

1. By well-formedness, Γ ` ω [S] and Γ ` x : cont(τ) [S] and Γ ` v : τ [S].

2. By Inversion, x : cont(σ) ∈ Γ, where Γ ` σ ≡S τ .

3. Thus, Γ ` Cx : τ cont [S].

• Case: Rule 73.
x 6∈ dom(ω)

(ω; C; delay(e)) 7→ (ω[x 7→ e]; C; x)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` delay(e) : τ [S].

2. By Inversion, τ = compT(σ) and Γ ` e : σ [S ∪ T].

3. By Weakening, Γ, x : τ ` ω[x 7→ e] [S].

4. By Rule 1, Γ, x : τ ` x : τ [S].

• Case: Rule 74.
(ω; C; force(e)) 7→ (ω; C ◦ force(•); e)
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1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` force(e) : τ [S].

2. By Inversion, Γ ` e : comp(τ) [S].

3. By Rule 78, Γ ` C ◦ force(•) : comp(τ) cont [S].

• Case: Rule 75.
ω(x) = e

(ω; C ◦ force(•); x) 7→ (ω[x := ?]; C ◦ memo(x, •); e)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` x : comp(τ) [S].

2. By Rule 79, Γ ` C ◦ memo(x, •) : τ cont [S].

3. By Inversion, x : compT(σ) ∈ Γ, where T ⊆ S and Γ ` σ ≡S τ .

4. By store well-formedness, Γ ` e : τ [S] and Γ ` ω[x := ?] [S].

• Case: Rule 76.
(ω; C ◦ memo(x, •); v) 7→ (ω[x := v]; C; v)

1. By well-formedness, Γ ` ω [S], Γ ` C : τ cont [S], Γ ` x : comp(τ) [S] and Γ ` v : τ [S].

2. By Inversion, x : compT(σ) ∈ Γ, where T ⊆ S and Γ ` σ ≡S τ .

3. Thus, Γ ` v : σ [S], and so Γ ` ω[x := v] [S].

• Case: Rule 77.
ω(x) = ?

(ω; C ◦ force(•); x) 7→ Error

Trivial, since Error is well-formed.

�

Lemma A.8 (Canonical Forms)
Suppose that Γ is runtime and Γ ` v : τ [S].

1. If τ = 1, then v is of the form 〈〉.

2. If τ = τ1 × τ2, then v is of the form 〈v1, v2〉.

3. If τ = τ1
T

−→ τ2, then v is of the form λx. e.

4. If τ = ∀X. σ, then v is of the form λX. e.

5. If τ is anything else, v is a variable x.

Proof: Straightforward. �

Theorem A.9 (Progress)
If Γ ` Ω [S], then either Ω is terminal or there exists Ω′ such that Ω 7→ Ω′.

Proof: If Ω is terminal, then we are done. So assume that Ω is not terminal. It must have the form
(ω; C; e), where Γ ` ω [S], Γ ` C : τ cont [S] and Γ ` e : τ [S].

If e is not a value, then we can make progress by one of Rules 18, 21, 23, 26, 28, 30, 32, 53, 55, 57, 60,
61, 73 or 74.

So suppose that e is a value. Since Ω is non-terminal, C 6= •, so C is of the form C ′ ◦ F . If F is of
the form 〈•, e′〉, 〈v, •〉, •(e′), box(•), rec(X : τ. •), ref(•), set(•, e′), throw(•, e′) or memo(m, •), then we can
make progress by Rules 19, 20, 24, 29, 33, 54, 58, 62 or 76, respectively. For the remaining cases, we make
straightforward use of Canonical Forms:
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• If F = πi(•), then τ = τ1 × τ2, so e is of the form 〈v1, v2〉, and we can make progress by Rule 22.

• If F = v(•), then Γ ` v : σ → τ [S], so v must be of the form λx. e′, and we can make progress by
Rule 25.

• If F = •(T), then τ = ∀X. σ, so e must be of the form λX. e′, and we can make progress by Rule 27.

• If F = unbox(•), then τ = box(σ), so e must be a variable and we can make progress by Rule 31.

• If F = get(•), then τ = ref(σ), so e must be a variable and we can make progress by Rule 56.

• If F = set(v, •), then Γ ` v : ref(σ) [S], so v must be a variable and we can make progress by Rule 59.

• If F = throw(v, •), then Γ ` v : cont(σ) [S], so v must be a variable and we can make progress by
Rule 63.

• If F = force(•), then τ = comp(σ), so e must be a variable and we can make progress by either Rule 75
or 77.

�

B Typechecking the Explicitly-Typed Calculus

Here we give a typechecking algorithm for the explicitly-typed version of our language, which is the same as
the implicitly-typed version save the following modifications to Rules 5, 9, 51, 52 and 71:

Γ, x : σ ` e : τ [S ∪ T]

Γ ` λTx : σ. e : σ
T

−→ τ [S]
(5) Γ ` e : τ [S]

Γ ` boxT(e) : boxT(τ) [S]
(9)

Γ, x : cont(τ) ` e : τ [S]

Γ ` callccτ (x. e) : τ [S]
(51)

Γ ` e1 : cont(σ) [S] Γ ` e2 : σ [S]

Γ ` throwτ (e1, e2) : τ [S]
(52)

Γ ` e : τ [S ∪ T]

Γ ` delayT(e) : compT(τ) [S]
(71)

Our typechecking algorithm takes as input a context Γ, an explicitly-typed term e and a support S, and
synthesizes the unique type of e under the given support. To check, then, whether e has a particular type τ ,
we synthesize e’s unique type σ and check whether σ is equivalent to τ modulo S. The synthesis algorithm
is shown in Figure 14. As usual, we make implicit assumptions about the well-formedness of the judgments
defined in Figure 14, e.g., that all free names to the right of the turnstile are bound in the context.

Decidability of the explicitly-typed system follows from the fact that the synthesis algorithm is syntax-
directed, sound and complete. To prove soundness of the synthesis algorithm, we need the following technical
lemma. Alternatively, we could modify the second premise of our typing rule for recursive terms (Rule 11)
to be Γ ` σ ≡S∪X τ , in order to match the second premise of the corresponding synthesis rule. The lemma
just shows that that modified version of the typing rule is already admissible.

Lemma B.1 (Division of Support)
If S = S1 ∪ S2 and Γ ` τ1 ≡S τ2, then there exists a type τ such that Γ ` τ ≡S1

τ1 and Γ ` τ ≡S2
τ2.

Proof: By induction on derivations. The only interesting cases are when τ1 and τ2 carry a support, e.g.,
when τi is of the form boxTi

(σi). In this case, define T := (T1 − S1) ∪ (T2 − S2).
First we need to show that T∪Si = Ti ∪Si. We will show this for i = 1, the proof for i = 2 is completely

symmetric. We are given that T2 ∪ (S1 ∪ S2) = T1 ∪ (S1 ∪ S2). Thus, T2 ⊆ T1 ∪ S1 ∪ S2. Subtracting S2

from both sides, T2 − S2 ⊆ (T1 ∪ S1 ∪ S2) − S2 ⊆ T1 ∪ S1. Now, expanding out the definition of T, we have
that T ∪ S1 = (T1 ∪ S1) ∪ (T2 − S2). Then since T2 − S2 ⊆ T1 ∪ S1, the right-hand side is equal to T1 ∪ S1.

We are given also that Γ ` σ1 ≡S∪T1
σ2. Expanding out T it is clear that S∪T = S∪T1 ∪T2 = S∪T1 =

S∪T2. Now define S′
i := Si∪T. Clearly, S′

1∪S′
2 = S∪T. By induction, there exists σ such that Γ ` σ ≡S′

i
σi.

Define τ := boxT(σ). By Rule 17, Γ ` τ ≡Si
boxTi

(σi). �
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Type checking: Γ ` e ⇐ τ [S]

Γ ` e ⇒ σ [S] Γ ` σ ≡S τ

Γ ` e ⇐ τ [S]

Type synthesis: Γ ` e ⇒ τ [S]

x ∈ dom(Γ)

Γ ` x ⇒ Γ(x) [S] Γ ` 〈〉 ⇒ 1 [S]

Γ ` e1 ⇒ τ1 [S] Γ ` e2 ⇒ τ2 [S]

Γ ` 〈e1, e2〉 ⇒ τ1 × τ2 [S]

Γ ` e ⇒ τ1 × τ2 [S]

Γ ` πi(e) ⇒ τi [S]

Γ, x : σ ` e ⇒ τ [S ∪ T]

Γ ` λTx : σ. e ⇒ σ
T

−→ τ [S]

Γ ` f ⇒ σ
T

−→ τ [S] Γ ` e ⇐ σ [S] T ⊆ S

Γ ` f(e) ⇒ τ [S]

Γ, X ` e ⇒ τ [S]

Γ ` λX. e ⇒ ∀X. τ [S]

Γ ` f ⇒ ∀X. τ [S]

Γ ` f(T) ⇒ τ [T/X] [S]

Γ ` e ⇒ τ [S]

Γ ` boxT(e) ⇒ boxT(τ) [S]

Γ ` e ⇒ boxT(τ) [S] T ⊆ S

Γ ` unbox(e) ⇒ τ [S]

Γ, X, x : boxX(τ) ` e ⇒ σ [S] Γ, X ` σ ≡S∪X τ

Γ ` rec(X . x : τ. e) ⇒ τ [S]

Γ ` e ⇒ τ [S]

Γ ` ref(e) ⇒ ref(τ) [S]

Γ ` e ⇒ ref(τ) [S]

Γ ` get(e) ⇒ τ [S]

Γ ` e1 ⇒ ref(τ) [S] Γ ` e2 ⇐ τ [S]

Γ ` set(e1, e2) ⇒ 1 [S]

Γ, x : cont(τ) ` e ⇐ τ [S]

Γ ` callccτ (x. e) ⇒ τ [S]

Γ ` e1 ⇒ cont(σ) [S] Γ ` e2 ⇐ σ [S]

Γ ` throwτ (e1, e2) ⇒ τ [S]

Γ ` e ⇒ τ [S ∪ T]

Γ ` delayT(e) ⇒ compT(τ) [S]

Γ ` e ⇒ compT(τ) [S] T ⊆ S

Γ ` force(e) ⇒ τ [S]

Figure 14: Typechecking Algorithm

Theorem B.2 (Soundness of Algorithm)
If Γ ` e ⇒ τ [S] or Γ ` e ⇐ τ [S], then Γ ` e : τ [S].

Proof: By straightforward induction on the algorithm. The only interesting case is the synthesis rule for
recursive terms. For that case, we know by induction that Γ, X, x : boxX(τ) ` e : σ [S]. By Lemma B.1, since
Γ, X ` σ ≡S∪X τ , we know that there exists σ′ such that Γ, X ` σ ≡S σ′ and Γ, X ` σ′ ≡X τ . By Rule 12,
Γ, X, x : boxX(τ) ` e : σ′ [S], so the desired result follows by Rule 11. �

Theorem B.3 (Completeness of Algorithm)
If Γ ` e : τ [S], then Γ ` e ⇐ τ [S].

Proof: By straightforward induction on derivations. Again, the only interesting case is the typing rule for
recursive terms. By induction, Γ, X, x : boxX(τ) ` e ⇒ σ′ [S] and Γ ` σ′ ≡S σ. Since the second premise of
the typing rule tells us that Γ ` σ ≡X τ , we have by Weakening that Γ ` σ′ ≡S∪X τ . Thus, by definition of
Synthesis, Γ ` rec(X . x : τ. e) ⇒ τ [S]. (It is critical here that the second premise of the synthesis rule for
recursive terms use the modulus S ∪ X instead of just X.) �
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