Selected Papers from the
Proceedings of the Fourth
Student Symposium on Computer Systems
(SOCS-4)
Theodore WongHEditor)

October 6, 2001
CMU-CS-01-164

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

SOCS provides a forum for Carnegie Mellon computer systems students to present recent work and new ideas to
their peers. We present selected papers from the Proceedings of SOCS-4, covering research in compilers, scheduling,
networking, and security. We also present selected works-in-progress.

Copyright(©2001 Carnegie Mellon University

Keywords: compilers, distributed systems, networking, security, operating systems

Executive Committee

General Chair Theodore Wong
Program Chair Mihai Budiu

Program Committee

Pedro Vaz Artigas, CS
Angela Demke Brown, CS
Yang-hua Chu, CS
Jun Gao, CS
Andrew Klosterman, ECE
Ben Levine, ECE
Julio Lopez, ECE
William Nace, ECE
David Petrou, ECE
Sanjay Rao, CS
Steve Schlosser, ECE
Craig Soules, ECE
Mengzhi Wang, CS

External Reviewers

Chris Colohan, CS
Kevin Watkins, CS

Special Thanks

Greg Ganger
Karen Lindenfelser

Message from the General Chair

SOCS continues to build on the success of the previous years. Now in its fourth year, SOCS
has again attracted considerable interest from students wishing to showcase their ongoing research.
The community looks forward to seeing their work appear in external conferences.

I would like to take this opportunity to acknowledge the many people who helped to make SOCS
possible. | would like to thank Mihai Budiu, the program committee, and the external reviewers
for their efforts in reviewing the submitted papers and putting together an interesting program. |
also thank Jason Flinn and Jiri Schindler (the SOCS-3 general and program chairs respectively) for
passing on their experiences. And of course, | would like to thank Greg Ganger for his generous
financial sponsorship of SOCS.

Theodore Wong
General Chair

Message from the Program Chair

With great pleasure | welcome you to the fourth annual edition of CMU’s Symposium on Com-
puter Systems, SOCS. SOCS is a conference run by students: students submit the papers, they
compose the program committee, they are the reviewers, they are in charge of publicity, printing
and all arrangements. SOCS is thus both an occasion to prepare for “real-world” conferences from
all points of view, and a forum to present one’s research to the CMU community.

This year's SOCS had 12 paper submissions, and the committee had to work very hard to
make a selection. In the end, we have 8 full papers, grouped in three main categories: computer
architectures, compilers and scheduling and networking and security.

| want to express my gratitude to all the program committee members, who have very promptly
responded with the assigned tasks, making running this conference an easy endeavor. | also thank
warmly all the authors who have submitted: the conference is as good as the papers we receive,
and they have been outstanding.

The committee has agreed to reward the best of these papers with our “Best Paper Award”. This
year the award goes to Chris Gniady, for his pa@eeculative Sequential Consistency with Little
Custom Storagéhis advisor is Babak Falsafi.

| am looking forward to next year's SOCS.

Mihai Budiu
Program Chair

Table of Contents

Committees

Compilers and Scheduling

Application-Specific Hardware: Computing Without CPUs

MIRai BUiU . ..o e e e

A Transducer Sensitive Task Allocation Algorithm for Distributed Embedded Systems

WIHHAM NACE e e

Networking and Security

The Design of a Secure Location Service

Urs Hengartner. e e

Network Aware Data Transmission with Compression

NINGNING HU. ..o

Works-in-progress

Implementation of a Recursive Function as a Split-Phase Abstract Machine

SUra SUANIT. ..

Verifiable Secret Redistribution (Extended Abstract)

Theodore WONQ . ..o e e e

Application-Specific Hardware: Computing Without CPUs

Mihai Budiu
mihaiblcs.cmu.edu

Abstract

In this paper we proposc a new architecture for genceral-
purpose computing which combines a reconfigurable-
hardware substrate and compiler technology to gener-
ate Application-Specific Hardware (ASH). The novelty of
this architecture is that resources are not shared: each dif-
ferent static program instruction can have its own dedi-
cated hardware implementation. ASH enables the syn-
thesis of circuits with only local computation structures,
which promise to be fast, inexpensive and use very lit-
tle power. This paper also presents a scalable compiler
framework for ASH, which generates hardware from pro-
grams written in C and some evaluations of the resources
necessary for implementing realistic programs.

1 Introduction

For five decades the relentless pace of technology, ex-
pressed as Moore’s law, has supplied computer architects
with ample materials in the quest for high performance.
The abundance of resources has translated into increased
complexity'. This complexity has already become un-
manageable in several respects:

e The verification and testing cost escalates dramati-
cally with each new hardware generation.

e Manufacturing costs (both plant costs and non-
recurring engineering costs) have skyrocketed.

e Defect density control becomes very expensive as
the feature size shrinks; in the near future we will
be unable to manufacture large defect-free integrated
circuits.

e The dissipated power density (watts/mm?) of state-
of-the-art microprocessors has already reached val-
ues that make air-cooling infeasible [4].

e The clock frequency has increased to a value where
global signals across the entire chip are infeasible
(the propagation delay exceeds the clock cycle [1]).

e The number of exceptions which require manual
interventions generated by the CAD tools grows
quickly with design complexity [16].

'Tn this paper we will be mostly concerned with the complexity of
microprocessors.

e Today’s processors use extremely complicated hard-
ware structures to enable the exploitation of the
instruction-level parallelism (ILP) in large win-
dows; however, the sustained performance is rather
low [15].

In Section 2 we propose an alternative approach to im-
plement general-purpose computation, which consists of
synthesizing — at compile time — application-specific
hardware, on a reconfigurable-hardware substrate. We
argue that such hardware can be more efficient than a
general-purpose CPU, and can solve or alleviate all of
the above problems. We call this model ASH, from
Application-Specific Hardware.

We propose a way to synthesize directly custom,
application-specific dataflow machines in hardware. The
ASH machines have low overhead, as they implement the
whole application in reconfigurable hardware, and avoid
time-multiplexing hardware resources.

The main component of the ASH framework is CASH,
a Compiler for ASH, presented in Section 3. CASH spans
both the realm of traditional compilation and hardware
synthesis.

In Scction 4 we cvaluate the hardware resources needed
to implement realistic programs within the ASH model of
computation. Section 6 describes some implications of
the ASH architecture on computer system design.

2 Application-Specific Hardware

In this section we give an overview of the ASH model of
computation. The core of ASH is a reconfigurable fab-
ric; compilation subsumes the role of traditional software
compilation and hardware synthesis, translating high-
level language programs into hardware configurations.
Reconfigurable hardware devices are hardware devices
whose functionality can be changed dynamically (see [10]
for a survey). The most common type of device is a Field-
Programmable Gate Array and features a set of univer-
sal logic gates connected by a switched interconnection
network. The logic gates are implemented as look-up ta-
bles from small memories; by changing the contents of
each memory we change the function computed by each
gate. Configuration bits also control the switches on the
interconnection network; by choosing which switches arc

Program

Split-phase Abstract Machines

Local Placer—Router

e © o] [Tor 8] [T S

Global Placer—Router -32/5%t Linktime

Compile-time

Virtualization layer

Run-time
‘Reconfigurable hardware + RAM ‘

Figure 1: The ASH tool-flow.

open and which are closed we effectively connect the
logic gates to each other. Reconfigurable hardware thus
features the flexibility of general-purpose programmable
systems and computation speeds comparable to raw hard-
ware.

Figure 1 summarizes our framework. Programs writ-
ten in general-purpose high-level languages are the in-
put to the CASH compiler. After applying traditional
program-optimization techniques, CASH decomposes the
program into small fragments, called Split-phase Abstract
Machines, or SAMs.

Each SAM is optimized, synthesized, placed, and
routed independently. The placed SAMss that composc the
complete program are fed to a global placer and router?
which decides how to lay-out the machines and how to
connect them using an interconnection network. The re-
sulting “executable” is a configuration for the reconfig-
urable hardware. At run time the configuration is loaded
on the reconfigurable-hardware substrate and executed.
If the configuration is too large, a run-time hardware-
virtualization method may be used.

In this paper we only present the CASH component
from Figure 1.

2.1 Split-phase Abstract Machines

The Split-phase Abstract Machine (SAM) is the main
abstraction of our intermediate program representation.
The compiled program is partitioned into a collection of
SAMs, which communicate asynchronously with cach
other. Each SAM contains computation and possibly a
small local memory. The computation implemented in a

2The global placer can usc a defect map of the target chip to provide
fault-tolerance, by avoiding the defective regions.

SAM has predictable latency3; moreover, the SAM local
memory has predictable access times.

SAMs are inspired by the Threaded Abstract Machine
model [11]; like TAMs, whenever a SAM needs to ex-
ecute an operation that has unpredictable latency it uses
the inter-SAM communication network: remote memory
accesses, and control-flow transfers between SAMs are
transformed into messages routed dynamically on the net-
work. SAMs roughly approximate the procedurcs in a
high-level programming language (however, in our im-
plementation a procedure can be decomposed into several
SAMs).

During the program execution, at each instant a SAM
can be in one of three states:

e Inactive SAMs are not being executed and do not
have any live state. These SAMs do not need to
consume any power and, if hardware virtualization is
available, can be swapped out of the reconfigurable
hardware.

e One active SAM is actively switching and consum-
ing power and should be entirely swapped in; it is
analogous to the procedure on the top of the stack
(currently being executed) in a traditional model of
computation®.

o Passive SAMs are mostly quiescent: they store live
values, but are blocked waiting for the completion
of a “callee” SAM. They dissipate only static power
most of the time> and correspond roughly to the pro-
cedures in the current call chain, which have been
started in execution, but have not been completed.

2.2 An example

Figure 2 shows a simple C program and the equivalent
translation into three SAMs. This figure has been auto-
matically generated by an early version of our prototype
CASH compiler using the VCG graph layout tool [18] as
a back-cnd. This figure illustrates just onc possible imple-
mentation, and a rather suboptimal one.

The compiler creates three SAMs from this program:

SAM 1 implements the initialization of the variables i
and j with O. It receives as input the “program
counter” (PC), which indicates the caller SAM. The
shaded empty oval receives a control token which en-
ables the current SAM to start execution. The lightly
shaded rectangles with a sharp sign are output regis-
ters, containing data that is passed to SAM 2.

3SAM s can also invoke remote operations, which have unpredictable
latencics.

4Currently we only consider programs which have a single thread of
cxccution; a parallel model of exccution might have several active SAMs
at onc moment.

SThere may be some concurrent activity between the passive SAMs
and the active onc, because of “instructions” that can be cxccuted in
parallel with the “call”.

Legend

predicate enabling SAM 3
output register sent to SAM 2

int main(void) ir:(;:gll’;‘;m

int i, j=0; — - mux selector predicate
for (i=0; i<10; i++)
j+=1i; ""Start" predicate

return j;
input variable

loop register for variable j

O e e

multiplexor

© 0 oo o>

|#—v>2 | |#@v—>2| |#—:2 |

f

)
e

SAM 3

Figure 2: A simple C program and its equivalent SAM
implementation. The tokens are not explicitly represented
in this figure: conceptually each wire has an associated
token, indicating when the signal on the wire is valid.

SAM 2 implements most of the computation in the pro-
cedure. It contains two additions, one for i and one
for j, a comparison of i with 10, and two multi-

plexors (represented by the ? @ diamonds) that sclect
the values for i and j based on the flow of control:
either the initial value or the result from the incre-
ment operation. The multiplexors have two data in-
puts and two control inputs (dotted lines) each; the
shades correspond: when the dark dotted line is as-
serted, the dark input is selected. The boxes marked
with sharp signs # are registers holding the state, rep-
resented by the values of 1 and 7.

SAM 2 is executed as long as the loop condition is
true (i.e., i < 10). When the loop condition be-
comes false, control is transfered to the SAM 3.

SAM 3 executes just the return instruction. It receives

from SAM 2 the value of 7 and the PC and uses them
as arguments to the return “instruction”. Because the
return instruction has a side-effect, it has a third in-
put, a predicate, which indicates when the instruction
is safe to execute. Because this return is executed un-
conditionally, the predicate is fed directly from the
enabling token. This return instruction uses the PC
value to return the control to the SAM that had orig-
inally invoked SAM 1.

2.3 Benefits of the ASH Model

The ASH model has better scalability properties than tra-
ditional CPU architectures. For instance:

The verification and testing of a homogeneous re-
configurable fabric is much simpler. The program
is translated directly into hardware, so there’s no in-
terpretation layer (i.e., the CPU) which can contain
bugs. Morcover, we belicve that by building CASH
as a certifying compiler [23]%, we can completely
eliminate one complex layer needing verification and
testing (the processor).

The manufacturing of reconfigurable circuits reuses
the same masks for all circuits, reducing cost.

As shown by rescarch in the Teramac project [13],
reconfigurable hardware architectures can tolerate
manufacturing defects through software methods.
Only the active SAM is switching at any point, re-
quiring very little power.

The SAM implementation uses only local signals.
All inter-SAM communication is made using a
switched, pipelined interconnection network. There
is no need for global electrical signals.

CAD tools for reconfigurable hardware can be much
simpler than general VLSI tools.

Dynamic methods of extracting ILP from programs
(as implemented in today’s out-of-order processors)

SA certifying compiler generates not only an executable but also a
formal proof that the executable is equivalent with the input program.

C Program
'

Traditional compilation

!

Width analysis

|

Kernel selection

¢

Memory partitioning

'

Partitioning in SAMs

!

FSM synthesis

!

Code generation

|

Figure 3: The CASH compiler passes. The dotted line
indicates a component which is not implemented.

are hindered by limited issue windows: they can-
not exploit parallelism outside of a relatively small
window of instructions. Our compiler analyzes large
program fragments and can uncover substantially
more parallelism. We quantify the ILP we discover
in Section 4.

The main disadvantage of the ASH paradigm is the re-
quirement for substantial hardware resources. However,
this can be alleviated through use of virtualization, or
by hardware-software partitioning between a CPU and an
ASH fabric. We will quantify the resources necessary in
Section 4.

The interaction of the ASH model of computation with
the operating system and with multi-tasking is a subject
of future research.

3 CASH

In this section we describe CASH, our current implemen-
tation of the ASH Compiler. Our compiler infrastructure
is built around the SUTF 1.3 research compiler [35]. For
the moment, we do not use any of the parallelizing com-
ponents of SUIF. Figure 3 illustrates the main passes of
our compiler. Here are brief descriptions of each of them:

Traditional compilation: most standard compiler front-
end optimizations (e.g., dead-code elimination, copy
propagation, common subexpression elimination,

unreachable code removal) are beneficial in the con-
text of the ASH framework. We also use aggressive
procedure inlining.

Width analysis and hardware cost estimation: our
reconfigurable hardware target can implement
arbitrary-width arithmetic efficiently. We use the
BitValue [6] analysis algorithm, which can discover
narrow-width scalar operations in C programs. The
results presented in this paper do not make use of
BitValue, but we plan to incorporate them in future
work.

Kernels selection: when we target a system comprised
of a CPU and a reconfigurable system, this pass se-
lects program portions that are most likely to provide
benefits when executed on the reconfigurable fabric.
In the rest of this paper however, we assume that we
compile the whole program in reconfigurable hard-
ware, so we do not use any kernel selection algo-
rithm.

Memory partitioning: a varicty of tcchniques can be
employed to discover for each piece of code the
memory regions that it will access. Once this kind
of information is available, various techniques can
be used to co-locate the memory and the code ac-
cessing it. This part of the compiler is currently not
implemented: all memory accesses are made to an
external monolithic memory, like in CPU-based sys-
tems.

SAM selection: the compiled program is decomposed
into split-phase abstract machines. In order to ex-
tract a large amount of ILP we implement implement
each SAM from one hyperblock [21]. Hyperblocks
have been introduced in the context of predicated-
code machines, and comprise multiple program ba-
sic blocks. We discuss this phase in detail in Sec-
tion 3.1.

FSM synthesis: from each SAM we generate a finite-
state machine (FSM). The FSM has a combinational
portion, which computes the next state and a feed-
back portion, which implements the looping. The
I'SM state consists of the loop-carried variables.
We discuss this compilation phasc in dctail in Scc-
tion 3.2.

Code generation: the only back-ends we have imple-
mented so far are a graph-drawing back-end (which
was used to generate Figure 2) and a generator which
outputs C programs. These programs simulate the
execution of the SAMs and compute timing infor-
mation. In the future, we plan to adapt the back-end
to generate HDL descriptions of the SAMs.

3.1 SAM Implementation

In this section we present details about our implementa-
tion of the Split-phase Abstract Machines.

The main abstraction we use at the program level is the
hyperblock [21]. A hyperblock is a part of the program
control-flow graph (CFG) that has a single entry point
but possibly multiple exits. The hyperblock may contain
loops, but all the loops have to share the same loop entry
point, which is also the hyperblock entry point. In our cur-
rent implementation, each hyperblock becomes a SAM.

Hyperblocks have already been used for generating
reconfigurable-hardware implementations in [8, 27]. Our
method of hyperblock selection is completely general and
deals with unstructured flow of control. We cover each
procedure with disjoint hyperblocks, using a linear-time
algorithm, as follows:

o A depth-first traversal of the CFG is used to label the

back-edges;

e End-points of the back-edges are marked as hyper-

block entry points;

o A reverse depth-first traversal is used (o assign basic

blocks to hyperblocks, as follows:

e 2 basic block is in the same hyperblock as all
its predecessors;

o unless two predecessors are from different hy-
perblocks, in which case the block is itself a
hyperblock entry point.

There are several knobs that we can turn to tune the hy-
perblock selection. We can optimize the resulting circuit
for area, speed, or power. One degree of freedom is the
traversal order, which defines the back-edges and thus the
entry points. A second degree of freedom we have is to
add extra entry points, fragmenting large hyperblocksinto
several small ones. A third degree of freedom is the possi-
bility of duplicating the body of the basic blocks that have
multiple hyperblock predecessors and thus creating fewer
large hyperblocks (this last technique is used in [21]). We
have not explored any of these trade-offs. Our hyper-
block selection scheme generalizes all the other proposed
schemes’.

Some hyperblocks will contain loops. Because these
loops have exactly one entry point, which coincides with
the hyperblock entry point, they are well-structured and
the loop-induction variables are well-defined. We can
thus synthesize each hyperblock into a finite-state ma-
chine.

3.2 FSM Synthesis

We implement each finite-state machine as a dataflow ma-
chine [33]. In dataflow machines the computation is ex-

TOther schemes make usc of profiling information, which we could
casily accommodatc.

pressed as a graph of operations which are triggered by
the availability of data. Each data item is encapsulated
within a “token”, which indicates the functional units that
are supposed to process it; when all the inputs of a func-
tional unit are available, the unit consumes the tokens and
generates a new one.

In our implementation, the “tokens” are no longer ex-
plicitly represented: they become two 1-bit signals con-
necting the functional units (one bit is used to signal
data availability, the other to confirm data consumption).
There is no token store, token-matching logic or register
file. The main overhead of the interpreted dataflow ma-
chines is thus completely eliminated. Static scheduling
can eliminate most of the token synchronization.

The computation of the combinational portion of the
FSM is implemented speculatively in the style of pred-
icated static-single assignment [9] and predicated spec-
ulative execution [2]. To illustrate the implementation,
we use the example in Figure 4, a code snippet from the
g721 Mediabench [17] program.

3.3 Path Predicates

Each basic block in a hyperblock has an associated path
predicate, as described in [9]; the path predicate associ-
ated to block B is true if and only if block B is executed
during the current loop iteration. The predicates corre-
sponding to blocks are recursively defined:

Plentry) = True
P(S) = VpGPTed(s) (P(p) A B(pa 5))

where B(p, s) is true if block p branches to s. This should
be read as: “Block s is executed if and only if one of its
predecessors p is executed and p branches to s.” For the
example in Figure 4:

D

Pla) = True
B(a,b) = (fal < —8191)
B(aa C) = _LB(CI, b)
P(b) = P(a)A B(a,b)
P(e) = P(a)A—B(a,b)
Ble,d) = (fal>8191)
P(d) = P(c) ABc,d)
Ple) = P(c)Ar-B(cd)
B®,f) = True
P(f) = (PO AB®)V (P ABA,f))

V(P(e) A Be, f))

We next use a method equivalent to the instruction
promotion technique described in [21], which removes
predicates from some instructions or replaces them with
weaker predicates, enabling their speculative execution.
Interestingly enough, if the hyperblock code is in static-
single assignment form, we can prove that every instruc-

a [(fal < -8191)

b‘ a2p -= 100; ‘

\ c ‘(fal > 8191) ‘
if (fal < -8191)

5 fal

(A) (B)

a2p —= 100; /\
else if (fal > 8191)

a2p += OxFF; aZp += OxFF;‘ e‘ a2p += fal >> 5; ‘
else

a2p +=fal >> 5; \'

©

Figure 4: (A) A code fragment (B) Its control-flow graph (C) Its speculative implementation in hardware.

tion with no side-cffeets can be safely and completely pro-
moted to be executed unconditionally.

We will sketch a proof of this fact here. We can dis-
tinguish four types of instructions: (a) instructions with
side-effects (i.e. memory accesses and procedure calls),
(b) predicate computations, (¢) multiplexors and (d) all
other instructions.

The instructions of type (a) cannot be executed specu-
latively. We will argue below that instructions of type (b)
(i.e. the predicates) can be speculatively computed. It will
follow that the multiplexors (¢) will always make the cor-
rect choices, because they select based on the predicates.
It will follow that instructions of type (d) can always be
safely executed speculatively, as they have no side-effects
and their inputs are always correct.

We now prove that all instructions of type (b), which
compute predicate valucs, can be speculatively executed.
The key observation is that, although the predicates are
themselves speculatively computed, their value is always
correct. We will illustrate the proof using a simple exam-
ple.

Consider the CFG fragment in Figure 5. According to
formula 1, P(c) = (P(a) A B(a,c)) V (P(b) A B(b,¢)).
Let us assume that during an execution of the program,
basic block a is executed and it branches to ¢. This means
that block b is not executed; thus, the branch condition
B(b, ¢) may have an incorrect value (for instance, because
block b changes some values which influence the branch
computation). However, by using induction on the depth
of the block, we can assume that P(b) has the correct
value, False. Thus, the value of B(b,c¢) is irrelevant for
the computation of P(c).

The predicate computation is implemented in hard-
ware, using the same dataflow style. The path predicates
are used to guard the execution of instructions with side-
effects (memory writes, memory reads that can trigger
exceptions, procedure calls and returns). Predicates also
control the looping of the FSM; on exit from the current
SAM, the predicates also indicate which of the successor

J \

a b

\/\

c

Figure 5: Fragment of a control-flow graph.

SAMs should be executed.

This implementation of the program is essentially a
static single assignment representation (SSA) [12] of the
predicated program. The ¢ functions of the SSA form are
essentially multiplexors, selecting among the many def-
initions of a value that reach a join point in the control-
flow graph. Unlike other proposed SSA representations
for predicated code [9], we explicitly build the circuitry
to compute the ¢ functions, which become multiplexors
in hardware (see Figure 4(C)). The multiplexors are con-
trolled by the path predicates. We found that this ex-
plicit representation of the complete program is extremely
handy, cnabling a lot of classical compiler optimizations
(dead-code elimination, common-subexpression elimina-
tion, constant folding, etc.) to be carried practically in
linear time and using very simple and clean algorithms.

The predicates are implemented using formula 1, which
implies that their cost is small: each new predicate re-
quires just the logical disjunction of a set of values which
were computed previously. Each edge in the CFG con-
tributes one term to the predicate computation, so the im-
plementation of all the predicates together uses resources
linear in the size of the hyperblock.

3.4 Eager multiplexors

One problem of the predicated-execution architectures is
that the execution time on the speculated control-flow

for each basic block (b) in topological order
L = predecessors(b)
for cach variable (v) live on entry in b
create a multiplexor M with | L| inputs
I=0
for each block p € L
V =definer of v atexitof p
Minput(l)=V
M selector(I) = P(p) A B(p, b)
I=I+1
endfor
endfor
endfor

Figure 6: Algorithm for insertion of multiplexors in a pro-
gram.

paths may be unbalanced [3]. For instance, assume that
the subtraction takes much longer than the addition; then
the leftmost path in Figure 4(C) is the critical path, which
dominates the computation time irrespective of which op-
eration should be executed. We have a very simple solu-
tion to this problem, which consists of using eager, fully
decoded multiplexors.

Our multiplexor implementation uses fully-decoded
multiplexors, which have as many selector bits as there
are inputs. Each selector bit selects one of the inputs, as
shown by the dotted lines in Figure 4(C). These multiplex-
ors do not need the complicated encoding/decoding logic
for the selection signals and can be very cheaply imple-
mented in hardware, as a wired-or. The eager multiplexor
can generate its output as soon as one selector predicate is
“True” and the corresponding selected data item is valid®

3.5 Multiplexor placement

As we already noted, the placement of multiplexors cor-
responds to the placement of ¢ functions in SSA form.
However, our problem is simpler, because all the back
edges in a hyperblock go to the entry point and the rest of
the hyperblock can be treated as a feed-forward program
fragment. Our current algorithm is presented in Figure 6°.

We next run a multiplexor simplification pass, which
repeatedly uses the following two rules:

8Using cager muliiplexors might not be cnough 1o guarantee
minimal-time cxecution within a loop. If the speculated paths can be
proven statically to be unbalanced we can just avoid cxccuting the long
onc speculatively or we can usc a “resetl” signal to abort the computation
when it is known that its result is not nceded.

9For the placement of the multiplexors we plan to implement the
algorithm described in [32] which has a much lower complexity. The
generated circuit will be the same.

procedure merge(m, n)
/* Merge muxes m, n, where m is the k-th input of n */
remove n’s k-th input
forcach input ¢ of m
add ¢ as a new j-thinputto n
sel(n,7) = sel(n, k) A sel(m, 1)
endfor
end

Figure 7: Coalescing two chained multiplexors.

e If a multiplexor has multiple identical inputs, they
are merged into a single input and the predicate is set
to the logical “or” of the corresponding predicates

e A multiplexor with a single input is removed and the
input is connected directly to the output.

Note that the result of this algorithm is not identical to
Figure 4(C) (but it is equivalent). However, if we add a
third multiplexor simplification rule (see Figure 7), which
we have not yet implemented we obtain the same result.
This third rule transforms two chained multiplexors (one
being the unique output of the other) into a single multi-
plexor.

We have denoted by sel(m,4) the predicate corre-
sponding to the input ¢ of multiplexor m.

3.6 Tokens

Logically, each data signal has an associated “token” sig-
nal, which is used to indicate when the value signal is
valid (i.e., the computation that generates the value has
terminated). This technique is used in the asynchronous
circuit design of micropipelines [30]. The tokens can be
implemented as 1-bit wires connecting the producer and
consumers of a value; the tokens act as “enable” signals
for the consumers. When the computation is inside a loop
body, we need also an acknowledgement signal from the
consumer to the producer, to indicate consumption of the
data value; this indicates when the wires connecting the
producer and the consumer can be reused.

We expect that in synchronous hardware implementa-
tions most of the token signals can be optimized away by
statically scheduling the operations with known latency
(more precisely, we can use a single token for all opera-
tions executed during the same clock cycle, and we can
dispense with the acknowledgement altogether). Passing
tokens will remain necessary between producers which
have unpredictable latency (i.e., remote operations, like
memory reads and procedure calls) and their consumers.

Tokens arc used not only to signal that data valucs arc
ready, but also to preserve the original program order be-

tween instructions which have side effects. (Most of the
previous work on data-flow machines [24, 31, 14] could
dispense with this feature because it was handling func-
tional languages.) For instance, two store instructions
that have no data dependency between them cannot be re-
ordered if they may update the same memory location.

4 Resources Required for ASH Im-
plementations

In this Section we present a preliminary evaluation of
the required resources for the complete implementation
of programs in hardwarc. We analyzc a sct of programs
from the Mediabench [17] and SpecInt95 [28] benchmark
suites.

Resources: Table 1 displays the resources required for
the complete implementation of these programs in hard-
ware. We do not include in these numbers the standard
library or the operating system kernel. We disabled inlin-
ing for collecting these numbers. All the values are static
counts.

For some of the operations it is fairly easy to estimate
the required hardware resources; we listed these under the
heading “bits”, and the values indicate the approximate
number of bit-operations required to implement them. For
remote operations (memory access, call/return), the im-
plementation size can vary substantially, depending for
instance on the nature of the interconnection network. We
report for these just total counts.

The columns in Table 1 are:

LOC: lines of source code, including whitespace and
comments, before preprocessing

SAMs: number of SAMs generated
fp: floating-point operations
memory: load and store operations
call/ret: call and return operations

predicates: boolean operations computing predicates
(all of them are binary or unary, so each is one oper-
ation)

arithmetic: estimated number of operations necessary to
implement the integer arithmetic operations (con-
stant multipliers are strength-reduced to a few addi-
tions; non-constant multiplies and divisions are as-
sumed to use n2 bits, where n is the input width)

mux: number of bit operations in multiplexors (number
of inputs * input size)

loop_regs: number of bits in loop registers

Comments: The raw computation resources required
(the total of the “bits” columns) is below 2 million for all

T T T
1400 |- ops-inline + }

1200

b bt e o

1000

800

Operations

600

400

y,
200
e

e e i i
e

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Circuit number

Figure 8: Operations in each SAM, with and without pro-
cedure inlining. The data is for all the SAMs synthesized
from all our benchmarks. The SAMs are sorted on their
size and numbered in increasing order. On the x axis we
have the SAM number and on the y axis the total number
of “operations” per SAM. About 20 outliers above 1500
have been left out of the picture: the maximum size is
13100 without inlining and 14000 with inlining.

benchmarks exceptmesa, which is below 5 million. Even
by today’s standards, these are reasonably small (modern
CPU cores already use more than 30 million transistors
each, and state-of-the art reconfigurable fabrics already
provide roughly 1-million bit-operations). By discount-
ing the density disadvantage for the reconfigurable cir-
cuits, but extrapolating using Moore’s law, within the next
10 years we have enough resources to implement each of
these programs completely in hardware.

This data doesn’t include the savings that can be
achieved by implementing computations of custom sizes.
Research has shown [20, 6, 29] that static methods can
eliminate a lot of the manipulated bits (methods devel-
oped by our own research [6] indicate that 20% of the bit
computations in these benchmarks can be eliminated).

Notice that the resources taken by the predicate com-
putations are minor compared to the actual computation;
this suggests that large-granularity reconfigurable fabrics
are more suitable for ASH systems than today’s dominant
style of FPGA, which has 1-bit functional units.

SAM/hyperblock size: Figure 8 shows a distribution
of the SAM sizes, when measured in operations (this cor-
responds to the hyperblock size). If we use procedure in-
lining, we obtain more circuits, which tend to be larger.
90% of the SAMs use less than 200 operations.

Comments: Most SAMs are relatively small, which
will translate into reduced power consumption and good
locality for the intra-SAM signals.

ILP: In Figure 9 we plot the “average instruction-level

Units Bit-operations
Benchmark LOC SAMs fp memory call/ret | predicates arithmetic mux loop_regs
adpcm_e 302 8 0 19 9 51 8,128 3,014 646
adpem-d 302 8 0 19 9 51 6,144 3,014 646
g721 Qe 1613 43 0 177 138 483 42,883 9,032 1,766
g721.Q.d 1619 4] 0 180 137 486 42,837 8,804 1,635
gsm_e 6074 218 0 1,780 517 1,942 413,794 38,694 9,871
gsm_d 6070 214 0 1,768 513 1,936 413,014 38436 9,805
epic_e 2701 312 75 498 295 1,335 300,665 69,848 29,689
epic_d 2452 231 36 719 242 1,125 230,418 66,922 28,021
mpeg2_e 7605 366 197 2,724 877 3,275 537,906 85,504 23,436
mpeg2_d 9832 316 11 1,789 839 2,624 305,803 45,570 13,333
jpeg-e 26881 1,331 153 8,693 1,964 8,167 1,022,023 200,354 76,722
jpegd 26115 1,285 153 8,248 1,889 7,625 996,243 194,374 75,897
pegwit_e 6713 270 0 2,112 608 1,346 151,160 24,039 7,857
pegwit_d 6713 270 0 2,112 608 1,346 151,160 24,039 7,857
mesa 65806 3,165 | 6,269 247779 7,301 38,779 3,170,972 709,566 258,516
129.compress | 1934 71 4 268 97 285 37,056 7,452 2,804
099.g0 29246 1,778 0 9,610 2,966 19,350 1,309,148 367,116 104,987
130.1 7608 616 13 2,321 1,675 3,106 180,823 51,996 9,884
132.ijpeg 29265 1,427 163 8,556 2,321 8,141 1,101,735 202,652 78,630
134.perl 27072 1,406 48 14,348 4,997 34,363 1,377,612 467,864 99,015
147 .vortex 67210 1,433 4 24913 9,602 39,195 1,448,933 239,839 32,850

Table 1: Static resource consumption for each benchmark. Some resources are expressed in units, while other are

expressed in bit-operations.

parallelism” in each SAM. We obtain this value by di-
viding the number of operations in a SAM (excluding in-
puts, outputs and constants) by the longest path within the
SAM. The “average ILP” does not necessarily correspond
to the dynamic ILP; the two values would be identical if
all operations would execute with a latency of 1 clock cy-
cle.

Comments: There arc a few anomalous SAMs, which
have an ILP of O or lcss than 1; onc such SAM is SAM 1 in
Figure 2 which contains no computations, so has a 0 count
of useful operations. These SAMs can be eliminated by a
special constant-propagation pass which we have not im-
plemented yet.

We have isolated the ILP available just in the circuits
that contain at least one feedback loop. These correspond
directly to the program innermost loops, at least for the
case of structured flow of control'?.

Fortunately, the ILP for the SAMSs which contain loops
is quite high: when we use inlining, 90% of the loops have
an ILP above 2, about 50% have an ILP above 3, while
20% have an ILP above 5! In a sense (modulo the assump-
tion about the identical latency of all operations), this TLP
is the sustained TLP of these SAMs. These numbers en-

!0Note that outer loops in the program map to several SAMs, so a
SAM can be cxecuted within a loop even if it contains no looping inside.

20

T T
“ilp-inline™ +

n

+

"ilploops-inline" *
“ilploops-noinling” o

o]0 o IO o RO e O

BBRATICICTIK SHOK RKMK H—k—K

10

ILP

EUNY AN
‘ T

(| | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Circuit number

Tigure 9: Average ILP for each SAM, with and without
inlining, and considering all SAMs or just the SAMs with
loops. The data is for all the SAMs synthcesized from all
our benchmarks. The SAMs arc sorted according to their
ILP and numbered. The x axis is the SAM number. There
are a few outliers above 20 not shown here: 4 SAMs have
an ILP above 20, with a maximum of 41.55.

ablc us to belicve that the performance of this model of
computation can match or cven cxceed the performance

of CPU-based systems.

Notice that we are being exceedingly conservative in
scheduling the operations with side-effects: all mem-
ory operations and call/returns are enforced (using token-
passing) to be made in the original program order, even
if they are independent. We even impose a total order-
ing between memory reads! Once we remove this restric-
tion, the ILP will definitely grow further. Notice that we
have implemented common-subexpression and dead-code
elimination, so the ILP is not artificially inflated by sub-
optimal circuits.

5 Related Work

This work has two different lineages: research on inter-
mediate program representation and compilation for re-
configurable hardwarc architecturcs.

Scveral rescarchers have addressed the problem of
compiling high-level languages for reconfigurable and
non-traditional architectures: [5, 22, 19, 7, 27, 26]. To
our knowledge, our approach is unique in that it compiles
very complex applications to hardware and it doesn’t use
a fixed number of computational resources.

The output of our compileris a series of circuits. These
bear a striking resemblance to some forms of intermediate
representations of the program in other optimizing com-
pilers. Our circuits are closely related to static-single as-
signment [12], dependence flow graphs [25] and value-
dependence graphs [34], and, most closely, to gated-
single assignment [32].

However, our circuits explicitly use predication and the
notion of hyperblock; in that direction we are indebted
to compilation for predicated execution machines: [21]
and predicated static single assignment [9]. Unlike these
program representations, we explicitly build the code to
compute the predicates and we instantiate the ¢ functions
through the use of multiplexors.

Our circuits are closely related to dataflow machines
(see [33] for a survey), but our circuits are meant to
be implemented directly in hardware and not interpreted
on a dataflow machines using token-passing. The no-
tion of Split-phase Abstract Machine is derived from
the Threaded-Abstract Machine [11], a derivative of the
dataflow work.

6 Conclusions

In this paper we have presented a proposal for a new
model of computation, called Application-Specific Hard-
ware (ASH), which implements programs completely in
hardware, on top of a reconfigurable hardware platform.
Our preliminary evaluations enable us to believe that soon
we will have enough hardware resources to accommodate

complete realistic programs, and that the sustained per-
formance of this model will be comparable to processor-
based computations.

We have discussed the compilation technology which
can scalably translate large programs written in high-level
languages into hardware implementations. Our compila-
tion strategy transforms hyperblocks into circuits which
execute many operations speculatively, and thus expose a
substantial amount of instruction-level parallelism.

We have also outlined those features of the ASH model
of computation that promise to provide scalability to this
model: ASH implementations can easily and naturally
take advantage of the exponentially increasing amount of
hardware resources, avoiding many of the problems that
the increased complexity brings to standard CMOS-based
microprocessor design and manufacturing.

References

[1] V. Agarwal, H.S. Murukkathampoondi, S.W. Keckler, and
D.C. Burger. Clock Rate Versus IPC: The End of the Road
for Conventional Microarchitectures. In Proceedings of the
27th International Symposium on Computer Architecture,
June 2000.

[2] D. L. August, D. A. Connors, S. A. Mahlke, J. W. Sias,
K. M. Crozier, B. Cheng, P. R. Eaton, Q. B. Olaniran, and
W. W. Hwu. Integrated Predicated and Speculative Exe-
cution in the IMPACT EPIC Architecture. In Proceedings
of the 25th Annual International Symposium on Computer
Architecture, pages 227-237, June 1998.

[3] David L. August, Wen mei W. Hwu, and Scott A. Mahlke.
A Framework for Balancing Control Flow and Predication.
In Proceedings of the 30th International Symposium on
Microarchitecture, December 1997,

[4] Kaveh Azar. The History of Power Dissipation. Electron-
ics Cooling Magazine, 6 (1), 2000.

[5] Jonathan Babb, Martin Rinard, Csaba Andras Moritz, Wal-
ter Lee, Matthew Frank Rajeev Barua, and Saman Ama-
rasinghe. Parallelizing Applications into Silicon. Tn Pro-
ceedings of the Seventh Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 1999.

[6] Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen
Goldstein. BitValue Inference: Detecting and Exploit-
ing Narrow Bitwidth Computations. In Proceedings of the
2000 Europar Conference, volume 1900 of Lecture Notes
in Computer Science. Springer Verlag, 2000.

[7] Timothy J. Callahan and John Wawrzynek. Instruc-
tion Level Parallelism for Reconfigurable Computing.
In Hartenstein and Keevallik, editors, FPL’98, Field-
Programmable Logic and Applications, Sth International
Workshop, Tallinn, Estonia, volume 1482 of Lecture Notes
in Computer Science. Springer-Verlag, September 1998.

[8] Timothy J. Callahan and John Wawrzynek. Adapting Soft-
ware Pipelining for Reconfigurable Computing. In Pro-

10

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

ceedings International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (CASES)
2000, 2000.

L. Carter, E .Simon, B. Calder, L. Carter, and J. Ferrante.
Path Analysis and Renaming for Predicated Instruction
Scheduling. International Journal of Parallel Program-
ming, special issue, 28(6), 2000.

Katherine Compton and Scott Hauck. Configurable Com-
puting: A Survey of Systems and Software. Technical re-
port, Northwestern University, Dept. of ECE, 1999.

D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken. TAM — A Compiler Controlled Threaded Ab-
stract Machine. Journal of Parallel and Distributed Com-
puting, July 1993.

R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM
Transactions on Programming Languages and Systems,
13(4):451-490, 1991.

James R. Heath, Philip J. Kuekes, Gregory S. Snider, and
R. Stanley Williams. A Defect-Tolerant Computer Archi-
tecture: Opportunities for Nanotechnology. Science, 280,
1998.

Steven K. Heller. Efficient Lazy Data-Structures on a
Dataflow Machine. Technical Report MIT-L.CS-TR-438,
Massachusetts Institute of Technology, 1989.

J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approach, second edition. Morgan Kauf-
mann, 1996.

R. Ho, K. Mai, and M. Horowitz. The Futurc of Wirces.
Proceedings of the IEEE, 89(4):490-504, April 2001.

Chunho Lee, Miodrag Potkonjak, and William H.
Mangione-Smith. MediaBench: a tool for evaluating and
synthesizing multimedia and communications systems. [n
Micro-30, 30th annual ACM/IEEE international sympo-
sium on Microarchitecture, pages 330-335, 1997.

I. Lemke and G. Sander. Visualization of Compiler
Graphs. Technical Report Design report D 3.12.1-1,
USAAR-1025-visual, ESPRIT Project #5399 Compare,
Universitit des Saarlandes, 1993.

Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr,
Uday Kurkure, and Jon Stockwood. Hardware-Software
Co-Design of Embedded Reconfigurable Architectures. In
DAC 2000, 2000.

S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and
T. Sherwood. Bitwidth Sensitive Code Generation in a
Custom Embedded Accelerator Design System. In Pro-
ceedings of the Sth International Workshop on Software
and Compilers for Embedded Systems (SCOPES 2001), St.
Goar, Germany, March 2001.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann. Effective Compiler Support for Predi-
cated Execution Using the Hyperblock. In Proceedings of

the 25th International Symposium on Microarchitecture,
pages 45-54, Dec 1992.

[22]

(23]

[24]

[25]

[206]

[27]

(28]

[29]

[30]

[31]

[32]

[35]

11

K. Mai, T. Paaske, N. Jayascna, R. Ho, W. Dally, and
M. Horowitz. Smart Memories: A Modular Reconfig-
urable Architecture. In Proceeding of the International
Conference on Computer Architecture 2000, June 2000.

George C. Necula. Translation validation for an optimiz-
ing compiler. In Proceedings of the 2000 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI00), 2000.

Gregory Michael Papadopoulos. Implementation of a
General Purpose Dataflow Multiprocessor. Technical Re-
port MIT/LLCS/TR-432, Laboratory for Computer Science,
Massachusetts Institute of Technology, 1988.

Keshav Pingali, Micah Beck, Richard Johnson, Mayan
Moudgill, and Paul Stodghill. Dependence Flow Graphs:
An Algebraic Approach to Program Dependencies. In
SIGPLAN, editor, In Principles of Programming Lan-
guages, volume Volume 18, 1991.

Rahul Razdan. PRISC: Programmable reduced instruction
set computers. PhD thesis, Harvard University, May 1994.

K. Sankaralingam, R. Nagarajan, D.C. Burger, and S.W.
Keckler. A Technology-Scalable Architecture for Fast
Clocks and High ILP. In 5th Workshop on the Interaction
of Compilers and Computer Architecture, January 2001.

Standard Performance Evaluation Corp. SPEC CPU95
Benchmark Suite, 1995.

Mark Stephenson, Jonathan Babb, and Saman Amaras-
inghe. Bitwidth Analysis with Application to Silicon Com-
pilation. In Proceedings of the ACM SIGPLAN '00 Con-
ference on Programming Language Design and Implemen-
tation, 2000.

Ivan Sutherland. Micropipelines: Turing award lecture.
Communications of the ACM, 32 (6)(720-738), June 1989.

Kenneth R. Traub. A Compiler for the MIT Tagged-Token
Dataflow Architecture. Technical Report MIT-LCS-TR-
370, MIT, August 1986.

Peng Tu and David Padua. Efficient Building and Plac-
ing of Gating Functions. In Proceedings of the Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), pages 47 — 55, 1995.

Arthur H. Veen. Dataflow Machine Architecture. ACM
Computing Surveys, 18 (4):365-396, 1986.

D. Weise, R. F. Crew, M. Ernst, and B Steensgaard.
Value Dependence Graphs: Representation Without Tax-
ation. In Proceedings of the Twentyfirst Annual ACM
SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 297-310, January, 1994.

R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. An-
derson, S. Tjiang, S.-W. Liao, C.-W. Tseng, M. Hall,
M. Lam, and J. Hennessy. SUIF: An Infrastructure for
Research on Parallelizing and Optimizing Compilers. In
ACM SIGPLAN Notices, volume 29, pages 31-37, Decem-
ber 1994,

A Transducer Sensitive Task Allocation Algorithm for
Distributed Embedded Systems

William Nace
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15217

wnace@cmu.edu

ABSTRACT

Distributed embedded systems impose an additional con-
straint upon the well known problem of task allocation. Be-
cause such systems interact with the physical world, sen-
sor/actuator device interface software must be allocated to
particular computing nodes based on the location of hard-
ware interfaces. We have been able to exploit this constraint
by creating an algorithm to pre-allocate tasks based on in-
terface locations as a prelude to executing generalized task
allocation algorithms. This paper describes an exploration
of bin packing heuristics for this pre-allocation phase. A
strategy based on packing tasks near interfaces first gives
good packing quality and an overall task allocation speedup
factor of 2.7 compared to previous approaches.

1. INTRODUCTION

Embedded systems, much like most other computing sys-
tems, are increasingly complex. In many systems, the com-
plexity has been partitioned physically, resulting in highly
distributed embedded systems. For instance, Modern auto-
mobiles consist of several networks and tens to hundreds of
microcontrollers. Similar counts are commonplace in other
transportation systems, factory automation, telecommuni-
cation and defense systems. The Robust Self-customizing
Embedded Systems (RoSES) project is examining mech-
anisms to provide automatic graceful degradation to dis-
tributed embedded systems [11]. Our concept of operations
involves the reconfiguration of fine-grained software com-
ponents to the available hardware. Whenever a fault is de-
tected, a reconfiguration manager will determine what hard-
ware is still functioning, select mobile software components
from a large library in order to maximize the functionality
of the remaining system, and load the selected components
onto the hardware. In order to determine the final loca-
tion of the mobile components, the reconfiguration manager
must execute a task allocation algorithm.

12

The task allocation algorithm to be used is a bit different
from previously explored algorithms. In this case, the hard-
ware is fixed and heterogeneous. Most other allocation algo-
rithms come from the field of hardware/software co-design,
where the hardware specification is part of the output of
the problem, and is thus not fixed. The optimization sought
in this case is usually a cost measure — silicon area, for
instance. Parallel processing allocation algorithms also de-
termine the mapping between software tasks and the ho-
mogeneous hardware processors that will execute the tasks.
The goal of such algorithms is usually to minimize the sched-
ule length of execution of the tasks. In contrast, distributed
embedded systems are most frequently composed of many
different microcontroller types, each with different amounts
of compute resources, and very limited network bandwidth.

In addition to the minor differences caused by such fixed,
heterogeneous hardware, the allocation desired by RoSES
is constrained by an additional factor, unlike classical co-
design or parallel processing realms. The software compo-
nents of a distributed embedded system are managing and
interacting with the sensors and actuators of the system.
Those hardware components are not general — the fuel-air
sensor in the auntomobile is located in a particular place,
hooked to a particular microcontroller. It does no good for
the allocation algorithm to think of moving the fuel- air sen-
sor’s driver software to any other microcontroller — it must
be co-located with the sensor. Likewise, any software that
interfaces directly to any hardware component is fixed — it
cannot be allocated elsewhere.

The algorithm described herein exploits the fixed nature of
hardware interface software components by examining the
other software components (tasks) that it might call or be
called by. These neighboring tasks can often be allocated
locally and thus save any network communication. The pro-
cess continues, allocating neighboring tasks in an attempt
to minimize network usage. The remainder of this paper
cxamines the details of how to choose the tasks to allocate,
how many neighbors to examine and what to do when the
processing elements with the transducers are filled. Section
2 takes a necessarily cursory look at the large body of related
knowledge. Section 3 defines our system model. Section 4
discusses our core algorithm. Section 5 examines alternate
policy choices. Results are summarized in Section 6. Fi-
nally, we present our conclusions and discuss future work in
Section 7.

2. RELATED WORK

Task allocation is related to the well-known bin packing
problem. In even a two-processor form, it is NP-complete
[5]. Because of the applicability to OS scheduling on multi-
processor systems, a great body of heuristic algorithms and
analyses exists [8, 16, 14, 13, 2, 3, 6, 4]. See [9] for an excel-
lent bibliography of such efforts. The two basic approaches
to solving bin packing problems are list processing, where
the objects are sorted and placed in the bins according to
their order, and guided search, such as simulated annealing,
where an initial solution is incrementally improved. The
algorithm presented in this paper is a list processing algo-
rithm.

In a multi-processor scheduling algorithm, the metric being
optimized is generally the length of the critical path sched-
ule. All parameter values used for the allocation are time
units for each task to process or for communication to be
transmitted. In contrast, a distributed embedded environ-
ment, the algorithmic interest is to ensure tasks can execute
together on the limited resources of the microcontrollers.

The development of the transducer sensitive allocation algo-
rithm is based to a large degree on the work of Beck[1]. Beck
used a design advisor (DA) algorithm to generate a system
hardware specification to meet the requirements of the soft-
ware. The DA algorithm bin-packed vector valued software
requirements (¢.e. CPU cycles, RAM, ROM, I/O channels)
into multi-dimensional bins representing the resources of the
microcontrollers. Whenever the packing algorithm failed,
the DA would expand the hardware specification. The basic
idea is similar to much hardware/software co-design research
— allocate software to the hardware to test if a partition-
ing decision is correct [7]. Prakash used linear programming
techniques for a similar problem — simultaneous specifica-
tion and allocation — though the application of such tech-
niques to problems with large numbers of tasks appears to
be computationally challenging[12].

The large size of this research area has spawned at least
two attempts for standardization of the system descriptions.
The use of standard task graphs facilitates benchmarking
and comparison of the allocation algorithms. Kwok, et. al.
collected 11 graphs from published papers (all of 7-18 ver-
tices in size), combined them with a large number of ran-
domly created graphs, and proceeded to benchmark the var-
ious scheduling algorithms[9]. Unfortunately, we have been
unable to obtain this graph set for use in this research. The
“Standard Task Graph” project has randomly generated
a set of large graphs (30-2700 vertices) for the same pur-
pose[15]. The standard graphs with communication costs,
which would be most useful for our research, are not yet
available.

3. SYSTEM MODEL

The software to be allocated is a collection of mobile com-
ponents called tasks. The tasks are joined in a task graph,
TG(V, E) whose vertices are the tasks and edges F; ; repre-
sent communication between task; and task;. Edges may
be directed, though doing so has no effect on this algo-
rithm. Each task;; is labeled with its processing require-
ments, p(i). Processing requirements are often a list of mul-
tiple independent values such as CPU cycles, RAM, or I/O

13

Ls(20) L7¢a0)

@ L8(15) L8(20) @
1 0(15)

At

L12(20)

Figure 1: A sample task graph

channels. Similarly, edges are labeled with communication
requirements c(%), usually representing bandwidth. Figure
1 shows a sample task graph. This particular graph, from
[4], is often referenced in the allocation and task scheduling
research field. p(7) and ¢(%) are shown in parenthesis.

Originating vertices (those with no inputs) represent sensor
components that are the source of data. Likewise, those
vertices with no outputs are actuators which act as a sink of
data. We use the term transducer to describe both sensors
and actuators. The task graph in Figure 1 has a single sensor
(S1) and actuator (Al).

The components of the task graph must be mapped to the
available hardware. The hardware is a collection of process-
ing elements (PEs) connected to a single network. Each PE
has a fixed resource list, in the same size and types as the
requirements of the tasks. Likewise, the network resources
match the requirements of the communication edges. Addi-
tionally, transducer tasks are pre- assigned to PEs, as their
physical hardware is not general to all PEs. This system
model uses a single network, though an extension to multi-
ple networks is also possible. The general approach for such
an extension would follow the techniques described in [10].

The major opportunity for optimization occurs by allocating
incident tasks to the same microcontroller. In such a case,
the communication requirement ¢(j) is fulfilled through lo-
cal intertask communication, and thus does not impact the
network at all. In contrast, if the tasks are allocated to dif-
ferent microcontrollers, ¢(j) must be borne by the network.

Because we are not overly concerned with schedule, but
rather resource usage, we make the assumption that the
program will cycle continually. This assumption is quite
reasonable for embedded systems where new samples are
periodically available at the sensors and serviced in a time-
triggered manner.

4, THE TRANS_FIRST ALGORITHM

The key insight behind the TRANS FIRST algorithm is to
exploit knowledge about transducer location. This bit of
knowledge is not available when allocation algorithms are
used for general purpose computing systems, as there is little
reason to require a particular task to execute on a particular
PE. But in a distributed embedded system, the transducer
tasks are managing special purpose hardware only available
at a particular PE, so they must be allocated to those PEs.

Table 1: Policy Choices

Task Choice PE Choice Tasl.< at | PE Fill
a Time Level
Largest (L) Id Order (1) | Yes (Y) | Full (F)
Smallest (S) Reverse Id (2) | No (N) | 80% (8)
Max B/W (B) Largest (L) 50% (5)
Min Neighbors (N) | Smallest (S)
Max Neighbors (M) | Random (R)
Random (R)

By working inwards from the exterior vertices of the task
graph, large sections, or subgraphs, of the graph may be
allocated so as to eliminate network communication among
tasks in the subgraph.

The basic algorithm is:

BEGIN {TRANS_FIRST}
Chose a PE: pe
REPEAT
Initialize set T with all tasks which:
Are incident to a task allocated on pe
Can fit on pe
Haven’t been allocated yet

(5.2)

(5.4)

REPEAT
Select task: k from T
Remove k from T
IF k can fit on pe THEN
Allocate k to pe
Add to T all tasks which:
Are incident to k
Can fit on pe
Are unallocated
Haven’t been rejected before
ELSE
Remember that k has been rejected
UNTIL (T is empty)
UNTIL (All PEs considered)
Allocate remaining tasks
END {TRANS_FIRST}

(5.1)

(5.4)

This algorithm is a variant of the list-processing heuristics
for solving bin packing problems. Its usefulness and perfor-
mance will depend upon the particular policies for making
decisions within the algorithm. We examine the alternate
policy choices available at the numbered lines in the corre-
sponding portion of the following section.

5. POLICY CHOICES

The TRANS_FIRST algorithm is affected by four basic pol-
icy choices, three of which were illustrated in the algorithm
pseudo-code of Section 4. The fourth (Task at a Time) re-
quires a slight re-organization of the algorithm and will be
described fully in Section 5.3. All of the choices are listed
in Table 1, along with an identifying character for casy ref-
erence in the results tables.

14

5.1 Choosing a Task for Allocation

This is the policy choice with the most latitude. Tasks can
be chosen from the set of candidates based on the character-
istics of the particular task, or of their neighborhood of the
task graph. We chose to examine six alternatives. The use
of task size follows from the well-known bin packing rule-of-
thumb: “pack the largest item first.” We contrast this ap-
proach by also attempting to pack the smallest first. Often,
the network bandwidth is a scarce resource worth conserv-
ing. To that end, we choose tasks based on the bandwidth
savings offered by a local allocation. Recall that communi-
cating co-located tasks need no network resources.

In an attempt to choose tasks based on their neighborhood
in the task graph, we examine the results of a choice based on
the numbers of neighbors. By choosing tasks with the most
neighbors, we provide a bigger pool for choices in successive
iterations. The danger, however, is that the subgraph will
consist of several tendrils that block off and interfere with
the growth of other subgraphs, without making the kind of
bundles that can really pay off from a network perspective.
We also consider a policy which chooses the task with the
lower number of neighbors. Such a policy should consume
all the tasks in a region of the graph before expanding.

For comparison purposes, we also randomly choose tasks
from a uniform distribution. The random choice uses ab-
solutely no knowledge of the graph or task charactersitics,
so provides a baseline which the algorithm must be able to
outperform in order to be of any use whatsoever.

5.2 Choosing a PE

Clearly if the subgraphs allocated to the various PEs are
not adjacent, then the order in which PEs are chosen for
allocation will have no effect on the solution. Conflict oc-
curs only when some task has the potential for allocation to
multiple PEs. One would think that on large task graphs
such potential would be rare. Such intuition is incorrect for
the distributed embedded task graphs, as the transducers
cluster in particular neighborhoods of the graph.

To explore the degree to which PE choice policy affects the
solution, we implement 5 different alternatives. The first
uses an arbitrary, though fixed, ordering — by identification
number. We also examine the reverse ordering. The only
characteristic of the PE which may have some bearing on
the potential solution is the amount of resources the PE has
available. The PE with a large resource stash should be able
to carve out a larger subgraph if nunimpeded by other PEs.
Such a policy choice is not clearly a winner, as such a large
subgraph may block off the later PEs from access to any
portion of the graph. For this reason we study PE ordering
by resource in both ascending and descending order.

We also include random choice as a bascline, for the same
reasons as in Section 5.1.

5.3 Task at a Time Allocation

The TRANS_FIRST algorithm, as described in Section 4,
allocates all the tasks that fit on a PE before allocating
any to other PEs. In a task graph where many sensors
are coupled via a few tasks, such a strategy will generate a
large subgraph for the first PE chosen. But the subgraph

Table 2: Task Graph Characteristics
Graph | Tasks | Edges | Sensors Actu- PEs
ators
ranA 80 200 8 10 9
ranB 80 200 8 10 5
ranC 42 110 1 6 6
ranD 43 100 13 13 9
rank 17 50 22 21 11
ranF 20 50 4 1 10
iac 14 98 3 64 9
tract 43 282 2 115 16
sch 34 316 3 117 16

will block off development of subgraphs on closely associated
PEs. By re-organizing the main loop of the algorithm, a
“breadth-first” strategy can be attempted, where a single
task is allocated from a PE at any particular time. The re-
organized algorithm must maintain the state of each PE’s
search in independent T sets. After a task is allocated from
one PE, the algorithm queries another PE, in the same order
specified for Section 5.2.

5.4 PE Fill Level

By allowing PE resources to be fully consumed by this pre-
process step, allocation of other large tasks may be inhibited.
It is possible that restricting task allocation during the first
phase of TRANS_FIRST may conserve space for the tasks at
the middle of the graph that are far from transducers. We
explore allocating tasks only to fill 80% (or 50%, or some
other arbitrary cap) of PE resource levels. The inevitable
tradeoff is that packing to 80% on all the PEs may then leave
us vulnerable to a 21% (or 51%) sized task. This tradeoff
is merely another case of the typical best-fit versus worst-fit
bin packing policy choice.

5.5 Allocation of Remaining Tasks

Once all PEs which host transducer tasks have been filled
using the TRANS FIRST algorithm, remaining vertices of
the task graph may remain. Use of another bin packing
algorithm will allocate them to the remaining PEs.

Typical distributed embedded systems will not have many
(or any) PEs remaining at this point. Rather, all PEs are
connected to, or encompassing on the same silicon, the sys-
tem’s sensors and actuators. This “smart sensor” strategy
leaves few PEs remaining as merely compute nodes. In the
case of a transducer hardware failure, however, the micro-
controller is still capable of operation and would be allocated
tasks from the central portion of the task graph.

6. RESULTS
6.1 Test Set

All experimentation was done using a collection of 9 graphs
from [1]. Six are randomly generated graphs and 3 are from
real-world automotive applications. The salient features of
each graph are shown in Table 2. PE and network resource
sizes were developed via execution of the system specifica-
tion generation algorithm from [1].

15

6.2 Experimental Method

We first present four experiments to determine the appro-
priate policy generation choices. An additional experiment
compares the TRANS_FIRST algorithm to system alloca-
tions done without sensitivity to transducer location. Both
algorithms were implemented using as much of the same
code as possible (to screen out implementation differences)
and all executions done on the same computer (A 750MHz
Pentium 3, in an IBM Thinkpad T20). Each experiment
involved 10 runs of each algorithm choice. Averaged values
over the 10 runs are reported.

Three values of interest were measured and calculated for
each of the graphs: success rate, network usage and algo-
rithm running time. Success rate is a measure of the number
of times the algorithm found an allocation over repeated ex-
ecution of the algorithm. Unless explicitly using a random
policy choice, the TRANS_FIRST algorithm is completely
deterministic — though the follow on phase, as described in
section 5.5, is not. Success rate, therefore, is often 100% or
0%, regardless of the number of executions.

Network nsage is a figure of merit which measures the extent
to which an allocation placed edges of the task graph in
locally. It is calculated as the ratio of the bandwidth of
the task graph edges with incident tasks placed on the same
PE to the total bandwidth of all task graph edges. A value
of zero indicates that all communication is on the network,
while a value of one is the (highly unlikely) case where all
communication is local to a PE.

6.3 Finding the Right Policy Choices
6.3.1 Task Choice

Table 3 shows the results of 6 experiments, each differing
in the task selection policy. Choosing the task with the
largest requirement is the best of the policy choices. Note
that no other policy choice had a higher success rate on any
of the graphs. It is less impressive with respect to network
usage — a situation that is not surprising given that such
a policy choice pays no attention to the network at all. All
of the graph sensitive choices (Min Neighbor, Max Neighbor
and Bandwidth Savings) have good network usage statistics.
Those choices do not react to the resource requirements for
actual packing on the PE, so they do not actually allocate
with good success rates. We use the Largest Task policy
choice for all other experiments.

6.3.2 PE Choice

Table 3 also shows the results of the 5 experiments on PE
choice. Using an arbitrary ordering (By ID and By Reverse
ID) shows no difference in packing success, but does use
the network to a strikingly different degree most notably
in the real-world task graphs. Both are still outperformed
by a Random choice and both resource level choices. Se-
lecting the Largest Resource policy is a narrow winner over
Random with respect to packing success. However, Largest
Resource allocates many more communication edges to lo-
cal PE communication. Our hypothesis in this regard is
correct: choice of a large PE allows for large subgraphs to
be allocated locally, without restricting further development
from the smaller PEs. We use the Largest PE policy for the
following experiments.

Table 3: Experimental Results

Experiment 1: Task Choice

Network Usage Success Rate

Policy | ranA ranB ranC ranD ranE ranF sch tract iac ranA ranB ranC ranD ranE ranF sch tract iac
L 35 b3 35 45 70 0 A7 .21 .23 .8 .8 9 1.0 10 O .8 .8 1.0
S 0 0 42 0 7000 A7 24 .38 0 0 2 0 1.0 0 1 6 9
B 44 0 56 0 68 0 22 27 .29 2 0 .6 0 1.0 0 N N 9
N 0 48 0 46 70 0 16 .29 .33 0 A4 0 9 1.0 0 .8 A4 1.0
M 32 4 41 4 70 0 18 29 .31 3 A4 1.0 1 1.0 0 7 7 1.0
R 40 45 38 46 69 0 18 24 .29 .2 3 8 3 1.0 0 .6 .6 1.0

Experiment 2: PE Choice
2 37 0 0 A48 68 0 16 .20 .27 1.0 0 0 1.0 10 O 1.0 10 1.0
1 33 0 0 48 72 0 41 49 .71 1.0 0 0 1.0 10 0 1.0 10 1.0
L 32 59 3 48 73 0 40 26 .35 1.0 7 1.0 10 10 0 1.0 10 1.0
S 0 45 .43 44 68 0 21 26 .22 0 1.0 10 10 10 O .5 1.0 1.0
R 35 b3 3 45 70 0 a7 21 .23 .8 .8 .9 1.0 1.0 0 .8 .8 1.0
Experiment 3: Task at a Time
Y 0 0 0 A7 67 0 0 24 .20 0 0 0 1.0 10 0 0 1.0 1.0
N 32 59 3 48 73 0 40 26 .35 1.0 7 1.0 10 10 0 1.0 10 1.0
Experiment 4: PE Fill Level

F 32 59 3 48 .73 0 40 26 .35 1.0 .7 1.0 10 1.0 0 1.0 1.0 1.0
8 0 59 29 42 68 O 33 0 0 0 1.0 10 10 10 0 1.0 0 0
5 29 59 41 41 70 20 O 0 0 1.0 .8 1.0 10 10 .1 0 0 0

6.3.3 Tuask at a Time Allocation

In Section 5, we advanced the supposition that it may be
better to allocate a single task from the PE before trying a
different PE. The experiment documented in Table 3 shows
this not to be the case. The Task at a Time policy resulted
in successful allocations on only 4 of the 9 graphs. It turns
out that this allocation policy fills up each PE somewhat
equally, without a reserve in case a large task is encountered.
We use the PE at a Time allocation policy.

6.3.4 PE Fill Level

One remarkable aspect of the results shown in Table 3 is the
complete lack of success for any policy on the ranF graph.
In this particular case, a large task is near the center of
the graph, and thus out of reach of each of the PEs until
they have already allocated some tasks. Unfortunately, by
filling up with smaller tasks, the PEs have no remaining
resources for the large task. In our final experiment, we
attempt to limit the task allocation during the transducer
sensitive phase of the algorithm in order to save some space
for such large tasks. Our experiments show this approach
is generally unsuccessful. However, by leaving a 50% cap in
place, we have our only success — a limited one — with the
ranF task graph. We speculate that an adaptive cap, based
on the sizes of tasks actually occurring in the task graph,
may be more feasible. Such exploration will await further
effort. We will conclude that the best general set of policy
choices is L-L-N-F (Largest Task Size, Largest PE first, PE
at a Time, Full PE).

16

6.4 Comparison to Base Algorithm

A careful examination of the Beck algorithm[1] reveals a few
strengths of the TRANS_FIRST algorithm: complete deter-
minism and improved execution time. Table 4 shows a com-
parison. BECK is almost as good terms of packing success
— it is, after all, a very good algorithm. However, BECK
has a surprisingly large random component. Table 4 does
not show this effect, but the values that were averaged to get
net usage vary quite a bit. BECK orders the tasks by their
size and packs in decreasing order to the PE which would
minimize the network bandwidth. Early in the algorithm’s
execution there are quite a few ties, where placement to any
PE would take zero bandwidth (since the task’s neighbors
haven’t been allocated yet). Such ties are resolved randomly,
which significantly affects the remainder of the execution.
The policy choices we’ve selected for TRANS FIRST pre-
clude any random elements, thus reserving any randomness
for the follow on allocation. Randomness is not, of course,
always a bad thing. If BECK fails to find an allocation,
it is always possible to re-execute it to see if it will find a
different, successful, allocation.

Table 4 also shows the TRANS_FIRST algorithm has a clear
time advantage. The average speedup of 2.7 is substantial,
and is a result of the “divide and conquer” nature of the
algorithm. By operating on small portions of the entire task
graph (the regions near the transducers), choices are made
among a much smaller set of tasks. Such small comparisons
are much quicker than the large comparisons required by
BECK as it examines the entire graph.

Table 4: Comparison to Base Algorithm

TRANS_FIRST

ranA ranB ranC ranD ranE ranF sch tract iac
Net Usage .32 .59 .35 48 .73 0 .40 260 .35
Pass Rate 1 N 1 1 0 1 1 1
Execution Time (mS) | 617 609 379 365 192 0 710 678 287
Speedup 2.2 1.8 2.3 3.2 3.4 0 3.1 3.1 2.8
BECK
Net Usage .19 .62 .27 .39 .69 0 .43 .49 .6
Pass Rate 1 .6 1 1 0 1 1 1
Execution Time (mS) | 1350 1080 855 1170 647 0 2215 2108 815

7. CONCLUSIONS AND FUTURE WORK

We have shown a task allocation algorithm that successfully
exploits a constraint unique to the distributed embedded
system domain. The algorithm works by allocating tasks
that manage transducer hardware (and thus cannot be allo-
cated elsewhere) to the local processing element, and then
operating on the neighboring set of tasks. Large subgraphs
are thus swept into a single processing element, which saves
significant network bandwidth.

In order to tune the heuristic algorithm, a set of experi-
ments was conducted. Each policy choice was clearly delin-
eated and executed on a series of random and real-world task
graphs. The following policy choices resulted in a heuris-
tic algorithm with good packing quality and a substantial
speedup: Largest Task First, Largest PE first, PE at a Time,
and 100% PE Fill level.

In the future, we would like to examine the quality of the
heuristic on additional task graphs; in particular, the sets of
task graphs proposed by [15] and [9] as standard compari-
son graphs. In addition, to fit this algorithm into the RoSES
graceful degradation research, we wish to determine if envi-
ronmental conditions (i.c. the nature of the task graph and
hardware specification) can be measured and then policy
choices tuned to the observed conditions.

8. ACKNOWLEDGMENTS

We are quite grateful for the support of the General Motors
Satellite Research Lab at Carnegie Mellon University and
Bosch Electronics.

9. REFERENCES
[1] J. Beck. Automnated Processor Specification and Task
Allocation Methods for Embedded Multicomputer
Systems. PhD thesis, Carnegie Mellon University,
April 1995.

S. Bokhari. A shortest tree algorithm for optimal
assignments across space and time in a distributed
processor system. IEEE Transactions on Software
Engineering, SE-7(6):583-9, Nov 1981.

S. Bokhari. Partitioning problems in parallel pipelined
and distributed computing. IEEE Transactions on
Computing, 37(1):48-57, Jan 1988.

17

[4] K. Efe. Heuristic models of task assignment scheduling
in distributed systems. Computer, 15(6):50-6, June
1982.

M. Garcy and D. Johnson. Computers and
Intractability: o Guide to the Theory of
NP-completeness. Freeman, San Francisco, 1979.

B. Indurkhya, H. Stone, and L. Xi-Cheng. Optimal
partitioning of randomly generated distributed
programs. IEEE Transactions on Software
Engineering, SE-12(3):483-495, Mar 1986.

A. Kalavade and E. Lee. A hardware-software codesign
methodology for dsp applications. IEEE Design and
Test of Computers, 10(3):16—28, September 1993.

H. Kasahara and S. Narita. Practical multiprocessor
scheduling algorithms for efficient parallel processing.
IEEE Transactions on Computers, C33(11):1023-9,
Nov 1984.

Y. Kwok and I. Ahmad. Benchmarking and
comparison of the task graph scheduling algorithms.
Journal of Parallel and Distributed Computing,
59(3):381-422, Dec 1999.

[10] G. McNally. Automated Architecture Specification for
Embedded Multicomputer Systems. PhD thesis,
Carnegie Mellon University, 1998.

[11] W. Nace and P. Koopman. A product family approach
to graceful degradation. In Architecture and Design of
Distributed Embedded Systems, Oct 2000.

S. Prakash and A. Parker. SOS: Synthesis of
application-specific heterogeneous multiprocessor
systems. Journal of Parallel and Distributed
Computing, 16(4):338-51, Dec 1992.

C. Shen and W. Tsai. A graph matching approach to
optimal task assignment in distributed computing
systems using a mini-max criterion. IEEE
Transactions on Computers, C34(3):197-203, Mar
1985.

[14] H. Stone. Multiprocessor scheduling with the aid of
network flow algorithms. IEEE Transactions on
Software Engineering, SE-3(1):85-93, Jan 1977.

[15]

[16]

T. Tobita, M. Kouda, and H. Kasahara. Performance
evaluation of minimum execution time multiprocessor
scheduling algorithms using standard task graph set.

pages 745-751, Jun 2000.

C. Woodside and G. G. Monforton. Fast allocation of
processes in distributed and parallel systems. IEEE
Transactions on Parallel and Distributed Systems,
4(2):164-74, 1993.

18

The Design of a Secure Location System

Urs Hengartner*
Department of Computer Science
Carnegie Mellon University
uhengart+@cs.cmu.edu

Abstract

Ubiquitous computing poses new challenges on con-
trolling access to services provided in such an envi-
ronment. A key service is a system for locating peo-
ple and learning about people in a particular room.
Since location is a sensitive piece of information, the
access control requirements of such a location sys-
tem are rather stringent. We examine the threats
a location system faces and present the design of a
distributed solution that comprehensively addresses
all of these issues. Our system exploits three basic
concepts: trust, confidence values, and delegation.
We rely on trust for dealing with misbehaving ser-
vices. Confidence values help cope with location
information of limited accuracy. Using delegation,
entities in the system can have other entities make
policy decisions for them. We demonstrate feasibil-
ity of our design with an example implementation
of a secure location system.

1 TIntroduction

Ubiquitous computing environments such as the
ones examined in CMU’s Aura project [1] rely on
the availability of location information about peo-
ple. With the help of this information, location-
specific services can be provided to a person in the
system. However, location is a sensitive piece of in-
formation that should not be distributed to anyone.

This paper discusses the design of a secure lo-
cation system for the Aura project. The two main
characteristics of this design are its support for a va-
riety of location technologies and its security mech-
anisms. Our system employs location technologies
that are based on people carrying a badge or some
other device with them, but also techniques not re-
lying on devices, such as detecting who is logged in

*Urs Hengartner has been advised by Peter Steenkiste.

19

at the terminal of a computer. In terms of secu-
rity, our systems is able to implement policies that
specify who is allowed to get what kind of location
information about someone. We make sure that lo-
cation information is not forwarded to users that are
not authorized to get this information. In addition,
policies also allow to specify the kind of delivered lo-
cation information, whereas kind is determined by
the granularity of the delivered information (e.g.,
CMU Campus vs. Wean Hall 8220) and which lo-
cation services are used to answer a query.

Possible location queries people might ask are
"Where is Alice’, "Where am I’, "Who is in/near
Wean Hall 8220°, "How far apart are Alice and Bob’,
’Is Alice within n feet of or in the same room as Bob’,
and "Who is within n feet of Alice’. Further investi-
gation of these queries reveals that all of them can
be answered based on two native queries: "Where
is a particular person’ (“user query”) and "Who is
in a particular room’ (“room query”). Therefore,
we introduce two basic services: a “People Loca-
tor” service answering the first kind of queries and
a “Room Locator” service replying to the second
type of queries.

We assume a hierarchical model for our location
system. An example of such a system, as it could
be deployed in CMU’s School of Computer Science
(SCS), is given in Figure 1. The nodes in the graph
are either services or devices, the arrows denote
which service contacts which other service/device.
The location system is a composition of multiple lo-
cation services. Each location service either exploits
a particular technology to gather location informa-
tion or processes location information received from
other location services. A user who wants to find
out about the location of some other user contacts
the People Locator service. Similarly, if he wants
to find out who is in a particular room, he contacts
the Room Locator service. The People and Room
Locator service then contact other services which
themselves may also contact other services and so

Remote
Poople
Loctor

[m.mm} [Room Tcaor }

) (o)

Tiace Recogition [Dovice Locator]

Wavelan

Canera

Computce w/ Cameta

Badge Sorver Cell Phoe

contolled by §C5
==~ contolled by Computing Seevices

—— contolled by non-CMU cntitics

Base Station

Figure 1: Example location service.

on. Location information flows in the reverse direc-
tion of a request (not shown in the figure).

In our example, two kinds of services are con-
tacted. The first group consists of services that are
aware of users. The face recognition, login, and cal-
endar service belong to this group. The face recog-
nition service tries to detect the location of users
by capturing their image when they pass fixed cam-
eras. The login service keeps track of which users are
logged in at the consoles of computers. The calendar
service delivers location information based on peo-
ple’s schedule. The second group of services are not
aware of users, but of devices a user is carrying with
her. These services are contacted by the Device Lo-
cator service. In our system, this group of services
consists of the Wavelan, active badge, and GPS ser-
vice. The Wavelan service keeps track of the loca-
tion of wireless devices such as laptops. The active
badge service is based on fixed sensors that receive
RF or IR signals emitted by active badges. The GPS
service calls GPS-enhanced mobile phones and gets
their geographical location from them. Finally, if a
user cannot be located by any of the services in the
local location system, a proxy may contact remote
location systems.

A basic assumption in our work is that the ser-
vices outlined above are administrated by different
entities. For example, the calendar service is con-
trolled by SCS’s computing facilities, the Wavelan
service by CMU’s computing facilities, the GPS ser-
vice by a phone company, and the Login service by
a single person.

20

The model in Figure 1 gives an overview of the
services in our system and their interaction, but, it
does not show how these services are actually im-
plemented. For example, the People Locator service
can be implemented on a single node, on multiple
nodes to improve scalability and robustness or even
in a completely distributed way, where each user has
her own People Locator service answering queries
about her location.

The contribution of our work is a comprehensive
analysis of the security requirements of a location
system such as the one discussed above. We also
provide the design of a solution for the outlined is-
sues and present an example implementation of this
design.

The outline for the rest of this paper looks as fol-
lows: In Section 2, we elaborate on user and room lo-
cation policies. The threats a location system faces
are listed in Section 3. We present a strawman so-
lution and its weaknesses in Section 4. The actual
design of our solution is given in Section 5. It relies
on digital certificates, which are discussed in Sec-
tion 6. Section 7 describes our implementation. We
elaborate on related work in Section 8 and on our
conclusions and future work in Section 9.

2 Location Policies

Location information about a person or about the
people in a room should be forwarded to someone
only if allowed by that person’s and that room’s
location policy, respectively. In this section, we dis-
cuss such location policies in more detail. This dis-
cussion will reveal some of the requirements that
need to be fulfilled by our location system, more
specifically, by the mechanisms we exploit to imple-
ment this system.

2.1 User and Room Location Policies

We assume that there are two kinds of users: located
users and locating users. Locating users query the
location system for a located user.

Our system knows about two kinds of location
policies: user location policies and room location
polices. In a user location policy, a located user
states who is allowed to get what kind of location
information about her. In a room location policy,
the “owner” of a room states who is allowed to find

out about the people currently in this room and
at what granularity level (e.g., Alice vs ’someone’).
The owner of a room is typically the institution or
the company the room belongs to. However, the in-
stitution might decide to give owner rights and thus
the right to decide about the room location policy
to other people. For example, in the case of an of-
fice, its occupant can be declared to be its owner.
For meeting or lecture rooms, the institution would
probably keep the owner rights (or give only a sub-
set of them away, for example, to find out whether
anyone is in a meeting room or whether it is empty).

2.2 Conflicting Policies

Each located user has a user location policy stat-
ing who is allowed to locate her. Similarly, for each
room, there is a room location policy stating who is
allowed to find out about the people in this room. If
these two kinds of policies are established indepen-
dently of each other, access control conflicts might
arise. For example, Alice might not allow Bob to
locate her, on the other hand, Charles might allow
Bob to locate people in his office, so assuming Al-
ice is in Charles’s office, what should the result of a
"Who is in Charles’s office’ query asked by Bob be?

A conservative approach is not to return any in-
formation about Alice if either of the two policies
does not allow this information sharing. While this
is a feasible approach, we argue that it is too con-
servative for our purposes. Imagine an Aura service
that warns people when someone enters their office
so that, for example, sensitive information projected
onto a wall is hidden automatically. If the entering
user sets her location policy to reveal no informa-
tion, this service will break. It is our belief that the
owner of a room should always be allowed to find out
who is in his room, regardless of the location poli-
cies of the users currently in his room. Similarly, if
a user states that someone is allowed to locate her,
then this lookup should always succeed, regardless
of the location policy of the room she currently is
in. Therefore, in our system, access control for user
queries is based only on the user location policy,
similarly, for room queries, the system looks only at
the room location policy.

It is possible to combine the room and user lo-
cation policy. The owner of a room can specify in
his room location policy that information about a
person in his room should be released to a locating
user only if this person grants the locating user ac-
cess to her location information in her user location

21

policy. We envision that such a room location policy
is most appropriate for lecture or meeting rooms.

2.3 Transitivity of Access Rights

Another interesting question is transitivity of ac-
cess rights. Assuming Alice grants Bob access to
her location information, should Bob be allowed
to forward this access right to Charles? A simi-
lar question arises for room location policies: If Ed
is allowed to find out about the people in his of-
fice, should he be allowed to give this access right
to Fred? There is no final answer for either of these
questions. For the first case, it should probably be
Alice’s decision whether this forwarding should be
allowed. For the second case, we argue that in most
cases, the answer should be no. If Ed is given the op-
tion to let other people find out about Alice’s loca-
tion when she is in his office, Alice’s location policy
might be violated. In addition, Ed could give some-
one not within the same institution access rights to
his office, which might not be in the institution’s
interest.

Because of the reasons outlined above, we ar-
gue that our location system should let located
users/owners of rooms explicitly state whether they
want transitivity of access rights.

However, note that even though a user might
not be allowed to forward his access rights to other
users, he could still proxy for them. In the example
above, assume that Alice does not give Bob the right
to forward his access rights. Nonetheless, Bob could
still serve as a proxy for Charles and deliver loca-
tion information about Alice to him through chan-
nels our location system is not aware of. The only
way to handle such an information leak is to take
away the access rights from Bob completely.

3 Threats

In this section, we discuss the threats a location
system such as the one introduced in Section 1 faces.
A threat is identical to having a service misbehave.
We call a service 'misbehaving’ if it suffers from at
least one of the following problems:

Wrong location information. Each service or
device in the calling chain starting at the People
or Room Locator service and ending at a helper
service or at a device may return wrong location

information. Services such as the Wavelan ser-
vice that generate their own location informa-
tion may generate wrong information, services
such as the Device Locator service that forward
information received from other services may
falsify received information.

Unauthorized location information. A service
might return location information to unautho-
rized users. Located users do not want every lo-
cating user to be able to get information about
their location. In addition, they may be will-
ing to release information about their location
to some users, but only of limited accuracy. A
located user’s preferences are specified in her
location policy. Our system has to guarantee
a located user that her policy is implemented
correctly. It should not be possible for a lo-
cating user to get unauthorized location infor-
mation, neither by contacting the People Lo-
cator service nor by directly contacting one of
the helper services. A similar guarantee has to
hold for room location policies.

Wrongly contacted services. A service such as
the People or Device Locator service may con-
tact other services that the located user does
not want to be contacted. Although our loca-
tion system is able to exploit multiple location
technologies, a located user does not necessar-
ily want the People and Device Locator service
to contact all available services. For example,
a service may charge the located user for each
request (e.g., the GPS-based location service),
thus the located user allows only a subset of the
locating users to get location information from
this service.

Of course, we would like our location system to
eliminate the threats mentioned above. In Section 5,
we describe in more detail how our solution ad-
dresses them. However, note that it is not feasi-
ble to completely eliminate the threats due to the
following reasons:

Uncontrollable systems/devices. We cannot
prevent all hosts covered by our system from
forwarding location information to random
people. For example, it is up to the owner
of a workstation to set up access control to
the finger daemon running on his workstation.
Potentially, anyone can get access to the finger
and login information (and thus potentially
location information).

22

Even if all hosts were secured, there might still
be ways for random people to get location in-
formation. There may be services not in our
system that allow to retrieve location informa-
tion about someone. For example, some people
put their schedule into a .plan file that is ac-
cessible by anyone. In addition, as soon as a
person uses services like Wavelan, her location
is known to at least the operator of the Wave-
lan service. If she does not trust this operator
to deal with her location information sensibly,
her only alternative is not to use Wavelan.

Wrong source information. Even when we as-

sume that all hosts/services in our system do
not actively generate wrong information, there
are still ways for the system to return wrong
location information. For example, the face
recognition service could easily be tricked by
presenting a camera someone’s picture. All the
login service is able to detect is that someone
with a particular user account has recently been
active at a console, there is no way for it to ver-
ify that the user owning this account is actually
sitting in front of the computer or whether she
has allowed her friend to use her computer. For
device-based services, there are similar prob-
lems. If you lend your laptop to a friend with-
out telling the location system, the system will
either deliver wrong location information or it
may have to deal with conflicting information
in case your location can also be detected by
some other means. In our location system, we
assume that users are willing to cooperate with
a certain set of services and thus do not try to
fool these services. We elaborate on this con-
cept in Section 5.1.

Inaccurate information. Some location informa-

tion is inherently associated with a certain level
of inaccuracy. For example, the longer a user
logged in at the terminal of a computer has
been inactive, the bigger becomes the proba-
bility that she is no longer sitting in front of
her computer. Therefore, a location system
needs to be able to deal with location informa-
tion that might be out of date or inaccurate.
Our solution to this problem is outlined in Sec-
tion 5.2.

4 Strawman Design

In this section, we present a strawman design of
the people location system. We also discuss how it
handles the threats mentioned in Section 3. Our
discussion concentrates on user queries, but room
queries could be handled in a similar way.

In this system, we keep a policy matrix at a cen-
tralized, trusted server that lists for each locating
and located user pair what the access control policy
is. Each location service is required to clear requests
with the centralized server before executing them.
Alternatively, to reduce overhead, only the first ser-
vice in the calling chain, the People Locator service,
contacts the centralized server and has it approve
the request in a way visible to the other services in
the chain by, for example, signing the request with
a digital signature.

This design suffers from several shortcomings:

Bottleneck. Having each request being approved
by a centralized server lets this node become
the bottleneck of the system.

Misbehaving services. The system fails to ad-
dress one of the threats mentioned in Section 3;
it does not provide a way for users to deal
with misbehaving services that return wrong or
unauthorized location information.

Unknown users. Policy matrices assume that the
location system knows all the located and lo-
cating users. Whereas this assumption makes
sense for located users (else there is no way to
locate them), it does not need to hold for locat-
ing users. Anyone who the located user wants
to learn about her location should be able to
do so, regardless of whether he is known to the
system.

Group access. Very often, users want to give an
entire group of people (e.g., all their friends)
the same kind of access rights. Policy matrices
make handling groups tedious and error-prone
since there is no way to directly give/deny ac-
cess to a group of people. Instead, each user
has to be given/denied access separately.

To conclude, having a centralized server maintain
a policy matrix is not flexible enough. In the next
section, we propose a flexible solution that succeeds
in resolving the issues mentioned above.

5 Design of the Secure Loca-
tion System

Based on our discussion in Sections 3 and 4, we
now present the design of our secure location sys-
tem. The main concepts we exploit in our solution
are trust, confidence values, and delegation. First,
we give users the opportunity to specify which ser-
vices they trust. This trust can be extended to en-
tire organizations/administrative entities. Second,
we associate location information with a confidence
value reflecting its accuracy. Third, we allow ser-
vices to delegate particular rights to other services
and people.

In the following sections, we elaborate on these
three concepts and how they are exploited in our
solution in more detail. For implementation pur-
poses, we assume that there is some kind of a “digi-
tal ticket” that states a trust or delegation decision
and that is signed by the located user or a service.
Digital tickets can be implemented using, for ex-
ample, Keynote [4] or SPKI/SDSI [5] certificates.
An actual implementation based on SPKI/SDSI is
discussed in Section 6. Confidence values are prob-
ability values between zero and one.

5.1 Trust

Our solution for dealing with misbehaving services
relies on trust. We assume that the located user
or the owner of a room trust at least some of the
services in our system. The trust assumptions are

e that the service implements a location policy
faithfully when it is given such a policy,

e that it does not falsify information when it has
to forward or process location information re-
trieved from other location services,

o that it does not deliberately generate and re-
turn wrong information when it generates its
own location information?,

e that it does not contact services the located
user does not want to be contacted, and

e that it does not forward location information
to untrusted services.

1A service can undeliberately generate wrong location in-
formation, as pointed out in Section 3.

A service that satisfies these trust assumptions is
deemed trustworthy. If a user notices that one of
her trusted services misbehaves, she will no longer
trust it.

By having a set of trusted services, we can pre-
vent location information from flowing to untrusted
services. We establish the following rules: For a
user query, a trusted service does not forward lo-
cation information to another service if the located
user fails to specify that she trusts it. Similarly, for
a room query, a trusted service does not forward lo-
cation information to another service if the owner
of a room fails to specify that she trusts it. There-
fore, services are able to get location information
only when the located user or the owner of a room
approve such a forwarding.

In our design, we make the following assumptions
about trust and dealing with it:

e Since having a user specify which of the ser-
vices she trusts may be cumbersome, especially
if there are a lots of services available, we give
users the possibility to specify that they trust
all the services in a particular organization
(e.g., all services run by SCS facilities). This
mechanism requires that digital tickets cannot
only cover single entities, but also groups of en-
tities. We discuss the implementation of this
concept in more detail in Section 6.1.

e All users are supposed to trust the first service
to be contacted, which is the People or Room
Locator service. If the locating user does not
trust it, he should not contact it. If the lo-
cated user or the owner of a room do not trust
it, they can only hope that underlying services
refuse to give information to it and thus other
users are not able to learn about her where-
abouts/occupants.

e As described in Section 3, our location system
may fail because of, for example, users leaving
their active badge in the office. However, if a
user trusts a service, we believe that it is rea-
sonable to assume that she is willing to coop-
erate with this service. For example, if a user
trusts the active badge service, she implicitly
promises not to leave her badge in her office or
to give it to other people. In short, by allowing
users to express which services they trust, we
hope that they do not try to fool their trusted
services.

24

5.2 Confidence values

Location information is associated with a confidence
value indicating the probability that the information
is correct. Typically, the confidence value is set by
the same service that generates the location infor-
mation. For example, if the Login service notices
that the user logged in at the console of a computer
has been idle for a while, this location information
is given low confidence. Similarly, a Wavelan-based
service may not be able to determine exactly on
which floor or in which room a device is, thus it
assigns the returned location information low confi-
dence.

It is possible that other services than the one gen-
erating the location information assign it low confi-
dence. The fact that a locating or located user does
not trust a service does not imply that the user does
not want this particular service to be contacted for
answering queries. For example, even though you
may not trust the person running the Login ser-
vice, you do not expect it to actively falsify location
information. Therefore, you still want this service
to be contacted, but you do not want to have this
information high confidence. A service getting lo-
cation information from some other service assigns
it low confidence if neither the locating nor the lo-
cated user specify that they trust this service (either
directly or by trusting the entire organization this
service is part of). Since at least the People and
Room Locator services, which are the first services
in the calling chain, are assumed to be trusted by
the locating user, we are guaranteed that there is
always at least one service in the chain that adjusts
confidence values appropriately.

5.3 Delegation

Entities in our system grant other entities in the
system particular kinds of rights. For example, a
located server may give a locating user access to her
location information. It is up to the located user to
also give the locating user the right to forward this
right to a third user. In such a case, the located user
effectively gives the right to decide about her loca-
tion policy to the locating user. In the remainder
of this paper, we are going to use the term “delega-
tion” when an entity grants access rights to a second
entity and it also permits the second entity to grant
these rights to a third entity.

We now describe how we exploit delegation in our
system in more detail.

5.3.1 Policy specification

The People Locator service delegates the right to
establish the location policy of a particular located
user to this user. (A similar model is used for room
location policies.) As noted above, for a located
user, this right is identical to having access to her
location information and to be able to re-delegate
this access right. A located user can then issue fur-
ther digital tickets that give other users also access
to her location information. It is is up to the lo-
cated user to decide to whom and at what granu-
larity she gives this access right. In addition, she
can also permit the recipients to re-forward the ac-
cess right to other people. The People Locator ser-
vice itself does not have to be aware of the identity
of the users she gives access rights to, any locat-
ing user that can prove that the located user gave
him access rights (by presenting his digital ticket)
will be granted access. This solution thus makes
dealing with unknown users easy. In addition, as
mentioned in Section 5.1, digital tickets allow giv-
ing access rights to entire groups of people. There-
fore, giving a group access to location information
is straightforward in this approach.

5.3.2 Policy check

As discussed in Section 2, we assume that each
located user defines a user location policy stating
which users are allowed to get what kind of location
information about her. Each trusted location ser-
vice is supposed to implement this policy faithfully.
However, to reduce overhead, not every service is
required to actually run the policy check for a re-
quest, a service can delegate this task to some other
service which precedes it in the calling chain. If a
user trusts a service, she also trusts it to delegate
this policy checking to a trustworthy entity. Typi-
cally, services within an organization delegate pol-
icy checking to the first service in the calling chain
(the People Locator service). However, it is up to
the People Locator service to also delegate policy
checking to some other entity. The service running
the policy check approves the request and lets the
other services in the calling chain know about the
approval so that they are willing to answer the re-
quest.

In a similar way, policy checks for room queries
can be delegated to the Room Locator or some other
service.

Of course, we cannot control how services not in

25

our organization implement policy checking. They
might do it in one of the following ways:

e They delegate the policy check to a service in
the organization.

e They delegate the policy check to the located
user, which then delegates it to a service in her
organization.

s They implement their own policy checking.

5.3.3 Device-based location services

Trust as discussed in Section 5.1 mainly addresses
information exchange between services that are
aware of users. These services need the identity of
the located user to be able to find out which services
she trusts. However, services such as the Wavelan
locator service are not aware of users, since they lo-
cate devices. Delegation also lets us overcome this
problem. We assume that a device delegates all
trust decisions to its owner. A device then implicitly
trusts all the services its owner trusts. Therefore,
device-based location services can also use trust to
decide whether location information should be for-
warded to some other service.

5.3.4 Organizations

As already mentioned in Section 5.1, users can
choose to trust an entire organization. By doing
so, they effectively delegate the decision which ser-
vices they trust to the organization and they rely
on the organization to do the right thing.

5.3.5 Contacted Services

The People and Device Locator service delegate the
right to decide about which services to contact for
a query to individual users. We let both the lo-
cated user /owner of a room and locating users spec-
ify which location services should be contacted when
processing a query. This specification can be per lo-
cating and located user, respectively. Alternatively,
it can be per user groups. Both the People and
Device Locator service are given the list of services
to be contacted. Trusted services are expected to
implement this list correctly. For a service to be
contacted, we require that both the located and lo-
cating user include this service in their list. Again,
we allow a user to specify that all the services in

her organization are contacted. We expect this to
be the normal case, assuming all the services are
free of charge.

5.4 Discussion

Low-level services such as a Wavelan base station
or actual devices that have limited capabilities in
terms of CPU and memory resources or whose pro-
grammability is restricted may not be able to han-
dle trust decisions at all. Therefore, we tie low-level
services to their corresponding high-level services.
For example, we associate a Wavelan base station
with the Wavelan locator service in the same or-
ganization. A Wavelan base station is expected to
give location information (and only location infor-
mation) to only this Wavelan locator service. If a
user does not trust a base station, she will not trust
the Wavelan locator, either. A similar model can
be applied to devices, however, since devices may
belong to users, they may not be controlled by the
same organization and can impose any kind of re-
strictions on information flow.

Our proposed solution addresses all the shortcom-
ings of the strawman design listed in Section 4:

Bottleneck. There is no centralized node that has
to approve each request. All the services per-
form access control independently of each other
and approve a request only if it is supported by
a or multiple digital tickets.

Misbehaving services. A misbehaving service is
not given a trust ticket by the located user,
thus trusted services further down in the calling
chain will not give it any location information.

Unknown users. The location system does not
care about the identity of locating users; all it
requires is a digital ticket giving access to the
locating user. Therefore, locating users can be
unknown to the system.

Group access. Group access requires that digital
tickets can be given to a group of people instead
of only a single person. We provide this feature
in our implementation of the digital tickets, as
discussed in Section 6.1.

The key question to be answered is whether the
strawman design presented in Section 4 can be ex-
tended by the concepts of trust and delegation or
whether we need a completely different solution.

26

Both concepts require additional data structures to
be stored at the centralized server, since neither user
trust in services nor delegation of rights can be di-
rectly stored in a located/locating user policy ma-
trix.

Even though we could extend the centralized
server to make it support trust decisions, the design
would still suffer from the other problems mentioned
in Section 4, that is, having a bottleneck and unsat-
isfactory support for groups and unknown users.

Therefore, giving up the approach based on a
centralized policy matrix and additional data struc-
tures in favor of a distributed solution that requires
only one kind of data structures looks more promis-
ing. Our data structure is based on digital certifi-
cates. We now describe it in more detail.

6 Digital Certificates

To implement the concepts of trust and delegation,
as introduced in Section 5, we resort to digital cer-
tificates and chains of certificates. In short, users
create certificates for each service/organization they
trust, services create certificates that delegate lo-
cation policy checks to the People Locator service,
and the People Locator service creates certificates
signing away the right to give access to location in-
formation about a user to that particular user.

In the remainder of this section, we introduce the
concept of SPKI/SDSI certificates, present in an ex-
ample scenario how they are used in our system, and
list some example certificates.

6.1 SPKI/SDSI Certificates

Traditionally, a certificate has been defined as a dig-
itally signed data record containing a name and a
public key [8]. The digital signature allows a cer-
tificate to be passed around and renders central
directories unnecessary. Systems that require ac-
cess control can exploit certificates for this purpose:
upon receiving a request, the signature appended to
the request is used for retrieving a certificate from
some trusted entity that binds the signer to a name.
Then, the name is compared to the names on the lo-
cal access control list (ACL) and an access control
decision is made.

This scheme suffers from two weaknesses: 1) Two
steps are required for the access control decision (re-

trieving the certificate and checking the ACL) and
the entity issuing the certificate has to be trusted; 2)
It requires globally unique names, that is, a global
naming scheme. Such architectures have been pro-
posed (e.g., ISO’s X.509), but are from being im-
plemented in a way that they would be useful for
everyday use.

Due to these weaknesses, SPKI/SDSI certifi-
cates [5] have been recently proposed. They redefine
the notion of a digital certificate. SPKI/SDSI cer-
tificates do not rely on global names and public keys
for authentication, instead, public keys are directly
used for access control. An ACL gives access rights
directly to a public key. Any request signed with
the corresponding private key will get the kind of
access specified in the ACL. Therefore, the access
control decision requires only one step. In addition,
since public keys are globally unique because of their
length, we get global uniqueness for free.

SPKI/SDSI also supports delegation of rights.
The owner of the public key who is granted access
can create a certificate giving all or a subset of her
rights to some other public key (i.e., his owner).
This process can be repeated multiple times, thus,
what we end up with is a chain of certificates an-
chored at the local ACL. To make the access control
decision for a request, a service has to go through
the chain of certificates, starting at its ACL and end-
ing at a certificate authorizing the signer of the re-
quest. For each certificate, it needs to check whether
it delegates enough access rights to its successor so
that the request can be granted access.

In addition, SPKI/SDSI supports restriction of
delegation. An entity cannot delegate its access
rights to some other entity if the original issuer of
the access rights does not agree with this delegation.
However, note that even though delegation may be
prevented within the system by SPKI/SDSI, this re-
striction does not prevent an entity from forwarding
information it is able to retrieve with the help of its
access rights to some other entity through channels
the system is not aware of (as outlined in the exam-
ple in Section 2).

SPKI/SDSI typically gives authorizations to pub-
lic keys. However, it also supports the concept of
name certificates that allow a local name (i.e., the
name does not have to be globally unique) to be
bound to a public key. This binding lets the local
name become globally unique and thus it can be
directly used as a target for authorization in a cer-
tificate. This naming concept is important for cases

27

{ Calendar

- —® request

***** & delegation

Locating
User .

“® access

‘o Located
User

S - - ’
. ey
] [Device Locator T‘ 9 R
- - //
,
.

9 .7,
7 T8

4

,
. ,
i ’
,
’
Wavelan

Figure 2: Processing of a request.

where authorization is given to entire groups. We
present an example that demonstrates the usage of
these name certificates for authorization of groups
in Section 6.3.2.

6.2 Example Scenario

It takes several steps to process a request for loca-
tion information. Each step requires different ACLs
and certificates to let handling of the request pro-
ceed to the next step. In this section, we present the
processing of a request by our location system in a
walk through and list the needed ACLs and certifi-
cates. In our example, a locating user inquires about
the location of a user and the request is processed
by the system shown in Figure 2. The location in-
formation flows in the reverse direction of a request
(not shown in the figure).

As outlined in Section 5.3, we differentiate be-
tween simply giving someone access to a resource
and also allowing the recipient of the access right to
re-forward this access right. In the figure, we denote
the first type of giving access with “access” arrows
and the second type with “delegation” arrows.

In the initial step (not shown), entities in the sys-
tem give access rights to other entities and they del-
egate policy decisions, using either ACLs or certifi-
cates:

The administrator of the People Locator service
sets up a “location policy ACL” that delegates to
individual users the right to decide about their lo-

cation policy. The administrators of the calendar
service and the Device Locator service each gener-
ate a “policy checking ACL” that delegates the lo-
cation policy check to the People Locator service.
They also establish each a “trust ACL” saying that
it is up to a located user to specify which services
she trusts.

The Wavelan service is not administrated by the
same entity as the People Locator service and the
calendar service. Therefore, the administrator of
the Wavelan service decides to have it implement
its own location policy checking, thus he does not
set up a policy checking ACL, but a location policy
ACL. In a trust ACL, he delegates the trust deci-
sion for a device to the public key of the device.
The owner of the device uses the device’s private
key to re-delegate these rights to himself in a signed
certificate.

A located user creates various certificates to ex-
press her location policy. As mentioned in Sec-
tion 5.3, she can either give only the rights to her
location information to some other user or she can
also delegate the right to re-forward these rights to
another user and thus have this user decide about
her location policy. The located user also certifies
that she trusts the various location services. By do-
ing so, she effectively gives these services the right
to get her location information

In this work, we do not address the question
where the certificates generated above are stored
in our system. A possibility is to store them in a
repository from which services attempt to retrieve
the certificates required for granting access to a re-
quest. Another possibility is to require a client to
keep certificates issued to her with her. When issu-
ing a request, he needs to present all the required
certificates together with the request. It is impor-
tant to note that since certificates are signed, there
is no need to keep at them at a centralized or trusted
service.

Given this setup, a request is processed as follows:

1) The locating user sends a signed request to the
People Locator service inquiring about the location
of a particular located user.

2) The People Locator service checks the located
user’s location policy by building a delegation chain.
The first, element, in the chain is the location policy
ACL giving the located user access to her location
information, the second one a certificate issued by
the located user to the locating user. In general,

28

all the entries in the delegation chain need to give
the right to the located user’s location information
to the next entry entry in the chain and each entry
(with the exception of the last one) also needs to
give the next entry the right to re-delegate this right.

3) If the delegation chain can be established, the
request is forwarded to the calendar service and the
Device Locator service.

4) The calendar service and the Device Locator
service each build a delegation chain from their pol-
icy checking ACLs to the People Locator service to
verify whether the People Locator has been given
the task to perform the policy checking.

5) The calendar service and the Device Locator
service each build a delegation chain from their trust
ACLs to the located user and from there to the Peo-
ple Locator service (using the trust certificate issued
by the located user) to verify whether the People Lo-
cator service is trusted by the located user and thus
should be given access to the located user’s location
information.

6) The calendar service processes the request (not
shown in the figure).

7) The Device Locator service determines the
wireless devices the located user is currently car-
rying with her. For each device, a request is sent to
to the Wavelan service.

8) The Wavelan Locator does its own policy
checking. Similar to 2), it builds a delegation from
its location policy ACL to the locating user.

9) The Wavelan service builds a delegation chain
from its trust ACL via the located user to the De-
vice Locator to verify whether the Device Locator
is trusted.

10) The Wavelan Locator processes the request
(not shown).

6.3 Example Certificates

In this section, we present actual certificates and
ACLs used for implementing the trust and delega-
tion mechanisms outlined in Section 5. We need a
language for defining ACLs giving rights to public
keys and for certificates re-delegating these rights.
In addition, we also require a tool that, based on
these ACLs/certificates, decides whether a request
for location information should be granted access.
SPKI/SDSI defines such a language and also pro-

vides tools to run the access control check. We now
present a representative sample of the actual certifi-
cates in our location system. More specifically, we
discuss the usage of SPKI/SDSI certificates for del-
egation of policy checks, location policy decisions,
and trust decisions. Similarly, SPKI/SDSI certifi-
cates can also be employed for specification of the
set of contacted services.

6.3.1 Delegation of Policy Check

In step 4) of the example scenario discussed in Sec-
tion 6.2, the Device Locator service checks whether
it has delegated the policy check to the People Loca-
tor service. This delegation is expressed in the ACL
given below. It is kept at the Device Locator service.
The ACL states that user location policy checking
(which is described after the keyword tag and given
the name policy check user here) is delegated to
the People Locator service, more specifically to the
owner of the public key pub_key:people locator.
Note that pub _key:people locator would be re-
placed by the actual public key of the People Loca-
tor service in a real implementation. The keyword
propagate states that the People Locator service is
allowed to delegate the given right to some other
entity by issuing a certificate.

(acl
(entry
(pub_key:people_locator)
(propagate)
(tag (policy_check user))
)
)

Given the ACL above and a request for location
information signed by the People Locator service,
the Device Locator service will conclude that the
People Locator service has run the location policy
check and that the user is allowed to get the re-
quested location information.

6.3.2 Policy Check

In the next examples, we show how the People Lo-
cator service lets located users specify their location
policy and how policy checking is implemented. In
the example scenario, this verification corresponds
to step 2). For each located user, the People Lo-
cator service keeps an entry in its local ACL that
delegates the user’s location policy decision to that
particular user. In the example below, user Alice’s
location policy decision is delegated to Alice. Note

29

that Alice is given only the right for her location
policy, but not for other people’s location policy.
This condition is expressed by including alice in
the tag section.

(acl
(entry
(pub_key:alice)
(propagate)
(tag (policy alice))
)
)

In the certificate below, Alice (issuer) gives Bob
(subject) access to her location information. Note
that a certificate has to be used for this delegation
(since it is given out to Bob) and that the certifi-
cate has to be accompanied by Alice’s signature (not
shown here). Bob can locate Alice only if she is
either in Wean Hall or in Room 1234 in Doherty
Hall and on Monday and Tuesday between 8am and
12pm and between 1pm and 6pm. In addition, Al-
ice delegates only a subset of her access rights to
Bob, that is, he gets only coarse-grained access to
her location information.

(cert
(issuer (pub_key:alice))
(subject (pub_key:bob))
(propagate)
(tag
(policy alice
(* set (* prefix world.cmu.wean)
(world.cmu.doherty.room1234))
(monday
(* set
(*# range numeric
(ge 800) (1le 1200))
(* range numeric
(ge 1300) (le 1800))))
(tuesday
(*
(*

(* set

set

range numeric

(ge 800) (le 1200))
range numeric

(ge 1300) (le 1800))))

(*

)

coarse-grained))

Given a location request signed by Bob and the
ACL and certificate above and if the location and
time constraints are met, the People Locator ser-
vice will conclude that Bob is allowed to get coarse-
grained location information about Alice.

Note that as explained in Section 2, Alice might
decide not to give Bob the right to forward his access
rights to some other person. She would then omit
the propagate entry in the certificate.

Room location policies look similar to user loca-
tion policies. An example tag section is given below.

(tag
(room_check wean.8220
(* set (alice) (bob))
(* set (monday
(* range numeric (ge 800)
(le 1700)))
anonymized)))

There are three differences: First, the name of the
located user is replaced by the name of the queried
room. Second, the set of locations is replaced by a
set of users. A room query will return only people
listed in this set. Third, there are three granular-
ity levels: unrestricted specifies that a querying
user is allowed to get the actual names of the peo-
ple in the room, anonymized states that a querying
user gets only the information that someone is in
the queried room, and policy indicates that infor-
mation should be returned only if the located user
grants this information flow in her user location pol-
icy. As explained in Section 2, we do not expect the
owner of a room to have the right to re-delegate his
access rights, so the certificate would not include a
propagate entry.

For user location policies, we currently constrain
information access based on the identity of the lo-
cating user, the current time, and the current loca-
tion of the located user. There are additional con-
straints that might be of interest when formulating
a location policy. For example, the location prefer-
ences of a located user could depend on the task she
is currently executing (“I do not want to be located
when I am doing something important.”) or the role
she currently is in (e.g., police officer on duty vs.
police officer off duty). These task/role constraints
could be added to the tag section, in addition to
or instead of the time constraints. A trusted entity
would then have to determine the current task/role
of a located user so that it can be taken into account
for access control.

As mentioned in Section 6.1, SPKI/SDSI sup-
ports the concept of name certificates to delegate
rights to entire groups of people. We now present
an example in which access to location information
is given to a group of people without having to list

30

each group member explicitly in the delegation cer-
tificate.

Alice decides that all her friends should get
coarse-grained access to her location information.
She first has to define who her friends are. For each
of her friends, she issues a name certificate assigning
the name friend to this friend. If Bob is her friend,
she would release the following certificate:

(cert
(issuer (name pub_key:alice "friend"))
(subject (pub_key:bob))

)

To give all her friends coarse-grained access to
her location information, Alice releases the following
certificate:

(cert
(issuer (pub_key:alice))
(subject (name pub_key:alice "friend"))
(propagate)
(tag (policy alice ...
)

)

The subject in the certificate above is no longer
a public key, but a name (bound to a public key).
Note that the issuer of the certificate delegating ac-
cess rights and of the name certificate do not have to
match. For example, Alice could give access rights
to Bob’s sister, whereas the name certificate binding
the public key of Bob’s sister to the name sister
would be created by Bob.

6.3.3 Trust

In order to actually deliver location information to
the People Locator service, a trusted service requires
a certificate from the located user or the owner of
a room saying that she trusts the service requesting
the information (or the entire organization). Next,
we give an example for such a certificate. This cer-
tificate is used in step 5) of the example scenario.
There also needs to be a corresponding ACL stored
at the People Locator service (not shown here).

(cert
(issuer (pub_key:alice))
(subject: (pub_key:people_locator))
(tag (trust alice))

)

7 Implementation Status and
Deployment Issues

We have implemented a subset of the location sys-
tem shown in Figure 1. The system consists of the
People Locator service and a location service that
proxies to SCS’s centralized calendar system to use
it as source for location information. We are cur-
rently working on integrating a Wavelan-based lo-
cation service into our system. Authentication of
services to clients and confidentiality of information
is achieved with SSL-based connections. Access con-
trol is entirely based on SPKI/SDSI. Location infor-
mation and SPKI/SDSI certificates are transmitted
between services using the Aura APIL which is a
protocol running over HT'TP and which exchanges
messages encoded in XML.

Integrating a service based on a new kind of lo-
cation technology into our location system requires
the following steps: The service has to be extended
to support the Aura API and SSL. As an access
control mechanism, it needs to be able to validate
a SPKI/SDSI certificate chain. The administrator
of the system needs to establish local ACLs and, if
desired, delegate the policy check to some other ser-
vice. Finally, the new service needs to be advertised
to users so that they can specify whether it should
be used for their queries and whether they trust it.

In our current solution, digital certificates have to
be created with a command-line tool. For further
deployment of our location system, we need to build
a graphical user interface that makes certificate gen-
eration transparent to the user of the system. In ad-
dition, we also require a certificate repository and a
mechanism for automated building of the certificate
chain needed for an access control check. Finally,
we need to investigate how current authentication
mechanisms such as Kerberos can be integrated into
our system.

8 Related Work

Several location systems, all of them based on only
one location technology, implemented only within
one administrative entity, and/or not addressing the
various security issues mentioned in this paper have
been proposed [2, 6, 11, 13]. Notable exceptions
are the location systems designed by Spreitzer and
Theimer [12] and Leonhardt and Magee [9].

31

Spreitzer and Theimer’s location system [12] is
based on multiple technologies and they employ
“User Agents” for privacy control. Each user has
her personal agent that gathers location informa-
tion about her and that processes requests for this
information. It is up to this agent to implement
access control. The system is designed to work in
an environment with different administrative enti-
ties, although the actual implementation runs only
within a single entity and the authors do not men-
tion how users specify services they trust. For room
queries, the system allows users to register with “Lo-
cation Brokers”. As an important difference from
our system, the amount of information and the users
granted access to room queries is determined by the
located user, not the “owner” of the room.

Leonhardt and Magee [9] also address security
considerations. Based on the observation that user
queries can be implemented by a series of room
queries and vice versa, the authors argue that ac-
cess control for both types of queries needs to be
consistent. The authors propose an extension to
the matrix-based access control scheme to imple-
ment this requirement. As outlined in Section 2,
we believe that having consistent user and location
policies is difficult to achieve when these policies
are established independently of each other. Hav-
ing them establish in a synchronized way is difficult
since a located user and the owner of a room may
have completely different views about the kind of
access control required. Unfortunately, Leonhardt
and Magee do not discuss how policies are estab-
lished in their system.

SPKI/SDSI certificates have already been em-
ployed in some other systems for access control. For
example, Maywah [10] describes how SPKI/SDSI
is used for access control in a Web client. How-
ell and Kotz [7] present three example applications
that rely on SPKI/SDSI certificates; a Web server,
a database, and a proxy.

Similar to SPKI/SDSI, KeyNote [4] and its pre-
decessor PolicyMaker [3] also provide a language
for specifying access control policies and a tool for
checking whether a request should be granted ac-
cess. As in the case of SPKI/SDSI, public keys
are authorized directly. KeyNote does not support
name certificates; it is up to the application to verify
the binding between a name and a public key (i.e.,
the public key corresponding to the private key used
for signing a request). In addition, KeyNote does
not allow restriction of delegation.

9 Conclusions and Future

Work

In this paper, we have analyzed the security require-
ments of a secure location system and presented the
design of such a system. Our solution relies on three
key concepts: trust for dealing with misbehaving
services, confidence values for dealing with inaccu-
rate information and information retrieved from un-
trusted services, and delegation for delegating policy
decisions and policy check decisions to other entities
in the system.

We have been able to formulate all of our policy,
trust, and delegation decisions using a single data
structure: SPKI/SDSI certificates. Therefore, these
certificates provide a high degree of flexibility. A
ubiquitous computing environment poses new chal-
lenges on access control that cannot be easily satis-
fied by conventional mechanisms. We believe that
due to their flexibility, SPKI/SDSI certificates are
a promising approach and deserve further investiga-
tion on their usability in such environments.

In future work, we want to offer access to our
location system to a bigger community of users, so
that we can incorporate their feedback on usability
into our system.

References

[1] http://www.cs.cmu.edu/ aura/.

[2] P. Bahl and V. Padmanabhan. RADAR: An In-
Building RF-Based User Location and Tracking
System. In Proceedings of Infocom 2000, pages 775—
784, March 2000.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentral-
ized Trust Management. In Proceedings of 17th
IEEE Symp. on Security and Privacy, pages 164—
173, 1996.

M. Blaze, J. Ioannidis, and A. Keromytis. The
KeyNote Trust-Management System Version 2.
RFC 2704, September 1999.

C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI Certificate The-
ory. RFC 2693, September 1999.

A. Harter and A. Hopper. A Distributed Location
System for the Active Office. IEEE Network, 8(1),
January 1994.

J. Howell and D. Kotz. End-to-end authorization.
In Proceedings of OSDI 2000, pages 151-164, Oc-
tober 2000.

32

(8]
[9]

[10]

[11]

[12]

[13]

L. M. Kohnfelder. Towards a Practical Public-key
Cryptosystem. MIT S.B. Thesis, May 1978.

U. Leonhardt and J. Magee. Security Considera-
tions for a Distributed Location Service. Journal
of Network and Systems Management, 6(1):51-70,
March 1998.

A. Maywah. An Implementation of a Secure Web
Client Using SPKI/SDSI Certificates. Master’s the-
sis, MIT, 2000.

N.B. Priyantha, A. Chakraborty, and H. Balakr-
ishnan. The Cricket Location-Support System. In
Proceedings of Mobicom 2000, August 2000.

M. Spreitzer and M. Theimer. Providing Location
Information in a Ubiquitous Computing Environ-
ment. In Proceedings of SIGOPS 93, pages 270—
283, Dec 1993.

A. Ward, A. Jones, and A. Hopper. A New Location
Technique for the Active Office. IEEE Personal
Communications, 4(5):42-47, October 1997.

Network Aware Data Transmission with Compression

Ningning Hu *
Computer Science Department
Carnegie Mellon University
(hnn@cs.cmu.edu)

Abstract Network aware application can achieve
better performance by dynamically adapting to net-
work service changes. The key question for network
aware application development is how to obtain in-
formation about the performance of different system
module. In this paper, we consider an important
category of network aware application — Compressed
Data Transmission. Compression can reduce network
transmission time by reducing the size of data to be
transmitted, but on the other hand it increases local
processing overhead. The tradeoff between increased
network processing and decreased local processing is
critical to application’s decision on how to transfer
data. In this paper, we present our model to make
such decision and discuss the methods of detecting
network resources and predicting compression per-
formance parameters. Experimental data on local
testbed is presented to evaluate our methodology. We
also discuss an improved model on how to deal with
the overlap between network transmission and local
processing, which has the potential to improve the
application performance.

1 Introduction

The Internet is well known for its unpredictable per-
formance, people expect to experience different level
of Internet service in different places and at different
times. When users can choose from a number of sites
providing the same service, which is often the case on
current Internet, they generally have no idea which
one is the best to choose. Network Awareness is one
of the techniques to deal with these problems. It en-
ables an application to change its behavior according
to network performance, allowing it to achieve con-
sistent performance over a diverse sets of networks
and under a wide range of network conditions.

In this paper, we focus on an important category of
network aware application — Compressed Data Trans-
mission. This type of application has the ability to

*Ningning Hu is advised by Prof. Peter Steenkiste.

compress data before sending it out with the poten-
tial to reduce network transmission time and reduce
the total application elapsed time. An example sce-
nario in which Compressed Data Transmission can
be useful is as follows. Suppose we are leaving for a
conference by air. Just before boarding, we want to
transfer a big file back to our office machine through
a wireless LAN. But at the same time, another plane
arrives, a lot of people get off. They start using all
kinds of mobile communication devices to send and
receive voice and digital messages, which saturates
our wireless transmission channel. Under this condi-
tion, compression may be an important tool to help
us in finishing our work without missing the flight.

Compression can reduce the transmission time by
reducing the amount of data to be transferred. But it
also increases the local processing time by introducing
the compression overhead. Whether or not an appli-
cation can benefit from data compression depends on
the tradeoff between the reduction of network trans-
mission time and the increase of local processing. In
another way, we can think the whole procedure of
data transmission as composed by two data flow pipes
(Fig. 1). The first one is the data flow from local host
to network interface. The rate of this flow is deter-
mined by the host processing capability. The other
pipe is the data flow on the network. The rate of this
pipe, that is, the data transmission rate on the net-
work, is determined by the available bandwidth. The
performance of the two pipes together determines the
performance of the application. For example, in Fig,.
1(a), the available bandwidth is large enough, and
the network pipe could transmit data faster than the
host pipe. Under this condition, the performance of
the application is largely determined by the host pipe
rate. Similarly, in Fig. 1(b), the application perfor-
mance is determined by network pipe rate. Determin-
ing which one is the bottleneck during the execution,
need some techniques to calculate the concrete net-
work transmission time and local computation time.

In this paper, we describe our methods to detect
and predict network performance and compression

33

i/ computation pipe (bottleneck)

transmission pipe

computation pipe

transmission pipe (bottleneck)
(b)

Data flow pipes involved in Compressed Data Transmis-
sion. In (a) the bottleneck is on the local computation
pipe, while in (b) the bottleneck is on the network.

Figure 1: Data flow pipes

overhead. A simple model using these techniques to
prediction the application performance is presented.
Experiment is carried out to evaluate the perfor-
mance of the simple model. We will see that, al-
though in most cases the simple model could make
the right judgment for application, the difference be-
tween predicted values and measured values is signifi-
cant sometimes. Analysis of the prediction error tells
us that the overlap between different types of pro-
cessing modules must be considered to make a correct
judgment. Based on these considerations, we propose
an improved model, which explicitly considers the ef-
fect of different performance bottleneck.

This paper is organized as follows. Section 2 ab-
stracts Compressed Data Transmission into a sim-
ple application prototype, and discusses the detailed
techniques to predict compression performance and
network performance. In Section 3, experimental
data and analysis are presented to show the appli-
cation performance. Section 4 is an extended discus-
sion of the experimental data, and the modeling of the
overlap between network data transmission and local
processing, which can improve the prediction perfor-
mance. Section 5, 6 and 7 talks about the related
work, conclusion and future works, respectively.

2 Architecture

client server

Compression
data IDecision

Module IDecompression

—
Module
—

Compression| | Network
Module Module

Figure 2: Application architecture

The application used in our study is a simple data
transmission application (Fig. 2). It has two func-
tions: compression and transmission, with the coop-
eration of the following three modules:

1. Compression Module: provides the functionali-
ties for data compression, and is also responsi-
ble for providing compression algorithm related
parameters, i.e., compression speed and compres-
sion ratio.

2. Network Module: monitors the network perfor-
mance properties and provides necessary infor-
mation for the application, such as awvailable
bandwidth.

3. Compression Decision Module: makes the fi-
nal decision whether the application can benefit
from data compression.

To send out a large amount of data, the appli-
cation first splits it into multiple chunks, and pro-
cesses each chunk separately. For each chunk of
data, it first calculates the total execution time with
and without compression using the parameters from
Network Module and Compression Module, compares
them and makes the decision how to transfer the
data. Network Module provides the awvailable band-
width information, which is used to compute the net-
work transmission time; Compression Module main-
tains the empirical data related with the specific com-
pression algorithm — compression speed and compres-
siton ratio, which are used to calculate the local com-
pression time.

If the application decides not to use compression,
the original data will be simply sent out. Other-
wise, it will be ”forwarded” to the Compression Mod-
ule, where it is compressed, before being sent to the
server. During that procedure, a simple application

34

repeat {
COMPRESSED_DATA_TRANSMISSION(data);
} until (all data is sent out);

COMPRESSED_DATA_TRANSMISSION(data)

{

compr_speed = GET_SPEED();

compr_ratio = GET_RATIO();

cur_bw = GET_CUR_BW/();

if (COMPRESSED_TRANSFER(data, cur_bw,
compr_speed, compr_ratio)){
COMPRESS(data, &compr_data);
SEND(compr_data);

}

else {
SEND(data);

}

Figure 3: Application pseudocode

protocol is used to tell the server the transmitted data
needs decompression. The pseudocode for the appli-
cation is shown in Fig. 3.

2.1 Compression Decision Module

Different applications may use different ways to make
decision about whether or not to use compression.
Some applications may choose to use compression as
long as the total execution time for the data transfer
with compression is smaller than transmission time
without compression, with the objective of reducing
the load on the network. Other applications focus
on achieving best data quality, so they try to avoid
using compression as long as the data transmission
without compression is below some threshold, since
some compression algorithm may lose information,

No matter what policy the application uses, it must
calculate the total execution time for both the com-
pressed mode and the uncompressed mode. In this
paper, for the uncompressed mode, the total execu-
tion time is simply the data transmission time, which
can be computed as:

data_size (1)
available_bandwidth
where data_size is the size of the data to be trans-

mitted by the application, and available_bandwidth
is the available bandwidth of the network link.

comm_time =

The overhead involved in the data transmission
with compression is computed as:

total_time = compr_time + send_time (2)
. data_size
compr_time = — (3)
estimated_compr_speed
. compr_stze
dt = 4
senatime available bandwidth)
. data_size
compr_size = - - (5)
estimated_compr_ratio
where estimated_compr_speed and

estimated_compr_ratio are the two parameters
provided by Compression Module.

The above methods to predict the application per-
formance shown in formula (1) - (5) is denoted as
simple model in the following sections.

2.2 Compression Module

Our prototype uses the general purpose lossless com-
pression algorithm - gzip[7] in the Compression Mod-
ule. Gzip is a standard compression utility commonly
used on Unix operating system platforms. It does not
consider domain specific information and uses a sim-
ple, bitwise algorithm to compress file. It can work in
strearn mode, that is, at the time that the compres-
sion starts, not all data has to be available. In our im-
plementation, we simply incorporate the gzip library
into our application code. The performance parame-
ters that this module needs to provide are compres-
sion speed and compression ratio. We use empirical
method to get their value; see Section 3.2 for details.

2.3 Network Module

We use Remos in the Network Module to monitor and
predict network performance. In the following, "net-
work performance” means network bandwidth avail-
able for the application.

Remos (Resource Monitoring System)[3, 4, 15] is
a network performance middleware service developed
at CMU. It provides a scalable, flexible and portable
network monitoring system for applications in dis-
tributed computing environments. Remos is com-
posed of two parts: Modeler and Collector. The Mod-
eler implements the Remos API, which enables appli-
cations to communicate with the Collector, query the
interested information, and transform the data from
the Collector. The Modeler also integrates some pre-
diction services [4], allowing history-based data col-
lected across the network to be used to generate the

35

predictions needed by a particular user. The Col-
lector is responsible for the network performance in-
formation collection, using SNMP[18, 19] or bench-
marks. The network performance information in-
cludes network topology, link latency, link capacity
and link available bandwidth. Several types of collec-
tors are implemented in Remos. They are the SNMP
Collector, WAN Collector, Bridge Collector and Mas-
ter Collector [15]. Different collectors work in differ-
ent network environment and provide different mon-
itoring methods.

Our experiments are carried out on a local LAN
testbed. We use the SNMP Collector[15] to get the
available bandwidth information. In a LAN, the
SNMP Collector depends on SNMP agents[19] to col-
lect information. SNMP agents can provide the in-
formation about the total amount of input data and
output data from each network interface. By keep-
ing track of these values, the SNMP Collector can
estimate the average throughput of the link between
two end hosts during the measurement period. To-
gether with the knowledge of the link capacity, which
can also be obtained from SNMP agents, it will be
able to figure out the available bandwidth. Fig. 4
illustrates this method.

Client Server

SNMP

SNMP [~ _
\ -—1

Figure 4: Available bandwidth prediction by Remos
SNMP Collector

To predict the available bandwidth for the near fu-
ture, the SNMP Collector periodically queries SNMP
agents and keeps a record history (associated with a
history period time slot). It uses the average of the
history record in the history period as the prediction
for available bandwidth.

3 Experiment on the Simple
Model

In this section, we discuss our evaluation of the per-
formance of the simple model. We first give give some
data about the performance of compression module
and network module, then discuss the experiments
for data transmission with and without compression.
We will see that the simple model could give very

accurate judgment on whether or not to use com-
pression. But we also notice the significant difference
between the predicted values and the measured val-
ues, which we think is due to the defect of the simple
model. In Section 4, we explain the causes of the
prediction error and propose an improved model for
making predictions.

3.1 Experimental Setup

Experiments are carried out on our local lab testbed.
Fig. 5 shows our experiment configuration. There
are four host machines, the two slashed squares are
the application client and the application server, and
the two grid squares are the competing client and
the competing server. The two circles are routers,
and the link between the routers is the bottleneck
link in this simple network; its nominal transmission
capacity is 10Mbps. The application client and the
application server are executed on two Digital Unix
machines. The competing client and the competing
server are used to create the competing flow so as
to change the available bandwidth on the link. The
application uses a single TCP connection to transfer
data. While the traffic generated by the competing
hosts (also called competing flow) uses UDP packets
since it is more accurate to predict the available band-
width when the background traffic is a UDP flow. A
SNMP Collector is deployed to monitor the available
bandwidth.

In the experiment, we focus on the comparisons of
four pairs of parameters:

1. predicted_total_time and total_time

2. predicted_compr_time and compr_time
3. predicted_send_time and send_time

4. predicted_compr_size and compr_size

Here, predicted_total_time, predicted_compr_time,
predicted_send_time and predicted_compr_size are
the values computed according to formulas (2) - (5).
Total_time, compr_time, send_time and compr_size
are the corresponding measured values in our exper-
iment.

3.2 Compression Speed and Compres-
sion Ratio

Compression speed is related to the data format and
the machine type. The relationship between applica-
tion performance and host machine parameters is a
research topic that is outside of the scope of this pa-
per. During the experiments, we keep using the same

36

Application Client

N\

B

Application Server

/

Competitive Client

SHNE Collector

Competitive Server

The four squares are host machines, the slashed squares denote the application client and the application server, and

the two grid squares are the competing client and the competing server. The two circles are routers.

Figure 5: Experiment setting

Compression Speed Compression Ratio

Average (MBps) | Std. Dev.(MBps) | Average | Std. Dev.
XT 0.84569 0.10470 4.0676 1.2047
PS 0.77839 0.18261 3.8816 2.5839
Binaray 0.65497 0.04605 2.0746 0.2169
PDF 0.87562 0.07125 1.1856 0.03035
JPG 0.83335 0.01509 1.0075 0.0099

Table 1:

machine for all the compressions, and make sure that
our application is the only workload. This way, we
can think of compression speed as a function of com-
pression algorithm. The compression speed is also
affected by compression buffer size, but we omit, this
factor by using the same size of buffer, which is 16KB.

The method to get the compression speed and com-
pression ratio is as follows. Take the same type of
data, compress them using gzip and record the mea-
sured value. By data type, we mean the type of data
file, for example, binary code file, postscript file, text,
file, JPEG file, etc. Table 1 presents the empirical
data that we get using this method. For each type of
data, we randomly download 100 - 110 files from the
Internet, and for each data file, repeat the same com-
pression procedure six times. From Table 1, we can
see the standard deviation is quite small, which make
us believe file type is a reasonable way to differentiate
data when considering the general purpose compres-
sion algorithm — gzip. In our experiment, the source
data is a big tar file of a collection of binary files,
and we simply use the value from Table 1, indexed

Compression speed and compression ratio of gzip with 16KB compression buffer

by data type (file type).

3.3 Available Bandwidth

In the experiment, the application depends on Remos
to provide available bandwidth information. Clearly,
the accuracy of the network performance information
can affect the final prediction accuracy significantly.
We first use a simple experiment to get an idea of the
accuracy of the Remos information.

Fig. 6 shows the experimental results. In the
experiment, we keep monitoring the available band-
width of the network path between two machines on
our testbed, which generally carries no traffic. The
measured value is plotted using the solid line in the
figure. At around 6 second (competing flow starts in
Fig. 6), a 6Mbps UDP flow is added to generate the
competing traffic. We can see, with the introduction
of competing traffic, Remos starts reporting reduced
available bandwidth. After around 4 seconds, the re-
ported value gets stable, with the final value around
3.4Mbps. We think it is reasonable since the link
capacity is set as 10Mbps.

37

Bandwidth (bps)
>
T

available bw = 3.4Mbps o~
—— _/
|

|
|competing flow ends

2 I I I I I
0 10 20 30 40 50 60

Time (second)

competing flow starts

Figure 6: Accuracy of Remos available bandwidth
prediction

The reason that we use UDP traffic instead of
TCP traffic as the competing flow is that UDP traffic
sender side throughput is not affected by other traffic
on the same path. In our experiment, we need differ-
ent rates of competing traffic, so we can easily control
its traffic throughput.

3.4 Application Performance

To evaluate application performance, we transfer the
same amount of data with compression and without
compression, recording the execution times.

repeat {
COMPRESS(data, &compr_data);
SEND(compr_data);

} until (all data is sent out);

did experiments on data transmission with and with-
out compression separately, measuring and compar-
ing their execution time. The experiment pseudocode
is shown in Fig. 7 and Fig. 8; the data is split into
multiple chunks, and it process one chunk each loop.
We believe this is the most general way of transfer-
ring large data set. We repeat the same experiment
20 times with the size of the data involved in network
transmission increased by 1MB each loop, where the
data size starts from 1MB, and the data source is a
large binary code file. We take the averaged value
as the final measurement. We repeat the same ex-
periment, with competing traffic changing from 0 to
8Mbps.

Fig. 9(a) shows the predicted and measured total
execution time for both in compression and in un-
compression mode. Although in some cases, the ab-
solute error in this figure is not minor, the predicted
relationship between the elapsed time with and with-
out compression is the same as that of the measured
values. When the available bandwidth is less than
7Mbps, compression mode is faster than uncompres-
sion mode; and the uncompression mode shows its ad-
vantage when the available bandwidth is bigger than
7Mbps. That means that the application in Section
2 would make the correct decision.

Fig. 9(b) shows the application measured local
compression time and the network transmission time
when we use compression in data transmission. We
can see that the local compression time does not show
significant changes, which is easy to understand, since
it is not affected by the available bandwidth. But the
network transmission time looks strange: it does not
change very much as the available bandwidth changes
from 3Mbps to 10Mbps, unlike the predicted value,
which decreases proportionally with the increase of
available bandwidth. The reason, which will be dis-
cussed in detail in Section 4, is that with the inter-

leaving of local compression and network transmis-
sion, there exists execution overlap between the Com-

Figure 7: Pseudocode for data transmission with pression Module and the Network Module’ and the ap-

compression

repeat {
SEND(data);
} until (all data is sent out);

plication measured network overhead is actually not
the real data transmission time. That basically in-
validates the simple model shown in formulas (1) -

(5)-

3.5 Breakdown of Compressed Data
Transmission Time

Figure 8: Pseudocode for data transmission without In Fig. 9, each data point is the average value of 20

compression

experiment results. In this section, we illustrate the
detail of a single experiment by showing the perfor-

In order to know whether the application would mance of each module of the application, in order to
make the right decision for using compression, we get an idea where the error comes from.

38

T T T
—-©- measured with compression
O predicted with compression
ot —&- measured without compression H
O predicted without compression

Total Execution Time (s}

25

T T T
—-©- measured local compression fime
O predicted local compression time
—&- measured network fransmission fime
O predicted network ission time

Execution Time (s}

o
" \ D

6
Available Bandwidth (Mbps)

(a)

2 3 4 5 6 7 8 9 10
Available Bandwidth (Mbps)

(b)

(a) gives the change of total execution time for data transmission with (circle points) and without (square points)
compression, both measured (solid line) and predicted (dot line) values are plotted; (b) is the breakdown the time of
data transmission with compression into local compression (circle points) and network transmission (square points)

Figure 9: Application performance

Fig. 10 shows the experimental results for the com-
pressed data transmission, with 6Mbps of UDP com-
peting traffic. Each point in this figure represents
one experiment. The same experiment is repeated
52 times, with the transmitted data size increased
by 16KB each time. The four figures show the pre-
dicted and measured values for total execution time,
compression time, sending time, and data size after
compression. Circle points are predicted value, and
star points are measured value. The prediction for
compression time is very accurate (see the second
and third figure). It shows big difference only in two
cases, which can be explained by temporary host sys-
tem perturbations. Prediction for data transmission
time shows a somewhat, large difference with the mea-
sured value, we will discuss it in Section 3.6. But the
overall error is not significant, as shown in the first
figure in Fig. 10. This figure shows that the appli-
cation prediction error mainly comes from the data
transmission part.

3.6 Analysis

In Fig. 10, we know its error mainly comes from the
error of network transmission time. In this section,
we systematically evaluate the prediction error of the
simple model by making a more complete exploration
of the experiment setup. That is, we change the pa-
rameters for Compression Module and Network Mod-
ule, repeat the same experiment, and measure the

prediction errors.

Fig. 11(a) - (d) shows the errors of the predic-
tion model. In Fig. 11(a) and (c), we change the
throughput of UDP competing traffics, from 2Mbps
to 8Mbps, while keeping the other parameters con-
stant. Fig. 11(a) is the absolute error and Fig.11(c)
is the corresponding relative error for total execution
time, compression time and sending time.

The prediction error for compression time is less
than 4%, and the errors show no relationship with the
available bandwidth, which is easy to understand.

Fig. 11(c) shows that the prediction error for the
total execution time mainly comes from that of the
sending time prediction. Actually, the predicted val-
ues of sending time are generally 2-4 times the mea-
sured values (this big absolute error only show a small
relative error in Fig. 11(c) is because the data send-
ing time is only small part of the total execution time,
around 25%). This is because when the socket API
sends out data, it first copies the application data
into a kernel buffer, and returns after the copying is
finished, regardless of whether the transmission has
finished. So when we try to measure the process-
ing time of the socket API call, what we get is actu-
ally the data copying time, and not the data trans-
mission time. The application could provide data
fast enough to make socket API blocks on the socket
buffer. When the available bandwidth is high enough
(higher than 3Mpbs in Fig.11), the network system
can clear the socket buffer fast enough so that the

39

total time(s)

compr comp time(s)

send time(s)

o

w

]

size after compr

(=]

o
-
o

20
number of BULK send (BULK size = 16K)

30 40 50 60

Circle points are the predicted values, and star points are the measure value. X-axis is the number of data, with
transmitted data size increased by 16KB each time. For the Y-axis, the first figure is the total execution time
(total time) computed in formula (2); the second figure is the compression computation time (compr_time) for
formula (3); the third figure is the compressed data transmission time (send_time)in formula (4); and the last figure
shows the size of the compressed data (compr_size) in formula (5).

Figure 10: Breakdown of compressed data transmission execution time

socket API does not block.

Although when the available bandwidth is less then
4Mbps, the socket API blocks due to the slow network
transmission rate, the application will start notic-
ing the changes of available bandwidth, the error of
link capacity provided by SNMP agent will starts
contributing to the prediction error for data trans-
mission. That is, for a link with capacity 10Mbps,
the real highest throughput that the application can
achieve is actually not exactly 10Mbps, and this error
will become more and more significant when reduc-
ing the available bandwidth. That is why I see big
errors when competing flow bandwidth increases in
the second figure of Fig. 11(a).

In Fig. 11(b) and (d), we keep the competing traffic
constant, and change the chunk size processed each
loop from 4KB to 32KB The four figures show the
average difference between predicted values and mea-
sured values together with their standard deviation
for total execution time, data transfer time, compres-
ston time and compressed data size. In Fig. 11(d),
the prediction error for compression time is also very
small, which is less than 10%. And there is large
error for data sending time prediction, the reason is

similar with that of Fig. 11(c). We also notice the
prediction errors tend to reduce with the increasing
of data size per loop. It is easy to understand since
a larger data size per loop will reduce the number of
loops to process data, and fewer loop errors will be
accumulated.

4 Model the Overlap of Lo-
cal Computation and Net-
work Execution

As mentioned in the previous section, in Fig. 9(b),
when the available bandwidth is higher than 3Mbps,
the execution time with compression does not, change
very much. This result does not comply with the pre-
diction formulas (2) - (5), which says that with the
decreasing of available bandwidth, transmission time
should increase, finally increasing the total execution
time. In this section, we show that this abnormal re-
sults is due to the overlap between network transmis-
sion and local compression on the host. More specifi-
cally, if the computation time is big enough, what re-
ally matters for the total execution time is the socket

40

=

total ‘Ume diff(s)

S =

®

@

el

A

e
—o—i
—o—i

i i

|
8

°

L
3 o
T
#
#
o
B
i
"
_—
I

|
3

IS4
[

pr time diff(s) sending time diff(s)

=
——t
e
—
=
<
i

com|

=3
Y3

i i
-X104 2 3 4 5 6 7 8

Qs T T T T T T T

%

8 or]

@

g

5.5 I I I I I I I

© 2 3 7 8

4 5 6
bandwidth of competing flow (Mbps)

(a)

&~ total time.
—&— compr time
—o— sending time

diference {oercentage)

& B — s

@ 2 T
5 ol [
: bood t
S 2b B
]
8, ‘ ‘ ‘ ‘

4 8 16 32
8 : : : :
3
5. |
g 1 I ;:
2 i i i i
> 4
@ 4 8 16 32

o
[N

2

compr time diff (s}
s &
N o
T T
- b
—<—1
F——i
F——
I I

= x10A 8 16 32
@10 T T T

£

S s 1
o

@

5 o % %]
£

8_5 L L L

L
@
=3
©
[N

data size per loop (unit: KB)

(b)

25

o~ total time
= compr time
—o— sending time

20 =

o
T
I

o
T
I

diference {oercentage)

»
u

4 5 6
bandwidth of competing flow (Mops)

(©)

s
®

16 32
socket buffer size (KB)

(d)

In (a) and (c¢) , X-axis is the competing traffic throughput, and Y-axis is the prediction error of each execution
module. In (b) and (d), X-axis is data size processed per phase, and Y-axis is the prediction error for IMB data

processing. (a) and (b) show the absolute errors, (c) and (d) give the relative errors in percentage.

Figure 11: Prediction Error

buffer copying time, not network transmission time.
That is why the network available bandwidth will not
affect the application performance.

4.1 Theoretical Model

We base our analysis on the execution model in Fig.
7. It is composed of a compression-transmission loop,
where each chunk of data is first processed by a com-
putation procedure before it is sent out,

In our implementation, send() returns as soon as all
the application data has been copied into the kernel
buffer. So part of the time used for data transmis-
sion will overlap with that of COMPRESS(). Assume
tc is the time of compressing one chunk of data, ¢
is the socket buffer copying time for the compressed
data, and t, is the corresponding network transmis-

sion time. Let us denote the processing time of all
the loops as T', then this execution model can be ex-
pressed as Fig. 12.

Generally, t, starts somewhat later than the corre-
sponding #;, but the time interval is very difficult to
measure. So we simply assume that ¢5 and ¢, start at
the same time. From Fig. 12, T' can be expressed by
the following formula:

T:{n-tc+(n—1)tb+ts (6)

te+n-tg

where n is the number of loops in Fig. 7. The re-
lationship between compression time and the total
processing time in the above formula is illustrated in
Fig. 13

It is easy to see, when computation time is big
enough (t. > t; —), t5 is not the dominating fac-
tor in the total execution time. Consequently, the

thts_tb
te <ts—1p

41

J
=

th
i NN NN AW >
E tc | s |
_ T=nt +(n-1)-f, +f, (¢, =t -1L,)
- th
AN NN NN >
el &
_ T=t +nt, (I <t —t,)

_/

The grid boxes represent local computation, slashed boxes represent local data copying for data transmission, and

the line boxes represent the data transmission. The top box shows the overlap when £, > £, — #;, and the bottom

shows the overlap when #. < #; — #;.

Figure 12: Overlap between data transmission and local compression

n*ts

(n—D)ts+tb

n*th

I
I
I
I
P I
I
I
I
I
I

ts—tb e
Figure 13: Theoretical model for total execution
time, considering the overlap between network pro-
cessing and local compression

changes of network bandwidth will not affect appli-
cation performance. The following section shows the
experimental result that confirms this claim.

4.2 Experimental Setup

The high level idea of the experiment is the same
as that in Fig. 7. We keep running the same
compression-transmission loop, measure the execu-
tion time of different modules, and try to illustrate
the relationship between total execution time and
computation time. In our implementation, the com-
putation time should be controllable on a very small
time scale, and we should be able to precisely con-

trol the computation time, which is very difficult to
do for a compression module. With these implemen-
tation requirements, we replace the compression part
in Fig. 7 with a loop of simple arithmetic calculation.
The other part of the loop, send(), is implemented by
a routine socket data sending procedure.

The experimental setting is the same as that in
Fig. 5. The bottleneck link bandwidth is 10Mbps,
socket buffer size is 16KB, and each chunk of data is
also 16KB. A 6Mbps UDP competing flow is added
to change the available bandwidth. For each compu-
tation time, we repeat the computation-transmission
loop 100 times, recording the average value for com-
putation time ¢, and buffer copying time ;.

4.3 Experimental Results

Fig. 14(a) and (b) show the experimental results
without and with UDP competing flow, respectively.
The dashed line is computed using formula (6). In or-
der to calculate the theoretical value for T, we need
to know t., t3, and ts. The former two can be mea-
sured directly in the experiment. t¢ is chosen manu-
ally from the trace data. We think the measured net-
work transmission time as t; when £, is small enough,
because the computation part will be completely cov-
ered by network transmission. This method of com-
puting t, is not 100% accurate. The error, we think,
leads to the difference between measured value (trian-
gle points) and predicted value (dashed line) in Fig.
14(a). Comparing Fig. 14 with Fig. 13, we can
see that the experimental result follows our execu-
tion model very well, which we believe confirms the

42

22 T T

v measured time
averaged time
— — preditected time
201 s
i~
%
g
VA Y
18 v V7 B
A4
z R
£ XZ%W
516 N7 |
] %
§ V5V
a . Rl
L
14F W |
v VA
oAY
v oy w o,
VY v v WV
v i ’
2% v Yy Vi i
Mg v\ 7VW7 B
SH Y v
v ooWwo Vv
vv Vo v
1Y v I I I I I I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
t (s)
e
(a)

M

T T
v measured fime

averaged time
Ll — — preditected time B

r~

- o I
=) © S
T T
I L

b

Execution time (s}

I I I I I
0.08 0.1 0.12 0.14 0.16
t (s)

©

(b)

I I I
0 0.02 0.04 0.06 0.18

For both figures, X-axis is the computation time ¢, (the corresponding ¢, is the network transmission time for 16KB

data), Y-axis is the total execution time for 100 repetition of the computation-transmission loop. Triangle points
are the measured value, and dashed line is drawn according to formula (6). (a) shows the data measured without
competing traffic, and (b) shows the data measured with 6Mbps UDP competing traffic.

Figure 14: Experiment about improved model

competing BW (Mbps)

64K data transfer time (s)

estimated available BW (Mbps)

0 0.115

4.5

6 0.155

34

Table 2: Estimate the Available Bandwidth

improved model in Fig. 12.

Fig. 14 also provides a way to estimate the real
data transfer time t; (i.e., the turning point between
segment (1) and (2) in Fig. 13), which can be fur-
ther used for available bandwidth computation. For
example, fitting Fig. 14 into Fig. 13, we can get the
data as in Table 2.

Unfortunately, the estimated values does not make
much sense. We think it is due to our assumption
that socket send() (ts) starts sending data at the same
time as that of buffer copying (¢;), which may not be
true in reality. The real data transfer time should be
smaller than ¢, but the exact difference is difficult to
measure.

4.4 Analysis

With the results from formula (6) we can give an ex-
planation for the data in Fig. 9. When the available
bandwidth is over 3Mbps, the compression time is
larger than (¢s—tp). That is why the change of avail-
able bandwidth from 4Mbps to 10Mbps does not af-
fect the total execution time, and we see no changes

in the total execution time with the increase of com-
peting flow bandwidth.

With the improved model, we can improve our pre-
diction model in the following way. We can still use
formula (1) to compute the processing time in un-
compression mode. But for the compression mode,
we should use formula (6) instead of formula (2).
Given the data size and the performance parameters
from Compression Module and Network Module, it is
not difficult to calculate ¢, and ts, while ¢, can be
measured directly in the application, that is, the ex-
ecution time that the application sees from socket
function send() is actually the socket buffer copying
time.

5 Related Work

Network-aware applications are a hot research area
which has been widely discussed. This type of ap-
plication can be classified by their adaptation behav-
ior. [24] gives a discussion about adaptation mod-
els used by network aware application, and [1] pre-
sented a framework-based approach to develop net-

43

work aware applications. Some related work in the
mobile computing environment is implemented in
Odyssey [5, 16, 20, 21].

Compression before transmission and related pre-
processing techniques have been used by many net-
work applications [8, 9, 10, 14, 26]. Among them,
[8] and [14] discussed two examples which are very
similar with our work. [8] talks about the trade-off
between the compression ration and the compression
time. It presents a system to automatically and dy-
namically select the compression format to reduce
the Total Delay based on the future resource perfor-
mance. Similar to their work, which uses NWS[25] to
detect network performance, we also uses an existing
network monitoring system to help predict network
performance. But we focus on the judgment whether
or not to use compression, not compression format,
since compression does not necessarily improve the
application’s performance.

[14] talks about how to use compression techniques
in a transcoding proxy in a mobile network environ-
ment. By predicting transcoding delay, transcoding
size and network bandwidth, it determines whether
to transcode and how much to transcode an im-
age for store-and-forward transcoding and streamed
transcoding. The problem they focus on is similar to
ours, trying to decide which data to send onto the
network, but they uses a different way to monitor
and predict the network performance, which is very
similar with that of [23].

Neither of these works consider the possibility of
overlap among different processing modules. Com-
puting the total execution time as the simple arith-
metic summary of each module’s execution time, in
many cases, can impair application performance.

As a key component of the application, avail-
able bandwidth prediction is a hot research topic.
IDMaps[6] suggests a scalable Internet-wide architec-
ture, which measures and disseminates distance in-
formation on the global Internet. NWS[25] is trying
to provide accurate forecasts of dynamically chang-
ing performance characteristics for a distributed
set of metacomputing resources. SPAND|[23] de-
termines network characteristics by making shared,
passive measurements from a collection of hosts.
NIMI[17] proposes to deal with this problem from
the perspective of infrastructure, trying to provide a
large-scale, extensible platform for network measure-
ment. Besides these systems, which need complicated
configuration, simple tools like bprobe/cprobe[2],
nettimer[12], pathchar|11] and sting[22)] are also avail-
able for network performance measurement.

6 Conclusion

To adapt to the dynamic change of network perfor-
mance, applications can use compression to reduce
the network transaction time by reducing the size of
the data to be transmitted. But compression also
increases the local processing time. The trade off be-
tween network transmission time and local processing
time should be considered to make the right decision
whether or not to compress the data.

In this paper, we split the application into three
components: Compression Module, Network Module,
and Compression Decision Module. We present our
method to get the performance information about
compression and network bandwidth. Experiments
on a LAN testbed shows that our method can work
quite well. We can make accurate judgment with our
method.

Our experiment also shows that simple aggrega-
tion of processing times is not enough to predict the
total execution time accurately. We need to consider
the overlap between different types of processing. We
present a simple model to explain it. Further experi-
ment confirms our model.

7 Future Work

Future work for this paper includes studying of the
application’s behavior on WAN, since the experiment
in this paper is only carried out on the LAN testbed.

We shall also investigate techniques to get better
estimation and prediction of available network band-
width. People have already started looking at this
problem. [2, 12, 13] mention some models to do this
work. But they all have some limitations in terms
of implementation. Accurate and realistic tools to
estimate available bandwidth need more work. The
improved model discussed in this paper (formula (6)
and Fig. 13) actually provides a way to estimate the
available bandwidth, but we need to solve some diffi-
cult problems before making this model practical, as
discussed in Section 4.2.

Another important future work is to make more
complete usage of the compression algorithm. The
compression algorithm used in this paper, gzip, is ac-
tually a sophisticated compression algorithm, which
allows application to change its compression ratio dy-
namically. It will improve the application’s adapta-
tion ability to network services changes.

44

8 Acknowledgements

I would like to thank Prof. Peter Steenkiste for his
discussion and encouragement on this work; Nancy
Miller and Christopher Lin for their assistance in
setting up the experiment; Yang-Hua Chu and the
anonymous reviewers for their helpful comments on
an earlier draft of this paper.

References

[1] J. Bolliger and T. Gross. A Framework-Based
Approach to the Development of Network-Aware
Application, IEEE Transactions on Software
Engineering (Special Issue on Mobility and
Network-Aware Computing), May 1998, 24(5),
pp. 376-390.

[2] Robert L. Carter and Mark E. Crovella. Mea-
suring Bottleneck Link Speed in Packet-Switched
Networks, TR-96-006, Boston University Com-
puter Science Department, March 15, 1996.

[3] Tony DeWitt, Thomas Gross, Bruce Lowekamp,
Nancy Miller, Peter Steenkiste, Jaspal Subhlok,
Dean Sutherland. ReMoS: A Resource Moni-
toring System for Network-Aware Applications,
Technical Report, CMU-CS-97-194.

[4] Peter A. Dinda, Thomas Gross, Roger Kar-
rer, Bruce Lowekamp, Nancy Miller, Peter
Steenkiste, Dean Sutherland. The Architecture
of the Remos System, Proceedings of the Tenth
IEEE International Symposium on High Per-
formance Distributed Computing, August 2001,
California, USA.

[5] Jason Flinn, Dushyanth Narayanan and M.
Satyanarayanan. Self-Tuned Remote FErecution
for Pervasive Computing, In Proceedings of the
8th Workshop on Hot Topics in Operating Sys-
tems (HotOS-VII) May 2001, Schloss Elmau,
82493 Elmau/Oberbayern, Germany.

[6] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y.
Shavitt, L. Zhang. IDMaps: A Global Internet
Host Distance Estimation Service, To appear in
IEEE/ACM Trans. on Networking, Oct. 2001.

[7] GZIP. http://www.gzip.org/.

[8] Richard Han, Pravin Bhagwat, Richard
LaMaire, Todd Mummert, Veronique Perret,
and Jim Rubas. Dynamic Adaptation in an
Image Transcoding Proxy for Mobile Web
Browsing, IEEE Personal Communications
Magazine, December 1998.

[9] Hemy, M., Hengartner, U., Steenkiste, P., and
Gross, T.. MPEG System Streams in Best-Effort
Networks, Proc. of PacketVideo ’99, New York,
April 1999.

[10] Michael Ilemy, Peter Steenkiste, and Thomas
Gross. FEvaluation of Adaptive Filtering of
MPEG System Streams in IP Networks, IEEE
International Conference on Multimedia and
Expo 2000, New York, New York.

[11] Van Jacobson. pathchar - a tool to infer charac-
teristics of Internet paths, presented as April 97
MSRI talk.

[12] Kevin Lai and Mary Baker. Nettimer: A Tool
for Measuring Bottleneck Link Bandwidth, Pro-
ceedings of the USENIX Symposium on Internet
Technologies and Systems, March 2001.

M. Kim and B. D. Noble. Mobile network estima-
tion, in the Seventh ACM Conference on Mobile
Computing and Networking, July 2001, Rome,
Ttaly.

[13]

[14] C. Krintz and B. Calder. Reducing Delay with
Dynamic Selection of Compression Formats,
Proceedings of the Tenth IEEE International
Symposium on High Performance Distributed
Computing, August 2001, California, USA.

[15] Nancy Miller and Peter Steenkiste. Collecting
Network Status Information for Network-Aware

Applications, Proceedings of INFOCOM 2000.

[16] Brian D. Noble. Mobile Data Access, Ph.D. The-
sis, CMU-CS-98-118, May 11, 1998.

[17] Vern Paxon, Andrew Adams and Matt Mathis.
Experiences with NIMI, In Proceedings of the
Passive and Active Measurement Workshop,
2000.

[18] RFC 1157. A Simple Network Management Pro-

tocol (SNMP).

[19] RFC 1213. Management Information Base for

Network Management of TCP/IP-based inter-

nets: MIB-II.

[20] M. Satyanarayanan. Pervasive Computing: Vi-

sion and Challenges, In IEEE Personal Commu-

nications, pp. 10-17, August, 2001.

M. Satyanarayanan. Mobile Information Access,
In TEEE Personal Communications, Vol. 3, No.
1, February 1996.

[21]

45

[22]

[23]

[24]

[25]

[26]

Stefan Savage. Sting: a TCP-based Network
Measurement Tool, Proccedings of the 1999
USENIX Symposium on Internet Technologies
and Systems, pp. 71-79, Boulder, CO, October
1999.

S. Seshan, M. Stemm, R. H. Katz. SPAND:
shared Passive Network Performance Discovery,
In Proc 1st Usenix Symposium on Internet Tech-
nologies and Systems (USITS *97) Monterey, CA
December 1997.

Peter Steenkiste. Adaptation Models for
Network-Aware Distributed Computations 3rd
Workshop on Communication, Architecture,
and Applications for Network-based Parallel
Computing (CANPC’99), Orlando, January 8,
1999.

Rich Wolski, Neil T. Spring, and Jim Hayes.
The Network Weather Service: A Distributed
Resource Performance Forecasting Service for
Metacomputing, Journal of Future Generation
Computing Systems, 1999, also UCSD Technical
Report Number TR-CS98-599, September, 1998.

N. Yeadon, F. Garcia, D. Hutchison, and D.
Shepherd. Filters: Qos support Mechanisms for
Multipeer Communications, ITEEE Journal on
Selected Areas in Communications, 14(7):1245-
1262, Sept 1996.

46

Implementation of a Recursive Function as a Split-Phase
Abstract Machine

Suraj Sudhir
ssudhirQece. cmu. edu

Carnegie Mellon University
Pittsburgh PA 15213

Abstract

This report describes the implementation of recursive
functions as o split-phase abstract machine, a parti-
tioning model that we use to implement programs in
high-level languages directly on reconfigurable architec-
tures. The fibonacei function is implemented as an ex-
ample to demonstrate the technique used. As o descrip-
tion of an evolving work, this report outlines not just
the implementation of a single programming paradigm
but also broadly outlines how programs with differ-
ent constructs and coding paradigms may be effectively
transloted to hardware and placed and routed efficiently
on high-density reconfigurable devices

1 Introduction

The ability to directly compile a program in a high-
level programming language into hardware imple-
mentation (i.e., the generation of application specific
hardware) on a reconfigurable computing device is a
promising technique to achieve significant speedups in
computing performance, and therefore make general-
purpose processors redundant. Such capability would
permit a greater mainstream acceptance of the promise
of reconfigurable computing, since programmers would
not be required to re-implement code in a custom hard-
ware definition language.

Most programming constructs have equivalent log-
ical functions so that they can be directly translated
to hardware. The if-then-else function, for example, is
a simple true-false evaluation of an expression. Pro-
gramming paradigms like recursion presents problems,
however. This is because recursion is not a combina-
tional logic function but a sequential function, with
combinational logic as well as state information. This
report exarnines a framework to identify such functions
in code and automatically generate hardware that im-

47

plements the code.

Further, this report introduces preliminary efforts
on studying the problem of placement and routing of
such an implemented code on a high-density reconfig-
urable array, such as a Nanofabric [2]. A theoretical
framework that are relevant to this placement problem
is described.

2 Background

Existing reconfigurable architectures have primarily
been used for fast hardware implementation of cus-
tom hardware, embedded circuits, etc. They are how-
ever not dense enough to support fullscale program im-
plementation in hardware. Nanoscale devices provide
many orders of magnitude increase in the number of
reconfigurable gates available.

Implementing programs on such devices requires a
framework for partitioning the program into discrete
units so that they can be efficiently placed on a dense
reconfigurable device. This is because reconfigurable
devices are invariably organized as a regular structure
of configurable units.

In [2] the authors describe a Split-Phase Abstract
Machine (SAM) that allows programs to be broken up
into autonomous units. To do this, the compiler parti-
tions the program at split-phase instructions, which are
instructions of non-deterministic latency, e.g., memory
accesses. Partitioning programs along split-phase in-
structions yields collections of instructions that we call
split-phase threads (STs) which are implemented on
the conligurable units of the interconnected reconlfig-
urable network.

Our implementation framework assumes a decen-
tralized collection of STs so that a central control unit,
which would be a confliguration and communication
bottleneck, is avoided. Each ST computes a result and
based upon this result, *fires” another ST.

3 Framework

3.1 Partitioning

A compiler-directed scheme to convert code to hard-
ware needs to determine two things: the conditions
under which control is transferred from one ST to an-
other, and what constitutes the data that is transferred
between STs.

The first task can be accomplished by determining
whether the split-phasc instruction that terminates the
ST is a conditional instruction. If not, there is only one
ST to which control can be transferred.

The second task is more complex. Three pieces of
information are important. First, any computed result
that is needed by subsequent STs needs to be saved.
Also, all variables that are required by subsequent STs
needs to be saved and propagated. Finally, any vari-
able that is required by the same ST during a later
invocation (e.g. if the ST is part of a loop) needs to be
saved.

The compiler can determine this state information
using liveness analysis. All data that is live at the
split-phase instruction needs to be saved as state and
propagated to the next ST being called. While imple-
menting this scheme, an important distiction needs to
be taken into account for the case of recursive func-
tions. State information can normally be saved within
registers and communicated to subsequent STs. How-
ever, if the split-phase instruction of the current ST
happens to be a call to a recursive function, a register
will not suffice for the purpose of storing this informa-
tion.

This is because the recursive function may call itself
multiple times. As a result, saving the last value of
the live variables alone will not work. The history of
their values during each successive invocation must be
known. Therefore the state information, which corre-
sponds to the activation record in a normal software
implementation of recursion, needs to be preserved in
stacks, not registers. The state information that is pre-
served at the end of STs can be differentiated as non-
recursive or recursive state.

Therefore a compiler-directed approach would do
the following:

e Split the program along the split-phase instruc-
tions and identify the STs.

e Use liveness information at the end of each ST to
determine the state information associated with
that ST.

e If the split-phase instruction is not a recursive
function call, then annote the intermediate level

48

code so that the compiler backend generates reg-
isters to hold this data. If the split-phase instruc-
tion happens to be a recursive function call, then
the compiler backend should be instructed to gen-
erate stacks for each of the live variables at the
end of the ST.

Todo: Implement full compiler-directed scheme

3.2 Placement

The collection of STs generated using the SAM
paradigm forms a graph, with the nodes being the
STs and the arcs being the control transfers between
them. The reconfigurable device itsclf forms a two-
dimensional rectangular array.

The placement problem thus becomes one of placing
a directed graph on an orthogonal grid. [1] describes
a linear-time solution to this theoretical problem. A
uscful theorem states that a 4-connected graph with n
nodes can be placed in linear time on an nxn grid with
at most 2n+42 bends in the arcs.

This is of great significance, since the number of
nodes in the graph would be very large, and a lin-
ear time algorithm would be advantageous. Other
works [4, 3] present heuristics that build upon the work
presented in [1] in order to minimize the interconnect
length, which would aid routing of the placed graph.

Todo: Implement placement and routing algorithm.
Study problem in the case of constrained orthogonal
grids

References

[1] Therese Biedl. Embedding nonplanar graphs in
the rectangular grid. Technical Report RRR27-93,
Rutgers University, 1993.

Seth Copen Goldstein and Mihai Budiu. Nanofab-
rics: Spatial computing using molecular electronics.
In Proceedings of the International Symposium on
Computer Architecture. IEEE, 2000.

[2]

Gunnar W. Klau and Petra Mutzel. Optimal com-
paction of orthogonal grid drawings. In Proceedings
of Integer Programming and Combinatorial Opti-
mization conference, 1999.

Achilleas Papakostas and Ioannis G. Tollis. Algo-
rithms for area-efficient orthogonal drawings. Com-
putational Geometry. Theory and Applications,
9(1-2):83-110, 1998.

Verifiable Secret Redistribution
(Extended Abstract)

Theodore M. Wong *
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Suppose we have distributed shares of some secret in-
formation to a set of n servers such that we can reconstruct
the secret, or perform distributed computations, with m of
the n shares. Examples of secrets include objects in sur-
vivable storage systems [9] or multiparty signature keys
[3, 4,5, 6, 7]. If a server fails or is subverted by an adver-
sary, we may wish to redistribute the remaining shares to
anew set of n’ servers. Since we do not trust servers with
the secret itself, we wish to perform redistribution with-
out reconstruction of the secret. We also wish to verify
that the new shareholders have valid shares of the secret
(ones that can be used to reconstruct the secret).

We present a new protocol to perform non-interactive
verifiable secret redistribution (VSR) for secrets dis-
tributed with Shamir’s secret sharing scheme [8]. Suppose
we have distributed shares of a secret to shareholders in
Shamir’s (m, n) threshold scheme (one in which we re-
quire m of n shares to reconstruct the secret), and wish
to redistribute the secret to shareholders in a new (m’, n’)
threshold scheme. Furthermore, suppose we wish to avoid
reconstruction of the secret. Our VSR protocol enables
the redistribution of shares from the old to new share-
holders without reconstruction of the secret by any of the
shareholders, and guarantees that the new shareholders
have valid shares. Our protocol guards against faulty be-
havior by up to n — m of the old shareholders provided
that m > 5. Figure 1 illustrates the application of our
VSR protocol.

We base our VSR protocol on Desmedt and Jajodia’s
general redistribution protocol for linear secret sharing
schemes [1], which we specialize for Shamir’s scheme.
In their protocol, m of the n old shareholders each dis-

*This rescarch is sponsored by the Defense Advanced Rescarch
Projects Agency (DARPA), Advanced Technology Office, under the ti-
tle “Organically Assured and Survivable Information Systems (OASIS)”
(Air Force Cooperative Agreement no. F30602-00-2-0523). The views
and conclusions contained in this document arc thosc of the authors
and should not be interpreted as representing official policics, cither ex-
pressed or implicd, of DARPA or the U.S. Government.

TWe would like to thank Michacl Reiter, Chenxi Wang, and Jeannctic
Wing for their technical input and support.

§ ‘
s
[I I
VSS VSR

y
|

kY

Figure 1: Initial distribution of a secret k with Shamir’s (m, n)
threshold secret sharing scheme, followed by redistribution to
an (m’,n’) threshold scheme. Verifiable secret sharing (VSS)
schemes can be used to guarantee that the shares s1 ... s, are
valid. Our new verifiable secret redistribution (VSR) protocol
can be used to guarantee that the shares s} ... s}, are valid.

tribute ’ subshares of their shares of a secret, and the n’
new shareholders combine m subshares (one from each
old shareholder) to create new shares of the secret. m/’
new shares are required to reconstruct the secret. Unlike
our protocol, their protocol assumes non-faulty old share-
holders. Thus, a faulty old shareholder, without the risk
of detection, may cause the new shareholders to create in-
valid shares (ones that cannot be used to reconstruct the
secret) by distributing invalid subshares.

We extend Desmedt and Jajodia’s redistribution pro-
tocol with Feldman’s non-interactive verifiable secret
sharing (VSS) scheme [2] to ensure that a SUBSHARES-
VALID condition is true during redistribution. With Feld-
man’s scheme, each old shareholder broadcasts a zero-
knowledge proof of the validity of the subshares to the
new shareholders. The new shareholders verify the proof
without further interaction with the old shareholders.
Feldman assumes there exist homomorphic encryption
functions that are hard to invert, allowing the old share-
holder to broadcast encryptions of their share and the sub-
share generation function without revealing them. Feld-
man also assumes there exist reliable broadcast communi-
cation channels among all participants and private chan-
nels between every pair of participants.

49

‘We show that the SUBSHARES-VALID condition is nec-
essary but not sufficient to guarantee that the new share-
holders create valid shares, and present a new SHARES-
VALID condition. The old shareholders broadcast a zero-
knowledge proof of the validity of their shares of the se-
cret to the new shareholders. As before, the new share-
holders verify the proof without further interaction with
the old shareholders. The check of the SHARES-VALID
condition also assumes there exist homomorphic encryp-
tion functions that are hard to invert, allowing the old
shareholders to prove the validity of their shares to the
new shareholders without revealing them. We prove that
the SUBSHARES-VALID and SHARES-VALID conditions
are necessary and sufficient to guarantee that the new
shareholders create valid shares of the original secret.

References

[1] DESMEDT, Y., AND JAJODIA, S. Redistributing secret shares to
new access structures and its applications. Technical Report ISSE
TR-97-01, George Mason University, Fairfax, VA, July 1997.

[2] FELDMAN, P. A practical scheme for non-interactive verifiable se-
cret sharing. In Proc. of the 28th IEEE Ann. Symp. on Foundations
of Computer Science (October 1987), IEEE, pp. 427-437.

[3] FRANKEL, Y., GEMMELL, P., MACKENZIE, P. D., AND YUNG,
M. Optimal resilience proactive public-key eryptosystems. In Proc.
of the 38th IEEE Ann. Symp. on Foundations of Computer Science
(October 1997), TIEEE, pp. 384-393.

[4] FRANKEL, Y., GEMMELL, P., MACKENZIE, P. D., AND YUNG,
M. Proactive RSA. In Proc. of CRYPTO 1997, the 17th Ann. Intl.
Cryptology Conf. (August 1997), B. S. Kaliski Jr, Ed., vol. 1294
of Lecture Notes in Computer Science, Intl. Assoc. for Cryptologic
Research, Springer- Verlag, pp. 440—454.

[5] GENNARO, R., JARECKI, S., KRAWCZYK, H., AND RABIN, T.
Robust threshold DSS signatures. In Proc. of EUROCRYPT 1996,
the Intl. Conf. on the Theory and Application of Cryptographic
Technigues (May 1996), U. M. Maurcr, Ed., vol. 1070 of Lecture
Notes in Computer Science, Intl. Assoc. for Cryptologic Research,
Springer-Verlag, pp. 354-371.

[6] HERZBERG, A., JAKOBSSON, M., JARECKI, S., KRAWCZYK, H.,
AND YUNG, M. Proactive public key and signature systems. In
Proc. of the 4th ACM Intl. Conf. on Computer and Communications
Security (April 1997), Assoc. for Computing Machinery, pp. 100
110.

[71 RABIN, T. A simplified approach to threshold and proactive RSA.
In Proc. of CRYPTO 1998, the 18th Ann. Intl. Cryptology Conf.
(August 1998), H. Krawczyk, Ed., vol. 1462 of Lecture Notes in
Computer Science, Intl. Assoc. for Cryptologic Research, Springer-
Verlag, pp. 89-104.

[8] SHAMIR, A. How to share a secret. Communications of the ACM
22, 11 (November 1979), 612-613.

[9] WYLIE,J.J., BAKKALOGLU, M., PANDURANGAN, V., BIGRIGG,
M. W., Oguz, S., TEW, K., WILLIAMS, C., GANGER, G. R.,
AND KHOSLA, P. K. Selecting the right data distribution scheme
for a survivable storage system. Technical Report CMU-CS-01-120,
Sch. of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213, May 2001.

50

