
Operating System Management of MEMS-based
Storage Devices

John Linwood GriÆn, Steven W. Schlosser,
Gregory R. Ganger, David F. Nagle

May 2000

CMU-CS-00-136

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

MEMS-based storage devices promise signi�cant performance, reliability, and power improvements relative to disk

drives. This paper explores how the physical characteristics of these devices change four aspects of operating system

management: request scheduling, data placement, failure management, and power management. Adaptations of disk

request scheduling algorithms are found to be appropriate for these devices; however, new data placement schemes are

shown to better match their di�ering mechanical positioning characteristics. With aggressive internal redundancy,

MEMS-based storage devices can tolerate failure modes that cause data loss for disks. In addition, MEMS-based

storage devices enable a �ner granularity of OS-level power management because the devices can be stopped and

started rapidly and their mechanical components can be individually enabled or disabled to reduce power consumption.

This research is supported by the member companies of the Parallel Data Consortium. At the time of this writing, these companies
include CLARiiON Array Development, EMC Corporation, Hewlett-Packard Labs, Hitachi, In�neon Technologies, Intel Corporation,
LSI Logic, MTI Technology Corporation, Novell, Inc., PANASAS, L.L.C., Procom Technology, Quantum Corporation, Seagate Technol-
ogy, Sun Microsystems, Veritas Software Corporation, and 3Com Corporation. We thank IBM Corporation for supporting our research
e�orts. John GriÆn is supported in part by a National Science Foundation Graduate Fellowship.

Keywords:Microelectromechanical systems (MEMS), operating systems, secondary storage, request schedul-
ing, data placement, fault tolerance, power management.

1 Introduction

Decades of research and experience have provided operating system builders with a healthy understanding
of how to manage disk drives and their role in systems. This management includes such issues as achieving
acceptable performance despite the relatively time-consuming mechanical positioning delays, dealing with
transient and permanent hardware problems so as to achieve high degrees of data survivability and availabil-
ity, and minimizing power dissipation in battery-powered mobile environments. To address these issues, a
wide array of OS techniques are used, including request scheduling, data layout, prefetching, caching, block
remapping, data replication, and device spin-down. Given the prevalence and diÆcult nature of disks, most
of these techniques have been speci�cally tuned to the physical characteristics of disks.

When other devices (e.g., magnetic tape, Flash RAM) are used in place of disks, the characteristics of
the problems change. Putting new devices behind a disk-like interface is generally suÆcient to achieve a
working system; however, the OS techniques must be tuned to a particular device's characteristics to achieve
the best performance, reliability, power consumption, etc. For example, request scheduling techniques are
much less important for RAM-based storage devices than for disks, since location-dependent mechanical
delays are not involved. Likewise, locality-enhancing block layouts, such as cylinder groups [MJLF84],
extents [MK91], and log-structuring [RO92], are not as bene�cial. However, for storage devices based on
Flash RAM, log-structured �le systems with idle-time cleaning can increase both performance and device
lifetimes [DCK+94, KL99].

Microelectromechanical systems (MEMS)-based storage is an exciting new technology that will soon be
available in computer systems. MEMS are very small scale mechanical structures|on the order of 10s
to 1000s of micrometers|fabricated on the surface of silicon wafers [Wis98]. These microstructures are
created using the same photolithographic processes used to manufacture other semiconductor devices (e.g.,
CPUs and memory) [FSR+96]. MEMS structures can be made to slide, bend, and de
ect in response to
electrostatic or electromagnetic forces from nearby actuators or from external forces in the environment.
Using minute MEMS probe tips, data bits can be stored in and retrieved from magnetic media coated on a
movable silicon substrate (\media sled") [CBF+00, GSGN00]. Practical MEMS-based storage devices are the
goal of major e�orts at many research centers, including IBM, Carnegie Mellon University, Hewlett-Packard,
and UC Berkeley.

Like disks, MEMS-based storage devices have mechanical and magnetic characteristics that merit speci�c
OS techniques to manage performance, fault tolerance, and power conservation. For example, the mechanical
positioning delays (e.g., seek and settle time) for MEMS-based storage devices depend on the current and
destination position and velocity of the media sled, just as disks are dependent on the arm position and
platter rotational o�set. However, the mechanical expressions that characterize sled motion di�er from
those describing platter and arm motion. Knowledge of these di�erences impacts both scheduling and
layout decisions at the OS level. Similar examples exist for OS fault management and power conservation
mechanisms. To assist designers of both MEMS-based storage devices and the systems that use them, an
understanding of the options and trade-o�s for OS management of these devices must be developed.

Our work takes a �rst step towards developing this understanding of OS management techniques for
MEMS-based storage devices. In this report, we describe the movable media sled design that is being
developed independently by several groups. With higher storage densities and lower random access times
(<1 ms) than disks, these devices could play a signi�cant role in future systems. After describing a disk-
like view of these devices, we compare and contrast their characteristics with those of disks. Building on
these comparisons, we explore options and implications for three major OS management issues: performance
(speci�cally, request scheduling and block layout), failure management (media defects, device failures, and
host crashes), and power management.

While these explorations are unlikely to represent the �nal word for OS management of these newly-
emerging devices, we believe that several of our high-level results will remain valid: (1) Disk scheduling
algorithms can also be adapted to MEMS-based storage devices, resulting in relative values that roughly
match their rankings for disks. (2) We �nd that disk layout techniques can be adapted usefully, but that
the Cartesian movement of the sled (instead of rotational motion) allows further re�nement of layouts to
provide bene�t. (3) Striping of data across tips can greatly increase a system's tolerance to media, tip,
and electronics faults; in fact, many faults that would cause data loss in disks can be made recoverable
in MEMS-based storage devices. (4) Miniaturization and lack of rotation make these devices much more

1

El
ec

tro
ni

cs

El
ec

tro
ni

cs

El
ec

tro
ni

cs

Media coats
bottom surface
of sled

Tip
Arrays

1 cm

1 cm

Media
Sled

Chip
Substrate

2 mm

Figure 1: The \moving media" model. The media sled is suspended above the array of �xed tips. The
sled moves small distances along the X and Y axes, allowing the �xed tips to address 30{50% of the total
media area. This yields capacities of gigabytes per square centimeter.

power-friendly than disks; to �rst order, power dissipation is a linear function of the number of bits read or
written. This makes power optimization equivalent to data access minimization (e.g., adapting the rate at
which applications consume data [NSN+97, FS99]). Also, not having the large mechanical delay involved in
spinning up or down disks improves the availability of power-optimized MEMS devices by reducing restart
times after power-down.

The remainder of this paper is organized as follows. x 2 describes MEMS-based storage devices, focusing
on how they are similar to and di�erent from magnetic disks. x 3 describes our experimental setup, including
the simulator and the workloads used. x 4 evaluates request scheduling algorithms for MEMS-based storage
devices. x 5 explores data layout optimizations. x 6 describes approaches to fault management within and
among MEMS-based storage devices. x 7 discusses their power usage characteristics and their impact on
power management. x 8 summarizes this work's contributions.

2 MEMS-based Storage Devices

This section describes a MEMS-based storage device and compares and contrasts its characteristics with
those of conventional disk drives. The description, which follows that of [GSGN00], maps the devices' access
and layout characteristics onto a disk-like metaphor to further clarify similarities and di�erences.

2.1 Basic Device Description

MEMS-based storage devices use the same basic magnetic recording technologies as disks, relying on MEMS
microstructures to position miniature probe tips over speci�c magnetic media locations. Because long-lasting
rotating structures are diÆcult to achieve in silicon, MEMS-based storage devices are unlikely to include the
rotating platters coated with magnetic media that characterize disks. Instead, most current designs contain
a movable sled coated with magnetic media. This sled is spring-mounted above a two-dimensional array of
probe tips and can be pulled in the X and Y dimensions by electrostatic forces applied by comb actuators
at each edge. Unlike disk arms, the probe tips remain stationary under the media (except for minute tip
movement to adjust for skewed tracks and sled surface variations). Therefore, the sled is responsible for
positioning/seek movements, as opposed to disk platters that share this role with seek arms. Figures 1 and 2
illustrate this MEMS-based storage design.

2

Y Actuator

Beam Spring

X Actuator

Media
Area

Y Actuator

X Actuator

Media Anchor

Figure 2: The suspended media sled in the moving media model. The actuators, spring suspension,
and the media sled itself are shown. Anchored regions are black and the movable structure is shaded grey.

Concretely, an example MEMS-based storage device [CBF+00] might have a media area on the sled of
about 1 cm2, under which perhaps 10,000 probe tips could be placed. For designs with a bit cell of 0.0025 �m2

(50 nm per side) and encoding/ECC overheads of roughly 2 bits per byte, these devices have a capacity of
about 4 gigabytes per square centimeter. Note the square nature of the bit cells; because the probe tips are
so much smaller than disk heads, the bits stored on these devices can have a 1-to-1 aspect ratio, resulting in
densities 15{30X greater than those of disk drives. The per-device media areas are smaller than the usable
area on disk platters; however, several MEMS-based storage devices could easily be packaged in a disk form
factor to increase capacity. The mechanically-positioned components also have much smaller masses than
their corresponding disk parts, allowing random access times in only 100s of microseconds. For the default
parameters used in this paper, the average random 4 KB access time is 500 �s.

2.2 Low-level Data Layout

The magnetic media on the sled is organized into rectangular regions as shown in Fig. 3. Each rectangular
area stores N�M bits (e.g., 2500�2500 bits) and is accessible by exactly one probe tip. The smallest
accessible unit of data is a \tip sector" consisting of servo information (10 bits) and encoded data/ECC (80
bits = 8 encoded data bytes). Multiple tip sectors are grouped into logical sectors, similar to logical blocks
in SCSI disks. Unlike most conventional disks, multiple probe tips can access the media in parallel|thus
many tip sectors can be read or written simultaneously. Due to power and heat considerations, it is unlikely
that all probe tips can be active simultaneously; rather, we expect groups of 200{2000 tips to be the norm.

In organizing the low-level media structure, we identify each bit by the triple hx; y; tipi, where hx; yi
represents bit coordinates within the region addressable by htipi. Each active probe tip reads or writes data
within a column of bits (called a tip track; see Fig. 3) as the media sled moves along the Y axis. A tip
track contains M bits, each with identical values for hx; tipi. Drawing on analogies from disk terminology,
we refer to the set of all bits with identical values for hxi as a cylinder (shown in Fig. 4). In other words,
a cylinder consists of all bits that are accessible by any tip without moving the sled along the X axis; there
are N cylinders per device. Because only a subset of probe tips can be active at once (recall the power and
heat considerations above), cylinders are divided into tracks. A track consists of all bits within a cylinder
that can be read or written by concurrently active tips. In Fig. 4, tips A1, A2, A3 and A4 are active and the
corresponding track is indicated. As with conventional disks, reading or writing a complete cylinder requires
multiple passes with track switches (i.e., switching which tips are active) in between.

3

M bits

N bits

y

x
Sweep area
of 1 probe tip

...

...

...

...

Servo Info

Tip Sector

Sweep area of 1 probe tip

Tip Track

Bit 0 1 2 N

Bit
0
1
2

.

.

.

Mbit

Servo Info

Tip Sector

Figure 3: Data organization of MEMS-based storage. The illustration depicts a small portion of the
magnetic media sled. Each rectangle outlines the area accessible by a single probe tip, with a total of 16 tip
regions shown. (A full device contains thousands of tips and tip regions.) Each region stores N�M bits,
organized into vertical \tip sectors" containing encoded data and ECC bits. These tip sectors are demarcated
by \servo information" strings that identify the sector and track information encoded on a disk. To read or
write data, the media passes over the active tip(s) in the �Y direction while the tips access the media.

1

2

3

4

A B C D

Track j of Cylinder i

y

x

Cylinder i

<x=i, y=*, (tips % activeTips) = j>

1
3
5
1
3
5

Mapping Logical toTip Sectors
<x=i, y=*, tip=*>

2
4
6
2
4
6

7
9
11
7
9
11
8
10
12
8
10
12

Denotes Active Probe Tip

Sector
1

1

2

3

4

A B C D

Figure 4: Cylinders, Tracks, and Sectors. Cylinderi is de�ned as all of the columns of data with the
same X coordinate: hx = i; y; tipi. Tracki;j is the subset of a cylinder that is accessible by the concurrently
active tips: hx = i; y; (tip % activeT ips) = ji. (Note that activeTips=4 in this �gure and that the tips are
linearly numbered such that A1=0, A2=1, etc.) Each logical sector in the �gure to the right consists of two
tip sectors. For example, Sector1 consists of the �rst tip sectors of the two upper tip regions, A1 and A2.

4

2.3 Media Access Characteristics

Because multiple tips are active simultaneously, logical sectors can be striped across tip sectors (i.e., under
multiple tips) to reduce access time. Fig. 4 illustrates a layout where each logical sector is striped across two
tip sectors. In order to read logical sectors 1 and 2, tips A1 through A4 are activated while the sled seeks to
the top of cylinder 2 and moves down (in the �Y direction) across the �rst tip sector. Tip A1 reads half of
logical sector 1, tip A2 reads the other half, and tips A3 and A4 read logical sector 2. In this paper, logical
sectors of 512 bytes are striped across 64 tip sectors of 8 bytes each.

Media access requires constant sled velocity in the Y direction (and zero velocity in the X direction). This
access velocity is a design parameter and is determined by the maximum per-tip read and write rates, the
bit width, and the sled actuator force. Large transfers may require that data from multiple tracks and/or
cylinders be accessed. To switch tracks during large transfers the sled performs a turnaround (reversing
direction such that hx; yifinal = hx; yiinitial and vfinal = �vinitial) and switches the set of active tips. The
turnaround time is expected to dominate any additional activity (such as the time to switch the set of active
tips) during both track and cylinder switches.

Positioning the sled for read or write involves several mechanical and electrical actions. To seek to a
desired sector, the appropriate probe tips must be activated, the sled must be positioned so the tips are
under the �rst bit of the pre-sector servo information, and the sled must be moving in the correct direction
and velocity. Accomplishing this can be tricky: whenever the sled moves in X (i.e., the destination cylinder
di�ers from the starting cylinder) extra settling time must be taken into account|the rapid acceleration
and deceleration of the sled causes the spring-sled system to momentarily oscillate in X before damping to
vx = 0. In addition, the spring restoring force1 makes the sled acceleration a function of instantaneous sled
position. One or two turnarounds are also necessary whenever the sled is moving in the wrong direction
before or after the seek; the turnaround time is also a�ected by the spring restoring force and is therefore a
function of both instantaneous sled position and direction of motion.

2.4 Comparison to Conventional Disks

The remainder of this section enumerates a number of relevant similarities and di�erences between MEMS-
based storage devices and conventional disk drives. With each item, we also discuss consequences for device
management issues and techniques.

2.4.1 Mechanical positioning

Both disks and MEMS-based storage devices have two main components of each access' positioning time
(seek and rotation for disks; X and Y seeks for MEMS-based storage devices). The major di�erence is that
the two proceed independently for disks, because rotation is independent, whereas the two are explicitly done
in parallel for MEMS-based storage devices. Thus, the total positioning time is the greater of the X and Y
seek times, making the shorter of the two times irrelevant. The e�ect of this overlap on request scheduling
is explored in x 4.2.

2.4.2 Settling times

For both disks and MEMS-based storage devices, it is necessary for read/write heads to settle over the
desired track after a seek. However, the settling time for disks is a relatively small component of most seek
times (e.g., 0.5 ms of 1{15 ms seeks). For MEMS-based storage devices, settling time is expected to be a
relatively substantial component of seek time (e.g., 0.2 ms of 0.2{0.7 ms seeks). Because the settling time is
relatively constant, this has the e�ect of making seek times more constant, which in turn could reduce (not
eliminate) the bene�t of both request scheduling and data placement. x 4.4 analyzes this issue in greater
detail.

1As the sled is displaced during seeks, the springs apply a mechanical restoring force (recall Fspring = k�x for spring-mass
systems) up to �75% of the sled actuating force. The spring e�ects are studied in detail in [GSGN00].

5

2.4.3 Logical-to-physical mappings

As with disks, we expect the lowest-level mapping of logical block numbers (LBNs) to physical locations to
be straightforward and optimized for sequential access; this will be best for legacy systems that use these
new devices as disk replacements. Such a sequentially optimized mapping scheme �ts disk terminology and
has some similar characteristics. Nonetheless, the physical di�erences will make data placement decisions
(i.e., mapping of �le or database blocks to LBNs) an interesting topic. x 5 explores this area.

2.4.4 Seek time vs. seek distance

For disks, seek times are relatively constant functions of the seek distance, independent of the start cylinder
and direction of seek. Because of the spring restoring forces, this is not true of MEMS-based storage devices.
Short seeks near the edges take longer than they do near the center (as discussed in x 5). Also, turnarounds
near the edges take either less time or more, depending on the direction of sled motion. As a result, seek-
reducing request scheduling algorithms may not achieve their best performance if they look only at distances
between LBNs as they can with disks [WGP94].

2.4.5 Recording density

MEMS-based storage devices use the same basic magnetic recording technologies as disks. Thus, the same
types of fabrication and grown media defects can be expected. However, because of the much higher bit
densities of MEMS-based storage devices, each such media defect will to a�ect a much larger number of bits.
This is one of the fault management issues addressed in x 6.1.

2.4.6 Numbers of mechanical components

MEMS-based storage devices have many more distinct mechanical parts than disks. Although their very
small movements make them more robust than the large disk mechanics, their numbers make it much more
likely that some number of them will break. In fact, manufacturing yields may dictate that the devices
operate with some number of broken mechanical components. x 6.1.1 discusses this issue.

2.4.7 Concurrent read/write heads

Because it is diÆcult and expensive for drive manufacturers to enable parallel activity, most modern disk
drives use only one read/write head at a time for data access. Even drives that do support parallel activity
are limited to only 2{20 read/write heads. On the other hand, MEMS-based storage devices (with their per-
tip actuation and control components) could theoretically use all of their probe tips concurrently. Even after
power and heat considerations, 100s to 1000s of simultaneously active probe tips is a realistic expectation.
This parallelism increases media bandwidth and (as discussed in x 6.1.2) can improve reliability.

2.4.8 Control over mechanical movements

Unlike disks, which rotate at constant velocity independent of ongoing accesses, the mechanical movements of
MEMS-based storage devices can be explicitly controlled. As a result, access patterns that su�er signi�cantly
from independent rotation can be better served. The best example of this is repeated access to the same
block, as often occurs for synchronous metadata updates or read-modify-write sequences. This di�erence is
explored further in x 6.2 and Table 2.

2.4.9 Startup activities

Like disks, MEMS-based storage devices will require some time to ready themselves for media accesses when
powered up. Because of the size of their mechanical structures and the lack of rotation, however, the time
and power required for startup will be much smaller than disks. The consequences of this fact for both
availability (x 6.3) and power management (x 7) are explored in this paper.

6

sled mobility in X and Y 100 �m
bit cell width (area) 40 nm (0.0016 �m2)
number of tips 6400
simultaneously active tips 1280
tip sector length 80 bits (8 data bytes)
servo overhead 10 bits per tip sector
device capacity (per sled) 3.2 GB
per-tip data rate 700 Kbit/s
sled acceleration 803.6 m/s2

settling time constants 1
sled resonant frequency 739 Hz
spring factor 75%

Table 1: Device parameters used in our experiments. Although MEMS-based storage devices have
yet to be completely fabricated and tested, we believe these are reasonable values for initial analyses of these
devices.

2.4.10 Drive-side management

As with disks, management functionality will be split between host OSes and device OSes (�rmware). Over
the years, increasing amounts of functionality have shifted into disk OSes, enabling a variety of portability,
reliability, mobility, performance, and scalability enhancements. We expect a similar trend with MEMS-
based storage devices, whose silicon implementation allow direct integration of storage with computational
logic.

2.4.11 Speed-matching bu�ers

As with disks, MEMS-based storage devices access the media as the sled moves past the probe tips at a �xed
rate. Since this rate rarely matches that of the external interface, speed-matching bu�ers are important.
Further, since sequential request streams are important aspects of many real systems, these speed-matching
bu�ers will play an important role in prefetching of sequential LBNs. Also, as with disks, most block reuse
will be captured by larger host memory caches instead of in the device cache.

2.4.12 Sectors per track

Disk media is organized as a series of concentric circles, with outer circles having longer circumferences
than inner circles. This fact led disk manufacturers to use banded (zoned) recording in place of a constant
bit-per-track scheme in order to increase density and bandwidth. This results in as much as a 46% di�erence
between the maximum bandwidth at the innermost and outermost tracks [Qua99]. Because MEMS-based
storage devices instead organize their media as parallel lines, there is no length di�erence in \bits-per-track"
and banded recording is not relevant. Therefore, block layout techniques that try to exploit banded recording
will not provide bene�t for these devices. On the other hand, for block layouts that try to consider track
boundaries and block o�sets within tracks, this uniformity (which was common in disks 10 or more years
ago) will simplify or enable correct implementations.

3 Experimental Setup

For our experiments, we use the performance model for MEMS-based storage described in [GSGN00], which
includes all of the characteristics described earlier. Although it is not yet possible to validate the model
against real devices, both the equations and the default parameters are the result of extensive discussions
with groups that are designing and building MEMS-based storage devices. Thus, we hope that the model is
suÆciently representative for the insights gained from experiments to be useful.

This performance model has been integrated into the DiskSim simulation environment [GWP98] as a disk-
like storage device accessed via a SCSI-like protocol. Table 1 shows default parameters for our MEMS-based

7

storage device simulator. DiskSim provides an infrastructure for exercising the device model with various
synthetic and trace-based workloads. DiskSim also includes a detailed, validated disk module that can be
parameterized to accurately model a variety of real disks. For reference, some experiments use DiskSim's disk
module con�gured to model the Quantum Atlas 10K [Qua99], one of the disks for which publicly available
con�guration parameters [Dis00] have been calibrated against real-world drives.

Most of the experiments use a synthetically-generated workload that we refer to as the random workload.
For this workload, request interarrival times are drawn from an exponential distribution; the mean is generally
varied to provide a range of workloads. All other aspects of requests are independent: 67% are reads, 33%
are writes, the request size distribution is exponential with a mean of 4 KB, and request starting locations
are uniformly distributed across the device's capacity. To include more realistic workloads, traces of real
storage activity are utilized in some experiments; they are described in the appropriate sections.

4 Request Scheduling

An important mechanism for improving disk eÆciency is deliberate scheduling of pending requests. This is
important to eÆciency because positioning delays are dependent on the relative positions of the read/write
head and the destination sector. The same is true of MEMS-based storage devices, whose seek times are
dependent on the distance to be travel-led. This section explores the impact of di�erent scheduling algorithms
on the performance of MEMS-based storage devices.

4.1 Disk Scheduling Algorithms

Many disk scheduling algorithms have been devised and studied over the years. Our comparisons focus
on four. The simple First Come First Served (FCFS) algorithm often results in suboptimal performance,
but we include it for reference. The Shortest Seek Time First (SSTF) algorithm was designed to select the
request that will incur the smallest seek delay [Den67], but this is rarely the way it functions in practice.
Instead, since few host OSes have the information needed to compute actual seek distances or predict seek
times, most SSTF implementations use the di�erence between the last accessed LBN and the desired LBN
as an approximation of seek time. This simpli�cation works well for disk drives [WGP94], and we label this
algorithm as \SSTF LBN". The Cyclical LOOK (C-LOOK) algorithm [SLW66] services requests in ascending
LBN order, starting over with the lowest LBN when all requests are \behind" the most recent request. The
Shortest Positioning Time First (SPTF) policy selects the request that will incur the smallest positioning
delay [SCO90, JW91]. For disks, this algorithm di�ers from others in that it explicitly considers both seek
time and rotational latency.

For reference, Fig. 5 compares these four disk scheduling algorithms for the Atlas 10k disk drive and
the random workload (x 3) with a range of request arrival rates. Two common metrics for evaluating disk
scheduling algorithms are shown. First, the average response time (queue time plus service time) shows
the e�ect on average case performance. As expected, FCFS saturates well before the other algorithms
as the workload increases. SSTF LBN outperforms C-LOOK, and SPTF outperforms all other schemes.
Second, the squared coeÆcient of variation (�2=�2) is the metric of \fairness" (or starvation resistance) used
in [TP72, WGP94]; lower values indicate better starvation resistance. As expected, C-LOOK avoids the
starvation e�ects that characterize the SSTF LBN and SPTF algorithms.

4.2 MEMS-based Storage Device Scheduling

Existing disk scheduling algorithms can be adapted to MEMS-based storage devices, once these devices are
mapped into a disk-like interface. Most, including FCFS, SSTF LBN, and C-LOOK, only use knowledge of
LBNs and assume that di�erences between LBNs are reasonable approximations of positioning times. SPTF,
which addresses disk seeks and rotations, is a more interesting case. While MEMS-based storage devices do
not have a rotational latency component, they do have two positioning time components: the X dimension
seek and the Y dimension seek. As with disks, only one of these (seek time for disks; the X dimension seek for
MEMS-based storage devices) is approximated well by a linear LBN space. Unlike disks, the two positioning
components proceed in parallel, with the greater hiding the lesser. The settling time delay makes most X

8

0

20

40

60

80

100

0 50 100 150 200

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Mean Arrival Rate (Hz)

FCFS
C-LOOK

SSTF_LBN
SPTF

(a) Average response time (ms)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200

Sq
ua

re
d

C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
tio

n

Mean Arrival Rate (Hz)

FCFS
C-LOOK

SSTF_LBN
SPTF

(b) Squared coeÆcients of variation (�2=�2)

Figure 5: Comparison of scheduling algorithms for the random workload on the Atlas 10K disk
(x 4.1).

9

dimension seek times larger than most Y dimension seek times. SPTF will only outperform SSTF (which
minimizes X movements, but ignores Y) when the Y component is the larger.

Fig. 6 shows how well these algorithms work for the default MEMS-based storage device on the random
workload with a range of request arrival rates. In terms of both performance and starvation resistance, the
algorithms �nish in the same order as for disks { SPTF provides the best performance and C-LOOK provides
the best starvation resistance. However, their performance relative to each other merits discussion. For
example, the di�erence between FCFS and the LBN-based algorithms (C-LOOK and SSTF LBN) is larger
for MEMS-based storage devices, because the seek time is a much larger component of the total service time.
In particular, there is no subsequent rotational delay. Also, the average response time di�erence between
C-LOOK and SSTF LBN is smaller for MEMS-based storage devices, because both algorithms reduce the
X seek times into the range where X and Y seek times are comparable. Since neither addresses Y seeks, the
greediness of SSTF LBN is less e�ective. SPTF, which does address Y seeks, obtains additional performance.

4.3 Traces of Disk Activity

To evaluate performance and scheduling of MEMS-based storage devices under more realistic workloads, we
use two traces of real disk activity. The TPC-C trace comes from a TPC-C testbed, consisting of Microsoft
SQL Server atop Windows NT2. The hardware was a 300 MHz Pentium II system with 128 MB of memory
and a 1 GB test database striped across two Quantum Viking disk drives. The trace captures one hour of
disk activity for TPC-C, and its characteristics are described in more detail in [RFGN00]. The Cello trace
comes from a Hewlett-Packard system running the HP-UXTM operating system. It captures disk activity
from a server at HP Labs used for program development, simulation, mail, and news. While the total trace
is actually two months in length, we report data for a single week-long snapshot (5/30/92 to 6/6/92). This
trace and its characteristics are described in detail in [RW93].

Figs. 7(a) and 7(b) show how the scheduling algorithms perform for the Cello and TPC-C workloads,
respectively. The relative performance of the algorithms on the Cello trace is very similar to the random work-
load. One noteworthy di�erence between TPC-C and Cello is that SPTF outperforms the other algorithms
by a much larger margin for TPC-C. This occurs because the scaled-up version of the workload includes
many concurrently-pending requests with very small inter-LBN distances. LBN-based schemes do not have
enough information to choose between such requests, often causing small (but expensive) X-dimension seeks.
SPTF addresses this problems and thus performs much better.

4.4 Interaction of SPTF & Settling Times

Originally, we had expected SPTF to outperform the other algorithms by a greater margin for MEMS-based
storage devices. Our investigations suggest that the value of SPTF scheduling is highly dependent upon the
settling time component of X dimension seeks. With large settling times, X dimension seek times dominate Y
dimension seek times, making SSTF LBN closely approximate SPTF. With small settling times, Y dimension
seek times are a more signi�cant component. To illustrate this, Fig. 8 compares the scheduling algorithms
with the number of settling time constants set to 0 and 2 (recall that the default is 1). As expected, with 2
settling time constants, SSTF LBN is very close to SPTF. With zero settling time constants, which may be
achievable with active damping control systems, SPTF outperforms the other algorithms by a large margin.

2Re-using traces collected from other systems presents two main diÆculties. First, the capacity of the disks in the traced
systems is smaller than that of the storage devices simulated herein. As a result, not all of our simulated devices' capacities are
utilized by these traces, which tends to reduce the maximum mechanical positioning delays. The second and more diÆcult issue
is that our simulated devices are newer and signi�cantly faster than the disks used in the traced systems. Ideally, the appropriate
feedback e�ects between request completions and subsequent arrivals would be included in the simulation. Unfortunately, the
necessary information is not present in the traces. Instead, we replicate an approach used in previous disk scheduling work for
dealing with this problem [WGP94]: we scale the traced inter-arrival times to produce a range of average inter-arrival times.
When the scale factor is one, the simulated inter-arrival times match those traced. When the scale factor is two, the traced
inter-arrival times are halved, doubling the average arrival rate. While imperfect, we believe that this approach to dealing with
this common problem of trace-driven storage simulations yields valid qualitative results and insights.

10

0

20

40

60

80

100

0 500 1000 1500 2000 2500

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Mean Arrival Rate (Hz)

FCFS
C-LOOK

SSTF_LBN
SPTF

(a) Average response time (ms)

0

0.5

1

1.5

2

0 500 1000 1500 2000 2500

Sq
ua

re
d

C
oe

ff
ic

ie
nt

 o
f

V
ar

ia
tio

n

Mean Arrival Rate (Hz)

FCFS
C-LOOK

SSTF_LBN
SPTF

(b) Squared coeÆcients of variation (�2=�2)

Figure 6: Comparison of scheduling algorithms for the random workload on the MEMS-based
storage device (x 4.2). We are not yet able to explain the odd behavior of SPTF between 1500 and 2000
requests/sec.

11

0

20

40

60

80

100

0 5 10 15 20 25 30

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Trace Scaling Factor

FCFS
C-LOOK

SSTF_LBN
SPTF

(a) Cello average response time

0

20

40

60

80

100

0 10 20 30 40 50 60 70

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Trace Scaling Factor

FCFS
C-LOOK

SSTF_LBN
SPTF

(b) TPC-C average response time

Figure 7: Comparison of scheduling algorithms for the Cello and TPC-C workloads on the
MEMS-based storage device (x 4.3).

12

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Mean Arrival Rate (Hz)

FCFS
C-LOOK

SSTF_LBN
SPTF

(a) Random (zero time constants) average response time

0

20

40

60

80

100

0 500 1000 1500 2000 2500

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Mean Arrival Rate (Hz)

FCFS
C-LOOK

SSTF_LBN
SPTF

(b) Random (two time constants) average response time

Figure 8: Comparison of average performance for zero and two settling time constants, respec-
tively (x 4.4). These are in comparison to the default model (Random with one time constant) shown in
Fig. 6(a).

13

0.521 0.490 0.483 0.490 0.521
h�800; 800i h�400; 800i h0; 800i h400; 800i h800; 800i

0.339 0.319 0.314 0.319 0.339
0.508 0.478 0.470 0.478 0.508

h�800; 400i h�400; 400i h0; 400i h400; 400i h800; 400i

0.313 0.290 0.284 0.290 0.313
0.506 0.476 0.468 0.476 0.506
h�800; 0i h�400; 0i h0; 0i h400; 0i h800; 0i

0.309 0.285 0.279 0.285 0.309
0.508 0.478 0.470 0.478 0.508

h�800;�400i h�400;�400i h0;�400i h400;�400i h800;�400i

0.313 0.290 0.284 0.290 0.313
0.521 0.490 0.483 0.490 0.521

h�800;�800i h�400;�800i h0;�800i h400;�800i h800;�800i

0.339 0.319 0.314 0.319 0.339

Figure 9: Di�erence in request service time for subregion accesses (x 5.1). This �gure divides the
area accessible by an individual probe tip into 25 subregions, each 400�400 square bits centered at the tuple
hx; yi, where hx; yi represents the sled o�set at the center of each subregion. Each box shows the average
request service time (in milliseconds) for 10,000 requests starting and ending inside that subregion. The
upper numbers represent the service time when X settle time is included in calculations; numbers in italics
represent the service time for zero X settle time. Note the average service time di�ers by 10{20% between
the centermost and outermost subregions.

5 On-Device Data Layout

Space allocation and data placement for disks continues to be a ripe topic of research. We expect the same to
be true of MEMS-based storage devices. In this section, we discuss how the characteristics of MEMS-based
storage positioning costs a�ect placement decisions for small local and large sequential transfers. A bipartite
layout is proposed and shown to have potential for improving performance.

5.1 Small, skewed accesses

As with disks, short distance seeks are faster than long distance seeks. Unlike disks, MEMS-based storage
devices' spring forces change the e�ective actuator force and therefore a�ect the sled positioning time. Fig. 9
shows the impact of springs forces for seeks inside di�erent \subregions" of a single tip's media region. The
spring forces increase with increasing sled displacement from the origin (e.g., the outermost boxes in Fig. 9.)
As a result, distance is not the only component to be considered when �nding good placements for small,
popular data items|o�set relative to the center should also be considered.

5.2 Large, sequential transfers

Streaming media transfer rates for MEMS-based storage devices and disks are similar: 28.5{19.5 MB/s
for the Atlas 10K [Qua99]; 79.6 MB/s for MEMS-based storage. Positioning times, however, are very
di�erent|MEMS devices enjoy an order of magnitude shorter positioning times. This makes positioning
time relatively insigni�cant for large transfers (e.g., hundreds of sectors). Fig. 10 shows the request service
times for a 256 KB read with respect to the X distance between the initial and �nal sled positions. Requests
traveling 1000 cylinders (e.g., from the sled origin to maximum sled displacement) only incur a 10% penalty.
This lessens the importance of ensuring locality for data that will be accessed in large, sequential chunks. In
contrast, seek distance is a signi�cant issue with disks, where long seeks more than double the total service
time for 256 KB requests.

14

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000

Se
rv

ic
e

T
im

e
(m

s)

X Distance (bits)

Average Service Time

Figure 10: Request service time vs. X seek distance for large (256 KB) requests (x 5.2). Note
that large X seeks only increase the service time by 12%.

5.3 A data placement scheme for MEMS-based storage devices

To take advantage of the above characteristics, we implemented a 25-subregion bipartite layout scheme. Small
data are placed in the centermost subregion; long, sequential streaming data are placed in the outermost
subregion. Two layouts are tested: a �ve-by-�ve grid of subregions (shown in Fig. 9) and a simple \columnar"
division of the LBN space into 25 columns (e.g., each subregion contains 100 contiguous cylinders).

We compare these layout schemes against the \organ pipe" layout [VC90, RW91], an optimal disk-layout
scheme. In the organ pipe layout, the most frequently accessed blocks are placed in the center of the disk.
Blocks of decreasing popularity are distributed to either side of center, with the least frequently accessed
blocks located the farthest from the center on both sides. Although this scheme is optimal for disks, blocks
must be periodically shu�ed to maintain the frequency distribution. Further, the layout requires some state
to be kept indicating each block's popularity and interdependence.

To evaluate these layouts we created a workload of 10,000 read requests, 89% \small" (4 KB) requests and
the remainder \large" (400 KB) requests. For the subregioned layouts, the large requests were directed to
the ten leftmost and ten rightmost subregions, while the small requests mapped to the centermost subregion.
In the organ pipe layout, we created a distribution of one large request for every eight small requests.

Our results (Fig. 11) show that all three layout schemes achieve a 13{20% improvement in average access
time over a simple linear layout. (In comparison, the Atlas 10K disk achieves a 13% performance gain
between the organ pipe and simple layouts.) Subregioned and columnar layouts both provide a 10{15%
improvement over organ pipe. Further, the two layouts do not incur organ pipe's overhead of keeping
popularity and interdependency data or periodically reshu�ing blocks on the media. For the \no settle"
case, the subregioned layout provides the best performance as it optimizes both X and Y.

15

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

MEMS - settle MEMS - no settle

Device Type

A
ve

ra
ge

 A
cc

es
s

T
im

e
(m

s)

none organpipe subregioned columnar

Figure 11: A comparison of various layout schemes for MEMS-based storage devices (x 5.3).
The \MEMS-nosettle" graph shows the same experiment run with zero X settling time. For the default
device, the organ pipe, subregioned and columnar layouts achieve a 13{20% performance improvement over
the simple layout. It is interesting to note that an optimal disk layout technique does not provide the best
performance for MEMS-based storage. Further, for the \no settle" case, the subregioned layout outperforms
the others by an additional 20%.

6 Failure Management

Fault tolerance and recoverability are signi�cant considerations for storage systems. In many ways, fault
management for MEMS-based storage devices will be similar to fault management for conventional disks3.
Although there will likely be more defective or failed parts in MEMS-based storage (because of the large
number of distinct parts compared to disks and the fact that bad parts cannot be replaced before assembly),
individual component failures can be made less likely to render a device inoperable than in disks. This
section discusses three aspects of failure management: internal faults, device failures, and recoverability
from system crashes.

6.1 Internal faults

The common failure modes for disk drives include recoverable failures (e.g., seek errors, media defects, bit
errors, lost sectors) and non-recoverable failures (e.g., head crashes, motor or arm actuator failure, drive
electronics or channel failure). MEMS-based storage devices have similar failure modes with analogous
mechanical causes; however, the ability to incorporate multiple tips into failure avoidance schemes allows
MEMS-based storage devices to employ more internal redundancy and improved fault tolerance.

6.1.1 Tip and media failure

For disk drives, unrecoverable media defects are handled by re-mapping logical block numbers to non-defective
locations, with data often being lost when defects \grow" during operation. In MEMS-based storage, each
sector is striped across many tips, so localized media or single tip defects (the common occurrences) can be
completely recovered with error correction codes (see x 6.1.2). In addition, striping could signi�cantly reduce

3Although MEMS-based storage devices don't exist yet, MEMS components have been built and tested for many years.
Results show that isomorphically scaling an object alters the relative in
uence of various physical e�ects, signi�cantly improving
the relative strength of smaller objects. This e�ect has been shown to make MEMS-based storage components less fragile than
their disk counterparts [Mad97].

16

layout scrambling from defect management. For example, instead of \slipping" LBNs over defective sectors
or re-mapping them to spare sectors elsewhere in a cylinder or zone, as is done in some disks, defective sectors
in MEMS-based storage could be re-mapped to the same tip sector on one of several dedicated \spare tips."
Re-mapping to the same tip sector guarantees that a re-mapped sector can be accessed at the same time as
the original (now damaged) sector. This eliminates the performance penalty incurred when re-mappied disk
sectors break the physical sequentiality of access; it also improves the predictability of storage accesse times.

Failure of a conventional disk's read/write head or control logic generally renders the entire device in-
operable. MEMS-based storage replicates these functions across thousands of components. With so many
components, failure of one or more is not only possible, but probable. Individual probe tips can break o�
or \crash" into the media; fabrication variances will produce faulty tips or tip-speci�c logic. Fortunately,
many problems can be handled using the same mechanisms that handle media failures. Striping and ECC
can overcome the loss of an entire tip region without any loss of data or capacity. This yields an interesting
trade-o� between capacity and fault tolerance|on tip failure, the operating system can choose to sacri�ce
device capacity (by converting regular tips into spare tips) or sacri�ce fault tolerance in that tip region (by
converting spare tips into regular tips).

6.1.2 Read and write errors

MEMS-based storage devices read or write data striped across multiple tips. For example, each 512 B sector
is striped across 64 tips. Unfortunately, with increased tip parallelism comes increased opportunity for one
or more tips to su�er a read or write error. As with conventional disks, powerful error correction codes will
correct minor recording or sensing errors. These codes may be encoded both horizontally (by switching on
extra ECC tips during each access) and vertically (by using an N-bit-per-byte encoding under each tip). The
horizontal ECC is useful for recovery from missing tip sectors. The vertical portion of the ECC can identify
tip-sectors that should be treated as missing (i.e., converting large errors into erasures).

In addition, MEMS-based storage devices are much faster at handling errors that require a second pass
over the media. In a disk, re-reading a sector su�ers an entire rotational latency penalty. In MEMS-based
storage, the sled need only turn around (see Table 2).

6.1.3 Seek errors

To read or write a sector, disks �rst seek to the associated track and then read the servo bursts, verifying
that the head is over the correct track and computing the rotational latency before the desired sector passes
under the head. The penalty for a seek error is composed of the new tracking time (about 1{2 ms for short
re-seeks) and up to the entire rotational latency (6 ms for 10,000 RPM disks) for the sector to pass under
the head again.

MEMS-based storage devices also contain tracking information stored in servo bursts; this information
is duplicated across all tips and is read and veri�ed by every tip involved in a data access. The penalty for
a seek error could involve up to two turnarounds in the Y direction (0.04{1.11 ms each) and short seeks in
possibly both the X and Y directions.

6.2 Device failures

MEMS-based storage devices are susceptible to similar non-recoverable failures as disk drives: strong ex-
ternal mechanical or electrostatic forces could damage the actuator comb �ngers or induce spring failure,
manufacturing defects could surface, and the device electronics or channel could fail. These failures should
look like and be handled in the same manner as disks. Inter-device redundancy and periodic backups are
appropriate mechanisms for dealing with such problems.

Interestingly, MEMS-based storage's mechanical characteristics are a better match than disks for the
common read-modify-write operations used in some fault-tolerant schemes (e.g., RAID-5). While conven-
tional disks su�er a full rotation to return to the same sector, MEMS-based storage devices can quickly turn
around, signi�cantly reducing the read-modify-write latency (as shown in Table 2). The small incremental
cost for returning to the same sector obviates the need for the many optimizations [MC93, SGH93, Men95]
that have been developed to address this problem.

17

Atlas 10K MEMS

sectors 8 334 8 334

read 0.14 6.00 0.13 2.19
reposition 5.98 0.00 0.07 0.07
write 0.14 6.00 0.13 2.19

total (ms) 6.26 12.00 0.33 4.45

Table 2: A comparison of read-modify-write times for 4 KB (8 sector) and track-length (334
sector) transfers. 334 sectors is the longest track length in the Atlas 10K disk. Conventional disks must
wait for a complete platter rotation during read-modify-write operations, whereas MEMS-based storage devices
need only turn the sled around. (Depending on sled position and the spring factor, turnaround time varies
nonlinearly from 0.036 ms{1.11 ms with 0.063 ms average.) This characteristic is particularly helpful for
code-based redundancy schemes (e.g., RAID-5; see x 6.2) or for verify-after-write operations.

6.3 Recovery from host system crashes

As they do with disks, �le systems and databases must maintain internal consistency between persistent
objects stored on MEMS-based storage devices [CMB+81, Hag87, GR93, GP94]. Although synchronous
writes will still not be desirable, the much lower service times for MEMS-based storage devices should
decrease the penalty for these writes [LC97, WPA99].

Another bene�t is the rapid initialization (0.5 ms) of MEMS-based storage devices. No spindle spin-up
time is required, so initialization is almost immediate. In contrast, high-end disk drives can take 25 seconds to
spin-up [Qua99]. Further, MEMS-based storage devices do not exhibit the power surge inherent to spinning
up disk drives, so power spike avoidance techniques (e.g., serializing the spin-up of multiple disk drives) are
unnecessary|all of the devices may be initialized concurrently.

7 Power Management

Signi�cant e�ort has gone into reducing a disk drive's power consumption, including (1) reducing active
power consumption and (2) introducing numerous power-saving modes employed during idle times [DKM94,
LKHA94, LSD99]. Supporting these power-saving modes requires OS power management software that
controls power mode transitions as varying levels of electronics and the spindle motor are powered down.
Since restarting components can signi�cantly increase access time (ranging from 40 ms to over 2 seconds
when restarting the spindle motor [IBM99, IBM00]), power management software must constantly make
trade-o�s between reducing power and increasing access time.

The power characteristics of MEMS-based storage devices enable a much simpler OS power management
scheme: a single idle mode that stops the sled and powers down non-essential electronics. With no rotating
parts and a very light mass, the sled's restart time is very small (estimated at under 0.5 ms). This imper-
ceptible penalty enables aggressive idle mode use, switching from active to idle as soon as the I/O queue is
empty.

Further, 90% of a MEMS-based storage device's power is used for sensing and recording operations,
making the media sled's power consumption negligible. This results in a
at power-per-bit-accessed con-
sumption rate and creates another set of power optimizations: minimizing the amount of data trans-
ferred [NSN+97, FS99]. In a manner similar to power optimizations for wireless communication (where
aggressive compression can signi�cantly save power), the embedded computational logic in MEMS-based
storage devices could be used to compress data arriving at the media in order to minimize the number of
active tips per access.

18

8 Conclusion

Our work compares and contrasts MEMS-based storage devices with disk drives and provides a foundation
for focused operating system management of these new devices. We describe and evaluate approaches for
operating system tuning of request scheduling, data placement, failure management, and power management
techniques in order to match the physical characteristics of MEMS-based storage.

For scheduling decisions, we �nd adaptations of disk scheduling algorithms to be appropriate for MEMS-
based storage devices. The impact of settling time on sled seek time is the key consideration when choosing
among these algorithms. For large settling times (where X direction seeks will generally dominate Y direction
seeks), LBN-based algorithms that minimize sled movement in the X direction (e.g., SSTF LBN, C-LOOK)
achieve good performance without the overhead of calculating the exact positioning times for each outstand-
ing request (SPTF). Layout decisions at the OS level also depend on the physical characteristics of the
device. For devices with large spring factors, we �nd that small, random requests are optimally con�ned
to the centermost subregion whereas large, sequential requests may be placed anywhere on the media with
minimal (<10%) penalty. This encourages a bipartite layout scheme; our experiments suggest such a layout
yields up to a 20% improvement in request service times over a simple linear layout.

The characteristics of MEMS-based storage devices also impact failure and power management at the OS
level. The large amount of internal parallelism among probe tips allows faulty tip regions to be remapped to
spare probe tips with no negative impact on request service time. Because of the nature of the sled motion,
read-modify-write requests are handled with nearly zero repositioning overhead|this has a strong positive
impact on code-based redundancy schemes such as RAID-5. The small initialization/startup time of these
devices (�0.5 ms) allows both fast recovery from host crashes and �ne-grain idle power management by the
OS. Finally, because power consumption is a near-linear function of the number of active tips, the OS can
manage device power dissipation by controlling both request size and the maximum number of active tips.

Continuing this work, we are exploring the impact MEMS-based storage devices will have on the structure
of computer systems and the memory hierarchy [SGNG00] and investigating applications that directly bene�t
from the unique characteristics of these devices.

References

[CBF+00] L. Richard Carley, James A. Bain, Gary K. Fedder, David W. Greve, David F. Guillou,
Michael S.-C. Lu, Tamal Mukherjee, Suresh Santhanam, Leon Abelmann, and Seungook Min.
Single chip computers with MEMS-based magnetic memory. Journal of Applied Physics, 87(to
appear), 2000.

[CMB+81] Donald D. Chamberlin, Astrahan M. Morton, Michael W. Blasgen, James N. Gray, W. Frank
King, Bruce G. Lindsay, Raymond Lorie, James W. Mehl, Thomas G. Price, Franco Putzolo,
Patricia GriÆths Selinger, Mario Schkolnick, Donlad R. Slutz, Irving L. Traiger, Bradford W.
Wade, and Robert A. Yost. A history and evaluation of System R. Communications of the ACM.,
24(10):632{646, October 1981.

[DCK+94] Fred Douglis, Ramon Caceres, Frans Kaashoek, Kai Li, Brian Marsh, and Joshua Tauber. Storage
alternatives for mobile computers. In Proceedings of the First Symposium on Operating Systems
Design and Implementation, pages 25{37, Monterey, CA, November 1994. USENIX Assoc.

[Den67] Peter Denning. E�ects of scheduling on �le memory operations. In IFIPS Spring Joint Computer
Conference, pages 9{21, April 1967.

[Dis00] Database of validated disk parameters for DiskSim, February 2000. http://www.ece.cmu.edu/-
~ganger/disksim/diskspecs.html.

[DKM94] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the power-hungry disk. In Proceedings
of the Winter USENIX Technical Conference, pages 292{306, San Francisco, CA, January 1994.
USENIX Association, Berkeley, CA.

19

[FS99] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In Pro-
ceedings of the 17th ACM Symposium on Operating System Principles, Kiawah Island Resort,
Charleston, SC, December 1999. Published as Operating Systems Review, 33(5):48{63.

[FSR+96] Gary K. Fedder, Suresh Santhanam, Michael L. Reed, Steven C. Eagle, David F. Guillou,
Michael S.-C. Lu, and L. R. Carley. Laminated high-aspect-ratio microstructures in a conven-
tional CMOS process. In Proceedings of the IEEE Micro Electro Mechanical Systems Workshop,
pages 13{18, San Diego, CA, February 1996.

[GP94] Gregory R. Ganger and Yale N. Patt. Metadata update performance in �le systems. In Pro-
ceedings of the First Symposium on Operating Systems Design and Implementation, pages 49{60,
November 1994.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Mateo, CA, 1993. ISBN 1-55860-190-2.

[GSGN00] John Linwood GriÆn, Steven W. Schlosser, Gregory R. Ganger, and David F. Nagle. Modeling
and performance of MEMS-based storage devices. In Proceedings of the 2000 ACM SIGMETRICS
Conference, Santa Clara, CA, June 2000.

[GWP98] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. The DiskSim simulation en-
vironment version 1.0 reference manual. Technical Report CSE-TR-358-98, The University of
Michigan, Ann Arbor, February 1998.

[Hag87] Robert Hagmann. Reimplementing the Cedar �le system using logging and group commit. In Pro-
ceedings of the 11th ACM Symposium on Operating System Principles, Austin, Texas, November
1987. Published as Operating Systems Review, 21(5):155{162.

[IBM99] IBM. IBM family of microdrives, June 1999. http://www.storage.ibm.com/hardsoft/diskdrdl/-
micro/datasheet.pdf.

[IBM00] IBM. IBM Travelstar 32GH, 30GT, and 20GN 2.5-inch hard disk drives, April 2000.
http://www.storage.ibm.com/hardsoft/diskdrdl/travel/32ghdata.pdf.

[JW91] David M. Jacobson and John Wilkes. Disk scheduling algorithms based on rotational position.
Technical Report HPL-CSP-91-7, Hewlett-Packard Laboratories, February 1991.

[KL99] Han-joon Kim and Sang-goo Lee. A new
ash memory management for
ash storage system. In
Proceedings of the 23rd Annual International Computer Software and Applications Conference,
October 1999.

[LC97] David E. Lowell and Peter M. Chen. Free transactions with Rio Vista. In Proceedings of the 16th
ACM Symposium on Operating System Principles, Saint Malo, France, October 1997. Published
as Operating Systems Review, 31(5):92{101.

[LKHA94] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson. A quantitative analysis of disk
drive power management in portable computers. In Proceedings of the Winter USENIX Technical
Conference, pages 279{292, January 1994.

[LSD99] Yung-Hsiang Lu, Tajana Simunic, and Giovanni De Micheli. Software controlled power man-
agement. In 7th International Workshop on Hardware/Software Codesign, pages 157{161, May
1999.

[Mad97] Marc Madou. Fundamentals of Microfabrication. CRC Press, Boca Raton, Fla., 1997. ISBN
0-8493-9451-1.

[MC93] Jai Menon and Jim Courtney. The architecture of a fault-tolerant cached RAID controller. In
ACM International Symposium on Computer Architecture, pages 76{86, San Diego, CA, May
1993.

20

[Men95] Jai Menon. A performance comparison of raid-5 and log-structured arrays. In IEEE Inter-
national Symposium on High-Performance Distributed Computing, pages 167{178, Washington,
DC, August 1995. IEEE Computer Society Press, Washington, DC.

[MJLF84] Marshall K. McKusick, William N. Joy, Samuel J. Le�er, and Robert S. Fabry. A fast �le system
for UNIX. ACM Transactions on Computer Systems, 2(3):181{197, August 1984.

[MK91] Larry W. McVoy and Steve R. Kleiman. Extent-like performance from a UNIX �le system. In
Proceedings of the Winter USENIX Technical Conference, pages 33{43, January 1991.

[NSN+97] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn,
and Kevin R. Walker. Agile application-aware adaptation for mobility. In Proceedings of the
16th ACM Symposium on Operating System Principles, Saint Malo, France, December 1997.
Published as Operating Systems Review, 31(5):276{289.

[Qua99] Quantum Corporation. Quantum Atlas 10K 9.1/18.2/36.4 GB Ultra 160/m S Product Manual
III SCSI Hard Disk Drives: Ultra SE SCSI-3 Version, August 1999.

[RFGN00] Eric Riedel, Christos Faloutsos, Gregory R. Ganger, and David F. Nagle. Data mining on an
OLTP system (nearly) for free. In Proceedings of the ACM SIGMOD Conference, page to appear,
Dallas, Texas, May 2000.

[RO92] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a log-structured
�le system. ACM Transactions on Computer Systems, 10(1):26{52, February 1992.

[RW91] Chris Ruemmler and John Wilkes. Disk shu�ing. Technical Report HPL-91-156, Hewlett
Packard, October 1991.

[RW93] Chris Ruemmler and John Wilkes. UNIX disk access patterns. In Proceedings of the Winter
USENIX Conference, pages 405{420, January 1993.

[SCO90] Margo Seltzer, Peter Chen, and John Ousterhout. Disk scheduling revisited. In Proceedings of
the Winter USENIX Conference, pages 313{324, January 1990.

[SGH93] Daniel Stodolsky, Garth Gibson, and Mark Holland. Parity logging: overcoming the small write
problem in redundant disk arrays. In ACM International Symposium on Computer Architecture,
pages 64{75, San Diego, CA, May 1993.

[SGNG00] Steven W. Schlosser, John Linwood GriÆn, David F. Nagle, and Gregory R. Ganger. Design-
ing computer systems with MEMS-based storage. Technical Report CMU-CS-00-137, Carnegie
Mellon University School of Computer Science, Pittsburgh, Pennsylvania, May 2000.

[SLW66] Philip H. Seaman, Robert A. Lind, and Troy L. Wilson. On teleprocessing system design, part
iv: An analysis of auxilliary storage activity. IBM Systems Journal, 5(3):158{170, 1966.

[TP72] Toby J. Teorey and Tad B. Pinkerton. A comparative analysis of disk scheduling policies. Com-
munications of the ACM, 15(3):177{184, March 1972.

[VC90] Paul Vongsathorn and Scott D. Carson. A system for adaptive disk rearrangement. Software|
Practice and Experience, 20(3):225{242, March 1990.

[WGP94] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling algorithms for modern
disk drives. In Proceedings of the 2000 ACM SIGMETRICS Conference, pages 241{251, May
1994.

[Wis98] Kensall D. Wise. Special issue on integrated sensors, microactuators and microsystems (MEMS).
Proceedings of the IEEE, 86(8):1531{1787, August 1998.

[WPA99] Randolph Y. Wang, David A. Patterson, and Thomas E. Anderson. Virtual log based �le systems
for a programmable disk. In Symposium on Operating Systems Design and Implementation, pages
29{43, New Orleans, LA, February 1999. ACM.

21

