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Abstract

This paper describes CES, a proto-type of a new programming language for robots and other
embedded systems, equipped with sensors and actuators. CES contains two new ideas, currently
not found in other programming languages: support of computing with uncertain information,
and support of adaptation and teaching as a means of programming. These innovations facilitate
the rapid development of software for embedded systems, as demonstrated by two mobile robot
applications.
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1 Introduction

This paper introduces CES, a new language for programming robots. CES, which is short forC for
Embedded Systems, supports the development of adaptable code: Instructing robots in CES inter-
leaves phases of conventional programming and training, in which the code is improved through
examples. CES also supports computation with uncertain information, which is often encountered
in embedded systems.

To date, there exist two complementary methodologies for programming robots, which are
usually pursued in isolation: conventional programming and learning, which includes teaching
and trial-and-error learning. Undoubtedly, the vast majority of successful robots are programmed
by hand, using procedural languages such as C, C++, or Java. Robots, their tasks, and their
environments are usually complex. Thus, developing robotic software usually incurs substantial
costs, and often combines coding, empirical evaluation, and analysis.

Recently, several researchers have successfully substituted inductive learning for conventional
program development so that they couldtrain their software to perform non-trivial tasks. For
example, Pomerleau, in his ALVINN system, trained an artificial neural network to map camera
images to steering directions for an autonomous land vehicle [83, 82]. After approximately 10
minutes of training, his system provided a remarkable level of skill in driving on various types of
roads and under a wide range of conditions. Coding the same skill manually is difficult, as the
work by Dickmanns and his colleagues has shown [23]. This example demonstrates that adaptable
software, if used appropriately, may reduce the design time of robotic software substantially. In
our own work, we recently employed neural networks for sensor interpretation and mapping tasks
[105, 107], which, among other aspects, led to a mobile robot that successfullynavigates in densely
crowded public places [12]. As argued in [105], the use of neural networks led to a significant
speed-up in software development; it also provided an enhanced level of flexibility in that the
robot could easily be retrained to new conditions, as demonstrated at a recent AAAI mobile robot
competition [11, 106].

The importance of learning in robotics has long been recognized. However, despite an enor-
mous research effort in this direction, learning has had little impact on robotics. This is partially
because most of the research on robot learning is focused on the design of general-purpose learning
algorithms, which keep the amount of task-specific knowledge at a minimum. For example, vir-
tually all robotics research on reinforcement learning (e.g., [1, 64, 61, 103, 16]) and evolutionary
computation (e.g., [27, 62, 94]) seeks to establish algorithms that learn the entire mapping from
sensors to actuators from scratch. Consequently, this field often resorts to narrow assumptions,
such as full observability of the environment’s state, or an abundance of training data. The current
best demonstrations of reinforcement learning in robotics solve relatively simple tasks, such as
collision avoidance, coordination of legged locomotion, or visual servoing.

This paper advocates the integration of conventional programming and learning. We argue
that conventional programming and tabula rasa learning are just two ends of a spectrum, as shown
in Figure 1. Both ends are ways of instructing robots, characterized by unique strengths and
weaknesses. Conventional programming is currently the preferred way to make robots work, as
it is often relatively straightforward to express complex structures and procedures in conventional
program code. As the above examples suggest, however, certain aspects of robot software are
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Programming � - Teaching

Figure 1: To data, there are two complimentary ways to instruct robots: conventional programming
and teaching (learning). Most existing robots live close to one of the two extremes. This research
seeks to integrate both, so that robots can be instructed using a mixture of programming and
teaching.

easier to program through teaching and other means of learning. It is therefore a desirable goal
to integrate both conventional programming and learning to find ways to develop better software
with less effort.

This paper presents a proto-type of a new programming language, called CES, designed to
facilitate the development of adaptable software for embedded systems. Programming in CES
interleaves conventional code development and learning. CES allows programmers to leave “gaps”
in their programs, in the form of function approximators, such as artificial neural networks [91].
To fill these gaps, the programmers train their program, by providing examples of the desired
program behavior or by letting the program learn from trial-and-error. To bridge the gap between a
program’s behavior and the parameters of a function approximator, CES possesses a built-in credit
assignment mechanism. This mechanism adjusts the parameters of the function approximators
incrementally, so as to improve the program’s performance.

CES differs from conventional programming languages in a second aspect relevant to em-
bedded systems, in that it provides the programmer with the ability to compute withuncertain
information. Such information often arises in robotics, since sensors are noisy and limited in
scope, imposing intrinsic limitations on a robot’s ability to sense the state of its environment.
CES provides new data types for representing probability distributions. Under appropriate inde-
pendence assumptions, computing with probability distributions is analogous to computing with
conventional data types, with the only difference that CES’s probabilistic variables may assume
multiple values at the same time. The probabilistic nature of these variables provides robustness.

CES is an extension of C, a highly popular programming language. The choice to base CES
on C seeks to retain the advantages of C while offering the concepts of adaptable software and
probabilistic computation to programmers of embedded systems. Throughout this paper, we will
assume that the reader is already familiar with C. The remainder of this paper describes the two
major extensions in CES: probabilistic computation and learning. Both ideas are interrelated, as
the particular learning mechanism in CES relies on the probabilistic nature of the variables. The
paper also describes in some depth the development of an example program for a gesture-driven
mail delivery robot, illustratinghow conventional programming and teaching are closely integrated
in CES. It also shows that by using CES’s probabilistic constructs, sensor data can be processed in
more robust (and more natural) ways. Finally, the paper briefly documents how an existing mobile
robot localization algorithm, called BaLL, can be programmed in 58 lines, replacing a 5,000 line
implementation in conventional C [104].
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The reader should notice that CES is currently not implemented as described in this article,
i.e., there exists no interpreter or compiler. The empirical result have been obtained with an im-
plemented function library that is functionally equivalent to CES, but which differs syntactically.
Thus, the results reported here should be viewed as a proof-of-concept only.

2 Probabilistic Computation in CES

This section describes CES’s probabilistic data types, operators, and functions. The key idea for
handling uncertainty is to allow variables to take on more than just one value, and to describe the
probabilityofeach value by a probabilitydistribution. For example, a variableclose to obstacle
might simultaneously take on both valuesyes andno, each value being weighted by a numerical
likelihood. Under appropriate independence assumptions, computing with probability distribu-
tions is analogous to computing with conventional values. Drawing on this analogy, this section
describes the major probabilistic data types, operators and functions. Towards the end of this sec-
tion, we will introduce three mechanisms that lack a direct analogy in the land of conventional
programming: convolved data types, theprobloop command, and the Bayes operator.

2.1 Probabilistic Data Types

CES uses methods from probability theory to represent and process uncertain information. Uncer-
tain information is represented by a collection of new data types

probchar
probint
probfloat

which parallel existing data types in C:char , int , float . These new data types will be referred
to asprobabilistic data types. Notice that each numerical data type in C possesses a corresponding
probabilistic data type in CES, called thedual.

These new data types are used to declare variables that representprobability distributionsover
values. For example, a variable declaredprobint specifies, for every possible integer valuex, a
probability that the value of the variable isx:

Pr(x = 0)

Pr(x = 1)

Pr(x = �1)
Pr(x = 2)

Pr(x = �2)
...

According to Kolmogarov’s axioms of probability,each of these values must be non-negative, and
they must sum up to 1. These properties are guaranteed by the language.

There is a close correspondence between probabilistic data types and their (conventional) du-
als. Whereas conventional numerical data types are used to represent single values, probabilistic
data types represent probability distributionsover such values. One might think of the probabilistic
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data types as generalizations of conventional data types which enable a variable to take on multiple
values at the same time. For example, ifx is an integer with value 2, this corresponds to the special
case of a probabilistic variable wherePr(x = 2) = 1 and all other values ofx take on probabilities
of 0. As will be shown below, there is a close correspondence between computing with values and
computing with probability distributions over values. There also exist straightforward ways for
merging conventional and probabilistic data.

Of course, representing probability distributions for probabilistic variables whose duals can
take more than a handful of values can be extremely memory-intense. For example, more than
4 � 109 numbers are needed to specify an arbitrary probability distribution over all floating point
values at 4 byte resolution. The statistical literature offers many compact representations, such
as mixtures of Gaussians [22], piecewise constant functions [13], Monte-Carlo approximations
[44, 50], trees [8, 71], and other variable-resolution methods [77]. In our current implementation
all probability distributions are represented by piecewise constant density functions. The granu-
larity of this function can be determined by the programmer, by setting the system-level variable
prob dist resolution , whose default is 10.

2.2 Constants

CES offers a variety of ways to assign distributions to probabilistic variables. The statement

x = 2.4;

assigns a Dirac distribution tox whose probability is centered on 2.4, that is

Pr(x) =

(
1 if x = 2.4
0 if x 6= 2.4

(1)

Finite probability distributions can be specified through lists. Lists consist of tuples composed of
a number (event) and its probability. For example, the assignment

x = { {1, 0.5}, {2, 0.3}, {10, 0.2} };

assigns the following distribution to the probabilistic variablex :

Pr(x) =

8>>><
>>>:

0:5 if x = 1
0:3 if x = 2
0:2 if x = 10
0 otherwise

(2)

CES possesses definitions for commonly used probability distributions. The statement

x = UNIFORM1D(0.0, 10.0);

initializes a probabilistic variablex with a one-dimensional uniform distribution over the interval
[0; 10]. The statement

x = NORMAL1D(0.0, 1.0);
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assigns tox a normal distribution with mean 0.0 and variance 1.0.
While the predefined constants in CES cover a large number of common distributions, certain

distributions cannot be specified directly. As described in turn, distributions can be combined
using various arithmetic operations. An alternative way for initializing probabilistic variables is
theprobloop command, which will be described further below.

2.3 Arithmetic Operations

Arithmetic with probabilistic data types is analogous to conventional arithmetic in C. For example,
let us assume thatx , y andz are three probabilistic variables of the typeprobint , andx andy
possess the following distributions:

Pr(x) =

8><
>:

0:5 if x = 0
0:5 if x = 3
0 otherwise

Pr(y) =

(
0:1 if 0 � y < 10

0 otherwise
(3)

Then the statement

z = x + y;

generates a new distribution, whose values are all possible sums ofx andy , and whose probabili-
ties are the products of the corresponding marginal probabilities:

Pr(z) =

8>>><
>>>:

0:05 if 0 � z < 3

0:1 if 3 � z < 10

0:05 if 10 � z < 13

0 otherwise

(4)

(5)

Thus, arithmetic operations are performed on the domain (e.g., the floating-point values), not on
probability distributions.

It is important to notice that CES makes an implicitindependence assumptionbetween differ-
ent right-hand operands of the assignment. More specifically, when computingz , CES assumes
thatx andy are stochastically independent of each other. The issue of independence in CES will
be revisited in Section 2.7.

2.4 Type Conversion

Just as in C, CES provides mechanisms for type conversions. The most interesting conversions
are between conventional and probabilistic variables. Supposex is declared as afloat , andy is
declared as aprobfloat . The statement

y = (probfloat) x;

assigns toy a Dirac distribution whose probability mass is centered on the value ofx

Pr(y) =

(
1 if y = x
0 if y 6= x

(6)

The inverse statement,



6 Sebastian Thrun

x = (float) y;

assigns tox themeanof the distributiony . CES offers a collection of alternative functions that
convert probabilistic variables to numerical values (floats):

mean( );
ml( );
median( );
variance( );

As the names suggest,mean() computes the mean,ml() the maximum likelihoodvalue,median()
the median, andvariance() the variance of a probabilistic variable.

Probabilities of individual values of probabilistic variables (or ranges thereof) can beaccessed
by the library functionprob . This function accepts a logical expression as input, and computes
the probability of the expression for the probabilistic variable at hand. For example, the statement

p = prob(x < value);

assigns top the probability thatx is smaller thanvalue . Herep must be of the typefloat , x
must be a probabilistic variable andvalue must be its (non-probabilistic) dual.

2.5 Truncation and Inversion

Probabilistic truncation removes low-probability values from a probabilistic variable. Truncation
is a library function in CES:

x = probtrunc(&y, bound);

Truncation first identifies the value with the largest probability iny . It then sets to zero all proba-
bilities of values, whose current probability is smaller thanbound times the largest probability in
y . Thebound is of the typefloat and should lie between 0 and 1. For example, the following
code segment

probfloat x, y;
y = { {1, 0.5}, {2, 0.3}, {3, 0.1}, {4, 0.1} };
x = probtrunc(&y, 0.4);

generates the probability distribution

Pr(x) =

8><
>:

0:625 if x = 1
0:375 if x = 2
0 otherwise

(7)

In this example, the largest probability iny is 0.5; thus,probtrunc removes all values whose
probability is smaller than0:4 � 0:5 = 0:2. In our example, the values are 3 and 4 are removed,
since their probability is 0.1, which is smaller than 0.2. Normalization of the remaining probability
values (for 1 and 2) leads to the distribution specified above.

Truncation is useful to remove low-likelihoodvalues from future consideration, thereby speed-
ing up the computation. In situations where most events are unlikely but not impossible, trunca-
tion can often reduce the computation time by several orders of magnitude while only marginally
changing the result.
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Another useful probabilistic operation isinversion. Let x be a probabilistic variable that rep-
resents some probability distribution

Pr(x) (8)

Then the function

inverse(x);

computes theinverseof Pr(x):

Pr(x)�1 (9)

If Pr(x) = 0 for somex, then the inverse is undefined.

2.6 Probabilistic Arrays

In preparation for the experimental results discussed further below, let us briefly present a less
obvious example: a CES program for averaging distributions over the same domain. LetPri with
i = f1; 4g denote four different distributions over the same domainx. Then

Pr(x) =
1

4

4X
i=1

Pri(x) (10)

is their average. In CES, averaging can be expressed as follows. Let

probfloat pri[4];

represent those four distributions. Then the code segment

probfloat pr;
probint index = {{0, 0.25}, {1, 0.25}, {2, 0.25}, {3, 0.25}};

pr = pri[index];

assigns topr the average of the four distributionspri[] .

2.7 Independence in CES

When computing with probabilistic variables, CES makes implicit independence assumptions be-
tween different probabilistic variables. Consider, for example, a statement of the type

z = x - y;

CES assumes thatx andy areindependent, that is, CES assumes that their joint distribution is the
product of the marginal distributions:

Pr(x; y) = Pr(x) Pr(y) (11)
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It is important to notice that the independence assumption is necessary. Without it, results of
statements like the one above are usually ill-defined. To demonstrate this point, let us assume that
x andy are identically distributed:

Pr(x = i) = Pr(y = i) =

8><
>:

0:5 if i = 0

0:5 if i = 1

0 otherwise
(12)

If x andy are independent,

Pr(z) =

8>>><
>>>:

0:25 if z = �1
0:5 if z = 0

0:25 if z = 1

0 otherwise

(13)

but if x = y (hencex andy are dependent),

Pr(z) =

(
1 if z = 0

0 otherwise
(14)

The reader will quickly notice that (13) and (14) are not equivalent; thus, in the absence of the
independence assumption (or a similar assumption) assignments in CES are not well-defined.

The independence assumption in CES, together with the fact that CES does not possess an
inference mechanism of the type used in Bayes networks [81, 41], has important consequences.
These might not appear obvious at first. Consider, for example, the following statement:

z = x - x;

If the initial conditions are as specified in (12), the result is the distribution given in (14). The
slightly more complicated sequence of statements

y = x;
z = x - y;

however, leads to the distribution specified in (13). This is because when executing the second
instruction, the variablesx andy are assumed to be independent. Statements like the ones above
specify assignments, not constraints on probability distributions (as in Bayes networks). Conse-
quently, CES does not keep track of the implicit dependence betweenx andy arising from the first
assignment when computing the second. The relation between CES and Bayes networks, a popu-
lar but quite different framework for computing with probabilistic information, will be discussed
towards the end of this paper.

While the independence assumption is essential for computational efficiency, sometimes it is
too strict. In the next two sections, mechanisms will be described that allow the programmer to
explicitly maintain dependencies. One is calledcompoundingand permits the creation of multi-
dimensional probabilistic variables that describe the full joint distribution of more than one vari-
able. Another is theprobloopcommand, which makes it possible to trace dependencies correctly
through sequences of statements.
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2.8 Compounds

Compounds are data structures that enable the programmer to compute with multi-dimensional
probability distributions. Their syntax is equivalent to that ofstruct in conventional C. The
following declaration

compound {
probfloat a, b;
probint c;

} x;

creates a variablex that models a three-dimensional probability distribution. The first two dimen-
sions ofx are real-valued, whereas the third is integer. The marginal distributions of compounded
variables can be accessed by the dot-operator. For example,x.b refers to the marginal distribution
of x projected ontob

x:b = Pr(x = b) =

Z Z
Pr(x = ha; b; ci) da dc (15)

Compounding variables results in allocating memory for the full joint distribution. It is generally
advisable to keep the dimension of compounded variables small, as the size of the joint distribution
space grows exponentially with its dimension (the number of probabilistic variables).

Compounded probabilistic variables can be used just like (one-dimensional) probabilistic vari-
ables, as long as all other operands are of the same type and dimension. Accessing the marginals
requires additional computation, since they are not memorized explicitly.

2.9 Theprobloop Command

Often, it is necessary to access individual events covered by a probabilistic variable. The most
powerful tool for processing probabilistic information is theprobloop command. This com-
mand enables the programmer to handle probabilistic variables just like regular ones, by looping
over all possible values.

The syntax of theprobloop command is as follows:

probloop (var-list-in; var-list-out) program-code

wherevar-list-in and var-list-out are lists of probabilistic variables separated by commas, and
program-codeis regular CES code. Variables may appear in both lists, and either list may be
empty.

Theprobloop command interprets the variables invar-list-in as “input” probability distri-
butions. It executes theprogram-codewith all combinations of values for the variables in this
list, with the exception of those whose probabilities are zero. Inside theprogram-code, the types
of all variables invar-list-in andvar-list-outare converted to their non-probabilistic duals. The
program-codecan read values from the variables invar-list-in, and write values into probabilistic
variables invar-list-out. For each iteration of the loop, CES caches two things: The probability of
the combination of values (according to the probabilistic variables in thevar-list-in), and the effect
of theprogram-codeon the probabilistic variables invar-list-out. From those, it constructs new
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probability distributions for all probabilistic variables in thevar-list-out. The body ofprobloop
command may not change the value of variables other than those listed invar-list-outor declared
locally, inside theprobloop .

The probloop command is best illustrated with an example. Consider the following pro-
gram:

probint x, y, z;

x = {{1, 0.2}, {2, 0.8}};
y = {{10, 0.5}, {20, 0.5}};

probloop(x, y; x, z){
if (10 * x - 1 > y)

z = 1;
else{

z = 0;
x = 5;

}
}

Sincex andy are specified in thevar-list-in, theprobloop instruction loops through all combi-
nations of values for the variablesx andy , with the exception of those whose probability is zero.
There are exactly four such combinations:h1; 10i, h1; 20i, h2; 10i, andh2; 20i. For all those com-
binations, theprogram-codeis executed and the result, which according to thevar-list-outresides
in x andz , is cached along with the probability assigned to values assigned tox andy :

x = 1 y = 10 �! z = 0 with probabilityPr(x = 1; y = 10) = 0:1

x = 1 y = 20 �! z = 0 with probabilityPr(x = 1; y = 20) = 0:1

x = 2 y = 10 �! z = 1 x = 5 with probabilityPr(x = 2; y = 10) = 0:4

x = 2 y = 20 �! z = 0 with probabilityPr(x = 2; y = 20) = 0:4

Upon completion of all iterations, the results are converted into a probability distribution for the
variables mentioned in thevar-list-out: z andx .

Pr(z) =

8><
>:

0:6 if z = 0

0:4 if z = 1

0 otherwise
Pr(x) =

(
1 if x = 5

0 otherwise
(16)

Notice that in this example, the probability of assigning a value tox is only 0.4. CES automatically
normalizes the probabilities, so thateach resulting probability distribution integrates to 1.

The probloop command can be applied to more complex constructs, such as loops and
recursion. For example the following code segment

probint x, y;
int i;

x = {{1, 0.7}, {2, 0.3}};

probloop(x; y){
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y = 0;
for (i = 0; i < x; i++)

y = y + x + i;
}

generates the probability distribution

Pr(y) =

8><
>:

0:7 if y = 1
0:3 if y = 5
0 otherwise

(17)

Notice that in this example, the actual number of iterationsx is a probabilistic variable. Thus, the
number of iterations is varies, depending on the value ofx inside theprobloop .

Theprobloop command also provides a solution to the problem raised in Section 2.7. There,
the side effect of CES’s independence assumption in sequences of statements such as

y = x;
z = x - y;

was discussed. The following piece of code generates the result that appears to be intuitively
correct and specified in (14):

probloop(x; y, z){
y = x;
z = x - y;

}

Theprobloop command enables the programmer to manipulate individual elements of proba-
bilistic variables. Inside aprobloop , CES keeps track of all implicit probabilistic dependen-
cies arising from the variables specified in thevar-list-in. The probloop command provides
a sound way to use probabilistic variables in commands such asfor loops,while loops, and
if-then-else . Its major limitation lies in its computational complexity, which grows expo-
nentially with the number of variables invar-list-in. If var-list-in contains variables of the type
probint or probfloat , it is usually impossible to loop through all values. Hereprobloop
samples the variable in predefined sampling intervals, as specified in the system-level variable
prob dist resolution . The efficiency of theprobloop command can be further increased
by truncation, as described above.

The reader may notice that every single-line assignment is equivalent to a probloop command,
in which probabilistic variables on the left hand-side appear in thevar-list-in, and all probabilis-
tic variables on the right hand side are in thevar-list-out list. For example, the following two
statements,

y = (x * z) - 2 * x + y;

and

probloop(x, y, z; y)
y = (x * z) - 2 * x + y;

are equivalent.
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2.10 The Bayes Operator for Multiplying Distributions

CES features a special operator for integrating probabilistic variables, which does not possess a
dual in conventional C. This operator is denoted# and calledBayes operator. It multiplies two
or more probability distributions in the following way: Lety andz be two probabilistic variables
that represent distributions (denotedPry andPrz) over the same domain. Then the statement

x = y # z;

assigns tox the product distribution

Prx(a) = � Pry(a) Prz(a) (18)

for all a in the domain ofy andz . Here� is a normalizer that ensures that the left-hand expression
integrates to 1. IfPryPrz(a) = 0 for all a, the result of this statement is undefined.

The Bayes operator is useful for integrating conditionally independent sensor information us-
ing Bayes rule (hence the name). Suppose we want to estimate a quantityx, and suppose we have
two different sources of evidence,y andz. For example,x could be the proximity of an obstacle
to a mobile robot,y could be an estimate obtained from sonar sensors, andz the estimate obtained
with a laser range finder. The statement

x = y # z;

integrates the probabilistic variablesy andz (called: evidence variables) into a single distribution
x, in the same way information is integrated in Kalman filters [47], dynamic belief networks
[18, 92], and various other AI algorithms that deal with conditionally independent probability
distributions.

Let us make this more formal. Suppose we want to estimate a quantityd from a set ofn sensor
readings, denoteds1; s2; : : : ; sn. Now let us suppose we know already how to estimated based on
a single sensor datum, and the problem is to integrate the results from multiple sensor data into a
single, consistent estimate ofd.

In the language of probability theory, we are facing the problem of computing the conditional
probabilityPr(djs1; : : : ; sn). Using Bayes rule, this probability can be expressed as

Pr(djs1; : : : ; sn) =
Pr(snjd; s1; : : : ; sn�1) Pr(djs1; : : : ; sn�1)

Pr(snjs1; : : : ; sn�1)
(19)

Under the assumption that different sensor readings areconditionally independent givend, which
is often referred to as the independence-of-noise assumption and which is written

Pr(sijd; sj) = Pr(sijd) for i 6= j; (20)

the desired probability can be expressed as

Pr(djs1; : : : ; sn) =
Pr(snjd) Pr(djs1; : : : ; sn�1)

Pr(snjs1; : : : ; sn�1)
: (21)

The denominator does not dependd and hence is a constant. The desired expression can be re-
written as

Pr(djs1; : : : ; sn) = � Pr(snjd) Pr(djs1; : : : ; sn�1) (22)

with an appropriate normalizer�. Suppose the probabilistic variablesx = Pr(djs1; : : : ; sn�1) and
y = Pr(snjd). Then the statement
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x = x # y;

assigns tox the probabilityPr(djs1; s2).
Sometimes, one is given probabilistic evidence of the typePr(djsi), instead ofPr(sijd) as

assumed above. Applying Bayes rule toPr(snjd) in Equation (22) yields

Pr(djs1; : : : ; sn) = �
Pr(djsn) Pr(sn)

Pr(d)
Pr(djs1; : : : ; sn�1) (23)

which, sincePr(sn) does not depend ond, can be transformed to

Pr(djs1; : : : ; sn) = �
Pr(djsn)

Pr(d)
Pr(djs1; : : : ; sn�1) (24)

with appropriate normalizer�. Induction overn yields

Pr(djs1; : : : ; sn) = 
 Pr(d)
nY
i=1

Pr(djsi)

Pr(d)
(25)

with appropriate normalizer
. Using the functioninverse , the incremental update equation
(24) can be realized using the Bayes operator:

x = x # y # inverse(z);

wherex representsPr(djs1; : : : ; sn�1), y representsPr(djsn), andz represents the “prior” distri-
butionPr(d). If Pr(d) is uniform, this term can be omitted since it has no effect.Pr(d) can also
be approximated using data, by averagingy as described in Section 2.9.

The # operator is specifically useful when integrating information over time. For example,
suppose the subroutineobstacle proximity computes a distribution over possible obstacle
distances based on sensor data recorded by a mobile robot. Iterative application of the recursive
assignment

dist = dist # obstacle_proximity(sensor_data);

computes the conditional probability of the obstacle distance, conditioned on all past sensor read-
ings. Here the variablesdist and the subroutineobstacle proximity are both assumed to
be of the typeprobfloat .

As noted above, the# operator is identical to the evidence integration step in Kalman filters
[47], dynamic belief networks [18, 92], and various other approaches dealing with the integra-
tion of probabilistic information (e.g., [72, 18]). Using the#-operator to integrate probability
distributions is only justified under a conditional independence assumption:y andz have to be
conditionally independentgiven the true value ofx. If y andz are both measurements of a vari-
ablex, then this assumption can be interpreted as an assumption that thenoisewhen measuringx
is independent across multiple measurements.

3 Learning in CES

Having described the probabilistic data types, operators, and functions in CES, we will now return
to the issue of integrating conventional programming and teaching. Programming in CES is an
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parameter name type default description
step size float 0.01 step size for gradient descent
momentum float 0.9 momentum
params init range float 1.0 initial parameter range
min gradient , max gradient float � bounds for gradient size (if defined)
learning flag int 1 learning flag

Table 1: Control parameters for function approximators in CES.

activity that interleavesconventional code developmentand learning. For example, when pro-
gramming a mobile robot in CES, the programmer might start with a basic level of functionality,
leaving certain parameterized “gaps” in his program. He might then train the robot by examples,
thereby providing the information necessary to “fill” these gaps. Afterwards, the programmer
might resume the code development and implement the next level of functionality, followed by
additional training and programming phases.

The division of conventional programming and programming learning/teaching is flexible in
CES, and typically depends on their relative difficulties and merits. However, programming and
teaching are not symmetric, as programming must always precede teaching. CES’s built-in learn-
ing mechanism is only capable of changing parameters of function approximators specified by the
programmer. It does not modify or create program code directly.

3.1 Function Approximation in CES

CES possesses pre-defined, parameterized function approximators whose parameters can be mod-
ified based on examples. These function approximators are parameterized; their parameters are
estimated when training a CES program.

The declaration

fa fa-name();

creates such a function approximator calledfa-name, wherefa-nameadheres to the same con-
ventions as function names in C. Function approximators possess three groups of parameters: (1)
adjustable parameters, (2) user-definable control parameters, and (3) internal control parameters.
The first group of parameters is modified automatically by CES when training a program. If the
programmer chooses to use a neural network, these parameters are the weights and biases of the
network. The second group of parameters are control parameters which can be set by the program-
mer. Currently, CES offers the control parameters listed in Table 1, which can be modified if the
initial default parameters are inappropriate, using the commandfaset :

faset(& fa-name, param-name, value);

Here fa-namedenotes of the name of the function approximator,param-namethe name of the
parameter according to Table 1, andvalue the desired parameter value. For example, the code
segment
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fa myfa;
faset(&myfa, step_size, 0.5);

sets the step size for the function approximatormyfa to 0.5. The third group of parameters are
internal control parameters which specify the input and output dimension of the function approx-
imator and the nature of the representation (probabilistic or conventional). These parameters are
configured initially, using the functionfaconfigure:

faconfigure (&fa-name, type, input-dim, input-type,
output-dim, output-type, additional-params);

Heremyfa refers to the function approximator to be configured. The fieldtypespecifies the type of
the function approximator. It may currently be one of the following:NEURONET, RADIALBASIS,
POLYNOMIAL, or LINEAR. The dimensions of the input and output spaces are specified by the
fields input-dimandoutput-dim. The fieldsinput-typeandoutput-typespecify the types of these
variables (which may have an impact on the number of parameters, as will be discussed below).
Finally, the fieldadditional-paramsmay contain additional parameters for the specific function
approximator, such as the number of hidden units in a neural network.

For example, the function call

faconfigure(&myfa, NEURONET, 3, FLOAT, 2, PROBFLOAT, 10);

configuresmyfa to be a neural network with 3 input, 2 output and 10 hidden units, where the
inputs are conventional floats and the outputs are probfloats.

Function approximators must be configured before using them. Once a configured, a function
approximator can be used just like a conventional function, e.g.:

y = myfa(x);

This statement uses the function approximatormyfa to mapx to y . The variablesx andy can be
vectors of floats or compounds of probfloats. In both cases, they must have the length/dimension
specified in thefaconfigure command. The outputs of function approximators are always in
[0; 1]output-dim.

3.2 Training

The parameters of function approximators are adjusted by minimizing the error betweenactual
anddesiredvalues, using gradient descent. Desired values are set using the symbol “<- ”, called
thetraining operator. For example, the statement

y <- ytrue;

specifies that the desired value for the variabley is ytrue (at the current point of program ex-
ecution). The training operator uses CES’s built-in credit assignment mechanisms to change the
parameters of all function approximators who contributed toy (and whose learning flag is set) by
a small amount in the direction that minimizes the deviation (error) betweeny andytrue .
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The training operator permits the combination of different variable types (probabilistic and
non-probabilistic), but the variables must share the same dimensionality. The induced error metric,
which is the basis for the parameter change, depends on the variable types:

E = (y� x)2 if x andy non-probabilistic

E =

Z
(y� x)2 Pr(x) dx if x probabilistic,y non-probabilistic

E =

Z
(y� x)2 Pr(y) dy if x non-probabilistic,y probabilistic

E =

Z Z
(y� x)2 Pr(x) Pr(y) dx dy if x andy probabilistic

(26)

A key feature of CES is that the programmer does not have to provide target signals directly for
the output of each function approximator. Instead, it suffices to provide target signals for some
variable(s) whose values depend on the parameters of the function approximator. For example, the
following code might, with appropriate training signals, instruct a mobile robot to turn parallel to
a wall.

float sonars[24];
probfloat turn, angle;
float target_turn;
fa mynet();

faconfigure(&mynet, NEURONET, 24, FLOAT, 1, PROBFLOAT, 10);
angle = mynet(sonars) * M_PI;
turn = angle - (0.5 * M_PI);
turn <- target_turn;

The programmer specifies, on an example-by-example basis, the amount and direction that the
robot should turn to be parallel to a wall. Here we assume that this value is stored in the variable
target turn . Such target values are used to modify the parameters ofmynet , thereby modi-
fying the function that maps sonar measurements toangle . Here we assume that sonar scans are
available in the variablesonars , andMPI is the numerical constant�.

CES updates parameters by gradient descent. To solve the problem of credit assignment, ev-
ery time a variable is updated CES also computes gradients of its value(s) with respect to all
relevant function approximator parameters (e.g., weights of neural networks). More specifically,
each value that depends on a function approximator is annotated by a gradient field that measures
the dependence of this value on the parameters of this function approximator. The chain rule of
differentiation enables CES to propagate gradients just like values (and probabilities). CES detects
if a parameter influences the value of a variable more than once and sums up the corresponding
gradients. When a training operator is encountered, the error is evaluated, its derivative is com-
puted, and the chain rule applied to update the parameters of all contributing function approxima-
tors. This credit-assignment mechanism is a version of gradient descent, similar to the real-time
Backpropagation algorithm [35, 112], where gradients are propagated through CES program code.
Gradients are only propagated for variables whoselearning flag is set (c.f., Section 3.1).



A Framework for Programming Embedded Systems: Initial Design and Results 17

3.3 The Importance of Probabilities for Learning

Probabilistic computation is a key enabling factor for the learning mechanism in CES. Conven-
tional C code is usually not differentiable. Consider, for example, the statement

if (x > 0) y = 1; else y = 2;

wherex is assumed to be of the typefloat . Obviously,

@y

@x
= 0 with probability 1. (27)

Consequently, program statements of this and similar types will, with probability 1, alter all gra-
dients to zero, gradient descent will not change the parameters, and no learning will occur.

Fortunately, the picture changes if probabilisticvariables are used. Suppose bothx andy are of
the typeprobfloat . Then the same statement becomes differentiable with non-zero gradients:

@Pr(y = 1)

@Pr(x = a)
=

(
1 if a > 0

�1 if a � 0
(28)

@Pr(y = 2)

@Pr(x = a)
=

(
1 if a � 0

�1 if a > 0
(29)

Notice that none of the gradients are zero. Probabilistic CES programs are essentially differen-
tiable. This observation is crucial. The use of probabilistic computation is a necessary component
of the learning approach in CES, not just an independent component of CES. Without it, the cur-
rent credit assignment mechanisms would fail in most cases. In particular, CES’s learning mecha-
nism fails when conventional variables are used in conjunction with non-differentiable statements
such asif-then-else (see the literature on automatic program differentiation [5, 37, 88] for
alternatives).

3.4 Function Approximation with Probabilistic Variables

Usually, function approximators are not used for probabilistic variables; instead, their inputs and
outputs correspond to conventional (non-probabilistic) variables. This section explains how func-
tion approximators are used for probabilistic variables in CES.

If the input to a function approximator is a probabilistic variable, the function approximator is
run for every combination of input values (at a user-defined resolution), and the output is weighted
by the probability of the input vector and averaged. This is similar, though not identical, to the
probloop command.

If theoutputof a function approximator is probabilistic, the picture becomes more problematic.
Function approximators output values, not probabilities; these outputs might not integrate to 1.
CES solves this dilemma by converting outputs into inputs, and interpreting the (normalized)
output of the function approximator as the desired probability. More specifically, supposex is
the input andy is the output of a function approximator. Letm be the dimension ofx andn the
dimension ofy . CES considers the function approximator as a function from<m+n to [0; 1]. The
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(a) (b)

Figure 2: (a) AMELIA, the Real World Interface B21 robot used in our research. (b) Schematics
of the robot’s environment.

probability ofy is given by

Pr(yjx) =
f(x; y)Z
f(x; �y) d�y

(30)

Thus, to compute the distribution fory , CES loops over all possible values iny , just as if the input
were probabilistic. The computation of the denominator is a side-product of computingf(x; y)

for every output value iny .
Just as in theprobloop command, CES samples the functionf at a user-specified resolution

if probabilisticvariables are involved. Once trained, the resolution can easily be changed to sample
continuous-valued distributions at different granularities. In learning mode, gradients of the input
variables with respect to other function approximator parameters, if any, are propagated through
the function approximator using the chain rule of differentiation.

4 Programming a Mail Delivery Robot in CES

This section illustrates the development of an example program in CES. Its purpose is to demon-
strate how robust software can be developed in CES with extremely little effort. Therefore, instead
of just presenting the final result, emphasis is placed on describing the process of software devel-
opment, which involves both conventional coding and training.

The robot is shown in Figure 2a. It is equipped with a color camera, an array of 24 sonar
sensors, and wheel encoders for odometry. Odometry measurements are incremental, consisting
of the relative change of heading direction (therotation) and the distance traveled (thetranslation).
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left hand right hand both hands

no gesture no gesture no gesture

Figure 3: Positive (top row) and negative (bottom row) examples of gestures.

To keep the computational overhead manageable, camera images are automatically sub-sampled
to a resolution of 10 by 10 pixels. The robot is controlled by directly setting its translational and
rotational velocities.

The performance task, which will be programmed in this section, is the task of mail delivery in
the office environment shown in Figure 2b. The task requires a collection of skills. When the robot
does not carry any mail, it has to wait in a pre-specified location (called thehome position) for the
postal carrier to arrive. Every day, the carrier hands over mail to the robot for local delivery. Mail
might be available for one or both of two possible destinations, A and B, as shown in Figure 2b. To
inform the robot of the nature of the mail, the carrier instructs the robot using gestures: If mail has
to be delivered to location A, he raises his left hand; If he wants the robot to go to location B, he
raises his right hand; If mail is available for both locations, he raises both hands. Figure 3 shows
examples of such gestures, along with some negative training examples. The robot then moves to
the corresponding location(s), stops, and gives an acoustic signal, so that people in adjacent offices
know that the robot is there and can pick up their mail. When all mail has been delivered, the robot
returns to its home position. While in motion, the robot has to avoid collisions with obstacles such
as walls and with people that might step in its way.

For the robot to perform this task, it has to be able to recognize gestures from camera images.
It has to navigate to the target destinations and stop at the appropriate place. The environment is
ambiguous. The only distinguishing feature is the door niche next to location A. This makes it
difficult to recognize the other target locations and the homing position. In addition, the corridor
is populated by people, which often corrupt sensor readings.
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Figure 4: Estimating the corridor angle: Diagram (a) shows the local estimate, extracted from a
single sensor reading. Diagram (b) shows the integrated corridor angle, obtained as described in
the text. The solid white line in (b) depicts the labels with which the program is trained. Diagram
(c) shows the performance over a testing set. In all diagrams, the horizontal axis corresponds to
time, and the vertical axis to the angle of the corridor; the darker a value, the higher its likelihood.

Our program will exploit the fact that the robot operates on a single corridor and does not have
to enter offices. To program the mail delivery robot in CES, we will first develop a localization
routine. This routine recognizes the robot’sx-y location and its heading direction in a global Carte-
sian coordinate frame based on sonar scans. We will then develop code for navigating to a goal
location (specified inx-y-coordinates). Finally, we will develop software for recognizing gestures
from camera images, along with a scheduler for coordinating the various required activities.

The reader should notice that all results reported here are based on a prototype implementation
of CES as a function library. This prototype is functionally equivalent to the language described
here, but it uses a somewhat different syntax, as declarations and operations involve function calls.
Statements in our implemented version, however, can be translated one-by-one into CES.

4.1 Corridor Angle

Let us begin by developing code for recognizing one of the most obvious feature in the environ-
ment: the angle of the corridor relative to the robot. This angle, denoted�, lies in[0; �]. Due to the
symmetry of the corridor, the corridor angle alone is insufficient to determine the global heading
direction; however, knowledge of� is useful, as it reduces the space of heading directions to two
possibilities, leaving open only which end of the corridor the robot is facing.

The following code, with the appropriate training, tracks the corridor angle�:

A-01: fa net_sonar();
A-02: probfloat alpha, alpha_local, prob_rotation;
A-03: float alpha_target;
A-04: float scan[24];
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A-05: struct { float rotation, transl; } odometry_data;
A-06:
A-07: alpha = UNIFORM1D(0.0, M_PI);
A-08: faconfigure(&net_sonar, NEURONET, 24, FLOAT, 1, PROBFLOAT, 5);
A-09:
A-10: for (;;){
A-11: GET_SONAR(scan);
A-12: alpha_local = net_sonar(scan) * M_PI;
A-13: alpha = alpha # alpha_local;
A-14:
A-15: GET_ODOM(&odometry_data);
A-16: prob_rotation = (probfloat) odometry_data.rotation
A-17: + NORMAL1D(0.0, 0.1 * fabs(odometry_data.rotation));
A-18: alpha += prob_rotation;
A-19: if (alpha < 0.0) alpha += M_PI;
A-20: if (alpha >= M_PI) alpha -= M_PI;
A-21:
A-22: GET_TARGET(&alpha_target);
A-23: alpha <- alpha_target;
A-24: }

Functions of the typeGETxxx are part of the robot application interface and will not be discussed
any further. Line numbers have been added for the reader’s convenience.

The most important variable isalpha , a probabilistic variable that keeps an up-to-date esti-
mate of the corridor angle. In lineA-07 , alpha is initialized uniformly, indicating that initially
the robot is unaware of its orientation. The anglealpha is modified upon two types of informa-
tion: sonar scans and odometry. Upon querying its sonar sensors (lineA-11 ), the robot uses a
function approximator to convert a sensor scan into a “local” estimate of the corridor angle, called
alpha local (line A-12 ). In the code above, this function approximator is a neural network
callednet sonar , with the topology specified in lineA-08 . Subsequently, in lineA-13 , the
local estimate of� is integrated intoalpha using the Bayes operator.

The robot’s odometry is queried in lineA-15 . Naturally, a rotation byodometry data.
rotation causes the corridor angle to change by about the same amount. However, robot odom-
etry is erroneous. To accommodate errors in the perceived rotation, lineA-16 converts the mea-
surement into a probabilistic variable and adds a small Gaussian term. In lineA-18 , it adds its
value to the current value ofalpha . This addition reflects the programmer’s knowledge that a ro-
tation, measured by the robot’s shaft encoders, causes the wall orientation to change accordingly.
Since after executing the summation in lineA-18 , the new value ofalpha might not lie any
longer in[0; �], linesA-19 andA-20 normalizealpha accordingly.

The program is trained using sequences of measurements (sonar and odometry), for which the
corridor angle is labeled manually. LineA-22 retrieves the label from the training database, and
line A-23 imposes the target signal for the estimatealpha . CES’s built-in credit assignment
mechanism modifies the parameters of the neural networkp sonar so as to maximize the ac-
curacy of the variablealpha . Notice that training signals do not directly specify the output of
the network; instead, they constrain the values ofalpha , which is a function of the network’s
outputs.

We successfully trained the network with a 3-minute-long sequence of measurements, during
which the robot was joy-sticked through the corridor. The dataset contained 317 measurements
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(sonar and odometry), which we labeled by hand in less than 10 minutes. Approximately half the
data was used for training and the other half for cross-validation (early stopping). Figure 4a shows
the value ofalpha local for the training set after training. Here the vertical axis corresponds to
different values ofalpha local , the horizontal axis depicts time, and the grey-level visualizes
the probability distribution: the darker a value, the higher its likelihood. The value ofalpha , as
computed in lineA-18 , is shown in Figure 4b. The solid white line in this figure corresponds to
the labels. After an initial localization phase, the variablealpha tracks the angle well. Figure 4c
shows the tracking performance using the cross-validation set, illustrating that the data is sufficient
to training the program to track�.

It is interesting to notice that both sonar and odometry data are needed for tracking�. Without
sonar data, the robot could never determine the initial angle; thus would be unable to track�.
However, as Figure 4a illustrates,alpha local does not produce accurate estimates of�; based
on it alone, the robot would not be able to track� either. Thus, both sources of information are
needed, along with the built-in geometric model that relates odometry to wall angle.

4.2 Heading Direction

Next, we will extend our program to compute the heading direction of the robot, called�, which
differs from the corridor angle in that it is defined over[0; 2�], not just[0; �] as is�. We will
exploit the fact that

� = � MOD �; (31)

that is, the corridor angle is the heading direction modulo the information regarding which end of
the corridor the robot is facing. Because global localization in highly symmetric environments is
challenging, we will make the assumption that initially the robot always faces the same end of the
corridor.

The followingpieces of code, inserted into the above program as specified, usealpha local
to computetheta local , which in turn is used to compute an estimatetheta of heading
direction�:

--- following A-05 ---
B-01: probfloat theta_local, theta;
B-02: probint coin = {{0, 0.5}, {1. 0.5}};

--- following A-08 ---
B-03: theta = UNIFORM1D(0.0, M_PI);

--- following A-13 ---
B-04: probloop(alpha_local, coin; theta_local)
B-05: if (coin)
B-06: theta_local = alpha_local;
B-07: else
B-08: theta_local = alpha_local + M_PI;
B-09: theta = theta # theta_local;

--- following A-19 ---
B-10: theta += prob_rotation;
B-11: if (theta < 0.0) theta += 2.0 * M_PI;
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Figure 5: Plot of the heading direction (in[0; 2�] over the training and the testing set. The robot
accurately tracks the heading direction.

B-12: if (theta >= 2.0 * M_PI) theta -= 2.0 * M_PI;
B-13: theta = probtrunc(theta, 0.01);

The “trick” here lies in the probabilistic variablecoin , which maps the probabilistic variable
alpha local from [0; �] to [0; 2�]. More specifically, theprobloop command (linesB-04
to B-09 ) copies the probability inalpha local probabilistically totheta local , so that the
distribution oftheta local in [0; �] and in[�; 2�] are both equal in shape to the distribution of
alpha local .

The sense of the global heading direction is obtained through appropriate initialization. Line
B-03 confines the actual heading direction to the initial interval[0; �], thereby ruling out[�; 2�].
When updatingtheta (just likealpha ), the robot considers only one of the two possible global
heading directions—the other one is not considered since its initial likelihood is zero. To avoid
the problem of the robot slowly losing its direction (an effect calledleaking), the variabletheta
is truncated at regular intervals (lineB-13 ). No further training is required at this point.

Figure 5 shows the new program in action. Plotted there is the heading direction� for the
dataset used above (training and cross validation run), annotated with the hand-labeled, global
heading direction. In both cases,theta is initially confined to the interval[0; �]. The program
quickly determines the heading direction and then tracks it accurately over the entire dataset.
The traces in Figure 5 and a collection of other experiments, some of which lasted 30 minutes
or more, suggest that the program is capable of determining and tracking the heading direction
indefinitely—despite the fact that the environment is highly ambiguous and populated. We did
not observe a single failure of the localization approach. Notice that only 37 lines of code were
required, along with 13 minutes of data collection and labeling (and a few more minutes for
function fitting).

4.3 Estimatingx and y

In environments such as the one considered here, the two most informative sonar readings are the
ones pointing west and east (c.f., Figure 2b). This is because sonar readings that hit a wall at a
right angle maximize the chances of measuring the correct distance; whereas those hitting a wall
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Figure 6: Estimating thex-coordinate. In both data sets, some of the data is partially mislabeled.
Nevertheless, the program recovers an accurate estimate.

at a steep angle are often reflected away. To extract these sensor readings, one has to translate
robot-centered coordinates to world-coordinates.

This operation is straightforward, as we have now an estimate of the robot’s heading direction:

--- following B-03 ---
C-01: compound { probfloat east, west; } new_sonar;
C-02: int i, j;

--- following B-09 ---
C-03: probloop(theta; new_sonar){
C-04: i = (int) (theta / M_PI * 12.0);
C-06: j = (i + 12) % 24;
C-07: if (scan[i] < 300.0) new_sonar.east = scan[i];
C-08: if (scan[j] < 300.0) new_sonar.west = scan[j];
C-09: }

The two sonar readings extracted here are probabilistic variables, as the heading direction� is
not known exactly either. Notice that our loop filters out sonar readings more than 3 meters
long, which in a 2.5 meters-wide corridor are bound to be specular reflections (and therefore
uninformative).

With the new, world-centered sonar measurements it is now straightforward to design CES
code for estimating thex andy-coordinates of the robot:

--- following C-02 ---
D-01: fa net_x(), net_y();
D-02: probfloat x, x_local, y, y_local, prob_transl;
D-03: float x_target, y_target;

--- following A-08 ---
D-04: x = X_HOME; y = Y_HOME;
D-05: faconfigure(&net_x, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);
D-06: faconfigure(&net_y, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);

--- following C-10 ---
D-07: x_local = net_x(new_sonar);
D-08: y_local = net_y(new_sonar);
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D-09: x = x # x_local;
D-10: y = y # y_local;

--- following B-13 ---
D-11: prob_transl = (probfloat) odometry_data.transl
D-12: + NORMAL1D(0.0, 0.1 * fabs(odometry_data.transl));
D-13: x = x + prob_transl * cos(theta);
D-14: y = y + prob_transl * sin(theta);
D-15: x = probtrunc(x, 0.01);
D-16: y = probtrunc(y, 0.01);

--- following A-23 ---
D-17: GET_TARGET(&x_target);
D-18: x <- x_target;
D-19: GET_TARGET(&y_target);
D-20: y <- y_target;

This code is largely analogous to the code for extracting the corridor angle. As there, we use neural
networks to extract localx andy estimates from our newly computed sonar readings, using the
same training set as above (but different labels). Local information is integrated using the Bayes
operator. The robot is told its initial position, calledX HOMEandY HOME.

While the estimation ofy is largely based on odometry (the networknet y does not return
much useful information), the estimation ofx is close to the actual sensor readings. Figure 6
shows the estimation ofx for the two runs, illustrating that our program canaccurately track the
robot’s position.

4.4 Navigation to Goal Points

With our probabilistic estimates of where the robot is at any point in time, it is now straightforward
to implement a function that makes the robot move to arbitrary target locations in the corridor.
The following code segment, inserted as indicated, makes the robot move to arbitrary locations
specified by the two variablesx goal andy goal :

--- following D-03 ---
E-01: float x_goal, y_goal, t, v, theta_goal, theta_diff;
E-02: probfloat trans_vel, rot_vel;

--- following D-16 ---
E-03: probloop(theta, x, y, x_goal, y_goal; trans_vel, rot_vel){
E-04: theta_goal = atan2(y - y_goal, x - x_goal);
E-05: theta_diff = theta_goal - theta;
E-06: if (theta_diff < -M_PI) theta_diff += 2.0 * M_PI;
E-07: if (theta_diff > M_PI) theta_diff -= 2.0 * M_PI;
E-08:
E-09: if (theta_diff < 0.0)
E-10: rot_vel = MAX_ROT_VEL;
E-11: else
E-12: rot_vel = -MAX_ROT_VEL;
E-13:
E-14: if (fabs(theta_diff) > 0.25 * M_PI)
E-15: trans_vel = 0;
E-16: else



26 Sebastian Thrun

E-17: trans_vel = MAX_TRANS_VEL;
E-18: }
E-19:
E-20: v = (float) rot_vel;
E-21: t = (float) trans_vel;
E-22: SET_VEL(t, v);

Here the functionSET VEL is used to set the robot’s velocity, and the constantsMAXTRANSVEL
andMAXROTVEL specify the maximum translational and rotational velocities.

In linesE-04 to E-07 , this code segment computes (and stores intheta diff ) the differ-
ence between the robot’s heading directiontheta and the relative angle to the goal,theta goal .
It then implements a bang-bang controller: The robot always attempts to rotate full speed towards
the goal, as specified in linesE-09 to E-11 . If the deviationtheta diff is larger than 45 de-
grees in magnitude (lineE-14 ), the robot does not move forward at all; otherwise, its translational
velocity is set to its maximum value.

This code segment computes two probabilistic variables,trans vel androt vel , which
assign probabilities to either of their respective motion commands. These probabilistic variables
are converted into conventional floats by assigning their likelihood-weighted means, as speci-
fied by the type conversions in linesE-20 andE-21 . These values are fed to the robot’s mo-
tors. The resulting controller is not a bang-bang controller; instead, it delivers smooth control
whose magnitude depends on the degree as to which the above conditions are assumed to hold
true (c.f., [28]). For example, if 50% of the probability inrot vel suggests a rotational velocity
of MAXROTVEL and the other 50% suggests�MAXROTVEL, as is often the case when the
robot’s heading direction is aligned with the goal, the likelihood-weighted averagev will be 0,
and the robot will not rotate at all.

The current code works well in empty hallways, but it does not avoid collisions with unex-
pected obstacles, such as humans. A simple-minded, reactive collision avoidance mechanism,
which checks the two frontal sonar sensors and makes the robot stop is something comes too
close, is easily designed by inserting the following code before the final motion command:

--- following E-20 ---
F-01: if (sonar[0] < 15.0 || sonar[23] < 15.0) t = 0.0;

This code makes the robot stop if an obstacle comes close. Since only the forward motion is
disabled, the robot can still turn—preventing it from getting stuck when it is too close to a wall.

4.5 Gesture Interface

Gestures are recognized by the robot’s cameras. In our application domain, the gesture inter-
face must be robust to lighting changes, changes of the viewpoint, daylight changes, and variations
in the postal carrier’s clothes. The carrier is assumed to be cooperative, in that he poses himself
at about the same distance to the camera, so that the hands appear at roughly the same position in
the camera’s field of view (see Figure 3).

The following, extremely brief piece of CES code turns out to suffice for recognizing gestures:

--- following E-02 ---
G-01: fa net_left(), net_right();
G-02: float image[300];
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actual gesture
none left hand right hand both hands

none 84 – 1 –
recognized as left hand 2 14 – –

right hand 1 – 26 –
both hands – – – 10

Table 2: Gesture recognition results, measured on an independent testing set.

G-03: probint gesture_left, gesture_right;

--- following D-06 ---
G-04: faconfigure(&net_left, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);
G-05: faconfigure(&net_right, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);

--- following D-16 ---
G-06: GET_IMAGE(image);
G-07: gesture_left = net_left(image);
G-08: gesture_right = net_right(image);

--- following D-20 ---
G-09: GET_TARGET(&target_left);
G-10: gesture_left <- target_left;
G-11: GET_TARGET(&target_right);
G-12: gesture_right <- target_right;

This code segment uses neural networks to map camera images into a probabilistic variable that
indicates the likelihood that a gesture was shown. It is trained by labeled data.

We trained the code using a training set of 199 images, 115 of which are used for training and
84 for cross-validation (early stopping). This dataset was collected in approximately31

2
minutes,

and labeled in approximately 5 minutes. After training, gestures were recognized by thresholding
the likelihood:

if ((float) gesture_left > 0.5)
printf("Left hand up.\n");

if ((float) gesture_right > 0.5)
printf("Right hand up.\n");

This interface yielded 100% accuracy on the training set, and 97.6% accuracy on the cross-
validation set. These numbers have to be taken with a grain of salt, as both portions of the dataset
participated in the training process. To validate these recognition rates, we collected and hand-
labeled another dataset, consisting of 138 images. This dataset was collected on a different day,
with the postal carrier wearing different clothes. The results obtained for this independent eval-
uation set, summarized in Table 2, confirm the high reliability of the gesture interface. Here
the overall accuracy was 97.83%, with a false-positive rate of 3.45% and a false-negative rate
of 1.96%. All false-positive cases were highly ambiguous, involving arm motion similar to the
corresponding gesture.
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4.6 Scheduling

Finally, a scheduler is required to coordinate the delivery requests and the final return to the home
position. This is achieved by the following code, which is wrapped around the navigation code as
indicated.

--- following G-03 ---
H-01: int num_goals = 0, active_goal;
H-02: struct { float x, y, dir; } stack[3];

--- following G-08 ---
H-03: if (num_goals == 0){ /* nothing scheduled? */
H-04: if ((float) gesture_left > 0.5){ /* left hand gesture? */
H-05: stack[num_goals ].x = X_A; /* then: schedule A */
H-06: stack[num_goals ].y = Y_A;
H-07: stack[num_goals++].dir = 1.0;
H-08: }
H-09: if ((float) gesture_right > 0.5){ /* right hand gesture? */
H-10: stack[num_goals ].x = X_B; /* then: schedule B */
H-11: stack[num_goals ].y = Y_B;
H-12: stack[num_goals++].dir = 1.0;
H-13: }
H-14: if (num_goals > 0){ /* any gesture? */
H-15: stack[num_goals ].x = X_HOME; /* then: schedule return */
H-16: stack[num_goals ].y = Y_HOME;
H-17: stack[num_goals++].dir = -1.0;
H-18: active_goal = 0; /* start here */
H-19: }
H-20: }
H-21:
H-22: else if (stack[active_goal].dir * /* reached goal? */
H-23: ((float) y - stack[active_goal].y) > 0.0){
H-24: SET_VEL(0, 0); /* stop robot */
H-25: active_goal = (active_goal + 1) % depth;
H-26: if (active_goal) /* mail stop? */
H-27: for (HORN(); !GET_BUTTON(); ); /* blow horn and wait */
H-28: else
H-29: num_goals = 0; /* done, restart */
H-30: }
H-31:
H-32: else{ /* approaching goal? */
H-33: x_goal = stack[active_goal].x;
H-34: y_goal = stack[active_goal].y;

--- following E-22 ---
H-35: }

This scheduler uses the variablestack to memorize a list of goal positions in response to a
gesture. The statement in lineH-03 ensures that gestures are only accepted when the robot is
not already delivering mail. In linesH-04 to H-19 , the robot checks whether a gesture has been
spotted, and adds the corresponding destination into its stack, followed by the home position. If
the robot is moving, it first checks whether a goal location has been reached. This is done in
line H-22 , which checks if the robot’sx-coordinate has crossed the goal’sx coordinate—the
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Figure 7: Plot of the robot trajectory (raw odometry) during 8 consecutive runs, in which AMELIA
successfully delivers 11 pieces of mail. Shown here are also the raw sonar measurements. The
robot reaches the various destination points within 1 meter accuracy, despite the rather significant
error in the robot’s odometry.

y-coordinate is ignored here. If a destination has been reached, the counteractive goal is
incremented and, if the location is not the final stop (the home position), the horn is activated and
the robot waits for a person to push a button (lineH-27 ). Otherwise, it simply empties the stack
(line H-29 ), at which point the delivery is completed. Finally, lineH-32 is activated when none
of the conditions above are met, in which case the active goal is given to the navigation software
for determining an appropriate motion command.

4.7 Results

Table 3 shows the complete CES program with minor reordering of the variable declarations. This
program is only 144 lines long, but together with the appropriate training it suffices for the control
of a gesture-driven mail delivery robot, all the way from raw sensor readings to motor controls.

In practice, the program proved extremely reliable when delivering mail in a populated cor-
ridor. Figure 7 shows raw data collected during eight delivery missions, during which AMELIA
(correctly) delivered 11 pieces of mail. As the figure suggests, the raw odometry is too inaccurate
to reliably track the robot’s position. The figure also illustrates the noise in the sonar measure-
ments, partially caused by total reflection, and partially caused by people walking close to the
robot. Nevertheless, during this and other testing runs, the program tracked the position reliably
(the error was always below 1 meter), and it successfully delivered the mail to the correct recipi-
ents.
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main(){

/*********** Declarations ***********/

fa net_sonar(), net_x(), net_y(), net_left(), net_right();
probfloat alpha, alpha_local, prob_rotation;
probfloat theta_local, theta, trans_vel, rot_vel;
probfloat x, x_local, y, y_local, prob_transl;
probint coin = {{0, 0.5}, {1. 0.5}};
probint gesture_left, gesture_right;
compound { probfloat east, west; } new_sonar;
float alpha_target, scan[24], image[300];
float x_target, y_target, x_goal, y_goal, t, v;
float theta_goal, theta_diff;
struct { float rotation, transl; } odometry_data;
struct { float x, y, dir; } stack[3];
int i, j, num_goals = 0, active_goal;

/*********** Initialization ***********/

alpha = UNIFORM1D(0.0, M_PI);
theta = UNIFORM1D(0.0, M_PI);
faconfigure(&net_sonar, NEURONET, 24, FLOAT, 1, PROBFLOAT, 5);
faconfigure(&net_x, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);
faconfigure(&net_y, NEURONET, 2, PROBFLOAT, 1, PROBFLOAT, 5);
faconfigure(&net_left, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);
faconfigure(&net_right, NEURONET, 300, PROBFLOAT, 1, PROBINT, 5);
x = X_HOME; y = Y_HOME;

/*********** Main Loop ***********/

for (;;){

/*======== Localization ========*/

GET_SONAR(scan);
alpha_local = net_sonar(scan) * M_PI;
alpha = alpha # alpha_local;
probloop(alpha_local, coin; theta_local){

if (coin)
theta_local = alpha_local;

else
theta_local = alpha_local + M_PI;

theta = theta # theta_local;
probloop(theta; new_sonar){

i = (int) (theta / M_PI * 12.0);
j = (i + 12) % 24;
if (scan[i] < 300.0) new_sonar.east = scan[i];
if (scan[j] < 300.0) new_sonar.west = scan[j];

}
x_local = net_x(new_sonar);
y_local = net_y(new_sonar);
x = x # x_local;
y = y # y_local;

GET_ODOM(&odometry_data);
prob_rotation = (probfloat) odometry_data.rotation

+ NORMAL1D(0.0, 0.1 * fabs(odometry_data.rotation));
alpha += prob_rotation;
if (alpha < 0.0) alpha += M_PI;
if (alpha >= M_PI) alpha -= M_PI;
theta += prob_rotation;
if (theta < 0.0) theta += 2.0 * M_PI;
if (theta >= 2.0 * M_PI) theta -= 2.0 * M_PI;
theta = probtrunc(theta, 0.01);
prob_transl = (probfloat) odometry_data.transl

+ NORMAL1D(0.0, 0.1 * fabs(odometry_data.transl));
x = x + prob_transl * cos(theta);
y = y + prob_transl * sin(theta);
x = probtrunc(x, 0.01);
y = probtrunc(y, 0.01);

/*======== Gesture Interface, Scheduler ========*/

GET_IMAGE(image);
gesture_left = net_left(image);
gesture_right = net_right(image);
if (num_goals == 0){

if ((float) gesture_left > 0.5){
stack[num_goals ].x = X_A;
stack[num_goals ].y = Y_A;

stack[num_goals++].dir = 1.0;
}
if ((float) gesture_right > 0.5){

stack[num_goals ].x = X_B;
stack[num_goals ].y = Y_B;
stack[num_goals++].dir = 1.0;

}
if (num_goals > 0){

stack[num_goals ].x = X_HOME;
stack[num_goals ].y = Y_HOME;
stack[num_goals++].dir = -1.0;
active_goal = 0;

}
}
else if (stack[active_goal].dir *

((float ) y - stack[active_goal].y) > 0.0){
SET_VEL(0, 0);
active_goal = (active_goal + 1) % depth;
if (active_goal)

for (HORN(); !GET_BUTTON(); );
else

num_goals = 0;
}
else{

/*========== Navigation ==========*/

x_goal = stack[active_goal].x;
y_goal = stack[active_goal].y;
probloop(theta, x, y, x_goal, y_goal;

trans_vel, rot_vel){
theta_goal = atan2(y - y_goal , x - x_goal);
theta_diff = theta_goal - theta;
if (theta_diff < -M_PI) theta_diff += 2.0 * M_PI;
if (theta_diff > M_PI) theta_diff -= 2.0 * M_PI;
if (theta_diff < 0.0)

rot_vel = MAX_ROT_VEL;
else

rot_vel = -MAX_ROT_VEL;
if (fabs(theta_diff) > 0.25 * M_PI)

trans_vel = 0;
else

trans_vel = MAX_TRANS_VEL;
}
v = (float) rot_vel;
t = (float) trans_vel;
if (sonar[0] < 15.0 || sonar[23] < 15.0) t = 0.0;
SET_VEL(t, v);

}

/*========== Training ==========*/

GET_TARGET(&alpha_target);
alpha <- alpha_target;
GET_TARGET(&x_target);
x <- x_target;
GET_TARGET(&y_target);
y <- y_target;
GET_TARGET(&target_left);
gesture_left <- target_left;
GET_TARGET(&target_right);
gesture_right <- target_right;

}
}

Table 3: The complete CES implementation of the mail delivery program.
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Figure 8: Plot of the key variables during a successful mail delivery. See text.



32 Sebastian Thrun

Figure 8 shows the major variables during a single mail delivery. In this example, the postal
carrier lifts the left arm, the robot moves to location A, delivers its mail, and returns. In all
diagrams, the horizontal axis corresponds to the time. Figure 8a illustrates the different phases
involved: waiting for the carrier, moving to location A, delivering mail, moving back, and waiting.
The mail delivery is triggered by the left arm gesture, as shown in Figure 8f. Figures 8c-e illustrate
the position estimates, whichaccurately track the robot’s position during that run. The velocity
profile is shown in 8i&k, demonstrating that the control is rather smooth. When the robot is in
motion, it moves at approximately 20 cm/sec.

5 CES Implementation of BaLL

Table 4 shows a CES implementation of the BaLL algorithm [104], a recent extension of the
popular Markov localization algorithm [12, 13, 45, 49, 75, 97]. BaLL, which is short for Bayesian
Landmark Learning, is a probabilistic algorithm for mobile robot localization. A key feature of
the BaLL algorithm is its ability to select its own landmarks, and to learn functions for their
recognition. It does this by minimizing the expected (Bayesian) error in localization. BaLL was
originally implemented in C. An estimated 5,000 of its 13,000 lines of code were dedicated to
the basic algorithm; the other ones are concerned with graphics and the robot interface. The
implementation in Table 4 implements BaLL in 58 lines; a reduction by two orders of magnitude.
56 of these lines implement the basic Markov localization algorithm, and two the extension that
enables BaLL to select its own landmarks.

Since the algorithm and its motivation is described in detail elsewhere [104], and since Markov
localization generalizes the localization approach described in the previous section, we will only
briefly describe it here. Markov localization maintains a probabilistic belief (distribution) of the
robot’s position. This belief is stored in the three-dimensional variablepose which is declared in
line 14 and whose type is defined in line 5:

05: typedef compound { probfloat x, y, theta; } pose_type;
14: pose_type pose, pose_prime;

The pose belief is updated upon two events: perception (something is observed) and robot motion.

1. Perception. Observations are compared to a map of the environment, to produce a mo-
mentary estimate as to where the robot might be (just based on the one observation). This
momentary estimate is then incorporated into the robot’s belief via Bayes rule—which is
the mathematically correct way if the world is Markov [85].

In the implementation shown in Table 4, the map is represented by a data set read from a
file

23: LOAD_DATA(&data, &num_data, &min_x, &max_x, &min_y, &max_y);

Here we assume thatLOADDATA is a library function provided by the robot application
interface. The reference map, which associates landmarks tox-y-� positions, is initialized
by running the landmark detecting network.

24: for (n = 0; n < num_data; n++){
25: data[n].landmark = p(data[n].sensor_data);
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01: main(){
02: /*********** Part 1: Declarations ***********/
03:
04: typedef struct { float x, y, theta; } target_type; /* pose targets */
05: typedef compound { probfloat x, y, theta; } pose_type; /* poses, x-y-theta space */
06: struct { int new_episode_flag; /* 1, if new episode */
07: int episode_num; /* number of episode */
08: float sensor_data[164]; /* sensor data */
09: float rotation, transl; /* motion command */
10: target_type target; /* hand-labeled pose */
11: probbool landmark; } *data; /* landmark observation */
12: int num_data; /* size of the data set */
13: float min_x, max_x, min_y, max_y; /* bounds on robot pose */
14: pose_type pose, pose_prime; /* pose estimates */
15: probfloat prob_rotation, prob_trans; /* motion command + noise */
16: probbool landmark; /* landmark present? */
17: probfloat prob_transl, prob_rotation; /* motion estimate */
18: fa p(); /* network for landmarks. */
19:
20: /*********** Part 2: Initialization ***********/
21:
22: faconfigure(&p, NEURONET, 164, FLOAT, 1, PROBFLOAT, 5); /* initialize network */
23: LOAD_DATA(&data, &num_data, &min_x, &max_x, &min_y, &max_y);
24: for (n = 0; n < num_data; n++)
25: data[n].landmark = p(data[n].sensor_data); /* initialize map */
26:
27: /*********** Part 3: Localization and Training ***********/
28:
29: for (;;)
30: for (n = 0; n < num_data; n++){ /* go over the data */
31: if (data[n].new_episode_flag) /* new episode? */
32: pose = UNIFORM3D(min_x, max_x, min_y, max_y, /* then pose unknown */
33: 0.0, 2.0 * M_PI);
34: landmark = p(data[n].sensor_data); /* find landmarks */
35: probloop(; pose_prime)
36: for (k = 0; k < num_data; k++) /* estimate robot’ pose */
37: probloop(landmark, data[k].landmark; )
38: if (data[n].episode_num != data[k].episode_num &&
39: landmark == data[k].landmark){ /* ...by comparing it to */
40: pose_prime.x = data[k].target.x; /* ...landmark vectors with */
41: pose_prime.y = data[k].target.y; /* ...known poses */
42: pose_prime.theta = data[k].target.theta;
43: }
44: pose = pose # pose_prime; /* integrate into estimate */
45: pose = probtrunc(pose, 0.01); /* remove small probabilities */
46: data[n].landmark = landmark; /* update data set (map) */
47: prob_rotation = (probfloat) data[n].rotation /* incorporate control noise */
48: + NORMAL1D(0.0, 0.1 * fabs(data[n].rotation));
49: prob_transl = (probfloat) data[n].transl
50: + NORMAL1D(0.0, 0.1 * fabs(data[n].transl));
51: probloop(pose, prob_rotation, prob_transl; pose){ /* robot kinematics */
52: pose.theta = (pose.theta + prob_rotation) % (2.0 * M_PI);
53: pose.x = pose.x + prob_transl * cos(pose.theta);
54: pose.y = pose.y + prob_transl * sin(pose.theta);
55: }
56: pose <- data[n].target; /* training, BaLL */
57: }
58: }

Table 4: CES implementation of the BaLL mobile robot localization algorithm. This code is
trained using sequences of sensor snapshots (camera, sonar) labeled with the position at which
they were taken.
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When a sensor datum is processed, a landmark vector is extracted and the momentary esti-
mate is constructed, using the variablepose prime :

34: landmark = p(data[n].sensor_data);
35: probloop(; pose_prime)
36: for (k = 0; k < num_data; k++)
37: probloop(landmark, data[k].landmark; )
38: if (data[n].episode_num != data[k].episode_num &&
39: landmark == data[k].landmark){
40: pose_prime.x = data[k].target.x;
41: pose_prime.y = data[k].target.y;
42: pose_prime.theta = data[k].target.theta;
43: }

Notice the nestedprobloop commands. The first is used to indicate that the variable
pose prime will be computed in the body of theprobloop command. The second
iterates over all landmark values for the actual observation (landmark ) and the reference
map (data[k].landmark ).

The first condition in theif -clause (line 38) ensures that when constructing the momen-
tary belief, the program does not use use data from the same episode. This is important
for learning, as the program “simulates” a map built by independently collected data (see
[104]). The second condition (line 39) checks the consistency of the landmark observations.
To the extent that they are consistent, the momentary estimatepose prime is updated ac-
cordingly. As a result,pose prime contains a probability distribution for the robot’s pose
conditioned on the sensor data item.

After computing the momentary estimatepose prime , it is integrated into the robot’s
belief using the Bayes operator:

44: pose = pose # pose_prime;

The subsequent truncation command

45: pose = probtrunc(pose, 0.01);

removes low-likelihood poses from future considerations. While it is not part of the basic
Markov localization algorithm, it reduces the computational complexity by several orders
of magnitude while altering the results only minimally [12].

2. Motion. To incorporate a motion command, it is first converted into a probabilistic variable
that models the noise in robot motion. In the current program, this noise is described by a
zero-centered Gaussian variable whose variance is proportional to the motion command:

47: prob_rotation = (probfloat) data[n].rotation
48: + NORMAL1D(0.0, 0.1 * fabs(data[n].rotation));
49: prob_transl = (probfloat) data[n].transl
50: + NORMAL1D(0.0, 0.1 * fabs(data[n].transl));

Subsequently, the robot’s pose is updated by convolving the previous belief with the motion
command:
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51: probloop(pose, prob_rotation, prob_transl; pose){
52: pose.theta = (pose.theta + prob_rotation) % (2.0 * M_PI);
53: pose.x = pose.x + prob_transl * cos(pose.theta);
54: pose.y = pose.y + prob_transl * sin(pose.theta);
55: }

These equations are a probabilistic variant of the familiar kinematics of wheeled mobile
robots like Amelia.

All code discussed thus far implements the basic Markov localization algorithm, using a neural
network to extract landmark information from sensor readings, and a pre-recorded data set as
reference map.

In CES, BaLL is a two-line extension of Markov localization: First, it uses CES’s built-in
learning mechanism to train the neural network so as to extract landmarks that minimize the lo-
calization error:

56: pose <- data[n].target;

Second, it continually updates the reference map:

46: data[n].landmark = landmark;

In [104], BaLL is evaluated by comparing it to other, popular localization algorithms. In particu-
lar, this paper compares the utility of learned landmarks with popular choices such as doors and
ceiling lights. In all these comparisons BaLL performs favorably. It localizes the robot faster
and maintains higher accuracy, due to the fact that it can learn its own, environment- and sensor-
specific landmarks. The interesting aspect here is that in CES it can be implemented in 58 lines,
and that in CES, that BaLL is a two-line modification of the basic Markov localization approach.
For this example, the use of CES reduced several weeks of programming effort to just a few hours.

6 Related Work

Historically, the field of AI has largely adopted an inference-based problem solving perspective.
Typical AI systems are programmed declaratively, and they rely on built-in inference mechanisms
for computing the desired quantities. A typical example is the Prolog programming language [54],
where programs are collection of Horn clauses, and a built-in logical inference mechanism (a theo-
rem prover) is used to generate the program’s output. Another popular example is Bayes networks
[41, 81], where programmers specify probability distributions using a graphical language, and
built-in probabilistic inference mechanisms are applied to marginalize them. To date, there exists
a diverse variety of frameworks for knowledge representation (e.g., first order logic, influence dia-
grams, graphical models), along with a wide variety of “general-purpose” inference mechanisms,
ranging from theorem provers and planners to probabilistic inference algorithms. CES differs from
all this work in that it is aproceduralprogramming language, not a declarative one. In CES, the
program code specifies directly the computation involved in arriving at a result; thus, CES lacks a
general-purpose inference mechanism of the type discussed above. In fields like robotics, proce-
dural languages like C are by far the most popular programming tool. In comparison to declarative
languages, procedural languages offer much tighter control over the program execution, they often
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enable programmers to arrive at more efficient solutions, and they also facilitate debugging during
software development.

The issue of integrating learning into inference systems has been studied intensely before. For
example, recent work on explanation-based learning [69, 42, 20], theory refinement [95, 108, 80,
78], and inductive logic programming [73, 86] has led to a variety of learning algorithms that
modify programs written in first order logic based on examples. Several research teams have
integrated such learning algorithms into problem solving architectures, such as SOAR [90, 26, 66,
57] PRODIGY [67, 39] and THEO [70]. These architectures all require declarative theories of the
domain, using built-in theorem provers or special-purpose planners to generate control. Learning
is applied to modify the domain theory in response to unexplained observations, or to speed up
the reasoning process. In some systems, humans are observed to learn models of their problem
solving strategies, in order to facilitate subsequent problem solving [109].

Despite several attempts (see e.g., [3, 48, 68]), such approaches have had little impact on
robotics, for various reasons. First, inference mechanisms are often slow and their response char-
acteristics are too unpredictable, making them inadequate for the control of real-time systems (as
noted above). Second, these approaches are often inappropriate for perception—a major issue in
robotics and embedded systems in general—since they lack the flexibility to robustly deal with
noisy and high-dimensional sensor data. Third, the built-in learning mechanisms are often too
brittle, restrictive, or data-intense to be useful in domains where data is noisy and costly to obtain.
For example, explanation-based learning is often used to compile existing knowledge, not to add
new knowledge [25]. Approaches that go beyond this limitation by including an inductive com-
ponent [4, 80, 78, 89, 103] are often not robust to noise. Inductive logic programming increases
the hypothesis space size with the amount of background knowledge, imposing intrinsic scaling
limitations on the amount of background knowledge that may be provided. Logic-based learning
algorithms are often brittle if data is noisy, the environment changes over time, and data spaces
are high-dimensional.

As the results in this paper demonstrate, CES can successfully learn in the context of noise
and high-dimensional sensor data while retaining the full advantages of procedural programming
languages. It is common practice to program embedded systems using procedural programming
languages, such as C or C++. From a machine learning point of view, program code in CES is
analogous to domain theories in the AI architectures discussed above. CES’s “domain theory”
is procedural C code, which integrates the convenience of conventional programming with the
advantages of adaptive mechanisms and mechanisms for handling uncertain information.

Probabilistic representations have proven to be useful across a variety of application domains.
Recent work on Bayes networks [41, 81] and Markov chains [47, 87, 59, 46] has demonstrated,
both on theoretical and practical ends, the usefulness of probabilistic representations in the real
world. In robotics, integrating uncertain sensor information over time using Bayes rule is common
practice. For example, most approaches to building occupancy grid maps, an approach to learning
an environmental model which was originally proposed by Morave´c and Elfes [29, 30, 72] and
since applied in numerous successful robotic systems [6, 38, 113], employs update rules that are
equivalent to the Bayes operator in CES. Markov localization, a probabilistic method for mobile
robot localization that recently enjoyed enormous practical success [12, 13, 45, 49, 75, 97, 106],
uses Bayes rule for integrating sensor information. Hidden Markov models [87], Kalman filters
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[47, 34, 65, 111], and dynamic belief networks [18, 92] are other, successful approaches that
employ Bayes rule in temporal domains. CES’s Bayes operator supports these approaches. In
fact, most of these algorithms can—at least in principle—be implemented much more efficiently
in CES than in conventional programming languages.

In the tradition of AI, much of the work on probabilistic algorithms focuses on efficient in-
ference and problem solving. For example, the Bayes network community has proposed conve-
nient ways to compactly specify structured probability distributions, along with efficient inference
mechanisms for marginalizing them [81]. Learning is typically applied to construct a probabilistic
“domain theory,” e.g., the Bayes network, from examples. Recognizing the analogy, some re-
searchers proposed methods that bridge the gap between logic and probabilistic representations
[40, 36, 52, 84].

CES differs from Bayes networks in about the same way as C differs from PROLOG. Bayes
networks specify joint distributions of random variables in a way that facilitates computation-
ally efficient marginalization. Thus, inference mechanisms for Bayes networks keep track ofall
dependencies between random variables. As a result, computing the marginal distributions can
be computationally challenging (e.g., for a Bayes network with undirected cycles, see [81]). If in
CES, assignments would be interpreted as constraints on the joint distribution of random variables,
programs that contain cyclic dependencies, such as

y = NORMAL1D(x, 1.0);
z = UNIFORM1D(-x, x);
a = y + z;

would be similarly difficult to compute. Program statements in CES are computational rules for
manipulating data, not mathematical constraints on probability distributions. Just as in C, state-
ments such asx = y; and y = x; have fundamentally different effects. CES’s built-in in-
dependence assumption ensures the efficiency of execution and therefore the scalability to very
large programs. It provides loops, if-then-else statements and recursion, currently not available in
Bayes networks. It also facilitates the integration of probabilistic reasoning into mainstream pro-
gramming, as it smoothly blends probabilistic and conventional representations. However, these
advantages come with limitations. Just as in C, one cannot present the output of a CES program
and ask for a distribution over its inputs—an operation supported by Bayes networks under the
name of “diagnostic inference.”

The ability to generate distributions procedurally by sequences of assignments in CES is sim-
ilar in spirit to a recent proposal by Koller [51], who proposed a language for defining com-
plex probability distributions. Her language, however, is exclusively tailored towards approximate
probabilistic inference, and is therefore not suited as general-purpose programming language.

In the field of robotics, researchers have proposed alternative languages and methodologies for
programming robots. None of these approaches integrates learning at the architectural level, and
none supports computation with uncertain information. For example, Brooks’s popular subsump-
tion architecture [9, 10] provides a modular way for programming robots, by coupling together
finite state machines that map sensor readings more or less directly into motor commands. Un-
fortunately, this approach does not address the uncertainty typically arising in robotic domains,
and as a consequence it fails to provide adequate mechanisms for dealing with sensor limitations
and unobservable state. As a result, robots programmed using the subsumption architecture are
typically reactive, that is, their behavior is a function of the most recent sensor readings. In envi-
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ronments such as the ones considered here, dealing with perceptual noise and maintaining internal
state is essential. In addition, the subsumption architecture does not support adaptation—even
though some researchers successfully implemented adaptive mechanisms on top of it [61, 60, 63].
Other researchers have proposed more flexible programming languages for task-level robot con-
trol, providing specialized mechanisms that support concurrency, exception handling, resource
management, and synchronization [31, 33, 53, 96, 98]. These languages address certain aspects
that arise when interacting with complex, dynamic environments—such as unexpected conditions
that might force a robot to deviate from a previously generated plan—but they do not address
the uncertainty in robotic perception. In fact, they typically assume that all important events can
be detected with sufficient certainty. Programming in these languages does not include learning
phases.

As argued in the introduction, the vast majority of the research in the field of robot learning
focuses on tabula rasa learning methods. In particular, approaches like reinforcement learning
[2, 46, 100, 110] and evolutionary computation/genetic programming [55, 56] currently lack the
necessary flexibility to integrate prior knowledge, and therefore are subject to scaling limitations,
especially when training data is scarce. In reinforcement learning, for example, common ways to
insert knowledge include choice of input representations, the type of function approximator used
for generalization [7, 99, 102], and ways to decompose the controllers hierarchically [17, 24, 58,
79]. Similarly, genetic programming gives users the choice of the data representations, the building
blocks of the programs that evolve, and the genetic operators used in their search [55, 56, 101].
In robotics, programmers often posses knowledge that cannot be expressed easily in these terms,
such as knowledge of the performance task, the environment, or generic knowledge such as the
laws of physics or geometry. The inability to integrate such knowledge into learning makes it
difficult for these approaches to learn complex controllers from limited amounts of data. CES
critically departs from this line of thought, in that it adopts a powerful (and commonly accepted)
method for programming robots with the benefits of learning.

Currently, CES’s built-in learning mechanism is less powerful than reinforcement learning and
genetic programming, in that CES programs cannot learn from delayed penalty and reward; in-
stead, they require target signals, very much like supervised learning. CES’s learning component
differs from genetic programming in that it does not manipulate program code. In principal, ge-
netic programming can easily be applied to CES programs. Practical experience shows, however,
that humans find it difficult to understand machine-generated program code, even for very simple
problems [56].

7 Discussion

This paper described CES, a new programming language designed for programming robots and
other sensor-based systems. CES is an extension of C, retaining C’s full functionality but provid-
ing additional features. To accommodate existing difficulties in developing robotic software, CES
offers its programmers the option toteachtheir code. CES programmers can use function approx-
imators in their program, and teach them by providing examples. CES’s built-in credit assignment
mechanism allows programmers to provide training signals for arbitrary variables (e.g., the pro-
gram output). In addition, CES provides mechanisms to adequately deal with the uncertainty,
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which naturally arises in any system that interacts with the real world. The idea of probabilis-
tic data types makes programming with uncertain information analogous to programming with
conventional data types, with the added benefit of increased robustness and performance.

To demonstrate the usefulness of these concepts in practice, this paper described the program-
ming of a gesture-driven mobile mail delivery robot. A short CES program (144 lines), along with
less than an hour of training, was demonstrated to control a mobile robot highly reliably when
delivering mail and interacting with a postal carrier in a populated corridor. Comparable programs
in conventional programming languages are typically orders of magnitude larger, requiring much
higher development costs. To demonstrate this point, this paper showed that a CES implementa-
tion of a state-of-the-art localization algorithm was two orders of magnitude more compact than a
previous implementation in C.

Our current implementation of CES possesses several limitations that warrant future research:

� We currently lack a suitable interpreter or compiler for CES. In fact, all our experiments
were carried out using a C library, functionally equivalent to CES but not syntactically.
This limitation is purely a limitation of the current implementation, and not a conceptual
difficulty, as the syntax of the language is well-defined.

� Our current implementation uses piecewise constant functions for the representation of
probability distributions. Such representations suffer several limitations. Their size scales
exponentially with the dimension of compounded variables, making it infeasible to com-
pute in high-dimensional spaces. They are unable to represent finite distributions exactly,
such as the outcomes of tossing a coin. They also suffer from an inflexible assignment of
resources (memory and computation); mechanisms that place resources where needed (e.g.,
in regions with high likelihood) would be advantageous. The use of piecewise constant rep-
resentations is not a limitation of the language per se; it is only a shortcoming of our current
implementation. Several other options exist, such as such as mixtures of Gaussians [22],
Monte-Carlo approximations [21, 44, 50], and variable-resolution methods such as trees
[8, 71, 77]. Of particular interest are resource-adaptive algorithms which can adapt their
resource consumptions in accordance with the available resources [19]. Probabilistic rep-
resentations facilitate the design of resource-adaptive mechanisms by selectively focusing
computation on high-likelihood cases.

� As noticed above, CES’s learning mechanism is restricted to cases where labeled data is
available. While in all examples given in this paper, these labels were generated manually,
labels can also be generated automatically. For example, for learning to predict upcoming
collisions, a robot might wander around randomly and use its tactile sensors to label the
data. Not addressed by CES, however, is the issue ofdelayedreward, as typically addressed
in the reinforcement learning literature. Augmenting CES with a learning component that
can learn control from delayed reward is a subject for future work. Also not addressed is
learning from unlabeled data. Recent research, carried out in domains such as information
retrieval, has demonstrated the utility of unlabeled data when learning from labeled data
[14, 15, 74, 76]. In principle, unlabeled data can be collected in everyday operation, and
it could be used to further train CES’s functions approximators. To what extent such an
approach can improve the performance of a CES program remains to be found out.



40 Sebastian Thrun

Despite these opportunities for future research, CES in its current form is already well-suited for
a wide range of robotic tasks, as demonstrated by the experimental results in this paper.

The true goal of this research, however, is to change the current practice of computer program-
ming, for embedded systems and beyond. At present, instructing computers focuses narrowly
on conventional programming, where keyboards are used to instruct robots. People, in compar-
ison, are instructed through much richer means, involving teaching, demonstrating, explaining,
answering questions, letting them learn through trial-and-error, and so on. All these methods of
instruction possess unique strengths and weaknesses, and much can be gained by combing them.
There is no reason why we should not teach our programs, instead of just programming them.
CES goes a step in this direction, by providing mechanisms for writing adaptable software that
can improve based by learning from examples. We hope that this paper stimulates further research
in this direction, as the space of possible learning languages is huge and barely explored.
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