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Abstract

Selective enumeration is a method for reducing the number of cases
required when performing a generate-and-test search to solve rela-
tional formulae. This paper gives a formal definition of selective
enumeration and using that definition, proves soundness for each of
the selective enumeration techniques developed.
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1. Introduction

Sets, functions, and binary relations combine to provide a convenient, yet rigorous, framework for
modeling software systems. Z [Spi92], probably the most widely used formal notation for
describing software systems, is based entirely on these constructs. As sets, functions, and relations
can all be described using relational formulae, I use the term relational specification to describe
any specification built on these constructs.

Other software description notations also draw much of their expressive power from these
constructs. Within the database community, the inter-relationships in a database schema are often
specified using an entity-relationship diagram [Che76]. Given the name, it should not be
surprising that entity-relationship diagrams can be clearly and succinctly described using
relations.

More recently, UML [BJR97] has gathered great interest in the object community. Although UML
combines several different notations to describe a single object design, many of these notations
are built from sets, functions, and binary relations.

Despite the broad appeal of these constructs, little automated support is available for analyzing
relational specifications. Theorem provers [ES94; SM96] can help, but they require enormous
manual effort and provide little guidance to help repair faulty specifications. Model checkers
[BC+92; CPS93] can analyze system specifications based on other formalisms, but no model
checkers are available for relational specifications.

1.1 Generate-and-Test Searching

A method for solving relational formulae must lie at the core of any automated tool for analyzing
relational specifications. The simplest approach is a generate-and-test search. A generate-and-test
search generates every possible mapping of variables to values, called assignments, for a
particular formula. The search then tests each generated assignment against that formula. The
result of the search is a set of satisfying assignments, that is, assignments that give a true
interpretation to the formula. A depth first search can trivially generate a complete set of
assignments, with each level of the search tree corresponding to a distinct variable in the formula.
Testing a single assignment against a formula is also straightforward, requiring only an
implementation of the standard boolean, set and relational operations, making a generate-and-test

search a simple solution.

However, using generate-and-test search as a solver presents two limitations. By its nature, a
generate-and-test search will consider only some finite subset of the (generally infinite) possible
assignment space. Although this limitation prevents a generate-and-test search from being a true
verifier for infinite problems, it does not remove all practical applications. As I believe that many,
if not most, errors in specifications can be demonstrated using only a small subset of the entire
assignment space, a generate-and-test search can be the basis of a practical specification analysis

tool.
The second limitation is the time required to generate and test all the assignments. This limitation

has far more significant practical implications. Even with a simple specification (such as finder
[JD95]) limited to only five underlying objects, the total number of assignments required to

generate and test exceeds 1027,
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Generating all 1027 assignments is clearly inconceivable, rendering naive exhaustive enumeration
useless. Fortunately, the vast majority of these assignments are in some sense “duplicates” of
other assignments. One assignment may be a permutation of another assignment. Or two
assignments may share some common partial assignment, which itself determines the
interpretation of the formula. Regardless of the nature of the duplication, generating only one
assignment from each set of duplicate assignments is sufficient.

Selective enumeration is a generate-and-test search method that prevents the generation of most
duplicates. By preventing the generation of these duplicates, selective enumeration is effective in
solving many interesting relational formulae.

1.2 Alloc — An Example

This section introduces a very simple relational specification, which will be used to illustrate
points throughout the remainder of this paper. This simple example describes a heap allocation
system, such as malloc, in very general terms.

The specification is written in NP [JD96a], a relational specification language that is roughly a
subset of Z. NP is limited to first-order objects, so, for example, there are no functions of
functions. Figure 1 contains the NP specification for the heap allocation system.

The first line of the example introduces the two given types used in this specification, Addr and
Value. A given type is a set of elements, with each element having no internal structure. Every
element is contained in exactly one given type. All variables and expressions in NP are typed,
indicating that they refer to one of three kinds of values. A variable or expression may refer to (1)
an element of a given type, (2) a set of elements of a single given type, or (3) a relation that maps
elements of a given type (the domain) to elements of a given type (the range). Relations can be
restricted to functions, injections or bijections and they can be restricted to total or surjective

relations.

When using NP, specifiers describe their system using a collections of schemas, which allow a
simple structuring and composition of individual pieces of the specification, similar to the
mechanism provided by Z. There are two independent characteristics that jointly classify schemas
in NP. A schema is either a definition, which defines the system being specified, or a claim, which
makes assertions about the system being specified. A schema, whether a definition or a claim,
refers either to a single state or to a transition between two states. A transitional schema is called
an operation and describes both a pre-state and a post-state. The specification given in Figure 1
contains examples of three of the four possible combinations of these characteristics, as explained

in the following paragraphs.

All schemas have the same basic structure. The body of the schema comes after the name of the
schema and is enclosed in square brackets ([ ]). The body is separated into two sections by a
single vertical bar (| ). The first section defines the variables used in the schema, whereas the
second section gives a collection of relational formulae that must all be satisfied in any system

described by this specification.

In the example given in Figure 1, Heap is a definitional schema that describes the basic structure
of a heap. Heap introduces two variables, usage and used. The variable usage denotes a
function mapping addresses (elements of Addr) to their values (elements of Value). The other
variable, used, denotes a set that contains all of the addresses currently in use. Heap also defines
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[Addr, Value]

Heap =
[

usage : Addr -> Value
used : set Addr

/* all currently mapped addresses are used */
used = dom usage

]

Alloc(addr : Addr) =
[

Heap

/* Allocating a new address does not change the current allocation */
used <: usage' = usage

/* But addr is now mapped (to some value unknown) */

used' = used U {addr}

]

uniqueAddrAlloc::
[
Heap
a : Addr

/* A newly allocated address should not have been in use */
Alloc(a) => a not in used

]

Figure 1: A trivial NP specification describing a heap allocation system. Addr and Value are the
given types. Heap describes the basic structure being manipulated, Alloc describes an allocation
operation, and uniqueAddrAlloc is a claim about the specification.

a single formula that describes a relationship that must hold in all valid heaps: the set of addresses
in use is exactly the set of addresses currently mapped, that is, the domain of the function usage.

Alloc is an operation that describes the change in a heap when a new piece of memory is
allocated. As Alloc refers to Heap in its declaration section, Alloc inherits all of the variables
defined by Heap. Within Alloc, the pre-state is referenced using the simple variable names,
whereas the post-state is referenced using primed variables, such as usage'. Operations are
indicated by the presence of a (possibly empty) parameter list. The parameter list for Alloc defines
a single parameter, addr, which is the newly allocated address.

There are two formulas within Alloc. The first (used <: usage' = usage)! guarantees that the
allocation does not change any existing mappings. The second formula (used' = used U addr)
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indicates that the newly allocated address is now considered to be in use (in addition to any
addresses already in use).

The third schema, uniqueAddrAlloc, is a claim that asserts that the newly allocated address is not
in use prior to the allocation.

1.3 Reducing the Search to Validate uniqueAddrAlloc

A common analysis of NP specifications is to attempt to validate claims such as
uniqueAddrAlloc. A claim is valid if there are no assignments that satisfy the negation of the
claim. Nitpick [JD96b], the tool that I have implemented to analyze relational specifications,
validates claims (within user specified finite bounds) using selective enumeration to solve the
negation of the claim. The satisfying assignments for the negation of the claim are
counterexamples of the claim itself.

Selective enumeration recognizes and exploits two basic kinds of duplications: partial assignment
duplicates and permutation duplicates. Two assignments are partial assignment duplicates if they
share a common mapping of values for a subset of the variables (called a partial assignment) and
that partial assignment itself determines the value of the formula.

The simplest way of exploiting partial assignment duplicates is by exploiting derived variables
[JD95]. In many specifications, the values of some variables are defined constructively, that is,
their value is constrained to be equal to a function of the values of the other variables. Variables
with a constructive definition are called derived variables. Given the bindings for the other
variables, the search can directly construct the value of a derived variable, rather than generating
many possible values and testing each one. For example, the formula used = dom usage appears
in the schema Heap. Therefore, the value of used must be exactly the domain of the value of
usage in any counterexample to uniqgueAddrAlloc. Assuming that usage is bound prior to used
being generated, the value of used can be directly computed.

As 1s obvious from this example, selective enumeration requires the imposition of a variable
ordering. Although any ordering is legal for selective enumeration, some orderings yield a much

greater reduction in the number of assignments generated than indicated by other orderings.2

Because of the constraint a not in used, the value of a must be an element of the value of used
for any counterexample to uniqueAddrAlloc. Although this constraint does not limit the possible
values of a to a single value, the constraint can be used to limit the values actually generated
during the search. Bounded generation uses constraints from the formula to limit the values
generated. Assuming that used is bound before the value of a is generated, bounded generation
will generate each element in the set that is the value of used, instead of each value in the given

type Addr.

A second opportunity for bounded generation exists in uniqueAddrAlloc. The first formula in
Alloc, used <: usage' = usage, must be true in any counterexample to uniqueAddrAlloc. To

1.The <: operator is the domain restriction operator. The result of this expression is a relation that includes

all of the pairs in the relation given as the second argument whose first element is contained in the set given

as the first argument. For the formal definition of this and other operators, refer to Definition 16 on page 14.

2. The mechanism for choosing an ordering is beyond the scope of this paper. Nitpick uses a heuristic to
choose the ordering, as computing an optimal ordering is factorial in the number of variables.
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simplify the implementation, bounded generation does not directly take advantage of this
constraint; instead, this constraint implies a weaker constraint, usage <= usage. Bounded
generation uses this weaker constraint to limit both the domain and range of any value generated
for usage to be subsets of the domain and range of the value of usage'.

Derived variable analysis and bounded generation cannot fully exploit all formulae within a
specification. If these formulae do not depend on all the variables, they still present an opportunity
for reducing the assignments to be generated. Short circuiting [DJ96] does not reduce the number
of values generated for any variables involved in the formula, as would bounded generation.
Instead, short circuiting prevents generation of values for any subsequent variables when the
partial assignment cannot satisfy the formula.

An example of short circuiting can be found for the constraint on usage and usage' that initiated
the second bounded generation example. Although bounded generation will guarantee that

dom usage <= dom usage' and ran usage <= ran usage', this constraint does not guarantee that
usage <= usage'. Once usage and usage' have both been generated, short circuiting evaluates
the constraint usage <= usage' for the resulting partial assignment. Short circuiting will
terminate the current path of the search for any partial assignments not satisfying the constraint.
Similarly, once usage, usage', and used have been generated, short circuiting will check the full
constraint,

used <: usage' = usage. By utilizing all three techniques, selective enumeration can eliminate
all partial assignment duplicates available with the selected ordering.

The second form of duplication is called permutation duplication. Because each element in a
given type is unstructured, exchanging a pair of elements throughout an assignment does not
change the interpretation of the formula for that assignment. Isomorph elimination [JJD96;J1D98]

prevents the generation of most® values that are permutations of other values already generated.

As an example of isomorph elimination, consider the values generated for usage'. If Addr and
Value are limited to three elements apiece, it is necessary to generate 64 (#domain®?ee+!) values
for the partial function usage' without isomorph elimination. With isomorph elimination, on the
other hand, only the following seven values need be generated:

usage' = &
usage' = { (agp, Vo) }
usage' = { (ap, Vo), (a;, v1) }

usage' = { (ag, Vo), (a1, Vo) }
usage' = { (ag, Vp), (a1, V1), (a3, V) }
usage' = { (ay, Vo), (a1, Vo), (a7, vy) }

usage' = { (ay, Vo), (a;, Vo), (a2, Vo) }

The result of this reduced search is illustrated in Figure 2 and Figure 3. Figure 2 demonstrates the
search until the first counterexample is found. When the number of elements in Addr and Value
are limited to three apiece, derived variables and bounded generation reduce the search to find the
first counterexample from 13,851 assignments to just 3. Figure 3 expands the tree for one more
value of usage', exhibiting the further advantages of short circuiting and isomorph elimination.

3. The current implementation of isomorph elimination does not consider all possible permutations. In par-
ticular, only products of selected single permutations are considered.
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usage' = { } usage' ={a > v } usage'
usage' ={} usage'={a_— v_} .
used' ={} used' = {aO 0 used
usage' ={} - . L
used' = { } usagle__ {aOH vo} usagle = {aO vo}
usage = { } used'={a} used' = {a,} usage
l usage ={ } usage ={a — v}
usage' ={} usage' = {aou—> vo} usage' = {ao»—> vo}
used' ={} used' = {ao} used’ = {a0 }
Szzge_f{ g} usage = {} usage = {aol—> VO} used
_ used = { } used = {ao}
usage' = {ao'_) v, }
used' ={a_}
o a
usage = {ao»—> vo}
used = {a 0 }
a=a
0

Figure 2: The search tree for finding a counterexample to the claim uniqueAddrAlloc. The variables used’
and used are derived; their values can be directly computed from the earlier assignments. Bounded
generation limits the domain and range of the values generated for usage to a subset of the domain and
range used in usage'. Similarly, bounded generation limits the values considered for a to the elements in the
value of used. The first two paths down the search tree result in used being empty, leaving no possible
values for a. The first counterexample discovered is shown in a heavier box.



usage' = { a, — <o_v
a —v
lusage' 11

v

usage' = { a,—Vv

[0}

a —v
1 i

used' used' ={a;, a, }

usage' = { a =V, usage' = { a— v, usage' = { a7 vy, usage' = { a,— v, usage' = { a = v,
2,V d 3=yl 8,7V, ) 3,V b a;—-vy b
"= 1 'V
used' ={ay, a; } used' ={ay, a; } used' ={ag, a; } used' ={ay, a; } used' ={ay, a; }
[Usage usage ={ } usage ={a v _} usage = {a — usage ={a v usage ={a v,
+ + *maliw mpl<ow mH.Iv<0u
usage' = { mol <o. usage' = { mol <o_ usage' = { mol <o.
ar—v_}
a,—v, } a —v, } _ 1 1
used'={ay, a; } used' ={ay, a; } used'={ay, a; }
usage ={} usage={a — v _} cmmmmu*wol Vo,
used ={} Q 0
used used ={a, } a —v }
used={ag,, a; }
-l
usage' = { mo_lv <o. usage' = { mol <o,
a — A } a—v, 1
L
used' ={ag, a; } used'={ag, a; }
a usage = { 2, v, } usage = { a = v,
used ={ag } a,—v }
a=ag used ={agy, a; }
m."m.o
|la=2ag |

Figure 3: Continuation of the search tree from Figure 2. The satisfying assignments are shown in the heavier boxes. Isomorph elimination generated {a,->v,,a,->v, } as the next
value for usage' because all other single edge values are isomorphic to the one already generated in Figure 2({ay->V,}). Short circuiting truncates the search for the rightmost two
values generated for usage, as these partial assignments do not satisfy the requirements of alloc. In particular, these partial assignments do not satisfy the formula
usage <= usage', which is derived from used <: usage' = usage.
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1.4 Related Work

The model-generation community [Zha96; ZZ95; S1a94] has addressed a problem that is similar to
the relational formula satisfaction problem addressed by selective enumeration. A model-genera-
tion tool searches for a satisfying assignment, or model, for a formula. The logic supported by the
model-generation tools varies from the logic supported by NP. Variables are allowed to be arbi-
trary arity functions in most of these tools, whereas NP directly supports only unary functions. (Ar-
bitrary arity functions can be expressed in NP through careful encoding, but the resultant formula
is hard to understand and selective enumeration is particularly inefficient at analyzing such formu-
lae.) NP, on the other hand, adds support for transitive closure, which is difficult or impossible to
express generally in the model-generation languages. There is also a difference in apparent goals:
selective enumeration is best suited for solving formulae with several variables using a relatively
small scope, whereas the model generators appear targeted towards formulae with few variables

(frequently one) using a larger scope.

Despite these differences, some of the model generators use an approach similar to the one used in
selective enumeration. Zhang [Zha96], in particular, used a similar set of reduction techniques in
FALCON. FALCON includes a simpler form of isomorph elimination, a direct equivalent to de-
rived-variable construction and a backtracking feature that is similar to short circuiting. Slaney
[S1a94] also uses a backtracking approach in Finder; he achieves reductions similar to those gained
with bounded generation by separating the enumeration of functions into separate boolean vari-
ables, each representing a single maplet.

Jipsen’s approach [Jip92] finds a Boolean algebra with operators (BAO) that satisfies a set of first-
order equations. His approach does not require finite bounds, and thus can be used as a true verifier.
As the relational calculus can be embedded in BAO, this approach will also solve relational for-
mulae. However, there are a number of difficulties with Jipsen’s work. His approach has never
been proved complete — it may never terminate for an unsatisfiable system of equations. As tran-
sitive closure is not supported within BAO, most of our specifications could not be expressed in
full generality. No experimental results are provided, so it is not possible to compare his approach
to selective enumeration, even for the finite domain.

The most general related problem is the well known boolean-satisfiability problem. Although the
problem itself is NP-complete, researchers have taken two major approaches to achieve an effec-
tive solution in realistic time for many formulae. One approach, found in [SLM92] among others,
provides an unsound solver, which may fail to return a solution even if one exists. In the other
widespread approach, a structure or algorithm provides significantly reduced exponential growth
for common formulae, although the worst-case performance may lag even the most naive ap-
proach. Binary decision diagrams (or BDDs) [Bry92] are a popular structure that provides this gen-
erally reduced exponential growth.

There is a straightforward translation from relational formulae to boolean formulae, so any of the
boolean satisfiability approaches can be applied to solve any relational formulae. This conversion
loses much of the higher level semantics of the relational formulae. Selective enumeration uses
these semantics to produce its reductions. As given in [DJJ96], translating a relational formula into
the corresponding boolean one and solving the boolean formula using BDDs required approxi-
mately the same time as solving the relational formula directly using selective enumeration. The
introduction of bounded generation and an improved isomorph-elimination technique has moved
the balance significantly towards selective enumeration. Although it is possible that further effort
on the BDD version could similarly reduce the time required, I believe that the additional semantics
available in the relational formula will give an advantage to selective enumeration.

Solving a relational formula could be structured as a constraint satisfaction problem. Traditional
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constraint satisfaction approaches [Kum92; Mac92], used to solve problems such as shape recog-
nition [Wal75] or job shop scheduling [SF91], support only a much more limited constraint lan-
guage. Finite constraint satisfaction, the area most similar to selective enumeration, allows only a
restricted subset of Horn clauses to express the constraints. For most of the existing constraint sat-
isfaction algorithms, all constraints must be binary (involve no more than two variables). Con-
straint satisfaction algorithms also typically require a complete enumeration of possible values for
each variable, which can be prohibitively expensive for the relation-typed variables commonly
found in NP specifications.

There are significant similarities between the approaches taken in constraint satisfaction and the
approach taken in selective enumeration. Backtracking in constraint satisfaction is a direct equiv-
alent of short circuiting in selective enumeration, requiring the same care in selecting a variable
ordering. The standard constraint propagation algorithms, including arc consistency and k-consis-
tency, are strongly reminiscent of bounded generation. They are limited, however, to the weaker

constraint language.
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2. Basic Definitions

This section develops the basic terminology for defining selective enumeration precisely. In the
following sections, I use this terminology to define each technique that implements selective
enumeration. I also prove the soundness of each of these techniques.

This section begins by defining the basic concepts underlying any generate-and-test search. From
these, I develop precise definitions of the generators and duplications that are the essence of
selective enumeration. A formal definition of soundness follows naturally from these definitions.

2.1 Values and Variables

The search chooses values constructed from the finite universe ‘U of atomic elements. Each
element within ‘U is itself unstructured. In this initial analysis, I ignore the type distinctions
between elements. Therefore, for the simple alloc example described in the prior section, ‘U is the
union of the Addr and Value sets. In Section 6, I will re-introduce given types to differentiate the

elements of .

There are three kinds of values: (1) atomic elements of U, (2) sets of atomic elements, or (3)
binary relations on the atomic elements.

Definition 1: Valueg,,j,, = U
Valueg, = PU
Value,; = P (‘U XU)
Value = Valueg 1, U Valuege, U Value,g

Each claim or schema in a specification defines a set of variables. I divide the complete collection
of variables into three sets based on the kind of value they denote: Vary,,j,,, Varg., and Var,,.
The intuitive relationship between these variables and the corresponding values will be
maintained; a variable in Var,,;,; will only be bound to an atomic element whereas a variable in

Varg,; will only be bound to a set of atomic elements.
Definition 2: Variable = Varg .y, U Varge, U Var,;

Definition 3: N = [Variable|

For the claim uniqueAddrAlloc from Figure 1, N is 5 and the variables are
Vargeaar={ a}
Var,,, = { used, used' }
Var, = { usage, usage' }

To perform the search, the variables need to be ordered. This order corresponds to the ordering
used in the search tree.

Definition 4: Ord: Variable — 1...N

For the uniqueAddrAlioc example, I will use the ordering from the search illustrated in Figure 2
and Figure 3:
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Ord = { usage'—1, used'— 2, usage—3, used—4, a—5 }

A useful construct is the ordering-based subsets of variables.

Definition 5: Var; = { v| 1 <Ord(v) <i }
By convention, Var, is the empty set of variables. Using the Ord for uniqueAddrAlloc from the
prior paragraph, the value for Var; is

Varz = { usage', used’, usage }

2.2 Language

The next basic element is the language used to express the formula itself. The NP language is
intended for human consumption; structures such as schemas offer no additional expressive
power. Nitpick translates each specification from the NP language into a simpler formula
language. To further simplify this analysis, I define only a subset of the formula language here.
Extending this analysis to include the entire formula language is a straightforward exercise.

The alphabet of the simplified formula language includes the variables and the operators.
A = Variable U { {, }, dom, ran, func, U, &, <, in, =, <=, Un, (, ), and, or, not }

The foundation of the language is the terms. Terms describe all of the values that can be
constructed using this language. As with other items, terms are divided into three categories:
Termgeapar, T€rmge, and Term,,;.

Definition 6: Term = Termgc,,, U Termge, U Term,.), where
Termgcatar, Termge, and Term,,; are defined by the BNF grammars

Termgeyar 1= Vargcalar

Termge, ::= Varge; | {Termgeqapar } | { 3] Un |
(Termgey U Termge, ) | (Termge & Termge ) |
(Termge \ Termgee ) | Termye (Termgeyy) |
dom Term,,; | ran Term,g

Term ::= Varge | (Termge <: Term,q)

As an overview, Un is the universe of possible values of the appropriate type, & is the intersection
operator, and Term,.; (Termg.,1,,) gives the relational image. The complete, formal definitions of

the operators are given in the definitions starting on page 13.

Atomic formulae are constructed from terms.

Definition 7: AtomicFormula, the set of atomic formulae, is defined by the BNF grammar

AtomicFormula :i= Termgcya, in Termge, | Termgeaar = Termgeayar |
Termge = Termge, | Termge <= Termge, |
Term,.; = Term, | func Term,;

Finally, Wffs in the formula language are built from atomic formulae.
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Definition 8: Wff, the set of well-formed formulae, is defined by the BNF grammar

Wit ::= AtomicFormula | not Wif — WEf | (Wff and WEF) | ( WEE or Wif)

For any formula in the language, there is a unique derivation for that formula given by this
grammar. The claim uniqueAddrAlloc from Figure 1, which is written in NP, is translated into the
formula language as
Formula 1: ( not ( (dom usage = used and dom usage' = used')
and ( func usage and func usage' ) ) or
(not ( (dom usage = used and dom usage' = used') and
( (used <: usage') = usage and used' = (used U {a}) ) )
or not a in used) )

For the formula language, the set of free variables for a formula is exactly the set of variables used
in the formula.

Definition 9: The free variables of a term, FV(T) : Term — PVariable, is defined as

if T is v where Vv € Variable
{vi}

if Tis {T; } where T, € Termgg,,,
FV(T,)

if Tis{ }

if Tis Un
%)
if Tis (T, op T, ) where T;,T, € Term and op isone of U, &, <, or \
FV(T)) UFV(T,)
if Tis op T; where T; € Term,¢; and op is either dom or ran
FV(Ty)
if Tis T, (T,) where T; € Term,,, T, € Termg,jar
FV(T;) UFV(T,)

Definition 10: The free variables of a formula, FV(Q) : Wff — PVariable, is defined as

if ¢ is T, op T, where T,,T, € Term and op is either =, in, or <=
FV(T;) UFV(T,)

if ¢ is func T, where T, € Term,
FV(T))

if ¢ is (¢, op ¢, ) where 0,0, € Wff and op is either and or or
FV(0)U FV(9,)

if ¢ is not ¢; where ¢, € Wff
FV(0,)
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2.3 Assignments

A generate-and-test search solves a formula by generating assignments, then interpreting the
formula for each assignment generated. An assignment is a mapping from variables to appropriate
values. An assignment can be a full assignment, mapping all variables to appropriate values, or it
can be a partial assignment, mapping only a subset of the variables to values.

Definition 11: S : Variable —» Value = { V— X |
V € Vargg,1ar = X € Valuegeajar A

V € Varge = X € Valuege A
V € Var,, = X € Value . }

S, therefore, is the set of all well-typed assignments. A useful decomposition of S is based on what
variables are actually mapped.

Definition 12: S;={s € S| dom s = Var; }
Si 1s the set of all assignments that map exactly the first i variables, as defined by Ord. The

assignments on the i level of the search tree are drawn from S;. Two such sets are of particular
interest: Sy contains only the empty assignment and Sy contains all full assignments.

2.4 Interpretation

A precise semantics of the formula language is needed to analyze the assignments. A formula is
interpreted as true, false or unknown for any given assignment. Intuitively, the interpretation of a
formula may be unknown if any of the free variables of the formula are not mapped by the
assignment. Otherwise, each variable in the formula is replaced by the corresponding value from
the assignment and the formula is evaluated using the usual semantics for relational formulae.

The interpretation of a formula is dependent on the 1nterpretat10n of each term. The 1nterpretat10n
of a term in the formula language is given as S (T) . S is the union of three functions: Sqca1ars Ser»
and S,

Definition 13: S = S.¢,15; U Set U Srel

Definition 14: S¢,1,,(T) : Termgegar — Valuegeqa U { Unknown } =
if T e Varg.y1ar
s(T) if Tedoms
unknown otherwise

Definition 15: S,,(T) : Termg.; — Valueg,, U { unknown } =
if Tis v where v € Varg,
s(V) ifvedoms
unknown otherwise
ifTis {T, } where T; € Termgcqpar

{ X I X= Sscalar(Tl) } if Sscalar(Tl) # unknown
unknown otherwise
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if Tis {}
%}
ifTisUn
U
if Tis T; U T, where T,,T, € Termg,
[ X]|X €8 (T Vv if 8,,1(T;) # unknown A
X € S4(T3) } S,¢¢(T,) # unknown
unknown otherwise
if Tis T, & T, where T,,T, € Termg,
{ X| X €8¢ee(Ty) A if 5,.,(T;) # unknown A
X € 8.¢(T,) } S,et(T2) # unknown
unknown otherwise
if Tis T, \ T, where T,,T, € Termge;
{ X| X €844(T)) A if S¢.(T;) # unknown A
X & 8,.(T,) } S.et(T,) # unknown
unknown otherwise

if Tis dom T; where T, € Term,
{ X I HY(X,Y) € grel(ﬂcl)} if grel(ﬁ':l) # unknown
unknown otherwise

if Tis ran T; where T, € Term,
{y]3x(xY) € Srer(T1)} if 871 (T;) # unknown

unknown otherwise
if Tis T) (T,) where T; € Term,; A Ty € Termgg,ar
{y l (gs_c_alar(TZ)sy) € if §relg’l;l) # unknown A
Sre1(T1) } Sqcalar(T2) Z unknown
unknown otherwise

Definition 16: S,(T) : Term,,; — Value,,; U { unknown } =

if T e Var,,

s(T) if Tedoms
unknown otherwise
if Tis Ty <: T, where T; € Termg A T, € Term,;
{ %Y) | X € 84e0(Ty) A if 8,0;(T;) # unknown A
(X,y) € grel(ﬂCZ) } §rel(ﬁl:2) # unknown
unknown otherwise

The three S functions derive from directly . Therefore, each assignment S induces a
corresponding S function.

The interpretation of a formula for an assignment is given using F¢[S], where S € S and ¢ € Wif. It
follows from the s functions.

Definition 17: FQ[S] : S X Wff — { true, false, unknown } =
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if ¢ is T, = T, where T;,T, € Termgg,ar
true if Sca10r(T1) # unknown A
Secalar(T2) # Unknown A
scalar(Tl) Sscalar(TZ)
false if Sqca10r(T1) # unknown A
Scatar(T2) # unknown A

scalar(Tl ) * Sscalar(TZ)

unknown otherwise
if ¢ is T, in T, where T; € Termggyy,, and T, € Termgg,
true if Sqca1a:(T1) # unknown A

Set(T2) # unknown A

scalar(Tl) € Sset(T2)
false if Sqca1ar(T1) # unknown A
Sct(T,) # unknown A

scalar(Tl) & Sset(TZ)

unknown otherwise
if 9 is T, =T, where T,,T, € Termg,,
true if Sgo¢(T1) # unknown A

S,et(T2) # unknown A

set(Tl) Sset(TZ)
false if 84¢¢(T1) # unknown A
S.e¢(T2) # unknown A

set(Tl) * Sset(TZ)

unknown otherwise
if ¢ is T; <= T, where T,,T, € Termg,
true if S¢e(T;) # unknown A

Seet(T2) # unknown A
§set("l;l) < §set("l;Z)

false if S,((T1) # unknown A
S¢et(Ty) # unknown A
§set(Tl) < §set(T2) A
Sset(Tl) * Sset(TZ)

unknown otherwise

if ¢ is T, = T, where T;,T, € Term,

true if S;1(T;) # unknown A
S;61(T,) # unknown A
Srel(Tl) = Srel(Tz)

false if S.0,(T;) #= unknown A
Sre1(T2) # unknown A
Srel(TI) * Srel(TZ)

unknown otherwise

15
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if @ is func T; where T, € Term,,;
true if 5,;(T;) # unknown A
vxyzeU.
(xy) e Srel(Tl_)_ A
(st) € Srel(Tl))
Sy=2
false if 8,0/(T;) # unknown A
VxyeU dze Uy+#zn
((X,y) E_SreI(Tl) A
(X’Z) € Srel(Tl ))

unknown otherwise

if ¢ is (0, and ¢, ) where ¢, € Wif
true if FQ, [8] = true A EQ,[S] = true
false if FQ,[s] = false v EQ,[s] = false
unknown otherwise

if ¢ is (¢, or ¢, ) where 0,,0, € Wif
true if k¢, [8] = true v FQ,[S] = true
false if kQ, [s] = false A E(),[s] = false
unknown otherwise

if ¢ is not O; where ¢; € Wff
true if EQ,[s] = true
false if EQ, [s] = false
unknown otherwise

As an example, consider the negation of Formula 1 (derived from uniqueAddrAlloc) given by
Formula 2:

Formula 2: ¢ = ( ( (dom usage = used and dom usage' = used') and
( func usage and func usage' ) ) and
(((used <: usage') = usage and used' = (used U {a}) )
and a in used) )

This formula can be interpreted using any valid assignment. Assuming a, and v, are elements of
‘U, three possible interpretations are

FO[{ }] = unknown
FO[{ usage'—{ (ag, vp) }, used'— }] = false

FO[{ usage'—{ (ap, Vo) }, used'—{ay},
usage—{ (ay, Vo) }, used—{ay}, a—ay }] = true

If the assignment maps all of the free variables in the formula, the interpretation will be either true
or false, but not unknown.

Theorem 1: VSe S,T € Term.FV(T) c dom s = s(T) # unknown

Proof: By structural induction.
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If T is v where v € Variable
By definition, FV(T) = { v }
AsFV(T) cdoms,vedoms
By definition of S, V€ dom s = S(T) = unknown.

if Tis T, U T, where T;,T, € Termg,
By definition of FV, FV(T;) c FV(T) and FV(T,) < FV(T)
Therefore, FV(T;) c dom s and FV(T,) c dom s
Therefore, by induction, S(T;) # unknown and S(T,) # unknown
By definition of S, S(T) # unknown

Other productions follow similarly 5
Theorem 2: Vse S,0 € wf.FV(() c dom s = EQ[s] = unknown

Proof: By structural induction.

If ¢ is T; in T, where T; € Termg,y,, and T, € Termg,,
By definition of FV, FV(T;) c FV() and FV(T;) c FV(0)
Therefore, FV(T;) c dom s and FV(T,) c dom s
Therefore, by Theorem 1, S(T;) # unknown and S(T,) = unknown
By definition of k, kQ[s] # unknown

If ¢ is (¢, and ¢,) where ¢;,p, € WEf
By definition of FV, FV(¢;) c FV(9) and FV(,) c FV()
Therefore, FV();) c dom s and FV((),) c dom s
Therefore, by induction, F; [s] # unknown and Q,[s] = unknown
By definition of F, EQ[s] = unknown

Other productions follow similarly [ ]

Some formulae are logically implied by other formulae. The notation (k' indicates that ¢
logically implies ¢'.

Definition 18: OFQ' iff VS € Sy. EQ[s] = true = '[s] = true

Given the formula ¢ used in the preceding example, ¢Fa in used.

2.5 Generators

The key to any generate-and-test search is the ability to generate assignments. A special function,
called a generator, generates assignments for level i of the search tree given an assignment from
level i-1. A generator for level i adds a value for the it" variable to the initial assignment, without
changing the mapping of any other variable in that assignment.

Definition 19: A function g; : S..; — PS; is a generator for level i of the search iff
Vs e S;.1.Vs' € gi(s). Vari.y 18'=5
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A generator function expands a single assignment in the search tree into the complete set of
assignments descending immediately from that value.

An aggregate generator can also be defined for any generator. An aggregate generator generates a
complete level in the search tree, given the prior level of the search tree.

Definition 20: A function G; : PS;.; — PS; is an aggregate generator for a level i generator g; iff
VQi1 < Siy. Gi(Qi.1) =Y gi(@)
qe Q4

A trivial generator, corresponding to an exhaustive-enumeration search, can be associated with
any variable using the exhaustive-enumeration generator g0.

Definition 21: The exhaustive-enumeration generator g0 for level i is defined as
if Vi € Varg alar
g0(s) ={ 8'|Ix € Valueyyor- S'=SU{ Vi— X } }
if v; € Varge,
gO0(s)={ s'| Ix e Valuey.S'=su{v;—x}}
if Vi € Var,q
g0(s) = { s'| Ix € Value,.. $'=suU {vi—>x } }
A search requires a collection of generators, one associated with each variable. A function
mapping each variable to an appropriate generator is called a generator suite.

Definition 22: A function Y : Variable — (S — PS) is a generator suite iff
VV € Variable. Ord(V) = i = Y(V) is a generator for level i.

2.6 Duplications

The essence of selective enumeration is reducing the number of cases generated by removing
duplicates. A duplication partitions the set of full assignments into equivalence classes for some

particular formula ¢. The only requirement for these equivalence classes is that all assignments in
any equivalence class give the same interpretation to @.

Definition 23: A set of sets d (¢)): PPSy is a duplication for the formula ¢ iff

d(¢) is a partitioning of Sy and

for the equivalence relation =, induced by d (9), Vs,s' € S\.8 =4y, S' = FQ[S] = FQ[s']
Two obvious duplications are uninteresting for the purposes of selective enumeration. The first,

which I call d, places each assignment in its own equivalence class. This corresponds to the
exhaustive-enumeration search. The second obvious duplication, which I call d,, divides the

4. 1use the domain restriction operator <1 from Z here as well as in later definitions and theorems. For those
readers unfamiliar with Z, the <1 operator yields the relation that is the subset of the second operand
restricted to those pairs whose first element is a member of the first operand. More precisely,
s<ar={xy)|(xy) €r Axe&s}. In practice, this is used to select a subset of a relation that is meaning-
ful for a more restricted domain.
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assignments into two classes, ones that satisfy ¢ and ones that do not satisfy ¢. Although this
would be the ideal duplication, it is not directly computable and therefore of no great benefit.

These two duplications can be defined in terms of the corresponding equivalence relations.
Vs,s'eSy. 5% 8 <& s=58
Vs,s' € Sy. S =, 8' < FQ[S] = FO[S']

The duplications described in the previous section for solving uniqueAddrAlloc can also be
defined in this manner. For the reduction involving a in used, every assignment for which a was
not an element of used was placed into a single equivalence class, with each other assignment
defining its own equivalence class.
Vs,S' € Sn- S =ainused S &
((Fa in used[s] = false A Fa in used[s'] = false) v s =8
Other bounded generation duplications, such as the constraint on usage and usage', behave

similarly. Each duplication groups known false assignments together in a single equivalence class,
placing all other assignment into individual equivalence classes.

This form of equivalence relation can be generalized to support any partial assignment
duplication. Each partial assignment duplication has a related formula ¢’ that is implied by the
target formula itself. It is convenient to define a special notation to describe partial assignment
duplications.

Definition 24: An equivalence relation =p,q(,, ¢ is a partial assignment duplicate equivalence
relation iff QkQ' A VS,8' € SN.S =paggee) S € (5 =8V (FO'[S] = false A FO'[S'] = false))

This places all assignments that fail to satisfy @' into a single equivalence class and each
assignment that satisfies @' into its own equivalence class.
Theorem 3: The partitioning of Sy induced by a partial assignment duplicate equivalence relation
~pad(p,¢) 1S a duplication for §.
Proof: To prove that =p,4(4, ) induces a duplication, it is necessary to prove that
VO:WIf.VS,8' € Sy.8 =paqep 4y S = FO[S] = FO[S']
By the definition of =p4q(,,¢'), there are two cases to consider:
s = s' and (FQ'[S] = false A FQ'[s'] = false)
For the first case, clearly EQ[S] = FO[S'].

For the second case, if S € Sy, FQ[S] is either true or false by Theorem 2.

Because OFQ', FO[s] = true = F'[S] = true .

Therefore, if FQ'[s] = false, FQ[s] = false.

Therefore, for the second case, FQ[s] = false A FQ[s'] = false. [

Definition 25: PAd((,9") is the partial assignment duplication induced by the partial assignment
equivalence relation =pyq4.¢'y)-
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I will not describe the permutation duplications until I formalize the notion of permutations in
Section 4.

Duplications may also be combined, further reducing the number of assignments that selective
enumeration must generate and test. To combine two duplications, the corresponding equivalence
relations are combined.

Definition 26: =, = =, o = iff
Vs,s'eSN.8=,8' @ (S=,8'vs=,8'v(ds"eSn.(s=,5" A8"=,8)))

The result of combining two equivalence relations is itself an equivalence relation that induces a
duplication.

Lemma 4: For any two equivalence relations =, and =, =, © = is an equivalence relation.

Proof: A relation must be reflexive, symmetric and transitive to be an equivalence relation.
As =y, is reflexive, VS € Sn.8 = S.
Therefore, VS € SN.8 =peg S.
If s =, S, then either S =, S' or s =, S".
Assuming S =, §', then by symmetry of =, §' = S.
Therefore S’ =y, S and =y, is symmetric.

By the definition of =, o =,
Vs,8',8" € SN.8 Tpog §' A 8! Fpoe S"=> S = S . =]

Definition 27: d ,({) o d ,(0) is the partitioning induced by = o =,
Theorem 5: d ,(9) o d () is a duplication.

Proof: Let d o(¢) = dp(9) 0 d o(0) and =, = =, o =,.
There are two requirements for d ,(§) to be a duplication:
it must be a partitioning of Sy and
V € Wff,Vs,s' € SN.S =, §' = EQ[S] = EP[S'].

By Lemma 4, =, is an equivalence relation on Sy,
therefore d 4(Q) is a partitioning of Sy;.
Assume S,8' € Sy such that s =, §'
By definition, one of
S =, 8'
SE
Js" e Sn.(S =5 8" A 8" =, )
must hold.

If either of the first two possibilities hold
then FQ[s] = FQ[s"] by definition of d,()) or d (), respectively.
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The third possibility requires the existence of a sequence of full assignments,
sl,s?, ..,skeSys=lsl Asl =282 Ag2 =383 ... Askl=kgk gk=ktlg
where =1, =2, ., =k =K+ gre either =, or =,.

It is obvious by induction that such a sequence must guarantee that FQ[s] = FO[S']. Il

Combining two partial assignment duplications in this manner gives the same result as the partial
assignment duplication defined by the formula built from the conjunction of the two formulae
defining the original duplications.

Theorem 6: PAd(9,0,") o PAd(0,(,") = PAd(d,(0," and 0,")).

Proof: There are two distinct requirements that must be demonstrated equivalent for this
theorem to hold.

The first is straightforward:
00, A OF, ' OF(O;" and ¢,")
Let =, be the equivalence relation induced by PAd(¢,0,",
=, be the equivalence relation induced by PAd(¢,¢,') and
=ana be the equivalence relation induced by PAd(¢,(¢;' and ¢,"))

The second requirement is that
(s=;8'vs=,8")=>s=,48' A
(35" € SN-(S =ang 8" A 8"=3ng8) ) = S=4qS"

The second clause of this requirement is a direct consequence of the fact that =4
is an equivalence relation.

For the first clause, if s = §', then § =; §', § =, §', and 8 =4 S".
Otherwise, if s =, ', then FQ,'[S] = false A F},'[s'] = false.
Therefore, then E((,' and §,')[s] = false A E($;' and §,")[s'] = false
Therefore, s =,,4S'.

Similarly, if s =, ', then § =,,4 S". =

2.7 Soundness

It is now possible to define a selective enumeration search precisely.

Definition 28: A function 0 : Wff X GeneratorSuite — PSy is a search iff
@(0,Y) = { s| FO[s] = true A s € G(Gn.1(Gn-2 (G2 (G ({BH))) }

where G; is the aggregate generator for each g; in Y.

To be sound, a search must guarantee that it will find at least one satisfying assignment if any
exist.

Definition 29: A search 00(¢.Y) is sound iff (3s € Sy. FQ[s] = true) = ©(},Y) = .
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For any duplication d () for a formula ¢, selective enumeration will be sound if it enumerates at
least one assignment from each satisfying set in d (§). A generator is sound if the only satisfying
assignments excluded are duplicates of other assignments generated.

Definition 30: A level i generator g; is sound for a duplication d (¢) iff
Vs € Sn.FQ[s] =true = 3s'e Sy.Var; 18" € gi(Vari.g <IS) A S =4y S

A subset of Sy is said to represent d () if it includes at least one assignment from each satisfying
set in d (). This can be easily extended to include subsets of S; that can be used to generate a
representative set .

Definition 31: A set Q; C S; represents d () iff
Vs € Sn.(FQ[S] =true = 3 8" € S\.(8 =4y S' A Var; <1 8' € Q).
As a base case, the set containing only the empty assignment represents any duplication.
Lemma 7: { & } C S, represents any d ().
Proof: Proof by construction.
By definition, Vary = .
Therefore, Vs € Sy.Varg <is = J. ]
Starting with a representative set, a sound generator will generate a representative set.
Theorem 8: If a level i generator g; with the aggregate generator G; is sound for d () then
VQi.¢ € S;.1.Qj.q represents d (¢) = Gi(Qj.4) represents d (().
Proof: By contradiction.
Assume S € SN.EQ[S] = true A V8'€ SN.(S =4y 8' = Var; < 8' € Gi(Qyq).
By definition of represents,
3s" € Sn.(8 =4y 8" A Variy <8" € Qy)).
Because FQ[S] = true and g; is sound for d (),
Js™ € Sn.(8" =4(¢) 8™ A Var; < 8™ € Gi(Q1.q)).

By transitivity, S =44 S".
Therefore, the assumption is contradicted. 5]

A combination of duplications defines a new collection of equivalence classes that completely
includes all of the original equivalence classes. Therefore, a generator that is sound for one
duplication is also sound for that duplication in combination with any other duplication.

Theorem 9: If a level i generator g; is sound for any duplication d ; (),
for any duplication d, (), g; is sound for d ; (9) o d ,(d).

Proof: Let s € Sy.EQ[s] = true,
=, be the equivalence relation induced by d , (¢),
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=1., be the equivalence relation induced by d ; (§) © d,(9).
By the definition of a sound generator,
3Js' € Sy.Varj < 8' € gj(Varj.y 948) AS = S\
By definition of o, s =, §' = s =, §".
Therefore, @; is sound for d,(0) o d,(¢). [

For a sound search, the goal is a collection of generators that can generate a representative set of
full assignments.

Lemma 10: The result of a search 0(¢),Y) represents d (¢) if V g; € ran Y. g; is sound for d (¢).

Proof: By induction on i.
Hypothesis: Gi(Gj.1(...(G; ({@})))) represents d () if Vg; € ran y.g; is sound for
d(9).
By Lemma 7,{} represents d (0).
Therefore, because g, is sound for d (), G;({J}) represents d (¢) by Theorem
8.
By induction, G.1(Gi.o(...(G; ({D})))) represents d ().
Because g; is sound for d (),
Gi(Gi.1(...(G,({D}D)))) represents d (¢p) by Theorem 8. ]

Theorem 11: A search 0(0,Y) is sound if 3 d (§). V g; € ran Y. g; is sound for d ({).

Proof: Assume an assignment S exists such that FQ[s] = true .

By Lemma 10, W(¢, Y)must represent d (9).
By definition of represents,
dqe @, V).3s €Sy .q=Var;<8' A8 =4y S

Because ®(¢,Y) c Syand Vary<1s'=8',q=8"
This implies that 8' € (¢, v). i
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3. Bounded Generation

In the first section, I introduced bounded generation by means of a few examples. In this section, I
clarify what is meant by bounded generation and prove that any bounded-generation generator is
sound.

3.1 Overview of Bounded Generation

As introduced in the first section, bounded generation limits the values to be generated for any
variable by limiting the underlying universe of elements. Using the claim uniqueAddrAlloc from
Figure 1, I have demonstrated two concrete examples: constraining the value of a to be an element
of the value of used and constraining the domain and range of the value of usage to be subsets of
the domain and range of the value of usage'.

The first example demonstrates a direct constraint on the universe of elements from which a scalar
value is chosen. In the second example, a relation is restricted to a (generally) smaller universe of
elements for the domain and the range. In each example, bounded generation uses information
derived from the formula to reduce the possible values to be generated.

This reduction is the essence of bounded generation. Unlike most other techniques, bounded
generation does not provide any self-contained generators. Instead, bounded generation depends
on other generators, possibly even using generators implementing other reduction techniques.

Another example of bounded generation begins with the atomic formula used' = (used U {a})
found in Formula 2. Any assignment satisfying this formula also satisfies the formula used <=
used'. This new formula logically implies used & ( Un\used' ) = {}.

For bounded generation of set variables, such as used, the goal is to divide the universe of
elements ‘U into three distinct subsets: elements that are required to be included in the set denoted
by the variable, elements that are never in that set, and elements that may possibly (but not
necessarily) be in that set. For this example, any element contained in the set given by
S,e(Un\used' ) can never be in the set denoted by used for any satisfying assignment. With a
different value for Ord (generating values for a before generating values for used), it could also
be determined that the element denoted by a is in the set denoted by used for any satisfying
assignment. This relationship is illustrated in Figure 4.

The set of elements that may possibly be included is described by a term, which I call P. For this
example, P is (used' \ a). The set of elements that are required for any satisfying assignment are
described by a similar term, which I call R. For this example, R is a. The underlying generator
needs to consider only the elements contained in S..(P). Bounded generation unions each value
yielded by the underlying generator with the value of S..(R). If the underlying generator
generates each subset of S¢(P), bounded generation will be sound. In fact, as will be shown in
the following sections, bounded generation is sound when combined with some underlying
generators that do not yield all possible subsets of Sy.(P).

For scalar variables, there is no subset of elements always included, so the value of R is always {}.
A naive underlying generator could yield each element of S,.;(P), which the bounded-generation
generator would yield unchanged.

Relational variables are the most complicated for bounded generation. The most consistent and
efficient definition of bounded generation for relations would consider sets of edges, rather than
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U
R 42
a used’\a

Figure 4: Partitioning ‘U into three sets for bounded generation of used. The first (leftmost) partition includes all
elements that are required to be included in any the value of used for any satisfying assignment. In this example,
this is simply the value denoted by the variable a. The term ‘R is used to describe these values. The second
partition includes all elements that may possibly be included in the value of used. The term Pis used to describe
these values. The third, and final, partition includes all elements that must not be included in the value of used. In
this example, this is the value Sy¢;( Un\ used'). Only the elements in the middle partition need to be considered

by the underlying generator.

the sets of elements used for scalar and set generation. This definition, however, significantly
complicates both the definition and implementation of bounded generation. Instead, I use sets of
elements for bounded generation of relations as well. One set describes the elements that may or
may not be in the domain of the relation for a satisfying assignment. I call the term describing this
set P, as with scalar or set generation. There is a similar term, which I call P that describes the set
of elements that may or may not be part of the range. As with scalar generation, R is

uninteresting, so ‘R is always {}5 .

3.2 CP}a Limitation

Bounded generation depends on generating values from a limited universe of elements. In this
section, I develop a notation for describing the underlying limitations.

These limitations are based on two elements from Term,.,, referred to as P and p. The currently
generated partial assignment S provides the context to evaluate these terms, using the S,
function. For scalar values and set values, only P is interesting, with S, (P) yielding the base set
from which elements may be drawn. For relational values, Sq.,(P) limits the domain and Sq..(p)
limits the range.

Definition 32: For any P,p € Termg,,, value X is Pp-limited for assignment S iff
FV(P) cdom s A FV(p) c doms A
(X € Valueggy1ar = X € S(P)) A

5. As will be shown in Section 6, where I refine the model to distinguish functions from general relations, a
term describing a set of edges equivalent to ‘R is useful for the generation of functions.
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(X € Valuege; = X € S(P) A
(X € Valuere =X { V:2) |[yeS(P) Azesp) })
The limit functions generate Pp-limited values and assignments for most values and assignments.

These functions, however, cannot ‘P}a—limjt a scalar value that is not already Q’})-limited, or an
assignment that maps a variable to a scalar value that is not already Pp-limited.

Definition 33: For the function limit%";ValuexS—Value U {unknown},
limit®r(x,8) is
if = (FV(P) c dom s A FV(p) c dom s)

unknown

if X € Valueggayar
X if X € S(P)
unknown otherwise

if X € Valueg,,
{ylyes(P)ayex}
ifXe Valuerel

{(y2|yes(P)rzes(p) Ay,2) ex}

Definition 34: The function limit;Z?:5S—S is defined as

limit;?¥(s) =

{ vox|vedom s A Ord(V) #i AX=8(V) } U

{ v—>x| ve dom s A Ord(V)=i A X = 1limit*P(s(v),s) }
For scalar variables, the function limit;?? leaves v; unbound in the resultant assignment if the value
S(V) is not already (Pjo-limited.

A generator can be Pp-limiting.

Definition 35: For any P,p € Termge, such that FV(P) ¢ Var;.q and FV(p) ¢ Var;.q, a level i
generator g;"7 is a Pp-limiting generator iff Vse S; 4 Vs'e g;i7(s).s'(V)) is Pp-limited for s.

An exhaustive-enumeration Pp—limiting generator can be defined.

Definition 36: For some P,p € Termg,, such that FV(P) ¢ Var; y and FV(p) ¢ Var;.,
the level i generator g0%”: S;.;—PS, is defined as
if Vi € Varg,1ar
go%(s)={s'|Ixes(P).s'=su{vi—x}}
if Vi € Vargg,
go0%(s)={ s'| IxePs(P).s'=suU{Vvi—x}}
if vi € Var,,
g0%(s) = { 8'| Ix e PS(P) xS(p).s'=s U { Vi—> X } }

Theorem 12: The level i generator g0% given by Definition 36 is a Pp-limiting generator.
Proof: Let P,p € Terms,, such that FV(P) c Var;.; and FV(p) c Var;.; and S€ S;.4 .
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if Vi e Varscalar
vs' e g0%(s).s'(v) € s(P)
Therefore, s'(v)) is ?Jo-limited for s.

The other cases follow similarly. )

Just as a set of assignments can represent a duplication, a set of assignments can be a Pp-limited
representative of a duplication.

Definition 37: For any P,p € Termg,, such that FV(?) ¢ Var;.4 and FV(p) c Varj4, aset LicSiisa
Pp-limited representative of d (¢) iff
Vs € Sx. FQ[s] = true = 35" € SN.8 =4y S' A limitPP(Var; < 8) e L.

This is almost the same definition as was used for represents originally. Instead of matching a
partial assignment from each equivalence class in d (Q), it is now necessary to match a Pp-limited
partial assignment from each equivalence class.

Definition 38: A Pp-limited level i generator ;™7 is Pp-limited sound for d (¢)) iff
Vs € Sn.FQ[S] = true = Js'e SN.8 =y 8' A limitPP(Var; <1 8") € g (Vari 4 < 5).

As before, a generator is sound if it yields a value equivalent to each possible value, except it now
yields the Pp-limited equivalent value. The aggregate generator for a Pp-limited sound generator
yields a Pp-limited representative set when given a Pp-limited representative set.

Theorem 13: If a Pp-limited level i generator g;”7 with the aggregate generator G;¥7 is Pp-limited
sound for d (§) then
VQi.q < S;.1. Qi represents d (¢) = G;"(Qy.1) Pp-limited represents d ().
Proof: By construction.

Assume S € Sy.FQ[s] = true.

Because Q.4 represents d (¢),
Js' € SN.8 =4(g) S' A Vary <8 € Q.

Therefore, by definition of Pp-limited sound,
3s"e Sy.limitP(Var, <1 8") € gP(Var.; 48') A §' =4 S".

By transitivity, S =44 S".

Therefore, because limit;®(Var; <t 8") € G#(Q;.,),
Gi”(Qy.,) is a Pp-limited representative of d ({). [ ]

The Pp-limited exhaustive-enumeration generator defined earlier is Pp-limited sound.

Theorem 14: The exhaustive-enumeration Pp-limiting generator g0% defined by Definition 36is a
Pp-limited sound level | generator for any duplication d (¢) and formula ¢ such that v;

Varggajar = Okv;in P.

Proof: There are three cases to consider based on the kind of variable
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If vi e Vargga1ar
By definition, EQ[s] = true = s(v)) € S(P) .

By definition of g0%,
Vs € Sy.VX € S(P).3s' € g0 (Var;.; < 5).8'(V) = X

Therefore, Vs € Sy.FQ[S] = true = s € gOPP(Var;.4 < S)
Therefore, limit;??(Var; <t S) € g0%(Var;.; <1 S)
Because s =4 S by definition, g0% is Pp-limited sound.

If v € Varg,
By definition of limit®?, Vs € S\.VX € Value,,,.limit®*(X,s) c S(P).

Therefore, Vs € Sy.limit??(s(v;),8)c S(P).
By definition of g0%, Vs € Sy. VX c 5(P).3s' € g0%(s).8'(V;) = X
Therefore, Vs € Sy.limit;(Var; <t 8) € g0%#(s).

A similar argument follows when Vv; € Var,,,. m

3.3 Definition of Bounded Generation

I now define bounded generation in terms of Pp-limiting.

Definition 39: For any P,p,R € Term,, a level i generator bg,”?® is a bounded generator for ¢
using a Pp-limiting generator g7, iff
FV(P) c Variqy A FV(p) c Varjy A FV(R) C Vari.q A
(Vi € Vargcayar =
OFv; in Pap={} AR={} A
bgi¥*(s) = g;”(s)) A
(Vie Varg =
Orvi <= (PU R) A OFR <=V, rp={}n
bg?R(s) = { s'| 3s" € g¥(s). 8'=5"U S(R)}) A
(Ve Var,q =
$rdom Vv;<=P A Qkran vi<=p AR={} A
bg¥*(s) = g”(s))
This definition exactly corresponds to the overview of bounded generation given earlier. All the
terms used must be well defined for any partial assignment considered as an input. For scalar
variables, the generator utilizes an underlying generator that considers only the possible values, as
given by the term P. For set variables, the generator unions the required elements, as indicated by
the R term, with each value yielded by the underlying generator considering only the non-
required possible elements, as given by the P term. For relational variables, the generator yields
values given by the underlying generator considering a reduced set of possible elements for the
domain (indicated by the term P) and for the range (indicated by the term P)-
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A bounded-generation generator, when combined with a Pp-limited sound generator, is sound for
appropriate partial assignment duplications.

Theorem 15: If V; € Vary1,, and gi”7 is Pp-limited sound for PAd(¢,v; in P), then the level i

bounded generator bg;?** using the exhaustive-enumeration Pp-limiting generator g% is
sound for PAd(¢,v; in P).
Proof:

Because QFv; in P, V' s € Sy. EQ[S] = true = s(v;) € S(P)

By definition, $(V;) € S(P) = limit;?(S(V})) = 8(V))

Therefore, V s € Sy. FO[S] = true = 1imit;?? (Var;<1 s8) = Var;< s.

Therefore, g is sound for PAd (¢, v; in P).

Because bg"PR = g% when v, € Var, , a1,

bg;"* is sound for PAd (¢, v;in P) . [ ]

Theorem 16: If v; € Var,, and g;”? is Pp-limited sound for PAd(9,(v; <= (P U R) and R <=V)),
then the level i bounded generator bg;”’® using the exhaustive-enumeration Pp-limiting
generator g;*” is sound for PAd(¢,(v; <= (PU R) and R <= vy)).

Proof: By construction.
Let s € Sn.FQ[s] = true.
Because g;” is Pp-limited sound for the duplication,
3s' € SN-S =paa S' A limit;P(Var; <1 8'") € gP(Var.; <1 8).
By the definition of =p,4 and because FQ[S] = true, S =psq S' =>S=8'".
Therefore, limit;®?(Var; <t 8) € g% (Var;.4 < 8).
By definition, limit;®?(Var; < S)(V;) = S(V;) N S(P).
Because QF(V; <= (P U R) and R <= V),
OFV; <= (PU R) A OFR <=V,
Therefore, FQ[s] = true = s(V;) € S((P U R)) A S(R) c S(V.).
Therefore s(V;) c S(P) U S(R).
Therefore, S(V;) < (8(V) N S(P)) U S(R).
Because S(R) < s(V)), (8(V) N S(P)) U S(R) < (V).
Therefore, (S(V;) N S(P)) U S(R) = S(V)).
Therefore, limit;??(Var; < 8)(v;) U S(R) = S(V)).
Therefore s € bg;»*®(Var;_.q <t 8). |

Theorem 17: If V; € Var,,| and g7 is Pp-limited sound for PAd(¢,(dom v; <= Pand ran v; <=
p)), then the level i bounded generator bg;"* using the exhaustive-enumeration Pp-limit-
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ing generator g is sound for PAd(¢,(dom v; <= Pandran v, <= )

Proof: By a similar argument used in the proof for Theorem 16.
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4. Isomorph Elimination

This section begins by providing an overview of isomorph elimination. The second subsection
defines permutation duplicates based on automorphisms on U, the universe of atomic elements.
Using the definition of the formula language, I show that applying an automorphism function to
all of the values in the range of an assignment does not change the interpretation of the formula
for the modified assignment. I define isomorph elimination in terms of these automorphisms.
From this, I show that isomorph-eliminating generators are sound.

In the final subsection , I show that an isomorph-eliminating generator can be used as the
underlying Pp-limiting generator for sound bounded generation.

4.1 Overview of Isomorph Elimination

Conceptually, isomorph elimination is a direct outgrowth of a simple observation: two isomorphic
assignments will give the same interpretation to any formula. Two assignments are isomorphic if
there is a consistent shuffling of the elements in one assignment, called a relabeling, that yields
the second assignment. As the elements of U are unstructured, no two elements are
distinguishable, except through prior usage. Therefore, a relabeled assignment must give the same
interpretation to a formula as the original assignment.

Because of the incremental approach taken in selective enumeration, an isomorph-eliminating
generator considers only relabellings that do not effect the partial assignment already computed.
For an initial partial assignment, an isomorph-eliminating generator can safely exclude any value
for the new variable that is a relabeling of another value that is generated if that relabeling leaves
the initial partial assignment unchanged. In this way, the values already generated in earlier levels
limit the possible relabellings to consider in this new level.

Ideally, the generator would guarantee that no assignments generated for a given level of the
search tree would be isomorphic to each other. However, there are two difficulties in achieving
complete isomorph elimination. As the generator considers only a single partial assignment from
the previous level at a time, it cannot guarantee that two assignments generated from two different
initial partial assignments are not isomorphic. Secondly, perfect recognition of isomorphs is itself
non-polynomial, so acceptable performance requires the use of a heuristic.

Basic isomorph elimination is dependent solely on the formula language, rather then on the actual
formula being analyzed, as is bounded generation. Although further reductions can be gained by
considering the formula [JJD98], I ignore those considerations in this analysis.

4.2 Automorphisms

An automorphism is a function that performs a consistent relabeling of a value or an assignment.

Definition 40: A one-to-one function fi:-Value—Value is an automorphism for U iff
VY € Valueye,. VX € Valuegg,1p-X €Y € A(X) € AY) A
VZ € Value,.. VX,X' € Valug, 1, X'e Z(X)& A(X') € A(Z)(A(X))

Definition 41: For any automorphism h, K(S) = { vioX |[vedoms aAx= ﬁ(s(v))}.
Furthermore, A(S) is the semantic function induced by A(S).
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Because all of the elements of ‘U are unstructured, applying any automorphism to an assignment
does not change the meaning of that assignment for any terms or formulae.

Lemma 18: For any automorphism h, term T, and assignment S,
S(T) # unknown = A(S(T)) = A(S)(T).

Proof: By structural induction on the definition of S(T).

If Tis v where v € Variable
By definition of S, S(T) = (V).
By definition of A(S), A(S)(T) = A(S(V)).
if Tis (Tl U Tz) where T1, Ty € Termg,,
Because S(T) # unknown, S(T;) # unknown and S(T,) = unknown.
By induction, A(S(T;)) = A(S)(T;) and A(S(T,)) = A(S)(T,).
Therefore, by definition of S , A(S(T)) = A(S)(T)
Other productions follow similarly )

Theorem 19: For any automorphism f, formula ¢, and assignment S,
kd[s] = unknown = EQ[s] = FO[A(S)].

Proof: By Lemma 18 and structural induction on the definition of the formula language.

If ¢ is T; in T, where T; € Termg,y,, and T, € Termge,

Because FQ[s] # unknown, $(T;) # unknown and S(T,) # unknown.

By definition of F, if EQ[s] = true, S(T;) € S(T,).
Therefore, by Definition 41, A(S(T;)) € A(S(T,)).
Therefore, by Lemma 18, f(8)(T;) € A(S)(T,).
Therefore, FP[A(S)] = true

By definition of K, if kQ[s] = false, S(T;) & S(T,).
Therefore, by Definition 41, f(5(T;)) & A(S(T,)).
Therefore, by Lemma 18, A(8)(T;) & A(S)(T,).
Therefore, FO[A(S)] = talse

If ¢ is (¢; and ¢,) where §;,0, € Wif
If k() [S] = true, £, [A(S)] = true by induction
If kQ, [s] = true, EQ,[A(S)] = true by induction
Therefore, by definition of k, if FQ[s] = true, FQ[A(S)] = true
If kQ, [s] = false, K, [A(S)] = false by induction
If kO, [s] = false, F; [A(S)] = false by induction
Therefore, by definition of k, if FQ[s] = false, FO[A(S)] = false

Other productions follow similarly &l

An isomorph-eliminating generator considers only automorphisms that leave the initial partial
assignment unchanged. These automorphisms are called identities.
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Definition 42: An automorphism £ is an identity for an assignment S iff s = A(S)

For any empty assignment or an assignment containing only empty sets and empty relations, any
automorphism is an identity. For the assignment considered earlier

{ usage'—{ (ay,vy) }, used'—J}
any automorphism that maps a, to a, and v, to vq is an identity.
Identities for the more complicated assignment

{ usage'—{ (ap,vp), (a1,vp) }, used'—{ay, a, } }

include automorphisms that map a, to a;, a; to ay, and v to v, as well as the expected
automorphisms that map a, to ag, a, to a;, and v, to v,.

If an automorphism is an identity over a partial assignment, it is an identity for any value obtained
by evaluating a term using that assignment.

Lemma 20: If /1is an automorphism that is an identity for a partial assignment S € S;and T € Term
such that FV(T) ¢ Var;, then A(S(T)) = S(T).
Proof: By structural induction on term language.
By Theorem 1, S(T) # unknown.

If T is v, where v € Variable
S(T) = S(T) by definition
Because £ is an identity for s, A(S(T)) = S(T)

If Tis (T; U T,), where T(,T, € Termg,,
By induction, A(S(T;)) = S(T;) and A(S(T,)) = S(T,)
Therefore, A(S(T)) = S(T)
Other productions follow similarly. [ |

4.3 Definition of Isomorph Elimination

To define isomorph elimination precisely, it is useful to start with a definition of the duplication
being reduced by the generator. The duplication places any two assignments in the same
equivalence class if they are isomorphic to each other.

Definition 43: An equivalence relation =, is a permutation equivalence relation iff
Vs,s' € Sy. § =, §8' © (Fh. his an automorphism function and s' = A(S))

Lemma 21: The partitioning defined by =, is a duplication.

Proof: By Theorem 19.

Definition 44: 7td () is the duplication induced by =,

The goal of an isomorph-eliminating generator is to generate only assignments that are not
isomorphs of other assignments generated.
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Definition 45: A level i generator g; is an isomorph-eliminating generator iff
Vs € §;.1.VX € Value.3s' € gi(s).
(3h.h is an automorphism A £ is an identity for s A s'(v) = A(x))

An isomorph-eliminating generator is any generator that is guaranteed to generate at least any
value for this level that is not isomorphic to another value also generated. As was noted earlier, it
is not realistic to require an isomorph-eliminating generator to remove all isomorphs. As such, the
exhaustive-enumeration generator given in Definition 21 is a valid isomorph-eliminating
generator, albeit an extraordinarily inefficient one. In practice, a middle ground is available; an
efficient generator that eliminates almost all isomorphs can be implemented with reasonable
effort.

Because an isomorph-eliminating generator only drops an assignment if there is an automorphism
that relabels that assignment into one that is generated, there is at least one element generated for
each equivalence class in 7td (0).

Theorem 22: An isomorph-eliminating generator g; is sound for 7td ().

Proof: Assume S € Sy.EQ[S] = true.
Let X = s(V)).
By definition of an isomorph-climinating generator,
Js' € gi(Var.q < 8).
(3h.h is an automorphism A
f is an identity for s A S'(V)) = A(X))

Therefore, i(S) =8'.
Therefore, s =, ' ]

4.4 Interaction of Isomorph Elimination and Bounded Generation

To minimize the number of assignments generated, selective enumeration utilizes all the
duplications available. As shown in Theorem 6, different partial assignment duplications combine
to reduce the number of assignments for a single formula in a straightforward manner. The
complexity comes when combining a partial assignment duplication with a permutation

duplication: PAd(¢,9") o td (¢).

If the partial assignment duplication enables a derived variable, only one assignment will be
generated and combination with isomorph elimination is unnecessary. Short circuiting, as
described in the next section, is really more of a post-filter than a generator and combines with
any other generators in a straightforward manner. The issue is therefore limited to combining
isomorph-eliminating generators with bounded-generation generators. The approach is to utilize
an isomorph-eliminating generator as the underlying generator for a bounded-generation
generator.

This requires a Pp-limiting version of an isomorph-eliminating generator to be defined.
q g4 g p g8

Definition 46: For P,p € Termg,, such that FV(P) ¢ Var;_4 and FV(p) c Vary.4, a level i generator
"7 is a Pp-isomorph-eliminating generator for formula ¢ iff
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Vi € Vargcatar = VS € 5.4.VX € Valueggyjar-
(XeSs(P) v
ds' e gi(s).
(3h.h is an automorphism A
f is an identity for s A
s'(v) = A(limit™’(X,8))) A
Vi€ Varg,, = V5 € S§;.1.VX € Valueg,.
Js' e gi(s).
(3h.h is an automorphism A
f is an identity for s A
s'(v) = A(limit?7(X,8))) A.
Vi€ Var,,; = VS € §;.1.VX e Value,.
Js' e gi(s).
(3h.A is an automorphism A
fiis an identity for s A
s'(v) = A(limit®(x,s))).
A Pp-isomorph-eliminating generator generates a Pp-limited value for each possible value or it

generates a relabelling of the Pp-limited value. But a relabelling of the Pp-limited value is itself a
Pp-limited value. Therefore, a Pp-isomorph-eliminating generator is a Pp-limiting generator.

Lemma 23: A Pp-isomorph-eliminating generator is a Pp-limiting generator.
Proof: Need to prove that Vs € §;.1.Vs' € g;%(s).8'(v)) is Pp-limited.
By definition, Ix.8'(V;) = A(limit?P(x,s)).
Because f:t_is an identity for s and FV(P) ¢ dom s and FV(p) c doms,
h(s(P)) = () and hA(s(p)) = S(p).
If Vi€ VaI'scalar’
limit®?7(x,8) = x
By definition, X € §(P) = A(X) € A(S(P))
Because f(S(P)) = S(P), h(X) € S(P)
Therefore, s'(v)) is Pp-limited
If Vi € Varge,
limit®(X,S) = X N S(P)
so A(limit?P(X,8)) = A(X) N A(S(P))
so A(limit?’(X,s)) = A(X) N S(P)
Therefore, S'(v;) is Pp-limited
If Vv, e Varrel
limit(X,8) = X N §(P)X5(p)
so A(limit??(x,8)) = A(X) N A(S(P))XA(S(p))
50 A(limit??(x,8)) = A(X) N S(P)xS(p)
Therefore, s'(v;) is Ty-linﬁted

Therefore, g7 is a Pp-limiting generator. I
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A Pp-isomorph-eliminating generator is also Pp-limited sound.

Lemma 24: A Pp-isomorph-eliminating generator g;”? is Pp-limited sound for 7td ().

Proof: Assume S € Sy.FQ[s] = true.
Need to find an element S' € SN.S =4y S' A Var; <1 8' € giP(Varjy < S)

By definition, 38" € g;?(Var;.1 < 8).
Jh.A(s(v)) = 8"(V)) A his an identity for Var;.; < S.

Therefore, A((Var; <1 S) = S".
Therefore 3s' € SN.8 =;4(4) 8' A Varj 18" =58""
Therefore, Var; <t §' € g7(Var.; < S). =

Together, a Pp-isomorph-eliminating generator and a bounded-generation generator generate

fewer assignments than either a simple isomorph-eliminating generator or a bounded-generation

generator paired with an exhaustive-enumeration generation. The combination, however, is still

sound, now for the combination of an appropriate partial assignment duplication with the

permutation duplication.

Theorem 25: If V; € Varg.,1,r and g7 is a Pp-limiting isomorph-eliminating generator, then the
level i bounded generator bg;”*® using g;”” is sound for PAd(¢,v; in P) o 7td (0).

Proof: Assume S € Sy such that FQ[s] = true.
Need to prove 3s' € Sy.8 = §' A Var; < §' € bg7®(s).
Because Qrv; in P, V s € Sy. FO[S] = true = s(V;) € S(P)
By definition, S(v;) € S(P) = limit;??(S(V})) = S(V;)
Therefore, V s € Sy. EQ[s] = true = 1imit;®? (Varj < 8) = Var;< S.
By Lemma 24, g;”7 is Pp-limited sound for 7td (¢).
Therefore, g;¥” is sound for 7td ().
Therefore, by Theorem 9, g is sound for PAd (¢,v; in P) o 7td ().
Since bg;*P® simply passes through the assignments generated by ¢;*”,
bg,?*® is sound for PAd (§,v; in P) o td (¢). [}

Theorem 26: If v, € Var ., and g7 is a Pp-limiting isomorph-eliminating generator, then the level
i bounded generator bg;?*® using g;? is sound for PAd ({,(v; in (P U R) and R <= Vv;)) o

nd (9).
Proof: Assume S € Sy such that FQ[s] = true.

By definition of g;?,
3s' e gi(s)-
(3h.h is an automorphism A
fhis an identity for s A
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s'(v) = A(limit®(s(v)),s))).

Therefore, A(limit;®?(Var; < 8)) = 8.
By definition, limit;#(Var; <1 8)(V;) = S(V;) N S(P).
Because QF(V; <= (P U R) and R <= V),

Ok, <= (PU R) A PER <= v,
Therefore, FQ[S] = true = (V) € S((P U R)) A S(R) c s(V)).
Therefore s(v;) ¢ S(P) U S(R).
Therefore, S(V)) < (S(v) N S(P)) U S(R).
Because S(R) ¢ s(Vy), (8(V) N S(P)) U S(R) c S(V).
Therefore, (S(v;) N S(P)) U S(R) = S(V)).
Therefore, limit;?P(Var; < S)(v}) U S(R) = S(V)).
Therefore, limit;#(Var; < S) = Var; < 8.
Therefore, fi(Var; <1S) = S'.
Therefore, 3s" € Sy.A(S) = S".
Therefore, s = s" A Var; < 8" € gi(s). ]

Theorem 27: If v; € Var,.; and g/?is a Pp-limiting isomorph-eliminating generator, then the level
i bounded generator bg;”’® using g;?” is sound for PAd (¢,(dom v; <= P and ran v; <= e

7ed ().

Proof: By a similar argument to the one used to prove Theorem 26.
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5. Derived Variables and Short Circuiting

This section formalizes the selective enumeration techniques called derived variables and short
circuiting, which were introduced by example in the first section. Each technique will be proven
sound.

These techniques are far simpler than isomorph elimination or bounded generation. These
techniques also lack the complications of combining techniques found with bounded generation
and isomorph elimination.

5.1 Overview of Derived Variables

A derived variable is one that has a constructive derivation. Typically, one of the atomic formulae
conjoined in the formula being analyzed gives an explicit value for the variable. This occurs
several places in the example claim uniqueAddrAlloc. In the schema Heap, the atomic formula
used = dom usage restricts used to a single value for each value of usage. Similarly, usage
could be derived from the variables used and usage', using the atomic formula (used <: usage')
= usage. Clearly, the use of one of these derivations invalidates the other; either usage must be
generated before used or used must be generated before usage. The derivations available is both
an input to and a result of the choice of variable ordering.

Derived variables can be considered as the ultimate application of bounded generation. For
derived variables, the value of the ariable is determined by the value of a term that I call T A
scalar variable is a derived variable if the bounded generation term P is limited to a single element
for all possible partial assignments. The term T defines that single element. Similarly, a set
variable is a derived variable if the best bounded generation term ‘P is empty for all assignments;
in this case the derivation term 7" is the same as the bounded generation term ‘R. The limitations
on bounded generations of relations prohibit a direct equivalence with derived variables, however.
5.2 Definition of Derived-Variable Generation

A variable may be derived if the value is constrained to a single term and that term involves only
variables that precede the derived variable in Ord.

Definition 47: For a term T, a level i generator g7 is a derived-variable generator for formula ¢, iff
Okv; = T AFV(T) C Varj.q A VSE $;.1.9,7(S) =S U {V, — S(T)}
A derived-variable generator is always sound for any duplication.
Theorem 28: A level i derived-variable generator g for formula ¢ is sound for any duplication
d@).
Proof: Let s € Sy.EO[S] = true.
Because Ok, = T, = s(v)) = S(T).
Therefore Var; <1 8 g7(Var;.1 < S) -
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5.3 Overview of Short Circuiting

Short circuiting is more of a post-filter than a generator technique. Short circuiting removes all
remaining partial assignment duplicates. Given a set of formulae that must be satisfied, short
circuiting removes any partial assignments that fail to satisfy one or more of the formulae.

In the example considered earlier, bounded generation had limited the values generated for usage
such that the domain of usage was a subset of the domain of usage' and the range of usage was
a subset of the range of usage'. The formula, however, includes a stronger constraint: (used <:
usage') = usage. Short circuiting removes any partial assignments involving used, usage, and
usage' that fail to satisfy this constraint.

Like bounded generation, a short-circuiting generator depends on another generator to produce
assignments, modifying the set of assignments generated. Unlike bounded generation, a short-
circuiting generator may suppress some assignments generated by the underlying generator,
preventing their consideration in the next level of the search.

5.4 Definition of Short Circuiting

A short-circuiting generator requires a set of formulae, referred to as F, and an underlying
generator. The short-circuiting generator yields every assignment yielded by the underlying
generator that satisfy all of the formulae within F.

Definition 48: For a set of formulae F, a level i generator ;7 is a short-circuiting generator for
formula ¢ using a level i generator g'; iff
Vfe F.(OH A Vse S.1.97(s) = {s'| e g{(s) A Hfls'] = true}).
A short-circuiting generator is sound if the underlying generator is sound.
Theorem 29: A level i short-circuiting generator g;¥ for formula ¢ using a level i generator g/} is
sound for PAd(¢,0") o d(¢) if @'; is sound for d () where ¢' isfl andfz andf3 ...andfi
with f;..f; € F.
Proof: Proof by construction.
Assume S € Sy.FQ[s] = true.
Because g is sound for d (), g'; is sound for PAd($,¢")  d ($) by Theorem 9.
Therefore, 3s' € SN.8 = §' A Var; <1 8€ ¢'(Var,;_; < 8).
Because FQ[S] = true A s = 8, E[S'] = true.
Because ‘v’fe CF'd)hf, ‘v’fe ‘1-".I=ﬁs'] = true.
Therefore, s'e g¥(s). ]
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6. Refining the Model

The model of selective enumeration developed thus far is somewhat limited. The first subsection
here re-introduces given types. Given types are a partitioning of ‘U that limits the acceptable
values for variables. The NP language allows relational variables to be limited to subsets of
Value,,, such as functions, injections, or surjections. Limiting the variable to denote only
relations that are functions is the most common of these limitations. The second subsection will
focus on this functional limitation.

6.1 Reconsidering Given Types

Given types are disjoint subsets of ‘U, the universe of elements. In NP, a variable or expression is
not simply restricted to denoting a scalar, set, or relational value; instead, it is restricted to
denoting an element of a given type, or a subset of a given type, or a relation drawn from the cross
product of given types.

This information is most easily captured as additional constraints on the formula under
consideration. For example, the unique AddrAlloc claim is translated and negated into Formula 3;
in addition to the requirements given by Formula 2, the first four lines represent the constraint
implied by the use of the given types in the variable declarations.

Formula 3: ¢ = (( ( (((dom usage <= Addr and ran usage <= Value) and
( dom usage' <= Addr and ran usage' <= Value) ) and
( used' <= Addr and used <= Addr) ) and
a in Addr) and
(dom usage = used and dom usage' = used') ) and
( func usage and func usage' ) ) and
( ( (used <: usage') = usage and used' = (used U {a}))
and a in used) )

This new formula uses two new variables, Addr and Value, representing the two given types.
These variables are generated before any standard variables using a special generator, called a
scope generator. The scope generator uses the scope, a user-provided mapping from given type to
a number of elements desired in each given type.

Definition 49: Variable,; = Variablegc,),, U Variablege; U Variabley) U Variableyp,

Definition 50: A function G:Variabley,e — 1..Nis a Scope iff Zran G < N

Definition 51: A scope generator sg: Variableyp, X Scope — PU is defined as
sgt, o) =T.[Tl=ct) Axe T=xe U sg(t,0)
=t
Bounded generation and derived variables can now guarantee that only values satisfying the given
type constraints will be generated.

This does have a notable practical effect on isomorph elimination, however. Because the given
types will always be generated first, only automorphisms that do not map any elements between
given types will be identities over any partial assignment. Therefore the additional reductions
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gained by bounded generation includes many reductions lost in isomorph elimination. However,
this restriction can also be used to advantage in the implementation of isomorph elimination; a
much smaller space of automorphisms need be considered during generation.

6.2 Limiting Relations to Functions

The original specification restricted the values of usage and usage' to be functions, whereas the
translated formula allowed these variables to be mapped to any relation. A further improvement
on the formula translation is required. Formula 4 adds another constraint involving these variables
to the formula given in Formula 3.

Formula 4: ¢ = (((((((dom usage <= Addr and ran usage <= Value) and
( dom usage' <= Addr and ran usage' <= Value) ) and
( used' <= Addr and used <= Addr) ) and
a in Addr) and
( func usage and func usage') ) and
(dom usage = used and dom usage' = used') ) and
( func usage and func usage' ) ) and
( ( (used <: usage') = usage and used' = (used U {a}) )
and a in used) )

Short circuiting could easily handle these additional constraints directly by including func usage
and func usage' as two of the formulae in F. However, this misses some important opportunities
to further reduce the number of assignments generated.

The exhaustive-enumeration generator and the isomorph-eliminating generators can be easily
enhanced to generate only functions. Bounded generation can also be extended to take advantage
of this case without much effort.

Definition 52: For any P,p,R € Termg, and £ € Term,;, a level i generator bg;”*¥ is a function-
aware bounded generator for ¢ using a Pp-limiting generator gi”, iff
FV(P) c Variq A FV(p) c Varj 4 A FV(R) c Varjy A FV(E) c Varj.g A
(Vi € Vargcayar =
OFv; in CP/\J?={}/\R={}A5E={}A
bg"7*%(s) = g™(s)) A
(v; € Varge =
Ok, <= (PU R) A¢FR<=ViAJ9={}/\fE={}/\
bgi?*RE(s) = { s'| 3s" € gi¥¥(s). s'=s"U S(R)}) A
(Vi € Varge A OEfunc v, =
OFdom v <= (P U dom E) A Qkran v, <=pAPFE<=ViAR={} A
bgiT*E(s) = { s'| Is" € gP¥(s). 8'=8"U S(E)}) A
(v; € Var,,; A —QFunc v; =
OFdom V; <= P A QFran v, <=pAR={}AE={n
bgi "% (s) = gi(s))
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This generator works for functions much the way the original generator works for sets. E is a term
describing a set of edges that must be included in any value generated. Because the value must be
a function, the domain of ‘E can be excluded from P.
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7. Conclusion

This paper has introduced a formal framework for describing selective enumeration and the
techniques that implement it. In related papers, I define specific algorithms for implementing each
technique and show that they lead to sound generators. I also define an algorithm for discovering a
set of constraining formulae, as needed by partial assignment duplications, and an algorithm for
selecting an ordering that takes substantial advantage of the reduction opportunities.

7.1 Future Work

One potential future direction is the search for additional forms of duplication. Although the two
duplications I describe in this paper are effective at reducing the number of assignments
generated, further duplications would enable additional specifications to be analyzed.

Another possible direction is analyzing different input languages. A promising candidate is
OCL[IBM97], the constraint language recently defined for the object specification notation UML.
Most of OCL can be directly translated into the formula language I use here. The object
orientation introduces some new concepts, particularly inheritance, that require additional
consideration and may enable additional constraints.

A final possible direction involves applying the general approach of selective enumeration to
incremental search problems in other, non-relational domains. If any easily computable features
can be defined that distinguish interesting and non-interesting instances, the framework I
described in this paper can be applied.

As an example, consider the problem of TF-sensitive test generation [CM94]. A test T for a
boolean expression E is sensitive to a variable x in E if changing only the value of x changes the
result of T for E. The goal in test generation is to obtain a near-minimal test set that contains at
least one test that is sensitive for each variable. Like the relational satisfaction problem, the

general solution is exponential.

Conceptually, a selective-enumeration-like search could be used to find such a set. It seems likely
that techniques could be developed that efficiently rule out tests as duplicates if they are not
sensitive to any variables not already tested by a test in the set.
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