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Abstract
Current static verification techniques do not provide good support for incre-

mentality, making it difficult for developers to focus on specifying and verifying
the properties and components that are most important. Dynamic verification ap-
proaches support incrementality, but cannot provide static guarantees. To bridge
this gap, prior work proposed gradual verification, which supports incrementality by
allowing every assertion to be complete, partial, or omitted, and provides sound ver-
ification that smoothly scales from dynamic to static checking. While promising, the
prior approach to gradual verification is merely an indication of feasibility in a very
simple setting and is limited to programs without recursive heap data structures.

This dissertation extends gradual verification to programs that manipulate recur-
sive, mutable data structures on the heap. It lays the formal foundations for such
gradual verification systems, addressing several technical challenges, such as se-
mantically connecting iso- and equi-recursive interpretations of abstract predicates,
and supporting gradual verification of heap ownership.

This work demonstrates the practicality of these foundations by first present-
ing Gradual C0, the first working gradual verifier for recursive heap data structures.
Gradual C0 targets C0, a safe subset of C designed for education. During Grad-
ual C0’s development, technical challenges related to symbolic execution with im-
precise specifications, minimizing insertion of dynamic checks, and extensibility to
other programming languages beyond C0 were addressed. Next, I present an em-
pirical study of gradual verification technology, which explores how specification
precision correlates with run-time checking in Gradual C0. The results show that
on average, Gradual C0 decreases run-time overhead between 11-34% compared
to dynamic verification alone. Further, run-time performance increases in Gradual
C0 as more specifications are written—and proof obligations are introduced but not
statically verified—until reaching a critical mass where afterwards performance de-
creases correspondingly—as more and more proof obligations are proved statically.
Finally, I also present a case study exploring Gradual C0’s practicability and scala-
bility by using the tool to verify a 3k lines of code C parser for loop termination. I
found that Gradual C0’s strong adherence to the gradual guarantee—which ensures
Gradual C0 does not produce static or dynamic verification errors resulting from
missing specifications—was necessary for assuring real software with many mod-
ules and functions and allowed me to find bugs in code and specifications far earlier
than static verification alone. However, this property at times hindered efforts to re-
duce run-time checking through writing additional specifications. I propose a new
specification construct (inspired by prior work in gradual typing) that is designed to
facilitate this process in the presence of the gradual guarantee.

This dissertation thus makes significant contributions to realizing the promising
idea of gradual verification, and lays a solid foundation for future gradual verification
technology and tools that work at scale.
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Chapter 1

Introduction

Automated deductive verification tools (static verifiers), such as Viper [33], Dafny [26], and
VeriFast [22], are powerful in that they prove the absence of bugs in software with respect to
a user provided specification and do so automatically. Therefore, since the first introduction of
the technology supporting such tools—Hoare logic [21]—in 1969, researchers have continued
making advancements to support more interesting programs and properties. Weakest liberal
preconditions, introduced by Dijkstra [11], made implementing Hoare logic with satisfiability
modulo theories (SMT) solvers much easier. Then, thanks to improved capabilities of SMT
solvers—from advancements in SAT solving [31]—proofs of many low-level properties have
been automated. More recently, separation logic [38] enabled the modular static verification of
heap-manipulating programs. Its variant Implicit dynamic frames (IDF) [44] and extension with
recursive abstract predicates [36, 44] further support verifying recursive heap data structures,
such as trees, lists, and graphs.

While these techniques allow users to specify and verify more code than ever before, static
verifiers implementing them (e.g. Viper [33], VeriFast [22], and Dafny [26]) are still largely
unused in practice due to the burden they place on their users. Such tools poorly support par-
tial specifications, and thus require users to provide a number of auxiliary specifications (such
as folds, unfolds, loop invariants, and inductive lemmas) in an all or nothing fashion to dis-
charge proofs of code correctness. Additionally, the tools also require many of these auxiliary
specifications to be written before they can provide feedback on the correctness of wanted speci-
fications (such as pre- and postconditions specifying the behavior of functions). For example, to
prove that a simple list insertion function preserves list acyclicity, static verifers need 1.5 times
as many lines of auxiliary specifications to program code (§1.4). They also need a significant
number of these auxiliary specifications to uncover problems with specifications of the acyclic
property (§1.4). I discuss this example and the burden of static verifiers in more detail in §1.4.

To address this issue, Bader et al. [3] proposed gradual verification, which builds on prior
research on gradual typing [41, 42, 43]—in particular the Abstracting Gradual Typing method-
ology [19]—to support the incremental specification and verification of software. Bader et al.
[3] extend a simple Hoare logic static verifier with partial, imprecise specifications backed by
run-time checking where necessary. An imprecise formula can be fully unknown, written ?,
or combine a static part with the unknown, as in ? ∗ x.f == 2. During static verification,
an imprecise specification can be optimistically strengthened (in non-contradictory ways) by the
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verifier to support proof goals. Wherever such strengthenings occur, dynamic checks are inserted
to preserve soundness. Gradual verification smoothly supports the spectrum between static and
dynamic verification. This is captured by properties adapted from gradual typing [43], namely
the gradual guarantee, stating that the verifier will not flag static or dynamic errors for specifica-
tions that are correct but imprecise, and the fact that gradual verification conservatively extends
static verification, i.e. they coincide on fully-precise programs.

While the basic principles of gradual program verification have already been laid out by
Bader et al. [3], their work only accounts for pre- and postconditions that include basic logical
and arithmetic formulas. Thus, this work only applies to simple programs without loops, heap
values, or recursive data structures; and can be categorized as an early proof of concept of the
idea of gradual verification. To move research in gradual verification forward and show that it
can make significant improvements to the usability and scalability of verification technology,
this dissertation advances Bader et al. [3]’s basic principles to deal with realistic programming
scenarios involving recursive heap data structures.

1.1 Thesis Statement

This brings me to my thesis statement:
It is possible to build gradual verification technology that

• supports the specification and verification of programs manipulating recursive
heap data structures,

• is sound and adheres to gradual properties,
• has minimized run-time overhead, and
• is useful in practice.

Note, from here on out I will use “we" to describe work that was done in collaboration with
others (all of which have been acknowledged in the acknowledgements section). I am, of course,
the main contributor (“first author") of the work presented in this dissertation.

1.2 Thesis Contributions

To support this thesis statement, this document makes the following contributions:

Theoretical Foundations of Gradual Verification for Recursive Heap Data Structures. This
dissertation presents the design, formalization, and meta-theory of the first gradual verifica-
tion system for recursive heap data structures [47]. It supports the strengthening of imprecise
specifications with accessibility predicates (from IDF) and recursive predicates; and thus, also
the run-time verification of these constructs. We proved that this system is sound and adheres to
gradual properties—i.e. it is a conservative extension of the base static verifier and adheres to the
gradual guarantee. In this more sophisticated setting, we addressed several technical challenges,
such as semantically connecting iso- and equi-recursive interpretations of recursive predicates,

2



and supporting the gradual verification of heap ownership. §1.3 discusses these challenges in
more detail.

Gradual C0: the First Gradual Verification Tool. We present the design and implementation
of Gradual C0—the first gradual verifier that both can be used on real programs contain-
ing recursive heap data structures and minimizes run-time checks with statically available
information [14]. Gradual C0’s design is inspired by our foundational theory and is sound and
adheres to gradual properties. Technically, Gradual C0 is built on top of the Viper static verifier
[33], which supports IDF and recursive abstract predicates; and programs verified by Gradual
C0 are written in the C0 programming language, which is a simpler and safer subset of the C
language targeted at education [2]. Gradual C0 leverages Viper’s infrastructure to simplify the
implementation of gradual verifiers for other programming languages, and we demonstrate how
this is done for C0. In this work, we addressed new technical challenges from realizing our
foundational theory in a working tool. We handle challenges from using symbolic execution for
reasoning, such as relating symbolic values to their source code counterparts for run-time check-
ing, and minimizing run-time checks and their overhead, such as tracking a set of optimistically
assumed accessibility predicates during static verification.

Performance Evaluation of Gradual C0. We evaluate how precision correlates with run-time
checking in Gradual C0 with a first of its kind empirical evaluation of a gradual verifier
[14]. The study explores static and dynamic performance characteristics for thousands of sample
partial specifications derived from four common data structures, as inspired by similar work in
gradual typing [46]. In particular, we observe how adding or removing individual atomic for-
mulas and ? within a specification impacts the degree of static and dynamic verification and, as
a result, the run-time overhead of the program. We compare run-time performance to a fully
dynamic approach as a baseline. We found that Gradual C0 reduces run-time overhead by an
average of 11-34% compared to dynamic verification and respects the gradual guarantee empir-
ically across the sampled specifications. Further, Gradual C0 follows interesting performance
trends: performance increases gradually as more proof obligations are specified but are not yet
statically verified; and thus, must be checked at run time. Eventually, a critical mass of specifi-
cations are written that allows more and more of these proof obligations to be proven statically
and run-time overhead decreases accordingly.

A Case Study with Gradual C0. We explore how gradual verification is used to verify real
application software that uses recursive heap data structures through a case study. We used
Gradual C0 to verify a subset of a 3k lines of code C parser, called TinierCP, for loop termina-
tion, and recorded the experience through journal entries. TinierCP has various structures and
modules, plenty of functions (27) that call each other in intricate ways, and manipulates lists
and trees with loops and recursion across these functions. We qualitatively coded the entry data
in three rounds: from initial low-level codes into patterns and themes and then into a narrative.
We found that Gradual C0’s strong adherence to the gradual guarantee, which suppresses errors
caused by missing specifications, allowed us to verify only the code and properties we cared
about in a top-down workflow. Relying on Gradual C0’s verification results in a top-down work-
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flow also allowed us to uncover bugs in TinierCP and our specifications during the verification
process—and do so far earlier than if we would have used static verification alone. But, Gradual
C0 has room for improvement. Gradual C0 should provide an additional specification language
construct (inspired by prior work on gradual typestate [18]) that allows users to specify—via
predicates and accessibility predicates—what heap locations are not accessed by a function (this
is in contrast to preconditions, which specify the heap locations accessed by a function). This
construct allows users to provide additional information to Gradual C0 that it can use to discharge
more proof obligations statically reducing run-time verification overhead. Additionally, we can
improve Gradual C0’s usability by having Gradual C0 report whether specifications marked by
a user are checked statically or dynamically.

1.2.1 Document Roadmap
The rest of this document is outlined as follows. The challenges with supporting the gradual
verification of recursive heap data structures are discussed in §1.3 along with our novel solutions.
The burden static verifiers place on their users is demonstrated in §1.4, and we demonstrate how
gradual verification can alleviate this burden in §1.5. Related work is given in 1.6. Chpt. 2 lays
out the formal foundations of gradual verification for recursive heap data structures, and Chpt. 3
presents the design and implementation of Gradual C0. The performance study is discussed in
Chpt. 4 and the case study in Chpt. 5. The document concludes in Chpt. 6 with future work.

1.3 Challenges of Recursive Heap Data Structures
This section explains the challenges involved in accounting for implicit dynamic frames (IDF)
[44] and recursive abstract predicates [36] in the context of gradual program verification. We also
informally outline our novel solutions to these challenges, which will be formally developed,
implemented, and evaluated in the following chapters.

1.3.1 Gradual Verification of Heap Ownership
Adapting the Abstracting Gradual Typing approach [19] to the verification setting gives meaning
to imprecise formulas such as x > 10 ∧ ? by considering all the logically consistent strength-
enings of such formulas [3, 25]. For instance, x > 10 ∧ ? consistently implies x > 20, but not
x < 0. In the latter case, the formula x < 0 contradicts the static part of the imprecise formula
x > 10. In the former case, if we definitely know that x > 10, then it might optimistically be
the case that x > 20 as well. Of course, in order to preserve soundness, optimistically assuming
x > 20 when one only definitely knows that x > 10 requires a run-time check to corroborate
that the value bound to x at run-time is indeed greater than 20.

When dealing with heap data structures, the logic—IDF in our case—includes more than
arithmetic: we need to be able to talk about heap separation (with the separating conjunction
∗) and ownership of heap cells (with accessibility predicates like acc(x.f)). How are we to
extend the interpretation of imprecise formulas in such a setting, and how can we soundly track
optimistic assumptions?
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Imprecise Heap Formulas. When using IDF in a static verifier, one must make sure that for-
mulas are self-framed. For instance, x.f >= 2 is not self-framed, because it does not explicitly
mention the accessibility predicate needed to evaluate the formula. The formula acc(x.f)
∗ x.f >= 2 is self-framed. We want to ensure that programmers can smoothly strengthen
specifications, and one logical kind of strengthening is adding accessibility predicates that were
previously missing. Accordingly, in our design imprecise formulas must optimistically allow
? to stand in for accessibility predicates that are necessary for framing. Furthermore, this is
true whether the imprecise formula appears directly in an assertion or indirectly in the definition
of an abstract predicate. Indeed, in IDF, framing can sometimes come from an abstract predi-
cate. For instance, foo(x) ∗ unfolding foo(x) in x.f >= 2 is self-framed if the body
of foo(x) includes acc(x.f). Thus, our semantics for imprecise formulas must allow ? to de-
note not only for predicates such as foo(x), but also any unfoldings of them that are necessary
to frame the static part of the formula.

Runtime Checking of Ownership. For a gradual verifier to be sound, optimistic assumptions
made statically due to imprecision must be safeguarded dynamically through run-time checks.
Extending gradual verification to IDF by allowing imprecision to account for missing acces-
sibility predicates means that we need to keep track of ownership in the run-time system. In
particular, we design a run time that tracks and updates a set of heap locations at every program
point, indicating current ownership. Heap locations are added to this set when objects are cre-
ated. Each time a field is accessed, the set of owned locations is looked up: if the corresponding
permission is found, the check succeeds, otherwise a run-time error is raised.

At a call site, if an owned heap location is required by the precondition of the callee, then it
is removed from the owned locations of the caller. When the callee finishes executing, all callee
owned heap locations are passed to the caller.

The challenge here is how to deal with imprecise preconditions, either directly or via an
imprecise abstract predicate. In order to maximize the ability for the callee to execute properly,
an imprecise precondition has to require all the owned heap locations of the caller. Indeed,
said imprecision might potentially denote any location owned by the caller, not already passed
statically, and effectively required in the callee. Not transferring its ownership means the callee
might error out at run time.

1.3.2 Gradual Verification of Recursive Predicates

Recursive predicates can be dealt with in two different manners in program verification [45]:
either iso-recursively—in which case to be able to exploit a predicate instance, one needs to ex-
plicitly unfold it, and vice versa, to explicitly fold it back to establish it—or equi-recursively—in
which case a predicate is deemed identical to its unfolding, which need not be specified explic-
itly. These two approaches have complementary strengths, which, we argue, are particularly
relevant for gradual verification. The iso-recursive approach is critical for making static reason-
ing manageable for tools (and for humans who must deal with the error messages reported by
these tools) because it breaks reasoning into small steps. In contrast, the equi-recursive approach
is much more convenient in a dynamic setting, where the run-time system can automatically
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unfold predicates as needed, and so the user does not have to write explicit folds and unfolds.
In this work, we propose a novel design that achieves the benefits of both approaches. Stat-

ically, the gradual verifier treats recursive predicate instances iso-recursively: programmers can
specify folds and unfolds in the precise parts of their pre- and postconditions, as well as in
program statements, just as they would with mainstream static verifiers. By exploiting syntax,
verification becomes simply algorithmic for tools to implement, and visually clear for humans to
keep track of the underlying activity of the verifier.

In contrast, dynamically, predicate instances are checked equi-recursively. An equi-recursive
evaluation of predicate instances is the natural choice for dynamic checking, as the run-time
system can simply execute the predicate as if it were a function. Crucially, an equi-recursive
approach to program evaluation allows users to leave out fold and unfold statements, which one
can expect to be the default for partially (or un-)verified code. Seen dually, adopting an iso-
recursive run-time approach while allowing programmers to omit (un)folding statements would
mean trying to automatically infer when to actually perform (un)folding. Known approaches to
this are heuristic, meaning that some well-behaved code could be conservatively rejected when
made imprecise enough. This would result in a violation of the dynamic gradual guarantee [43],
whose motto is that losing precision is harmless.

Therefore we argue that combining iso- and equi-recursive treatments of recursive predicates
is required in order to achieve a proper gradual verifier: statically, the iso-recursive approach
ensures algorithmic checking, and dynamically, the equi-recursive approach allows imprecise
code to run smoothly.

1.4 The Burden of Static Verifiers

1 struct Node { int val; struct Node *next; };
2 typedef struct Node Node;
3
4 Node* insertLast(Node *list, int val)
5 {
6 Node *y = list;
7 while (y->next != NULL)
8 { y = y->next; }
9 y->next = alloc(struct Node);

10 y->next->val = val;
11 y->next->next = NULL;
12 return list;
13 }

Figure 1.1: Non-empty linked list insertion in C0

Static verifiers require a number of user-
provided auxiliary specifications, such as
folds, unfolds, lemmas, and loop invariants,
to prove properties about recursive heap data
structures. Worse, they also require users
to write many of these auxiliary specifica-
tions before the tools can provide useful feed-
back on the correctness of other specifica-
tions, including ones containing important
functional properties. Therefore, users are
burdened by writing many detailed and ex-
traneous specifications with inadequate static
feedback throughout the process. In this sec-
tion, we illustrate this burden with a simple

list insertion example and output from Viper [33]. Then, we show in §1.5 how gradual verifi-
cation overcomes this burden by smoothly supporting the spectrum between static and dynamic
checking. Users can avoid writing auxiliary specifications and still get sound verification of
their code with increased run-time checking. Users can also receive run-time feedback on the
correctness of their specifications very early in the specification process, and the resulting error
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messages closely align with inherent problems in the specifications or in the program, making
debugging them easier.

Fig. 1.1 implements a linked list and function that inserts a new node at the end of a given
list, called insertLast, in C0 [2]. In this section and in §1.5, all examples are written in C0
code as that is the language supported by our gradual verifier Gradual C0. In this work, we also
extended Viper to verify C0 programs. The insertLast function traverses the list to its end
with a while loop starting from the root. That is, insertLast implicitly assumes the list is
non-empty (non-null) and acyclic; and that for multiple successive calls to insertLast the list
remains acyclic and non-empty after insertion. These facts can be proven explicitly with static
verification; the complete static specification is given in Fig. 1.2, highlighted in grey. Note, both
Gradual C0 and Viper denote the separating conjunction as && rather than ∗, so we do the same
in this section and §1.5.

List acyclicity is specified with two predicates acyclicSeg and acyclic:

predicate acyclicSeg(Node *s, Node *e) =

s == e ? true : acc(s->val) && acc(s->next) && acyclicSeg(s->next,e)

predicate acyclic(Node *n) = acyclicSeg(Node *n,NULL)

The acyclicSeg predicate uses accessibility predicates and the separating conjunction from
IDF. Ownership is ensured through accessibility predicates such as acc(s->val); and,
acc(s->val) && s->val == 2 states that s->val is uniquely owned and contains the value
2. The separating conjunction, denoted by &&, ensures memory disjointness: acc(s->next)
&& acc(s->next->next) states that the heap locations s->next and s->next->next are
distinct (i.e. s ̸= s->next) and are each owned.

Thus, the abstract recursive predicate acyclicSeg, which can be thought of as a pure
boolean function, specifies that a list segment is acyclic. That is, acyclicSeg(s,e) denotes
that all heap locations in list s are distinct up to node e by recursively generating accessi-
bility predicates for each node in s up to e, joined with the separating conjunction. Further,
acyclicSeg(n,NULL) denotes that all heap locations in list n are distinct and so n is acyclic,
as specified with acyclic(n).

Now that we have specified acyclic, we use it in insertLast’s precondition (line 5)
and postcondition (lines 6-7) to denote preservation of list acyclicity. We also specify that
insertLast preserves list non-nullness with simple logical comparisons (i.e. list != NULL

and \result != NULL). Ideally, we would stop here and static verifiers would be able to prove
insertLast’s implementation correct with respect to this specification; however, as you can
see in Fig. 1.2 such tools require many more specifications. In fact, there are 27 lines of auxiliary
specifications (comprised of folds, unfolds, loop invariants, and inductive lemmas); in contrast to
18 lines of wanted specifications (the predicates and pre- and postconditions) and program code.
Furthermore, these auxiliary specifications are complex, as discussed next.

1.4.1 Auxiliary Specifications
Static verifiers cannot reliably unroll recursive predicates during verification; so, such tools rely
on explicit fold and unfold statements to control the availability of predicate information in the
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1 /*@ predicate acyclicSeg(Node *s, Node *e) =

2 (s == e) ? true : acc(s->val) && acc(s->next) && acyclicSeg(s->next,e); @*/

3 //@ predicate acyclic(Node *n) = acyclicSeg(n,NULL);

4 Node *insertLast(Node *list, int val)

5 //@ requires acyclic(list) && list != NULL ;

6 /*@ ensures acyclic(\result) &&

7 \result != NULL ; @*/

8 {

9 //@ unfold acyclic(list);

10 //@ unfold acyclicSeg(list,NULL);

11 Node *y = list;

12 //@ fold acyclicSeg(list,y);

13 while (y->next != NULL)

14 /*@ loop_invariant acyclicSeg(list,y) &&

15 acc(y->next) && acc(y->val) &&

16 acyclicSeg(y->next,NULL) ; @*/

17 {
18 Node *tmp = y;
19 y = y->next;

20 //@ unfold acyclicSeg(y,NULL);

21 //@ fold acyclicSeg(tmp->next,y);

22 //@ fold acyclicSeg(tmp,y);

23 mergeLemma(list,tmp,y);

24 }
25
26
27

28 y->next = alloc(struct Node);
29 y->next->val = val;
30 y->next->next = NULL;

31 //@ fold acyclicSeg(y->next->next,NULL);

32 //@ fold acyclicSeg(y->next,NULL);

33 //@ fold acyclicSeg(y,NULL);

34 mergeLemma(list,y,NULL);

35 //@ fold acyclic(list);

36 return list;
37 }
38
39 void mergeLemma(Node *a,Node *b,Node *c)

40 /*@ requires acyclicSeg(a,b) &&

41 acyclicSeg(b,c); @*/

42 //@ ensures acyclicSeg(a,c);

43 {

44 if (a == b) {

45 } else {

46 //@ unfold acyclicSeg(a,b);

47 mergeLemma(a->next,b,c);

48 //@ fold acyclicSeg(a,c);

49 }

50 }

□ Program code ■ Static specification

Figure 1.2: The static verification of insertLast from Fig. 1.1

verifier. This treats predicates iso-recursively; while an equi-recursive interpretation treats predi-
cates as their complete unrolling [45]. Consequently, the acyclic and acyclicSeg predicates
are unfolded and folded often in Fig. 1.2 (lines 9-10, 12, 20-22, 31-33, and 35). Looking closely,
we see that acyclic(list), which is assumed true from the precondition, is unfolded on line
9. This consumes acyclic(list) and produces its body acyclicSeg(list,NULL), which
is subsequently unfolded on line 10. Then, at the fold on line 35, the body of acyclic(list)
is packed up into the predicate itself to prove the list remains acyclic after insertion.

Additionally, static verifiers cannot tell if or when a loop will end (in our example the ver-
ifier cannot tell when the list being iterated over ends), but must verify all paths through the
program. Therefore, static verifiers reason about loops using specifications called loop invari-
ants, which are properties that are preserved for each execution of the loop including at entry
and exit. Further, loop invariants must also provide information necessary for proof obliga-
tions after the loop, e.g. that the list in insertLast is acyclic after insertion. In Fig. 1.2,
these constraints result in the loop invariant on lines 14-16 that segments the list into three
disjoint and acyclic parts: from the root up to the current node y (acyclicSeg(list,y)),
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1 Node *insertLast(Node *list, int val)

2 //@ requires acyclic(list) && list != NULL ;

3 /*@ ensures acyclic(\result) &&

4 \result != NULL ; @*/

5 {

6 //@ unfold acyclic(list);

7 //@ unfold acyclicSeg(list,NULL);

8 Node *y = list;

9 //@ fold acyclicSeg(list,y);

10 while (y->next != NULL)

11 /*@ loop_invariant acyclicSeg(list,y) &&

12 acc(y->next) && acc(y->val) &&

13 acyclicSeg(y->next,NULL) ; @*/

14 {
15 Node *tmp = y;
16 y = y->next;

17 //@ unfold acyclicSeg(y,NULL);

18 //@ fold acyclicSeg(tmp->next,y);

19 //@ fold acyclicSeg(tmp,y);

20 mergeLemma(list,tmp,y);

21 }
22
23 y->next = alloc(struct Node);
24 y->next->val = val;
25 y->next->next = NULL;

26 //@ fold acyclicSeg(y->next->next,NULL);

27 //@ fold acyclicSeg(y->next,NULL);

28 //@ fold acyclicSeg(y,NULL);

29 mergeLemma(list,y,NULL);

30 //@ fold acyclic(list);

31 return list;
32 }

■ 1st increment (least precise) ■ 2nd increment ■ 3rd increment ■ 4th increment
■ 5th increment ■ 6th increment ■ 7th increment (full spec)

Figure 1.3: The incremental verification of insertLast from Fig. 1.1

the current node y (acc(y->val) && acc(y->next)), and from the node after y to the end
(acyclicSeg(y->next,NULL)). Exposing y via its accessibility predicates provides access to
y->next on line 19 in the loop body; and, acyclicSeg(list,y) helps prove acyclic(list)
holds after the loop, as we will see next.

To prove acyclic(list) holds at the end of insertLast (line 36), it is sufficient to
prove instead that acyclicSeg(list,NULL) holds (line 35). After inserting a new node at
the end of the list (lines 28-30), we can build up an inductive proof with folds (lines 31-33)
that the list is acyclic from the insertion point y to the new end, i.e. acyclicSeg(y,NULL)
holds. We also have that the list is acyclic from the root to y (acyclicSeg(list,y)) from
to the loop invariant, and so, we are done after proving transitivity of acyclic list segments,
i.e. acyclicSeg(list,y) and acyclicSeg(y,NULL) implies acyclicSeg(list,NULL).
Sadly, static verifiers cannot automatically discharge such inductive proofs, and so we specify the
proof steps in mergeLemma on lines 39-50. Then, after using the lemma on line 34, we achieve
our proof goal.

As we can see, not only do users of static verifiers need to write a number of auxiliary
specifications in support of proof goals, the specifications are often more complex compared to
the program code itself even for simple examples like insertLast. Worse even, is that while
users are developing these complex specifications static tools provide limited feedback on their
correctness as demonstrated next (§1.4.2).

1.4.2 Lack of Early Specification Feedback

Since static verifiers, like Viper, limit themselves to reasoning about predicates iso-recursively
and rely on loop invariants to prove properties about loops, feedback on the correctness of spec-
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ifications early in the specification process is limited. For example, consider that a user named
Daisy incorrectly specifies the body of acyclicSeg (our recursive predicate) as (s == e) ?

acc(s->val) && acc(s->next) && acyclicSeg(s->next,e) : true, which swaps the
branches of the ternary in the correct specification from Fig. 1.2. Let’s see how Daisy comes
across this error while using Viper to incrementally specify insertLast in Fig. 1.3. Each
increment from the first to the last (seventh) is highlighted in a different color. The first incre-
ment, highlighted in green, specifies the precondition and postcondition of insertLast with
acyclic and acyclicSeg (lines 2-4). Since predicates are black boxes in static verifiers, Viper
only tells Daisy that there is insufficient permission to access y->next in the loop condition on
line 10. So, Daisy specifies the required acc(y->next) permission (as highlighted in purple for
the second increment on line 12) in the loop invariant, which must frame the loop condition. But,
alas Viper cannot prove that acc(y->next) holds on entry to the loop. Without realizing the
branches of acyclicSeg are out of order, Daisy expects acyclicSeg(list,NULL)’s body to
provide acc(y->next) at loop entry as list != NULL and y == list; and so, she unfolds
acyclic(list) and acyclicSeg(list,NULL) on lines 6-7 making up the third specifica-
tion increment highlighted in pink. Unfortunately, Viper still reports that acc(y->next) does
not hold on entry to the loop, which alerts Daisy to the problem with acyclicSeg.

With Viper, Daisy required three specification increments to detect a bug in the first unfolding
of acyclicSeg, and this problem gets worse the deeper the bug is in the recursive predicate. For
example, consider now that acyclicSeg’s body is incorrectly specified as (s == e)? true :
acc(s->val) && acc(s->next) && acyclicSeg(e,s->next), which swaps s->next and
e in the recursive call to acyclicSeg. As a result, acyclicSeg asserts in lock-step that
the nodes in lists s and e are accessible and separated—which is not the intended behavior
of acyclicSeg—and acyclicSeg now always fails when e reaches its end, i.e. is NULL, as it
tries to assert acc(e->val) and acc(e->next). It takes until the fourth specification incre-
ment highlighted in blue to discover that acyclicSeg is incorrectly specified using Viper. As
before, Daisy is led to specifying the first three increments by Viper’s error messages that first
require acc(y->next) in the loop invariant and then require acc(y->next) to hold on entry
to the loop. This time, however, acyclicSeg(list,NULL)’s body contains acc(y->next)
when list != NULL, so Viper can prove acc(y->next) holds on loop entry and instead re-
ports that the loop invariant acc(y->next) might not be preserved by the loop body. Daisy
recalls the loop iterates over all nodes in the list with the current node being y, so preserving
acc(y->next) in the loop is the same as showing that Viper has accessibility predicates for
every node in the list. As a result, she specifies the fourth increment (lines 12-13 and 17), which
continuously unfolds the acyclicSeg(list,NULL) predicate on every iteration of the loop
and captures the information in its body in the loop invariant. Alas, Viper reports that the new
loop invariant does not hold on entry as it cannot prove acyclicSeg(y->next,NULL) holds
here. Since this information should come from unfolding acyclicSeg(list,NULL) on line 7,
Daisy takes another look at acyclicSeg’s body and discovers her specification error. That is,
it takes four specification increments for Daisy to realize her mistake and the fourth increment
required her to think deeply about her while loop.

Clearly, static verifiers burden their users, like Daisy, by requiring them to write a number of
complex auxiliary specifications both for proofs and to receive useful feedback on the correctness
of their specifications. Fortunately, as we will show next in §1.5, gradual verification overcomes
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this burden by smoothly supporting the spectrum between static and dynamic checking.

1.5 How Gradual Verification Can Help
In this section, we show how gradual verification’s ability to smoothly integrate static and dy-
namic checking allows users to overcome specification burdens inherent to static verification,
e.g. that users have to write complex auxiliary specifications in support of proofs and to receive
useful feedback on the correctness of their specifications.

1.5.1 Ignore Auxiliary Specifications with Gradual Verification
In §1.4.1, we saw how static verifiers force users to write complex auxiliary specifications (like
folds and unfolds, loop invariants, and inductive lemmas) in support of proof goals. In contrast,
gradual verification allows users to write as many or as few auxiliary specifications as they want,
and instead utilizes dynamic verification to check proof obligations not discharged statically due
to missing specifications. For example, consider Fig. 1.3, in which our user Daisy incrementally
specifies insertLast for preservation of list acyclicity and non-nullness. With our gradual
verifier Gradual C0, Daisy only needs to specify the first increment in green, which contains
the pre- and postcondition of insertLast on lines 2-4. She can completely avoid specifying
the auxiliary specifications in the rest of the increments by instead specifying ? in the loop
invariant on line 10. Then, Gradual C0 uses the allocation statement on line 23 to statically
validate the write accesses of y->next->val and y->next->next on lines 24-25. It can also
prove statically that the list after insertion is non-null. All other proof obligations, which ensure
memory safety of the while loop and the list after insertion is acyclic, are checked dynamically.

Run-time checking memory safety of the while loop involves three parts: 1) verifying access
to y->next in the loop condition (line 10), 2) verifying access to y->next in the loop body
(line 16), and 3) verifying access to y->next in the alloc statement directly after the loop (line
23). That is, Gradual C0 asserts ownership of all heap locations in the given list, which are
being iterated over by the loop. Consequently, the larger the list the higher the run-time cost
of verification for insertLast. This cost is unacceptable to Daisy, so she statically specifies
memory safety of the while loop in the first four increments in Fig. 1.3 (lines 2-4, 6-7, 12-13,
and 17). The new loop invariant (lines 12-13) uses acyclicSeg to expose acc(y->next) for
verifying access to y->next in the loop condition, loop body, and after the loop. The unfolds
on lines 6-7 and 17 are used to prove that the loop invariant is preserved by the loop given the
precondition on line 2. After all this work, Daisy is not interested in also statically specifying
the list after insertion is acyclic, and so, she joins ? with her newly specified loop invariant. As a
result, Gradual C0 now additionally checks memory safety of the while loop statically reducing
run-time cost, and only checks acyclic(\result) from the postcondition of insertLast
(line 3) dynamically (i.e. the list returned after insertion is acyclic). By allowing Gradual C0 to
check acyclic(\result) dynamically, Daisy saved herself a lot of specification effort. She
avoided building up acyclicSeg from the previous end of the list to the new one (increment
five in orange, lines 26-28), specifying a more complex loop invariant (increment six in red, lines
9, 11, and 18-19), and stating and proving transitivity of acyclic list segments (increment seven
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in yellow, lines 20 and 29). Daisy is very happy to make this human-effort vs run-time cost
trade-off.

1.5.2 Gradual Verification Gives Early Feedback with Run-time Checks
As we saw in §1.4.2, static verifiers struggle to provide early feedback on specification errors in
predicates. Using Viper, it took until the third specification increment in Fig. 1.3 for Daisy to dis-
cover the simple error in acyclicSeg’s body, (s == e)? acc(s->val) && acc(s->next)
&& acyclicSeg(s->next,e) : true, which swaps the branches of the ternary in the correct
specification from Fig. 1.2. In contrast, with Gradual C0, Daisy easily discovers this error on
the first specification increment (in green, lines 2-4), which specifies the pre- and postcondi-
tion of insertLast. She additionally specifies ? on the loop invariant and provides a simple
test case that calls insertLast on a list with one node. Then, Gradual C0 alerts Daisy to
the error in acyclicSeg by reporting at run time that acc(s->val) from acyclicSeg does
not hold at the end of the list where s == NULL. Clearly, acc(s->val) will never hold when
s == NULL, so Daisy realizes she swapped the branches in acyclicSeg. Similarly, the sec-
ond example of an error in acyclicSeg’s specification, which swaps s->next and e in the
recursive call to acyclicSeg ((s == e)? true : acc(s->val) && acc(s->next) &&

acyclicSeg(e,s->next)), took four specification increments in Fig. 1.3 to be exposed by
Viper. Again with Gradual C0, Daisy can detect the error by the first increment as long as she
specifies ? on her loop invariant and supplies a simple test case with a list containing two ele-
ments. In this case, Gradual C0 reports at run time that acc(s->val) from acyclicSeg does
not hold for s which is NULL. Since acc(s->val) will never hold when s == NULL, Daisy
takes another look at acyclicSeg’s body and realizes her error. That is, Gradual C0’s dynamic
checking of partial specifications is helpful for detecting errors in recursive predicates much ear-
lier in the specification process than static verification alone and the errors better capture the
inherent problems in the specifications.

To summarize, users of gradual verification may write as many or as little auxiliary specifi-
cations as they want and still get sound verification of their code by trading off between human-
effort and run-time cost. Users can also receive feedback on the correctness of their specifications
much earlier in the specification process than if they used static verification alone and the run-
time errors reported often closely match the inherent problems with the specification.

1.6 Related Work
We have already discussed the most-closely related research, including the underlying logics [36,
38, 44], and foundational work on gradual typing and gradual verification [3, 19, 41, 42, 43].

1.6.1 Gradual Typing
Additional related work in gradual typing includes richer type systems such as gradual refine-
ment types [24, 25] and gradual dependent types [15, 28]. These systems focus on pure functional
programming, while our gradual verification work targets imperative programs. Therefore they
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do not have to consider heap ownership; and they also do not deal with recursive predicates.
Combining these approaches with gradual verification in order to account for higher-order state-
ful programs is a challenging venue for future work. On the other hand, prior work on gradual
typestate [18, 49] and gradual ownership [40] integrate static and dynamic checking of own-
ership of heap data structures. Neither of these efforts considered verifying logical assertions.
Both predate the AGT framework that guided our design [19] and the formulation of the gradual
guarantees [43]; so, it is unclear whether these guarantees hold in these proposals.

There is an extensive body of work on optimizing run-time checks in gradual type systems.
Muehlboeck and Tate [32] show that in languages with nominal type systems, such as Java, grad-
ual typing does not exhibit the usual slowdowns induced by structural types. Feltey et al. [16]
reduce run-time overhead from redundant contract checking by contract wrappers. They elimi-
nate unnecessary contract checking by determining—across multiple contract checking bound-
aries for some datatype or function call—whether some of the contracts being checked imply
others. While the performance results in Chpt. 4 are promising, we may be able to draw from the
extensive body of work in gradual typing to achieve further performance gains in future work.

1.6.2 Static Verification
Work in static verification contains approaches that try to reduce the specification burden of
users—a goal of gradual verification. Furia and Meyer [17] infer loop invariants with heuris-
tics that weaken postconditions into invariants. When that approach fails, verification also fails
because invariants are missing. Similarly, several tools (Smallfoot [4], jStar [13], and Chal-
ice [27]) use heuristics to infer fold and unfold statements for verification. In contrast, gradual
verification does not fail solely because invariants, folds, or unfolds are missing; imprecision
begets optimism. However, our gradual verification techniques may benefit from similar heuris-
tic approaches by leveraging additional static information to further reduce run-time overhead.
Incorporating these heuristics in our setting may be challenging due to imprecise specifications,
but it is a promising direction for future work.

Additionally, developers can use Dafny’s [26] assume and assert statements to debug spec-
ifications similar to how they debug programs with print statements [29]. Unlike gradual ver-
ification, this approach does not reduce specification burden and requires manual elicitation of
missing specifications needed for verification. Similarly, StaDy [37] relies on a combination of
static and dynamic analysis techniques to aide developers with debugging specifications. But, it
does not reduce specification burden and does not support recursive data structures.

Abductive reasoning (abductive inference) tries to find an explanatory hypothesis for a de-
sired outcome [12]. In static verification, the desired outcome is a proof obligation (O), facts
(F ) are invariants derived from the program and specifications using some analysis, and the ex-
planatory hypothesis (E) are invariants that do not contradict the derived facts (SAT(F ∧ E))
and are required to discharge the proof obligation (F ∧ E |= O). Ideally, F should be sufficient
to discharge O, but missing or insufficient specifications often results in F being too weak to
prove O leading to false positives (alarms) in tools. So, work in applying abductive reasoning to
static verification [5, 6, 8, 9, 12] aims to compute E in order to prioritize—with minimal human
intervention—verification failures caused by bugs in a program and de-emphasize false posi-
tives (alarms) caused by missing or incomplete specifications. In angelic verification [5, 9] and
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Calcagno et al. [6]’s work, entire specifications, such as preconditions, postconditions, and loop
invariants are generated as explanatory hypotheses. Dillig et al. [12] instead compute smaller,
intermediate formulas as explanatory hypotheses.

Similar to prior abductive reasoning work [5, 6, 9, 12], gradual verification’s static system
reasons around missing or incomplete specifications to compute facts F as part of imprecise
formulas ? ∧ F . At proof obligations, we compute the weakest formula that can replace ? in
? ∧ F |= O and SAT(? ∧ F ) successfully. So, like Dillig et al. [12] we compute intermediate
explanatory hypotheses rather than whole specifications like Blackshear and Lahiri [5], Calcagno
et al. [6], and Das et al. [9]. But, rather than relying on users to validate generated hypotheses [5,
6, 9, 12], we check their correctness at run time. This significantly simplifies their computation—
since they do not need to be human readable and can statically mark code as unreachable—
and allows our techniques to be sound (prior abduction work is not). However, modifying our
weakest formula to be more human readable before run-time checking it may result in easier to
understand error messages.

1.6.3 Dynamic Verification

Meyer [30] introduced the Eiffel language, which automatically performs dynamic verification of
pre- and postconditions and class invariants in first order logic. Nguyen et al. [34] extended dy-
namic verification to support separation logic assertions. More recently, Agten et al. [1] applied
dynamic checking at the boundaries between statically verified and unverified code to guaran-
tee that no assertion failures or invalid memory accesses occur at run time in any verified code.
Their approach improved on Nguyen et al. [34]’s approach in terms of performance by allowing
unverified code to read arbitrary memory. Further, unlike Nguyen et al. [34], Agten et al. [1]’s
approach only needs access to verified code rather than the entire codebase. As with Nguyen
et al. [34]’s work, our gradual verification work supports dynamic verification of ownership and
first order logic. Our techniques additionally support run-time checking of recursive predicates.
Similarly to Agten et al. [1], gradual verification applies dynamic checking at the boundaries be-
tween verified and unverified code to protect verified code and does so systematically. However,
in Gradual C0 unverified code must be accessible to the verifier as it is gradually verified as well.
Future work in gradual verification should incorporate insights from Agten et al. [1]’s work to
avoid requiring entire codebases for verification and to improve verification performance.

1.6.4 Hybrid Verification

Another closely related work is soft contract verification by Nguyen et al. [35], which verifies
dynamic contracts statically where possible and dynamically where necessary by utilizing sym-
bolic execution. This hybrid technique does not rely on a notion of precision, which is central
to gradual approaches and their metatheory [43]—including our gradual verification techniques.
Nguyen et al. [35] use symbolic execution results directly to discharge proof obligations where
possible, while our gradual verifier Gradual C0 strengthens symbolic execution results to dis-
charge proof obligations adhering to the theory of imprecise formulas we present in this disser-
tation. Further, Nguyen et al. [35]’s work is targeted at dynamic functional languages, while
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our work focuses on imperative languages. We also build in memory safety as a default, while
Nguyen et al. [35] do not.

Additionally, Nguyen et al. [34] (discussed previously in dynamic verification related work)
leveraged static information to reduce the overhead of their run-time checking approach for sep-
aration logic. They do not try to report static verification failures (unlike our gradual verification
work), because their technique cannot not distinguish between failures due to inconsistent spec-
ifications and failures due to incomplete specifications (unlike our gradual verification work).
Also, their run-time checking approach forces developers to specify matching heap footprints in
pre- and postconditions to avoid false negatives; meanwhile, with gradual verification pre- and
postconditions may contain the same or different specifications for heap footprints or may omit
such specifications completely.
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Chapter 2

Formal Foundations

In this chapter, we lay out the formal foundations of gradual verification for recursive heap
data structures; and in particular, present the design, formalization, and meta-theory of a sound
gradual verifier for programs that manipulate such data structures. Our approach follows Bader
et al. [3]’s methodology (inspired by the Abstracting Gradual Typing (AGT) methodology from
gradual typing [19]), but starts from a static verifier with implicit dynamic frames (IDF) [44]
and recursive abstract predicates [36]. This more sophisticated setting requires us to address the
following technical challenges:

• Imprecise specifications may be strengthened not just with boolean assertions about arith-
metic expressions, but also with both abstract predicates and accessibility predicates,
which denote ownership of heap locations. Our strengthening definition also includes
self-framing, a well-formedness condition required by IDF [44].

• Both accessibility predicates and abstract predicates must potentially be verified dynam-
ically. Our system verifies accessibility predicates at run time by tracking and updating
a set of owned heap locations. We verify recursive abstract predicates by executing them
as recursive boolean functions. This run-time semantics corresponds to an equi-recursive
interpretation of abstract predicates, contrasting with the iso-recursive interpretation used
in static verifiers [45]; our theory ensures that these interpretations are consistent.

We show that the resulting gradual verifier is sound, that it is a conservative extension of the
static verifier—meaning that both coincide on programs with fully-precise specifications—and
that it adheres to the gradual guarantee. This guarantee, originally formulated for gradual type
systems [43], captures the intuition that relaxing specifications should not introduce new (static
or dynamic) verification errors.

The rest of this chapter is outlined as follows. In §2.1 we formally present a statically verified
language (SVLRP) supporting a propositional specification logic extended with IDF and recursive
predicates. We gradualize the static semantics of this language in §2.2 and dynamic semantics
in §2.3. §2.4 formally defines the aforementioned gradual properties that the resulting gradual
verifier (i.e. the gradual language GVLRP) adheres to. The handwritten proofs of all propositions
and lemmas given in this chapter can be found in the extended version of a conference paper
publishing the results of this chapter [48].
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x, y, z ∈ VAR (variables)
v ∈ VAL (values)
e ∈ EXPR (expressions)
s ∈ STMT (statements)
o ∈ LOC (object Ids)
P ::= cls s

cls ::= class C { field pred method }
field ::= T f ;

pred ::= predicate p(T x) = θ

T ::= Int | Bool | C | ⊤
method ::= T m(T x) contract {s}
contract ::= requires θ ensures θ

⊕ ::= + | − | ∗ | \
⊙ ::= ̸= | = | < | > | ≤ | ≥

f ∈ FIELDNAME (field names)
m ∈ METHODNAME (method names)
C ∈ CLASSNAME (class names)
p ∈ PREDNAME (predicate names)
s ::= skip | s; s | T x | x := e | x.f := y

| if (e) { s } else { s }
| while (e) inv θ { s } | x := new C

| y := z.m(x) | assert ϕ | fold p(e)

| unfold p(e)

e ::= v | x | e⊕ e | e⊙ e | e.f
x ::= result | id | old(id) | this
v ::= n | o | null | true | false
ϕ ::= true | false | e⊙ e | p(e)

| acc(e.f) | if e then ϕ else ϕ

| unfolding p(e) in ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ
θ ::= self-framed ϕ

Figure 2.1: SVLRP: Syntax

2.1 SVLRP

Following the AGT methodology [19], gradual verification is built on top of static verification.
Therefore, we first formally present a statically verified language supporting a propositional spec-
ification logic extended with implicit dynamic frames (IDF) and recursive abstract predicates.
This language, called SVLRP, is directly inspired by Summers and Drossopoulou [45]. Readers
familiar with static verification might want to read through this section anyway, because it sets
up notations and key concepts used in the gradualization in §2.2.

2.1.1 Syntax & Static Semantics

The complete syntax of SVLRP can be found in Fig. 2.1. Programs consist of classes and state-
ments. Classes contain publicly accessible fields, predicates, and methods. Statements include
the empty statement, sequences, variable declarations, variable and field assignments, condition-
als, while loops, object allocations, method calls, assertions, as well as fold and unfold state-
ments. Expressions can appear in specifications, and therefore cannot modify the heap. They
consist of literal values (integers, objects, null, and booleans), variables, arithmetic expressions,
comparisons, and field accesses. Methods have contracts consisting of pre- and postconditions,
which are formulas represented by ϕ. Formulas join boolean values, comparisons, predicate in-
stances, accessibility predicates, conditionals, and unfoldings via the non-separating conjunction
∧ or the separating conjunction ∗ (from IDF). Note that θ refers to a self-framed formula [44],
formally defined in §2.1.2. We require pre- and postconditions, predicate definitions, and loop
invariants to be self-framed.

Looking ahead to gradual verification, we would like formulas to be efficiently evaluable at
run time—and in the presence of accessibility predicates, efficient evaluation requires knowing
which branch of a disjunction to evaluate. Therefore, we include a conditional if construct in
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formulas instead of disjunction ∨.
As the focus of this work is not on typing, we only consider well-formed and well-typed

programs, which is standard and not formalized here. Additionally, variables are declared and
initialized before use, and class, predicate, and method names are unique. Finally, contracts
should only contain variables that are in scope: a precondition can only contain the method’s
parameters xi and this and a postcondition can only contain the special variable result, this,
and dummy variables old(xi).

2.1.2 Formula Semantics

In this section, we give meaning to formulas in SVLRP. We also give related definitions for
formula satisfiability, implication, footprint computation, and framing. The semantics and related
definitions are inspired by Summers and Drossopoulou [45] and Bader et al. [3].

Equi-Recursive Evaluation. Evaluating the truth of formulas requires a heap H , a variable
environment ρ ∈ ENV, and a dynamic footprint π ∈ DYNFPRINT = P(LOC × FIELDNAME).
A heap H is a partial function from heap locations to a value mapping of object fields, i.e.
HEAP = LOC ⇀ (FIELDNAME ⇀ VAL). Additionally, we introduce a big-step evaluation
relation for expressions H, ρ ⊢ e ⇓ v, which is standard. An expression e is evaluated according
to H, ρ ⊢ e ⇓ v yielding value v. The heap H is used to look up fields and the local variable
environment ρ to look up variables.

Then, formula evaluation · ⊨E · ⊆ MEM × FORMULA determines the truth of a formula us-
ing heap H , variable environment ρ, dynamic footprint π, and an equi-recursive interpretation of
predicate instances. Select rules for formula evaluation are given in Fig. 2.2 (complete rules are
in the Appendix Fig. A.2). EVACC checks whether access demanded by a formula is provided
by the dynamic footprint, e.g. acc(l.val) where l points to o is true when ⟨o, val⟩ ∈ π.
EVSEPOP checks two separated subformulas against disjoint partitions of the dynamic foot-
print. This ensures that access to the same field is not granted twice; for instance, this ensures
that acc(l1.val) ∗ acc(l2.val) references two distinct fields. In contrast, the rule for ∧
(EVANDOP) checks both operands against the full dynamic footprint; therefore, acc(l1.val)
∧ acc(l2.val) may reference the same fields. Further, EVPRED checks the complete unrolling
of a predicate instance using the function bodyµ : PREDNAME → EXPR∗ → SFRMFORMULA.
Given a predicate name and arguments, this function returns the predicate’s definition (from the
ambient program1) after parameter substitution. We make sure that every argument ei produces
a value, only in order to line up with the iso-recursive semantics. But we do not need to substi-
tute the values into bodyµ(p)(e1, ..., en), because it already has the ei’s within it after parameter
substitution. Finally, the rule for an unfolding (EVUNFOLDING) ignores the predicate unfolding,
because it is an iso-recursive only construct. For example, unfolding foo(x) in x.f >=

2 is true exactly when x.f >= 2 is true. Also, all the construct does is provide access to more
heap locations in the predicate. The other rules are as expected.

Iso-Recursive Evaluation. We also introduce an iso-recursive formula evaluation semantics,

1Many relations we define are implicitly parameterized over the ambient program.
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H, ρ ⊢ e ⇓ o H, ρ ⊢ e.f ⇓ v ⟨o, f⟩ ∈ π

⟨H, ρ, π⟩ ⊨E acc(e.f)
EVACC

⟨H, ρ, π1⟩ ⊨E ϕ1 ⟨H, ρ, π2⟩ ⊨E ϕ2

⟨H, ρ, π1 ⊎ π2⟩ ⊨E ϕ1 ∗ ϕ2

EVSEPOP

H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨H, ρ, π⟩ ⊨E bodyµ(p)(e1, ..., en)
⟨H, ρ, π⟩ ⊨E p(e1,...,en)

EVPRED

⟨H, ρ, π⟩ ⊨E ϕ

⟨H, ρ, π⟩ ⊨E unfolding p(e1, ..., en) in ϕ
EVUNFOLDING

Figure 2.2: SVLRP: Formula evaluation (select rules)

H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨p, v1, ..., vn⟩ ∈ Π

⟨H, ρ,Π⟩ ⊨I p(e1, ..., en)
EVPRED

Figure 2.3: SVLRP: Iso-recursive formula evaluation (select rule)

used in static verification. This semantics differs from its equi-recursive counterpart, described
previously and given in Fig. 2.2, on the EVPRED rule. Fig. 2.3 presents the iso-recursive version
of EVPRED. It treats predicate instances as opaque permissions by checking whether a predicate
instance demanded by a formula is justified by a dynamic permission set Π ∈ PERMISSIONS =
P((LOC×FIELDNAME)∪(PREDNAME×VAL∗)). Compared to a dynamic footprint, a dynamic
permission set can contain dynamic predicate instances in addition to heap locations. For exam-
ple, acyclic(l) where l points to o is true when ⟨acyclic, o⟩ ∈ Π. Other than EVPRED, the
iso-recursive semantics is simply defined by replacing π in the equi-recursive rules with Π.

Formula Satisfiability and Implication. Similar to SVL [3], formal definitions for formula sat-
isfiability and implication rely on sets of H , ρ, and Π tuples that make formulas true. Definition
2.1.1 presents a function that produces these sets from formulas. Definitions 2.1.2 and 2.1.3 rely
on Definition 2.1.1 to formally state formula satisfiability and implication respectively. Note that
these definitions are iso-recursive in order to be implementable in static verification tools.

Definition 2.1.1 (Denotational Formula Semantics).
J·K : FORMULA → P(HEAP × ENV × PERMISSIONS)

JϕK def
= { ⟨H, ρ,Π⟩ ∈ HEAP × ENV × PERMISSIONS | ⟨H, ρ,Π⟩ ⊨I ϕ }

Definition 2.1.2 (Formula Satisfiability). A formula ϕ is satisfiable if and only if JϕK ̸= ∅. Let
SATFORMULA ⊂ FORMULA be the set of satisfiable formulas.
Ex. acc(l1.val) ∗ acc(l2.val) is satisfiable since l1 may not equal l2.
In contrast, acc(l1.val) ∗ acc(l2.val) ∗ l1 = l2 is unsatisfiable.

Definition 2.1.3 (Formula Implication). ϕ1 ⇒ ϕ2 if and only if Jϕ1K ⊆ Jϕ2K.
Ex. l.val = 6 ⇒ l.val ≥ 5, and l.val = 6 ̸⇒ acc(l.val) ∗ l.val ≥ 5 since acc(l.val)is miss-
ing on the left-hand side.
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⟨H, ρ,Π⟩ ⊨I acc(e.f) ⟨H, ρ,Π⟩ ⊢frmI e

⟨H, ρ,Π⟩ ⊢frmI e.f
FRMFIELD

⟨H, ρ,Π⟩ ⊢frmI e

⟨H, ρ,Π⟩ ⊢frmI acc(e.f)
FRMACC

⟨H, ρ,Π⟩ ⊢frmI ϕ1 ⟨H, ρ,Π⟩ ⊢frmI ϕ2

⟨H, ρ,Π⟩ ⊢frmI ϕ1 ∗ ϕ2
FRMSEPOP

⟨H, ρ,Π⟩ ⊢frmI e1 ... ⟨H, ρ,Π⟩ ⊢frmI en

⟨H, ρ,Π⟩ ⊢frmI p(e1, ..., en)
FRMPRED

⟨H, ρ,Π⟩ ⊨I p(e1, ..., en) ⟨H, ρ,Π⟩ ⊢frmI e1 ... ⟨H, ρ,Π⟩ ⊢frmI en
⟨H, ρ,Π′⟩ ⊢frmI ϕ Π′ = Π ∪ ⌊bodyµ(p)(e1, ..., en)⌋H,ρ

⟨H, ρ,Π⟩ ⊢frmI unfolding p(e1, ..., en) in ϕ
FRMUNFOLDING

Figure 2.4: SVLRP: Framing (select rules)

Footprints and Framing. A statically-verified language supporting IDF requires formal defini-
tions for the footprint and framing of a formula. These definitions are also iso-recursive.

The footprint of a formula ϕ, denoted ⌊ϕ⌋H,ρ, is simply the minimum set of permissions Π
required to satisfy ϕ given a heap H and variable environment ρ:

⌊ϕ⌋H,ρ = min { Π ∈ PERMISSIONS | ⟨H, ρ,Π⟩ ⊨I ϕ }

The footprint is defined (i.e. there exists a unique minimal set of permission Π) for formulas
satisfiable under H and ρ. It can be more directly implemented by simply evaluating ϕ using H
and ρ, granting and recording precisely the permissions required. The footprint of l.val >= 2

is empty, while the footprint of acc(l.val) ∗ l.val >= 2 is {⟨o, val⟩} when l points to o.
A formula is said to be framed by permissions Π iff it only mentions fields and unfolds

predicates in Π. We give select inference rules for formula framing in Fig. 2.4 and give the
rest in the Appendix Fig. A.3. Note that FRMUNFOLDING allows one unrolling of a predicate
to frame a part of a formula. Now, formula ϕ is called self-framed (we write ⊢frm ϕ) if for
all H , ρ, Π ⟨H, ρ,Π⟩ ⊨I ϕ implies ⟨H, ρ,Π⟩ ⊢frmI ϕ. We define the set of self-framed for-

mulas SFRMFORMULA
def
= { ϕ ∈ FORMULA | ⊢frm ϕ }. l.val >= 2 is not self-framed,

because it can evaluate to true even when Π does not contain acc(l.val). On the other hand,
acc(l.val) ∗ l.val >= 2 is self-framed, because it does not evaluate to true unless Π con-
tains acc(l.val). Similarly, unfolding acyclic(l) in l.val >= 2 is not self-framed
while acyclic(l) ∗ unfolding acyclic(l) in l.val >= 2 is for acyclic(l) with
body acc(l.val). We write θ to denote self-framed formulas.

Relating Permission Sets and Footprints. By using the footprint defined previously, we can
formally relate dynamic permission sets to dynamic footprints via the partial function ⟨⟨ · ⟩⟩H
of type PERMISSIONS × HEAP ⇀ DYNFPRINT:
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⟨⟨ Π ⟩⟩H = {⟨o, f⟩ | ⟨o, f⟩ ∈ Π} ∪ ⟨⟨ Π′ ⟩⟩H where Π′ = ∪⟨p,v1,...,vn⟩∈Π⌊bodyµ(p)(v1, ..., vn)⌋H,[]

This function completely unrolls the predicate instances in a dynamic permission set gather-
ing owned heap locations on the way. For example, given ⟨acyclic, o⟩, with acyclic de-
fined precisely as in Fig. 1.2, this function returns all the heap locations ({⟨o, val⟩, ⟨o, next⟩,
⟨o.next, val⟩, ⟨o.next, next⟩, . . . }) in the list o. Note that ⟨⟨ · ⟩⟩H is only defined when pred-
icates can be finitely unrolled.

2.1.3 Static Verification

Static verification relies on a weakest liberal precondition calculus [10] to generate verification
conditions. We now present this WLP calculus, which is defined iso-recursively.

WLP Calculus. Select rules for a weakest liberal precondition function WLP(s, θ) of type
STMT × (SATFORMULA∩SFRMFORMULA)⇀ (SATFORMULA∩SFRMFORMULA) are given
in Fig. 2.5 (all rules are in the Appendix Fig. A.5). Note, we explicitly restrict the domain and
codomain of the WLP function to contain only satisfiable and self-framed formulas. These re-
strictions are often ensured in Fig. 2.5 by finding a maximum self-framed and satisfiable formula
with respect to implication (the weakest formula).

The statement-specific rules for WLP are standard, save for specific care related to field ac-
cesses, accessibility predicates, and predicate instances. Rules for variable and field assignment,
conditionals, and while loops produce accessibility predicates for field accesses in the program
statement, e.g. the WLP for y := l.val must contain acc(l.val). Some rules rely on the
function acc(e) : EXPR → FORMULA, which returns a formula of accessibility predicates corre-
sponding to field accesses in e. More interestingly, the rule for a method call frames off informa-
tion in the method’s postcondition from θ producing the frame θf . If the accessibility predicates
and predicate instances in θf are not in the method’s precondition, then θf is joined with the pre-
condition to produce the WLP. Consider computing the WLP for a call to this.foo() where
foo’s precondition is bar(this) ∗ unfolding bar(this) in this.val >= 2 and post-
condition is bar(this) and θ = bar(this). Therefore, θf = true and the WLP is this
!= null ∗ bar(this) ∗ unfolding bar(this) in this.val >= 2 ∗ true.

Static Verification. A SVLRP program is statically verified if it is a valid program:

Definition 2.1.4 (Valid Method). A method with contract requires θp ensures θq, parameters
x, and body s is considered valid if θp ⇒ WLP(s, θq)[x/old(x)] holds.

Definition 2.1.5 (Valid Program). A program with entry point statement s is considered valid
if true ⇒ WLP(s, true) holds, θi ∧ (e = true) ⇒ WLP(r, θi) and θi ⇒ acc(e) hold for all
loops with condition e, body r, and invariant θi, and all methods are valid.
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WLP(x := e, θ) = max
⇒
{ θ′ | θ′ ⇒ θ[e/x] ∧ θ′ ⇒ acc(e) }

WLP(x.f := y, θ) = acc(x.f) ∧ θ[y/x.f ]

WLP(y := z.m(x), θ) = max
⇒
{ θ′ | y ̸∈ FV(θ′) ∧

∃θf . θ′ ⇒ (z ̸= null) ∗ mpre(m)[z/this, x/mparam(m)] ∗ θf ∧
θf ∗ mpost(m)[z/this, x/old(mparam(m)), y/result] ⇒ θ }

Figure 2.5: SVLRP: Weakest liberal precondition calculus (select rules)

2.1.4 Dynamic Semantics

The soundness of static verification is relative to SVLRP’s dynamic semantics, which we now
expose.

Program States. Program states consist of a heap and a stack, i.e. STATE = HEAP × STACK. A
stack is made of stack frames that contain a variable environment ρ ∈ ENV, a dynamic footprint
π ∈ DYNFPRINT = P(LOC × FIELDNAME), and a program statement s ∈ STMT:

S ∈ STACK ::= E · S | nil where E ∈ STACKFRAME = ENV × DYNFPRINT × STMT

During execution of an SVLRP program, expressions and statements operate on the topmost
variable environment ρ. Expressions and statements may additionally access and mutate the heap
as long as the topmost dynamic footprint contains the corresponding object-field permissions.
Thus, the memory accessible at any point of execution can be viewed as a tuple of type MEM =
HEAP × ENV × DYNFPRINT.

Reduction Rules. Fig. 2.6 presents select rules for SVLRP’s small-step semantics · −→ · ⊆
STATE × STATE. Complete rules are in the Appendix Fig. A.6. Notably, we structure the rules
so as to not require a sequence rule. This aligns the small-step semantics more closely with the
WLP calculus, and makes the SVLRP soundness proof easier.

The semantics gets stuck when a statement accesses a field that the current state does not
own, as specified in SSASSIGN. Notice that SSASSIGN relies on acc(e) to check the accessibil-
ity of field accesses on the right-hand side. The semantics also gets stuck when preconditions
(SSCALL), postconditions (SSCALLFINISH), loop invariants, or assertions (SSASSERT) do not
hold.

To determine whether a field access is valid at runtime, the semantics tracks a set of owned
heap locations π. This set is expanded during allocation with heap locations for the object’s
fields. At a method call (SSCALL) π is split into disjoint caller and callee sets using the method’s
precondition. The callee set π′ is derived from the precondition’s accessibility predicates and the
accessibility predicates gained from unrolling the predicates in the precondition. Ownership of
the heap locations in π′ is passed to the callee, so the caller set is defined as π \ π′. After
execution of the callee’s body finishes (SSCALLFINISH), execution resumes at the call site. The
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⟨H, ρ, π⟩ ⊨E ϕ

⟨H, ⟨ρ, π,assert ϕ; s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSASSERT

⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ v ρ′ = ρ[x 7→ v]

⟨H, ⟨ρ, π, x := e; s⟩ · S⟩ −→ ⟨H, ⟨ρ′, π, s⟩ · S⟩
SSASSIGN

method(m) = Tr m(T x′) requires θp ensures θq { r } H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v
ρ′ = [this 7→ o, x′ 7→ v,old(x′) 7→ v] π′ = ⟨⟨ ⌊θp⌋H,ρ′ ⟩⟩H π′ ⊆ π ⟨H, ρ′, π′⟩ ⊨E θp

⟨H, ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −→ ⟨H, ⟨ρ′, π′, r; skip⟩ · ⟨ρ, π\π′, y := z.m(x); s⟩ · S⟩
SSCALL

mpost(m) = θq ⟨H, ρ′, π′⟩ ⊨E θq ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π′,skip⟩ · ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −→ ⟨H, ⟨ρ′′, π ∪ π′, s⟩ · S⟩
SSCALLFINISH

⟨H, ⟨ρ, π,fold p(e1,...,en); s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSFOLD

Figure 2.6: SVLRP: Small-step semantics (select rules)

callee returns to the call site ownership of all received heap locations and new heap locations
gained during execution.

Notice that we treat predicates equi-recursively when we track π, determine whether field
accesses are valid, and determine whether contracts, loop invariants, or assertions hold. We
also treat folds and unfolds equi-recursively as skip statements (SSFOLD). SVLRP’s dynamic
semantics is equi-recursively defined so the gradual verifier, which builds on SVLRP’s semantics,
adheres to the dynamic gradual guarantee (as discussed in §1.3.2).

2.1.5 Soundness
As explained above, the dynamic semantics of SVLRP is designed to get stuck when assertions,
method contracts, or loop invariants are violated during program execution. The dynamic se-
mantics also gets stuck if a program accesses fields it does not own during execution. Thus
informally, soundness says that valid SVLRP programs do not get stuck, i.e. verified programs
respect program specifications at run time. Just as with SVL from Bader et al. [3], we use a
syntactic statement of soundness via progress and preservation.

Now, we introduce the formal definition of a valid state in Definition 2.1.6. This definition is
an invariant that relates the static verification and dynamic semantics of valid SVLRP programs.
It also relates the formal statements of progress and preservation in Propositions 2.1.7 and 2.1.8.
Informally, if the current program state satisfies the WLP of a program, then execution does not
get stuck (progress), and after each step of execution, the new state satisfies the WLP of the
remaining program (preservation).

Definition 2.1.6 (Valid State, Final State).
We call the state ⟨H, ⟨ρn, πn, sn⟩ · ... · ⟨ρ1, π1, s1⟩ · nil⟩ ∈ STATE valid if
sn = s; skip or skip for some s ∈ STMT,
si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n,
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πi ∩ πj = ∅ for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ̸= j,
and ⟨H, ρi, πi⟩ ⊨E sWLPi(sn · ... · s1 · nil, true) for all 1 ≤ i ≤ n (sWLPi(s, θ) is the i-th
component of sWLP(s, θ)).
A state ψ is final if ψ = ⟨H, ⟨ρ, π, skip⟩ · nil⟩ for some H, ρ, π.

Note that the definition above relies on sWLP, a stack-aware extension of WLP (defined in the
Appendix Fig. A.7). sWLP ensures that access permissions are not duplicated in different stack
frames. Program validity (Def. 2.1.5) gives the validity of the initial program state.

Proposition 2.1.7 (SVLRP Progress). If ψ is a valid non-final state then ψ −→ ψ′ for some ψ′.

Proposition 2.1.8 (SVLRP Preservation). If ψ is a valid state and ψ −→ ψ′ for some ψ′ then ψ′

is a valid state.

2.2 GVLRP: Static Semantics
We now derive GVLRP, the gradually-verified language counterpart of SVLRP, essentially follow-
ing the Abstracting Gradual Typing methodology [19], whose main principles and mechanisms
apply beyond type systems. This section presents the syntax and static semantics of GVLRP. §2.3
develops the run-time semantics, and §2.4 establishes the main properties of GVLRP.

2.2.1 Syntax

The syntax of GVLRP is the same as SVLRP except for the addition of gradual formulas ϕ̃. Grad-
ual formulas replace formulas θ in method contracts, predicate definitions, and loop invariants:

pred ::= predicate p(T x) = ϕ̃

contract ::= requires ϕ̃ ensures ϕ̃

s ::= ... | while (e) inv ϕ̃ { s }
ϕ̃ ::= θ | ? ∗ ϕ

A gradual formula is either a self-framed syntactically precise formula θ or an imprecise
formula ? ∗ ϕ. Note that the static part of an imprecise formula does not need to be self-framed
and ? is syntactic sugar for ? ∗ true. Additionally, the set of all gradual formulas is given
by F̃ORMULA. A syntactically precise formula does not contain ? directly, i.e. it is not visibly
partial. However, it may contain hidden ?s by containing predicates that, when unrolled, expose
?, e.g. acyclic(l) where acyclic’s body is ?. Self-framing is augmented to handle nested
imprecision in GVLRP, and its new definition is given in §2.2.2. We will refer to formulas that
do not contain ?, neither directly nor nested in predicates, as semantically precise formulas,
e.g. acyclic(l) where acyclic is from Fig. 1.2. Note that all semantically precise formulas
are syntactically precise, but not all syntactically precise formulas are semantically precise.

2.2.2 Framing
Definitions for framing and self-framing syntactically precise formulas in GVLRP are redefined
to handle imprecise predicate definitions exposed by the FRMUNFOLDING rule. For example,
foo(x)’s body is analyzed for the permissions required to frame x.f >= 2 in
unfolding foo(x) in x.f >= 2. If foo(x)’s body is imprecise, then SVLRP’s framing
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definition would be undefined for this formula. Therefore, formula framing in GVLRP,
⟨H, ρ,Π⟩ ⊢̃frmI ϕ, is defined as in SVLRP except for the FRMUNFOLDING rule:

⟨H, ρ,Π⟩ ⊨I p(e1,...,en) ⟨H, ρ,Π⟩ ⊢̃frmI e1 ... ⟨H, ρ,Π⟩ ⊢̃frmI en
⟨H, ρ,Π′⟩ ⊢̃frmI ϕ Π′ = Π ∪ ⌊bodyµ(p)(e1, ..., en)⌋TotalFP(ϕ,H,ρ),H,ρ

⟨H, ρ,Π⟩ ⊢̃frmI unfolding p(e1, ..., en) in ϕ
F̃RMUNFOLDING

This rule differs from its SVLRP counterpart in computing Π′, which aides in framing ϕ. In
particular, the retrieval of accessibility predicates and predicate instances from bodyµ(p)(e1, ..., en)
now accounts for imprecision. The TotalFP(·, ·, ·) : FORMULA×HEAP×ENV → PERMISSIONS

function returns the explicit and implicit iso-recursive permissions required by ϕ ({⟨o, f⟩} for x.f
>= 2 where x points to o). Then, a new footprint definition ⌊ϕ̃⌋Π,H,ρ is used to either frame ϕ
optimistically with this maximal permission set or precisely with calculated permissions from
bodyµ(p)(e1, ..., en). The result depends on whether bodyµ(p)(e1, ..., en) is imprecise or precise,
respectively (foo’s body is ? so {⟨o, f⟩} is used):

⌊θ⌋Π,H,ρ = ⌊θ⌋H,ρ ⌊? ∗ ϕ⌋Π,H,ρ = Π

Now, a formula ϕ is called self-framed (we write ⊢̃frm ϕ) if for all H , ρ, Π, ⟨H, ρ,Π⟩ ⊨I ϕ

implies ⟨H, ρ,Π⟩ ⊢̃frmI ϕ. We redefine the set of self-framed formulas: SFRMFORMULA
def
=

{ ϕ ∈ FORMULA | ⊢̃frm ϕ }, and we still write θ to denote self-framed formulas. As a result,
foo(x) ∗ unfolding foo(x) in x.f >= 2 is self-framed when foo’s body is ?.

2.2.3 Interpretation of Gradual Formulas
Gradual formulas are given meaning by the set of precise formulas that they represent. The inter-
pretation of gradual formulas is used to define variants of formula evaluation, formula implica-
tion, and the WLP calculus that operate over gradual formulas and are consistent liftings [3, 19]
of their SVLRP counterparts. Then, the static verification judgment in GVLRP is defined similarly
to SVLRP using these lifted definitions. The set denoted by a gradual formula is obtained via a
concretization function [25]:
Definition 2.2.1 (Concretization of Gradual Formulas). γ : F̃ORMULA ⇀ PFORMULA is defined
as:

γ(θ) = { θ } γ(? ∗ ϕ) = { θ′ ∈ SATFORMULA | θ′ ⇒ ϕ } if ϕ ∈ SATFORMULA

γ(? ∗ ϕ) undefined otherwise

The concretization of a syntactically precise formula is the singleton set of this formula. The
concretization of an imprecise formula is the (infinite) set of syntactically precise formulas that
are 1) satisfiable and 2) imply the static part of the imprecise formula. For example, γ(? ∗ x ≥
0) = {x = 2, y = x ∗ x ≥ 0, . . . }. Notice, x < 0 ∗ x ≥ 0 ̸∈ γ(? ∗ x ≥ 0), because it is not
satisfiable.

Novel compared to Bader et al. [3]’s work is the requirement that all syntactically precise
formulas represented by gradual formulas must be self-framed (§2.2.2). This extra condition
allows ? to frame the static part of an imprecise formula, a requirement we motivated in §1.3.1.
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Additionally, γ treats predicates opaquely by relying on iso-recursively defined satisfiability,
self-framing, and implication. We make this design choice, because γ is an integral part of
GVLRP’s static verification system, which we want to be iso-recursive (§1.3.2). This choice has
implications. For example, when both p(x) and q(x)’s bodies contain acc(x.f), p(x) ∗ q(x)
is equi-recursively unsatisfiable but iso-recursively satisfiable. Therefore, p(x) ∗ q(x) ∈ γ(? ∗
q(x)). On the other hand, acc(x.f) ∗acc(x.f) ̸∈ γ(? ∗acc(x.f)), since acc(x.f) ∗acc(x.f)
is also iso-recursively unsatisfiable.

Definition 2.2.1 induces a natural definition of the (im)precision of gradual formulas:

Definition 2.2.2 (Precision of Gradual Formulas). ϕ̃1 is more precise (i.e. less imprecise) than
ϕ̃2, written ϕ̃1 ⊑ ϕ̃2, if and only if γ(ϕ̃1) ⊆ γ(ϕ̃2).
Ex. ? ∗ acc(x.f) ∗ foo(y) ⊑ ? ∗ acc(x.f).

Semantic Interpretation of Gradual Formulas. Since Definition 2.2.1 is interpreted iso-
recursively, even if foo’s body is ?, we can have foo(x) ∗ unfolding foo(x) in x.f>=2

∈ γ(? ∗ x.f >= 2). That is, γ in Definition 2.2.1 may give syntactically precise, but semanti-
cally imprecise formulas. We therefore need a semantic interpretation of gradual formulas that
extends the concept of concretization to also cover imprecise predicate bodies. As a result, such
a semantic concretization of gradual formulas would only give semantically precise formulas.

A difficulty with writing semantic concretization is that in order to fully interpret formu-
las, we require an additional function bodyµ, which returns predicate bodies from the ambient
program given a predicate instance, e.g. bodyµ(foo)(x) = ?. Since bodyµ may return impre-
cise formulas, we cannot use it to interpret formulas that we want to be semantically precise.
Instead, we must rely on some new function body∆ : PREDNAME → EXPR∗ → FORMULA,
which returns only precise formulas. As a result, we work with local formulas ⟨ϕ, body∆⟩ ∈
FORMULA× (PREDNAME → EXPR∗ → FORMULA) that explicitly drag along their body func-
tion.

Existing rules can easily be adjusted in order to deal with this new parameter, for example:

body∆(p)(e1, ..., en) = ϕ
H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨H, ρ, π⟩ ⊨E ⟨ϕ,body∆⟩

⟨H, ρ, π⟩ ⊨E ⟨p(e1,...,en),body∆⟩
EVPRED

The EVPRED rule now uses body∆ to lookup predicate bodies, rather than using the designated
bodyµ. Notice the function body∆ is carried around for reference, simply making explicit what
was previously assumed as constant and ambient in SVLRP.

Now, we can give an interpretation to gradual body functions b̃ody∆ by concretizing them
into sets of body∆ functions that produce precise, self-framed formulas. Given a b̃ody∆, Defini-
tion 2.2.3 returns a set of body∆ functions constructed from formulas that are in the γ (Def. 2.2.1)
of each gradual formula in b̃ody∆. For example, if dom(b̃ody∆) = {foo}, b̃ody∆(foo)(x) = ?,
and body∆(foo)(x) = acc(x.f), then body∆ ∈ γ(b̃ody∆). Additionally, each body∆ func-
tion must be well-formed with respect to self-framing, i.e. the body that body∆ returns for
each predicate must be self-framed with respect to the body∆ function itself. For example, if
body∆(q)(x) = foo(x) ∗ unfolding foo(x) in x.f >= 2, then body∆(foo)(x) must contain
acc(x.f).
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Definition 2.2.3 (Concretization of Gradual Formulas (continued)). Concretization of a gradual
body function γ : (PREDNAME → EXPR∗ → F̃ORMULA) ⇀ PPREDNAME→EXPR∗→SFRMFORMULA is
defined as:

γ(b̃ody∆) = { body∆ = λpi ∈ dom(b̃ody∆). λe ∈ EXPR∗. θpi
[e/tmpi] | ⟨θp1

, θp2
, ...⟩ ∈

γ(b̃ody∆(p1)(tmp1))× γ(b̃ody∆(p2)(tmp2))× ...,∀pi ∈ dom(b̃ody∆). ⊢frm ⟨body∆(pi)(tmpi),body∆⟩ }

where dom(b̃ody∆) = { p1, p2, ... } ⊆ PREDNAME.

Given this partial function, we can concretize a gradual formula and its gradual body function,
yielding a set of semantically precise self-framed formulas:

γ(⟨ϕ̃, b̃ody∆⟩) = { ⟨θ,body∆⟩ | θ ∈ γ(ϕ̃),body∆ ∈ γ(b̃ody∆), ⊢frm ⟨θ,body∆⟩ }

As before, Definition 2.2.3 allows us to give a natural (semantic) definition for formula precision:

Definition 2.2.4 (Precision of Formulas (continued)). ⟨ϕ̃1, b̃ody
1

∆⟩ is more precise than
⟨ϕ̃2, b̃ody

2

∆⟩, written ⟨ϕ̃1, b̃ody
1

∆⟩ ⊑ ⟨ϕ̃2, b̃ody
2

∆⟩ if and only if γ(⟨ϕ̃1, b̃ody
1

∆⟩) ⊆ γ(⟨ϕ̃2, b̃ody
2

∆⟩).

2.2.4 Lifting Predicates
We lift predicates on formulas in SVLRP to handle gradual formulas in GVLRP such that they
are consistent liftings of corresponding SVLRP predicates. Following AGT [19], the consistent
lifting P̃ ⊆ F̃ORMULA × F̃ORMULA of predicate P ⊆ FORMULA × FORMULA is defined as:

P̃ (ϕ̃1, ϕ̃2)
def⇐⇒ ∃ϕ1 ∈ γ(ϕ̃1), ϕ2 ∈ γ(ϕ̃2). P (ϕ1, ϕ2).

The existential in this definition expresses the optimistic nature of gradual semantics: we
want a gradual predicate to be true if there exists any interpetation of ? that makes the static
version of the predicate true.

Since we rely on an equi-recursive dynamic semantics for SVLRP and GVLRP and allow predi-
cate definitions to be imprecise, we now give a semantic definition of gradual formula evaluation:

Definition 2.2.5 (Consistent Formula Evaluation).
Let · ⊨̃ · ⊆ MEM × (F̃ORMULA × (PREDNAME → EXPR∗ → F̃ORMULA)) be defined

inductively as
⟨H, ρ, π⟩ ⊨E ⟨ϕ,body∆⟩ ⟨H, ρ, π⟩ ⊢frmE ⟨ϕ,body∆⟩

⟨H, ρ, π⟩ ⊨̃ ⟨? ∗ ϕ, b̃ody∆⟩

⟨H, ρ, π⟩ ⊨E ⟨θ,body∆⟩ ⟨H, ρ, π⟩ ⊢frmE ⟨θ,body∆⟩

⟨H, ρ, π⟩ ⊨̃ ⟨θ, b̃ody∆⟩

where body∆ = λp ∈ dom(b̃ody∆). λe ∈ EXPR∗. static(b̃ody∆(p)(e))
and static : F̃ORMULA → FORMULA s.t. static(θ) = θ and static(? ∗ ϕ) = ϕ.

Note that · ⊨̃ · is a consistent lifting of · ⊨E · (with γ from Def. 2.2.3). Our definition is
conveniently implementable for equi-recursive dynamic checking: it simply evaluates the static
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parts of predicates, and ensures that any heap accesses touch only owned locations. For example,
if foo’s body is ? and x points to o, then foo(x) ∗ unfolding foo(x) in x.f >= 2

evaluates to true when o.f is owned and o.f ≥ 2. The static part of ? is true, so foo(x) is
ignored.

Additionally, gradual formula evaluation depends on an equi-recursive framing judgment
for semantically precise formulas. The framing judgment ⟨H, ρ, π⟩ ⊢frmE ϕ is defined similarly
(replacing Π with π and iso-recursive formula evaluation with equi-recursive formula evaluation)
to its iso-recursive counterpart in SVLRP, except for FRMPRED and FRMUNFOLDING. Equi-
recursive variants of these rules are:

∀i, ⟨H, ρ, π⟩ ⊢frmE ei ⟨H, ρ, π⟩ ⊢frmE bodyµ(p)(e1, ..., en)
⟨H, ρ, π⟩ ⊢frmE p(e1, ..., en)

⟨H, ρ, π⟩ ⊢frmE ϕ

⟨H, ρ, π⟩ ⊢frmE unfolding p(e1, ..., en) in ϕ

Then, a formula is said to be (equi-recursively) framed by permissions π if its complete unrolling
only mentions fields in π. For example, acyclic(l), where acyclic’s body is defined as in
Figure 1.2, is framed by π if π contains all of list l’s heap locations. We can also easily adjust the
equi-recursive framing judgment to pass around and use a body∆ context, as described in §2.2.3.

In contrast to gradual formula evaluation (Def. 2.2.5), gradual formula implication is a con-
sistent lifting of SVLRP formula implication with the syntactic interpretation of gradual formulas
given in Definition 2.2.1. This is because SVLRP implication is defined iso-recursively, i.e. hides
imprecision in predicates. We give the definition for gradual formula implication in Definition
2.2.6.

Definition 2.2.6 (Consistent Formula Implication).
Let · ⇒̃ · ⊆ F̃ORMULA × F̃ORMULA be defined inductively as

θ1 ⇒ static(ϕ̃2)

θ1 ⇒̃ ϕ̃2

ĨMPLSTATIC
θ ∈ SATFORMULA θ ⇒ ϕ1 θ ⇒ static(ϕ̃2)

? ∗ ϕ1 ⇒̃ ϕ̃2

ĨMPLGRAD

Here also, · ⇒̃ · is a consistent lifting of · ⇒ · (with γ from Def. 2.2.3). For example, ?
⇒̃ ? ∗ acc(x.f) ∗ x.f >= 2 because acc(x.f) ∗ x.f >= 2 is satisfiable and implies

the static part of both sides of the implication.

2.2.5 Lifting Functions
Functions that operate over formulas in SVLRP must also be lifted to handle gradual formulas in
GVLRP. The resulting GVLRP functions should approximate consistent liftings of corresponding
SVLRP functions. Following AGT [19], given a partial function f : FORMULA ⇀ FORMULA,
its consistent lifting f̃ : F̃ORMULA ⇀ F̃ORMULA is defined as:

f̃(ϕ̃) = α({ f(ϕ) | ϕ ∈ γ(ϕ̃) }).
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W̃LP(if (e) { s1 } else { s2 }, ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | ϕ′ ⇒ if e then θ1 else θ2 ∧

ϕ′ ⇒ acc(e) ∧ ⊢frm ⟨ϕ′,body∆′⟩ } | θ1 ∈ γ(W̃LP(s1, ϕ̃)), θ2 ∈ γ(W̃LP(s2, ϕ̃)),

body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ1,body∆′⟩, ⊢frm ⟨θ2,body∆′⟩ })

W̃LP(y := z.m(x), ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | y ̸∈ FV(ϕ′) ∧ ⊢frm ⟨ϕ′,body∆′⟩ ∧

∃ϕf . ϕ′ ⇒ (z ̸= null) ∗ θp[z/this, x/mparam(m)] ∗ ϕf ∧

ϕf ∗ θq[z/this, x/old(mparam(m)), y/result] ⇒ θ ∧ ⊢frm ⟨ϕf ,body∆′⟩ }

| θ ∈ γ(ϕ̃), θp ∈ γ(mpre(m)), θq ∈ γ(mpost(m)), body∆′ ∈ γ(bodyµ),

⊢frm ⟨θ,body∆′⟩, ⊢frm ⟨θp,body∆′⟩, ⊢frm ⟨θq,body∆′⟩ })

W̃LP(while (e) inv ϕ̃i { s }, ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | ϕ′ ⇒ acc(e) ∧ ⊢frm ⟨ϕ′,body∆′⟩ ∧

∃ϕf . ϕ′ ⇒ θi ∗ ϕf ∧ xi ̸∈ FV(ϕf ) ∧ ⊢frm ⟨ϕf ,body∆′⟩ ∧

ϕf ∗ (θi ∗ (e = false))[xi/yi] ⇒ θ[xi/yi] }

| θ ∈ γ(ϕ̃), θi ∈ γ(ϕ̃i), body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ,body∆′⟩, ⊢frm ⟨θi,body∆′⟩ })
where yi are vars modified by the loop body s and xi are fresh

W̃LP(fold p(e), ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | ϕ′ ∗ p(e) ⇒ θ ∧ ϕ′ ∗ p(e) ∈ SATFORMULA ∧

⊢frm ⟨ϕ′ ∗ body∆′(p)(e),body∆′⟩ } ∗ body∆′(p)(e) ∈ SATFORMULA

| θ ∈ γ(ϕ̃), body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ,body∆′⟩ })

Figure 2.7: GVLRP: Weakest liberal precondition calculus (select rules).

Notice, the definition of a consistent function lifting requires an abstraction function α, which
given a set of formulas produces the most precise gradual formula representing this set. We define
α : PFORMULA ⇀ F̃ORMULA as α(ϕ) = min

⊑
{ ϕ̃ ∈ F̃ORMULA | ϕ ⊆ γ(ϕ̃) }, e.g. α({acc(x1.f),

acc(x1.f) ∗ acc(x2.f)}) = ? ∗ acc(x1.f). Then, α clearly creates a Galois connection with γ
from Def. 2.2.1.

Fig. 2.7 shows select rules for W̃LP (complete rules are in Appendix Fig. A.9), which approx-
imate the consistent function lifting of WLP. Rules for method call, while loop, and if statements
lift the corresponding WLP rules with respect to two (while loop and if statements) or three
(method call statements) formula parameters instead of one formula parameter as in other rules.
These corresponding WLP rules rely on extra (often implicit) formula parameters that may be
imprecise in GVLRP, and therefore, must be accounted for in the lifting. Similarly, WLP implic-
itly exposes predicate definitions in bodyµ through self-framing (§2.2.2) and in fold and unfold
rules. In GVLRP, predicate definitions may be imprecise, so non-sequence statement WLP rules
are lifted with respect to bodyµ.
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2.2.6 Lifting the Verification Judgment

We define static verification in GVLRP using lifted formula implication ( ⇒̃ , §2.2.4) and lifted
WLP (W̃LP, §2.2.5):

Definition 2.2.7 (Valid Method). A method with contract requires ϕ̃p ensures ϕ̃q, parameters
x, and body s is considered valid if ϕ̃p ⇒̃ W̃LP(s, ϕ̃q)[x/old(x)] holds.

Definition 2.2.8 (Valid Program). A program with entry point statement s is considered valid if
true ⇒̃ W̃LP(s, true) holds, ϕ̃i ∧ acc(e) ∧ (e = true) ⇒̃ W̃LP(r, ϕ̃i ∧ acc(e)) holds for all
loops with condition e, body r, and invariant ϕ̃i, and all methods are valid.

2.3 GVLRP: Dynamic Semantics

A valid GVLRP program will plausibly remain valid during each step of execution. To ensure that
it does, the dynamic semantics of SVLRP are extended with run-time checks and considerations
for imprecise specifications.

2.3.1 Footprint Splitting

To split dynamic footprints at method calls and loop entries in GVLRP’s small-step semantics,
we use ⌊ϕ̃⌋π,H,ρ:

⌊θ⌋π,H,ρ = ⟨⟨ ⌊θ⌋H,ρ ⟩⟩π,H ⌊? ∗ ϕ⌋π,H,ρ = π

This definition relies on ⟨⟨ Π ⟩⟩π,H : PERMISSIONS × DYNFPRINT × HEAP ⇀ DYNFPRINT,
which returns the given dynamic footprint when any predicate bodies analyzed by the function
are imprecise. Otherwise, the function returns the dynamic footprint generated from unrolling
predicates in Π2:

⟨⟨ Π ⟩⟩π,H = {⟨o, f⟩ | ⟨o, f⟩ ∈ Π} ∪ π′

where π′ =


π if ∃⟨p, v1, ..., vn⟩ ∈ Π.∃ϕ ∈ FORMULA.bodyµ(p)(v1, ..., vn) = ? ∗ ϕ

⟨⟨ Π′ ⟩⟩π,H otherwise

for Π′ = ∪⟨p,v1,...,vn⟩∈Π⌊bodyµ(p)(v1, ..., vn)⌋H,[]

Therefore, ⌊ϕ̃⌋π,H,ρ returns the given dynamic footprint π when ϕ̃ is imprecise or contains nested
imprecision, and it returns a more precise dynamic footprint computed when ϕ̃ is semantically
precise. Example, if acyclic’s body is ?, then ⌊acyclic(l)⌋π,H,ρ will return π. It will return all
of list l’s heap locations when acyclic is defined as in Fig. 1.2.

2Note that ⟨⟨ Π ⟩⟩π,H is a partial function, as it may not be well-defined if a predicate instance held in Π has an
infinite completely unrolling and no nested imprecise predicates.
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⟨H, ρ, π⟩ ⊨̃ ⟨? ∗ ϕ,bodyµ⟩
⟨H, ⟨ρ, π,assert ϕ; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s⟩ · S⟩

SSASSERT

method(m) = Tr m(T x′) requires ϕ̃p ensures ϕ̃q { r }
H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v ρ′ = [this 7→ o, x′ 7→ v,old(x′) 7→ v]

π′ = ⌊ϕ̃p⌋π,H,ρ′ π′ ⊆ π ⟨H, ρ′, π′⟩ ⊨̃ ⟨ϕ̃p,bodyµ⟩
⟨H, ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −̃→ ⟨H, ⟨ρ′, π′, r; skip⟩ · ⟨ρ, π\π′, y := z.m(x); s⟩ · S⟩

SSCALL

mpost(m) = ϕ̃q ⟨H, ρ′, π′⟩ ⊨̃ ⟨ϕ̃q,bodyµ⟩ ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π′,skip⟩ · ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −̃→ ⟨H, ⟨ρ′′, π ∪ π′, s⟩ · S⟩
SSCALLFINISH

Figure 2.8: GVLRP: Small-step semantics adjusted from Fig. 2.6 (select rules)

2.3.2 Small-Step Semantics

We give an augmented version of SVLRP’s small-step semantics ( · −̃→ · ⊆ STATE× (STATE∪
{error})) for GVLRP. We make considerations for imprecision and for run-time verification.
Representative rules are given in Fig. 2.8 (complete rules are in Appendix Fig. A.10).

Imprecision in Specifications. Method preconditions, postconditions, and loop invariants are
now checked with gradual formula evaluation (SSCALL, SSCALLFINISH). Asserted formulas
must also be checked with gradual formula evaluation due to potentially hidden imprecision
(SSASSERT). Additionally, we must ensure that introducing imprecision will not introduce a
run-time error caused by lack of accessibility (dynamic gradual guarantee, Prop. 2.4.6). There-
fore, if a method precondition in SSCALL (or loop invariant) is imprecise or contains nested
imprecision, then all owned heap locations are forwarded from the call site to the callee (or loop
body) for execution. Otherwise, the call site’s owned heap locations can be precisely transferred
to the callee (or loop body) as in SVLRP. Heap locations held after the callee’s (or loop body’s)
execution are returned as usual to the call site.

Runtime Verification. Even for valid GVLRP programs, when specifications are imprecise the
formula evaluation premises in GVLRP’s small-step semantics are not guaranteed to hold. There-
fore, these premises are turned into run-time checks. If an assertion, accessibility predicate,
method precondition, method postcondition, or loop invariant does not hold in a program state
where it should, then program execution steps into a dedicated error state (extra rules illustrating
this can be found in Appendix Fig. A.10).

2.4 Properties of GVLRP

GVLRP is a sound gradually-verified language that conservatively extends SVLRP and adheres
to gradual guarantees. GVLRP is a conservative extension of SVLRP—meaning that GVLRP and
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SVLRP coincide on fully precise programs—by construction following the Abstracting Gradual
Typing methodology [3, 19].

Soundness. Soundness for GVLRP is conceptually similar to soundness for SVLRP except that a
GVLRP program may step to a dedicated error state when run-time verification fails. We establish
soundness via progress and preservation.

Definition 2.4.1 (Valid State, Final State). We call the state ⟨H, ⟨ρn, πn, sn⟩·...·⟨ρ1, π1, s1⟩·nil⟩ ∈
STATE valid if
sn = s; skip or skip for some s ∈ STMT,
si = s′i; skip for some s′i ∈ STMT ∀ . 1 ≤ i < n,
and si = s1i; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop statement

∀ . 1 ≤ i < n.
A state ψ is final if ψ = ⟨H, ⟨ρ, π, skip⟩ · nil⟩ for some H, ρ, π.

Proposition 2.4.2 (GVLRP Progress). If ψ is a valid non-final state then ψ −̃→ ψ′ for some ψ′ or
ψ −̃→ error.

Proposition 2.4.3 (GVLRP Preservation). If ψ is a valid state and ψ −̃→ ψ′ for some ψ′ then ψ′

is a valid state.

Gradual Guarantees. GVLRP satisfies both the static and the dynamic gradual guarantees, orig-
inally formulated for gradual type systems [43], and first adapted to gradual verification by Bader
et al. [3]. These properties ensure in GVLRP that decreasing the precision of specifications never
breaks the verifiability and reducibility of a program, i.e. losing precision is harmless.

These properties rely on a notion of precision for programs. We say a program p1 is more
precise than program p2 (p1 ⊑ p2) if 1) p1 and p2 are equivalent except in terms of con-
tracts, loop invariants, and/or predicate definitions, and 2) p1’s contracts, loop invariants, and
predicate definitions are more precise than p2’s corresponding contracts, loop invariants, and
predicate definitions. A contract requires ϕ̃1

p ensures ϕ̃1
q is more precise than contract

requires ϕ̃2
p ensures ϕ̃2

q if ϕ̃1
p ⊑ ϕ̃2

p and ϕ̃1
q ⊑ ϕ̃2

q . Similarly, a loop invariant (predicate
definition) ϕ̃1

i is more precise than loop invariant (predicate definition) ϕ̃2
i if ϕ̃1

i ⊑ ϕ̃2
i .

Using this notion of program precision, the static gradual guarantee can now be stated as
follows:

Proposition 2.4.4 (GVLRP Static gradual guarantee).
Let p1, p2 ∈ PROGRAM such that p1 ⊑ p2. If p1 is valid then p2 is valid.

In general, the static gradual guarantee ensures that reducing the precision of specifications
never breaks static verification (i.e. makes a valid program invalid).

For the dynamic gradual guarantee, the fact that footprint tracking and splitting is influenced
by increasing imprecision (i.e. increasing imprecision results in larger parts of footprints being
passed up the stack) means that we must define an asymmetric state precision relation ≲:
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Definition 2.4.5 (State Precision). Let ψ1, ψ2 ∈ STATE. Then ψ1 is more precise than ψ2, written
ψ1 ≲ ψ2, if and only if all of the following applies:
a) ψ1 and ψ2 have stacks of size n and identical heaps.
b) ψ1 and ψ2 have stacks of variable environments that are identical.
c) Let s11..n and s21..n be the stack of statements of ψ1 and ψ2, respectively. Then for 1 ≤ i ≤ n,
s1i ⊑ s2i :

s ⊑ s′ if and only if s is a fold or unfold statement and s′ is a skip statement or equal to s,
s = while (e) inv ϕ̃i { r } and s′ = while (e) inv ϕ̃′

i { r } where ϕ̃i ⊑ ϕ̃′
i,

s = sc1 ; sc2 and s′ = s′c1 ; s
′
c2

where sc1 ⊑ s′c1 and sc2 ⊑ s′c2 , or s = s′.
d) Let π1

1..n and π2
1..n be the stack of footprints of ψ1 and ψ2, respectively. Then the following

holds for 1 ≤ m ≤ n:
n⋃

i=m

π1
i ⊆

n⋃
i=m

π2
i

Additionally, as long as it does not break the static gradual guarantee, we allow increased
imprecision through dropped fold and unfold statements from one program to the next. This is
reflected in condition c) in Definition 2.4.5 and an adjusted program precision definition⊑d. That
is, a program p1 is more precise than a program p2 if 1) the programs are equivalent except for
in terms of contracts, loop invariants, and/or predicate definitions and fold and unfold statements
in p1 may be replaced with skip statements in p2, and 2) p1’s contracts, loop invariants, and
predicate definitions are more precise than p2’s corresponding contracts, loop invariants, and
predicate definitions. Now, the dynamic gradual guarantee can be given:

Proposition 2.4.6 (GVLRP Dynamic gradual guarantee).
Let p1, p2 ∈ PROGRAM such that p1 ⊑d p2, and ψ1, ψ2 ∈ STATE such that ψ1 ≲ ψ2.

If ψ1 −̃→p1 ψ
′
1, then ψ2 −̃→p2 ψ

′
2, with ψ′

1 ≲ ψ′
2.

Since GVLRP adheres to the dynamic gradual guarantee, reducing the precision of speci-
fications and/or dropping fold and unfold statements does not affect the program’s observable
behavior.

34



Chapter 3

Gradual C0: The First Gradual Verifier

This chapter presents the design and implementation of Gradual C01—the first gradual verifier
for imperative programs manipulating recursive heap data structures. Gradual C0 targets C0,
a safe subset of C designed for education, with appropriate support (and pedagogical material)
for dynamic verification. Technically, Gradual C0 is built on top of the Viper static verification
infrastructure [33], which facilitates the development of program verifiers supporting IDF and
recursive abstract predicates. Gradual C0’s back-end leverages this infrastructure to simplify the
implementation of gradual verifiers for other programming languages, and Gradual C0’s front-
end demonstrates how this is done for C0. Furthermore, Gradual C0 relies on symbolic execution
for static reasoning rather than on the weakest liberal precondition approach theorized in Chpt. 2.
We switched to symbolic execution from weakest liberal preconditions, because it is the ideal
reasoning technique for tools based on separation logic or IDF. Indeed, Viper [33], VeriFast [22],
JStar [13], and SmallFoot [4] all support these permission logics with symbolic execution, not
weakest liberal preconditions. So, we hope the work in this chapter serves as a guide on how to
build gradual verifiers that use symbolic execution for reasoning. Finally, Gradual C0 minimizes
the insertion of dynamic checks using statically available information and optimizes the checks’
overhead at run time—making advancements over our run-time system from Chpt. 2, §2.3, which
checks everything at run time despite the precision of specifications.

Overall, in this chapter, we address new technical challenges in gradual verification related to
symbolic execution, extensibility to multiple programming languages, and minimizing run-time
checks and their overhead:

• Gradual C0’s symbolic execution algorithm is responsible for statically verifying programs
with imprecise specifications and producing minimized run-time checks. In particular, Grad-
ual C0 tracks the branch conditions created by program statements and specifications to pro-
duce run-time checks for corresponding execution paths. At run time, branch conditions are
assigned to variables at the branch point that introduced them, which are then used to co-
ordinate the successive checks as required. Further, Gradual C0 creates run-time checks by
translating symbolic expressions into specifications—reversing the symbolic execution pro-
cess.

• The run-time checks produced by Gradual C0 contain branch conditions, simple logical ex-

1Gradual C0 is hosted on Github: https://github.com/gradual-verification/gvc0.
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Figure 3.1: System design of Gradual C0

pressions, accessibility predicates, separating conjunctions, and predicates. Each of these
constructs is specially translated into source code that can be executed at run time for dy-
namic verification. Logical expressions are turned into assertions. Accessibility predicates
and separating conjunctions are checked by tracking and updating a set of owned heap loca-
tions. Finally, predicates are translated into recursive boolean functions. By encoding run-
time checks into C0 source code, we avoid complexities from augmenting the C0 compiler to
support dynamic verification. We also design these encodings to be performance friendly, e.g.
owned heap locations are tracked in a dynamic hash table.

Note, Gradual C0’s design, which newly uses symbolic execution for reasoning and minimizes
run-time checks with statically available information, has been formalized and proven sound by
Zimmerman et al. [50].

3.1 Gradual C0’s Overall Design
Gradual C0 is a working gradual verifier for the C0 programming language [2] that is built as
extension of the Viper static verifier [33]. Our goals for the design and implementation of Gradual
C0 are to:

• be easily extensible to other programming languages beyond C0,
• minimize run-time overhead from verification as much as possible without introducing

highly complex algorithms, and
• use symbolic execution for static reasoning.
Consequently, we settled on the design illustrated in Fig. 3.1. Gradual C0 is structured in

two major sub-systems: 1) the gradual verification pipeline and 2) the C0 pipeline. Within
the gradual verification pipeline, a C0 program is first translated AST-to-AST into a Gradual
Viper program by Gradual C0’s frontend module, GVC0. The GVC0 module implements a
simple parser, abstract syntax, and type checker for C0 programs to facilitate the translation. The
Gradual Viper module is the backend of Gradual C0 and implements its own parser, abstract
syntax, and type checker for its own imperative language called the Gradual Viper language.
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This language is the Viper language plus imprecise formulas and allows Gradual Viper to support
multiple frontend languages, not just C0. We chose to build a C0 frontend first because C0 is a
pedagogical version of C designed with dynamic verification in mind, and we plan to use it in
the classroom.

Once the C0 program is translated into a Gradual Viper program, it is optimistically stati-
cally verified by the Gradual Viper module. Gradual Viper extends Viper’s symbolic execution
based verifier to support imprecise formulas and resulting holes in static reasoning as inspired by
Chpt. 2 and gradual typing [20, 42, 43]. Consequently, by construction Gradual Viper supports
full static verification of programs when specifications are complete. Differing from the work
in Chpt. 2, Gradual Viper also extends the symbolic execution algorithm to create a description
of needed run-time checks in support of static holes. The run-time checks are minimized with
statically available information during reasoning. Finally, GVC0 takes these run-time checks
and encodes them in the original C0 program to produce a sound, gradually-verified program.
The C0 pipeline takes this C0 program and feeds it to the C0 compiler, CC0, which is used to
execute the program. Note, the encoding of checks into C0 source code optimizes for run-time
performance and simplifies extending C0 with dynamic verification in our domain.

The rest of this chapter describes the implementation of Gradual Viper and GVC0’s designs
in more detail and illustrates the concepts via example. We also highlight design and implemen-
tation choices influenced by our goals. §3.2 discusses how C0 programs are translated to Gradual
Viper programs, along with modifications made to both C0 and Viper for gradual verification.
Then, §3.3 and §3.4 detail Gradual Viper’s symbolic execution approach and how it produces
minimized run-time checks. Finally, §3.5 focuses on how GVC0 turns run-time checks from
Gradual Viper into C0 code for dynamic verification.

3.2 Translating C0 Source Code to Gradual Viper Source Code
for Verification

The C0 language, with its minimal set of language features and its existing support for speci-
fications, serves well as the target language for our implementation. As its name suggests, C0
borrows heavily from C, but its feature set is reduced to better suit its intended purpose as a
tool in computer science education [2]. It is a memory-safe subset of C that forbids casts, pointer
arithmetic, and pointers to stack-allocated memory. All pointers are created with heap allocation,
and de-allocation is handled by a garbage collector.

The abstract syntax for C0 programs supported by Gradual C0 is given in Fig. 3.3, i.e.
GVC0’s abstract syntax. GVC0 programs are made of struct and method declarations that largely
follow C syntax. What differs from both C and C0 is GVC0’s specification language. Methods
may specify constraints on their input and output values as side-effect-free gradual formulas ϕ̃,
usually in //@requires or //@ensures clauses in the method header. Loops and abstract
predicates contain invariants and bodies respectively that are made of gradual formulas. Such
formulas ϕ̃ are imprecise formulas ? && ϕ2 or complete boolean formulas ϕ (Note, in this case,
ϕ must be self-framed as defined in IDF). A formula ϕ joins boolean values, boolean operators,

2We switch from ∗ to denote the separating conjuction to && since Viper uses this instead.
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x ∈ VAR (variables)

v ∈ VAL (values)

e ∈ EXPR (expressions)

s ∈ STMT (statements)

S ∈ STRUCTNAME (struct names)

f ∈ FIELDNAME (field names)

p ∈ PREDNAME (predicate names)

m ∈ METHODNAME (method names)

op ∈ +, -, /, *, ==, !=, <=, >=, <, > (operators)

Figure 3.2: Shared abstract syntax definitions

P ::= struct predicate method

struct ::= struct S { T f }

predicate ::= //@predicate p(T x) = ϕ̃

method ::= T̃ m(T x) contract { s }
contract ::= //@requires ϕ̃; //@ensures ϕ̃;

T ::= struct S | int | bool | char

| T∗
T̃ ::= void | T

s ::= s; s | T x | T x = e | x = e

| l = e | e | assert(e)

| //@assert ϕ | //@fold p(ẽ)

| //@unfold p(ẽ)

| if (e) { s } else { s }
| while (e) //@loop_invariant ϕ̃ { s }

| for (s; e; s) //@loop_invariant ϕ̃ { s }

e ::= v | x | op(e) | e->f | ∗e | m(e)

| alloc(T ) | e ? e : e

ẽ ::= v | x | op(ẽ) | ẽ->f | *ẽ

l ::= x->f | *x | l->f | *l

x ::= \result | id

v ::= n | c | NULL | true | false
ϕ̃ ::= ? && ϕ | θ

θ ::= self-framed ϕ

ϕ ::= ẽ | p(ẽ) | acc(l) | ϕ && ϕ

| ẽ ? ϕ : ϕ

Figure 3.3: GVC0 abstract syntax

P ::= field predicate method

field ::= field f : T

predicate ::= predicate p(x : T) { ϕ̃ }

method ::= method m(x : T ) returns (y : T )

contract { s }
contract ::= requires ϕ̃ ensures ϕ̃

T ::= Int | Bool | Ref

s ::= s; s | var x : T | x := e | x.f := e

| x := new(f) | x := m(e) | assert ϕ

| fold acc(p(e)) | unfold acc(p(e))
| if (e) { s } else { s }
| while (e) invariant ϕ̃ { s }

e ::= v | x | op(e) | e.f

x ::= result | id

v ::= n | null | true | false
ϕ̃ ::= ? && ϕ | θ

θ ::= self-framed ϕ

ϕ ::= e | acc(p(e)) | acc(e.f) | ϕ && ϕ

| e ? ϕ : ϕ

Figure 3.4: Gradual Viper abstract syntax

■
Representation differs slightly in GVC0
vs. Gradual Viper ■

Functionality in GVC0 that requires non-
trivial translation to Gradual Viper

Figure 3.5: Abstract syntax comparison for GVC0 and Gradual Viper
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predicate instances, accessibility predicates, and conditionals via the separating conjunction && .
GVC0 programs also contain //@fold p(ẽ) and //@unfold p(ẽ) statements for predicates
and //@assert ϕ statements for convenience.

To support the gradual verification of many different imperative programming languages,
Gradual Viper verifies programs written in its own custom imperative language, which is de-
signed to ease the translation from other imperative languages into it. The Gradual Viper lan-
guage’s abstract syntax is given in Fig. 3.4. The GVC0 and Gradual Viper languages are roughly
1-to-1, including their specification languages, so translation is mostly straightforward, but there
are some differences as highlighted in yellow (trivial) and blue (non-trivial) in Fig. 3.5. For ex-
ample, for loops in GVC0 are rewritten as while loops in Gradual Viper, and alloc(struct

T) expressions are translated to new statements containing struct T’s fields. Additionally,
GVC0 allows method calls, allocs, and ternaries in arbitrary expressions, while Gradual Viper
only allows such constructs in corresponding program statements3. Therefore, GVC0 uses fresh
temporary variables to version expressions containing the aformentioned constructs into program
statements in Gradual Viper. The temporary variables are then used in the original expression
in place of the corresponding method call, alloc, or ternary. Nested field assignments, such as
x->y->z = a, are similarly expanded into multiple program statements using temporary vari-
ables. Value type pointers in GVC0 are rewritten as pointers to single-value structs that can be
easily translated into Gradual Viper syntax. Finally, assert(e) statements are essentially ig-
nored in Gradual Viper; e is translated into Gradual Viper syntax to verify its heap accesses, but
e is not asserted. Instead, the assert is always kept in the original C0 program and is checked
exclusively at run time. Fig. 3.8 provides a simple example program written in both the GVC0
language (Fig. 3.6) and Gradual Viper language (Fig. 3.7) for reference.

Note that GVC0 does not support array and string values since gradually verifying any inter-
esting properties about such constructs requires non-trivial extensions to current gradual verifi-
cation theory. Similarly, the Gradual Viper language, in contrast to the Viper language, does not
support the aforementioned constructs and fractional permissions.

3.3 Gradual Viper: Symbolic Execution for Gradual Verifica-
tion

In this section, we describe the design and implementation of Gradual Viper’s symbolic execu-
tion based algorithm supporting the static verification of imprecise formulas. Our static reasoning
algorithm also soundly reduces the number of run-time checks required during dynamic verifi-
cation with statically available information. That is, during a single execution of Gradual Viper
a program is statically verified and a set of minimized run-time checks is produced for program
points where the algorithm is optimistic during verification due to imprecision.

Before formalizing Gradual Viper’s implementation in §3.4, we first demonstrate at a high-
level with examples how symbolic execution is used to perform optimistic static verification
of programs containing recursive heap data structures and how minimized run-time checks are
produced during this process. We also point out novel technical challenges faced and solutions

3Note, ternaries correspond to if statements
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1 struct Account { int balance; };
2 typedef struct Account Account;
3
4 /*@ predicate geqTo(Account* a1, Account* a2)

5 = ? && a1->balance >= a2->balance &&

6 a2->balance >= 0; @*/

7 /*@ predicate positive(Account* a) =

8 acc(a->balance) && a->balance >= 0; @*/

9
10 Account* withdraw(Account* a1, Account* a2)

11 //@ requires geqTo(a1,a2) ;

12 //@ ensures ? && positive(a2) &&

13 positive(\result) ;

14 {

15 //@ unfold geqTo(a1,a2);

16 if (a1 == NULL || a2 == NULL) {
17 return a1;
18 } else {
19 int newB = a1->balance - a2->balance;
20 a1->balance = newB;

21 //@ fold positive(a1);

22 //@ fold positive(a2);

23 return a1;
24 }
25 }
26

Figure 3.6: A simple bank withdraw ex-
ample written in the Gradual C0 language

1 field balance: Int
2
3
4 predicate geqTo(a1: Ref, a2: Ref)

5 { ? && a1.balance >= a2.balance &&

6 a2.balance >= 0 }

7 predicate positive(a: Ref)

8 { acc(a.balance) && a.balance >= 0 }

9
10 method withdraw(a1: Ref, a2: Ref)
11 returns (res: Ref)

12 requires acc(geqTo(a1,a2))

13 ensures ? && acc(positive(a2)) &&

14 acc(positive(res))

15 {

16 unfold acc(geqTo(a1,a2))

17 if (a1 == null || a2 == null) {
18 res := a1
19 } else {
20 var newB: Int = a1.balance-a2.balance
21 a1.balance := newB

22 fold acc(positive(a1))

23 fold acc(positive(a2))

24 res := a1
25 }
26 }

Figure 3.7: A simple bank withdraw program
written in the Gradual Viper language

□ Program code ■ Static specification ■ Imprecise specification

Figure 3.8: A gradually verified, bank withdraw program that is contrived to illustrate how Grad-
ual Viper works

developed thanks to relying on symbolic execution both for static verification and minimizing
run-time checks.

3.3.1 Optimistic static verification in Gradual Viper by example
The simple program given in Fig. 3.7 implements a withdraw function (method), which sub-
tracts the balance in one bank account (the subtrahend) from the balance in another account
(the minuend) returning the result.4 Any client program of withdraw must ensure the subtra-
hend’s balance is less than or equal to the minuend’s balance and that both balances are positive
as specified by withdraw’s precondition (line 12). Then, withdraw will return an account
with a positive balance as specified by withdraw’s postcondition (lines 13-14). Additionally,
withdraw’s postcondition ensures the subtrahend’s balance remains positive as well. Note, the

4Note, we refer to the version of the withdraw program written in the Gradual Viper language rather than its
Gradual C0 counterpart in Fig. 3.6 as we will be discussing how Gradual Viper works in this section.
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Lns Impr-
ecise

Opt. Heap Heap Var Store Path Condition Run-time Checks

15-
16

No ∅ geqTo(t1,t2) a1→t1 ; a2→t2 ;
res→t3

∅ ∅

16-
17

Yes acc(t1,balance,p1) ;
acc(t2,balance,p2)

∅ a1→t1 ; a2→t2 ;
res→t3

t1 != null ; t2 != null ;
p1 >= p2 ; p2 >= 0

∅

17-
18

- - - - - -

18-
19

- - - - - -

19-
20

Yes acc(t1,balance,p1) ;
acc(t2,balance,p2)

∅ a1→t1 ; a2→t2 ;
res→t3

t1 != null ; t2 != null ;
p1 >= p2 ; p2 >= 0

∅

20-
21

Yes acc(t1,balance,p1) ;
acc(t2,balance,p2)

∅ a1→t1 ; a2→t2 ;
res→t3 ; newB→t4

t1 != null ; t2 != null
; p1 >= p2 ; p2 >= 0 ;
t4 = p1 - p2

∅

21-
22

Yes ∅ acc(t1,balance,p3) a1→t1 ; a2→t2 ;
res→t3 ; newB→t4

t1 != null ; t2 != null
; p1 >= p2 ; p2 >= 0 ;
t4 = p1 - p2 ; p3 = t4

∅

22-
23

Yes ∅ positive(t1) a1→t1 ; a2→t2 ;
res→t3 ; newB→t4

t1 != null ; t2 != null
; p1 >= p2 ; p2 >= 0 ;
t4 = p1 - p2 ; p3 = t4

∅

23-
24

Yes ∅ positive(t2) a1→t1 ; a2→t2 ;
res→t3 ; newB→t4

t1 != null ; t2 != null
; p1 >= p2 ; p2 >= 0 ;
t4 = p1 - p2 ; p3 = t4

lbc, ¬(a1 = null || a2 = null)
−→ lc1, acc(a2.balance) ;
lbc, ¬(a1 = null || a2 = null)
−→ lc2, a2.balance >= 0

24-
25

Yes ∅ positive(t2) a1→t1 ; a2→t2 ;
res→t3 ; newB→t4

t1 != null ; t2 != null
; p1 >= p2 ; p2 >= 0 ;
t4 = p1 - p2 ; p3 = t4
; t3 = t1

lbc, ¬(a1 = null || a2 = null)
−→ lc1, acc(a2.balance) ;
lbc, ¬(a1 = null || a2 = null)
−→ lc2, a2.balance >= 0

25 lbc, ¬(a1 = null || a2 = null) −→ lc1, acc(a2.balance) ; lbc, ¬(a1 = null || a2 = null) −→ lc2, a2.balance >= 0 ;
lbc, ¬(a1 = null || a2 = null) −→ lc3, acc(positive(res))

Figure 3.9: Contents of the symbolic state at each program point during Gradual Viper’s static
verification of withdraw in Fig. 3.7

withdraw example is contrived to better illustrate how Gradual Viper works and its interesting
aspects.

Well-formedness of user written specifications. Gradual Viper begins static verification by first
checking user written specifications, like predicate bodies, preconditions, and postconditions,
for well-formedness. That is, user specifications must be self-framed and cannot contain dupli-
cate accessibility predicates or predicates joined by the separating conjunction &&. Self-framing
from IDF [44] simply means that a formula must contain accessibility predicates for any heap
locations accessed in the formula. In gradual verification, ? can represent these accessibility
predicates. For example, in the withdraw program geqTo’s body (lines 5-6) is self-framed,
because ? can represent acc(a1.balance) and acc(a2.balance) to frame a1.balance

and a2.balance. On the other hand, positive’s body (line 8) is classically self-framed as it
explicitly contains acc(a.balance) to frame a.balance. All of the user written formulas,
which are geqTo’s body (lines 5-6), positive’s body (line 8), withdraw’s precondition (line
12), and its postcondition (lines 13-14), are well-formed.

Next, Gradual Viper optimistically statically verifies each function in the given program,
e.g. the withdraw function in our running example. This involves symbolically executing the
function from top to bottom and tracking information in a symbolic state. Information is gathered
from the execution of both specifications and code, and proof obligations are established by the
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symbolic state. If any obligations are established optimistically, corresponding run-time checks
are stored in the symbolic state. Fig. 3.9 displays the contents of the symbolic state at every
program point (marked by program lines) during the verification of withdraw. In general, a
symbolic state can be thought of as writing an intermediate logical formula in a special form. We
will discuss the contents of a symbolic state in more detail as we work through the withdraw
example.

Producing a precondition. At the start of withdraw (lines 15-16), information in the precon-
dition, e.g. geqTo(a1,a2), is produced or translated into an empty symbolic state resulting in
the first state in the table in Fig. 3.9. As with formulas, symbolic states may be imprecise or not,
meaning information may be missing from the state due to imprecision. In fact, you can think of
an imprecise symbolic state as representing an imprecise intermediate formula. Here, the precon-
dition geqTo(a1,a2) is precise,5 so the state also remains precise. Had the precondition been
imprecise, then the state would also become imprecise. Local variables are mapped to symbolic
values in a symbolic, variable store. Since a1 and a2 are arguments to withdraw and res the
return value, they are all assigned fresh symbolic values t1, t2, and t3 respectively in the store.
Then, permissions like accessibility predicates and predicates can be stored in a symbolic heap
(either the optimistic heap or heap) in terms of the symbolic values. We call symbolic versions of
permissions heap chunks. Since geqTo(a1,a2) is concretely known it is added directly to the
heap as the heap chunk geqTo(t1,t2). An important invariant of the heap is that permissions
in it are guaranteed to be separated in memory, i.e. when they are joined by the separating con-
junction they return true. The optimistic heap contains heap chunks for accessibility predicates
that are optimistically assumed during verification and is introduced in this work to reduce the
number of run-time checks produced by Gradual Viper. We will see how this works as we con-
tinue to discuss the withdraw example. For now, the optimistic heap is empty. Similarly, both
the path condition and set of run-time checks both remain empty. The path condition contains
constraints on symbolic values that have been collected on the current verification path. The pre-
condition geqTo(t1,t2) only contains permission information, so the path condition is empty.
Further, producing a formula into the symbolic state does not introduce any run-time checks.

Unfolding a predicate. Next, Gradual Viper executes the unfold statement on line 16 causing the
predicate geqTo(a1,a2) to be consumed and then its body to be produced into the state on lines
16-17. In general, consuming a formula 1) checks whether the formula is established by the sym-
bolic state, 2) generates minimized run-time checks for the state to establish the formula soundly,
and 3) removes permissions asserted in the formula from the symbolic state. That is, consume
is Gradual Viper’s mechanism for checking proof obligations; and as we will see, is used a few
different times throughout the verification of withdraw. Here, since geqTo(t1,t2) is in the
heap, geqTo(a1,a2) is established by the symbolic state and no run-time checks are required.
It is then removed from the heap as it is “consumed". After consumption, geqTo(a1,a2)’s
body (lines 5-6) is produced into the current state (the one without geqTo(t1,t2)). The body

5Note, precision in a static context as in Gradual Viper means the formula does not contain ? at the top-level.
Predicates are treated as black-boxes, so even if their bodies are imprecise, as with geqTo(a1,a2), a formula
containing them, such as geqTo(a1,a2), can be precise.
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of geqTo is imprecise, so the symbolic state is made imprecise (as seen in Fig. 3.9 at lines
16-17). The rest of geqTo’s body is a boolean expression constraining a1 and a2’s account
balances: a1’s balance is greater than or equal to a2’s balance and a2’s balance is positive. Be-
fore adding these constraints to the path condition, Gradual Viper first looks for heap chunks
in the current symbolic state corresponding to accessibility predicates that frame a1.balance
and a2.balance in geqTo’s body. Both the heap and optimistic heap are empty, but the state
is imprecise so the missing heap chunks are optimistically assumed to be in the state. In fact,
it is sound to make this assumption without any run-time checks, because we are producing
(rather than consuming) the predicate body. As a result, fresh symbolic values p1 and p2 for
a1.balance and a2.balance respectively are generated and used to record constraints on
the balances in the path condition. Gradual Viper also records that the receivers a1 and a2 are
non-null in the path condition, because Gradual Viper assumed they can be safely de-referenced.
Finally, Gradual Viper adds heap chunks acc(t1,balance,p1) and acc(t2,balance,p2)
to the optimistic heap to 1) record the mappings of locations to their values and 2) avoid pro-
ducing run-time checks for the accessibility predicates later in the program. These heap chunks
are added to the optimistic heap rather than the heap, because getTo’s body does not specify
whether or not a1 (t1) or a2 (t2) alias. So adding them to the heap would break the heap’s in-
variant. The optimistic heap, however, does not maintain any invariants. It is also convenient to
store optimistic heap chunks in their own heap signaling that they are available due to optimism
in the verification. The final symbolic state after consuming geqTo(a1,a2) and producing its
body is given in Fig. 3.9 lines 16-17.

Branching. After the unfold on line 16, Gradual Viper reaches the start of the if statement on
the following line 17. As is common with static verifiers based on symbolic execution, Gradual
Viper’s execution branches at if statements. Execution also branches at other conditioned points,
such as logical conditionals and loops. Gradual Viper analyzes the then branch (lines 17-19)
under the assumption the condition a1 == null|| a2 == null is true, and the else branch
(lines 19-25) under the assumption a1 == null || a2 == null is false. These assumptions
are added to the path condition for each execution path respectively. However, in our example
the symbolic state going into the if statement (Fig. 3.9 lines 16-17) states that both a1 and a2

are non-null. So the then branch is infeasible, and Gradual Viper prunes this execution path
resulting in the blank symbolic states in Fig. 3.9 from lines 17-19. Both accounts being non-
null means the else branch condition for sure holds and so execution proceeds down this branch
without any changes to the symbolic state. That is, for withdraw to be statically verified, this
one execution path must successfully verify. If Gradual Viper executed both branches, then
determining verification success is a bit more complicated:

• If the current symbolic state is precise, then both execution paths must successfully verify.
This is the default functionality in static verifiers.

• If the current symbolic state is imprecise, then verification succeeds when one or both paths
successfully verify. When only one path succeeds and the state is imprecise, Gradual Viper
optimistically assumes the state contains information that forces program execution down the
success path only at run time. This more permissive static functionality is critical for adhering
to the gradual guarantee at branch points. To ensure the program will never actually execute
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the failing branch (i.e. to ensure soundness), Gradual Viper adds a run-time check for the
success path’s condition at the branch point.

Variable assignment. Let’s look now at how Gradual Viper verifies the else branch (lines
19-25). At the variable assignment on line 20, Gradual Viper first evaluates the right-hand ex-
pression to the symbolic value p1 - p2. To do this, Gradual Viper first looks for heap chunks
for a1.balance and a2.balance in the current symbolic heaps (Fig. 3.9 lines 19-20) to both
frame the locations and get their values. Both heap chunks are in the optimistic heap, so no
run-time checks are required for framing and p1 and p2 are used in the evaluation of the right-
hand expression. Note, if Gradual Viper did not add the aforementioned heap chunks to the
optimistic heap when producing the body of geqTo(a1,a2), then Gradual Viper would cre-
ate run-time checks for them here in the program. However, these checks would be duplicates,
because Gradual Viper also checks that these heap chunks are available when ensuring the pre-
condition getTo(a1,a2) holds in client contexts at calls to withdraw. So sound tracking of
heap chunks in an optimistic heap has helped us avoid duplicating run-time checks! Finally,
Gradual Viper adds a new mapping to the variable store for newB and its fresh symbolic value
t4; and then, adds the constraint t4 = p1 - p2 to the path condition to record information
from the assignment in the symbolic state (Fig. 3.9 lines 20-21).

Field assignment. Next, a1.balance is assigned newB’s value in the field assignment on line
21. Gradual Viper mimics this behavior symbolically by first pulling newB’s value t4 from the
symbolic state (Fig. 3.9 lines 20-21). Then, Gradual Viper looks for a1.balance’s heap chunk
in the state for framing, and if there, removes the chunk as a1.balance’s value may change
in the write, i.e. acc(a1.balance) is consumed. Gradual Viper also asserts that a1 is non-
null. The heap chunk for a1.balance is in the optimistic heap and a1 != NULL is in the path
condition, so no run-time checks are needed here. Then, a1.balance’s heap chunk is removed
from the state; and, unfortunately, this action causes a2.balance’s heap chunk to be removed
from the state as well. Gradual Viper does not know whether or not a1 and a2 alias, because
this information does not appear in the current path condition and the optimistic heap does not
maintain the separation invariant. Then, since the state is imprecise Gradual Viper could assume
that a1.balance and a2.balance refer to the same heap location, i.e. a1 and a2 are aliased.
In this case, removing a1.balance’s heap chunk requires also removing a2.balance’s heap
chunk as a2.balance may have also changed with the write. On the other hand, the case
where they do not alias and a2.balance’s heap chunk can stay in the optimistic heap is also
possible from Gradual Viper’s perspective. To simply and soundly cover both cases Gradual
Viper removes a2.balance’s heap chunk by default when alias information is unknown. As
we will see next, this comes at the cost of additional run-time checks later in the verification of
withdraw. Finally, Gradual Viper produces a new heap chunk for a1.balance into the state
to track its new, fresh symbolic value p3 after the write and updates the path condition with the
assignment information p3 = t4 (Fig. 3.9 lines 21-22).

Folding a predicate. After a1.balance is assigned a new balance, Gradual Viper executes
the fold statement on line 22. Folding a predicate is similar to unfolding a predicate except
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that the functionality is reversed: positive(a1)’s body is consumed from the current state
(Fig. 3.9 lines 21-22) and then positive(a1) is produced into the state after consumption
(Fig. 3.9 lines 22-23). The body of positive(a1) is acc(a1.balance) && a1.balance >=

0, so acc(a1.balance) is consumed first then a1.balance >= 0 second. The heap chunk
acc(t1,balance,p3) corresponding to acc(a1.balance) is in the heap and a1 != null

holds in the path condition, so no run-time check is required for consuming acc(a1.balance).
Then, a1.balance’s heap chunk is removed from the heap as seen in Fig. 3.9 lines 22-23. Next,
the boolean expression a1.balance >= 0 is evaluated to its symbolic value p3 >= 0. Recall
that to do this, Gradual Viper must look up a heap chunk for a1.balance in the symbolic
state to both frame the heap location and get its value. However, Gradual Viper just removed
this heap chunk from the current state due to the left-to-right execution of consume. To solve
this issue, Gradual Viper looks for framing and value information in the state before the fold,
i.e. the state before consumption at lines 21-22 in Fig. 3.9. As we know, a1.balance’s heap
chunk is in this state and maps a1.balance to the value p3, so no run-time check is needed for
framing. Then, p3 >= 0 is asserted against the current path condition. Since p1 >= p2 >=

0 and p3 = t4 = p1 - p2 are in the path condition, p3 is clearly greater than or equal to 0
and is proven directly by the path condition. That is, no run-time check is needed for p3 >= 0.
Finally, positive(a1) is produced into the current state, which adds positive(t1) to the
heap resulting in the final version of the state in Fig. 3.9 lines 22-23.

Next, Gradual Viper executes the second fold statement on line 23 with the aforementioned
state. This fold statement consumes positive(a2)’s body and then produces positive(a2)
into the state. So as before, Gradual Viper first consumes acc(a2.balance) and then
a2.balance >= 0. The receiver a2 is proved to be non-null by the path condition; however
this time, the heap chunk for acc(a2.balance) is not in either of the heaps. Fortunately for
us, the state is imprecise and can optimistically contain this heap chunk, so a run-time check is
produced for acc(a2.balance) as seen in the state after folding positive(a2) in Fig. 3.9
lines 23-24. Since this run-time check occurs down the else branch of the if statement in
withdraw, branch information, e.g. lbc,¬(a1 = null || a2 = null), is included with the
check. The location lbc specifies where the branch point originated in the program, e.g. line 17,
and ¬(a1 = null || a2 = null) is the assumption made at the branch point for the current
execution path. Additionally, lc1 contains the location where the check itself is required in the
program, e.g. line 23. While it does not happen in the withdraw example, sometimes different
checks are required at the same program point down different execution paths. So, Gradual Viper
attaches branch information for the entire execution path to each run-time check to allow GVC0
(or other frontends) to apply checks only on the execution path they are required. This ensures
soundness and reduces run-time checking. Now, Gradual Viper removes acc(a2.balance)
from the current state (Fig. 3.9 lines 22-23), which actually causes positive(t1) to be re-
moved from the heap as well. Predicates are treated as black boxes in Gradual Viper; so unless
told otherwise, Gradual Viper conservatively assumes acc(a2.balance) is in positive(t1)
and removes positive(t1) from the heap alongside acc(a2.balance). The only way Grad-
ual Viper can guarantee acc(a2.balance) is not in positive(t1) is if a heap chunk for
a2.balance and positive(t1) both exist in the heap, as the heap maintains the separation
invariant. In this case, positive(t1) can remain in the heap while only acc(a2.balance)
is removed. Of course, in our example the heap chunk for a2.balance is definitely not in the
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heap, so postive(t1) is removed.
Continuing, Gradual Viper consumes a2.balance >= 0, which first looks for a heap hunk

to frame a2.balance in the state before the consume (Fig. 3.9 lines 22-23). However, neither
of the heaps contain a heap chunk for a2.balance. As before, Gradual Viper uses impreci-
sion to optimistically assume the heap chunk is in the state and produces a run-time check for
acc(a2.balance). Since this run-time check for the same location already exists in the state,
the two checks are condensed into the first one. Then, Gradual Viper returns a fresh symbolic
value for a2.balance, say p4, to evaluate a2.balance >= 0 down to p4 >= 0. Note, Grad-
ual Viper can only return a fresh value here, because the heaps do not contain a heap chunk
recording a2.balance’s value in the state. Unfortunately, this means Gradual Viper cannot
prove a2.balance >= 0 holds as no constraints exist for p4 in the path condition. But, this
also means p4 >= 0 does not contradict existing information in the path condition. So, impre-
cision in the state can optimistically represent p4 >= 0 and a run-time check for a2.balance
>= 0 is generated as seen in Fig. 3.9 lines 23-24. A few things of note here:
• Run-time checks are originally computed in terms of symbolic values, e.g. p4 >= 0, but are

ultimately replaced with counterparts written in terms of program variables, e.g. a2.balance
>= 0. This replacement by the translate function in Gradual Viper simplifies the implemen-
tation of run-time checks for frontends like GVC0, which operate on program variables and
concrete values not symbolic values. The translate function uses mappings in the sym-
bolic heaps and store to reverse the symbolic execution. Special considerations are made for
fresh symbolic values like p4, aliasing between object values, and different variable contexts.

• On another note, if consuming acc(a1.balance) at the field assignment on line 21 did not
also consume the heap chunk for a2.balance, then the run-time checks for
acc(a2.balance) and a2.balance >= 0 would not be necessary. Gradual Viper conser-
vatively assumed a1 and a2 were aliased at the consume, so it removed both chunks from the
state. However, in practice a1 and a2 are likely to be distinct objects; and in fact, folding
positive(a1) then positive(a2) is a good sign the developer of withdraw expects a1
and a2 to be distinct. In this case, a2.balance’s heap chunk does not need to be removed
making the aforementioned run-time checks unnecessary. Unfortunately, since we designed
Gradual Viper to be conservative for simplicity, these run-time checks are only eliminated
when the developer explicitly specifies that a1 and a2 are not aliased, such as in the precon-
dition of withdraw. So, we are trading more optimal run-time checks for simplicity in our
consume algorithm.

• While it does not happen here in our withdraw example, there may be times where parts
of a symbolic, boolean expression are proven statically and the rest optimistically. In this
case, Gradual Viper re-writes the expression into conjunctive normal form and computes the
conjuncts in this form that cannot be proven statically by the path condition. These conjuncts
(after translation) will then be checked at run time. We call this process computing the dif-
ference between the expression and the path condition, and it results in minimized run-time
checks given statically available information.

Finally, a heap chunk for positive(a2) (e.g. positive(t2)) is produced into the heap re-
sulting in the final form of the state in Fig. 3.9 lines 23-24.
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Return value assignment. Then, Gradual Viper reaches the variable assignment on line 24,
which assigns a1 to res—the return value of withdraw. Gradual Viper first looks up the
symbolic value t1 for a1 and then the symbolic value t3 for res in the variable store. Gradual
Viper stores the information t3 = t1 from the assignment in the path condition resulting in the
next symbolic state in Fig. 3.9 lines 24-25.

Consuming a postcondition. Finally, Gradual Viper reaches the end of withdraw down its one
and only execution path on line 25. So the last thing Gradual Viper must do to verify the func-
tion, is to consume the postcondition ? && acc(positive(a2)) && acc(positive(res))
(lines 13-14) in the current symbolic state (Fig. 3.9 lines 24-25). Gradual Viper begins by first
consuming positive(a2) then positive(res). The heap chunk for positive(a2) is in
the heap, so no run-time check is needed for it. Then positive(t2) is removed from the heap
leaving both symbolic heaps empty. As a result (and because the state is imprecise), consuming
positive(res) in the next step results in a run-time check for the predicate as seen in the
final set of run-time checks required for withdraw given in Fig. 3.9 line 25. Note, consuming
acc(positive(a2)) && acc(positive(res)) requires both consuming the predicates in-
dividually (which we’ve done) and ensuring that one predicate does not access heap locations
overlapping with the other (in adherence with the separating conjunction &&). Unfortunately, the
state does not contain enough information to prove this fact statically, e.g. only the heap chunk
for positive(a2) appears in the heap, but the state is imprecise! So when Gradual Viper
optimistically assumes positive(res) holds, it also assumes positive(res) is separated
from positive(a2). Gradual Viper flags positive(res)’s run-time check with this addi-
tional check for GVC0 to handle. Additionally, after consuming the static part of an imprecise
formula, e.g. acc(positive(a2)) && acc(positive(res)) in withdraw’s postcondition,
Gradual Viper makes the state imprecise and empties both symbolic heaps. The ? in the impre-
cise formula can represent any permission available in the state, so they must be removed by
consume.

Takeaways. To summarize, Gradual Viper statically verifies the withdraw function success-
fully, and produces run-time checks for acc(a2.balance) before line 21, a2.balance >=

0 also before line 21, and positive(res) at the end of withdraw (line 25). The withdraw
function will be completely verified if these checks succeed at run time. During our discussion
of the withdraw function, we highlighted a number of technical challenges addressed and solu-
tions developed related to designing and implementing Gradual Viper. One of our goals was for
Gradual Viper to minimize run-time checks as much as possible without using highly complex
algorithms. For this we introduced the optimistic heap, which tracks heap chunks that are opti-
mistically assumed during static verification and can be soundly used to reduce run-time check-
ing in successive program statements from where they originated. In withdraw, we saw the
heap chunks for a1.balance and a2.balance, which were added to the optimistic heap dur-
ing the production of geqTo(a1,a2)’s body (line 16), be used to eliminate duplicate run-time
checks at the assignment on line 20. We had to make careful considerations for the separating
conjunction and removal of heap chunks at consumes to ensure sound tracking of heap chunks
in the optimistic heap. We also defined and implemented the diff function, which utilizes
conjunctive normal form to optimize run-time checks for boolean expressions. Finally, Gradual
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Viper conservatively removes heap chunks from the symbolic heaps that may alias with other
heap chunks removed at a consume. We saw in withdraw that this comes at the cost of addi-
tional run-time checks: consuming a1.balance’s heap chunk at the field assignment on line 21
also consumed a2.balance’s heap chunk resulting in run-time checks for acc(a2.balance)
and a2.balance >= 0 before line 21. That is, we are trading more optimal run-time checks
for simplicity in our consume algorithm.

Another goal for Gradual Viper, is for it to use symbolic execution for static reasoning. We
accomplished this goal, but not without dealing with some technical challenges. Symbolic exe-
cution based static verifiers generate and discharge proof obligations written in terms of symbolic
values, causing Gradual Viper, which extends this system, to follow suit. As a result, Gradual
Viper naturally generates run-time checks written in terms of symbolic values as well. Unfor-
tunately, dynamic verifiers only operate on program variables and concrete values not symbolic
ones. To bridge this gap between the static and dynamic systems, we implemented a translate
function in Gradual Viper that re-writes run-time checks containing symbolic values to ones con-
taining program variables and concrete values while being careful about aliases. Finally, execu-
tion splitting at branch points led to some trickiness in gradual verification. Different run-time
checks may appear at the same program point along different execution paths, so we augmented
Gradual Viper to attach branching information to run-time checks. We also augmented Gradual
Viper to be more optimistic about verification success when dealing with failing execution paths
in the presence of imprecision. This was done in compliance with the gradual guarantee.

3.4 Gradual Viper: Implemented Algorithm

In this section, we formalize the symbolic execution algorithm implemented by Gradual Viper.
A high-level description of how it works is given in §3.3. Our algorithm extends Viper’s sym-
bolic execution algorithm, and so Gradual Viper’s design is heavily influenced by Müller et al.
[33]’s work. Like Viper, Gradual Viper’s algorithm consists of 4 major functions: eval, produce,
consume, and exec. The functions evaluate expressions, produce (inhale) and consume (exhale)
formulas, and execute program statements respectively. Following Viper’s lead, our 4 functions
are defined in continuation-passing style, where the last argument of each of the aforementioned
functions is a continuation Q. The continuation is a function that represents the remaining sym-
bolic execution that still needs to be performed. Note that the last continuation returns a boolean
(λ _ . success() or λ _ . failure()), indicating whether or not symbolic execution was successful.

The rest of this section is outlined as follows. Run-time checks and the collections that hold
them are described in §3.4.1. We define symbolic states in §3.4.2 and preliminaries in §3.4.3.
Finally, the 4 major functions of our algorithm are given in their own sections: eval §3.4.4,
produce §3.4.5, consume §3.4.6, and exec §3.4.7. Throughout this section, we make clear where
Viper has been extended to support imprecise formulas with yellow highlighting in figures. We
also use blue highlighting to indicate extensions for run-time check generation and collection.
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3.4.1 Run-time checks

Run-time checks produced by Gradual Viper are collected in the R set. A run-time check is a
4-tuple (bcsc, originc, locationc, ϕc), where bcsc is a set of branch conditions, originc
and locationc denote where the run-time check is required in the program, and ϕc is what
must be checked. A branch condition in bcsc is also a tuple of (origine, locatione, e),
where origine and locatione define the program location at which Gradual Viper’s execution
branches on the condition e. A location is the AST element in the program where the branch
or check occurs, denoted as a formula ϕl. Sometimes, the condition being checked is defined
elsewhere in the program (e.g. in the precondition of a method) but we need to relate it to the
method being verified. The origin is used to do this. It is none when the condition is in the
method being verified; otherwise, it contains a method call, fold, unfold, or special loop statement
from the method being verified that referenced the check specified in the location. An example
run-time check is: ({(none, x > 2, ¬(x > 2))}, z :=m(y), acc(y.f), acc(y.f)). The check
is for accessing y.f , and it is required for m’s precondition element acc(y.f) at the method call
statement z := m(y). The check is only required when ¬(x > 2), which is evaluated at the
program point where the AST element x > 2 exists. Since ¬(x > 2)’s origin is none, it comes
from an if or assert statement.

Further, R is used to collect run-time checks down a particular execution path in Gradual
Viper. R is a 3-tuple (bcsp, originp, rcsp) where bcsp is the set of branch conditions col-
lected down the execution path p, originp is the current origin that is set and reset during
execution, and rcs is the set of run-time checks collected down p. Two auxiliary functions are
used to modify R: addcheck and addbc. The addcheck function takes an R collection Rarg,
a location ϕl for a check, and the check itself, and returns a copy of Rarg with the run-time
check added to Rarg.rcs. If necessary, addcheck uses Rarg.origin and substitution to ensure
ϕl and the check refer to the correct context. For example, let ϕl and check ϕc come from as-
serting a precondition for z := m(y). Then, addcheck performs the substitutions: ϕl[t 7→ marg]
(precondition declaration context) and ϕc[t 7→ y] (method call context) where t is the symbolic
value for y. The addbc function operates similarly to addcheck but for branch conditions.

3.4.2 Symbolic State

We use σ ∈ Σ to denote a symbolic state, which is a 6-tuple
(isImprecise, h?, h, γ, π, R) consisting of a boolean isImprecise, a symbolic heap h?,
another symbolic heap h, a symbolic store γ, a path condition π, and a collection R (defined in
§3.4.1). The boolean isImprecise records whether or not the state is imprecise, the symbolic
store γ maps local variables to their symbolic values, and the path condition π (defined in §3.4.3)
contains constraints on symbolic values that have been collected on the current verification path.

A symbolic heap is a multiset of heap chunks for fields or predicates that are currently ac-
cessible. A field chunk id(r; δ) (representing expression r.id) consists of the field name id, the
receiver’s symbolic value r, and the field’s symbolic value δ—also referred to as the snapshot
of a heap chunk. For a predicate chunk id(args; δ), id is the predicate name, args is a list of
symbolic values that are arguments to the predicate, and δ is the snapshot of the predicate. A
predicate’s snapshot represents the values of the heap locations abstracted over by the predicate.
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The symbolic, optimistic heap h? contains heap chunks that are accessible due to optimism in
the symbolic execution, while h contains heap chunks that are statically accessible. Further, only
h maintains the invariant that its heap chunks are separated in memory, and thus, can be joined
successfully by the separating conjunction. The empty symbolic state is
σ0 = (isImprecise := false, h? := ∅, h := ∅, γ := ∅, π := ∅,R := (∅, none, ∅)).

3.4.3 Preliminaries

We introduce a few preliminary definitions here that will be helpful later. A path condition π
is a stack of tuples (id, bc, pcs). An id is a unique identifier that determines the constraints
on symbolic values that have been collected between two branch points in execution. The bc
entry is the symbolic value for the branch condition from the first of two branch points, and
pcs is the set of constraints that have been collected. Branch points can be from if statements
and logical conditionals in formulas. Functions pc-all, pc-add, and pc-push manipulate path
conditions and are formally defined in Appendix Fig. A.11. The pc-all function collects and
returns all the constraints in π, pc-add adds a new constraint to π, and pc-push adds a new stack
entry to π. Similarly, snapshots for heap chunks have their own related functions: unit, pair,
first, and second. The constant unit is the empty snapshot, pair constructs pairs of snapshots,
and first and second deconstruct pairs of snapshots into their sub-parts. Further, fresh is used
to create fresh snapshots, symbolic values, and other identifiers depending on the context. The
havoc function similarly updates a symbolic store by assigning a fresh symbolic value to each
variable in a given collection of variables. Finally, check(π, t) = pc-all(π) ⇒ t queries the
underlying SAT solver to see if the given constraint t is valid in a given path condition π (i.e. π
proves or implies t).

3.4.4 Symbolic execution of expressions

The symbolic execution of expressions by the eval function is defined in Fig. 3.10. Using the
current symbolic state, eval evaluates an expression to a symbolic value t and returns t and the
current state to the continuation Q. Variable values are looked up in the symbolic store and re-
turned. For op(e), its arguments e are each evaluated to their symbolic values t. A symbolic
value op′(t) is then created and returned with the state after evaluation. Each op has a corre-
sponding symbolic value op′ of the same arity. For example, e1+e2 results in the symbolic value
add(t1, t2) where e1 and e2 evaluate to t1 and t2 respectively.

Finally, the most interesting rule is for fields e.f . The receiver e is first evaluated to t resulting
in a new state σ2. Then, eval looks for a heap chunk for t.f first in the current heap h.6 If a
chunk exists, then the heap read succeeds and σ2 and the chunk’s snapshot δ is returned to the
continuation. If a chunk does not exist in h, then eval looks for a chunk in the optimistic heap
h?, and if found the chunk’s snapshot is returned with σ2. If a heap chunk for t.f is not found
in either heap, then the heap read can still succeed when σ2 is imprecise. As long as t ̸= null

does not contradict the current path condition σ2.π (the call to assert, Appendix Fig. A.18), σ2’s

6Heap lookup in eval also looks for heap chunks that are aliases (according to the path condition) to the chunk
in question.
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eval(σ, t, Q) = Q(σ, t)

eval(σ, x, Q) = Q(σ, σ.γ(x))

eval(σ1, op(e), Q) = eval(σ1, e, (λ σ2, t . Q(σ2, op′(t))))

eval(σ1, e.f, Q) = eval(σ1, e, (λ σ2, t .

if (∃ f(r; δ) ∈ σ2.h . check(σ2.π, r = t)) then

Q(σ2, δ)

else if (∃ f(r; δ) ∈ σ2.h? . check(σ2.π, r = t)) then

Q(σ2, δ)

else if (σ2.isImprecise) then

res, _ := assert(σ2.isImprecise, σ2.π, t ̸= null)

et := translate(σ2, t)

R′ := addcheck(σ2.R, e.f, acc(et.f))

δ := fresh

res ∧Q(σ2{h? := σ2.h? ∪ f(t; δ), π := pc-add(σ2.π, {t ̸= null}), R := R′ }, δ)

else failure())

■ Handles imprecision ■ Handles run-time check generation and collection

Figure 3.10: Rules for symbolically executing expressions

imprecision optimistically provides access to t.f . Therefore, a run-time check for acc(et.f) is
created and added to σ2’s set of run-time checks (highlighted in blue). Note that et.f is used in
the check rather than t.f , because—unlike t which is a symbolic value—the expression et can
be evaluated at run time. Specifically, translate (described in Appendix Fig. A.15) is called on t
with the current state σ2 to compute et. Additionally, the AST element e.f is used to denote the
check’s location.

Afterwards, a fresh snapshot δ is created for t.f ’s value, and a heap chunk f(t; δ) for t.f
and δ is created and added to σ2’s optimistic heap passed to the continuation. Similarly, the
constraint t ̸= null is added to σ2’s path condition. By adding f(t; δ) to the optimistic heap,
the following accesses of t.f are statically verified by the optimistic heap, which reduces the
number of run-time checks produced. Finally, verification of the heap read for t.f fails when
none of the aforementioned cases are true. Fig. A.12 and Fig. A.13 in the Appendix define
variants of eval, called eval-p and eval-c, that are used in produce and consume respectively.
The eval-p variant does not introduce run-time checks and eval-c does not extend the optimistic
heap and path condition, because the aforementioned functionalities are not needed in these
contexts.

3.4.5 Symbolic production of formulas

Produce (Fig. 3.11) is responsible for adding information to the symbolic state, in particular,
the path condition and the heap h. Producing an imprecise formula makes the symbolic state
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produce(σ, ? && ϕ, δ, Q) = produce(σ{isImprecise := true}, ϕ, second(δ), Q)

produce(σ1, e, δ, Q) = eval-p (σ1, e, (λ σ2, t . Q(σ2{π := pc-add(σ2.π, {t, δ = unit})})))

produce(σ1, acc(p(e)), δ, Q) = eval-p (σ1, e, (λ σ2, t . Q(σ2{h := σ2.h ⊎ p(t; δ)})))

produce(σ1, acc(e.f), δ, Q) = eval-p (σ1, e, (λ σ2, t .

Q(σ2{h := σ2.h ⊎ f(t; δ), π := pc-add(σ2.π, {t ̸= null})})))
produce(σ1, ϕ1 && ϕ2, δ, Q) = produce(σ1, ϕ1, first(δ), (λ σ2 . produce(σ2, ϕ2, second(δ), Q)))

produce(σ1, e ? ϕ1 : ϕ2, δ, Q) = eval-p (σ1, e, (λ σ2, t .

branch (σ2, e, t, (λ σ3 . produce(σ3, ϕ1, δ, Q)), (λ σ3 .

produce(σ3, ϕ2, δ, Q)))))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure 3.11: Rules for symbolically producing formulas

imprecise. The produce rule for an expression e evaluates e to its symbolic value and produces
it into the path condition. The produce rules for accessibility predicates containing fields and
predicates are similar, so we focus on the rule for fields only. The field e.f in acc(e.f) first
has its receiver e evaluated to a symbolic value t. Then, using the parameter δ a fresh heap
chunk f(t; δ) is created and added to the heap before invoking the continuation. Note, the
disjoint union ⊎ ensures f(t; δ) is not already in the heap before f(t; δ) is added; otherwise,
verification fails. Further, acc(e.f) implies e ̸= null and so that fact is recorded in the path
condition as t ̸= null. When the separating conjunction ϕ1 && ϕ2 is produced, ϕ1 is first
produced into the symbolic state, followed by ϕ2. Finally, to produce a conditional, Gradual
Viper branches on the symbolic value t for the condition e splitting execution along two different
paths. Along one path ϕ1 is produced into the state under the assumption that t is true, and
along the other path ϕ2 is produced under the ¬t assumption. Both paths follow the continuation
to the end of its execution, and a branch condition corresponding to the t assumption made is
added to the symbolic state. Paths are pruned when they are infeasible (the assumption about t
would contradict the current path conditions). Overall verification success is computed from the
results of the two execution paths, and an imprecise state allows this computation to be optimistic
when one path successfully verifies and the other doesn’t. In this case, branch optimistically
marks verification a success when normally it should fail, because the state may optimistically
contain information that prunes the failure case. A run-time check is then added for the success
path’s condition to ensure soundness. This functionality is important for adhering to the gradual
guarantee. The formal definition of branch is in Fig. 3.12, and other details for branch and
produce are given in Chpt. 3’s Appendix §A.2.2. Note, produce only adds run-time checks for
branching to the symbolic state.

3.4.6 Symbolic consumption of formulas

The goals of consume are 3-fold: 1) given a symbolic state σ and formula ϕ̃, check whether
ϕ̃ is established by σ, i.e. ϕ̃σ ⇒̃ ϕ̃ where ϕ̃σ is the formula which represents the state σ, 2)
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branch(σ, e, t, Qt, Q¬t) =

(πT , RT ) := (pc-push(σ.π, fresh, t), addbc(σ.R, e, e) )

(πF , RF ) := (pc-push(σ.π, fresh, ¬t), addbc(σ.R, e, ¬e) )

if (σ.isImprecise) then

resT := (if ¬check(σ.π, ¬t) then Qt(σ{π := πT , R := RT }) else failure())

resF := (if ¬check(σ.π, t) then Q¬t(σ{π := πF , R := RF }) else failure())

if ((resT ∧ ¬resF ) ∨ (¬resT ∧ resF )) then

R′ := addcheck(σ.R, e, (if (resT ) then e else ¬e))

R := R ∪R′.rcs.last

resT ∨ resF

else

(if ¬check(σ.π, ¬t) then Qt(σ{π := πT , R := RT }) else success()) ∧

(if ¬check(σ.π, t) then Q¬t(σ{π := πF , R := RF }) else success())

■ Handles imprecision ■ Handles run-time check generation and collection

Figure 3.12: Formally defining the branch function

produce and collect run-time checks that are minimally sufficient for σ to establish ϕ̃ soundly,
and 3) remove accessibility predicates and predicates that are asserted in ϕ̃ from σ. The rules for
consume are given in full and described in great detail in Chpt. 3’s Appendix §A.2.3. We give
select rules in Fig. 3.13 and an abstract description here.

The functionality of consume is split across two functions: consume, which is the interface
to consume accepting only a state, formula, and continuation, and consume’, which is a helper
function performing consume’s major functionality. Note, before calling consume’, consume
first adds non-alias information from the heap to the path condition and checks that the heap and
path condition are non-contradictory using consolidate [39].

Then, the two functions work together to accomplish the aforementioned goals. For the
first and second goals, heap chunks representing accessibility predicates and predicates in ϕ̃ are
looked up in the heap h and optimistic heap h? from σ. When σ is precise, the heap chunks must
be in h or verification fails. If σ is imprecise, then the heap chunks are always justified either by
the heaps or imprecision. Run-time checks for heap chunks that are verified by imprecision are
collected in σ.R. The consume’ rule for acc(e.f) (and the rule for acc(p(e)) which is simi-
lar) supports this functionality by calling heap-rem-acc (defined in Appendix Fig. A.17) for the
look-up, assigning the boolean results to b1 and b2, and then using them in if-then-else and
else-if casing. The blue highlighting in the isImprecise is true case in the aforementioned
rule handles the run-time checks. Clauses in ϕ̃ containing logical expressions are first evaluated
to a symbolic value t, which is then checked against σ’s path condition π. If σ is precise, then
pc-all(π) ⇒ t must hold (i.e. the constraints in π prove t) or verification fails. In contrast, when
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consume(σ1, θ, Q) = σ2 := σ1{ h, π := consolidate(σ1.h, σ1.π) }

consume’(σ2, σ2.isImprecise , σ2.h? , σ2.h, θ, (λ σ3, h′
? , h1, δ1 .

Q(σ3{ h? := h′
? , h := h1}, δ1)))

consume(σ1, ? && ϕ, Q) = σ2 := σ1{ h, π := consolidate(σ1.h, σ1.π) }

consume’(σ2, true , σ2.h? , σ2.h, ϕ, (λ σ3, h′
? , h1, δ1 .

Q(σ3{ isImprecise := true, h? := ∅, h := ∅ }, pair(unit, δ1) )))

consume’(σ, f? , h? , h, ( e , t), Q) = res, t := assert(σ.isImprecise, σ.π, t)

R′ := addcheck(σ.R, e, translate(σ, t))

res ∧Q(σ{ R := R′ }, h? , h, unit)

consume’(σ1, f? , h? , h, e, Q) = eval-c (σ1{ isImprecise := f? }, e, (λ σ2, t .

consume’(σ2{ isImprecise := σ1.isImprecise }, f? , h? , h, ( e , t), Q)))

consume’(σ1, f? , h? , h, acc(e.f), Q) = eval-c (σ1{ isImprecise := f? }, e, (λ σ2, t .

σ3 := σ2{isImprecise := σ1.isImprecise}

res, t := assert(σ3.isImprecise, σ3.π, t ̸= null)

res ∧ (

R′ := addcheck(σ3.R, acc(e.f), translate(σ3, t))

(h1, δ1, b1) := heap-rem-acc(σ3.isImprecise, h, σ3.π, f(t))

if (σ3.isImprecise) then

(h′
?, δ2, b2) := heap-rem-acc(σ3.isImprecise, h?, σ3.π, f(t))

if (b1 = b2 = false) then

R′′ := addcheck(R′, acc(e.f), acc(translate(σ3, t).f))

else R′′ := R′

Q(σ3{ R := R′′ }, h′
?, h1, (if (b1) then δ1 else δ2))

else if (b1) then Q(σ3{ R := R′ }, σ3.h?, h1, δ1)

else failure() )))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure 3.13: Select rules for symbolically consuming formulas
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exec(σ1, x.f := e, Q) = eval (σ1, e, (λ σ2, t . consume (σ2, acc(x.f), (λ σ3, _ .

produce (σ3, acc(x.f) && x.f = t, pair(fresh, unit), Q)))))

exec(σ1, z := m(e), Q) = eval (σ1, e, (λ σ2, t .

R′ := σ2.R{origin := (σ2, z := m(e), t)}

consume (σ2{ R := R′ }, methpre[methargs 7→ t], (λ σ3, δ .

if (equi-imp(methpre)) then

σ4 := σ3{isImprecise := true, h? := ∅, h := ∅, γ := havoc(σ3.γ, z)}

else σ4 := σ3{γ := havoc(σ3.γ, z)}

produce (σ4, methpost[methargs 7→ t][methret 7→ z], fresh,

(λ σ5 . Q(σ5{ R := σ5.R{origin := none} })))))))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure 3.14: Select rules for symbolically executing program statements

σ is imprecise,
∧

pc-all(π) ∧ t must hold (i.e. t does not contradict constraints in π) otherwise
verification fails. In this case, a run-time check is added to σ.R for the set of residual sym-
bolic values in t that cannot be proved statically by π. The consume’ rules for expressions and
symbolic values implement this behavior. The call to assert (defined in Appendix Fig. A.18)
checks t against π and returns the result and any residual symbolic values. Note, assert uses diff
from Chpt. 3’s Appendix §A.2.1 to compute the residuals. The part highlighted in blue adds the
run-time check for the residuals to the state. Finally, fields used in ϕ̃ must have corresponding
heap chunks in h when σ and ϕ̃ are precise; otherwise when σ or ϕ̃ are imprecise, field access
can be justified by either the heaps or imprecision. A run-time check containing an accessibility
predicate for the field is added to σ.R when imprecision is relied on. This is all handled by the
second argument f? to consume’ and eval-c called by consume’ on expressions.

The third goal of consume is to remove heap chunks hci representing accessibility predicates
and predicates in ϕ̃ from σ, and in particular, from heaps h and h?. When σ and ϕ̃ are both
precise, the heap chunks in hci are each removed from h (h? is empty here). If ϕ̃ is imprecise,
then all heap chunks in both heaps are removed as they may be in hci or ϕ̃ may represent them
with imprecision. Finally, when σ is imprecise and ϕ̃ is precise, any heap chunks in h or h? that
overlap with or may potentially overlap with (thanks to σ’s imprecision) heap chunks in hci are
removed. The calls to heap-rem-acc (and its counterpart heap-rem-pred) in consume’, the extra
heaps tracked in consume’, and the heap assignments in the continuations from consume come
together to implement heap chunk removal.

3.4.7 Symbolic execution of statements
The exec rules in Gradual Viper, which symbolically execute program statements, are largely
unchanged from Viper. The only differences are 1) the rules now utilize versions of eval, produce,
consume, and branch defined previously in this paper and 2) the rules track origins where
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appropriate. To provide an intuition, select rules for exec are given in Fig. 3.14; the full set
of rules are listed in Chpt. 3’s Appendix §A.2.4. The exec function takes a symbolic state σ,
program statement stmt, and continuation Q. Then, exec symbolically executes stmt using σ to
produce a potentially modified state σ′, which is passed to the continuation.

Symbolic execution of field assignments first evaluates the right-hand side expression e to
the symbolic value t. Any field reads in e are either directly or optimistically verified using σ1.
Then, the resulting state σ2 must establish write access to x.f in consume, i.e. σ2 ⇒̃ acc(x.f).
Calling consume also removes the field chunk for acc(x.f) from σ2 (if it is in there) resulting
in σ3. Therefore, the call to produce can safely add a fresh field chunk for acc(x.f) alongside
x.f = t to σ3 before it is passed to the continuation Q. Under the hood, run-time checks are
collected and passed to Q.

The method call rule evaluates the arguments e to symbolic values t, consumes the method
precondition (substituting arguments with t) while making sure the origin is set properly for
check and branch condition insertion, havocs existing assumptions about the variables being
assigned to, produces knowledge from the postcondition, and finally continues after resetting the
origin to none. An in-depth explanation is in the Appendix section for Chpt. 3 (§A.2), along with
the other exec rules and equi-imp definition. Note that while Gradual Viper treats predicates iso-
recursively in all other cases, it makes an exception when consuming preconditions at method
calls (and loop invariants before entering loops), which can be seen in the if-then in the method
call rule (Fig. 3.14). If Gradual Viper determines the precondition (invariant) is equi-recursively
imprecise, then it will conservatively remove all the heap chunks from both symbolic heaps after
the consume. This exception ensures the static verification semantics in Gradual Viper lines up
with the equi-recursive, dynamic verification semantics encoded by GVC0 (describe in §3.5)
such that Gradual C0 is sound. Interestingly, the gradual verifier defined in Chpt. 2 does not
need this special case, because it does not optimize run-time checks with statically available
information. Once optimization is introduced, the semantics across the two systems need to be
more tightly integrated to ensure soundness.

3.4.8 Valid Gradual Viper programs

Finally, putting everything together, a Gradual Viper program is checked by examining each of its
method and predicate definitions to ensure they are well-formed (formally defined in Appendix
Fig. A.21). The formal definitions are given in Fig. 3.15, and a more detailed description of the
rules is given in Chpt. 3’s Appendix §A.2.5. Intuitively, for each method, we define symbolic
values for the method arguments, and then create an initial symbolic state by calling the produce
function on the method precondition7. We then call the exec function on the method body, which
symbolically executes the body and ensures that all operations are valid based on that precondi-
tion. Finally, we invoke the consume function on the final symbolic state and the postcondition,
verifying that the former implies the latter. Throughout these operations a set of run-time checks
is built up, which (along with success or failure) is the ultimate result of gradual verification.

7Note, produce is part of well-formed.
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verify(method m(x : T ) returns (y : T )) = well-formed (σ0{γ := σ0.γ[x 7→ fresh][y 7→ fresh]}, methpre, fresh, (λ σ1.

well-formed (σ1{ isImprecise := false, h? := ∅ , h := ∅}, methpost,

fresh, (λ _ . success()))

∧

exec (σ1, methbody , (λ σ2 .

consume (σ2, methpost, (λ σ3, _ .

R := R ∪ σ3.R.rcs ; success()))))))

verify(predicate p(x : T)) = well-formed (σ0{γ := σ0.γ[x 7→ fresh]}, predbody , fresh, (λ_.success()))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure 3.15: Rules defining a valid Gradual Viper program

3.5 Dynamic Verification: Encoding Run-time Checks into
C0 Source Code

After static verification, Gradual Viper returns a collection of run-time checks R that are required
for soundness to GVC0. Then, GVC0 creates a C0 program from the run-time checks in R and
the original C0 program by encoding the checks in C0 source code. The C0 program is sent to
the C0 compiler to be compiled, executed, and thus dynamically verified. We chose to encode the
run-time checks directly in source code to avoid complexities from augmenting the C0 compiler
with support for dynamic verification. Further, since C0 is a simple imperative language, any
more expressive language should be able to encode the checks far more easily. That is, we hope
this work serves as a guide to the developers of Gradual Viper frontends for other languages
on how to implement efficient dynamic verification for gradual verification—especially, when
modifying the compiler for their language is difficult. The rest of this section illustrates GVC0’s
encoding of run-time checks into C0 source code via example. We also highlight design points
in the encoding that minimize run-time overhead of the checks during execution.

Now, consider the C0 program in Fig. 3.16 that implements a method for inserting a new
node at the end of a list, called insertLastWrapper. Note, when passed a non-empty list,
insertLastWrapper calls insertLast from Fig. 1.1 to perform insertion (line 18). Here,
insertLast is gradually verified with the simpler and fully specified (precise) acyclic predi-
cate given on lines 1-4 in Fig. 3.16. For our purposes, we only need to know that insertLast’s
precondition is ? && acyclic(list) && list != NULL and its postcondition is
acyclic(\result) && \result != NULL. The insertLastWrapper method is also grad-
ually specified: its precondition is ? (line 7)—requiring unknown information—and its postcon-
dition is acyclic(\result) (line 8)—ensuring the list after insertion is acyclic. Fig. 3.16
also contains run-time checks generated by Gradual Viper for insertLastWrapper, as high-
lighted in blue. The first check (lines 15-17) ensures the list l sent to insertLast (line 18)
is acyclic, and is only required when l is non-empty (non-null). The second check (lines 21-
23) ensures the list returned from insertLastWrapper is acyclic, and is only required when
insertLastWrapper’s parameter l is empty (null). These checks are not executable by the
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1 /*@ predicate acyclic(Node* l) =
2 l == NULL ? true :
3 acc(l->val) && acc(l->next) &&
4 acyclic(l->next) ;@*/
5
6 Node* insertLastWrapper(Node* l, int val)
7 //@ requires ?;
8 //@ ensures acyclic(\result);
9 {

10 if (l == NULL) {
11 l = alloc(struct Node);
12 l->val = val;
13 l->next = NULL;
14 } else {

15 ({(none, l == NULL, ¬(l == NULL))},

16 (l=insertLast(l,val), acyclic(l),

17 acyclic(l))

18 l = insertLast(l, val);
19 }
20 return l;

21 ({(none, l == NULL, l == NULL)},

22 (none, acyclic(\result),

23 acyclic(\result))

24 }

■ Run-time checks from Gradual Viper

Figure 3.16: insertLastWrapper

program with run-time checks from
Gradual Viper

1 Node* insertLastWrapper(Node* l,int val,

2 OwnedFields* _ownedFields )

3 {

4 bool _cond_1 = l == NULL;

5 if (l == NULL) {
6 l = alloc(struct Node);

7 l->_id = addStructAcc(_ownedFields,2);

8 l->val = val; l->next = NULL;
9 } else {

10 if (!_cond_1) {acyclic(l, _ownedFields);}

11 OwnedFields* _tempFields =

12 initOwnedFields(_ownedFields->instCntr);

13 sep_acyclic(l, _tempFields);

14 l = insertLast(l,val, _ownedFields );

15 }

16 if (_cond_1) { acyclic(l, _ownedFields); }

17 OwnedFields* _tempFields1 =

18 initOwnedFields(_ownedFields->instCntr);

19 sep_acyclic(l, _tempFields1);

20 return l;
21 }

■ Run-time checks from GVC0

Figure 3.17: insertLastWrapper program
with run-time checks generated by GVC0

C0 compiler; therefore, GVC0 takes the program and checks in Fig. 3.16 and returns the ex-
ecutable program in Fig. 3.17. That is, GVC0 encodes branch conditions (lines 15 and 21),
predicates (lines 16-17 and 22-23), accessibility predicates (acc(l->val) and acc(l->next)
in acyclic’s body, lines 1-4), and separating conjunctions (also in acyclic’s body) from Grad-
ual Viper into C0 source code. We discuss the aforementioned encodings in sections §3.5.1,
§3.5.2, and §3.5.3 respectively. While not in the insertLastWrapper example, GVC0 trans-
lates checks of simple logical expressions into C0 assertions: e.g. assert(y >= 0);.

3.5.1 Encoding branch conditions
Run-time checks contain branch conditions that denote the execution path a check is required on.
For example, in Fig. 3.16 acyclic(\result) should only be checked at lines 21-23 when l

== NULL, as indicated by the branch condition (none,l == NULL,l == NULL). Therefore,
GVC0 first encodes the condition l == NULL into C0 code. In general, conditions are encoded
as logical expressions in C0 and assigned to fresh boolean variables at the program point where
they originated—we call this versioning. Then, the boolean variable is used in checks in place of
the condition. For example, the origin and location pair (none,l == NULL) tells GVC0
that l == NULLmust be evaluated at the program point in insertLastWrapper containing the
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l == NULL AST element. As a result, in Fig. 3.17 a boolean variable _cond_1 is introduced
on line 4 to hold the value of l == NULL. The condition variable _cond_1 is then used in the
C0 run-time check for acyclic(\result) later in the program (line 16). To reduce run-time
overhead, _cond_1 is also used in the check for acyclic(l) on line 10, which relies on the
same branch point (none,l == NULL). Further, while not demonstrated here, GVC0 supports
short-circuit evaluation of conditions on the same execution path to reduce run-time overhead.
Finally, note, GVC0 carefully places versioning code after any run-time checks encoded at the
program point where the condition originated to ensure this new assignment code (not verified
by Gradual Viper) is framed, i.e. correct.

3.5.2 Encoding predicates
Now that GVC0 has versioned the branch conditions in Fig. 3.16 into variables, GVC0 can
use the variables to develop C0 run-time checks. The Gradual Viper check ({(none,l ==

NULL,¬(l == NULL))}, (l=insertLast(l,val),acyclic(l),acyclic(l))) is trans-
lated into if (!_cond_1) {acyclic(l,_ownedFields);} on line 10 in Fig. 3.17. GVC0
places this C0 check according to the origin, location pair ((l=insertLast(l, val),

acyclic(l)), which points to the program point just before the call to insertLast on line
14. The branch condition becomes the if statement with condition !_cond_1 (§3.5.1), and
acyclic(l) is turned into the C0 function call acyclic(l,_ownedFields). The acyclic
function implements acyclic’s predicate body as C0 code: it asserts true for empty lists and re-
cursively verifies accessibility predicates (using _ownedFields) for nodes in non-empty lists.
That is, predicates are encoded and treated equi-recursively by GVC0. For efficiency, separation
of list nodes is encoded separately on lines 11-13. We discuss the dynamic verification of acces-
sibility predicates and the separating conjunction in C0 code next. Finally, a similar C0 check is
created for acyclic(\result) on lines 16-19.

3.5.3 Encoding accessibility predicates and separating conjunctions
GVC0 implements run-time tracking of owned heap locations in C0 programs to verify accessi-
bility predicates and uses of the separating conjunction.

Encoding owned fields in C0 source code. An owned field is a tuple (id, field) where id is an
integer identifying a struct instance (object in C0) and field is an integer indexing a field in the
struct. The OwnedFields struct, which is implemented as a dynamic hash table to improve
check performance, contains currently owned fields. That is, hashed object identifiers (id) and
then field identifiers (field ) are used to index into OwnedFields where a boolean that determines
whether or not the field is currently owned is stored. Since objects are tracked with integers, all
struct definitions in a C0 program are modified to contain an additional _id field.

Semantics of tracking owned fields (inspired by Chpt. 2, §2.3). At the entry point to a C0
program (e.g. main), an empty OwnedFields struct called _ownedFields is allocated and
initialized. This is not shown in Fig. 3.17. Then, when a new struct instance is created—such
as allocating a new node on line 6 in Fig. 3.17—the _id field is initialized with the value of
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a global integer instCntr that uniquely identifies the instance. The call to library function
addStructAcc on line 7 performs this functionality and then increments instCntr. It also
adds all fields in the struct instance (e.g. l->val:(l->_id,0), l->next:(l->_id,1), and
l->_id:(l->_id,2)) to _ownedFields and marks them as owned. The only other times
_ownedFields can change are at method/function calls. Methods, like insertLast and
insertLastWrapper, may add or drop owned fields during their executions. They may also
contain run-time checks, such as the one for acyclic(l) on line 10, that need owned fields
for verification. So, GVC0 adds an additional parameter to the their declarations (e.g. line 2,
Fig. 3.17) to accept, initialize, and then modify _ownedFields in their contexts. A callee’s
pre- and postcondition controls what owned fields are passed to and from the callee via this new
parameter. When a method’s precondition is imprecise8, then any caller will pass all of its owned
fields to the method, as on line 14 for the call to insertLast. After execution, the callee method
returns all of its owned fields to the caller. When a method’s precondition is precise, then any
caller only passes its owned fields specified by the precondition to the method. If the method’s
postcondition is imprecise, then after execution the callee method returns all of its owned fields
as before; otherwise, only the owned fields specified by the postcondition are returned. Finally,
as an optimization, in precisely specified methods (no external—pre- and postconditions—or
internal—loop invariants, unfolds, folds, etc.—specifications contain imprecision and no run-
time checks are required), GVC0 does not implement any _ownedFields tracking. In this case,
GVC0 uses the callee’s pre- and postcondition to modularly update _ownedFields in the caller.

Verifying accessibility predicates and separating conjunctions with owned fields. Now,
_ownedFields tracking is used to verify accessibility predicates and uses of the separating
conjunction. Run-time checks for accessibility predicates are turned into assertions that en-
sure the presence of their heap location in _ownedFields. For example, acc(l->val) looks
like assertAcc(_ownedFields,l->_id,0); in C0 code, where 0 is the index for val in
the Node struct. The assertAcc library function indexes into _ownedFields using l->_id

and 0 and ensures a boolean entry is in there and is true; otherwise, assertAcc throws
an error. Wherever GVC0 must check separation of heap locations (as indicated in run-time
checks from Gradual Viper via a flag),—such as for the nodes in list l at lines 10-13—it cre-
ates (with the library method initOwnedFields) an auxiliary data structure _tempFields

of type OwnedFields. We check that heap cells are disjoint by adding them one at a time to
_tempFields and failing if the cell is already there. GVC0 generates a sep_X method for each
predicate X to actually perform the separation check; and when done, discards _tempFields, as
its purpose was only to check separation. Similar checks are created for the acyclic(\result)
check on lines 16-19.

8Here, a formula is also imprecise if it contains predicates that expose ? when fully unrolled—an equi-recursive
treatment.
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Chapter 4

Performance Evaluation of Gradual C0

The seminal work on gradual typing [42] selectively inserts run-time casts in support of opti-
mistic static checking: for instance, whenever a function application is deemed well-typed only
because of imprecision—such as passing an argument of the unknown type to a function that ex-
pects an integer—the type-directed cast insertion procedure inserts a run-time check. But if the
application is definitely well-typed, no cast is inserted. This approach ensures that a fully-precise
program does not incur any overhead related to run-time type checking. While it is tempting to
assume that more precision necessarily results in better performance, the reality has been shown
to be more subtle: both the nature of the inserted checks (such as higher-order function wrappers)
as well as when/how often they are executed is of utmost importance [32, 46], and anticipating
the performance impact of precision is challenging [7]. Consequently, we are interested in ex-
ploring whether or not gradual verification may experience similar subtleties where precision
does not necessarily correlate with better run-time checking performance.

Since we have developed the working gradual verifier Gradual C0 as described in Chpt. 3,
we are in a good position to explore the relation between minimizing dynamic check insertion
with statically available information and observed run-time performance in gradual verification
with Gradual C0. Specifically, we explore the performance characteristics of Gradual C0 for
thousands of partial specifications generated from four data structures, as inspired by Takikawa
et al. [46]’s work in gradual typing. In particular, we observe how adding or removing indi-
vidual atomic formulas and ? within a specification impacts the degree of static and dynamic
verification and, as a result, the run-time overhead of the program. Additionally, we compare
the run-time performance of Gradual C0 to a fully dynamic approach, as readily available in C0.
The aforementioned ideas are captured in the following research questions:

RQ1: As specifications are made more precise, can more verification conditions be eliminated
statically?

RQ2: Does gradual verification result in less run-time overhead than a fully dynamic approach?

RQ3: Are there particular types of specification elements that have significant impact in run-time
overhead, and can high overhead be avoided?
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4.1 Creating Performance Lattices
We define a complete specification as being statically verifiable when all ?s are removed, and
then a partial specification as a subset of formulas from a complete specification that are joined
with ?. Like Takikawa et al. [46], we model the gradual verification process as a series of steps
from an unspecified program to a statically verifiable specification where, at each step, an ele-
ment is added to the current, partial specification. An element is an atomic conjunct (excluding
boolean primitives) in any type of method contract, assertion, or loop invariant. We form a lattice
of partial specifications by varying which elements of the complete specification are included.
We also similarly vary the presence of ? in formulas that are complete—contain the same ele-
ments as their counterparts in the statically verifiable specification—and have related fold and
unfold statements in the partial specification. Otherwise, ? is always added to incomplete for-
mulas. This strategy creates lattices where the bottom entry is an empty specification containing
only ?s and the top entry is a statically verifiable specification. A path through a lattice is the
set of specifications created by appending n elements or removing ?s one at a time from the
bottom to the top of the lattice. The large array of partial specifications created in each lattice
closely approximates the positive specifications supported by the gradual guarantee [47], which
are less precise variants of successfully verified programs. For reference, we give a more formal
statement of the gradual guarantee:

Let p1 and p2 be Gradual C0 programs where p1 ⊑ p2 (i.e. the formulas in p1 are
more precise than those in p2). If p1 statically verifies, then p2 statically verifies.
Additionally, p2 must execute at least as far as p1 executes at run time.

Now, to illustrate the aforementioned approach, consider the following loop invariant:
//@ loop_invariant sortedSeg(list, curr, curr->val) && curr->val <= val;

The invariant is made of two elements: the sortedSeg predicate instance and the boolean ex-
pression curr->val <= val;. The lattice generated for a program with this invariant has five
unique specifications: four contain a combination of the two elements joined with ?, and the fifth
is the complete invariant above.

4.2 Data Structures
To apply this methodology, we implemented and fully specified four recursive heap data struc-
tures with Gradual C0: binary search tree, sorted linked list, composite tree, and AVL tree. We
chose these data structures because complete static specifications exist for them in related work
and they are interesting use cases for gradual verification. Linked list is implemented with a while
loop rather than recursion. Binary search tree is a more complex data structure with a more com-
plex property (BST property) than a linked list and uses recursion. Composite tree implements a
structure where modifications do not have to start at the root, but can be applied directly to any
node in the tree. Its invariant also applies to any node in the tree. Finally, AVL tree implements
the most complex invariant (the balanced property) and data structure with many interdependent
functions and predicates related to tree rotations. Each data structure has a test program that
contains its implementation and a main function that adds elements to the structure based on
a workload parameter ω. We design the test programs to incur as little run-time overhead as
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Example Unverified Complexity # Specs Contents of Complete Spec
Fold Unfold Pre. Post. Pred. Body Loop Inv.

Binary Search Tree O(n log(n)) 3473 43 23 0/20/21/24 0/22/6/24 6/6/7/4 0/2/4/2
Linked List O(n) 1745 17 10 8/6/15/5 4/5/6/5 4/3/4/3 4/3/5/2
Composite O(n log(n)) 2577 28 15 0/10/2/12 0/11/1/12 32/9/17/3 0/3/2/3
AVL O(n log(n)) 3057 25 14 3/4/5/9 3/6/9/9 25/8/21/3 1/1/2/1

Table 4.1: Description of benchmark examples. For each example, the table shows the com-
plexity of the test program without verification, the number of sampled partial specifications,
and the distribution of specification elements for the complete specification. Element counts are
formatted as “Accessibility Predicate/Predicate Instance/Boolean Expression/Imprecision"

possible outside of structure size and run-time checks. For each example and corresponding test
program, Table 4.1 displays the distribution of elements in the complete specification, as well
as the run-time complexity of the test program and the number of unique partial specifications
generated by our benchmarking tool.

Binary Search Tree (BST). The implementation of the binary search tree is typical; each node
contains a value and pointers to left and right nodes. We statically specify memory safety and
preservation of the binary search tree property—that is, any node’s value is greater than any value
in its left subtree and less than any value in its right subtree. The test program creates a root node
with value ω and sequentially adds and removes a set of ω values in the range [0, 2ω]. Note that
values are removed in the same order they were added.

Linked List. We implement a linked list with insertion similar to the one given in Fig. 1.1.
Insertion is statically specified for memory safety as well as preservation of list sortedness. Its
test program creates a new list and inserts ω arbitrary elements.

Composite. The composite data structure is a binary tree where each node tracks the size of its
subtree—this is verified by its specification along with memory safety. Its test program starts
with a root node and builds a tree of size ω by randomly descending from the root until a node
without a left or right subtree is reached. A new node is added in the empty position, and then
traversal backtracks to the root.

AVL Tree. The implementation of AVL tree with insertion is standard except that the height
of the left and right subtrees is stored in each node (instead of the overall height of the tree).
This allows us to easily state the AVL balanced property—for every node in the tree the height
difference between its left and right children is at most 1—without using functions or ghost
variables, which Gradual C0 does not currently support. In addition to specifying the AVL
balanced property for insertion, we also specify memory safety. The AVL test program starts
with a root node and builds a tree of size ω by inserting randomly valued nodes into the tree
using balanced insertion.
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4.3 Experimental Setup
With upwards of 100 elements in the specifications for each data structure, it is combinatorially
infeasible to fully explore every partial specification. Therefore, unlike Takikawa et al. [46], we
proceed by sampling a subset of partial specifications in a lattice, rather than executing them
all. Specifically, we sample 16 unique paths through the lattice from randomized orderings of
specification elements. We chose partial specifications along lattice paths to explore trends in
migration from no specifications to complete specifications, which is how we imagine developers
may use our tool. We also randomly sampled paths, rather than using a another heuristic for
selecting paths, to be prescriptive to users of Gradual C0. We wanted to find and recommend
new specification patterns that users should apply or avoid depending on their performance.
Every step is executed with three workloads chosen arbitrarily to ensure observable differences
in timing. Each timing measurement is the median of 10 iterations. Programs were executed on
four physical Intel Core i5-4250U 1.3GHz Cores with 16 GB of RAM.

We introduce two baseline verifiers to compare Gradual C0 against. The dynamic verifier
transforms every specification into a run-time check and inserts accessibility predicate checks for
field dereferences—thereby emulating a fully dynamic verifier. The framing verifier only per-
forms the accessibility predicate checks, and therefore represents the minimal dynamic checks
that must be performed in a language that checks ownership.1 We implement the baseline ver-
ifiers ourselves using the dynamic semantics in Chpt. 2, §2.3, which checks everything at run
time, as a guide.

4.4 Evaluation
Fig. 4.1 shows how the total number of verification conditions (proof obligations) changes as
more of each benchmark is specified (green curve). The figure also similarly shows the number
of verification conditions that are statically verified as each benchmark is specified (purple curve).
From the green curve, we see that even when there are no specifications, there are verification
conditions, e.g. before a field is accessed, the object reference must be non-null and the field must
be owned. Some of these verification conditions can be verified statically as illustrated by the
purple curve. As more of a benchmark is specified, there are more verification conditions (green
curve); but also, more of these verification conditions are discharged statically and do not have
to be checked dynamically (purple curve). Towards the right end of the plots, the two curves
converge until they meet when all the verification conditions are discharged statically. As a
result, the answer to RQ1 is yes. Note, the number of verification conditions does decrease when
enough of the benchmark is specified. This is due to being able to prune symbolic execution
paths with new static information.

The plots in Fig. 4.2 display the run-time performance (in red) of dynamically checking the
verification conditions from Fig. 4.1. The plots also show how the run-time performance of the
dynamic verifier (in green) and framing verifier (in purple) change as more of each benchmark
is specified. The green lines show that as more properties are specified, the cost of run-time

1These framing checks could fail, for example, if some function lower in the call stack owns data that is accessed
by the currently-executing function.
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Mean Verification Conditions

Total Verification Conditions Statically Eliminated Verification Conditions

Figure 4.1: For each example, the average quantity of verification conditions and the subset that
were eliminated statically at each level of specification completeness across all paths sampled.
Shading indicates the standard deviation.

Mean Execution Time Over All Paths

Dynamic Verification Only Framing Checks Gradual Verification

Figure 4.2: The mean time elapsed at each step over the 16 paths sampled. Shading indicates the
confidence interval of the mean for each verification type.

verification increases. With Gradual C0, some of these properties can be checked statically;
therefore, the run-time cost of gradual verification, shown in red, starts equivalent but eventually
ends up significantly lower than the cost of pure run-time verification.

Notably, the purple lines are significantly lower than the red and greens ones until they exhibit
a dramatic increase starting at around 80% specified all the way to 100%. Eventually (after
about 95% specified), the purple lines end above the red ones (but below the green ones) where
running time is orders of magnitude higher than at the start of the incline. The framing verifier
(in purple) only checks that heap accesses are safe—i.e. they are owned and their receivers are
non-null. So unsurprisingly, the dynamic and gradual verifiers, which check more properties
like heap separation, nearly always have significantly higher run-time verification overhead than
the framing verifier. Eventually, Gradual C0 outperforms the framing verifier when enough
properties, including framing, are checked statically.

The dramatic increase in the framing verifier’s run-time performance is caused by the owned
fields passing strategy employed at method boundaries (described in Chpt. 3, §3.5.3) to verify
memory safety at run time. To respect precondition abstractions, only owned fields specified by
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Example ω
% ∆t, GV vs. DV % Steps GV < DV for Paths DV < GV % Paths GV < DVMean St. Dev. Max Min Mean St. Dev. Max Min.

AVL
32 -14.4 29.4 170.0 -88.8 80.6 14.8 95.3 50.8 0.0
64 -16.1 50.5 256.3 -96.0 84.3 15.5 98.4 55.5 0.0

128 -11.5 74.0 384.7 -98.6 82.2 16.5 99.5 55.0 0.0

BST
32 -24.7 35.0 144.5 -93.8 74.2 9.0 89.4 60.8 0.0
64 -23.9 46.8 301.3 -98.5 74.7 9.3 92.2 59.4 0.0

128 -21.7 55.6 436.1 -99.6 74.7 11.9 96.3 51.6 0.0

Linked List
32 -18.0 27.7 138.9 -95.7 78.8 14.8 96.3 34.9 0.0
64 -21.0 48.6 389.0 -99.8 85.2 15.1 100.0 37.6 6.3

128 -20.7 59.7 603.3 -100.0 85.8 15.0 99.1 42.2 0.0

Composite
32 -34.4 40.1 141.7 -99.1 80.3 10.7 94.4 60.9 0.0
64 -33.1 50.1 258.6 -99.8 80.0 12.2 96.3 50.9 0.0

128 -30.1 63.9 419.0 -100.0 80.4 13.0 96.3 48.4 0.0

Table 4.2: Summary statistics for the performance of each example over 16 paths at selected
workloads (ω), comparing gradual verification (GV) against dynamic verification (DV). The
grouped column “% in ∆t, GV. vs. DV." displays summary statistics for the percent decrease
in time elapsed for each step when using GV versus DV. The column “% Steps GV < DV for
Paths DV < GV" shows the distribution of steps that performed best under GV that were part of
paths containing steps that performed better under DV. The final column shows the percentage
of paths in which every step performed better under GV.

a callee’s precondition are passed by the caller to the callee when the precondition is precise.
Similarly, when a callee’s postcondition is precise, then only the owned fields specified by the
postcondition are passed back to the caller. Computing owned fields from precise contracts is
costly; and even more-so for contracts containing recursive predicates like in our benchmarks.
Further, our benchmarks call such methods frequently during execution. As a result, execution
time increases significantly at each path step where one of the aforementioned methods gets a
precise pre or postcondition from ? removal. This, of course, happens more frequently as more of
a benchmark is specified. At 100% specified every method contract is precise, and so the owned
fields passing strategy is used at every method call and return leading to the highest run-time
costs for the framing verifier. In contrast, Gradual C0 checks fully-specified methods completely
statically and does not use the owned field passing strategy for calls to these methods. As a
result, looking at the red lines, Gradual C0 is not heavily affected by this phenomena—we see
slight increases starting at 90% specified but they are significantly less costly. Additionally, once
a critical mass of specifications have been written, Gradual C0’s run-time verification cost de-
creases until reaching zero—which is the same as running the raw C0 version of the benchmark.
If the spikes around 90% specified are too costly, production gradual verifiers can reduce them
by employing more optimal permission passing strategies.

In general, according to the red lines, Gradual C0’s performance increases gradually as more
proof obligations are specified but are not yet statically verified; and thus, must be checked at
run time. When a critical mass of specifications are written that allows more and more of these
proof obligations to be proven statically, run-time performance starts to decrease until reaching
the spikes around 90% specified caused by owned fields passing. After the spikes, performance
decreases to the benchmark’s raw baseline. This trend confirms that increasing precision in
gradual verification does not always correspond with decreased run-time overhead from dynamic
verification.
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99th Percentile Changes in Run-time Overhead

Accessibility Predicate Predicate Instance Boolean Expression ? Removed

Figure 4.3: The quantity of specification elements, grouped by type and location, that caused the
highest (P99%) increases and decreases in time elapsed out of every path sampled

Table 4.2 displays summary statistics for Gradual C0’s performance on every sampled partial
specification compared to the dynamic verification baseline. Depending on the workload and
example, on average Gradual C0 reduces run-time overhead by 11.5-34.4% (Table 4.2, Column
3) compared to the dynamic verifier. Note, the speed-ups are consistent as ω increases: -14.4%,
-24.7%, -18.0%, and -34.4% at the lowest ω values compared to -11.5%, -21.7%, -20.7%, and
-30.1% at the largest. While Gradual C0 generally improves performance, there are some out-
liers in the data (Table 4.2, Column 5) where Gradual C0 is slower than dynamic verification
by 138.9-603.3%. Fortunately, for lattice paths that produce these poor-performing specifica-
tions, gradual verification still outperforms dynamic verification (on average) for 74.2-85.8%
(Table 4.2, Column 7) of all steps. Further, these outliers appear under 20% specified where the
bookkeeping we insert to track conditionals, which is unoptimized and could be improved, and
measurement error are the cause of such outcomes.

Fig. 4.2 displays the average run-time cost across all paths under each of our benchmarks and
verifiers. In all the plots, for some early parts of the path the cost of Gradual C0 is comparable
to or exceeds the cost of the dynamic verifier, but after 50% completion, static optimization
kicks in and Gradual C0 begins to significantly outperform it. Further, Table 4.2 shows that on
average Gradual C0 reduces run-time overhead by 11.5-34.4% compared to the dynamic verifier.
Therefore, the answer to RQ2 is yes.

Fig. 4.3 captures the impact that different types of specification elements (accessibility pred-
icates, predicates, and boolean expressions) have on Gradual C0’s run-time performance when
specified in different locations. It also captures the impact removing ? from a formula has on
performance. Elements that when added or ? that when removed from one step in a lattice
path to another increase run-time overhead significantly (in the top 1%) are counted in the left
sub-figure, and ones that decrease run-time overhead significantly (top 1%) are counted in the
right sub-figure. The count for accessibility predicates is colored in green, predicates in purple,
boolean expressions in yellow, and ? removal in red.
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Adding recursive predicates to preconditions, postconditions, and predicate bodies is the most
frequent cause (67.6%) of dramatic increases in run-time verification overhead during the speci-
fication process. When these predicates are added to preconditions and postconditions they cre-
ate additional proof obligations for them in callers and callees (respectively) that are frequently
checked at run time. Similarly, when they are added to predicate bodies any proof obligations
for the enclosing predicate that are checked at run time become far more expensive. Fortunately,
folding or unfolding a predicate can decrease run-time cost when doing so discharges such proof
obligations statically (as seen in the right sub-figure). Therefore, users of Gradual C0 may con-
sider specifying proofs of recursive predicates in frequently-executed code to significantly reduce
checking costs.

Removing ? from preconditions, postconditions, and predicate bodies when the costly owned
fields passing strategy is still required in corresponding methods is the second most frequent
cause (27.9%) of increases in Gradual C0’s run-time overhead. This corresponds with the spikes
at 90% specified in Fig. 4.2 for Gradual C0: removal of ? in the aforementioned locations leads
to precise pre- and postconditions that trigger the use of this costly strategy. Eventually, a crit-
ical mass of specifications are written so that when ?s are removed further this costly strategy
is no longer necessary (i.e. when callee methods are full statically verified) and so run-time per-
formance improves dramatically—the downward trends seen prior to full static specification in
Fig. 4.2. This is reflected in the right sub-figure in Fig. 4.3, where removing ? from precon-
ditions, postconditions, and predicate bodies is the most frequent cause (68.2%) of significant
decreases in run-time overhead. This suggests a strategy for avoiding high checking costs: spec-
ify frequently-executed code in critical-mass chunks that are fully statically verifiable, leaving
boundaries between statically and dynamically verified code in places that are executed less fre-
quently.

Overall, the answer to RQ3 is yes; we have identified some key contributors to run-time over-
head, whose optimization is a promising direction for future work, and we have also identified
strategies for minimizing run time overhead in practice.

Finally, all of the partial specification evaluated in our study were successfully verified by
Gradual C0. Since they originated from complete and correct specifications on code, we can
conclude Gradual C0 adheres to the gradual guarantee for these partial specifications and likely
adheres to the gradual guarantee for common use cases of Gradual C0.

4.5 Threats to Validity
Our test programs were executed on multiple devices, each with the same CPU and memory
configuration. However, we did not otherwise control for differences in performance between
devices. While the test programs we used are of sufficient complexity to demonstrate interesting
empirical trends, they are not representative of all software. Further, the baseline we used for
dynamic verification is entirely unoptimized as we naively insert a check for each written element
of a specification. Finally, due to computational constraints, only a small subset of over 2100

possible imprecise specifications were sampled, and we did not use a formal criteria to choose
our workload values. Thus, while our results reveal interesting and important trends, more work
is needed to validate the robustness of those trends.
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4.6 Qualitative Experience with AVL Tree
Notably, it was our experience that the incrementality of gradual verification was very helpful for
developing a complete specification of the AVL tree example. In particular, a run-time verifica-
tion error from a partial specification helped us realize the contract for the rotateRight helper
function was not general enough. We fully specified rotateRight and proved it correct. How-
ever, insert’s pre- and postconditions were left as ?, and so static verification could not show us
that the contract proved for rotateRight was insufficiently general. Nevertheless, we ran the
program; gradual verification inserted run-time checks, and the precondition for rotateRight
failed. This early notification allowed us to identify the problem with the specification and fix it
immediately. Otherwise, we would have had to get deep into the static verification of insert—a
complicated function, 50 lines long, with lots of tricky logic and invariants—before discovering
the error, and a lot of verification work built on the faulty specification would have had to be
redone. Interestingly, it is conventional wisdom that one of the benefits of static checking is that
you get feedback early, when it is easier to correct mistakes. Here, we encountered a scenario
where gradual verification had a similar benefit over static verification! We found an error (in a
specification) earlier than we would have otherwise, presumably saving time.
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Chapter 5

Case Study: Gradual Verification of a C
Parser

Our previous evaluation, as described in Chpt. 4, focused on exploring run-time checking per-
formance trends in gradual verification with Gradual C0. But, interestingly, we also ran into a
scenario where a run-time verification error from Gradual C0 alerted us to an issue with a user
written specification (Chpt. 4, §4.6) earlier than static verification could. Additionally, up until
now, we have only explored the benefits of using gradual verification in practice by demonstrat-
ing the process and output on smaller pieces of code (e.g. Chpt. 1 and Chpt. 4 §4.2 programs are
all < 300 lines of code)—including the aforementioned interesting result from specifying AVL
tree. So, a natural next step of our work is to investigate how one might use gradual verification
in practice on a real codebase and see what patterns and trends emerge. In particular, our pre-
cise objective is to explore how gradual verification is used to verify real application software
that uses recursive heap data structures—where application software may be a media player,
programming language compiler, word processor, etc. We are also interested in uncovering lim-
itations of Gradual C0 and challenges the specific software types pose for gradual verification.
That is, we set out to answer the following research questions:
RQ1 What trends or themes occur during the gradual verification process?

RQ2 What types of trade-offs are made during the gradual verification process?

RQ3 Are there instances where static or dynamic feedback is helpful or detrimental or where
one is better than the other?

RQ4 How is gradual verification used to find bugs in real-world software?

RQ5 What limitations does Gradual C0 have?

Engineering limitations?

User interface limitations? Feedback limitations?

Inherent limitations of gradual verification?

Inherent limitations of the underlying static or dynamic verifier technology?

RQ6 What challenges does the type of software being studied pose for gradual verification?
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As this is the first work that looks to answer the aforementioned research questions for grad-
ual verification, our study is exploratory in nature. We, therefore, conduct a case study using
Gradual C0 to answer our RQs. The selected case is described in §5.1 and the methodology, data,
materials, and data analysis in §5.2. We give the results in §5.3 and discuss them in §5.4. Note,
all of the materials, software making up our case, and data can be found in a GitHub repository
designated for this purpose: https://github.com/gradual-verification/gvc0-cparser-case-study.

5.1 The Case Study: a C Parser

The goal of our case study is to understand how gradual verification can be used to verify ap-
plication software using recursive heap data structures. A programming language parser is often
implemented with recursive algorithms that manipulate lists and trees. Furthermore, the theoret-
ical foundations of parsers are well-understood, but parsers are hard to implement correctly in
practice and are error-prone. Therefore, we looked for a parser implementation with the follow-
ing criteria to study:

• Possible to re-implement in the C0 programming language as Gradual C0 only supports
C0 code

• Relies primarily on recursive heap data structures in its main algorithms
• Has multiple modules and over 20 functions, so we can study how gradual verification

works in such a setting
We decided on Chibicc’s parser for our case. Chibicc (developed by Rui Ueyama) is a 4k

lines of code (LoC) C compiler written in C that can compile several real-world programs such
as Git, SQLite, and libpng. It contains a tokenizer, preprocessor, parser, and code generator. The
tokenizer takes a string as input, turns it into a list of tokens, and sends the list to the preproces-
sor. The preprocessor expands macro tokens—interpreting preprocessor directives during this
process—and sends the resulting token list to the parser. The parser is a recursive descent parser
that contructs abstract syntax trees from its given token list. It also adds a type to each AST node.
Then, finally, the code generator emits assembly texts for the given AST.

The developer of Chibicc values simplicity and readability of its source code, and so Chibicc’s
implementation does not include abstractions and clever tricks like higher-order functions, macros,
and unions. This makes translating the parser from C to C0, which doesn’t support these fea-
tures, feasible. Chibicc also avoids calling free, so Chibicc is structured for garbage collection
as required by C0—a garbage collected language. Additionally, Chibicc’s parser functions ma-
nipulate token lists and abstract syntax trees with loops and recursion. Chibicc’s parser uses
strings and arrays minimally and outside core functions making it easier to translate the parser
into code verifiable by Gradual C0, which does not support such constructs (see §5.1.1 for more
details). Chibicc’s parser also relies on various modules, such as Types, Tokens, ASTNodes, and
HashMaps; and the parser’s functions implementing the recursive descent algorithm are plenty
(40+) and call each other in intricate ways (directly, indirectly, recursively, or not at all). Between
the different modules, plethora of functions, intricate interactions between functions, and manip-
ulation of recursive data structures across such functions, Chibicc should prove challenging to
gradually verify.
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id ∈ IDENT (identifiers) n ∈ NUM (numeric literals)
c ∈ CHAR (char literals)

<prog> ::= (<typedef> | <funcdef>)∗
<typedef> ::= typedef <tp> <declarator> ( “, ” <declarator> ) ∗ “; ”

<declarator> ::= (<ptrs>)? ( “(” id “)” | “(” <declarator> “)” | id ) (<func-params>)?
<ptrs> ::= <ptrs> “ ∗ ” | “ ∗ ”
<func-params> ::= “(” ( void | <param> (“, ” <param>) ∗ )? “)”

<param> ::= <tp> <declarator>
<funcdef> ::= <tp> <declarator> “; ” | <tp> <declarator> “{” <compound-stmt> ∗ “}”
<tp> ::= void | _Bool | char | int | short | short int | long | long int | long long

| long long int | signed | signed char | signed int | signed short
| signed short int | signed long | signed long int | signed long long
| signed long long int | unsigned | unsigned char | unsigned int
| unsigned short | unsigned short int | unsigned long | unsigned long int
| unsigned long long | unsigned long long int | float | double | long double

<compound-stmt> ::= <typedef> | <declaration> | <stmt>
<declaration> ::= <tp> <declarator> (“, ” <declarator>) ∗ “; ”

<stmt> ::= return <expr>? “; ” | if “(” <expr> “)” <stmt> (else <stmt>)?
| while “(” <expr> “)” <stmt> | “{” <compound-stmt> ∗ “}” | <expr>? “; ”

<expr> ::= id | <lit> | <expr> <binop> <expr> | <unop> <expr> | “(” <expr> “)”

| id “(”<func-args>?“)”
<func-args> ::= <expr> (“, ” <expr>)∗
<binop> ::= “ = ” | “ || ” | “&&” | “ | ” | “ˆ” | “&” | “ == ” | “! = ” | “ <= ” | “ >= ”

| “ < ” | “ > ” | “ << ” | “ >> ” | “ + ” | “− ” | “ ∗ ” | “/” | “%”

<unop> ::= “ + ” | “− ” | “ ∗ ” | “&” | “!” | “ ∼ ”

<lit> ::= n | c | NULL | true | false

Figure 5.1: C Grammar parsed by TinierCP

5.1.1 Translating Chibicc Parser Code into C0 Code

Chibicc’s parser is nearly 4k lines of C code: its main functions make up 2,832 LoC and its mod-
ules, such as a HashMap, Token, and Type, make up 1,099 LoC.1 Additionally, while Chibicc’s
parser implementation is closer to verifiable C0 code than other C parsers written in C, it still uses
many features that are not supported by C0 and Gradual C0 as described in Table 5.1. Therefore,
to avoid spending too long implementing Chibicc’s parser in verifiable C0 code, we implemented
only a core subset of Chibicc’s parser in verifiable C0 code named TinierCP. TinierCP preserves
Chibicc’s structure, code patterns, and design choices but parses more simplistic C programs.

The BNF grammar of C programs that can be parsed by TinierCP is found in Fig. 5.1, and
an example program following the grammar is given in Fig. 5.2. TinierCP parses programs con-
taining typedefs, function declarations, and function definitions. Typedefs may be defined for a
plethora of built-in C types, such as void, bool, char, int, short, long, unsigned, signed, float, dou-

1Not all functions implemented in hashmap.c, tokenize.c, and type.c are used in the main parser code, but a
significant portion of them are. Furthermore, we do not include LoCs in this calculation from Chibicc’s header file,
which implements the structs for HashMap, Token, and Type and declares the functions implemented in the .c files.
This would add an additional 389 LoCs to the total

73



C Construct or
Feature

Unsupported
by C0 or
Gradual C0

How Translated into
Verifiable C0 code

Code Modified

Switch Statements C0 Translated into if statements declspec (function parsing
types in TinierCP);
add_type (function, adds types
to AST nodes in TinierCP)

Enums C0 Replaced with manual int assign-
ments;
Wrapped in a struct and checked
or modified with functions when
used for tracking Token, Type,
and ASTNode kinds

Functions: declspec
Modules: Token, Type, and
ASTNode

Global Variables C0 Functions modified to accept
global variable, local variable, and
scope collections as arguments

All major parser functions
(approx. 27 functions); All
globals, locals, and scope
modifiers (approx. 10
functions)

Static Functions C0 Removed static tag from functions
declared or defined with them

All major parser functions
(approx. 27 functions)

Address of (&) C0 Allocated a pointer to a pointer
and added two assignments to
track values

All major parser functions
(approx. 27 functions)

Implicit Conversions:
Bools↔ Ints

C0 Expanded into boolean compar-
isons

More than five parser functions

Break and Continue
Statements

C0 Removed with switches;
Bools added to replace and track
breaks and continues in loops

Functions: parse, declspec,
declaration, compound_stmt,
func_params, equality,
relational, shift, add, mul, and
postfix

Strings Gradual C0 StringList module and helper
functions implemented to re-
place uses of and dependencies on
char* arrays;
Parser error calls wrapped in
library functions

All major parser functions
(approx. 27 functions);
Approx. 15 helper functions;
Obj, ASTNode, Token, and
Scope structs

Arrays Gradual C0 Implemented ScopeMap module
and modifiers based on a linked
list of key, scope nodes to replace
the HashMap module

Functions: new_scope,
push_scope, find_func, and
find_var (for tracking scopes);
Modules: Scope and HashMap

Bitwise Operators Gradual C0 Refactored declspec’s algorithm
to rely on regular addition instead
of bit operators ‘<<’ and ‘|’

declspec

Table 5.1: C features used by Chibicc that are unsupported by C0 and Gradual C0, and how they
are avoided in the verifiable C0 version of Chibicc’s parser
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1 typedef int t;
2 int f(int p) {
3 int x, y;
4 y = 42;
5 x = y;
6 x = 42 + 239 - y;
7 y = -x;
8 y = x << 42;
9 y = x >> -239;

10 x = ∼(y & x);
11 float a, b, c;
12 b = 2.84 * 0.000;
13 c = 2.84 % 0.000;
14 a = b / c;
15 *&x;
16 int *l;
17 *l = &x;
18 int **z;
19 **z = &y;
20 **z;

21 if (p <= 1) {
22 while (p > 1) {
23 _Bool b;
24 _Bool c;
25 _Bool d;
26 b = c == d;
27 b = c <= d;
28 b = c < d;
29 b = c >= d;
30 b = c > d;
31 b = c && d;
32 b = !c;
33 b = c != d;
34 }
35 return 1;
36 } else {
37 return f(p - 1) + f(p - 2);
38 }
39 }

Figure 5.2: C program used to test TinierCP

ble, and their various combinations, and pointers to these types. More complicated typedefs like
typedef int int_t, *intp_t; can also be defined. Functions can be declared or defined
with parameters and return types of the aforementioned types, and their bodies may be empty or
contain a sequence of typedefs, local variable declarations, and/or program statements. Note that
while the grammar in Fig. 5.1 allows functions to take other functions as parameters, in reality
TinierCP disallows this. TinierCP parses if statements, while loops, return statements, empty
statements, and expression statements (which include variable and pointer assignments). Finally,
expressions may contain identifiers, literals, binary ops, unary ops, and function calls. Notably,
expressions such as ++i, i--, i += 1, etc. do not parse with TinierCP. An example program,
which was used to test TinierCP and parses successfully in TinierCP, is given in Fig. 5.2.

Code modifications for C0’s limitations. TinierCP follows Chibicc’s implementation closely,
however TinierCP deviates as described in Table 5.1 due to C0 and Gradual C0’s limitations.
The declspec function (which parses types) and add_type function (which adds types to AST
nodes) each contain a switch statement in Chibicc that is translated into an if elseif else

statement in TinierCP—C0 does not support switches. Similarly, declspec’s enum statement is
now a sequence of integer declarations and assignments defined and used manually. Enums are
also used in Chibicc to track the kind of a token (e.g. punctuation), type (e.g. int), or AST node
(e.g. if statement). In TinierCP, we instead wrap an integer tracking the kind in a structure and
define helper functions to read or modify its value:

struct TokenKind { int kind; };
TokenKind *new_TK_PUNCT() {
TokenKind *tk = alloc(struct TokenKind);
tk->kind = 2;
return tk;

}

bool is_PUNCT(Token *t) {
if (t != NULL && t->kind != NULL)
return t->kind->kind == 2;

else
return false;

}

Additionally, global variables are not allowed in C0, but Chibicc uses them to track global vari-
ables, local variables, and scopes during parsing. TinierCP instead passes around collections held
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in these variables as function arguments resulting in modifications to approximately 37 function
definitions and declarations. The static tag is not supported by C0, so uses of it in Chibicc
were removed from the corresponding functions in TinierCP. C0 also does not support taking the
address of pointers, so we performed over 27 of the following code transformations:

// In Chibicc
ASTNode *node = logand(&tok, tok);

// In TinierCP
Token **rst = alloc(Token*);

*rst = tok;
ASTNode *node = logand(rst, tok, scope);
tok = *rst;

Chibicc relies on implicit conversions from integers to booleans in over five functions, e.g. if
(!ty->name) where ty->name is a pointer. Since C0 does not support such implicit con-
versions, TinierCP uses the full boolean comparison, e.g. if (ty->name == NULL). Finally,
break and continue statements are not allowed in C0, and they are used in 11 parser func-
tions in Chibicc. The breaks in switch statements were removed along with the switch and new
booleans were added to replace and track breaks and continues in loops.

Code modifications for Gradual C0’s limitations. We also made modifications to Chibicc’s
parser code to overcome Gradual C0’s limitations. Gradual C0 does not yet support strings
and arrays even minimally—they will not parse in Gradual C0. Unfortunately, Chibicc’s parser
contains short string comparisons throughout its code and implements a HashMap for track-
ing variable scopes with arrays. Worse, Chibicc implements strings as char* arrays! Instead,
TinierCP implements strings as char lists with the StringList struct and its modifying func-
tions: new_stringlist, add_char, get_len, and equals. Then, strings needed in comparisons such
as equal(token,"while") in Chibicc were translated into equal(token,str_while())

where str_while is defined as:
StringList *str_while() {
StringList *str = new_stringlist();
add_char(str,’w’);
add_char(str,’h’);
add_char(str,’i’);
add_char(str,’l’);
add_char(str,’e’);
return str;

}

The str_while function creates and returns a pointer to a StringList containing “while\0". Also,
equal now wraps a call to equals for token->str—which is now also a StringList pointer
rather than a char* array—and the aforementioned pointer. Fifty-four str_[name] functions were
defined to support the comparisons in TinierCP inherited from Chibicc. Approximately 42 func-
tions and four structs were modified from Chibicc’s parser to rely on StringLists instead of char*
arrays. Unfortunately, StringLists did not work as a replacement for the long strings supplied
to error calls in Chibicc’s parser, which were translated into error([string]) calls in C0—
error is C0’s library function that stops program execution and reports the message in its given
string. Therefore, to 1) preserve descriptive error messaging for parser failures in TinierCP and
2) ensure that TinierCP stops execution when bad inputs are given or bad behavior occurs, we
wrapped each of these error calls with additional library functions that have empty argument lists
and are not verified by Gradual C0. Approximately five helper functions and seven main parser
functions were affected by this change; and, 29 wrapper functions were implemented for the
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different error messages. To deal with Chibicc’s HashMap module using arrays, we replaced it
with a new ScopeMap module implementing a linked list of key, scope nodes and related mod-
ifiers: new_varscopemap(), varscopemap_get, and varscopemap_put. Chibicc’s Scope struct
and helper functions new_scope, push_scope, find_func, and find_var were all modified to use
ScopeMap instead of HashMap. Lastly, we refactored declspec’s algorithm to avoid using bit
operators (shift left and bitor) not supported by Gradual C0, which required us to understand
declspec’s non-trivial algorithm in detail. This process thus took a significant amount of time.

5.1.2 Testing TinierCP
Since Chibicc has been thoroughly tested and debugged over the years, not many bugs if any
should exist in the codebase. Therefore, we tested TinierCP to ensure bugs were not introduced
in its development process. We manually constructed a token list for the test program given in
Fig. 5.2 and had TinierCP parse the list. We printed both the contents of the token list and the
AST produced by TinierCP to the console to manually check their correctness. The test program
contains a typedef, a function definition, an if statement, a while loop, arithmetic expressions,
boolean expressions, and function calls, which covers a large portion of TinierCP’s execution
paths. We wanted to implement a better testing infrastructure than this, such as one that inputs
C files and tokenizes them automatically, but we decided against it. At this point, we already
spent too long implementing TinierCP in verifiable C0 code (thanks to the limitations of C0
and Gradual C0), and did not want to spend additional time on testing. Furthermore, our more
simplistic infrastructure can be verified by Gradual C0, while one with file I/O and string streams
cannot be.

Running our test case through TinierCP first resulted in an infinite loop. We used print
statement debugging to locate the cause of the bug, which turned out to be in the function that
parses typedefs in TinierCP, called parse_typedef. An assignment, which steps parsing over
semicolons in typedefs, was missing at parse_typedef’s end leading to an infinite loop in its
caller. We added the missing assignment statement fixing the bug. Notably, this bug is not
in Chibicc and was introduced during its implementation into verifiable C0. After fixing the
infinite loop bug, TinierCP then dereferenced a null pointer for our test case. We again used
print statements to locate and debug the error. When translating add_type’s switch statement in
Chibicc to an if elseif else statement in TinierCP, one case was implemented incorrectly
the causing error. We changed a couple lines in add_type to fix this bug. Finally, after fixing
the aforementioned bugs, the token list for the test program in Fig. 5.2 parsed successfully in
TinierCP, and the AST returned by TinierCP for the list was constructed correctly.

5.1.3 Takeaways
After developing TinierCP from Chibicc, testing TinierCP, and debugging it, TinierCP is ready
for gradual verification with Gradual C0 and contains 2800 lines of code (including the Obj,
Token, Type, ASTNode, StringList, and ScopeMap modules). Despite parsing simpler C pro-
grams than Chibicc, TinierCP still maintains the challenges for gradual verification inherent in
Chibicc. That is, TinierCP has various structures and modules, plenty of main parser functions
(27) that call each other in the same ways as in Chibicc, and TinierCP manipulate lists and trees
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with loops and recursion across these functions. Despite Chibicc being C0 friendly compared to
other parser implementations, translating select Chibicc code into C0 code involved addressing a
number of limitations, such as C0’s lack of support for switches, enums, global variables, address
of, implicit conversions, and breaks/continues. Related changes dealing with these limitations
were busy-work; but, they affected a large number of modules and functions slowing down the
development of TinierCP significantly. Similarly, while Chibicc limits its use of strings, arrays,
and bitwise operators compared to other parser implementations, Chibicc still used these unsup-
ported Gradual C0 features. Circumventing these features in Chibicc resulted in more complex
and time consuming solutions than the ones handling C0’s limitations. Furthermore, one would
not implement such solutions in practical code, e.g. strings being implemented as lists of chars
and variable scopes being implemented as maps backed by lists. Ideally, Gradual C0 should
support these features in some limited way as soon as possible for usability. Finally, while we
found and fixed bugs in TinierCP with our simpler testing infrastructure, more serious bugs like
the infinite loop and null pointer ones were difficult to locate and debug thanks to TinierCP’s
many intricate function calls and heavy use of recursion and loops. Additionally, testing exe-
cutes these bugs causing TinierCP to hang indefinitely and segmentation fault; and, testing only
ensures these bugs are found in covered execution paths—TinierCP has many edge cases. There-
fore, these deeper bugs are good targets for gradual verification, which can prove the absence of
them statically or guard against them at run time across all execution paths. Frequent verification
feedback from gradual verification may also make it easier to find and debug such bugs.

5.2 Methodology

After preparing our case TinierCP (as described in §5.1.1 and §5.1.2), the author of this disserta-
tion gradually verified TinierCP with Gradual C0 and recorded her experience during the process.
The author has the deepest understanding of the inner workings of Gradual C0 and how it works
to gradually verify code. She can also readily describe how different specifications impact static
and dynamic performance with limited feedback from the tool. As a result, she can overcome
serious limitations of the tool or new bugs witnessed in Gradual C0 during the verification pro-
cess (Gradual C0 has been shown to be sufficiently robust for a performance study in Chpt. 4,
but Gradual C0 is still in an alpha state). She can also provide an expert user’s perspective on
the tool and gradual verification process, which we intend to capture in this first case study of
Gradual C0. After applying improvements to Gradual C0, based on the results of this study, we
hope the tool can then be used by external experts or novices in subsequent studies to confirm,
deny, or add to the conclusions of this study.

The author was given one week to gradually verify that the loops in TinierCP’s main functions
terminate with Gradual C0 and record her experience through journal entries. We also collected
various data from Gradual C0 as she used the tool. We describe the data collected, journal entries,
and materials in more detail in §5.2.1 and our data analysis procedures in §5.2.2.
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Q # Google Form Questions Type of Question
Q1-Q2 Date and time of session start. Calendar/Time
Q3-Q4 Date and time of session end. Calendar/Time
Q5 What have you been working on?

Include:
• Functions or modules modified
• Specifications written
• Modules/functions specified
• Types of properties proven
• Types of specifications written
• Proof obligations written

Long answer

Q6 How does what you have been working on relate to other journal entries and the
overall verification process? Is there a reason this is the next set of steps?

Long answer

Q7 Anything of note during the process?
• Any trade-offs made?
• Any verifier feedback utilized?
• Any bugs in specs or code?
• Any tool limitations? How were they overcome if applicable? Suggested

improvements?
• Positives/negatives about the tool/gradual verification?
• Gradual C0’s reactions to changes in code or specs?
• Conversion issues between C and C0?

Long answer

Q8 Theme of this entry. Short answer
Q9 Reminder to save console output and document where the output is. Short answer
Q10 What verifier data (from Gradual C0) corresponds to this entry? Long answer

Figure 5.3: Questions asked in the Google Form used to capture qualitative data from the author.
All questions were required

5.2.1 Data & Materials

The author recorded her experience, thought process, and comments about the gradual verifi-
cation process in a Google Form designed to prompt for this data. She kept the form open
during her verification sessions and filled it out when she started or ended a session or finished
a portion of work she wanted to document (covering anywhere from one hour to eight hours of
work). She also used the form to write notes during her sessions in a think-a-loud manner. A
static version of the Google Form can be found in our data repository (https://github.com/gradual-
verification/gvc0-cparser-case-study/tree/main/materials) and the questions asked in the form are
given in Fig. 5.3. The questions capture the dates and times starting and ending the journal entry
(Q1-Q4), what the author has been working on (e.g. code modified, specs written, proof obliga-
tions written, etc.) (Q5), how that relates to previous entries and why (Q6), anything of note that
the author encountered (e.g. trade-offs made, feedback utilized, limitations of Gradual C0, bugs
found, etc.) (Q7), the theme of the entry (Q8), and locations where Gradual C0 produced data
were saved (Q9-Q10).

We implemented a special mode with corresponding command-line option (-c) in Gradual
C0 for the author to use when verifying TinierCP with Gradual C0. The mode runs Gradual C0
on a given case study (TinierCP) and collects data in a folder named for the case and date/time
of the run. The data collected per run are:
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• Program file(s) making up the case
• Intermediate files produced during verification by Gradual C0: the case in IR form (.ir.c0),

in the Gradual Viper language (.vpr), with run-time checks added (.verified.c0), and with
run-time checks added and compiled by the C0 compiler (.verified.c0.h, .verified.c0.c, .bin)

• Various performance measures2 saved to a log_data.txt file
Time it takes Gradual C0 to parse the case into the Gradual Viper language (nsec)
Time it takes to statically verify the Gradual Viper program (nsec)
Time it takes to add run-time checks to the case for dynamic verification (nsec)
Time it takes for the C0 compiler to compile the case with run-time checks (nsec)
Time it takes to execute/run the case with run-time checks, i.e. the time it take to
dynamically verify the case (nsec)
Time it takes to verify the case in Gradual C0 from end-to-end, i.e. the performance
measure of Gradual C0’s entire pipeline for the case (msec)

• The number of verification conditions statically verified by Gradual C0, and the total num-
ber of verification conditions verified by Gradual C0—also saved to the log_data.txt file

• Time stamp of the run saved to the log_data.txt file
Gradual C0 also outputs the verification result, time elapsed for the run, and a specification
summary (recording the number of different types of specification constructs specified on the
case) to the console. Gradual C0 does not save this output automatically; and so, the author did
this manually. She piped the output to a file, which she saved in the data folder corresponding
to the run. If there are any failures from Gradual C0—verification failures or failures from
undefined behavior in Gradual C0—then only data that can be collected up until the failure
point is recorded. For example, if Gradual C0 produces a static verification error for the case
and its specification, then only the original case files, its .ir.c0 files, and its .vpr files are saved.
The console will only output the error details. We gave a document to the author that contains
step-by-step instructions on how to collect the data we are looking for with the aforementioned
materials. This ensures data is recorded in a consistent manner across verification sessions.
This document is hosted on github: https://github.com/gradual-verification/gvc0-cparser-case-
study/tree/main/materials.

The author completed the study in a Linux VM with the current versions of Gradual C0 and
Visual Studio installed. The Visual Studio editor was set up to run Gradual C0 in the terminal
on TinierCP, had TinierCP loaded as a project in the file explorer, and had the C0 language
highlighting extension installed. The VM is running Ubuntu 22.04.3 LTS, has a 13th Gen Intel(R)
Core(TM) i7-1365U 1.80 GHz processor with 10 cores, and has 16GB of RAM and 200GB of
storage.

5.2.2 Data Analysis Procedure

The author submitted 15 journal entries via the Google Form described in §5.2.1 and each en-
try contained anywhere from one to eight paragraphs of text per long answer for Q5-Q7. This
text thoroughly documents the author’s experience, thought process, and comments about us-
ing Gradual C0 to gradually verify TinierCP, and so was the focus of our data analysis. The

2Note, the performance measures are for a singular run of Gradual C0 on the case.
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answers to Q1-Q4 and Q9-Q10 were used for book keeping; and, we ignored the answers to
Q8—which asked for the “theme of this entry"—because they devolved into short summaries of
Q5’s answers.

We qualitatively coded the author’s answers to Q5-Q7 in three phases using Google Sheets.
The raw responses, codes, and outputs from each phase can be found in this case study’s data
repository: https://github.com/gradual-verification/gvc0-cparser-case-study/tree/main/analyzed-
data. In the first phase, we started with an initial set of codes defined from our research questions
(see introduction to Chpt. 5) and assigned each code a distinct color (e.g. “static feedback helpful"
is a code paired with the dark blue color). Then, we colored phrases, sentences, or paragraphs
in each answer according to the code that applies to the text. We also added a few new codes
and color pairs as needed during this process. In the second phase, we grouped the color coded
text from phase one by similarly coded excerpts (the color coding from phase one facilitated this
process). Then, we developed higher-level themes and patterns emerging from the groupings,
e.g. “run-time assertion failures due to optimistic branching are confusing". As more excerpts
were added to a grouping or new groupings were formed, new themes and patterns emerged
and existing ones were refined, e.g. “run-time assertion failures due to optimistic branching are
confusing" was added to a larger grouping named “static verification with branching is hard and
Gradual C0 doesn’t help but rather makes it more confusing." Once all excerpts from phase one
were grouped under a higher-level theme and all themes were refined sufficiently, we organized
the themes and refined them further into the narrative presented in §5.3 in phase three.

5.3 Results
The author gradually verified loop termination for parse, declspec, and parse_typedef—which
parses entire programs, types, and typedefs respectively—successfully using Gradual C0. She
partially specified seven parser functions and one helper function during this process. Fig. 5.4
summarizes the contents of specifications written by the author (denoted as the final partial speci-
fication). Since Gradual C0 defaults missing specifications to ?, Fig. 5.4 also provides a summary
of the specifications on TinierCP before the author wrote any specifications (denoted as default)
as a baseline. In the end, the author wrote 120 lines of specification code, 243 additional lines
of program code (primarily for inductive lemmas), and modified 35 lines of program code for
the gradual verification of TinierCP. She specified 59 folds and unfolds, 21 accessibility predi-
cates, 45 predicates, and 29 booleans expressions. Nearly all function contracts (229/234) and
loop invariants (41/41) still contain ? as the author focused only on verifying loop termination
for three loops—complete static specifications for any contract or loop invariant would require
many more specifications for orthogonal properties. In contrast, predicate bodies, which were
written specifically for expressing and verifying loop termination, are nearly all (5/6) precise.

Even without specifications in the default case, Gradual C0 still verifies that heap accesses in
TinierCP are safe (i.e. receivers are non-null and each access contains an owned heap location as
determined by the implicit dynamic frames logic [44]) using static verification where possible and
dynamic checking otherwise. Gradual C0 statically verifies 49.2% of heap accesses in TinierCP
in 1 minute and 1 second and the rest are guarded with run-time checks. It takes Gradual C0 0.16
seconds to run TinierCP with these checks on its test case (from §5.1.2). After the specification
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Partial Spec LoSC:LoC Contents of Partial Spec
Fold Unfold Pre. Post. Pred. Body Loop Inv.

Default 0:2800 0 0 0/0/0/229/229 0/0/0/229/229 0/0/0/0/0 0/0/0/41/41
Final 120:3043 34 25 5/16/7/231/234 6/19/8/229/234 9/3/4/1/6 1/7/10/41/41

Figure 5.4: Partial specification summaries for select partial specifications of TinierCP. For
each partial specification, the table gives the ratio of lines of specification code to lines of
program code and the distribution of specification elements for the partial specification. El-
ement counts are formatted as “Accessibility Predicate/Predicate Instance/Boolean Expres-
sion/Imprecision/Total"

Partial Spec % Statically Verified Static Verification Time Dynamic Verification Time
Default 49.20 1 min 1 sec 0.16 sec
Final 71.23 3 min 7 sec 0.19 sec

Figure 5.5: Gradual verifier results for select partials specifications of TinierCP. For each partial
specification, the table gives the percentage of verification conditions statically verified, the time
Gradual C0 spent statically verifying the partial specification in minutes and seconds, and the
time Gradual C0 spent dynamically verifying the partial specification in seconds for the test case
from §5.1.2

process (in the final case), Gradual C0 statically verifies 71% of heap accesses and new proof
obligations for termination in 3 minutes and 7 seconds. The rest are turned into run-time checks
and Gradual C0 takes 0.19 seconds to execute TinierCP with these checks on TinierCP’s test
case. The aforementioned numbers are summarized in Fig. 5.5.

The rest of this section presents themes and supporting evidence from qualitative coding the
author’s journal entries (§5.2.2). In §5.3.1 we see how the author used a top-down workflow to
verify loop termination in TinierCP and how Gradual C0 encourages such a workflow in §5.3.2.
In §5.3.3 we discuss how this workflow and feedback from Gradual C0 allowed the author to
ensure TinierCP’s parser loops terminate and find related bugs in TinierCP’s implementation.
The author uncovered limitations of Gradual C0 in supporting such a useful workflow, which we
discuss in §5.3.4 along with solutions. We end this section by pointing out additional issues the
author had with Gradual C0 in §5.3.5 and propose solutions where possible.

5.3.1 The author verified loop termination in TinierCP in a top-down man-
ner focusing only on relevant functions and properties

The author gradually verified termination of parse, declspec, and parse_typedef’s loops in a
top-down manner. She partially specified the eight functions in Fig. 5.6’s call graph during the
process. She first wrote fully precise recursive predicates tokenList and tokenListSeg spec-
ifying that a given token list or token list segment is acyclic. Then, she used those predicates to
partially specify parse—the entry function into TinierCP—to ensure its loop terminates. In par-
ticular, she specified parse’s precondition as ?&&tokenList(tok)—which ensures parse only
accepts acyclic lists—and parse’s loop invariant as ? && tokenListSeg(gv_tok,tok) &&
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parse

parse_typedefdeclspec declarator

type_suffixpointers skip

func_params

parse — entry function into TinierCP pointers — parses pointers
declspec — parses types type_suffix — parses function parameters
parse_typedef — parses typedefs func_params — parses function parameters
declarator — parses declarators skip — skips a given token in a token list

Figure 5.6: Graph of function calls for TinierCP functions partially specified by the author

tokenListSeg(tok,NULL) && (gv_beforeloop == true ? true : gv_tok != tok)

where gv_tok and gv_beforeloop are program variables introduced for verification and
gv_tok is always the current token before the loop executes and gv_beforeloop is true when
execution is before the loop and false otherwise. That is, parse’s loop must preserve the acyclic
shape of parse’s token list and progress the list forward at least one token on every iteration.

The author chose to partially specify declspec next, because it “is always executed in [parse’s
loop making it] an important function for determining parse’s termination." It also has a loop of
its own that must terminate when parsing the token list passed to declspec from parse. She
used what she learned from specifying parse’s loop to similarly specify declspec’s contract and
loop to preserve acyclicity of its given token list and ensure execution progresses forward in the
list. While specifying the loop, the author realized with Gradual C0’s help that parse’s loop
will incorrectly loop forever. Gradual C0 alerted her to a contradiction between declspec’s loop
invariant and postcondition. After investigating, the author found that the loop invariant and de-
clspec were correct while the postcondition was incorrect and too strong for declspec’s code.
But, declspec’s postcondition was precisely what parse’s loop needed to avoid iterating indef-
initely leading the author to investigate parse’s loop and find an infinite loop bug (see §5.3.3
for more information). The author, then, fixed both parse’s loop code and declspec’s postcon-
dition; and as a result, “went back to statically verifying more of declspec’s loop ... to make
sure [there are not] any [more] issues." She, similarly, “weakened [declspec’s] loop invariant ...
based on [a] realization" made during this process. Once the author was confident in the cor-
rectness of declspec and its loop, she moved on to partially specifying parse_typedef, which is
called optionally in parse’s loop and contains its own loop that must terminate for token lists. She
specified parse_typedef and its dependencies (declarator, type_suffix, pointers, func_params,
and skip) in a similar manner to parse and declspec. That is, the author:

1. Specified each function’s contract as motivated by the needs of its callers. For example,
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she wrote “The main determiner of whether the loop in parse_typedef progresses or not is
the declarator function, which ideally should always progress the token list if it returns a
type with non-null name ... so, I set out to specify and verify declarator for this property
in its contract"

2. Specified loop invariants for termination where necessary (e.g. parse_typedef)

3. Added additional specifications in functions where the author wanted to increase her con-
fidence in the correctness of the code and her specifications (e.g. the execution path in
declarator that contains recursive calls to declarator)

4. Refined her specifications in the enclosing function and its callers based on new informa-
tion gained during the specification and verification process (e.g. clauses in declarator’s
postcondition were modified slightly after partially verifying its callee skip’s contract)

That is, the author gradually specified and verified TinierCP’s parser loops in a top-down fashion
and refined her specifications in a bottom-up fashion as her understanding of the specifications
and code improved from the process and feedback from Gradual C0.

5.3.2 Gradual C0 makes selective and top-down verification workflows
possible

Gradual C0 is implemented in adherence with the gradual guarantee for gradual verification
systems (Chpt. 2, §2.4), which says that Gradual C0 will not flag static or dynamic errors for
specifications that are correct but imprecise. Therefore, users of Gradual C0 can specify only the
properties and components of code that they care about and get relevant verification feedback—
errors caused by missing specifications are suppressed and errors caused by inconsistencies be-
tween specifications and code are highlighted. This functionality allowed the author to specify
only relevant functions for loop termination supporting a selective, top-down verification work-
flow.

The author avoided writing ownership specifications to verify heap accesses—an orthogonal
property to loop termination—with Gradual C0 and still received useful verification feedback.
Fig. 5.6 gives the call graph of parse, declspec, and parse_typedef and their dependencies that
the author determined were important for ensuring the correctness of their loops. However,
in reality the eight functions in Fig. 5.6 call many more (approx. 39) functions that are not of
interest. For example, six of the eight functions (excluding parse and parse_typedef) call equal
at least once (declspec calls equal many times), which tests whether or not a given token’s
StringList element is equal to another StringList. These calls are also often paired with a call
to a str_[name] function, which creates and returns a StringList containing “name". Similarly,
parse and parse_typedef call Scope and VarAttr modifiers to manage variable scopes. None of
the aforementioned functions affect loop termination for parse, declspec, and parse_typedef as
specified by the author.

Unfortunately, in a static verifier (such as Viper [33] or VeriFast [22]), all the functions in
Fig. 5.6 and their 39 dependencies need specified for ownership to verify heap accesses in them,
otherwise the verifier will only report errors for insufficient permissions to access heap loca-
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tions. Worse, is that TinierCP’s other 182 functions are also dependencies of the 39 functions
and nearly all of them access heap locations as well. So, the other 182 functions also need spec-
ified for ownership or even more errors for insufficient permissions to access heap locations will
be generated. Applying Viper to TinierCP without any specifications results in 69 such errors
across 229 functions and are suppressing many more such errors. Instead, the author used ?

and selectively specified only the seven functions of interest and only for loop termination. She
let ? represent the missing ownership specifications in places where she wrote partial specifi-
cations for loop termination, such as on parse’s loop and declspec’s contract. In functions she
didn’t specify, she relied on Gradual C0 defaulting missing specifications to ? to represent own-
ership specifications. As a result, Gradual C0 verified heap accesses statically where possible
and guarded the rest with run-time checks, suppressing static errors for lack of permission access
caused by missing ownership specifications. Gradual C0 did not report any permission access
violations by TinierCP.

Furthermore, Gradual C0’s suppression of errors from missing ownership specifications—
and missing auxiliary specifications for loop termination such as folds and unfolds—allowed
the author to receive relevant feedback on the correctness of TinierCP with respect to loop ter-
mination. We will see next how this feedback gave the author confidence in the correctness of
TinierCP’s code and her specifications and helped her find a bug in TinierCP’s code.

5.3.3 Selective and top-down verification workflows backed by Gradual
C0 are useful for assuring loop termination in TinierCP

Gradual C0’s suppression of verification errors from missing specifications encouraged the
author to verify TinierCP early and often. Thanks to the gradual guarantee, Gradual C0 sup-
presses verification errors caused by missing specifications; and thus, highlights errors caused
by inconsistencies between partial specifications and code. As a result, the author verified her
specifications early and often throughout the specification process. She ran Gradual C0 49 times,
including after writing each of parse’s contract, parse’s loop invariant, declspec’s contract, de-
clspec’s loop invariant, extra specifications in declspec’s loop body, parse_typedef’s contract
and loop invariant, declarator’s contract, type_suffix and func_param’s contracts, skip’s contract,
pointers’s contract, and extra specifications in declspec’s recursive execution path. The author
noted that with static verifiers she "probably would go longer without checking these things
[knowing she wouldn’t] get any verification success or failure feedback until [she has] a more
complete spec." This paid off as she found, debugged, and fixed a few different issues in her
specifications and a bug in TinierCP’s code.

Early and often reporting of relevant static and dynamic verification errors helped the au-
thor discover bugs in specifications and TinierCP’s code earlier than static verification alone.
The author first specified parse’s precondition as tokenList(tok) and postcondition as ?, but
Gradual C0 reported a run-time error for a failed “TokenKind.kind" field access check to her
for this specification. Recall (from §5.1.1), tokens each contain a TokenKind pointer kind that
contains an integer field kind, so the dereference tok->kind->kind is possible. It turns out,
the is_EOF(tok) function called in parse contains such a dereference, which is the cause
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of the error. Unfortunately, while parse’s precondition specifies ownership of all the fields in
each token in the list starting with tok, the precondition does not specify ownership of the
fields in each token’s fields. That is, tokenList(tok) specifies ownership of tok->kind
but not tok->kind->kind. Gradual C0’s run-time system only passes the owned heap loca-
tions specified by tokenList(tok) (since this precondition is precise) to parse and then to
is_EOF(tok) (since is_EOF’s precondition is ?) to check tok->kind->kind. So, ownership of
tok->kind->kind is missing and the access check fails. That is, parse’s precondition is too
weak and should additionally specify ownership of tok->kind->kind. This may be simple,
but unfortunately other functions called transitively through parse require ownership of all heap
locations accessible through a tok. Specifying this is unweildy and not relevant for loop termi-
nation, so the author appended ? to parse’s precondition and Gradual C0 successfully verified
TinierCP with just parse’s contract. Had the author relied on static verification alone, she noted
that she would have specified a lot more of parse before verifying her specifications, but Gradual
C0’s flexibility encouraged her to check them earlier. She also would have needed to specify far
more of parse—like its loop—and its callees before a static verifier would alert her to the issue.

Similarly, Gradual C0’s optimistic static verifier, which can detect logical inconsistencies
even when specifications are incomplete (e.g. ? && x > 0 ̸ ⇒̃ ? && x < 0 since x > 0 contradicts
x < 0, and so Gradual C0 produces an error here), helped the author discover that her post-
condition for declspec was too strong for its implementation. Initially, she partially specified
declspec’s postcondition as motivated by parse’s needs for assuring its loop terminates. That is,
declspec’s postcondition ensures declspec returns a token list that is acyclic and starts at least
one token later in the list passed to declspec. The author also partially specified declspec’s own
loop for termination ensuring the loop preserves acyclicity of its token list (the one passed to
declspec) and the loop’s body moves forward in the list. Unfortunately, Gradual C0 reported a
static failure for the aforementioned specifications stating the postcondition of declspec might
not hold because it cannot prove the gv_tok != *rest clause true, which guarantees the token
list passed to declspec is progressed. Since Gradual C0 verified declspec’s contract successfully
before declspec’s loop invariant was added and the loop invariant still contains ?, the author
strongly suspected and confirmed the error was caused by a contradiction between the two speci-
fications. It turns out, when the loop never executes, declspec’s implementation never progresses
its given token list and the loop invariant correctly specifies gv_tok == tok in this case. Since
tok is assigned to *rest and rest is returned immediately after the loop, gv_tok != *rest

does not hold for this execution path. So, declspec’s postcondition is too strong for its imple-
mentation. In a static verifier, the author would need to specify declspec’s 170 LoC loop body
with over 20 branches in full before it would report the same inconsistency error as Gradual C0.

Recall, declspec’s initial postcondition was written precisely to ensure parse’s loop termi-
nates. Any weaker postcondition means parse’s loop will loop indefinitely for some execution
paths—e.g. the one where declspec’s loop body never executes, which can happen for badly
written programs like intt n;. So, the author compared TinierCP’s parse loop with Chibicc’s
parse loop and realized the catch all case for un-parsable, badly constructed code is contained in
a function that was removed in TinierCP—because the function parses constructs not supported
by TinierCP. She fixed this bug by adding a catch all case directly to parse’s loop and weakening
her postcondition of declspec to match its implementation. Gradual C0 successfully verified this
version of TinierCP without error.
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Dynamic verification is limited by execution coverage, but selective applications of static verifi-
cation with Gradual C0 can cover for this weakness. The author discovered the bug in parse’s
loop using Gradual C0’s static verifier by specifying more of TinierCP—declspec’s contract and
loop invariant. However, she could have discovered the issue earlier—after specifying parse’s
loop invariant—by using Gradual C0’s dynamic verifier on an additional test case containing
a badly written C program, such as intt n;. For the badly written test case, the loop gets
stuck parsing the first bad token and repeatedly loops indefinitely trying to parse it. Fortunately,
Gradual C0 checks the loop invariant on every iteration of the loop at run time (since it is not
discharged statically), which fails at the first occurrence of the loop getting stuck. Gradual C0
stops execution immediately and notifies the user of the failure. While a simple test case could
have uncovered this issue, the eight functions of interest to the author contain a plethora of exe-
cution paths, e.g. declspec’s loop branches over 20 times, which are hard to cover with test cases.
Gradual C0’s dynamic verifier only alerts users to errors in executed paths, so issues may exist
in paths not covered by the author’s test case.

To overcome this weakness, the author used Gradual C0 to statically verify properties of
interest for execution paths in TinierCP that she deemed as questionable and not covered by
TinierCP’s existing test case. This strategy was prompted by her success in finding parse’s loop
bug with selective specifications on declspec and static feedback from Gradual C0. In particular,
the author spent a lot of time trying to make sure edge case “counter > 0" execution paths
in declspec’s loop proved gv_tok != tok true, which ensures the loop moves forward in its
token list. She also “[made] sure the recursive branch of declarator was solid" by incremen-
tally specifying this execution path with Gradual C0 until she was confident in its correctness
(i.e. when enough important proof obligations are discharged statically by Gradual C0). Dur-
ing this process, she discovered that her initial loop invariant for declspec was too strong for
counter > 0’s execution paths and adjusted the specification correspondingly. She also noted
that “specifying and thinking about how type_suffix contributes to what [she wanted] to prove
about declarator helped [her] refine [her] declarator spec a bit ([which] was rougher at first)."

Takeaways. Gradual C0’s ability to run-time check proof obligations that cannot be discharged
statically when specifications are missing (rather than produce static verification errors) allows
users to get early and frequent feedback on the consistency of their code and specifications. The
author leveraged this feedback to find, debug, and fix bugs in specifications and code during
selective and top-down specification efforts. Unfortunately, dynamic feedback is limited by path
coverage, so bad specifications and code may go undetected along paths that are not executed
at run time. Users may overcome this weakness (like the author did) by using Gradual C0 to
statically verify properties of interest along paths that are questionable and not covered by run-
time checking.
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1 Token *skip(Token *tok, StringList *op)

2 //@requires ? && tokenListSeg(tok,NULL);

3 //@ensures ?;

4 //@ensures tokenListSeg(tok,\result);

5 //@ensures tokenListSeg(\result,NULL);

6 //@ensures tok != \result;

7 {
8 if (!equal(tok, op)) { ... }

9 //@ unfold tokenListSeg(tok,NULL);

10 Token *tokres = tok->next;

11 //@ FOLDS & UNFOLDS

12 return tokres;
13 }
14

Figure 5.7: skip code snippet

1 while (!break_loop && is_typename(tok, scope))

2 //@loop_inv ? && ... ;

3 //@loop_inv tokenListSeg(tok,NULL);

4 //@loop_inv ... ; {

5 ...
6 if (equal(tok, str_typedef()) ||
7 equal(tok, str_static()) ||
8 equal(tok, str_extern()) ||
9 equal(tok, str_inline())) {

10 ...

11 //@ unfold tokenListSeg(tok,NULL);

12 tok = tok->next;

13 //@ FOLDS & UNFOLDS

14 ...
15 }

Figure 5.8: declspec code snippet

Figure 5.9: skip and declspec code snippets from TinierCP with the author’s specifications

5.3.4 Gradual C0 needs further improvements to support selective and
top-down verification workflows

As we’ve seen, Gradual C0’s adherence to the gradual guarantee, which leads to lots of optimism
in static verification, is useful for debugging both specifications and code and assuring TinierCP’s
loops terminate. However, at times the author found such optimism hindering her workflow.

Gradual C0’s optimism at function calls made it difficult for the author to reduce run-time
checking with more specifications. The author focused primarily on bug finding in code and
specifications, but she also occasionally tried to reduce run-time checking in Gradual C0 with ad-
ditional specifications. Unfortunately, the author gave up on doing this when she realized Grad-
ual C0’s optimism around irrelevant function calls made reducing run-time checking difficult and
time consuming. Consider, Fig. 5.7 and Fig. 5.8, which contain code snippets from skip and de-
clspec (respectively) with the author’s specifications. The author wrote folds and unfolds before
and after the variable assignment on line 10 to get Gradual C0 to statically verify skip’s postcon-
dition in full (lines 3-6). However, these specifications require tokenListSeg(tok,NULL) to
be available for the unfold on line 9. The precondition (line 2) provides this predicate, but the
call to equal (line 8) consumes and does not give back tokenListSeg(tok,NULL) because
equal’s pre- and postconditions are ?. Thus, a run-time check for tokenListSeg(tok,NULL)
is required by Gradual C0 at the unfold (line 9). But, equal only retrieves the StringList field str
from tok and calls StringList equals on str and op. That is, the token list starting at tok passed
to equal is not modified by the function or its callees preserving tokenListSeg(tok,NULL).
Consequently, the author thought about appending tokenListSeg(tok,NULL) to equal’s pre-
and postconditions, which allows skip to be completely statically verified. However, this pushes
the run-time check for tokenListSeg(tok,NULL) to the end of equal as equals—with its
? contract—similarly consumes tokenListSeg(tok,NULL). The author would then need to
completely statically specify equals for ownership (indicating the function doesn’t access any
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token list heap locations just StringList ones) to avoid the run-time check in equal, which is
a lot of work for a function orthogonal to the author’s concerns. Thus, the author decided
to leave equal’s contract as ? and move on. Similarly, the author tried to statically prove
tokenListSeg(tok,NULL) (Fig. 5.8, line 3) is preserved by declspec’s loop to reduce run-
time checking. If tokenListSeg(tok,NULL) is available before tok is re-assigned on line
12, then folds and unfolds (lines 11 and 13) can be used to prove tokenListSeg(tok,NULL)
holds after the assignment at the end of the loop. But, calls to equal and str_[name] functions
are again permanently consuming tokenListSeg(tok,NULL) provided by the loop invariant
at the top of the loop. So, the author gave up here too.

Gradual C0 should provide a “hold" construct to facilitate run-time check reductions in top-
down workflows. Unfortunately, calls to equal and other functions not of interest (e.g. helper
functions for types and variable scopes) happen all throughout the parser functions in TinierCP.
So, unless the author statically specifies them for ownership—an orthogonal property to loop
termination—she will not be able to reduce run-time checks from Gradual C0 significantly. How-
ever, Gradual C0 could be extended to support a hold ϕ {...} construct, where ϕ is a partial
specification containing only predicates and accessibility predicates, to wrap around function
calls. This construct tells Gradual C0 to assert ϕ and then reserve the predicates in ϕ and their
heap locations from the gradual verification of the program statements in the lexical scope. The
held permissions are merged with the ones from the scope at its end. Then, the author can write
hold tokenListSeg(tok,NULL) {equals(tok->str, op);} in equal; and Gradual C0
keeps tokenListSeg(tok,NULL) and its heap locations in the caller equal rather than pass-
ing them to the callee equals. Thus, equals does not consume tokenListSeg(tok,NULL)

statically nor accepts its heap locations dynamically. Gradual C0 can then prove statically that
tokenListSeg(tok,NULL) holds at the end of equal and eliminate the run-time check for it
there. Since equals does not rely on the heap locations in tokenListSeg(tok,NULL), equals
still verifies correctly at run time.

Note, the hold construct proposed here is an adaptation of the one from prior work on gradual
typestate [18], which reserves an access permission to a variable from a lexical scope and then
merges the permission of the variable after the scope with the held permission. Similar to Garcia
et al. [18]’s hold, we also let the lexical scope do what it wants with the permissions it receives
as long as it returns sufficient ones to its caller.

Gradual C0’s implicit optimism at function calls and branch points made it difficult for the au-
thor to track when proof obligations are discharged statically. Using Gradual C0, the author
selectively applied static verification to secure questionable execution paths in TinierCP not cov-
ered by her test case. So, it was crucial for her to know whether or not Gradual C0 discharged
her proof obligations statically. Unfortunately, Gradual C0 does not provide such information
forcing the author to track it herself; and worse, Gradual C0’s optimism at function calls and
branch points made this process harder.

The author often forgot that unspecified, irrelevant functions—with default ? contracts—
were on her verification path and believed proof obligations were discharged statically when they
were not. In reality, information available to prove them statically was consumed by such func-
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tions’ ? contracts in Gradual C0 resulting in run-time checks for the proof obligations instead.
For example, she wrote “[I] noticed that the two simple fold statements that I wrote in declspec
for the loop invariant entry to reduce run-time checking does not actually reduce run-time checks
due to the is_typename function used in the loop condition subsuming these predicates thanks to
its unspecified pre/postconditions." She also wrote “I saw some unexpected additional run time
checks that I thought I’d specified away" in reference to tokenListSeg(tok,NULL) being
checked at run time rather than statically for type_suffix’s precondition in declarator’s recursive
path. Calls to equal and empty_type earlier in the code caused tokenListSeg(tok,NULL) to
be checked at run time. The author uncovered these misconceptions by inspecting the .verified.c0
intermediate file produced and saved by Gradual C0 on each run. This file contains TinierCP’s
code modified to include all required run-time checks as determined by Gradual C0. She used
this file at least three different times to track her static verification progress.

Additionally, Gradual C0 treats branch points optimistically (as discussed in more detail in
Chpt. 3, §3.3) in adherence with the gradual guarantee (Chpt. 2, §2.4). For example, consider if
(x > 2) //@ assert false; else //@ assert true; where Gradual C0 only knows
? prior to statically verifying this if statement. Gradual C0 first splits execution and verifies both
the x > 2 branch and x <= 2 branch; where, the former branch fails due to asserting false,
while the latter succeeds due to asserting true. Since one of the execution paths fails, a normal
static verifier would report verification of the if statement a failure. However, Gradual C0’s static
verifier optimistically assumes ? contains x <= 2 and the failing branch is unreachable code.
So, Gradual C0’s static verifier successfully verifies the if statement and Gradual C0 guards the
if statement with a run-time check for x <= 2 before the if.

While this behavior makes sense in theory, in practice it makes determining whether or not
proof obligations are statically verified harder. The author initially wrote a loop invariant for
declspec that was too strong for the loop’s “counter > 0" execution paths. She was never
alerted to this issue, because Gradual C0’s optimism at branch points turned the static failure
down these execution paths (due to it not preserving declspec’s loop invariant) into a run-time
check for !(counter > 0) that is not covered by her test case. The author discovered the issue
by reasoning about the counter > 0 execution paths herself. She ran into this problem three
more times: when she was specifying 1) declspec’s loop invariant very early in the process,
2) more of the counter > 0 paths, and 3) parse_typedef’s loop invariant. However, in these
cases, Gradual C0 reported a run-time error for the check Gradual C0 injected at the optimistic
branch point, which was unfortunately more confusing than helpful. Execution is intended to go
down the paths the check is guarding against—hence, the run-time failure—and the true cause of
the error—which is a mismatch between specifications and code in the statically failing branch—
is not reflected by Gradual C0’s reporting. The author thought the first error she encountered of
this form was a bug in Gradual C0: “ran into what seems like a bug in Gradual C0... in the true
case of the loop invariant of declspec". But, eventually figured out what was going on: “run
time check error ... in parse_typedef was generated due to the permissiveness of branching in
Gradual C0... I had to look in the .verified.c0 [file] to figure out what is going on and this error
is confusing on its own".

Gradual C0 should tell users whether or not their proof obligations have been discharged stat-
ically. Gradual C0’s optimism from adhering to the gradual guarantee is powerful for assuring
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loops terminate in TinierCP by suppressing unwanted static verification errors. However, as
we have just seen, it also at times suppresses wanted static information (including some errors).
Therefore, Gradual C0’s user interface should be extended to provide feedback on whether or not
user selected proof obligations down user selected execution paths have been statically verified.
This feedback should include reports of static verification errors down the selected paths where
applicable. For example, the author could select the tokenListSeg(tok,NULL) clause (line
3) in the loop invariant from Fig. 5.8 and the true branch of the if statement (line 6). Then, Grad-
ual C0’s user interface would report whether or not the clause is proven statically at the end of
each execution path in the if statement’s true branch—which would be yes for the path shown on
lines 11-13 (if the author instead selected the unfold on line 11, then no would be reported). The
reporting could appear in an IDE on the original source program or in a custom visualization
tracking Gradual C0’s static verification process (e.g. an adaptation of the symbolic execution
tree from VeriFast’s IDE [23]). That is, this solution preserves Gradual C0’s current level of op-
timism and just selectively reports additional information—beyond verification success or failure
and related errors—produced by Gradual C0 during static verification.

5.3.5 General Gradual C0 limitations and improvements

While the author was using Gradual C0 to gradually verify TinierCP, she came across a few bugs
in the tool, uncovered limitations in the Gradual C0 for codebases like TinierCP, and described
minor issues with Gradual C0’s error reporting interface. We present these bugs and limitations
and propose solutions where applicable in this section.

Bugs found in Gradual C0. The author ran into three bugs in Gradual C0 while she was us-
ing the tool to gradually verify the skip function. For the first bug, she ran into an exception
in Gradual C0’s frontend module that translates run-time checks into C0 source code. The ex-
ception was for an invalid ’\result’ expression in a run-time check, which was previously wit-
nessed in a closed github issue in Gradual C0’s main repository: https://github.com/gradual-
verification/gvc0/issues/54. She re-opened the issue and removed skip’s pre-condition, which
was triggering the exception. This bug appears to be a completeness issue not a soundness one.
The second issue was Gradual C0 treating logical conditionals as a priority even across ensures
clauses. For example, ensures (x > 2 ? false : true); ensures acc(y->f); is
treated as x > 2 ? false : (true && acc(y->f)) rather than (x > 2 ? false:true)

&& acc(y->f). The author intended the latter and was surprised to find out Gradual C0 used
the former. She swapped the order of her ensures clauses to solve the issue, and we should fix
this in general in Gradual C0. Finally, the author discovered that her unfold in skip did not
produce a run-time check when it should have. As a result, we uncovered and fixed a single line
bug in Gradual C0’s backend, so unfold correctly produces run-time checks when necessary.
The performance data in this thesis was updated to account for this bug fix.

Engineering improvements required for larger codebases. The author ran into a few different
limitations of Gradual C0 that are related to using the tool on larger codebases (about 3k LoC vs
a few hundred LoC for the benchmarks in Chpt. 4). Since Gradual C0 does not currently support
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multi-file verification, we implemented all of TinierCP’s modules in a single file called cparser.c0
for the author to verify. This resulted in the author scrolling up and down through approximately
2k LoC, which led the author to open two copies of TinierCP’s cparser.c0 file in a split screen
to help. To make the gradual verification of codebases with multiple modules easier, Gradual
C0 should support multi-file verification. Additionally, we can see from Fig. 5.5 that gradually
verifying TinierCP without specifications using Gradual C0—which defaults missing specifica-
tions to ?—results in 0.16 seconds of run-time overhead from checking that heap accesses are
safe. While this cost is reasonable for our test case (from §5.1.2), larger C programs (larger token
lists) may have significantly increased dynamic verification costs. Future work should investigate
and implement strategies to reduce the run-time overhead and memory usage of Gradual C0’s
run-time checking strategy for verifying heap accesses. Similarly, as more specifications were
added to TinierCP, Gradual C0’s static verification run-time overhead significantly increased—
going from 1 minute 1 second without specifications to 3 minutes 7 seconds with the author’s
final specifications. Thanks to the modularity of static verification and localization of specifica-
tion changes in a gradual workflow, Gradual C0 could improve its static verifier’s performance
by only re-verifying a function and its callers when the function’s specifications (or code) have
changed from one run to another. This and other optimizations for Gradual C0’s static verifier
should be explored in future work to improve usability in larger codebases.

Minor user interface changes to improve user experience. Finally, the author suggested a
handful of minor user interface changes that would have improved her experience. She wants a
VSCode plug-in for highlighting Gradual C0 specific constructs that “distinguishes annotations
from comments." Furthermore, Gradual C0 reported a run-time check verification error to the
author that states “Field access runtime check failed for struct TokenKind.kind." No location
information was attached to this error, causing the author to spend a non-trivial amount of time
and effort locating the failing field access in TinierCP. Had line numbers or a stack trace been
attached to the error message the origin of the error would be obvious (e.g. tok->kind->kind
in is_EOF). Similarly, Gradual C0 reported an “assert failed" run-time error for a run-time check
containing a boolean expression. This time line numbers were given, but they corresponded to
line numbers in an intermediate file used by Gradual C0 and not the original TinierCP program.
Gradual C0 also did not report any details about the failing expression. Consequently, the author
looked in the aforementioned intermediate file to figure out what was going on. Going forward,
we should improve Gradual C0’s error messaging by attaching line numbers and stack traces that
correspond to the original C0 program to the messages, and by giving better textual descriptions
of failing run-time checks—as inspired by the thorough error messaging from Rust’s borrow
checker.

5.4 Discussion

Now, we connect our experience from developing TinierCP (§5.1.1) and what we’ve learned in
§5.3 to our research questions.
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Trends, themes, and trade-offs. A few trends emerged from using Gradual C0 to verify
TinierCP’s parser functions for loop termination (RQ1). Gradual C0’s ability to suppress static
verification errors from missing specifications allows users to specify only the software compo-
nents and properties they care about. Furthermore, TinierCP’s parser functions and their loops
call a number of other functions and contain a lot of additional code that have no bearing on loop
termination. In our study, this led to the author choosing to only specify and verify properties
and code relevant to loop termination and do so in a top-down manner—using specifications on
callers to inform specifications in callees. In addition to suppressing static verification errors
from missing specifications, Gradual C0 also reports static or dynamic verification errors from
inconsistencies between specifications and code—as Gradual C0 is sound. This encouraged the
author to verify her specifications early and often throughout her top-down verification process,
which uncovered bugs in specifications and code (RQ4). Dynamic errors helped her find issues
with specifications and code earlier than static verification (RQ3), but only when test cases cov-
ered problematic execution paths (RQ5). The author overcame this weakness by using Gradual
C0 to prove specific proof obligations statically down execution paths not covered by run-time
checking—trading off human effort in exchange for increased assurance (RQ2). Static errors
from Gradual C0 were also helpful for finding bugs in specifications and code (RQ3).

Limitations of Gradual C0 and C0. One of the reasons Chibicc was chosen as our case was
because it is implemented with C code that is friendly to C0—avoiding abstractions and clever
tricks like higher-order functions, macros, and unions. Despite this, as we saw in §5.1.1, C0
is even more restrictive than we realized initially by disallowing switches, enums, global vari-
ables, breaks and continues, and address of. While the changes to Chibicc’s code/algorithms
to deal with these limitations involved busy work, their common use throughout Chibicc made
this process time consuming. We looked at a number of other C parsers written in C and the
use of the aforementioned features, pointer casts and arithmetic, macros, and unions were all
common. That is, while C0 has worked as a starting language for building Gradual C0 and posi-
tions Gradual C0 well for use in educational studies, Gradual C0 should be extended to support
a programming language with more expressive features (RQ5).

Additionally, the author witnessed a number of user interface, engineering, and fundamen-
tal limitations of Gradual C0 (RQ5). While run-time check errors were helpful for alerting the
author to issues with her specifications and TinierCP’s code, minor improvements to their pre-
sentation, such as reporting where they originated from in TinierCP and providing more detailed
error messaging about the failure, would make the errors more effective in practice. Further-
more, Gradual C0 does not inform its users about optimistic assumptions made during static
verification, because most of the time this is the preferred behavior. However, in select cases
Gradual C0 should report whether or not a proof obligation is discharged statically or optimisti-
cally. Additionally, Gradual C0’s lack of multi-file verification support and slow static verifi-
cation performance on partially specified TinierCP code limits Gradual C0’s ability to scale to
large codebases. Supporting multi-file verification in Gradual C0 and applying additional opti-
mization techniques to Gradual C0 are both important engineering endeavors. Finally, Gradual
C0’s inability to support the gradual verification of arrays and strings eliminated a large number
of interesting case studies from consideration and resulted in more time consuming and unsat-
isfying changes to Chibicc’s code than C0’s limitations. Gradual verification theory should be
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extended to support quantification in specifications,—just as we have for ownership and recursive
predicates—so arrays and strings can be verified.

Challenges from TinierCP for Gradual C0 (RQ6). Gradual C0’s optimism around function
calls coupled with TinierCP’s parser functions calling a plethora of other helper functions—that
don’t impact loop termination—made it difficult for the author to make improvements to run-
time checking overhead by statically verifying more proof obligations. She would have had
to statically verify these helper functions in full for orthogonal properties related to memory
safety to make any impact on run-time performance, which is counter-intuitive to her workflow.
Instead, future work should investigate a hold construct in Gradual C0 (inspired by work in
gradual typing [18]) that allows users to specify permissions that should be held from the gradual
verification of specific functional calls.

5.5 Threats to Validity
Reliability. The author of this dissertation not only gradually verified TinierCP with Gradual
C0 producing the data for this study, she also analyzed the data and wrote up the results in
narrative form. While this helped provide additional context to our analysis and results, this may
make it harder for other researchers—who don’t have this context—to reproduce parts of our
results even when following our coding methodology.

External validity. The generality of the findings in this study is hindered by them being drawn
from data produced by one person’s experiences, opinions, and decisions, especially a person
who is an expert on gradual verification technology. Other verification experts would not have
the same level of familiarity with Gradual C0 and how it works to gradually verify code even after
using the tool prior to the study. Thus, other experts may make different choices throughout the
verification process that would collectively result in different conclusions to this study. Follow-
up studies should be conducted with a larger number of experts to confirm, deny, or refine the
conclusions of this study.
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Chapter 6

Conclusion

Gradual verification is a promising approach to supporting incrementality and enhancing the
adoptability of program verification. Users can focus on specifying and verifying the most im-
portant properties and components of their systems and get immediate feedback about the consis-
tency of their specifications and the correctness of their code. This dissertation makes significant
advancements over early work in gradual verification by extending it to support programs manip-
ulating recursive heap data structures. We overcame several key technical challenges, including
the semantics of imprecise formulas in the presence of accessibility predicates and recursive
predicates, and consistency between iso-recursive static checking and equi-recursive dynamic
checking. We formalize our gradual verification approach and prove it sound and that it adheres
to important gradual properties like the gradual guarantee (Chpt. 2). Gradual C0 implements
these ideas in a working gradual verifier, which facilitates development of gradual verifiers for
other languages and minimizes run-time checks and their overhead (Chpt. 3). Experimental
results show that our approach can reduce overhead significantly compared to purely dynamic
checking and adheres to speculated performance trends—introducing proof obligations increases
performance until a critical mass of specifications are written, at which point run-time overhead
decreases with additional specifications (Chpt. 4). Finally, Gradual C0 opened the door for us to
explore how gradual verification can be used to assure real codebases through a case study. We
found gradual verification useful for allowing us to verify only the code and properties relevant
to our task, which was a necessity in real software; and also, uncovered bugs in specifications
and code far earlier than if we had used static verification alone.

Future Work. The work presented in this dissertation lays a solid foundation for gradual veri-
fication, and also positions us well for important future work. Gradual verification soundly and
systematically applies run-time checking at the boundaries between modules, which is a neces-
sity for verifying larger codebases. It also can do this at the boundaries with library code, but
Gradual C0 is not designed to support this. In fact, not only is Gradual C0’s strategy for checking
ownership at run time expensive at times (Chpt. 4), it also requires source code to be available
to provide sound guarantees. Our formal framework, Gradual C0, and benchmarking infrastruc-
ture provide a helpful basis for exploring more optimal ownership checking strategies that can
soundly verify code even when source code is unavailable. Additionally, more work remains to
extend gradual verification (and Gradual C0) to the expressiveness of state-of-the-art static pro-
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gram verifiers, such as supporting quantification in specifications and a full fledged programming
language like Rust. Our formal framework and Gradual C0’s modular structure should facilitate
both of these endeavors nicely. Finally, we witnessed a number of interesting user trends from
using Gradual C0 on real code that should be evaluated, confirmed, refined or added to in future
user studies with Gradual C0.
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Appendix A

Appendix

A.1 Chpt. 2’s Appendix

A.1.1 SVLRP

Formula Semantics

H, ρ ⊢ v ⇓ v
EVAL

H, ρ ⊢ x ⇓ ρ(x)
EVAR

H, ρ ⊢ e ⇓ o H(o) = ⟨C, l⟩
H, ρ ⊢ e.f ⇓ l(f)

EVFIELD

H, ρ ⊢ e1 ⇓ v1 H, ρ ⊢ e2 ⇓ v2

H, ρ ⊢ e1 ⊕ e2 ⇓ v1 ⊕ v2
EVOP

H, ρ ⊢ e1 ⇓ v1 H, ρ ⊢ e2 ⇓ v2

H, ρ ⊢ e1 ⊙ e2 ⇓ v1 ⊙ v2
EVCOMP

Figure A.1: SVLRP: Expression dynamic semantics
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⟨H, ρ, π⟩ ⊨E true
EVTRUEEXPR

H, ρ ⊢ e1 ⊙ e2 ⇓ true
⟨H, ρ, π⟩ ⊨E e1 ⊙ e2

EVCOMPEXPR

H, ρ ⊢ e ⇓ o H, ρ ⊢ e.f ⇓ v ⟨o, f⟩ ∈ π

⟨H, ρ, π⟩ ⊨E acc(e.f)
EVACC

⟨H, ρ, π⟩ ⊨E ϕ1 ⟨H, ρ, π⟩ ⊨E ϕ2

⟨H, ρ, π⟩ ⊨E ϕ1 ∧ ϕ2

EVANDOP
⟨H, ρ, π1⟩ ⊨E ϕ1 ⟨H, ρ, π2⟩ ⊨E ϕ2

⟨H, ρ, π1 ⊎ π2⟩ ⊨E ϕ1 ∗ ϕ2

EVSEPOP

H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨H, ρ, π⟩ ⊨E bodyµ(p)(e1, ..., en)
⟨H, ρ, π⟩ ⊨E p(e1, ..., en)

EVPRED

H, ρ ⊢ e ⇓ true ⟨H, ρ, π⟩ ⊨E ϕT

⟨H, ρ, π⟩ ⊨E if e then ϕT else ϕF

EVCONDTRUE

H, ρ ⊢ e ⇓ false ⟨H, ρ, π⟩ ⊨E ϕF

⟨H, ρ, π⟩ ⊨E if e then ϕT else ϕF

EVCONDFALSE

⟨H, ρ, π⟩ ⊨E ϕ

⟨H, ρ, π⟩ ⊨E unfolding p(e1, ..., en) in ϕ
EVUNFOLDING

Figure A.2: SVLRP: Formula evaluation
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⟨H, ρ,Π⟩ ⊢frmI v
FRMVAL

⟨H, ρ,Π⟩ ⊢frmI x
FRMVAR

⟨H, ρ,Π⟩ ⊢frmI e1 ⟨H, ρ,Π⟩ ⊢frmI e2

⟨H, ρ,Π⟩ ⊢frmI e1 ⊕ e2
FRMOP

⟨H, ρ,Π⟩ ⊢frmI e1 ⟨H, ρ,Π⟩ ⊢frmI e2

⟨H, ρ,Π⟩ ⊢frmI e1 ⊙ e2
FRMCOMP

⟨H, ρ,Π⟩ ⊨I acc(e.f) ⟨H, ρ,Π⟩ ⊢frmI e

⟨H, ρ,Π⟩ ⊢frmI e.f
FRMFIELD

⟨H, ρ,Π⟩ ⊢frmI e

⟨H, ρ,Π⟩ ⊢frmI acc(e.f)
FRMACC

⟨H, ρ,Π⟩ ⊢frmI ϕ1 ⟨H, ρ,Π⟩ ⊢frmI ϕ2

⟨H, ρ,Π⟩ ⊢frmI ϕ1 ∧ ϕ2

FRMANDOP

⟨H, ρ,Π⟩ ⊢frmI ϕ1 ⟨H, ρ,Π⟩ ⊢frmI ϕ2

⟨H, ρ,Π⟩ ⊢frmI ϕ1 ∗ ϕ2

FRMSEPOP

⟨H, ρ,Π⟩ ⊢frmI e1 ... ⟨H, ρ,Π⟩ ⊢frmI en

⟨H, ρ,Π⟩ ⊢frmI p(e1, ..., en)
FRMPRED

⟨H, ρ,Π⟩ ⊢frmI e H, ρ ⊢ e ⇓ true ⟨H, ρ,Π⟩ ⊢frmI ϕT

⟨H, ρ,Π⟩ ⊢frmI if e then ϕT else ϕF

FRMCONDTRUE

⟨H, ρ,Π⟩ ⊢frmI e H, ρ ⊢ e ⇓ false ⟨H, ρ,Π⟩ ⊢frmI ϕF

⟨H, ρ,Π⟩ ⊢frmI if e then ϕT else ϕF

FRMCONDFALSE

⟨H, ρ,Π⟩ ⊨I p(e1, ..., en) ⟨H, ρ,Π⟩ ⊢frmI e1 ... ⟨H, ρ,Π⟩ ⊢frmI en
⟨H, ρ,Π′⟩ ⊢frmI ϕ Π′ = Π ∪ ⌊bodyµ(p)(e1, ..., en)⌋H,ρ

⟨H, ρ,Π⟩ ⊢frmI unfolding p(e1, ..., en) in ϕ
FRMUNFOLDING

Figure A.3: SVLRP: Framing
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Static Verification

acc(v) = true

acc(x) = true

acc(e1 ⊙ e2) = acc(e1) ∧ acc(e2)
acc(e1 ⊕ e2) = acc(e1) ∧ acc(e2)
acc(e.f ) = acc(e) ∧ acc(e.f)

Figure A.4: acc(e) : EXPR → FORMULA
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WLP(skip, θ) = θ

WLP(s1; s2, θ) = WLP(s1,WLP(s2, θ))

WLP(T x, θ) =

{
θ if x ̸∈ FV(θ)
undefined otherwise

WLP(if (e) { s1 } else { s2 }, θ) = max
⇒
{ θ′ | θ′ ⇒ if e then WLP(s1, θ) else WLP(s2, θ) ∧

θ′ ⇒ acc(e) }
WLP(x := e, θ) = max

⇒
{ θ′ | θ′ ⇒ θ[e/x] ∧ θ′ ⇒ acc(e) }

WLP(while (e) inv θi { s }, θ) = max
⇒
{ θ′ | θ′ ⇒ acc(e) ∧ ∃θf . θ′ ⇒ θi ∗ θf ∧ xi ̸∈ FV(θf ) ∧

θf ∗ (θi ∗ (e = false))[xi/yi] ⇒ θ[xi/yi] }
where yi are variables modified by the loop body s

and xi are fresh logical variables

WLP(x.f := y, θ) = acc(x.f) ∧ θ[y/x.f ]

WLP(x := new C, θ) = max
⇒
{ θ′ | x ̸∈ FV(θ′) ∧

θ′ ∗ x ̸= null ∗ x ̸= ei ∗ acc(x.fi) ∗ x.fi = defaultValue(Ti) ⇒ θ }
where fields(C) = Ti fi and x ̸= ei is a conjunctive term

in θ

WLP(y := z.m(x), θ) = max
⇒
{ θ′ | y ̸∈ FV(θ′) ∧

∃θf . θ′ ⇒ (z ̸= null) ∗ mpre(m)[z/this, x/mparam(m)] ∗ θf ∧

θf ∗ mpost(m)[z/this, x/old(mparam(m)), y/result] ⇒ θ }
WLP(assert ϕa, θ) = max

⇒
{ θ′ | θ′ ⇒ θ ∧ θ′ ⇒ ϕa }

WLP(fold p(e1,...,en), θ) = max
⇒
{ ϕ′ | ϕ′ ∗ p(e1,...,en) ⇒ θ ∧

ϕ′ ∗ p(e1,...,en) ∈ SATFORMULA ∧
ϕ′ ∗ bodyµ(p)(e1, ..., en) ∈ SFRMFORMULA } ∗ bodyµ(p)(e1, ..., en)

if this result exists and is satisfiable, undefined

otherwise

WLP(unfold p(e1,...,en), θ) = max
⇒
{ ϕ′ | ϕ′ ∗ bodyµ(p)(e1, ..., en) ⇒ θ ∧

ϕ′ ∗ bodyµ(p)(e1, ..., en) ∈ SATFORMULA ∧
ϕ′ ∗ p(e1,...,en) ∈ SFRMFORMULA } ∗ p(e1,...,en)

if this result exists and is satisfiable, undefined

otherwise

Figure A.5: SVLRP: Weakest liberal precondition calculus
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Dynamic Semantics

⟨H, ⟨ρ, π,skip⟩ · nil⟩ final
SSSKIPFIN

⟨H, ⟨ρ, π,skip; s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSSKIP

⟨H, ⟨ρ, π, T x; s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSDECLARE

⟨H, ρ, π⟩ ⊨E ϕ

⟨H, ⟨ρ, π,assert ϕ; s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSASSERT

⟨H, ρ, π⟩ ⊨E acc(x.f) H, ρ ⊢ y ⇓ v H ′ = H[o 7→ [f 7→ v]]

⟨H, ⟨ρ, π, x.f := y; s⟩ · S⟩ −→ ⟨H ′, ⟨ρ, π, s⟩ · S⟩
SSFASSIGN

⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ v ρ′ = ρ[x 7→ v]

⟨H, ⟨ρ, π, x := e; s⟩ · S⟩ −→ ⟨H, ⟨ρ′, π, s⟩ · S⟩
SSASSIGN

o ̸∈ dom(H) fields(C) = Ti fi; H ′ = H[o 7→ [fi 7→ defaultValue(Ti)]]

⟨H, ⟨ρ, π, x := new C; s⟩ · S⟩ −→ ⟨H ′, ⟨ρ[x 7→ o], π ∪ ⟨o, fi⟩, s⟩ · S⟩
SSALLOC

⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ true
⟨H, ⟨ρ, π,if (e) { s1 } else { s2 }; s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s1; s⟩ · S⟩

SSIFTRUE

⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ false
⟨H, ⟨ρ, π,if (e) { s1 } else { s2 }; s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s2; s⟩ · S⟩

SSIFFALSE

Figure A.6: SVLRP: Small-step semantics
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method(m) = Tr m(T x′) requires θp ensures θq { r } H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v
ρ′ = [this 7→ o, x′ 7→ v,old(x′) 7→ v] π′ = ⟨⟨ ⌊θp⌋H,ρ′ ⟩⟩H π′ ⊆ π ⟨H, ρ′, π′⟩ ⊨E θp

⟨H, ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −→ ⟨H, ⟨ρ′, π′, r; skip⟩ · ⟨ρ, π\π′, y := z.m(x); s⟩ · S⟩
SSCALL

mpost(m) = θq ⟨H, ρ′, π′⟩ ⊨E θq ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π′,skip⟩ · ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −→ ⟨H, ⟨ρ′′, π ∪ π′, s⟩ · S⟩
SSCALLFINISH

⟨H, ρ, π⟩ ⊨E θi ⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ false
⟨H, ⟨ρ, π,while (e) inv θi { r }; s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩

SSWHILEFALSE

⟨H, ρ, π⟩ ⊨E θi ⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ true
π′ = ⟨⟨ ⌊θi⌋H,ρ ⟩⟩H

⟨H, ⟨ρ, π,while (e) inv θi { r }; s⟩ · S⟩
−→

⟨H, ⟨ρ, π′, r; skip⟩ · ⟨ρ, π\π′,while (e) inv θi { r }; s⟩ · S⟩

SSWHILETRUE

⟨H, ⟨ρ′, π′,skip⟩ · ⟨ρ, π,while (e) inv θi { r }; s⟩ · S⟩
−→

⟨H, ⟨ρ′, π ∪ π′,while (e) inv θi { r }; s⟩ · S⟩

SSWHILEFINISH

⟨H, ⟨ρ, π,fold p(e1,...,en); s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSFOLD

⟨H, ⟨ρ, π,unfold p(e1,...,en); s⟩ · S⟩ −→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSUNFOLD

Figure A.6: SVLRP: Small-step semantics (continued)

Weakest Precondition across stack frames

The formal statement of soundness relies on an extended definition of WLP given in Figure
A.7. It is used to validate arbitrary intermediate program states (Def. 2.1.6), and in particular,
program states with multiple stack frames. sWLP accepts a stack of statements and postcondition
θ and returns a stack of preconditions by recursively picking up the postconditions of methods
or loop invariants of loops. sWLP relies on sWLPθf to weaken each precondition in the stack
except the top-most one. A precondition is weakened by ensuring its accessibility predicates and
predicate instances are disjoint from those in θf . Effectively, θf represents the implicit frame of
the executing method or loop, so ownership given by θf is withdrawn from the call site aligning
with SVLRP’s runtime semantics.

For example, imagine a program state with a lower stack frame i having a WLP of acc(x.f)
∗ (x.f = 3). Assume that access to x.f was passed up the call stack (i.e. it was demanded
by the preconditions of called methods or invariants of executing loops), so currently executing
statements can change the value of x.f. As a result, ⟨H, ρi, πi⟩ ⊨E sWLPi(sn · ... · s1 · nil, true)
is violated. We solve this problem by making sure that the stack frame does not have a WLP of
acc(x.f) ∗ (x.f = 3) if it is currently buried under other stack frames that own x.f.

103



sWLP(s · nil, θ) = WLP(s, θ) · nil
sWLP(s · (y := z.m(x); s′) · s, θ) = WLP(s,mpost(m)) ·

sWLPmpre(m)[z/this,x/mparam(m)]((y := z.m(x); s′) · s, θ)

sWLP(s · (while (e) inv θi { r }; s′) · s, θ) = WLP(s, θi) · sWLPθi((while (e) inv θi { r }; s′) · s, θ)

where sWLPθf (s, θ) = min
⇒
{ θ′n | θn ⇒ θf ∗ θ′n } · θn−1 · ... · θ1 · nil

and θn · θn−1 · ... · θ1 · nil = sWLP(s, θ)

Figure A.7: Heap aware weakest liberal precondition across multiple stack frames

A.1.2 GVLRP

Framing

TotalFP(v,H, ρ) = ∅
TotalFP(x,H, ρ) = ∅
TotalFP(e1 ⊙ e2, H, ρ) = TotalFP(e1, H, ρ) ∪ TotalFP(e2, H, ρ)

TotalFP(e1 ⊕ e2, H, ρ) = TotalFP(e1, H, ρ) ∪ TotalFP(e2, H, ρ)

TotalFP(e.f,H, ρ) = TotalFP(e,H, ρ) ∪ {⟨o, f⟩|H, ρ ⊢ e ⇓ o}
TotalFP(acc(e.f), H, ρ) = TotalFP(e.f,H, ρ)

TotalFP(ϕ1 ∧ ϕ2, H, ρ) = TotalFP(ϕ1, H, ρ) ∪ TotalFP(ϕ2, H, ρ)

TotalFP(ϕ1 ∗ ϕ2, H, ρ) = TotalFP(ϕ1, H, ρ) ∪ TotalFP(ϕ2, H, ρ)

TotalFP(p(e1, ..., en), H, ρ) = TotalFP(e1, H, ρ) ∪ ... ∪ TotalFP(en, H, ρ) ∪
{⟨p, v1, ..., vn⟩|H, ρ ⊢ e1 ⇓ v1, ...,H, ρ ⊢ en ⇓ vn}

TotalFP(if e then ϕ1 else ϕ2, H, ρ) =



TotalFP(e,H, ρ) ∪ TotalFP(ϕ1, H, ρ)

if H, ρ ⊢ e ⇓ true
TotalFP(e,H, ρ) ∪ TotalFP(ϕ2, H, ρ)

if H, ρ ⊢ e ⇓ false
∅ otherwise

TotalFP(unfolding p(e1, ..., en) in ϕ,H, ρ) = TotalFP(p(e1, ..., en), H, ρ) ∪ TotalFP(ϕ,H, ρ)

Figure A.8: Definition of the TotalFP function.
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Lifting functions

W̃LP(s1; s2, ϕ̃) = W̃LP(s1, W̃LP(s2, ϕ̃))

W̃LP(if (e) { s1 } else { s2 }, ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | ϕ′ ⇒ if e then θ1 else θ2 ∧

ϕ′ ⇒ acc(e) ∧ ⊢frm ⟨ϕ′,body∆′⟩ } | θ1 ∈ γ(W̃LP(s1, ϕ̃)), θ2 ∈ γ(W̃LP(s2, ϕ̃)),

body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ1,body∆′⟩, ⊢frm ⟨θ2,body∆′⟩ })

W̃LP(y := z.m(x), ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | y ̸∈ FV(ϕ′) ∧ ⊢frm ⟨ϕ′,body∆′⟩ ∧

∃ϕf . ϕ′ ⇒ (z ̸= null) ∗ θp[z/this, x/mparam(m)] ∗ ϕf ∧

ϕf ∗ θq[z/this, x/old(mparam(m)), y/result] ⇒ θ ∧ ⊢frm ⟨ϕf ,body∆′⟩ }

| θ ∈ γ(ϕ̃), θp ∈ γ(mpre(m)), θq ∈ γ(mpost(m)), body∆′ ∈ γ(bodyµ),

⊢frm ⟨θ,body∆′⟩, ⊢frm ⟨θp,body∆′⟩, ⊢frm ⟨θq,body∆′⟩ })

W̃LP(while (e) inv ϕ̃i { s }, ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | ϕ′ ⇒ acc(e) ∧ ⊢frm ⟨ϕ′,body∆′⟩ ∧

∃ϕf . ϕ′ ⇒ θi ∗ ϕf ∧ xi ̸∈ FV(ϕf ) ∧ ⊢frm ⟨ϕf ,body∆′⟩ ∧

ϕf ∗ (θi ∗ (e = false))[xi/yi] ⇒ θ[xi/yi] }

| θ ∈ γ(ϕ̃), θi ∈ γ(ϕ̃i), body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ,body∆′⟩, ⊢frm ⟨θi,body∆′⟩ })
where yi are vars modified by the loop body s and xi are fresh

W̃LP(fold p(e), ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | ϕ′ ∗ p(e) ⇒ θ ∧ ϕ′ ∗ p(e) ∈ SATFORMULA∧

⊢frm ⟨ϕ′ ∗ body∆′(p)(e),body∆′⟩ } ∗ body∆′(p)(e) ∈ SATFORMULA

| θ ∈ γ(ϕ̃), body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ,body∆′⟩ })

W̃LP(unfold p(e), ϕ̃) = α({ max
⇒
{ ϕ′ ∈ SATFORMULA | ϕ′ ∗ body∆′(p)(e) ⇒ θ ∧

ϕ′ ∗ body∆′(p)(e) ∈ SATFORMULA ∧ ⊢frm ⟨ϕ′ ∗ p(e),body∆′⟩ } ∗ p(e) ∈ SATFORMULA

| θ ∈ γ(ϕ̃), body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ,body∆′⟩ })

W̃LP(s, ϕ̃) = α({WLP(s, θ, body∆′) | θ ∈ γ(ϕ̃), body∆′ ∈ γ(bodyµ), ⊢frm ⟨θ,body∆′⟩ }) otherwise

Figure A.9: GVLRP: Weakest liberal precondition calculus.
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Dynamic semantics

⟨H, ⟨ρ, π,skip⟩ · nil⟩ final
SSSKIPFIN

⟨H, ⟨ρ, π,skip; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSSKIP

⟨H, ⟨ρ, π, T x; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSDECLARE

⟨H, ρ, π⟩ ⊨̃ ⟨? ∗ ϕ,bodyµ⟩
⟨H, ⟨ρ, π,assert ϕ; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s⟩ · S⟩

SSASSERT

⟨H, ρ, π⟩ ˜̸⊨ ⟨? ∗ ϕ,bodyµ⟩
⟨H, ⟨ρ, π,assert ϕ; s⟩ · S⟩ −̃→ error

SSASSERTERROR

⟨H, ρ, π⟩ ⊨E acc(x.f) H, ρ ⊢ y ⇓ v H ′ = H[o 7→ [f 7→ v]]

⟨H, ⟨ρ, π, x.f := y; s⟩ · S⟩ −̃→ ⟨H ′, ⟨ρ, π, s⟩ · S⟩
SSFASSIGN

⟨H, ρ, π⟩ ̸⊨E acc(x.f)

⟨H, ⟨ρ, π, x.f := y; s⟩ · S⟩ −̃→ error
SSFASSIGNERROR

⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ v ρ′ = ρ[x 7→ v]

⟨H, ⟨ρ, π, x := e; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ′, π, s⟩ · S⟩
SSASSIGN

⟨H, ρ, π⟩ ̸⊨E acc(e)
⟨H, ⟨ρ, π, x := e; s⟩ · S⟩ −̃→ error

SSASSIGNERROR

o ̸∈ dom(H) fields(C) = Ti fi; H ′ = H[o 7→ [fi 7→ defaultValue(Ti)]]

⟨H, ⟨ρ, π, x := new C; s⟩ · S⟩ −̃→ ⟨H ′, ⟨ρ[x 7→ o], π ∪ ⟨o, fi⟩, s⟩ · S⟩
SSALLOC

⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ true
⟨H, ⟨ρ, π,if (e) { s1 } else { s2 }; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s1; s⟩ · S⟩

SSIFTRUE

⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ false
⟨H, ⟨ρ, π,if (e) { s1 } else { s2 }; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s2; s⟩ · S⟩

SSIFFALSE

⟨H, ρ, π⟩ ̸⊨E acc(e)
⟨H, ⟨ρ, π,if (e) { s1 } else { s2 }; s⟩ · S⟩ −̃→ error

SSIFERROR

Figure A.10: GVLRP: Small-step semantics adjusted from Fig. A.6 for gradual formulas
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method(m) = Tr m(T x′) requires ϕ̃p ensures ϕ̃q { r }
H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v ρ′ = [this 7→ o, x′ 7→ v,old(x′) 7→ v]

π′ = ⌊ϕ̃p⌋π,H,ρ′ π′ ⊆ π ⟨H, ρ′, π′⟩ ⊨̃ ⟨ϕ̃p,bodyµ⟩
⟨H, ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −̃→ ⟨H, ⟨ρ′, π′, r; skip⟩ · ⟨ρ, π\π′, y := z.m(x); s⟩ · S⟩

SSCALL

⟨H, ρ, π⟩ ˜̸⊨ ⟨mpre(m)[z/this, x/mparam(m)],bodyµ⟩
⟨H, ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −̃→ error

SSCALLERROR

mpost(m) = ϕ̃q ⟨H, ρ′, π′⟩ ⊨̃ ⟨ϕ̃q,bodyµ⟩ ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π′,skip⟩ · ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −̃→ ⟨H, ⟨ρ′′, π ∪ π′, s⟩ · S⟩
SSCALLFINISH

⟨H, ρ′, π′⟩ ˜̸⊨ ⟨mpost(m),bodyµ⟩
⟨H, ⟨ρ′, π′,skip⟩ · ⟨ρ, π, y := z.m(x); s⟩ · S⟩ −̃→ error

SSCALLFINISHERROR

⟨H, ρ, π⟩ ⊨̃ ⟨ϕ̃i,bodyµ⟩ ⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ false
⟨H, ⟨ρ, π,while (e) inv ϕ̃i { r }; s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s⟩ · S⟩

SSWHILEFALSE

⟨H, ρ, π⟩ ⊨̃ ⟨ϕ̃i,bodyµ⟩ ⟨H, ρ, π⟩ ⊨E acc(e) H, ρ ⊢ e ⇓ true
π′ = ⌊ϕ̃i⌋π,H,ρ

⟨H, ⟨ρ, π,while (e) inv ϕ̃i { r }; s⟩ · S⟩
−̃→

⟨H, ⟨ρ, π′, r; skip⟩ · ⟨ρ, π\π′,while (e) inv ϕ̃i { r }; s⟩ · S⟩

SSWHILETRUE

⟨H, ρ, π⟩ ˜̸⊨ ⟨ϕ̃i ∧ acc(e),bodyµ⟩
⟨H, ⟨ρ, π,while (e) inv ϕ̃i { r }; s⟩ · S⟩ −̃→ error

SSWHILEERROR

⟨H, ⟨ρ′, π′,skip⟩ · ⟨ρ, π,while (e) inv ϕ̃i { r }; s⟩ · S⟩
−̃→

⟨H, ⟨ρ′, π ∪ π′,while (e) inv ϕ̃i { r }; s⟩ · S⟩

SSWHILEFINISH

⟨H, ⟨ρ, π,fold p(e1,...,en); s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSFOLD

⟨H, ⟨ρ, π,unfold p(e1,...,en); s⟩ · S⟩ −̃→ ⟨H, ⟨ρ, π, s⟩ · S⟩
SSUNFOLD

Figure A.10: GVLRP: Small-step semantics adjusted from Fig. A.6 for gradual formulas (con-
tinued)
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A.2 Chpt. 3’s Appendix

pc-add(π, t) = Let (id, bc, pcs) :: suffix match π

(id, bc, pcs ∪ {t}) :: suffix
pc-push(π, id, bc) = (id, bc, ∅) :: π
pc-all(π) = foldl(π, ∅, (λ (idi, bci, pcsi), alli . alli ∪ {bci} ∪ pcsi))

Figure A.11: Path condition helper functions

eval-p(σ, t, Q) = Q(σ, t)

eval-p(σ, x, Q) = Q(σ, σ.γ(x))

eval-p(σ1, op(e), Q) = eval-p(σ1, e, (λ σ2, t . Q(σ2, op′(t))))

eval-p(σ1, e.f, Q) = eval-p(σ1, e, (λ σ2, t .

if (∃ f(r; δ) ∈ σ2.h . check(σ2.π, r = t)) then

Q(σ2, δ)

else if (∃ f(r; δ) ∈ σ2.h? . check(σ2.π, r = t)) then

Q(σ2, δ)

else if (σ2.isImprecise) then

if (σ2.R.origin = (_, unfold acc(_), _)) then

et := translate(σ2, t)

R′ := addcheck(σ2.R, e.f, acc(et.f))

else

R′ := σ2.R

δ := fresh

Q(σ2{ h? := σ2.h? ∪ f(t; δ), π := pc-add(σ2.π, {t ̸= null}), R := R′ }, δ)

else failure())

Figure A.12: Rules for symbolically executing expressions without introducing run-time checks
(except for a special case for unfold)

In eval-p (Fig. A.12), a special case (highlighted in blue) for unfold statements is added that
creates run-time checks for field accesses in the unfolded predicate’s body. This case ensures
soundness when introducing branch condition variables in C0 programs during run-time verifi-
cation. In our implementation of Gradual C0, these checks are optimized further as they are only
produced for branch conditions in the predicate body rather than for the whole body.
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eval-c(σ, t, Q) = Q(σ, t)

eval-c(σ, x, Q) = Q(σ, σ.γ(x))

eval-c(σ1, op(e), Q) = eval-c(σ1, e, (λ σ2, t . Q(σ2, op′(t))))

eval-c(σ1, e.f, Q) = eval-c(σ1, e, (λ σ2, t .

if (∃ f(r; δ) ∈ σ2.h . check(σ2.π, r = t)) then

Q(σ2, δ)

else if (∃ f(r; δ) ∈ σ2.h? . check(σ2.π, r = t)) then

Q(σ2, δ)

else if (σ2.isImprecise) then

res, _ := assert(σ2.isImprecise, σ2.π, t ̸= null)

et := translate(σ2, t)

R′ := addcheck(σ2.R, e.f, acc(et.f))

res ∧Q(σ2{ R := R′ }, fresh)

else failure())

Figure A.13: Rules for symbolically executing expressions without modifying the optimistic
heap and path condition

A.2.1 Diff and Translate

Algorithm 1 Generating minimal checks

1: function DIFF(ϕ)
2: conjuncts← CNF (ϕ)
3: ϕ′← ∅
4: for c← conjuncts do
5: if !check(c) then
6: ϕ′← ϕ′ + c
7: end if
8: end for
9: return ϕ′

10: end function

Figure A.14: Algorithm for computing the diff between two symbolic values

The DIFF (Fig. A.14) function finds a minimal run-time check from an optimistically asserted
formula containing statically known information. It accomplishes this by first performing a stan-
dard transformation to conjunctive normal form (CNF) on the optimistically asserted formula,
to extract the maximal number of top level conjuncts. It then attempts to call check() on each
conjunct; it accumulates each conjunct for which the call does not succeed. The set of conjuncts
which could not be statically discharged are returned as the final check.
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Algorithm 2 Variable resolution procedure
1: function TRANSLATE-VAR(s, v)
2: store← ∅
3: if s.oldStore then
4: store← s.oldStore
5: else
6: store← s.store
7: end if
8: aliasList← aliases(v, s.pathConditions++s.heap++s.optimisticHeap)
9: heap← s.heap++s.optimisticHeap

10: outputs← ∅
11: for v ← aliasList do
12: if c← store.lookup(v) then
13: outputs← outputs+ c
14: else
15: if h← heap.lookup(v) && c← store.lookup(h) then
16: outputs← outputs+ c
17: end if
18: end if
19: end for
20: return selectLongest(outputs)
21: end function

Figure A.15: TRANSLATE’s procedure for resolving variables

The TRANSLATE (Fig. A.15) function lifts symbolic values to concrete values. Most sym-
bolic values are directly translated to their concrete counterparts via recursive descent; the ex-
ception is variables, whose concrete values must be reconstructed by searching the program state
known by the verifier. This is done by retrieving the states of the symbolic store, which contains
mappings from concrete variables to symbolic variables, and the heap, which contains field and
predicate permissions. When TRANSLATE encounters a symbolic variable, it first retrieves all
possible aliasing information from Gradual Viper’s state. This includes all variables known to
be equivalent to the translation target according to the path condition and the heap. If the trans-
lation target or one of its aliases exists as a value in the symbolic store, then the translator finds
a key corresponding to it in the store and returns it. Note that multiple valid keys may exist for a
particular symbolic variable, because Gradual Viper may have determined that multiple concrete
values are equivalent at a particular program point. If the translation target is a field, then only
the top level receiver (the variable on which fields are being accessed) or one of its aliases will
exist in the store. The fields being accessed are resolved by mapping their corresponding heap
entries, or any aliased heap entries, to a value in the symbolic store, and resolving the store entry
as described. In particular contexts, TRANSLATE may be asked to translate a precondition for a
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method call, or a predicate body for an (un)fold statement. In these cases, an old store attached
to the current symbolic state as described in 3.4.7 is retrieved, and its symbolic store and heap
are used for translation. This causes variables in a precondition or predicate to be resolved to
their concrete values at the call site, or site of unfolding. This enables run-time checks produced
via translate to be straightforwardly emitted to the frontend. The portion of translate related to
translating variables is shown in Fig. A.15.

A.2.2 Symbolic production of formulas
The rules for produce are given in Fig. 3.11. Essentially, produce takes a formula and snapshot δ
(mirroring the structure of the formula) and adds the information in the formula to the symbolic
state, which is then returned to the continuationQ. An imprecise formula ?&&ϕ has its static part
ϕ produced into the current state σ alongside second(δ). Note the snapshot δ for an imprecise
formula looks like (unit, second(δ)) where unit is the snapshot for ? and second(δ) is the
snapshot for ϕ. An imprecise formula also turns σ imprecise to produce the unknown information
represented by ? into σ. For example, if the state is represented by the formula θ, then this rule
results in ? && θ && ϕ. A symbolic value t is produced into the path condition of the current state
σ. Also, the snapshot δ for t must be unit, so this fact is also stored in σ’s path condition. Then,
σ is passed to Q.

The produce rule for expression e, first evaluates e to its symbolic value t using eval-p. Then,
t is produced into the path condition of the current state σ2 using the aforementioned symbolic
value rule. Imprecision in the symbolic state can always provide accessibility predicates for fields
also in the state. Therefore, when fields in e are added to an imprecise state, heap chunks for
those fields do not have to already be in the state, e.g. the state ?&&true becomes ?&&true && e.
This functionality is permitted by eval-p. Similarly, an imprecise formula always provides ac-
cessibility predicates for fields in its static part, e.g. the state true and produced formula ? && e
results in the state ? && true && e. The goal of produce is not to assert information in the state,
but rather add information to the state. So we reduce run-time overhead by ensuring no run-time
checks are produced by produce even for verifying field accesses.

The rules for producing field and predicate accessibility predicates into the state σ1 operate in
a very similar manner. Thus, we will focus on the rule for fields only. The field e.f in acc(e.f)
first has its receiver e evaluated to t by eval-pc, resulting in σ2. Then, using the parameter δ a
fresh heap chunk f(t; δ) is created and added to σ2’s heap h, which represents acc(e.f) in
the state. Note, the disjoint union ⊎ ensures f(t; δ) is not already in the heap before adding
f(t; δ) in there. If the chunk is in the heap, then verification will fail. Further, acc(e.f) implies
e ̸= null and so that fact is recorded in σ2’s path condition as t ̸= null.

When the separating conjunction ϕ1&&ϕ2 is produced, ϕ1 is first produced and then afterwards
ϕ2 is produced into the resulting symbolic state. Note that the snapshot δ is split between the
two formulas using first(δ) and second(δ). Finally, to produce a conditional, Gradual Viper
branches on the symbolic value t for the condition e splitting execution along two different paths.
Along one path only the true branch ϕ1 is produced into the state, and along the other path only
the false branch ϕ2 is produced. Both paths follow the continuation to the end of its execution.
More details about branching are provided next, as we describe Gradual Viper’s branch function.

The branch function in Fig. 3.12 is used to split the symbolic execution into two paths in a
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number of places in our algorithm: during the production or consumption of logical conditionals
and during the execution of if statements. One path (Qt) is taken under the assumption that the
parameter t is true, and the other (Q¬t) is taken under the assumption that t is false. For each
path, a branch condition corresponding to the assumption made is added to σ.R, as highlighted
in blue. Additionally, paths may be pruned using check when Gradual Viper knows for certain
a path is infeasible (the assumption about t would contradict the current path conditions). Now,
normally, if either of the two paths fail verification, then branch marks verification as failed (∧
the results). This is still true when σ (the current state) is precise. However, when σ is imprecise,
branch can be more permissive as highlighted in yellow. If verification fails on one of two paths
only (one success, one failure), then branch returns success (∨ the results). In this case, a run-
time check (highlighted in blue) is added to R to force run-time execution down the success path
only. Of course, two failures result in failure and two successes result in success (∨ the results).
No run-time checks are produced in these cases, as neither path can be soundly taken or both
paths can be soundly taken at run time respectively. Note that Gradual Viper being flexible in the
aforementioned way is critical to adhering to the gradual guarantee at branch points.

A.2.3 Symbolic consumption of formulas

consume(σ1, θ, Q) = σ2 := σ1{ h, π := consolidate(σ1.h, σ1.π) }

consume’(σ2, σ2.isImprecise , σ2.h? , σ2.h, θ, (λ σ3, h′
? , h1, δ1 .

Q(σ3{ h? := h′
? , h := h1}, δ1)))

consume(σ1, ? && ϕ, Q) = σ2 := σ1{ h, π := consolidate(σ1.h, σ1.π) }

consume’(σ2, true , σ2.h? , σ2.h, ϕ, (λ σ3, h′
? , h1, δ1 .

Q(σ3{ isImprecise := true, h? := ∅, h := ∅ }, pair(unit, δ1) )))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure A.16: Rules for symbolically consuming formulas (1/3)

The goals of consume are 3-fold: 1) given a symbolic state σ and formula ϕ̃ check whether ϕ̃
is established by σ, i.e. ϕ̃σ ⇒̃ ϕ̃ where ϕ̃σ is the formula which represents the state σ, 2) produce
and collect run-time checks that are minimally sufficient for σ to establish ϕ̃ soundly, and 3)
remove accessibility predicates and predicates that are asserted in ϕ̃ from σ. Note that ⇒̃ is the
consistent implication formally defined in Chpt. 2. The rules for consume are given in Fig. A.16.

The consume function always begins by consolidating information across the given heap
σ1.h and path condition σ1.π. The invariant on the heap σ1.h ensures all heap chunks in σ1.h
are separated in memory, e.g. f(x; δ1) ∈ σ1.h and f(y; δ2) ∈ σ1.h implies x ̸= y. Similarly,
f(x; δ1) ∈ σ1.h implies x ̸= null. Therefore, such information is added to the path condition
σ1.π during consolidation. Further, consolidate ensures σ1.h and σ1.π are consistent, i.e. do not
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consume’(σ, f? , h? , h, ( e , t), Q) = res, t := assert(σ.isImprecise, σ.π, t)

R′ := addcheck(σ.R, e, translate(σ, t))

res ∧Q(σ{ R := R′ }, h? , h, unit)

consume’(σ1, f? , h? , h, e, Q) = eval-c (σ1{ isImprecise := f? }, e, (λ σ2, t .

consume’(σ2{ isImprecise := σ1.isImprecise }, f? , h? , h, ( e , t), Q)))

consume’(σ1, f? , h? , h, acc(p(e)), Q) = eval-c (σ1{ isImprecise := f? }, e, (λ σ2, t .

σ3 := σ2{isImprecise := σ1.isImprecise}

(h1, δ1, b1) := heap-rem-pred(σ3.isImprecise, h, σ3.π, p(t))

if (σ3.isImprecise) then

(h′
?, δ2, b2) := heap-rem-pred(σ3.isImprecise, h?, σ3.π, p(t))

if (b1 = b2 = false) then

R′ := addcheck(σ3.R, acc(p(e)), acc(p(e)))

else R′ := σ3.R

Q(σ3{ R := R′ }, h′
?, h1, (if (b1) then δ1 else δ2))

else if (b1) then Q(σ3, σ3.h?, h1, δ1)

else failure() ))

consume’(σ1, f? , h? , h, acc(e.f), Q) = eval-c (σ1{ isImprecise := f? }, e, (λ σ2, t .

σ3 := σ2{isImprecise := σ1.isImprecise}

res, t := assert(σ3.isImprecise, σ3.π, t ̸= null)

res ∧ (

R′ := addcheck(σ3.R, acc(e.f), translate(σ3, t))

(h1, δ1, b1) := heap-rem-acc(σ3.isImprecise, h, σ3.π, f(t))

if (σ3.isImprecise) then

(h′
?, δ2, b2) := heap-rem-acc(σ3.isImprecise, h?, σ3.π, f(t))

if (b1 = b2 = false) then

R′′ := addcheck(R′, acc(e.f), acc(translate(σ3, t).f))

else R′′ := R′

Q(σ3{ R := R′′ }, h′
?, h1, (if (b1) then δ1 else δ2))

else if (b1) then Q(σ3{ R := R′ }, σ3.h?, h1, δ1)

else failure() )))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure A.16: Rules for symbolically consuming formulas (2/3)
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consume’(σ1, f? , h? , h, ϕ1 && ϕ2, Q) = consume’(σ1, f? , h? , h, ϕ1, (λ σ2, h′
? , h′, δ1 .

consume’(σ2, f? , h′
? , h′, ϕ2, (λ σ3, h′′

? , h′′, δ2 .

Q(σ3, h′′
? , h′′, pair(δ1, δ2))))))

consume’(σ1, f? , h? , h, e ? ϕ1 : ϕ2, Q) = eval-c (σ1{ isImprecise := f? }, e, (λ σ2, t .

σ3 := σ2{isImprecise := σ1.isImprecise}

branch (σ3, e, t,

(λ σ4 . consume’(σ4, f? , h? , h, ϕ1, Q)),

(λ σ4 . consume’(σ4, f? , h? , h, ϕ2, Q)))))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure A.16: Rules for symbolically consuming formulas (3/3)

contain contradictory information. We use the definition of consolidate from Schwerhoff [39],
without repeating it here.

After consolidation, consume calls a helper function consume’, which performs the ma-
jor functionality of consume. Along with the state σ2 from consolidation, consume’ accepts a
boolean flag, optimistic heap σ2.h?, regular heap σ2.h, the formula to be consumed ϕ̃, and a
continuation. The boolean flag sent to consume’ controls how σ2 provides access to fields in
ϕ̃. When ϕ̃ is precise (is θ), then σ2 provides access to fields in θ through heap chunks or im-
precision where applicable. Therefore, in this case, the boolean flag is set to σ2.isImprecise.
However, when ϕ̃ is imprecise (i.e. ? && ϕ), then the boolean flag is set to true so access to
fields in ϕ̃ is always justified: first by σ2 if applicable and second by imprecision in ϕ̃. Copies of
the optimistic heap σ2.h? and regular heap σ2.h are sent to consume’ where heap chunks from ϕ̃
are removed from them. If consume’ succeeds, then when ϕ̃ is precise execution continues with
the residual heap chunks. When ϕ̃ is imprecise execution continues with empty heaps, because
ϕ̃ may require and assert any heap chunk in σ2. Residual heap chunks are instead represented
by imprecision, i.e. execution continues with an imprecise state. Finally, consume’ also sends
snapshots collected for removed heap chunks to the continuation.

Rules for consume’ can also be found in Fig. A.16. Cases for expressions e, the separating
conjunction ϕ1 && ϕ2, and logical conditionals e ? ϕ1 : ϕ2 are straightforward. Expressions are
evaluated to symbolic values that are then consumed with the corresponding rule. In a separating
conjunction, ϕ1 is consumed first, then afterward ϕ2 is consumed. The rule for logical condition-
als evaluates the condition e to a symbolic value, and then uses the branch function to consume
ϕ1 and ϕ2 along different execution paths. The case for acc(p(e)) is also very similar to the
case for acc(e.f) that we discuss later in this section.

When a symbolic value t is consumed, the current state σ must establish t, i.e. σ ⇒̃ t, or
verification fails. The assert function (defined in Fig. A.18) implements this functionality. In
particular, assert returns success() when π can statically prove t or when σ is imprecise and
t does not contradict constraints in π—here, t is optimistically assumed to be true. Otherwise,
assert returns failure(). When assert succeeds, it also returns a set of symbolic values t that are
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residuals of t that cannot be proved statically by π. If t is proven entirely statically, then assert
returns true. A run-time check is created for the residuals t and is added to σ to be passed to the
continuation Q. Note that translate is used to create an expression from t that can be evaluated
at run time. Further, the location e is the expression that evaluates to t and is passed to consume’
alongside t. The heaps h? and h are passed unmodified to Q alongside the snapshot unit.

The consume’ rule for accessibility predicates acc(e.f), first evaluates the receiver e to
t using eval-c, the current state σ1, and the parameter f?. The parameter f? is the boolean
flag mentioned previously. Assigning f? to σ1.isImprecise during evaluation allows f? to
control whether or not imprecision verifies field accesses. This occurs in all of the consume’
rules where expressions and thus fields are evaluated. After evaluation, the isImprecise field
is reset resulting in σ3, and assert is used to ensure the receiver t is non-null. If t ̸= null is
optimistically true, a run-time check for t ̸= null at location acc(e.f) is created and added
to σ3.R. Next, heap-rem-acc is used to remove the heap chunks from heap h that overlap with
or may potentially overlap with acc(e.f) in memory. The heap-rem-acc function is formally
defined alongside a similar function for predicates (heap-rem-pred) in the Fig. A.17. If a field
chunk is not statically proven to be disjoint from acc(e.f), then it is removed. Further, since
predicates are opaque, Gradual Viper cannot tell whether or not their predicate bodies overlap
with acc(e.f). Therefore, predicate chunks are almost always considered to potentially overlap
with acc(e.f). The only time this is not the case is if they both exist in the heap h, which
ensures its heap chunks do not overlap in memory. The heap-rem-acc function also checks
that acc(e.f) has a corresponding heap chunk in h. If so, its snapshot δ1 is returned and b1
is assigned true. Otherwise, a fresh snapshot is returned with false. If the current state σ3
is imprecise, then heap chunks are similarly removed from h? and acc(e.f) is checked for
existence in h?. If a field chunk for acc(e.f) is not found in either heap, then a run-time check
is generated for it and passed to the continuation Q alongside the two heaps after removal and
acc(e.f)’s snapshot. Without imprecision, consume’ will fail when a field chunk for acc(e.f)
is not found in h.

A.2.4 Symbolic execution of statements
The exec rules for sequence statements, variable declarations and assignments, allocations, and
if statements are pretty much unchanged from Viper. The only difference is that Gradual Viper’s
versions of eval, produce, branch, and consume (defined previously) are used instead of Viper’s.
Statements in a sequence are executed one after another, and variable declarations introduce a
fresh symbolic value for the variable into the state. Variable assignments evaluate the right-hand
side to a symbolic value and update the variable in the symbolic store with the result. Allocations
produce fresh heap chunks for fields into the state. Finally, if statements have their condition
evaluated and then branch is used to split execution along two paths to symbolically execute the
true and false branches.

Symbolic execution of field assignments first evaluates the right-hand side expression e to
the symbolic value t with the current state σ1 and eval. Any field reads in e are either directly or
optimistically verified using σ1. Then, the resulting state σ2 must establish write access to x.f in
consume, i.e. σ2 ⇒̃ acc(x.f). The call to consume also removes the field chunk for acc(x.f)
from σ2 (if it is in there) resulting in σ3. Therefore, the call to produce can safely add a fresh field
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heap-rem-pred(isImprecise, h, π, p(t)) = if ∃ (p(r; δ) ∈ h . check(π,
∧

t = r)) then

(h \ {p(r; δ)}, δ, true)

else (∅, fresh, false)

heap-rem-acc(isImprecise, h, π, f(t)) = h′ := foldl(h, ∅, (λ fsrc(r; δ), hdst .

if (¬(|r| = 1) ∥ ¬(f = fsrc) ∥ ¬check(isImprecise, π, t = r)) then

hdst ∪ fsrc(r; δ)

else hdst))

if ∃ f(r; δ) ∈ h . check(π, t = r) then

(h′, δ, true)

else

h′ := foldl(h′, ∅, (λ fsrc(r; δ), hdst .

if (fsrc(r; δ) is a field chunk) then

hdst ∪ fsrc(r; δ)

else hdst))

(h′, fresh, false)

Figure A.17: Heap remove function definitions

check(π, t) = pc-all(π) ⇒ t

check( isImprecise , π, t) =


true, true if check(π, t)

true, diff(pc-all(π), t) if (isImprecise ∧ (
∧

pc-all(π) ∧ t)SAT)

false, ∅ otherwise

assert( isImprecise , π, t) =

success(), t if (b = true) where b, t := check(isImprecise, π, t)

failure(), ∅ otherwise

■ Handles imprecision ■ Handles run-time check generation and collection

Figure A.18: Check and assert function definitions

chunk for acc(x.f) alongside x.f = t to σ3 before it is passed to the continuation Q. Under the
hood, run-time checks are collected where required for soundness and passed to Q.

The exec rule for method calls similarly uses eval to evaluate the given args e to symbolic
values t, asserts the method’s precondition methpre holds in the current state, consumes the heap
chunks in the precondition, and produces the method’s postcondition methpost into the contin-
uation. Run-time checks are also collected where necessary (under the hood) and passed to the
continuation. Gradual Viper makes an exception when consuming preconditions at method calls
(and loop invariants before entering loops), which can be seen in the if-then in the method
call rule. If Gradual Viper determines the precondition (invariant) is equi-recursively imprecise,
then it will conservatively remove all the heap chunks from both symbolic heaps after the con-
sume. This exception ensures the static verification semantics in Gradual Viper lines up with
the equi-recursive, dynamic verification semantics encoded by GVC0 in §3.5 such that Gradual
C0 is sound. Note that the origin field of R is set to z := m(e) before consuming methpre
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exec(σ1, s1; s2, Q) = exec(σ1, s1, (λ σ2 . exec(σ2, s2, Q)))

exec(σ, var x : T, Q) = Q(σ{γ := havoc(σ.γ, x)})

exec(σ1, x := e, Q) = eval (σ1, e, (λ σ2, t . Q(σ2{γ := σ2.γ[x 7→ t]})))

exec(σ1, x.f := e, Q) = eval (σ1, e, (λ σ2, t . consume (σ2, acc(x.f), (λ σ3, _ .

produce (σ3, acc(x.f) && x.f = t, pair(fresh, unit), Q)))))

exec(σ, x := new(f), Q) = produce (σ{γ := havoc(σ.γ, x)}, acc(x.f), fresh, Q)

exec(σ1, z := m(e), Q) = eval (σ1, e, (λ σ2, t .

R′ := σ2.R{origin := (σ2, z := m(e), t)}

consume (σ2{ R := R′ }, methpre[methargs 7→ t], (λ σ3, δ.

if (equi-imp(methpre)) then

σ4 := σ3{isImprecise := true, h? := ∅, h := ∅,

γ := havoc(σ3.γ, z)}

else σ4 := σ3{γ := havoc(σ3.γ, z)}

produce (σ4, methpost[methargs 7→ t][methret 7→ z], fresh,

(λ σ5 . Q(σ5{ R := σ5.R{origin := none} })))))))

exec(σ1, assert ϕ, Q) = consume (σ1, ϕ, (λ σ2, δ .

well-formed (σ2, ? && ϕ , δ, (λ σ3 .

Q(σ1{ π := σ3.π , R := σ3.R })))))

exec(σ1, fold acc(p(e)), Q) = eval (σ1, e, (λ σ2, t .

R′ := σ2.R{origin := (σ2, fold acc(p(e)), t)}

consume (σ2{ R := R′ }, predbody [predargs 7→ t], (λ σ3, δ.

produce (σ3{ R := σ3.R{origin := none} }, acc(p(t)),

δ, Q))))))

exec(σ1, unfold acc(p(e)), Q) = eval (σ1, e, (λ σ2, t .

R′ := σ2.R{origin := (σ2, unfold acc(p(e)), t)}

consume (σ2{ R := R′ }, acc(p(t)), (λ σ3, δ .

produce (σ3, predbody [predargs 7→ t], δ, (λ σ4 .

Q(σ4{ R := σ4.R{origin := none} }))))))))

exec(σ1, if (e) { stmt1 } else { stmt2 }, Q) = eval (σ1, e, (λ σ2, t .

branch (σ2, e, t, (λ σ3 . exec(σ3, stmt1, Q)), (λ σ3 . exec(σ3, stmt2, Q)))))

■ Handles imprecision ■ Handles run-time check generation and collection

Figure A.19: Rules for symbolically executing program statements (1/2)

117



exec(σ1, while (e) invariant ϕ̃ { stmt }, Q) = γ2 := havoc(σ1.γ, x)

resbody := well-formed (

σ1{ isImprecise := false, h? := ∅ , h := ∅, γ := γ2,

R := σ1.R{origin := (σ1, while (e) invariant ϕ̃ { stmt }, beginning)} },

ϕ̃ && e , fresh, (λ σ3{R := σ3.R{origin := none}} .

exec(σ3, stmt, (λ σ4 .

eval ( σ4{R := σ4.R{origin := (σ4, while (e) invariant ϕ̃ { stmt }, end)}} ,

e, (λ σe, _ .

consume ( σ4{R := σ4.R{origin := σe.R.origin, rcs := σe.R.rcs}} ,

ϕ̃ , (λ σ5, _ . R := R ∪ σ5.R.rcs ; success()))))))))

resafter := eval ( σ1{R := σ1.R{origin := (σ1, while (e) invariant ϕ̃ { stmt }, before)}} ,

e, (λ σe, _ . consume (

σ1{R := σ1.R{origin := σe.R.origin, rcs := σe.R.rcs}} ,

ϕ̃ , (λ σ2, _ .

if (equi-imp(ϕ̃)) then

σ3 := σ2{isImprecise := true, h? := ∅, h := ∅, γ := γ2}

else σ3 := σ2{γ := γ2}

produce (σ3{ σ3.R{origin := (σ3, while (e) invariant ϕ̃ { stmt }, after)} },

ϕ̃ && !e , fresh, Q)))))

if (σ1.isImprecise) then

if (¬resbody ∧ resafter) then

R′ := addcheck(σ1.R, e, ¬e)

R := R ∪R′.rcs.last

(¬resbody ∨ resafter) ∧ (resbody ∨ resafter)

else

resbody ∧ resafter

where x are variables modified by the loop body

■ Handles imprecision ■ Handles run-time check generation and collection

Figure A.19: Rules for symbolically executing program statements (2/2)
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equi-imp(? && ϕ) = true

equi-imp(ϕ1 && ϕ2) = equi-imp(ϕ1) ∨ equi-imp(ϕ2)

equi-imp(e ? ϕ1 : ϕ2) = equi-imp(ϕ1) ∨ equi-imp(ϕ2)

equi-imp(acc(p(e))) = if (p ∈ VisitedPreds) then

false

else

VisitedPreds := VisitedPreds ∪ p

b := equi-imp(predbody)

VisitedPreds := VisitedPreds \ p

b

equi-imp(_) = false

Figure A.20: Boolean function determining if a gradual formula is equi-recursively imprecise or
not

well-formed(σ1, ϕ̃, δ, Q) = produce(σ1, ϕ̃, δ, (λ σ2 .

produce(σ1{ π := σ2.π }, ϕ̃, δ, Q)))

Figure A.21: Well-formed formula function definition

and reset to none after producing methpost. Setting the origin indicates that run-time checks or
branch conditions for methpre or methpost should be attached to the method call statement rather
than where they are declared. The origin arguments σ2 and t are used to reverse the substitution
[methargs 7→ t] in run-time checks and branch conditions for methpre and methpost. The rule
for (un)folding predicates operates the same as for method calls where methpre is the predicate
body (predicate instance) and methpost is the predicate instance (predicate body). The origin
is set to fold acc(p(e)) and unfold acc(p(e)) respectively.

In contrast, ϕ in assert ϕ maintains a none origin field, because ϕ’s use and declaration
align at the same program location assert ϕ. The assert rule relies on consume to assert ϕ
holds in the current state σ1. If the consume succeeds, the state σ1 is passed to the continuation
nearly unmodified. Path condition constraints from ϕ hold in σ1 either directly or optimistically.
Therefore, these constraints are added to σ1 to avoid producing run-time checks for them in later
program statements. Run-time checks from the consume are also passed to the continuation.
Note that ϕ is checked for well-formedness here (Fig. A.21). A formula is well-formed if it
contains ? or accessibility predicates that verify access to the formula’s fields (self-framing).
Additionally, the formula cannot contain duplicate accessibility predicates or predicate instances.
Finally, well-formed adds the formula’s information to the given symbolic state. Here, ϕ does not
need to be self-framed, and so it is joined with ? in the call to well-formed. ? verifies access to
all of ϕ’s fields.

Finally, while the while loop rule is the largest rule and looks fairly complex, it just combines
ideas from other rules that are discussed in great detail in this section and from the branch rule
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described in §A.2.2.

A.2.5 Valid program
A Gradual Viper program is valid if all of its method and predicate declarations are verified
successfully as defined in Fig. 3.15. In particular, a method m’s declaration is verified first by
checking well-formedness of m’s precondition methpre and postcondition methpost using the
empty state σ0 (well-formedness is described in §A.2.4). Note, fresh symbolic values are created
and added to σ0 for m’s argument variables x and return variables y. If methpre and methpost are
well-formed, then the body of m (methbody) is symbolically executed (§A.2.4) starting with the
symbolic state σ1 containingmethpre. Recall, well-formed additionally produces the formula that
is being checked into the symbolic state. The symbolic state σ2 is produced after the symbolic
execution of methbody. Then, methpost is checked for validity against σ2, i.e. σ2 must establish
methpost (§A.2.3). If methpost is established, then verification succeeds; and as a result, the run-
time checks collected during verification are added to R (highlighted in blue). A valid predicate
p is simply valid if p’s body predbody is well-formed. As before, fresh symbolic values are
created for p’s argument variables x. Note, no run-time checks are added to R here, because
well-formedness checks do not produce any run-time checks.
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