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Abstract 
 
A simulation model is developed and used to better understand the diffusion of conflicting 
knowledge in a social network. Within the simulation, correct and incorrect knowledge diffuse 
simultaneously, however, simulation agents are not explicitly made aware that contradictory 
information exists. Instead, they may become aware of this by obtaining both correct and 
incorrect knowledge of the same piece of information. The agent must then determine what 
knowledge to accept. We implement various models of how people react to conflicting 
knowledge, which we refer to as intrapersonal conflict resolution strategies (ICRS). We analyze 
these ICRS with respect to the speed and breadth of correct and incorrect knowledge spread and 
how often agents find themselves holding conflicting knowledge. We also consider the effect of 
varying the odds of incorrect knowledge existing in the system, the network structure and the 
differentials in trust between agents.  We find evidence that our model is consistent with many 
real-world notions of diffusion.  Consequently, we make tentative conclusions about the effect of 
our various experimental conditions on the spread of conflicting knowledge in a social network.  
We note that conflicting knowledge spreads more slowly and persists longer than knowledge 
which cannot be conflicted. 
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1. Introduction 
Information-sharing devices, in particular cellular phones, have evolved to the point where 
owners now have almost uninterrupted access to an endless supply of media (e.g. text messaging, 
video calling, Twitter) which allow for the rapid dispersion of almost any kind of information to 
their social contacts. While benefits have been reaped from the advent of these technologies, it 
does hold that because the barriers to communicating any information have been lowered, people 
are more likely than ever to spread information that has not been vetted, and which is potentially 
incorrect across their social network. 
    In this work, we attempt to understand the diffusion of knowledge in situations where a set of 
people observing information in a noisy environment obtain correct or incorrect knowledge and 
begin to spread it across a social network.  For example, perhaps a small subset of people 
observe an explosion at a nearby building – with high likelihood, such people spread this 
information across their respective networks.  And, also with high likelihood, some will 
incorrectly state which building the explosion was at, while others will exaggerate the amount of 
damage, and so on. Here, we attempt to model how such information spreads, and what people 
do when, for example, someone is told by some people that the explosion occurred at Building 
A, and by others that it occurred at Building B. 
    As with all computational models, we find it necessary to simplify the actions taken by people 
when they are faced with conflicting knowledge and must choose what to retain. We attempt to 
generalize this process to a series of intrapersonal conflict resolution strategies (ICRS). The 
ICRS implemented are not meant to optimize the amount of correct information the system 
retains, a goal generally realized in similar problems in artificial intelligence, machine learning 
and information fusion literature (for example, [3-6]). Furthermore, these ICRS are not meant to 
perfectly mimic the way in which humans update their beliefs in the face of conflicting 
information, as others have discussed [7][8]. Rather, drawing on literature from a range of 
disciplines, we implement a series of simplistic ICRS that allow us to investigate how we might 
retain general notions of how humans deal with conflicting knowledge with the lowest level of 
complexity possible, therefore allowing our simulations to scale to large social networks. 
    We focus on three basic concepts to represent how people in the simulation (simulation 
“agents”) might respond in situations where they may receive incorrect knowledge. First, we 
vary the number of other agents (or “alters”) from which an agent accepts knowledge. We then 
consider whether or not an agent might, when faced with differing opinions from a set of alters, 
ask them to “recheck” what they have told him. Finally, we consider how agents might deal with 
the uncertainty attached to their current knowledge. We observe the effects of varying an agent’s 
ICRS under various levels of redundant access to information (modeled with network density), 
various levels of trust between agents and the size and topology of the social network. 
    Our results suggest that the models we test in many cases relate well to real-world notions of 
how conflicting knowledge spreads in a network, and therefore show promise as a basis for a 
more generalized model of such spread in the future.  
 Because we feel our model well-represents general notions of how conflicting knowledge 
diffuses in the real world, we make tentative conclusions about the effects of various micro and 
macro-level experimental conditions on the diffusion of conflicting knowledge.  We analyze 
these effects by considering the rate at which correct knowledge spreads, the percentage of 
agents receiving knowledge that hold the correct knowledge, and the raw counts of agents 
receiving both correct and incorrect knowledge. We find that information spread when no 
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conflicting knowledge exists in the system may be different in several important ways when 
compared to the spread of conflicting knowledge. As one might expect, in systems with 
conflicting knowledge, we find that tradeoffs exist between the speed at which correct 
knowledge spreads and the percentage of agents who obtain correct knowledge.   
 The rest of the paper is structured as follows: Section II gives a concise overview of 
previous work. Section III describes our experimental set ups. Section IV gives results from our 
experiment and Section V concludes the paper with remarks about the limitations of our work 
and a further discussion of results. 

2. Related Works 
 A social network is defined as a set of individuals and the social relations that exist 
between them. Information diffusion is the process by which information (or almost 
equivalently, knowledge or facts) spreads throughout a social network. In general, information 
diffusion studies are concerned with one of two fundamental problems: either understanding 
which specific agents are most influential in spreading information [9] [10], or understanding 
general properties of how information flows through a social network [11] [12].  
 Studies on which agents are the most influential in a network have shown that the 
position of agents in a network is critical to their ability to spread information quickly [9] [13]. 
Such studies have also found that personal traits of the agent impact their role in the network 
[14]. These results suggest that an influential individual’s position in the network, as well as their 
decisions about who to send information to, which information to believe, and how they send 
information all may strongly impact how efficiently it flows throughout the network.  
 Studies on the properties of information diffusion have shown that various aspects of the 
network within which diffusion occurs affect the rate of flow. Such factors include density [15], 
the number of agents with a disproportionately high number of connections to others [16] [17] 
and, consequently, the topology of the network [18]. Obviously, such findings suggest that the 
structure of the network has a compelling effect on how information flows through it. We use 
two network metrics, topology and density, to understand how differences in network structure 
affect the flow of correct and incorrect information. In addition, we modify the number of agents 
in the network, as size is generally understood to be correlated with various network-level 
metrics [17]. 
 One obvious limitation of the information diffusion studies discussed above is their focus 
on the flow of information in general, ignoring any notion of the content of the information or 
the context in which it is sent. Consequently, questions focusing on the diffusion of conflicting 
knowledge in a network are rarely addressed. A notable exception is the work of [19], who 
describes a tool which allows users to specify conflicting opinions within a social network. The 
tool then predicts the most likely outcome of a scenario where agents must choose to side with 
one or more of these opinions (e.g. which candidate to vote for in an election).  
 Our work differs from the work of [19] in several ways. First, our study deals only with 
the spread of knowledge, as opposed to the spread of opinion, which as defined could depend on 
several bits of knowledge (or equivalently, pieces of knowledge) [20]. In addition, we are 
interested in understanding how the way in which agents make decisions affects the flow of 
information, as opposed to considering what opinion is most likely to be held by the majority of 
agents. Finally, we use simulation to generate results, whereas [19] treat the issue as an 
optimization problem. Consequently, our focus is much more heavily tied to understanding the 
flow of information. 
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 One interesting question that we expected our work to address is the difference in flow 
between conflicting and “unconflicted knowledge”, which refers to the generalized notion of 
knowledge used in most diffusion studies. Literature on the diffusion of behaviors presents an 
interesting hypothesis for the difference between the spread of conflicted and unconflicted 
knowledge. Centola [21] shows that behavior spreads best in networks with many clusters, while 
noting that information tends to spread best when agents are more uniformly connected 
throughout a network. The reason behind this, it is argued, is that while people often need to be 
influenced by multiple others in order to accept a behavior, the same is not true of more 
infectious objects such as knowledge. However, while an agent may not need to obtain 
knowledge from multiple alters to accept it initially, an agent likely must be persuaded by several 
others to accept knowledge which conflicts with knowledge he currently holds. In this sense, it is 
possible that networks with higher densities may have lower levels of incorrect knowledge, 
provided an agent is more likely to obtain correct knowledge than he is incorrect. The work of 
[2] supports this claim, suggesting that networks which are more complex are better able to 
withstand information distortion in the form of misinformation.  
 Further support, outside the realm of networks, exists for the notion that redundant access 
to information may have an effect on outcomes variables dependent on information flow. 
Redundancy of information access has been shown, under certain conditions, to increase 
classification accuracy of web documents [22], an agent's trust in a piece of information [23][24], 
the likelihood of winning a game where an increased pool of knowledge increases odds of 
success [25] and accuracy on classification problems using voters from Mechanical Turk [26].  
 Of particular interest to our study is the work of [26], who consider how best to use a 
constrained set of human labelers whose abilities are initially unknown to perform a standard 
machine learning classification problem. First, [26] discuss the existence of a cost in adding 
additional human labelers, showing that redundancy of labeling can be both very cost efficient 
and cost inefficient, depending on how it is implemented. The cost in their study is monetary, but 
correlates to the cost of reducing incorrect information at the expense of quickly spreading 
correct information. We see similar trade-off issues in our results. Secondly, [26] note that as the 
number of labelers giving an answer for a specific classification problem increases, conflict is 
naturally more likely to occur. In a similar vein, [27] shows that high levels of task redundancy 
(the number of people doing the same thing) in an organization may decrease performance, in 
part because it leads to conflicting results. Based on this, we postulated that in a network with 
highly redundant access to information, knowledge will spread quickly in a stable environment, 
but much slower in an environment that produces a significant amount of conflicting knowledge. 
Finally, we make use of work in [26] on the concept of a probability-distribution based approach 
to how certain their classifier should be about a particular problem.  We utilize this method for 
computing uncertainty when we represent how “uncertain” an agent is about the knowledge he 
holds.  
 While introducing the notion of uncertainty into agent decision-making in this way is 
somewhat novel, the concept of decision-making with conflicting knowledge at the agent and 
small group level has been well-studied. Early results seemed to show that conflict resulted in 
poor organizational performance [28] [29]. However, later results suggest that conflict, when 
focused solely on the task at hand and not based on other issues (such as differences in race) has 
been shown to lead to increased organizational performance [28] [29]. 
 One further question answered in the literature is how highly an agent regards knowledge 
they already know versus new information they receive from others. In general, it is known that 
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agents are reluctant to change their knowledge once they have made up their minds [30]. 
Exceptions to this rule do exist, however, in that people who are perceived as experts are 
repeatedly consulted for information and may therefore be better able to change the opinions of 
others [30-32]. Our experiment disregards the concept of an expert in favor of simplicity, and 
also simplifies the idea of an agent valuing their current knowledge more than new opinions by 
giving past knowledge twice the weight of new knowledge coming from his alters. 
 As is clear, we make several simplifying assumptions about the manner in which agents 
seek, select, retain and pass knowledge. These decisions are amplified by the manner in which 
we model the diffusion of information. Two standard models exist with regards to simulating the 
diffusion of information through a static social network [33]. The Linear Threshold Model [11] 
states that agents will obtain the object being diffused only after a certain “threshold” of their 
neighbors obtain it. The Independent Cascade Model [12] states that, once infected, an agent has 
one chance to give the object being diffused to each of his alters with some probability of 
success.  
 We use the Independent Cascade Model as the baseline model of diffusion in our 
simulations. Specifically, we use a modified form of the model [12] where an agent has one 
chance to interact, but will only interact with at most one of his alters. Such a model is a 
simplification of the model used in Construct, a social simulation tool [30]. The limitation of this 
model is that the idea of a broadcast, where agents send information to multiple alters at once, is 
absent. This limits the number of times that agents receive opinions from multiple others on the 
same turn, meaning agents in our simulation rarely receive conflicting opinions from multiple 
alters simultaneously.  
 One further point of our model to be introduced is how likely it is that any two agents 
will communicate with each other at any given time. Agents which have more knowledge in 
common have been shown to be more likely to interact. Such a phenomenon, called relative 
expertise [20], is an extension of the concept of homophily, which states that the more similar 
two people are, the more likely they are to interact [35].  
 A concept similar to the idea of “social proximity” described above is the concept of how 
much one agent “trusts” another. An extensive literature exists on the meaning of trust, though 
there appears to be no general agreement on a definition [23]. However, two recent surveys of 
literature on trust [23] [24] agree on three important theories that have emerged from work on the 
subject. Both reviews agree that one reasonable definition of trust is "the measurable belief of 
Agent A in Agent B to do Service Y". Our experiment uses a form of this definition- in particular 
we define trust as "the measurable belief of Agent A that Agent B is giving him the correct 
knowledge of information Y”. Secondly, both works agree that trust is multidimensional- it 
extends beyond a continuous value between two agents. Indeed, Guha et al. [36] show that trust 
is not a static value in a network, but rather that trust is dynamic and can actually diffuse through 
the network itself. As trust is defined as a static construct in our work, we accept this as a 
limitation, but refer below to work which similarly treats trust as a static, continuous value 
between two agents. Finally, as mentioned, both [23] and [24] agree that confirmation from 
multiple alters of information increases an agent's willingness to trust that the information is 
correct. We use this as the basis for the notion of agent decision-making based on thresholds. 
 Our usage of trust as a static, continuous value between two agents draws from past 
work. Hui et al. [37] consider how varying the amount of trust between two groups of agents can 
affect how information flows. They study this by varying the "trust differential" across two 
groups of agents in a simulation, changing how much each agent values information given by 
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members of the other group. Hui et al. [37] find that larger differentials of trust result in 
increased levels of diffusion. We test a significant alteration to this conclusion in our experiment 
by considering the effect of changing trust differentials across dyadic connections, ignoring the 
notion of groups. Consequently, while we find that increasing the trust differential in the network 
actually decreases the amount of diffusion, we do not claim that our results invalidate the 
findings of [37]. 
 In keeping our model of how an agent makes a decision and retains information 
simplistic, we readily note that our work is much more theoretical in nature than other 
simulations of agent decision-making in uncertain environments. These efforts have considered 
situations in which agents interact with machines [38], how to assist agents who are overloaded 
with information [38], how agents make decisions when under different levels of anxiety [39], 
and how to incorporate methods from the field of information fusion into group-level decision 
making [40]. While our decision models are greatly simplified from these efforts, we believe that 
our focus on micro and macro-level properties of the social network and the flow of information 
within it allow us to develop new ideas about how conflicting knowledge spreads. 

3. Experimental Description 
3.1.  Simulation model  overview 
 We use an agent-based dynamic-network model to simulate the diffusion of conflicting 
knowledge n a social network. While noting that up until this point we have used the terms 
knowledge, information and opinion somewhat interchangeably, we now operationalize the 
passing of conflicting knowledge by introducing four rigid definitions that fit with the typical 
social network view of information diffusion. 
 1) Agent- An agent can be thought of as a person in a simulation. Agents are connected 
by social links, and only those agents which are connected may interact with each other. Each 
agent may or may not have knowledge of each piece of information in the system. These agents 
resolve situations where they obtain conflicting knowledge of a piece of information based on 
their ICRS, and can also pass their knowledge in the form of an opinion. 
 2) Information- Information is represented in our simulation as a set of nodes in the 
network that emit knowledge when it is requested by an agent.  Each information “node” in the 
network represents its own unique piece of information independent of all others. We measure 
each of the six outcome variables for each information “source” (or node). How these 
information nodes are generated is discussed in detail in Section C. Note that only agents who 
have links to an information source can request new knowledge from it. Upon request, the agent 
will receive either correct or incorrect knowledge with some probability (set by experimental 
conditions). Agents that are not connected to an information node can only obtain knowledge of 
that information from other agents. 
 3) Knowledge - An agent has knowledge of each piece of information in the network. An 
agent’s knowledge of a piece of information can be correct, incorrect, or unknown. An agent 
decides what knowledge he has of each piece of information based on what his alters tell him 
and any previous knowledge he possesses.  
 4) Opinion – an opinion is how one agent expresses to another agent what his knowledge 
is. Agents pass their opinion on a piece of information based on their knowledge, and can 
therefore pass an opinion of correct or incorrect. These opinions are used by the receiving agent 
to determine whether or not his knowledge of a piece of information should change. 
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 Our simulation utilizes a turn-based system, where at each turn of the simulation each 
piece of information diffuses through the network of agents. The simulation ends when no piece 
of information can be passed within the network, which may occur relatively quickly, as an agent 
will only attempt to interact with other agents during the turn immediately after his knowledge 
changes (e.g. from unknown to incorrect).  
 During such a turn, the agent will pick at most one other agent to interact with, according 
to a well-defined CDF generated by using the concept of relative expertise [20].  
 
 5) Interaction likelihood- the interaction likelihood, IL, of two agents 𝑥 and 𝑦 which have 
a social link (i.e. the pair < 𝑥,𝑦 > exists in the set of edges 𝑬) is computed across all 
information nodes 𝑖 as: 

𝐼𝐿<𝑥,𝑦> 𝜖 𝑬 (𝑥,𝑦) =  ∑ 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐼𝑛𝐶𝑜𝑚𝑚𝑜𝑛(𝑥,𝑦,𝑖)𝑖 𝜖 𝑰 + 1
1.5 ∗(∑ ∑ 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐼𝑛𝐶𝑜𝑚𝑚𝑜𝑛(𝑥,𝑧,𝑖)+ 1)𝑖𝜖 𝑰 𝑧 <𝑥,𝑧> 𝜖 𝑬 

  (1) 
Equation (1) states that an agent’s odds of interacting with an alter (an agents to whom he is 
linked) increase with the amount of knowledge the two share, as proportional to the amount of 
knowledge that agents shares with all other agents. If an agent shares no knowledge with any 
alter, the odds of him interacting with each are the same. Note that we multiply the denominator 
of the interaction likelihood by 1.5 to allow for the possibility that an agent does not interact with 
any other agents when it is his turn to interact (this occurs with probability 1/3).  

3 .2 .  Experimental  Design  
 We measure the impact of varying each agent’s ICRS, network density, topology and 
size, random perturbations of agent trust, and the levels of incorrect knowledge in the system 
using seven different outcome variables. The outcome variables are given in Table 1 below- we 
use the mean values of each variable across all information nodes. Unless conditions where no 
noise in the system are explicitly shown or discussed, these means are compiled only over the set 
of conditions where noise exists in the system.   
Table 1. A list of the outcome variables recorded for each piece of information simulated, along with a 
description. 

Outcome Variable  Description 
Total Correct number of agents having correct knowledge 
Total Incorrect  number of agents having incorrect knowledge 
Total Receiving number of agents having any knowledge 
Simulation Steps number of simulation steps before no more opinions are passed 
Total Conflicts the number of “conflicts” 

Correct Spread Rate average number of agents obtaining correct information per simulation step 

Percent Correct The number of agents having correct knowledge over the total number of 
agents who obtained knowledge 
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Table 2. An outline of the basic experimental design. 

 
 The full set of experimental conditions is listed in Table 2. Network density serves as a 
proxy for the notion of how redundant access to information is in the network. Note, of course, 
that increasing network density has other effects as well, most importantly increasing the speed 
of information spread in the network at large. When analyzing our results we use exact densities, 
as the network generation algorithms utilized produce networks that vary slightly around our 
experimental values.  
 The percentage of knowledge emitted from information sources that are incorrect 
represents the amount of noise in the information gathering environment. Indeed, throughout the 
rest of the report, we use the term noise to represent this percentage.  Note that we test the 
condition where no noise exists in the system- this allows us to compare the spread of conflicted 
and unconflicted knowledge in our model. The standard deviation of trust is representative of the 
variance of trust at the dyadic level in the network – a standard deviation of zero means that each 
agent trusts all alters, while any deviation represents a random seeding of trusts from a normal 
distribution (with the standard deviation listed) across each pair of connected agents. 
 At the agent level, we modify the ICRS that agents may utilize. We present a basic model 
of how an agent reacts when he is confronted with conflicting knowledge, and then introduce 
three further levels of complexity, with each level building upon the previous one. 
 

Variables Number of Conditions Values 

Network Topology 2 Scale Free,  Erdõs-Rényi 

Network density 4 .01, .03, .05, .07 
Number of agents 3 50,150,250 
Percentage of facts from 
information sources that are 
incorrect (noise level) 

3 0%, 20%, 40% 

Standard Deviation of Trust 3 0, .15, .3 

Decision Threshold for 
agents 

5 .5, .6, .7, .8, .9 

Alters from which agents 
will accept information 

4 All, All Trusted, Only Most Trusted, Mixed 

Agent able to “recheck” 
information? 

3 Yes, No, Mixed 

Agent Use of Uncertainty 3 + (4*3*3) = 39 “Pass Uncertainty Along” (Yes, No and Mixed) 
“Use Uncertainty Threshold” ( 
   --“Check threshold before changing belief” (Yes, 
No and Mixed) 
   --“Tell others to recheck based on uncertainty 
threshold”- (Yes, No and Mixed) 
Threshold levels- 0, 0.15, 0.3, 0.45 

Overall Design 2x4x3x3x3x5x4x3x39 
= (approx.) 505,440 
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Figure 1. The Basic ICRS.  Each agent in all simulations was seeded with this decision model, though where 
appropriate agents were allowed further capabilities, as described in later sections 

 
3.2.1  The Basic Intrapersonal  Confl ict  Resolut ion Strategy (ICRS):  

 Figure 1 above represents the basic ICRS used by each agent. On any turn, an agent may 
receive zero or more opinions about zero or more pieces of information. For each piece of 
information, upon receiving one or more opinions, the agent will decide whether or not to change 
his knowledge by utilizing the procedure above.  Note that while the agent utilizes this strategy 
in processing all information, he will trivially accept any information which is not conflicted. In 
the basic ICRS, the agent decides what knowledge to retain using a two step process.  First, he 
sums the correct and incorrect opinions he has received in combination with any knowledge he 
currently has.  Then, he determines if what he now knows, either correctly or incorrectly, crosses 
some threshold (deemed his decision threshold) of his total knowledge. We use four different 
threshold values to understand the effect of how selective agents are about accepting new 
knowledge. If the percentage of neither correct nor incorrect knowledge crosses the decision 
threshold, the agent comes into what we call a state of conflict. Throughout the rest of the report, 
we explain the result of an agent evaluating his knowledge against his decision threshold as 
whether or not he passed his decision threshold. Note that an agent processes information he has 
received during the same turn on which he receives it. In this sense, there is no “processing” 
period for an agent to spend thinking about what knowledge to accept. Such a concept is no 
doubt reasonable, and may be explored in future work. 
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 Figure 2 gives an example of an agent using the general decision model. As you can see, 
although it is obvious to us what information is correct, the agent actually changes from having 
the correct knowledge to incorrect knowledge of this piece of information. Also note in Figure 2 
that we explicitly state the target agent’s decision threshold and from which alters he accepts 
information (the “AcceptsFrom” parameter).  

3.2.2  Basic ICRS Modificat ion 1-  Changing the set  of  acceptable  
al ters:  

 We consider three different sets of alters an agent might accept opinions from when 
making a decision. These sets are listed in Table 3 – in the experiment, we consider networks 
where all agents accept from the same subset of alters, as well as networks where these strategies 
are mixed. 
 
 
 
 
 
 
 
 
 
 

Figure 2 An example of how an agent using the Basic ICRS resolves a situation where he must decide 
between two conflicting viewpoints of the same piece of information. 
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Table 3 A list of the different experimental conditions for what set of alters an agent will accept 
information from.  Note that, because trust is a random variable, these sets amount to a random subset 
of alters.   
 

3.2.3  Basic ICRS Modificat ion 2-  tel l ing al ters  to  “recheck” their  
information upon confl ict :  

 The second level of complexity tested and added to the basic ICRS model is that an agent 
may, when faced with a conflict, request that the alters he received opinions from most recently 
recheck their knowledge of the piece of information in conflict. In doing so, the agent in conflict 
begins a recursive process back towards the actual information node, where each agent told to 
recheck his knowledge tells the agents from whom he received that knowledge most recently to 
recheck their information, and so on, back to the information source. Note, however, that this 
process is subject to the same rules of interaction given in Equation (1), and therefore it is 
unlikely that all conflicts trace all the way back to an agent connected to the information source.  
 There are two other important points to note in our implementation of this process. First, 
when agents are told to “recheck” their information, their knowledge of that information changes 
to unknown. This knowledge can then be changed by any new opinions received – the agent does 
not necessarily have to wait for opinions from the agents he tells to recheck. Secondly, an agent 
who is already in the process of rechecking his knowledge will not do it again until his 
knowledge has changed from the unknown state. 

3.2.4   Basic ICRS Modificat ion 3-  using the concept  of  
uncertainty:  

 Thus far, the assumption has been made that an agent who barely passes a decision 
threshold and an agent who unanimously passes a decision threshold are equally happy to adjust 
their knowledge of a piece of information. In real life, of course, this is hardly the case – for 
example, we are much more certain about what we know when we are unaware of any 
alternatives. This naturally extends to the idea of adding some notion of “uncertainty” in the way 
agents make their decisions. We operationalize the amount of uncertainty that an agent has by 
following [26] and computing uncertainty as a continuous value on the range [0, 0.5] using a 
regularized incomplete beta function. The calculation used is shown below: 
 
 
 
 

Set of alters from which agents accept 
information (Abbreviation) 

Description Percentage of alters that each 
agent will accept information 
from 

All (A) Consider opinions passed by any 
alter  

100% 

All Trusted (AT) Consider only opinions from 
alters trusted equal to or more 
than the mean 

~50% 

Most Trusted (MT) Consider only information from 
most trusted alter 

~1 / (density*number of agents in 
the network) 
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𝐼𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ(𝐶𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡, 𝐼𝑛𝑐𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡) =
1

𝑏𝑒𝑡𝑎(𝐶𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡,𝐼𝑛𝑐𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡) ∗ ∫ 𝑡𝐶𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡−1(1 − 𝑡)𝐼𝑛𝑐𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡−1𝑑𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ
0   (2) 

             
       
𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = min (𝐼𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ(𝐶𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡, 𝐼𝑛𝑐𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡),                                               1 −
𝐼𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇ℎ𝑟𝑒𝑠ℎ(𝐶𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡, 𝐼𝑛𝑐𝑜𝑟𝑊𝑒𝑖𝑔ℎ𝑡))   (3)     
  
 
 Once obtaining this uncertainty value for each agent, it can be used in various ways. We 
choose to operationalize how agents use the uncertainty they have about a given piece of 
information in two different ways. The first, which we term passing uncertainty, occurs when 
agents express their uncertainty by multiplying any opinion they pass by the inverse of their 
uncertainty. For example, if Agent A in Figure 2 were to have an uncertainty value of .2, his 
opinion would be counted by the target agent as 𝑜𝑝𝑖𝑛𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒 = 1 ∗ 𝑡𝑟𝑢𝑠𝑡 ∗ ( 1

1−.2
). This usage 

of uncertainty represents the fact that although humans may be convinced to change our own 
minds about a piece of information in the face of conflicting knowledge, we may express our 
uncertainty about it when passing it to others. 
 

 
Figure 3 A) Left, The ICRS for agents who change their knowledge and then use a threshold based on 
the level of uncertainty they have of their knowledge in order to decide whether or not to pass it to an 
alter on the following turn.  B) Right, Agents who first check their uncertainty threshold before 
changing their knowledge (and consequently before deciding whether or not to pass their knowledge on 
the next turn) 
 



12 
 

 The second way in which agents may use the concept of uncertainty is by adding another 
layer of thresholding to their decision-making process, this time based on the amount of 
uncertainty they have. Figure 3a and 3b show two manners in which agents might use this idea of 
a threshold for uncertainty. In Figure 3a, agents first change their knowledge of a piece of 
information based on a decision threshold, then decide whether or not to pass along their 
information by checking their uncertainty threshold. In Figure 3b, agents only change their 
knowledge (and consequently only pass along their knowledge) after checking whether or not 
they pass both their decision and uncertainty thresholds. 
 In both Figures 3a and 3b, we also test the condition where an agent, even if he passes his 
decision threshold, might tell his alters to recheck their knowledge if he does not pass his 
uncertainty threshold.  

3 .3 .  Network Generation 
The final networks used for propagation in the study were undirected, bimodal networks 
consisting of two node classes – information nodes and agent nodes, and two types of links –
agent to information, and agent to agent. For the purposes of our study, we ignore any 
connections between information nodes, treating each information node in the system as an 
independent piece of information. Future work will consider the existence of dependencies and 
relationships between pieces of information in a system.  
 The network generation procedure is completed as follows. First, we generate a one-
mode, stylized network of 1.25 * X nodes, where X is 50, 150, or 250 according to our 
experimental conditions. These networks are generated using algorithms which produce stylized 
networks adhering to the properties of one of two topologies (Scale Free or Erdõs-Rényi), and 
have a specific overall density from our experimental conditions. After obtaining this uni-modal 
agent network, we randomly selected 25% of the agent nodes in the network to be changed to 
information nodes, giving us a bimodal network that still holds the properties of the topology we 
intend to study.  

4. RESULTS 
4.1.  Noise and Density 

 
Figure 4 Noise in the system versus select outcome variables.  Note that in this and all similar images, 
the red bar indicates average across conditions 
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 Figure 4 shows that there is little difference between noise level and the percentage of 
agents having any knowledge which have the correct knowledge at the end of the simulation. 
Indeed, at a noise level of 0.2, the odds of an agent having the correct knowledge were actually 
slightly lower than the amount of noise in the system. This suggests that simple, typical actions 
taken by humans in a social network to resolve conflicts of knowledge may have little effect, for 
better or worse, on the quality of information across the network at large. 
 This suggests a clear danger of rapid spreading of incorrect knowledge in noisy 
information gathering environments where agents are not conscious or concerned over how they 
deal with conflicting knowledge. This necessarily implies the need for future studies which 
suggest better methods at both the intrapersonal and interpersonal levels for how to deal with and 
share knowledge in systems with conflicting information. As stated previously, we only attempt 
to model and understand typical human behavior – questions of how this behavior can be 
optimized in a large-scale network should now be posed. 
 Figure 4 also shows that the amount of noise does affect diffusion in a non-trivial way.  
In particular, noise is negatively correlated with the total number of agents receiving any 
knowledge, and positively correlated with the number of turns across which information persists 
(before no more agents can pass it).  Such a finding fits the general notion that when people 
disagree on something, they tend to spend more time discussing the options and determining 
what knowledge to accept, leading to the information persisting longer in the network. On the 
contrary, the time spent debating what to decide typically means that the rate at which 
knowledge spreads decreases. These findings support the hypothesis presented in Section II, 
which presumed that conflicting information would spread differently through a network than 
“unconflicted” information.  
 While such a finding supports our hypothesis, we qualify it by noting that agents in our 
simulation who received conflicting knowledge immediately retracted to a state of “unknown” 
knowledge, and hence any conflicts would trivially decrease the number of agents having 
knowledge at the end of the simulation. On the other hand, we would have expected that as the 
number of simulation steps increased, information would have more time to spread and 
consequently should have meant more information was passed. Therefore, though the manner in 
which we set up the simulation had some effect on the confirmation of our hypothesis, there does 
exist balancing effects that model notions of how conflicting knowledge spreads in the real 
world.   
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Figure 5 Density versus select outcome variables at different network sizes.  The numbers on top indicate the 
number of agents at the different network sizes 
 In addition to our supposition in Section II that information would spread differently at 
different levels of noise, we further claimed that an increase in density would serve to both 
decrease the level of incorrect knowledge in the system, and to increase the disparity across noise 
levels of how many agents received knowledge in total. As Figure 5 shows, there is no evidence 
of the first claim, as we actually see a trend towards the opposite.  Furthermore, while we do see 
evidence of the latter- the points are farther apart at larger densities across the larger two network 
sizes-the differences are slight. 
 While it is quite possible that these trends do not actually exist, we also believe that our 
simulation might under-represent the effect of increasing density on both the level of incorrect 
knowledge and number of agents holding any knowledge at the end of the simulation. Both 
hypotheses are based on the notion that people in a community are constantly passing and 
receiving large amounts of knowledge. The more dense the community, we reasoned, the more 
knowledge that would be flowing, which would result in more conflicts and hence lower spread 
and less incorrect knowledge. However, what we neglected to realize is the way in which 
information is passed in our simulation does not function in exactly this manner. Specifically, 
because agents did not retain any history of previous opinions received aside from their current 
knowledge, and each agent could only speak with one other agent per turn, there was little 
chance that the amount of information agents received on any turn would increase heavily at the 
density increases we used in our experiment. Because real-world social networks rarely grow 



15 
 

above the densities we used, it would make little sense to experiment with this effect at higher 
levels. 
 This finding is indicative of the fact that for density to greatly affect disparity across 
noise levels with regards to our two hypotheses, either agents should retain some knowledge of 
previous events (allowing them to build up opinions they have received that might contrast with 
their current knowledge) or agents should be allowed to talk to multiple alters at each turn.  Of 
the two, we find the second to be a slightly more compelling alternative. Allowing an agent to 
speak with multiple others on each turn relates well with the concept of a broadcast, where a 
person is able to relay information to several agents his ego network simultaneously. In today’s 
world, where communication is increasingly done on a multi-way scale (e.g. email, Tweets), it is 
possible that this may help to create a more real-world view of communication. 

4 .2 .  Network Size and Deviation of  Trust 

 
Figure 6 Network size (numAgents) versus select outcome variables 
 Figure 6 shows that smaller networks, on average, had a lower percentage of agents 
holding the correct knowledge of any given piece of information at the end of the simulation.  
Furthermore, we see that there was little difference, comparatively, between medium sized and 
larger networks. This non-linearity suggests that there may exist some “ideal” size for an 
organization facing noise in their information gathering environment. In addition, as Figure 7 
below shows, different levels of noise may affect this ideal size – we see that smaller networks 
tend to do better at lower levels of noise, while larger networks were much more effective at 
moderate to high levels of noise. While interesting, we note that one reason why we see such 
results is that the percentage of agents who obtain correct knowledge is, of course, highly 
correlated with the total number of agents that obtained any knowledge. 
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Figure 7 Network size (numAgents) versus percent of all agents holding knowledge who held the correct 
knowledge, split by amount of noise 
 
 While differences in the amount of total knowledge spread are obvious when considering 
network size, we were somewhat surprised to see that as deviations of trust in the network 
increased, the number of agents receiving any knowledge decreased. Expectedly, as Figure 8 
shows, this resulted in the same correlation noted above, where percentage of agents holding 
correct knowledge is tied to the total number of agents receiving knowledge.  

 
Figure 8 Standard Deviation of Trust, split by amount of Noise, across all outcome vraibles except the 
number of conflicts 
 As described earlier, trust was used by [37] with respect to agents within a group trusting 
each other more than members of other groups, not as a random variant across all links. While 
not directly applicable, we can qualify their finding with the fact that larger trust differentials 
may only increase the spread of information when trust is not randomly assigned.  Indeed, our 
work represents a kind of worst-case scenario, where agents trust each other based on some 
characteristic wholly unrelated to the information being spread.  
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 While the idea that agents within a group are more likely to trust each other is valid, in 
networks where communities have not yet emerged, or where the communication network 
matches forced organizational interactions instead of true social relationships, trust may indeed 
be closer to random than uniform across groups. For example, in military organizations, 
members of a platoon may tend to trust friends which are in other platoons more than those they 
are forced to operate with. Such quasi-random trust levels within a social network defined by 
organizational communication structures could easily cause incorrect knowledge to be valued 
more than correct knowledge, and hence in the worst case, this could significantly hurt 
information gathering performance.  However, on average, as Figure 8 shows, this does not 
appear to be the case.  This can of course be attributed to the large number of randomized trials 
we run – it would be interesting to see whether or not conditions could be contrived where such 
an effect does occur. 

 
Figure 9 Standard Deviation of Trust, split by the network size (numAgents), against percent of all agents 
holding knowledge who held the correct knowledge, split by amount of noise 
 In noting that we see a similar interplay between rate of correct knowledge spread and 
breadth of total knowledge spread across both levels of trust deviations and network size, we 
consider the interaction between these two variables. As shown in Figure 9, in smaller networks, 
less information spread is better (with regards to percent correct), while in larger networks, a 
larger amount of information spread (no trust differentials) is desirable.  This finding may point 
towards the dangers of, under conditions of noise in information gathering, having a large 
network where there is not enough communication to realize conflicts, or a small network where 
there is too much discussion, leading to the slow spreading of knowledge.  
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4 .3 .  Topology 

 
Figure 10 Topology of the network against all outcome metrics, split by level of noise 
 Figure 10 shows that across all metrics, we see what would be expected for diffusion 
using our modified Independent Cascade Model when no noise exists in the system.  Note that if 
agents were to pass knowledge on every turn, or to multiple alters, we would surely have seen 
different results [17] [18].  In particular, we note that because “super-spreader” nodes could only 
interact with one other agent in our model, the duration over which information persisted in the 
network and the amount of knowledge spread are lower here than in other models.   
 Figure 10 also shows that with noise, the direction of change is the same as when no 
noise exists across all relevant metrics.  However, we do see that increases in noise serve to 
significantly decrease the effect of topology on the number of turns information persisted in the 
network.   
This is the result of conflicts occurring at “super-spreader” nodes, which, with the “recheck” 
condition, would elongate the amount of time the information persisted. This indicates that if we 
were to model information as starting at the outer nodes of a scale-free network and moving 
inwards, it is possible that “super-spreader” nodes would become not just hubs of information, 
but hubs of conflicting knowledge as well.  As these nodes are centers of information spread, the 
way in which these “super-spreader” nodes deal with conflicting knowledge could have huge 
implications on the speed and breadth of correct knowledge spread. 
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4 .4 .  Decis ion Threshold 

 
Figure 11 The threshold agents used to make decisions on what knowledge to accept versus all outcome 
metrics 
 As shown in Figure 11, the general trend for each of our six outcome variables shows 
expected outcomes across the decision threshold experimental variable. Specifically, as the 
decision threshold for an agent increases, the percentage of agents with correct knowledge 
increases as well. As discussed, this correlates with a decrease in the rate at which this 
knowledge spreads. In addition, we naturally see more conflicts at higher thresholds, leading to 
more agents “rechecking” knowledge, which in turn causes information to persist longer. The 
interesting point that jumps out from the graph above is the obvious hitch between the decision 
threshold of .6 and .7. The cause of this hitch is another artifact from our simulation model. As 
described, agents trust their own opinion twice as much as another agents. Consequently, when 
an agent with a threshold of .7 receives a new opinion from a single other agent, it will, on 
average, cause a conflict, meaning the agent will change its knowledge to unknown. In contrast, 
an agent will not enter a conflicting state at a threshold of 0.6.  
 In a sense, increasing the threshold from 0.6 to 0.7 can be thought of as magnifying the 
“network effect” – agents are more likely to come into conflict, return to a state of unknown 
knowledge and require new opinions from elsewhere in the network. Note, though, that the odds 
of an agent receiving incorrect information once are significantly higher than an agent receiving 
incorrect information twice. Consequently, we see here an additional factor, aside from the total 
number of agents receiving knowledge that affects the percentage of agents who have correct 
knowledge. Interestingly, however, is that this effect has an obvious ceiling - increasing the 
decision threshold beyond 0.7 does little to increase the percentage of agents receiving correct 
knowledge, while continuing to decrease the rate at which correct information spreads. 
  This finding has implications in future simulation studies concerning the spread of 
conflicting knowledge. Researchers simulating how agents deal with conflicting knowledge, if 
using a thresholding approach (instead of, e.g., a fuzzy approach), should be aware that the 
performance of their agents at any given threshold will be largely affected by how much 
information an agent receives, on average, over the course of a simulation turn (in the case where 
agents have no historical knowledge). The threshold selected will also be largely affected by how 
the agent treats his existing knowledge.   
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4 .5 .  Set of  Alters  from which agents  accept information 

 
Figure 12 The set of alters from which agents would accept opinions condition, split by level of noise 

 
 As Figure 12 shows, across all noise levels, we see the same general patterns for each of 
our outcome variables for each agent type. In all cases, we observe that the number of agents 
receiving correct knowledge is greatest when an agent listens to opinions from all of his sources. 
This is due to the fact that, much like in the real world, agents are oblivious to who will accept 
their opinion when they send it. Because an agent has only one chance to send their opinion, it is 
of course the case that knowledge will spread more slowly when opinions passed are often 
ignored. 
 Given this, however, we were somewhat surprised that when agents received information 
from only a single alter, almost no more agents received correct knowledge than when the agents 
obtained knowledge from a random subset of their alters (the “all trusted” condition). This 
finding can be explained, in part, by noting that in smaller networks, average degree tended to be 
close to two, meaning these two conditions were essentially equivalent.  However, we also note 
that agents using the “most trusted” ICRS had almost no conflicts on average, consequently 
allowing all knowledge to spread almost uninterrupted throughout the system.  This corresponds 
well to real-life, where the fewer people someone accepts information from, the less likely they 
are to know two sides to a story.   
 Figure 12 also suggests that at low noise levels, networks have the highest percentage of 
agents with correct knowledge when all agents listen to all alters, whereas with high levels of 
noise networks performed slightly better when agents listened to only a subset of their alters.  
This general trend indicates the possibility that the less noise that exists in a system, the more 
open agents can be to opinions from anyone, while at higher levels of noise, agents may want to 
balance the number of agents they accept opinions from in order to balance their ability to realize 
knowledge is incorrect while keeping conflicts to a minimum.  
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4 .6 .  Decis ion Enhancements  

 
Figure 13 The “recheck” condition (TellAltersToRecheck) versus all outcome metrics 
 Figure 13 plots the results from implementing the “rechecking” enhancement, where 
agents who do not pass their decision threshold ask alters from whom they received an opinion 
most recently to “recheck” their information. As Figure 13 shows, our “rechecking” 
enhancement tends to increase the number of simulation steps an information piece persisted for 
and the percentage of agents obtaining correct knowledge. Furthermore, because more 
information flow incited more conflicts, the rate at which information spread decreased. Such a 
finding again supports the conclusions of [1], where conflicting knowledge leads to more debate, 
which in turn slows the spread of new knowledge.  
 Figure 13 also shows that across all metrics, networks which have a mix of agents who 
“recheck” and others that do not lie somewhere in the middle of the other two conditions. If one 
is to consider the “recheck” mechanism as a way to represent a “cautious” agent in an 
organization, our findings hold reasonably close to real life in that networks in which everyone is 
cautious would probably have more correct knowledge but be slower-moving, while those which 
move with abandon pass information more rapidly but with lower rates of correctness, and 
organizations employing a diverse set of people fall somewhere in the middle.  
 Of course, this “recheck” mechanism is only one way to represent a “cautious” agent. 
Indeed, even within our experiment, we have other models that can be thought of as representing 
a cautious person. These other methods all centered on the notion of uncertainty. While 
interesting in concept, the effects of each of our usages of uncertainty was smaller by at least one 
order of magnitude than any other effect discussed up to this point. As such, we can only say that 
differences across conditions for when agents 1) did or did not “pass along” their uncertainty, 2) 
changed their knowledge before or after checking their uncertainty thresholds, and 3) told or did 
not tell others to “recheck” their knowledge based on their uncertainty values all had no obvious 
effects across any of our outcome metrics. 
 Further understanding of these results would be interesting in several ways. With regards 
to simulation studies, it is interesting to note that, although these uncertainty-based ICRS 
enhancements consider various levels of cautiousness at the agent-level, they do not have the 
same effect as the “recheck” enhancement. This elucidates the dangers of differences between 
semantics of an agent’s properties and operationalization. In particular, we note that the 
“recheck” enhancement affects both the way agents retain and pass information, while all of our 
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uncertainty-based enhancements affect only one or the other.  This correlates well with findings 
discussed in works discussed in Section II that suggest the way an agent decides what 
information to keep and to send both can affect how influential they are in a network. 

 
Figure 14 The threshold agents used to make a decision on whether or not to use one of the uncertainty-based 
enhancements to the Basic ICRS versus all outcome metrics 
 We must also consider the fact that, when summing the effects of all uncertainty 
enhancements based on thresholds, we do find results on a more relevant scale, and that have 
similar curiosities seen across decision thresholds.  Figure 14 shows that an uncertainty threshold 
of 0.45 (corresponding to a decision threshold of 0.55) is the only threshold that is near or above 
average in the number of agents receiving correct information, the percent correct and the spread 
rate. In particular, there is a significant increase in the percent correct from an uncertainty 
threshold of 0.3 to an uncertainty threshold of 0.45, similar to those that we saw between 
decision thresholds of 0.6 and 0.7 
 It is of reasonable interest, but some skepticism, that we note the effect over the point at 
which an agent acts, and not his specific action, differ by an order of magnitude. While further 
research is necessary, modeling the concept of when an agent acts is much easier than modeling 
any possible action that an agent might take. If it is indeed the case that the point at which an 
agent acts is as relevant as the action an agent takes, simulation models at the agent level may be 
able to become much more expressive while still maintaining a low level of complexity.  
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Figure 15 Decision threshold versus select outcome metrics, split by uncertainty threshold 
 As an example of the type of analysis that might result from considering only the point at 
which agents commit to an action, and not the action itself, Figure 15 plots our six metrics for 
each combination of uncertainty threshold and decision threshold. We see that the combination 
of a decision threshold of 0.7 and an uncertainty threshold of 0.45 consistently performs above 
average with regards to spread rate of correct information, percentage of agents having 
knowledge who have correct knowledge, and the total number of agents with correct knowledge. 
In addition, there exists an added benefit of having a lower than average number of incorrect 
agents in the system.  

5. CONCLUSION 
 Overall, we find that our model fits well with several real world notions of how 
conflicting knowledge might spread through a network. Such findings must now be compared 
with empirical data collected from real world situations. Indeed, in several places we find that 
our model might under-represent certain factors of how conflicting knowledge spreads, but 
might over-represent others. The cause of these under and over-representations are artifacts from 
both our selection of outcome variables and our simulation model, and can and should be 
manipulated to fit with findings from real-world data.  
 Although we believe the conclusions we have made are valid and interesting, we first 
consider limitations before expounding upon findings. Most obviously, as we work with 
simulation, our results must be digested with the knowledge that we are using artificial data 
generated from a simplified view of information diffusion in the real world. We simplify 
knowledge to being either wholly correct or entirely false, which is not always the case. In 
addition, we note that the magnitude of some of the results we interpreted is small. While 
common statistical notions tell us that, because of the volume of tests that we run, magnitude is 
not as important as direction of change, whether or not the change is large enough to affect real 
world networks may be questionable. Our simplification also entails the incorrect notion that 
agents have no historical evidence from which to draw their decisions, which may be a 
misrepresentation of actual decision-making strategies [2]. We simplify the notion of trust to a 
random, static, bidirectional value, a form that is known to have little real-world use. Finally, we 
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simplify real-world social networks to two types of highly stylized structures which are unlikely 
to exist in their purest form in large-scale social networks, and treat social links as static, an idea 
which has been highly disputed in recent years [17].  
 Keeping in mind the given limitations, we can condense much of our findings into three 
points which have both practical and theoretical implications. First, we note that there is support 
for our hypothesis that conflicting knowledge in a system spreads differently than “unconflicted” 
knowledge.  Chiefly, we note that the speed and breadth of knowledge spread in systems where 
knowledge is not conflicted is significantly higher than in systems where conflicting knowledge 
exists. We see that this difference may be exasperated at higher densities – on the other hand, of 
course, this difference may be negligible at lower densities.   Furthermore, we note that “super-
spreaders” in Scale-Free networks play an even more important part in conflicted knowledge 
spread than they do with “unconflicted” knowledge, as they must decide not only to whom they 
will pass knowledge but also what to send. We note that more modern views of diffusion, such 
as those which include the concept of broadcasting information simultaneously to multiple alters, 
and more complex models that allow agents to retain more intricate knowledge bases, may both 
find this effect to be even more pronounced. In addition, we find that, in our simulations, 
conflicting knowledge tends to persist longer in the network.  Given these findings, we believe 
that future studies on information, knowledge and/or fact diffusion should be cautious in any 
assumptions made about the spread of information in an environment where it has the potential 
to be conflicted. 
 Second, under the simulation assumptions we used, and the decision strategies 
implemented, it is evident that with respect to the breadth versus rate of correct knowledge 
spread in the face of conflicting knowledge, one may not be able to “have one’s cake and eat it 
too”. Obvious trade-offs existed between the speed at which correct knowledge spreads and the 
percentage of agents that received the correct knowledge. While unsurprising, this empirical 
finding is obviously at odds with traditional diffusion studies, which suggest that the faster 
information spreads, the better.  In addition, it suggests that organizations which obtain 
information from noisy sources may require more elaborate decision-making schemes or 
network structures, or at least be cognizant of the fact that this trade-off exists. These tradeoffs 
have real-world applications- as Kittur [1] showed, in organizations such as Wikipedia, where 
truth is paramount, new information will consequently tend to spread at a slower rate. 
Conversely, when the goal is to spread information as quickly as possible, organizations may 
want their agents to pass on whatever information they receive without considering whether or 
not it conflicts with their previous knowledge. This may be the case in situations where agents 
can “recheck” information without requesting it from their alters (e.g. using a web search) at a 
later time.  This may also be true in situations where there exists a need to rapidly notify people 
that a certain situation is pending, even if details are hazy or incorrect. Such may be the case with 
disaster relief efforts, where the important fact may be that “a tsunami is coming,” and not so 
much that “a tsunami is coming in 46 minutes”. 
 Finally, we observe that more complex ICRS tended to add little to the diversity of our 
outcomes. This can be seen, for example, in our results for uncertainty usage, where we found 
that, although the implementation and run complexity of the actions taken by agents was high, 
their effect was exceedingly slight, if existent at all. Indeed, we found that simple changes to 
agent’s ICRS produced relevant changes, and that future simulation studies on this topic might 
consider other simplistic modifications over ones that are unnecessarily complex.  
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