
Logic Programming and Type Inference
with the Calculus of Constructions

Matthew Mirman

CMU-CS-14-110

May 2014

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Frank Pfenning

Karl Crary

Submitted in partial fulfillment of the requirements
for the degree of Masters in Computer Science.

Copyright c© 2014 Matthew Mirman

Keywords: Logic Programming, Pure Type System, Type Inference, Higher Or-
der Unification, Caledon Language, Higher Order Abstract Syntax, Metaprogramming,
Universe Checking

For my grandfather.

iv

Abstract
In this thesis I present a higher order logic programming language, Cale-

don, with a pure type system and a Turing complete type inference and im-
plicit argument system based on the same logic programming semantics.
Because the language has dependent types and type inference, terms can be
generated by providing type constraints. I design the dynamic semantics of
this language to be the same used to perform type inference, such that there
is no disparity between compilation and running. The lack of distinction
between compilation and execution permits certain metaprogramming tech-
niques which are normally either unavailable or only possible with second
thought extensions. The addition of control structures such as implicit ar-
guments, shared holes, polymorphism, and nondeterminism control makes
programming computation during type inference more natural. As a conse-
quence of these extensions, unification problems must be generated to solve
for terms in addition to the usual problems generated to solve for types.
Furthermore, because every result of execution is a term in the consistent
calculus of constructions, Caledon can be considered an interactive theorem
prover with a less orthogonal combination of proof search and proof check-
ing than has previously been designed or implemented.

vi

Acknowledgments
I thank my advisor, Frank Pfenning for listening patiently to all my out-

landish ideas.

viii

Contents

1 Introduction 1
1.1 Logic Programming . 2

1.1.1 Basics . 3
1.1.2 Higher Order Programming . 4

1.2 Initial Examples . 6

2 Type System 13
2.1 Pure Type Systems . 14
2.2 The Calculus of Constructions . 16

2.2.1 Consistency of the Calculus of Constructions 17
2.2.2 Impredicativity in the Calculus of Constructions 18
2.2.3 Theorems in Caledon . 18

2.3 Caledon Implicit Calculus of Constructions 20

3 Operational Semantics 29
3.1 History . 29
3.2 Forms for Unification . 30

3.2.1 Higher Order Patterns . 30
3.2.2 Canonical Forms . 31

3.3 Substitution . 32
3.3.1 Untyped Substitution . 33
3.3.2 Typed Substitution . 34

3.4 Higher Order Unification . 38
3.4.1 Unification Terms . 38
3.4.2 Unification Term Meaning . 39
3.4.3 Higher Order Unification for CC . 39
3.4.4 Implementation . 44

3.5 Proof Search . 45
3.5.1 Search . 45
3.5.2 Proof Sharing . 46

4 Type Inference 49
4.1 Implicit Calculus of Constructions . 50

4.1.1 Subtyping . 52

ix

4.1.2 Results . 52
4.2 Inference for CICC . 52

4.2.1 Subtyping . 56
4.3 Semantics for CICCI . 60

4.3.1 Substitution With Implicits . 60
4.3.2 Unification With Implicits . 61

5 Implementation 65
5.1 Type Inference . 65
5.2 Type Families . 66
5.3 Controlled Nondeterminism . 68
5.4 IO and Builtin Values and Predicates . 71

6 Programming with Caledon 73
6.1 Typeclasses . 73
6.2 Linear Predicates . 75

7 Conclusion 83
7.1 Results . 83
7.2 Future Work . 84

Bibliography 87

x

Chapter 1

Introduction

Higher order logic programming languages such as λProlog represent a significant step

toward the development of an effective self-contained language for the writing of pro-

gramming languages [52]. LF [33] on the other hand was designed as a meta-logical

framework which was later used as the basis for the higher order backtracking logic

programming language Elf [60]. Both of these approaches, however, have drawbacks.

λProlog lacks a type system broad enough to express many invariants for its own code.

Elfs type system is so conservative that it lacks polymorphism, a fundamental require-

ment for building libraries. But, if a dependently-typed logic programming language

like Elf is extended with polymorphism, it becomes powerful enough to use the proofs

generated by its own proof search as functioning code.

In this thesis we present a logic programming language, Caledon, intended to extend

the typed logic languages to general usability and permit higher order programming.

Caledon, much like Haskell is not intended to be a theorem proving language, but in-

stead a general purpose language. It is given certain mechanics of a theorem proving

language to simplify the process of designing embedded domain specific languages,

and for metaprogramming, but these features do not result in a total, consistent lan-

guage.

1

In most languages, type inference is employed to generate types for type directed

compilation or static analysis. In order to take advantage of a logic programming lan-

guages ability to generate its own code elegantly, we modify the purpose of type in-

ference so that it can be considered as the execution of the language. In this way, type

inference can be worded as a translation from language terms to unification problems.

In this paper, we consider unification problems to be the target language for the com-

pilation of a correctly parsed program. Since the “Calculus of Constructions” [16] con-

tains polymorphism, dependent types, and type functions, it is used as the basis for the

source language. While type inference for the “Calculus of Constructions” and even LF

is undecidable[28] and thus often abandoned as a goal in its entirety. We, on the other

hand, specify the type inference procedure with the same semantics as the language

itself, thus making the procedure programmable.

To control the use of inference programmatically, implicit arguments similar to those

in Agda are included. As implicit arguments may be filled by proof search in addition

to simple unification, our implicit arguments are similar to the type classes of Haskell.

These features result in the source terms being changed by type inference.

1.1 Logic Programming

Logic programming languages such as Prolog were originally designed as part of the

“AI program”, in much the same way Lisp was. Automated reasonings natural goal

was to be able to arbitrarily prove theorems. A logic programming language was a

set of axioms and a predicate. If the predicate could be proven through those axioms,

the automated theorem prover would halt. These proof search procedures were then

constrained into useful programming semantics. When performed in a backtracking

manner, the proof-search process represented a formulation of procedural code with

powerful pattern matching. The Caledon language is a higher-order backtracking logic

2

programming language in the style of Elf [60]. In this section I present some basic intu-

ition for logic programming, rather than explaining it technically, and demonstrate the

descriptive power of the system implemented in Caledon.

1.1.1 Basics

We begin by defining addition on unary numbers in Caledon shown in shown in 1.1.

1 defn add : nat −> nat −> nat −> prop

2 | addZ = add zero A A

3 | addS = add (succ A) B (succ C)

4 <− add A B C

Figure 1.1: Addition in Caledon

One might notice that this definition is incredibly similar to its Haskell counterpart

shown in 1.2.

1 add : : nat −> nat −> nat

2 add Zero a = a

3 add (Succ a) b = Succ c

4 where c = add a b

Figure 1.2: Addition in Haskell

We can read the logic programming definition as we would read the functional def-

inition with pattern matching, knowing that an intelligent compiler would be able to

convert the first into the second. Search allows one to define essentially nondetermin-

istic programs. A common use for logic programming has been to search for solutions

to combinatorial games such as tic-tac-toe, without the programmer worrying about

the order of the search. As this tends to produce inefficient code, this use style is dis-

3

couraged. Rather, a more procedural view of logic programming is encouraged where

pattern match and search is performed in the order it appears.

1 defn p : T 1 −> . . . −> T r −> prop

2 >| n1 = p T 1 . . . T r <− p 1 , 1 . . . <− p 1 , k 1

3 . . .

4 >| nN = p T 1 . . . T r <− p n , 1 . . . <− p n , k n

5

6 query prg = p t1 . . . t r

Figure 1.3: Format of a Caledon Logic Program

In this view, a program of the form 1.3 should be considered a program which first

attempts to prove using axiom n1 by matching prg with “p T1 ... Tr” and then attempt-

ing to prove p1,1 and so on.

1.1.2 Higher Order Programming

Fortunately, higher order functions need not be restricted to patterns. Definitions pro-

vide even more ways to generalize code.

A great example is the function application operator from Haskell. We can define

this in Caledon as shown in 1.4

1 f i x i t y r i g h t 0 @

2 defn @ : (At −> Bt) −> At −> Bt

3 as ?\ At Bt . \ f : At −> Bt . \ a : At . f a

Figure 1.4: Definitions for expressive syntax

In many cases, allowing these definitions allows for significant simplification of syn-

tax. The reader familiar with languages like Elf, Haskell, and Agda might notice the

implicit abstraction of the type variables At and Bt in the type of @ in 1.4. The rest of

4

this paper is concerned with formalizing these implicit abstractions and letting them

have as much power as possible. For example, one might make these abstractions ex-

plicit by instead declaring at the beginning 1.5

1 i n f i x r 0 @

2 (@) : : f o r a l l At Bt . (At −> Bt) −> At −> Bt

3 (@) = \ f . \ a . f a

Figure 1.5: Explicit Haskell style abstractions

However, in a dependently typed language, every function type is a dependent

product (forall). This makes it necessary to provide a new (explicit) implicit dependent

product - ?∀ or ?Π.

1 f i x i t y r i g h t 0 @

2 defn @ : {At Bt : prop} (At −> Bt) −> At −> Bt

3 as ?\ At Bt . \ f . \ a . f a

Figure 1.6: The (explicit) implicit equivalent of 1.4

Haskell also has type classes. For example, the type of show can be seen in 1.7.

1 show : : Show a => a −> String

Figure 1.7: The type of show

In Caledon, these can be written similarly as in 1.8

1 defn show : showC A => A −> s t r i n g

2 defn show : {unused : showC A } A −> s t r i n g

Figure 1.8: Equivalent types for show in Caledon

5

However, since implicit arguments are a natural extension of the dependent type

system in Caledon, no restrictions are made on the number of arguments, or difficulty

of computing. Unfortunately, since computation is primarily accomplished by the logic

programming fragment of the language rather than the functional fragment of the lan-

guage, the correspondence between these programmable implicit arguments and type

classes is not one to one. It is possible to replicate virtually all of the functionality of

type classes in the implicit argument system, but the syntax required to do so can be-

come verbose. Rather than attempting to simulate type classes, more creative uses are

possible, such as computing the symbolic derivative of a type for use in a (albeit, slow

and unnecessary) generic zipper library, or writing programs that compile differently

with different types in different environments.

1.2 Initial Examples

In the previous section I gave an introduction to the notion of logic programming using

both the familiar language of Haskell and the new language of Caledon. In this section

I will build upon these ideas by introducing logic programming with polymorphism

through building a set of standard polymorphic type logic library.

There are a few ways of defining sums in Caledon.

6

1 defn and : type −> type −> type

2 | pai r = [A B : type] A −> B −> and A B

3

4 defn f s t : and A B −> A −> type

5 | fstImp = f s t (pa i r Av Bv) Av

6

7 defn snd : and A B −> B −> type

8 | sndImp = snd (pa i r Av Bv) Bv

Figure 1.9: Logical conjunction

In this first, simplest way (as seen in figure 1.9, we define a predicate for and and

predicates for construction and projection. This method has the advantage of doubling

as a form of sequential predicate.

1

2 query main = and (print ‘ ‘ h e l l o ‘ ‘) (print ‘ ‘ world ! ’ ’)

Figure 1.10: Use of logical conjunction

In the figure 1.10 the query will output “hello world!”.

7

1

2 defn and : type −> type −> type

3 as \ a : type . \ b : type .

4 [c : type] (a −> b −> c) −> c

5

6 defn pa i r : A −> B −> and A B

7 as ?\ A B : type .

8 \ a b .

9 \ c : type .

10 \ pro j : A −> B −> c .

11 pro j a b

12

13 defn f s t : and A B −> A

14 as ?\ A B : type .

15 \ pai r : [c : type] (A −> B −> c) −> c .

16 pa i r A (\ a b . a)

17

18 defn snd : and A B −> A

19 as ?\ A B : type .

20 \ pai r : [c : type] (A −> B −> c) −> c .

21 pa i r B (\ a b . b)

Figure 1.11: Church style conjunction

In the case of figure 1.11, we do not add any axioms without their proofs. In this

example we also introduce the dependent product written in the form [a : t1]t2.

This case mimics the version usually seen in the Calculus of Constructions and has

the advantage of the projections being functions rather than predicates.

8

1

2 defn churchLis t : type > type

3 as \A : type . [l s t : type] l s t > (A > l s t > l s t) > l s t

4

5 defn consCL : [B : type] B −> churchLis t B −> churchLis t B

6 as \ C : type .

7 \ V : C .

8 \ c l : churchLis t C .

9 \ l s t : type .

10 \ n i l : l s t .

11 \ cons : C −> l s t −> l s t .

12 cons V (c l l s t n i l cons)

13

14 defn nilCL : [B : type] churchLis t B

15 as \ C : type .

16 \ l s t : type .

17 \ n i l : l s t .

18 \ cons : C −> l s t −> l s t .

19 n i l

20

21 defn mapCL : { A B } (A −> B) −> churchLis t A −> churchLis t B

22 as ?\ A B : type .

23 \ F : A −> B .

24 \ c l : churchLis t A .

25 \ l s t : type .

26 \ n i l : l s t .

27 \ cons : B −> l s t −> l s t .

28 c l l s t n i l (\ v . cons (F v))

29

30 defn foldrCL : { A B } (A −> B −> A) −> A −> churchLis t B −> A

31 as ?\ A B : type .

32 \ F : A −> B −> A .

33 \ bc : A .

34 \ c l : churchLis t B .

35 c l A bc (\ v : B . \ c : A . F c v)

Figure 1.12: Church style list

9

In the Church form of a list, folds and maps are possible to implement as functions

rather than predicates. However, their implementation is verbose and doesn’t permit

more complex functions.

10

1

2 defn l i s t : type −> type

3 | n i l = l i s t A

4 | cons = A −> l i s t A −> l i s t A

5

6 defn c o n c a t L i s t : l i s t A −> l i s t A −> l i s t A −> type

7 | c o n c a t L i s t N i l = [L : l i s t A] c o n c a t L i s t n i l L L

8 | concatListCons =

9 c o n c a t L i s t (cons (V : T) A) B (cons V C)

10 <− c o n c a t L i s t A B C

11

12 defn c o n c a t L i s t : l i s t A −> l i s t A −> l i s t A −> type

13 | c o n c a t L i s t N i l = [L : l i s t A] c o n c a t L i s t n i l L L

14 | concatListCons =

15 c o n c a t L i s t (cons (V : T) A) B (cons V C)

16 <− c o n c a t L i s t A B C

17

18 defn mapList : (A −> B) −> l i s t A −> l i s t B −> type

19 | mapListNil = [F : A −> B] mapList F n i l n i l

20 | mapListCons = [F : A −> B]

21 mapList F (cons V L) (cons (F V) L ’)

22 <− mapList F L L ’

23

24 defn pmapList : (A −> B −> type) −> l i s t A −> l i s t B −> type

25 | pmapListNil = [F : A −> B −> type] pmapList F n i l n i l

26 | pmapListCons = [F : A −> B −> type]

27 pmapList F (cons V L) (cons V’ L ’)

28 <− F V V’

29 <− mapList F L L ’

Figure 1.13: Logic List

11

The logic programming version can be seen in figure 1.13. It is important to note that

we can now map a predicate over a list rather than just mapping a function over a list.

12

Chapter 2

Type System

In this section, I introduce the specifics of the “Caledon Implicit Calculus of Construc-

tions” (CICC). The internal Caledon type system is an extension of the well known

“Calculus of Constructions” with the addition of implicit bindings and explicit type

constraints for implicit instantiation. While the inspiration for this comes from the the-

orem prover Agda, it appears as though no formal treatment has been provided. This

section provides a background on pure type systems and the history of the “Calculus

of Constructions” and introduces a formal definition and treatment of CICC with η

conversions for the purpose of type checking and proof search.

The type system of Caledon is designed after two different formalisms for working

with implicit arguments: the “Bicolored Calculus of Constructions” (CCBi) [44] and the

“Implicit Calculus of Constructions” (ICC) [55].

It is comprised of two parts: The “Caledon Implicit Calculus of Constructions”

(CICC), and the “Implicit Caledon Implicit Calculus of Constructions” (CICC−). CICC

is a custom modification ofCCBi with Church-style binders and explicit constraints and

externally named binders reminiscent of module type theory [21]. CICC− Is intended

to be a combination of the first two, or a partial erasure system for CICC.

13

2.1 Pure Type Systems

The type system for Caledon is a pure type system [45] extended with explicit recursive

types and implicit types. In this section, I discuss what a pure type system is and what

its properties are.

Pure type systems are generalizations of the lambda cube [5] which allow for arbi-

trary relationships between terms and types. With proper selection of constants, sorts,

axioms, and relations, pure type systems can embed the “Calculus of Constructions”

[16] and many other type systems one might want to construct.

As generalizations, these systems are important, as it has been proven by Jutting

[40] that type checking for normalizing pure type systems with finite axiom sets are

decidable. Thus, by showing how a system is a pure type system and is normalizing,

you get decidability of type checking nearly for free.

It has also been shown that these systems have utility. Roorda [70] gave an imple-

mentation of a functional programming language with pure type system and demon-

strated its utility.

A pure type system is a set S of sorts, A ⊆ S × S of axioms, and a relation R ⊆

S × S × S along with the following grammar and inference rules:

Definition 2.1.1 (PTS Syntax)

E ::= V | S | E E | λV : E.E | ΠV : E.E

Definition 2.1.2 (PTS Typing Rules)

· ` WF− E
Γ ` T : s x /∈ DV (Γ)

Γ, x : T ` WF− S

Γ ` (c, s) ∈ A
Γ ` c : s

axioms

14

Γ ` A : s s ∈ S
Γ, x : A ` x : A

start

Γ ` A : B Γ ` C : s s ∈ S
Γ, x : C ` A : B

weakening

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` (Πx : A.B) : s3

product

Γ ` F : (Πx : A.B) Γ ` V : A x is free for V in B
Γ ` FV : [V/x]B

application

Γ, x : A ` F : B Γ ` (Πx : A.B) : s s ∈ S
Γ ` (λx : A.F) : (Πx : A.B)

abstraction

Γ ` A : B Γ ` B ≡βην∗ B′ Γ ` B′ : s s ∈ S
Γ ` A : B′

conversion

As Barendregt [5] points out, the common type theories with only functions can be

recast as pure type systems by choice of axioms. In the simplest example, the only ax-

ioms chosen are (∗,2) along with the single relationship (∗, ∗, ∗). This system describes

the simply typed lambda calculus, where only terms can depend on terms. We say that

A→ B ≡ Πx : A.B iff x /∈ FV (B).

Theorem 2.1.3 Subject Reduction: If Γ ` A : T and A⇒β B then Γ ` B : T

Geuvers and Nederhof [26] proved subject reduction for any calculus on the λ cube.

This property can be proved syntactically by induction on the structure of the typing

derivation and there exist Elf and Agda verified proofs of this property. Note that this

is a useful property to maintain, even in the face of inconsistency of a system, because

at the very least, the property allows for a consistent understanding of typing terms.

Theorem 2.1.4 Uniqueness of Types: If Γ ` A : T and Γ ` A : T ′ then T ≡β T ′

15

The uniqueness of types with respect to β reduction has also been shown for any

system on the λ cube. This last property is important to showing the decidability of

type inference in the Caledon language without implicits.

Lemma 2.1.5 Strengthening

Γ, x : T `M : U x /∈ FV (M) ∪ FV (U)

Γ `M : U
strength

As it turns out, the strengthening lemma has important implications to the genera-

tion of bindings during proof search.

2.2 The Calculus of Constructions

The type system for Caledon is based on the “Calculus of Constructions” as defined by

Coquand et al. [16]. Since Caledon might extend the “Calculus of Constructions,” it is

important to view it as a pure type system. As Barendregt [5] points out, the common

type theories can be recast as pure type systems by choice of axioms.

Roorda and Jeuring [70] gave an implementation of a functional programming lan-

guage with pure type system and demonstrated its utility.

This is the pure type system where.

Definition 2.2.1 (PTS for CC)

A = {∗,2} (2.1)

S = {(∗ : 2)} (2.2)

R = {(∗, ∗, ∗), (∗,2,2), (2,2,2), (2, ∗, ∗)} (2.3)

In this system, terms can depend on terms and types, and types can depend on types

and terms. This pure type system has the well known strong normalization property,

16

implying the termination of all lambda terms typeable by CC [25] [26]. It is necessary

to be careful with the types of equalities allowed in the conversion rule, since if there

are more allowed equalities, then certain proofs become significantly more complex.

Definition 2.2.2 Γ `CC P : T : K means Γ `CC P : T and Γ `CC T : K

2.2.1 Consistency of the Calculus of Constructions

Definition 2.2.3 TermCC = {M : ∃T,Γ.Γ `cc M : T}

Theorem 2.2.4 (Strong Normalization) ∀M ∈ TermCC .SN(M)

The easiest to digest proof is also due to Geuvers [25] but other proofs have also been

proposed. This proof has the convenient property that it does not depend too much on

the definition of the set SN (strongly normalizing). The only properties required are

that S ⊆ SN where S is the set of sorts in the system. In the case of CC 2, ∗ ∈ SN . It

also requires that Πx : A.B ∈ SN , and λx : A.B ∈ SN for any A,B. For those familiar

with Geuvers’ proof, it is important to note that the proof requires that saturated subsets

of SN are closed under arbitrary intersection and function space generation.

This proof is restricted to normalization in the calculus where only β reduction is

considered and not η conversion. The proof for the calculus with full reduction prop-

erties is in Geuvers [27]. While normalization of terms in Caledon without considering

proof search does not involve η conversion, unification could potentially involve η ex-

pansion and it is helpful to maintain the consistency of the “Calculus of Constructions”

even when η reduction is considered. It is also important to note that in the Curry-style

calculus where types are omitted from lambda abstractions, the Church-Rosser theorem

under η conversion appears essentially for free [55]. Strong normalization follows, and

by replacement of types, strong normalization follows for the Curry-style calculus.

17

2.2.2 Impredicativity in the Calculus of Constructions

It is also important to note that while the term language of the calculus of constructions

is strongly normalizing, the predicates in the calculus of constructions are impredica-

tive, meaning that small types (meaning propositions) can be generalized over all small

types. This adds yet another layer of computation into the Caledon language which

might not terminate. Furthermore, the predicate language is insufficient to prove prop-

erties of larger types. For example, we’d be unable to encode or prove many notions

from category theory given that they would be required to apply to the category of

predicates. Luo [43] solves this by introducing universes into the “Extended Calculus

of Constructions”. As defined by Luo, the Extended Calculus of Constructions is no

longer a pure type system.

Harper and Pollack [32] provided an analysis of a few pure type systems with uni-

verses. Agda, Idris, Coq, and Plastic [12] all implement this technique. Idris uses con-

straint satisfaction to allow for implicit universes and thus does not allow the universes

to become an annoyance in code. While not discussed in detail in the thesis, the Caledon

implementation similarly produces constraints on implicit universes during unification

and reduces the cyclic universe checking problem to dynamic transitive closure.

2.2.3 Theorems in Caledon

It is important to note that in the programming language Caledon, programs might not

terminate. The search language itself is not consistent, and is not a theorem verification

language like Elf. Rather, it is language for writing theorem-proving programs.

Definition 2.2.5 In the Caledon language, prop = ∗ and type = 2

It is important to note that in Caledon code, type will never appear. This is because

type : T for any T is not provable in the Calculus of Constructions, and every term that

appears in the language must have a provable type.

18

Definition 2.2.6 If Γ `CICC P : T : prop in the Caledon language, then T is a theorem, and P

is a proof.

Terms can be considered this way since the Calculus of Constructions is consistent.

No unbounded computation is necessary to normalize P . Specifically, proof search is

not involved in the normalization procedure.

When CC was first developed, theorems were proven and generated by explicitly

defining constructors and destructors for records and sum types. Later, the inductive

Calculus of Constructions was developed [15] which more accurately forms the basis

of the Coq programming language. These types of inductive constructions have been

omitted from Caledon. Instead, predicates are specified by assuming axioms relating

them together. This omits the confusion that would be generated from having both

inductively defined data and predicates in the system, as dependently typed logic pro-

gramming treats predicates as both data and code.

Unfortunately, simple CC does not make for an expressive or useful theorem prov-

ing language. This can significantly limit the utility of theorem searching techniques. In

order to make it more useful, a predicative hierarchy of universes was appended to the

language which would allow for inclusion of more meta-mathematics techniques. As it

turns out, this universe hierarchy is can be essential to meta-programming in Caledon.

While most of the rest of thesis assumes a simple impredicative universe, I explain the

universe construction here, and allow the reader to extrapolate for the remainder of the

thesis.

The original calculus of constructions with a universe hierarchy included an impred-

icative type.

Definition 2.2.7 (PTS for CCω)

A = {prop} ∪ {typei|i ∈ N}

19

S = {(prop : type0)} ∪ {(typei : typei+1)|i ∈ N}

R = {(typej, typei, typek)|j ≤ k ∧ i ≤ k} ∪ {(prop, t, t)|t ∈ A} ∪ {(t, prop, t)|t ∈ A}

While type checking with the addition of the impredicative universe is theoretically

equivalently as difficult as without it, in practice it turns out to not be very useful for

proof or program writing, and languages like Coq, Agda and Idris now omit it for the

system with only predicative universes.

The addition of a universe hierarchy into the Caledon Language is possible without

too much added difficulty. Experimentation shows that the omitting the predicative

prop allows for a simpler implementation of type inference. In this case, typechecking

and unification are performed with the usually inconsistent assumption that type : type,

and a cycle checker is later applied to ensure that there is no instance of typei : typei

necessary.

In the case where an impredicative universe is included, the extra axiom prop : type

would need to be included, which would mean searching among two possibilities,

rather than a single possibility when attempting to find a type to replace a proof hole

with. The added nondeterminism tends to cause an explosion in the time complexity of

type inference.

2.3 Caledon Implicit Calculus of Constructions

In these sections I lay out the type system for Caledon. I first describe the target system,

on which has meaningful theorems, CICC. This is the interpreter output of successfully

running a Caledon program. I then describe the CICC syntax and statics. Caledons

exposed type system is a variant of the Implicit Calculus of Constructions, ICC [53],

20

which for the rest of the paper I will refer to as CICC−. The CICC− statics are realized

by the interpretation of the unification problem form (UPF) generated by elaboration.

The syntactic pipeline is as follows:

CICC− → UPF → CICC

Proving the consistency of CICC requires a further elaboration into CC

E ::= V | S | E E | λV : T.E | ?λV, V : T.E | ΠV : E.E | ?ΠV, V : E.E | E{V : E = E}

Figure 2.1: Syntax of CICC

In the rest of the thesis, ?Πv : E1.E2 shall refer to ?Πv, v : E1.E2 and ?λv : E1.E2 shall

refer to ?λv, v : E1.E2.

The dependent explicit and implicit products are written Πv : E.E and ?Πv : A.E. The

non-dependent explicit and implicit products are written T → T and T ⇒ T respectively.

Before providing typing rules, we first supply a few definitions which clarify the

notion of a constrained name of a term.

Definition 2.3.1 The constrained names on a term, written CN(M) is a set defined as follows:

CN(M{x = E}) = {x} ∪ CN(M) (2.4)

CN(otherwise) = ∅ (2.5)

The constrained names on a term are defined to be the constraints placed at the top

level on a term. For example, in the term somepred type nat{A = nat}{B = nat} the

constrained names are A and B.

Definition 2.3.2 The generalized names for a term, written GN(M) is a set defined as follows:

21

GN(?Πn, x : T.M) = {n} ∪GN(M) ∪GN(T) (2.6)

GN(otherwise) = ∅ (2.7)

The definition of generalized names and of constrained names are in a way compli-

mentary. Only the generalized names of the type of a term may be constrained.

Definition 2.3.3 The bound names for a term, written BN(M) is a set defined as follows:

BN(?λn, x : T.M) = {n} ∪BN(M) (2.8)

BN(otherwise) = ∅ (2.9)

As defined above, bound names and bound variables can no longer be treated the

same in the semantics. Specifically, ?λx : A.B does not have the same semantics as

?λy : A.[y/x]B. This implies that alpha conversion is now limited.

There are a few ways to deal with this. The most attractive possibility is to interpret

names as a kind of record modifier. This can be seen as saying {x : T = N} : {x : N},

and ?λx : N.B is really just λy : {x : N}.[y.x/x]N where .x : {x : N} → N .

22

1 defn nat : prop

2 as [a : prop] a −> (a −> a) −> a

3

4 defn nat 1 : nat −> prop

5 as \ N : nat . [a : nat −> prop] a zero −> succty a −> a N

6

7 defn rec : nat −> prop −> prop

8 as \ nm : nat . \ N : kind . nat 1 nm ∗ N

9

10 defn get : [N : kind] [nm : nat] nat 1 nm ∗ N −> N

11 as \ N : kind . \nm : nat . \ c : (na t 1 nm, N) . snd c

12

13 defn put : [N : kind] [nm : nat] nat 1 nm −> N −> nat 1 nm ∗ N

14 as \ N : kind . \nm : nat . \nmnm : nat 1 nm . \ c : N . pa i r nmnm N

Figure 2.2: Definitions for extraction, written in CC with Caledon syntax

We can further convert this into traditional dependent types by constructing type

invariants as seen in 2.2. Note that we shall refer loosely to the encoding in church

numerals of a name x as x̄. ¯̄x refers to the inhabitant of the type nat1 x̄. get and put shall

be used as aliases for the definitions outlined above.

Then ?λnm, x : A.B and ?Πnm, x : A.B becomes λy : rec n̄m A.[get A n̄m y/x]B and

?Πy : rec n̄m A.[getAn̄my/x]B.

Similarly, N{x : T = A}would become N (put T x̄ ¯̄x A).

One might notice that N in get is of type kind. In simple CC, this is unfortunately not

an actual type. Rather, it refers to the use of either type or prop. Allowing N : type is not

permitted in the standard CC since it is quantified. This is possible in CCω however.

In this case, kind would always refer to the next universe after the highest universe

mentioned in the program. In the Caledon language implementing simple CC we are

free to define kind as type1, since it will always be larger than any type or kind mentioned

23

in a Caledon program. Fortunately, Geuvers’ proof [27] of strong normalization in the

presence of η conversion applies to the Calculus of Construction with one impredicative

universe and two predicative universes.

This intuitive conversion leads to the following typing rules for CICC.

The simplest, albeit not the most constructive method of defining typeability for

CICC can be obtained by a simple projection into CC.

Definition 2.3.4 (Projection from CICC to CC)

JvKci := v (2.10)

JsKci := s (2.11)

JE1 E2Kci := JE1Kci JE2Kci (2.12)

JE1 {x : T = E}Kci := JE1Kci (put JT Kci x̄ ¯̄x; JE2Kci) (2.13)

Jλnm, v : T.EKci := λv : JT Kci . JEKci (2.14)

J?λnm, v : T.EKci := λy : rec n̄m JT Kci . J[get JT Kci n̄m y/v]EKci where y is fresh (2.15)

JΠv : T.EKci := Πv : JT Kci . JEKci (2.16)

J?Πnm, v : T.EKci := Πy : rec n̄m JT Kci . J[get JT Kci n̄m y/v]EKci where y is fresh (2.17)

It is significant that church numerals be used for the representation of the name in

the record, as no extra axioms need to be included in the context of the translation for

the translation to be valid. This necessity is seen in ??.

Definition 2.3.5 (Typing for CICC) We say Γ `ci A : T iff JΓKci `cc JAKci : JT Kci

What is then important is that we can translate back from the calculus of construc-

tions after transformations have occurred.

Theorem 2.3.6 (Projection Substitution)

J[A/x]BKci = [JAKci /x] JBKci provided x is free for A in B.

24

The proof of this theorem is by induction on the structure of B.

Case 1 Suppose B is the variable x.

J[A/x]xKci = JAKci = [JAKci /x]x = [JAKci /x] JxKci

Case 2 Suppose B is a different variable v.

J[A/x]vKci = v = [JAKci /x]v = [JAKci /x] JvKci

Case 3 The most interesting case is B =?λnm, v : T.E

Then

[JAKci /x] J?λnm, v : T.EKci = [JAKci /x](λv : rec n̄m JT Kci . J[get JT Kci n̄m y/v]EKci)

where y is fresh.

Then

= (λv : rec n̄m ([JAKci /x] JT Kci).[JAKci /x] J[get JT Kci n̄m y/v]EKci)

= (λv : rec n̄m J[A/x]T Kci .[JAKci /x][get JT Kci n̄m y/v] JEKci)

Then by the induction hypothesis on T and E and the fact that [JAKci /x]get = get

and [JAKci /x]rec = rec and x 6= y since y is fresh, we get:

= (λv : rec n̄m J[A/x]T Kci .[get J[A/x]T Kci n̄m y/v][JAKci /x] JEKci)

since we know that v isn’t free in A by the fact that x is free for A in B (provided x is

actually used anywhere in E) we get the following:

= (λv : rec n̄m J[A/x]T Kci . J[get J[A/x]T Kci n̄m y/v][A/x]EKci)

= J?λnm, v : [A/x]T.[A/x]EKci

= J[A/x](?λnm, v : T.E)Kci

25

Lemma 2.3.7 (Reduction Translation) ForallM,N ∈ Termci ifM →βη∗ N then JMKci →βη∗

JNKci

Proof of this lemma is by lexicographic induction on the structure ofM → N andM .

Theorem 2.3.8 (Semantic Equivalence)

Forall M ∈ Termci such that JMKci →βη∗ N
′ and Γ ` M : T implies that there exists

M ′ ∈ Termcicc such that M →βη∗ M
′ and JM ′Kci ≡ N ′

The proof is by induction on the form of JMKci →βη N
′ and then induction to arbi-

trary numbers of reductions.

Here we only show the case of β reduction. η reduction/expansion is analogous.

Now assume JMKci →βη N
′ is of the form JEKci →β V . Then it is of the form (λx :

Ta.R)E2 →beta [JE2Kci /x]Rwhere V = [JE2Kci /c]R and (λx : Ta.R)E2 = JE1KciE2 = JEKci.

Then since JE1Kci = (λx : Ta.R) we know that E1 = λx : T ′a.R
′ or that E1 =?λnm, v :

T ′a.R
′. We examine these two cases.

Case 1 We begin with the case of E1 = λx : T ′a.R
′

Then because Γ `ci M : T and M = (λx : T ′a.R
′)E ′2, we know that Γ `ci (λx : T ′a.R

′) :

Πx : T ′a.T2. and thus JΓKci `cc J(λx : T ′a.R
′)Kci : JΠx : T ′a.T2Kci.

Then JΓKci `cc (λx : JT ′aKci . JR
′Kci) JE2Kci : JT Kci is the result of the “app” rule.

Since the “app” rule has to have been applied, we know that JMKci = J(λx : T ′a.R
′)E2Kci =

(λx : JT ′aKci . JR
′Kci) JE2Kci.

Thus, JE ′2Kci = E2 and JT ′aKci = Ta and JR′Kci = R.

Since we are performing a β reduction, we know that x is free for JE2Kci in JR′Kci.

Then by the projection substitution theorem 2.3.4, J[E2/x]R′Kci = [JE2Kci /x] JR′Kci where

JR′Kci = R.

Thus, J[E2/x]R′Kci = V

Case 2 The last case is where E1 =?λnm, x : T ′.R′

26

Because Γ `ci M : T and M = (?λnm, x : T ′a.R
′)E ′2 we know that Γ `ci (?λx : T ′a.R

′) :

?Πnm, x : T ′a.T2 clearly.

Then JΓKci `cc J?λnm, x : T ′a.R
′KciE2 : JT Kci must be the result of the is the result of

the “app” rule.

Thus, we know that JΓKci `cc J?λnm, x : T ′a.R
′Kci : Πy : T3.T4 for some T3 and T4.

By uniqueness of forms and inversions, we get that

Πy : T3.T4 = Πy : recn̄m JT ′aKci . J[get JT ′aKci n̄my/x]T2Kci

since

J?λnm, x : T ′a.R
′Kci = λy : recn̄m JT ′aKci . J[get JT ′aKci n̄my/x]R′Kci

Thus, we know that

JMKci = J(?λnm, x : T ′a.R
′)Kci (put JT ′Kci n̄m ¯̄nm JE2Kci)

Thus, M = (?λnm, x : T ′a.R
′){nm : T ′2 = E2} and JT ′aKci = T and JR′Kci = R. Since

we are performing a β reduction, we know that x is free for JE2Kci in JR′Kci. Then by the

projection substitution theorem 2.3.4, J[E2/x]R′Kci = [JE2Kci /x] JR′Kci where JR′Kci = R

Thus, J[E2/x]R′Kci = V

Theorem 2.3.9 (Strong Normalization) ∀M ∈ Termci.SN(M)

Strong normalization is a consequence of the reduction translation lemma 2.3.7.

That we can cleanly translate into the calculus of constructions without loss or gain

of semantic translation implies strong normalization for CICC with β reduction and η

expansion. This is the most important theorem of the section, as it implies that type-

checking a Caledon statement will allow that statement to be compiled to pattern form

to be used in proof search.

That CICC is simply an extension of CC and not a modification of CC implies we

have the completeness theorem, 2.3.10.

27

Theorem 2.3.10 (Completeness) ∀M,T ∈ Termcc. `cc M : T =⇒ `ci M : T

This theorem is trivial since the syntax of CC is a subset of the syntax of CICC.

28

Chapter 3

Operational Semantics

In this chapter, I lay out and justify an operational specification and semantics for Cale-

don. I first discuss the history of the technique of unification.

Caledon’s unification and proof search algorithm is based on the method designed

for Elf by Pfenning et al. [60]. This algorithm does not terminate on all inputs and in this

chapter, I begin by characterizing the inputs it is designed to terminate on. In the next

section, I describe the techniques for evaluating terms to forms for unification. I then de-

scribe the algorithm used for higher order unification. The last sections pertain to proof

search, which are the traditional semantics of the language. In the last section, I spec-

ify a technique for controlling of nondeterminism during proof search, which allows

the programmer to choose between a complete breadth first search and an imperative

depth first search.

3.1 History

Huet [37] gave the first semi-decision algorithm for unification of terms in the lambda

calculus. Later, Miller and Nadathur [51] proved that for terms in the pattern fragment

of the lambda calculus, unification was decidable. Pfenning and Elliot [59] demon-

29

strated unification for the typed lambda calculus and considered solving the dynamic

pattern fragment where non pattern equations are postponed. Elliott [23] gave a more

efficient algorithm for unification in the context of dependent types. Later Pfenning [61]

did the same thing for unification in the “Calculus of Constructions”, although without

a mixed prefix. The most succinct presentation is from the 1991 paper describing the

workings of Elf [60]. While the unification algorithm implemented in the interpreter for

Caledon is an extension of that presented in Pfenning [61], I briefly cover here the main

ideas from the presentation of the paper describing the workings of Elf, and extend

those ideas later.

3.2 Forms for Unification

Definition 3.2.1 Spine Form

N ::= P | λV : N.N (3.1)

P ::= V | PN (3.2)

We write ΠV : N.P as a synonym for Π N (λV : N.P) in the rest of this thesis. This

simplifies the presentation of the unification algorithm, as then Π can be considered a

traditional constructor that can also be used to direct the unification procedure.

Spine terms have the incredibly useful property of always being in head normal

form, meaning that the head of every term is a constructor, and every argument is either

a constructor or lambda term.

3.2.1 Higher Order Patterns

While spine form is restrictive enough that its terms are always in head normal form,

it is not restrictive enough for unification problems to be decidable. Miller [49] showed

30

that for any unification instance given in the pattern fragment shown in 3.2.2, unification

is decidable.

Pattern form is specified with respect to partial permutations φ, which are injective

mappings from finite domains to finite domains.

Definition 3.2.2 Pattern Form: Note that ∆ is the existential context and Γ is the universal

context.

∆; Γ ` A Pat ∆; Γ, u `M Pat
∆; Γ ` λu : A.M Pat

P/ABS

∆; Γ `M1 Pat · · · ∆; Γ `Mm Pat
∆; Γ ` c M1 · · ·Mm Pat

P/CON
∆; Γ `M1 Pat · · · ∆; Γ `Mm Pat u ∈ Γ

∆; Γ ` u M1 · · ·Mm Pat
P/VAR

φ is a partial permutation x ∈ ∆

∆;u1, · · ·up ` x uφ(1) · · ·uφ(m) Pat
P/PROP

∆; Γ `M ′ Pat M ≡η M ′

∆; Γ `M Pat
P/VAR

3.2.2 Canonical Forms

The unification algorithm in Pfenning [61] for the “Calculus of Constructions”, which

the meta-theory of Caledon is based on, relies on expressions being presented in β-

normal η-long form (or canonical form), meaning that they are η expanded to conform to

their type signature. In the initial publication of this paper, it was taken as a hypothesis

that every well-typed term in CC has a unique β-normal η-long form. This is now

known to be the case [1].

Definition 3.2.3 Canonical Forms

(s1, s2) ∈ A
Γ ` s1 ⇒ s2

F/ax
Γ ` A ⇒ s1 Γ, x : A ` B ⇒ s2 (s1, s2, s3) ∈ R

Γ ` Πx : A.B ⇒ s3
F/prod

31

Γ, x : A `M ⇒ B Γ ` A ⇒ s

Γ ` λx : A.M ⇒ Πx : A.B
F/lam

Γ ` h M1 · · ·Mn : D Γ `M1 ⇒ A1 · · · Γ `Mn ⇒ An
Γ ` h M1 · · ·Mn ⇒ D

F/app

where D is atomic

It has been proven that the standard “Calculus of Constructions” is β-normal η-long

form strongly normalizing. Unfortunately, normalization into this form is not possible

without type information. Later, a typed substitution algorithm will be given which

ensures normalization into this form.

The notions of canonical form and of a higher order pattern are also trivially ex-

tensible into Church-style CCBi (ie, ICC* from [6]), where strong normalization into

β-normal η-long form is also provable, as is shown by Barras and Bernardo [6].

3.3 Substitution

The higher order unification algorithm described is only defined on the pattern form

provided in the previous section. As the pattern fragment is a restriction on β-normal η-

long form, it is necessary to provide a normalizing substitution that preserves β-normal

η-long form. The presentation here revolves around hereditary substitution as described

by Pfenning et al. [60] for a calculus with only β-reduction.

Other presentations are possible, such as traditional substitution followed by “Nor-

malization by Evaluation” for βη-conversions[1]. While this is a proven total method in

a typed setting, it’s mechanics are complex and not particularly enlightening. Keller et

al. [41] extended hereditary substitution to η-expansion, but only in the simply typed

case. The presentation here extends this version into CC.

32

3.3.1 Untyped Substitution

Definition 3.3.1 (Hereditary Substitution)

[S/x]x := S [S/x]y := y [S/x]P T := H([S/x]P, [S/x]T)

[S/x]λv : T.P := λv′ : [S/x]T.[S/x][v′/v]P where v′ is new.

H(λv : T.P,A) := [A/v]P

H(PA1, A2) := P A1 A2 H(V,A) := V A

It is important to note the alpha conversion in the λ case, as alpha conversion will be

lost on some terms when implicits are added.

A hereditary substitution is not necessarily terminating as is shown by substitution

replicating the ω-combinator.

[(λx : T.x x)/x](x (λx : T.x x))

This is not defined, as it expands to the well known H(λx.x x, λx.x x).

If the pattern and substitution are well typed terms in the Calculus of Constructions,

by strong normalization, this version of hereditary substitution is total.

Theorem 3.3.2 Substitution Theorem:

If Γ, x : T ` A : T ′ : prop and Γ ` S : T : prop then Γ ` [S/x]oA : [S/x]oT
′ : prop

By consistency, [S/x]oA can be normalized to strong head normal form. Thus, the

hereditary substitution [S/x]A is defined.

33

3.3.2 Typed Substitution

Performing substitutions that maintain β-normal η-long form is important to ensuring

decidability of unification. Unfortunately this is not possible without some type infor-

mation, as arbitrary η expansion has no stop condition. Keller [41] gave a hereditary

substitution algorithm that results in canonical forms for simply typed lambda calcu-

lus. 3.3.4 solves this by performing a typed substitution under a context, generating

type information.

Theorem 3.3.3 (Reduction Decomposition) If Γ ` A⇒βη∗ B then there exists some C such

that A⇒β∗ C and Γ ` C ⇒η∗ B

The property in 3.3.3 stating that any reduction can be shown equivalent to first a

series of β reductions and then a series of η expansions forms the basis of the following

algorithm.

For this section it is convenient to include Π in the spine form:

N ::= P | λV : N.N | ΠV : N.N

Definition 3.3.4 (Typed Hereditary Substitution)

34

[S/x : A]nΓP := E([S/x : A]pΓP) (3.3)

[S/x : A]nΓ(λy : B.N) := λy : [S/x]B.[S/x : A]nΓ,y:BN (3.4)

E(M ↑ P) := M (3.5)

E(N ↓ A) := η−1
A (N) (3.6)

η−1
Πx:A.B(N) := λz : A.η−1

B (N η−1
A (z)) where z is fresh (3.7)

η−1
P (N) := N (3.8)

[N/x : A]pΓx := N ↑ A (3.9)

[S/x : A]pΓy := y ↓ Γ(x) (3.10)

[S/x : A]pΓP N := HΓ([S/x : A]pΓP, [S/x : A]nΓN) (3.11)

HΓ((λv : A1.N) ↑ Πv′ : A1.A2, P) := [P/v : A1]nΓN ↑ [P/v′]nA2 (3.12)

HΓ(P ↓ Πy : B1.B2, N) := P N ↓ [N/y]nB2 (3.13)

In these last two rules, when initializing the dependent product, the substitution

must be neither typed nor η-expanding as this leads to an unnecessary circularity. Types

need not be in η-long form when used for η-expanding in substitution, since they are

not unified against anything.

Also, in the hereditary part of the recurrence, it is possible to omit cases for improp-

erly formatted terms. A ↓ T has the invariant thatAmust be already in a canonical form

within the context it is used since it existed previously in the equation. Similarly, A ↑ T

has the invariant that A must be locally in a canonical form. This permits significant

reduction of steps.

In general, it is provable that for any PTS that is strongly normalizing for β reduction

and η expansion, this algorithm will terminate and substitution will be defined. This

is a direct consequence of 3.3.3. Since every step of the algorithm applies either an η

35

expansion or a β reduction, the algorithm must halt when substituting for well typed

terms.

The useful property of this hereditary substitution is spelled out in 3.3.6

Theorem 3.3.5 (Soundness of η Expansion) If Γ ` F : A and F is in β-normal form then

η−1
A (F) is in η-long form

The proof of this theorem is trivial since all that occurs is the complete η expansion

of every possible term.

Note, in the following theorems 3.3.63.3.73.3.8 the Γ ` N Norm means that N is in

β-normal η-long form (ignoring types).

Theorem 3.3.6 (Soundness of Hereditary Substitution) If Γ ` S : A and Γ ` S Norm and

Γ ` N Norm and x is free for S in N and [S/x : A]nN is defined, then Γ ` ([S/x : A]nΓN) Norm

Theorem 3.3.7 (Soundness of Hereditary Application-1) If Γ ` P : Πv′ : A1.A2 and

Γ ` N : A1 and Γ ` P Norm and Γ ` N Norm then E(HΓ(P ↓ Πv′ : A1.A2, N)) Norm

Theorem 3.3.8 (Soundness of Hereditary Application-2) If Γ ` (λv : A1.N) : Πv′ : A1.A2

and Γ ` P : A1 and Γ ` P Norm and Γ ` N Norm and v is free for P in N then Γ `

E(HΓ((λv : A1.N) ↑ Πv′ : A1.A2, P)) Norm

The proof for these theorems is by mutual induction: for substitution on the struc-

ture of [S/x : A]nΓN = E([S/x : A]pΓN), for application-1 on the structure of E(HΓ(P ↓

Πv′ : A1.A2, N)), and for application-2 on the structure of E(HΓ((λv : A1.N) ↑ Πv′ :

A1.A2, P)).

Case 1 Substitution Suppose N is of the form (λy : B.N ′).

[S/x : A]nΓ(λy : B.N ′) = λy : [S/x]B.[S/x : A]nΓ,y:BN
′

And thus by the induction hypothesis, Γ ` [S/x : A]nΓ,y:BN
′ Norm and thus Γ ` λy :

[S/x]B.[S/x : A]nΓN
′ Norm

36

Case 2 Substitution Suppose N is of the form P N ′.

[S/x : A]nΓN = E(HΓ([S/x : A]nΓP, [S/x : A]nΓN
′))

And thus by the induction hypothesis, Γ ` [S/x : A]nΓP Norm and

Γ ` [S/x : A]nΓN
′ Norm

Thus,

E(HΓ([S/x : A]nΓP, [S/x : A]nΓN
′))

by mutual induction using 3.3.7.

Case 3 Substitution Suppose N is of the form x.

[S/x : A]nΓx = E(S ↑ A) = S

and by argument, Γ ` S Norm already.

Case 4 Substitution Suppose N is of the form y.

[S/x : A]nΓy = E(y ↓ Γ(y)) = η−1
Γ(y)(y)

which by theorem 3.3.5 should be in β-normal, η-long form.

Case 5 Application-1

E(HΓ(P ↓ Πv′ : A1.A2, N)) = E(PN ↓ [N/v′]A2) = η−1
[N/v′]A2

(PN)

Since Γ ` N Norm and Γ ` P Norm,

Thus, PN is in β-normal form, and so Γ ` η−1
[N/v′]A2

(PN) Norm

Case 6 Application-2

37

E(HΓ((λv : A1.N) ↑ Πv′ : A1.A2, P)) = E([P/v : A1]nΓN ↑ [P/v′]nA2) = [P/v : A1]nΓN

Since Γ ` (λv : A1.N) : Πv′ : A1.A2, we know that (λv : A1.N)P must normalize and

thus [P/v : A1]nΓN is defined. Thus, since Γ ` P Norm and Γ ` N Norm and Γ ` P : A1,

we know that Γ ` [P/v : A1]nΓN Norm

Thus, Γ ` E(HΓ((λv : A1.N) ↑ Πv′ : A1.A2, P)) Norm

3.4 Higher Order Unification

Checking for the equivalence of two full lambda terms has long been known to be only

semi-decidable. The matter becomes even more complicated when checking for the

equality of terms with variables bound by both existential and universal quantifiers.

Research from the past thirty years has constrained the problem to a decidable subset

known as the pattern fragment.

3.4.1 Unification Terms

Definition 3.4.1 Unification Terms:

U ::= U ∧ U | ∀V : T.U | ∃V : T.U | T .
= T | >

When .
= is taken to mean ≡βηα∗, the unification problem is to determine whether

a statement U is “true” in the standard sense, and provide a proof of the truth of the

statement.

Unification problems of the form ∀x : T1.∃y : T2.U can be solved by solving those of

the form ∃y : Πx : T1.T2.∀x : T1.[y x/y]U in the process known as raising. Unification

38

statements can always quantified over unused variables: U =⇒ Qx : T.U where

Q ::= ∃ | ∀.

Thus, statements can always be converted to the form

∃y1 · · · yn.∀x1 · · ·xk.S1
.
= V1 ∧ · · ·Sr

.
= Vr

3.4.2 Unification Term Meaning

We can provide an provability relation of a unification formula based on the obvious

logic.

Definition 3.4.2 Γ F can be interpreted as Γ implies F is provable.

Γ `M : A M ≡βηα∗ N Γ ` N : A

Γ M
.
= N

equiv
Γ > true Γ F Γ G

Γ F ∧G conj

Γ [M/x]F Γ `M : A

Γ ∃x : A.F
exists

Γ, x : A F
Γ ∀x : A.F

forall

While a truly superb logic programming language might be able to convert this very

declarative specification into a runnable program, the essentially nondeterministic rule

for existential quantification in a unification formula prevents an obvious deterministic

algorithm from being extracted.

3.4.3 Higher Order Unification for CC

I now present an algorithm, similar to that presented in [60], for unification in the “Cal-

culus of Constructions”. Because we have already presented typed hereditary substitu-

tion with η-expansion, the presentation here will address itself to types in the substitu-

tions.

39

F −→ F ′ shall mean that F can be transformed to F ′ without modifying the

provability. An equation F [G] will stand as notation for highlighting G under the for-

mulae context F . As an example, if we were to examine the formula ∀x.∀n.∃y.(y .
=

x ∧ ∀z.∃r.[xz .
= r]) but were only interested in the last portion, we might instead write

it as ∀x.F [∀z.∃r.[xz .
= r]] Again, φ shall be an injective partial permutation.

Furthermore, rather than explicitly writing down the result of unification, we shall

use ∃x.F −→ ∃x.[L/x]F to stand for ∃x.F −→ ∃x.x .
= L ∧ [L/x]F

The unification rules are symmetrical, so any rule of the form M
.
= N is equivalent

to N .
= M practically.

Also, for the purpose of typed normalizing hereditary substitution, a formula prefix

F [e] of the form Qx1 : A1.E1 ∧ · · ·Qxn : An.e shall be considered as a context x1 :

A1, · · · , xn : An when written ν−1(F).

Case 1 Lam-Any

F [λx : A.M
.
= N] −→ F [∀x : A.M

.
= Hν−1(F),x:A(N, x)]

Because application is normalizing, the “Lam-Any” can cover the case where N is

also a λ abstraction.

Case 2 Lam-Lam

F [λx : A.M
.
= λx : A′.N] −→ F [A

.
= A′ ∧ ∀x : A.M

.
= N]

While the “Lam-Lam” rule is not explicitly necessary as it is covered by the “Lam-

Any” rule, when working in a substitutive system with explicit names rather than De-

Bruijn indexes, this helps to reduce the number of substitutions from an original name.

These reductions make the assumption that no variable name is bound more than

once. Strange as this assumption might sound, it is equivalent to working entirely with

40

DeBruijn indexes. Another option is to α-convert everywhere and annotate new vari-

ables with their original names, then α-convert back to the original after unification.

Another option is to use DeBruijn indexes. DeBruijn indexes have their own drawbacks

here, as certain transformation such as “Raising” or the “Gvar-Uvar” rules involve in-

sertion of multiple variables into the context at an arbitrary point, which requiring the

lifting of many variable names.

Case 3 Uvar-Uvar

F [∀y : A.G[yM1 · · ·Mn
.
= yN1 · · ·Nn]] −→ F [∀y : A.G[M1

.
= ∧N1 · · · ∧M1 · · ·Nn]]

Case 4 Identity

F [M
.
= M] −→ F [>]

Case 5 Raising

F [∀y : A.∃x : B.G] −→ F [∃x′ : (Πy : A.B).∀y : A.[x′y/x : B]F,x:Πy:A.B,y:AG]

This rule is important, as correct or incorrect application of this rule can result in

terminating or non terminating reduction sequences.

Case 6 Exists-And

F [(∃x : A.E1) ∧ E2] −→ F [∃x : A.E1 ∧ E2]

Case 7 Forall-And

Moving the universal quantifier to capture a conjunction is critical, since if done

incorrectly, existential variables might be defined with respect to universal quantifiers

that they were not previously in the scope of.

41

F [(∀x : A.E1) ∧ E2] −→ F [∀x : A.E1 ∧ E2]

provided no existential variables are declared in E2.

While this restriction prevents most applications of this rule, equations can still be

flattened to the form

Qx1 : A1 · · ·Qxn : An.M1
.
= N1 ∧ · · · ∧Mm

.
= Nn

transforming E2 first with the “Raising” rule until an “Exists-And” transformation

is possible, then repeating until E2 no longer contains any existentially quantified vari-

ables. This process is always terminating, although potentially significantly slower.

The following cases are based on unification of a formula of the form

Γ[∃x : Πu1 : A1 · · ·Πun : An.AF [∀y1 : A′1.G1[· · · ∀yp : A′p.Gp[xyφ(1) · · · yφ(n)
.
= M] · · ·]]]

Case 8 Gvar-Uvar-Outside

M has the form yM1 · · ·Mm some y universally quantified outside of x and y : Πv1 :

B1 · · ·Πvm : Bm.B.

Then we can imitate y with x′. LetL = λu1 : A1 · · ·λun : An.y(x1u1 · · ·un) · · · (xmu1 · · ·un).

Then we can transition to

∃x1 : Πu1 : A1 · · ·Πun : An.B1 · · · ∃xm : Πu1 : A1 · · ·Πun : An.[xm−1u1 · · ·un/vm−1 : Bm−1] · · ·

[x1u1 · · ·un/v1 : B1]Γ,x1:Tx1 ,··· ,xm−1:TxnBm.[L/x : Tx]Γ,x1:Tx1 ,··· ,xm:TxnF

Case 9 Gvar-Uvar-Inside

If M has the form yφ(i)M1 · · ·Mm for 1 ≤ i ≤ n then we can project x to yφ(i).

Here we can perform the same transition as in the “Gvar-Uvar-Outside” case but let

L = λu1 : A1 · · ·λun : An.ui(x1u1 · · ·un) · · · (xmu1 · · ·un).

42

Case 10 Gvar-Gvar-Same

M has the form xyψ(1) · · · yψ(n).

In this case we pick the unique permutation ρ such that ρ(k) = ψ(i) for all i such that

ψ(i) = φ(i).

Then letting L = λu1 : A1 · · ·λun : An.x
′uρ(1) · · ·uρ(n), we can transition to

∃x′ : Πu1 : Aρ(1) · · ·Πul : Aρ(l).A[L/x : Tx]Γ,x′:T ′xF

Case 11 Gvar-Gvar-Diff

M has the form zyψ(1) · · · yψ(m) for some existentially quantified variable z : Πv1B1 · · ·Πvm :

Bm.B distinct from x and partial permutation ψ.

In this case, we can only transition if z is existentially quantified consecutively out-

side of x.

In this case, we perform a dual imitation.

Let ψ′ and φ′ be partial permutations such that for all i and j such that ψ(i) = φ(j)

then there is some k such that ψ′(k) = i and ψ′(k) = j

Then let the L,L′ be as follows.

L = λu1 : A1 · · ·λun : An.x
′uφ′(1) · · ·uφ′(l)

L = λv1 : B1 · · ·λvm : Bm.x
′uψ′(1) · · ·uψ′(l)

Then we can transition to

Γ[∃x′ : Πu1 : Aφ′(1) · · ·Πul : Aφ′(l).[L
′/z : Tz]Γ,x′:Tx′ [L/x : Tx]Γ,x′:Tx′F

While this case appears to be only rarely applicable, the “Raising” transition can be

used to allow this rule to apply. Due to the restrictions of this case, and the potential for

43

non termination with unrestricted application of the “Raising” rule, it is the only case

where the “Raising” rule is permitted.

3.4.4 Implementation

Because typed substitution is necessary, we must now keep track of types for existen-

tial variables. This can significantly complicate the implementation of the unification

algorithm as the common technique of maintaining unbound existential variables with

restrictions can no longer be blindly used, as existential variables must be maintained

in the formula. If existential variables are maintained literally in the formula, the struc-

ture must provide the ability to add variables at both the top and bottom level. This

complication if implemented naively can lead to a significantly less efficient structure.

After experimentation, similar speeds have been observed when this structure is imple-

mented as a zipper [38]. Unfortunately in this case, since variables are best implemented

via DeBruijn indexes, variable reconstruction is no longer trivial. To reconstruct types,

variable names might be included along side existential variable bindings. Again, this

introduces significant complications. In order to perform substitution for an existential

variable, the context of existential variables would have to have existential DeBruijn

indexes continually swapped for their names. This is most readily implementable as

having all existential variable instances also mention their names.

Another potential option is to maintain the type of the existential variable with each

mention of the existential variable. While in this situation it is simplest to implement

reconstruction, types might be enormous and it would be preferable to mention them

only once.

The last option is to perform unification with untyped substitution in certain cases.

While there is no proof at the moment that unification on the pattern subset of the “Cal-

culus of Constructions” with untyped substitution for only the existential substitutions

44

is total, it is not unbelievable. Furthermore, omitting typed substitution does not alter

the correctness of the algorithm, only the potential totality.

Ideally, knowledge that type checking terminated would be convincing enough so it

is not necessary to continue with the reconstruction. However, reconstruction is neces-

sary for implementing the multi-pass proof search described previously. Furthermore,

reconstruction is useful since the exposed typing rules are incoherent, meaning there

could be multiple coercions to demonstrate a subtyping relation. In these cases, it is

desirable to see what was inferred by type inference.

3.5 Proof Search

In a traditional logic programming language, the order of declaration of quantified ar-

guments is irrelevant, and the context can be considered an unordered set (even though

for implementation reasons it is not). In a dependently typed logic programming lan-

guage where types direct proof search, types must be maintained in the context and

the context thus must maintain order. Since search dynamically poses unification prob-

lems, which may not be entirely solvable until later in the search, unification and proof

search can be made to be naturally mutually recursive procedures when terms of the

form T ∈ T are permitted in the logic. As it is important to maintain the mixed quanti-

fier prefix throughout proof search, it is desirable to provide a version of the algorithm

where unification and proof search are not distinct procedures. Pfenning et al. [60] gave

a succinct formulation where inhabitance and immediate implication were represented

directly in the unification calculus.

3.5.1 Search

Definition 3.5.1 Unification Calculus with Search

45

U ::= U ∧ U | ∀V : T.U | ∃V : T.U | U .
= U | > | T ∈ T | T ∈ T >> T ∈ T

The following new transformations are added to represent proof search:

GΠ : M ∈ Πx : A.B −→ ∀x : A.∃y : B.y
.
= Mx ∧ y ∈ B

(3.14)

G1
Atom : ∀x : A.F [M ∈ C] −→ ∀x : A.F [x ∈ A >> M ∈ C]

where C is an atomic type

(3.15)

G2
Atom : F [M ∈ C] −→ ∀x : A.F [c0 ∈ A >> M ∈ C]

where c0 : A is a constant and C is an atomic type

(3.16)

DΠ : F [N ∈ Πx : A.B >> M ∈ C] −→ F [∃x : A(Nx ∈ B >> M ∈ C) ∧ x ∈ A]

(3.17)

DAtom : F [N ∈ aN1 · · ·Nn >> M ∈ aM1 · · ·Mn] −→ F [N1
.
= M1 ∧ · · · ∧Nn

.
= Mn ∧N

.
= M]

(3.18)

3.5.2 Proof Sharing

In a pure setting, significant improvements to the efficiency of the implementation can

be made by extending the quantifiers of the unification calculus to include forced in-

habitant existential quantification.

U ::= U ∧ U | ∀V : T.U | ∃V : T.U | ∃fV : T.U | U .
= U | > | T ∈ T >> T ∈ T

46

G1
Atom : ∀x : A.F [∃fV : T.>] −→ ∀x : A.F [x ∈ A >> M ∈ C]

G2
Atom : ∃fx : A.F [∃fV : T.>] −→ ∀x : A.F [x ∈ A >> M ∈ C]

DΠ : N ∈ Πx : A.B >> M ∈ C −→ ∃fx : A(Nx ∈ B >> M ∈ C)

In this situation, it is permitted to use the results of future searches for the solution

of the current search. While this sharing is optimal from an operational standpoint, it

can make reasoning about the behavior of impure logic programs very difficult. Given

that Caledon is an impure programming language, reasoning about program behavior

comes before optimizing proof search. It is the subject of future research to determine

proof sharing techniques that do not interfere with effects.

47

48

Chapter 4

Type Inference

In this section, I introduce the type inference system for Caledon. I first discuss the

inference rules and erasure form of CICC dubbed CICC−, a system based on the “Im-

plicit Calculus of Constructions” (ICC) [67]. I then introduce a unification algorithm

for handling constraints generated by CICC− and finally describe the construction of

these constraints and the elaboration technique.

ICC is an extension to the standard “Calculus of Constructions” which allows a

declaration that in all uses of a function, the argument be omitted and chosen during

typechecking based on a provability relation.

Standard CC, and even standard LF can be unnecessarily verbose, as seen in the

example 4.1.

Ideally, one omits redundant types whose values are parameterized and can be in-

ferred from context.

Omitting these types gives rise to the notion of an implicit type system. The Hindley-

Milner [34] system for inferring principle types in system F is a special case of the system

where implicit universally quantified type variables are automatically resolved.

49

1 defn churchLis t : prop −> prop

2 as \ A : prop . [l s t : prop −> prop] ([C] l s t C) −> (A −> [C] l s t C −> l s t

C) −> [C] l s t C

3

4 defn mapCL : [A : prop] [B : prop] (A −> B) −> churchLis t A −> churchLis t B

5 as \ A : prop .

6 \ B : prop .

7 \ F : A −> B .

8 \ c l : churchLis t A .

9 \ l s t : prop −> prop .

10 \ n i l : [B] l s t B .

11 \ cons : B −> [B] l s t B −> l s t B .

12

13 c l l s t n i l (\v . cons (F v))

14

15 defn mapResult : churchLis t na t ur a l

16 as mapCL n at ura l boolean (\ a : n a t ura l . i sZero a) someList

Figure 4.1: Maping over the church encoding of a list

4.1 Implicit Calculus of Constructions

Miquel [55] provides a more general system than that seen in Hindley-Milner, ICC to

allow for implicit arguments. Here, I briefly explain the system and some of the relevant

theoretical results that have been obtained. Because maintaining flexibility is important

to future extensions of Caledon, I present the implicit calculus in terms of Pure Type

Systems.

E ::= V | S | E E | λV.E | ΠV : E.E | ∀V : E.E

Figure 4.2: Syntax of ICC

50

Miquel’s presentation of ICC uses Curry-style λ bindings with types omitted. The

typing rules for ICC are predominantly the same as those for Pure Type Systems, ex-

cept that I provide an extra rule for abstraction, application, and formation of implicitly

quantification. The abstraction rule also must conform to the syntax of the Curry-style

λ bindings.

Γ, x : A `ICC F : B Γ `ICC (Πx : A.B) : s s ∈ S
Γ `ICC (λx.F) : (Πx : A.B)

abstraction

Γ, x : T `ICC M : U Γ `ICC (∀x : T.U) : s s ∈ S x /∈ FV (M)

Γ `ICC M : (∀x : T.U)
gen

Γ `ICC M : ∀x : T.U Γ `ICC N : T

Γ `ICC M : U [N/x]
inst

Γ `ICC A : s1 Γ, x : A `ICC B : s2 (s1, s2, s3) ∈ R
Γ `ICC (∀x : A.B) : s3

imp− prod

Γ, x : T `ICC M : U x /∈ FV (M) ∪ FV (U)

Γ `ICC M : U
strength

Γ `ICC λx.(Mx) : T x /∈ FV (M)

Γ `ICC M : T
ext

Figure 4.3: Typing for ICC

In the formulation in 4.3, there is no way to control the type of the argument used

explicitly. Similarly, there is no mechanism for this in the syntax shown in 4.2. In the

implemented version, this is not the case, as a notion of explicit binding has been pro-

vided.

In addition, in the formulation, neither the strengthening rule nor the rule of exten-

51

sionality are admissible. These rules are necessary to show subject reduction.

4.1.1 Subtyping

Definition 4.1.1 Subtyping relation: Γ `ICC T ≤ T ′ ≡ Γ, x : T `ICC x : T ′

Lemma 4.1.2 (Subtyping is a preordering)
Γ `ICC T : s

Γ `ICC T ≤ T
sym

Γ `ICC T1 ≤ T2 Γ `ICC T2 ≤ T3

Γ `ICC T1 ≤ T3
trans

Γ `ICC M ≤ T Γ `ICC T ≤ T ′

Γ `ICC M : T ′
sub

Lemma 4.1.3 Domains of products are contravariant and codomains are covarient:
Γ `ICC T ′ ≤ T Γ, x : T ′ `ICC U ≤ U ′

Γ `ICC Πx : T.U ≤ Πx : T ′.U ′
Γ `ICC T ′ ≤ T Γ, x : T ′ `ICC U ≤ U ′

Γ `ICC ∀x : T.U ≤ ∀x : T ′.U ′

4.1.2 Results

There are two main results that follow from this calculus.

Theorem 4.1.4 (Subject Reduction) If Γ `ICC M : T and M →βη∗ M
′ then Γ `ICC M ′ : T

Definition 4.1.5 TermICC = {M : ∃T,Γ.Γ `ICC M : T}

Because this calculus is Curry-style, Church-Rosser is provable. While the internal

representation and external presentation of Caledon is not necessarily Curry-style, it

is possible to mimic a Church-style encoding into a Curry-style encoding through the

use of type ascriptions and evaluation-delaying terms. Technically, the calculus will

no longer have the Church-Rosser property if evaluation-delaying terms are included.

However, evaluation-delaying terms are ineffectual when added to a strongly normal-

izing calculus.

4.2 Inference for CICC

In order to make use of the implicit system of CICC, an inference relation must be

provided. This is accomplished by extending the typing rules and providing a mapping

from the extended type derivation and term to an original type derivation and term.

52

Let Γ ` A : T ∧B : T ′ stand for Γ ` A : T and Γ ` B : T ′.

Definition 4.2.1 (CICC− Extended Typing Rules)

Γ `i− M :?Πn, x : T.U Γ `i− N : T n /∈ DV (Γ)

Γ `i− M : [N/x]U
inst/f

Γ, x : T `i− M : [N/x]U ∧N : T Γ `i− (?Πn, x : T.U) : K n /∈ FV (M) ∪DV (Γ)

Γ `i− M :?Πn, x : T.U
abs/f

Γ, x : T `i− M : U x /∈ FV (M) ∪ FV (U) ∪DV (Γ)

Γ `i− M : U
strength

Γ `i− M :?Πn, x : T.U Γ `i− N : T n /∈ GN(M) n /∈ BN(U)

Γ `i− M{n = N} : [N/x]U
inst/b

In CICC, as in CC, the strengthening rule is admissible, while in CICC−, it is not.

The rule abs/f might appear to not make sense at first glance since it abstracts to a

known term, but it can be considered equivalent to an existential pack without the pack

proof term, since x /∈ FV (M)

Conversion is now restricted to β to accommodate the Church-Rosser theorem which

is necessary to prove subject reduction.

We do not need semantic related properties and thus the semantics of CICC− is

unimportant, since we will be elaborating to the sublanguage CICC before evaluating

and type checking further.

However, the substitution theorem holds.

Theorem 4.2.2 (Substitution)

Γ, x : T1,Γ
′ `i− M : T2 Γ `i− N : T1

Γ, [N/x]Γ′ `i− [N/x]M : [N/x]T2
subst

53

Theorem 4.2.3 (Subject Reduction) If Γ `i− M : T and M →β∗ M
′ then Γ `i− M ′ : T

4.2.3 is at the moment believed to be true, although no full formalization exists. Pro-

vided reductions are restricted to β conversion, the Church-Rosser theorem is simply

provable and the proof of subject reduction is similar to that in the traditional “Calculus

of Constructions.”

Without the abs/f rule, subject reduction becomes unnecessary for the metatheory

since the single direction subtyping relation is sufficient. However, unification becomes

difficult to implement.

Unfortunately, the projection function now requires more information than is avail-

able syntactically, and thus must be given on the typing derivation.

Definition 4.2.4 (Projection from CICC− to CICC)

s
· `i−

wf/e
{c

ci−
:= ·

u

ww
v

D
Γ `i− x : T · · ·

Γ, x : T `i−
wf/s

}

��
~

c

ci−

:= JΓ `i−Kcci− , JDKci−

s · · ·
Γ, x : A `i− x : A

start
{

ci−
:= x

s · · ·
Γ, x : A `i− c : s

axioms
{

ci−
:= c

u

ww
v

D1

Γ ` T : s1

D2

Γ, x : T ` U : s2 · · ·
Γ `i− (Πx : T.U) : s

prod

}

��
~

ci−

:= Πx : JD1Kci− . JD2Kci−

u

ww
v

D1

Γ ` T : s1

D2

Γ, x : T ` U : s2 · · ·
Γ `i− (?Πn, x : T.U) : s

prod∗

}

��
~

ci−

:=?Πn, x : JD1Kci− . JD2Kci−

54

u

wwwwwww
v

D1

Γ, x : T `i− M : U

D2

Γ ` T : s1

D3

Γ, x : T ` U : s2 · · ·
Γ `i− (Πx : T.U) : s

prod · · ·
Γ `i− λx : T.M : (Πx : T.U)

gen

}

�������
~

ci−

:= λx : JD2Kci− . JD1Kci−

u

wwwwwww
v

D1

Γ, x : T `i− M : U

D2

Γ ` T : s1

D3

Γ, x : T ` U : s2 · · ·
Γ `i− (?Πn, x : T.U) : s

prod∗ · · ·
Γ `i−?λn, x : T.M : (?Πn, x : T.U)

gen∗

}

�������
~

ci−

:=?λn, x : JD2Kci− . JD1Kci−

u

ww
v

D1

Γ `i− M : Πx : T.U
D2

Γ `i− N : T

Γ `i− MN : U [N/x]
app

}

��
~

ci−

:= JD1Kci− JD2Kci−

u

ww
v

D1

Γ `i− M :?Πn, x : T.U
D2

Γ `i− N : T · · ·
Γ `i− M{n = N} : U [N/x]

inst/b

}

��
~

ci−

:= JD1Kci− {n : JΓ ` T : kindKci− = JD2Kci−}

u

ww
v

D1

Γ `i− M :?Πn, x : T.U
D2

Γ `i− N : T · · ·
Γ `i− M : U [N/x]

inst/f

}

��
~

ci−

:= JD1Kci− {n = JD2Kci−}

u

ww
v

D
Γ, x : T `i− M : U · · ·

Γ `i− M : U
strength

}

��
~

ci−

:= JDKci−

u

ww
v

D
Γ `i− M : [N/x]U · · ·
Γ `i− M :?Πn, x : T.U

abs/f

}

��
~

ci−

:=?λn, x : T. JDKci−

55

Theorem 4.2.5 (Soundness of extraction)

Γ `i− =⇒ JΓ `i−Kcci `i− (4.1)

Γ `i−A : T =⇒ JΓ `i−Kcci `i−JΓ `i− A : T Kci (4.2)

Since CICC permits η equivalence and CICC− does not, the extraction in the re-

verse direction is no longer sound. For our purposes, this is not objectionable since

CICC is known to be consistent and there is no reason to convert back into CICC−, as

it is used entirely as a pre-elaboration language. Once terms are typechecked and type

inferred in CICC−, they are typechecked in CICC and normalized in CICC. While the

reverse extraction is generally not sound, normal terms with normal types are clearly

typeable in CICC−.

4.2.1 Subtyping

Similar to ICC, these rules result in a subtyping relation, which will be of importance

during type inference and elaboration.

Definition 4.2.6 Subtyping relation: Γ `i− T ≤ T ′ ≡ Γ, x : T `i− x : T ′ where x is new.

Lemma 4.2.7 Subtyping is a preordering:

Γ `i− T : s

Γ `i− T ≤ T
refl

Γ `i− T1 ≤ T2 Γ `i− T2 ≤ T3

Γ `i− T1 ≤ T3
trans

Γ `i− M ≤ T Γ `i− T ≤ T ′

Γ `i− M : T ′
sub

This theorem is an application of the substitution lemma.

Lemma 4.2.8 Domains of products are contravariant and codomains are covariant:

Γ `i− T ′ ≤ T Γ, x : T ′ `i− U ≤ U ′

Γ `i− Πx : T.U ≤ Πx : T ′.U ′
Γ `i− T ′ ≤ T Γ, x : T ′ `i− U ≤ U ′

Γ `i− ∀x : T.U ≤ ∀x : T ′.U ′

56

Unlike traditional subtyping relations where an explicit subtyping rule must be in-

cluded in the type system, this system’s subtyping relation is much easier to manage

during unification, because it is simply a macro for a provability relation.

This allows one to implement higher order unification with minimal modification,

as in a lattice unification algorithm. The modification is made to the search procedure,

and subtyping constraints are realized as search terms.

However, with the addition of the strengthening rule, this kind of modification is not

entirely necessary, since it is provable that this subtyping relation is symmetric 4.2.9, and

thus an entirely symmetric unification algorithm can be presented.

Theorem 4.2.9 is not obvious at first glance, so I will provide intuitive justification

first.

In CICC, by uniqueness of types, Γ ` x : A and Γ ` x : B implies A ≡βη∗ B.

In CICC− however, there is no such uniqueness of types properties. Rather, the inst/f

and abs/f rules permit one to respectively add and initialize an implicit argument, then

abstract implicitly upon an unused argument.

Thus if Γ, x :?Πn, z : T.A `i− x : A by implicit instantiation of the argument n, we

might also derive Γ, x : A `i− x :?Πn, z : T.A given that z /∈ FV (x) and that Γ, x :?Πn, z :

T.A `i− x : A implies Γ, x :?Πn, z : T.A `i− which implies Γ `i− x : (?Πn, z : T.A) : K.

Theorem 4.2.9 (Symmetry) Γ `i− A ≤ B implies Γ `i− B′ ≤ A′. where A ≡β A′ and

B ≡β B′

Proof: This is proved by induction on the structure of the proof of Γ, x : A `i− x : B.

Here I only consider the cases relevant to the new fragment.

Case 1 We begin with the non admissible strengthening rule.

Γ, x : A, z : T `i− x : B z /∈ FV (x) ∪ FV (B) ∪DV (G)
strength

Γ, x : A `i− x : B

from this we can derive via the induction hypothesis, Γ, x : B′, z : T `i− x : A′ and

then reapply strengthening.

57

Γ, x : B′, z : T `i− x : A′ z /∈ FV (x) ∪ FV (A′) ∪DV (G)
strength

Γ, x : B′ `i− x : A′

Case 2 In this case we cover implicit instantiation.

Γ, x : A `i− x :?Πn, z : T.B Γ, x : A `i− N : T z /∈ DV (Γ, x : A)
inst/f

Γ, x : A `i− x : [N/z]B

Suppose z is not in FV (B) then [N/z]B ≡ B. From this the following proof is possi-

ble:

The first steps are the following few derivations:

Γ,`i− B′ : K z /∈ FV (B′) ∪ FV (K)
stren

Γ, z : T ′,`i− B′ : K

Γ `i− T ′ : K ′ Γ, z : T ′ `i− B′ : K form/f
Γ `i−?Πn, z : T ′.B′ : K

B ≡β B′ z /∈ B′

z /∈ FV (B′)

From these, we can derive the following result about B′.

Γ, z : T ′ `i− B′ : K start
Γ, z : T ′, x : B′ `i− x : B′ Γ `i−?Πn, z : T ′.B′ : K z /∈ FV (x) ∪DV (Γ)

abs/f
Γ, x : B′ `i− x :?Πn, z : T ′.B′

Finally, we can derive the desired result:

Γ, x : B′ `i− x :?Πn, z : T ′.B′
IH(Γ, x : A `i− x :?Πn, z : T.B)

Γ, x :?Πn, z : T ′.B′ `i− x : A′
subst

Γ, x : B′ `i− x : A′ z /∈ FV (B′)

Γ, x : [N/z]B′ `i− x : A′

The only unexplained axioms here are Γ `i− B′ : K and Γ `i− T ′ : K in this proof.

Because Γ, x : A′ `i− x :?Πn, z : T ′.B′ is true, we know that Γ, x : A′ `i−?Πn, z : T ′.B′ : K

and thus that Γ, x : A′ `i−?ΠT ′ : K ′ and Γ, x : A′, z : T ′ `i− B′ : K. By strengthening we

can infer Γ `i− B′ : K and Γ `i− T ′ : K.

On the other hand, if z is in FV (B) we achieve different proofs. Now we can infer

that x /∈ FV (N), but we can not show that [N/z]B′ ≡ B′.

58

By the induction hypothesis, we can infer Γ, x :?Πn, z : T ′.B′ `i− x : A′.

First, we know that Γ, x : A `i− [N/z]B : K by well formedness of the judgement

Γ, x : A `i− x : [N/z]B′ and the conversion rule.

Γ, x : A `i− [N/z]B′ : K x /∈ FV (B′)
strength

Γ `i− [N/z]B′ : K
start

Γ, x : [N/z]B′ `i− x : [N/z]B′ z /∈ FV (N)
strength

Γ, x : [N/z]B′, z : T `i− x : [N/z]B′

thus, we can use the abs/f rule to construct a form we can use in substitution.

Γ, x : [N/z]B′, z : T `i− (x : [N/z]B′) ∧N : T ′ Γ, x : [N/z]B′ `i−?Πn, z : T ′.B′ : K z /∈ GV (M ; Γ)
abs/f

Γ, x : [N/z]B′ `i− x :?Πn, z : T ′.B′

where GV (M ; Γ) = FV (M) ∪DV (Γ).

Finally, we get the following derivation.

Γ, x : [N/z]B′ `i− x :?Πn, z : T ′.B′ Γ, x :?Πn, z : T ′.B′ `i− x : A′
subst

Γ, x : [N/z]B′ `i− x : A′

Case 3 In this case we examine the abs/f rule.

Γ, x : A, z : T `i− x : [N/z]B ∧N : T Γ, x : A `i−?Πn, z : T ′.B′ : K z /∈ GV (M ; Γ, x)
abs/f

Γ, x : A `i− x :?Πn, z : T.B

From this we can infer that z /∈ FV (A). This is useful since we can derive:

Γ, z : T, x : A `i− x : [N/z]B ∧N : T

We can then apply the induction hypothesis to get the following:

Γ, z : T, x : [N ′/z]B′ `i− x : A′

From this we can infer Γ, x : [N ′/z]B′ `i− x : A′ by strengthening since z /∈ FV (x) ∪

FV (A′).

Furthermore, we can infer that Γ `i− N ′ : T ′ since N ′ ≡β N so Γ `i− N ′ : T by subject

reduction and T ′ ≡β T so Γ `i− N ′ : T ′ by conversion.

59

We can also derive Γ, x :?Πn, z : T ′.B′ `i− x :?Πn, z : T ′.B′ by the start rule.

We get the following proof:

Γ, x :?Πn, z : T ′.B′ `i− x :?Πn, z : T ′.B′ Γ `i− N ′ : T ′ z /∈ DV (Γ)
inf/f

Γ, x :?Πn, z : T ′.B′ `i− x : [N ′/x]B′

Finally, with the knowledge that z /∈ FV (A′), we can derive the following:

Γ, x :?Πn, z : T ′.B′ `i− x : [N ′/x]B′ Γ, x : [N ′/x]B′ `i− x : A′
subst

Γ, x :?Πn, z : T ′.B′ `i− x : A′

2

4.3 Semantics for CICCI

4.3.1 Substitution With Implicits

The formulation of hereditary substitution in the presence of implicit arguments is not

unlike the presentation of hereditary substitution without implicit arguments with ad-

ditional required checks.

Definition 4.3.1 (Implicit Typed Hereditary Substitution)

[S/x : A]nΓ(?λy : B.N) :=?λy : B.[S/x : A]nΓ,y:BN

η−1
?Πx:A.B(N) :=?λx : A.N {x = η−1

A (x)}

since N being typeable by ?Πx means that x can not appear free in N

HΓ(P ↓?Πy : B1.B2, {v := N}) := P {v := N} ↓ [N/y : B1]nΓB2

HΓ((?λv : A1.N) ↑?Πv : A1.A2, {v := P}) := [P/v]nΓ`v:A1
N ↑ A2

H(?λv : T.P ↑ , A) :=?λv : T.H(P,A)

60

4.3.2 Unification With Implicits

Now we can use the convenient fact that Γ ` A ≤ B implies Γ ` B ≤ A to extend the

unification rules provided before to apply to CICC−.

Case 1 ?Lam-?Lam-same

F [?λn, x : A.M
.
=?λn, y : A.N] −→

F [∀x : A.M
.
= [x/y]N] (4.3)

Note that in this rule, the external name on the left matches the external name on the

right.

Case 2 ?Forall-?Forall-same

F [?Πn, x : A.M
.
=?Πn, y : A′.N] −→

F [A
.
= A′ ∧ ∀x : A.M

.
= [x/y]N] (4.4)

In this rule the external name on the left must match the external name on the right.

Case 3 ?Lam-?Lam-same

This case is distinct from the simple case of equality of dependent products in that

an implicit abstraction could lie at the head of the spine if it had not already been con-

strained.

F [(?λn, x : A.M) R1 · · ·Rn
.
= (?λn, y : A′.N) R′1 · · ·R′m] −→

F [A
.
= A′ ∧ ∀x : A.H(· · ·H(M,R1) · · ·Rn)

.
= H(· · ·H([x/y]N,R′1) · · · , R′n)] (4.5)

Again, the external name on the left must match the external name on the right.

61

Case 4 ?Lam-Unbound

if n /∈ BN(N) then

F [(?λn, x : A.M) R1 · · ·Rn
.
= N] −→

F [∃x : A.H(· · ·H(M,R1) · · ·Rn)
.
= N ∧ x ∈ A] (4.6)

Here we perform a search for x ∈ A to satisfy the inst/f rule. Rather than adding a

potentially unused constriction to the right hand side, we observe that such a constric-

tion could be inferred implicitly.

Case 5 Uvar-Uvar-BothConst

Rather than simply adding a case for universal variables with the possibility of a

constriction in the argument list, we must modify the already existing case to “search”

for constrictions on both sides. We first have a case which matches constrictions on both

sides.

Suppose n /∈ CN(y N1 · · ·Nn) ∪ CN(y M1 · · ·Mn)

F [∀y : A.G[y M1 · · ·Mr−1 {n = A}Mr · · ·Mn
.
= yN1 · · ·Nr′−1 {n = A′} Nr′ · · ·Nn]] −→

F [∀y : A.G[yM1 · · ·Mn
.
= yN1 · · ·Nn ∧ A

.
= A′]] (4.7)

Case 6 Uvar-Uvar-OneConst

This case matches when there is only a constriction on one side.

Suppose n /∈ CN(y N1 · · ·Nn) ∪ CN(y M1 · · ·Mn)

F [∀y : A.G[y M1 · · ·Mr−1 {n = A}Mr · · ·Mn
.
= yN1 · · ·Nn]] −→

F [∀y : A.G[yM1 · · ·Mn
.
= yN1 · · ·Nn]] (4.8)

62

In this case we have no reference point to unify A against, and we do not know its

type, so we can simply ignore it.

Case 7 Uvar-Uvar-Eq

If CN(y N1 · · ·Nn) ∪ CN(y M1 · · ·Mn) = ∅

F [∀y : A.G[yM1 · · ·Mn
.
= yN1 · · ·Nn]] −→

F [∀y : A.G[M1
.
= ∧N1 · · · ∧M1 · · ·Nn]] (4.9)

This last case behaves exactly as the old “Uvar-Uvar-Eq” except that we require there

to be no constrained names on either side.

63

64

Chapter 5

Implementation

Implementation of Caledon has a few unique properties, not all related to the exposed

logic of the language. In this chapter, I discuss some details of the specification and

implementation of Caledon. The algorithm for actually performing higher order unifi-

cation and type inference is unusual in Caledon, because Caledon uses a zipper-style

context implemented by a finger-tree based sequence, and does not perform linear

passes on the unification problem. I define families as a coherent set of axioms for

proof search. Nondeterminism control is discussed as a way of letting the programmer

choose between sequential and concurrent execution and between efficient and com-

plete searches. Finally, I define methods of interacting with the world.

5.1 Type Inference

While the generation of unification problems in Caledon is straightforward as described

in the previous sections, the implementation of the higher order pattern unification al-

gorithm is convoluted. If unification were to be implemented in Ollibot [64], a much

simpler, yet significantly less efficient implementation might be possible.

Universally quantified and lambda quantified variables are easily represented by

65

DeBruijn indexes, since no universal quantifiers are ever introduced between two pre-

existing universal quantifiers. On the other hand, existential variables are introduced at

any location. Rather than complicating substitutions, existential variable instances are

represented by unique names with depth indexes, instead of height indexes. Because

existential variables are not explicitly named in the context, each existential variable

instance carries its own type, lifted to the location of the instance.

Since such a representation requires traversals and modifications of a tree structure,

a natural solution is to use a zipper to represent the entire structure. Because traversing

the structure downward also builds a context of universal variables and passed con-

junctive paths, the same zipper structure can likewise be used as the type context for

DeBruijn variable lookup. In an imperative language with effects, one might think that

using a vector to hold the zipper context of the unification problem is optimal. How-

ever, since nondeterminism is essential to proof search, complications arise if the struc-

ture is shared among threads manually. A pure data structure based on finger trees [35]

known as a sequence turns out to be an ideal choice of structure. Concatenation in this

structure is constant time, and splitting and lookup are logarithmic. While logarithmic

lookup time is slightly worse than the constant lookup time for a vector, its benefit is

that it automatically shares relevant unchanged sections between threads.

5.2 Type Families

Permitting entirely polymorphic axioms at the top level significantly complicates effi-

cient proof search and can introduce unintended falsehoods. To remedy this, axioms are

grouped together by conclusion, ensuring program definitions are local and not spread

out across the source code. Grouping axioms in this way optimizes a proof search, be-

cause it is now possible to limit the search for axioms to the same family of the head of

the goal. Such grouping thus acts as an automated and enforced version of the freeze

66

command from Elf. Mutually recursive definitions are automatically inferred.

Πx : T1.T2ty
T2 ty

Π− ty

?Πx : T1.T2ty
T2 ty

?Π− ty

prop ty
prop− ty

T2@n x 6= n

Πx : T1.T2@n
Π− fam

T2@n x 6= n

?Πx : T1.T2@n
?Π− fam

n@n
var − fam

T1@n
T1 T2@n

app− fam

T1@n

T1 {x = T2}@n
?app− fam

Figure 5.1: The family relationship

In figure 5.2, using the fam relation ensures that an axiom belongs to a family, whereas

the ty relation ensures that a family type actually results in a type.

Grouping axioms together as families and preventing entirely polymorphic results

ensures that entirely polymorphic results will be consistent. It is possible to relax this

constraint at the expense of full program speed. Speed results because the only time

67

a polymorphic axiom is introduced into the proof search context is locally within an

axioms assumptions.

5.3 Controlled Nondeterminism

A logic program need not only be a deterministic depth first pattern search. For purely

declarative axioms, the depth first strategy is usually, in fact, incomplete and not rep-

resentative of what should and should not halt. Depth first search, however, can be

more efficient in many cases and when used intentionally will constrict nondetermin-

ism. Concurrency in a program with IO has well known uses and advantages. The

breadth first proof search strategy can conveniently be represented by a program where

every pattern-match forks and then executes concurrently. This is not ideal if used in-

discriminately. An ideal implementation allows one to control the patterns that are

searched in parallel and in sequence. In the following snippet of the code, the distinc-

tion between breadth first and depth first queries are used to emulate the concept of

concurrency and cause the program to have more complex behavior.

68

1

2 query main = runBoth f a l s e

3

4 defn runBoth : bool −> type

5 >| run0 = runBoth A

6 <− putStr ‘ ‘ t t t ‘ ‘

7 <− A =:= true

8 | run1 = runBoth A

9 <− putStr ‘ ‘ vvvv ’ ’

10 <− A =:= true

11 | run2 = runBoth A

12 <− putStr ‘ ‘ qqqq ’ ’

13 <− A =:= true

14 >| run3 = runBoth A

15 <− putStr ‘ ‘ j j j ’ ’

16 <− A =:= f a l s e

Figure 5.2: Nondeterminism control

In example 5.2, the query main prints to the screen something similar to ttt vqvqvqvq

jjj. This happens because, despite proof search failing on the first three axioms due to

an incorrect match, the fail is deferred until after IO has been performed. The middle

axioms, “run1” and “run2” are declared to be breadth first axioms, while “run0” and

“run3” are declared to be depth first axioms. The declaration of an axiom as being depth

first implies that it’s entire tree must be searched for a successful proof before the next

axiom can be attempted. While breadth first axioms make no such guarantee, it is also

not guaranteed that they will run concurrently. If for example they both make calls to

predicates which each only have a single depth first axiom, they will not be any more

concurrent than before.

69

1

2 defn f a i l : type

3 as t rue =:= f a l s e

4

5 defn then : type −> type −> type

6 >| then−A = Fst ‘ then ‘ Snd <− Fs t <− f a i l

7 >| then−B = Fst ‘ then ‘ Snd <− Snd

8

9 query main = print ‘ ‘ Hello ‘ ‘ ‘ then ‘ print ‘ ‘ world ! ’ ’

Figure 5.3: Sequential predicate

The predicate then in figure 5.3 executes its first routine and subsequently its second

sequentially. To understand how this works, it is helpful to step through the query

main. When main is called, it will first initiate a goal of the form then (print Hello)

(print world!). Because the axioms then-A and then-B are both preceded by “¿—”, the

then-A is attempted, the search of which is constrained to be entire. Since (print Hello)

succeeds and does not nondeterministically branch, fail will be initiated as the next goal.

“fail” will certainly fail, and the current branch will end. then-B is the next attempt. It

will succeed since (print world!) succeeds.

1

2 defn while : type −> type −> type

3 | while−A = Fst ‘ while ‘ Snd <− Fs t

4 | while−B = Fst ‘ while ‘ Snd <− Snd

5

6 query main = print ‘ ‘ aaaa ’ ’ ‘ while ‘ print ‘ ‘ bbbb ’ ’

Figure 5.4: Concurrent predicate

The predicate while in figure 5.4 executes its first routine at the same time as its

70

second. The result of main might then be abababab. It is important to note that in this

notion of concurrency, neither thread is the “original” thread.

5.4 IO and Builtin Values and Predicates

This section is both a specification and a guide to future implementers of logic program-

ming languages with proof search.

When programming in Caledon, searching for items of type prop might uncover IO,

and thus IO can be performed during typechecking. This can be understood as the set

of axioms differing based on the environment available.

IO is performed when the evaluation function encounters a query for a built-in IO

performing function.

1 eval : Propos i t ion −> Environment Formula

2 eval (a ∈ ‘ ‘ print ’ ’ S t r) = (i f gvar a then print s t r e lse ()

3 ; return (a .
= printImp S t r)

4)

It is important to include the check that a has not already been resolved so that

repeated IO actions are not performed when nondeterministically proof searching.

It is tempting to define predicates that take input as “taking as an argument a func-

tion that uses the input.” This is in fact a valid way to define such functions and permits

for hints of directionality in the types. However, it is still possible to escape from the

confines of abstraction to build a predicate without obvious input directionality.

1 b u i l t i n readLine : (s t r i n g −> prop) −> prop

2

3 defn readLinePredicate : s t r i n g −> prop

4 as \ s : s t r i n g . readLine (\ t . t =:= s)

Ensuring variables do not escape their intended scope is necessary to ensuring that

71

the intended IO action is only executed once, and not multiple times during proof

search.

While it is possible to reason about nondeterministic IO, it is desirable to also have

actions that cannot be executed twice, for which nondeterminism is not possible.

For this, the notion of a monad is useful. In this setting, IO is presented as a series of

built-in axioms.

1 defn io : prop −> prop

2 | bind = io A −> (A −> io B) −> io B

3 | return = A −> io A

4 | ioReadLine = io s t r i n g

5 | i o P r i n t = s t r i n g −> io uni t

We can now no longer write A ∈ readLine though since readLine : prop is a value and

thus has no inhabitants.

Instead, an interpretation predicate can be created which maps these dummy IO

actions to real actions.

1 defn run : io A −> A −> prop

2 >| runBind = run (bind IOA F) V

3 <− run IOA A

4 <− run (F A) V

5 >| runReturn = run (return V) V

6 >| runReadLine = run ioReadLine A <− readLineEscape A

7 >| runPrint = run (i o P r i n t S) one <− print S

Since the type system is the “Calculus of Constructions,” IO actions constructed from

io will be total, severely limiting their utility. More complex IO actions and interpreters

can be generated, most importantly, ones involving recursion or infinite loops.

72

Chapter 6

Programming with Caledon

6.1 Typeclasses

As previously written, implicit arguments alongside polymorphism and proof search

can subsume Haskell-style type classes.

The easiest way to see this is in an implementation of what is known as the “Show”

type class in Haskell. In a logic programming language, a predicate that can be used

to print a data type can also be used to read a data type, so here we shall discuss a

“serialize” type class.

1

2 defn s e r i a l i z e B o o l : bool −> s t r i n g −> type

3 >| s e r i a l i z e B o o l−t rue = s e r i a l i z e B o o l t rue ‘ ‘ true ’ ’

4 >| s e r i a l i z e B o o l−f a l s e = s e r i a l i z e B o o l f a l s e ‘ ‘ f a l s e ’ ’

Figure 6.1: Serializing booleans

73

1 query readQuery = e x i s t s B : bool . s e r i a l i z e B o o l B ‘ ‘ true ’ ’

2 query printQuery = e x i s t s S : s t r i n g . s e r i a l i z e B o o l f a l s e S

Figure 6.2: Bidirectional serializing

Given the predicate 6.1 executes its matches in parallel, both of the queries in 6.2 will

resolve.

The serialize predicate is a useful one, and we would like it to be polymorphic in

all types for which we implement a serialize function. This is possible using implicit

arguments.

We first create an open type for the type class serializable.

1 open s e r i a l i z a b l e : [T] { s e r i a l i z e r : T −> s t r i n g −> type } type

Figure 6.3: The type of the type class serializable

We then define a function “serialize” which unpacks the implicit dependency of the

type serializable.

1 defn s e r i a l i z e : {T}{ s e r i a l i z a b l e : T −> s t r i n g −> type } T −> s t r i n g −>

type

2 | s e r i a l i z e I m p =

3 [S e r i a l i z e r : T −> s t r i n g −> type]

4 [S e r i a l i z a b l e : s e r i a l i z a b l e T { s e r i a l i z e r = S e r i a l i z e r }]

5 s e r i a l i z e { s e r i a l i z a b l e = S e r i a l i z a b l e } V S

6 <− S e r i a l i z e r V S

Figure 6.4: The implementation of the function serialize

1 instance s e r i a l i z e−bool = s e r i a l i z a b l e bool { s e r i a l i z e r = s e r i a l i z e B o o l }

2 instance s e r i a l i z e−nat = s e r i a l i z a b l e nat { s e r i a l i z e r = s e r i a l i z e N a t }

Figure 6.5: Instances of serializable

74

To implement an instance of the serializable type class, one adds an instance axiom

to the environment as in 6.6

Use of the function then omits the implementation of the “serializable” argument

and type argument, such that they might be resolved automatically as in ??

1 query readQueryBool = e x i s t s B . s e r i a l i z e B ‘ ‘ true ’ ’

2 query printQueryBool = e x i s t s S . s e r i a l i z e f a l s e S

3

4 query printQueryNat = e x i s t s S . s e r i a l i z e (succ (succ zero)) S

5 query readQueryNat = e x i s t s S : nat . s e r i a l i z e S ‘ ‘ (succ (succ zero)) ’ ’

Figure 6.6: Instances of serializable

This process can be extended to open type classes which bypass the family require-

ment, allowing future instances to be declared. It is difficult to fully discuss uses of

this capability in the confines of this paper. However, type class computation has been

known to the Haskell community for quite some time. Moreover, it has been used in

applications ranging from embedding an imperative computation monad with local

variable use and assignment rules similar to those of C, to an RPC framework which

creates end points based on functions with arbitrarily complex type signatures.

6.2 Linear Predicates

One major drawback of the type class paradigm outlined in the previous section is the

inability for a typeclass to uniquely determine membership of type in a type class based

on floating predicates in the environment with matching signatures. While ideal be-

havior is possible for theorems in the “Calculus of Constructions” which exhibit ideal

parametricity, the type type has the trivial inhabitant type. Thus implementations will

nearly always resolve to this version.

75

1 defn s e r i a l i z e a b l e : [T] { s e r i a l i z e r : T > s t r i n g > type } type

2 | s e r i a l i z a b l e−auto−find = [T] [S e r i a l i z e r : T −> s t r i n g −> type]

3 s e r i a l i z a b l e T { s e r i a l i z e r = S e r i a l i z e r }

Figure 6.7: This would be nice

For example, it would be very nice if the predicates in figure 6.7 automatically re-

solved to a reasonable instance of serializable.

1 defn s e r i a l i z e : {T} { s e r i a l i z e r : T > s t r i n g > type } T −> s t r i n g −>

type

2 as ?\T : type . ?\ s e r i a l i z e r : T −> s t r i n g −> type . \v : T . \ s : s t r i n g

3 . s e r i a l i z e r v s

Figure 6.8: Nice implementation

We could implement serialize as above in the definition in figure 6.8. However, this

kind of implementation will fail to determine the correct instance of “serializer.”

1 query writeBool = s e r i a l i z e t rue ‘ ‘ true ’ ’

2 ===>

3 query writeBool =

4 s e r i a l i z e

5 {T = bool}

6 { s e r i a l i z e r = \ x : bool . \ y : s t r i n g . type }

7 true ‘ ‘ true ’ ’

Figure 6.9: Trivial Failure

Rather, it will infer a trivial predicate, as seen in the query in figure 6.9

76

1 defn show : {T}{shower : T −> s t r i n g } T −> s t r i n g

2 as ?\T : type . ?\ shower : T −> s t r i n g . \ v : T . shower v

3

4 query writeBool = print (show t rue)

5 ===>

6 query writeBool = print (show {T = bool }{shower = \ x : bool . n i l })

Figure 6.10: Functions also fail

One might think that functions, as an alternative to predicates, are immune to in-

habitation by trivial and incorrect values as in the above scenario. However, unless

specified with their properties (tedious), functions have similar drawbacks, as is seen in

the program in figure 6.10.

1 defn show : {T}

2 {shower : T −> s t r i n g }

3 { reader : s t r i n g −> maybe T}

4 {comp1 : [v] reader (shower v) =:= j u s t v}

5 {comp2 : [v] fromJust (reader s) (\ x . shower x =:= s) type}

6 T −> s t r i n g

7 as ?\ T : type

8 . ?\ shower : T −> s t r i n g

9 . ?\ reader :

10 . ?\ comp1 :

11 . ?\ comp2 :

12 . \ v : T

13 . shower v

Figure 6.11: Kind of a success using proofs

One can sometimes work around this by including metatheorems about the implicit

functions, as in the figure 6.11. However, proving the metatheorems is often tedious,

77

impossible, or sometimes just plain slow for the compiler.

One method under investigation to solve this ambiguity problem uses substructural

dependent quantification, in which types indicate that the function argument can be

used only once in the term, but unlimited times in types. While this is a subject of

ongoing work on my part, I have included a description of my ideas.

1 defn s e r i a l i z e B o o l : bool −o s t r i n g −o type

2 | s e r i a l i z e B o o l−t rue = s e r i a l i z e B o o l t rue ‘ ‘ true ’ ’

3 | s e r i a l i z e B o o l−f a l s e = s e r i a l i z e B o o l f a l s e ‘ ‘ f a l s e ’ ’

4

5 defn s e r i a l i z e : {T}{ s e r i a l i z e r : T −o s t r i n g −o type } T −> s t r i n g −> type

6 as ?\ T

7 . ?\ s e r i a l i z e r : T −o s t r i n g −o type]

8 . \ v : T

9 . \ s : s t r i n g

10 . s e r i a l i z e r v s

Figure 6.12: Linear types would be useful here

F : A (B shall mean that the function F only consumes a single resource of type

A. F : ∀ox : A.B shall mean the same in a dependent setting.

The problem is solved in the figure 6.12 since the only function which linearly con-

sumes a single boolean and a single string in the program and outputs a type is “seri-

alizeBool”. Other functions that do this might be added later, but functions of the form

(λx : bool.λs : string.type) are not possible. Unfortunately, something along the lines

of (λx : bool.λs : string.isStrings ∧ isBoolx) might be possible, but these are significantly

more manageable provided one is careful.

Fortunately, the fact that we are working with higher order abstract syntax in the

“Calculus of Constructions” means that linear dependent products are actually imple-

mentable within Caledon.

78

1 defn r e s t r i c t i o n : type

2 | l i n e a r = r e s t r i c t i o n

3 | unused = r e s t r i c t i o n

4

5 defn r e s t r i c t o r : r e s t r i c t i o n −> r e s t r i c t i o n −> r e s t r i c t i o n −> type

6 | r e s t r i c t o r −l i n e a r 1 = r e s t r i c t o r l i n e a r unused l i n e a r

7 | r e s t r i c t o r −l i n e a r 2 = r e s t r i c t o r l i n e a r l i n e a r unused

8 | r e s t r i c t o r −unused = r e s t r i c t o r unused unused unused

9

10

11 defn r e s t r i c t : r e s t r i c t i o n −> [T : type] [P : T −> type] ([x : T] P

x) −> type

12 | r e s t r i c t −unused =

13 r e s t r i c t unused T (\ x : T . P) (\ x : T . G)

14

15 | r e s t r i c t −l i n e a r =

16 r e s t r i c t l i n e a r T (\ x : T . T) (\ x : T . x)

17

18 | r e s t r i c t −app =

19 r e s t r i c t Ba T (\ x : T . P x (G x)) (\ x : T . (F x) (G x))

20 <− r e s t r i c t Bb T (\ x : T . [z : Q x] P x z) (\ x : T . F x)

21 <− r e s t r i c t Bc T (\ x : T . Q x) (\ x : T . G x)

22

23 | r e s t r i c t −lam =

24 r e s t r i c t B T (\ x : T . [y : A] P x y) (\ x : T . \ y : A . F y x)

25 <− [y : A] r e s t r i c t B T (\ x : T . P x y) (\ x : T . F y x)

26

27 | r e s t r i c t −e ta =

28 r e s t r i c t B T (\ x : T . [y : A x] P x y) (\ x : T . \ y : A x . F x y)

29 <− r e s t r i c t B T (\ x : T . [y : A x] P x y) (\ x : T . F x)

Figure 6.13: Linearity in Caledon

79

Substructural representations with higher order abstract syntax in Elf is due to Crary

[18].

1 f i x i t y lambda l o l l i

2 f i x i t y lambda llam

3

4 defn l o l l i : [T : type] (T −> type) −> type

5 | llam = [T]{TyF} [F : [x : T] TyF x]

6 r e s t r i c t l i n e a r T TyF F => (l o l l i x : T . TyF x)

7

8 defn lapp : {A : type} { T : A −> type } [f : l o l l i x : A . T x] [a : A]

T a −> type

9 | lapp−imp = lapp (llam F) V (F V)

10

11 f i x i t y arrow −o

12 defn −o : type −> type −> type

13 as \ t : type . \ t 2 : type . l o l l i t (\ x : t . t 2)

Figure 6.14: Linear Dependent Product

In the figure 6.13 the predicate “restrict linear” encodes the test that an arbitrary

function, even one with a dependent type, is linear [8] if its argument is used exactly

once in the term and potentially many times in the type. “lolli” is the linear dependent

type constructor and “llam” is the linear function constructor. Provided the code from

figure 6.13 was in the environment, figure 6.12 in fact works.

More of these cases could be made less ambiguous through use of an ordered de-

pendent type constructor, but this is significantly more complicated to define, although

certainly possible.

80

1 defn sum : nat −o nat −o nat −o type

2 | sum−zero = [N : nat]

3 [Sum : nat −o nat −o type]

4 [Sum’ : nat −o type]

5 [Sum’ ’ : type]

6 lapp sum zero Sum −> lapp Sum N Sum’ −> lapp Sum’ N Sum’ ’ −> Sum’ ’

7 | sum−succ = [N M R : nat]

8 [Sum1 Sum2 : nat −o nat −o type]

9 [Sum1’ Sum2’ : nat −o type]

10 [Sum1’ ’ Sum2’ ’ : type]

11 lapp sum N Sum1 −>

12 lapp Sum1 M Sum1’ −>

13 lapp Sum1’ R Sum1’ ’ −> Sum1’ ’

14 −> lapp sum (succ N) Sum2 −>

15 lapp Sum1 M Sum2’ −>

16 lapp Sum2’ (succ R) Sum2’ ’ −> Sum2’ ’

Figure 6.15: Use of a linear type

Of course, as seen in figure 6.15, actually using this linear dependent product is a

bit absurd. It requires flattening application into a logic programming form where the

target is a type variable.

1 f i x i t y a p p l i c a t i o n lapp

2 defn sum : nat −o nat −o nat −o type

3 | sum−zero = [N : nat] ∗APP=lapp∗ sum zero N N

4 | sum−succ = [N M R : nat]

5 ∗APP=lapp∗ sum N M R

6 −> ∗APP=lapp∗ sum (succ N) M (succ R)

Figure 6.16: Example of a syntax for flattening application

That the end result is a type variable means that the family checking algorithm is

81

no longer applicable. In this case, it is helpful to either hard code linearity or provide a

syntax for flattening successive applications using a predicate, as seen in figure 6.16

Syntax for applications could potentially extend the notion of a family such that

predicates using these applications could also be frozen. In this case, the applicator x

used with ∗APP = x∗would be declared, so that the compiler could check that its type

matches the form {A : type}{T : A→ type}[f : some− productx : A.Tx][a : A]Ta→ type.

82

Chapter 7

Conclusion

7.1 Results

For this thesis, I designed a logic programming language with a type system based on

the “Calculus of Constructions” which integrated the notion of an implicitly quantified

type in a manner useful for automating proof search. I demonstrated a series of reduc-

tions from this language to the “Calculus of Constructions” where the output of the lan-

guage could be interpreted as meaningful theorems. I provided an abstract machine for

the language based on higher order unification with proof search, and I demonstrated

an elaboration method to this machine.

The semantics of the language based on this compilation and evaluation joined the

notions of type inference and traditional evaluation in a way that does not appear to

have been examined in great detail in the past.

I provided a method to constrain proof search of a predicate to a small subset of the

axioms in the environment using families. I demonstrated a way to explicitly control

whether a predicate was searched in a breadth first or depth first manner, allowing

constructs similar to fork and join to be defined.

I gave examples of usage of the Caledon language and demonstrated functionality

83

equivalent to type classes and ways to extend the applicability of this feature using

library defined linearity checking.

Finally, I provided an implementation of Caledon in Haskell and provided a stan-

dard library both of which can be found at https://github.com/mmirman/caledon/.

Since previous dependently typed logic languages did not include polymorphism, stan-

dard libraries were not reasonable or possible to include. However, I included poly-

morphism, so that useful generic lists, type logic, printing, monad and functor libraries

became possible.

7.2 Future Work

This thesis presents a new language, and more work can easily be envisioned to pro-

vide a greater framework for proving theorems about it. In general, compilation for

a language where the programs are theorems for a consistent logic allows significant

optimization capability. In Twelf, totality, modes, and worlds allowed predicates to

be converted to programs. In general, running Caledon programs in the current im-

plementation is slow, as types need to be recorded and searched during runtime. Al-

gorithms that take advantage of totality checking [2], uniqueness checking [3], worlds

checking[3], mode checking[3], and universe checking [32], could be implemented and

applied as they were for Twelf and Agda. It would be useful to have a type system for

a logic programming language which could ensure closed predicates were theorems.

More work needs to be done to automate type class instancing, as was demonstrated

in the section on Linearity. While implemented, universe checking during unification

has yet to be proven entirely correct.

The future holds further investigation into additional applications of the language,

and it is clear that much more interesting programs can be written with Caledon. While

derivatives of one holed types are possible in Caledon, automatically providing traver-

84

sals for these zipper types is an unexplored topic. While I have demonstrated a concise

method of creating concurrency, I look forward to designing libraries for controlling

concurrency using the IO primitives.

85

86

Bibliography

[1] Andreas Abel. Towards normalization by evaluation for the βη-calculus of con-

structions (extended version). Functional and Logic Programming, pages 224–239,

2010. 3.2.2, 3.3

[2] Thorsten Altenkirch and Nils Anders Danielsson. Termination checking in the

presence of nested inductive and coinductive types. In Note supporting presenta-

tion given at the Workshop on Partiality and Recursion in Interactive Theorem Provers,

Edinburgh, UK, 2010. 7.2

[3] Penny Anderson and Frank Pfenning. Verifying uniqueness in a logical frame-

work. Theorem Proving in Higher Order Logics, pages 109–129, 2004. 7.2

[4] H. Barendregt, W. Dekkers, and R. Statman. Lambda calculus with types. Handbook

of logic in computer science, 2:118–310, 1992.

[5] Henk Barendregt. Introduction to generalized type systems. Journal of functional

programming, 1(2):125–154, 1991. 2.1, 2.1, 2.2

[6] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a pro-

gramming language with dependent types. Foundations of Software Science and Com-

putational Structures, pages 365–379, 2008. 3.2.2

[7] Gilles Barthe. Extensions of pure type systems. In Typed Lambda Calculi and Appli-

cations, pages 16–31. Springer, 1995.

87

[8] N. Benton, G. Bierman, V. De Paiva, and M. Hyland. A term calculus for intuition-

istic linear logic. Typed Lambda Calculi and Applications, pages 75–90, 1993. 6.2

[9] Jean-Philippe Bernardy and Marc Lasson. Realizability and parametricity in pure

type systems. Foundations of Software Science and Computational Structures, pages

108–122, 2011.

[10] EDWIN BRADY. Idris, a general purpose dependently typed programming lan-

guage: Design and implementation.

[11] Edwin Brady, Christoph Herrmann, and Kevin Hammond. Lightweight invariants

with full dependent types. In Draft Proceedings of Trends in Functional Programming,

volume 2008. Citeseer, 2008.

[12] Paul Callaghan and Zhaohui Luo. An implementation of lf with coercive subtyping

& universes. Journal of Automated Reasoning, 27(1):3–27, 2001. 2.2.2

[13] Adam Chlipala. Certified programming with dependent types, 2011.

[14] Adam Chlipala, Leaf Petersen, and Robert Harper. Strict bidirectional type check-

ing. In Proceedings of the 2005 ACM SIGPLAN international workshop on Types in

languages design and implementation, pages 71–78. ACM, 2005.

[15] Thierry Coquand and Christine Paulin. Inductively defined types. In COLOG-88,

pages 50–66. Springer, 1990. 2.2.3

[16] Thierry Coquand, Gerard Huet, et al. The calculus of constructions. 1986. 1, 2.1,

2.2

[17] Thierry Coquand, Randy Pollack, and Makoto Takeyama. A logical framework

with dependently typed records. Typed lambda calculi and applications, pages 1086–

1086, 2003.

[18] Karl Crary. Higher-order representation of substructural logics. ACM Sigplan No-

tices, 45(9):131–142, 2010. 6.2

88

[19] Rowan Davies and Frank Pfenning. Intersection types and computational effects.

In ACM Sigplan Notices, volume 35, pages 198–208. ACM, 2000.

[20] G. Dowek, T. Hardin, and C. Kirchner. Higher order unification via explicit substi-

tutions. Information and Computation, 157(1):183–235, 2000.

[21] Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order mod-

ules. ACM SIGPLAN Notices, 38(1):236–249, 2003. 2

[22] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking, volume 39. ACM,

2004.

[23] C. Elliott. Higher-order unification with dependent function types. In Rewriting

Techniques and Applications, pages 121–136. Springer, 1989. 3.1

[24] Martın H Escardó. The intrinsic topology of a martin-löf universe.

[25] Herman Geuvers. A short and flexible proof of strong normalization for the calcu-

lus of constructions, 1994. 2.2, 2.2.1

[26] Herman Geuvers and Mark-Jan Nederhof. Modular proof of strong normalization

for the calculus of constructions. Journal of Functional Programming, 1(2):155–189,

1991. 2.1, 2.2

[27] Jan Herman Geuvers. Logics and type systems. Citeseer, 1993. 2.2.1, 2.3

[28] Gilles Gowek. The undecidability of typability in the lambda-pi-calculus. In

M. Bezem and J.F. Groote, editors, Proceedings of the International Conference on Typed

Lambda Calculi and Applications, pages 139–145, Utrecht, The Netherlands, March

1993. Springer-Verlag LNCS 664. 1

[29] Masami Hagiya and Yozo Toda. On implicit arguments. Logic, Language and Com-

putation, pages 10–30, 1994.

[30] C.V. Hall, K. Hammond, S.L. Peyton Jones, and P.L. Wadler. Type classes in haskell.

ACM Transactions on Programming Languages and Systems (TOPLAS), 18(2):109–138,

89

1996.

[31] Robert Harper and Frank Pfenning. A module system for a programming language

based on the lf logical framework. Journal of Logic and Computation, 8(1):5–31, 1998.

[32] Robert Harper and Robert Pollack. Type checking with universes. Theoretical com-

puter science, 89(1):107–136, 1991. 2.2.2, 7.2

[33] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining log-

ics. Symposium on logic in Computer Science, pages 194–204, June 1987. 1

[34] Roger Hindley. The principal type-scheme of an object in combinatory logic. Trans-

actions of the american mathematical society, 146:29–60, 1969. 4

[35] Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data struc-

ture. Journal of Functional Programming, 16(2):197–218, 2006. 5.1

[36] James G Hook and Douglas J Howe. Impredicative strong existential equivalent to

type: type. Technical report, Cornell University, 1986.

[37] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical Computer

Science, 1:27–57, 1975. 3.1

[38] Gérard Huet. Functional pearl. J. functional programming, 7(5):549–554, 1997. 3.4.4

[39] Antonius Hurkens. A simplification of girard’s paradox. Typed Lambda Calculi and

Applications, pages 266–278, 1995.

[40] LSV Jutting. Typing in pure type systems. Information and Computation, 105(1):

30–41, 1993. 2.1

[41] Chantal Keller and Thorsten Altenkirch. Normalization by hereditary substitu-

tions. proceedings of Mathematical Structured Functional Programming, 2010. 3.3, 3.3.2

[42] Andres Löh, Conor McBride, and Wouter Swierstra. A tutorial implementation

of a dependently typed lambda calculus. Fundamenta Informaticae, 102(2):177–207,

90

2010.

[43] Zhaohui Luo. Ecc, an extended calculus of constructions. In Logic in Computer

Science, 1989. LICS’89, Proceedings., Fourth Annual Symposium on, pages 386–395.

IEEE, 1989. 2.2.2

[44] Marko Luther. More on implicit syntax. Automated Reasoning, pages 386–400, 2001.

2

[45] James McKinna and Robert Pollack. Pure type systems formalized. Typed Lambda

Calculi and Applications, pages 289–305, 1993. 2.1

[46] Paul-André Melliès and Benjamin Werner. A generic normalisation proof for pure

type systems. In Types for Proofs and Programs, pages 254–276. Springer, 1998.

[47] Albert R Meyer and Mark B Reinhold. Type is not a type. In Proceedings of the 13th

ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages

287–295. ACM, 1986.

[48] Dale Miller. A theory of modules for logic programming. University of Pennsylvania,

Department of Computer and Information Science, 1986.

[49] Dale Miller. A logic programming language with lambda-abstraction, function

variables, and simple unification. Journal of logic and computation, 1(4):497–536,

1991. 3.2.1

[50] Dale Miller. Unification under a mixed prefix. Journal of symbolic computation, 14

(4):321–358, 1992.

[51] Dale Miller and Gopalan Nadathur. Higher-order logic programming. In Third

International Conference on Logic Programming, pages 448–462. Springer, 1986. 3.1

[52] Dale Miller and Gopalan Nadathur. An overview of λprolog. In Proc. of the 5th Int.

Conf. on Logic Programming, 1988. 1

[53] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform

91

proofs as a foundation for logic programming. Annals of Pure and Applied logic,

51(1):125–157, 1991.

[54] Alexandre Miquel. Le Calcul des Constructions implicite: syntaxe et sémantique. PhD

thesis, PhD thesis, Université Paris 7, 2001.

[55] Alexandre Miquel. The implicit calculus of constructions extending pure type sys-

tems with an intersection type binder and subtyping. Typed Lambda Calculi and

Applications, pages 344–359, 2001. 2, 2.2.1, 4.1

[56] Matthew Mirman. Logic programming and type inference with the calculus of

constructions. 2013.

[57] Ulf Norell. Towards a practical programming language based on dependent type theory.

Chalmers University of Technology, 2007.

[58] F. Pfenning. Partial polymorphic type inference and higher-order unification. In

Proceedings of the 1988 ACM conference on LISP and functional programming, pages

153–163. ACM, 1988.

[59] F. Pfenning and C. Elliot. Higher-order abstract syntax. ACM SIGPLAN Notices, 23

(7):199–208, 1988. 3.1

[60] F. Pfenning et al. Logic programming in the lf logical framework. Logical frame-

works, pages 149–181, 1991. 1, 1.1, 3, 3.1, 3.3, 3.4.3, 3.5

[61] Frank Pfenning. Unification and anti-unification in the calculus of constructions.

In Logic in Computer Science, 1991. LICS’91., Proceedings of Sixth Annual IEEE Sympo-

sium on, pages 74–85. IEEE, 1991. 3.1, 3.2.2

[62] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.

Mathematical structures in computer science, 11(04):511–540, 2001.

[63] Frank Pfenning and Carsten Schürmann. System description: Twelfa meta-logical

framework for deductive systems. In Automated DeductionCADE-16, pages 202–

92

206. Springer, 1999.

[64] Frank Pfenning and Robert J Simmons. Substructural operational semantics as or-

dered logic programming. In Logic In Computer Science, 2009. LICS’09. 24th Annual

IEEE Symposium on, pages 101–110. IEEE, 2009. 5.1

[65] Brigitte Pientka and Frank Pfenning. Optimizing higher-order pattern unification.

In Franz Baader, editor, Automated Deduction CADE-19, volume 2741 of Lecture

Notes in Computer Science, pages 473–487. Springer Berlin Heidelberg, 2003. ISBN

978-3-540-40559-7. doi: 10.1007/978-3-540-45085-6 40. URL http://dx.doi.

org/10.1007/978-3-540-45085-6_40.

[66] Benjamin C Pierce and David N Turner. Local type inference. ACM Transactions on

Programming Languages and Systems (TOPLAS), 22(1):1–44, 2000.

[67] Robert Pollack. Implicit syntax. In Informal Proceedings of First Workshop on Logical

Frameworks, Antibes, 1990. 4

[68] Florian Rabe and Carsten Schürmann. A practical module system for lf. In Proceed-

ings of the Fourth International Workshop on Logical Frameworks and Meta-Languages:

Theory and Practice, pages 40–48. ACM, 2009.

[69] Jason Reed. Redundancy elimination for lf. Electronic Notes in Theoretical Computer

Science, 199:89–106, 2008.

[70] J-W Roorda and JT Jeuring. Pure type systems for functional programming. 2001.

2.1, 2.2

[71] P. Severi. Type inference for pure type systems. Information and Computation, 143

(1):1–23, 1998.

[72] Lionel Vaux. A note on an implicit calculus with annotated terms: introducing

universal dependent types., 2004.

[73] M. Wenzel. Type classes and overloading in higher-order logic. Theorem Proving in

93

http://dx.doi.org/10.1007/978-3-540-45085-6_40
http://dx.doi.org/10.1007/978-3-540-45085-6_40

Higher Order Logics, pages 307–322, 1997.

94

	1 Introduction
	1.1 Logic Programming
	1.1.1 Basics
	1.1.2 Higher Order Programming

	1.2 Initial Examples

	2 Type System
	2.1 Pure Type Systems
	2.2 The Calculus of Constructions
	2.2.1 Consistency of the Calculus of Constructions
	2.2.2 Impredicativity in the Calculus of Constructions
	2.2.3 Theorems in Caledon

	2.3 Caledon Implicit Calculus of Constructions

	3 Operational Semantics
	3.1 History
	3.2 Forms for Unification
	3.2.1 Higher Order Patterns
	3.2.2 Canonical Forms

	3.3 Substitution
	3.3.1 Untyped Substitution
	3.3.2 Typed Substitution

	3.4 Higher Order Unification
	3.4.1 Unification Terms
	3.4.2 Unification Term Meaning
	3.4.3 Higher Order Unification for CC
	3.4.4 Implementation

	3.5 Proof Search
	3.5.1 Search
	3.5.2 Proof Sharing

	4 Type Inference
	4.1 Implicit Calculus of Constructions
	4.1.1 Subtyping
	4.1.2 Results

	4.2 Inference for CICC
	4.2.1 Subtyping

	4.3 Semantics for CICCI
	4.3.1 Substitution With Implicits
	4.3.2 Unification With Implicits

	5 Implementation
	5.1 Type Inference
	5.2 Type Families
	5.3 Controlled Nondeterminism
	5.4 IO and Builtin Values and Predicates

	6 Programming with Caledon
	6.1 Typeclasses
	6.2 Linear Predicates

	7 Conclusion
	7.1 Results
	7.2 Future Work

	Bibliography

