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Abstract

We present a new method to model and synthesize variation in human motion. Given a small
amount of input motion data, we learn a generative model that is able to synthesize new output mo-
tion variations that are statistically similar to the input data. The new variations retain the features
of the original data examples, but are not exact copies. Our model does not require timewarping or
synchronization of similar sequences of motions. We learn a Dynamic Bayesian Network model
from the input data that enables us to capture properties of conditional independence in the data,
and build a multivariate probability distribution of it. We present synthesis results across a range
of different types of motions, and demonstrate novelty and aesthetic appeal of the new variations
generated with respect to the input motions. Our technique can synthesize new motions efficiently
and has a small memory requirement.
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Figure 1: Top row: We take a few cycles of a swimming motion as input, and synthesize a long
and continuous stream of new cycles. Each new cycle has a different timing and none of the poses
is exactly the same as any other pose. Bottom row: Given a trained model structure for throwing
motions, we can take just one throwing motion and generate new variations of it.

1 Introduction
Variation in human motion exists because people do not perform actions in precisely the same
manner every time. Even if a person intends to perform the “same” action more than once, each
motion will still be slightly different. Unfortunately, current animation systems lack the ability to
realistically produce these subtle variations. Variation is important because it can serve as a distin-
guishing feature between realistic and unrealistic motion sequences. For example, if an animation
contains motion cycles that are simply played back repeatedly, users recognize that the animation
is synthetic and unrealistic. This is because actual human motion rarely exhibits precisely the same
cycle times with exactly the same poses.

We are motivated by applications such as crowds and character animation in games, where a
small number of motion clips that are played repeatedly appear monotonous and unnatural. Typical
crowd animation systems [14] utilize a few walking motion clips for every walking cycle and every
character of the simulation. This can lead to synthesized motions that look obviously repetitive
and unrealistic. Hence a variation model for even one such walk cycle has the potential to greatly
improve the naturalness of the output animations. Crowds in films [24] may also depend on a small
number cycles of motions to animate multiple characters. Our method can be used in conjunction
with existing crowd motion generation techniques [22, 23] to synthesize a larger variety of motions
for crowds. Game applications, which tend to have strict memory limitations, also typically contain
a small number of motion clips that are played repeatedly. For example, a character in a football
video game that often reuses the same motion clips may appear repetitive and unnatural to the
user. Our motion variability model can also be applied to databases of motions (mocap.cs.cmu.edu
and www.moves.com). By synthesizing variations for every motion in a database, the overall space
of possible motions can be greatly enlarged. We can also apply our variation model to motion
graph techniques [1, 9, 11], and generate variations of motions in the existing data in addition to
obtaining the benefit of the motion graph structure.

Previous methods have constructed noise functions and added them directly to procedural mo-
tions [16] and motion data [2]. However, there is no guarantee that the added noise will match
well with the existing motions. Adding unsupervised random noise to existing motions can lead
to artifacts in the motion, while adding noise in a supervised way [2] requires human intervention.
Adding noise also requires a trial and error process of manual parameter tuning.

We believe that variation should not be just an additive noise component. Recent biomechanical
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research has argued that variation is not just noise or error, but is a functional component of motion.
For example, one theory for explaining variation in arm trajectories is that the variation exists as
a result of minimizing the variance in the final arm position [7]. From this point of view, adding
random noise to existing motions is not accurate.

We instead approach the problem by taking a small number of motion clips that represent
variations of the same motion, learning a model from this data, and then using this model to
synthesize new variations of the motion. This is different from previous methods as the variations
we generate come from the data, and is not a separate additive component. The advantages of this
approach are that the variation model can be learned automatically from data, and the synthesized
output motions will be statistically similar to the input data. Our goal is to generate new motions
that are not exactly the same as the original motions while retaining their major salient features.
We would like to have a model that can handle a small number of motion clips, as it is difficult
to acquire a large number of examples of one motion. In addition, we do not want our method
to require timewarping or synchronization of these motion clips. This is common in interpolation
methods [20], and requires manual intervention.

We model the data with a Dynamic Bayesian Network (DBN) [5, 6], which allows us to achieve
the properties discussed above. A DBN represents a multivariate probability distribution of the
variables in the model. The variations that we generate come from this distribution. For our motion
data, it captures the conditional independence relationships of the degrees-of-freedom (DOF) in the
motion. This relationship allows us to build a distribution of values for each DOF based on the
values of a few DOFs in the previous time steps. The DBN model also describes the temporal
relationship in the data. This allows us to use only a few examples of each motion rather than
a large number of examples. In addition, each synthesized motion does not have a one-to-one
correspondence with any of the input motions. This means that the synthesized motion is not just a
copy of one of the input motions plus some slight differences, but the timing of the whole motion
itself is different. There are three major steps for learning a model and synthesizing new motions.
First, we learn the structure of the DBN with a few motion examples. We use a greedy algorithm
based on a variant of the Bayesian Information Criterion score to find a good structure. Second,
we use the learned structure and the original data to synthesize new motions. Given a learned
structure and just one motion cycle, we can even generate variations of this one cycle from the
model. Finally, we use an inverse kinematics method developed within our DBN framework to
satisfy the foot and hand constraints.

We demonstrate our approach by synthesizing new variations of different kinds of motion:
jumping, football throws, swimming, and reaching. One important use of our method is that we
can take a few examples of a motion as input, and then synthesize an unlimited number of variations
of these motions. If the motion is cyclic, we can generate an unlimited and continuous stream of
motions. Given a trained model structure, we can even take just one example of the motion and
generate variations of that piece of motion. We show that the new variations generated from the
model have different timing and poses distinct from the input motions. Hence no pose will be
repeated even in a long continuous stream, much like what is observed in actual human repetitive
motions. The memory requirement of the model consists of only the space required to store a few
examples of input motion. Most of the processing time is in the learning phase; the runtime for
synthesizing new motions is very efficient and can be done as a continuous stream one frame at a
time.
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1.1 Related Work
There has not been much work on generating variation in human motion. We describe related work
in three areas: adding noise to motions, generating statistically similar motions by learning from
data, and style and interpolation methods for human motion synthesis.

One previous approach for generating variation in motions is to add noise. Perlin [16] adds
noise functions to procedural motions to create more realistic animations of running, standing,
and dancing. Bodenheimer and his colleagues [2] adds noise to cyclic running motions. The
noise is added only to the upper body, and is synchronized with the arm swings in the running
cycle. Adding noise in such a supervised way requires human knowledge and parameter tuning.
We show that adding random noise in an unsupervised way can lead to unnatural motions. Our
approach is fundamentally different because the variations that we generate automatically come
from the data and is not a separate additive component.

Pullen and Bregler’s work [17] to generate motions that are slightly different but similar to the
data is most closely related to our work. They model the correlations between the DOFs in the data
with a distribution, and synthesize new motions by sampling from this distribution and smoothing
the motions. However, they have to define certain correlations manually. For example, they specify
manually that the hip angle affects the knee, and the knee angle affects the ankle. The structure
learning in our DBN framework learns these relationships directly from data. In addition, they used
their method to animate a 2-dimensional 5-DOF wallaby figure, and a more complex 3D character
in later work [19]. We demonstrate results of different kinds of motions for a full human figure.
Our method is also similar to the “Texturing” method by Pullen and her colleagues [18]. They used
the idea that the joints of a human figure are correlated to predict the values for some DOFs given
the values of other DOFs. Our DBN framework also depends on this observation to predict new
DOF values. Li and his colleagues [12] also generated new motions that are statistically similar
to the original data. However, they used 20 minutes of dancing motion as training data. If a large
amount of data is available, it is possible to just randomly replay or re-organize certain motion
clips without being able to detect repetition in the motion. One of the strengths of our work is that
our approach can handle a small amount of original data.

There has been work on learning the style of motions from training data [3] and transferring the
style between motions [8]. Style and variation differ in the following way: a happy walk and a sad
walk are different styles of walking, while two happy walks are different variations of a motion.
Interpolation methods [20, 25] have been developed to generate a spectrum of new motions that
are interpolated from the original data. Interpolation and variation are also different approaches:
we interpolate a five-foot jump and a ten-foot jump to get an eight-foot jump, while we take two
five-foot jumps to generate variations of that jump.

1.2 Overview
We start with a description of a Dynamic Bayesian Network model (Section 2). Given a small
number of motion clips that represent variations of a motion, we learn the structure of a DBN model
automatically (Section 3). We use a nonparametric regression approach to compute the probability
distributions, and we justify this approach in Section 3.2. This is one important difference between
our application of DBN and the common use of DBNs in the literature. The learned model and
data can then be used to generate any number of variations of that motion (Section 4). We develop
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Figure 2: A DBN for the variables X1, ..., Xn. Each node Xi represents one DOF in the motion
data. We use the prior network to model the first 2 frames. The transition network then models
subsequent frames given the previous 2 frames. We assume a 2nd-order Markov property because
it is the simplest model that works well.

an inverse kinematics framework that fits with our DBN model to satisfy foot and hand constraints
(Section 5).

2 Dynamic Bayesian Network
We first describe the basic formulation and notations for a Bayesian Network (BN) model, and
then extend this description to a Dynamic Bayesian Network (DBN) model [5, 6].

A BN is a directed acyclic graph that represents a joint probability distribution over a set of
random variables X = {X1, ..., Xn}. Each node of the graph represents a random variable. The
edges represent the dependency relationship between the variables. A node Xi is independent of
its non-descendants given its parent nodes Pa(Xi) in the graph. This conditional independency is
significant because we only use the values of parent nodes of Xi to predict the value of each Xi.
This graph defines a joint probability distribution over X as follows:

P (X1, ..., Xn) =
∏

i

P (Xi | Pa(Xi)) (1)

Most BNs and DBNs that treat Xi as a continuous variable use a linear regression model [15].
However, we found that neither using a linear model nor a nonlinear model works well for our case.
This might be because the amount of data is not large enough. Hence we compute P (Xi | Pa(Xi))
using a non-parametric regression approach, which we found to work well for our motion data.

A DBN models the process of how a set of random variables change over time. It represents a
joint probability distribution over all possible trajectories of the random variables. Figure 2 shows
an example. In our case of human motion, Xi is the trajectory of values of the ith-DOF of the
motion, and X[t] is the set of values of all the DOFs at time t. Xi[t] is the value of the ith-DOF at
time t. We have 62 DOFs in our motion data, so n is 62. The prior network Gprior represents the
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joint distribution of the nodes in the first two time points, X[0] and X[1]. The transition network
Gtrans specifies the transition probability P (X[t+2] | X[t], X[t+1]) for all t. Note that the transition
network predicts the values at time t + 2 given those at t and t + 1. Hence there are no incoming
edges into the nodes at time t and t + 1. We assume that the trajectories satisfy the second order
Markov property: the values at time t and t + 1 can be used to predict those at t + 2. We found
that assuming a first order Markov property does not work well for our motion data, and we justify
our second order assumption in Section 6. We also assume that the transition probabilities are
stationary: the probabilities in Gtrans are independent of t. The DBN defines a joint probability
distribution over X[0], ..., X[T ]:

P (X[0], ..., X[T ]) =

PGprior
(X[0], X[1]) ·

T−2∏
t=0

PGtrans(X[t + 2] | X[t], X[t + 1])
(2)

Similarly, we apply a non-parametric approach to predict X[t + 2] given X[t] and X[t + 1].
Hence we do not have parameters and we only learn the dependency structure from the data. The
data itself represents the “function” defined in a non-parametric approach.

3 Structure Learning
We take as input a small number (usually four in our examples) of motion sequences of a particular
motion. These motions must be similar to each other, as we are trying to model the variation
between similar motions. For example, if we are modeling swimming motions, we can take similar
cycles of breast stroke motions or similar cycles of free style motions, but not a mixture of these
two types. The motion need not be cyclic. Although if it is cyclic, we can synthesize an unlimited
amount of new cycles as a continuous stream.

Let nseq be the number of input motion sequences, where the lth motion sequence has length
nl. For each sequence, the data in the first two frames (X[0] and X[1]) are used to train the prior
network. If nseq is large enough, we can use the first two frames from each sequence. Otherwise,
we can also take more pairs of frames near the beginning of each sequence. For example, we can
take the first ten pairs of frames (X[0] and X[1], X[1] and X[2], ..., X[9] and X[10]) as the training
data for the prior network. Let nprior be the total number of such instances or pairs of frames. For
the transition network, we use the previous two frames to predict each frame. Hence there are a
total of ntrans =

∑
l(nl − 2) instances of training data for the transition network. The structure for

the prior and transition networks are learned separately given this data.
Given the input data, we wish to learn the best structure that matches the data. This means that

we would like to find the best graph or set of edges in the DBN that best matches the data. The set
of nodes are already defined as in Figure 2. We would therefore like to find the best G that matches
the data D: P (G|D) ∝ P (D|G) · P (G). This formulation leads to a scoring function that allows
us to compute a score for any graph. We then use a greedy search approach to find a graph with a
high score. The DBN literature provides many approaches to compute this score. One possibility
is the Bayesian Information Criterion (BIC) score: there is one term in this score corresponding to
P (D|G) and one penalty term corresponding to P (G). We use a similar score except we do not
have a penalty term. Instead we perform cross validation across the data by splitting the data into
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training and test sets, a common strategy in existing DBN approaches [4]. Doing cross validation
allows us to measure how well a given graph matches the data without overtraining the graph on
the data and without using a penalty term. Section 3.1 describes the greedy search for a graph, and
the scoring functions for the prior and transition networks in more detail. To compute our score, we
have to compute the conditional probability distribution for each node: P (Xi | Pa(Xi)). We use a
non-parametric regression approach to compute this probability. Section 3.2 provides justification
for this approach, and more details about the method.

3.1 Structure Search
We learn the structure by defining a scoring function for any graph, and then searching for a
graph with a high score. This is done separately for the prior and transition networks of the DBN.
The search part of our algorithm is the same as existing DBN techniques; the scoring function
however is different because of the non-parametric regression. It is intractable to find the graph
with the highest score due to the large number of nodes in the graph. Hence we use a greedy search
approach.

Prior Network. The prior network is a BN. To learn the structure, we start with any initial
set of edges. We then apply an edge update that gives the best improvement towards the overall
score. There are three possible edge updates: (i) an edge addition adds a directed edge between
two nodes that were not originally connected, (ii) an edge deletion deletes an existing edge, and
(iii) an edge reversal reverses the direction of an existing edge. Note that these are all subject
to the BN constraint: so we cannot apply an edge update that creates cycles in the graph. We
continue to apply the best edge update until there is no improvement in the overall score. As this
greedy method depends on the initial set of edges, we can repeat the algorithm multiple times by
initializing with a different set of edges every time. We then take the set of edges with the highest
score among the multiple runs.

We derive the scoring function by using a maximum likelihood approach: our goal is to find
the graph that maximizes P (D|G). Remember that we do not use a P (G) term as we use cross
validation and split the data into training and test sets. The score for the prior network Gprior is

log P (D|Gprior)

= log

nprior∏
j=1

P (X(j)|Gprior)

=

nprior∑
j=1

log P (X(j)|Gprior)

=

nprior∑
j=1

2n∑
i=1

log P (X
(j)
i |Pa(Xi)

(j))

(3)

where X(j) represents the jth instance of the prior network training data, and X
(j)
i is the value

at node Xi of the jth instance of data. We sum over each instance of data for doing leave-one-out
cross validation: each jth instance is one example of testing data and the corresponding training
data (used in the non-parametric regression) does not include that instance. So the training data
for the jth instance is the set of all nprior instances of the prior network training data except the
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jth instance. Note that we do not model the time component in the prior network even though
they represent the first and second frames of the motion. Hence there are 2n total nodes. The last
equality is due to the conditional independence of the nodes given their parent nodes. Since the
total score can be separated into sums of terms for each node Xi, we keep track of each node’s
contribution to the total score. Each edge update in the greedy search can affect only one or two
nodes, so we will not have to recompute the total score every time we update an edge.

Transition Network. For the transition network, we use a similar algorithm to learn the
structure. The difference here is that we do not allow any incoming edges to the nodes at time t
and t + 1. The nodes at time t and t + 1 are assumed to be observed and are used to predict those
at time t + 2. The scoring function is similar to the one for the prior network. The score for the
transition network Gtrans is also derived from the P (D|G) term:

nseq∑
l=1

nl−1∑
j=2

n∑
i=1

log P (Xi[j]
(l)|P̂a(Xi[j])

(l)) (4)

where Xi[j]
(l) is the value at node Xi[j] of the lth motion sequence of the transition network

training data. This score is different from the BN score in that we start with the first two frames in
each sequence, and compute the subsequent frames in the sequence by propagating the computed
frames. So the second frame and the newly synthesized third frame are used to compute the fourth
frame, the newly synthesized third and fourth frames are used to computed the fifth frame, and so
on. The P̂a notation represents this propagation of frames. The justification for this propagation
instead of treating each instance separately is that the learned structure would otherwise not give
a good result: the predicted trajectories deviated from the actual ones when we attempted to treat
each instance separately. Intuitively, since we propagate the values when we synthesize a new
motion given the first two frames, we should do this propagation when we learn the structure. We
are effectively trying to compute how good a given structure is by trying to re-synthesize each
input motion sequence given the first two frames, and comparing the synthesized sequence with
the original data (Figure 3). Hence we sum over each motion sequence for doing cross validation:
each lth sequence is one example of testing data and the corresponding training data (used in
the non-parametric regression) does not include that sequence. Thus the training data for the lth

sequence is the set of all ntrans instances of the transition network training data except those in the
lth sequence. Note that we sum over the n nodes in time t + 2 as these are the ones we are trying
to compute in the transition network.

3.2 Non-Parametric Regression for Computing Conditional Distribution
The scoring functions for the prior and transition networks require the computation of the condi-
tional probability P (Xi|Pa(Xi)). We briefly describe the parametric approaches that we attempted
to use. As these approaches did not work well, we decided to use a non-parametric regression
method.

We attempted to model the relationship between Xi and its parent nodes as a linear relation-
ship, but we found that it is not appropriate for our motion data. We then attempted to model
this relationship by nonlinear regression. We tried to find the parameters of a nonlinear function
that takes the parents of Xi as input and Xi as output, where the nonlinear function is a sum of
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Training Data

Testing Data
Compare

Figure 3: When learning the structure for the transition network, we do a cross validation over
each motion sequence. We take each sequence as testing data, and use the others as training data.
For the testing sequence, we take the first two frames as input and re-synthesize the whole sequence
with the given structure. The newly synthesized sequence is then compared to the original data to
evaluate the structure. This is what we compute intuitively in the scoring function for the transition
network of the DBN.

multivariate radial basis functions. While this worked well for the prior network of the DBN, it
performed poorly for the transition network. This might be because there is not enough data to ac-
curately estimate the parameters of a nonlinear function. Hence we decided to try a non-parametric
method. We found that a kernel regression approach worked well for our data.

We assume that P (Xi|Pa(Xi)) is a guassian distribution, and use kernel regression to find the
mean and standard deviation of this distribution. We compute this distribution for each node i and
time t (for the transition network). Recall that we are given the graph and training data. The graph
allows us to find the parent nodes of Xi. The training data allow us to find instances of (pxk, xk)
corresponding to (Pa(Xi), Xi). Note that we also have the actual value of Pa(Xi) in the training
set, which we call pa(Xi). Since a large number of the instances pxk are far away from pa(Xi), we
pick the k-nearest instances. The notation with the subscript k represents these nearest instances.
We measure the distance with a Euclidean-distance metric: D(pxk, pa(Xi)). We then compute a
weight for each instance:

wk = exp{−D(pxk, pa(Xi))
2/K2

W} (5)

where KW is the kernel width. Next, we compute a weighted mean and variance based on these
weights:

µ(Xi) =
P

k wkxkP
k wk

var(Xi) = nk

nk−1
·
P

k wk(xk−µ(Xi))
2

P
k wk

(6)

where nk is the number of non-zero weights wk, and the standard deviation σ(Xi) is the square
root of the above variance. With the mean and standard deviation of Xi, we can now compute
P (Xi|Pa(Xi)). For the prior network, we have cases where Xi has no parents. To compute P (Xi),
we find instances of xk corresponding to Xi. The mean and standard deviation of Xi is then the
mean and standard deviation of the instances xk.

We use these weighted means and variances when we synthesize new motions. However, when
we learn the structure, we only use the weighted means. This is because we only need to find the
most likely values when we compute scores for learning the structure.
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4 Synthesis of New Motions
We use the learned structure and the input data to synthesize new motions that are different vari-
ations of the input motions. Since the DBN represents a joint probability distribution, we sample
from this distribution to synthesize new motions. We can synthesize an unlimited amount of new
motions that will not repeat themselves.

We represent the µ’s and σ’s that are computed for each node as a set (~µ, ~σ). If we pick ~σ = ~0,
this gives the mean motion of the input motions. The set (~µ, ~σ) represents variations of motions
away from this mean motion. Note that the µ’s are not fixed, since the µ’s and σ’s from previous
time frames can affect the µ’s in later time frames.

Prior Network. We synthesize the first 2 frames of a new motion with the prior network. We
first find the partial ordering of the 2n nodes in the prior network. Such an ordering always exists
since this network is acylic. We generate values for each of these nodes according to this ordering.
The nodes at the beginning will be the ones without parents. We sample a value from each of the
guassian distribution of these nodes. The rest of the nodes will depend on values already generated.
We use the procedure given in Section 3.2 to find the mean and standard deviation for each node,
except that we use the learned structure and all the nprior instances every time. We then sample a
value from the distribution of each node.

Transition Network. Given the first 2 frames, we synthesize subsequent frames by “un-
rolling” the DBN (Figure 4). We similarly find the mean and standard deviation for each node at
each time frame, and sample from this distribution. We perform one non-parametric regression
for each node at each time frame. Again, we use the learned structure and all the ntrans instances
every time. To prevent the values from being too far away from the mean, we avoid sampling
values more than two standard deviations away from the mean. Since sampling the values does
not take into account the smoothness of the trajectories, we smooth the trajectories for each DOF
independently. Finally, if the input motions are cyclic, we can repeatedly generate an unlimited
number of frames to synthesize a continuous stream of poses.

5 Constraints
The synthesized poses from the previous section might need to be cleaned up for handling foot and
hand constraints. This fixes footskate problems and also deals with cases where the foot/hand has
to be at a specific position. We develop an inverse kinematics framework that fits with our DBN
approach. Intuitively we have to satisfy three constraints: (i) the foot/hand needs to be at specific
positions at certain times, (ii) the solution should be close to the mean values (at each node and
time) predicted by the DBN, and (iii) the solution should maintain smoothness with respect to the
previous frames. The first constraint is a hard inverse kinematics constraint while the last two are
soft constraints. This naturally leads to an optimization solution:

min
qt

{w1‖qt − qt‖2 + w2‖qt − 2qt−1 + qt−2‖2}

s.t. ‖f(qt) − pos‖2 = 0
(7)

We run an optimization for each foot/hand and time frame separately. So qt is the set of DOFs
for one foot or hand at time t. There are 6 joint angles for each foot, and 7 for each hand. qt
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Figure 4: We “unroll” the DBN from Figure 2 to synthesize new motions. We show here the
unrolled network for 5 time frames. Note that the first two frames come from the prior network of
the DBN and may contain cycles. Since the DBN represents a joint probability distribution over
the possible trajectories of each DOF, we sample from this distribution to generate new motions. It
is important to recognize that the synthesized motion does not have a one-to-one correspondence
from any one of the input motions. This means that the synthesized motion is not just a copy of
one of the input motions plus some slight differences, but the timing of the whole motion itself is
different. Furthermore, no new pose is exactly the same as any previous pose.

is the set of mean values (of the corresponding nodes and time) predicted by the DBN, qt−1 and
qt−2 are the DOFs from the previous two frames, f() is the forward kinematics function that gives
the end-effector 3D position corresponding to qt, and “pos” is the 3D position that we want the
foot/hand to be at. If there is a large amount of motion, these 3D positions and frames can be
found with automated methods [10]. But we find that it is not difficult to identify these manually
for our motions. We initialize the optimization with the solution we sampled from the DBN.
Since the solution we got from Section 4 is already close to what we want, the optimization only
makes minor adjustments and is therefore efficient. The optimization uses a sequential quadratic
programming method. We set w1 to 1 and w2 to 5.

6 Results
We demonstrate the generality of our method by taking motion data of different kinds of motions
and synthesizing new variations of the input data. The key result to recognize in our examples
is that the new variations retain the features of the input, but are not exact copies of it. The new
motions have different timings compared to the inputs, and no pose is repeated even if a long
sequence is synthesized.

In our examples, we find that we need about four motions to train the DBN structure. A smaller
amount did not produce a structure that can synthesize good motions. A larger amount would work
better, but four is the smallest number that learned a reasonable structure. Once we learn a struc-
ture, we can synthesize many variations of these four inputs. We can also take just one or two of

10



Figure 5: We take one jumping motion as input, and synthesize four new variations of this motion.
We overlay poses from these four new motions at similar time phases of the jump (lowest point
of the character before jump, highest point of jump, and lowest point after jump). We can see the
variations in the poses at these time phases. The poses for the head vary the least because these
head poses also vary the least in the input data.

Figure 6: We use one jumping motion as input to generate four new motions. We show here plots
of selected DOFs vs. time. In each plot, the blue curve is the input motion, and the four black
curves are the new motions. The new curves retain the features of the input motion, but are not
exact copies of it.

these inputs, and synthesize many variations of these. Our results can be seen in the accompanying
video. We also show in our video that taking an input motion, adding noise randomly to some of
the DOFs (except the DOFs for the feet), and smoothing the motion trajectories do not work well.
We argue therefore that adding noise randomly to existing motions does not necessarily produce
natural motions. It often requires manual parameter tuning along with a trial-and-error process.

Jumping. We use four jumping motions to train the DBN structure. We then take just one
of these inputs and generate four new variations of it. The reason for taking one of these inputs is
to test if our method can work with just one input motion; we could have taken any number of the
original inputs. We can see in the animation that the timing of these jumps are different. Figure 5
shows some of the poses of these four new motions. Note that the poses at similar time phases of
the jump are different. Figure 6 shows the trajectories of some DOFs of the motion for the single
input motion and four new motions. Note that the new motion curves are similar to the input curve,
but none of them are exactly the same.

Swimming - Breast Stroke. The swimming motions (breast stroke and free style) are cap-
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Figure 7: Top row: We take four cycles of a swimming breast stroke motion as input. The
sequence of images show the motion of each of the four cycles overlayed with each other. Each
color represents a separate cycle. Bottom row: We synthesize eleven new cycles, overlaid with
each other here.

tured with the subject lying on a stationary platform on the ground. We take six seconds of a
swimming breast stroke motion as input data, and synthesize twenty seconds of new motion. The
new motion is a continuous sequence. No blending is required between each cycle of the breast
stroke motion. Figure 1 shows some example poses from the input and output sequences. Figure 7
shows the image sequences for the cycles of the input data and new motion. We can see the vari-
ations of the motions in these sequences. Figure 8 shows plots of selected DOFs of the motions.
We can use our method to generate a continuous and long sequence of new motion given just four
cycles of input data.

Swimming - Free Style. Similar to the breast stroke motion, we take a few cycles of the
free style motion to generate new cycles of motion. The important difference for the free style
motion is that the arms and legs do not synchronize with each other. The arms exhibit a cyclic
motion while the legs exhibit another cyclic motion that does not synchronize with the arms. One
limitation of our structure learning process is that it was not able to learn this separation between
the arms and legs. If we perform learning in the usual way, the synthesized motion would produce
correct cycles of motions for the arms, but the legs would try to stop and synchronize itself with
the arms. Our solution here is to specify that the DOFs of the arms cannot affect the DOFs of the
legs, and vice versa. This is not manually tedious, and produces motions where the arms and legs
move naturally. Figure 9(left) shows a similar pose from four of the newly synthesized cycles. We
can see that the arms in these four poses are synchronized but the legs are not. This is expected as
the arms and legs each have their own cyclic motions.

Football Throw. We use four football throwing motions to train the DBN structure. Given
this learned structure, we take just one input motion and synthesize four variations of it. Figure
1 shows some example poses of the input and output motions. Figure 9(middle) shows selected
poses of the four motions overlaid with each other. We can see the variations among the new poses
in the figure.

Reaching. We use four reaching motions to train the DBN structure. We then take two of
these inputs to generate new variations of these two. The significance here is that we use our IK
framework to fix the hand position of the poses near the end of the motion. We show that we can
get the hands to a specific position, and still get variations in the motion trajectories of the arm.
Figure 9(right) shows the poses at the end of the four new motions.
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Figure 8: We show plots of selected DOFs of the swimming breast stroke motion. We see that
each new cycle of the output retains the general shape of the input data, but none of them is an
exact copy of the input.

The amount of data and memory required for our model is small. The synthesis process is also
efficient once a model structure has been learned.

Memory. The memory required to store the learned structure is small compared to the
memory required to store the input motions. Since our method is non-parametric, we have to keep
the original input motions. Our model only requires four input motions of a particular type of
motion for learning. It is important that we can learn with a small number of inputs. If we have a
large number of these motions already, it might be possible to just randomly select one each time
and play them back. Hence the memory storage is essentially the four input motions. Once a model
is learned, we can also keep just one of these input motions. This allows us to keep the memory
requirement to a minimum, as we can keep just one of the inputs and generate many variations
from it. However, it is better to use more than just one input, as the newly synthesized motions
will be variations of the inputs. There would be more variations in the new motions if we use more
inputs.

Performance Time. It takes between one and two hours to learn the DBN structure for each
type of motion we described above. This learning process can be done offline. The process of
synthesizing new motions can be done efficiently: in our examples, it takes about 0.1 seconds to
generate 1 second of motion. It is interesting to note that in the learned DBN structure, each node
has between 2 and 15 parent nodes (except for the nodes in the prior network that have no parents).
This is important in that it allows the runtime synthesis process to be efficient.

We assume that the DBN has a 2nd-order Markov property. The justification is that we tried
the algorithm by assuming a 1st-order Markov property, and the learned structure does not produce
good motions at all. The 2nd-order is therefore the simplest model that works well. It is possible
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Figure 9: Left: Poses from four of the newly generated free style motions. Note that the arms are
synchronized but the legs are not, as expected. Middle: Selected poses from the four new football
throwing motions. The poses are selected at similar time phases of the throw. Right: We overlay
the poses at the end of the four new motions. These are 3 separate views of the same pose. Note
that the hands can reach the same position at the end, while the motion trajectory (seen from the
video) can be different.

to use a more complicated model (3rd-order or higher). We did not try more complicated models,
although we believe that they would produce similar results while taking a longer runtime.

7 Discussion
We have presented a model for synthesizing variations in human motion. We use a Dynamic
Bayesian Network to model the input data. This allows us to build a multivariate probability
distribution of the data, which we sample from to generate new motion. Given input data of a
particular motion, our model can be used to generate new variations of the motion. After training
for the model structure, we can even take one instance of the motion, and generate variations of it.
We demonstrate our method by showing that the new variations have different timings and poses
distinct from the input motion data. For applications such as crowd animation, our method has the
advantage of being able to take small, pre-defined example cycles of motion, and generate many
variations of these cycles.

One limitation of our method is that it requires at least a few examples of a particular motion
in order to generate a model for that motion. These examples have to be similar because we are
modeling the variation of similar motions. Our method, however, does not require a large number
of examples.

One interesting area for future work is to provide a method for the user to control the variation
that is generated. One of the challenges is to develop an intuitive way to control the “amount” of
variation. It is difficult to define what is “more” variation as this depends on the input data. If the
motion is jumping and we have input data that has large variations in the swinging of the arms, then
the synthesized motions will also have large variations in the arm swing. If the input data has more
variation in the head movement, the synthesized motions will have more variation in the head.
Hence one way to “control” what kinds of output motions we get is simply by taking different
input data to begin with. Another challenge is to enable the user to generate “more” variation in a
motion while automatically detecting or constraining the output to lie with the “natural” range of
movement.

It is important to highlight the differences between our method and interpolation methods [20,
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25]. Interpolation methods generate new motions that are “in between” the original examples. Our
method models a probability distribution of the original examples. If we synthesize a large number
of new motions, these motions follow the learned distribution. Hence the majority of the motions
will be close to the “mean” motion of the original examples. Our method also produces motions
that have different timings than the input motions. This is difficult to generate with interpolation
methods, which usually require a manual time synchronization process of the input motions to
begin with. Finally, interpolation methods require at least two example motions. Given a learned
structure, our model can synthesize new variations from just one example motion. Our method is
also different from physically-based methods [13, 21] in that there is no guarantee we can generate
physically-valid motions. Our method is based on learning the statistical properties of input data;
we can generate motions that are statistically similar to the data.

Another area of future work is to use the idea of variation to compress motion data. If we
can say that a set of motion clips are variations of each other, it may be possible to discard some
of these motions. This is beause we can potentially re-synthesize a discarded motion from the
remaining motions, since the discarded one is a variation of the remaining ones.
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