A Trace-Driven Comparison of Algorithms for
Multi-Process Prefetching and Caching

Andrew Tomkins R. Hugo Patterson Garth Gibson

September, 1996
CMU-CS-96-174

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

This research was supported in part by the Data Storage Systems Center un-
der National Science Foundation grant number ECD-8907068, in part by Advanced
Research Projects Agency contract DABT63-93-C-0054, and in part by generous con-
tributions from the member companies of the Parallel Data Consortium. At the time
of this writing, these companies include Hewlett-Packard Laboratories, Symbios Logic
Inc., Data General, IBM Corporation, Seagate Technology, EMC Corporation, Stor-
age Technology Corporation, and Digital Equipment Corporation. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of any
supporting organization or the U.S. Government.

Keywords: Tile Systems, Parallel /0, Prefetching, Informed Caching, Hints,
TIP, LRU-SP

Abstract

Recently two groups of researchers have proposed systems that exploit appli-
cation knowledge to improve I/O performance. Both systems use application
knowledge to prefetch data thereby masking 1/0 latency and to improve file
buffer cache performance thereby avoiding slow I/O accesses altogether. Un-
fortunately, published studies of these two systems are incomparable. This
technical report is a follow-on to a paper to appear in OSDI96 comparing the
TIP2 system of Patterson, Gibson, et al, and the LRU-SP system of Cao, Fel-
ten, Karlin and Li, co-written by the two groups. The OSDI paper considers
the case of a single process with full advance knowledge of requests. In this
technical report we consider multiple processes, each of which has either full
advance knowledge (complete hints) or no advance knowledge (no hints).

Our results can be summarized as follows: the cost-benefit analysis of TIP2
allows better performance when optimal buffer allocation does not correspond
to process consumption rates.

1 Introduction

Traditional filesystems wait until an application requires data, and then initiate
an I/O request. If this request is not present in the buffer cache, it generates
a disk access and ejects a buffer under the LRU replacement policy. Recent
work on integrated prefetching and caching suggests that both phases of this
procedure can be improved dramatically using application-disclosed access in-
formation. First, I/O stall time can be reduced by prefetching data. Second,
buffer cache replacement decisions can combine traditional LRU information
and application-provided information about future requests from hinting pro-
cesses. Two recent systems have presented approaches to both aspects of this
problem.

The TIP2 system of Gibson, Patterson et al [PGG*95] (“Transparent Informed
Prefetching”, second generation) addresses this problem via an integrated cost-
benefit analysis of the value of maintaining certain data in the buffer cache.
Prefetching is initiated when ejecting a cached block has lower cost than the
benefit accrued by loading a block that is not present in the cache. Whenever
a block must be ejected, the global lowest-cost block is chosen.

The LRU-SP system with controlled-aggressive prefetching (hereafter referred
to simply as LRU-SP), presented by Cao, Karlin, Felten and Li [CFKL95b,
CFKL93a, CFL94a, CFL94b, Cao96], addresses the problem via a two-level
procedure. Buffers are allocated among processes by the kernel using the LRU-
SP procedure, which ejects a block from the process containing the globally
least-recently-used block. This process may, however, suggest a more appro-
priate block to eject based on information provided by the application. If the
application has detailed knowledge about its access patterns, the process’ buffer
manager will use the controlled-aggressive algorithm to make process-local de-
cisions about prefetching and replacement.

This technical report is a follow-on to a paper that will appear in OSDI96
[KTP*96]. The original paper is co-written by the authors of the two systems
studied in this report, and considers the case of a single process with complete
knowledge of future accesses. Prior to this paper, published studies of the
two systems had not been comparable. Differences in hardware, both in the
processor and the I1/0O subsystem, as well as in the benchmarks used to evaluate
the systems have made it difficult to understand the differences between the
algorithms. This report contains a follow-on study of the multiple process case,
assuming that each process gives either no hints or complete hints about its
accesses.

An algorithm for prefetching and caching must (either implicitly or explicitly)
solve two distinct problems. First, the algorithm must determine when a process
should use a particular buffer for prefetching and when it should use the buffer
to cache data for reuse. Second, the algorithm must decide how buffers should

be allocated among various processes running simultaneously. We consider only
the second problem, as [KTP*96] considers the first problem in some detail.

We compare these two approaches using trace-driven simulation. We have devel-
oped a multi-threaded disk-accurate simulator built upon RaidSim, a platform
for modeling various flavors of RAID disk arrays. Qur simulator is driven by sets
of per-process traces of disk operations and (process) compute time between op-
erations; it performs context switches according to an internal scheduler based
on the Berkeley Sprite operating system, swapping out traces representing pro-
cesses that are, for instance, waiting for I/0.

Section 2 describes the two algorithms in more detail, and describes our tracing
and simulation environment. In Section 3 we give synthetic traces highlighting
some advantages of cost-benefit analysis. Then in Section 4 we consider appli-
cation traces of two hinting processes, and in Section 5 we consider traces of
a hinting process running alongside a non-hinting process. Section 6 contains
some sensitivity analysis of the earlier results. And finally, Section 7 presents
our conclusions.

Throughout, the focus is on the performance of the algorithms for prefetching
and caching. To maintain this focus, we sidestep various issues. First, we use
SCAN queueing since it is a common disk scheduling algorithm, and we do not
give a detailed analysis of the effects of disk queueing. Furthermore, we restrict
our attention to applications that provide lists of their future accesses. Both
systems support this model of operation, and all applications we have considered
are capable of providing hints in this form. Thus, we avoid a discussion of the
merits of the other less powerful forms of cache management advice supported
by LRU-SP. Finally, we do not address issues of missing or incorrect hints; the
problem is significant, but is beyond our scope.

2 Background

In this section we give a brief description of the two systems, and then provide
information about our simulator and our trace-collection mechanism.

2.1 TIP2

The TIP2 system does not explicitly distinguish between local, single-process
buffer allocation and global allocation among processes. Instead, it uses cost-
benefit analysis applied to all buffers when making allocation decisions. Never-
theless, it is reasonable and instructive to consider these two case separately.

When a system is ounly running a single hinting process, TIP2 balances the
benefit of using a buffer for prefetching against the cost of ejecting a block that

hints indicate will be reused. In estimating the benefit of prefetching, TIP2
assumes sufficient I/O bandwidth to avoid disk congestion and that all disk
accesses complete in time Tyik. Since reading a block from the buffer cache
consumes a non-zero amount of time, Th;;, there is no benefit from initiating
prefetches more than Tyig, /Thit accesses in advance. This distance is called the
prefetch horizon. On the flip side, the only cost of ejecting a block is the CPU
overhead of prefetching the block back later since with sufficient bandwidth,
this can be done without stalling for the read. TIP2 averages this CPU cost
over the number of accesses till reuse.

The net result of this caching and prefetching algorithm is that, for a single
process, TIP2 prefetches in order up to or close to the prefeich horizon, never
ejects one block to prefetch another block that will be used after the first one,
and always chooses for ejection the block whose next use is farthest in the future.
When the assumption of adequate I/O bandwidth is not met, for example when
there is only a single disk, the limit on prefetching can cause the disk to go
idle during lulls in I/O activity when the disk could be used to prefetch for an
upcoming burst of activity.

When there are multiple hinting processes, TIP2 scales the benefit and cost
estimates described above by the access rates of the processes. Thus, TIP2
prefetches further for a process that is consuming data at a high rate. Similarly,
TIP2 is willing to cache more blocks for a higher data-rate process.

To estimate the cost of ejecting a non-hinted block, TIP2 keeps non-hinted
blocks in a separate LRU queue and monitors data reuse to estimate the cache
hit rate as a function of LRU queue size. The cost of ejecting a non-hinted block
is the estimated increase in cache misses and associated I/O stalls that would
result from a smaller LRU queue. Thus, TIP2 tends to grow the LRU queue
at the expense of hinters when doing so would increase the non-hinting cache
hit rate and it tends to shrink the LRU queue freeing buffers for hinted caching
when doing so would not hurt the performance of non-hinters.

2.2 LRU-SP with Controlled- Aggressive Prefetching

In the LRU-SP system, individual hinting processes use the controlled-aggressive
algorithm to control their personal prefetching and caching behavior. The kernel
implements the LRU-SP algorithm to allocate buffers among processes. We
describe these two components separately, and then discuss their interaction.

Controlled-aggressive ejects block e to prefetch block p if p is not in memory, € is
in memory, p occurs before e in the hint stream, and the disk is idle [CFKL95b].
Essentially, the algorithm prefetches as aggressively as reasonable, subject to
disk bandwidth availability. This algorithm is very similar to TIP2’s, but differs
in two respects. First, it does not stop prefetching at a prefetch horizon, but
instead may prefetch infinitely far in advance when disk bandwidth is available.

As we will see, this gives controlled-aggressive greater resilience in the face of
bursty workloads, but does so at the risk of thrashing the cache. The second
difference is that controlled-aggressive waits till the disk goes idle to queue
further prefetches. In practice, the creators of this system recommend batching
requests to the disk. In our implementation of controlled-aggressive, we issue
new prefetches when there are less than 16 prefetch requests queued. This is
enough to ensure high utilization of the four disks in the simulated disk array.

The authors of [CFKL95b] show that on a single disk, if the I/O time is F times
greater than some fixed interaccess CPU time, and the buffer cache contains K
buffers, then controlled-aggressive is guaranteed to be within a multiplicative
factor of 1+ F/K of optimal. For instance, with a 1500-buffer cache and a disk
that can always serve a request within 50 read hits, the total time is guaranteed
to be within about 3% of optimal for any access sequence.

The controlled-aggressive algorithm was originally designed for use with a single
disk. Later work applied the algorithm to multiple disks and proposed the
reverse-aggressive algorithm to ensure efficient utilization of the multiple disks
[KK96]. Their results, and the results of [KTP*96], indicate that controlled-
aggressive performs almost as well as reverse-aggressive when data is striped
over the multiple disks as it is in this study.! Therefore, we do not implement
the reverse-aggressive algorithm.

The LRU-SP buffer cache management algorithm allocates buffers among com-
peting processes. It accepts advice about buffer replacement from individual
processes, and induces a partition of the buffer cache among the processes. The
goal of the algorithm is to allocate buffers with the same fairness as the global
LRU queue does.

When a buffer is required, either for a demand read or for a prefetch, LRU-SP
finds the process that owns the global least-recently-used block of the buffer
cache. That process is asked to give up a block. The process may simply choose
to give up the LRU block itself, or may make a different decision based on infor-
mation from the application. If all processes agree to give up the block suggested
by the kernel then LRU-SP becomes the standard LRU buffer replacement pol-
icy. However, if a process chooses to give up an alternate block, that process will
again hold the global LRU block and would be asked to give up another block
when the kernel requires one. A scheme called swapping removes this difficulty,
but introduces the possibility that a malicious process could give up blocks so
as to retain an unfair share of the total buffer cache. Another scheme called
placeholders guards against such behavior.

As originally conceived, controlled-aggressive operated on the entire buffer cache.
When combined with LRU-SP, controlled-aggressive operates as if its partition

}When the amount of bandwidth available is extremely high controlled-aggressive performs
little caching and incurs additional driver overhead; this is the only common situation we have
identified in which reverse aggressive performs better.

1s the entire cache. It initiates a prefetch only if there is a block in its partition
that it would be willing to eject. However, when it prefetches, it asks LRU-SP
to allocate a buffer. If the buffer at the head of the global LRU list belongs to a
different partition, then the prefetch will have the effect of growing its partition.

2.3 Simulation Environment

Our simulator is built on top of the Berkeley RaidSim [CP90, LK91] simulator,
as modified at CMU. RaidSim can simulate various flavors of RAID disk arrays
using a disk geometry module to determine disk access times. In our simulations,
we run with data striped over an array of disks (from 1-10 disks), with no parity
and a stripe unit of 1 block. The geometry module simulates the performance of
the HP97560 disk drive. RaidSim also supports various forms of prioritized disk
queueing built around the CVSCAN scheduling discipline. In this paper, we
will occasionally mention effects of disk queueing, but unless otherwise stated
all results use SCAN disk queues.

We augmented RaidSim to include a buffer cache module layered on top of the
disk array and implemented modules for both TIP2 and LRU-SP. We also added
a module to drive RaidSim from scripts instead of relying on randomly generated
workloads. We took advantage of RaidSim’s support for multiple threads to
allow the concurrent simulation multiple separately-scripted processes.? We
drove the simulator with traces taken at CMU, and with existing traces used
by the authors of [CFL94b].2> We now describe these two sets of traces in more
detail.

2.3.1 CMU Traces

To drive the simulator, we traced applications using the DFSTrace [MS96] trac-
ing tool running in Mach 2.6 [M. 96] on a DECstation 5000/200. We augmented
DFSTrace to collect buffer cache operations and scheduler activity, resulting in
a set of detailed trace files on the order of 1M per ten seconds of computation.

We post-processed these traces into scripts that capture the behavior of an
individual process or a process group. Each script record contains the process
CPU time, derived from the scheduler trace records, and a primitive operation
such as “read a block”, “read an inode”, “read then asynchronously write a
block” , or “set the dirty bit for a block”. Because these scripts capture the
behavior of a process and not the whole system as a black box, we can run
multiple scripts simultaneously on the simulator and explore the interactions of
multiple processes.

2This simulator is available to the research community; send mail to the contact author.
3Thanks to Pei Cao for making these traces available, and to Tracy Kimbrel for providing
them.

There are two effects that this simulation environment fails to capture. The first
is memory contention. The traces do not include memory usage information,
nor do the scripts include paging activity. When multiple processes are run
together, they may compete for virtual memory causing an increase in paging
activity that would not occur in our simulator. The second effect is the process
CPU time required to initiate a disk access. The simulator adds this time when
it initiates an access, but any CPU time that the traced process spent initiating
accesses is not subtracted from the script records. This has the effect of slightly
dilating the process CPU time for accesses that caused disk accesses on the
original system.

We adopted only a single trace from this suite:

XDSs : a 3-D data visualization program, we traced XDataSlice generating 25
planar slices through a 3-D dataset represented by a 64M file. This trace
is low-reuse, and also exhibits poor striping on even numbers of disks.

2.3.2 Wisconsin Traces

We also consider a set of read-only traces with process CPU time collected on
a DECstation 5000/200. The running time of these applications is dominated
by disk read accesses. We used the following three traces from this suite:

Cscorel,CsCOPE2 : an interactive C-source examination tool written by Joe
Steffen. CscoPEL is a trace of a search for eight symbols in an 18M
software package. CsCOPE2 is a search for four text strings in the same
18M software package. Cscope reads multiple files sequentially, and will
read them multiple times when there are several queries. Both traces have
a high degree of re-use.

GLIMPSE : a text information retrieval system from the University of Arizona,
search for four keywords in a 40M snapshot of news articles. It builds
approximate indexes for words to allow both relatively fast search and
small index files. The result is that the index files are accessed repeatedly,
whereas the data files are accessed infrequently. We characterize this trace
as medium re-use.

2.3.3 Single Process Performance

For comparison purposes, Figure 1 gives the results of both algorithms running
each of the traces separately. As a convention, if we are comparing TIP to LRU-
SP, we will always graphs TIP on the left and LRU-SP on the right. Table 1
gives some statistics about the traces, including average compute time (ignoring

Trace # reads | # distinct reads | compute/read | time/read
CscoPEl 8673 1073 2.87 2.93
CscoPE2 | 20197 2462 1.83 3.78
GLIMPSE | 27963 5247 0.91 4.12

XDs 32371 5853 0.92 2.45

Table 1: Statistics For Traces

driver time) per request, and average total time per request, computed as an
average of TIP2 and Aggressive’s performance.

Total Time

B @

e

ITESEETESEwEy

& TIP: IO Sull
O TIP: Driver timo

2
1

o TIP: Compats

&

Total Thne

8

& Aggressive: 1O Stall -
© Aggressive: Driver time
& Aggressive; Compue I
|
o |
2z 3 4 5 &

(1)

2 3 4 5 8 10 1
Namber of Disks Number of Disks

CscoPEl CscoPE2

© Aggrentive: Driver lime

Number of Disks Number of Disks

GLIMPSE

@ Aggressive: 10 Stall
Q Aggressive: Driver time
@ Aggressive: Compute

@ TIP: B0 Stall

O TIP: Driver time

@ TIP: Compute

1 Aggressive: LO Stall

B Aggreasive: Driver lime
B Aggressive: Compute

Figure 1: Single-Process Trace Results

2.3.4 TIP2 Parameter Settings

Finally, the TIP2 cost-benefit calculations require a set of system-specific pa-
rameters. In our system, these parameters are as follows: Tj;s, the time to read
an 8 KB block from the buffer cache, is 425 ps; Turiver, the time to initiate a
disk access, is 500 ps; and Tyisk, the disk access time, is 29 ms for non-sequential
I/0. These parameters yield a prefetch horizon of 68 for the system.

3 Synthetic Workloads and Caching

In this section we give combinations of real and synthetic traces to show the
various forms of cache contention that can arise with multiple processes. We

consider a hinting process running alongside a non-hinting process.* For our
first two cases we consider situations in which the hinting process has greater
use for cache buffers than the non-hinting process. In both cases we consider a
hinting process that loops sequentially through a 500-block dataset many times.
We consider both a high-reuse and a low-reuse non-hinting process running
alongside.

In the next two cases the non-hinting process has more use for the buffers than
the hinting process. Clearly, the non-hinting process in both these cases must
have high re-use. We consider both a low-reuse hinter, and a high re-use hinter.
The former case, in which a high-reuse non-hinting process is running with a
low-reuse hinting process, demonstrates another pitfall of the multiple-process
case: how should the cache manager handle blocks that have been prefetched,
read, and have no further hints.

3.1 Hinting High Re-use Process Taking Buffers From a
Non-hinting Low Re-use Process

Consider a program that cycles through 500 blocks repeatedly, computing for
b5ms between accesses. We assume that this program gives complete hints.
Simultaneously, a low re-use process is running that does not give hints. This
process issues a request for a new block every bms. Figure 2 gives the results
for various cache sizes on a single disk.

The first thing we notice in this situation is that, even though the initial cache
size is not large enough to hold the working set of the repeating application and
the incoming blocks of the low re-use application, there is still a great deal of
cache use by both algorithms. This is due to informed caching — we will see
later that, as expected, a non-hinting application that cycles, with a working
set too large to fit in cache, derives no benefit at all from caching.

As noted above, LRU-SP tends to allocate the cache based on the relative access
rates of the two processes, while TIP splits the cache based on an estimate of
the value of its buffers. Thus, LRU-SP chooses to cache only a portion of the
working set of the hinting application, and devotes resources to caching blocks
from the low re-use application.

3.2 Hinting High Re-use Process Taking Buffers From a
Non-hinting High Re-use Process

We consider the same hinting program: a cyclic application issuing requests to
a 500 block working set with bms of computation between ecach request. But

4We could have presented similar situations with two hinting processes, but the situation we
study highlights the difficulties that arise when one process does not have perfect knowledge.

150 —
_E 7| - 2 TIP: I/O Stall
&= 100+ ﬂ: 7/ c 1 TIP: Compute
E ra Aggressive: I/0 Stall
g = Aggressive: Compute

50

0
500 550 600 700 800

Buffer Cache Size

Figure 2: Hinting High Re-use Process Taking Buffers From a Non-hinting Low

Re-use Process

instead of a low re-use process running in the background without hints, we
consider another high re-use process. In particular, we consider another looping
‘process with a larger working set (1200 blocks) that issues requests every 5 ms.
The results are shown in Figure 3.

The analysis here is very similar to the analysis of the previous section. Since
both TIP2 and LRU-SP do not have enough buffers to cache the entire working
set of the non-hinting application, no caching benefit is attained.

150 P
v ”
v 7
(sl
@ ’ # ‘ -
g 100 ; v : v 5 TIP; O Stall
Fit B3 TIP: Compule
3 @ Aggressive: /O Stall
ﬁ Aggressive: Compute
50
0
500 550 600 700 800
Buffer Cache Size

Figure 3: Hinting High Re-use Process Taking Buffers From a Non-hinting High
Re-use Process

3.3 Non-hinting High Re-use Process Taking Buffers From
a Hinting Low Re-use Process

We now give two examples from the opposite situation, in which the correct
decision is to use the cache to hold data from the non-hinting process. In both
cases we consider a slow process cycling repeatedly through 500 blocks at the

rate of one block every 10 ms, without giving hints. First we consider a low
re-use hinting process. In particular, we consider the XDs process described
earlier. The results are shown in Figure 4.

As expected, we note that with 500 cache buffers, neither algorithm derives any
caching benefit because some blocks must be used to hold data for the hinting
process. Once we have 550 cache buffers, however, TIP’s estimators conclude
that caching data for the non-hinting process is more important than prefetching
ahead for the hinting process. LRU-SP splits the buffer cache according to the
relative rates of the processes, giving much of the cache to the hinting process.
The relatively high rate of XDs means that the cache must become quite large
(1500 buffers) before LRU-SP will allocate sufficient buffers to hold the working
set of the non-hinting application.

i

300

0]

500 550 600 700 800 900 1000 1100 1200 1300 1400 1500
Buffer Cache Size

& TIP: [/O Stalt
a TIP: Compute
0O Aggressive: 1/O Stall
& Aggressive: Compute

:

Total Time

g
1

Figure 4: Non-hinting High Re-use Process Taking Buffers From a Hinting Low
Re-use Process

This particular case raises an additional issue for TIP. Once the blocks for the
low re-use process have been read, there are no future hints for them, so their
status becomes uncertain. If we allow them to be evicted immediately in order
to improve caching of the non-hinting process, it is possible that an unhinted
read for those blocks will arrive, creating unnecessary stall. On the other hand,
if we place the blocks into the LRU queue after they have been read, we will be
more robust to unhinted requests but we may not make good use of the cache.
Figure 5 shows the results if we adopt this more pessimistic policy. Since TIP
is placing prefetched buffers directly into the LRU queue, XDs ends up owning
a substantial fraction of the LRU queue, and performance becomes similar to
LRU-SP.

In the future, we hope to evaluate the possibility of incorporating a second
queue for these blocks, akin to the LRU queue but for prefetched blocks with
no remaining hints. If it turns out that these blocks are never requested then
this queue would be willing to give up all of its blocks to cache other data. On
the other hand, if an application hints a read to a block, then reads it several

10

more times without hints in the near future, this second queue would discover
the correct behavior of holding hinted blocks for a short period, then allowing
them to be discarded.

' r
300 i ; i : r
.) 4 ’ ,
i HIRIRL
g { o L & TIP: 1O Stall
- i b i " H
: 200 f ‘ : ’ : s g o TIP: Co_mpute
8 1 . I ’ I / o Aggressgve: 1/0 Stall
ﬁ i : r : i : Aggressive: Compute
) | ﬁ H i

500 550 600 700 800 900 1000 1100 1200 1300 1400 1500
Buffer Cache Size

Figure 5: Non-hinting High Re-use Process Taking Buffers From a Hinting Low
Re-use Process, Buffers Enter LRU Queue

3.4 Non-hinting High Re-use Process Taking Buffers From
a Hinting High Re-use Process

Finally, we consider the remaining case. The same slow non-hinting process
runs, cycling through 500 blocks with one request every 10 ms. Alongside, we
run another cyclic process. In order to demonstrate TIP’s robustness to varying
data rates, we allow the hinting process to run faster, issuing requests every
2ms, and cycling through 1200 blocks. The results are shown in Figure 6.

LRU-SP performs optimal cache replacement of the blocks it caches for the
faster process. Still, in this case, it turns out to be more effective to hold the
entire working set of the smaller non-hinting process in the cache, freeing disk
bandwidth for the hinting process.

3.5 Different Reasons to Cache

The figures above demonstrate several different forms of beneficial caching an
algorithm must be able to uncover. In the first two examples the LRU cache was
not providing hits, so the buffers should instead the dedicated to the hinted cache
where sufficient re-use exists to make a difference. In this way, the bandwidth
requirements of the hinting process can be satisfied from the cache, and the disk
bandwidth can be dedicated to the non-hinting process.

In the third example the LRU cache is capable of holding the entire working set
of the non-hinting process. On the other hand, the same buffers could also be

11

150

2 TIP: /O Stall
2 TIP: Compute
@ Aggressive: I/O Stall
® Agpressive: Compute

Total Time
g
1

w
=]
I

500 550 600 700 800 00 1000 1100 1200
Buffer Cache Size

Figure 6: Non-hinting High Re-use Process Taking Buffers From a Hinting High
Re-use Process

used to provide some caching for the hinting process. However, by dedicating
the disk to the prefetching process and caching the non-hinting process, the
needs of both applications can be met.
Finally, the last example is a case in which there is no advantage to caching data
for the hinting process, and the buffers should be dedicated instead to hold the
working set of the non-hinting process.

4 Application Traces: Hinting versus Hinting

In this section we consider our testset of four application traces: CscoPEl,
CscorE2, GLIMPSE and XDS. We run all pairs of applications and allow each
application to give hints about all accesses. The algorithms must decide when
to cache versus prefetch, and how to allocate buffers between the two processes.
The results are shown in Figure 7.

We consider first the three graphs in which CscoPE] runs alongside another
application. Table 1 gives some statistics about the traces; it is clear that while
all four have roughly similar compute times, CscoPE1 places a lower I/O load on
the system and thus completes much faster in isolation. The first three graphs
have the same property: both TIP and LRU-SP allow the CscoPEl trace to
complete substantially before the other trace, and then devote all resources to

the second application.

We found that the LRU-SP policy performs poorly when it waits for a disk to
go idle before issuing a batch. Instead we adopted the policy that each process
waits until its current batch on a particular disk drains before sending more

batches to that disk.
Tor the single-disk case, on average TIP2 allows the CsCOPE1 trace to complete

12

‘Total Time

Total Tine

TSR

B TIP: /O Sall

QTIP: Driver time é
© TIP: Compute

@ Aggressive: JO Stall 3
© Aggressive: Driver timo &
@ Aggrensive: Compute

L

2 3 4 5 8 10 3 4 5 3 10
Number of Disks Number of Disks

Cscopel / CscoPE2 CscoPEl / GLIMPSE

3 TIP; /O Stall 150 4 : 7
O TIP: Driver time | i
T é oy
H H H H 2 Aggremsive: 110 Stall F 100 5 A
O Aggressive: Driver time £ /| /| -
® Aggremive: Compute al . n I
504
5 : 0
2 3 4 5] 10 1 2 3
Number of Disks Number of Disks
Cscoprel / Xbs CscoPE2 / GLIMPSE
200 -
& TIP: 1A Sl
O TIP: Driver time: g 150
@ TIP: Compute E "
D Aggressive: U0 Stall T 100 /|
O Aggressive: Driver tims 2 | "
“ ﬂ i ﬁ i ﬂ i
2 3 4 5 8 10 ° 1 2 3 4 5 B 10
Number of Disks Number of Disks
CscopPe2 / Xbs GLIMPSE / XDs

@ TIP: IO Stalt
©TIP: Driver time

© TIP: Computo

2 Agpressiva: 1O Swll
D Agpressive: Driver time
@ Aggressive: Compute

=TI O Sul]
O TIP: Driver time
Ce

ve:
& Aggrossive: Compuin

O Aggressives Driver time
B Aggressive:

Figure 7: Two Hinting Processes

in 93% the time LRU-SP requires. TIP2 performs more caching, but LRU-
SP reads deeper. When CscoPEl runs against CSCOPE2 with a single disk
Aggressive performs 5% more fetches, but on average reads twice as deep as
TIPZ2 into the hint streams, performing better overall.

With CscoPEl running against XDs we see the impact of driver overhead on
LRU-SP’s performance. The number of reads performed by LRU-SP jumps from
around 10,000 with one disk to over 40,000 with ten disks; this effect occurs in
the single-process case as well [KTP*96] as Aggressive will de-emphasize caching
when sufficient bandwidth exists to fill the cache with future reads.

In general we see that LRU-SP tends to perform relatively better on power-of-2
numbers of disks than does TIP2. This is because load balancing is poor for
some of our applications on these array sizes (notably Xps), and LRU-SP is
willing to begin to prefetch a set of missing blocks on a particular disk, even if
the first request to that set is far ahead.

In general the numbers indicate that performance on our small set of traces is
fairly evenly split between the two systems, with perhaps a small advantage to
TIP on average.

13

It is natural to ask whether the differences in performance are due to the cost-
benefit approach versus the LRU-SP approach, or are due to fixed horizon
prefetching within a process versus aggressive prefetching within a process.

Unfortunately, it is not clear how to implement aggressive prefetching in a cost-
benefit framework — we are currently studying this problem. On the other
hand, it is clear how to implement fixed-horizon prefetching in LRU-SP. Figure 8
shows the results of doing so, plotting the original TIP numbers against LRU-SP
with fixed-horizon prefetching. Thus, the left-hand bars represent cost-benefit
with fixed-horizon prefetching, and the right-hand bars are LRU-SP with fixed-
horizon prefetching. These results are worse than either system described above.
As shown in Figure 1, aggressive prefetching performs well on the traces we study
here. On the other hand, the cost-benefit model provides good partitioning of
the cache. This is one reason behind our current research efforts incorporating
deeper prefetching into the cost-benefit model.

Total Time

Total Time

IL]

@ TIF: 1O Stall
B s Q TIP: Dyiver time
aTP: Co
@ LRU-SF Fixed: Y0 Stall
© LRU-SP Fixed: Driver time
& LRU-SP Fixed: Compute

2 3 4 s 8 10 1 2 1 4 5 8 10
Number of Disks Nomber of Disks

Cscorel / CsCoPE2 CscoPEl / GLIMPSE

@ TIP: 1O Suatl . 191 2

£1TIP: Driver time H] Fl

& TIP: Campute & v

©@ LRU-SP Fixed: U0 Stall g 100 /|

© LRU-SP Fixed: Driver dme c ” i ﬂ i

® LRU-SP Fixed: Compute v ﬂ ﬂ l ﬂ i ﬂ i
504

2 3 4 S B 10] 2 3 4 5 B 10
Number of Disks Number of Disks

Cscopel / Xps CscoPE2 / GLIMPSE

. 0]
i
” 8 TIP: O Stall "
; O TIP: Driver lime. # 150
v = © TIP: Compute 2]
7 v @ LAU-SP Fixed: 1O Stall 7 1004
" v © LRU-SP Fixed: Driver s e
H H ® LRU-SP Fixed: Compute
‘ " ” ﬂ ﬂ i n i ﬂ i
L i 0 1
1 2 3 4 3) 10 1 2 3 4 5 8 10
Number of Disks Number of Disks

CscopPe2 / Xps GLIMPSE / XDs

o TIF: VO Sull

@ LRU-SP Fixed: 10 Stafl
© LRU-SF Fixed: Driver ime
B LRU-SP Fixed: Compte

o TIP:
@ LRU-SP Fired: 10 Stall
© LRU-SPFixed: Driver time
® LRU-SP Fixed: Compute

@ TP: YO Sull

© TIP: Driver time

@ TIP: Compute

@ LRU-5P Fixed: YO Stall

© LRU-5P Fixed: Driver time
@ LRU-5P Fixed: Compute

Figure 8: LRU-SP with Fixed Horizon Prefetching

14

5 Application Traces: Hinting versus Non-Hinting

We begin by giving two graphs for each pair of distinct traces, one in which
only the first process gives hints, and a second in which only the second process
gives hints. The results are shown in Figures 9 and 10.

F nrg 1
7| Wl
q ‘| o TIP: 1O Sl 00 o TIP: 1O Stall
) A Q TIP: Driver time. é O TIP: Driver time
" é @ TIP: Compute 150 o TIP: Compuie
’ " @ Aggressive: O Stall @ Aggressive: VO Stall
" ‘ D Aggressive: Driver tim: E o " O Aggressive: Driver lime
/ A & Aggrmsive: Computo / i w Aggressive: Compute
1 L — ¥
1 2 4 5] 10 ' 2 3 4
‘Number of Disks Number of Disks
CscorEl hints, CscOPE2 nohints. CscoPEl nohints, CsCcOPE2 hints.
é & TIP; 1o Siall @ TIP: 10 Stall
¥ O TIF: Driver time O TIP: Driver time
Y 5 TIF: Compuic
U Q@ Aggremive: 11O Stall
: O Aggrowive: Driver time O Aggressive: Driver time
H ® Agerauive: Compute & Aggressive: Compute
|
r |

1 2 3 4 5 8

Number of Disks Number of Disks
CscoPEil hints, GLIMPSE nohints. CscoPEl nohints, GLIMPSE hints.
300
@ TIP: 1O Stall o TIP: VO Stall

‘) :% g:::n:“ E 200 :% g:nm‘:m

: E " @ Aggressive: VO Sull] o Agé.miv:‘ V0 Stalt

| H O Aggressive: Drivar time e O Aggressive: Driver time
: : @ Aggressive: Compite:

EEETTEERY

s
(= AN AN
o

{‘i ﬁ? i == - iy 11101 0f 0§

1 2 3 4 3 8 1 1 2
Number of Disks Number of Disks

CscoPEl hints, XDs nohints. (CscoPE] nohints, XDs hints.

Figure 9: One Hinting Process, part 1.

Again, we begin by considering Figure 9, which shows experiments that included
the CscoPE] trace. Consider first the graph of non-hinting CscoPEl versus
hinting CscopPE2. With one disk, TIP2 performs substantially better. The
reason is that the CscOPEL working set fits in cache, and TIP2 notices and
exploits this fact. On one disk, LRU-SP incurs 6600 demand misses on the
non-hinting dataset, versus 2400 for TIP2.

Consider alternately the graph of CscoPE1 hinting versus XDs non-hinting. In
this case, TIP2 sees an advantage in growing the LRU cache, and its assumption
of sufficient bandwidth causes it to undervalue blocks that are distant in the
hinted cache. Both algorithms incur similar numbers of demand misses, but
LRU-SP dedicates more of the cache to the hinted sequence, performing 2100
prefetches versus 6700 for TIP2. Note that TIP2’s assumption of sufficient

15

300 4
300
@ TIF: 10 Sl @ T: 10 St
é 200 5 m Erivw I‘i:m é gxf g:ivalime
3 B Agresive, 10 St 3 2003 / @ Agresive Yo Sul
2 © Aggressive: Driver time] A © Aggressive: Drivar timo
100+ = Aggresive: Compuc . ‘ & Aggressive: Compulo
. . | i
1 1 2 3 4 5 10
Number of Disks
CscoPE2 hints, GLIMPSE nohints. CscoPE2 nohints, GLIMPSE hints.
400 - 400
3003 @ TIF: 1O Stall 0 © TIF: 10 Stall
E © TIP: Driver timo é O TIE: Driver time
TIP: Comy y)
3 200 7 : Aggra-iiv:. i 28 el a " 7 1K ::f;::.nw:‘ To Sl
2 Y z © Aggressive: Driver time 2 f " " © Aggrossive: Driver time
i : E ® Aggressive: Compule] K / /| ® Aggressive: Computc
e 2 g : b i ¢ “ H
o 1 [- 4
1 2 3 4 1 2 3 4 s [10
Number of Disks Number of Disks
CscoPE2 hints, XDs nohints. CscoPE2 nohints, XDs hints.
400
300
@ TIP: /O Sta @ TIP: /O Sl
E O TIP: Driver time. £ TIF: Driver time
TIF: Comy : Com
3w : A:nﬁv: I;o Stalt g TAT.recn:iv:I:“ljo Stall
] © Aggrouive: Driver tme 2 Aggrosive: Drivar tmo

® Aggroasive: Computs ® Aggressive: Compute

Number of Disks Number of Disks

GLIMPSE hints, XDs nohints. GLIMPSE nohints, XDs hints.

Figure 10: One Hinting Process, part 2.

bandwidth is the culprit in this case; if the model were extended to value distant
blocks on overloaded disks more highly, this phenomenon would disappear (we
are currently considering extensions in this direction). In direct opposition,
when CscoPEL does not give hints and XDs does, LRU-SP undervalues the LRU
cache and TIP2 discovers that the working set for CscoPEl fits in memory.

Finally, we point out that the increased timings with larger arrays in the
CscoPEl hinting versus GLIMPSE non-hinting is due to the fact that small
sequential runs lose locality as they are striped over larger arrays; by the time
we reach 5 disks, the average I/O time jumps by about 20%. We expect that
with a larger stripe unit than 1 block, this effect would disappear.

The remaining graphs show minor variations, but the basic lesson is that sig-
nificant differences occur around discontinuities such as a working set for one
process that barely fits in the cache. The graphs of Figure 10 show some vari-
ations, but all the applications are either low re-use or do not have a working
set that fits in the cache.

In conclusion, when one process gives hints and the other does not we see certain
situations in which each algorithm wins, though in most situations performance

16

is similar. TIP2’s cost-benefit approach may be sub-optimal if the assumption
of sufficient bandwidth breaks; likewise, LRU-SP’s rate-based approach may be
sub-optimal if the optimal split of the cache is not proportional to the relative
rates of the processes.

6 Sensitivity Analysis

In this section we perform some simple sensitivity tests on the results given
above. We re-run some of the earlier experiments with different cache sizes,
different processor speeds, and fifo disk queueing instead of SCAN queueing.

We begin by considering sensitivity to cache size. We choose a representative
trace from above: CsCOPE2 versus GLIMPSE, with both processes hinting, and
re-run the trace with a 5K buffer cache and a 15K buffer cache (initial value was
1280 buffers = 10K). The results are shown in Figure 11. The curves are very
similar to one another, and to the original graph. As shown in Section 3 there
can be discontinuities in performance as cache size increases to the point that
a working set will fit in core, but for typical applications prefetching ahead for
relatively low re-use processes, there does not seem to be a qualitative impact.

= TIP: U0 Sull !
O TIP: Driver timo é 4
B TIP: Compne 100 M
@ Aggressive: JO Stall 3 |
& Aggrossive: Driver tme g B
& Aggressive: Compute i

INEN

3 4 5 8 (]
Number of Disks

Cache Size 640 buffers Cache Size 1920 buffers

@ TIP: 1O Stall
CTIF: Drives time

@ TP Compute.

@ Aggressive: VO Stall

O Aggressive: Driver timo
& Aggrosive: Compute.

Figure 11: Sensitivity to cache size, CSCOPE2 versus GLIMPSE, both hinting.

Next, we consider today’s trends towards processors that are increasingly faster
than disks. We consider the CscoPE2 versus XDs trace of Figure 7, in which
both processes give hints. Figure 12 gives the results for a processor that is
twice as fast. The only significant trend is that LRU-SP’s susceptibility to
driver overhead is reduced when there is still some stall in the execution (with
enough bandwidth to eliminate stall, driver overhead takes the same fraction of
total execution time).

Finally, we consider the disk-head scheduling discipline. We re-run the GLIMPSE
versus XDS trace of Figure 10, in which only XDs gives hints. The results are
shown in Figure 13. Here again the results are quite similar. Across our various
traces, changing the queueing discipline has unforeseen, but minor, effects on
the overall timings. These results indicate that the impact of queueing is not

17

B TIP: 10 Stalf 150 @ TIP: 10 Sull

O TIP: Driver tme é O TIP: Diiver time

@ TIP: Compute © TIP: Compute

@ Aggressive: O Stall ERL @ Aggremsive: YO Stalt
@ Aggressive: Drivar fime. & © Aggressive: Driver time

® Aggrawive: Computo ® Aggressive; Compuic

1 2 a 4 5 8 0 1 2 3 4 5 3 10
Number of Disks Numher of THsks

normal processor speed double processor speed

Figure 12: Sensitivity to processor speed, CSCOPE2 versus XDs, both hinting,.

enormous, but may be significant; and it would be worth generating a better
understanding of the relationship between prefetching and queueing.

o TP 1O st © TIP: 1O Sull
é 5 TPP: Driver time. O TIP: Driver time
200 q " O TIP: Compute © TIP: Compute
| @ Aggressive: U0 Stall @ Apgressive: O Stli
e © Aggressive: Driver timi © Aggressives Driver time.

= Agpessive: Compute.

IR W N %

1 2 3 4 5 8 0
Number of Disks

SCAN Queueing FIFO Queueing

Figure 13: Sensitivity to queueing discipline, non-hinting GLIMPSE versus hint-
ing XDs.

7 Conclusion

In this paper, we used trace-driven simulation to compare the performance
of two systems that use application-level knowledge of future I/0O requests to
prefetch data from disk and improve the file buffer cache hit ratio. One is
the informed prefetching and caching system, TIP2, developed by Patterson,
Gibson, et al [PGG195]. The other is the controlled-aggressive/LRU-SP system
of Cao, Karlin, et al [CFKL95b, CFKL95a, CFL94a, CFL94b, Cac96].

There are two key issues in designing such a system. First is how to balance
buffer usage between prefetching and caching for a single process’ access stream.
Second is how to allocate buffers among competing processes, both hinting and
non-hinting. The study of [KTP*96] focuses on the first question; our study
considers the second question.

In Section 3 we showed using synthetic traces that in some circumstances the
cost-benefit model has significant advantages over the LRU-SP model. The

18

LRU-SP model allocates cache resources to processes proportionally to the rates
of the processes. Conversely, the cost-benefit model estimates a locally optimal
partition of the cache between processes, taking into account process rates,
caching needs and hinted re-use.

In Section 4 we consider pairs of application traces running with perfect knowl-
edge. The results indicate that TIP2’s performance may be slightly superior to
LRU-SP’s performance, but the differences are not substantial.

Likewise, in Section 5 we consider an application with perfect knowledge running
against an application with no hints. Overall we see advantages to the cost-
benefit approach, but note that for our traces, the TIP2 estimator of the value
of a buffer in the hinted cache may be inaccurate.

However, both algorithms actually comprise two separate components: a single-
process prefetching and caching algorithm and a multi-process buffer allocation
algorithm. By “TTP2”, we mean the fixed-horizon single-process algorithm col-
laborating with the cost-benefit allocation algorithm. Likewise, by “LRU-SP”
we mean the Aggressive prefetching algorithm collaborating with the LRU-SP
buffer allocation algorithm. We found that LRU-SP with the fixed-horizon
single-process prefetching algorithm performed worse than either of the original
systems. This result, and the results of Section 3, lead us to conjecture that
the cost-benefit approach has strong advantages in the multi-process problem.
We are currently extending the cost-benefit approach to allow deeper, more
aggressive prefetching in situations that warrant it.

We.found it difficult to keep LRU-SP from thrashing the cache. In our initial
implementations we found a high number of blocks being prefetched and ejected
before being read. Subsequent conversations with the authors of [KTP*96], and
some heuristics we implemented ourselves, allowed us to cut this number down
substantially. Still, our simulator and a similar simulator at the University
of Washington report some thrashing at intermediate numbers of disks in the
single-process case, and as we would expect, our simulator reports some non-
trivial thrashing in the multiple-process case as well. However, this effect is not
a significant contributor to the results described above.

This study leaves a number of issues unresolved. We adopted SCAN disk-head
scheduling as a standard discipline, but we have not make a concerted effort to
study the impact of the disk scheduler in a prefetching environment. [KTP*96]
showed the importance of good batching mechanisms for preserving locality of
disk reads. We have not studied this issue carefully in the multiple-process
case; we instead implemented a fixed batch-size of 16 for Aggressive. In our
studies of augmenting cost-benefit analysis with deeper prefetching, we expect
to incorporate a batching deep prefetcher. Finally, we have not studied the
effects of incomplete or inaccurate hints. Both systems have simple mechanisms
for handling such hints, but we have not examined their effectiveness.

19

References

[Cao96]

[CFKL95a]

[CFKL95b)

[CFL94a]

[CFL94b]

[CP90)

[KK96]

[KTP+96]

[LK91]

[M. 96]

Pei Cao. Application-Controlled File Caching and Prefetching. PhD
thesis, Princeton University, 1996.

P. Cao, E-W. Felten, A. Karlin, and K. Li. Implementation and
performance of integrated application-controlled caching, prefetch-
ing and disk scheduling. Technical Report TR-CS95-493, Princeton
University, 1995.

P. Cao, E'W. Felten, A. Karlin, and K. Li. A study of integrated
prefetching and caching strategies. In Proceedings of the ACM SIG-
METRICS, May, 1995.

P. Cao, E.-W. Felten, and K. Li. Application-controlled file caching
policies, In 1994 Useniz Summer Technical Conference, pages 171~
182, June, 1994.

P. Cao, E.W. Felten, and K. Li. Implementation and performance of
application-controlled file caching. In Proceedings of the First Sym-
posium on Operating Systems Design and Implementation, pages
165-178, November, 1994.

Peter M. Chen and David A. Patterson. Maximizing performance
in a striped disk array. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pages 322-331. IEEE
Computer Society Press, May 1990.

T. Kimbrel and A. Karlin. Integrated parallel prefetching and
caching. Technical Report UW-CSE-96-01-10, University of Wash-
ington, 1996.

T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, P. Cao, E.-W.
Felten, G. Gibson, A. Karlin, and K. Li. A trace-driven comparison
of algorithms for parallel prefetching and caching. In Proceedings
of the Second Symposium on QOperating Systems Design and Imple-
mentation, 1996.

Edward K. Lee and Randy H. Katz. Performance consequences
of parity placement in disk arrays. In ASPLOS/, pages 190-199.
ACM, 1991.

M. J. Acetta et al. Mach: A new kernel foundation for unix devel-
opment. In Proc. of the Summer 1996 USENIX Conference, pages
96-113, 1996.

20

[MS96]

[PGG+95]

L. Mummert and M. Satyanarayanan. Long Term Distributed
File Reference Tracing: Implementation and Experience. Software:
Practice and Ezperience, 26(5), May 1996. Also available as techni-
cal report CMU-CS-94-213, School of Computer Science, Carnegie
Mellon University, November 1994.

R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodol-
sky, and Jim Zelenka. Informed prefetching and caching. In SOSP
95, December, 1995,

21

