
Static Extraction and Conformance Analysis of
Hierarchical Runtime Architectural Structure

Marwan Abi-Antoun

CMU-ISR-10-114

May 14, 2010

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jonathan Aldrich (Chair)

Brad A. Myers
William Scherlis

Nenad Medvidovic, U.S.C.

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2010 Marwan Abi-Antoun

This work was supported in part by NSF CAREER award CCF-0546550, DARPA contract HR00110710019, Army
Research Office grant number DAAD19-02-1-0389 entitled “Perpetually Available and Secure Information Sys-
tems,” the U.S. Department of Defense, and the Software Industry Center at Carnegie Mellon University and its
sponsors, especially the Alfred P. Sloan Foundation.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any of the sponsors.

Keywords: object diagram, object graph, runtime structure, runtime architecture,
component-and-connector (C&C) view, execution architecture, architectural extraction, confor-
mance analysis, conformance measurement, ownership types, ownership domains, static analy-
sis, points-to analysis, communication integrity, reverse engineering

To the Alchemists of the World!

There was a language in the world that everyone understood, a language the boy
had used throughout the time that he was trying to improve things at the shop. It was
the language of enthusiasm, of things accomplished with loveand purpose, and as
part of a search for something believed in and desired.

The Alchemist—Paul Coelho (p. 64), translated by Alan R. Clarke

Abstract
A high-level architectural diagram of a system’s organization can be useful dur-

ing software evolution. Such a diagram is often missing and must be extracted from
the code. Alternatively, an existing diagram may be inconsistent with the code, and
must be analyzed for conformance with the implementation. One important notion
of conformance, thecommunication integrityprinciple, stipulates that each compo-
nent in the implementation may only communicate directly with the components to
which it is connected in the architecture.

This dissertation proposes a novel approach, SCHOLIA∗, to extract a hierarchical
runtime architecture from an existing object-oriented system, and analyze communi-
cation integrity with a target architecture, entirely statically and using typecheckable
ownership annotations.

Previous approaches to enforcing communication integrityhave significant
drawbacks: they either require radical language extensions that incorporate archi-
tectural constructs at the expense of severe implementation restrictions, mandate
specialized architectural middleware, or use dynamic analyses that cannot check all
possible executions.

The key contribution is a static points-to analysis to extract, from an annotated
program, a global object graph that provides architecturalabstraction by ownership
hierarchy and by types, where architecturally significant objects appear near the top
of the hierarchy and data structures are further down. Moreover, an extracted object
graph is sound in two respects. First, each runtime object has exactly one represen-
tative in the object graph. Second, the object graph has edges that correspond to all
possible runtime points-to relations between those objects.

Another analysis abstracts an object graph into a built runtime architecture.
Then, a third analysis compares structurally the built architecture to a target, and an-
alyzes communication integrity in the target architecture, without propagating low-
level implementation objects into the target architecture. An evaluation on several
real object-oriented systems showed that, in practice, SCHOLIA can be applied to an
existing system while changing only annotations in the code, and that SCHOLIA can
identify interesting structural differences between an existing implementation and
its target architecture.

∗SCHOLIA stands for static conformance checking of object-based structuralviews of architecture.Scholiaare
annotations which are inserted on the margin of an ancient manuscript.

Acknowledgments

No man can reveal to you nothing but that which already lies half-asleep in the
dawning of your knowledge — Khalil Gibran

First and foremost, I want to thank my advisor, Professor Jonathan Aldrich, for being a great
mentor,tormentor, and role model. Jonathan was equally good at giving big picture advice on ca-
reer plans, revealing deep technical insights, or nitpicking details of inference rules and proofs. I
could never thank him enough for the countless hours spent meeting, advising, emailing, review-
ing various paper drafts, critiquing presentations, and proof-reading a voluminous dissertation.

I want to especially thank Professor Medvidovic (Neno) for awakening in me the interest in
software architecture while at USC. Several years later, Neno and my parents were one of the
few who supported my desire to go back to graduate school. Most of my work colleagues at the
time thought I was crazy to leave a perfectly good job and takea big paycut to go lead the spartan
life of a graduate student for several years. Neno, thank youalso for forgiving me that I went to
CMU instead of USC. Believe me, there were several dreary winterdays in Pittsburgh when I
longed for sunny southern California. But the draw of the family was still worth it.

Professor Myers was a great source of advice on issues related to software engineering tools,
usability and usefulness, and a great sounding board. Professor Scherlis gave me excellent advice
on how to position the approach and conduct a field study with real software and developers.

I would like to thank Nagi Nahas. The project on which we collaborated during my first
year at CMU gave me the confidence of “beginner’s luck” and ended up being reused throughout
this dissertation. I also want to thank my long-term officemate Thomas for being such a helpful,
pleasant person and putting up with me on those days after receiving conference paper rejections.

I would like to thank all of my supporters, my detractors, my supporters turned detractors,
my detractors turned supporters, as well as those who were completely indifferent. You all know
who you are. I would like to thank my family, for always letting me know in which of the above
columns you were, and for always being there for me. My Dad, myMom, my brother, my sisters
and my most adorable nephews helped me retain my sanity and brought much happiness.

Finally, I thank the Computer Science Department for turningmy final week at CMU working
on my thesis into a veritable obstacle course: from moving the office phone line without warning,
and in the middle of an important conversation with the advisor, at the end of which, each one
assumed the other had hung up; leaving no printer in Doherty,as well as keeping a single working
elevator in Wean, a building with hundreds of occupants. I got to finalize my dissertation and get
a cardiovascular workout at the same time, running from the 4th floor of Doherty to the 8th floor
of Wean, then downstairs to the 5th floor, which still had a printer! As the late Professor Randy
Pausch put it best in his Final Lecture (which I had the privilege of attending in person), brick
walls are there for a reason—they let us prove how badly we want things. I did it!

vii

Contents

1 Introduction 1
1.1 Introduction .. 2
1.2 Object-Oriented Diagrams 2

1.2.1 Example . 2
1.2.2 Class Diagrams . 3
1.2.3 Object Diagrams . 4

1.2.3.1 Static vs. dynamic object diagrams 4
1.2.3.2 Global object diagrams . 6

1.3 Software Architecture 6
1.3.1 Code Architecture . 6

1.3.1.1 Package (layer) vs. runtime tier 6
1.3.2 Runtime Architecture .7
1.3.3 Benefits of Architecture .8

1.3.3.1 System understanding . 8
1.3.3.2 Qualitative architectural evaluation 8
1.3.3.3 Quantitative architectural analysis 8
1.3.3.4 Avoiding architectural drift and erosion 9

1.4 Architectural Abstraction 9
1.5 Object Graph Extraction 12

1.5.1 Key Idea: Hierarchical Object Graphs 12
1.5.1.1 Annotations to convey architectural intent 12
1.5.1.2 Static analysis to achieve soundness 13

1.5.2 Example . 14
1.5.2.1 Logical containment . 14
1.5.2.2 Strict encapsulation . 15
1.5.2.3 Sound approximation . 15
1.5.2.4 Aliasing . 15
1.5.2.5 Abstraction by hierarchy . 17

1.5.3 Previous work on architectural extraction 17
1.5.4 Summary . 18

1.6 Architectural Conformance 19
1.6.1 Key Property: Communication Integrity 19
1.6.2 Establishing traceability 19

ix

1.6.3 Previous work in architectural conformance 20
1.7 The Scholia approach .. . 20
1.8 SCHOLIA ’s Requirements . 22

1.8.1 Overall Approach . 22
1.8.2 Annotations . 23
1.8.3 Architectural Extraction 23
1.8.4 Architectural Comparison .. 24
1.8.5 Architectural Conformance .. . 24

1.9 Contributions .24
1.10 Thesis Statement and Outline 25

1.10.1 Hypothesis: Annotations 26
1.10.2 Hypothesis: Extraction 26
1.10.3 Hypothesis: Soundness .. . 27
1.10.4 Hypothesis: Abstraction 27
1.10.5 Hypothesis: Comparison .. 28
1.10.6 Hypothesis: Conformance .. 28

1.11 Summary . 29

2 Object Graph Extraction 31
2.1 Introduction .. 31
2.2 Code vs. Runtime Structure .. . 31

2.2.1 Code Structure . 32
2.2.2 Runtime Structure . 33

2.3 Annotations .35
2.3.1 Object and Domain Annotations .. . 35
2.3.2 Permission Annotations .. 40
2.3.3 Special Annotations .41

2.3.3.1 OWNER . 42
2.3.3.2 shared . 42
2.3.3.3 unique . 42
2.3.3.4 lent . 43

2.4 Static Analysis .. 43
2.4.1 Type Graph . 43
2.4.2 Object Graph . 45

2.4.2.1 Overview . 46
2.4.2.2 Abstract interpretation .47
2.4.2.3 Recursion . 54
2.4.2.4 Domain parameters . 57

2.4.3 Display Graph . 57
2.4.3.1 Depth limiting . 57
2.4.3.2 Abstraction by types . 59

2.4.4 Summary . 65
2.5 Advanced Features .. 65

2.5.1 Displaying objects with special annotations 65

x

2.5.1.1 shared objects . 65
2.5.1.2 unique objects . 65
2.5.1.3 lent objects . 66

2.6 Discussion .66
2.6.1 Assumptions . 66
2.6.2 Alternate Annotations .. 66
2.6.3 Imprecision . 69

2.6.3.1 Field assignment in superclass69
2.6.3.2 Imprecision with containers72

2.7 Summary . 73

3 Formalization of the Object Graph Extraction 75
3.1 Annotations (Featherweight Domain Java) 75

3.1.1 Syntax . 75
3.1.2 Typing Rules . 77
3.1.3 Ownership domain soundness .. 83

3.2 Object Graph (OGraph) . 84
3.2.1 Data Types . 84
3.2.2 Constraint-Based Specification 85

3.3 Object Graph Soundness .. . 88
3.3.1 Instrumented Semantics .. 88
3.3.2 Approximation relation .. . 91
3.3.3 Lemmas . 91
3.3.4 Preservation . 96
3.3.5 Progress . 107
3.3.6 Object Graph Soundness .113
3.3.7 Limitations . 114

3.4 Display Graph (DGraph) . 114
3.4.1 Depth-Limited Unfolding .. 114
3.4.2 Abstraction by Types .115

3.4.2.1 Abstraction by trivial types115
3.4.2.2 Abstraction by design intent types 116
3.4.2.3 Abstraction by types and soundness 116

3.5 Implementation .. 116
3.5.1 Traceability . 117
3.5.2 Differences between the formal and the concrete systems 117

3.6 Discussion .117
3.6.1 Our Previous Formalizations 117

3.6.1.1 Pseudo-code . 117
3.6.1.2 Term-rewriting system . 118

3.6.2 Precision . 118
3.6.3 Points-to Analysis .118

3.7 Summary . 119

xi

4 Evaluation of the Object Graph Extraction 121
4.1 Introduction .. 121
4.2 Research Questions .. 121
4.3 Tool Support . 122

4.3.1 Annotation Tool . 122
4.3.2 Object Graph Extraction Tool .. . 122

4.4 Extraction Methodology 125
4.4.1 Adding and Checking the Annotations 125

4.4.1.1 Gathering available documentation. 125
4.4.1.2 Typechecking the annotations125
4.4.1.3 Prioritizing the annotation warnings 125

4.4.2 Refining the Object Graph . 126
4.4.2.1 Overall strategy . 126
4.4.2.2 Refining the ownership annotations126
4.4.2.3 Code changes . 127
4.4.2.4 Using abstraction by types . 127
4.4.2.5 Controlling the level of detail127

4.5 Evaluation Methodology 127
4.6 Extended Example: JHotDraw 128

4.6.1 Annotation Process .128
4.6.1.1 Annotation Overview . 129
4.6.1.2 Annotation Examples and Observations 129
4.6.1.3 Expressiveness Challenges 135
4.6.1.4 Annotation Summary . 142

4.6.2 Object Graph Extraction .. 142
4.6.3 JHotDraw Summary . 154

4.7 Extended Example: HillClimber 154
4.7.1 About HillClimber . 154
4.7.2 Annotation Process .155

4.7.2.1 Annotation Overview . 155
4.7.2.2 Annotation Examples . 155

4.7.3 Object Graph Extraction .. 157
4.7.4 HillClimber Summary . 160

4.8 Field Study: LbGrid .. . 161
4.8.1 Overview . 161
4.8.2 Research Questions . 161
4.8.3 Setup and Methodology . 161
4.8.4 Annotation and Extraction Process 163
4.8.5 Results . 167

4.8.5.1 Quantitative Data . 167
4.8.5.2 Qualitative Data . 169

4.8.6 Validity . 172
4.8.7 LbGrid Summary . 173

4.9 Evaluation based on Cognitive Framework for Design 173

xii

4.10 Discussion .. 175
4.10.1 Research Questions (Revisited) 175
4.10.2 Evaluation Critique .. 175
4.10.3 Soundness . 176
4.10.4 Performance . 177
4.10.5 Scalability . 177

4.11 Summary . 177

5 Architectural Synchronization 179
5.1 Introduction .. 179
5.2 Architectural View Differencing 180
5.3 Tree-to-Tree Correction 184

5.3.1 Overview of Algorithm .184
5.3.2 Forcing and Preventing Matches 186
5.3.3 Runtime and Memory Complexity . 187

5.4 Architectural View Synchronization 187
5.4.1 General Approach . 187
5.4.2 Specialized Tools .189

5.5 Evaluation .192
5.5.1 Extended Example: AphydsAJ .. 194
5.5.2 Extended Example: Duke’s Bank .198
5.5.3 Extended Example: HillClimberAJ 201

5.6 Conclusion . 203

6 Conformance Analysis 205
6.1 Introduction .. 205
6.2 Abstracting the Object Graph 207
6.3 Describing the Architecture 208

6.3.1 Architecture description language (ADL) 208
6.3.2 Mapping an OOG to a C&C view . 209

6.4 Analyzing Conformance .. 210
6.4.1 Conformance Findings . 210
6.4.2 Displaying Conformance .211
6.4.3 Traceability . 211
6.4.4 Analyzing Conformance . 211
6.4.5 Measuring Conformance . 214

6.5 Enforcing Architectural Structure 214
6.5.1 Code-level constraints .. 214
6.5.2 Architectural constraints 215

6.6 Discussion .216
6.6.1 False positives . 216
6.6.2 Why an architecture description language? 217
6.6.3 Why structural comparison? .. 217
6.6.4 Relation to Reflexion Models . 218

xiii

6.6.5 Mapping Code to High-Level Models 219
6.7 Summary . 220

7 Evaluation of the Conformance Analysis 223
7.1 Introduction .. 223
7.2 Research Questions .. 223
7.3 Tool Support . 224

7.3.1 ArchCog . 225
7.3.2 ArchConf . 228
7.3.3 CodeTraceJ . 228
7.3.4 ArchMod . 228

7.4 Evaluation Methodology 228
7.5 Extended Example: Aphyds .. . 232

7.5.1 Modeling the Target Architecture 233
7.5.2 Iteration 1 . 233

7.5.2.1 Adding Annotations . 233
7.5.2.2 Extracting Object Graphs . 234
7.5.2.3 Abstracting into Built Architecture 234
7.5.2.4 Comparing the Built and Designed Architectures 234
7.5.2.5 Analyzing Conformance . 235

7.5.3 Iteration 2 . 236
7.5.3.1 Adding Annotations . 236
7.5.3.2 Extracting Object Graphs . 238
7.5.3.3 Abstracting into Built Architecture 238
7.5.3.4 Comparing the Built and Designed Architectures 238
7.5.3.5 Analyzing Conformance . 238

7.5.4 Summary of Findings . 239
7.5.5 Aphyds Discussion . 240

7.6 Extended Example: JHotDraw 244
7.6.1 Modeling the Target Architecture 244
7.6.2 Adding Annotations . 244
7.6.3 Extracting Object Graphs .. . 244
7.6.4 Abstracting into Built Architecture 245
7.6.5 Analyzing Conformance . 245
7.6.6 Summary of Findings . 248

7.7 Extended Example: HillClimber 248
7.7.1 Modeling the Target Architecture 248
7.7.2 Adding Annotations . 248
7.7.3 Extracting Object Graphs .. . 249
7.7.4 Abstracting into Built Architecture 249
7.7.5 Analyzing Conformance . 249
7.7.6 Summary of Findings . 249

7.8 Extended Example: CryptoDB .. . 250
7.8.1 Threat Modeling . 251

xiv

7.8.2 Available Documentation .. . 252
7.8.2.1 Documented Architectures 252
7.8.2.2 Code Architecture . 253
7.8.2.3 Flat Object Graphs . 254

7.8.3 Adding Annotations . 257
7.8.4 Extracting Object Graphs .. . 260
7.8.5 Abstracting into Built Architecture 262
7.8.6 Modeling the Target Architecture 262
7.8.7 Analyzing Conformance . 264
7.8.8 Enforcing Code-Level Constraints 266
7.8.9 Enforcing Architectural Constraints 267
7.8.10 CryptoDB Discussion . 268

7.9 Discussion .269
7.9.1 External Validity .269
7.9.2 Research Questions (Revisited) .. . 271
7.9.3 Performance . 271
7.9.4 Evaluation Critique .272

7.10 Summary . 272

8 Related Work 275
8.1 Object-Oriented Design Diagrams 275

8.1.1 Summary of previous work on design diagrams 277
8.2 Architectural Description 277

8.2.1 Visualization of Software Architecture 278
8.2.2 Summary of previous architectural description 278

8.3 Ownership type systems .. . 279
8.3.1 Expressiveness . 279
8.3.2 Related type systems . 281
8.3.3 Case studies for ownership types 281
8.3.4 Ownership inference .282
8.3.5 Summary of previous work on ownership type systems 283

8.4 Static analysis of the runtime structure 283
8.4.1 Object graph analyses .283

8.4.1.1 Annotation-free analyses . 283
8.4.1.2 Annotation-based analyses 284

8.4.2 Points-to analysis .. 285
8.4.3 Shape analysis . 286
8.4.4 Summary of previous static analysis of the runtime structure 286

8.5 Dynamic analysis of the runtime structure 287
8.5.1 Visualization of object structures 287
8.5.2 Dynamic ownership analyses .. . 288
8.5.3 Mix of static and dynamic analysis 290
8.5.4 Summary of previous dynamic analysis of the runtime structure 290

8.6 Architectural extraction 291

xv

8.6.1 Extracting a source model .. 291
8.6.1.1 Static extractors . 291
8.6.1.2 Dynamic extractors . 292
8.6.1.3 Mixed extractors . 292
8.6.1.4 Summary of previous work in extracting source models 292

8.6.2 Abstracting a source model into a high-level model 292
8.6.2.1 Clustering . 292
8.6.2.2 Pattern matching . 293
8.6.2.3 Summary of previous work in abstracting source models 294

8.6.3 Case studies in architectural extraction 294
8.6.3.1 Non-object-oriented systems294
8.6.3.2 Object-oriented systems . 295
8.6.3.3 Evaluating an extracted architecture 295
8.6.3.4 Summary of previous case studies in architectural extraction . 296

8.6.4 Summary of previous work in architectural extraction. 296
8.7 Architectural synchronization 296
8.8 Built-in conformance .. . 298

8.8.1 Code generation . 298
8.8.2 Style guidelines .299
8.8.3 Library-based solutions 299
8.8.4 Language-based solutions .. . 299
8.8.5 Summary of previous work in built-in conformance 299

8.9 Architectural conformance 299
8.9.1 Conformance analysis of the code architecture 300
8.9.2 Conformance analysis of the runtime architecture 301

8.9.2.1 Dynamic analysis . 301
8.9.2.2 Static analysis . 301

8.9.3 Case studies in architectural conformance 302
8.9.4 Conformance measurement . 302
8.9.5 Summary of previous work in architectural conformance 302

8.10 Traceability .. . 303
8.11 Summary of related work 303

9 Discussion and Conclusion 305
9.1 Satisfaction of the SCHOLIA requirements . 305

9.1.1 Overall Approach . 305
9.1.2 Annotations . 305
9.1.3 Architectural Extraction 306
9.1.4 Architectural Comparison .. 306
9.1.5 Architectural Conformance .. . 307

9.2 Limitations .307
9.2.1 Overall Approach . 307
9.2.2 Annotations . 308
9.2.3 Architectural Extraction 309

xvi

9.2.4 Architectural Comparison .. 310
9.2.5 Architectural Conformance .. . 310

9.3 Usefulness and Usability 311
9.3.1 Usefulness . 311
9.3.2 Usability . 312

9.4 Future Work . 313
9.4.1 Overall Approach . 313
9.4.2 Annotations . 314
9.4.3 Architectural Extraction 314
9.4.4 Architectural Comparison .. 315
9.4.5 Architectural Conformance .. . 315

9.5 Conclusion and Broader Impact .. . 315

A Annotation Language and ArchCheckJ Typechecker 319
A.1 Introduction .. 319
A.2 Annotation Design .. 320
A.3 Tool Design and Implementation 322
A.4 Additional Features 324

A.4.1 External Libraries .. 324
A.4.2 Generics . 324
A.4.3 Method Domain Parameters .325
A.4.4 Defaulting Tool . 326
A.4.5 Special Annotations .326

A.5 Tool Limitations and Future Work 326
A.6 Summary . 327

B CryptoDB Architecture 329
B.1 Architectural Style in Acme 329
B.2 CryptoDB Target Architecture in Acme 330

Bibliography 335

xvii

List of Figures

1.1 Aphyds: designed architecture. 3
1.2 Aphyds: partial class diagram focusing on the classCircuit and related classes. 3
1.3 Aphyds: flat object graph. 5
1.4 Architectural abstraction. 10
1.5 Aphyds: partial hierarchy of objects. 13
1.6 Aphyds:Node andNet objects arepart of aCircuit object. 14
1.7 Aphyds:terms object isowned byaNet object. 15
1.8 Aphyds: representingCircuit’s runtime sub-structure. 16
1.9 Aphyds: hierarchical object graph. 18
1.10 Overview of the SCHOLIA approach. 21

2.1 Listeners: code without annotations. 32
2.2 Listeners: class diagrams. 33
2.3 Listeners: hierarchical object graphs. 34
2.4 Listeners: code with annotations. 36
2.5 Simplified annotation syntax. 37
2.6 Listeners: code with the concrete annotations. 37
2.7 ClassList is parametric in the ownership domain of its elements. 39
2.8 Sequence abstract data type with ownership domains. 40
2.9 A conceptual view of theSequence abstract data type. 41
2.10 Listeners: using theOWNER keyword. 42
2.11 Type Graph, Object Graph and Display Graph. 44
2.12 Listeners:type graph. 46
2.13 Initial data type declarations for theOGraph. 46
2.14 Listeners: possible aliasing. 47
2.15 Abstractly interpreting the program. 50
2.16 Abstractly interpreting the program (continued). 51
2.17 Abstractly interpreting the program (continued). 52
2.18 Listeners: full object graph, including the root object. 53
2.19 Listeners: object graph without the root object and edges from the root. 53
2.20 QuadTree with annotations. 54
2.21 QuadTree abstract interpretation without cycle detection. 55
2.22 Handling the recursion inQuadTree. 56
2.23 Revised data type declaration. 57
2.24 Revised example with recursive types. 58

xix

2.25 Listeners: distinguishing objects based on domain parameters. 59
2.26 Listeners: object graph distinguishing objects basedon domain parameters. . . . 59
2.27 Displaying anOGraph. 60
2.28 QuadTree OOG. 61
2.29 Listeners: illustration of edge lifting. 61
2.30 Listeners: illustration of interfaces causing merging. 62
2.31 Listeners: Instantiation-Based View (IBV). 63
2.32 Listeners: abstraction by trivial types. 63
2.33 Listeners: inheritance hierarchy. 64
2.34 Listeners: abstraction by design intent types. 64
2.35 Listeners: alternate annotations. 67
2.36 Listeners: object graph based on the alternate annotations. 67
2.37 Listeners: using public domains. 68
2.38 Listeners: object graph based on using public domains.. 68
2.39 Field assignment in superclass. 70
2.40 Imprecision with field assignment in superclass. 70
2.41 Field assignment in superclass. 71
2.42 Fixing imprecision with field assignment in superclass. 71
2.43 Simple code with container. 72
2.44 Imprecision with container. 72

3.1 Featherweight Domain Java abstract syntax (FDJ). 77
3.2 FDJ auxiliary definitions. 78
3.3 FDJ auxiliary definitions (continued). 79
3.4 FDJ dynamic semantics. .. . 79
3.5 FDJ congruence rules. .. . 80
3.6 FDJ subtyping rules. .. . 80
3.7 FDJ typing rules. .. 81
3.8 FDJ class, method and store typing. 82
3.9 Data type declarations for theOGraph. 85
3.10 Constraint-based specification of the object graph extraction analysis. 87
3.11 Instrumented runtime semantics (core rules). 89
3.12 Instrumented runtime semantics (congruence rules). 90
3.13 Reflexive, transitive closure of the instrumented evaluation relation. 113
3.14 Data type declarations for theDGraph. 115
3.15 Rules for abstraction by types. 116
3.16 Abstraction by trivial types. 116
3.17 Abstraction by design intent types. 116

4.1 ArchRecJ tool. 123
4.2 JHotDraw class diagram. 129
4.3 JHotDraw: defining the three top-level domains on the root class. 130
4.4 JHotDraw:CompositeFigure annotations. 131
4.5 JHotDraw: adding annotations toDrawing. 133

xx

4.6 JHotDraw:Handle with M, V andC domain parameters. 133
4.7 JHotDraw:Undoable with M, V andC domain parameters. 134
4.8 JHotDraw:Handle with only M andC domain parameters. 134
4.9 JHotDraw: using method domain parameters to enforce object borrowing. 135
4.10 JHotDraw: concrete implementation class ofHandle. 136
4.11 JHotDraw: annotating a singleton usingunique. 137
4.12 JHotDraw: alternative top-level domains. 137
4.13 Using public domains to group objects. 138
4.14 JHotDraw: attempting to define a public domain. 139
4.15 JHotDraw: annotatingaddFigureSelectionListener. 140
4.16 JHotDraw: annotating static fields. 141
4.17 JHotDraw: reducing annotations that are not needed. 141
4.18 JHotDraw: flat object graph obtained using WOMBLE. 143
4.19 JHotDraw: flat object graph obtained using PANGAEA. 144
4.20 JHotDraw: OOG with abstraction by trivial types (the default list). 145
4.21 JHotDraw: OOG with an instantiation-based view. 146
4.22 JHotDraw: makingViewChangeListener a trivial type. 147
4.23 JHotDraw: OOG with abstraction by trivial types (the fine-tuned list). 148
4.24 JHotDraw: OOG with abstraction by design intent types.. 150
4.25 JHotDraw: top-level OOG. 152
4.26 JHotDraw: Model-View-Controller summary. 153
4.27 HillClimber: partial UML class diagram. 155
4.28 HillClimber: refactoringHillGraph to program to an interface. 156
4.29 HillClimber: before using a mediator. 157
4.30 HillClimber: extracting an interface (bad attempt). 158
4.31 HillClimber: defining a mediator. 158
4.32 HillClimber: using a mediator. 159
4.33 HillClimber: top-level OOG. 160
4.34 LbGrid: high-level module view. 163
4.35 LbGrid: developer’s diagram, which I annotated manually. 164
4.36 LbGrid: top-level domains which I suggested, shown with a dashed border. . . . 165
4.37 LbGrid: extracted object graph. 168
4.38 LbGrid: high-level runtime view. 169

5.1 Tree edit operations. 183
5.2 Overview of the MDIR algorithm. 185
5.3 Overview of the MDIR algorithm (continued). 185
5.4 Overview of the MDIR algorithm (continued). 185
5.5 Overview of the MDIR algorithm (continued). 186
5.6 Overview of the MDIR algorithm (continued). 186
5.7 Computing the match list. 187
5.8 Graphical overlays to indicate differences. 188
5.9 Matching types. .. 192
5.10 Validating the edit script. 193

xxi

5.11 Aphyds: informal designed architecture. 194
5.12 AphydsAJ: designed architecture represented in Acme.. 195
5.13 AphydsAJ: matching types between Acme (left) and ArchJava (right). 196
5.14 AphydsAJ: comparison of Acme and ArchJava C&C views. 197
5.15 AphydsAJ: built architecture with Acme styles and types. 198
5.16 Duke’s Bank: informal designed architecture. 199
5.17 Duke’s Bank: documented architecture in Acme. 200
5.18 Duke’s Bank: recovered architecture in Acme. 200
5.19 Duke’s Bank: comparison of the documented and recoveredarchitectures. 201
5.20 HillClimber: Base design for aCIspace framework application. 202
5.21 HillClimberAJ: manual overrides improve matching the instances. 203
5.22 HillClimberAJ: built architecture. 204

6.1 Examples oflifted edges. 206
6.2 Aphyds: mismatch between the object graph and the targetarchitecture. 207
6.3 Example of asummary edge. 208
6.4 Mapping an OOG to a C&C view in the Acme ADL. 209
6.5 Edge lifting in a C&C view. .. . 209
6.6 Displaying aconvergence and adivergence. 212
6.7 Displaying adivergence as asummary connector. 213

7.1 Tools to support the SCHOLIA approach. 225
7.2 ArchCog tool. 226
7.3 ArchCog tool (continued). 227
7.4 ArchConf tool. 229
7.5 ArchConf tool (continued). 230
7.6 ArchConf tool (continued). 231
7.7 Aphyds: designed architecture in Acme. 233
7.8 Aphyds: initial annotations during Iteration 1. 234
7.9 Aphyds: OOG using private domains and many peer objects.. 235
7.10 Aphyds: conformance view during Iteration 2. 236
7.11 Aphyds: refined annotations during Iteration 2. 237
7.12 Aphyds: refined OOG after defining public domains. 238
7.13 Aphyds: conformance view during Iteration 2. 239
7.14 Aphyds: results using the Reflexion Models tool 243
7.15 JHotDraw: designed architecture documented in Acme. 245
7.16 JHotDraw: built architecture in Acme. 246
7.17 JHotDraw: conformance view with summary edges. 247
7.18 JHotDraw: conformance view without summary edges. 247
7.19 HillClimber: designed architecture. 248
7.20 HillClimber: built architecture in Acme. 249
7.21 HillClimber: conformance view. 250
7.22 CryptoDB: documented Level-1 DFD. 252
7.23 CryptoDB: documented Level-2 DFD. 253

xxii

7.24 CryptoDB: layer diagram. .. . 254
7.25 CryptoDB: class diagram. 255
7.26 CryptoDB: flat object graph extracted using PANGAEA. 255
7.27 CryptoDB: flat object graph extracted using WOMBLE. 256
7.28 CryptoDB:LocalKeyStore andLocalKey annotations. 257
7.29 CryptoDB: Level-0 OOG withString objects. 258
7.30 CryptoDB: OOG withString objects. 259
7.31 CryptoDB: annotation excerpts. 260
7.32 CryptoDB: annotation excerpts (continued). 261
7.33 CryptoDB:LocalKeyStore OOG. 261
7.34 CryptoDB: Level-1 OOG withoutString objects. 262
7.35 CryptoDB: Level-2 OOG, after binding top-level domains for String to shared. 263
7.36 CryptoDB: built architecture in Acme. 264
7.37 CryptoDB: target architecture in Acme. 265
7.38 CryptoDB: conformance view in Acme. 265
7.39 CryptoDB: injected architectural violation. 267

A.1 A Sequence abstract data type with ownership domain annotations. 323
A.2 Adding annotations to generic code. 325
A.3 Declaring and binding method domain parameters. 325
A.4 Re-writing a new expression using a local variable. 326
A.5 Re-writing a cast expression using a local variable. 327

xxiii

List of Tables

4.1 Evaluation based on the Cognitive Framework for Design. 174
4.2 Performance measurements of the architectural extraction. 177

7.1 Aphyds conformance metrics. 240
7.2 JHotDraw conformance metrics. 248
7.3 HillClimber conformance metrics. 250
7.4 CryptoDB: mapping between architectural components and code elements. . . . 254
7.5 Performance measurements of the conformance analysis.. 272

8.1 Comparison of dynamic ownership analyses and static object graph analyses. . . 289

xxv

Chapter 1

Introduction

“An object-oriented program’s runtime structure often bears little resemblance to its code
structure. The code structure is frozen at compile-time; it consists of classes in fixed inheri-
tance relationships. A program’s runtime structure consists of rapidly changing networks of
communicating objects. In fact, the two structures are largely independent.Trying to under-
stand one from the other is like trying to understand the dynamism of living ecosystems from
the static taxonomy of plants and animals, and vice versa.” – (Gamma et al.1994, p. 22)

This dissertation proposes a novel approach, SCHOLIA1, to extract statically a hierarchical
runtime architecture from a program in a widely used object-oriented language2, using anno-
tations. If a target runtime architecture exists, SCHOLIA can also analyze, at compile time,
communication integrity between the code and the intended architecture. At its core, SCHOLIA

relies on a novel static analysis to extract a hierarchical object graph from an arbitrary object-
oriented implementation. The extracted object graph provides architectural abstraction by own-
ership hierarchy and by types. Moreover, the object graph issoundin two respects. First, each
runtime object has exactly one representative in the objectgraph. Second, the object graph has
edges that correspond to all possible runtime points-to relations between those objects. The ex-
traction analysis assumes that typecheckable ownership annotations provide minimally invasive
hints about the architecture, instead of requiring developers to use a specialized framework or
a new programming language. To analyze conformance, SCHOLIA compares the built and the
designed architecture using a structural comparison for hierarchical architectural views that does
not assume that view elements have unique identifiers. Finally, SCHOLIA ’s conformance analysis
allows the designed architecture to be more abstract, and accounts for additional communication
in the implementation without propagating low-level objects into the designed architecture.

1SCHOLIA stands for static conformance checking of object-based structuralviews of architecture. According
to Wikipedia,scholiaare annotations which are inserted on the margin of an ancient manuscript. The metaphor
is that this approach supports existing legacy, i.e., ancient, object-oriented systems and uses annotations that other
development tools can ignore.

2This dissertation mainly considers Java-like statically-typed general purpose object-oriented languages such as
Java and C#, where each object is a Plain Old Java Object (POJO). This work does not specifically address dynam-
ically typed languages, or Java programs that use aspect-oriented programming (AspectJ), component frameworks
such as Enterprise Java Beans (EJB), etc.

1

1.1 Introduction

During software evolution, the most reliable and accurate description of a software system is its
source code. However, high-level architectural diagrams of the system’s organization are also
very important. For instance, a diagram can help locate the components that must be modified,
or estimate the magnitude of the impact of a change based on the dependencies among entities.

Often, such a diagram is missing, hence the need toextractone from the code. Alternatively,
a diagram may exist but may be inconsistent with the code. As aresult, taking an important
decision on how to evolve a system based on an incorrect architectural diagram may lead to
problems during the implementation of the changes, or the implemented system may not exhibit
the desired architectural qualities. Hence, there is an important need to analyze theconformance
of a target architecture with an implementation.

This chapter is organized as follows. Section 1.2 discussesobject-oriented design diagrams.
Section 1.3 discusses architectural views. Section 1.4 discusses the notion of architectural ab-
straction. Section 1.5 discusses architectural extraction. Section 1.6 discusses analyzing ar-
chitectural conformance. Section 1.7 discusses the proposed approach, SCHOLIA. Section 1.8
summarizes the requirements of a solution. Section 1.9 lists the contributions of this dissertation.
Section 1.10 concludes with a thesis statement and an outline for the rest of this document.

1.2 Object-Oriented Diagrams

Reverse engineering or architectural extraction can extract various complementary high-level
views of a system. A view can focus on the static code structure, or on the runtime structure.
Most previous reverse engineering research focuses on the code structure, while this dissertation
improves on the state-of-the-art for extracting and analyzing the runtime structure of object-
oriented systems.

1.2.1 Example

I illustrate by example the key differences between the codestructure and the runtime structure
using Aphyds, a system of 8,000 source lines of Java code (notcounting the libraries used), first
discussed by (Aldrich et al. 2002a). Aphyds is a pedagogicalcircuit layout application that an
electrical engineering professor wrote for one of his classes. Students in the class are given the
program with several key algorithms omitted, and are asked to code the algorithms as assign-
ments.

The design of Aphyds follows a two-tiered Document-View architecture. The designed ar-
chitecture (Fig. 1.1) shows tiers, components, and interactions between components. In this
diagram, an edge represents a points-to relation. User interface components such asviewerUI are
in the upper half of the diagram. Acircuit and computational components, such aspartitioner,
are the lower half.

2 Chapter 1. Introduction

user interface

viewerUI

floorplanUI placeRouteUI

channelRouteUI

partitioner

floorplanner placer

globalRouter

channelRouter

computational code

circuit

circuit database

node net

Figure 1.1: Aphyds: designed architecture, redrawn from the original developer’s diagram reproduced in
(Aldrich et al. 2002a), included here with some adaptations. I renamed somecomponents, reversed the
direction of some arrows (Aldrich et al. 2002a, p. 192) and excluded data flow edges since SCHOLIA does
not currently show the latter.

Vector
Circuit

NodeNode

Net
Terminal

- circuit

- circuit

- circuit

«instantiate»

«instantiate»

- tnet

- tnode

Class

Figure 1.2: Aphyds: partial class diagram focusing on the classCircuit and related classes.

1.2.2 Class Diagrams

A class diagramis an important and widely used description of an object-oriented system that
shows the static code structure, in terms of classes and fixedinheritance relationships.

Many tools automatically generate class diagrams of the code structure from program source
(Kollman et al. 2002). I used the Eclipse UML tool (Omondo 2006) to extract a class diagram
from the Aphyds code. For example, a class diagram would showoneVector class, andNode
andNet classes that have a module dependency onVector (Fig. 1.2).

1.2. Object-Oriented Diagrams 3

1.2.3 Object Diagrams

Another important view is anobject diagramor object graph, where nodes represent objects,
i.e., instances of the classes in a class diagram, and where edges correspond to relations between
objects. An object diagram makes explicit the structure of the objects instantiated by the program
and their relations, facts that are only implicit in a class diagram. While in the class diagram a sin-
gle node represents a class and summarizes the properties ofall of its instances, an object diagram
represents different instances as distinct nodes, with their own properties (Tonella and Potrich
2004). For example, (Gamma et al. 1994) used a class diagram and an object diagram to explain
several of the standard design patterns. Recent empirical evidence confirms the importance of
“how objects connect to each other at runtime when I want to understand code that is unknown:
an object diagram is more interesting than a class diagram, as it expresses more how [the system]
functions” (Lee et al. 2008).

1.2.3.1 Static vs. dynamic object diagrams

Following (Tonella and Potrich 2004), I distinguish between static object diagramsanddynamic
object diagrams. A static object diagramrepresents all objects and inter-object relationships
possibly created in a program, and is recovered by astatic analysisover the code. Adynamic
object diagramshows the objects and the relations that are created during one or more specific
system executions, and is recovered using adynamic analysis.

Static and dynamic object diagrams provide complementary information. A static object
diagram lacks precision on the actual multiplicity of the objects that the program may cre-
ate, or the actual relations between objects. In contrast, adynamic object diagram, e.g.,
(Flanagan and Freund 2006), can show the exact number of instances and the actual relations
in a given program run. But a dynamic object diagram may not reflect important objects or re-
lations that show up only in other executions. For example, using a design diagram, a security
review could enumerate all possible communication betweentrusted and untrusted parts of a
system3. But if the diagram does not show all communication present inthe implementation,
because additional communication pathways arise during other executions, the analysis may be
incorrect.

In general, there are several problems with dynamic analysis. First, a dynamic analysis may
not include important objects or relations that show up onlyin other executions. Second, a
dynamic analysis may not be repeatable, i.e., changing the inputs or executing different use cases
might produce different results. Third, runtime heap information does not convey design intent.
Fourth, a dynamic analysis cannot be used on an incomplete program still under development or
to analyze a framework separately from a specific instantiation. Finally, some dynamic analyses
carry a significant runtime overhead—a 10X-50X slowdown in one case (Flanagan and Freund
2006), which must be incurred each time the analysis is run.

4 Chapter 1. Introduction

Net

Net

java.lang.String

Name

java.util.Vector

DestinationsSources

Circuit

circuit

FloorplanDisplayer

Floorplan

floorplan

FloorplanDisplayer

java.lang.Object[]

java.lang.Object[]

java.lang.Object[]

Node

Name

Type

java.util.Vector

OutputsInputs

circuit

Node

int[][][]

int[][]

baseType

int[][][]

int[]

baseType[]

NetGlobalRouting[][][][][]

java.awt.Color

PartitionTranscript

PlaceRouteDialog

shortest

longestmediumshortmediummediumlong

GlobalRouter

CircuitGlobalRouting

Placer

CircuitPlacement

com.symantec.itools.javax.swing.borders.EmptyBorder

emptyBorder1CircuitDisplayer

displayer

javax.swing.JScrollPane

JScrollPane1FeedbackScrollPane

Randomizer

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

javax.swing.JTable

FeedbackTable

CachedDistribution

circuit

JChartSized

PieChart

PlaceRouteDialog

shortest
longestmediumshortmediummediumlong

GlobalRouter

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1
FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

JChartSized

PieChart

PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog
shortest

longest
mediumshort

mediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

GlobalRouter

CircuitGlobalRouting

Placer

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog
shortest

longest
mediumshort

medium

mediumlong

CircuitGlobalRouting
CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog
shortest

longestmediumshort

mediummediumlong

GlobalRouter

CircuitGlobalRouting

Placer

CircuitPlacement

emptyBorder1

displayer

JScrollPane1

FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

PlaceRouteDialog

PlaceRouteDialog
shortest

longest

mediumshort
medium

mediumlong

GlobalRouter

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1

FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

shortest

longestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart
PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

PlaceRouteDialog

shortestlongestmediumshortmediummediumlong

CircuitGlobalRouting

CircuitPlacement

emptyBorder1

displayer

JScrollPane1FeedbackScrollPane

Rand

PlacementGraphDialog

GraphDialog

PlaceRouteDisplayer

placeRouteDisplayer1

FeedbackTable

CachedDistribution

circuit

PieChart

NetDialog

DisplayedNet

displayer

DestsScrollpane

SourcesScrollpane

com.symantec.itools.javax.swing.models.StringListModel

stringListModel1
stringListModel2

NetDialog

DisplayedNet

CircuitDisplayer

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1

stringListModel2

NetDialog
DisplayedNet

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1

stringListModel2

NetDialog

DisplayedNet

CircuitDisplayer

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1stringListModel2

NetDialog

DisplayedNet

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1stringListModel2
NetDialog

DisplayedNet

displayer

DestsScrollpaneSourcesScrollpane

stringListModel1

stringListModel2

boolean[]

GlobalRouter

Placement

NetGlobalRouting[]

NetRoutes

int[][][][][][]

Distance

NetGlobalRouting[][][][][][]

NGRnodeAt

java.awt.Dimension

ChipBounds

row_width
col_width

circuit

NGRnodeAt[]

Placement

NetGlobalRouting

NetRoutes[]

ChipBounds

row_width
col_width

int[][][][][]

Distance[]

circuit

PlacerPlacement

NetGlobalRouting[]

NetRoutes

int[][][][][][]

Distance
NGRnodeAt

ChipBounds

col_width

row_width

circuit

java.util.Hashtable

java.awt.Point[]

internal::eltsIOs::elts

PRDialog

java.awt.Point

NodePlacement[]

PlacementDim

CachedSemiperimeter

circuit

Node[]

PlacementRegion[]

PRDialog

NodePlacementjava.util.Vector

IOsinternal

PlacementDim

CachedSemiperimeter

Node[][]

PlacementRegion

circuit

java.lang.String[]

java.awt.Insets

ChannelRouteDialog

displayer

ChannelDisplayer

channelDisplayer1

Channel

channels::elts

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

circuit

ChannelRouteDialog

displayer

ChannelDisplayer

channelDisplayer1

channelDisplayerScrollPane

ChannelPickerScrollPane

stringListModel1

channels

circuit

ChannelRouteDialog

CircuitDisplayer

displayer

channelDisplayer1

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

channels

circuit

ChannelRouteDialog

displayer

channelDisplayer1

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

channels

circuit

Floorplanner

ChannelRouteDialog

displayer

channelDisplayer1

channelDisplayerScrollPaneChannelPickerScrollPane

stringListModel1

channels

circuit

Floorplanner

Floorplan

bestFloorplan

SlicingTree

TreeRoot

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

javax.swing.JButton[]

node_button

FloorplanDialog

floordialog1

PartDialog

partdialog1

java.util.Vector

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

Partitioner

partitions

CircuitDisplayer

CircuitDisplayer

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button

floordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_rownode_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

Partitioner

partitions
CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button
FloorplanDialog

floordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

partitions

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

netlistener

node_button

floordialog1

partdialog1

NodeArray

NodeDialog

nodedialog1

buttonlistener

node_row

node_col

nodelistener

circuit

viewer
partitions

CircuitDisplayer

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

FloorplanDialog

floordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener
buttonlistener

node_rownode_col

CircuitDisplayer$NodeListener

nodelistener
circuit

CircuitViewer

viewer

Partitioner

partitions

CircuitDisplayer

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button

FloorplanDialogfloordialog1

PartDialog

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

partitions

CircuitDisplayer

placeroutedialog1

netdialog1

placement

channelroutedialog1

netlistener

node_button

floordialog1

PartDialog

partdialog1

NodeArray

nodedialog1

buttonlistener

node_rownode_col

nodelistener

circuit

viewer

partitions

placeroutedialog1

netdialog1

placement

channelroutedialog1

CircuitDisplayer$NetListener

netlistener

node_button

FloorplanDialog

floordialog1

partdialog1

NodeArray

NodeDialog

nodedialog1

CircuitDisplayer$ButtonListener

buttonlistener

node_row
node_col

CircuitDisplayer$NodeListener

nodelistener

circuit

CircuitViewer

viewer

partitions

boolean[][][][]

Floorplan

Floorplan

Floorplan

FirstChildSecondChild

SlicingTree

Tree

Size

FirstChildSecondChild

SlicingTree

Tree

Size

Floorplan

FirstChildSecondChild

SlicingTree

Tree

Size

FirstChildSecondChild

Tree

Size

Main

CircuitViewer

circuitViewer

PartTransDisplayer
transcript

POLY_COLORCONTACT_COLORSELECTION_COLORMETAL2_COLORM1POLY_COLORM2POLY_COLORMETAL1_COLORM1M2_COLOR

Channel

channel

boolean[][][]

metal1[]contact[]
poly[]

via[]
metal2[]

bottom_labels[]top_labels[]

int[][][][]

selected

labels

VCGHCG

track_assignmenttop_connectionsbottom_connectionssorted_netspredecessors

this$0

this$0

this$0

this$0

this$0

this$0

PartTransViewerDialog

PartTransViewerDialog

PartTransViewerDialog

CutGraph

CutGraphScrollPane

PartDialog

PartDialog

PartTransViewerDialog

PartTransViewerDialog

PartTransViewerDialog

PartTransViewerDialog

java.util.concurrent.atomic.AtomicLong

seed

FloorplanIconFPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane

com.symantec.itools.javax.swing.borders.EtchedBorder

FPIconEtchedBorder

FloorplanIcon

FPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane
FPIconEtchedBorder

FloorplanIconFPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane FPIconEtchedBorder

FloorplanIconFPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane
FPIconEtchedBorder

FloorplanIcon
FPIemptyBorder

floorplanner

displayer

FPIconsScrollPaneSlicingTreeScrollPane FPIconEtchedBorder

java.util.Vector

delegate

SlicingTree

NodeColor

SlicingTree
FirstChild

SlicingTree

SecondChild

Name

java.util.Vector

Floorplans

javax.swing.ImageIcon

Icon

NodeColor
SlicingTree

FirstChild

SecondChild

Name

java.util.Vector

Floorplans

Icon

NodeColor

SlicingTree

FirstChild

SlicingTree

SecondChild

Name

Floorplans

Icon

NodeColor

FirstChildSecondChild

Name

Floorplans

Icon

NodeColor

FirstChildSecondChild

Name

Floorplans

Icon

NodeColor

Floorplans::elts

FirstChildSecondChild

Name

Icon

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorder
ResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

ResultsLabelEmptyBorderResultScrollPaneEmptyBorder

displayer

ptviewer

ResultsScrollPane

ResultsListModel

ResultsScrollPaneEtchBorder

partitioner

PlacerDialog

PlacementGraph

PlacerDialog

PlacementGraph

elementData

elementData

elementData

elementData

MyDialog

CircuitGlobalRouter

CircuitPlacer

Displayer

node_button

circuit

MyDialog

CircuitGlobalRouter

CircuitPlacer

Displayer

node_button

circuit

int[][][][]

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpane
OutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpane

OutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1

stringListModel2

DisplayedNode

displayerInputsScrollpane

OutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1stringListModel2

DisplayedNode

displayer

InputsScrollpaneOutputsScrollpane

stringListModel1stringListModel2

javax.swing.table.DefaultTableModel

javax.swing.JFileChooser

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

this$0

NodesNets

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuitPartitioner

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

Partitioner

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

planner

circuitDisplayer1

JScrollPane1

openFileChooser

circuit

partitioner

baseType

graphBorder

title

model

netStatus[]
nodeLock

nodeGainnodePartition

circuit

nodeLock

netStatus

nodeGainnodePartition

circuit

netStatus[]

nodeLock

nodeGain
nodePartition

circuit

nodeLock

netStatus

nodeGainnodePartition

circuit

Figure 1.3: Aphyds: flat object graph, extracted statically by WOMBLE (Jackson and Waingold 2001).
To read the labels, zoom in by 200%

1.2. Object-Oriented Diagrams 5

1.2.3.2 Global object diagrams

Extracting a global object diagram that shows the entire application structure increases the dia-
gram’s complexity significantly. A flat object graph for an entire system often has a profusion of
objects that makes it difficult to obtain a high-level picture, even for a relatively small program.
For Aphyds, a flat object graph mixes low-level objects such asSlicingTree that are data struc-
tures, with architecturally-relevant objects such asGlobalRouter from the application domain,
and a developer has no obvious way to distinguish between them (Fig. 1.3).

1.3 Software Architecture

In addition to object-oriented design diagrams, one can talk about the software architecture of
a system. A software architecture is a high-level description of a software system that is a con-
ceptual tool for documenting, reasoning about and communicating the structure of the system
to developers or to other stakeholders. Different complementary architectural views describe a
system from different perspectives (Soni et al. 1995; Kruchten 1995). In particular, there are two
important architectural views, thecode architectureand theruntime architecturethat we discuss
next. These views are the analogues of class diagrams and object diagrams, respectively.

1.3.1 Code Architecture

A code architectureor module viewshows code entities in terms of classes, fixed inheritance
relationships, packages, layers and modules (Clements et al. 2003). A code architecture impacts
quality attributes like maintainability, and has mature tool support. For object-oriented code, a
module view is often a class diagram or a package view. And today, many tools can extract such
module views from code (Kollman et al. 2002).

1.3.1.1 Package (layer) vs. runtime tier

A code architecture often organizes classes according to their packages. However, an applica-
tion’s code package structure is often orthogonal to its runtime structure. For example, all the
classes in Aphyds are in the same package. While this violatesgood programming practice, it
highlights the difference between a code-levelpackageor layer and a runtimetier4.

A class diagram (Fig. 1.2) shows the classesCircuit, Node, Net andTerminal all at the
same level. Of course, a class diagram can have hierarchy by using packages. But a pack-
age is just a namespace. Indeed, a developer often carefullydesigns the package structure to
indicate her architectural intent. For instance, she may place the classCircuitViewer in the
aphyds.ui package and the classPartitioner in theaphyds.model package, to indicate that
CircuitViewer andPartitioner belong to differentlayersin the code architecture.

3Several companies have established a process for such security reviews,threat modeling(Howard and Lipner
2003; Torr 2005; Howard and Lipner 2006). Section 7.8.1 (Page 251) discusses threat modeling further.

4We adopt the terminology of (Clements et al. 2003): alayerdenotes a cluster or a partition in acode architecture
or amodule view. A tier denotes a cluster or a partition in aruntime architectureor aruntime view.

6 Chapter 1. Introduction

A runtime architecture often groups conceptually related instances into conceptual runtime
partitions ortiers. For instance, the Aphyds developer’s diagram distinguishes presentation com-
ponents such asviewerUI in theUI tier, from computational components such aspartitioner in
theMODEL tier.

In particular, the package which contains a class does not indicate to which architectural
tiers the instances of that class belong. In the above case, the classesCircuitViewer and
Partitioner from the packagesaphyds.ui andaphyds.model, have their instances,viewerUI
andpartitioner, fit nicely within theUI andMODEL tiers, respectively. But, in general, one cannot
represent the dynamic structure of an application using thestatic source code organization, be-
cause different instantiations of a class often have distinct conceptual purposes and correspond
to different elements in the design. For example, the code would still have a singleVector class
in a java.util package. But at runtime, theviewerUI component in theUI tier may have an
instance ofVector, one that is different from aVector instance that is in use by thepartitioner
component in theMODEL tier.

1.3.2 Runtime Architecture

Another architectural view, theruntime architectureor runtime view, models a software system
as an organization of runtime entities, interactions between the entities, and constraints on how
the entities interact. A runtime architecture is important, because it impacts quality attributes
such as security, performance, and reliability.

Architecture description language (ADL). A runtime architecture can be an informal boxes-
and-lines diagram, or a formal specification in an architecture description language (ADL)
(Medvidovic and Taylor 2000). While many ADLs have been proposed, a common weakness
of many ADLs is the lack of enforcement with an implementation.

SCHOLIA uses the Acme general purpose ADL (Garlan et al. 2000) to document the built
and the designed architecture. Acme represents a hierarchical graph with types and attributes on
nodes and edges. The main reason we chose Acme is that its modeling environment, AcmeS-
tudio (Schmerl and Garlan 2004; AcmeStudio 2009), is a plugin in the Eclipse tool integration
platform, as are many of the other tools that we developed forSCHOLIA.

Most ADLs support the core elements of Acme that SCHOLIA uses : (a) components; (b)
connectors; (c) tiers or groups; and (d) hierarchical decomposition to refine a component into a
nested sub-architecture (Medvidovic and Taylor 2000).

UML. Runtime architectures have traditionally been of greater interest to academics than to
practitioners. The de facto standard for documenting design, UML, added direct support for
documenting runtime architectures only recently, with theUML 2.0 standard. With UML 2.0,
more UML tools support the manual editing of a runtime architecture. However, existing tools
do not yet support extracting a runtime architecture from code, nor do they support analyzing
the conformance of an implementation to a target runtime architecture. Overall, the tools for
the runtime architecture are still immature compared to thetools available for the code archi-
tecture. In particular, analyzing conformance between a runtime architecture and an arbitrary

1.3. Software Architecture 7

implementation remains an important but unsolved problem (Shaw and Clements 2006).

1.3.3 Benefits of Architecture

All systems have an architecture, whether it is explicitly documented or not. There are several
recognized benefits to documenting the architecture of a system, as I discuss below.

1.3.3.1 System understanding

In object-oriented systems, the dominant pattern-based design methodologies encourage the
composition of systems from cooperating objects. So, engineers who want to evolve such an
existing system must understand these runtime interactions. In many cases, the architectural
documentation may be missing or out of date. When the only reliable source of information is
the source code, architects and developers often face the problem of extracting the architecture
of the system for the purpose of understanding it.

1.3.3.2 Qualitative architectural evaluation

An architect can document the architecture and use it to qualitatively evaluate risks, tradeoffs and
requirements. (Dobrica and Niemel 2002) survey several architectural tradeoff analysis methods.
Moreover, sufficient evidence exists about the value of architecture reviews to improve the qual-
ity of a system under development (Maranzano et al. 2005). These methods assume that the
architecture is known. However, when the architecture is missing or potentially out of date, there
must be a way to extract the built architecture from an existing system.

1.3.3.3 Quantitative architectural analysis

Quantitative architectural-level analyses can analyze specific quality attributes such as secu-
rity (Bidan and Issarny 1997; Moriconi et al. 1997; Deng et al.2003; Wile 2003; Ren and Taylor
2005; Abi-Antoun et al. 2007b), performance (Spitznagel and Garlan 1998; Williams and Smith
1998) or reliability (Roshandel et al. 2007; Immonen and Niemelä 2008).

These approaches assume that architects have an accurate runtime architecture of the system
under study. But in reality, developers often document a system’s architecture by hand, and may
forget to include all communication that exists in the implementation. Thus, it would be useful
to have a principled approach that can extract from an implementation an up-to-date runtime
architecture that matches the model required by an architectural-level analysis.

Many architectural analyses rely on assigning architectural properties to the various compo-
nent and connector instances. For example, an architectural-level security analysis assigns to
each component atrustLevel property, which can be eitherFullTrust, PartialTrust or NoTrust
(Abi-Antoun et al. 2006, 2007b). Then, the analysis can check for an information disclosure
vulnerability, where an attacker steals data while in transit or at rest. For example, this could
happen if thetrustLevel of the source of a data flow is higher than that of its destination.

Finally, unless the implementation faithfully realizes the carefully designed architecture, the
built system may not exhibit the qualities that were carefully thought out. Indeed, the lack of

8 Chapter 1. Introduction

enforced or checked conformance with the actual implementation remains the Achilles heel of
an architecture-based approach (Jackson and Rinard 2000).

1.3.3.4 Avoiding architectural drift and erosion

Missing or un-enforced architectural information is a key factor which contributes to architec-
tural problems, e.g., (Jaktman et al. 1999). These includearchitectural drift, i.e., “a lack of
coherence and clarity of form which may lead to architectural violation and increased inadapt-
ability of the architecture” (Perry and Wolf 1992) andarchitectural erosion, i.e., “violations in
the architecture that lead to increased system problems andbrittleness” (Perry and Wolf 1992).
(Hochstein and Lindvall 2005) survey various techniques for combating architectural degenera-
tion, and include, among others, the ability to analyze conformance.

1.4 Architectural Abstraction

The runtime structure of an object-oriented program can be represented as aRuntime Object
Graph (ROG), where nodes correspond to runtime objects, and edges correspond to relations
between objects such as points-to field reference relations. It is also possible to show other edges
on the object graph, for example, ones that show field accesses or method invocations.

To date, object diagrams were mostly used to show the interactions between a small set of
core objects. Because of the immaturity of the tool support for extracting object diagrams from
code, many developers have learned to live without them, except perhaps at the design stage.

In this dissertation, I argue that object diagrams, once they are hierarchical, scale mean-
ingfully to an entire system, and thus, can also be useful to understand the global application
structure of a system. Moreover, such a global object diagram can map fairly intuitively to a run-
time architecture of an object-oriented system, which allows reusing much of the existing work
in architecture-based approaches.

An object diagram and a runtime architecture are related, but need not be identical. An object
diagram and a runtime architecture can differ in the following ways.

• An architecture is global: a runtime architecture isglobal, and shows the object structures
for the entire application. On the other hand, an object diagram is often local, and shows
the interactions between a few selected objects;

• An architecture is abstract: a runtime architecture is potentially moreabstractthan an
object diagram. For example, a node in an object diagram typically corresponds to one
object or all instances of a given type. But a runtime architecture abstracts one or more
objects into conceptualcomponents, and represents how those components interact ascon-
nectors(Clements et al. 2003).

Object abstraction: a box in an architectural diagram does not necessarily corre-
spond to one object. It could represent multiple instances of the same type, or even
different, but related types;
Object clustering: furthermore, there could be coarser groupings of objects into
groups or clusters;

1.4. Architectural Abstraction 9

Object
relation

Object

(a) Runtime object graph.

Component
Connector

Object
relation

Object

Group/Tier

(b) Components, connectors and tiers.

Component
HierarchyConnector

Object
relation

Object

(c) Hierarchical decomposition.

Figure 1.4: Architectural abstraction.

Edge abstraction: an edge in an architectural diagram may correspond to a rela-
tion between objects in the implementation. In addition, anedge may correspond to
objects in the implementation.

• An architecture is hierarchical: a runtime architecture is oftenhierarchical, and can
optionally decompose a component into a nested sub-architecture;

Similarly to previous work that defined requirements on architectural description languages

10 Chapter 1. Introduction

(Luckham and Vera 1995; Shaw and Garlan 1996; Shaw et al. 1995), we define architectural ab-
straction as follows (Fig. 1.4):

• Component abstraction. A runtime architecture showscomponentsthat correspond to
runtime entities. For an object-oriented system, a component represents an object or a
group of objects. A group of objects must be a meaningful abstraction, for example, from
the application domain.

• Connector abstraction. An architecture hasconnectorsthat correspond to relations be-
tween runtime entities. For an object-oriented system, a connector represents a runtime
interaction between some object in one component and some object in another component.

• Tier or group abstraction. An architecture often groups conceptually related compo-
nent instances into runtimetiers, where atier is a conceptual partitioning of functionality;
sometimes, it identifies functionality that may be allocated to a separate physical machine,
e.g., aDATA tier (Bass et al. 2003). Many architecture description languages (ADLs) have
the notion of a tier orgroup(Dashofy et al. 2001).

• Hierarchical decomposition.A component can have a nested sub-architecture consisting
of lower-level components and connectors. Hierarchy also provides abstraction since it
enables both high-level understanding and detail.

• Scalability. Large systems would benefit the most from having meaningful,documented
architectures. An architecture scales if the size of top-level diagram remains mostly con-
stant as the size of the program increases arbitrarily.

• Soundness.Architectural soundness consists ofcomponent soundness, connector sound-
ness, andtier soundness:

Component soundness:An architecture is sound if for every Runtime Object Graph
(ROG), there exists a mapping from each runtime objecto to exactly one component
C in the architecture. In particular, an architecture does not show one runtime entity
as two components. Otherwise, an architectural-level analysis may assign these two
components different values for a key architectural property, which could invalidate
the results of the analysis.
Connector soundness:If there is a runtime relation between objecto1 and objecto2
in the ROG, then the architecture must have a connector between componentsC1 and
C2 corresponding to the communication betweeno1 ando2.
Tier soundness: If an objecto is in a runtime domaind in the Runtime Object
Graph (ROG), then the architecture must show componentC corresponding too in
the representativeD of d.

• Precision. An architecture is precise if it shows two runtime entities that represent differ-
ent conceptual design elements as two different architectural entities. An architecture is
imprecise if its elements are too coarse grained and lump together runtime elements that
serve different conceptual purposes in the design. For instance, an architecture that repre-
sents the entire system as one component is sound, but of course, grossly imprecise. We
define precision as:

Component precision: The architecture shows two runtime entities that represent
two different conceptual design elements as two different components.
Connector precision: The architecture shows two runtime relations that represent
two different conceptual interactions as two different connectors.

1.4. Architectural Abstraction 11

1.5 Object Graph Extraction

Unfortunately, extracting the runtime architecture of an existing object-oriented system is diffi-
cult. In particular, because a system may create many objects at runtime, object diagrams quickly
increase in size, even for small systems.

1.5.1 Key Idea: Hierarchical Object Graphs

Hierarchy is often used to mitigate the complexity of a largegraph. Hierarchy collapses many
nodes into one, and is a classic approach to shrink a large graph. Hierarchy also allows collaps-
ing or expanding selected elements (Storey et al. 2001), to allow both high-level and detailed
understanding.

Hierarchy was effective in dynamic object diagrams, e.g., (Hill et al. 2002). Because archi-
tectural hierarchy is not readily observable in arbitrary code in a general purpose programming
language, imposing hierarchy on a static object diagram is hard. Some language-based solutions,
e.g., ArchJava (Aldrich et al. 2002a), extend the language to specify architectural hierarchy and
instances directly within the code. But approaches like ArchJava restrict how a program can
use objects. As a result, they require re-engineering an existing Java system to follow the more
restrictive rules (Aldrich et al. 2002a; Abi-Antoun and Coelho 2005; Abi-Antoun et al. 2007a),
a process which is often non-trivial.

1.5.1.1 Annotations to convey architectural intent

To achieve hierarchy in a static object diagram, SCHOLIA combines annotations and static analy-
sis. In SCHOLIA, a developer picks a top-level object as a starting point, then uses local, modular,
ownership annotations in the code to impose a conceptual hierarchy on runtime objects. Hier-
archy provides architectural abstraction, whereby architecturally significant objects appear near
the top of the hierarchy and data structures are further down.

Definition 1 (Abstraction by Ownership Hierarchy and by Types). A hierarchical object graph
provides abstraction by ownership hierarchy when it shows architecturally significant objects
near the top of the hierarchy and data structures further down. Moreover, the object graph can
provide abstraction by types by collapsing objects furtheraccording to their declared types.

Just as there are multiple architectural views of a system, there is no single right way to an-
notate a program. Good annotations minimize the number of objects at the top level by pushing
low-level objects that are data structures, underneath other, more architecturally significant ob-
jects from the application domain. For example, in Aphyds, the annotations make objects of type
Node or Net part of the higher-levelCircuit object (Fig. 1.5).

In a hierarchical object graph, an object can contain other objects. As a result, many nodes
representing lower-level objects can be collapsed underneath a node representing a higher-level
object. This is a classic approach to shrink a graph. However, SCHOLIA collapses object nodes
based on containment, ownership and type structures, not according to where objects are syntac-
tically declared in the program, a naming convention or a graph clustering algorithm.

12 Chapter 1. Introduction

Figure 1.5: Aphyds: partial hierarchy of objects.

1.5.1.2 Static analysis to achieve soundness

A static analysis then extracts from the annotated program aglobal hierarchical object graph that
conveys architectural abstraction by ownership hierarchyand by types. Moreover, the extracted
object graph is bothobject soundandedge sound.

Definition 2 (Object soundness). An object graph is object sound if each runtime object has
exactly one unique representative in the object graph.

1.5. Object Graph Extraction 13

1 @Domains({"DB"})

2 class Circuit {

3 @Domain("DB") Node node;

4 @Domain("DB") Net net;

5 ...

6 }

Figure 1.6: Aphyds:Node andNet objects arepart of aCircuit object.

Definition 3 (Edge soundness). An object graph is edge sound if it has edges that correspond to
all possible runtime points-to relations between the representatives of the runtime objects.

1.5.2 Example

Instead of placing objects directly inside other objects, SCHOLIA uses an extra level of hierarchy
and groups related objects inside adomain. A domain is similar to an architectural runtimetier,
which is aconceptual partitioning of functionality(Clements et al. 2003).

This dissertation uses a visualization based on box nestingto indicate the containment of
objects inside domains, and that of domains inside objects.For example, the domainDB is
inside the objectcirc (Fig. 1.8). Dashed-border white-filled boxes represent domains. Solid-
filled boxes represent objects. Solid edges represent field references. An object labeledobj:T
indicates an object referenceobj of typeT, which we then refer to either as “objectobj” or as
“T object”, meaning for brevity, “an instance of theT class”.

SCHOLIA can describe two kinds of hierarchical information, logical containment and strict
encapsulation, which I discuss next.

1.5.2.1 Logical containment

The class diagram (Fig. 1.2) showsNode, Net andTerminal classes that are all at the same level
asCircuit. From the class diagram, it is unclear whether instances ofNode andNet share one
Vector object.

An architecture often uses hierarchical decomposition to refine a component into a nested
sub-architecture (Medvidovic and Taylor 2000). For example, the Aphyds architecture (Fig. 1.1)
showsnode andnet insidecirc’s substructure.

To define a conceptual group of lower-level objects than an object contains, we use apublic
domain. For instance, a public domainDB inside objectcirc contains objectnet. This makes
net part of circ. Part of means conceptual or logical containment, which we indicateby a thin
border. Namely, nested objects may still be accessible to the outside. For instance, any object
that can referencecirc can also reference the child objectsnode andnet inside theDB domain.

A developer indicates this logical containment using annotations (Fig. 1.6). The key idea is
to declare a public domain,DB, insideCircuit and place theNode andNet objects insideDB.

Logical containment can convey arbitrary architectural intent. For instance, the architect
could have made anet object conceptually part of thepartitioner object, instead of making it part
of a circ object (Fig. 1.1). Indeed, the arbitrary nature of architectural intent leaves little hope
that a fully automated static analysis could infer meaningful public domains.

14 Chapter 1. Introduction

1 @Domains({"OWNED"})

2 class Net {

3 private @Domain("OWNED") Vector terms;

4 ...

5 }

Figure 1.7: Aphyds:terms object isowned byaNet object.

1.5.2.2 Strict encapsulation

The class diagram (Fig. 1.2) suggests that aNode object and aNet object might share the same
Vector object. But at runtime, different instances ofVector are often part of conceptually
different components. For instance, aNode object has aVector object ofTerminal objects.
Another distinctVector object, also ofTerminal objects, is part of aNet object (Fig. 1.8(b)).

Unlike the class diagram which shows oneVector class (Fig. 1.2), the runtime structure
can distinguish between different instances ofVector. Moreover, in this case, we may want to
indicate that theseVector objects arestrictly encapsulatedor ownedby other objects. When an
object is owned, it is part of another object’s private stateor representation, and no aliases to the
owned object can leak to the outside.

A developer indicates that an object is encapsulated by placing it in a private domain. For
example,net has a private domainOWNED and objectterms insideOWNED (Fig. 1.7). Our visu-
alization shows a private domain with a thick dashed border (Fig. 1.8(b)). In particular, strict
encapsulation guarantees that there can be no incoming references into aterms object encapsu-
lated inside anet object.

Although Net and Node objects have their respective distinctVector objects, those two
Vectors may refer in turn to the sameTerminal objects that are also inDB.

A strictly encapsulated field cannot be assigned to by a public modifier method, or returned
from a public accessor method. So there are existing static analyses that can identify strictly
encapsulated objects.

1.5.2.3 Sound approximation

An OOG is an approximation of the actual objects and relations, one that is conservative and
may include more objects and relations than those that will actually be there, by virtue of using
a sound static analysis. An OOG, like any static object diagram, can be imprecise in several
ways (Fig. 1.8(b)). First, it makes no guarantees about the multiplicities of objects at runtime.
For example, a given program run of Aphyds may not instantiate a singleNode or Net object.
Second, although the diagram shows an edge fromterms to term, a given program run may not
actually have such an edge. For instance, theterms Vector may remain empty during one entire
program execution.

1.5.2.4 Aliasing

Aliased object must be represented by the same runtime component in the architecture. If an
architecture deceptively showed two components for one runtime entity, one could assign these

1.5. Object Graph Extraction 15

DB

... node:
Node

circ:
Circuit

net:
Net

object:
Type

Public
Group

LEGEND

(a) Representinglogical containmentinsidecirc.

DB

OWNEDOWNED

...

terms:
Vector<Terminal>

term:
Terminal

node:
Node

terms:
Vector<Terminal>

net:
Net

circ:
Circuit

X
object:
Type

Public
Group

Private
Group

LEGEND

(b) Representingstrict encapsulationinsidenode andnet.

DB

...

term:
Terminal

node (+):
Node

net (+):
Net

circ:
Circuit

object:
Type

Public
Group

Private
Group

LEGEND

(c) Collapsing the sub-structures ofnet andnode.

Figure 1.8: Aphyds: representingCircuit’s runtime sub-structure.

two components different values for a key architectural property such astrustLevel, which could
lead an analysis at the architectural level to produce misleading results.

In a program, several object references may alias, i.e., refer to the same object at runtime.
Therefore, an alias analysis is needed to identify possiblealiasing. In SCHOLIA, we rely instead

16 Chapter 1. Introduction

on the precision about aliasing that ownership domains offer. In particular, the type system
guarantees that two objects in different domains can never alias. But two objects of compatible
types, in the same domain, may alias. The analysis uses this information to ensure that the
diagram reflects possible aliasing. For instance, considera fieldtemps of typeStack that is in
the same domainOWNED asVector insideNet. SinceStack is a subtype ofVector, the object
diagram would displaytemps andterms as a single object.

1.5.2.5 Abstraction by hierarchy

SCHOLIA represents a hierarchical object graph as a nested graph with domains and objects
inside those domains. Like other such representations, hierarchy allows information at any level
to be displayed or elided to show overviews of the system at the desired level of abstraction
(Storey et al. 1999).

For instance, Fig. 1.8(c) collapses the substructure ofNode andNet object. A (+) symbol
indicates that an object has a collapsed sub-structure. As aresult, a low-level object such as
Vector no longer appears at the same level asNode or Net objects. Moreover, collapsing the
substructure ofNode andNet still represents their relation toTerminal. As an aside, note how
Fig. 1.8(c) is comparable to the substructure ofcircuit in the target architecture (Fig. 1.1).

We can use the same nested box visualization to represent theentire Aphyds object tree
(Fig. 1.5). Collapsing the sub-structure of most objects produces an object graph that is much
more manageable than a flat one. The hierarchical graph (Fig.1.9) has all the objects that are in
the flat graph (Fig. 1.3)5. However, the hierarchical graph collapses into one node several objects
that are in the flat graph, based on the ownership and the logical containment information of
those objects, and optionally, based on their declared types.

In summary, an object-oriented program’s runtime structure often bears little resemblance
to its code structure. One code element can appear as multiple elements in a runtime structure.
In addition, due to possible aliasing, multiple code elements can also correspond to the same
element in the runtime structure.

1.5.3 Previous work on architectural extraction

We discuss most of the previous work on architectural extraction in Section 8.6 (Page 291). In
summary, previous work in architectural extraction used dynamic analysis, static analysis or a
mix of the two. A dynamic analysis takes a snapshot of the heapat runtime, and reveals the
structure at that instant in great detail (Flanagan and Freund 2006). Still, it is possible to obtain a
high-level picture from the profusion of objects, through the use of extensive graph summariza-
tion and manipulation (Mitchell 2006; Mitchell et al. 2009). However, such a snapshot shows
one or more executions, meaning it may not reflect important objects or relations that show up
only in other executions.

On the other hand, a sound static analysis can extract an object graph that captures all exe-
cutions. All previous static analyses produce non-hierarchical object graphs that explain runtime

5Note, the hierarchical graph shows all the objects that the program may produce exceptString objects, which
I purposely excluded. For consistency, I also manually elidedString objects from the flat graph.

1.5. Object Graph Extraction 17

 MODEL

 DB owned

 UI

Partitioner(+)

Circuit

Placer(+)

PlaceRouteUI(+)

Floorplanner(+)

Channel(+)

GlobalRouter(+)
Net(+) Terminal

Node(+)

EnumerateFanout(+)

Hashtable<String,Node>

Hashtable<String,Net>Viewer(+)

ChannelRouteUI(+)

PartUI(+)

FloorplanUI(+)

Figure 1.9: Aphyds: hierarchical object graph.

interactions in detail (Jackson and Waingold 2001; O’Callahan 2001; Lam and Rinard 2003), but
convey little architectural abstraction, as can be seen in the Aphyds flat object graph (Fig. 1.3).

1.5.4 Summary

SCHOLIA fulfills a previously unexplored space, that of hierarchical static object diagrams. Hi-
erarchy makes an object diagram scale to show the object structures of an entire application,
instead of just the interactions between a small set of objects. Furthermore, a hierarchical ob-
ject graph can provide architectural abstraction and can map intuitively onto a standard runtime
architecture.

In Chapter 6, we discuss more precisely how to abstract an object graph into a Component-
and-Connector (C&C) view, which is a standard representation of a runtime architecture. In-
tuitively, a canonical object in an OOG maps to a component, and a domain maps to a tier.
Moreover, the abstraction step is largely automated. Even though a developer can control the ab-
straction, we will almost always use the default options when extracting an OOG and abstracting
it into a C&C view, as our evaluation in Chapter 7 will show.

As a result, we will often use the terms “hierarchical objectgraph” and “runtime architecture”
interchangeably. Similarly, we will use the terms “component” and “tier” interchangeably with
“object” and “domain”, respectively.

18 Chapter 1. Introduction

_lentMain_MainMODELPartitioner
_lentMain_MainMODELCircuit
_lentMain_MainMODELPlacer
_lentMain_MainUIPlaceRouteUI
_lentMain_MainMODELFloorplanner
_lentMain_MainMODELChannel
_lentMain_MainMODELGlobalRouter
_lentMain_MainMODELCircuit_CircuitDBNet
_lentMain_MainMODELCircuit_CircuitDBTerminal
_lentMain_MainMODELCircuit_CircuitDBNode
_lentMain_MainMODELCircuit_CircuitownedEnumerateFanout
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Node_
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Net_
_lentMain_MainUIViewer
_lentMain_MainUIChannelRouteUI
_lentMain_MainUIPartUI
_lentMain_MainUIFloorplanUI

1.6 Architectural Conformance

In some domains, it is possible to generate the initial code from an architecture. But developers
can still modify the implementation directly and potentially cause it to diverge from the archi-
tecture. If the architecture and implementation are inconsistent, the properties that an architect
carefully designed into the architecture may not hold in theimplementation. Thus, there is value
in determining if the implementation conforms to the architecture. Similarly, architects who
want to keep their systems evolvable, or maintain various runtime invariants, must ensure that
the runtime structure of the built system conforms to the architect’s intended architecture. Sev-
eral researchers have reported that informal architectural diagrams that architects have of their
systems, while mostly accurate, often omit important communication that exists in the imple-
mentation (Murphy et al. 2001; Aldrich et al. 2002a).

1.6.1 Key Property: Communication Integrity

A system conforms to its architecture if the architecture isa correct abstraction of the runtime
behavior of the system. Thecommunication integrityproperty defines one notion of structural
conformance, namely how architectural structure constrains runtime communication in the im-
plementation (Moriconi et al. 1995; Luckham and Vera 1995; Aldrich et al. 2002a), as follows:
Definition 4 (Communication integrity). Each component in the implementation may only com-
municate directly with the components to which it is connectedin the architecture.

Of course, communication integrity is not the only notion ofconformance that may need to be
enforced. For example, (Luckham and Vera 1995) identified additional criteria for conformance:
Definition 5 (Decomposition). For each component in the architecture, there should be a corre-
sponding component in the implementation.
Definition 6 (Interface Conformance). Each component in the implementation must conform to
its architectural interface.

In this dissertation, we focus on communication integrity,since it is a fundamental confor-
mance property relating architecture to implementation, upon which several other conformance
properties rely (Aldrich 2003). Because communication integrity mandates which components
communicate, it provides the foundation for other architectural properties that depend on how
these components communicate.

Indeed, many other conformance analyses could be defined. For example, one analysis may
enforce a minimum or a maximum in a pool of replicated components. However, there are limits
to what can be checked statically because a static object diagram lacks precision on the actual
multiplicity of the objects that the program may create, or on the actual relations between objects.

1.6.2 Establishing traceability

When the architecture and the code evolve independently, traceability between the designed ar-
chitecture and the code is often lost. Once traceability is lost, the development team slowly
gives up on having a documented architecture (Jackson and Rinard 2000). Having traceability
between the code and a designed runtime architecture has many potential benefits, including

1.6. Architectural Conformance 19

clearer documentation, more focused development, increased system understanding, and a more
precise impact analysis of the proposed changes (Lindvall and Sandahl 1996). However, estab-
lishing traceability after the fact is still difficult (Spanoudakis and Zisman 2005). The proposed
conformance analysis establishes traceability as a side benefit.

1.6.3 Previous work in architectural conformance

We discuss most of the previous work on architectural conformance in Chapter 8.9 (Page 299). In
summary, enforcing communication integrity in arbitrary object-oriented implementation code is
challenging due to programming language mechanisms that obscure communication pathways,
such as references and objects, so previous systems have made serious compromises.

To side-step the problem of architectural conformance, some approaches radically change
the programming language to incorporate architectural constructs at the expense of severe
implementation restrictions, e.g., (Aldrich et al. 2002a;Scḧafer et al. 2008). Others require
that developers implement their applications on specialized architectural middleware or frame-
works (Medvidovic et al. 1996; Malek et al. 2005), or requirean implementation to follow strict
style guidelines that prohibit sharing mutable data between components (Luckham and Vera
1995). Still other approaches require developers to alwaysgenerate parts of the implementa-
tion from an architectural model (Shaw et al. 1995; Miller and Mukerji 2003). Finally, to ana-
lyze conformance after the fact, previous approaches use dynamic analyses (Sefika et al. 1996b;
Schmerl et al. 2006), which, by definition, cannot check all possible system executions.

1.7 The Scholia approach

A general approach to verify the runtime structure must extract a structure that captures all po-
tential executions of a program, then abstract that structure into a high-level representation that
is suitable for comparison with the intended architecture.

SCHOLIA enables a developer to extract the built runtime architecture, then use the archi-
tecture for documentation, communication, qualitative evaluation or quantitative analysis. For
the architectural extraction, SCHOLIA adopts theextract-abstract-presentstrategy (Krikhaar
1997). And for the conformance analysis, SCHOLIA follows theextract-abstract-checkmodel
(Feijs et al. 1998; Murphy et al. 2001)6. The steps are as follows (Fig. 1.10):

1. Add annotations to the code and type-check them;
2. Extract a soundobject graph that conveys architectural abstraction by hierarchy and by

types;
3. Abstractan extracted object graph into a built runtime architecture;
4. Presentthe built runtime architecture in an architecture description language (ADL) or an

architectural modeling environment.
In addition, if the developer can separately document the system’s target architecture, he can

analyze the conformance of the built architecture to the target, as follows:
1. Document the designed runtime architecture;

6Reflexion Models (RM) (Murphy et al. 2001) inspired SCHOLIA heavily, even though RM works only on the
code architecture. We compare and contrast the two approaches in more detail in Section 6.6.4 (Page 218).

20 Chapter 1. Introduction

Designed
Architecture

Designed
Architecture

Hierarchical
Object Graph

Hierarchical
Object Graph

Built
Architecture

Built
Architecture

AnnotationsAnnotations

Investigate
and refine

Extract

Abstract

CodeCode

Trace to
Code

Annotate

Document

Conformance
View

Conformance
ViewCheck

Compare

Typecheck

Refine

Figure 1.10: Overview of the SCHOLIA approach.

2. Structurallycomparethe built and the designed hierarchical runtime architectures;
3. Checktheir conformance and enforcecommunication integrityin the designed runtime

architecture; and
4. Compute a measure of their structural conformance.
Based on the findings, a developer can perform any of the following:

(a) Iteratively refine the annotations based on visualizingan extracted object graph, before ab-
stracting it;

(b) Fine-tune the abstraction of an object graph into an architecture;
(c) Manually guide the comparison of the built and the designed architecture, if the structural

comparison fails to perform the proper match;
(d) Correct the code if she decides that the designed architecture is correct, but that the imple-

mentation violates the architecture; or
(e) Update the designed architecture if she considers that the conformance analysis highlights

an error or omission in the architecture.

Variations. There are several variations on the SCHOLIA approach.
• Visualize the ownership annotations:A developer may be interested in adding owner-

ship annotations to detect and prevent aliasing bugs that lead to representation exposure7.
In that case, SCHOLIA can visualize the ownership structure of an application in order to
help a developer fine-tune the annotations. Indeed, one can conceivably use an OOG to
judge the quality of the annotations in a program, whether they are added manually or us-
ing an inference tool (A. Milanova, personal communication, 2008). Such a judgement is
necessarily subjective. A more objective criterion is to compare an OOG to a benchmark,
which could be, for example, a target architecture.

7The code quality tool FindBugs (findbugs.sourceforge.net) uses a shallow, unsound static analysis to
warn about possible representation exposure. It is precisely these mistakes that ownership types can prevent.

1.7. The Scholia approach 21

findbugs.sourceforge.net

• Understand the application’s object structures:Today, a developer can use a number of
existing tools to extract a class diagram from the code relatively easily, to help her under-
stand the static code structure of a system. She may want to complement her understanding
of the system by studying its runtime structure. So she may beinterested in visualizing an
object graph and tracing from objects and edges in the objectgraph to the code.

1.8 SCHOLIA ’s Requirements

From the above discussion, I list the requirements of a proposed solution. These requirements are
mainly based on generally accepted good practices, shortcomings of previous approaches, and
the needs for industrial adoptability. In Section 9.1 (Page305), I return to these requirements
and systematically evaluate how SCHOLIA meets each one.

Because SCHOLIA follows the extract-abstract-check strategy, I organize the requirements as
being on the overall approach (Section 1.8.1), the annotations (Section 1.8.2), the architectural
extraction (Section 1.8.3), the architectural comparison(Section 1.8.4), and the architectural
conformance analysis (Section 1.8.5).

1.8.1 Overall Approach

I identify the following requirements on the overall approach:
RQ O1 – Hierarchical architectural models: Modeling a software architecture as a hierarchy

of component instances is a generally accepted notion, and many existing ADLs model
architecture in this way (Medvidovic and Taylor 2000). Sucha model enables a developer
to understand the relations between components at a high level, then drill down and study
each component recursively.

RQ O2 – Static analysis: Static analysis can extract sound information which considers all
possible executions. In contrast, dynamic analysis considers only a few program runs
(Sefika et al. 1996b; Schmerl et al. 2006).

RQ O3 – Arbitrary implementation code: To be adoptable, the approach must handle exist-
ing object-oriented languages, design idioms and patterns. The approach must also support
existing frameworks and libraries, and must not require a specific implementation frame-
work. A developer should not have to re-engineer a system to expose its architecture using
an extended language (Aldrich et al. 2002b; Schäfer et al. 2008), or to implement the sys-
tem on a specialized framework or middleware (Medvidovic etal. 1996; Malek et al. 2005;
Bruneton et al. 2006). As (Di Nitto and Rosenblum 1999) pointedout, a middleware often
inducesan architectural style on an application that uses it.

RQ O4 – After the fact analysis: This dissertation focuses on extracting the architecture,and
analyzing the conformance of an existing system after the fact. In contrast, model-driven
approaches assume that developers always update an architectural model, then generate the
code from the architecture to ensure conformance, e.g., (Moriconi et al. 1995; Shaw et al.
1995; Miller and Mukerji 2003). Despite the recent trend in Model-Driven Architecture
(Miller and Mukerji 2003), code generation is applicable only in certain domains, as it is
often too restrictive, and does not handle legacy code. Whenever developers can directly

22 Chapter 1. Introduction

modify the implementation, as is often the case, they can potentially introduce architectural
violations.

RQ O5 – Automation: The different steps of the approach must be semi- or fully automated.

1.8.2 Annotations

I identify the following requirements for the annotations:
RQ ANN1 – Language support for annotations: The annotations must not extend the lan-

guage. Instead, they must be structured comments or use available language support for
annotations8. In addition, the annotations must not affect the program’sruntime semantics.

RQ ANN2 – Real object-oriented code:The annotations must support existing object-oriented
code that uses aliasing, recursion, inheritance, inner classes, etc.

RQ ANN3 – Expressiveness:The annotations must be expressive and allow annotating a pro-
gram without having to refactor it to express its architecture. Having to refactor existing
code to annotate it increases the cost of adopting the approach.

RQ ANN4 – Automation: A tool must check that the annotations are consistent with each other
and with the code. Ideally, a tool also helps with adding the annotations to a program. At
least, the annotations should be amenable to automated inference.

1.8.3 Architectural Extraction

The goal of the extraction is to extract an object graph that soundly approximates all possible
Runtime Object Graph (ROG)s. I identify the following requirements for the object graph ex-
traction:
RQ EXT1 – Summarization: Different program runs generate a different number of objects.

Furthermore, the number of objects in the Runtime Object Graph (ROG) is unbounded.
An object graph must be a finite representation of all Runtime Object Graphs (ROGs).

RQ EXT2 – Hierarchy: An object graph must provide architectural abstraction by hierarchy
and support both high-level understanding and detail. It must show architecturally signifi-
cant objects near the top of the hierarchy and data structures further down.

RQ EXT3 – Object soundness:The object graph must show exactly one unique representative
for each runtime object.

RQ EXT4 – Edge soundness:The object graph must show edges that correspond to all possible
runtime points-to relations between the representatives of the runtime objects.

RQ EXT5 – Traceability: Each node or edge in an object graph should be traceable to a set of
nodes from the program’s abstract syntax tree, and to the underlying lines of code.

RQ EXT6 – Precision: Ideally, the object graph should have no more edges than soundness
requires. However, there may be false positives that are dueto infeasible paths. This is an
inherent problem in any static object diagram.

RQ EXT7 – Scalability: The static analysis to extract an object graph must scale.
RQ EXT8 – Automation: Tool support must be available to extract an object graph from an

annotated program. Furthermore, the extraction tool must have interactive performance.

8The C# language supports custom attributes, and Java 1.5 supports annotations (Bloch 2004).

1.8. SCHOLIA ’s Requirements 23

1.8.4 Architectural Comparison

I identify the following requirements for the architectural synchronization:
RQ COMP1 – No unique identifiers: The comparison should not assume that the architectural

view elements have unique or persistent identifiers.
RQ COMP2 – No ordering: The comparison should not assume that an architectural viewhas

an inherent ordering among its elements.
RQ COMP3 – Insertions, deletions, and renames:The comparison must handle elements

that are inserted, deleted and renamed across two architectural views.
RQ COMP4 – Hierarchical moves: The comparison must detect elements that are moved up

or down a number of levels in the hierarchy.
RQ COMP5 – Manual overrides: The user must be able to force or prevent matches between

selected view elements. The comparison should then take these constraints into account to
improve the overall match.

RQ COMP6 – Type information optional: The comparison should not assume that the view
elements have type information that matches exactly. It should be able to recover a cor-
rect mapping from structure alone if necessary, or from structure and type information if
type information is available. It should, however, take advantage of any available type
information, and avoid matching elements that have incompatible types.

RQ COMP7 – Disconnected and stateless operation:The comparison should work after the
fact, in a disconnected and stateless mode. In other words, the comparison should not rely
on the ability to monitor, intercept, or record the structural changes to an architecture as
they occur.

RQ COMP8 – Automation: The comparison must be semi- or fully automated.

1.8.5 Architectural Conformance

I identify the following requirements for the architectural conformance analysis:
RQ CHK1 – Communication integrity: The conformance analysis must enforcecommunica-

tion integrity, and must not have false negatives about possible componentcommunication.
RQ CHK2 – Few false positives:Any sound static analysis is bound to generate false positives.

However, the rate of false positives must be low. Otherwise,developers will waste most of
their time wading through spurious warnings.

RQ CHK3 – Traceability: The conformance analysis should establish traceability between the
target architecture and the underlying source files. A developer should be able to trace
from each conformance finding to the pertinent lines of code,without having to potentially
review the entire code base to investigate a suspected architectural violation.

RQ CHK4 – Automation: The conformance analysis must be fully or semi-automated.

1.9 Contributions

This dissertation contributes SCHOLIA, the first approach to statically extract a hierarchical run-
time architecture from existing object-oriented code, requiring only annotations. SCHOLIA is

24 Chapter 1. Introduction

also the first approach to analyze at compile time communication integrity between code in a
widely-used object-oriented language and a rich, hierarchical description of the architect’s in-
tended runtime architecture. I break up the overall contribution into the following contributions:

• Static analysis to extract a hierarchical object graph froma program with ownership
annotations. I designed a novel static analysis to extract a hierarchicalobject graph, which
provides architectural abstraction by ownership hierarchy and by types (Chapter 2). The
annotations implement the ownership domain type system (Aldrich and Chambers 2004),
and can be checked for consistency with each other and with the code using a tool.

• Formal validation of soundness. To validate the object graph extraction algorithm, I
represent the core of the algorithm into a formal system incorporating the key constructs
of a Java-like language and prove soundness properties (Chapter 3).

• Evaluation of the annotations and the object graph static analysis. I improved the
tool support for the ownership domain type system, then usedthe tools to add annotations
to real object-oriented code. To my knowledge, these are some of the largest and most
substantial case studies in evaluating ownership types. Inaddition, I implemented the static
analysis to extract object graphs, and extracted meaningful hierarchical object graphs from
several representative systems that I annotated manually (Chapter 4).

• Novel comparison of hierarchical architectural views.I developed a novel approach for
structurally comparing two hierarchical architectural views (Chapter 5). Using structural
information enables detecting elements that are inserted,deleted, renamed, or moved up or
down in a hierarchy. In contrast, previous approaches to differencing architectural views
assume that view elements have unique node identifiers, which is often not the case. Other
approaches detect only insertions and deletions, and as a result, lose the properties of
architectural elements, upon which several architectural-level analyses rely.

• Novel techniques to abstract an object graph into a built runtime architecture, then
analyze conformance between a built and a target architecture. An extracted object
graph may not be isomorphic to the architect’s intended architecture, making further ab-
straction necessary. I specialized the view synchronization approach, which makes two
views identical, to analyze conformance. The conformance analysis allows a designed
architecture to be more abstract than a built architecture.Still, SCHOLIA soundly sum-
marizes in the designed architecture any additional communication that is present in the
implementation, without propagating low-level implementation objects into the designed
architecture. For example, SCHOLIA can represent some objects in the built architecture
as part of a connector in the designed architecture (Chapter 6).

• Evaluation of the end-to-end conformance analysis approach. Using case studies, I
demonstrate that, in practice, SCHOLIA can be applied to existing systems while changing
only annotations in the code, that SCHOLIA can find interesting architectural violations,
that these violations can be traced to code, and that SCHOLIA computes sensible confor-
mance metrics (Chapter 7).

1.10 Thesis Statement and Outline

The thesis of this dissertation is:

1.10. Thesis Statement and Outline 25

SCHOLIA can extract a sound, hierarchical, runtime architecture from an existing
object-oriented system and analyze communication integrity with a target architec-
ture, entirely statically and using typecheckable ownership annotations.

I created several corresponding hypotheses, subordinate to the main thesis. Since each hy-
pothesis is smaller than the main thesis, each can be directly supported by evidence. Taken to-
gether, these hypotheses solve the problem of architectural extraction and conformance analysis,
for an important class of object-oriented systems.

1.10.1 Hypothesis: Annotations

H-1: Lightweight typecheckable ownership annotations can specify, within the code,
local hints about object encapsulation, logical containment and architectural tiers.

Success criteria. The success criteria to objectively measure or falsify thishypothesis include:
• Ownership domain annotations are a natural expression of architectural intent in practice,

i.e., they capture software engineering intuition;
• It is possible to annotate existing object-oriented code that uses the Java standard library

or other third-party libraries;
• It is possible to use existing language support for annotations, software development tools

and integrated development environments, without requiring language extensions;
• An annotated program has few remaining annotation warnings;
• Successfully annotating an existing program requires no orfew changes to the code;
• By adding annotations, a developer can detect code-level violations of the architectural

intent.

Evidence. We support this hypothesis with the following evidence:
1. I evaluate the annotations on several representative, extended examples of medium-sized

Java programs, developed by others, using the success criteria above (Chapter 4).
2. The evaluation shows that, in practice, a developer can capture as program annotations

some of his architectural intent. Some of that intent may be currently captured as informal
comments in the code or informal architectural diagrams.

3. We present concrete examples of how, in practice, the annotations can effectively help a
programmer identify design problems such as tightly coupled code and suggest ways to
refactor the code, e.g., by programming to an interface or using a mediator.

1.10.2 Hypothesis: Extraction

H-2: In practice, a static analysis can extract from an annotated program a global,
hierarchical object graph that provides architectural abstraction by ownership hier-
archy and by types.

26 Chapter 1. Introduction

Success criteria. The success criteria to objectively measure or falsify thishypothesis include:
• An extracted object graph has fewer objects at the top level,compared to a flat object

graph, due to the effective abstraction of objects by ownership hierarchy and by types;
• An extracted object graph does not show low-level objects that are data structures at the

top level;
• An extracted object graph rarely suffers from too much or toolittle abstraction that lead

to a useless representation. E.g., rarely does an extractedobject graph appear as a fully
connected graph, or show one box for the entire system;

• The hierarchy in an extracted object graph corresponds to the system decomposition in
architectural diagrams;

• An extracted object graph can help a developer improve the quality of the annotations by
encouraging her to push more objects underneath other objects to reduce clutter at the top
level;

• An extracted object graph provides overviews of a system’s runtime structure at various
levels of abstraction;

• An extracted object graph can give insights into the system’s runtime structure by iden-
tifying undocumented information, contradicting documented information or highlighting
interesting structural information.

Evidence. We support this hypothesis with the following evidence:
1. A definition of a static analysis to extract a global objectgraph from a program with own-

ership domain annotations (Chapter 2);
2. An evaluation of the static analysis on several real object-oriented systems (Chapter 4),

using the success criteria above;
3. A detailed description of the different choices a developer can make to extract a meaningful

object graph from an annotated program.

1.10.3 Hypothesis: Soundness

H-3: Each extracted object graph is sound, i.e., it maps eachruntime object to ex-
actly one node in the object graph, and represents all edges between runtime objects,
in any program run.

Evidence. We support this hypothesis with the following evidence:
1. A formal definition of the core of the analysis using abstract interpretation (Chapter 3);
2. A formal proof ofobject soundnessandedge soundness(Chapter 3).

1.10.4 Hypothesis: Abstraction

H-4: An analysis can abstract an object graph into a component-and-connector
runtime architecture in a standard architecture description language.

1.10. Thesis Statement and Outline 27

Success criteria. The success criteria to objectively measure or falsify thishypothesis include:
• A developer can apply the abstraction techniques, without having to manually select and

elide individual objects or domains.

Evidence. We support this hypothesis with the following evidence:
1. A definition of a mapping between a hierarchical object graph and a standard architecture

description language (Chapter 6);
2. An evaluation of the approach on several real object-oriented systems (Chapter 7).

1.10.5 Hypothesis: Comparison

H-5: An analysis can structurally compare the built architecture to a documented
target runtime architecture.

Success criteria. The success criteria to objectively measure or falsify thishypothesis include:
• A developer can use the comparison, without having to manually force or prevent matches

between the majority of individual objects or domains.

Evidence. We support this hypothesis with the following evidence:
1. A definition of an approach for differencing and merging hierarchical architectural views

based on structural information (Chapter 5);
2. An evaluation of the approach on several real runtime architectures for object-oriented

systems (Chapter 5).

1.10.6 Hypothesis: Conformance

H-6: An analysis can analyze communication integrity against a target architecture,
establish traceability between the target architecture andthe code, and compute
structural conformance metrics in practice.

Success criteria. The success criteria to objectively measure or falsify thishypothesis include:
• The approach can show the absence or presence of a relation orcommunication between

two components, one that was previously unknown, and possibly a sign of bad coupling;
• The approach can provide positive assurance that the code conforms to an intended archi-

tecture;
• The approach can help a developer find and reconcile interesting differences between an

implementation and a target architecture. A finding is interesting if it identifies undocu-
mented information, contradicts available documentation, or highlights a potential design
or implementation defect.

• A developer can investigate a suspected code-level violation of the conformance policy
by tracing from the extracted architecture to the relevant lines of code without having to
potentially review the entire code base, thus making the warning actionable;

28 Chapter 1. Introduction

• A tool can enforce structural constraints on the extracted architecture using architectural
constraints, types and styles. A subject system could follow or nearly follow some of these
constraints. Of course, the structural constraint must have some rationale, e.g., to satisfy
quality attributes such as security or performance. For example, if the architecture dictates
a pipeline according to the Pipe-and-Filter style, where components are connected in se-
quence, the tool raises a warning if the built architecture shows connections that bypass
elements of the sequence or form a cycle.

Evidence. We support this hypothesis with the following evidence:
1. An end-to-end approach for enforcing communication integrity in a target architecture

(Chapter 6);
2. An evaluation of the approach on several real object-oriented systems (Chapter 7), using

the success criteria above.

1.11 Summary

The quote at the beginning of the chapter from the landmark Design Patterns book emphasizes
the need for understanding a system’s runtime architecture, together with its code architecture
(Gamma et al. 1994). This dissertation proposes SCHOLIA, a principled approach to extract the
runtime architecture of an arbitrary system written in a general purpose programming language,
using annotations. Moreover, if a target architecture exists, SCHOLIA can analyze its confor-
mance with the implementation, and enforce communication integrity in the target architecture.

Such an approach can increase the effectiveness of reasoning architecturally about existing
systems, because it ensures that the architecture is a faithful representation of the code, which is
ultimately the most reliable and accurate description of the built system.

1.11. Summary 29

Chapter 2

Object Graph Extraction 1

In this chapter, I describe informally how SCHOLIA uses annotations and a static analysis to
extract a hierarchical object graph that provides architectural abstraction by ownership hierarchy
and by types.

2.1 Introduction

A Runtime Object Graph (ROG)represents the runtime structure of an object-oriented program.
Nodes correspond to runtime objects. Edges correspond to relations between objects such as
points-to field reference relations. The goal of the object graph extraction static analysis is to
construct a hierarchical object graph that soundly approximates any ROG that any program run
may generate.

The rest of this chapter is organized as follows. In Section 2.2, I illustrate the differences be-
tween the code and the runtime structure using Listeners, a system smaller than Aphyds (Chap-
ter 1.2.1, Page 2). Section 2.3 presents the annotations that specify architectural intent in the
code. Section 2.4 presents a static analysis that extracts an object graph by abstract interpretation
over the annotated program. I discuss various advanced features in Section 2.5 and conclude
with a discussion in Section 2.6.

2.2 Code vs. Runtime Structure

In this chapter, I use as a running example the Listeners system, a small Document-View ar-
chitecture. In Listeners,BarChart andPieChart objects render aModel object. All classes
implement aListener interface. I chose this example because empirical data shows that listen-
ers are often hard to understand in object-oriented code (Lee et al. 2008, Table 2)2.

For presentation purposes, I simplified the Listeners example (the code is in Fig. 2.1). In
particular, theListener interface does not have anotify() method, that all the classes imple-

1Portions of this chapter appeared in (Abi-Antoun and Aldrich 2007b, 2008b, 2009a).
2(Lee et al. 2008) report the following quote from a participant in an exploratory user study: “If you have [many]

system listeners, where people register methods or classesto callback [. . . an] interesting visualization would be [. ..]
to explore the actual instances of classes at run-time; it would be better than the list of listeners”.

31

1 interface Listener {

2 }

3

4 class BaseChart implements Listener {

5 private List<Listener> listeners = new List<Listener>();

6 }

7

8 class BarChart extends BaseChart {

9 }

10

11 class PieChart extends BaseChart {

12 }

13

14 class Model implements Listener {

15 private List<Listener> listeners = new List<Listener>();

16 }

17

18 class Main {

19 Model model = new Model();

20 BarChart barChart = new BarChart();

21 PieChart pieChart = new PieChart();

22 }

Figure 2.1: Listeners: code without annotations.

menting the interface have to implement. Moreover, I treatList as a class, although in the Java
Standard library,List is an interface that is implemented by concrete classes suchasArrayList.
Also, in the following discussion, when I refer to “aBarChart object”, I mean “an instance of
theBarChart class”.

2.2.1 Code Structure

A developer evolving an object-oriented system needs to understand the type structure of the
program, which is typically represented as a class diagram.Today, many tools can extract such
class diagrams from code. For example, I used EclipseUML (Omondo 2006) and AgileJ (AgileJ
2008) to extract class diagrams from the Listeners program (Fig. 2.2).

Fig. 2.2 shows classes, inheritance and association relations. For instance, classesBarChart
andPieChart extend fromBaseChart. BaseChart andModel implement aListener inter-
face. The diagram also shows associations fromModel andBaseChart to List. A class diagram
explains the type structure of an application but sheds little light on its runtime structure. From
the class diagram, it is unclear whether instances ofPieChart andBarChart, which inherit from
BaseChart, share oneListener object.

In a class diagram, it is also common to see several classes depend on a single container class
such asList or Vector. However, different instantiations of such a class often have distinct con-
ceptual purposes and correspond to different elements in the design. Based on the class diagram,
it is unclear if instances ofPieChart andBarChart share oneList object. For instance, a ref-
erence of typeListener inside an object of typeList<Listener> can correspond to multiple

32 Chapter 2. Object Graph Extraction

(a) Code architecture extracted by Eclipse UML.

(b) Code architecture extracted by AgileJ.

Figure 2.2: Listeners: class diagrams.

design elements, based on the context. Inside theModel class, a list element of typeListener
refers to an object of typeBaseChart or one of its subclasses. But inside theBaseChart class,
a list element of typeListener refers to an object of typeModel.

2.2.2 Runtime Structure

A developer also needs to understand the runtime structure of an application, which is often
represented as an object diagram. Unfortunately, the toolsto extract meaningful object graphs
from arbitrary object-oriented code are less mature than the tools that extract class diagrams.

Fig. 2.3(a) shows the runtime structure of the application,and uses the following graphical
conventions. Box nesting indicates hierarchical containment. Dashed white-filled boxes repre-
sent conceptual groups of objects or tiers. A solid border grey-filled rectangle with a bold label

2.2. Code vs. Runtime Structure 33

 DOCUMENT

 OWNED

 VIEW

 OWNED

 OWNED

listeners:
List<Listener>

barChart:
BarChart

pieChart:
PieChart

model:
Model

listeners:
List<Listener>

listeners:
List<Listener>

(a) Hierarchical runtime architecture.

 DOCUMENT

 VIEW

model(+):
Model

(Listener)

barChart(+):
BarChart
(Listener)

pieChart(+):
PieChart
(Listener)

(b) Overview architecture.

Figure 2.3: Listeners: hierarchical object graphs.

represents an object. A solid edge represents a field reference between two objects. An ob-
ject labeled “obj : T” indicates an object of typeT as in UML object diagrams. For example,
barChart:BarChart indicates abarChart reference that is of typeBarChart.

Conceptually, each view has a separatelisteners collection object, and thelisteners
object of apieChart is distinct from that of abarChart (Fig. 2.3(a)). In a runtime view, we
model these lists aspart of a barChart or model. At runtime,BarChart andModel objects
each contain aList of Listener objects.

An analysis for object-oriented code must handle inheritance. In this case,PieChart and
BarChart extend a super class,BaseChart, and it isBaseChart that declare thelisteners
field. In addition, there is possible aliasing. If thelisteners field of BarChart andModel
referred to the same object at runtime, the architecture in Fig. 2.3(a) would be deceptive; a
correct architecture must show them as one object.

In many object-oriented design patterns, much of the functionality is determined by what in-

34 Chapter 2. Object Graph Extraction

_lentMain_MainDOCUMENTModel_ModelPRIVATEArrayList_Listener_
_lentMain_MainVIEWBarChart
_lentMain_MainVIEWPieChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWBarChart_BarChartPRIVATEArrayList_Listener_
_lentMain_MainVIEWPieChart_PieChartPRIVATEArrayList_Listener_
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWBarChart
_lentMain_MainVIEWPieChart

stances point to what other instances. For instance, in the Observer design pattern (Gamma et al.
1994, p. 293), understanding “what” gets notified during a change notification is crucial for un-
derstanding the functioning of the system, but “what” does not usually mean a class, “what”
means a particular instance.

For instance, Fig. 2.3(a) highlights that amodel object is potentially registered as a listener
for a barChart object, but apieChart object and abarChart object are not registered as
listeners to each other.

Ideally, an architecture “can be read in 30 seconds, in 3 minutes, and in 30 minutes”
(Koning et al. 2002). In Fig. 2.3(b), we elided the sub-structures ofbarChart, pieChart and
model, and no longer show the variousList objects (the (+) symbols on the object labels remind
us of the elided substructures). In addition, the dotted edges summarize any solid edges by lifting
them from elided objects to visible ones.

2.3 Annotations

SCHOLIA ’s principled architectural extraction combines type annotations and a static analysis. A
developer guides the architectural abstraction by adding annotations to the source code to clarify
the architectural intent. Because architectural hierarchyis not readily observable in arbitrary
code, the annotations specify, within the code, object encapsulation, logical containment and
architectural tiers, which are not explicit constructs in general purpose programming languages.

2.3.1 Object and Domain Annotations

The SCHOLIA annotations implement the ownership domain type system (Aldrich and Chambers
2004), which I review while explaining the annotations thata developer might add to the imple-
mentation of the Listeners system (Fig. 2.4).

Definitions. An ownership domainis a conceptual group of objects with an explicit
name and explicit policies that govern how it can reference objects in other domains
(Aldrich and Chambers 2004). The annotations assign each object to a single ownership domain
that does not change at runtime. A developer indicates what domain each object is part of by
annotating each reference to that object in the program. A typechecker validates the annotations
and identifies where the annotations are inconsistent with each other or with the code.

The annotations also describe policies, calleddomain links, that govern object references
between ownership domains (we explain domain links and giveexamples in Section 2.3.2).

Graphically, our visualization uses a white-filled rectangle with a dashed border to represent
an ownership domain. We also label each rectangle with the domain name.

Annotation syntax. This dissertation often uses a simplified annotation syntaxthat extends
the language (Fig. 2.5). The syntax is similar to the one usedby the formal system (Fig. 3.1,
Page 77) with one difference. The annotation syntax emphasizes the semantic difference between
the owner domain of an object and its domain parameters, whereas the formal system treats the
first domain parameter of a class as its owning domain.

2.3. Annotations 35

1 interface Listener {

2 }

3 class BaseChart<M> // Declare domain parameter M

4 implements Listener {

5 domain OWNED; // Declare protected domain OWNED

6 // Outer OWNED annotation is for the list object

7 // List has domain parameter ELTS for its elements

8 // Nested inner M annotation is bound to List’s ELTS for the list elements

9 OWNED List<M Listener> listeners = new List<M Listener>();

10

11 // A public method CANNOT return a reference to an object in a private domain

12 // So the following lines of code are commented out on purpose

13 // public OWNED List<Listener> getListeners() {

14 // return listeners;

15 //}

16 }

17 class BarChart<M> extends BaseChart<M> {

18 }

19 class PieChart<M> extends BaseChart<M> {

20 }

21 class Model<V> implements Listener {

22 domain OWNED;

23 // Inner annotation V is for the list elements

24 OWNED List<V Listener> listeners = new List<V Listener>();

25 }

26 class Main {

27 domain DOCUMENT, VIEW; // Top-level domains

28 // Bind domain parameter V to actual domain VIEW

29 DOCUMENT Model<VIEW> model = new Model<VIEW>();

30 VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>();

31 VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>();

32 }

Figure 2.4: Listeners: code with annotations.

Concrete annotation language. The concrete annotation system and tools use existing lan-
guage support for annotations, which tends to be verbose (Fig. 2.6). Appendix A has more
details on the concrete annotation language as well as examples in that language.

Code examples. In addition, we simplified the code snippets included in thisdocument to show
only class and field declarations with their annotations, and ignore Java language features such
as methods, generic types, and casts.

Domain names. A developer typically chooses domain names that convey somearchitectural
intent, such asDOCUMENT or VIEW. In this document, I often show domain names in capital letters
to distinguish them from other program identifiers, since most coding conventions discourage
the use of all capital letters for non-constants.

36 Chapter 2. Object Graph Extraction

P ∈ Program ::= (L,C, e)

L ∈ ClassDecl ::= class C<α> [extends C ′<β>]
{ D; F ; M }

D ∈ DomDecl ::= [public] domain d;
F ∈ FieldDecl ::= T f ;
M ∈ MethDecl ::= . . .

n ::= d | v
p ::= α | n.d | shared

T ∈ Type ::= powner C<pparams>
α, β ∈ DomParam C,C ′ ∈ ClassName

Figure 2.5: Simplified annotation syntax. Adapted from the formal system (Fig. 3.1, Page77). We
excluded domain links for simplicity.

1 @Domains({"OWNED"})

2 @DomainParams({"M"})

3 abstract class BaseChart implements Listener {

4 @Domain("OWNED<M>") List<Listener> listeners = new List<Listener>();

5 }

6 @Domains({"OWNED"})

7 @DomainParams({"M"})

8 @DomainInherits({"BaseChart<M>"})

9 class BarChart extends BaseChart {

10 }

11 ...

12 @Domains({"DOCUMENT","VIEW"})

13 class Main {

14 @Domain("DOCUMENT<VIEW>") Model model = new Model();

15 @Domain("VIEW<DOCUMENT>") BarChart barChart = new BarChart();

16 ...

17 public static void main(@Domain("lent[shared]")String[] args) {

18 @Domain("lent") Main system = new Main();

19 }

20 }

Figure 2.6: Listeners: code with the concrete annotations.

Declaring a domain. Each class can declare one or more domains to hold the objectsthat make
its parts, thus supporting hierarchy. A domain can beprivate or public to distinguish between
private or externally-visible state.

Private domains. A private domain, such asOWNED (line 5 in Fig. 2.4), providesstrict en-
capsulation. For instance, apublic method cannot return an alias to an object inside a private
domain, even though the Java type system allows returning analias to a field marked asprivate.
Thus, instance encapsulation is stronger than making a fieldbeprivate to restrict its module
visibility. For example, thelisteners collection object insidebarChart is encapsulated. The

2.3. Annotations 37

typechecker will produce a warning if I were to define a publicmethod inside classBarChart
that returns an alias tolisteners. A correct implementation of such a method, however, could
return a shallow copy of theList object, to avoid the representation exposure.

Public domains. A public domain provideslogical encapsulation. Having access to an object
gives the ability to access all the objects inside its publicdomains. For example, instead of
encapsulating thelisteners object by placing it inside the private domainOWNED, I could define
aLISTENERS public domain and placelisteners insideLISTENERS. Then, any object that has
access to abarChart object gets the ability to access thelisteners instance. I present these
alternate annotations in Section 2.6.

Distinguishing between private and public domains. Graphically, our visualization distin-
guishes between private and public domains, by showing a private domain with a thick dashed
border, and a public domain with a thin dashed border.

Top-level domains. SCHOLIA assumes that the program operates by creating a main object.I
refer to the domains declared by the class of the root object as thetop-level domains.

Domain parameters. Domain parameters allow objects to share state and work as follows. An
objectX can access objects in a domainD of objectY by declaring a formaldomain parameter
on the class ofX andbinding that formal domain parameter to domainD as long asdomain link
permissions allowX to accessD (we discuss domain links further in Section 2.3.2). Wherever
the program instantiates a class that declares domain parameters, the domain parameters must be
bound to other domains that are in scope. Note, the class of the root object declares no domain
parameters. Graphically, our visualization represents a formal domain parameter with a white-
filled rectangle with a dotted border.

For example, classBarChart needs to access objects in theDOCUMENT domain that is declared
in classMain. SoBarChart declares a domain parameterM (line 3). When classMain declares an
object of typeBarChart, it bindsBarChart’s domain parameterM to its locally declared domain,
DOCUMENT (line 30), so that aBarChart instance can refer to other objects insideDOCUMENT such
asmodel.

Domain parameters must also be bound to account for inheritance. For example,BaseChart
takes a domain parameterM. So each subclass ofBaseChart, such asBarChart andPieChart,
binds its domain parameterM to BaseChart’s M domain parameter (lines 17, 19).

Why domain parameters? I glossed over whyBaseChart, BarChart, PieChart andModel
required domain parameters (Fig. 2.4). They do, because they all useList which is part of the
Java standard library (Fig. 2.7). Recall, here we useList as if it were a a concrete class such as
ArrayList.

Library code is often parametric with respect to application components. For example, the
List class is parametric in two ways. First,List is parametric in the type of the element stored

38 Chapter 2. Object Graph Extraction

1 // T is generic type parameter

2 // ELTS is a domain parameter for the list elements

3 class List<ELTS T> {

4 private domain OWNED; // Private domain

5 // Place the list’s representation in a private domain

6 OWNED Object[] rep;

7

8 // A list has virtual references to the elements it holds.

9 // A virtual field declaration can simulate that.

10 ELTS T obj;

11 }

Figure 2.7: ClassList is parametric in the ownership domain of its elements.

in the list, hence theT type parameter.List also takes a formal domain parameter,ELTS (line
3), that specifies the domain of the elements stored in the list3.

Back in the Listeners example (Fig. 2.4), the outerOWNED annotation, inside classBarChart,
is for theList instance itself (line 9). The innerM annotation binds the formal domain parameter
ELTS to BarChart’s domain parameterM (line 9), to allow theList to access objects insideM.

Why ownership domains? SCHOLIA adopts ownership domains because of the expressive-
ness of the type system, and its suitability for representing architectural intent in code. In prin-
ciple, SCHOLIA could use an ownership type system that assumes a singlecontextper object
(Clarke et al. 1998). However, having multiple domains per object is often useful for modeling
architectural runtime tiers.

In addition, ownership domains have a crucial expressiveness advantage that can reduce the
number of objects in the top-level domains in an extracted architecture. In an owner-as-dominator
type system, any access to a child object must go through its owning object (Clarke et al. 1998).
In contrast, the ownership domain type system supports pushing almost4 any object under-
neath any other object in the ownership hierarchy. A child object may or may not be encap-
sulated by its parent object: a child object can still be referenced from outside its owner if it
is part of a public domain of its parent, or if a domain parameter is linked to a private domain
(Aldrich and Chambers 2004).

If making an object owned by another object restricts accessto the owned object, then adding
annotations to existing code, after the fact, would force more objects to be peers, and thus lead to
more cluttered object graphs. On the other hand, usinglogical containmentwith public domains
is more flexible than thestrict encapsulationof private domains, and can also reduce the number
of objects in the top-level domains.

Owner-as-dominator. Still, ownership domains can also enforce the strict owner-as-dominator
discipline found in other ownership type systems. To fully encapsulate an object, a developer can
declare an object reference in a domain that satisfies the following conditions: (a) the domain

3Typically, we annotate theList class to take a single domain parameter to store the list’s elements, which
means that all the objects referenced by aList object are in the same domain.

4A well-formed ownership relation cannot have cycles.

2.3. Annotations 39

1 class Sequence<ELTS> assumes OWNER -> ELTS {

2 domain OWNED; // Private domain

3 public domain ITERS;

4 link OWNED -> ELTS;

5 link ITERS -> ELTS, ITERS -> OWNED;

6

7 private OWNED Cons<ELTS> head;

8

9 public void add(ELTS Object o) {

10 head = new Cons<ELTS>(o,head);

11 }

12

13 public ITERS Iterator<ELTS> getIter() {

14 return new SequenceIterator<ELTS, OWNED>(head);

15 }

16 }

17

18 class Cons<ELTS> assumes OWNER -> ELTS {

19 ELTS Object obj;

20 OWNER Cons<ELTS> next;

21

22 Cons(ELTS Object obj, OWNER Cons<ELTS> next) {

23 this.obj=obj; this.next=next;

24 }

25 }

Figure 2.8: Sequence abstract data type with ownership domains.

is private; and (b) there is no domain link from any of the formal domain parameters of the
declaring class to theprivate domain (Aldrich and Chambers 2004). Placing an objecto inside
such a domain fully encapsulateso.

2.3.2 Permission Annotations

Objects within a single ownership domain can refer to one another, but references can only cross
domains if the programmer specifies adomain linkbetween the two domains when they are
created (Aldrich and Chambers 2004). A domain link is a policythat an object can declare to
describe the permitted aliasing among objects in its internal domains, and between its internal
domains and external domains. Ownership domains support two kinds of policy specifications:

• A domain link from one domain to another, denoted with a dashed arrow in the diagram,
allows objects in the first domain to access objects in the second domain;

• A domain can be declared public. Permission to access an object automatically implies
permission to access its public domains.

For example,Sequence uses a linked list as its internal representation. So it places those
Cons objects in the privateOWNED domain (Fig. 2.8).Sequence also defines a public domain,
ITERS, to holds the iterator objects. A domain link from theITERS domain to theOWNED do-
main allows those iterator objects to access the list’s representation in theOWNED domain. Both
domainsITERS andOWNED can access the domain parameterELTS. TheITERS domain is public,

40 Chapter 2. Object Graph Extraction

ITERS OWNED
client

objects

OWNER ELTS

seq: Sequence

: Iterator

:ConsX

Figure 2.9: A conceptual view of theSequence abstract data type. Dashed edges represent link permis-
sions between domains.

allowing clients to access the iterators. But theOWNED domain is private, so outside objects can-
not directly access theCons objects. Instead, the clients must access the elements of aSequence

object through its iterator interface rather than traversing the linked list directly. A graphical
representation of the domains and the domain links is in Fig.2.9. Graphically, our visualization
represents a domain link between two ownership domains witha dashed edge.

In addition to the explicit policy specifications mentionedabove, the following policy speci-
fications are implicit:

1. An object has permission to access other objects in the same domain;
2. An object has permission to access objects in all of the domains that it declares.
The first rule allows the differentCons objects in the linked list to access each other, while the

second rule allows the sequence to access its iterators and linked list. Any reference not explicitly
permitted by one of these rules is prohibited, according to the principle of least privilege. It is
crucial that there is no transitive access rule. For example, even though clients can refer to
iterators and iterators can refer to the linked list, clients cannot access the linked list directly
because the sequence has not given them permission to accessthe OWNED domain. Thus, the
policy specifications allow developers to specify that someobjects are an internal part of an
abstract data type’s representation, and the typechecker enforces the policy, ensuring that this
representation is not exposed.

2.3.3 Special Annotations

Several special annotations add expressiveness to the typesystem, and can be considered as spe-
cial domains that need not be explicitly declared (Aldrich et al. 2002c; Aldrich and Chambers
2004). These special annotations can be also bound to formaldomain parameters. In Sec-
tion 2.5.1, we discuss how the object graph handles these special annotations.

2.3. Annotations 41

1 // Implicit OWNER parameter

2 class Model<V> implements Listener {

3 ...

4 }

5 class Main {

6 domain DOCUMENT, VIEW;

7 // Model::OWNER is bound to Main::DOCUMENT

8 DOCUMENT Model<VIEW> model;

9 ...

10 }

11 // vs. explicit OWNER parameter

12 class Model<OWNER, V> implements Listener {

13 ...

14 }

15 class Main {

16 domain DOCUMENT, VIEW;

17 // Model::OWNER is bound to Main::DOCUMENT

18 Model<DOCUMENT, VIEW> model;

19 ...

20 }
Figure 2.10: Listeners: using theOWNER keyword.

2.3.3.1 OWNER

Each class has an implicit domain parameter that need not be declared and is namedOWNER. The
OWNER implicit parameter always occurs as the first element in the list of domain parameters of a
class. Fig. 2.10 shows equivalent annotations that make theimplicit OWNER parameter explicit.

2.3.3.2 shared

Objects can be marked with theshared annotation to indicate that they may be aliased globally.
But shared references may not alias non-shared references. Typically,shared references are
needed for static fields, all of which may refer to aliases that are not related to any object instance.
In most cases, the use of static fields is discouraged. In general, the use ofshared is under the
control of the developer, and she could avoid usingshared altogether, sinceshared is mainly
designed to inter-operate with legacy code or third-party libraries. We often use theshared
annotation for immutable objects likeString objects.

Nevertheless,shared introduces a gap in reasoning about communication integrity. It is not
the only one, however. For instance, calls to native methodsare another. As a result, external
coding guidelines may be needed to discourage the liberal use of theshared annotation.

2.3.3.3 unique

The annotationunique indicates an object to which there is only one reference, such as a newly
created object. An object markedunique can be passed linearly from one domain to another.

42 Chapter 2. Object Graph Extraction

2.3.3.4 lent

One ownership domain can temporarily lend an object to another domain and ensure that the
second domain does not create a persistent reference to the object, e.g., by storing it in a field.
Such an object has the annotationlent.

2.4 Static Analysis

A static analysis extracts from an annotated program aglobal object graph that uses object hier-
archy to convey architectural abstraction. I explain the static analysis by discussing the following
representations of an object-oriented program:

• The Type Graph orTGraph (Section 2.4.1) represents the type structure, and is similar to
a class diagram, enhanced with information about the ownership domain annotations;

• The Object Graph orOGraph (Section 2.4.2) represents the object structure and is similar
to an object diagram;

• The Display Graph orDGraph (Section 2.4.3) is the object graph with which the developer
interacts, to control the abstraction by ownership hierarchy and by types, as well as the
level of visual detail.

2.4.1 Type Graph

The Type Graph orTGraph represents the type structure of the objects that the code manipulates.
A type graph can be considered a kind of UML class diagram thatalso shows ownership domain
annotations, including formal domain parameters. One can build a Type Graph using an im-
plementation of the Visitor design pattern (Gamma et al. 1994, p. 331), to traverse the Abstract
Syntax Tree (AST) of an annotated program (Fig. 2.11(a)).

In the type graph, a type declared in the program has domains declared in it. Each local or
formal domain declaration has field declarations. In turn, afield declaration has a declared type.
But because these types are shared, the type graph is non-hierarchical.

Fig. 2.12 shows the type graph for the Listeners system. A white-filled solid-border box
represents a type. A white-filled dotted-border box represents a formal domain parameter, e.g.,
M, declared inside a type. A white-filled dashed-border box represents an actual domain, e.g.,
DOCUMENT. A grey-filled box represents a field declaration inside a domain. A thick dotted edge
represents a type relationship. A solid edge represents a field reference.

A type graph is inadequate as a runtime architecture for the following reasons.

A type graph does not show a hierarchy of objects and domains. In a type graph, a field dec-
laration does not have children objects. Rather, a field declaration has a type, a type has domains,
and a domain has other field declarations. For example, the field declarationbarChart has type
BarChart, and the typeBarChart has the formal domain parameterM and the actual domain
OWNED. In turn, the domain declarationOWNED contains the field declarationlisteners. Thus, in
a type graph, one cannot view the children of an object without going through its declared type.

2.4. Static Analysis 43

type

domain

has-a

object

has-a

 is-a

(a) Type Graph (TGraph).

object

domain1 domain2

object1 object21 object22

(b) Object Graph (OGraph).

object

domain1 domain2

object11 object21 object22

domain111

object1111

(c) Display Graph (DGraph).

Figure 2.11: Relation between Type Graph, Object Graph and Display Graph.

44 Chapter 2. Object Graph Extraction

A type graph does not reflect possible aliasing. The ownership domain type system guaran-
tees that two objects in different domains can never alias. But two objects of compatible types, in
the same domain, may alias. E.g., ifDOCUMENT has a field declarationlstnr of typeListener,
it may refer to the same object as the field declarationmodel of typeModel, becauseModel is a
subtype ofListener.

If two objects may alias, an object graph conservatively shows them as one. In general,
merging objects based on only the aliasing precision provided by the ownership domain type
system could yield imprecise results. For example, one could use an intra-domain alias analysis
to better approximate the set of objects that may alias at runtime. But experience in applying
the analysis on real object-oriented code confirms that the annotations give more than enough
precision about aliasing, as long as most object referencesare declared—or instantiated—with
precise types, instead ofjava.lang.Object (Section 2.4.3.2 (Page 59) discusses the difference
between using declarations and object allocations). In fact, in most object graphs, one may need
to further abstract objects in a domain, based on their declared types (Section 2.4.3.2, Page 59).

In practice, to avoid merging all objects in a domain that have a raw type such asList5, we
suggest but do not require refactoring the code to use a generic type, sayList<String>.

In a type graph, a domain declaration does not directly show all the objects that are in a
given domain. The type graph contains field declarations only for the locally declared fields.
For instance, the typeList<Listener> declares itsobj:Listener field in theELTS domain
parameter onList. Such fields do not appear where the actual domain is declared. Hence, in the
type graph, the formal domain parameterM insideBarChart is empty, even though it is bound to
theELTS onList (Fig. 2.12).

A type graph shows formal domain parameters, which do not exist at runtime. Parametric
library code often creates interesting architectural relationships in application objects, when these
parameters are bound to the specific domains on specific objects created by the application at
runtime. So, a static analysis must resolve these parameters to ensure that the relevant object
relations appear at the level of the global application object structures.

2.4.2 Object Graph

The analysis computes an Object Graph orOGraph, which soundly approximates any true Run-
time Object Graph (ROG) (Fig. 2.11(b)). AnOGraph is a graph with two types of nodes,OOb-
jects andODomains. Edges betweenOObjects correspond to field reference points-to relations.
The root of the graph is a top-levelODomain. For now, assume that the nodes form a hierarchy6,
where eachOObject node has a unique parentODomain, and eachODomain node a unique
parentOObject (Fig. 2.13). We will refine later theODomain andOObject data types.

5Generic types were introduced to Java as of version 1.5. Raw types are still part of Java, mostly for backwards
compatibility with earlier code bases. We believe that mostolder Java code is being migrated to use generic types.
Indeed, refactoring to generics has mature tool support in Eclipse (Fuhrer et al. 2005). So the overall trend is for
more precise declared types in Java code.

6In fact, a graph ofODomains andOObjects can have cycles, as we discuss in Section 2.4.2.3.

2.4. Static Analysis 45

…

BarChart

OWNED

listeners:
List<Listener>

…

Main

DOCUMENT

VIEW

pieChart:
PieChart

barChart:
BarChart

model:
Model List<Listener>

OWNED

head

ELTS

obj:
Listener

M

Figure 2.12: Listeners:type graph.

G ∈ OGraph ::= (Objects= {O . . .}, Domains= {D . . .}, Edges= {E . . .})

::= (PtO, P tD, P tE)

D ∈ ODomain ::= (Id = Did,Parent = Oid,Domain = d)

::= (Did, Oid, d)

O ∈ OObject ::= (Id = Oid, Parent = Did,Type = C)

::= (Oid, Did, C)

E ∈ OEdge ::= (From = Osrc,Field = f, To = Odst)

::= (Osrc, f, Odst)

Figure 2.13: Initial data type declarations for theOGraph. The formal to actual bindings are not shown.

2.4.2.1 Overview

At a high level, the analysis distinguishes between objectsin different domains, and abstracts
objects to pairs of domains and types. The analysis adopts the following approach to possi-
ble aliasing: in a given domain, two field declarations with compatible types are merged. The
analysis also substitutes actual domains to formal domain parameters. To do so, the analysis
maintains a set of formal to actual bindings (not shown in Fig. 2.13). Finally, the analysis adds
edges between objects.

Object merging. Different executions may generate a different number of objects at runtime,
for instance ofBarChart objects. But the static object graph must represent all possible execu-
tions. To address this, the object graph abstracts multipleruntime objects with a canonical object.
Further, exactly one canonical object in the object graph represents each object in a ROG.

46 Chapter 2. Object Graph Extraction

1 class Main {

2 domain DOCUMENT, VIEW;

3

4 DOCUMENT Model<VIEW> model1 = new Model<VIEW>();

5 DOCUMENT Model<VIEW> model2 = new Model<VIEW>();

6

7 VIEW Model<DOCUMENT> model3 = new Model<DOCUMENT>();

8 model3 = model1; // Illegal assignment

9

10 DOCUMENT Model<DOCUMENT> model4 = new Model<DOCUMENT>();

11 model4 = model1; // Illegal assignment

12 }
Figure 2.14: Listeners: possible aliasing.

Object aliasing. The object graph maintains an aliasing invariant, i.e., no one runtime object
appears as two different canonical objects in the graph. To enforce this invariant, the analysis
relies on the ownership domain annotations that give some precision about aliasing, without
requiring an alias analysis. The type system guarantees that two objects in different domains
cannot alias. But two objects in the same domain may alias. So,the analysis merges two field
declarationsin the same domain, if their types are related by inheritance.

For example, consider the following variation on the Listeners example (Fig. 2.14). The
OGraph represents the two object allocationsmodel1 andmodel2 in the same domainDOCUMENT
into oneOObject. On the other hand, the analysis creates a separateOObject for model3 since
it is in the different domainVIEW.

Although model4 is also of typeModel and is in theDOCUMENT domain, it takes different
domain parameters thanmodel1 or model2. Indeed, the type system prevents the assignment
of model4 to model1, and vice versa, i.e., these two may not alias. So, the analysis creates a
separateOObject for model4 and does not reuse the one formodel1 or model2.

Domain parameters. Formal domain parameters do not exist at runtime. As a result, the
OGraph does not have formal domain parameters. Instead, theOGraph shows anOObject that
the program declares in a formal domain in the correspondingactualODomain that the formal
domain parameter is bound to, starting from the root object.This is important for soundness,
because each runtime object that is actually in a domain at runtime must appear in that domain in
the object graph. It is as if the analysispulls objects declared inside a formal domain parameter
into each actual domain that is bound to the formal domain parameter7.

2.4.2.2 Abstract interpretation

The static analysis abstractly interprets the program to produce theOObjects, ODomains, and
OEdges in theOGraph (Fig. 2.13). The analysis distinguishes between differentinstances of the
same class that are in different domains. In addition, the analysis maintains a mapping from
formal domain parameters to the representatives in theOGraph. For reasons we discuss later, the

7Previous formalizations of the object graph extraction static analysis accounted for formal domain parameters
using an explicit pulling (Abi-Antoun and Aldrich 2007b, 2009a).

2.4. Static Analysis 47

analysis generates anOObject in theOGraph when it encounters an object allocation expression,
i.e.,new expression, rather than a variable or field declaration.

Notation. In the following discussion, we use the following notation,to fully qualify objects
and domains:

• obj.DOM refers to either a public or a private domainDOM inside objectobj, e.g.,
main.DOCUMENT. It effectively treats a domain as a field of an object;

• obj1.DOM.obj2 refers to the object obj2 inside the domain DOM , e.g.,
main.DOCUMENT.model;

• fobjDOM refers to a public domain. The ownership domain type system allows path-
dependent annotations that are of the formobj1.obj2...DOM, whereobj1, obj2, . . . , are
chains of final fields or variables, andDOM is a public domain declared on the type of the
last object in the path;

• C::d refers to a domaind qualified by the classC that declares it.

Example. On the Listeners example, the analysis works as follows (Fig. 2.15). First, the user
selects a root type, in this case, the classMain. The analysis creates anOObject (O0) for the root
object allocation. Then, it analyzes the classMain in the context of the(OObject) (O0).

In doing so, the analysis creates twoODomains for the two domainsDOCUMENT andVIEW
thatMain declares, D1 and D2, respectively. For the object allocations insideMain, the analysis
creates twoOObjectsbarChart (O1) andpieChart (O2) insideVIEW, and anOObject model
insideDOCUMENT (O3). Because of the field references, the analysis also createsOEdges from
the current objectmain to the newly created objects, E1, E2, and E3.

The analysis then interprets the allocation of aBarChart object, by binding the formal do-
main parameterBarChart::M to D1.

In Fig. 2.16, the analysis analyzes the classBarChart and its superclassBaseChart in
the context of theOObject barChart and the bindings of formal to actual domains, e.g.,
that the formal domain parameterM is bound to theODomain main.DOCUMENT. While an-
alyzing BaseChart, the analysis creates anODomain for OWNED (D3), and anOObject for
List<Listener> (O4).

ClassBaseChart declares alisteners field in domainOWNED. So the analysis adds an
OEdge (E4) from barChart to listeners inside itsOWNED domain. Note for example that
analysis does not add an edge frombarChart to listeners insidepieChart.

Next, the analysis analyzes the classList<Listener> in the context of theOObject
listeners and the bindings in scope. When interpreting the virtual fielddeclaration inside
List, the analysis looks up all theOObjects in the domainmain.DOCUMENT the types of which
are subtypes ofListener. For instance, the analysis findsOObject model. So, it creates an
OEdge from theOObject corresponding to the currentOObject listeners to thatOObject
(E5). Note that the analysis does not add an edge frombarChart’s listeners to pieChart in
VIEW, even thoughPieChart also implements theListener interface. As a result, the edges in
an OOG are more precise than super-imposing associations from a class diagram.

The analysis ofPieChart, its superclassBaseChart, andList is similar to that ofBarChart
andBaseChart, and is not shown.

48 Chapter 2. Object Graph Extraction

In Fig. 2.17, the analysis processes the classModel in the context of theOObject model.
The analysis creates anODomain for OWNED (D4), anOObject for List<Listener> (O5), and
anOEdge (E6), then analyzes the object allocation oflisteners. The analysis then processes
the classList in the context of theOObject main.DOCUMENT.model.OWNED.listeners. The
analysis looks up anyOObject of typeListener in the domainmain.VIEW, and finds two such
OObjects. So it adds anOEdge from theOObject listeners to barChart (E7), and another
from listeners to pieChart (E8).

The final object graph for listeners is in Fig. 2.18. The root object of an OOG is often an
instance of a class that declares the top-level domains and the objects inside them. For readability,
we sometimes elide the root domain and the root object from anOOG and consider the domains
inside the root type as the top-level domains (Fig.2.19).

2.4. Static Analysis 49

DOCUMENT (D1) VIEW (D2)

barChart:
BarChart

(O1)

pieChart:
PieChart

(O2)
model:
Model
(O3)

main:
Main
(O0) (E1)

(E2)
(E3)

1 OObject(main, NULL, Main)

2 Main main = new Main();

3 analyze(main, [])

4 class Main {

5 domain DOCUMENT, VIEW;

6 ODomain(DOCUMENT, main) (D1)

7 ODomain(VIEW, main) (D2)

8 OObject(main.VIEW.barChart, main.VIEW, BarChart) (O1)

9 OEdge(main, main.VIEW.barChart) (E1)

10 VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>();

11 analyze(barChart, [BarChart::M 7→ main.DOCUMENT, BarChart::OWNER 7→ main.VIEW])

12 OObject(main.VIEW.pieChart, main.VIEW, PieChart) (O2)

13 OEdge(main, main.VIEW.pieChart) (E2)

14 VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>();

15 analyze(pieChart, [PieChart::M 7→ main.DOCUMENT, PieChart::OWNER 7→ main.VIEW])

16 OObject(main.DOCUMENT.model, main.DOCUMENT, Model) (O3)

17 OEdge(main, main.DOCUMENT.model) (E3)

18 DOCUMENT Model<VIEW> model = new Model<VIEW>();

19 analyze(model, [Model::V 7→ main.VIEW, Model::OWNER 7→ main.DOCUMENT])

20 ...

21 }

Figure 2.15: Abstractly interpreting the program, starting with the root classMain.

50 Chapter 2. Object Graph Extraction

DOCUMENT VIEW

OWNED (D3)

barChart:
BarChart

pieChart:
PieChart

model:
Model

listeners:
List<Listener>

(O4)

main:
Main

(E4)

(E5)

1 this 7→ main.VIEW.barChart

2 [BarChart::M 7→ main.DOCUMENT, BarChart::OWNER 7→ main.VIEW]

3 class BarChart<M> extends BaseChart<M> {

4 analyze(barChart, [BaseChart::M 7→ main.DOCUMENT, BaseChart::OWNER 7→ main.VIEW])

5 }

6 this 7→ main.VIEW.barChart

7 [BaseChart::M 7→ main.DOCUMENT, BaseChart::OWNER 7→ main.VIEW]

8 class BaseChart<M> implements Listener {

9 domain OWNED;

10 ODomain(OWNED, main.VIEW.barChart) (D3)

11 OObject(main.VIEW.barChart.OWNED.listeners, main.VIEW.barChart.OWNED, List<Listener>) (O4)

12 OEdge(main.VIEW.barChart, main.VIEW.barChart.OWNED.listeners) (E4)

13 OWNED List<M Listener> listeners = new List<M Listener>();

14 analyze(main.VIEW.barChart.OWNED.listeners,

15 [List::ELTS 7→ main.DOCUMENT, List::OWNER 7→ main.VIEW.barChart.OWNED])

16 }

17 this 7→ main.VIEW.barChart.OWNED.listeners

18 [List::ELTS 7→ main.DOCUMENT, List::OWNER 7→ main.VIEW.barChart.OWNED]

19 T = Listener

20 class List<ELTS T> {

21 OObject(main.DOCUMENT.model, main.DOCUMENT, Model) ∈ lookup(main.DOCUMENT, Listener)

22 OEdge(main.VIEW.barChart.OWNED.listeners, main.DOCUMENT.model) (E5)

23 ELTS T obj;

24 }

Figure 2.16: Abstractly interpreting the program (continued):BarChart, BaseChart andList.

2.4. Static Analysis 51

DOCUMENT

OWNED (D4)

VIEW

OWNED

listeners:
List<Listener>

(O5)

barChart:
BarChart

pieChart:
PieChart

model:
Model

listeners:
List<Listener>

main:
Main

(E6)

(E7)

(E8)

1 this 7→ main.DOCUMENT.model

2 [Model::V 7→ main.VIEW, Model::OWNER 7→ main.DOCUMENT]

3 class Model<V> implements Listener {

4 domain OWNED;

5 ODomain(OWNED, main.DOCUMENT.model) (D4)

6 OObject(main.DOCUMENT.model.OWNED.listeners, main.DOCUMENT.model.OWNED, List<Listener>) (O5)

7 OEdge(main.DOCUMENT.model, main.DOCUMENT.model.OWNED.listeners) (E6)

8 OWNED List<V Listener> listeners = new List<V Listener>();

9 analyze(main.DOCUMENT.model.OWNED.listeners,

10 [List::ELTS 7→ main.VIEW, List::OWNER 7→ main.DOCUMENT.model.OWNED])

11 }

12 this 7→ main.DOCUMENT.model.OWNED.listeners

13 [List::ELTS 7→ main.VIEW, List::OWNER 7→ main.DOCUMENT.model.OWNED]

14 T = Listener

15 class List<ELTS T> {

16 OObject(main.VIEW.barChart, main.VIEW, BarChart) ∈ lookup(main.VIEW, Listener)

17 OEdge(main.DOCUMENT.model.OWNED.listeners, main.VIEW.barChart) (E7)

18

19 OObject(main.VIEW.pieChart, main.VIEW, PieChart) ∈ lookup(main.VIEW, Listener)

20 OEdge(main.DOCUMENT.model.OWNED.listeners, main.VIEW.pieChart) (E8)

21 ELTS T obj;

22 }

Figure 2.17: Abstractly interpreting the program (continued):Model andList.

52 Chapter 2. Object Graph Extraction

DOCUMENT

OWNED

VIEW

OWNED

OWNED

listeners:
List<Listener>

barChart:
BarChart

pieChart:
PieChart

model:
Model

listeners:
List<Listener>

listeners:
List<Listener>

main:
Main

Figure 2.18: Listeners: full object graph, including the root object.

DOCUMENT

OWNED

VIEW

OWNED

OWNED

listeners:
List<Listener>

barChart:
BarChart

pieChart:
PieChart

model:
Model

listeners:
List<Listener>

listeners:
List<Listener>

Figure 2.19: Listeners: object graph without the root object and edges from the root.

2.4. Static Analysis 53

class Main {

domain OWNED;

QuadTree<OWNED> aQT = new QuadTree<OWNED>();

}

class QuadTree<M> {

domain OWNED;

QuadTree<M> nwQT = new QuadTree<M>();

}

Figure 2.20: QuadTree with annotations.

2.4.2.3 Recursion

The analysis must handle recursive types which can lead anOGraph to grow arbitrarily deep.
For example, consider a classQuadTree, which declares fields of typeQuadTree in its OWNED

domain (Fig. 2.20). On theQuadTree example, the abstract interpretation discussed above would
not terminate (Fig. 2.21), as it would keep generating newOObjects andODomains.

Recursive types. To get a finiteOGraph and ensure the analysis terminates, the analysis could
stop expanding anOGraph after a certain depth. However, merely truncating the recursion may
fail to reveal relations when child objects point to external objects, and the child objects are
beyond the visible depth. Instead, the analysis creates a cycle in anOGraph when it reaches a
similar context. There are two possible choices (Fig. 2.22).

The first choice is tounify objects. For instance, Fig. 2.22(b) shows the resultingOGraph for
theQuadTree example. InsidenwQT, theOWNED domain refers back to the samenwQT OObject.

The second choice is tounify domains. For instance, Fig. 2.22(c) shows the resultingOGraph
for the same example. TheOWNED domain insidenwQT is the same as the one insideaQT.

We discuss each choice in turn, and why we chose to unify domains in the end.

Unifying objects. Any sound solution to the problem must attempt to always create objects
until it detects that it is creating a similar object to one itcreated before. In that case, the analysis
just uses the existing similar object. One can imagine multiple notions of similarity; it can be
any equivalence relation, as long as the number of dissimilar objects is finite. For example, one
could adopt the following similarity relation between two objectsA andB if:

1. A andB are of the same type, including actual domain parameters;
2. A andB came from the same source domaind (notODomain D – two objects in different

d’s may end up, after formal to actual substitution, in the sameD);
3. A andB are below a depth thresholdh; and
4. A andB are transitively inside the same object that is at depth thresholdh.
The third condition ensures that the analysis does not unifytwo objects if one of them is

above the threshold, and the fourth condition ensures that the analysis does not add accidental
lifted edges by crossing graph boundaries.

When the analysis does not create an object because it is similar, it still recursively calls the
analysis function (analyze) on the existing object, because the newly created object could have

54 Chapter 2. Object Graph Extraction

Main main = new Main();

OObject(main, null, Main)

analyze(main, [])

this 7→ main

class Main {

domain OWNED;

ODomain(main.OWNED, main)

OObject(main.OWNED.aQT, main.OWNED, QuadTree)

QuadTree<OWNED> aQT = new QuadTree<OWNED>();

OEdge(main, main.OWNED.aQT)

analyze(main.OWNED.aQT, [QuadTree::M 7→ main.OWNED])

}

this 7→ main.OWNED.aQT

[QuadTree::M 7→ main.OWNED]

class QuadTree<M> {

domain OWNED;

ODomain(main.OWNED.aQT.OWNED, main.OWNED.aQT)

OObject(main.OWNED.aQT.OWNED.nwQT, main.OWNED.aQT.OWNED, QuadTree)

OEdge(main.OWNED.aQT, main.OWNED.aQT.OWNED.nwQT)

QuadTree<M> nwQT = new QuadTree<M>();

analyze(main.OWNED.aQT.OWNED.nwQT, [QuadTree::M 7→ main.OWNED])

}

this 7→ main.OWNED.aQT.OWNED.nwQT

[QuadTree::M 7→ main.OWNED]

class QuadTree<M> {

domain OWNED;

ODomain(main.OWNED.aQT.OWNED.nwQT.OWNED, main.OWNED.aQT.OWNED.nwQT)

OObject(main.OWNED.aQT.OWNED.nwQT.OWNED.nwQT, main.OWNED.aQT.OWNED.nwQT.OWNED, QuadTree)

OEdge(main.OWNED.aQT.OWNED.nwQ, main.OWNED.aQT.OWNED.nwQT.OWNED.nwQT)

QuadTree<M> nwQT = new QuadTree<M>();

analyze(main.OWNED.aQT.OWNED.nwQT.OWNED.nwQT, [QuadTree::M 7→ main.OWNED])

}

...

Figure 2.21: QuadTree abstract interpretation without cycle detection.

different domain parameters compared to the previous ones,so the recursive call could produce
new edges, even ones that show up above the threshold.

However, unifying objects is problematic. To identify similar objects, it is necessary to de-
tect they have the same owningODomain. If an ODomain has a unique owningOObject, this
becomes circular. Moreover, in order to add edges, we lookupobjects in a given domain by their

2.4. Static Analysis 55

QuadTree

owned

_nwQuadTree … _seQuadTree

Is-A
Is-A

Has-A

(a) QuadTree type graph.

aQT

OWNED

nwQT

OWNED

Domain Object

OWNED

main

(b) Unifying objects.

aQT

OWNED

nwQT

OWNED

Domain Object

OWNED

main

(c) Unifying domains.

Figure 2.22: Handling the recursion inQuadTree.

type. Since recognizing domains is important, we adopted the solution of unifying domains.

Unifying domains. Instead, unifying domains is less problematic, because it is simpler to rec-
ognize when twoODomains have the same underlying domain declarationd.

The analysis creates a cycle in theOGraph when the sameODomain appears as the child of

56 Chapter 2. Object Graph Extraction

D ∈ ODomain ::= (Id = Did, Domain = C::d)

::= (Did, C::d)

Figure 2.23: Revised data type declaration forODomain. OObject andOEdge are unchanged.

two OObjects. This justifies anODomain not having a unique owningOObject, and revising
accordingly the data type declaration for anODomain (Fig. 2.23). We now qualify a domaind
by the classC that declares it, for example,Main::DOCUMENT. With the revised data structures,
the abstract interpretation ofQuadTree example now terminates (Fig. 2.24).

2.4.2.4 Domain parameters

Recall, the analysis distinguishes between different instances of the same class that are in differ-
ent domains. We now increase the precision of the analysis and distinguish between instances of
the same class in the same domain, that have different actualdomain parameters.

Consider a variation on the Listeners example (Fig. 2.25). Ifwe consider that theList class
takes a domain parameter for its owning domain,OWNER, and another for the list elements,ELTS,
thenList has typeList<OWNER, ELTS T>. We want the analysis to distinguish between two
List object allocations with different actual domains passed infor OWNER or ELTS (Fig. 2.26).
In Chapter 3, we extend the current data type declarations (Fig. 2.23), and additionally include,
in anOObject, the actual domain parametersD, rather than just the owning domainD.

2.4.3 Display Graph

We often do not display anOGraph directly but instead unfold it as aDisplay Graph or DGraph
(Fig. 2.11(c)). TheDGraph is the object graph that the tool displays to a developer, andwith
which the developer interacts.

2.4.3.1 Depth limiting

An OGraph can have cycles. So aDGraph displays anOGraph by unfolding it to a user-specified
depth (Fig. 2.27). Increasing the unfolding depth displaysmore objects. Decreasing the depth
collapses the substructure of objects that are already displayed.

In addition, aDGraph addslifted edges8to account for any edges in theOGraph below the
unfolding depth, using their nearest visible ancestor objects above the unfolding depth. Lifting
edges is a well-known technique when visualizing hierarchical representations (Fahmy and Holt
2000).

For instance, for theQuadTree example, our visualization shows oneQuadTree object within
another, down to a finite depth (See Fig. 2.28).

8Definition of edge lifting: If nodex has an edge to nodey, andx is a descendant ofPX andy is a descendant
of PY , then we lift the edge(x, y) to (PX,PY) only if PX andPY are distinct nodes andPX is not a descendant
or ancestor ofPY .

2.4. Static Analysis 57

Main main = new Main();

OObject(main, null, Main)

analyze(main, [])

this 7→ main

class Main {

domain OWNED;

ODomain(main.OWNED, Main::OWNED)

OObject(main.OWNED.aQT, main.OWNED, QuadTree)

QuadTree<OWNED> aQT = new QuadTree<OWNED>();

OEdge(main, main.OWNED.aQT)

analyze(main.OWNED.aQT, [QuadTree::M 7→ Main::OWNED])

}

this 7→ main.OWNED.aQT

[QuadTree::M 7→ Main::OWNED]

class QuadTree<M> {

domain OWNED;

ODomain(main.OWNED.aQT.OWNED, QuadTree::OWNED)

OObject(main.OWNED.aQT.OWNED.nwQT, main.OWNED.aQT.OWNED, QuadTree)

QuadTree<M> nwQT = new QuadTree<M>();

OEdge(main.OWNED.aQT, main.OWNED.aQT.OWNED.nwQT)

analyze(main.OWNED.aQT, [QuadTree::M 7→ QuadTree::OWNED])

}

this 7→ main.OWNED.aQT.OWNED.nwQT

[QuadTree::M 7→ QuadTree::OWNED]

class QuadTree<M> {

domain OWNED;

ODomain(main.OWNED.aQT.OWNED, QuadTree::OWNED)

OObject(main.OWNED.aQT.OWNED.nwQT, <main.OWNED.aQT.OWNED, QuadTree)

QuadTree<M> nwQT = new QuadTree<M>();

OEdge(main.OWNED.aQT.OWNED.nwQ, main.OWNED.aQT.OWNED.nwQT)

analyze(main.OWNED.aQT, [QuadTree::M 7→ QuadTree::OWNED])

}

Figure 2.24: Revised example with recursive types.

In aDGraph that visualizes anOGraph, there are two ways to reduce the level of detail. One is
to restrict the unfolding depth, and another is to expand or collapse the substructures of selected
elements.

Edge lifting due to limited unfolding depth. The limited unfolding depth results in the cre-
ation of lifted edges. In our implementation, the user interactively controls the unfolding depth.

58 Chapter 2. Object Graph Extraction

1 class Main {

2 domain OWNED, DOCUMENT, VIEW;

3 ...

4 listViews = new List<Main::OWNED, Main::VIEW Listener>();

5 ...

6 listModels = new List<Main::OWNED, Main::DOCUMENT Listener>();

7 }

Figure 2.25: Listeners: distinguishing objects based on domain parameters.

 DOCUMENT

 VIEW

 owned
model:
Model

barChart:
BarChart

pieChart:
PieChart

listViews:
ArrayList<Listener>

listModels:
ArrayList<Listener>

Figure 2.26: Listeners: object graph distinguishing objects based on domain parameters.

Edge lifting due to collapsing substructures. Edge lifting can also occur when the user
expands or collapses individual elements. For example, inbarChart’s domain OWNED, a
listeners object refers to amodel object in domainDOCUMENT (Fig. 2.29(a)). If the user re-
duces the unfolding depth, or if she collapsesbarChart’s substructure, the analysis adds a lifted
edge frombarChart to model (Fig. 2.29(b)).

2.4.3.2 Abstraction by types

An OOG provides architectural abstraction primarily by ownership hierarchy. In addition, an
OOG can abstract objects within each domain by their declared types.

In many object-oriented systems, many types extend from common base classes or imple-
ment common interfaces. For instance, bothBarChart andPieChart classes implement the
Listener interface to realize the Observer design pattern.

Declaration-based view. In keeping with the good practice of programming to an interface
instead of an implementation, many field declarations couldhave interface types. Consider the
following variation on the Listeners system, which also declares a fieldlstnr of typeListener
(Fig. 2.30).

2.4. Static Analysis 59

_lentMain___MainDOCUMENTModel_Main__DOCUMENT__Main__VIEW_
_lentMain___MainVIEWBarChart_Main__DOCUMENT__Main__VIEW_
_lentMain___MainVIEWPieChart_Main__DOCUMENT__Main__VIEW_
_lentMain___MainownedArrayList_Listener__Main__VIEW_
_lentMain___MainownedArrayList_Listener__Main__DOCUMENT_

obj1

dom1 dom2

obj2

(a)

obj1’

dom1’ dom2’

obj1’’

dom1 dom2

obj2’

obj2

(b)

obj1’

dom1’ dom2’

obj1’’

dom1’’ dom2’’

obj2’

obj2’’obj1’’’

dom1 dom2

obj2

(c)
Figure 2.27: Unfolding anOGraph.

60 Chapter 2. Object Graph Extraction

OWNED

OWNED

OWNED

nwQT: QuadTree

nwQT : QuadTreeaQT:
QuadTree

main:
Main

Figure 2.28: QuadTree OOG.

DOCUMENT

OWNED

VIEW

OWNED

listeners:
List<Listener>

barChart
BarChart

model:
Model

listeners:
List<Listener>

(a) ShowingbarChart’s substructure.

DOCUMENT

OWNED

VIEW

listeners:
List<Listener>

barChart (+):
BarChart

model:
Model

(b) Lifted edge between objectsbarChart andmodel.

Figure 2.29: Listeners: limiting the unfolding depth or hidingbarChart’s substructure adds lifted edges.

The referencesbarChart, pieChart andlsntr are in the sameVIEW domain. Recall that
both BarChart andPieChart extendBaseChart, andBaseChart implements theListener
interface. As a result, the analysis merges them into the same object in the object graph.

Instantiation-based view. A key insight, however, is that there are no object creationsof
interface types. So the analysis considers only object creation expressions and generates an

2.4. Static Analysis 61

1 class Main {

2 domain DOCUMENT, VIEW;

3

4 DOCUMENT Model<VIEW> model = new Model<VIEW>();

5 VIEW BarChart<DOCUMENT> barChart = new BarChart<DOCUMENT>();

6 VIEW PieChart<DOCUMENT> pieChart = new PieChart<DOCUMENT>();

7

8 VIEW Listener lstnr = null;

9 ...

10 }
Figure 2.30: Listeners: illustration of interfaces causing merging.

Instantiation-Based View (IBV)9. One limitation, however, is that an IBV can be problematic
when some code is not available, because it requires knowledge of all the allocation points of
objects in the program.

Using an IBV, the type graph would not contain a field declarationlstnr of typeListener.
Rather, it would have field declarations forbarChart and pieChart of type BarChart and
PieChart, respectively. Then, the object graph would show distinctbarChart andpieChart
objects, since there is no subtyping relation between theirtypes, BarChart and PieChart,
respectively (Fig. 2.31). In most cases, unless otherwise specified, the analysis will use an
Instantiation-Based View10.

Abstraction. An Instantiation-Based View (IBV) prevents the excessive merging of objects
in domains, but may reduce the abstraction and lead to clutter in the object graph. Consider
for example the situation where there are many other subclasses ofAbstractChart, such as
LineChart, ColumnChart, ScatterChart andDoughnutChart.

Trivial types. To improve abstraction and reduce clutter, an OOG can merge twoOObjects in a
givenODomain whenever they share one or more least upper bound (LUB) types.The resulting
object has an intersection type that includes all the least upper bounds.

In Java-like languages, every class inherits fromjava.lang.Object. However, merg-
ing all the OObjects in a domain into a singleOObject of type Object would result in a
sound but uninteresting OOG. So the heuristic does not mergeOObjects that have types that
share only trivial types as supertypes. Trivial types are user-configurable and typically include
java.lang.Object, Cloneable andSerializable from the Java Standard Library. Many
marker interfaces that do not declare any methods, such asRandomAccess, are good candidates
to be included in the list.

Applying abstraction by trivial types on the raw Listeners OOG (Fig. 2.31) produces an OOG
that is less cluttered (Fig. 2.32). In particular, the OOG now merges all the chart objects in the
VIEW domain into one object, shown aslistener:Listener.

9This is similar to how (Bacon and Sweeney 1996) use Rapid TypeAnalysis (RTA) to determine a method call’s
receiver during call graph construction. However, RTA alone is insufficient. (Rayside et al. 2005) proposed a static
object graph analysis based on RTA which produced trivial over-approximations for most programs.

10For simplicity, I often omit the explicit object allocations in the sample programs included in this document.

62 Chapter 2. Object Graph Extraction

 VIEW

 DOCUMENT

xyChart(+):
ScatterChart

model(+):
Model

cylChart(+):
CylinderChart

lineChart(+):
LineChart

pieChart(+):
PieChart

doughChart(+):
DoughnutChart

pyrChart(+):
PyramidChart

colChart(+):
ColumnChart

barChart(+):
BarChart

Figure 2.31: Listeners: Instantiation-Based View (IBV).

 DOCUMENT VIEW

model(+):
Model

chart3D(+):
Chart3D

Figure 2.32: Listeners: abstraction by trivial types.

Design intent types. Abstraction by trivial types can quickly unclutter an OOG but is not very
precise. Assume that the developers distinguish between two- and three-dimensional charts in
the type hierarchy, and define aChart2D and aChart3D interface. Classes such asLineChart,
ColumnChart, ScatterChart and DoughnutChart implement aChart2D interface. Other
classes such asCylinderChart andPyramindChart implement theChart3D interface. Finally,
some classes implement both interfaces (Fig. 2.33).

Similarly, we may want the OOG to distinguish between two- and three-dimensional charts.
In particular, we may want to treat 3D charts as more architecturally significant than 2D charts.

For this purpose, the developer defines a list of design intent types, ordered from most to
least architecturally relevant. For instance, she adds theinterfacesChart3D andChart2D to
the list, in that order. When determining the object with which to merge theOObject for
pieChart:PieChart, the analysis finds the first type in the list of design intent types that is
a supertype ofPieChart. For instance, the analysis picksChart3D. So it collapses severalOOb-
jects into aDObject of typeChart3D. Then, the analysis finds the first type in the list of design
intent types that is a supertype ofPyramidChart. In this case, the analysis picksChart3D again.

2.4. Static Analysis 63

_lentMain_MainVIEWScatterChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWCylinderChart
_lentMain_MainVIEWLineChart
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWDoughnutChart
_lentMain_MainVIEWPyramidChart
_lentMain_MainVIEWColumnChart
_lentMain_MainVIEWBarChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWChart3D

 ColumnChart

 BaseChart

 LineChart

 PyramidChart

 CylinderChart

 BarChart

 DoughnutChart

 PieChart

 ScatterChart

 «interface»
 Listener

 Object

 «interface»
 Chart2D

 «interface»
 Chart3D

Figure 2.33: Listeners: inheritance hierarchy.

 VIEW
 DOCUMENT

chart3D(+):
Chart3D

model(+):
Modelchart2D(+):

Chart2D

Figure 2.34: Listeners: abstraction by design intent types.

When the analysis processes the field declaration fordoughChart:DoughnutChart, it picks
Chart2D. So it creates aDObject of typeChart2D. Similarly, it mergeslineChart:LineChart
with Chart2D. Applying abstraction by design intent types to the raw Listeners OOG (Fig. 2.31)
produces an OOG that conveys the architectural intent of distinguishing between the two kinds
of charts (Fig. 2.34).

64 Chapter 2. Object Graph Extraction

simple.ColumnChart
simple.BaseChart
simple.LineChart
simple.PyramidChart
simple.CylinderChart
simple.BarChart
simple.DoughnutChart
simple.PieChart
simple.ScatterChart
simple.Listener
java.lang.Object
simple.Chart2D
simple.Chart3D
_lentMain_MainVIEWChart3D
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWChart2D

2.4.4 Summary

An OOG is a graph with two types of nodes, objects and domains.The nodes form a hierarchy
where each object node has a unique parent domain and each domain node has a unique parent
object. The root of the graph is a top-level global domain. There are two edge types. Edges
between objects correspond to field references. Edges between domains correspond to domain
links. Compared to previous definitions of object graphs, e.g., (Potter et al. 1998), an OOG
explicitly represents clusters of objects using domains and edges between these clusters using
domain links. In contrast to other ownership hierarchies (Hill et al. 2002; Potanin et al. 2004),
in an OOG, the owner of an object is a domain instead of anotherobject. The ability to define
multiple domains per object is useful for modeling multiplearchitectural tiers in an application.
In addition, an OOG supports two forms of hierarchy: strict encapsulation and logical contain-
ment. Previous ownership systems which had multiple contexts per object, e.g., (Clarke 2001),
support only strict encapsulation, which cannot express many object-oriented design idioms. In
contrast, the expressiveness of logical containment makesit easier to both add annotations to
existing code as well as control the architectural abstraction in an object graph.

2.5 Advanced Features

We now discuss several additional features.

2.5.1 Displaying objects with special annotations

Objects that have one of the special annotations (unique, lent, or shared) require special
handling.

2.5.1.1 shared objects

The object graph analysis assumes that all objects marked asshared are in one domain. As a
result, due to merging objects for soundness, the analysis may excessively merge objects that are
in theshared domain. Unless the user requests otherwise, we often purposely do not display
theshared domain in an OOG. Displaying theshared domain would be trivial, but would add
many uninteresting edges to the OOG. Strictly speaking, excluding theshared domain makes
the resulting OOG unsound, but we believe it to be an acceptable compromise.

2.5.1.2 unique objects

An OOG may not reflect an object markedunique until it is assigned to a specific domain.
When an object is created, it isunique. An inter-procedural flow analysis is needed to track
each object from its creation until its assignment to a specific domain. Since the current tool
does not implement such a flow analysis, a developer must manually annotate aunique object
returned from a factory method with the domain in which it should be displayed.

2.5. Advanced Features 65

2.5.1.3 lent objects

Objects annotated withlent are currently missing from the OOG. To display them in the OOG,
a flow analysis is needed to determine the domain that alent object is really in. Currently, the
workaround is s to manually resolve thelent annotation, and to use the more precise annotation.

2.6 Discussion

2.6.1 Assumptions

The SCHOLIA extraction static analysis makes the following assumptions:
• Sources available:The program’s whole source code and portions of external libraries

that are in use have annotations that typecheck11;
• Single entry point: The program operates by creating a main object.
• Summarized external entities:Reflection, dynamic code loading or native calls may in-

troduce unknown objects and edges into the system. The annotation system can summarize
these external entities using “virtual” or “ghost” (Flanagan et al. 2002) field annotations.
The latter are also useful when the sources are unavailable.

2.6.2 Alternate Annotations

There are multiple ways to annotate a program. Fig. 2.35 shows an alternate set of annotations
for the Listeners system and the resulting OOG (Fig. 2.36). In these annotations, thelisteners
collection object are no longer in private domains. This allows a client program to modify the
listeners collection objects directly, which the client could not do if these objects were strictly
encapsulated in private domains.

These annotations make thelisteners list objects appear in the top-level domains and
illustrate the potential loss of precision due to merging objects within a domain by their de-
clared types and their domain parameters (in this case, the domain parameters forBarChart and
PieChart are bound to the same domain). For instance, thelisteners of pieChart and those
of barChart are merged in theVIEW domain (Fig. 2.36). However, this object graph is still more
precise than a class diagram, which also abstracts objects by type, becausetwo objects that are
in two different domains can never be aliased. For instance, the analysis can still distinguish
between thelisteners of model from those ofpieChart andbarChart.

Moreover, a developer can prevent unwanted merging by placing two objects that should
never get merged in separate domains. For instance, even if adeveloper does not wish to use
strict encapsulation, she can define public domains, and place thelisteners objects in public
domains (See Fig. 2.37). The resulting object graph is in Fig. 2.38.

The main difference between the OOG in Fig. 2.38 and the one inFig. 2.3(a) is that, in the
former,LISTENERS domains appear with a thin dashed border, whereasOWNED appears with a

11Our static analysis is similar to an Andersen-style points-to static analysis (Andersen 1994). An object-sensitive
analysis, e.g., (Milanova et al. 2005), would have this samelimitation, because it requires knowledge of all the
allocation points of objects in the program.

66 Chapter 2. Object Graph Extraction

1 interface Listener {

2 }

3 class BaseChart<M> implements Listener {

4 OWNER List<M Listener> listeners;

5 }

6 class BarChart<M> extends BaseChart<M> {

7 }

8 class PieChart<M> extends BaseChart<M> {

9 }

10 class Model<V> implements Listener {

11 OWNER List<V Listener> listeners;

12 }

13 ...

14 class Main {

15 domain DOCUMENT, VIEW;

16 DOCUMENT Model<VIEW> model;

17 VIEW BarChart<DOCUMENT> barChart;

18 VIEW PieChart<DOCUMENT> pieChart;

19 }

Figure 2.35: Listeners: alternate annotations.

 DOCUMENT VIEW

model:
Model

listeners:
List<Listener>

barChart:
BarChart

pieChart:
PieChart

listeners:
List<Listener>

Figure 2.36: Listeners: object graph based on the alternate annotations.

thick dashed border. Recall that a thick dashed border indicate that these instances are owned or
strictly encapsulated by their outer objects. And a thin border indicates logical containment. In
particular, when using logical containment, a developer can define a public method that returns
an alias to a field in a public domain.

For arbitrary object-oriented implementation code, it is easier to use logical containment with
public domains, rather than the strict encapsulation of private domains—and both can reduce the
number of objects in the top-level domains.

2.6. Discussion 67

_lentMain_MainDOCUMENTModel
_lentMain_MainDOCUMENTList_Listener_
_lentMain_MainVIEWBarChart
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWList_Listener_

1 interface Listener {

2 }

3 class BaseChart<M> implements Listener {

4 public domain LISTENERS; // Public domain

5 LISTENERS List<M Listener> listeners;

6

7 // A public method can return a reference to an object in a public domain

8 public LISTENERS List<M Listener> getListeners() {

9 return listeners;

10 }

11 }

12 class BarChart<M> extends BaseChart<M> {

13 }

14 class PieChart<M> extends BaseChart<M> {

15 }

16 class Model<V> implements Listener {

17 public domain LISTENERS; // Public domain

18 LISTENERS List<V Listener> listeners;

19 }

20 ...

21 class Main {

22 domain DOCUMENT, VIEW;

23 DOCUMENT Model<VIEW> model;

24 VIEW BarChart<DOCUMENT> barChart;

25 VIEW PieChart<DOCUMENT> pieChart;

26 }

Figure 2.37: Listeners: using public domains.

 DOCUMENT

 LISTENERS

 VIEW

 LISTENERS

 LISTENERS

listeners:
ArrayList<Listener>

pieChart:
PieChart

barChart:
BarChart

model:
Model

listeners:
ArrayList<Listener>

listeners:
ArrayList<Listener>

Figure 2.38: Listeners: object graph based on using public domains.

68 Chapter 2. Object Graph Extraction

_lentMain_MainDOCUMENTModel_ModelLISTENERSArrayList_Listener_
_lentMain_MainVIEWPieChart
_lentMain_MainVIEWBarChart
_lentMain_MainDOCUMENTModel
_lentMain_MainVIEWPieChart_PieChartLISTENERSArrayList_Listener_
_lentMain_MainVIEWBarChart_BarChartLISTENERSArrayList_Listener_

2.6.3 Imprecision

The OOG extraction relies on the type system’s guarantee that two objects in different domains
cannot be assigned to each other, and thus can never alias. Buttwo objects in the same do-
main may alias. In the absence of more information about possible aliasing, the analysis can be
imprecise in several cases that we discuss next12.

2.6.3.1 Field assignment in superclass

Consider the code in Fig. 2.39 and the corresponding OOG in Fig. 2.40. The OOG is imprecise
because it shows an edge fromc to y, and an edge fromb to z.

In SCHOLIA, a developer can place objects that should not get merged in different domains.
Of course, this assumes that the developer is aware of the analysis’s bias. For instance, in
the above example, the developer adding the annotations candefine two domains,OWNED1 and
OWNED2, and placeb andc in OWNED1 andOWNED2, respectively (Fig. 2.41). Then, the OOG will
not show imprecise edges betweenc andy, or b andz (Fig. 2.42).

12Our static analysis is similar to an Andersen-style points-to analysis (Andersen 1994), which has known sources
of imprecision, thatobject-sensitivevariants address (Milanova et al. 2005). I took these code examples from
(Milanova et al. 2005) and annotated them.

2.6. Discussion 69

1 class X {

2 void n() {

3 }

4 }

5 class Y extends X {

6 void n() {

7 }

8 }

9 class Z extends X {

10 void n() {

11 }

12 }

13 class A<P> {

14 P X f;

15 A(P X xa) {

16 this.f = xa;

17 }

18 }

19 class B<P> extends A<P> {

20 B(P X xb) {

21 super(xb);

22 }

23 void m() {

24 lent X xb = this.f;

25 xb.n();

26 }

27 }

28 class C<P> extends A<P> {

29 C(P X xc) {

30 super(xc);

31 }

32 void m() {

33 lent X xc = this.f;

34 xc.n();

35 }

36 }

37

38 public class Main {

39 domain OWNED;

40 OWNED Y y = new Y();

41 OWNED Z z = new Z();

42 OWNED B<OWNED> b = new B(y);

43 OWNED C<OWNED> c = new C(z);

44

45 public void init() {

46 b.m();

47 c.m();

48 }

49 public static void main(lent String[shared] args) {

50 lent Main system = new Main();

51 system.init();

52 }

53 }

Figure 2.39: Field assignment in superclass, adapted from (Milanova et al. 2005).

 lent

 owned

y:
Y

b:
B

z:
Z

c:
C

system:
Main

Figure 2.40: Imprecision with field assignment in superclass.

70 Chapter 2. Object Graph Extraction

_lentMain_MainownedY
_lentMain_MainownedB
_lentMain_MainownedZ
_lentMain_MainownedC
_lentMain

1 class X {

2 void n() {

3 }

4 }

5 class Y extends X {

6 void n() {

7 }

8 }

9 class Z extends X {

10 void n() {

11 }

12 }

13 class A<P> {

14 P X f;

15 A(P X xa) {

16 this.f = xa;

17 }

18 }

19 class B<P> extends A<P> {

20 B(P X xb) {

21 super(xb);

22 }

23 void m() {

24 lent X xb = this.f;

25 xb.n();

26 }

27 }

28 class C<P> extends A<P> {

29 C(P X xc) {

30 super(xc);

31 }

32 void m() {

33 lent X xc = this.f;

34 xc.n();

35 }

36 }

37

38 public class Main {

39 domain OWNED1, OWNED2;

40 OWNED1 Y y = new Y();

41 OWNED2 Z z = new Z();

42 OWNED1 B<OWNED1> b = new B(y);

43 OWNED2 C<OWNED2> c = new C(z);

44

45 public void init() {

46 b.m();

47 c.m();

48 }

49 public static void main(lent String[shared] args) {

50 lent Main system = new Main();

51 system.init();

52 }

53 }

Figure 2.41: Field assignment in superclass, adapted from (Milanova et al. 2005).

 lent

 owned2 owned1

c:
C

z:
Z

b:
B

y:
Y

system:
Main

Figure 2.42: Fixing imprecision with field assignment in superclass.

2.6. Discussion 71

_lentMain_Mainowned2C
_lentMain_Mainowned2Z
_lentMain_Mainowned1B
_lentMain_Mainowned1Y
_lentMain

1

2 class X {

3 }

4

5

6 class Y {

7 }

8

9

10 class Container<P> {

11 P Object f;

12

13 void put(P Object xa) {

14 this.f = xa;

15 }

16 }

17

18 public class Main {

19 domain OWNED;

20 OWNED Y y = new Y();

21 OWNED X x = new X();

22 OWNED Container<OWNED> c1 = new Container();

23 OWNED Container<OWNED> c2 = new Container();

24

25 public void init() {

26 c1.put(x);

27 c2.put(y);

28 }

29 public static void main(lent String[shared] args) {

30 lent Main system = new Main();

31 system.init();

32 }

33 }

Figure 2.43: Simple code with container, adapted from (Milanova et al. 2005).

 lent

 owned

x:
X

y:
Y

c2:
Container

system:
Main

Figure 2.44: Imprecision with container.

2.6.3.2 Imprecision with containers

The use of containers can also cause a precision loss. Consider the code in Fig. 2.43. The corre-
sponding OOG is in Fig. 2.44, and suffers from an imprecisionof merging the twoContainer
objects. The developer can also prevent this merging by placing c1 andc2 in separate domains.

72 Chapter 2. Object Graph Extraction

_lentMain_MainownedX
_lentMain_MainownedY
_lentMain_MainownedContainer
_lentMain

2.7 Summary

To provide architectural abstraction, an object graph mustdistinguish between objects that are
architecturally relevant from those that are not. An OOG provides architectural abstraction pri-
marily by ownership hierarchy, by pushing low-level objects underneath more architectural ob-
jects. Thus, only architecturally relevant objects appearin the top-level domains. In turn, each
one of those objects has nested domains and objects that represent its substructure, and so on,
until low-level, less architecturally relevant objects are reached.

In addition, an OOG can provide abstraction by types, by merging objects in each domain
based on their declared types in the program, the notion of subtyping, and optional developer
input to specify the architecturally relevant types.

Indeed, collapsing many nodes into one is a classic approachto shrink a graph, and has
previously been used in extracting views of the code architecture (Müller and Klashinsky 1988;
Kazman and Carrière 1999). However, an OOG is unique in collapsing objects, statically, based
on their ownership and type structures, and not according towhere they are syntactically declared
in the program, some naming convention or a graph clusteringalgorithm.

Our empirical evaluation in Chapter 4 will confirm that abstraction by ownership hierarchy
and by types can reduce the number of objects at the top level by an order of magnitude, com-
pared to a flat object graph. Before we evaluate the analysis inpractice on real object-oriented
code, we describe it formally and prove key soundness theorems in Chapter 3.

2.7. Summary 73

Chapter 3

Formalization of the Object Graph
Extraction1

In this chapter, I formally describe the static analysis that SCHOLIA uses to extract a hierarchi-
cal object graph from a program with ownership domain annotations, and prove key soundness
theorems.

The formalization of the static analysis assumes a Java-like program with ownership domain
annotations. Section 3.1 reviews the formalization of ownership domains using Featherweight
Domain Java (FDJ). Section 3.2 formalizes the Object Graph (OGraph). Section 3.3 discusses
soundness. Section 3.4 discusses the Display Graph (DGraph) that a developer sees, includ-
ing applying the optional abstraction by types. I then discuss a few implementation details in
Section 3.5, and conclude with a discussion in Section 3.6.

3.1 Annotations (Featherweight Domain Java)

The SCHOLIA annotations implement the ownership domains type system. For com-
pleteness, we reproduce here parts of the Featherweight Domain Java (FDJ) type system
(Aldrich and Chambers 2004), with some corrections2 and additional changes we discuss later.

3.1.1 Syntax

Fig. 3.1 shows the syntax of Featherweight Domain Java (FDJ).

• C ranges over class names;

• T ranges over types;

• f ranges over fields;

• v ranges over values;

• e ranges over expressions;

1Portions of this chapter appeared in (Abi-Antoun and Aldrich 2009b).
2Errata available at:http://www.cs.cmu.edu/~aldrich/papers/ownership-domains-errata.html

75

http://www.cs.cmu.edu/~aldrich/papers/ownership-domains-errata.html

• x ranges over variable names;

d over domain names;

• n ranges over values and variable names;

• S ranges over stores;

• ` andv range over locations in the store;

• α, β andγ range over formal domain parameters;

• m ranges over method names. As a shorthand, an overbar is used to represent a sequence.

• A storeS maps locations̀ to their contents: the class of the object, the actual ownership
domain parameters, and the values stored in its fields.

• S[`] denotes the store entry for`.

• S[`, i] to denote the value in theith field ofS[`].

• Adding an entry for locatioǹ to the store is abbreviatedS[` 7→ C<`>(`′)].

• ` . e represents a method bodye executing with a receiver̀.

• The result of computation is a location`, which is sometimes referred to as a valuev.

• The set of variables includes the distinguished variablethis used to refer to the receiver
of a method.

• The fixed class tableCT maps classes to their definitions.

• A program, then, is a tuple(CT, S, e) of a class table, a store, and an expression.

We simplify the formal system slightly by treating the first domain parameter of a class as
its owning domain. We use a slightly different syntax in the practical system to emphasize the
semantic difference between the owner domain of an object and its domain parameters.

Assumptions. The formal model makes the following simplifying assumptions:
• No lent or unique annotations: (Aldrich et al. 2002c) showed how to integratethem with

an ownership type system. We also discussed how the static analysis might handle these
special annotations (Section 2.3.3, Page 41);

• No cast or the resultingerror expressions to handle failed casts: those are part of FDJ,
but are not crucial to this discussion.

Auxiliary judgements. The semantics use many auxiliary judgements (Fig. 3.2, 3.3). These
definitions are straightforward and in many cases are derived directly from rules in Featherweight
Java. The Aux-Public rule checks whether a domain is public.The next few rules define the
domains, links, assumptions, andfields functions by looking up the declarations in the class
and adding them to the declarations in superclasses. Thelinkdecls function just returns the
union of thelinks andassumptions in a class, while theowner function just returns the first
domain parameter (which represents the owning domain in theFDJ formal system).

Themtype function looks up the type of a method in the class; if the method is not present,
it looks in the superclass instead. Thembody function looks up the body of a method in a similar

76 Chapter 3. Formalization of the Object Graph Extraction

CT ::= cdef

cdef ::= class C<α, β> extends C ′<α>

assumes γ → δ { dom lnk fd md }

dom ::= [public] domain d;

lnk ::= link d → d′;

fd ::= T f ;

md ::= TR m(T x) Tthis { return eR; }

e ::= x
| new C<p>(e)
| e.f
| e.m(e)
| `
| ` . e

n ::= x | v

p ::= α | n.d | shared

T ::= C<p>

v, ` ∈ locations

S ::= ` 7→ C<p>(v)

Γ ::= x 7→ T

Σ ::= ` 7→ T

Figure 3.1: Featherweight Domain Java abstract syntax. Source: (Aldrich and Chambers 2004).

way. Finally, theoverride function verifies that if a superclass defines methodm, it has the same
type as the definition ofm in a subclass.

In the dynamic semantics (Fig. 3.4), when a method expression reduces to a value, theR-
Contextrule propagates the value outside of its method context and into the surrounding method
expression. As this rule shows, expressions of the form` . e do not affect program execution,
and are used only for reasoning about invariants that are necessary for link soundness.

Congruence rules allow reduction to proceed within an expression in the order of evaluation
defined by Java (Fig. 3.5). For example, the read rule states that an expressione.f reduces toe′.f
whenevere reduces toe′.

Finally, we did not include some FDJ rules, e.g., link permission rules, which can be found
elsewhere (Aldrich and Chambers 2004).

3.1.2 Typing Rules

The FDJ subtyping rules are in Fig. 3.6. The FDJ static semantics are in Fig. 3.7 and in Fig. 3.8.

3.1. Annotations (Featherweight Domain Java) 77

(public domain d) ∈ dom

public(d)
Aux-Public

class C<α>
params(C) = α

Aux-Params

lnk = link dc → d′c links(C ′<d>) = ds → d′s

links(C<d, d′>) = ([d/α, d′/β] (dc → d′c)), ds → d′s
Aux-Links

assumptions(C ′<d>) = ds → d′s

assumptions(C<d, d′>) = ([d/α, d′/β] (γ → δ)), ds → d′s
Aux-Assume

linkdecls(C<p>) = links(C<p>) ∪ assumptions(C<p>)
Aux-LinkDecls

owner(C<p>) = d1
Aux-Owner

(TR m(T x) { return e; }) ∈ md

mtype(m,C<p>) = [d/α] T → TR

Aux-MType1

m is not defined in md

mtype(m,C<d, d′>) = mtype(m,C ′<d>)
Aux-MType2

(TR m(T x) { return e; }) ∈ md

mbody(m,C<p>) = [d/α] (x : T , e)
Aux-MBody1

m is not defined in md

mbody(m,C<d, d′>) = mbody(m,C ′<d>)
Aux-MBody2

(mtype(m,C<p>) = T ′ → T ′) =⇒ (T = T ′ ∧ T = T ′)

override(m,C<p>, T → T)
Aux-Override

CT (C) = class C<α, β> extends C ′<α> assumes γ → δ { T f ; dom; lnk; md; }

Figure 3.2: FDJ auxiliary definitions. Adapted from (Aldrich and Chambers 2004).mbody now exposes
the types of a method’s parameters.

78 Chapter 3. Formalization of the Object Graph Extraction

(publicopt domain d) ∈ dom domains(C ′<d>) = d′

domains(C<d, d′>) = this.d, d′
Aux-Domains

domains(Object<αo>) = ∅
Aux-Domains-Obj

fields(C ′<d>) = T ′ f ′

fields(C<d, d′>) = ([d/α, d′/β] T f), T ′ f ′
Aux-Fields

fields(Object<αo>) = ∅
Aux-Fields-Obj

CT (C) = class C<α, β> extends C ′<α> assumes γ → δ { T f ; dom; lnk; md; }
CT (Object) = class Object<αo> { }

Figure 3.3: FDJ auxiliary definitions. Adapted from (Aldrich and Chambers 2004), whereAux-Domains
andAux-Fieldsdo not have base cases forObject (Aux-Domains-ObjandAux-Fields-Obj).

S[`] = C<p>(v) fields(C<p>) = T f

`.fi; S vi; S
[R-Read]

` 6∈ dom(S) S ′ = S[` 7→ C<p>(v)]

new C<p>(v); S `; S ′ [R-New]

S[`] = C<p>(v) mbody(m,C<p>) = (x, e0)

`.m(v); S ` . [v/x, `/this]e0; S
[R-Invk]

` . v; S v; S
[R-Context]

Figure 3.4: FDJ dynamic semantics. Source: (Aldrich and Chambers 2004).

3.1. Annotations (Featherweight Domain Java) 79

S ` ei 7→ e′i, S
′

S ` new C<p>(v1..i−1, ei, ei+1..n) 7→ new C<p>(v1..i−1, e
′
i, ei+1..n), S

′ RC-New

S ` e 7→ e′, S ′

S ` e.fi 7→ e′.fi, S
′ RC-Read

S ` e 7→ e′, S ′

S ` e.m(e) 7→ e′.m(e), S ′ RC-RecvInvk

S ` ei 7→ e′i, S
′

S ` v.m(v1..i−1, ei, ei+1..n) 7→ v.m(v1..i−1, e
′
i, ei+1..n), S

′
RC-ArgInvk

S ` e 7→ e′, S ′

S ` ` . e 7→ ` . e′, S ′ RC-Context

Figure 3.5: FDJ congruence rules. Source: (Aldrich and Chambers 2004).

CT (C) = class C<α, β> extends C ′<α> . . .

C<d, d′> <: C ′<d>
Subtype-Class

T <: T
Subtype-Reflex

T <: T ′ T ′ <: T ′′

T <: T ′′ Subtype-Trans

Figure 3.6: FDJ subtyping rules. Source: (Aldrich and Chambers 2004).

80 Chapter 3. Formalization of the Object Graph Extraction

Γ(x) = C<p>

Γ;Σ;nthis ` x : C<p>
T-Var

Σ(`) = C<p>

Γ;Σ;nthis ` ` : C<p>
T-Loc

Γ,Σ, nthis |= assumptions(C<p>) Γ,Σ, nthis ` e : T ′

fields(C<p>) = T f T ′ <: T Γ,Σ, nthis ` nthis : Tthis

owner(C<p>) ∈ (domains(Tthis) ∪ owner(Tthis))

Γ; Σ;nthis ` new C<p>(e) : C<p>
T-New

Γ;Σ;nthis ` e0 : T0 fields(T0)[e0/this] = T f

Γ;Σ;nthis ` e0.fi : Ti
T-Read

Γ;Σ;nthis ` e0 : T0 Γ;Σ;nthis ` e : Ta

mtype(m,T0) = T → TR T ′ = T [e/x, e0/this] Ta <: T ′

Γ;Σ;nthis ` e0.m(e) : TR[e/x, e0/this]
T-Invk

Γ;Σ;nthis ` e : T

Γ;Σ;nthis ` ` . e : T
T-Context

Figure 3.7: FDJ typing rules. Source: (Aldrich and Chambers 2004).

3.1. Annotations (Featherweight Domain Java) 81

md OK in C fields(C ′<α>) = T ′ g lnk OK in C<α, β>

{this : C<α, β>}; ∅; this |= this → owner(T)

K = C<α, β>(T ′ g, T f) { super(g); this.f = f ; }

class C<α, β> extends C ′<α> assumes γ → δ { T f ; K dom; lnk; md; } OK
ClsOK

CT (C) = class C<α, β> extends C ′<α> . . .
override(m,C ′<α>, T → TR)

{x : T ; this : C<α, β>}; ∅; this ` e : TR TR <: T

{x : T ; this : C<α, β>}; ∅; this |= this → owner(T)

TR m(T x) { return e; } OK in C
MethOK

{d1, d2} ∩ domains(C<α>) 6= ∅
d1 6∈ domains(C<α>) =⇒ (this : C<α>; ∅; this |= d1 → owner(C<α>))

d2 6∈ domains(C<α>) =⇒ (this : C<α>; ∅; this |= this → d2)

link d1 → d2 OK in C<α>
LinkOK

∀` ∈ domain(Σ) ∅; Σ; ` |= assumptions(Σ[`])

Σ OK
T-Assumptions

domain(S) = domain(Σ) S[`] = C<`′.x>(v) ⇐⇒ Σ[`] = C<`′.x>

fields(Σ[`]) = T f =⇒ (S[`, i] = `′′) ∧ (Σ[`′′] <: Ti) Σ OK
(S[`, i] = `′′) =⇒ (∅,Σ, ` |= ` → owner(Σ[`′′]))

Σ ` S
T-Store

Figure 3.8: FDJ class, method and store typing. Source: (Aldrich and Chambers 2004).

82 Chapter 3. Formalization of the Object Graph Extraction

3.1.3 Ownership domain soundness

We restate some key results from the soundness of ownership domains (Aldrich and Chambers
2004).
Lemma 1 (Lemma). If mtype(m,D) = T → TR thenmtype(m,C) = T → TR for all C <: D.

Proof. By induction on the derivation ofC <: D andmtype(m,D).

Lemma 2 (Substitution Lemma). If Γ, x : τ ` e : T and Γ ` x′ : τ ′ whereτ ′ <: τ , then
Γ ` [x′/x]e : T ′ for someT ′ <: T .

Proof. By induction on the typing rules.

Lemma 3 (Weakening Lemma). If Γ ` e : C, thenΓ, x : D ` e : C.

Proof. By induction on the typing rules.

Lemma 4 (Store Lemma). If fields(C<d>) = T f and S[`] = C<d>(e) and e : T ′ then
T ′ <: T .

Proof. Based on the rulesT-NewandR-New.

Lemma 5 (Method Lemma).

If mtype(m,C<d, d′>) = T → TR

andmbody(m,C<d, d′>) = (x, eR)

then for someD<d> with C<d, d′> <: D<d>

there existsT0 <: TR such thatx : T , this : D<d> ` eR : T0

Proof. By induction onmtype.

Theorem 1(FDJ Type Preservation, a.k.a. Subject Reduction). If ∅,Σ, nthis ` e : T , Σ ` S, and
S ` e 7→ e′, S ′, then there existsΣ′ ⊇ Σ andT ′ <: T such that∅,Σ′, nthis ` e′ : T ′ andΣ′ ` S ′.

Proof. By induction over the derivation ofS ` e 7→ e′, S ′, with a case analysis on the outermost
reduction rule used.

Theorem 2 (FDJ Progress). If ∅,Σ, nthis ` e : T andΣ ` S—i.e., e is closed and well-typed,
then eithere is a value or elseS ` e 7→ e′, S ′.

Proof. By induction over the derivation of∅,Σ, nthis ` e : T .

FDJ has additional properties, such as Link Soundness, which are discussed elsewhere
(Aldrich and Chambers 2004).

3.1. Annotations (Featherweight Domain Java) 83

3.2 Object Graph (OGraph)

An OGraph is a graph with two types of nodes,OObjects andODomains. AnOGraph also has
edges,OEdges, betweenOObjects, that correspond to field points-to relations. We refer to an
OObject, ODomain, andOEdge by the meta-variablesO, D andE, respectively.

3.2.1 Data Types

The data type declarations for theOGraph are in Fig. 3.9. AnOGraph G is the tripletG =
〈PtO, P tD, P tE〉. PtO is a set ofOObjects.PtD maps a pair consisting of anOObject O and
a local domain or a domain parameterd in the abstract syntax, i.e.,(O, d), to anODomain D.
Effectively,PtD maintains a mapping from formal domain parameters to actualdomains.PtE
is a set ofOEdges.

The analysis distinguishes between different instances ofthe same classC that are in different
domains, even if created at the samenew expression. In addition, the analysis treats an instance of
classC with actual parametersp differently from another instance that has actual parameters p′.
Hence, the datatype of anOObject usesC<D> instead of just a type and an owningODomain.
Fig. 3.9 reflects this change, compared to the earlier data type declarations (Fig. 2.23). As in
FDJ, anOObject’s owningODomain is the first elementD1 of D. For the rootOObject of an
OGraph, the owningODomain is Dshared, and the root type cannot have domain parameters.
Thus, eachOObject O represents all object allocations of typeC in anODomain D1, that have
domain parametersD2 . . . Dn, which represent some runtime domains.

A domaind is declared at the level of a classC in a program, but each instance of classC gets
its own runtime domaiǹ.d. Whenever the analysis distinguishes two runtime objects` and`′,
it also distinguishes the domains that these objects contain in turn, such as̀.d and`′.d. Because
anODomain represents a runtime domain`i.di, a domain declarationd in the code can create
multipleODomainsDi.

To deal with recursive types, as we discussed in Section 2.4.2.3 (Page 54), anODomain can
have multiple parentOObjects, and not a single one, so anODomain does not have an owning
OObject in its representation.

EachOEdge E is a directed edge from a sourceOObject to a targetOObject, and indi-
cates the field referencef. Note that defining anOEdge from a source(Domain, Type) pair
to a target(Domain, Type) would be less precise because that would not take into account
the domain parameters associated with anOObject (the previous system adopted this defini-
tion (Abi-Antoun and Aldrich 2009a)). Effectively, we define anOEdge in terms of a source
(OwningDomain, Type,OtherDomainParams) triplet to a destination one.

In addition to the FDJ storeS, we maintain the mapsH andK (the instrumented operational
semantics require those, as we discuss below). The mapH maps each object locatioǹin the
store to a uniqueOObject O. The mapK maps each runtime domain represented as`.d in the
store to a uniqueODomain D.

84 Chapter 3. Formalization of the Object Graph Extraction

G ∈ OGraph ::= 〈Objects= PtO, Domains= PtD, Edges= PtE 〉

::= 〈PtO, P tD, P tE〉

D ∈ ODomain ::= 〈 Id = Did,Domain = C::d 〉

::= 〈 Did, C::d 〉

O ∈ OObject ::= 〈 Id = Oid, Type = C<D> 〉

::= 〈 Oid, C<D> 〉

E ∈ OEdge ::= 〈 From = Osrc,Field = f, To = Odst 〉

::= 〈 Osrc, f, Odst 〉

PtD ::= ∅ | PtD ∪ { (O, d) 7→ D } Points-to Domain

PtO ::= ∅ | PtO ∪ { O } Points-to Object

PtE ::= ∅ | PtE ∪ { E } Points-to Edge

Υ ::= ∅ | Υ ∪ { C<D> } Visited objects

H ::= ∅ | H ∪ { ` 7→ O } Object map

K ::= ∅ | K ∪ { `.d 7→ D } Domain map

Figure 3.9: Data type declarations for theOGraph.

3.2.2 Constraint-Based Specification

The analysis abstractly interprets the program, and maps concrete domain and field declarations
in the program to abstract values in anOGraph, namelyOObjects,ODomains, andOEdges.

Aliasing and subtyping. The analysis conservatively assumes that two objects of thesame
type in the same domain may alias. The rules use ownership domain subtyping (RuleSubtype-
Classin Fig. 3.6), which follows standard nominal subtyping, andin addition, checks that all
domain parameters are invariant with subtyping.

Judgement form. We use a constraint-based specification (Fig. 3.10) insteadof transfer func-
tions. This formalizes the static analysis as a set of inference rules, and makes it easier to prove
soundness. The constraint system is solved by addingOObjects,ODomains andOEdges, as re-
quired, but unifyingODomains using a heuristic, for termination. The analysis of a programP
is the least solutionG = 〈PtO, P tD, P tE〉 of the following constraint system:

∅, ∅, P tO, P tD, P tE ` P = (CT, eroot)

The judgement form for expressions is as follows:

Γ,Υ, P tO, P tD, P tE `O, H e

TheO subscript on the turnstile captures the context-sensitivity. H is part of the instrumentation
that maps locations toOObjects (Section 3.3.1). We omitH for most of the rules that do not

3.2. Object Graph (OGraph) 85

need it. The contextΓ is the FDJ typing context. The contextΥ tracks the list of the previously
analyzed cases starting from the root expression, to avoid non-termination in the presence of
recursive types.Υ records all the combinations of class and domain parametersthat the analysis
encounters in a call stack, starting from the root expression. Note thatΥ is not the same asPtO
becausePtO is global, whereasΥ is specific to a call stack.

Rules. The interpretation starts with a programP consisting of a class tableCT and a root
expression,eroot. We require anOObject, Oworld, which has a singleODomain, Dshared, cor-
responding to the global domainshared. For clarity, we qualify a domaind by the class that
declares it, asC::d. Since theshared domain is global, we qualify it as::shared. TheOOb-
ject Oworld does not correspond to an actual runtime object, but the analysis requires a dummy
receiver for top-level code.

Dshared = 〈 Ds, ::shared 〉

Oworld = 〈 Oworld, Object<Dshared> 〉

The analysis starts out with the root expressioneroot with anOworld context.

∅, ∅, P tO, P tD, P tE `Oworld
eroot

In PT-NEW, the analysis interprets anew object allocation in the context of theOObject O,
which represents the receiver, as follows. First, PT-NEW checks thatPtO has anOObjectOC for
the newly allocated object. SincePtD maintains the binding from each formal domain parameter
to some otherODomain, PT-NEW ensures that the representatives of the actual parametersp
passed to the classC are inPtD.

Then, PT-NEW uses the auxiliary judgement PT-DOM to ensure thatPtD has anODomain
corresponding to each domain that the classC locally declares. PT-DOM also processes the
superclass, in order to include inherited domains3.

PT-NEW then relies on the auxiliary judgement PT-FIELDS to ensure thatPtE has anOEdge
from OC to each object in the target domain that is type compatible with the target type, using
PT-LOOKUP. PT-FIELDS also processes the superclass, in order to include inherited fields.

PT-OBJ1 and PT-OBJ2 are the base cases for PT-DOM and PT-FIELDS, respectively, dealing
with the root class,Object, and do not consult the superclass, to ensure that the derivation is
finite. Recall, in FDJ, the classObject has no fields, domains, or methods.

PT-NEW then obtains each expressione′ in each methodm in C, and processese′ in the
context of theOObject OC . Before PT-NEW checks these expressions recursively, it adds the
current combination of a type and actual domain parameters to Υ. If PT-NEW discovers by
looking atΥ that it previously analyzed the same combination, it does not recurse into the same
OObject, thus avoiding infinite recursion. Finally, PT-NEW calls the judgement recursively on
the argumentse to the constructor of classC.

PT-LOOKUP implements a similar subtyping relationship as theSubtype-Classrule in FDJ
(Fig. 3.6). It compares both classes and that the actualODomains are equal, by mapping the
domainspi intoDi using the current contextO.

3In FDJ,privatedomains are misnamed, and really have aprotectedsemantics (SeeAux-Domainsin Fig. 3.3).

86 Chapter 3. Formalization of the Object Graph Extraction

∀i ∈ 1..|p| Di = PtD[(O, pi)] params(C) = α

OC = 〈 Oid, C<D> 〉 {OC} ⊆ PtO {(OC , αi) 7→ Di} ⊆ PtD

PtO, P tD, P tE `O ptdomains(C,OC)
PtO, P tD, P tE `O ptfields(C,OC)

∀m. mbody(m,C<p>) = (x : T , eR)

C<D> 6∈ Υ =⇒ {x : T , this : C<p>},Υ ∪ {C<D>}, P tO, P tD, P tE `OC
eR

Γ,Υ, P tO, P tD, P tE `O e

Γ,Υ, P tO, P tD, P tE `O new C<p>(e)
[PT-NEW]

CT (C) = class C<α, β> extends C ′<α> . . . { T f ; dom; . . . ; md; }

∀(domain dj) ∈ dom Dj = 〈Didj , dj 〉 {(OC , dj) 7→ Dj} ⊆ PtD

PtO, P tD, P tE `O ptdomains(C ′, OC)

PtO, P tD, P tE `O ptdomains(C,OC)
[PT-DOM]

PtO, P tD, P tE `O ptdomains(Object, OC)
[PT-OBJ1]

CT (Object) = class Object<αo> { }
PtO, P tD, P tE `O ptfields(Object, OC)

[PT-OBJ2]

∀(Tk fk) ∈ T f owner(Tk) = p′k Dk = PtD[(OC , p
′
k)]

∀k PtO, P tD, P tE `OC
ptlookup(Tk) = Ok {〈OC , fk, Ok 〉} ⊆ PtE

PtO, P tD, P tE `O ptfields(C ′, OC)

PtO, P tD, P tE `O ptfields(C,OC)
[PT-FIELDS]

Ok = 〈 Oid, C<D> 〉 ∈ PtO T ′ = C ′<p′> C <: C ′

∀i ∈ 1..|p′| D′
i = PtD[(O, p′i)] D′

i = Di

PtO, P tD, P tE `O ptlookup(T ′) = Ok

[PT-LOOKUP]

Γ,Υ, P tO, P tD, P tE `O x
[PT-VAR]

Γ,Υ, P tO, P tD, P tE `O `
[PT-LOC]

Γ,Υ, P tO, P tD, P tE `O e0

Γ,Υ, P tO, P tD, P tE `O e0.fk
[PT-READ]

Γ,Υ, P tO, P tD, P tE `O e0 Γ,Υ, P tO, P tD, P tE `O e

Γ,Υ, P tO, P tD, P tE `O e0.m(e)
[PT-INVK]

OC = H[`] Γ,Υ, P tO, P tD, P tE `OC
e

Γ,Υ, P tO, P tD, P tE `O, H ` . e
[PT-CONTEXT]

∀` ∈ dom(S),Σ[`] = C<p> H[`] = O = 〈Oid, C<D>〉 ∈ PtO

∀m. mbody(m,C<p>) = (x : T , eR) {x : T , this : C<p>}, ∅, P tO, P tD, P tE `O eR

PtO, P tD, P tE `CT,H Σ
[PT-SIGMA]

Figure 3.10: Constraint-based specification of the object graph extraction analysis.

3.2. Object Graph (OGraph) 87

To make the induction go through, even though the points-to analysis only looks at the new
expression, the analysis requires rules for all the expression types. The rule PT-NEW is the most
interesting, and is the only one that modifiesPtE.

The rules PT-VAR and PT-LOC for variables and locations, respectively, are uninteresting. In
the case of PT-LOC, the store constraint PT-SIGMA enforces any necessary conditions on each
location`.

The field access and method invocation rules are more interesting. PT-READ analyzes the
receiver of the field access. Similarly, PT-INVK analyzes the receiver and the actual arguments
for the method invocation.

There are two other interesting rules. PT-CONTEXT analyzes method calls in progress` .
e, where` is the receiver, by moving into the context of the receiver object OC . Finally, the
induction requires an augmented store typing rule, PT-SIGMA , to ensure that method bodies
have been analyzed for all objects in the store.

Recursion. The analysis must handle recursive types, which can lead anOGraph to grow ar-
bitrarily deep. To get a finiteOGraph and ensure that the analysis terminates, the analysis could
stop expanding the object structure at a certain depth. However, merely truncating the recursion
may lead to unsoundness, if it fails to reveal relations whenchild objects point to external objects,
and the child objects are beyond the truncated depth.

Instead, the analysis creates a cycle in theOGraph when it reaches a similar context. The
cycle creation happens when the sameODomain appears as the child of twoOObjects. This
justifies anODomain not having an owningOObject.

In Section 3.4, we discuss how aDisplayGraph displays a potentially cyclicOGraph.

3.3 Object Graph Soundness

We demonstrate the object and edge soundness of an extractedobject graph using a proof. The
proof relies on an instrumentation of the FDJ dynamic semantics, an approximation relation, and
standard Progress and Preservation theorems.

3.3.1 Instrumented Semantics

To prove the soundness of the analysis, we take the FDJ operational semantics (Fig. 3.4), and
we instrument them (Fig. 3.11). This instrumentation is safe since discarding it produces exactly
the previous semantics (Fig. 3.4). For instance, compare R-NEW to IR-NEW (the common parts
of the rules are highlighted in Fig. 3.11). Also note that only IR-NEW requires an interesting
instrumentation. The rules IR-READ, IR-INVK and IR-CONTEXT, again, are needed for the
induction to go through, but do not impact the instrumentation.

The instrumented evaluation judgement form is as follows:

e;S;H;K G e′;S ′;H ′;K ′

whereG = 〈PtO, P tD, P tE〉 is the statically computed object graph.

88 Chapter 3. Formalization of the Object Graph Extraction

` 6∈ dom(S) S ′ = S[` 7→ C<p>(v)]

G = 〈PtO, P tD, P tE〉
p = `′.d Di = K[`′i.di]

OC = 〈Oid, C<D>〉 OC ∈ PtO H ′ = H[` 7→ OC]
∀(domain dj) ∈ domains(C<p>) Dj = PtD[(OC , dj)] K ′ = K[`.dj 7→ Dj]

∀(Tk fk) ∈ fields(C<p>) Ok = H[vk]
Ek = 〈OC , fk, Ok〉 Ek ∈ PtE

new C<p>(v);S ;H;K G `;S ′ ;H ′;K ′
[IR-NEW]

S[`] = C<p>(v) fields(C<p>) = T f

`.fi;S ;H;K G vi;S ;H;K
[IR-READ]

S[`] = C<p>(v) mbody(m,C<p>) = (x, eR)

`.m(v);S ;H;K G ` . [v/x, `/this]eR;S ;H;K
[IR-INVK]

` . v;S ;H;K G v; S ;H;K
[IR-CONTEXT]

Figure 3.11: Instrumented runtime semantics (core rules).

In IR-NEW (Fig. 3.11), the actual domainspi passed to the classC being allocated are
runtime domains, whichK maps to staticODomains inPtD. We useH to lookup theOObject
Ok for each valuevk passed to initialize thekth field of the object being allocated, and ensure
that theOEdge is in PtE.

The instrumented evaluation relation also includes congruence rules, similar to those in FDJ
(Fig. 3.5), and which leave the instrumentation as is (Fig. 3.12).

3.3. Object Graph Soundness 89

ei;S;H;K G e′i;S
′;H ′;K ′

new C<p>(v1..i−1, ei, ei+1..n);S;H;K G new C<p>(v1..i−1, e
′
i, ei+1..n);S

′;H ′;K ′ [IRC-NEW]

e0;S;H;K G e′0;S
′;H ′;K ′

e0.fi;S;H;K G e′0.fi;S
′;H ′;K ′ [IRC-READ]

e0;S;H;K G e′0;S
′;H ′;K ′

e0.m(e);S;H;K G e′0.m(e);S ′;H ′;K ′ [IRC-RECVINVK]

ei;S;H;K G e′i;S
′;H ′;K ′

v.m(v1..i−1, ei, ei+1..n);S;H;K G v.m(v1..i−1, e
′
i, ei+1..n);S

′;H ′;K ′ [IRC-ARGINVK]

e;S;H;K G e′;S ′;H ′;K ′

` . e;S;H;K G ` . e′;S ′;H ′;K ′ [IRC-CONTEXT]

Figure 3.12: Instrumented runtime semantics (congruence rules).

90 Chapter 3. Formalization of the Object Graph Extraction

3.3.2 Approximation relation

We define an approximation relation∼ between a state(S,H,K) and an analysis result
(PtO, P tD, P tE) as follows:
Definition 7 (Approximation relation (PT-APPROX)).

∀ Σ ` S, (S,H,K) ∼ (PtO, P tD, P tE)

iff

∀` ∈ dom(S),Σ[`] = C<`′.d>

implies

H[`] = OC = 〈Oid, C<D>〉 ∈ PtO

and∀`′j.dj ∈ `′.d K[`′j.dj] = Dj = 〈Didj , dj〉 ∈ rng(PtD)

and∀di ∈ domains(C<`′.d>) K[`.di] = Di = 〈Didi , di 〉 {(OC , di) 7→ Di} ∈ PtD

andfields(Σ[`]) = T f and∀k, ∀`′ S[`, k] = `′ =⇒ Ek = 〈H[`], fk, H[`′]〉 ∈ PtE

3.3.3 Lemmas

The Progress and Preservation theorems require the following lemmas.
Lemma 6 (Points-to Substitution Lemma).

If

Γ, x : τ ` e : T

Γ, x : τ ,Υ, P tO, P tD, P tE `O e

Γ ` v : τ ′ whereτ ′ <: [v/x]τ

then

Γ ` [v/x]e : T ′ for someT ′ <: [v/x]T

Γ,Υ, P tO, P tD, P tE `O [v/x]e

Proof. By induction on theΓ,Υ, P tO, P tD, P tE `O relation.

3.3. Object Graph Soundness 91

Lemma 7 (Points-to Weakening Lemma).

If Γ,Υ, P tO, P tD, P tE `O e

then Γ,Υ ∪ {C<D>}, P tO, P tD, P tE `O e

Proof. By induction on theΓ,Υ, P tO, P tD, P tE `O relation.

Lemma 8 (Points-to Strengthening Lemma).

If Γ, ∅, P tO, P tD, P tE `O new C<p>(v)

∀i ∈ 1..|p| Di = PtD[(O, pi)]

Γ,Υ ∪ {C<D>}, P tO, P tD, P tE `O′ e′

thenΓ,Υ, P tO, P tD, P tE `O′ e′

Proof. By induction on theΓ,Υ, P tO, P tD, P tE `O relation. We cover one interesting case.
Case PT-NEW: Thene′ = new C ′<p′>(e). There are several sub-cases to consider.

∀i ∈ 1..|p′| D′
i = PtD[(O′, p′i)] params(C ′) = α

OC′ = 〈 Oid, C
′<D′> 〉 {OC′} ⊆ PtO {(OC′ , αi) 7→ D′

i} ⊆ PtD
PtO, P tD, P tE `O′ ptdomains(C ′, OC′)
PtO, P tD, P tE `O′ ptfields(C ′, OC′)
∀m. mbody(m,C ′<p′>) = (x : T , eR)

C ′<D′> 6∈ Υ ∪ {C<D>} =⇒
{x:T , this:C ′<p′>},Υ ∪ {C<D>} ∪ {C ′<D′>}, P tO, P tD, P tE `OC′

eR
Γ,Υ ∪ {C<D>}, P tO, P tD, P tE `O′ e

Γ,Υ ∪ {C<D>}, P tO, P tD, P tE `O′ new C ′<p′>(e)

SubcaseC ′<D′> 6= C<D> andC ′<D′> 6∈ Υ ∪ {C<D>}

{x:T , this:C<p>},Υ ∪ {C<D>} ∪ {C ′<D′>}, P tO, P tD, P tE `OC′
eR By sub-derivation

{x:T , this:C<p>},Υ ∪ {C ′<D′>}, P tO, P tD, P tE `OC′
eR By i.h.

Γ,Υ ∪ {C<D>}, P tO, P tD, P tE `O′ e By sub-derivation

Γ,Υ, P tO, P tD, P tE `O′ e By i.h.

Γ,Υ, P tO, P tD, P tE `O′ e′ By PT-NEW

SubcaseC ′<D′> 6= C<D> andC ′<D′> ∈ Υ ∪ {C<D>}

Γ,Υ ∪ {C<D>}, P tO, P tD, P tE `O′ e By sub-derivation

Γ,Υ, P tO, P tD, P tE `O′ e By i.h.

Γ,Υ, P tO, P tD, P tE `O′ e′ By PT-NEW

SubcaseC ′<D′> = C<D>, i.e.C ′<D′> ∈ Υ ∪ {C<D>}

{x:T , this:C<p>}, ∅, P tO, P tD, P tE `OC′
eR By inversion

{x:T , this:C<p>},Υ ∪ {C<D>}, P tO, P tD, P tE `OC′
eR By Points-to Weakening Lemma

92 Chapter 3. Formalization of the Object Graph Extraction

Lemma 9 (Pt-Domains Lemma).

If ∅,Σ, nthis ` e : T

Σ ` S

PtO, P tD, P tE `CT,H Σ

PtO, P tD, P tE `O new C<p>(v)

(S,H,K) ∼ (PtO, P tD, P tE)

PtO, P tD, P tE `O ptdomains(C,OC)

∀i ∈ 1..|p| Di = PtD[(O, pi)]

OC = 〈 Oid, C<D> 〉 {OC} ⊆ PtO

then

∀dj ∈ domains(C<p>) Dj = PtD[(OC , dj)]

Proof. By induction on thePtO, P tD, P tE `O ptdomains(C,OC) relation.
Case PT-DOM :.

PtO, P tD, P tE `O new C<p>(v) By assumption

∀i ∈ 1..|p| Di = PtD[(O, pi)] By sub-derivation of PT-NEW

params(C) = α By sub-derivation of PT-NEW

OC = 〈 Oid, C<D> 〉 By sub-derivation of PT-NEW

{OC} ⊆ PtO By sub-derivation of PT-NEW

{(OC , αi) 7→ Di} ⊆ PtD By sub-derivation of PT-NEW

PtO, P tD, P tE `O ptdomains(C,OC) By sub-derivation of PT-NEW

∀(domain dj) ∈ dom Dj = 〈Didj , dj 〉 By sub-derivation of PT-DOM

{(OC , dj) 7→ Dj} ⊆ PtD By sub-derivation of PT-DOM

dom ∈ domains(C<p>) By definition ofdomains

PtO, P tD, P tE `O ptdomains(C ′, OC) By sub-derivation of PT-DOM

SubcaseC ′ 6= Object

By i.h.

SubcaseC ′ = Object

ptdomains(C ′, OC) = ∅ By definition ofAux-Domains-Obj

Case PT-OBJ1: Is immediate.

3.3. Object Graph Soundness 93

Lemma 10(Pt-Fields Lemma).

If ∅,Σ, nthis ` e : T

Σ ` S

PtO, P tD, P tE `CT,H Σ

PtO, P tD, P tE `O new C<p>(v)

(S,H,K) ∼ (PtO, P tD, P tE)

PtO, P tD, P tE `O ptfields(C,OC)

∀i ∈ 1..|p| Di = PtD[(O, pi)]

OC = 〈 Oid, C<D> 〉 {OC} ⊆ PtO

then

(1) Ok = H[vk]

(2) ∀(Tk fk) ∈ fields(C<p>) Ek = 〈OC , fk, Ok〉 Ek ∈ PtE

Proof. By induction on thePtO, P tD, P tE `O ptfields(C,OC) relation.
Case PT-FIELDS :.

PtO, P tD, P tE `O new C<p>(v) By assumption

PtO, P tD, P tE `O ptfields(C,OC) By sub-derivation of PT-NEW

∀(Tk fk) ∈ T f By sub-derivation of PT-FIELDS

owner(Tk) = p′k By sub-derivation of PT-FIELDS

Dk = PtD[(OC , p
′
k)] By sub-derivation of PT-FIELDS

∀k PtO, P tD, P tE `OC
ptlookup(Tk) = Ok By sub-derivation of PT-FIELDS

{〈OC , fk, Ok 〉} ⊆ PtE By sub-derivation of PT-FIELDS

Ok = 〈 Oid, Ck<Dk> 〉 ∈ PtO By inversion of PT-LOOKUP

Tk = C ′
k<p′> Ck <: C ′

k By inversion of PT-LOOKUP

∀i ∈ 1..|p′| Dk′i
= PtD[(OC , p

′
i)] Dk′i

= Dki By inversion of PT-LOOKUP

PtO, P tD, P tE `O ptfields(C ′, OC) By sub-derivation of PT-FIELDS

SubcaseC ′ 6= Object

By i.h.

SubcaseC ′ = Object

ptfields(C ′, OC) = ∅ By definition ofAux-Fields-Obj

Case PT-OBJ2:. Is immediate.
This shows (2).

94 Chapter 3. Formalization of the Object Graph Extraction

To show (1), we use the approximation relation PT-APPROX.

Tk fk ∈ T f By sub-derivation of PT-FIELDS

(S,H,K) ∼ (PtO, P tD, P tE) By assumption

∀vk ∈ dom(S),Σ[vk] = Tk<v′k.d> By PT-APPROX

implies

H[vk] = Ok = 〈Oid, Tk<D>〉 ∈ PtO

and∀vk′j .dj ∈ v′k.d

K[vk′j .dj] = Dj = 〈Didj , dj〉 ∈ rng(PtD)

and∀di ∈ domains(Tk<v′k.d>)

K[vk.di] = Di = 〈Didi , di 〉 {(Ok, di) 7→ Di} ∈ PtD

andfields(Σ[vk]) = T f

and∀k, ∀v′k S[vk, k] = v′k =⇒ Ek = 〈H[vk], fk, H[v′k]〉 ∈ PtE

3.3. Object Graph Soundness 95

3.3.4 Preservation

Theorem 3(Points-to Preservation (Subject Reduction)).

If

∅,Σ, nthis ` e : T

Σ ` S

PtO, P tD, P tE `CT,H Σ

PtO, P tD, P tE `O e

(S,H,K) ∼ (PtO, P tD, P tE)

e;S ;H;K G e′;S ′ ;H ′;K ′

then

there existsΣ′ ⊇ Σ andT ′ <: T such that∅,Σ′, nthis ` e′ : T ′ andΣ′ ` S ′ ,

(S ′, H ′, K ′) ∼ (PtO, P tD, P tE),

P tO, P tD, P tE `O e′,

andPtO, P tD, P tE `CT,H′ Σ′

The Points-to Subject Reduction theorem extends the FDJ Subject Reduction (the common
parts are highlighted). Those parts are proved by inductionover the derivation of the FDJ evalu-
ation relatione; S e′; S ′ (Fig. 3.4).

Proof. We prove Points-To Preservation by induction on the instrumented evaluation relation
e;S;H;K G e′;S ′;H ′;K ′ with a case analysis on the outermost reduction rule used.

96 Chapter 3. Formalization of the Object Graph Extraction

Case IR-NEW: Thene = new C<`′.d>(v). And e′ = `.

To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

PtO, P tD, P tE `O e and (S,H,K) ∼ (PtO, P tD, P tE) By assumption

∀ι ∈ dom(S),Σ[ι] = C<ι′.d> SinceΣ ` S

=⇒ By PT-APPROX

H[ι] = Oι = 〈Oid, C<D>〉 ∈ PtO By PT-APPROX

and∀ι′j.dj ∈ ι′.d K[ι′j.dj] = Dιj = 〈Didj , dj〉 ∈ rng(PtD) By PT-APPROX

and∀dj ∈ domains(C<p>) By PT-APPROX

K[ι.dj] = Dιj = 〈Didj , dj 〉 {(Oι, dj) 7→ Dιj} ∈ PtD By PT-APPROX

andfields(Σ[ι]) = T f By PT-APPROX

and∀k, ∀ι′ S[ι, k] = ι′ =⇒ 〈H[ι], fk, H[ι′]〉 ∈ PtE By PT-APPROX

We also have:

OC = 〈Oid, C<D>〉 ∈ PtO By sub-derivation of IR-NEW

S ′ = S[` 7→ C<`′.d>(v)] By sub-derivation of IR-NEW

H ′ = H[` 7→ OC] By sub-derivation of IR-NEW

∀i ∈ |`′.d| Di = K[`′i.di] By sub-derivation of IR-NEW

∀dj ∈ domains(C<`′.d>) By sub-derivation of IR-NEW

Dj = PtD[(OC , dj)] By sub-derivation of IR-NEW

K ′ = K[`.dj 7→ Dj] By sub-derivation of IR-NEW

∃Σ′ ⊇ Σ s.t.Σ′[`] = C<`′.d>

∀Tkfk ∈ fields(Σ′[`]) s.t.S[`, k] = vk By sub-derivation of IR-NEW

Ok = H[vk] By sub-derivation of IR-NEW

Ek = 〈OC , fk, Ok〉 ∈ PtE By sub-derivation of IR-NEW

(S ′, H ′, K ′) ∼ (PtO, P tD, P tE) By PT-APPROX

This proves (1)

PtO, P tD, P tE `O e′ By PT-LOC sincee′ = `

This proves (2)

3.3. Object Graph Soundness 97

PtO, P tD, P tE `CT,H Σ By assumption

∀ι ∈ dom(S),Σ[ι] = Cι<p> By sub-derivation of PT-SIGMA

H[ι] = Oι = 〈Oid, Cι<D>〉 ∈ PtO

∀m. mbody(m,Cι<p>) = (x : T , eR)

{x : T , this : C<p>}, ∅, P tO, P tD, P tE `Oι
eR

OC = 〈Oid, C<D>〉 ∈ PtO By sub-derivation of IR-NEW

S ′ = S[` 7→ C<`′.d>(v)] By sub-derivation of IR-NEW

H ′ = H[` 7→ OC] By sub-derivation of IR-NEW

PtO, P tD, P tE `O e By assumption withe below

e = new C<`′.d>(v)

∀m. mbody(m,C<p>) = (x : T , eR) C<D> 6∈ Υ =⇒ By sub-derivation of PT-NEW

{x : T , this : C<p>},Υ ∪ {C<D>}, P tO, P tD, P tE `OC
eR SinceΥ = ∅

{x : T , this : C<p>}, ∅, P tO, P tD, P tE `OC
eR By Points-to Strengthening Lemma

∀ι ∈ dom(S ′),Σ′[ι] = C<p> By above

H ′[ι] = Oι = 〈Oid, Cι<D>〉 ∈ PtO

∀m. mbody(m,Cι<p>) = (x : T , eR)

{x : T , this : Cι<p>}, ∅, P tO, P tD, P tE `Oι
eR

PtO, P tD, P tE `CT,H′ Σ′ By PT-SIGMA with aboveH ′ andΣ′

This proves (3)

98 Chapter 3. Formalization of the Object Graph Extraction

Case IR-READ: Thene = `.fk. And e′ = vk. To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

(S,H,K) ∼ (PtO, P tD, P tE) By assumption

S ′ = S,H ′ = H,K ′ = K By sub-derivation of IR-READ

This proves (1)

PtO, P tD, P tE `O e′ By PT-LOC sincee′ = vk

This proves (2)

PtO, P tD, P tE `CT,H Σ By PT-SIGMA

S ′ = S,H ′ = H,K ′ = K By sub-derivation of IR-READ

This proves (3) TakeΣ′ = Σ

Case IR-CONTEXT : Thene = ` . v. And e′ = v. To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

(S,H,K) ∼ (PtO, P tD, P tE) By assumption

S ′ = S,H ′ = H,K ′ = K By sub-derivation of IR-CONTEXT

This proves (1)

PtO, P tD, P tE `O e′ By PT-LOC sincee′ = v

This proves (2)

PtO, P tD, P tE `CT,H Σ By PT-SIGMA

S ′ = S,H ′ = H,K ′ = K By sub-derivation of IR-CONTEXT

This proves (3) TakeΣ′ = Σ

3.3. Object Graph Soundness 99

Case IR-INVK : Thene = `.m(v). And e′ = ` . [v/x, `/this]eR.

To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

(S,H,K) ∼ (PtO, P tD, P tE) By assumption

S ′ = S,H ′ = H,K ′ = K By sub-derivation of IR-INVK

This proves (1)

From PT-INVK :

Γ,Υ, P tO, P tD, P tE `O e0 Γ,Υ, P tO, P tD, P tE `O e

Γ,Υ, P tO, P tD, P tE `O e0.m(e)

FromMethOK:

mtype(m,T0) = T → TR {x : T , this : C<α, β>}, ∅, this ` eR : TR TR <: T

100 Chapter 3. Formalization of the Object Graph Extraction

S[`] = C<d, d′>(v) By sub-derivation of IR-INVK

mbody(m,C<d, d′>) = (x, eR) By sub-derivation of IR-INVK

e0 = `

Σ[`] = C<d, d′> = T0 T-Store

e0 : C<d, d′>

mtype(m,C<d, d′>) = T → TR

v : Ta By inversion

Ta <: [v/x, `/this] T for someTa andT

There are someD<d> andT0 s.t. By Method Lemma (page 83)

T0 <: TR andC<d, d′> <: D<d>

s.t.{x : T , this : D<d>} ` eR : TR

Γ, {x : T , this : C<d, d′>}, ∅, P tO, P tD, P tE `OC
eR By PT-SIGMA

OC = H[`] By PT-SIGMA

Since term substitution preserves typing, there exists someTS

TS <: C<d, d′> such that[v/x, `/this]eR : TS

TS <: T0 andT0 <: TR By above

TS <: TR By transitivity of <:

TakeT = T ′ = TR Preservation

PtO, P tD, P tE `O ` By PT-LOC

Γ, ∅, P tO, P tD, P tE `OC
[v/x, `/this]eR By Points-to Substitution Lemma

Γ, ∅, P tO, P tD, P tE `O ` . [v/x, `/this]eR By PT-CONTEXT

This proves (2)

PtO, P tD, P tE `CT,H Σ By PT-SIGMA

S ′ = S,H ′ = H,K ′ = K By sub-derivation of IR-CONTEXT

This proves (3) TakeΣ′ = Σ

3.3. Object Graph Soundness 101

Case IRC-READ: Thene = e0.fk. And e′ = e′0.fk. To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-READ

(S ′, H ′, K ′) ∼ (PtO, P tD, P tE) By induction hypothesis

This proves (1)

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-READ

PtO, P tD, P tE `O e′0 By induction hypothesis

PtO, P tD, P tE `O e′0.fk By PT-READ

This proves (2)

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-READ

PtO, P tD, P tE `CT,H′ Σ′ By induction hypothesis

This proves (3) TakeΣ′ = Σ

102 Chapter 3. Formalization of the Object Graph Extraction

Case IRC-RECV I NVK : Thene = e0.m(e). And e′ = e′0.m(e). To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-RECVINVK

(S ′, H ′, K ′) ∼ (PtO, P tD, P tE) By induction hypothesis

This proves (1)

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-RECVINVK

PtO, P tD, P tE `O e′0 By induction hypothesis

PtO, P tD, P tE `O e By PT-INVK

PtO, P tD, P tE `O e′0.m(e) By PT-INVK

This proves (2)

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-RECVINVK

PtO, P tD, P tE `CT,H′ Σ′ By induction hypothesis

This proves (3) TakeΣ′ = Σ

3.3. Object Graph Soundness 103

Case IRC-ARGI NVK : Thene = v.m(v1..i−1, ei, ei+1..n). And e′ = v.m(v1..i−1, e
′
i, ei+1..n).

To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

ei;S;H;K G e′i;S
′;H ′;K ′ By sub-derivation of IRC-ARGINVK

(S ′, H ′, K ′) ∼ (PtO, P tD, P tE) By induction hypothesis

This proves (1)

ei;S;H;K G e′i;S
′;H ′;K ′ By sub-derivation of IRC-ARGINVK

PtO, P tD, P tE `O e′i By induction hypothesis

PtO, P tD, P tE `O v.m(v1..i−1, e
′
i, ei+1..n) By PT-INVK

This proves (2)

ei;S;H;K G e′i;S
′;H ′;K ′ By sub-derivation of IRC-ARGINVK

PtO, P tD, P tE `CT,H′ Σ′ By induction hypothesis

This proves (3) TakeΣ′ = Σ

104 Chapter 3. Formalization of the Object Graph Extraction

Case IRC-NEW: Then e = new C<p>(v1..i−1, ei, ei+1..n). And e′ =
new C<p>(v1..i−1, e

′
i, ei+1..n). To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

ei;S;H;K G e′i;S
′;H ′;K ′ By sub-derivation of IRC-NEW

(S ′, H ′, K ′) ∼ (PtO, P tD, P tE) By induction hypothesis

This proves (1)

ei;S;H;K G e′i;S
′;H ′;K ′ By sub-derivation of IRC-NEW

PtO, P tD, P tE `O e′i By induction hypothesis

PtO, P tD, P tE `O new C<p>(v1..i−1, e
′
i, ei+1..n) By PT-NEW

This proves (2)

ei;S;H;K G e′i;S
′;H ′;K ′ By sub-derivation of IRC-NEW

PtO, P tD, P tE `CT,H′ Σ′ By induction hypothesis

This proves (3) TakeΣ′ = Σ

3.3. Object Graph Soundness 105

Case IRC-CONTEXT : Thene = ` . e0. And e′ = ` . e′0. To show:

(1) (S ′, H ′, K ′) ∼ (PtO, P tD, P tE)

(2) PtO, P tD, P tE `O e′

(3) PtO, P tD, P tE `CT,H′ Σ′

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-CONTEXT

(S ′, H ′, K ′) ∼ (PtO, P tD, P tE) By induction hypothesis

This proves (1)

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-CONTEXT

PtO, P tD, P tE `O e′0 By induction hypothesis

PtO, P tD, P tE `O ` . e′0 By PT-CONTEXT

This proves (2)

e0;S;H;K G e′0;S
′;H ′;K ′ By sub-derivation of IRC-CONTEXT

PtO, P tD, P tE `CT,H′ Σ′ By induction hypothesis

This proves (3) TakeΣ′ = Σ

106 Chapter 3. Formalization of the Object Graph Extraction

Because we added instrumentation to the runtime semantics, we also need to prove progress,
i.e., the instrumentation will not cause the program to get stuck during evaluation.

3.3.5 Progress

Theorem 4(Points-to Progress).

If

∅,Σ, nthis ` e : T

Σ ` S

PtO, P tD, P tE `CT,H Σ

PtO, P tD, P tE `O e

(S,H,K) ∼ (PtO, P tD, P tE)

then

either e is a value

or else e;S ;H;K G e′;S ′ ;H ′;K ′

Proof. We prove Points-to Progress by induction over the derivation of PtO, P tD, P tE `O e,
with a case analysis on the last typing rule used.

3.3. Object Graph Soundness 107

Case PT-NEW: Then there are two sub-cases to consider, depending on whethere are values.
Subcasee = new C<p>(v1..i−1, ei, ei+1..n). Then IRC-NEW can apply.

From

IRC-NEW

ei;S;H;K G e′i;S
′;H ′;K ′

new C<p>(v1..i−1, ei, ei+1..n);S;H;K G new C<p>(v1..i−1, e
′
i, ei+1..n);S

′;H ′;K ′

PtO, P tD, P tE `O ei By sub-derivation of PT-NEW

ei;S;H;K G e′i;S
′;H ′;K ′ By induction hypothesis

new C<p>(v1..i−1, ei, ei+1..n);S;H;K G

new C<p>(v1..i−1, e
′
i, ei+1..n);S

′;H;K By IRC-NEW

Takee′ = new C<p>(v1..i−1, e
′
i, ei+1..n)

Subcasee = new C<`′.d>(v). Takee′ = `. Then IR-NEW can apply.

From

IR-NEW

` 6∈ dom(S) S ′ = S[` 7→ C<p>(v)]
G = 〈PtO, P tD, P tE〉

p = `′.d Di = K[`′i.di]
OC = 〈Oid, C<D>〉 OC ∈ PtO H ′ = H[` 7→ OC]

∀(domain dj) ∈ domains(C<p>) Dj = PtD[(OC , dj)] K ′ = K[`.dj 7→ Dj]
∀(Tk fk) ∈ fields(C<p>) Ok = H[vk]

Ek = 〈OC , fk, Ok〉 Ek ∈ PtE

new C<p>(v);S;H;K G `;S ′;H ′;K ′

To show:

(1) ∀i ∈ |`′.d| Di = K[`′i.di]

(2)OC = 〈Oid, C<D>〉 OC ∈ PtO

(3) ∀dj ∈ domains(C<`′.d>) Dj = PtD[(OC , dj)]

(4)Ok = H[vk]

(5) ∀k ∈ fields(C<`′.d>) Ek = 〈OC , fk, Ok〉 Ek ∈ PtE

(S,H,K) ∼ (PtO, P tD, P tE) By assumption

∀ι ∈ dom(S),Σ[ι] = Cι<ι′.d> SinceΣ ` S

H[ι] = Oι = 〈Oid, Cι<D>〉 ∈ PtO By PT-APPROX

and∀ι′j.dj ∈ ι′.d K[ι′j.dj] = Dιj = 〈Didj , dj〉 ∈ rng(PtD) By PT-APPROX

and∀dιj ∈ domains(Cι<ι′.d>) By PT-APPROX

K[ι.dj] = Dιj = 〈Didιj , dιj 〉 {(Oι, dιj) 7→ Dιj} ∈ PtD By PT-APPROX

andfields(Σ[ι]) = T f By PT-APPROX

and∀k, ∀ι′ S[ι, k] = ι′ =⇒ Ek = 〈H[ι], fk, H[ι′]〉 ∈ PtE By PT-APPROX

This proves (1)

108 Chapter 3. Formalization of the Object Graph Extraction

PtO, P tD, P tE `O e By assumption

∀i ∈ 1..|`′.d| Di = PtD[(O, pi)] By sub-derivation of PT-NEW

params(C) = α By sub-derivation of PT-NEW

OC = 〈 Oid, C<D> 〉 By sub-derivation of PT-NEW

{OC} ⊆ PtO By sub-derivation of PT-NEW

This proves (2)

CT (C) = class C<α, β> extends C ′<α> . . . {

T f ; dom; . . . ; md; }

{(OC , αi) 7→ Di} ⊆ PtD By sub-derivation of PT-NEW

PtO, P tD, P tE `O ptdomains(C,OC) By sub-derivation of PT-NEW

This proves (3) By Pt-Domains Lemma

PtO, P tD, P tE `CT,H Σ By assumption

∀ι ∈ dom(S),Σ[ι] = Cι<p> By sub-derivation of PT-SIGMA

H[ι] = Oι = 〈Oid, Cι<D>〉 ∈ PtO By sub-derivation of PT-SIGMA

This proves (4)

PtO, P tD, P tE `O ptfields(C,OC) By sub-derivation of PT-NEW

This proves (5) By Pt-Fields Lemma

3.3. Object Graph Soundness 109

Case PT-VAR: Thene = x.

Not applicable since variable is not a closed term.

Case PT-L OC: Thene = `.

e is value.

Case PT-READ: Thene = e0.fk. There are two sub-cases to consider, depending on whether
the receivere0 is a value.

Subcasee0 = `. Thene = `.fi.

From

IR-READ

S[`] = C<p>(v) fields(C<p>) = T f

`.fi;S;H;K G vi;S;H;K

Takee′ = vi

Then IR-READ can apply. By ordinary FDJ progress.

Subcasee0 = e′0.fi.

From

IRC-READ

e0;S;H;K G e′0;S
′;H ′;K ′

e0.fi;S;H;K G e′0.fi;S
′;H ′;K ′

e′0;S;H;K G e′′0;S
′;H ′;K ′ By induction hypothesis

e′0.fi;S;H;K G e′′0.fi;S
′′;H ′′;K ′′ By IRC-READ

Takee′ = e′′0.fi

110 Chapter 3. Formalization of the Object Graph Extraction

Case PT-I NVK : Thene = e0.m(e). There are three sub-cases to consider, depending on
whether the receivere0, or the method arguments are values.

Subcasee0 = `, ande = v, that is,e = `.m(v).

From

IR-INVK

S[`] = C<p>(v) mbody(m,C<p>) = (x, eR)

`.m(v);S;H;K G ` . [v/x, `/this]eR;S;H;K

Then IR-INVK can apply. By ordinary FDJ progress.

Takee′ = ` . [v/x, `/this]eR

Subcasee0 = e′0, that ise = e′0.m(e).

From

IRC-RECVINVK

e0;S;H;K G e′0;S
′;H ′;K ′

e0.m(e);S;H;K G e′0.m(e);S ′;H ′;K ′

e′0;S;H;K G e′′0;S
′;H ′;K ′ By induction hypothesis

e′0.m(e);S;H;K G e′′0.m(e);S ′′;H ′′;K ′′ By IRC-RECVINVK

Takee′ = e′′0.m(e)

Subcasee0 = v, that is,e = v.m(v1..i−1, ei, ei+1..n).

From

IRC-ARGINVK

ei;S;H;K G e′i;S
′;H ′;K ′

v.m(v1..i−1, ei, ei+1..n);S;H;K G v.m(v1..i−1, e
′
i, ei+1..n);S

′;H ′;K ′

PtO, P tD, P tE `O ei By sub-derivation of PT-INVK

ei;S;H;K G e′i;S
′;H ′;K ′ By induction hypothesis

v.m(v1..i−1, ei, ei+1..n);S;H;K G v.m(v1..i−1, e
′
i, ei+1..n);S

′′;H ′′;K ′′ By IRC-ARGINVK

Takee′ = v.m(v1..i−1, e
′
i, ei+1..n)

3.3. Object Graph Soundness 111

Case PT-CONTEXT : Thene = ` . e0. There are two sub-cases to consider, depending on
whethere0 is a value.

Subcasee0 is a value, i.e.,e = ` . v.

From
IR-CONTEXT

` . v;S;H;K G v;S;H;K

Then IR-CONTEXT can apply

Takee′ = v

Subcasee0 is not a value.

From

IRC-CONTEXT

e0;S;H;K G e′0;S
′;H ′;K ′

` . e0;S;H;K G ` . e′0;S
′;H ′;K ′

e0;S;H;K G e′0;S
′;H ′;K ′ By induction hypothesis

` . e′0;S;H;K G ` . e′0;S
′;H ′;K ′ By IRC-CONTEXT

Takee′ = ` . e′0

112 Chapter 3. Formalization of the Object Graph Extraction

3.3.6 Object Graph Soundness

An OGraph is asoundapproximation of a Runtime Object Graph (ROG) represented bya well-
typed storeS, for any program run, when theOGraph relates to the ROG informally, as follows:

• Object soundness:Each object̀ in the ROG has exactly one representativeOObject in
theOGraph. Similarly, each domain in the ROG has exactly one representativeODomain
in the OGraph. Furthermore, this mapping is consistent with respect to the ownership
relation. If object̀ is in the domaiǹ ′.d in the ROG, then the representative of` is in the
representative of̀′.d in theOGraph. Similarly, if ` has a domaind in the ROG, then the
representative for̀ has a representativeODomain for d in theOGraph.

• Edge soundness:If there is a field reference from object`1 to object`2 in a ROG, then
theOGraph has anOEdge between theOObjectsO1 andO2 that are the representatives of
`1 and`2, respectively.

The following Object Graph Soundness theorem restates moreformally the above informal
definitions, and combinesobject soundnessandedge soundness.

Theorem: Object Graph Soundness.

∀G = 〈PtO, P tD, P tE〉 ` P = (CT, e) CT, e well-typed

∀e; ∅; ∅; ∅ ∗
G e;S;H;K

∀Σ ` S

PtO, P tD, P tE `CT,H Σ

(S,H,K) ∼ (PtO, P tD, P tE)

where the ∗
G relation (Fig. 3.13) is the reflexive and transitive closureof the G relation.

By inversion of PT-APPROX, the theorem states that given a well-typed storeS, anOGraph
produced from the same programP , there exists a mapH that maps each locatioǹin the store
to a uniqueOObject, and a mapK that maps each runtime domain in the store to a unique
ODomain, and this mapping is consistent with respect to the ownership relation. In addition, the
OEdges in anOGraph soundly abstract all field points-to relations between any two objects in an
ROG.

To prove the Object Graph Soundness theorem, we need to show:

(1) PtO, P tD, P tE `CT,H Σ

(2) (S,H,K) ∼ (PtO, P tD, P tE)

e;S;H;K ∗
G e;S;H;K

[PT-REFLEX]

e;S;H;K ∗
G e′′;S ′′;H ′′;K ′′ e′′;S ′′;H ′′;K ′′

 G e′;S ′;H ′;K ′

e;S;H;K ∗
G e′;S ′;H ′;K ′ [PT-TRANS]

Figure 3.13: Reflexive, transitive closure of the instrumented evaluation relation.

3.3. Object Graph Soundness 113

Proof. By induction on the ∗
G relation. There are two cases to consider:

Case PT-REFLEX :

(S;H;K) ∼ G Immediate, becauseS = ∅

PtO, P tD, P tE `CT,H Σ Immediate, from PT-SIGMA store constraint

Case PT-TRANS:

e; ∅; ∅; ∅ ∗
G e;S;H;K By assumption

(∅, ∅, ∅) ∼ G BecauseS = ∅

e; ∅; ∅; ∅ ∗
G e′;S ′;H ′;K ′ By inversion

(S ′;H ′;K ′) ∼ G By induction hypothesis

e′;S ′;H ′;K ′
 G e;S;H;K By inversion

(S;H;K) ∼ G By Preservation

e; ∅; ∅; ∅ ∗
G e;S;H;K By assumption

(∅, ∅, ∅) ∼ G BecauseS = ∅

e; ∅; ∅; ∅ ∗
G e′;S ′;H ′;K ′ By inversion

PtO, P tD, P tE `CT,H′ Σ′ By induction hypothesis

e′;S ′;H ′;K ′
 G e;S;H;K By inversion

PtO, P tD, P tE `CT,H Σ By Preservation

3.3.7 Limitations

The proof assumes that objects are created only in locally declared domains or domain param-
eters. Also, it does not reflect the existence of the annotationslent or unique (Section 2.5.1,
Page 65).

3.4 Display Graph (DGraph)

The static analysis extracts a hierarchical object graph, the Ownership Object Graph (OOG),
from a program with ownership domain annotations. The OOG has two parts:

• OGraph: this is graph that can have cycles in the presence of recursive types;
• DGraph: this is a depth-limited unfolding of theOGraph with lifted edgesto account for

information below the cutoff depth.

3.4.1 Depth-Limited Unfolding

We do not formalize the generation of aDGraph from anOGraph. An ODomain, OObject
or OEdge in anOGraph creates a correspondingDDomain, DObject or DEdge in theDGraph
(Fig. 3.14). Furthermore, aDObject can merge one or moreOObjects.

114 Chapter 3. Formalization of the Object Graph Extraction

DG ∈ DGraph ::= 〈Objects= DOS, Domains= DDS, Edges= DES 〉

::= 〈DOS,DDS,DES〉

DD ∈ DDomain ::= 〈 Id = DDid,Domain = d 〉

::= 〈 DDid, d 〉

DO ∈ DObject ::= 〈 Id = DOid, Types= {C<D> . . .} 〉

::= 〈 DOid, {C<D> . . .} 〉

DE ∈ DEdge ::= 〈 From = DOsrc,Field = f, To = DOdst 〉

::= 〈 DOsrc, f, DOdst 〉

DOS ::= {DO . . .} Set ofDObjects

DDS ::= {DD . . .} Set ofDDomains

DES ::= {DE . . .} Set ofDEdges

Figure 3.14: Data type declarations for theDGraph.

3.4.2 Abstraction by Types

In addition to providing abstraction by ownership hierarchy, an OOG can provide abstraction
by types, as we discussed informally in Section 2.4.3.2 (Page 59). We formalize abstraction by
types as a post-pass on theDGraph (Fig. 3.15). Abstraction by types relies on a heuristic based
on a more flexible notion of type compatibility (Rule R-AUX-COMPAT), instead of the strict FDJ
subtyping rules used in theOGraph. With the heuristic turned on, aDObject can mergeOObjects
that are in the same owningODomain (Rule R-MERGE-OBJECTS).

When accounting for inheritance, domain parameters must obey the following condition:

C ′ <: C andC ′<D′> <: C<D> impliesD′ = D,D′′

We formalize below the two heuristics, abstraction by trivial types and abstraction by design
intent types.

3.4.2.1 Abstraction by trivial types

Abstraction by trivial types merges objects whenever theirtypes share one or more non-trivial
least upper bound (LUB) types. The heuristic does not merge objects that share onlytrivial types
as supertypes. Thesetof trivial types,TT , is user-configurable, and typically includesObject,
Cloneable andSerializable from the Java Standard Library. Many marker interfaces thatdo
not declare any methods, such asRandomAccess, are also in the list.

Abstraction by trivial types corresponds to the disjunctexistsNonTrivialLUB (Fig. 3.16) in
R-AUX-COMPAT and can be turned-off by setting the flagbyTT to false (Fig. 3.15).

SCHOLIA assumes that the program’s whole source code, including external libraries that are
in use, are available. Thus, the class tableCT includes entries for all of those types.

3We formalize abstraction by types in theDGraph in order to simplify the formalization of theOGraph. We
conjecture but do not prove, however, that soundness still holds when using abstraction by types.

3.4. Display Graph (DGraph) 115

byTT, byDIT, TT,DIT ` compat(C, C ′) (D1 = D′
1)

DOS,DObject〈 DOid, {C<D> . . .} 〉, DObject〈 DOid′ , {C
′<D′> . . .} 〉 =⇒

DOS,DObject〈 DOid′′ , {C<D> . . .} ∪ {C ′<D′> . . .} 〉

[R-MERGE-OBJECTS]

C1 <: C2 or C2 <: C1

or (byTT and TT ` existsNonTrivialLUB(C1, C2))
or (byDIT and DIT ` mapToSameDIT(C1, C2))

byTT, byDIT, TT,DIT ` compat(C1, C2)
[R-AUX-COMPAT]

Figure 3.15: Rules for abstraction by types.

∃C ∈ CT.(C1 <: C C2 <: C C 6∈ TT)

TT ` existsNonTrivialLUB(C1, C2)
[R-ABSTRACTBY-TT]

Figure 3.16: Abstraction by trivial types.

∃C ∈ DIT.(C1 <: C C2 <: C)

DIT ` mapToSameDIT(C1, C2)
[R-ABSTRACTBY-DIT]

Figure 3.17: Abstraction by design intent types.

3.4.2.2 Abstraction by design intent types

Abstraction by design intent types corresponds to the disjunct mapToSameDIT (Fig. 3.17) in
R-AUX-COMPAT and can be turned-off by setting the flagbyDIT to false (Fig. 3.15).

In this heuristic, the developer defines an ordered list of design intent types (DIT). To decide
whether to merge two objects of typeC1 andC2, the analysis finds the first type in theDIT , Ĉ,
such thatC1 <: C andC2 <: C. If DIT does not include such a type, then this heuristic does
not apply.

3.4.2.3 Abstraction by types and soundness

Abstraction by types leads only to additional merging of objects in a domain, so it does not
compromise soundness. Thus, we need not prove soundness of theDGraph.

3.5 Implementation

This section discusses some implementation details.

116 Chapter 3. Formalization of the Object Graph Extraction

3.5.1 Traceability

In our implementation of theOGraph, anODomain knows about the underlying domain declara-
tion in the code, and similarly, anOObject knows about the underlying field declarations in the
code. In addition, the implementation sets the traceability information in theDGraph based on
the information in theOGraph. This allows a developer using the tools to trace from theDGraph
to the corresponding lines of code. For example, a developercan trace from aDObject to the
corresponding new expressions in the code, and similarly, from aDEdge to the corresponding
field declaration.

3.5.2 Differences between the formal and the concrete systems

There are several differences between the formal system andthe concrete implementation. The
formal system lacks the following language features:

• Generic types—they are implicitly supported, rather than explicitly formalized as in
Generic Universe Types (Dietl et al. 2007);

• Method domain parameters;
• Arrays;
• Interfaces;
• Domain paths;
• Inner classes;
• lent andunique annotations.
The concrete system handles all of the above language features.

3.6 Discussion

3.6.1 Our Previous Formalizations

To my knowledge, this is the first time that a whole-program analysis is formalized using a
constraint-based specification, with Featherweight Java.Usually, constraint-based specifications
are inter- or intra-procedural, and deal with three-address code representations.

I now discuss the differences between the formalization of the static analysis in this chapter
and our previous ones (Abi-Antoun and Aldrich 2007b, 2009a).

3.6.1.1 Pseudo-code

(Abi-Antoun and Aldrich 2007b) presented an early version of the object graph extraction analy-
sis using pseudo-code, which made proving soundness unclear. In addition, in that version of the
algorithm, multiple interface inheritance could potentially trigger unsoundness. To address this
unsoundness, the later version added the Rule R-MERGE-EXISTING to merge objects after the
fact (Abi-Antoun and Aldrich 2009a). Furthermore, when pulling objects from formal domain
parameters to actual domains, the earlier algorithm added more edges than soundness required
and was thus less precise.

3.6. Discussion 117

3.6.1.2 Term-rewriting system

(Abi-Antoun and Aldrich 2009a) formalized an earlier extraction static analysis using rewriting
rules. The earlier formalization provedunique object and domain representativeson an inter-
mediate cyclic representation, which is then projected into a graph that is displayed. However,
it was unclear that the unfolding step preserved the soundness invariants. Moreover, the earlier
formalization lacked a proof ofedge soundness.

The rewriting rules created a singleAbstractDomain for each domain declarationd in the ab-
stract syntax. In this formalization, theOGraph can already distinguish between twoODomains
that have the same underlying domaind in the abstract syntax.

In the present formalization, the analysis still unfolds a cyclic OGraph to a certain thresh-
old. The developer sees theDGraph above the threshold, and theOGraph below the threshold
is still cyclic. This side-steps the issue of determining a depth at which to cutoff the recur-
sion and the potential unsoundness of selecting an incorrect depth in the earlier representation.
(Abi-Antoun and Aldrich 2009a) only conjectured and did notprove the existence of such a
depth.

Also, (Abi-Antoun and Aldrich 2009a) conjectured edge soundness. Using the constraint-
based specification in this chapter, we proved bothobject soundnessandedge soundness(Sec-
tion 3.3.6), which subsume theunique object and domain representativesandedge soundness
defined in (Abi-Antoun and Aldrich 2009a).

Finally, using abstract interpretation makes the analysismore comparable to previous
Andersen-style points-to analyses (Pichardie 2008).

3.6.2 Precision

For simplicity, the formal system does not model field updates. Indeed, initializing a field has the
same challenges as assignment in our system, and the rules are no different. Still, modeling field
updates andnull could increase the precision. For instance, if a fieldf is never assigned to and
remains null in any program run, the analysis may not create an edge. In the current model, if a
classC declares a fieldf of typeT , then the constructor must initialize the field, and the analysis
conservatively assumes that an objectc of typeC has a points-to edge to an objectt of typeT .

3.6.3 Points-to Analysis

The object graph extraction analysis is a kind of a points-toanalysis — a fundamental static
analysis to determine the set of objects whose addresses maybe stored in variables or fields of
objects. A common idea in points-to analysis is to merge all the objects that are created at the
same allocation site into an equivalence class. A basic points-to analysis attaches an allocation
labelh ∈ H at each instructionnew C(), as in:

newh C()

The static object name is then defined asO = H (Pichardie 2008). In contrast, our analysis dis-
tinguishes between allocations in different domains and that have different domain parameters,

118 Chapter 3. Formalization of the Object Graph Extraction

and must analyze expressions of the kind:

new C<Powner, Pparams...>()

wherePowner is the owning domain, andPparams are optional additional domain parameters.
Each of thePi could be a formal domain parameter. At runtime, each domain parameter is
bound to some actual domain, so the static analysis must track the bindings of formal parameters
to actual domains.

Our static analysis is similar to a flow-insensitive Andersen-style points-to analysis
(Andersen 1994), but adapted to object-oriented code (Milanova et al. 2005). The state-of-the-
art is object-sensitiveanalysis (Milanova et al. 2005), particularly when computing a complete
points-to solution for all the variables in a program. In contrast, a refinement-based approach,
which performs points-to analysis on demand (Sridharan et al. 2005; Sridharan and Bodı́k 2006;
Xu and Rountev 2008), may achieve higher precision, but may not scale when computing solu-
tions for a large number of variables. Thus, a refinement-based analysis does not seem suitable
for SCHOLIA which computes points-to information for an entire program.

Our analysis is object-insensitive but can considereddomain-sensitive, since it distinguishes
between objects in different domains. Since domains are coarser-grained than objects, we believe
our analysis is more scalable than an object-sensitive one.However, our analysis suffers from
some of the imprecisions that object-sensitivity addresses such as field assignment through a
superclass (Milanova et al. 2005) (see examples of imprecision in Section 2.6.3, Page 69).

3.7 Summary

In this chapter, I formalized a static analysis to extract from a program with ownership domain
annotations, aglobal hierarchical object graph. The object graph conveys architectural abstrac-
tion by ownership hierarchy and by types. Moreover, I provedthat the extracted object graph
is bothobject soundandedge sound. These properties are crucial to ensure that an extracted
object graph shows all runtime objects and relations, in order to use it to analyze communication
integrity.

Credits

Lecture notes by David Pichardie on the soundness of an Andersen-style points-to analysis
(Pichardie 2008) inspired our style of proving soundness. Pichardie, however, used an object-
orientedWhileO language with three-address code, rather than Featherweight Java.

3.7. Summary 119

Chapter 4

Evaluation of the Object Graph
Extraction1

In this chapter, I evaluate the annotations and the static analysis by extracting hierarchical object
graphs from several real representative object-oriented systems that I annotated manually.

4.1 Introduction

This chapter focuses on extracting hierarchical object graphs, and does not represent the out-
put as a standard runtime architecture. As I mentioned in Chapter 1, however, abstracting an
object graph into a C&C view is largely automatic. So we will use the terms “runtime archi-
tecture”, “component” and “tier”, interchangeably with “object graph”, “object” and “domain”,
respectively.

This chapter is organized as follows. In Section 4.2, I list the research questions that this eval-
uation aims to answer. In Section 4.3, I discuss the tool support for the annotations and the object
graph extraction. In Section 4.4, I discuss the extraction methodology. In Section 4.5, I discuss
the evaluation methodology. Section 4.6 discusses a case study using the JHotDraw system.
Section 4.7 discusses a case study using the HillClimber system. Section 4.8 discusses a field
study using the LbGrid system. Section 4.9 has an evaluationbased on a cognitive dimensions
framework. I conclude this chapter with a discussion in Section 4.10.

4.2 Research Questions

Our evaluation aims to answer the following hypotheses (Section 1.10, Page 25):

H-1: Lightweight typecheckable ownership annotations can specify, within the code,
local hints about object encapsulation, logical containment and architectural tiers.

H-2: In practice, a static analysis can extract from an annotated program a global,
hierarchical object graph that provides architectural abstraction by ownership hier-
archy and by types.

1Portions of this chapter appeared in (Abi-Antoun and Aldrich 2007a, 2008b, 2009a).

121

We refine the hypotheses into the following research questions:
RQ1 – Precision: In practice, does the static analysis, by abstracting objects to domains and

types, produce object graphs that have sufficient precision? Or does it produce object
graphs that suffer from being over-conservative approximations that are fully connected
graphs, or collapse all the objects in a domain to a single object, in the absence of aliasing
information more precise than what ownership annotations provide?

RQ2 – Abstraction by ownership: In practice, can a hierarchical object graph show architec-
turally relevant objects from the application domain in thetop-level domains, and low-level
objects that are data structures underneath architecturally significant objects?

RQ3 – Abstraction by types: In practice, can abstraction by types achieve additional architec-
tural abstraction in an object graph?

RQ4 – Iteration: In practice, can one effectively iterate the process of adding the ownership
annotations and setting the optional input to the static analysis, e.g., to control abstraction
by types, to extract an object graph with the desired architectural abstraction?

RQ5 – Annotations: Do the annotations describe local, modular information regarding object
encapsulation, logical containment and architectural tiers? Or does a developer adding the
annotations need some high-level global information?

RQ6 – Value: In practice, does an OOG highlight potentially useful information about the sys-
tem’s runtime structure?

4.3 Tool Support

The tool support for extracting object graphs consists of two plugins in the Eclipse open source
development environment, which has become popular with researchers and practitioners (Goth
2005; Murphy et al. 2006). The first tool manages and typechecks the annotations and the other
one extracts and displays an object graph from an annotated program.

4.3.1 Annotation Tool

I designed a set of Java 1.5 annotations that implement the ownership domain type system using
existing language support for annotations. I also re-implemented a typechecker for the annota-
tions, ArchCheckJ, which stands for Architectural annotation Checker for Java. ArchCheckJ is
a plugin to the Eclipse Java Development perspective (JDT),and displays annotation warnings
in the Eclipse problem window. A developer can double-clickon a warning in the problem win-
dow to go the line of code with the missing or inconsistent annotation. Additional details on the
annotation language and the design of ArchCheckJ are in Appendix A.

4.3.2 Object Graph Extraction Tool

I implemented the static analysis to extract an object graph(which we discussed in Chapters 2, 3)
as another Eclipse plugin, ArchRecJ, which stands for Architectural Recovery for Java. The
object graph extraction works in the presence of annotationwarnings, but warns that the extracted
object graph may not soundly reflect all objects and relations.

122 Chapter 4. Evaluation of the Object Graph Extraction

Figure 4.1: ArchRecJ tool: the left pane shows the ownership tree and the right paneshows the depth-
limited unfolding. The tool shows the field declarations that an object in the OOGrepresents. The tool
also helps a developer select the trivial types and the design intent types for the abstraction by types.

4.3. Tool Support 123

The ArchRecJ tool offers the following features (Fig. 4.1):

• Select top-level object:the user can interactively select an object as the root of thegraph
to view its substructure;

• Set trivial types: a developer can specify an optional list of trivial types to use the abstrac-
tion by types feature;

• Set design intent types:a developer can specify an optional list of design intent types to
use the abstraction by types feature;

• Display inheritance hierarchy: the tool can display the inheritance hierarchy of the types
of the field declarations that a display object merges, to help the developer fine-tune the
list of trivial types or design intent types for the abstraction by types;

• Collapse or expand selected item:a developer can collapse or expand the sub-structure
of a selected object or domain;

• Control unfolding depth: a developer can control the visible depth of the ownership tree,
using the slider control in Fig. 4.1;

• Set object labels:Each object in an extracted object graph represents at leastone field or
variable declaration in the program. An object might have multiple types, and the analysis
picks one of those types as the label. ArchRecJ can label objects with an optional field
name or variable name and an optional type name. The type usedin the label consists of a
least-upper-bound type or a design intent type or a labelingtype (discussed below);

• Set additional labeling types:the object graph extraction non-deterministically selects a
label for a given objecto based on the name or the type of one of the references in the
program that points too. A developer can specify an optional list of labeling types for
labelling objects. For example, in Fig. 2.3(b), the tool adds the decoration(Listener) to
an object’s label, if it merges at least one object of that type, as is the case forpieChart,
barChart andmodel. We implemented this feature in response to the developer’sfeed-
back during the field study, because he informed us that labels are very important in a
diagram;

• Trace to code: the tool can show the list of field declarations and their types that a given
display object merges. In addition, the developer can tracefrom the field declarations to
the right lines of code. This feature is useful to guide the developer to the field declarations
in the program that require different annotations.

• Navigate: the tool supports zooming in and out, panning, scrolling andother standard
operations;

• Search: the tool supports searching for an object in the ownership tree by type or field
name;

• Persist extracted OOG: the tool can persist an extracted OOG into an XML file. This
file can then be viewed using a standalone viewer. When using the viewer, the developer
cannot control the abstraction by types, but can still expand or collapse selected elements.

Thus far, our research has focused on the underlying static analysis rather than on novel
techniques for visualizing object graphs. For instance, our visualization uses the simple but
effective GraphViz tool (Gansner and North 2000) which supports clustered graphs, but does not
support visual features such as cross-hatching fill patterns. Future work may consider using more
specialized visualization frameworks such as SHRIMP VIEWS (Storey et al. 1998).

124 Chapter 4. Evaluation of the Object Graph Extraction

4.4 Extraction Methodology

In this section, I discuss the SCHOLIA methodology to extract object graphs. Following the gen-
eral SCHOLIA approach (Section 1.7, Page 20), this involves adding and checking the annotations
(Section 4.4.1), then running the static analysis (Section4.4.2).

The study’s experimenter (hereafter “I”) developed the ArchCheckJ and ArchRecJ tools, but
none of the subject systems. I mostly learned the architectural structure of the subject systems
from iteratively annotating the code, examining the extracted OOGs and relating the OOGs to
class diagrams drawn by others, or to other available documentation.

4.4.1 Adding and Checking the Annotations

In this section, I discuss the process of adding the annotations, typechecking them, and address-
ing the annotation warnings.

4.4.1.1 Gathering available documentation.

Before adding annotations and extracting object graphs, it is often useful to have an informal
diagram of the target architecture, to help guide the annotation process. Indeed, most architec-
tural extraction case studies start by gathering availabledocumentation (Tzerpos and Holt 1996).
When available, the documentation can help identify the domains in the system, the types that are
most architecturally relevant and the hierarchical systemdecomposition, i.e., how to decompose
some of the objects into nested sub-structures.

For example, for the JHotDraw system, I had access to a tutorial by JHotDraw’s original de-
signers (Beck and Gamma 1997; Gamma 1998), but for a slightly older version than the version
of JHotDraw I annotated. One of the tutorials discusses the design patterns that JHotDraw im-
plements, using a code architecture, but does not describe JHotDraw’s runtime structure. I also
found several class diagrams drawn by others who studied JHotDraw, e.g., (Riehle 2000).

4.4.1.2 Typechecking the annotations

A developer adding the annotations often follows an iterative process. After each round of an-
notations, he runs the typechecker, examines the warnings,and addresses them from the most to
the least important ones.

The annotations are modular and can be checked one class at a time. However, some amount
of iteration is involved. For instance, if the developer defines a domain parameter on a class, she
has to find all the locations in the code that use that class, and bind that domain parameter to
some other domain in scope. So this may require a continuous annotate-check cycle.

4.4.1.3 Prioritizing the annotation warnings

It is often helpful to fix the annotation warnings in a specificorder. I illustrate these using the
Listeners example (Fig. 2.4). From most to least important are:

4.4. Extraction Methodology 125

1. Undeclared domains or domain parameters. For instance, the domainOWNED must be de-
clared (line 5 in Fig. 2.4) before thelisteners field declaration can be annotated with
OWNED (line 9). Similarly, the domain parametersM (line 21) andV (line 3) must be de-
clared.

2. Unbound domain parameters at field and variable declarations. For instance, since class
Model takes a domain parameterV, the field declarationmodel of typeModel must bind
the domain parameter to another domain in scope, e.g.,VIEW (line 29). This also includes
binding the domain parameters on containers such asVector andList (lines 9, 24). Recall
thatList takes anELTS formal domain parameter for the list elements.

3. Domain parameter inheritance. For instance, the domain parameterM on PieChart is
bound to the domain parameter onPieChart’s superclass,BaseChart (line 19).

4. Assignment rule. For instance, a reference annotated with DOCUMENT cannot be assigned
to another one annotated withVIEW. Similarly, alent variable, which denotes a temporary
alias, cannot be stored in a field.

5. Array parameters. Domain annotations for the array elements must be also provided.
6. External annotation files. The ArchCheckJ tool allows a developer to partially annotate the

parts of the Java standard library or other third-party libraries that are in use (Section A.4.1,
Page 324). The external files for the Java Standard Library can often be reused across
different systems.

7. Domain links. Finally, a developer can set domain links and link assumptions to enforce
access permissions between domains.

4.4.2 Refining the Object Graph

In this section, I discuss the process of refining the extracted object graph using annotations.

4.4.2.1 Overall strategy

Just as there are multiple architectural views of a system, there is no single right way to annotate
a program. And different annotations can produce differentobject graphs (Refer to discussion in
Section 2.6.2, Page 66). However, a type system ensures thatthe annotations are consistent with
each other and with the code.

Good annotations minimize the number of objects in the top-level domains by pushing more
objects underneath other objects. In particular, the goal is to remove from the top-level domains
low-level objects that are data structures, such as instances ofVector andList. Ideally, the
top-level domains show only objects that are architecturally relevant and correspond to entities
from the application domain.

4.4.2.2 Refining the ownership annotations

A developer controls the architectural extraction processas follows. First, she chooses the top-
level domains. Then, she achieves the desired number of objects in each top-level domain,
primarily throughabstraction by ownership hierarchy.

126 Chapter 4. Evaluation of the Object Graph Extraction

A developer-specified annotation can push an object underneath—i.e., into a private or a pub-
lic domain declared inside—a more architecturally-relevant object. The parent object becomes
primary, and the child object becomessecondary. As a result, only primary objects appear in
the top-level domains. Each of those objects has more domains and objects, until low-level ob-
jects are reached. In addition, the developer must minimizethe remaining annotation warnings,
especially any high-priority ones.

To summarize, a developer can do any of the following: (a) Push a secondary object under-
neath a primary object using the strict encapsulation of private domains; (b) Push a secondary
object underneath a primary object using the logical containment of public domains; or (c) Pass
a low-level object linearly using theunique annotation.

4.4.2.3 Code changes

In some cases, adding annotations that specify strict encapsulation and avoid the representation
exposure may require a change to the code, e.g., to return a copy of an internal list instead of an
alias (Aldrich et al. 2002c; Aldrich and Chambers 2004). Generally, using logical containment
does not require any code changes. In most cases, defining public domains required changing
the annotations only locally and incrementally.

4.4.2.4 Using abstraction by types

To reduce clutter further, the developer can enableabstraction by types, which merges more
objects in a given domain, based on the architectural relevance of their declared types. The
object graph extraction tool provides some support to help adeveloper select the types to be used
for abstraction by types.

4.4.2.5 Controlling the level of detail

Finally, she achieves an appropriate level of visual detailby expanding or collapsing the sub-
structure of selected objects, or changing the unfolding depth uniformly across the graph. The
analysis adds any lifted edges to account for the elided substructures.

4.5 Evaluation Methodology

The evaluation methodology follows closely SCHOLIA ’s extraction methodology above (Sec-
tion 4.4), and involves the following steps:

1. Add annotations to the code and typecheck them;
2. Extract an object graph that conveys architectural abstraction by ownership hierarchy. Op-

tionally, specify types to control abstraction by types;
3. Iterate the annotations, and the abstraction by types.
In addition, in preparation for the evaluation, I performedthe following tasks, which may not

be always required.

4.5. Evaluation Methodology 127

Making minor code changes to use annotations. In most cases, we did not change the code
as we were adding the annotations. However, we made some minor code changes as required by
the annotation system2. For instance, one change may involve extracting a local variable from a
new expression, in order to add an annotation on the local variable. Another change is to convert
an anonymous class to a nested class, in order to declare domain parameters on the class.

Refactoring to generics. Two subject systems, JHotDraw (Section 4.6) and HillClimber(Sec-
tion 4.7), were developed prior to Java 1.5 and did not use generic types. I refactored them to
use generics, mostly automatically using Eclipse’s tool support (Fuhrer et al. 2005). The LbGrid
subject system in the field study (Section 4.8) was already using Java 1.5 and generic types and
did not require such a refactoring.

Re-engineering system during annotation process.I had previously studied the HillClimber
subject system when I re-engineered it to ArchJava (Abi-Antoun et al. 2007a). The re-
engineering study also produced a version that cleaned up the original code, for instance by
making most class fields be private. For this case study, I started from the refactored Java version
and added ownership domain annotations to it.

4.6 Extended Example: JHotDraw

JHotDraw (JHD 1996) is open source, rich with design patterns, uses composition and inheri-
tance heavily and has evolved through several versions. Forthis case study, we used version 5.3,
which has around 200 classes and 15,000 lines of Java.

Design documentation for JHotDraw is available, e.g,. (Gamma 1998; Riehle 2000; Kaiser
2001). A manually drawn class diagram (Fig. 4.2) shows some of the core types. An often-cited
article (Kaiser 2001) discusses that JHotDraw follows the Model-View-Controller design pattern.
However, the JHotDraw package structure does not reveal that fact, since all the core types are
in oneframework package.

4.6.1 Annotation Process

In this section, I discuss the process of adding annotationsto JHotDraw to explain what the
annotations look like and the information that they describe. In particular, a developer focuses
mainly on the structure of the system, rather than its behavior. Moreover, when adding the
annotations, the developer describes only local, modular information, and does not require direct
knowledge of the global system structure.

2One proposal, JSR 308 (Ernst and Coward 2006), permits annotations to appear in more places, such as on
generic type arguments. Some of the code changes we made may no longer be necessary once JSR 308 is adopted
into the Java language, and supported by existing development environments such as Eclipse.

128 Chapter 4. Evaluation of the Object Graph Extraction

VIEW

MODEL

CONTROLLER

ConnectionFigure

Connector

DecoratorFigure

Handle

NullHandle TrackHandle

Locator

0..*

0..*

0..*2

Painter

PointConstrainer

Tool

DrawingEditor

DrawingView

CreationTool SelectionToolHandleTracker

Figure

Drawing

0..*

CompositeFigure

Figure 4.2: JHotDraw class diagram showing how we annotated instances of the selected types. Source:
(Riehle 2000).

4.6.1.1 Annotation Overview

For JHotDraw, I defined the following three top-level domains and organized instances of the
core types as follows:

• MODEL: has instances ofDrawing, Figure, Handle, etc. A Drawing is composed of
Figures that know their containingDrawing. A Figure object hasHandles for user
interactions. TheDrawing interface also extendsFigureChangeListener (not shown in
Fig. 4.2) to listen to changes to itsFigures.

• VIEW: has instances ofDrawingEditor, DrawingView, etc. TheDrawingView class ex-
tendsDrawingChangeListener (not shown) to listen to changes toDrawing objects;

• CONTROLLER: has instances ofTool, Command andUndoable. A DrawingView uses a
Tool to manipulate aDrawing. A Command encapsulates an action to be executed, i.e.,
implements the Command design pattern without undo.

Once I defined the three top-level ownership domains,MODEL, VIEW andCONTROLLER, I pa-
rameterized most of the JHotDraw types with the corresponding domain parameters,M, V andC,
respectively. Some of these types required only one or two ofM, V andC. I could have further
reduced these parameters by using the implicit owner domainparameter, accessible using the
OWNER annotation3.

4.6.1.2 Annotation Examples and Observations

In the following discussion, I illustrate the annotation process using actual examples and code
snippets from JHotDraw. I slightly edited the code for presentation by removing the trivial

3We did not use theOWNER annotation initially (Section 2.3.3, Page 41), because thetools did not fully support it
at the time. In future work, we will update the annotated subject systems to use theOWNER annotation more heavily.

4.6. Extended Example: JHotDraw 129

1 class DrawApplication<M,V,C> ... implements DrawingEditor<M,V,C> ... {

2 }

3

4 class MDI_DrawApplication<M,V,C> extends DrawApplication<M,V,C> ... {

5 }

6

7 class JavaDrawApp<M,V,C> extends MDI_DrawApplication<M,V,C> {

8 }

9

10 class Main {

11 domain MODEL, VIEW, CONTROLLER;

12 ...

13 VIEW JavaDrawApp<MODEL,VIEW,CONTROLLER> app = new JavaDrawApp();

14

15 public void run() {

16 app.open();

17 }

18

19 public static void main(lent String args[shared]) {

20 lent Main system = new Main();

21 system.run();

22 }

23 }

Figure 4.3: JHotDraw: defining the three top-level domains on the root class.

visibility modifiers such asprivate or public 4. I make several observations based on studying
the annotations.

Observation: Ownership domains specify architectural runtime tiers. A tiered architecture
is often used to organize an application into a User Interface tier, a Business Logic tier, and a
Data tier. Ownership domains express a tiered runtime architecture by representing a tier as an
ownership domain (Aldrich and Chambers 2004), and a permission between tiers as a domain
link to allow objects in the User Interface tier to refer to objects in the Business Logic tier but
not vice versa. Such an architectural structure and constraints cannot be expressed in plain Java
code. For example, I organized the JHotDraw runtime structure according to the Model-View-
Controller design pattern (Fig. 4.3).

Observation: Ownership domains enforce instance encapsulation. All ownership type sys-
tems can express and enforce instance encapsulation which is stronger than the module visibility
mechanism of making a fieldprivate. In ownership domains, placing a field in the private
OWNED domain means that the object can be reached only by going through its owner. As a result,
no aliases to that object can leak to the outside.

ConsiderCompositeFigure in JHotDraw (Fig. 4.4). Placing the list of compositeFigures,
represented by the fieldfFigures, in theOWNED private domain encapsulatesfFigures to pre-
vent objects that only have access to the composite object from modifying the list directly. If a de-
veloper tries to subvert the language visibility mechanisms by returning a reference to aprivate

4(Abi-Antoun and Aldrich 2007a) shows mostly the same examples, but in the concrete annotation language.

130 Chapter 4. Evaluation of the Object Graph Extraction

1 /**

2 * The interface of a graphical figure. A figure knows its display box

3 * and can draw itself. A figure can be composed of several figures.

4 * A figure has a set of handles to manipulate its shape or attributes.

5 * A figure has one or more connectors that define

6 * how to locate a connection point.

7 */

8 interface Figure<M> extends Storable <M> {

9 ...

10 }

11 /**

12 * A Figure that is composed of several figures.

13 */

14 abstract class CompositeFigure<M> extends AbstractFigure<M>

15 implements FigureChangeListener<M> {

16

17 domain OWNED;

18 /**

19 * The figures that this figure is composed of

20 */

21 OWNED Vector<M Figure<M> > fFigures;

22

23 /**

24 * Adds a vector of figures.

25 */

26 void addAll(M Vector<M Figure<M>> newFigures) {

27 // Cannot assign object M Vector newFigures to owned Vector fFigures

28 // this.fFigures = newFigures;

29 fFigures.addAll(newFigures);

30 }

31 }

Figure 4.4: JHotDraw:CompositeFigure annotations.

orprotected field using apublic accessor method, the typechecker prohibits apublic method
from taking anOWNED parameter or returning anOWNED object.

For example, during software evolution, a novice developercan use Eclipse to generate a
setter for thefFigures field. Eclipse produces the following code, without annotations:

void setFFigures(Vector<Figure> figs) {

this.fFigures = figs;

}

As the developer is adding the annotations to thesetFFigures() method, the typechecker
can warn him that the parameterfigs of a non-private method cannot be marked asOWNED. And
any other annotation would fail the assignment check when overwriting thefFigures field.

To avoid the warning, the developer can rewrite thesetFFigures() method to no longer
overwrite the existing field, and instead, call theclear() andallAll() methods.

void setFFigures(Vector<Figure> figs) {

// Use the following, instead of overwriting the field

this.fFigures.clear();

4.6. Extended Example: JHotDraw 131

this.fFigures.addAll(figs);

}

When manually adding annotations, it is possible to miss manyopportunities for strictly en-
capsulating objects. Indeed, I initially annotatedfFigures with the domain parameterM instead
of theOWNED domain. In many cases, objects should be encapsulated to avoid the representation
exposure, but are not. Making these objects encapsulated may require a code change, e.g., by
returning a shallow copy of an object such as aList, instead of an alias.

Extracting the object graph helped visualize the annotations and encouraged the use of strict
encapsulation sinceOWNED objects no longer clutter the top-level domains. Future work may
include developing a tool to prompt a developer when a field could be encapsulated. For example,
a lightweight compile time ownership inference algorithm,e.g., (Liu and Milanova 2007), could
suggest possible Eclipse “quickfixes” to strictly encapsulate objects.

Observation: Ownership domains expose implicit communication. Design patterns such as
Observer (Gamma et al. 1994, p. 293) can decouple object-oriented code, but tend to make the
communication between objects implicit. Adding ownershipdomain annotations can help make
that communication more explicit.

We initially wanted to parameterizeDrawing (Fig. 4.5) with only theM domain parameter, but
DrawingChangeListener is implemented byDrawingView. So theDrawingChangeListener
reference had to be in theVIEW domain, which in turn required theV domain parameter.
By making implicit communication explicit, the annotationsseem to prematurely constrain
DrawingChangeListener objects to be in theVIEW domain. SinceDrawing was a core inter-
face referenced by other interfaces in the coreframework package, this led to passing all three
domain parameters to many additional interfaces and classes that implement those interfaces.

If Drawing did not have to be parameterized by domain parameterV, I might not have dis-
covered the implicit communication in the observer by adding the annotations. Thus, ownership
domain annotations can help make implicit communication explicit, when a reference requires
permission to access a new part of the program for the first time.

Observation: Ownership domains expose tight coupling. Let us temporarily ignore the ear-
lier limitation with adding annotations to the listeners and assume thatDrawing could be param-
eterized by only theM domain parameter. Let us now consider whether it would be possible to
parameterize interfaceHandle (Fig. 4.6) with domain parameterM andC. A Handle would be in
theC domain parameter and access objects in that domain parameter and in theM domain param-
eter, i.e., it should not access objects in theV domain parameter. Note that even if the explicit
parameterC was not provided, that domain would still be accessible toHandle using the implicit
OWNER annotation.

A comment in the code indicated that Version 4.1 deprecated the originalinvokeStart()
method which took aDrawing object as one of its parameters, in favor of aninvokeStart()

method that takes instead a method parameter of typeDrawingView, which is parameterized by
M, V andC. This required passing toHandle the additional domain parameterV. SinceHandle is
a core interface referenced by other interfaces in the coreframework package, this also led to
passing all three domain parameters to many additional types.

132 Chapter 4. Evaluation of the Object Graph Extraction

1 /**

2 * Drawing is a container for figures. Drawing sends out DrawingChanged

3 * events to DrawingChangeListeners whenever a part of its area was

4 * invalidated. The Observer pattern is used to decouple the Drawing

5 * from its views and to enable multiple views.

6 */

7 interface Drawing<M,V> ...{

8

9 /**

10 * Adds a listener for this drawing.

11 * DrawingView implements DrawingChangeListener,

12 * so the objects are in ’V domain parameter

13 */

14 void addDrawingChangeListener(V DrawingChangeListener<M,V> listener);

15

16 /**

17 * Adds a figure and sets its container to refer to this drawing.

18 * @param figure to be added to the drawing

19 * @return the figure that was inserted (might be different from the figure specified).

20 */

21 M Figure<M> add(M Figure<M> figure)

22 }

Figure 4.5: JHotDraw: adding annotations toDrawing.

1 /**

2 * Handles are used to change a figure by direct manipulation.

3 * Handles know their owning figure and they provide methods to locate

4 * the handle on the figure and to track changes.

5 * Handles adapt the operations to manipulate a figure to a common interface.

6 */

7 interface Handle<M,V,C> {

8

9 /**

10 * @deprecated As of version 4.1, use invokeStart(x, y, drawingView)

11 */

12 void invokeStart(int x, int y, lent Drawing<M> drawing);

13

14 /**

15 * Tracks the start of the interaction.

16 * @param x the x position where the interaction started

17 * @param y the y position where the interaction started

18 * @param view the handles container

19 */

20 void invokeStart(int x, int y, V DrawingView<M,V,C> view);

21

22 M Undoable<M,V,C> getUndoActivity();

23 }

Figure 4.6: JHotDraw:Handle with M, V andC domain parameters.

4.6. Extended Example: JHotDraw 133

1 interface Undoable<M,V,C> {

2 ...

3

4 V DrawingView<M,V,C> getDrawingView();

5 }

Figure 4.7: JHotDraw:Undoable with M, V andC domain parameters.

1 interface Handle<M,C> {

2

3 void invokeStart<V> (int x, int y, V DrawingView<M,V,C> view);

4

5 M Undoable<M> getUndoActivity();

6

7 }

Figure 4.8: JHotDraw:Handle with only M andC domain parameters.

Observation: Ownership domains expose and enforce object borrowing. Let us assume
that the above refactoring after JHotDraw Version 4.1 whichintroduced the tighter coupling
was never performed, i.e.,Handle still needed aDrawing instead of aDrawingView. Undo
support was added to JHotDraw for the first time in Version 5.3. In particular,Handle now
had a reference toUndoable —which in turn required domain parametersM,V andC because
Undoable’s getDrawingView() method returned aDrawingView (Fig. 4.7).

Now, let us see if it would be possible to annotateUndoable and Handle with only
the domain parametersM and C (Fig. 4.8). The domain parameterV can then be added to
invokeStart() as a method domain parameter.

Using a method domain parameter to annotate the formal parameterview could enforce the
constraint that a developer should not store in a field theDrawingView object that is passed as
an argument toinvokeStart() (Fig. 4.9). Of course, a developer could store theDrawingView

object in a field of typeObject, but that field would have to be cast to aDrawingView in order
to be useful.

Instead of using a method domain parameter to enforce objectborrowing, one could use the
lent annotation to allow a temporary alias to an object within a method boundary. We found a
few such examples in JHotDraw. For instance, the methodsetAffectedFigures() (Fig. 4.10)
makes a copy of thelent argument because it cannot hold on to it.

In fact, thelent annotation can be formally modeled as a method domain parameter. The
type system prohibits a method from returning alent value, although it allows a method to
return an object in a method domain parameter. In the case ofDrawingView, lent cannot
be used because implementations ofinvokeStart() constructUndoable objects that maintain
aliases to theDrawingView. As a result,Handle requires theV domain parameter.

For that same reason, theUndoable interface requires theV domain parameter because
Undoable stores theDrawingView in which the activity to be undone was performed, in or-
der to undo the changes to that view only. This may slightly violate the Model-View-Controller
design, where model objects should not hold on to view objects, because there might be mul-
tiple views that need to be updated in response to changes in the model. At the same time, it
would be counter-intuitive for a user to undo a change in one view and observe changes in some

134 Chapter 4. Evaluation of the Object Graph Extraction

1 /**

2 * AbstractHandle provides default implementation for Handle interface.

3 */

4 abstract class AbstractHandle<M,C> implements Handle<M,C> {

5

6 // The following would not typecheck since V not bound

7 V DrawingView<M,V,C> view;

8

9 /**

10 * @param x the x position where the interaction started

11 * @param y the y position where the interaction started

12 * @param view the handles container

13 */

14 void invokeStart<V>(int x, int y, V DrawingView<M,V,C> view) {

15 // Cannot store argument view in field this.view

16 ...

17 }

18 }

Figure 4.9: JHotDraw: using method domain parameters to enforce object borrowing.

other view. Thus, ownership domain annotations expose the tighter coupling that the Undo fea-
ture introduced. Fig. 4.10 shows in more detail the interaction betweenHandle, Undoable and
DrawingView.

An earlier empirical study of JHotDraw mentioned that “a common architectural mistake
[. . .] was to provideFigures with a reference to theDrawing or theDrawingView. Figures
do not by default have any access to either theDrawing or theDrawingView in which they
are contained. This prevents them from accessing information such as the size of theDrawing.
However, it is possible to overcome this problem by passing the view into the constructor of a
figure, which can then store and access this as required” (Kirk et al. 2006). Due to the stronger
coupling in Version 5.3, one could now get to theFigure’s Handles through itshandles()
method then get aDrawingView through aHandle’s UndoActivity objects.

Observation: Ownership domains can help identify singletons. While adding ownership
domain annotations, we discovered a curious instance of theSingleton design pattern:IconKit’s
constructor was not private, although it had a staticinstance() method. Indeed, there is a
unique instance ofDrawingEditor (the application itself) and aunique IconKit (Fig. 4.11)
at runtime.

4.6.1.3 Expressiveness Challenges

Like any type system, the ownership domain type system has some expressiveness challenges,
that make it rule out presumably valid programs. In this section, I discuss some expressiveness
challenges I encountered while adding the annotations. Some of these challenges had been pre-
viously mentioned in the ownership types literature, e.g. (Scḧafer and Poetzsch-Heffter 2007).

4.6. Extended Example: JHotDraw 135

1 class ResizeHandle<M,V,C> extends LocatorHandle<M,V,C> {

2 @Override

3 void invokeStart(int x, int y, V DrawingView<M,V,C> view) {

4 setUndoActivity(createUndoActivity(view));

5 ...

6 }

7 /**

8 * Factory method for undo activity. To be overriden by subclasses.

9 */

10 M Undoable<M,V,C> createUndoActivity(V DrawingView<M,V,C> view) {

11 unique ResizeHandle.UndoActivity<M,V,C> undoActivity = new ResizeHandle.UndoActivity(view);

12 return undoActivity;

13 }

14 static class UndoActivity<M,V,C> extends UndoableAdapter<M,V,C> {

15 UndoActivity(V DrawingView<M,V,C> newView) {

16 super(newView);

17 ...}

18 }

19 }

20

21 class UndoableAdapter<M,V,C> implements Undoable<M,V,C> {

22 OWNED Vector<M Figure> myAffectedFigures;

23 V DrawingView<M,V,C> myDrawingView;

24

25 UndoableAdapter(V DrawingView<M,V,C> newDrawingView) {

26 myDrawingView = newDrawingView;

27 }

28 void setAffectedFigures(lent FigureEnumeration<M> newAffectedFigures) {

29 // the enumeration is not reusable therefore a copy is made

30 // to be able to undo-redo the command several time

31 rememberFigures(newAffectedFigures);

32 }

33 void rememberFigures(lent FigureEnumeration<M> toBeRemembered) {

34 myAffectedFigures = new Vector<Figure>();

35 myAffectedFiguresCount = 0;

36 while (toBeRemembered.hasMoreElements()) {

37 myAffectedFigures.addElement(toBeRemembered.nextElement());

38 myAffectedFiguresCount++;

39 }

40 }

41 }

Figure 4.10: JHotDraw: concrete implementation class ofHandle.

Observation: One object cannot be in more than one ownershipdomain. Ownership
domains, as most other ownership type systems, support onlysingle ownership, i.e., an ob-
ject cannot be part of more than one ownership hierarchy. Proposals formultiple ownership
(Cameron et al. 2007) lift this restriction in other type systems. Ownership domains do not sup-
portownership transfer(Müller and Rudich 2007) either, i.e., an object’s owner does not change
—only unique objects can flow between any two domains.

As a result, one cannot define many fine-grained ownership domains to represent multiple

136 Chapter 4. Evaluation of the Object Graph Extraction

1 class Iconkit {

2 static unique Iconkit fgIconkit = null;

3

4 /**

5 * Constructs an Iconkit that uses the given editor

6 * to resolve image path names.

7 */

8 unique

9 public Iconkit(unique Component component) {

10 ...

11 fgIconkit = this;

12 }

13

14 /**

15 * Gets the single instance

16 */

17 public unique static Iconkit instance() {

18 return fgIconkit;

19 }

20 }

Figure 4.11: JHotDraw: annotating a singleton usingunique.

Figure 4.12: JHotDraw: alternative top-level domains. Source: (Christensen 2004).

4.6. Extended Example: JHotDraw 137

Tool

Subject Observer

Client

LISTENERS

notify
ToolListener

Figure 4.13: Using public domains to group objects.

roles in design patterns. For instance, (Christensen 2004) had suggested an alternative structuring
of the JHotDraw types, into a Model-View-Controller-Mediator-Adapter architecture (Fig. 4.12).
However, it would have been more challenging to create top-level ownership domains to corre-
spond to such a decomposition, compared to the three top-level domains forMODEL, VIEW and
CONTROLLER we adopted. Due to the single ownership model, placing aDrawingEditor object
in aMEDIATOR domain would have prohibited it from also being in theVIEW domain.

Observation: An object cannot place itself in a domain it declares. An object cannot place
itself in an ownership domain that it declares. This is problematic for the root application object,
i.e., theJavaDrawApp instance (JavaDrawApp extendsDrawApplication which in turn extends
DrawingEditor). To solve this problem, we created a fake top-level classMain to declare the
MODEL, VIEW andCONTROLLER top-level ownership domains, then declared theJavaDrawApp

object in theVIEW domain (Fig. 4.3).

Observation: Public domains can be hard to use. Public domains make the ownership do-
main type system more flexible than anowner-as-dominatortype system, e.g., (Clarke et al.
1998). Also, public domains are ideal for visualization because placing an object inside a public
domain of another object relates these objects without cluttering the top-level domains. However,
public domains are typically hard to use without refactoring the code. We started using them in
a few cases but quickly abandoned those attempts.

Since the Observer design pattern tends to make communication between objects implicit,
we attempted to represent listeners more explicitly using ownership domain annotations. For
instance, it might make sense to place theListener objects that anObserver will notify in a
public domainLISTENERS on theObserver. This is because aListener often needs special
access to theObserver, but usually does not need special access to theSubject (Fig. 4.13).

JHotDraw uses a delegation-based event model. For instance, a DrawingView calls the
methodfigureSelectionChanged to notify a FigureSelectionListener observer of any
selection changes. So it might make sense to declare aLISTENERS public domain onCommand
to hold theFigureSelectionListener objects (Fig. 4.14). But the base implementation class,
AbstractCommand, implements theFigureSelectionListener interface, so aCommand is-a
FigureSelectionListener. Thus aCommand object cannot split a part of itself and place it in
the public domainLISTENERS that it declares.

Observation: Adding annotations to listener objects can bechallenging. There were addi-
tional complications when trying to highlight the event subsystem in JHotDraw using ownership

138 Chapter 4. Evaluation of the Object Graph Extraction

1 abstract class AbstractCommand<M,V,C> implements Command<M,V,C>,

2 FigureSelectionListener<M,V,C> ... {

3

4 public domain LISTENERS;

5 ...

6 }

Figure 4.14: JHotDraw: attempting to define a public domain.

domain annotations. For example,Command, which is in theCONTROLLER domain, implements
FigureSelectionListener, and so doesDrawingEditor, which is in theVIEW domain.

Consider the methodaddFigureSelectionListener() (Fig. 4.15). How would one
annotate the formal parameterfsl of type FigureSelectionListener? The parame-
ter should support both annotationsC<M,V,C> and V<M,V,C>. Indeed, the code calls
addFigureSelectionListener(), once with aCommand object, and another time with a
DrawingEditor object. Currently, using either annotation for thefsl parameter generates an
annotation warning, because one or the other method invocation would not typecheck.

Indeed, (Scḧafer and Poetzsch-Heffter 2007) previously identified the difficulty of adding
ownership domain annotations to programs involving listener objects and proposed a solution
using a variant of the ownership domain type system. Similarly, existential ownership (Clarke
2001; Krishnaswami and Aldrich 2005; Lu and Potter 2006) could increase the expressiveness in
this case. For example, (Lu and Potter 2006) would annotating thefsl parameter with “any”, to
typecheck both calls toaddFigureSelectionListener(). Future work may include address-
ing some of these expressiveness limitations in the type system.

Observation: Adding annotations to static code can be challenging. Even a well-designed
program as JHotDraw had static code, which is challenging for many ownership type systems.
In particular, the staticHashtable cannot have theM, V, andC domain parameters because the
domain parameters declared on the classNullDrawingView are not in scope for static members
(Fig. 4.16). Static members can only be annotated withshared or unique, and these values
cannot flow to theMx, Vx or Cx method domain parameters. Currently, this code cannot be
successfully annotated using ownership domains, and the typechecker produces a warning.

Annotating the genericHashtable also requires nested parameters:Hashtable has three
domain parameters for its keys, values and entries. BothDrawingView andDrawingEditor take
M, V, andC as parameters. Although the number of annotations seems excessive and maybe argues
in favor of generic ownership (Potanin et al. 2006), the ownership domains for theHashtable
key, value and entries need not correspond to theM, V andC ownership domains.

One solution that is not type-safe would be to store theHashtable asObject, then cast
down to aHashtable upon use. This would be the equivalent of raw types, but without re-
implementing them in the ownership domain type system. Another solution would be to refactor
the program to eliminate this static field since it gives any object access to all theDrawingView
andDrawingEditor objects. Since eliminating the static field would require a significant refac-
toring, perhaps another solution would be to support package-level, static ownership domains,
similar to confined types (Bokowski and Vitek 1999), or to combine both confinement and own-

4.6. Extended Example: JHotDraw 139

1 /**

2 * DrawingView renders a Drawing and listens to its changes.

3 * It receives user input and delegates it to the current Tool.

4 */

5 interface DrawingView<M,V,C> extends DrawingChangeListener<M,V>... {

6 // Add a listener for selection changes

7 void addFigureSelectionListener(? FigureSelectionListener<M,V,C> fsl);

8 ...

9 }

10

11 class StandardDrawingView implements DrawingView<M,V,C>, ... {

12

13 /**

14 * The registered list of listeners for selection changes

15 */

16 OWNED Vector<? FigureSelectionListener<M,V,C>> fSelectionListeners;

17

18 StandardDrawingView(V DrawingEditor<M,V,C> editor, ...) {

19 ...

20 // DrawingEditor implements FigureSelectionListener

21 // editor is in ’V’ domain parameter, not ’C’!

22 addFigureSelectionListener(editor);

23 }

24

25 /**

26 * Add a listener for selection changes. AbstractCommand implements

27 * FigureSelectionListener. Command is in the ’C’ domain parameter!

28 */

29 void addFigureSelectionListener(? FigureSelectionListener<M,V,C> fsl) {

30 fSelectionListeners.add(fsl);

31 }

32 }

Figure 4.15: JHotDraw: annotatingaddFigureSelectionListener.

ership in one type system (Potanin 2007).

Observation: Annotations may be unnecessarily verbose.Ownership domain annotations
tend to be verbose: e.g., formal method parameters need to befully annotated even if they are
not used in the method body or used in a restricted way. This produces particularly unwieldy
annotations for containers of generic types.

In Fig. 4.17, the methodclearStackVerbose() indicates the current level of annotations
needed. It should be possible to leave out domain parameterswhen they are not really needed.
This may involve using implicit existential ownership types as in the methodclearStackAny().
The question mark annotation could mean that there exists some domain parametersd1, d2, d3,
d4, such that the formal method parameters could be annotated withlent<d1<d2,d3,d4>>.
Using appropriate defaults, the annotations could probably be reduced to the level needed to
annotate a raw type, as shown in the methodclearStack().

140 Chapter 4. Evaluation of the Object Graph Extraction

1 class NullDrawingView<M,V,C> ... implements DrawingView<M,V,C> {

2

3 static unique Hashtable< ? DrawingEditor<?,?,?>,

4 ? DrawingView<?,?,?>,

5 ?> dvMgr = new ...

6 ...

7

8 public synchronized static

9 Vx DrawingView<Mx,Vx,Cx>

10 getManagedDrawingView<Mx,Vx,Cx> (V1 DrawingEditor<Mx,Vx,Cx> editor) {

11 if (dvMgr.containsKey(editor)) {

12 Vx DrawingView<Mx,Vx,Cx> drawingView = dvMgr.get(editor);

13 return drawingView;

14 }

15 else {

16 Vx DrawingView<Mx,Vx,Cx>newDrawingView = new NullDrawingView(editor);

17 dvMgr.put(editor, newDrawingView);

18 return newDrawingView;

19 }

20 ...

21 }

22 }

Figure 4.16: JHotDraw: annotating static fields.

1 class UndoManager<M,V,C> {

2 /**

3 * Collection of undo activities

4 */

5 OWNED Vector<M Undoable<M,V,C>> undoStack;

6

7 void clearStackVerbose(lent Vector<M Undoable<M,V,C>> s) {

8 s.removeAllElements();

9 }

10

11 void clearStackAny(lent Vector<? Undoable<?,?,?>> s) {

12 s.removeAllElements();

13 }

14

15 void clearStack(lent Vector<Undoable> s) {

16 s.removeAllElements();

17 }

18 }

Figure 4.17: JHotDraw: reducing annotations that are not needed.

Observation: Manifest ownership can reduce the annotation burden. The current default-
ing tool annotatesString objects withshared. However, during the annotation process, we
found ourselves adding theshared annotation to many other types such asFont, FontMetrics,
andColor. For example,manifest ownership(Clarke 2001), i.e., the ability to specify a global
per-type default, rather than an annotation for every instance of a type, could reduce the annota-

4.6. Extended Example: JHotDraw 141

tion burden in those cases, and may be worth exploring in future work.

Observation: Reflective code cannot be annotated.JHotDraw uses reflective code to se-
rialize and deserialize its state and such code cannot be annotated using ownership domains
(Aldrich et al. 2002c).

Observation: Annotate exceptions aslent. We were not particularly interested in reasoning
about exceptions, so we annotated exceptions them withlent. However, richer annotations are
possible, as illustrated by (Werner and Müller 2004).

4.6.1.4 Annotation Summary

The annotations are checked by a type system in a modular fashion, one class at a time. The
annotation examples illustrate how a developer adding the annotations mostly provides local
hints. In particular, rarely does the developer require missing global information. Of course,
some of the harder annotations require computing some reachability, which is perhaps best left
for a tool.

4.6.2 Object Graph Extraction

While adding the annotations, I ran the static analysis to extract an object graph based on the
annotations, and used the extracted object graphs to visualize the annotations and refine them ac-
cordingly. Of course, as long as there are annotation warnings, the object graph may be unsound,
but it may still be useful.

During the case study, I made several observations, outlined in bold below. The requirements
for a runtime architecture (Section 1.8, Page 22) dictated some of the questions that the obser-
vations answer. A taxonomy for software exploration tools by Storey, M̈uller et al. (Storey et al.
1999), but applied to runtime structures instead of code structures, inspired the others.

Observation: Flat object graphs do not scale. For comparison, I extracted object graphs for
JHotDraw using several existing static analyses that have publicly-available tools. For instance,
Fig. 4.18 shows the output of WOMBLE (Jackson and Waingold 2001) on JHotDraw. WOMBLE

produces a complex, flat object graph where low-level objects suchDimension andRectangle
appear at the same level as the root application object,JavaDrawApp. The PANGAEA output for
JHotDraw is even more complex (Fig. 4.19).

Observation: Some object graphs do not correctly reflect aliasing. There are other seri-
ous problems with WOMBLE’s output. By design, WOMBLE does not handle aliasing soundly.
For instance, WOMBLE can shows multiple nodes in the object graph for the same runtime
object. In Fig. 4.18, there are multipleJavaDrawApp nodes, highlighted in black. Similarly,
Fig. 4.18 confusingly shows a separateDrawingEditor instance, when it is the same object as
theJavaDrawApp instance at runtime (JavaDrawApp extendsDrawingEditor).

142 Chapter 4. Evaluation of the Object Graph Extraction

ToolButton

ToolButton

SelectionTool

fTool

JavaDrawApp

fListener

PaletteIcon

fIcon

ToolButton

SelectionTool

fTool

JavaDrawApp

fListener

fIcon

ToolButton

SelectionTool

fTool

JavaDrawApp

fListener

fIcon

ToolButton

ToolButton

Main

app

Undoable

SelectionTool

SelectionTool

myUndoActivity

JavaDrawApp

myDrawingEditor

Tool

fChild

AbstractTool$EventDispatchermyEventDispatcher

Object

SelectionTool

myUndoActivity

myDrawingEditor fChild

AbstractTool$EventDispatchermyEventDispatcher

SelectionTool

SelectionTool

myUndoActivity

JavaDrawApp

myDrawingEditor

Tool

fChild

AbstractTool$EventDispatcher

myEventDispatcher

SelectionTool

myUndoActivity

myDrawingEditor

ToolfChild

AbstractTool$EventDispatchermyEventDispatcher

myUndoActivity
myDrawingEditor

fChild

AbstractTool$EventDispatcher

myEventDispatcher

myUndoActivity

JavaDrawApp

myDrawingEditor

fChild

myEventDispatcher

JavaDrawApp

JavaDrawApp

fSelectedToolButton

fDefaultToolButton

fTool

Animator

fAnimator

DrawingView

fView

Vector

mdiListeners

JComponent

desktop

JTextField

fStatusLine

EventListenerListlistenerList

fView

Animatable
fAnimatable

fDefaultToolButton

fSelectedToolButton

fTool

fAnimator

fView

Vector

mdiListeners

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

Vector

mdiListeners

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

mdiListeners::elts

fAnimator

fView

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

mdiListeners::elts

fAnimator

fView

desktop

fStatusLine

listenerList

fSelectedToolButton

fDefaultToolButton

fTool

fAnimator

fView

mdiListeners

desktop

fStatusLine

listenerList

Rectangle

UndoableHandle

Image

DrawingEditor

Tool

fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatcher

myEventDispatcher

DragTrackermyWrappedTool

fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatchermyEventDispatcher

myWrappedTool

fSelectGroup

fAnchorHandle

myDrawingEditor

AbstractTool$EventDispatcher

myEventDispatcher DragTracker

myWrappedTool

fSelected

fNormal

fPressed

DimensionfSize

Vector

Object[]
elementData

AbstractTool$EventDispatcher

myRegisteredListeners

myObservedTool

myObservedTool

myRegisteredListeners

myObservedTool

myRegisteredListeners

myObservedTool

myRegisteredListeners

myObservedTool

ToolListener

myRegisteredListeners::elts

myObservedTool

myRegisteredListeners

myUndoActivity

myDrawingEditor

myEventDispatcher

Figure

fAnchorFigure

listenerList[]
NULL_ARRAY[]

Figure 4.18: JHotDraw: thumbnail of the object graph obtained at compile time by WOMBLE

(Jackson and Waingold 2001). The embedded image becomes readable after zooming in by 800%.

Observation: An OOG effectively abstracts objects by ownership hierarchy and by types
compared to a non-hierarchical object graph. After adding the annotations, I extracted the
OOG in Fig. 4.20. The hierarchical object graph has many fewer objects in the top-level domains
compared to the flat object graph, because it collapses lower-level objects underneath other ob-
jects.

Collapsing many nodes into one is a classic approach to shrinka graph. However, the OOG
statically collapses nodes based on the ownership and type structures, and not according to where
objects were declared in the program. Moreover, it is possible to recover the substructure uni-
formly across all objects by increasing the visible depth ofthe ownership tree.

In principle, one could manually elide objects in WOMBLE’s output (Fig. 4.18) to obtain a

4.6. Extended Example: JHotDraw 143

FigureEnumerator

UndoActivity *FigureEnumerator*

TextListener

FigureEnumerator

SouthHandle

UndoActivity

SingleFigureEnumerator

FigureEnumerator

UndoActivity
FigureEnumerator

UndoActivity

FigureEnumerator

DeleteCommand *CommandEventDispatcher*

StandardFigureSelection

MDI_DrawApplication

DrawApplication

FigureEnumerator

StorableOutput

StorableInput

UndoableCommand *SendToBackCommand*

StandardDrawingView

StandardDrawingView

StandardDrawingView

ChangeAttributeCommand

UngroupCommand

DeleteCommand

AlignCommand

BringToFrontCommand

CutCommand

SelectAllCommand

GroupCommand

PasteCommand

DuplicateCommand

CommandMenu

UndoCommand

OpenCommand

SaveAsCommand

ExitCommand

CopyCommand

RedoCommand

NewCommand

DebugCommand

ToggleGridCommand

BufferedUpdateCommand

PrintCommand

StandardStorageFormat

Integer

SerializationStorageFormat

DragNDropTool

DrawingView[]

WindowListener

StandardVersionControlStrategy

UndoManager

MDI_InternalFrame

StandardDrawing

NullTool

StorageFormatManager

Iconkit

MDIDesktopPane

SelectionTool

ToolButton

CommandEventDispatcher

UndoableAdapter

FigureEnumerator

CommandEventDispatcher

UndoActivity

ReverseFigureEnumerator

Integer

FigureEnumerator

ReverseVectorEnumerator<Figure>

ChangeAttributeCommand

RedoCommand

Integer

CommandMenu

ExitCommand

UndoCommand

OpenCommand

PasteCommand

NewCommand

UngroupCommand

BringToFrontCommand

AlignCommand

SelectAllCommand

SaveAsCommand

ToggleGridCommand

UndoableCommand

DeleteCommand

GroupCommand

SendToBackCommand

CutCommand

DuplicateCommand

BufferedUpdateCommand

DebugCommand

CopyCommand

PrintCommand

NullTool

StandardStorageFormat

StandardDrawingView

Iconkit

ToolButton

SelectionTool

StandardDrawing

DrawingView[]

StandardVersionControlStrategy

StorageFormatManager

SerializationStorageFormat

UndoManager

WindowListener

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

UndoActivity

CommandEventDispatcher

StorableOutput

StorableInput

FigureEnumerator

FigureEnumerator

CommandEventDispatcher

CommandEventDispatcher

UndoActivity *FigureEnumerator*

UndoActivity

CommandEventDispatcher

Integer

FigureEnumerator

CommandEventDispatcher

FigureEnumerator

UndoActivity *FigureEnumerator*

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

CommandEventDispatcher

GridConstrainer

UndoableAdapter

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

UndoActivity

StorableInput

FigureEnumerator

StorableOutput

CommandEventDispatcher

UndoActivity
FigureEnumerator

GroupFigure *GroupHandle*

FigureEnumerator

ReverseFigureEnumerator

CommandEventDispatcher

UndoActivity

ReverseVectorEnumerator<Figure>

Integer

FigureEnumerator

UndoActivity

FigureEnumerator

StandardFigureSelection

CommandEventDispatcher

StorableOutput

FigureEnumerator

StorableInput

StandardFigureSelection

UndoActivity

CommandEventDispatcher

StorableInput

StorableOutput

FigureEnumerator

FigureEnumerator

CommandEventDispatcher

BufferedUpdateStrategy

SimpleUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

StorableOutput

FigureEnumerator

StorableInput

CommandEventDispatcher

ToolEventDispatcher

StorableInput

StorableOutput

StandardStorageFormatFilter

SimpleUpdateStrategy

FigureEnumerator

StandardMouseMotionListener

DeleteCommand

ASH

StandardFigureSelection

CommandEventDispatcher

UndoActivity

FigureEnumerator

StandardFigureSelection

StorableOutput

FigureEnumerator

StorableInput

StorableOutput

FigureEnumerator

StorableInput

PaletteIcon

UndoableHandle

ToolEventDispatcher

DragTracker

UndoableTool

SelectAreaTracker

HandleTracker

UndoableAdapter

FigureEnumerator

ToolEventDispatcher

UndoActivity

FigureEnumerator

UndoableAdapter

ToolEventDispatcher

FigureEnumerator

ToolEventDispatcher

ToolEventDispatcher

NullHandle

FigureEnumerator

QuadTree

Bounds

ReverseFigureEnumerator

FigureChangeEvent

ReverseVectorEnumerator<Figure>

StorableOutput

StandardStorageFormatFilter

StorableInput

FigureEnumerator

SimpleUpdateStrategy

ASH

StandardFigureSelection

StandardMouseMotionListener *StorableOutput*

StorableInput

FigureEnumerator

StandardFigureSelection

FigureEnumerator

DeleteCommand

JavaDrawApp

DrawApplication

SimpleUpdateStrategy

ASH

StandardMouseMotionListener

StorableOutput

StorableInput

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

UndoActivity

StorableInput

FigureEnumerator

StorableOutput

RoundRectangleFigure

Animator

BouncingDrawing

StandardDrawing

StandardDrawing

BouncingDrawing

DrawingView[]

ChangeAttributeCommand

UndoableCommand

PasteCommand

DuplicateCommand

AlignCommand

SendToBackCommand

BringToFrontCommand

UngroupCommand

CutCommand

SelectAllCommand

DeleteCommand

GroupCommand

UndoableTool

PolygonTool

ScribbleTool

ConnectedTextTool

EllipseFigure

LineFigure

TextFigure

RectangleFigure

TriangleFigure

DiamondFigure

ConnectionTool
ElbowConnection

LineConnection

CreationTool

BorderTool

TextTool

StandardStorageFormat

*StartAnimationCommand**Integer*

CommandMenu

WindowMenu

MDIDesktopPane

StopAnimationCommand

DebugCommand

RedoCommand

UndoCommand

NewWindowCommand

NewCommand

OpenCommand

CopyCommand

NewViewCommand

BufferedUpdateCommand

ExitCommand

ToggleGridCommand

PrintCommand

SaveAsCommand

Iconkit

WindowListener

SerializationStorageFormat

NullTool

DragNDropTool

ToolButton

URLTool

SelectionTool

MySelectionTool

StandardVersionControlStrategy

MDI_InternalFrame

UndoManager

StorageFormatManager

RadiusHandle

ShortestDistanceConnector

UndoActivity

SingleFigureEnumerator

FigureEnumerator

AnimationDecorator *FigureChangeEvent*

ASH

StandardFigureSelection

FigureEnumerator

StandardMouseMotionListener

DeleteCommand

JavaDrawApp

DrawApplication

MDI_DrawApplication

DrawApplication

SimpleUpdateStrategy

StorableOutput

StorableInput

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

UndoActivity

StorableOutput

StorableInput

FigureEnumerator

AlignCommand

CommandMenu

WindowMenu

MDIDesktopPane

RedoCommand

SelectAllCommand

ToggleGridCommand

PasteCommand

NewCommand

BufferedUpdateCommand

StartAnimationCommand

BringToFrontCommand

UngroupCommand

OpenCommand

ChangeAttributeCommand

NewWindowCommand

DuplicateCommand

CutCommand

PrintCommand

UndoableCommand

DeleteCommand

GroupCommand

SendToBackCommand

NewViewCommand

DebugCommand

ExitCommand

SaveAsCommand

StopAnimationCommand

UndoCommand

CopyCommand

TextFigure

Integer

LineConnection

UndoableTool

ConnectionTool

ElbowConnection

ConnectedTextTool

TriangleFigure

EllipseFigure

RoundRectangleFigure

RectangleFigure

LineFigure

DiamondFigure

BorderTool

CreationTool

PolygonTool

ScribbleTool

TextTool

MySelectionTool

ToolButton

SelectionTool

NullTool

URLTool

DragNDropTool

StorageFormatManager

SerializationStorageFormat

StandardStorageFormat

DrawingView[]

WindowListener

Iconkit

UndoManager

StandardVersionControlStrategy

Animator

MDI_InternalFrame

UndoActivity

CommandEventDispatcher

FigureEnumerator

FigureEnumerator

ChangeAttributeCommand

StorageFormatManager

SerializationStorageFormat

StandardStorageFormat

DebugCommand

UndoableCommand

SendToBackCommand

BringToFrontCommand

DuplicateCommand

AlignCommand

SelectAllCommand

CutCommand

GroupCommand

UngroupCommand

PasteCommand

DeleteCommand

Iconkit

UndoManager

CommandMenu

RedoCommand

PrintCommand

OpenCommand

ToggleGridCommand

ExitCommand

UndoCommand

NewCommand

SaveAsCommand

CopyCommand

BufferedUpdateCommand

DrawingView[]

Integer

StandardVersionControlStrategy

SelectionTool

NullTool

ToolButton

StandardDrawing

WindowListener

StandardDrawingView

UndoActivity

CommandEventDispatcher

FigureEnumerator

StorableOutput

StandardStorageFormatFilter

StorableInput

StandardStorageFormatFilter

StorableOutput

StorableInput

CommandEventDispatcher

SimpleUpdateStrategy

UndoableAdapter

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

ReverseFigureEnumerator

UndoActivity

ReverseVectorEnumerator<Figure>

Integer

FigureEnumerator

UndoActivity

CommandEventDispatcher

Integer

FigureEnumerator

CommandEventDispatcher

UndoActivity

StandardFigureSelection

FigureEnumerator

StorableOutput

StorableInput

FigureEnumerator

CommandEventDispatcher

UndoActivity

FigureEnumerator

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

UndoActivity

FigureEnumerator

StandardFigureSelection

StorableOutput

StorableInput

FigureEnumerator

CommandEventDispatcher

UndoActivity

GroupFigure

FigureEnumerator

GroupHandle

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

StandardFigureSelection

CommandEventDispatcher

UndoActivity

FigureEnumerator

StorableOutput

StorableInput

FigureEnumerator

CommandEventDispatcher

UndoActivity
FigureEnumerator

StandardFigureSelection

StorableOutput

FigureEnumerator

StorableInput

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

GridConstrainer

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

StorableInput

FigureEnumerator

StorableOutput

CommandEventDispatcher

BufferedUpdateStrategy

DragTracker

HandleTracker

UndoableHandle

ToolEventDispatcher

UndoableTool

SelectAreaTracker

UndoActivity

ToolEventDispatcher

FigureEnumerator

ToolEventDispatcher

UndoableAdapter *FigureEnumerator*

UndoableAdapter

ToolEventDispatcher *FigureEnumerator*

ToolEventDispatcher

ToolEventDispatcher

PaletteIcon

Bounds

FigureEnumerator

NullHandle

QuadTree

FigureChangeEvent

ReverseFigureEnumerator

ReverseVectorEnumerator<Figure>

SimpleUpdateStrategy

FigureEnumerator

StandardFigureSelection

StandardMouseMotionListener

ASH

DeleteCommand

StorableInput

StorableOutput

FigureEnumerator

CommandEventDispatcher

UndoActivity

FigureEnumerator

StandardFigureSelection

FigureEnumerator

StorableInput

StorableOutput

Integer

UndoableCommand

DeleteCommand

StandardDrawingView

PasteCommand

GroupCommand

UngroupCommand

CutCommand

BringToFrontCommand

SelectAllCommand

AlignCommand

SendToBackCommand

ChangeAttributeCommand

DuplicateCommand

UndoCommand

WindowListener

DragNDropTool

MDIDesktopPane

NullTool

BufferedUpdateCommand

CommandMenu

RedoCommand

ExitCommand

DebugCommand

CopyCommand

PrintCommand

SaveAsCommand

NewCommand

ToggleGridCommand

OpenCommand

ToolButton

SelectionTool

UndoManager

Iconkit

StandardStorageFormat

StandardDrawing

DrawingView[]

SerializationStorageFormat

StorageFormatManager

StandardVersionControlStrategy

MDI_InternalFrame

CommandEventDispatcher

UndoableAdapter

FigureEnumerator

StandardFigureSelection

FigureEnumerator

CommandEventDispatcher

UndoActivity

StorableOutput

FigureEnumerator

StorableInput

UndoableCommand

AlignCommand

CutCommand

DuplicateCommand

BringToFrontCommand

SelectAllCommand

ChangeAttributeCommand

SendToBackCommand

GroupCommand

PasteCommand

UngroupCommand

DeleteCommand

Integer

SaveAsCommand

ToolButton *NullTool*

SelectionTool

StandardVersionControlStrategy

StorageFormatManager

SerializationStorageFormat

StandardStorageFormat

DebugCommand

CommandMenu

BufferedUpdateCommand

PrintCommand

ExitCommand

OpenCommand

ToggleGridCommand

UndoCommand

NewCommand

CopyCommand

RedoCommand

Iconkit

WindowListener

UndoManager

DrawingView[]

StandardDrawingView

StandardDrawing

CommandEventDispatcher

UndoableAdapter

FigureEnumerator

CommandEventDispatcher

UndoActivity

FigureEnumerator

FigureEnumerator

UndoActivity

FigureEnumerator

StandardFigureSelection

CommandEventDispatcher *StorableInput*

FigureEnumerator

StorableOutput

UndoActivity

StandardFigureSelection

CommandEventDispatcher

FigureEnumerator

StorableInput

FigureEnumerator

StorableOutput

UndoActivity

CommandEventDispatcher

Integer

FigureEnumerator

CommandEventDispatcher

UndoActivity *FigureEnumerator*

CommandEventDispatcher

UndoActivity *FigureEnumerator*

UndoActivity

CommandEventDispatcher

ReverseFigureEnumerator

FigureEnumerator

Integer

ReverseVectorEnumerator<Figure>

UndoActivity

CommandEventDispatcher

FigureEnumerator

GroupFigure *FigureEnumerator*

GroupHandle

StandardFigureSelection

CommandEventDispatcher

UndoActivity

StorableInput

FigureEnumerator

StorableOutput

FigureEnumerator

CommandEventDispatcher

UndoActivity *FigureEnumerator*

CommandEventDispatcher

UndoActivity

StandardFigureSelection *StorableInput*

StorableOutput

FigureEnumerator

CommandEventDispatcher

PaletteIcon *ToolEventDispatcher*

ToolEventDispatcher *UndoableTool*

DragTracker

HandleTracker

UndoableHandle

SelectAreaTracker

ToolEventDispatcher

UndoableAdapter *FigureEnumerator*

ToolEventDispatcher

UndoActivity *FigureEnumerator*

ToolEventDispatcher

UndoableAdapter *FigureEnumerator*

ToolEventDispatcher

StandardStorageFormatFilter

StorableOutput

StorableInput

StorableInput

StandardStorageFormatFilter

StorableOutput

SimpleUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

BufferedUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

GridConstrainer

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

StorableOutput

FigureEnumerator

StorableInput

CommandEventDispatcher

StandardMouseMotionListener

FigureEnumerator

StandardFigureSelection

ASH

DeleteCommand

SimpleUpdateStrategy

StorableOutput

StorableInput

FigureEnumerator

StandardFigureSelection

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

StorableInput

StorableOutput

NullHandle

QuadTree

Bounds

FigureEnumerator

FigureChangeEvent

ReverseFigureEnumerator

ReverseVectorEnumerator<Figure>

StandardMouseMotionListener

FigureEnumerator

ASH

StandardFigureSelection

DeleteCommand

SimpleUpdateStrategy

StorableInput

FigureEnumerator

StorableOutput

UndoActivity

FigureEnumerator

StandardFigureSelection

CommandEventDispatcher

StorableInput

FigureEnumerator

StorableOutput

StandardFigureSelection

CommandEventDispatcher

UndoActivity

FigureEnumerator

StorableOutput

StorableInput

FigureEnumerator

UndoActivity

CommandEventDispatcher

GroupFigure

FigureEnumerator

GroupHandle

FigureEnumerator

CommandEventDispatcher

UndoActivity *FigureEnumerator*

UndoActivity

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection

StorableOutput

FigureEnumerator

StorableInput

UndoActivity

CommandEventDispatcher *FigureEnumerator*

Integer

CommandEventDispatcher

UndoActivity

FigureEnumerator

CommandEventDispatcher

UndoActivity

FigureEnumerator

FigureEnumerator

ReverseFigureEnumerator

UndoActivity

CommandEventDispatcher

ReverseVectorEnumerator<Figure>

Integer

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

StandardFigureSelection

UndoActivity

CommandEventDispatcher

FigureEnumerator

StorableOutput

StorableInput

FigureEnumerator

CommandEventDispatcher

HandleTracker

ToolEventDispatcher

SelectAreaTracker

MyTransferable
ToolEventDispatcher

ToolEventDispatcher

MDIDesktopManager

ToolEventDispatcher

BufferedUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

SimpleUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

StorableOutput

FigureEnumerator

StorableInput

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

GridConstrainer

CommandEventDispatcher

PaletteIcon

ToolEventDispatcher

DragTracker

UndoableTool

SelectAreaTracker

HandleTracker

UndoableHandle

UndoActivity

ToolEventDispatcher

FigureEnumerator

UndoableAdapter

ToolEventDispatcher

FigureEnumerator

ToolEventDispatcher

ToolEventDispatcher

UndoableAdapter *FigureEnumerator*

StorableOutput

StandardStorageFormatFilter

StorableInput

NullHandle

FigureEnumerator

FigureChangeEvent

ReverseFigureEnumerator

Bounds

QuadTree

ReverseVectorEnumerator<Figure>

StandardStorageFormatFilter

StorableInput

StorableOutput

WindowCascadeCommand

TileListener

WindowTileCommand

CommandEventDispatcher

MDIDesktopManager

CommandEventDispatcher

CommandEventDispatcher

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

GridConstrainer

StandardFigureSelection

CommandEventDispatcher

UndoActivity

StorableInput

StorableOutput

FigureEnumerator

FigureEnumerator

CommandEventDispatcher

CommandEventDispatcher

BufferedUpdateStrategy

CommandEventDispatcher

UndoActivity

CommandEventDispatcher

Integer

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

FigureChangeEvent

NullHandle

FigureEnumerator

Bounds

ReverseFigureEnumerator

QuadTree

ReverseVectorEnumerator<Figure>

ReverseFigureEnumerator

NullHandle

FigureChangeEvent

FigureEnumerator

Bounds

QuadTree

ReverseVectorEnumerator<Figure>

AnimationDecorator *FigureChangeEvent*

CommandEventDispatcher

StandardFigureSelection

UndoActivity

StorableInput

StorableOutput

FigureEnumerator

FigureEnumerator
UndoActivity

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection *StorableOutput*

StorableInput

FigureEnumerator

CommandEventDispatcher

UndoableAdapter

CommandEventDispatcher

FigureEnumerator

StandardFigureSelection

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

StorableOutput

StorableInput

UndoActivity

CommandEventDispatcher

FigureEnumerator

GroupFigure

GroupHandle

FigureEnumerator

ReverseFigureEnumerator

CommandEventDispatcher

UndoActivity

ReverseVectorEnumerator<Figure>

FigureEnumerator

Integer

CommandEventDispatcher

SimpleUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

CommandEventDispatcher

FigureEnumerator

StorableOutput

StorableInput

OffsetLocator

FontSizeHandle

NullHandle

Integer

FigureChangeEvent

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

Integer

ArrowTip

ChangeConnectionStartHandle

ChangeConnectionEndHandle

PolyLineConnector

FigureChangeEvent

UndoActivity

SingleFigureEnumerator

FigureEnumerator

SingleFigureEnumerator

UndoActivity

FigureEnumerator

UndoableAdapter

ToolEventDispatcher
FigureEnumerator

ToolEventDispatcher

SingleFigureEnumerator

UndoActivity *ChangeConnectionEndHandle*

ChangeConnectionStartHandle

PolyLineConnector

FigureChangeEvent

ArrowTip

Integer

ElbowTextLocator

UndoActivity

SingleFigureEnumerator

FigureEnumerator
SingleFigureEnumerator

FigureEnumerator

SingleFigureEnumerator

UndoActivity

UndoActivity

FloatingTextField

ToolEventDispatcher

UndoActivity

TriangleRotationHandle

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

ChopEllipseConnector

ShortestDistanceConnector

RadiusHandle

UndoActivity

SingleFigureEnumerator

FigureEnumerator

ChopDiamondConnector

FigureEnumerator

FigureEnumerator

FigureEnumerator

ToolEventDispatcher

FigureEnumerator

BorderDecorator

UndoActivity

FigureChangeEvent

FigureEnumerator

ToolEventDispatcher

SingleFigureEnumerator

UndoActivity

FigureEnumerator

ToolEventDispatcher

SingleFigureEnumerator

PolygonFigure

UndoActivity

int[]

PolygonScaleHandle

ChopPolygonConnector

UndoActivity

SingleFigureEnumerator

FigureEnumerator

FigureEnumerator

PolyLineFigure

UndoActivity

ToolEventDispatcher

SingleFigureEnumerator

ArrowTip

Integer

PolyLineConnector

FigureEnumerator

ToolEventDispatcher

SingleFigureEnumerator

UndoActivity

UndoActivity

FloatingTextField

FigureEnumerator

FigureEnumerator

UndoableHandle

UndoableTool

DragTracker

ToolEventDispatcher

SelectAreaTracker

HandleTracker

UndoableAdapter

FigureEnumerator

UndoableAdapter

ToolEventDispatcher

FigureEnumerator

ToolEventDispatcher

UndoActivity

FigureEnumerator

ToolEventDispatcher

ToolEventDispatcher

PaletteIcon

ToolEventDispatcher

SelectAreaTracker

DragTracker

UndoableTool

HandleTracker

UndoableHandle

ToolEventDispatcher

ToolEventDispatcher

UndoActivity

FigureEnumerator

ToolEventDispatcher

UndoableAdapter *FigureEnumerator*

ToolEventDispatcher

UndoableAdapter

FigureEnumerator

ToolEventDispatcher

ToolEventDispatcher

FloatingTextField

TextListener

SelectAreaTracker

HandleTracker

MyTransferable

ToolEventDispatcher

ToolEventDispatcher

ToolEventDispatcher

StorableInput

StandardStorageFormatFilter

StorableOutput

StandardStorageFormatFilter

StorableOutput

StorableInput

StandardVersionControlStrategy

SerializationStorageFormat

SelectAllCommand

DebugCommand

CommandMenu

CopyCommand

UndoableCommand

DeleteCommand

GroupCommand

ChangeAttributeCommand

SendToBackCommand

PasteCommand

DuplicateCommand

BringToFrontCommand

UngroupCommand

CutCommand

AlignCommand

UndoCommand

ToggleGridCommand

RedoCommand

NewCommand

BufferedUpdateCommand

SaveAsCommand

ExitCommand

OpenCommand

PrintCommand

Integer

SelectionTool

StorageFormatManager *StandardStorageFormat*

NullTool

DrawingView[]

UndoManager

StandardDrawing

WindowListener

StandardDrawingView

Iconkit

ToolButton

StorableOutput

StorableInput

StandardStorageFormatFilter

UndoActivity

CommandEventDispatcher

FigureEnumerator

SimpleUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

StorableInput

FigureEnumerator

StorableOutput

UndoableAdapter

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

UndoActivity

StorableOutput

StorableInput

FigureEnumerator

UndoActivity

CommandEventDispatcher

GroupFigure *FigureEnumerator*

GroupHandle

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

ReverseFigureEnumerator

UndoActivity

CommandEventDispatcher

ReverseVectorEnumerator<Figure>

FigureEnumerator

Integer

UndoActivity

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

FigureEnumerator

StorableInput

StorableOutput

StandardFigureSelection

CommandEventDispatcher

UndoActivity

StorableInput

FigureEnumerator

StorableOutput

FigureEnumerator

CommandEventDispatcher

UndoActivity *Integer*

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

StandardFigureSelection

FigureEnumerator

CommandEventDispatcher

UndoActivity

StorableInput

StorableOutput

FigureEnumerator

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

CommandEventDispatcher

GridConstrainer

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

BufferedUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

ToolEventDispatcher

SelectAreaTracker

UndoableTool

DragTracker

HandleTracker

UndoableHandle

ToolEventDispatcher

UndoableAdapter

ToolEventDispatcher

FigureEnumerator

ToolEventDispatcher

UndoActivity *FigureEnumerator*

ToolEventDispatcher

UndoableAdapter
FigureEnumerator

StorableOutput

StorableInput

StandardStorageFormatFilter

ToolEventDispatcher

QuadTree

FigureEnumerator

FigureChangeEvent

NullHandle

Bounds

ReverseFigureEnumerator *ReverseVectorEnumerator<Figure>*

FigureEnumerator

DeleteCommand

StandardFigureSelection

StandardMouseMotionListener

SimpleUpdateStrategy

ASH

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

UndoActivity *FigureEnumerator*

StorableOutput

StorableInput

StorableOutput

StorableInput

FigureEnumerator

PaletteIcon

CommandEventDispatcher

UndoActivity *FigureEnumerator*

CommandEventDispatcher

UndoableAdapter

FigureEnumerator

UndoActivity

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

StorableOutput

StorableInput

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection

UndoActivity

StorableInput

FigureEnumerator

StorableOutput

FigureEnumerator

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

ReverseFigureEnumerator

UndoActivity

ReverseVectorEnumerator<Figure>

Integer

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

Integer

UndoActivity

CommandEventDispatcher

FigureEnumerator

UndoActivity *FigureEnumerator*

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

StorableOutput

StorableInput

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

FigureEnumerator

UndoActivity

FigureEnumerator

StorableInput

StorableOutput

CommandEventDispatcher

UndoActivity

GroupFigure

FigureEnumerator

GroupHandle

FigureEnumerator

UndoableAdapter

ToolEventDispatcher

FigureEnumerator

SingleFigureEnumerator

PolygonFigure

UndoActivity

ToolEventDispatcher

PolygonScaleHandle

int[]

ChopPolygonConnector

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

FigureEnumerator

SingleFigureEnumerator
PolyLineFigure

UndoActivity

ToolEventDispatcher

ArrowTip

PolyLineConnector

Integer

FigureEnumerator

ToolEventDispatcher

SingleFigureEnumerator

UndoActivity

FloatingTextField

UndoActivity

UndoActivity

ChopEllipseConnector

Integer

NullHandle

OffsetLocator

FontSizeHandle

FigureChangeEvent

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

TriangleRotationHandle
SingleFigureEnumerator

UndoActivity *FigureEnumerator*

ChopDiamondConnector

FigureEnumerator

FigureEnumerator

FigureEnumerator

ToolEventDispatcher

SingleFigureEnumerator

UndoActivity

ElbowTextLocator

ArrowTip

ChangeConnectionEndHandle

Integer

FigureChangeEvent

ChangeConnectionStartHandle

PolyLineConnector

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

UndoActivity

SingleFigureEnumerator

FigureEnumerator

PolyLineConnector

FigureChangeEvent

ArrowTip

ChangeConnectionStartHandle

Integer

ChangeConnectionEndHandle

UndoActivity

SingleFigureEnumerator

FigureEnumerator

UndoActivity

SingleFigureEnumerator

FigureEnumerator

FigureEnumerator

SingleFigureEnumerator

UndoActivity

ToolEventDispatcher

FigureEnumerator

BorderDecorator

UndoActivity

ToolEventDispatcher

FigureEnumerator

FigureChangeEvent

FigureEnumerator

SingleFigureEnumerator

FloatingTextField

ToolEventDispatcher

UndoActivity

UndoActivity

FigureEnumerator

FigureEnumerator

StorableInput

StorableOutput

StandardStorageFormatFilter

CommandEventDispatcher

WindowTileCommand

WindowCascadeCommand

TileListener

CommandEventDispatcher

MDIDesktopManager

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

SimpleUpdateStrategy

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

StorableInput

FigureEnumerator

StorableOutput

CommandEventDispatcher

CommandEventDispatcher

BufferedUpdateStrategy

CommandEventDispatcher

GridConstrainer

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

StandardStorageFormatFilter

StorableOutput

StorableInput

ToolEventDispatcher

HandleTracker

ToolEventDispatcher

SelectAreaTracker

MyTransferable

ToolEventDispatcher

ToolEventDispatcher

PaletteIcon

FloatingTextField

ToolEventDispatcher

ToolEventDispatcher

DragTracker

UndoableTool

HandleTracker

UndoableHandle

SelectAreaTracker

ToolEventDispatcher

UndoActivity *FigureEnumerator*

UndoableAdapter

ToolEventDispatcher

FigureEnumerator

ToolEventDispatcher

UndoableAdapter *FigureEnumerator*

ToolEventDispatcher

UndoableHandle

HandleTracker

DragTracker

ToolEventDispatcher

SelectAreaTracker

UndoableTool

UndoableAdapter *FigureEnumerator*

ToolEventDispatcher

ToolEventDispatcher

UndoActivity *FigureEnumerator*

ToolEventDispatcher

UndoableAdapter

ToolEventDispatcher

FigureEnumerator

CommandEventDispatcher

UndoActivity *FigureEnumerator*

UndoActivity

CommandEventDispatcher

FigureEnumerator

UndoActivity

FigureEnumerator

StandardFigureSelection

CommandEventDispatcher

FigureEnumerator

StorableOutput

StorableInput

UndoActivity

FigureEnumerator

CommandEventDispatcher

FigureEnumerator

CommandEventDispatcher

UndoActivity *Integer*

FigureEnumerator

StandardFigureSelection

FigureEnumerator

UndoActivity

CommandEventDispatcher

FigureEnumerator

StorableInput

StorableOutput

CommandEventDispatcher

UndoActivity *FigureEnumerator*

CommandEventDispatcher

UndoActivity

FigureEnumerator

GroupFigure

FigureEnumerator

GroupHandle

StandardFigureSelection

CommandEventDispatcher

UndoActivity

StorableInput

StorableOutput

FigureEnumerator

FigureEnumerator

CommandEventDispatcher

StandardFigureSelection

UndoActivity

StorableInput

FigureEnumerator

StorableOutput

FigureEnumerator

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

CommandEventDispatcher

StandardFigureSelection

CommandEventDispatcher

StorableOutput

StorableInput

CommandEventDispatcher

CommandEventDispatcher

SimpleUpdateStrategy

CommandEventDispatcher

GridConstrainer

CommandEventDispatcher

CommandEventDispatcher

BufferedUpdateStrategy

CommandEventDispatcher

StandardStorageFormatFilter

StorableInput

StorableOutput

StandardStorageFormatFilter

StorableOutput

StorableInput

*SelectAreaTracker**ToolEventDispatcher*

HandleTracker

MyTransferable

ToolEventDispatcher

ToolEventDispatcher

FigureEnumerator

Bounds

ReverseFigureEnumerator

NullHandle

FigureChangeEvent

QuadTree
ReverseVectorEnumerator<Figure>

ToolEventDispatcher

MDIDesktopManager

DragTracker

ToolEventDispatcher *UndoableTool*

HandleTracker

UndoableHandle

SelectAreaTracker

UndoActivity

ToolEventDispatcher

FigureEnumerator

UndoableAdapter

ToolEventDispatcher *FigureEnumerator*

ToolEventDispatcher

UndoableAdapter

FigureEnumerator

ToolEventDispatcher

PaletteIcon

FigureEnumerator

QuadTree *StandardDrawing*

FigureEnumerator

FigureChangeEvent

NullHandle

Bounds

ReverseFigureEnumerator *ReverseVectorEnumerator<Figure>*

UndoableHandle *UndoableAdapter* *FigureEnumerator*

HandleTracker *ToolEventDispatcher*

SouthWestHandle

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

ToolEventDispatcher

SelectAreaTracker

DragTracker

UndoableTool

SelectionTool

ToolEventDispatcher

ToolEventDispatcher

UndoActivity *FigureEnumerator*

ToolEventDispatcher

UndoableAdapter *FigureEnumerator*

Integer

<DragNDropTool> *byte[]*

FigureEnumerator

ColorEntry

UndoActivity *FigureEnumerator*

ColorEntry

<NullDrawingView> *NullDrawingView*

StandardFigureSelection

FigureEnumerator

StorableOutput

StorableInput

<ColorMap>

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

ColorEntry

UndoActivity

<StandardFigureSelection> *StandardFigureSelection*

StorableInput

FigureEnumerator

StorableOutput

PolyLineLocator

FigureEnumerator

Main

NorthEastHandle

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

<AttributeFigure>

NorthWestHandle *SingleFigureEnumerator*

PolygonFigureLocator

SingleFigureEnumerator

UndoActivity *FigureEnumerator*

SingleFigureEnumerator

FigureEnumerator

SouthEastHandle *UndoActivity*

SingleFigureEnumerator

<BoxHandleKit>

WestHandle

NorthHandle

EastHandle

SingleFigureEnumerator

UndoActivity

RelativeLocator

<FigureEnumerator>

<FigureChangeEventMulticaster> *FigureChangeEventMulticaster*

<Clipboard> Clipboard

<PolygonFigure>

<PolyLineFigure>

<Main>

<RelativeLocator>

Figure 4.19: JHotDraw: flat object graph for JHotDraw obtained using PANGAEA (Spiegel 2002). The
edges correspond to object references. The image is embedded postscript: to obtain a readable diagram,
view this document electronically and zoom in by at least 2400%

more abstracted diagram. Indeed, in many architectural extraction approaches, the developer
filters elements that satisfy certain query criteria to produce more abstracted views, e.g., by
collapsing all the nodes labeled with a common prefix according to some naming convention
into a single subsystem (Storey et al. 1999). However, in both cases, the result would still be
a non-hierarchical view. Moreover, selecting and eliding from many objects at the same level
involves more trial and error. It is also unclear how a developer can decide which objects to
elide, and if doing so maintains soundness, i.e., the diagram still shows all objects and relations
between them.

Observation: Abstraction by trivial types can unclutter a diagram. However, the default
trivial types often leads to imprecision. By default, abstraction by trivial types is turned on.
The default list of trivial types includes types such asObject, Cloneable andSerializable
from the Java Standard Library. The extracted OOG (Fig. 4.20) is imprecise since I am unable to
recognize in it many instances of the core types in the class diagram (Fig. 4.2). Later on, we will
refine the list of trivial types to obtain an OOG that conveys more of our architectural intent.

144 Chapter 4. Evaluation of the Object Graph Extraction

 Model

 Controller

 View

storable(+):
Storable

component(+):
Component

handle:
Handle

undoable(+):
Undoable

fAnimator:
Animator

undoManager(+):
UndoManager

toolListener(+):
ToolListener

constrainer:
GridConstrainer

painter:
Painter

Figure 4.20: JHotDraw: OOG with abstraction by trivial types (the default list).

Observation: Without abstraction by types, an OOG can be very cluttered if there are
many related subtypes. Turning off abstraction by types produces an OOG that lacks abstrac-
tion (Fig. 4.21). It shows objects forRedoCommand andNewViewCommand, as well as objects
for ConnectionTool andCreationTool, among others. What we really wanted is to merge all
Command instances together and allTool instances together, but not mergeTool andCommand
instances together.

For example, in JHotDraw,CommandMenu declares aVector<Command>. Vector’s ELTS

formal domain is transitively bound toCONTROLLER. Recall thatCommand is an interface. For
soundness, the analysis creates an edge from theCommandMenu object insideVIEW to any sub-
type ofCommand insideCONTROLLER, such asRedoCommand andNewViewCommand. Moreover,
aCommand contains another nestedCommand. So this results in an almost fully connected graph.
Because of the large number of top-level objects, this OOG, while hierarchical, is hardly an im-
provement over a flat object graph such as the one WOMBLE obtains from a bytecode program,
without relying on annotations (Fig. 4.18). Thus, abstraction by ownership hierarchy is insuf-
ficient, and additional abstraction is needed to reduce the number of objects compared to a flat
object graph.

4.6. Extended Example: JHotDraw 145

_lentMain_MainModelStorable
_lentMain_MainViewComponent
_lentMain_MainModelHandle
_lentMain_MainControllerUndoable
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainControllerToolListener
_lentMain_MainViewGridConstrainer
_lentMain_MainViewPainter

 Controller

 Model

 View

undoableCommand4(+):
UndoableCommand

selectAreaTracker(+):
SelectAreaTracker

undoActivity(+):
UndoActivity

app(+):
JavaDrawApp

tileCommand(+):
WindowTileCommand

myTool(+):
SelectionTool

undoableTool:
UndoableTool

tool(+):
URLTool

borderTool(+):
BorderTool

dragTracker(+):
DragTracker

scribbleTool(+):
ScribbleTool

nullTool(+):
NullTool

tool(+):
DragNDropTool

fTool(+):
FollowURLTool

connectionTool2(+):
ConnectionTool

polygonTool(+):
PolygonTool

textTool(+):
TextTool

handleTracker(+):
HandleTracker

deleteCommand(+):
DeleteCommand

groupCommand(+):
GroupCommand

redoCommand(+):
RedoCommand

rectangleFigure(+):
RectangleFigure

group(+):
GroupFigure

roundRectangleFigure(+):
RoundRectangleFigure

figure(+):
AnimationDecorator

imageFigure(+):
ImageFigure

textFigure1(+):
TextFigure

fPolygon(+):
PolygonFigure

lineConnection(+):
LineConnection

ellipseFigure(+):
EllipseFigure

borderDecorator(+):
BorderDecorator

bouncingDrawing(+):
BouncingDrawing

ungroupCommand(+):
UngroupCommand

cmd(+):
NewCommand

changeAttributeCommand(+):
ChangeAttributeCommand

duplicateCommand(+):
DuplicateCommand

bringToFrontCommand(+):
BringToFrontCommand

cmd(+):
BufferedUpdateCommand

cmd(+):
StartAnimationCommand

cutCommand(+):
CutCommand

copyCommand(+):
CopyCommand

pasteCommand(+):
PasteCommand

polyLineConnector(+):
PolyLineConnector

shortestDistanceConnector(+):
ShortestDistanceConnector

panel(+):
JPanel

alignCommand2(+):
AlignCommand

cmd(+):
NewViewCommand

sendToBackCommand(+):
SendToBackCommand

cmd(+):
ExitCommand

cmd(+):
NewWindowCommand

cmd(+):
StopAnimationCommand

toggleGridCommand(+):
ToggleGridCommand

cmd(+):
PrintCommand

choice(+):
CommandChoice

windowMenu(+):
WindowMenu

duplicateButton(+):
CommandButton

selectAllCommand(+):
SelectAllCommand

undoCommand(+):
UndoCommand

cascadeCommand(+):
WindowCascadeCommand

cmd(+):
SaveAsCommand

cmd(+):
DebugCommand

insertImageCommand(+):
InsertImageCommand

cmd(+):
LookAndFeelCommand

polygonHandle:
PolygonHandle

undoableHandle:
UndoableHandle

nullHandle:
NullHandle

elbowHandle:
ElbowHandle

triangleRotationHandle:
TriangleRotationHandle

polyLineHandle:
PolyLineHandle

radiusHandle:
RadiusHandlesw:

FontSizeHandle

polygonScaleHandle:
PolygonScaleHandle

changeConnectionEndHandle:
ChangeConnectionEndHandle

changeConnectionStartHandle:
ChangeConnectionStartHandle

cmd(+):
OpenCommand

fLocator(+):
OffsetLocator

startArrowTip(+):
ArrowTip

fAnimator:
Animator

undoManager(+):
UndoManager

bufferedUpdateStrategy:
BufferedUpdateStrategy

constrainer:
GridConstrainer

simpleUpdateStrategy:
SimpleUpdateStrategy

Figure 4.21: JHotDraw: thumbnail of the OOG based on an instantiation-based view, but without abstrac-
tion by types. The embedded image becomes readable after zooming in by 800%.

Observation: With carefully chosen trivial types, an OOG effectively abstracts related
instances. I turned on abstraction by trivial types, initially using the default list of trivial
types, which produced an OOG where each display object merges too many field declarations
(Fig. 4.20).

ArchRecJ assists a developer in selecting non-default trivial types as follows. First, the de-
veloper graphically selects an object which appears to merge too many objects. The tool then
displays an inheritance hierarchy of the types of the field declarations that the selected object
merges. The general principle is that the developer must select a type that would cut the path
from an interesting leaf type in the inheritance hierarchy up to an uninteresting common ancestor
(Fig. 4.22).

I followed the above process to select the trivial types for JHotDraw. JHotDraw has its
own list of interfaces that many classes implement such asStorable andAnimatable, which
I proceeded to add to the list of trivial types. I also added several constant interfaces such as
SwingConstants5.

In addition, many types in JHotDraw extend or implement listener interfaces to realize the
Observer design pattern. For instance, both interfacesCommand andTool are inCONTROLLER and
both extend the interfaceViewChangeListener. I also added many of the listener interfaces as

5Inheriting from a constant interface is a bad coding practice, the Constant Interfaceantipattern(Bloch 2001,
Item #17), and Java 1.5 supportsstatic importsto avoid it. This is one more reason to avoid that practice.

146 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainControllerUndoableCommand
_lentMain_MainControllerSelectAreaTracker
_lentMain_MainControllerUndoActivity
_lentMain_MainViewJavaDrawApp
_lentMain_MainControllerWindowTileCommand
_lentMain_MainControllerSelectionTool
_lentMain_MainControllerUndoableTool
_lentMain_MainControllerURLTool
_lentMain_MainControllerBorderTool
_lentMain_MainControllerDragTracker
_lentMain_MainControllerScribbleTool
_lentMain_MainControllerNullTool
_lentMain_MainControllerDragNDropTool
_lentMain_MainControllerFollowURLTool
_lentMain_MainControllerConnectionTool
_lentMain_MainControllerPolygonTool
_lentMain_MainControllerTextTool
_lentMain_MainControllerHandleTracker
_lentMain_MainControllerDeleteCommand
_lentMain_MainControllerGroupCommand
_lentMain_MainControllerRedoCommand
_lentMain_MainModelRectangleFigure
_lentMain_MainModelGroupFigure
_lentMain_MainModelRoundRectangleFigure
_lentMain_MainModelAnimationDecorator
_lentMain_MainModelImageFigure
_lentMain_MainModelTextFigure
_lentMain_MainModelPolygonFigure
_lentMain_MainModelLineConnection
_lentMain_MainModelEllipseFigure
_lentMain_MainModelBorderDecorator
_lentMain_MainModelBouncingDrawing
_lentMain_MainControllerUngroupCommand
_lentMain_MainControllerNewCommand
_lentMain_MainControllerChangeAttributeCommand
_lentMain_MainControllerDuplicateCommand
_lentMain_MainControllerBringToFrontCommand
_lentMain_MainControllerBufferedUpdateCommand
_lentMain_MainControllerStartAnimationCommand
_lentMain_MainControllerCutCommand
_lentMain_MainControllerCopyCommand
_lentMain_MainControllerPasteCommand
_lentMain_MainModelPolyLineConnector
_lentMain_MainModelShortestDistanceConnector
_lentMain_MainViewJPanel
_lentMain_MainControllerAlignCommand
_lentMain_MainControllerNewViewCommand
_lentMain_MainControllerSendToBackCommand
_lentMain_MainControllerExitCommand
_lentMain_MainControllerNewWindowCommand
_lentMain_MainControllerStopAnimationCommand
_lentMain_MainControllerToggleGridCommand
_lentMain_MainControllerPrintCommand
_lentMain_MainViewCommandChoice
_lentMain_MainViewWindowMenu
_lentMain_MainViewCommandButton
_lentMain_MainControllerSelectAllCommand
_lentMain_MainControllerUndoCommand
_lentMain_MainControllerWindowCascadeCommand
_lentMain_MainControllerSaveAsCommand
_lentMain_MainControllerDebugCommand
_lentMain_MainControllerInsertImageCommand
_lentMain_MainControllerLookAndFeelCommand
_lentMain_MainModelPolygonHandle
_lentMain_MainModelUndoableHandle
_lentMain_MainModelNullHandle
_lentMain_MainModelElbowHandle
_lentMain_MainModelTriangleRotationHandle
_lentMain_MainModelPolyLineHandle
_lentMain_MainModelRadiusHandle
_lentMain_MainModelFontSizeHandle
_lentMain_MainModelPolygonScaleHandle
_lentMain_MainModelChangeConnectionEndHandle
_lentMain_MainModelChangeConnectionStartHandle
_lentMain_MainControllerOpenCommand
_lentMain_MainModelOffsetLocator
_lentMain_MainModelArrowTip
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainViewBufferedUpdateStrategy
_lentMain_MainViewGridConstrainer
_lentMain_MainViewSimpleUpdateStrategy

«interface»
Command

AbstractCommand

RedoCommand ConnectionToolNewViewCommand CreationTool

«interface»
ViewChangeListener

AbstractTool

«interface»
Tool

«interface»
EventListenerTrivial type

... ...

Figure 4.22: JHotDraw: makingViewChangeListener a trivial type.

trivial types.

With the refined list, the analysis mergesRedoCommand and NewViewCommand, because
Command is their non-trivial LUB. Similarly, it mergesConnectionTool andCreationTool.
But the analysis does not mergeConnectionTool and RedoCommand because their LUB,
ViewChangeListener, is a trivial type (Fig. 4.22). Thus, using the non-default trivial types
provides a more meaningful OOG (Fig. 4.23). In that OOG, we recognize separateTool
and Command objects inCONTROLLER. Similarly, MODEL shows distinctFigure, Handle and
Connector objects, all architecturally significant.

Because of JHotDraw’s complex inheritance hierarchy, I had to fine-tune the list of trivial
types to achieve the desired level of abstraction—more so than for the other subject systems.
For example, another subject systems I analyzed, Aphyds (Section 7.5), did not require using
abstraction by types.

Riehle previously studied JHotDraw and produced manually a code architecture (Fig. 4.2).
Riehle posited that the original JHotDraw designers used thefollowing techniques to present
the JHotDraw design in their tutorials: (a)merge interface and abstract implementation class,
because such a code factoring, although important for code reuse, is often unimportant from a
design standpoint; and (b)subsume a set of similar classes under a smaller set of representative
classes, because showing many similar subclasses that vary only in minor aspects often leads to
needless clutter (Riehle 2000, pp. 139–140).

The OOG achieves results similar to the above heuristics. For instance, all runtimeHandle
objects referenced in the program by theHandle interface, its abstract implementation class
AbstractHandle, and any of its concrete subclasses such asElbowHandle or NullHandle,
appear as oneHandle display object in theMODEL tier. An OOG can sometimes suffer from a
precision loss: not allHandle classes have a field reference to aLocator as Fig. 4.2 indicates.
Only NullHandle and its subclasses do. But since they were all merged intoHandle, the OOG
shows an edge fromHandle to Locator in Fig. 4.25.

4.6. Extended Example: JHotDraw 147

 View

 Controller

 Model

jButton(+):
JButton

command(+):
Command

jComboBox(+):
JComboBox

constrainer:
GridConstrainer

autoscroll(+):
Autoscroll

painter:
Painter

versionRequester(+):
VersionRequester

handle:
Handle

jMenu(+):
JMenu

undoManager(+):
UndoManager

fAnimator:
Animator

undoableAdapter(+):
UndoableAdapter

figure(+):
Figure

connector:
Connector

tool(+):
Tool

fLocator:
OffsetLocator

endArrowTip:
ArrowTip

Figure 4.23: JHotDraw: OOG with abstraction by trivial types (the fine-tuned list).

Observation: Abstraction by types can help identify unexpected subtyping relationships
in the program, some of which could point to design problems. With abstraction by trivial
types turned on, I was surprised that the OOG did not show any instances of theFigure type,
presumably one of the core types in the class diagram. I used ArchRecJ to obtain the field
declarations that a display object merges (See Fig. 4.1) andused that information to determine
that one object,textFigure1:Drawing, merged objects of typeFigure andDrawing in the
MODEL domain.

I traced these field declarations to the code, and discoveredby code inspection that indeed, the
base class implementing theDrawing interface,StandardDrawing, extendsCompositeFigure.
Thus, aDrawing is-aFigure, to enable nesting aDrawing inside anotherDrawing. Even though

148 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainViewJButton
_lentMain_MainControllerCommand
_lentMain_MainViewJComboBox
_lentMain_MainViewGridConstrainer
_lentMain_MainViewAutoscroll
_lentMain_MainViewPainter
_lentMain_MainViewVersionRequester
_lentMain_MainModelHandle
_lentMain_MainViewJMenu
_lentMain_MainModelUndoManager
_lentMain_MainModelAnimator
_lentMain_MainControllerUndoableAdapter
_lentMain_MainModelFigure
_lentMain_MainModelConnector
_lentMain_MainControllerTool
_lentMain_MainModelOffsetLocator
_lentMain_MainModelArrowTip

the Release Notes for JHotDraw Version 5.1 mentioned this fact, it was still unexpected. In the
framework package, interfaceDrawing does not extendFigure. In their tutorial, the JHotDraw
designers explicitly asked developers to “not commit to theCompositeFigure implementation,
since some applications need a more complicated representation” (Gamma 1998, Slide #16).

I was slightly surprised when I inadvertently added interfaceHandle as a trivial type. This
resulted in an OOG with one object forNullHandle (which directly implementsHandle) and
another object for all instances of the concrete subclassesthat implementHandle by extending
AbstractHandle. While this result seemed counter-intuitive, that OOG was still sound: there
is no runtime object that can have both typesNullHandle andAbstractHandle, so no one
runtime object appears as two display objects in the OOG.

Observation: Abstraction by design intent types can achieve higher precision than abstrac-
tion by trivial types. Abstraction by trivial types can quickly unclutter an OOG, but is not
very precise. For instance, the JHotDraw OOG based on trivial types does not show distinct
Drawing andFigure objects (Fig. 4.25). Presumably, both interfaces are architecturally rel-
evant. This is because the base class that implementsDrawing, StandardDrawing, extends
CompositeFigure, which in turn implementsFigure. But Drawing does not extendFigure
and is not a trivial type. Merging objects based on non-trivial LUBs, coupled with merging
objects after the fact for soundness, causes field declarations of typeDrawing andFigure to
get merged inMODEL. An object may have multiple types, but some types may be morearchi-
tecturally relevant than others. In this example,StandardDrawing extendsCompositeFigure
to enable nesting aDrawing inside anotherDrawing. In this case, we would like to view a
StandardDrawing object as aDrawing object, instead of aFigure object.

JHotDraw’sframework package includes abstract classes and interfaces that define the core
framework. I added to the list of design intent types all the types in theframework package and
ordered them from most to least architecturally relevant, e.g.,Drawing appears beforeFigure.

When deciding whether to merge two field declarationsStandardDrawing and
CompositeFigure, the analysis finds the design intent typeDrawing in the list, since
StandardDrawing is a subtype ofDrawing. Similarly, it finds the typeFigure, since
CompositeFigure is a subtype ofFigure. BecauseDrawing is not a subtype ofFigure,
the analysis does not merge objectsStandardDrawing and CompositeFigure. But it does
merge StandardDrawing and BouncingDrawing. Similarly, it mergesEllipseFigure,
RectangleFigure, etc. But it keeps objects of typeDrawing andFigure distinct in MODEL

(Fig. 4.24), just as we desired.

Observation: An OOG provides architectural abstraction by showing architecturally sig-
nificant objects near the top of the hierarchy and data structures further down. A key
issue in architectural extraction is distinguishing between objects that are architecturally relevant
and those that are not. The OOG provides architectural abstraction by pushing lower-level ob-
jects underneath higher-level objects. As a result, the OOGdoes not show non-architecturally
relevant objects in the top-level domains.

An OOG shows objects inside domains, and provides an instance granularity larger than an
object. For instance, theCONTROLLER tier includesCommand andTool instances, rather than a

4.6. Extended Example: JHotDraw 149

 View

 Controller

 Model

toolButton(+):
ToolButton

tool(+):
Tool

command(+):
Command

drawingEditor(+):
DrawingEditor

undoManager(+):
UndoManager

fAnimator:
Animator

painter:
Painter

drawingChoice(+):
JComboBox

windowMenu(+):
WindowMenu

constrainer:
GridConstrainer

drawingView(+):
DrawingView

drawing(+):
Drawing

figure(+):
Figure

handle:
Handle

undoActivity(+):
UndoActivity

connector:
Connector

fLocator:
OffsetLocator

endArrowTip:
ArrowTip

Figure 4.24: JHotDraw: OOG with abstraction by design intent types.

Controller component. In contrast, theVIEW domain also has aDrawingView object.
There are three top-level domains:MODEL, VIEW andCONTROLLER. The OOG in Fig. 4.25

seems to have the right level of abstraction since we recognize in it most of the core types from
the class diagram (Fig. 4.2).

A rule of thumb in architectural documentation is to have 5 to7 components per tier
(Koning et al. 2002). Thus, the number of objects in each domain is similar to the number of
components in tiers found in typical architectural diagrams: MODEL has 14 objects,VIEW has 6
objects, andCONTROLLER has 3 objects.

One could split theMODEL domain into one domain forapplication modelobjects, such as
instances ofUndoManager andStorageFormatManager, and one fordomain modelobjects,
with Figure, Handle and related objects, as in the Model-Model-View-Controllerpattern6.

The OOG (Fig. 4.25) has only 23 objects in the top-level domains. In contrast, existing

6http://c2.com/cgi/wiki?ModelModelViewController

150 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainViewToolButton
_lentMain_MainControllerTool
_lentMain_MainControllerCommand
_lentMain_MainViewDrawingEditor
_lentMain_MainModelUndoManager
_lentMain_MainModelAnimator
_lentMain_MainViewPainter
_lentMain_MainViewJComboBox
_lentMain_MainViewWindowMenu
_lentMain_MainViewGridConstrainer
_lentMain_MainViewDrawingView
_lentMain_MainModelDrawing
_lentMain_MainModelFigure
_lentMain_MainModelHandle
_lentMain_MainControllerUndoActivity
_lentMain_MainModelConnector
_lentMain_MainModelOffsetLocator
_lentMain_MainModelArrowTip
http://c2.com/cgi/wiki?ModelModelViewController

compile time object graph analyses that do not rely on annotations produce flat object graphs that
show all objects at the same level, e.g., theDimension andJavaDrawApp objects in Fig. 4.18.

In JHotDraw,Point objects are immutable, so we annotated them withunique to pass them
linearly, as discussed in Section 4.4.2. Hence, they do not appear in the OOG.

Observation: Hierarchy allows showing both the high-levelstructure of the object graph
and the low-level details at various levels of abstraction. Ideally, an architectural diagram
“can be read in 30 seconds, in 3 minutes, and in 30 minutes” (Koning et al. 2002). For example,
Fig. 4.25 can be considered a 30-minute OOG.

There are two ways to control the level of detail. One is to control the unfolding depth of
theDisplayGraph, which affects the depth of the object substructures uniformly for all objects
starting from the root object. Because one object’s substructure may be more interesting than
that of some other object, ArchRecJ allows the developer to collapse the internals of a selected
object; in that case, the tool appends the(+) symbol to that object’s label. In Fig. 4.25, we
manually elided the substructure of all the objects in the top-level domains except forDrawing,
to highlight the Composite pattern. InsideDrawing, theOWNED domain shows several objects.
We recognize aVector<Figure>, fFigures, that maintain the list of sub-figures, and a lifted
edge fromfFigures to figure:Figure in MODEL. We chose to showQuadTree’s substructure,
but elidedFigureAttributes’s substructure.

A 30-second OOG shows the three top-level ownership domains, MODEL, VIEW and
CONTROLLER (Fig. 4.26). In addition, dotted edges summarize the field reference edges between
objects inside those domains. This high-level overview shows how objects inMODEL refer to ob-
jects inVIEW to send them change notifications.VIEW objects have references toMODEL objects
to display them. Similarly,VIEW objects have references toCONTROLLER objects.CONTROLLER
has references toMODEL andVIEW, butMODEL has no references toCONTROLLER.

Observation: The OOG is extracted quickly and iteratively refined. Examining the ex-
tracted OOGs helped us refine the annotations. For instance,we initially placedHandle instances
in theCONTROLLER domain, but later moved them to theMODEL domain, sinceHandle is related
to Figure.

Assuming ownership annotations are already present, ArchRecJ can extract an object graph
with minimal end-user interaction. The user can optionallyabstract the object graph by control-
ling the abstraction by types.

ArchCheckJ and ArchRecJ are sufficiently fast to allow a developer to iteratively refine the
extracted object graph. Computing the OOG in Fig. 4.25 takes less than 20 seconds on a modest
Intel Pentium 4 (3 GHz) with 2 GB of memory.

Observation: An OOG shows potentially useful information about the system’s runtime
structure. One could point to several useful pieces of information in the JHotDraw OOG.

• System decomposition:Decomposition information is often useful to have. In the OOG,
each gray box corresponds to a canonical object that represents many instances at run-
time, and has instance substructure. This corresponds closely to the system decomposition
typically seen in an architectural diagram.

4.6. Extended Example: JHotDraw 151

 Model

 owned

 owned

 Controller

 View

fLocator(+):
OffsetLocator

handle:
Handle

connector(+):
Connector

figure:
Figure

undoActivity(+):
UndoActivity

standardDrawingView(+):
StandardDrawingView

fAttributes(+):
FigureAttributes

fDisplayBox:
Rectangle

_theHashtable:
Hashtable<Figure,Rectangle2D>

_nwQuadTree(+):
QuadTree

_theQuadTree:
QuadTree

fListeners:
Vector<DrawingChangeListener>

fPoints:
Vector<Point>

fFigures:
Vector<Figure>

start(+):
ArrowTip

fAnimator:
Animator

undoManager(+):
UndoManager

cmd(+):
Command

javaDrawApp(+):
JavaDrawApp

tool(+):
Tool

duplicateButton(+):
CommandButton

menu(+):
CommandMenu

drawingChoice(+):
JComboBox

simpleUpdateStrategy:
SimpleUpdateStrategy

constrainer:
GridConstrainer

Figure 4.25: JHotDraw: top-level OOG. The objects in the top-level domains are collapsed, except for
the object labeledfigure:Figure.

For example,Drawing is aCompositeFigure. Following the Composite pattern, it main-
tains a list of its sub-figures. Indeed, viewing the decomposition of textFigure1 reveals,
among others, an objectfFigures of type Vector<Figure>, inside itsOWNED domain.
When performing system decomposition, the inside of a component is related to its out-
side. Indeed, there is a lifted edge fromfFigures to textFigure1 in theMODEL – since
textFigure1 merges bothFigure andDrawing.

152 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainModelOffsetLocator
_lentMain_MainModelGroupHandle
_lentMain_MainModelPolyLineConnector
_lentMain_MainModelTriangleFigure
_lentMain_MainControllerUndoActivity
_lentMain_MainViewStandardDrawingView
_lentMain_MainModelTriangleFigure_StorableownedFigureAttributes
_lentMain_MainModelTriangleFigure_StorableownedRectangle
_lentMain_MainModelTriangleFigure_StorableownedQuadTree_QuadTreeownedHashtable_Figure_Rectangle2D_
_lentMain_MainModelTriangleFigure_StorableownedQuadTree_QuadTreeownedQuadTree
_lentMain_MainModelTriangleFigure_StorableownedQuadTree
_lentMain_MainModelTriangleFigure_StorableownedVector_DrawingChangeListener_
_lentMain_MainModelTriangleFigure_StorableownedVector_Point_
_lentMain_MainModelTriangleFigure_StorableownedVector_Figure_
_lentMain_MainModelArrowTip
_lentMain_MainModelAnimator
_lentMain_MainModelUndoManager
_lentMain_MainControllerSaveAsCommand
_lentMain_MainViewJavaDrawApp
_lentMain_MainControllerCreationTool
_lentMain_MainViewCommandButton
_lentMain_MainViewCommandMenu
_lentMain_MainViewJComboBox
_lentMain_MainViewSimpleUpdateStrategy
_lentMain_MainViewGridConstrainer

 Model

 View

 Controller

Main

Figure 4.26: JHotDraw: Model-View-Controller summary. The dotted edges summarize fieldreference
edges between objects in the top-level domains.

TheDrawingView interface extends theDrawingChangeListener interface. Hence, the
OOG shows an edge from objectfListeners inside objectFigure to theDrawingView
object. Inside objectFigure, objectfFigures contains the compositeFigure objects.

• Object encapsulation: To highlight the cases of strict encapsulation, the OOG uses
a thick dashed border for a private domain that is not linked to a parameter. For in-
stance, in Fig. 4.25, theMap object is encapsulated inside theOWNED domain of the
FigureAttributes object.

• Object references: The OOG indicates the presence or absence of field referencesbe-
tween objects. The OOG highlights for instance how, in the MVC pattern, a view redraws
itself when the model notifies it of state changes. The core model object,Drawing, main-
tainsfListeners, a list ofDrawingChangeListener objects, that are notified whenever
theDrawing changes. InterfaceDrawingView extendsDrawingChangeListener, hence
the edge fromfListeners to myDrawingView. A Tool object merges instances of type
Tool andUndoableTool. An UndoableTool is a wrapper object around aTool object.
This explains the self-edge onTool in Fig. 4.25.
We were surprised by the lack of field references from theMODEL to theCONTROLLER in
Fig. 4.26. In the base MVC pattern, a controller registers itself with the model to receive
notifications. Our explanation is that JHotDraw follows theMVC pattern, but slightly
modified in two ways. First, the Command Processor pattern (Buschmann et al. 1996,
p. 277) is used to address the “close coupling of views and controllers to a model” in the
base MVC pattern (Buschmann et al. 1996, p. 142). Second, aDrawingView acts as both
a view and a controller. This is a common optimization in the MVC pattern since the view
and the controller are tightly coupled. Indeed, in the JHotDraw “CRC Cards View”, the
designers mention thatDrawingView “handles input events” (Gamma 1998, Slide #10),
which is a typical controller responsibility.

• Object soundness: while demonstrating soundness requires a formal proof, wevisually in-
spected the OOGs to test the implementation of the ArchRecJ tool. For example, the OOG
shows only one canonical object to represent the application object,app:DrawingEditor
(Fig. 4.25), unlike WOMBLE’s output (Fig. 4.18), which shows twoJavaDrawApp and
DrawingEditor distinct objects.

Observation: A tool can enforce structural constraints on the OOG. We think the OOG,
together with effective change management, can help prevent architectural drift or erosion during
software evolution, more effectively than the program, with or without annotations. In the unan-

4.6. Extended Example: JHotDraw 153

_system__system_system
_system__system_system

notated program, changing the runtime structure is as simple as passing a reference to an object.
The ownership annotations help somewhat. But a developer canstill add communication paths
by adding domain links, declaring additional domain parameters and passing additional domain
arguments at object allocation sites. Code reviews could audit such changes.

If the OOG reflects such architecture-modifying changes, the OOG makes it easier to trigger
an architecture review. A visual inspection of the OOG couldlook for suspected architectural
violations. Or once the OOG is converted to a C&C view in an ADL,the ADL can enforce global
constraints on the runtime structure (Section 7.8.9).

Using ownership domain annotations to enforce constraintsmay require code changes. For
instance, using a method domain parameter instead of a classdomain parameter can prevent a
Handle from holding on to aDrawingView object that is passed to it (Section 4.6.1). The OOG
can enforce such a constraint without requiring changing the annotations or the code. In addition,
domain links treat all communication equally, forcing developers to add domain links. But a
policy can allow only “weak” references betweenMODEL andVIEW to ensure that the “change
propagation is the only link between the model and the views and controllers” (Buschmann et al.
1996, p. 127).

4.6.3 JHotDraw Summary

JHotDraw has a complex inheritance hierarchy and implements many design patterns. How-
ever, I was able to add annotations to it, and extract hierarchical object graphs that convey more
architectural abstraction than any of the previous flat object graphs.

4.7 Extended Example: HillClimber

By many accounts, JHotDraw is the brainchild of object-oriented analysis and design (OOAD)
experts. In the next case study, I evaluated using the annotations and the static analysis on a
subject system that OOAD novices designed.

4.7.1 About HillClimber

The second subject system, HillClimber, is a 15,000 line Javaapplication that was developed
by undergraduates at the University of British Columbia (UBC). HillClimber is part of a col-
lection of Java applications to graphically demonstrate artificial intelligence algorithms, built on
theCIspace framework (Poole and Macworth 2001). In particular, HillClimber, demonstrates
stochastic local search algorithms for constraint satisfaction problems. HillClimber is also inter-
esting because it uses a framework and its architectural structure had degraded over the years.

In HillClimber, the applicationwindowuses acanvasto displaynodesandedgesof a graph
to demonstrate algorithms for constraint satisfaction problems provided by theengine.

I extracted a UML class diagram from the HillClimber implementation using Eclipse UML
(Omondo 2006) (Fig. 4.27).

154 Chapter 4. Evaluation of the Object Graph Extraction

DATA

LOGIC

UI

HillEdge HillGraph

HillEngine

HillCanvas
Hill

HillWindow

Search

HillNode

graphFramework::GraphgraphFramework::NodegraphFramework::Edge

graphFramework::GraphCanvas

GreRRSearch RandSearch SimAnnealSearchSimpleSearch

GreedySearch MCHSearch RdWkSearch

SimRanSearch

- hillGraph0..1

- currNode

0..1

engine

0..1
- hillEngine0..1

- hillCanvas

0..1

- hillWindow0..1

node0..1

Figure 4.27: HillClimber: partial UML class diagram obtained from the original implementation using
Eclipse UML (Omondo 2006). This diagram does not reflect some types introduced during refactoring,
such asIGraph, IHillGraph andICanvasMediator.

4.7.2 Annotation Process

In this section, I briefly discuss the annotation process forHillClimber.

4.7.2.1 Annotation Overview

I organized the HillClimber objects into the following domains:
• DATA: stores the graph objects, namely instances ofGraph, Node, etc., and those of their

subclasses,HillGraph, HillNode, etc.;
• UI: holds user interface objects;
• LOGIC: holds instances ofHillEngine, Search and subclasses thereof, and associated

objects.
While adding annotations to HillClimber, I refactored the code to reduce the coupling be-

tween some of the objects theUI andDATA domains, as I discuss below.

4.7.2.2 Annotation Examples

Observation: Ownership domains expose implicit communication. In HillClimber, adding
ownership domain annotations exposed covert object communication through base classes from
two parallel inheritance hierarchies. During an early iteration, we parameterized the base class
GraphCanvas by theUI andDATA domain parameters. We then realized thatGraph, the base
class forHillGraph, required theUI domain parameter (Fig. 4.28). ClassGraph needed theUI
domain parameter only to properly annotate aGraphCanvas field reference, which we did not
expect. In turn, this revealed thatHillGraph andHillCanvas were communicating through

4.7. Extended Example: HillClimber 155

1 /******** Before programming to interface **********/

2 class HillNode<UI,LOGIC,DATA> extends Node<DATA> {

3 DATA HillGraph<UI,LOGIC,DATA> hillGraph;

4 }

5

6 /******** After programming to interface **********/

7 class HillGraph<UI,LOGIC,DATA> extends Graph<DATA>

8 implements IHillGraph<DATA> {

9 }

10

11 interface IHillGraph<DATA> extends IGraph<DATA> {

12 }

13

14 class HillNode<DATA> extends Node<DATA> {

15 DATA IHillGraph<DATA> hillGraph;

16 }

Figure 4.28: HillClimber: refactoringHillGraph to program to an interface.

their base classesGraph andGraphCanvas. In the end, I moved the reference toGraphCanvas
from Graph to HillGraph and generalized it as anIHillCanvas reference by extracting an
interfaceIHillGraph from HillGraph. As a result, the classGraph no longer needed theUI
domain parameter.

Observation: Ownership domain annotations highlight tight coupling and promote decou-
pling code. Ownership domain annotations programming practices that decouple code, such
as programming to an interface, or using the mediator pattern, as we discuss below.

Programming to an Interface. It is recommended to “refer to objects by their interfaces”
(Bloch 2001, Item #34) since interfaces can reduce coupling between classes by splitting intent
from implementation. When adding annotations to an interface requires fewer domain parame-
ters than annotating the corresponding class, the annotations can enforce this idiom. In particular,
an implementation class can require a private ownership domain to be passed as an actual value
for one its parameters. Since a private ownership domain cannot be named by an outside client,
the client is then forced to use the interface which does not require these parameters.

For HillClimber, we used the technique of hiding the extra ownership domain parameter
behind an interface, to force a client to access an object only through the interface—the client
may not even cast the interface reference to an implementation class.

The original implementation for classHillNode had a field reference of typeHillGraph.
However,HillGraph took the three domain parametersUI, LOGIC andDATA, which required
passing all those parameters toHillNode (Fig. 4.28).

This demonstrates that encountering an unexpected domain parameter while adding the anno-
tations often indicates unnecessary coupling. For instance, why shouldHillNode require theUI
domain parameter? Thus a lengthy domain parameter list can be an objective measure of a code
smell (Abi-Antoun et al. 2007a). Furthermore, ownership domain annotations can help a devel-
oper lower the coupling by suggesting which specific type declarations need to be generalized to
shorten the list of domain parameters on the enclosing type.

156 Chapter 4. Evaluation of the Object Graph Extraction

1 abstract class Entity<DATA> {

2 DATA Graph<DATA> graph; // parent graph

3 ...

4 }

5

6 class Node<DATA> extends Entity<DATA> {

7 ...

8 int getHeight() {

9 return graph.getCanvas().getFontMetrics()...;

10 }

11 }

Figure 4.29: HillClimber: before using a mediator.

In HillClimber, one solution was to extract anIHillGraph interface from classHillGraph
that requires only theDATA domain parameter and make aHillNode object reference the
HillGraph object through theIHillGraph interface. We decided against carrying this refactor-
ing further and eliminating theUI andLOGIC domain parameters onHillGraph itself.

SinceHillGraph, HillNode, etc., form a parallel inheritance hierarchy toGraph, Node, etc.,
respectively, a similar refactoring was performed onGraph by extracting aIGraph interface—
althoughGraph andIGraph both take the domain parameterDATA (Fig. 4.28), so programming
to an interface would not hide any domain parameter.

We observed tightly coupled code throughout HillClimber. Similarly, we were surprised that
a dialog classFontDialog required theDATA domain parameter. It turned out thatFontDialog

had a field reference declared with its most specific typeGraphCanvas. In some cases, it is
possible to generalize the type of the reference, e.g., usejava.awt.Frame to eliminate the need
for the domain parameter. However,FontDialog needed access to some of theGraphCanvas

functionality, so this required a different solution, namely, using a mediator, as I discuss below.

Mediator Pattern. Defining an interface is sometimes insufficient to decouple code since
referring to an object through its interface still requiresaccess to the domain the object is in. One
solution is to use the Mediator design pattern (Gamma et al. 1994, p. 273), as shown here.

In the original HillClimber implementation (Fig. 4.29), aNode obtained a reference to a
GraphCanvas, and this violates the Law of Demeter (Lieberherr and Holland 1989) which states
that objects should talk only to their immediate neighbors.

Extracting an IGraphCanvas interface from GraphCanvas would not work, as the
IGraphCanvas reference would still need to be annotated withUI, which is not in scope or a
domain parameter. Moreover, the implementation ofgetFontMetrics() could not be moved to
Graph as it required access to objects in theUI domain (Fig. 4.30).

Instead, I defined a mediator (Fig. 4.31).GraphCanvas initializes the mediator, andEntity
andNode can then use the mediator (Fig. 4.32).

4.7.3 Object Graph Extraction

I used the extracted object graph to fine-tune the ownership domain annotations in the program
and reduce the number of objects in the top-level domains (Fig. 4.33), using the strategies dis-
cussed in Section 4.4.2. Using HillClimber, we reconfirmed many of the previous observations.

4.7. Extended Example: HillClimber 157

1 interface IGraphCanvas {

2 }

3 // Hide domain parameter UI behind interface

4 class GraphCanvas<UI,DATA> implements IGraphCanvas {

5 }

6

7 abstract class Entity<DATA> {

8 UI IGraphCanvas canvas; // UI unbound

9 ...

10 }

11

12 class Node<DATA> extends Entity<DATA> {

13 ...

14 int getHeight() {

15 return canvas.getFontMetrics()...;

16 }

17 }

Figure 4.30: HillClimber: extracting an interface (bad attempt).

1 /**

2 * Mediator interface

3 */

4 interface ICanvasMediator {

5 shared FontMetrics getFontMetrics();

6 }

7

8 /**

9 * Mediator implementation class

10 */

11 class CanvasMediatorImpl<UI,DATA> implements ICanvasMediator {

12 UI GraphCanvas<UI,DATA> canvas = null;

13

14 CanvasMediatorImpl(UI GraphCanvas<UI,DATA> canvas) {

15 this.canvas = canvas;

16 }

17

18 shared FontMetrics getFontMetrics() {

19 return this.canvas.getFontMetrics();

20 }

21 }

Figure 4.31: HillClimber: defining a mediator.

Observation: In practice, there are several opportunitiesto use strict encapsulation to re-
duce the clutter. We reduced the clutter in theDATA domain by pushing more objects into
private domains of other objects. For instance, we placedheap:HillHeap inside a private do-
main ofgraph:HillGraph. We also pushed severalVectors into private domains and ensured
that the other references to them wereunique (they were actually passed linearly between ob-
jects). In a few cases, we changed the code to prevent representation exposure by returning a
copy of an internal list instead of an alias.

158 Chapter 4. Evaluation of the Object Graph Extraction

1 class GraphCanvas<UI,DATA> extends ... {

2 DATA CanvasMediatorImpl<UI,DATA> mediator;

3 ...

4 DATA ICanvasMediator getMediator() {

5 return mediator;

6 }

7 }

8

9 abstract class Entity<DATA> {

10 DATA ICanvasMediator mediator;

11 ...

12 }

13

14 class Node<DATA> extends Entity<DATA> {

15 ...

16 /**

17 * Gets the height of this node.

18 *

19 */

20 protected int getHeight() {

21 return mediator.getFontMetrics().getHeight() + ...;

22 }

23 }

Figure 4.32: HillClimber: using a mediator.

Observation: In practice, there are several opportunitiesto use logical containment to re-
duce the clutter. We defined public domains to reduce the number of top-level objects. A
public domain can group related objects, by pushing the contained objects down the ownership
tree and removing them from the top-level domains, while keeping those inner objects accessible
to objects that can access the outer objects. For example, objectsearch has aHEURISTICS pub-
lic domain with two array objects inside it; its peer objectheuristics insideLOGIC accesses
those array objects directly7.

As an aside, I could have used a static analysis to infer the better OWNED andunique anno-
tations, e.g., (Liu and Milanova 2007; Ma and Foster 2007). But today’s annotation inference
algorithms cannot infer meaningful domain parameters or public domains (Aldrich et al. 2002c).

Observation: An OOG can provide meaningful architectural abstraction. The Hill-
Climber OOG (Fig. 4.33) shows clearly the core top-level objects, window, canvas, engine
andgraph. Similarly, theSearch object in theLOGIC domain merges many instances of several
sub-classes of the classSearch such asMCHSearch, RandSearch, etc.

I had introducedCanvasMediator during a refactoring to decouple the code. Thewindow

object merges several user interface objects such as dialogs, and illustrates abstraction by types.

7Such an object relation would be prohibited by an owner-as-dominator type system, e.g., (Clarke et al. 1998).
This is one case which illustrates the need for the additional expressiveness of logical containment using public
domains in the ownership domain type system.

4.7. Extended Example: HillClimber 159

 dataTier

 userTier

 logicTier

 heuristics

graph(+):
HillGraph

node(+):
HillNode

canvas(+):
SolveCanvas

mediator:
CanvasMediatorImpl

var1:
Variable

constraint:
Constraint

choice:
NodeVal

window(+):
OptionsDialog

engine(+):
HillEngine

batchSteps:
Vector<BatchStep>

searchAlgs:
Search[]

simPanel(+):
FullPanel

randSearch:
RdWkSearch

autoSolve:
AutoSolve

batchStep(+):
BatchStep

heuristics:
Heuristics

varHeurs:
int[]

varHeursProb:
float[]

Figure 4.33: HillClimber: top-level OOG.

4.7.4 HillClimber Summary

The HillClimber system is not as well-designed as JHotDraw. Still, I was able to add annotations,
run the static analysis, and extract OOGs that provide meaningful architectural abstraction and
have sufficient precision.

160 Chapter 4. Evaluation of the Object Graph Extraction

_systemHill__systemHill_systemHill_dataTier_graphHillGraph_graphHillGraph
_systemHill__systemHill_systemHill_dataTier_nodeHillNode_nodeHillNode
_systemHill__systemHill_systemHill_userTier_canvasSolveCanvas_canvasSolveCanvas
_systemHill__systemHill_systemHill_dataTier_mediatorCanvasMediatorImpl_mediatorCanvasMediatorImpl
_systemHill__systemHill_systemHill_dataTier_var1Variable_var1Variable
_systemHill__systemHill_systemHill_dataTier_constraintConstraint_constraintConstraint
_systemHill__systemHill_systemHill_dataTier_choiceNodeVal_choiceNodeVal
_systemHill__systemHill_systemHill_userTier_windowOptionsDialog_windowOptionsDialog
_systemHill__systemHill_systemHill_logicTier_engineHillEngine_engineHillEngine
_systemHill__systemHill_systemHill_logicTier_batchStepsVector_BatchStep__batchStepsVector_BatchStep_
_systemHill__systemHill_systemHill_logicTier_searchAlgsSearchArray_searchAlgsSearchArray
_systemHill__systemHill_systemHill_userTier_simPanelFullPanel_simPanelFullPanel
_systemHill__systemHill_systemHill_logicTier_randSearchRdWkSearch_randSearchRdWkSearch
_systemHill__systemHill_systemHill_logicTier_autoSolveAutoSolve_autoSolveAutoSolve
_systemHill__systemHill_systemHill_logicTier_batchStepBatchStep_batchStepBatchStep
_systemHill__systemHill_systemHill_logicTier_heuristicsHeuristics_heuristicsHeuristics
_systemHill__systemHill_systemHill_logicTier_randSearchRdWkSearch_randSearchRdWkSearch_heuristics_varHeursintArray_varHeursintArray
_systemHill__systemHill_systemHill_logicTier_randSearchRdWkSearch_randSearchRdWkSearch_heuristics_varHeursProbfloatArray_varHeursProbfloatArray

4.8 Field Study: LbGrid 8

As a research method, a field study can evaluate how well a software tool or method works with
real code and users (Kitchenham et al. 1995).

4.8.1 Overview

The case studies I conducted on the previously described object-oriented systems assessed both
the usability of the technique and the engineering tradeoffs that it entails, and led to a more
comprehensive week-long on-site field study with an industrial partner. During the field study,
we extracted the object graph of a 30-KLOC portion of a large 250-KLOC Java system.

At a high-level, the field study involved selecting a target portion of the system, communicat-
ing with the original developers of the code to understand their design intent, adding annotations
to the code, typechecking the annotations, running the static analysis to extract an object graph,
showing snapshots to the developers, and incorporating their feedback, by refining the annota-
tions and the extracted object graphs.

4.8.2 Research Questions

I refer to the person who conducted the field study, i.e., myself, as theexperimenter. Thedevel-
oper is the person who was familiar with the code being analyzed.

In addition to the earlier questions (Section 4.2, Page 121), we wanted the field study to help
answer the following research questions:

• Will an outside developer understand abstraction by ownership hierarchy and by types?
• How mucheffort will it take? How longbefore one can obtain initial architectural dia-

grams?
• Can one add annotations for the top-level object graph, then extend those annotations down

to the rest of the system?
• Can we meaningfully analyze only a part of a system?
• Can we evaluate qualitatively the precision of the analysis by having a developer visually

examine the output OOG? For instance, does the OOG omit objects that the developer
expected to see? Or does the developer not recognize some of the objects that show up in
an OOG?

• How can we improve the usability of the tools?

4.8.3 Setup and Methodology

Pilot constraints. The SCHOLIA tools are plugins in the Eclipse Java development environ-
ment. So, in terms of selecting the subject system, we required a module that is Java-based.
Since we were adding the annotations manually, we required amodule under 50 KLOC in size.
In some of the earlier evaluations, e.g., HillClimber (Section 4.7), we refactored the subject sys-
tem while adding the annotations. During the field study, we wanted to extract theas-isobject

8Portions of this section appeared in (Abi-Antoun and Aldrich 2008b)

4.8. Field Study: LbGrid 161

graph. We also did not want to explain the annotations or the static analysis to the developers,
nor did we expect to involve them with the tools. The developers would be free to refactor based
on any insights they gained from the extracted architecture.

The plan. Architectural extraction typically starts by gathering oreliciting documentation from
developers who are familiar with the code. Ideally, a developer would document the designed
or target runtime architecture, but realistically, we knewthat we may have to settle for a class
diagram.

Data collection. The experimenter measured the effort by keeping track of thedifferent activ-
ities in a time log, and measured the end-to-end time, minus interruptions. He also kept a log
of annotation cases that revealed facts about the code such as representation exposure or tight
coupling.

The experimenter kept track of the iterations, and what he changed between iterations, such
as changing the settings or inputs to the tools. He saved intermediate snapshots of the extracted
object graph. He also wrote detailed notes to simulate the thinkaloud protocol (he could not
actually speak as he was sitting with others in an open-floor space). After the study, we used the
Eclipse history data for each file to analyze how the annotations evolved.

Subject selection. The experimenter ran the jMetra (hyperCision Inc. 2008) codemeasurement
tool on the Java code base, and identified a module of around 30KLOC, excluding unit test code,
which we refer to as LbGrid. LbGrid is a multi-dimensional feature-rich grid control that consists
of around 300 classes (jMetra includes only static inner classes in the class count, and LbGrid
uses non-static inner classes extensively).

In previous evaluations, we used code bases developed priorto Java 1.5 and refactored them
to use generics to improve the precision of the analysis. In this case, the code already used
generic types. As a bonus, a developer who was familiar with that module would be available.

Static analysis. At no time during the field study did the experimenter run the system. That
would have required setting up a complex client-server system, and training on how to use the
system to get good coverage. So using static analysis simplified the setup considerably.

Plan vs. actual. The study did not go exactly as planned. The developer familiar with LbGrid
was not available on the first and the last days of the study. Generally, the experimenter had
limited access to the developer. We estimate the developer spent around 4 hours, including the
initial meeting, designing and discussing the code architecture, answering occasional questions,
examining snapshots and responding to our emails.

Target architecture. The experimenter met with the developer for two hours, and gave him an
overview of the architectural views we were extracting. Thedeveloper said he used and liked
tools that extracted class diagrams from code. The experimenter asked the developer to draw
the designed runtime architecture for LbGrid. The experimenter wanted to use the designed

162 Chapter 4. Evaluation of the Object Graph Extraction

Figure 4.34: LbGrid: high-level module view, obtained using Lattix LDM (Lattix Inc 2008).A box
represents a Java package.

architecture as a guide while adding the annotations, by following the same top-level architectural
tiers and the same architectural decomposition. Unsurprisingly, the developer drew an abstracted
class diagram showing the core types in LbGrid (Fig. 4.35).

4.8.4 Annotation and Extraction Process

We now discuss the process the experimenter followed to annotate LbGrid and extract an object
graph.

Isolating the module. The experimenter configured several stop-analysis files to have the tools
analyze only the compilation units from a list of selected packages and exclude others.

Annotation and extraction methodology. The experimenter used a tool to generate initial
default ownership domain annotations for the selected Javafiles (See Appendix A.4.4). He then
completed the annotations mostly manually, as we discuss inthe next section. At times, he used
a utility to globally find and replace annotations across several files. He then used mainly the
two tools, ArchCheckJ (Section 4.3.1) and ArchRecJ (Section 4.3.2). He used ArchCheckJ to
validate the annotations and ArchRecJ to extract OOGs.

Deciding on the annotations. The best annotations produce a view comparable to what an
architect might draw for an architecture. Ideally, an architect familiar with the system would
propose the runtime tiers for the system. In this case, it seemed that having the developer provide
a target runtime architecture would be difficult, since he drew an abstracted code architecture. So,
instead, the experimenter studied the developer’s diagram, and suggested organizing the objects
according to the following top-level domains:UI, MODEL, LOGIC andDATA (boxes with dashed
borders in Fig. 4.36). The developer confirmed that the proposed architectural tiers seemed
reasonable. Another senior developer who was familiar withother parts of the system also agreed
with the high-level organization the experimenter proposed for the LbGrid architecture.

4.8. Field Study: LbGrid 163

Figure 4.35: LbGrid: developer’s diagram, which I annotated manually.

164 Chapter 4. Evaluation of the Object Graph Extraction

Figure 4.36: LbGrid: top-level domains which I suggested, shown with a dashed border.

4.8. Field Study: LbGrid 165

Then, the experimenter started mapping objects to domains.As a first approximation, he
mapped types to domains. Of course, not all the instances of atype, such asList, always
appear in the same domain. Also, LbGrid has several classes that are instantiated only once,
e.g.,Workspace. In many cases, he used the package declaration as a guide. For instance, the
experimenter often annotated an instance of a class declared in thedata package to be in the
DATA domain, or the correspondingD domain parameter. The trickier cases were instances of
classes from nondescript utility packages that gave no indication about which runtime tier they
belonged to. The experimenter organized the core types as follows:

• UI: instances ofLbTable, etc.;
• MODEL: instances ofLbTableModel, etc.;
• LOGIC: has instances ofPivotManager, etc.;
• DATA: has instances ofWorkspace, Predicate, etc.
Once the experimenter figured out the top-level domains, he propagated them as domain

parameters, as needed, using the mnemonic domain parameternames:U for UI, M for MODEL, L
for LOGIC, andD for DATA.

Prioritizing the annotation warnings. The experimenter was not planning on adding domain
links to LbGrid, so he turned off the corresponding checks for the duration of the field study. Oth-
erwise, except for the implicit defaults or those added by the annotation defaulting tool, every
reference type must be annotated. Enabling all the annotation checks at once would generate tens
of thousands of warnings in the Eclipse problem window, and bring Eclipse to a standstill (the
experimenter was running the tools on a modest Intel Pentium4 (2 GHz) with 1.5 GB of mem-
ory). Moreover, one missing or incorrect annotation in the code could potentially produce several
warnings. So the experimenter gradually enabled various annotation checks, and addressed an-
notation warnings from the most to the least important ones,as we discussed in Section 4.4.1
(Page 125)

Refining the annotations. In the early iterations, we placed most objects in one of the domain
parameters,U, M, L or D. Since each domain parameter was transitively bound to a top-level
domain, e.g.,U to UI, M to MODEL, these early snapshots showed many objects in the top-level
domains. But these early diagrams helped the experimenter refine the annotations and move a
few objects between the top-level domains. In later iterations, he defined several private and
public domains, and moved secondary several objects from a top-level domain to a private or
public domain of a primary object, or passed objects linearly, to reduce the number of top-level
objects, as we discussed in Section 4.4.2 (Page 126).

Strict encapsulation. The experimenter identified any encapsulated objects and placed them in
private domains. As a first approximation, he recognized some of these objects if the containing
class used them only inside its private representation, anddid not have any accessors that returned
them.

Logical containment. The developer’s feedback helped the experimenter define several public
domains with architecturally meaningful objects. Using logical containment often involved only

166 Chapter 4. Evaluation of the Object Graph Extraction

localized changes to the annotations. For instance, the public domainRENDERERS on LbTable

holds objects of typeTextCellRenderer and ColorCellRenderer. The EDITORS domain
holds objects of typeTextCellEditor andColorCellEditor. In contrast, the module view
shows all these types in onerenderer package (Fig. 4.34).

The experimenter defined other architecturally significantpublic domains, such as:
• LbTableModel has aHEADERS domain to holdHeaderGridPath andHeaderGroup ob-

jects, among others;
• TableActionManager has an ACTIONS public domain for LockCellsAction and
FillCellAction objects, etc.

Linear objects. He used theunique annotation where applicable. For example, LbGrid uses
the following recurring pattern: a method performs a query,allocates a container to store the
query result objects, then another object iterates the container elements then discards the con-
tainer without storing a reference to it.

Questions to the developer. The experimenter had limited interaction with the developer. Oc-
casionally, he asked the developer the following questions. The first question helped the experi-
menter identify objects that appear in the wrong conceptualtier. The second question guided the
abstraction of the object graph by ownership hierarchy.

• Does this instance of typeT belong to domainD?
• Within this domainD, is this objectX conceptually part of this other objectY, so I can push
X underY?

The experimenter also asked the developer to identify the root class from which to derive the
object graph. The developer pointed him to a unit test class.

4.8.5 Results

In this section, I discuss the field study results, in terms ofthe quantitative data we measured
(Section 4.8.5.1), and the qualitative data we gathered during our interaction with the developer
(Section 4.8.5.2).

4.8.5.1 Quantitative Data

Of the time spent on-site, the experimenter spent about 30 hours adding the annotations, type-
checking them, and examining snapshots of the extracted object graphs. After the experimenter
returned from the field trip, the developer emailed him some comments regarding one of the
extracted object graphs. The experimenter spent another 5 hours adjusting the annotations to
incorporate the developer’s suggestions and address high-priority annotation warnings. At that
point, the top-level object graph still did not fit on one letter-size readable page, such as the de-
veloper’s code architecture (Fig. 4.37). There were still around 4,000 annotation warnings, most
of them minor.

4.8. Field Study: LbGrid 167

 owned

 UI

 EDITORS

 RENDERERS owned

 LOGIC

 MODEL

 owned

 ACTIONS

 GUI

 DATA

instance(+):
MultiAggGridRoot

ruleEditorPanel(+):
RuleEditorPanel

pivotHandler(+):
PivotHandler

theTile:
Tile

_gridPanelLayoutManager(+):
GridPanelLayoutManager

_gridPanelPrintManager:
GridPanelPrintManager

lbTable:
LbTable

_pivotManager(+):
PivotManager

newPath(+):
GridPath

gridAxis(+):
GridAxis

measureMetaDataListener(+):
MeasureMetaDataListener

range:
CellArea

listModel(+):
ListModel

_statusManager(+):
GridStatusManager

_gridPreferences:
GridPreferences

bloxTableCacheMonitor:
BloxTableCacheMonitor

theGBParams(+):
GridBindingParams

currPredName:
PredicateName

theEvent:
LbTableChangedEvent

theDialog(+):
TypeFilterDialog

hierData:
HierData

hierarchy<GridEnumType>:
Hierarchy<GridEnumType>

controller(+):
MeasureGroupPanelController

lbTableCellEditor(+):
LbTableCellEditor

colorPanel(+):
ColorPanel(+)

abstractLbPrintManager:
AbstractLbPrintManager

defaultTableErrorHandler:
DefaultTableErrorHandler

rcNew:
RangeCriteria

theVar:
TileVariable

predAggInfo(+):
PredicateAggInfo

currHierTR:
TypeRole

_multiAggInfo(+):
MultiAggInfo

currTRAggInfo(+):
TypeRoleAggInfo

_gridMeasureManager(+):
GridMeasureManager

_varManager(+):
TileVariableManager

typeAggInfo:
TypeAggInfo

theAggSpreadInfo(+):
AggSpreadInfo

predNamePredAggInfo:
PredNamePredAggInfo

bloxTableActionManager:
BloxTableActionManager

(+)

(+)

(+)

iEnumType(+):
IEnumType

_cellStyleManager(+):
CellStyleManager

_currentCellKey:
ArrayKey

_role:
Role

theGridTypeMap(+):
GridTypeMap<GridEnumType>

thePredInstance:
PredicateInstance

committable:
Committable

pinfo:
PredicateInfo

Figure 4.37: LbGrid: extracted object graph.

168 Chapter 4. Evaluation of the Object Graph Extraction

_lentMain_MainownedMultiAggGridRoot
_lentMain_MainUIRuleEditorPanel
_lentMain_MainUIPivotHandler
_lentMain_MainUITile
_lentMain_MainUIGridPanelLayoutManager
_lentMain_MainUIGridPanelPrintManager
_lentMain_MainUILbTable
_lentMain_MainLOGICPivotManager
_lentMain_MainLOGICGridPath
_lentMain_MainLOGICGridAxis
_lentMain_MainMODELMeasureMetaDataListener
_lentMain_MainMODELCellArea
_lentMain_MainMODELListModel
_lentMain_MainMODELGridStatusManager
_lentMain_MainMODELGridPreferences
_lentMain_MainMODELBloxTableCacheMonitor
_lentMain_MainMODELGridBindingParams
_lentMain_MainDATAPredicateName
_lentMain_MainUILbTableChangedEvent
_lentMain_MainUITypeFilterDialog
_lentMain_MainLOGICHierData
_lentMain_MainLOGICHierarchy_GridEnumType_
_lentMain_MainUIMeasureGroupPanelController
_lentMain_MainUILbTable_LbTableEDITORSLbTableCellEditor
_lentMain_MainUILbTable_LbTableRENDERERSColorPanel
_lentMain_MainMODELAbstractLbPrintManager
_lentMain_MainMODELDefaultTableErrorHandler
_lentMain_MainDATARangeCriteria
_lentMain_MainLOGICTileVariable
_lentMain_MainLOGICPredicateAggInfo
_lentMain_MainDATATypeRole
_lentMain_MainLOGICMultiAggInfo
_lentMain_MainLOGICTypeRoleAggInfo
_lentMain_MainLOGICGridMeasureManager
_lentMain_MainLOGICTileVariableManager
_lentMain_MainLOGICTypeAggInfo
_lentMain_MainLOGICAggSpreadInfo
_lentMain_MainLOGICPredNamePredAggInfo
_lentMain_MainMODELBloxTableActionManager
_lentMain_MainDATAIEnumType
_lentMain_MainMODELCellStyleManager
_lentMain_MainDATAArrayKey
_lentMain_MainDATARole
_lentMain_MainDATAGridTypeMap_GridEnumType_
_lentMain_MainDATAPredicateInstance
_lentMain_MainDATACommittable
_lentMain_MainDATAPredicateInfo

DATA

LOGIC

UIMODEL

Figure 4.38: LbGrid: a 30-second high-level runtime view. The dotted edges summarize inter-tier refer-
ences.

4.8.5.2 Qualitative Data

The field study allowed us to make the following qualitative observations.

Observation: The developer understood assigning objects toruntime tiers. The developer
seemed comfortable thinking with a granularity coarser than an object or a class. He drew lay-
ers in his diagram that roughly correspond to packages, similarly to a high-level module view
(Fig. 4.34). He understood mapping objects to domains, and even suggested moving some ob-
jects from one domain to another.

“The following components should move to different containers:AxisLayoutInfo
[from MODEL] to LOGIC.”

Observation: The developer understood abstraction by ownership hierarchy. In particu-
lar, the goal is to show only architecturally significant objects in the top-level domains. The
developer understood abstraction by ownership hierarchy,namely, pushing secondary objects
underneath primary objects, as evidenced by his statement:

“The following are too low-level to be at the outermost tier:CellPosition, ...”

For example, he recommended objects of typeTableHeaderGroup and
TableHeaderGridPath be pushed underneath theLbTableModel object in the MODEL

tier. When provided with a printout of an extracted object graph, he expressed interest in
viewing an object’s sub-structure. At the time of the study,we did not have a standalone
viewer. Since then, we implemented an interactive viewer that allows drilling into an object’s
substructure, zooming, scrolling and panning.

The developer also noticed when a top-level domain showed too many objects:

“All components inDATA are also too low-level to be at the outermost tier, but I can’t
think of a larger component that you can expand to get to them.Not sure how to
represent this.”

To address the developer’s last comment about theDATA tier, it is possible to elide a domain’s
structure, as in Fig. 4.38. The tool currently shows summaryedges between collapsed domains.
In future work, we will implement a feature to show edges between an object and a collapsed
domain.

4.8. Field Study: LbGrid 169

Observation: The developer understood object merging. By design, a SCHOLIA object
graph conservatively merges into one object all the objectswithin a domain that may alias, based
on their type information. For instance, aBarChart object in theVIEW domain merges the ob-
jects referenced through theListener interface, the base classAbstractChart or its concrete
subclassBarChart, because they may alias (Fig. 2.3(a)).

The ownership domain type system guarantees that two objects in different domains can
never alias, however, so the analysis keeps those objects asseparate.

Riehle posited that designers often use the following techniques to abstract their code archi-
tectures. They merge interface and abstract implementation class—although important for code
reuse, such a code factoring is often unimportant from a design standpoint. They also subsume
similar classes under representative classes, to avoid theclutter of showing many similar sub-
classes that vary in minor aspects (Riehle 2000, pp. 139–140). Indeed, the developer seems to
have used the above techniques in his own class diagram. For example, he used “xxx” in the
name of a few classes to represent multiple elided subclasses. He also used a multiplicity-like
symbol to designate many more subclasses that he did not showon the diagram.

So it is unsurprising that these heuristics seemed also intuitive in a runtime view. However,
SCHOLIA achieves similar results to those heuristics by merging objects in a domain based on
their type, to soundly handle possible aliasing.

Observation: The extracted object graph shed some light intodark corners of the system.
Upon examining an extracted object graph, the developer identified several classes that were
candidates for deletion.

“... FormulaEditor (will be deleted shortly).”

Observation: The developer seemed unsure about certain object communication. A de-
veloper often has a conceptual model of their architecture that is mostly accurate, but may be a
simplification of reality (Murphy et al. 2001; Aldrich et al.2002a). Indeed, the LbGrid developer
drew some connections with question marks. An extracted object graph might help him confirm
the presence or absence of communication.

Observation: A runtime view may help with certain coding tasks, but not with others. The
developer was skeptical of the value of the extracted objectgraph (we recorded his opinion below
before we gave him a standalone interactive viewer):

“To step back a little and look at the diagram itself, so far, Ican’t see the value of a
runtime view. I suspect that this will make more sense if I were to be able to drill
down into the components. Or do you think that I should be ableto see something
in the outermost tier itself?”

We emphasized to the developer that the intent of a runtime view is to complement, not
replace, a class diagram. Since he mentioned sequence diagrams, we explained to him that a
sequence diagram is a kind of runtime view that shows method invocations for a specific use
case, but it is not a complete runtime architecture. A more closely related diagram would be
an object diagram which shows object instances exclusively, which (Gamma et al. 1994) use to

170 Chapter 4. Evaluation of the Object Graph Extraction

explain the standard design patterns. We suggested to the developer that he could think of an
extracted object graph as a global object diagram, for the whole system, and one where each box
is an aggregate of objects.

To address the developer’s comment, we showed him how hierarchy enables obtaining a high-
level object graph (Fig. 4.38), which makes explicit several global structural constraints that are
implicit in the code, e.g., that objects in theDATA domain do not reference objects in theMODEL
domain.

When reasoning about modifiability, a code architecture may be more helpful than a runtime
architecture. The developer may have been focused on such tasks because he drew a detailed
class diagram mostly from memory, and referred to Eclipse only occasionally to verify the name
of a type. He seemed apologetic about the current design having many subclasses and a parallel
inheritance hierarchy. In the current design,GridTable extendsBloxTable extendsLbTable.
A parallel inheritance hierarchy exists betweenGridTableManager, BloxTableManager and
LbDefaultTableManager.

He mentioned that one could refactor away some of those classes and move their functionality
into their super-classes (the rationale for the current factoring is that super-classes are oblivious
to accessing data from a workspace). He even asked the experimenter if he could think of a
design that did not require proliferating sub-classes.

Since he was very familiar with the LbGrid code, he did not immediately see the value of a
runtime architecture. We posit that because the runtime architecture abstracts away the factoring
into interfaces, base classes and subclasses, it may actually be simpler to explain to a developer
who is completely unfamiliar with the code, such as a new hire.

Observation: A runtime architecture can help explain listeners. A runtime architecture can
help answer questions that a developer might have about an unfamiliar code base, such as: What
instances point to what other instances? Thus, an object graph diagram can help explain what ob-
jects get notified during a change notification. In many cases, UML class diagrams or call graphs
do not help answer such questions, because they do not show instances. For example, using the
Listeners system (Chapter 2), an object diagram (Figs. 2.3(a), 2.3(b)) highlights the reference
structure betweenpieChart, barChart andmodel better than a class diagram (Fig. 2.2).

LbGrid uses listeners heavily. Several classes have lists of listeners and implement various
listener interfaces. Neither the developer’s diagram nor an automatically generated class dia-
gram, explain how the listeners work in LbGrid. We posit thatthis aspect of the architecture
would be particularly challenging for a new hire. In future work, it may be useful to identify
bug reports or enhancement requests that require understanding the listeners in LbGrid, and for
which the extracted runtime architecture would be helpful.

Observation: Picking the right labels for architectural elements is crucial. Without care-
ful labeling, developers may not recognize the models that areverse engineering tool extracts
(Murphy et al. 2001). Indeed, during the field study, the developer insisted on specific labels for
the various tiers, e.g., useUIMODEL instead ofMODEL (we still useMODEL here for consistency with
prior documentation). In particular, with every OOG with which he was provided, he seemed to
always visually scan the OOG, looking for instances of the core types from his class diagram:

4.8. Field Study: LbGrid 171

“Where isGridPanel? I don’t see it here.”

Observation: The developer expected to see multiplicities on the object graph. Indeed, the
developer’s diagram has specific multiplicities on severalassociations. Many reverse engineering
tools show multiplicities on class diagram. The developer suggested that showing this informa-
tion on the object graph would be helpful, so this is a featureworth considering in future work.
Of course, there are limits to the information that can be extracted statically from the code. In
particular, a static object diagram is never going to show multiplicities that are as accurate as the
ones in a dynamic object diagram, but the latter reflect only specific program runs.

Observation: The developer expected the tools to render a judgement on the recovered
architecture. Many architectural extraction case studies evaluate the quality of a recovered
architecture by computing some metrics, e.g., on dynamic coupling (Arisholm et al. 2004). An-
other avenue would be to check and measure the structural conformance of the built architecture
against a designed one, but this requires establishing the target runtime architecture. This is the
approach that SCHOLIA adopts, as described in the following chapters.

Observation: The developer seemed to favor an unsound abstracted task-specific view over
a sound runtime architecture. A tool that extracts a class diagram automatically would show
at least 300 classes for LbGrid, organized by packages. However, the developer’s manual dia-
gram had many fewer types. So the question is whether a runtime architecture should soundly
reflect all objects and relations that exist at runtime, or only those that are of current interest to
the developer. In a principled approach like SCHOLIA, the main abstraction technique is through
the use of ownership hierarchy. A developer changes the annotations to push secondary objects
under primary objects, and sometimes changes the code to support strict encapsulation. On the
other hand, an unprincipled approach would allow a developer to elide any object or domain in
the extracted architecture. In future work, we will consider ways to make a runtime architecture
reflect more directly the types that are of interest to a developer, while maintaining soundness.

4.8.6 Validity

We identify the following confounding factors with the fieldstudy.

Experimenter bias. The experimenter understood ownership domain annotationsand de-
signed several of the tools that he used himself during the field study. Moreover, he had access to
the code for the tools and customized them to the task to minimize data entry by loading settings
from a file. However, a typechecker kept him honest, i.e., he could not just insert any annotation
or manipulate the extracted object graphs. In a few instances, the experimenter backtracked on
certain annotations he had just inserted.

Code unfamiliarity. The experimenter was completely unfamiliar with the code. Adeveloper
who is familiar with the code could perhaps add better annotations faster.

172 Chapter 4. Evaluation of the Object Graph Extraction

Developer motivation. The field study occurred in a workweek during which the developers
were busy meeting a product ship deadline. As a result, they were less motivated to help the
experimenter. Moreover, the developer seemed skeptical about the method and the tool.

Domain familiarity. LbGrid was somewhat similar to the JHotDraw subject system the experi-
menter studied previously, in that they are both GUI-based applications that used the Java Swing
and AWT libraries. The experimenter also had some experiencewith the application domain,
having previously developed a reusable grid control.

4.8.7 LbGrid Summary

The field study helped us confirm the following. First, we confirmed that an outside developer
understood abstraction by ownership hierarchy and by types. Second, using only static analysis
was compelling during architectural extraction, even without considering issues of soundness
and the need to reflect all possible program runs. For a variety of reasons, it would have been
difficult to setup and run the LbGrid system in order to use an architectural extraction method
based on dynamic analysis. In addition, using a dynamic analysis would have required the ex-
perimenter to learn how to use the LbGrid system in order to get a good coverage. This would
have been difficult because it would have required populating a database with appropriate test
data, and learning how to navigate a fairly complex user interface with many user-selectable op-
tions. Finally, based on my own previous experience with ArchJava (Abi-Antoun and Coelho
2005; Abi-Antoun et al. 2007a), I could not have re-engineered LbGrid to ArchJava in the same
few days that it took me to add the annotations, even after accounting for possible tool and lan-
guage familiarity. Thus, adding annotations to an existingsystem seems more lightweight than
re-engineering the system to use an extended language like ArchJava.

The goal of the field study was to better understand the process of adding the annotations. In
addition, it would have been nice to demonstrate the value ofthe extracted architecture by show-
ing how it can help identify undocumented information or contradict documented information,
or help a developer in a typical code modification task. Due tothe time constraints on the field
study, we never got to concretely demonstrating the value ofthe extracted architecture.

4.9 Evaluation based on Cognitive Framework for Design

4.9. Evaluation based on Cognitive Framework for Design 173

Table 4.1: Evaluation of the ArchRecJ tool based on the Cognitive Framework for Design (Storey et al. 1999).

Cognitive Design Element Corresponding feature in the tool
Enhance bottom-up comprehension
E1: Indicate syntactic and semantic relationships Indicate logical containment or strict encapsulation;

view field declarations that aDObject merges
E2: Reduce effects of delocalized plans Handle inherited fields and domains;

Show objects in actual domains bound to formal domain parameters
E3: Provide abstraction mechanism Developer-specified annotations organize objects into groups (with merging)

Hide all the private domains or the internals of a selected object

Enhance top-down comprehension
E4: Support hypothesis driven comprehension Start at selected root object and drill down; optionally visualize formals
E5: Provide overviews at various levels of abstractionLimit depth of ownership tree and elide the “internals” of a selectedDObject

Integrate bottom-up and top-down approaches
E6: Provide views of multiple mental models Show an approximation of the runtime structure at compile time
E7: Cross-reference multiple mental models Label aDObject with a list of types; optionally show variable names
Facilitate navigation
E8: Provide directional navigation Navigate up and down ownership tree
E9: Provide arbitrary navigation Search for a type, domain or field by name

Provide orientation cues
E10: Indicate the current focus Show currently selected element in ownership tree to the left of the visualization
E11: Display path that led to current focus Show a nested graph starting from the root object
E12: Indicate options for further exploration Show all domains, objects in domain; clicking on object selects it in ownership tree

Reduce disorientation effects
E13: Reduce effort for user-interface adjustment Main window shows the unfolding of theDGraph
E14: Provide effective presentation styles TheDGraph is laid out automatically; the tool supports filtering options

174
C

hapter
4.E

valuation
ofthe

O
bjectG

raph
E

xtraction

Table 4.1 presents an evaluation of the tool against a software visualization taxonomy used
for software exploration tools, the Cognitive Framework forDesign (Storey et al. 1999), with the
usual disclaimers against self-evaluation.

Future work includes conducting additional evaluations (Nielsen and Mack 1994) in areas
where visualizing the runtime architecture is crucial for program understanding, such as when
tuning performance (Walker et al. 1998), or distributing anapplication (Spiegel 2002).

4.10 Discussion

We now discussion our evaluation of the annotations and the static analysis.

4.10.1 Research Questions (Revisited)

In this section, I discuss how well the evaluation answered the research questions (Section 4.2).
RQ1 – Precision: In practice, the static analysis does produce object graphsthat have sufficient

precision. The combination of precise generic types and domain annotations seems ade-
quate in most cases.

RQ2 – Abstraction by ownership: In practice, a hierarchical object graph provides architec-
tural abstraction by showing an order of magnitude fewer objects in the top-level domains,
compared to a flat object graph.

RQ3 – Abstraction by types: In practice, abstraction by types achieve additional architectural
abstraction in an object graph, even in the presence of a richinheritance hierarchy, such as
the one in JHotDraw.

RQ4 – Iteration: In practice, I was able to iterate effectively the process ofadding the owner-
ship annotations and extracting object graphs that have thedesired architectural abstrac-
tion.

RQ5 – Annotations: In practice, I was able to add annotations that describe local, modular in-
formation. The process is iterative and self-correcting. Inever encountered a situation
where I was unsure of the annotation to add, needed the visualization to add the annota-
tions, but the visualization itself needed the annotations. I could always add an annotation
that typechecked, then go back and refine it as needed.
Moreover, the annotations that I added, e.g.,MODEL, VIEW, CONTROLLER, were mostly nat-
ural and consistent with engineering intuition. In particular, I did not define fake domains
such asMODEL1 andMODEL2 to compensate for the absence of an alias analysis or for the
other sources of imprecision in the analysis (Section 2.6.3, Page 69).

RQ6 – Value: In practice, I indicated several instances of how an extracted OOG highlights
potentially useful information about a system’s runtime structure.

4.10.2 Evaluation Critique

Our evaluation of the object graph extraction suffers from afew weaknesses.

4.10. Discussion 175

Subject system selection. One criticism is that we initially evaluated the approach onthe same
subject systems we used to develop the approach. For instance, the JHotDraw and the Hill-
Climber case studies were formative. However, the LbGrid andAphyds case studies were more
summative.

Lack of comparison. Since there is other prior work in architectural recovery, acomparative
validation would be useful. Ideally, one should apply several architectural recovery approaches
to the same subject system (say, JHotDraw) and compare whichone is less onerous, more direct,
and qualitatively evaluate the output of the various tools.However, the only tool that claims
to extract runtime architecture statically, X-RAY (Mendonça and Kramer 2001), supports only
procedural code.

Missing target architecture. None of the subject systems we annotated came with an authori-
tative target architecture to guide the annotation process. Indeed, defining a reference or a target
architecture is a research topic in its own right. In the caseof LbGrid, I had access only to a rough
guide based on a code architecture, so I was effectively defining the target runtime architecture
during the process of adding the annotations.

Missing generic types. The code bases for JHotDraw and HillClimber did not already use
generic types. In some cases, refactoring to generics was non-trivial, and uncovered some poten-
tial defects, e.g., when the sameVector object was used to store objects of different types, such
asString andInteger objects.

Missing effort data. I conducted the formative JHotDraw and HillClimber case studies in dif-
ferent phases. In particular, I stopped the case studies in the early stages to fix several important
bugs in the tool chain. So, I do not have accurate measures of the time spent adding annotations
to those systems. However, during the field study, we did carefully measure the time needed to
apply the approach, as we discussed above.

4.10.3 Soundness

All the subject systems we annotated still have several annotation warnings, which weakens
the claims that the extracted object graphs are sound. Addressing these remaining annotation
warnings could involve one of the following:

• Increase type system expressiveness.There are several known expressiveness challenges
in the underlying type system. So one way to address those warnings is to extend the type
system (See Section 9.2.2, Page 308);

• Refactor the code. In some cases, refactoring the code could allow for it to be anno-
tated successfully, using the current type system. Of course, this is not an ideal solution.
However, some of the code that cannot be annotated is also notfollowing recommended
practices of object-oriented design and programming. One class of warnings is due to the
use of static fields, which are typically challenging for most ownership type systems.

176 Chapter 4. Evaluation of the Object Graph Extraction

Table 4.2: Performance measurements of the architectural extraction.LOC shows the lines of code.OOG
measures the extraction time in minutes and seconds on an Intel Pentium 4 (3 GHz) with 2 GB of memory.
WARN is the remaining annotation warnings.ABST indicates which abstraction by types was used.

System LOC OOG ABST WARN
JHotDraw 15,000 2:18 Trivial types / Design intent types 60
HillClimber 15,000 0:26 Trivial types 42

• Inspect the code and suppress innocuous warning.An annotation warning contributes
to unsoundness in an extracted object graph only if eliminating the warning would result in
new objects or edges in the object graph. One could manually inspect the problematic lines
of code, and manually suppress the annotation if one can determine that such a warning
does not make the object graph unsound. Still, one advantageof the approach in that case
is that the developer does not have to inspect the entire codebase.

4.10.4 Performance

Table 4.2 measures the execution time of the static analysison several subject systems. The OOG
time includes parsing the program’s abstract syntax tree toretrieve the annotations and extracting
the object graph. Overall, the OOG tool is sufficiently interactive to allow iteration.

4.10.5 Scalability

Since the biggest system we analyzed was only 30 KLOC (LbGrid), we cannot claim that we
demonstrated SCHOLIA ’s scalability. However, when compared to many published architectural
extraction case studies, even 30-KLOC does not fare too poorly.

4.11 Summary

I evaluated the object graph extraction analysis using several real medium-sized programs that I
annotated manually. From an annotated program, I showed that I can use a tool to extract stati-
cally a hierarchical object graph that conveys meaningful abstractions. Indeed, these hierarchical
object graphs seem to scale much more effectively than the corresponding flat object graphs that
previous static analyses extract. In addition, an extracted object graph can give various insights
by identifying undocumented information or contradictingmanual documentation.

There are two questions, however, that the evaluation presented in this chapter does not an-
swer. The first question is whether an extracted object graphcorresponds truly to a standard
runtime architecture. In Chapter 6, I discuss a separate analysis that raises the level of abstrac-
tion of an object graph, and abstracts it into a C&C view.

The second, perhaps more important question is when to stop iterating the process of refining
the annotations and extracting OOGs. One strategy is to fine-tune the annotations in the code and
the abstraction by types to make an extracted object graph similar to a posited architecture, to
enable analyzing the conformance of the implementation to adesigned architecture. In Chapter 6,

4.11. Summary 177

I make this evaluation criterion more precise by abstracting an extracted object graph into a built
architecture, then analyzing the conformance of a built architecture to a designed one.

Analyzing conformance requires identifying and reconciling the key differences between
the built and the target architectures, so the next chapter (Chapter 5) addresses the problem of
synchronizing between two architectural views.

Credits

Wesley Coelho helped me re-engineer the HillClimber application to ArchJava
(Abi-Antoun and Coelho 2005; Abi-Antoun et al. 2007a).

Acknowledgements

The author thanks Alan Mackworth for granting us permissionto study the HillClimber code
base and publish details of the case study. The author also thanks Molham Aref and the devel-
opers from LogicBlox Inc. for hosting the weeklong on-site LbGrid field study and granting us
permission to publish details of the field study. My thesis committee offered especially timely
and useful advice on how to conduct a field study. In addition,Mary Shaw, Thomas LaToza and
Christopher Scaffidi gave us helpful comments on how to present the field study results.

178 Chapter 4. Evaluation of the Object Graph Extraction

Chapter 5

Architectural Synchronization1

5.1 Introduction

Software architects often face the problem of reconciling different versions of architectural mod-
els including differencing and sometimes merging architectural views—i.e., using the difference
information from two versions to produce a new version that includes changes from both ear-
lier versions. For instance, during analysis, a software architect may want to reconcile two
Component-and-Connector (C&C) views representing two variants in a product line architecture
(Chen et al. 2003). A runtime analysis could use the difference information to perform archi-
tectural repair (Dashofy et al. 2002). During evolution, the difference information between two
versions can help focus regression testing efforts (Muccini et al. 2005).

Once the system is implemented, an architect may want to compare a designed C&C view
against a C&C view retrieved from the implementation using various architectural extraction
techniques. This is the approach that SCHOLIA takes to analyze communication integrity in the
target architecture, following theextract-abstract-checkstrategy.

Several techniques have been proposed for differencing andmerging architectural or design
views. Most, however, do not detect differences based on structural information. Many assume
that elements have unique identifiers (Alanen and Porres 2003; Ohst et al. 2003; Mehra et al.
2005). Others match two elements if both their labels and their types match (Chen et al. 2003),
which is often infeasible when dealing with views at different levels of abstraction. Many tech-
niques detect only a small number of differences. For instance, ArchDiff only detects insertions
and deletions (van der Westhuizen and van der Hoek 2002; Chen et al. 2003), possibly leading
to the loss of information when elements are renamed or movedacross the hierarchy. Tracking
changes, using element-level versioning, helps infer high-level operations, such as merges, splits
or clones, in addition to the low-level operations, such as inserts and deletes (Jimenez 2005;
Roshandel et al. 2004). But such an approach requires buildingnew tools or changing existing
tools to monitor the edits, and cannot handle legacy architectural models.

We propose an approach that overcomes some of these limitations, by differencing and merg-
ing architectural views based on structural information. In our approach, we leverage the hier-
archy in the architectural views, and use a tree-to-tree correction algorithm to identify matches,

1Portions of this chapter appeared in (Abi-Antoun et al. 2006; Abi-Antoun et al. 2008)

179

and classify the changes between the two views. The algorithm uses the optional type informa-
tion, whenever available, to avoid matching view elements that are incompatible, thus speeding
execution and improving the match quality.

At the core of the approach is a polynomial-time tree-to-tree correction algorithm, MDIR,
(Nahas 2009) that extends another optimal tree-to-tree correction algorithm for unordered la-
beled trees that detects renames, inserts and deletes (Torsello et al. 2005), and generalizes it to
additionally detect restricted moves. The algorithm also supports forcing and preventing matches
between elements in the views under comparison.

I developed a set of tools for the semi-automated synchronization of C&C views that uses
the MDIR algorithm. The first tool, ArchJ2Acme, can synchronize a designed C&C view with
a built C&C view retrieved from an ArchJava implementation. Another tool, ArchSynchro, can
more generally synchronize two C&C views in Acme, regardlessof how they were obtained. I
evaluated the tools to find and reconcile interesting differences in real architectural views.

The chapter is organized as follows. Section 5.2 describes the challenges in differencing and
merging architectural views, the underlying assumptions,and the limitations of our approach.
Section 5.3 summarizes our novel tree-to-tree correction algorithm (Abi-Antoun et al. 2008). In
Section 5.4, we use the algorithm to synchronize architectural C&C views. Section 5.5 illustrates
the approach using extended examples on real architecturalviews.

5.2 Architectural View Differencing

A software architecture can generally be described as a graph, so differencing and merging archi-
tectural views is a problem in graph matching. Graph matching measures the similarity between
two graphs using the notion of graph edit distance, i.e., it produces a set of edit operations that
model inconsistencies by transforming one graph into another (Conte et al. 2004). Typical graph
edit operations include the deletion, insertion and substitution of nodes and edges. Each edit
operation is assigned a cost. The costs are application-dependent, and model the likelihood of
the corresponding inconsistencies. Typically, the more likely a certain inconsistency is, the lower
is its cost. Then the edit distance of two graphsg1 andg2 is found by searching for the sequence
of edit operations with the minimum cost that transformg1 into g2. A similar problem formula-
tion can be used for trees. However, tree edit distance differs from graph edit distance, in that
operations are carried out only on nodes and never directly on edges.

Graph matching is NP-complete in the general case (Conte et al. 2004). Unique node la-
bels enable processing graphs efficiently (Dickinson et al.2004), which explains why many ap-
proaches make this assumption, e.g., (Alanen and Porres 2003; Ohst et al. 2003; Mehra et al.
2005). Optimal graph matching algorithms, i.e., those thatcan find a global minimum of the
matching cost if it exists, can handle at most a few dozen nodes (Messmer 1996; Conte et al.
2004). Non-optimal heuristic-based algorithms are more scalable, but often make restrictive
assumptions. For instance, the Similarity Flooding Algorithm (SFA) “works for directed la-
beled graphs only. It degrades when labeling is uniform or undirected, or when nodes are less
distinguishable. [It] does not perform well [. . .] on undirected graphs having no edge labels”
(Melnik et al. 2002).

Several efficient algorithms have been proposed for trees, astrict hierarchical structure, so our

180 Chapter 5. Architectural Synchronization

approach focuses on hierarchical architectural views. While not all architectural views are hierar-
chical, many use hierarchy to attain both high-level understanding and detail. In a C&C view, the
tree-like hierarchy corresponds to the system decomposition, but cross-links between the system
elements form a general graph. Many approaches are hierarchical (Apiwattanapong et al. 2004;
Raghavan et al. 2004; Xing and Stroulia 2005). So our choice ishardly new. However, we relax
the constraints of existing approaches as follows:

No unique identifiers. Most techniques do not detect differences based on structural informa-
tion. Many assume that elements have unique identifiers (Alanen and Porres 2003; Ohst et al.
2003; Mehra et al. 2005). Others match two elements if both their labels and their types match
(Chen et al. 2003), which is often infeasible when dealing with views at different levels of ab-
straction. Making the assumption of having unique identifiers enables the use of exact and scal-
able algorithms that can handle thousands of nodes (Dickinson et al. 2004).

Unfortunately, architectural view elements often do not have unique identifiers. This is par-
ticularly the case for a built architecture extracted from an implementation using a tool. For
maximum generality, SCHOLIA does not require elements to have unique identifiers.

No ordering. In the general case, an architectural view has no inherent ordering between its
elements. This suggests that an unordered tree-to-tree correction algorithm might perform better
than one for ordered trees. Many efficient algorithms are available for ordered labeled trees, e.g.,
(Shasha and Zhang 1997). In comparison, tree-to-tree correction for unordered trees is MAX
SNP-hard (Zhang and Jiang 1994). Some algorithms for unordered trees achieve polynomial-
time complexity, either through heuristic methods, e.g., (Chawathe and Garcia-Molina 1997;
Wang et al. 2003; Raghavan et al. 2004), or under additional assumptions, e.g., (Torsello et al.
2005).

Insertions and deletions only. Many architectural comparison techniques detect only a small
number of differences. For instance, ArchDiff (van der Westhuizen and van der Hoek 2002;
Chen et al. 2003) detects only insertions and deletions, possibly losing information when ele-
ments are renamed or moved across the hierarchy.

Name differences between two C&C views can arise for a varietyof reasons. For instance,
the architect may update a name in one view, and forget to update another view. Names are
often modified during software development and maintenance. A name may turn out to be in-
appropriate or misleading due to either careless initial choice, or name conflicts from separately
developed modules (Ammann and Cameron 1994). Furthermore, developers tend to avoid using
names that may be in use by an implementation framework or library, a minor detail for the ar-
chitect. Finally, architectural view elements may not havepersistent names or their names may
be generated automatically by tools.

This suggests that an algorithm should be able to match renamed elements. Identifying an
element as being deleted then inserted when, in fact, it was renamed, would result in losing prop-
erty information about the element, even if this produces structurally equivalent views. These
architectural properties, such as throughput, latency, etc., are crucial for many architectural anal-
yses, e.g., (Spitznagel and Garlan 1998).

5.2. Architectural View Differencing 181

In the following discussion, amatchednode is a node with either anexactly matchinglabel
or arenamedlabel.

Hierarchical moves. Architects often use hierarchy to manage complexity. In general, two
architects may differ in their use of hierarchy: a componentexpressed at the top level in one view
could be nested within another component in some other view.This suggests that an algorithm
should detect sequences ofinternal node deletionsin the middle of the tree, which result in
nodes moving up a number of levels in the hierarchy. An algorithm should also detect sequences
of internal node insertionsin the middle of the tree, which result in nodes moving down the
hierarchy, by becoming children of the inserted nodes (Fig.5.1).

Manual overrides. Structural similarities may lead a fully automated algorithm to incorrectly
match top-level elements between two trees and produce an unusable output. Because of the
dependencies in the mapping, one cannot easily adjust incorrect matches after the fact. Instead,
we added a feature not typically found in tree-to-tree correction algorithms. The feature allows
the user to force or prevent matches between selected view elements. The algorithm then takes
these constraints into account to improve the overall match. The user can specify any set of
constraints, as long as they preserve the ancestry relationbetween the forcibly matched nodes.
In particular, ifa is an ancestor ofb, a is forcibly matched toc, andb is forcibly matched tod,
thenc must be an ancestor ofd.

Optional type information. Architectural views may be untyped or have different or incom-
patible type systems. This is often the case when comparing views at different levels of abstrac-
tion, such as a designed conceptual-level view with a built implementation-level view. Therefore,
an algorithm should not rely on matching type information, and should be able to recover a cor-
rect mapping from structure alone if necessary, or from structure and type information if type
information is available. An algorithm could however take advantage of type information, when
available, to prune the search space by not attempting to match elements of incompatible types.

If the view elements are represented as typed nodes, at the very least, an algorithm should
not match nodes of incompatible types, e.g., it should not match a connectorx to a componenty.
If architectural style information is available, additional architectural types may be available and
could be used for similar purposes. For instance, an algorithm can avoid matching a component
of typeFilter, from a Pipe-and-Filter architectural style, to a component of typeRepository,
from a Shared-Data architectural style (Shaw and Garlan 1996).

No monitoring changes. Tracking changes, using element-level versioning, helps infer high-
level operations, such as merges, splits or clones, in addition to the low-level operations, such
as inserts and deletes (Jimenez 2005; Roshandel et al. 2004).But such an approach requires
building new tools or changing existing tools to monitor theedits, and cannot handle legacy
architectural models. For maximum generality, SCHOLIA assumes a disconnected and stateless
operation.

182 Chapter 5. Architectural Synchronization

rename(a --> a’)

T1

r

a

b c d e

T2

r

a’

b c d e

delete(a)

r

s

a b e

c d

r

s

b c d e

insert(a)

r

s

b c d e

r

s

a e

b c d

Figure 5.1: Tree edit operations.

5.2. Architectural View Differencing 183

Comparable views. The two views under comparison have to be somewhat structurally sim-
ilar. When comparing two completely different views, an algorithm could trivially delete all
elements of one view, and then insert them in the other view. In addition, the two views must
be of the same viewtype, and must be comparable without any view transformation. Checking
the consistency of different but related views, such as a UMLclass diagram and a UML se-
quence diagram, is a problem inview integration(Egyed 2006), and is outside the scope of this
dissertation.

No merging/splitting. Our approach does not currently detect the merging or splitting of view
elements. Merging and splitting are common practice, but are difficult to formalize, since they
affect connections in a context-dependent way (Erdogmus 1998). We leave merges and splits to
future work.

5.3 Tree-to-Tree Correction

(Nahas 2009) developed an algorithm for the comparison of unordered labeled trees, MDIR
(Moves-Deletes-Inserts-Renames), which generalizes a recent optimal tree-to-tree correction
algorithm (Torsello et al. 2005), which we will refer to as THP. Here, we give an overview
of the MDIR algorithm and leave the details, including its pseudo-code definition, elsewhere
(Abi-Antoun et al. 2008; Nahas 2009).

5.3.1 Overview of Algorithm

We illustrate the MDIR algorithm on a small example of comparing two treesT1 andT2. MDIR
exhaustively computes from bottom to top the cost of mappingeach node inT1 to every other
node inT2. The computed costs are stored in a cost matrix. Following the dynamic programming
paradigm, MDIR uses the comparison on the high depth nodes tocompare the low depth nodes.
The example also illustrates the usefulness of thesuccessor setapproach, since bipartite match-
ing cannot match subtree nodes, because of the need to preserve the hierarchical constraints.

MDIR starts by computing the cost of matchingD to d (Fig. 5.2). Similarly, MDIR computes
the costs of matching(D, e), (D, f), (D, g), . . . , (E, d), (E, e), (E, g). Next, MDIR computes
the cost of matchingB to d (Fig. 5.3). Then, MDIR computes the cost of matchingB to b
(Fig. 5.4). This requires knowing the cost of the optimalsuccessor set mappingfor B andb. At
this point, MDIR has computed the costs of matching every descendent ofB to any node in the
second tree, because of the post-ordering of the trees.

The optimal successor set mapping corresponding to the pair(B, b) is computed as follows
(Fig. 5.5). First, take all the node pairs, where the first item is a descendent ofB, and the second
item is a descendent ofb, i.e., the set{(D, d), (D, e), (E, d), (E, e)}. The optimal mapping will
clearly be a subset of this set. To obtain that optimal mapping, we examine all mappings—
except the ones that have been pruned because the bounds on their cost showed they could not
be optimal. The other constraint is: if(x, y) is a pair in a mapping, neitherx, nory, nor any of
their ascendents or descendents, can appear in any other pair in the same mapping. Thus, the

184 Chapter 5. Architectural Synchronization

A

D

B C

FE G

a

d

b

fe g

(D, d) = 0 (D, e) = 1 (D, f) = 2 (D, g) =3 (D, b) =… (D, a) =…

(E, d) = 1 (E, e) = 0 (E, g) = 2(E, f) = 1 (E, b) =… (E, a) =…

… … …… … …

T1
T2

Figure 5.2: COST(D,d) = cost of editing label ofD to d, i.e., the measure of similarity between the labels,
in this case0.

A

D

B C

FE G

a

d

b

fe g

(B, d) = 12(B, e) = … (B, g) = …(B, f) = … (B, b) =… (B, a) =…

… … …… … …

(D, d) = 0 (D, e) = 0 (D, f) = 2 (D, g) =3 (D, b) =… (D, a) =…

(E, d) = 1 (E, e) = 0 (E, g) = 2(E, f) = 1 (E, b) =… (E, a) =…

T2T1

Figure 5.3: COST(B,d) = COST(deletingB’s children) + COST(editingB’s label). Assuming the cost of
a deletion is 5 times a unit cost, COST(B, d) = COST(deletingD) + COST(deletingE) + COST(editing
B’s label) = 5 + 5 + 2.

A

D

B C

FE G

a

d

b

fe g

(E, d) = 1 (E, e) = 0 (E, g) = 2(E, f) = 1 (E, b) =… (E, a) =…

(B, d) = 12(B, e) = … (B, g) = …(B, f) = … (B, b) = 0 (B, a) =…

… … …… … …

(D, d) = 0 (D, e) = 1 (D, f) = 2 (D, g) =3 (D, b) =… (D, a) =…

T2T1

Figure 5.4: COST(B,b) = COST(successor set mapping of(B, b)) + COST(editing the label ofB to b).
COST(D,d) and COST(E,e) have been previously computed, thus COST(B, b) = COST(D,d) + COST(E,e)
+ 0.

optimal successor set mapping for(B, b) is {(D, d), (E, e)}. Finally, MDIR computes the cost
of matchingB to a (Fig. 5.6).

At the end of this phase, MDIR has determined the “best” successor set mapping, and stored
it for the next phase, when MDIR will retrieve the best matches. MDIR could avoid keeping
the optimal successor set mapping for each node pair in the first phase, to reduce the space

5.3. Tree-to-Tree Correction 185

A

D

B C

FE G

a

d

b

fe g

T2T1

Figure 5.5: Computing the cost of matchingB to b requires thesuccessor set mappingof the pair(B, b).
Thesuccessor set mappingof (B, b) is the set{(D, d), (E, e)}.

A

D

B C

FE G

a

d

b

fe g

(D, d) = 0 (D, e) = 1 (D, f) = 2 (D, g) =3 (D, b) =… (D, a) =…

(E, d) = 1 (E, e) = 0 (E, g) = 2(E, f) = 1 (E, b) =… (E, a) =…

(B, d) = 12(B, e) =… (B, g) =…(B, f) =… (B, b) = 0 (B, a) = ?

… … …… … …

T2T1

Figure 5.6: COST(B,a) = COST(successor set mapping of (B, a)) + COST(editing the label ofB to a) +
COST(deletingb, f andg).

complexity toO(N2). But it is simpler conceptually to store this information, and this is how we
currently implemented MDIR.

In the second phase, MDIR uses a recursive procedure to compute the match list, i.e., to
determine what node corresponds to what other node. MDIR uses the following recursive for-
mulation. The list of matches for subtree pair rooted at(x, y) consists of(x, y), in addition to the
list of matches of each pair in the successor set mapping of(x, y).

MDIR starts with (A, a) (Fig. 5.7). The successor set mapping of(A, a) is
{(B, b), (F, f), (G, g)}. So, MDIR first adds(A, a) to the match list, and then adds the pairs
(B, b), (F, f), and(G, g) to the work list. Then, MDIR pops(B, b) from the work list, adds it to
the match list, and adds to the work list the successor set(B, b), namely,(D, d) and(E, e). Next,
MDIR pops(F, f) from the work list, adds it to the match list, and proceeds similarly.

5.3.2 Forcing and Preventing Matches

Manual overrides are not a standard operation in most tree-to-tree correction algorithms. MDIR
has the ability to force and prevent matches between a node intreeT1 and another node in tree
T2.

Preventing a match between two nodesi andj can be done by assigning a very large cost
to the corresponding entry in the cost matrixC[i][j]. But forcing a match between two nodes is
more difficult, due to the necessity of avoiding the deletionof the forcibly matched nodes and at
the same time allowing the deletion of some of their ancestors. An explanation of the solution is
in (Abi-Antoun et al. 2008; Nahas 2009).

186 Chapter 5. Architectural Synchronization

A

D

B C

FE G

a

d

b

fe g

Step Work List Match List
1 (A,a)
2 (B,b)(F,f)(G,g) (A,a)
3 (F,f)(G,g)(D,d)(E,e) (A,a)(B,b)
4 (G,g)(D,d)(E,e) (A,a)(B,b)(F,f)
5 (D,d)(E,e) (A,a)(B,b)(F,f)(G,g)

Figure 5.7: Computing the match list.

5.3.3 Runtime and Memory Complexity

In practice2, the observed runtime for MDIR isO(KN2), whereK is a large constant. In com-
parison, THP has a worst case running time ofO(d3N2), whered is the maximum degree of a
tree andd << N (Torsello et al. 2005). Regarding memory requirements, bothTHP and MDIR
could be implemented inO(N2) space, at the expense of additional complexity. Our currentTHP
implementation requiresO(dN2) space, and MDIR requiresO(bN2) space, whereb is a large
constant factor.

5.4 Architectural View Synchronization

In this section, we discuss how we use a tree-to-tree correction algorithm to synchronize hierar-
chical graphs corresponding to C&C runtime architectures.

5.4.1 General Approach

We represent the structural information in a C&C view as a cross-linked tree structure that mir-
rors the hierarchical decomposition of a system. The tree also includes some redundant infor-
mation to improve the accuracy of the structural comparison. For instance, the subtree of a node
corresponding to a port includes additional nodes for all the port’s involvements, i.e., all the com-
ponents and their ports reachable from that port. Each node is decorated with properties, such as
type information. The type information, if provided, populates a matrix of incompatible nodes
that may not be matched. That matrix also includes optional user-specified constraints to force
or prevent matches.

A graph representing a C&C view can generally have cycles in it. Representing an archi-
tectural graph as a tree causes each shared node in the graph to appear in several subtrees. We
consider one of these nodes thedefining occurrence, and add across-linkfrom each repeated
node back to its defining occurrence. These redundant nodes,while they significantly increase

2A more formal analysis of the algorithm’s complexity is in (Abi-Antoun et al. 2008; Nahas 2009).

5.4. Architectural View Synchronization 187

(a) (b) (c) (d)

Figure 5.8: Graphical overlays to indicate differences: Fig. 5.8(a) indicates amatch; Fig. 5.8(b) indicates
a rename; Fig. 5.8(c) indicates aninsertion; and Fig. 5.8(d) indicates adeletion.

the tree sizes, greatly improve the tree-to-tree correction accuracy. However, they may be incon-
sistently matched with respect to their defining occurrences, either in what they refer to, or in the
associated edit operations.

We work around these inconsistent matches using two passes.During the first pass, we
synchronize the strictly hierarchical information corresponding to the system decomposition,
i.e., components, ports and representations. During the second pass, we synchronize the edges in
the architectural graph. The post-processing step is simple at that point, since it has the mapping
between the nodes in the two graphs.

Synchronization is a five-step process: (1) setup the synchronization; (2) optionally view and
match types; (3) view and match instances; (4) optionally view and modify the edit script; (5)
confirm and optionally apply the edit script. The final step isoptional because the architect may
decline the edit operations for various reasons, or may be interested only in a change impact
analysis (Krikhaar et al. 1999). Because Steps 1 and 5 are straightforward, we will only discuss
Steps 2-4.

In Step 2, manually matching the type structures between thetwo views produces semantic
information that speeds up the comparison. This optional information can also reduce the amount
of data entry for assigning types to the elements that the edit script will create.

In Step 3, matching instances proceeds as follows: (a) buildtree-structured data from the
two C&C views to be compared; (b) use tree-to-tree correctionto identify matches and structural
differences; and (c) obtain an edit script to merge the two views.

The tool shows the structural differences by overlaying icons on the affected elements in
each tree (Fig. 5.8). If an element is renamed, the tool automatically selects and highlights
the matching element in the other tree. For inserted or deleted elements, the tool automatically
selects the insertion point, by navigating up the tree untilit reaches a matched ancestor. The tool
shows in bold a node if it detects differences in its subtree.The tool shows in italics ports that
are inherited from the component type.

Various features can restrict the size of the trees and help reduce the comparison time:
• Start at Component: the user can select any component to be the tree root, and can reduce

the tree sizes by selecting subtrees;
• Restrict Tree Depth: the user can exclude from comparison any nodes beyond a certain

tree depth;
• Elide Elements: the user can exclude selected nodes and their entire subtrees from com-

parison. Elision is temporary and does not generate any editactions.
The tool gives the user manual control using the following features:
• Forced matches:the user can manually force a match between two elements thatmay not

match structurally;
• Manual overrides: the user can override any edit action suggested by the structural com-

188 Chapter 5. Architectural Synchronization

parison.
Step 4 produces from the edit script a common supertree, thatpreviews the merged view

after the edit actions are applied. In this step, the user canassign types to elements to be created,
change the types of existing elements, or override types that were automatically inferred based
on the type matching in Step 2. The tool also checks the edit script for errors, such as illegal
element names. The user can also rename any architectural element that the edit script will
create. Finally, the user can cancel any unwanted edit actions.

5.4.2 Specialized Tools

This approach supports building tools for differencing andmerging architectural views in a wide
range of architecture description languages (ADLs). However, to evaluate our approach, we
represent the C&C views in the Acme general purpose ADL (Garlan et al. 2000; Acme 2009).

We developed a tool to extract a built C&C architecture from anArchJava implementa-
tion (Aldrich et al. 2002a). Similarly, one could extract built views from an implementation-
constraining ADL with code generation capabilities, or an implementation-independent ADL
with an implementation framework, such as C2 (Medvidovic andTaylor 2000).

We intended our synchronization tools to be lightweight enough that they can
fit into a single dialog in an integrated development environment, such as Eclipse
(Object Technology International, Inc. 2003), rather thanrequire a specialized environment for
architectural extraction (Telea et al. 2002). Both AcmeStudio, a domain-neutral architecture
modeling environment for Acme (Schmerl and Garlan 2004; AcmeStudio 2009), and ArchJava’s
development environment, are Eclipse plugins, which reduced the tool integration effort.

We developed one tool, ArchJ2Acme, to make a designed architecture expressed in Acme,
incrementally consistent with a built architecture extracted from an ArchJava implementation. In
future work, the ArchJava infrastructure must change to support making incremental changes to
an existing ArchJava implementation based on changes to thedesigned architecture.

We developed another tool, ArchSynchro, based on the same approach, to more generally
synchronize any two C&C views represented in Acme. One view could correspond to a doc-
umented architecture. The second view could correspond to aC&C view recovered using any
architectural extraction technique, e.g., (Schmerl et al.2006). Alternatively, the second view
could be another C&C view retrieved from a configuration management system, or one that
corresponds to a variant in a product line.

Synchronizing a designed C&C view with a built C&C view must often address expressive-
ness gaps between architectural information at different levels of abstraction. Although we use
Acme and ArchJava to illustrate some of these differences that must be bridged, synchronizing
any pair of designed and built C&C views may encounter similarchallenges.

Structural Differences. There will always be name differences of the same structuralinforma-
tion between Acme and ArchJava. For instance, an ArchJava port can be namedin, a reserved
keyword in Acme. Even if code generation automatically produces a skeleton implementation
from the architectural model, connector names and role names are lost, since ArchJava does not
even name those elements. Finally, in Acme, port names are critical for typechecking. But in

5.4. Architectural View Synchronization 189

ArchJava, port names are unimportant and obey the standard programming language notions of
binding and scope.

Hierarchy. Acme treats hierarchy as design-time composition, where a component at one level
in the hierarchy is just a transparent view of a more detaileddecomposition specified by the
representation of that component. Multiple representations for a given component or connector
could correspond to alternative ways of decomposing an element. On the other hand, ArchJava
views hierarchy in terms of integration of existing components, along with glue code, into a
higher-level component. Due to the glue, a higher-level component is semantically more than the
sum of its parts. These differing views of hierarchy create additional challenges for architectural
synchronization. For example, if multiple representations are present at the design level, there
must be a way to specify which of these representations was actually implemented.

Matching Instances. Obtaining the tree-structured data from Acme simply converts the Acme
architectural graph into the cross-linked tree structure discussed earlier. Acme does not have
first-class constructs for required and provided methods. In keeping with Acme’s model for
extensible properties, the tool adds properties on a port torepresent its provided and required
methods, as well as other salient properties, e.g., the port’s visibility.

To obtain the tree-structured data from an ArchJava implementation, the ArchJ2Acme tool
traverses the compilation units, ignores classes that are not component types, and fields that are
not of component type. Different modeling choices are possible in this case. First, ArchJava
does not name connectors or connector roles. The ArchJ2Acmetool generates synthetic names
from the components and ports that a connector connects to. Second, the ArchJava top-level
component can have ports, whereas the top-level component in Acme, i.e., the Acme system,
cannot. One option is to create a top-level component in Acmeto correspond to ArchJava’s
top-level component. Another is to create a synthetic component to hold these ports. Third,
ArchJava ports can be private, whereas all Acme ports are public. One option is to represent
ArchJava private ports as Acme ports on an internal component instance; another is to simply
ignore private ports.

Matching Types. Assigning architectural styles and types to an Acme view enforces the ar-
chitectural intent using constraints (Monroe 2001). For instance, a constraint on a component
type may specify that all instances of that type must have exactly two ports. Similarly, setting
architectural styles on the overall system—and on each sub-system representation if applicable,
enforces any constraints associated with the style. In Acme, the Pipe-and-Filter style prohibits
cycles, a constraint that a general purpose implementationlanguage, such as ArchJava, does not
directly enforce.

In many design languages, types are arbitrary logical predicates. An element is an instance
of any type whose properties and rules it satisfies. And one type is a subtype of another, if the
predicate of the first type implies the predicate of the second type. Such a type system is highly
desirable at design time, because it allows designers to combine type specifications in flexible
ways. Acme embodies this approach, but is hardly unique; forinstance, PVS (Rushby et al.
1998) takes a similar approach. As an example of using a predicate-based type system, consider

190 Chapter 5. Architectural Synchronization

an architecture that is a hybrid of the Pipe-and-Filter and Shared-Data architectural styles. In this
example, aFilter component type has at least oneinput and oneoutput port, while aClient
component in the Shared-Data style has at least one port to communicate with the repository.
A component in this architecture might inherit both theFilter and theClient specifications,
yielding a component that has at least three ports—two for communicating with other filters and
one for communicating with theRepository.

However, implementation-level type systems, such as the ones provided by C2SADL
(Medvidovic et al. 1996) or ArchJava, cannot express the example above. A specification that a
component has a port implies a requirement that the environment will match that port up with
some other component. Therefore, conventional type systems require a component type to list all
of the ports it might possibly have—or at least all those ports that are expected to be connected at
runtime. There is no way to express that aFilter component has “at least two ports”—instead,
one must say that theFilter has “at most” or “exactly” two ports. Therefore, in the imple-
mentation, one cannot combine theFilter type with aRepository component type—which
defines a third port that is prohibited by the filter specification.

So a design-level predicate-based type system is fundamentally incompatible with a type
system for a programming language. As a result, the matchingalgorithm may not rely on exactly
matching typing information as in UMLDiff (Xing and Stroulia 2005). In our approach, the user
specifies arbitrary matches between the type hierarchies from Acme and ArchJava, flattened and
shown side-by-side.

Consider synchronizing the Acme model of a simple system following the Pipe-and-Filter
style with its ArchJava implementation. In Fig. 5.9, the user matches the types as follows. The
user selects theCapitalize, CharBuffer, Lower, Merge, Split, Upper component types in
ArchJava and matches them withFilter Acme type. All the component instances of these
ArchJava types will be assigned theFilter Acme type during synchronization. Using a limited
form of wildcards, the user assigns the Acme typePipe to the ArchJava connector typeANY. So
any Acme connector created for an implicit ArchJava connector instance will have that type.

Since ArchJava ports are not typed, the user can individually assign to an ArchJava port a
set of Acme port types. To reduce the manual work, the user uses another form of wildcards.
He can assign an Acme type, e.g.,outputT, to any ArchJava port that only provides methods.
Similarly, he can assign theinputT Acme type to any ArchJava port that only requires methods.
In addition, AcmeStudio defines connection patterns for most architectural styles. Based on these
patterns, ArchJ2Acme can infer the Acme role types, once theuser assigns types to components,
ports and connectors. For instance, the tool infers the roletypesourceT, based on the source
component typeFilter, source port typeinputT, and connector typePipe.

In this case, the synchronization produces the edit script in Fig. 5.10. Since the user mapped
the types, the edit script elements already have types. Eachview element that already has a
type is displayed using the same type- and style- dependent visualization that it would have in
AcmeStudio. If the user does not specify architectural types and styles, the elements that the edit
script will create will be untyped. Of course, the user can set the types on the newly inserted
view elements at a later point in AcmeStudio. Although assigning types during synchronization
seems to duplicate functionality, it may affect the edit script and the view merging as explained
below.

For instance, when a component instance is assigned theFilter component type, it inherits

5.4. Architectural View Synchronization 191

Figure 5.9: Matching types between the designed Acme model of a simple system following thePipe-
and-Filter style with its built ArchJava implementation.

any ports declared on that type, e.g., portsinput andoutput, of typesinputT andoutputT. So
ArchJ2Acme need not create additional ports of these types on the component instance. Based
on the user’s selection in Fig. 5.9, the tool matches the ArchJava portportOut—since it only
provides methods, with the Acme typeoutputT. The tool suggests renaming the portportOut

of typeoutputT, to match theoutput port on theFilter type.
The user can accept the corrective actions suggested by the tool using the Auto-Correct button

in Fig. 5.10. In that case, the tool automatically renamesportOut port tooutput, and updates
all the cross-references in the edit script. The user can also change the assigned or inferred types
before pushing the changes to the Acme model.

5.5 Evaluation

In this section, we evaluate the tools for C&C view synchronization in several extended exam-
ples on real architectural views. Our evaluation aims to answer the following hypothesis from

192 Chapter 5. Architectural Synchronization

Figure 5.10: Validating the edit script can involve renaming some ports to match the names declared in
the Acme type.

Section 1.10.

H-5: An analysis can structurally compare the built architecture to a documented
target runtime architecture.

We refine the hypothesis into the following research questions:

RQ2 – Comparison: Can the structural comparison meaningfully compare a built archi-
tecture extracted from the implementation to a designed architecture? The measurable criteria
here are to minimize the occurrences where a developer must manually force or prevent matches
between the view elements.

We now present three extended examples: AphydsAJ (Section 5.5.1), Duke’s Bank (Sec-
tion 5.5.2) and HillClimberAJ (Section 5.5.3).

5.5. Evaluation 193

Figure 5.11: Aphyds: informal designed architecture drawn by the original developer. Source:
(Aldrich et al. 2002a).

5.5.1 Extended Example: AphydsAJ

In this example, we synchronize a designed C&C view with a built C&C view retrieved from an
implementation. This example mainly highlights the ability of the underlying MDIR algorithm
to detect inserts, deletes and renames.

In Chapter 1, I introduced the Aphyds system. (Aldrich et al. 2002a) re-engineered the orig-
inal Aphyds Java implementation into an ArchJava implementation to evaluate ArchJava’s ex-
pressiveness to specify the architecture in code. In this chapter, we refer to that version as
AphydsAJ. We use AphydsAJ since it has a documented designedarchitecture, and we can use
the ArchJ2Acme tool to extract a built C&C view from the ArchJava implementation.

In the following discussion, I refer to the person who conducted the evaluation, i.e., myself,
as theexperimenter. Thedeveloperis the person who developed the code being analyzed. The
experimenter has no prior experience with the original Javaprogram, or with the process of
re-engineering the Java program into the ArchJava implementation.

Designed Architecture. The developer of the original Java program informally drew the de-
signed architecture (Fig. 5.11). The experimenter createdan Acme model based on the informal
architecture (Fig. 5.12(a)). He represented thecircuitModel as a single component, and added

194 Chapter 5. Architectural Synchronization

(a) Top-level Acme model.

(b) Acme representation of thecircuitModel component.

Figure 5.12: AphydsAJ: designed architecture represented in Acme.

all the computational components to a representation ofcircuitModel (Fig. 5.12(b)). In the
original diagram (Fig. 5.11), the thin arrows represent control flow, and the thick arrows repre-
sent data flow, but the experimenter did not make that distinction in Fig. 5.12 and showed all
communication as Acme connectors.

Matching Types. The experimenter chose an Acme Model-View-Controller style, MVCFam.
Since he was interested in the control flow, he assigned theprovideT Acme port type defined
in MVCFam to any ArchJava port that only provides methods. Similarly,he assigned theuseT
Acme port type to any ArchJava port that only requires methods, and theprovreqT Acme port
type to any ArchJava port that both provides and requires methods. He also assigned the generic
TierNodeT Acme type to all components and theCallReturnT Acme type to all the implicit
ArchJava connectors (See Fig. 5.13).

Matching Instances. The experimenter used the ArchJ2Acme tool to compare the twoviews.
As he was the least sure about how he represented thecircuitModel component in Acme, he
decided to focus on that component first.

The ArchJ2Acme tool detected a few renames, e.g., ArchJava uses model instead of
circuitModel, and inside that representation, ArchJava usesglobalRouter instead ofroute

5.5. Evaluation 195

Figure 5.13: AphydsAJ: matching types between Acme (left) and ArchJava (right).

(Fig. 5.14). The experimenter was particularly intrigued that the Acme representation for
circuitModel had more connectors than the ArchJava implementation. In Fig. 5.14, the
tool only matched thestarConnector which connects componentscircuit, partitioner,
floorPlanner, place, route andchannel (Fig. 5.12). The experimenter investigated this fur-
ther and confirmed that the Acme connectors corresponding tothe thick data flow arrows in the
informal diagram (Fig. 5.11) are not in the implementation.Since Aphyds was written for aca-
demic study and not for industrial application, it is missing some of the data flows that would be
present in a real application, i.e., the data flow is simulated rather than real. So the experimenter
accepted the edit actions to delete these extra connectors from the Acme model.

Merging Instances. The experimenter next turned his attention to the additional top level com-
ponent, shown asprivateAphyds (Fig. 5.14). Based on the synchronization options he selected,
he determined that the tool createdprivateAphyds to represent a privatewindow port in Arch-

196 Chapter 5. Architectural Synchronization

Figure 5.14: AphydsAJ: comparison of Acme C&C view (left) and ArchJava C&C view (right). The
connectorstarConnector matches a connector in ArchJava with an automatically generated name (high-
lighted nodes). The componentprivateAphyds exists in ArchJava but not in Acme.

Java and the corresponding glue. After looking at the control flow, the experimenter assigned that
subsystem the Publish-Subscribe Acme style. He also renamed componentprivateAphyds to
window, renamed the added connector towindowBus, and assignedwindowBus theEventBusT
connector type from the style. The experimenter also decided to use the same component names
as the ArchJava implementation to avoid future confusion, so he accepted the renames in the edit
script.

Discussion. The experimenter manually laid out the resulting C&C view in AcmeStudio
(Fig. 5.15). Unlike the original architect’s view, Fig. 5.15 shows bi-directional communication
taking place between componentsplaceRouteViewer andmodel. The experimenter investi-
gated that unexpected communication, and traced it to a callback. Aphyds is a multi-threaded

5.5. Evaluation 197

Figure 5.15: AphydsAJ: built architecture with Acme styles and types.

application with long running operations moved onto workerthreads. So the experimenter noted
that developers should not carelessly add callbacks from a worker thread onto the user interface
thread.

Performance Evaluation. On an Intel Pentium 4 CPU 3GHz with 1.5GB of RAM, comparing
an Acme tree of around 650 nodes with an ArchJava tree of around 1,150 nodes (Fig. 5.14) with
MDIR took under 2 minutes. In comparison, THP took around 30 seconds, but produced less
accurate results. In particular, THP did not treat component privateAphyds as an insertion, and
mismatched all the top-level components. For AphydsAJ, theedit script consisted of over 300
renames, over 600 inserts and over 100 deletes.

5.5.2 Extended Example: Duke’s Bank

In this example, we synchronize two C&C views, where the builtview is recovered by instru-
menting the running system. This example mainly highlightsthe ability of the underlying MDIR
algorithm to detect moves in addition to renames.

The subject system is Duke’s Bank, a simple Enterprise JavaBeans (EJB) banking applica-
tion. The experimenter wanted to compare the documented architecture with the built architec-
ture, recovered using an architectural extraction technique other than ArchJava. Duke’s Bank is
also representative of industrial code that uses middleware, and furthermore, has a documented
designed architecture.

198 Chapter 5. Architectural Synchronization

Figure 5.16: Duke’s Bank: informal designed architecture (Sun Microsystems 2006).

Designed Architecture. The experimenter converted an informal diagram (Fig. 5.16)into an
Acme model (Fig. 5.17).

Built Architecture. The built architecture was recovered by a dynamic architecture extrac-
tion tool, DISCOTECT (Schmerl et al. 2006). DISCOTECT currently generates one component
instance for each session and entity bean instance created at runtime. So the experimenter post-
processed the dynamically recovered architecture, and unified such multiple instances into one
instance. The goal was to make the recovered C&C view in Fig. 5.18 comparable to a typical
C&C view, where each component instance represents any number of runtime components.

Matching Types. In this case, the built view and the designed views use the same architectural
style and types, so the experimenter skipped the optional step of matching types.

Matching Instances. The ArchSynchro tool correctly detected the moves corresponding
to replacing thecontainer component in one view with its representation in the other
view (Fig. 5.19). Because a tool generated the names in the recovered view, e.g.,
AccountBean e55d75, there was a large number of renames in this case. The ArchSynchro
tool matched all the elements between the two views, despitethe large number of renames.

Discussion. ArchSynchro also identified onAccount Controller Bean a port that was
attached to aDbWriter connector. Fig. 5.17 does not show a connection between the
Account Controller Bean and theDB components. In fact, the EJB specification recommends
that all database access goes through entity beans. In this case, the tool found an architectural
violation in Sun’s own example!

Performance Evaluation. On an Intel Pentium 4 CPU 3GHz with 1.5GB of RAM, MDIR
took around 30 seconds to compare the two Acme trees, one witharound 330 nodes, and one

5.5. Evaluation 199

Figure 5.17: Duke’s Bank: documented architecture in Acme. The components were added inside the
Acme representation of an EJB container (shown as a thick border). Session and Entity Beans are grouped.

Figure 5.18: Duke’s Bank: recovered architecture in Acme.

with around 390 nodes. In this case, the edit script consisted of over 250 renames and over 50
inserts. As expected in this case, THP did not correctly identify the moved view elements.

200 Chapter 5. Architectural Synchronization

Figure 5.19: Duke’s Bank: comparison of the documented and recovered architectures.

5.5.3 Extended Example: HillClimberAJ

In this example, we evaluate the ArchJ2Acme tool again, but this time, we use the feature of
allowing the user to force matches. All the examples above actually use the feature to prevent
matches, to avoid matching elements of incompatible types.

In previous work, (Abi-Antoun et al. 2007a) re-engineered the original 15,000-line Java im-
plementation into an ArchJava implementation, HillClimberAJ. For this evaluation, we chose
HillClimberAJ because it uses a framework,CIspace. Indeed, it is common for a product line
architecture to use a framework as its platform, and one often needs to compare variants in a
product line (Chen et al. 2003). The implementation technology, ArchJava, also made it possible
to use a tool to statically extract the built C&C view from the HillClimberAJ code.

5.5. Evaluation 201

Figure 5.20: HillClimber: Base design for aCIspace framework application.

Designed Architecture. The applications that use theCIspace framework follow a simple
high-level design. An applicationwindow uses acanvas to displaynodes and edges (not
shown) of agraph in order to demonstrate the algorithms provided by theengine (Fig. 5.20).

Built Architecture. We first ran the ArchJ2Acme tool, giving it the designed C&C view
(Fig. 5.20), and a C&C view retrieved from the HillClimberAJ ArchJava implementation. In
this case, the top-level structure of the designed view was not sufficiently detailed, i.e., the vari-
ous nodes have roughly the same number of ports. In such cases, structural comparison alone can
produce inaccurate results. In this case, ArchJ2Acme incorrectly matched the top-level element
graph in one view towindow in the other view.

So the user manually forced the matches between the top-level nodes in the two views, and
re-ran the comparison. This time, ArchJ2Acme took into account these manual overrides when
matching the instances. Having correctly matched the top-level elements, the comparison high-
lighted additional differences between the two views. For instance, Fig. 5.21 shows several miss-
ing sub-architectures. But the user decided to merge only thechanges for the top-level elements
and obtained the built architecture in Fig. 5.22.

Discussion. In a product line architecture, each instantiation of a framework often introduces
additional runtime dependencies. Indeed, HillClimberAJ added several connections to the doc-
umented architecture, and these connections seem mostly justified. For instance, the connection
betweenengine andcanvas is needed since one of the sub-components ofengine required
access to functionality from thecanvas.

202 Chapter 5. Architectural Synchronization

Figure 5.21: HillClimberAJ: manual overrides improve matching the instances. The user forced a match
between theengine nodes in the two trees by selecting them both and clicking on the ‘Match’ button
before running the differencing algorithm.

5.6 Conclusion

In this chapter, we presented an approach for differencing and merging hierarchical architec-
tural C&C views. We showed how our relaxed assumptions match more closely the problem
domain of differencing and merging architectural views after the fact. Finally, we illustrated the
tools in extended examples and showed how the approach can find interesting differences in real
architectural views.

In this chapter, we used two ArchJava re-implementations ofthe Aphyds and HillClimber
systems, which we referred to as AphydsAJ and HillClimberAJ,respectively. Indeed, a tool can
statically extract from ArchJava code a built hierarchicalruntime architecture relatively easily,
because ArchJava specifies directly in code, architecturalhierarchy and instances.

5.6. Conclusion 203

Figure 5.22: HillClimberAJ: built architecture.

In the rest of this dissertation, we revert to the original Java implementations for Aphyds
and HillClimber and use SCHOLIA to extract the built architectures from the annotated Java
code, and analyze the conformance of the Java implementation, rather than ArchJava, to a target
architecture. In the next chapter (Chapter 6), I incorporatethe architectural comparison into an
end-to-end approach to analyze communication integrity, following the extract-abstract-check
strategy.

Credits

Nagi Nahas developed and implemented the tree-to-tree correction algorithm for his M.S.
thesis (Nahas 2009), and co-authored the papers on which much of this chapter is based
(Abi-Antoun et al. 2006; Abi-Antoun et al. 2008).

Acknowledgements

The author would like to thank Bradley Schmerl for his help with Acme and AcmeStudio, for
running DISCOTECT and generating the C&C views for the Duke’s Bank case study.

204 Chapter 5. Architectural Synchronization

Chapter 6

Conformance Analysis1

In this chapter, I demonstrate that SCHOLIA extracts hierarchical object graphs that provide suf-
ficient architectural abstraction to enable conformance analysis. To my knowledge, SCHOLIA

is the first static analysis the output of which is readily convertible into a standard hierarchical
runtime architecture represented as Component-and-Connector (C&C) view.

I first discuss an analysis to abstract an extracted object graph, and represent it as a stan-
dard runtime architecture. I then discuss an analysis whichcompares the built architecture to a
target architecture, analyzes communication integrity inthe target architecture, measures their
structural conformance, and establishes traceability between the target architecture and the code.

6.1 Introduction

A designed, intended, conceptual, plannedor target architecture is what an architect posits as
an abstraction of a system. Even when mostly accurate, such an architecture often omits im-
portant communication compared to thebuilt or actualarchitecture that an implemented system
exhibits2. The differences could be omissions in the design or implementation defects. Finding
these differences, i.e., analyzing conformance, is an important problem during software evolution
(Murphy et al. 2001; Aldrich et al. 2002a). In this dissertation, we deal mostly with architectural
structure rather than behavior, so we are concerned with identifying structural differences be-
tween a built and an intended architecture.

A designed architecture is often more abstract than the built architecture, but it must still
conform to the implementation. SCHOLIA ’s conformance analysis focuses on communication
integrity (Section 1.6, Page 19), i.e., each component in the implementation may only commu-
nicate directly with the components to which it is connectedin the architecture (Moriconi et al.
1995; Luckham and Vera 1995).

An extracted object graph, however, may not be isomorphic tothe architect’s intended archi-

1Portions of this chapter appeared in (Abi-Antoun and Aldrich 2009b). Preliminary results appeared in
(Abi-Antoun and Aldrich 2007c, 2008a).

2Throughout this dissertation, we usebuilt anddesignedinstead ofas-built andas-designedfor brevity. The
literature refers to these two architectures using many other names, e.g.,concrete, implementedor physicalfor the
built architecture; andconceptual, idealizedor logical for thedesignedarchitecture (Ducasse and Pollet 2009).

205

 DOM2

 DOM1

 OWNED

other:
Other

inner:
Inner

outer:
Outer

(a) Edge source showing.

 DOM2 DOM1

other:
Other

outer(+):
Outer

(b) Edge source lifted.

 DOM2

 CBS DOM1

inner:
Inner

outer:
Outer

other:
Other

(c) Edge target showing.

 DOM2 DOM1

outer(+):
Outer

other:
Other

(d) Edge target lifted.

Figure 6.1: Examples oflifted edges.

tecture, making it necessary to abstract it further into a built architecture suitable for comparison
with the architect’s intended architecture. Then, SCHOLIA structurally compares the built and
the target architectures and identifies the key differences, using the view synchronization we
discussed in Chapter 5. Unlike view synchronization which makes two views identical, the con-
formance analysis allows a built architecture to contain low-level objects, and does not propagate
them directly into the designed architecture. To preserve soundness, however, the analysis still
accounts for communication that is not in the designed architecture but occurs in the implemen-
tation via these objects.

Finally, SCHOLIA computes conformance metrics to help managers track architectural con-
formance over time, and derives traceability information that allows an architect to effectively
trace architectural violations to the appropriate code.

This chapter weaves the object graph extraction (Chapter 2) and architectural comparison
(Chapter 5) into the integrated SCHOLIA conformance analysis, and is organized as follows. In
Section 6.2, I discuss how SCHOLIA abstracts an object graph. In Section 6.3, I discuss how
SCHOLIA maps a hierarchical object graph to a standard C&C view. In Section 6.4, I discuss the
conformance analysis, conformance metrics and traceability support. In Section 6.5, I discuss
some of the constraints that could be enforced on the extracted architecture. Finally, I conclude
with a discussion in Section 6.6, where in particular, I compare SCHOLIA to other approaches
that relate source-level and high-level models.

206 Chapter 6. Conformance Analysis

_lentRootType_RootTypeDOM2Other
_lentRootType_RootTypeDOM1Outer_OuterOWNEDInner
_lentRootType_RootTypeDOM1Outer
_lentRootType_RootTypeDOM2Other
_lentRootType_RootTypeDOM1Outer

(a) Object graph.

circuit

circuit database

node net

(b) Target architecture.

Figure 6.2: Aphyds: mismatch between the object graph and the target architecture.

6.2 Abstracting the Object Graph

An extracted object graph provides architectural abstraction by ownership hierarchy and by
types. But an object graph may not be isomorphic to an architect’s intended architecture, so
it may require further abstraction. The steps in the analysis are as follows:

1. Elide and summarize private domains;
2. Skip single domains;
3. Skip objects beyond a certain depth.
We discuss each step in turn, using examples.

Elide and summarize private domains. Object graphs tend to expose the implementation of
data structures (O’Callahan 2001, p. 252). SCHOLIA can avoid this problem, when internal state
is placed in private domains. In that case, the OOG abstraction step can leverage the semantic
distinction between private and public domains, and elide private domains.

For example, in Aphyds, the private domainOWNED onCircuit storesHashtables ofNode
andNet objects (Fig. 6.2(a)), and these objects are not architecturally significant (Fig. 6.2(b)).
So the analysis, based on user input, can elide private domains and the objects they contain. To
preserve soundness, however, the analysis addssummary edgesto account for communication
through the elided objects. For example, if there is an edge from objectsa to b and also fromb
to c, eliding objectb produces asummary edgefrom a to c (Fig. 6.3).

Skip objects beyond a certain depth. The analysis converts an OOG object hierarchy up to a
user-selected depth, typically the depth of the hierarchical decomposition in the designed view.

6.2. Abstracting the Object Graph 207

 DOM1

a:
A

b:
B

c:
C

(a) Showing objectsa,b,c.

 DOM1

a:
A

c:
C

(b) Eliding objectb.

Figure 6.3: Example of asummary edge.

Reducing the size of the built architecture in this manner speeds up the comparison, but does not
affect conformance, because lifted edges account for the elided substructures.

6.3 Describing the Architecture

SCHOLIA can represent the information that it reverse-engineers from the code using differ-
ent graphical (or non graphical) notations. SCHOLIA uses an architecture description language
(ADL) (Medvidovic and Taylor 2000) to represent the built architecture as a standard C&C view
(Clements et al. 2003).

There are several benefits to documenting an architecture inan ADL. For example, an ADL
can enable various architectural-level analyses. In addition, one could define architectural types,
properties and constraints on the architecture to specify architectural intent (Monroe 2001).

For the conformance analysis, SCHOLIA assumes that the designed architecture is represented
as a C&C view, instead of an informal diagram. SCHOLIA then compares the built architecture
with the intended one.

6.3.1 Architecture description language (ADL)

SCHOLIA uses the following data types from the Acme general purpose ADL (Garlan et al. 2000;
Acme 2009) (Section 1.3.2, Page 7).

A Component is a unit of computation and state. APort is a point of interaction on aCom-
ponent. A Connector represents an interaction betweenPorts onComponents. A System is a
configuration ofComponents andConnectors. AComponent can optionally be decomposed into
a nested sub-architecture. AProperty is a name and value pair associated with an element. A
Group is a named set ofComponents orConnectors, such as a tier.

As we discussed in Section 5.4 (Page 5.4), the structural comparison uses type information,
when available, to improve the match precision. So during mapping, the analysis assigns to the
generated C&C elements various types and properties.

For instance, aPort that provides services has typeProvideT, and aPort that uses services
has typeUseT. The structural comparison uses the type information, whenavailable, to avoid
matching aProvideT Port to aUseT Port, for example.

208 Chapter 6. Conformance Analysis

_lentRootType_RootTypeDOM1A
_lentRootType_RootTypeDOM1B
_lentRootType_RootTypeDOM1C
_lentRootType_RootTypeDOM1A
_lentRootType_RootTypeDOM1C
_lentRootType_RootTypeDOM1B

OOG <> C&C view

• Root object <> System

• Object <> Component

• Domain <> Group

• Interface <> Port (ProvideT)

• Field reference <> Port (UseT)

• Object relation <> Connector

• Substructure <> Representation

Aphyds

UI

MODEL

viewerUI

circuit

DB

nodenet

Figure 6.4: Mapping an OOG to a C&C view in the Acme ADL.

Figure 6.5: A C&C view lifts an edge from componentinner to componentouter.

6.3.2 Mapping an OOG to a C&C view

Mapping an OOG to a C&C view works as follows.

Components and Sub-Components. SCHOLIA assumes that an OOG has a single root. So
the root object maps to aSystem. The top-level domains declared by the class of the root object
map to the top-level tiers in theSystem. Each object in the OOG maps to aComponent. The
OOG hierarchy creates architectural decomposition. If an OOG object declares domains and
descendent objects, the correspondingComponent has a sub-architecture.

Ports. References between objects createPorts as follows (Fig. 6.4). If objectA has a field
reference of typeT to objectB, the correspondingComponent A has aPort of typeUseT and
nameB. TheComponent corresponding toB has aPort of typeProvideT and nameT. And a
Connector connectsA toB. By default, the analysis does not represent the self-edges in an OOG
as connectors in the C&C view, since they are architecturallyinteresting.

Connection Lifting. The representation of an OOG as a C&C view also lifts edges. Consider
an OOG with an edge fromother to inner insideouter’s public domainCBS (Fig. 6.1(c)).

6.3. Describing the Architecture 209

A C&C view lifts that edge to componentouter, shows a connector fromother to outer, and a
connection fromouter to inner (Fig. 6.5).

Domains and Tiers. An ownership domaind in the OOG maps to aGroup g. If an objecto
in a domaind, the correspondingComponent is in Group g. To be structurally comparable, both
the built and the designed architectures follow similar topological constraints. For instance, in
Acme, aComponent can be included in more than oneGroup. But in ownership domains, each
object is in exactly one domain and that domain never changes. So a predicate in Acme enforces
that aComponent or Connector is in exactly oneGroup. Moreover, ifConnector c connects two
Components that are in the sameGroup g, c must be also ing.

Skip single domains. In an OOG, each object is in a domain, so a systematic conversion of an
OOG into a C&C view would create eachComponent in aGroup. Architects typically define tiers
only at the top level, and those map to the top-level domains.For example, requiring an Aphyds
designed architecture to have a singleDB tier insidecircuit would be counterintuitive. Unless the
developer requests otherwise, the conversion does not create a single tier inside aComponent.
Unlike eliding private domains, skipping single domains still creates the substructure for those
unmapped domains. For example, after eliding the private domainOWNED insideCircuit, the
conversion skips the single public domainDB and createsnode andnet and the connections
between them, directly insidecircuit (Fig. 7.13).

Note that although domains play a central role in the annotations, they often disappear after
they serve their purpose, which is to distinguish between internal and public state3. Recall how
in ownership domains, the owner of an object is a domain instead of another object, unlike other
ownership type systems (Clarke et al. 1998). Indeed, both public and private domains produce
hierarchy in an object graph. But the conformance analysis inSCHOLIA often results in eliding
private domains, ending up with a single public domain in a given object, then not representing
that domain as a group in the extracted architecture.

6.4 Analyzing Conformance

SCHOLIA can extract the up-to-date built runtime architecture fromthe code and document it an
in ADL. In some cases, a target architecture may be documented, but may be inconsistent with
the code. In that case, SCHOLIA can analyze communication integrity in the target architecture.

6.4.1 Conformance Findings

In the terminology of (Murphy et al. 2001), the conformance analysis identifies the following
differences between the built and the designed architectures:

• Convergence:a node or an edge thatis in boththe built and the designed architectures;

3Some type systems embody this idea, and hard-code in each class only one private and one publicboundary
domain (Scḧafer and Poetzsch-Heffter 2007).

210 Chapter 6. Conformance Analysis

• Divergence: a node or an edge that is in the built architecture, butnot in the designed
architecture;

• Absence:a node or an edge that is in the designed architecture, butnot in the builtarchi-
tecture.

6.4.2 Displaying Conformance

The analysis produces aconformance viewas a copy of the designed architecture. The con-
formance view shows convergences and absences graphically, and represents divergences by
showing additional connectors that are present in the implementation but are missing from the
designed architecture. The analysis also sets various properties on the conformance view ele-
ments. Some of these properties decorate the graphical representation of an element. For in-
stance, all elements have afinding property, set toconvergent (shown as), divergent (shown as

) or absent (shown as).

6.4.3 Traceability

As a positive side effect of the conformance analysis, SCHOLIA also establishes traceability be-
tween an intended architecture and the underlying source files, for the benefit of other code qual-
ity tools. The various steps thread through the traceability information as follows. Abstracting
an OOG into a C&C view copies the traceability of each OOG element into the corresponding
C&C element’straceability property, as a set of filename and line number pairs. Similarly, the
conformance view derives its traceability information from the built C&C view. A tool can use
this information in the conformance view to trace to the pertinent lines of code. Thanks to this, a
developer need not potentially review the entire code base to investigate a suspected architectural
violation. Of course, onlyconvergent or divergent elements will have their traceability set.

6.4.4 Analyzing Conformance

The components an architect includes in the designed view may be more relevant than those
she omits. And she often chooses names to convey her architectural intent. So, when analyzing
conformance, SCHOLIA considers the designed view to be more authoritative than the built one.
The steps in the analysis are as follows:

1. Match components, but use the names from the designed view;
2. Highlight differing connections;
3. Summarize divergent components;
4. Check matching substructures recursively.
We discuss each step in turn, using examples.

Match components, but use the names from the designed view.Elements in the designed
and the built views may not have exactly matching names. The structural comparison, however,
can detect renames. Unlike view synchronization, the conformance analysis does not propagate
the built names to the designed view, or vice versa.

6.4. Analyzing Conformance 211

(a) As-designed view. (b) As-built view. (c) Conformance view.

Figure 6.6: Displaying aconvergence and adivergence.

For Aphyds, the analysis correctly matches built componentsViewerUI andFloorPlanUI to
designed componentviewerUI andfloorplanUI, respectively, but does not rename them (Fig. 6.6).

Highlight differing connections. The analysis shows differing connections as divergences
or absences. For instance, only the built view has a connector betweenFloorPlanUI and
ViewerUI, and the latter match the designed componentsfloorplanUI andviewerUI. So the analy-
sis shows adivergent connector fromfloorplanUI to viewerUI (Fig. 6.6). This requires the follow-
ing stylized use of ports, which may also make ports easier tounderstand (Aldrich et al. 2002a).

An AcmePort has no built-in directionality. We use thePort’s type to specify whether it
provides services (ProvideT) or uses services (UseT). In some cases, the designed view may have
a connector between two components, but the connection in the built view may be in the reverse
direction. The conformance analysis could make theConnector bi-directional, by assigning to
the connection’s endpoints both theProvideT andUseT types. But this does not fit with showing
divergences and absences. Instead, we adopt unidirectional ports, i.e., the type can beProvideT
or UseT, and never both. So the analysis shows adivergent connector, as well asProvideT and
UseT Ports, for the communication in the opposite direction.

Summarize divergent components. If there are components in the built architecture that
are not in the designed architecture, the analysis works differently from view synchronization.
Adding these components directly to the designed architecture would clutter it with implemen-
tation details. Instead, the analysis accounts for communication in the built architecture that
is not in the designed architecture, and adds asummary connectorto abstract these divergent
components and enforce communication integrity.

Consider this other example from Aphyds (Fig. 6.7). In the built view, Node connects to
Terminal andTerminal to Net (Fig. 6.7(b)). The designed view hasnode andnet, but has no
component that matchesTerminal (Fig. 6.7(a)). The analysis matchesnode to Node, andnet
to Net, respectively. It then shows adivergent connector fromnode to net, since the designed
view does not already have one (Fig. 6.7(c)). If the designedview does have such a connector,
the analysis marks it asconvergent. Since a summary connector can be eitherdivergent or
convergent, the analysis sets a propertyisSummary on a connector separately from itsfinding. A
decorator overlays the symbol on a connector whenisSummary is set totrue.

Viewed differently, the analysis represents using a summary connector any objects in the built

212 Chapter 6. Conformance Analysis

(a) As-designed view. (b) As-built view.

(c) Conformance view.

Figure 6.7: Displaying adivergence as asummary connector.

view that do not have counterparts in the designed view. Thisallows a designed view to have
a coarser granularity of components, and abstract multipleinteracting objects with a connector.
Indeed, the JavaDoc for Aphyds states as an informal commentin the code that “Terminal is a
connectionbetween aNode and aNet”.

To help a developer update an incomplete designed architecture, the analysis can optionally
show in the conformance view thedivergent components, but without showing any connections
to these components. A developer can add selected components to the designed view and re-run
the conformance analysis.

Check matching substructures recursively. Designed architectures are often hierarchical, but
do not typically have deep hierarchies. An OOG provides architectural abstraction primarily
through ownership hierarchy. When an OOG is abstracted into aC&C view—whether restricting
the depth of the hierarchy or not, more components in the built C&C view will have substructures
than their designed counterparts. To avoid generating manyfalse positives, the analysis ignores
the substructures that are in the built view but not in the designed one. Skipping unmatched
substructures does not compromise soundness, because bothan OOG (Figs. 6.1(b), 6.1(d)) and a
built C&C view (Fig. 6.5) lift edges to represent any communication through their substructures.

For instance,viewerUI in the designed view does not define a substructure. So the analysis
ignores any substructure in the matchingViewerUI in the built view. On the other hand,circuit
in the designed view has a substructure includingnode andnet, and matches theCircuit object
in the built view. In the built view,Circuit’s substructure includes the domainsDB andOWNED
and the objects inside them. In that case, the analysis recursively examines the substructures of
circuit andCircuit.

As an aside, had we included private domains when abstracting the Aphyds OOG into a C&C
view (as well as generated aGroup for the singleDB domain insideCircuit), the analysis would
have processed the private domainOWNED and generated several undesired divergences. This
is because both domainsOWNED andDB are peers inCircuit’s substructure (Fig. 6.2), so the
analysis cannot ignore theOWNED domain and its contents, but processDB’s contents.

6.4. Analyzing Conformance 213

6.4.5 Measuring Conformance

SCHOLIA counts convergent edges (CE), divergent edges (DE), absent edges (AE), and summary
edges (SE). In addition, SCHOLIA counts convergent nodes (CN), divergent nodes (DN), and
absent nodes (AN). In SCHOLIA, a highAN or DN often indicate that the designed view is
missing components compared to the built view, or uses a different system decomposition.

SCHOLIA combines edge divergences and edge absences into one number, the Core Confor-
mance Metric (CCM). The Core Conformance Metric (CCM) counts divergent edges (DE) and
absent edges (AE) that would make the designed architecture account for all communication in
the implementation. To get a percentage, we divide by the total number of edges and subtract
from 100%. Of course, fewer absences and divergences are better and mean the system is closer
to the target architecture. So, a higher CCM value indicates a higher structural conformance.

CCM = 1−
AE+ DE

CE+ AE+ DE

In terms of face validity, this metric is similar to agraph edit distance, which models incon-
sistencies by transforming one graph into another (Conte et al. 2004). Typical edit operations
include the deletion, insertion and relabeling of nodes andedges. Each edit operation is assigned
an application-dependent cost. SCHOLIA assigns renames a zero cost and counts insertions (di-
vergences) and deletions (absences).

Furthermore, SCHOLIA qualifies the conformance metrics by measuring the percentage of
the program that lacks annotations. For simplicity, SCHOLIA uses a derived measure,WARN,
namely the number of annotation warnings that the annotation typechecker generates. Except for
some defaults, every field, variable declaration, or methodreturn, that is a reference to an object
and has a missing or incorrect annotation, generates a warning (we mostly avoid multiple warn-
ings due to one missing annotation). To get a percentage, themetricWARN% normalizesWARN
by the number of declared object references in the program. Thus,WARN% is an indicator of
how many annotations are missing to make an OOG soundly represent the built architecture. A
lower WARN% is better. For a program without annotations,WARN% will be high. As valid
annotations are added, or warnings are addressed,WARN% decreases.

6.5 Enforcing Architectural Structure

Having analyzed conformance and established traceabilitybetween the target architecture and
the code, we now turn to identifying additional implementation-level violations of the architec-
tural intent. At the code level, we use annotations to enforce local, modular constraints. In
addition, we define predicates in the target architecture toenforce global constraints on the run-
time architecture.

6.5.1 Code-level constraints

General constraints. In a Java program without ownership domain annotations, changing the
runtime architecture is as simple as storing or passing a reference to an object. Adding the

214 Chapter 6. Conformance Analysis

ownership annotations can help enforce some design invariants, for instance, regarding object
borrowing, etc. (See observations in Section 4.6.1, Page 128).

Domain links. In addition, it is possible to define various policies in the form of domain links
(Section 2.3.2, Page 40).

Limitations. By their nature, domain link annotations are modular, so theycannot express
global constraints. In addition, a developer can still add communication pathways by declaring
additional domain links or domain parameters and passing additional domain arguments at object
allocation sites. Admittedly, code inspections could moreclosely audit any revision that modifies
the domain link annotations. However, since the annotations enforce only modular constraints,
it is still necessary to check that code modifications do not adversely impact the intended global
architectural structure.

6.5.2 Architectural constraints

Relating the target architecture and the code, together witheffective change management, can
help detect unwanted architectural violations more effectively than inspecting the program, with
or without annotations.

Having an extracted up-to-date built architecture makes iteasier to trigger an architectural
review. In particular, various constraints can be defined and be enforced on the architecture. In-
deed, empirical evidence suggests that such policies are frequently needed during software evo-
lution. For instance, a study using a well-designed framework (JHotDraw) showed that students
subverted the framework’s design by passing to and storing additional objects in the constructors
of classes that implemented the core framework interfaces (Kirk et al. 2006).

In Acme, one can set architectural types, properties and constraints to specify architectural
intent (Monroe 2001). By doing so, we may uncover implementation-level violations of archi-
tectural types and constraints. In contrast to the modular,code-level constraints, constraints at
the architectural level can enforce global constraints on the application structure.

Horizontal conformance. Using predicates to enforce constraints at the architectural level is
not novel (Monroe 2001). Indeed, many approaches can check that an architecture obeys a given
architectural style, which is similar to verifyinghorizontal conformance(Ducasse and Pollet
2009) between two views at the same level of abstraction. SCHOLIA makes it possible to ex-
tract the built runtime architecture, and thus leverage these capabilities. Moreover, since SCHO-
LIA establishes traceability between the architecture and thecode, setting the architectural-level
constraints can be used to enforce global constraints on theapplication structure, within the code.

Architectural types. A built architecture does not usually have rich architectural types. In
principle, a developer could enrich the built architecture, abstracted from an object graph, with
architectural types. A developer could assign the type individually to the components and con-
nectors in the built view. Or the developer can map implementation types to architectural types,
and the tool could automatically assign architectural types to all the components that correspond

6.5. Enforcing Architectural Structure 215

to instances of that implementation type. This is only a firstapproximation, because different
instances of the same implementation type such asHashMap, could correspond to architectural
components of different types. In that case, a developer canstill manually fine-tune the automat-
ically assigned types.

One benefit of relating the built and the designed architectures, and enriching the designed ar-
chitecture with architectural types, is that it can uncoveradditional violations of the architectural
intent in the code.

Analysis-specific properties. It is also possible to define analysis-specific properties and add
those to an architecture. For instance, (Abi-Antoun et al. 2007b) defined element-level proper-
ties, such astrustLevel, to support an architectural-level analysis to identify spoofing or tamper-
ing.

Structural constraints. First-order logic predicates in Acme can enforce various structural
constraints (Monroe 2001), such as:

• Component instancec1 never directly connects toComponent instancec2:
forall c1 : Component in self.COMPONENTS |

forall c2 : Component in self.COMPONENTS |

connected(c1,c2) -> !(c1==x AND c2==y);
• A Component of typet1 never directly connects to aComponent of typet2:
forall c1 : Component in self.COMPONENTS |

forall c2 : Component in self.COMPONENTS |

connected(c1,c2) -> !(declaresType(c1, T1) AND

declaresType(c2, T2))
• No component inGroup g1 communicates directly with any component inGroup g2:
forall g1 in self.GROUPS |

forall g2 in self.GROUPS |

forall m1 in g1.MEMBERS |

forall m2 in g2.MEMBERS |

m1 = m2 -> g1 = g2;

6.6 Discussion

6.6.1 False positives

A designed architecture is often more abstract than the built architecture, but it must still rep-
resent all communication that could exist in the implementation. The SCHOLIA conformance
analysis enforces communication integrity and ensures that the designed architecture is a conser-
vative abstraction of all the objects in the implemented system and the relations between those
objects at runtime. In SCHOLIA, the goal is to have no false negatives in the designed architec-
ture, and show the worst case of possible communication between objects at runtime.

Of course, SCHOLIA, like any other sound static analysis, can generate false positives, and
indicate objects or relations that can never exist at runtime, due to infeasible program paths.
However, our empirical evaluation in the next chapter will show that SCHOLIA does not generate

216 Chapter 6. Conformance Analysis

many false positives in practice. Moreover, SCHOLIA allows a developer to intervene at different
steps in the process, to refine the annotations, control the object graph extraction, tweak the
abstraction of the object graph into a C&C view, force or prevent matches during the structural
comparison, and select various options when analyzing conformance.

6.6.2 Why an architecture description language?

SCHOLIA uses an architecture description language (ADL) to represent the abstracted object
graph and the designed architecture, but SCHOLIA is not tied to any specific notation. For ex-
ample, SCHOLIA could use UML object diagrams, but UML tools do not support hierarchical
object diagrams since they are not part of the UML standard. Alternatively, SCHOLIA could use a
UML 2.0 component diagram to describe a runtime architecture (OMG 2008). Future work may
consider representing SCHOLIA ’s output using UML 2.0. Also, there are many other notations
that SCHOLIA could potentially use, such as GXL (Holt et al. 2006), an interchange language for
many reverse engineering tools.

The main benefit of using an ADL like Acme for SCHOLIA is the ability to declaratively
define element types and define properties on those types. Whenan architectural instance is
assigned that type, it automatically inherits those properties. For example, the conformance
analysis sets various properties on the elements. In turn, these properties control the display
of the elements. Achieving the same effect in many tools requires changing the meta-model
used by the tool or using the tool’s API to imperatively modify the model. In addition, since
AcmeStudio is an Eclipse perspective, all the other tools that SCHOLIA uses are fully integrated
around Eclipse. For instance, the CodeTraceJ tool can trace from an architectural element in
AcmeStudio to the underlying Java source lines of code, by switching from the AcmeStudio to
the Java perspective in Eclipse. Thus, using one of the otherEclipse-based UML tools would not
offer additional features.

6.6.3 Why structural comparison?

SCHOLIA compares the designed and the built architectures using a structural comparison that
works with hierarchical views, does not assume unique identifiers, detects renames and allows
forcing or preventing matches between selected view elements. These assumptions closely match
the problem of analyzing conformance after the fact. SCHOLIA does not assume that the archi-
tectural components have unique identifiers, which would simplify the graph comparison consid-
erably (Conte et al. 2004). The main benefit of using structural comparison enables SCHOLIA to
detect renames between the built and the designed architectures, which can partly occur because
of the way we extract an OOG.

The OOG extraction nondeterministically selects a label for a given objecto based on the
name or the type of one of the references in the program that points to o. Thus, detecting re-
names ensures a developer can still rename fields or local variables or types in the program
without impacting conformance. Avoiding the rename problem entirely would require additional
annotations to specify in code the preferred labels. But we prefer to keep the design of the an-
notations minimal, and focused on just specifying object encapsulation and logical containment
properties.

6.6. Discussion 217

6.6.4 Relation to Reflexion Models

I modeled SCHOLIA closely after Reflexion Models (Murphy et al. 2001), a standard-bearer in
analyzing the conformance of the code architecture, which Irefer to as RM. To be clear, RM
cannot handle the runtime architecture. However, drawing the similarities between RM and
SCHOLIA more explicitly is informative, because both approaches analyze conformance using
the extract-abstract-check strategy. Also, to my knowledge, other static conformance checking
techniques of the code architecture have comparable expressiveness to RM.

RM works as follows. In RM, a third-party tool extracts asource modelfrom the source code.
The RM user posits a designedhigh-level modeland amapbetween the source and high-level
models. RM pushes each interaction described in the source model through the map to infer
edges between high-level model entities. RM then compares the inferred edges with the edges
stated in the high-level model and shows the differences. A developer can iteratively: (a) modify
the high-level model; (b) modify the source model; (c) modify the map; (d) trace a conformance
finding to code; and (e) optionally, change the code to conform to the architecture.

In SCHOLIA, thesource modelis the source code with the ownership domain annotations.
The target architecture is thehigh-level model. And the structural comparison, together with
optional manual input to force or prevent matches, producesthe mapping. Similarly to RM, a
SCHOLIA user can iteratively modify the designed architecture, theannotations in the program,
the structural comparison or the mapping, and trace from theconformance view to the code.

RM does not extract a complete abstraction to avoid obtaininga model that developers do
not recognize. In SCHOLIA, the OOG represents a complete model, but developer-specified
annotations help obtain meaningful abstractions. In SCHOLIA, an extracted OOG is incomplete
only if the program is not completely annotated, there are remaining annotation warnings, or the
virtual field annotations do not soundly summarize all the external entities.

In RM, if the mapping generates a node that is not the designed view, RM automatically
adds it to the designed view, i.e., RM has no divergent or absent nodes. As a result, RM need
not summarize entities that are present in an implementation with an edge in the high-level
model. RM also assumes that node names have exactly matching information (names and token
types) and uses a graph connection model without ports on nodes. When RM compares the
inferred edges with the edges stated in the high-level model, it produces simple metrics based
on the number of divergences, convergences and absences. RM measures unmapped entries of
the source model, which gives an indication of the incompleteness of the mapping, which is
somewhat similar to our WARN metric.

In the base RM technique, the end-user manually generates themap. Building a map from
scratch is a laborious process. For example, for an 1-MLOC system, the map had over 1,000
entries (Murphy et al. 2001). To alleviate the burden of producing a map manually, (Christl et al.
2005) proposed semi-automated clustering algorithms to obtain a mapping. Their evaluation on
various code architectures determined that the engineer may spend significant effort deriving a
good partial mapping, including fine-tuning the clusteringalgorithm’s parameters.

Producing the RM mapping file appears more straightforward than adding ownership anno-
tations, but it is not amenable to type inference. Furthermore, since RM is used for the module
view, the mapping need not take into account inheritance or possible aliasing in object-oriented
code. These are non-issues in a module view, but of course, are very important in a runtime view

218 Chapter 6. Conformance Analysis

(Section 6.6.5, below).
In the base RM technique, both the high-level model and the mapare non-hierarchical.

(Koschke and Simon 2003) proposed hierarchical extensionsthat account for substructure by
lifting edges. SCHOLIA considers both the designed and the built architectures as hierarchical.

6.6.5 Mapping Code to High-Level Models

I will now explain how SCHOLIA generalizes previous techniques for extracting an abstraction
of the runtime structure of source entities, and why SCHOLIA ’s more sophisticated source ab-
straction technique is needed to analyze conformance of theruntime architecture.

Let us hypothetically attempt to apply RM to a runtime architecture to better understand
why an approach that works on the code architecture cannot handle the runtime architecture. In
particular, let us map source entities to a hierarchical runtime structure.

Let us assume that RM supports tiers and qualify a component byits tier using the:: symbol.
The Java RM tool, JRM (JRM 2003), can map classCircuit to acircuit high-level element, as
follows:
class Circuit to MODEL::circuit.

A class is a code entity, not a runtime entity. The above map entry could indicate that it is
mapping all the instances of theCircuit class to acircuit element in a code architecture. But
in an object-oriented system, there is usually more than oneinstance of many classes, and each
instance can map to a different component in a runtime architecture.

When working with a runtime architecture, the source model must reflect theruntime struc-
tureof the system and represent an object graph. Instead of mapping a class or all of its instances,
we need to map runtime objects. A static analysis knows only about field or variable declarations
in the program, which denote references to runtime objects.We useMain.circuit to denote
a circuit field declared in classMain, which points to an instance of theCircuit class at
runtime. Assume we extend JRM and map:
object Main.circuit to MODEL::circuit. // circuit has type Circuit

In object-oriented code, multiple code elements could correspond to the same object at run-
time. An architecture would be deceptive if it showed one runtime entity as two components. For
instance, an architectural security analysis could assignone runtime entity two different values
for a keytrustLevel property. So, all the references that may alias, i.e., referto the same object at
runtime must map to the same component in the architecture. For example, a reference of type
Circuit and another of typeICircuit, an interface thatCircuit implements, may alias, so we
somehow also have to map both to the same runtime component.
object Main.iCircuit to MODEL::circuit. // iCircuit has type ICircuit

In addition, one code entity can map to multiple components in a runtime architecture. A
code architecture such as a class diagram would show oneVector class, andNode andNet
classesthat have a module dependency onVector. In a runtime architecture, different instances
of Vector are often part of conceptually different components. For instance, aNode object

6.6. Discussion 219

has aVector object ofTerminal objects. Another distinctVector object, also ofTerminal
objects, is part of aNet object. To support this feature, a previous system (LR) defines a context
parameter using an annotation in the code, and binds that parameter to different actual contexts
using additional annotations (Lam and Rinard 2003). But in LR, all the context parameters bind
transitively to a top-level context such asMODEL. As a result, LR extracts a non-hierarchical
model.

Most ADLs support the hierarchical decomposition of a component into a nested sub-
architecture (Medvidovic and Taylor 2000). For example, the Aphyds designed architecture
showsnode andnet insidecircuit’s sub-structure (Fig. 1.1). So first, we define a sub-structure,
i.e., a nested context or tierDB, insidecircuit, which we refer to as if it were a field, as incir-
cuit.DB. We then model objects such asnode andnet as beingpart of a circuit object, by
mapping them to components insideDB. For example, we map a fieldnode to anode component
in circuit’s DB:
object Circuit.node to MODEL::circuit.DB::node.

SCHOLIA is more expressive than LR, since it can bind a context parameter to a nested
context such as acircuit.DB, thus achieving hierarchy. Also, SCHOLIA is more expressive than
RM. By binding different domain parameters to the same actual domains, the analysis can map
multiple code elements to the same architectural component. Similarly, by binding one domain
parameter to different actual domains, the analysis can also map one code element to multiple
architectural components.

In summary, the implicit map generated by SCHOLIA generalizes previous maps
(Murphy et al. 2001; Lam and Rinard 2003), accounts for inheritance and aliasing, and relates
a rich, hierarchical description of an architect’s intended runtime architecture to a hierarchical
representation of the runtime structure of source code entities.

6.7 Summary

This chapter weaves the architectural extraction (Chapter 2) and architectural comparison (Chap-
ter 5) into the SCHOLIA end-to-end architectural conformance approach.

I discussed an analysis that takes a hierarchical object graph, extracted statically, abstracts it
into a built runtime architecture represented as a C&C view, to make it comparable to a target
architecture. I also discussed how the conformance analysis enforces communication integrity in
the designed architecture, while allowing a built architecture to contain low-level objects, without
propagating them directly into the designed architecture.

To my knowledge, SCHOLIA is the first approach to extract statically a runtime architecture
from a program in a widely used object-oriented language, using annotations. If an intended ar-
chitecture exists, SCHOLIA can analyze, also at compile time, communication integritybetween
the code and the target architecture. Finally, SCHOLIA can establish traceability between an
implementation and an intended runtime architecture.

In the next chapter (Chapter 7), I evaluate SCHOLIA on several real representative object-
oriented systems, and show that, in practice, SCHOLIA can find interesting structural differences
between an existing system and its target runtime architecture. The evaluation will confirm what

220 Chapter 6. Conformance Analysis

others have reported (Murphy et al. 2001; Aldrich et al. 2002a), that informal diagrams often
omit important communication. Thus, analyzing conformance after the fact can be very useful
during software evolution to ensure that architects base their important decisions on accurate
architectures.

Acknowledgements

The author would like to thank Bradley Schmerl for his help with Acme and AcmeStudio. In
addition to the thesis committee, David Garlan, Mary Shaw and Larry Maccherone gave us
helpful comments on the approach.

6.7. Summary 221

Chapter 7

Evaluation of the Conformance Analysis1

To demonstrate that SCHOLIA works in practice, I evaluate the end-to-end approach on several
real representative object-oriented systems. In this chapter, I demonstrate that, in practice, SCHO-
LIA can be applied to existing systems while adding or refining only annotations in the code, that
SCHOLIA can find interesting architectural violations, that these violations can be traced to code,
and that SCHOLIA computes sensible metrics.

7.1 Introduction

Before I discuss the individual case studies, I discuss the research questions I wanted the eval-
uation to answer (Section 7.2), the tool support that I builtto evaluate SCHOLIA (Section 7.3)
and the evaluation methodology (Section 7.4). I then present four extended examples: Aphyds
(Section 7.5), JHotDraw (Section 7.6), HillClimber (Section 7.7), and CryptoDB (Section 7.8).
I conclude this chapter with a discussion (Section 7.9).

7.2 Research Questions

Our evaluation aims to answer the following hypotheses (Section 1.10, Page 25):

H-4: An analysis can abstract an object graph into a built component-and-connector
runtime architecture represented in a standard architecture description language.

H-6: An analysis can check communication integrity with a target architecture, es-
tablish traceability between the target architecture and the code, and compute struc-
tural conformance metrics in practice.

We refine the hypotheses into the following research questions:
RQ3 – Conformance: Can the conformance analysis display a meaningful conformance

view, enable tracing a finding to the code, and compute sensible conformance metrics?The
measurable criteria are: few false positives, a readable conformance view that does not have so
many divergences that it is almost a fully connected graph, and the ability to trace to the right

1Portions of this chapter appeared in (Abi-Antoun and Aldrich 2009b).

223

code locations. Ideally, the goal is to minimize the number of divergences and absences that the
tool reports, or to ensure that they correspond to cases where the implementation violates the
architectural intent.

RQ4 – Value: Can SCHOLIA identify interesting structural differences between builtand
designed architectures in real systems?

The conformance analysis requires the architectural extraction (Chapter 2) and the architec-
tural synchronization (Chapter 5). We also reuse two of the subject systems from Chapter 4,
JHotDraw (Section 7.6) and HillClimber (Section 7.7), on which we previously evaluated the
annotations and the object graph extraction (See Sections 4.6, 4.7). This chapter also presents an
end-to-end evaluation on two new subject systems, Aphyds (Section 7.5) and CryptoDB (Sec-
tion 7.8). So we revisit the corresponding hypotheses and research questions below:

H-1: Lightweight typecheckable ownership annotations can specify, within the code,
local hints about object encapsulation, logical containment and architectural tiers.

H-2: In practice, a static analysis can extract from an annotated program a global,
hierarchical object graph that provides architectural abstraction by ownership hier-
archy and by types.

H-5: An analysis can structurally compare the built architecture to a documented
target runtime architecture.

We refine the above hypotheses into the following research questions:
RQ1 – Extraction: Can SCHOLIA extract statically a meaningful, hierarchical,

Component-and-Connector (C&C) runtime architecture?The measurable criteria here are
to abstract away low-level objects that are implementationdetails.

RQ2 – Comparison: Can the structural comparison meaningfully compare a built archi-
tecture extracted from the implementation to a designed architecture? The measurable criteria
here are to minimize the occurrences where a developer must manually force or prevent matches
between the view elements.

7.3 Tool Support

I developed several tools and integrated them with existingtools (Fig. 7.1), in order to support
the SCHOLIA approach (Section 1.7, Page 20):

• AcmeStudio (Schmerl and Garlan 2004; AcmeStudio 2009) is a modeling environment
for Acme. In SCHOLIA, a developer uses AcmeStudio to document the designed archi-
tecture, display the extracted built architecture, and display the conformance view. I used
AcmeStudio to generate all of the C&C views in this document.

• ArchCheckJ: ArchCheckJ (stands for Architectural annotation Checker for Java) type-
checks the annotations added to the code and is discussed in Section 4.3.1 (Page 122);

• ArchRecJ: ArchRecJ (stands for Architectural Recovery for Java) extracts an OOG from
annotated code and is discussed in Section 4.3.2 (Page 122);

• ArchCog: ArchCog (stands for Architectural Component Object Graph) abstracts an OOG
into a C&C view, using the techniques I discussed in Section 6.2 (Page 207). A developer

224 Chapter 7. Evaluation of the Conformance Analysis

CodeCode

Designed
Architecture

Designed
Architecture

Hierarchical
Object Graph

Hierarchical
Object Graph

Built Runtime
Architecture

Built Runtime
Architecture

AnnotationsAnnotations

Investigate
and refine

Extract
[ArchRecJ]

Abstract
[ArchCog]

Trace to
Code

[CodeTraceJ]

Annotate

Document
[AcmeStudio]

Conformance
View

Conformance
ViewCheck

[ArchConf]

Compare

Refine

Typecheck
[ArchCheckJ]

Figure 7.1: Tools to support the SCHOLIA approach.

can also soundly elide private domains. Finally, a developer can restrict the unfolding
depth at which to represent the C&C view;

• ArchConf: ArchConf (stands for Architectural Conformance analyzer) analyzes the con-
formance between two C&C views, generates aconformance viewand computes the met-
rics, as discussed in Section 6.4 (Page 210). ArchConf allowsa developer to confirm the
results of the structural comparison, or to manually force or prevent matches and rerun the
comparison;

• CodeTraceJ: CodeTraceJ loads the traceability of an element in the conformance view,
opens the corresponding source files and highlights the appropriate lines. Because AcmeS-
tudio is implemented as an Eclipse perspective, CodeTraceJ allows a developer to trace
seamlessly from a conformance view in AcmeStudio to the Javacode in the Eclipse JDT.

• ArchMod: ArchMod (stands for Architectural Modification wizard) modifies the origi-
nal designed architecture, by taking adivergent element from the conformance view and
adding it to the designed view, or deleting anabsent element from the designed view.

7.3.1 ArchCog

The details of abstracting an object graph into a C&C view werediscussed previously (Sec-
tion 6.2, Page 207). The object graph abstraction tool, ArchCog, offers the following features
(Figs. 7.2, 7.3):

• Control the unfolding depth: the developer can control the depth of the OOG from which
to generate the C&C view;

• Elide private domains: the developer can make the tool soundly summarize private do-
mains (this is the default);

• Skip singleton domains:a developer can make the tool not generate an AcmeGroup for

7.3. Tool Support 225

Figure 7.2: ArchCog tool. Step 1: select the project and the OOG.

226 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.3: ArchCog tool. Step 2: control the abstraction options.

7.3. Tool Support 227

a singleton domain (this is the default);
• Set component labeling:the developer can choose various labeling options for labeling

the C&C view elements.
• Persist abstracted OOG:ArchCog persists an abstracted OOG into an Acme file.

7.3.2 ArchConf

The details of analyzing conformance were discussed previously (Section 6.4, Page 210). The
conformance analysis tool, ArchConf, offers the following features (Figs. 7.4, 7.5, 7.6):

• Step 1: select the built and the target architectures.The developer selects the built and
the target C&C views (Fig. 7.4);

• Step 2: compare the built and the target architectures.The developer compares the
built and the target C&C views (Fig. 7.5). Typically, the developer simply confirms the
comparison results;

• Step 3: compute the conformance view.The tool generates the conformance view in
Acme (Fig. 7.6).

7.3.3 CodeTraceJ

The CodeTraceJ tool does not currently have a user interface.The functionality is invoked
through a menu item that is added to Eclipse. First, CodeTraceJ loads the traceability of an
element from the conformance view, where it is stored in properties in the Acme model. Then,
it asks Eclipse to load the corresponding Java source files. Finally, CodeTraceJ uses built-in
Eclipse functionality to highlight the appropriate lines.

7.3.4 ArchMod

The ArchMod tool does not currently have a user interface. The functionality is invoked through
menu items that is added to Eclipse. Because the conformance view is a copy of the target archi-
tecture, ArchMod modifies the designed architecture directly. In future work, we will enhance
the user interface for ArchMod, to enable a developer to preview the changes before they are
applied to the designed architecture.

7.4 Evaluation Methodology

During the evaluation, the experimenter follows closely the SCHOLIA methodology, and uses the
tools in Section 7.3 as follows.

In Eclipse, the experimenter uses the AcmeStudio perspective to document the designed ar-
chitecture in the Acme architecture description language.Still in Eclipse, he switches to the Java
development perspective, loads the implementation project, adds ownership domain annotations
to the code as Java 1.5 annotations, and invokes the ArchCheckJ typechecker. He double-clicks
on a warning in the Eclipse problem window to go to the offending line of code, and attempts to
address the relevant annotation warnings.

228 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.4: ArchConf tool. Step 1: select the built and the target architectures.

7.4. Evaluation Methodology 229

Figure 7.5: ArchConf tool. Step 2: compare the built and the target architectures and examine the results
of the structural comparison.

230 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.6: ArchConf tool. Step 3: compute the conformance view.

7.4. Evaluation Methodology 231

After the developer annotates most of the program and eliminates most of the serious warn-
ings, he uses the ArchRecJ tool to extract an object graph. Fora meaningful comparison, the
extracted object graph (which will be abstracted into the built architecture), and the target archi-
tecture must have similar tiers, similar hierarchical decomposition, and similar components and
tiers at each hierarchy level. Typically, the experimenterspends some time refining the annota-
tions and visualizing object graphs, until the extracted object graph is roughly comparable to the
designed architecture.

He then invokes the ArchCog tool to abstract the extracted object graph into a built archi-
tecture represented as a C&C view in AcmeStudio. He then points the ArchConf tool to the
extracted built architecture and to the designed architecture and examines the results of the struc-
tural comparison. ArchConf displays the two views side-by-side in a tree-form and shows the
mapping by overlaying icons on the affected elements in eachtree (Fig. 7.5). If an element is
matched or renamed, the tool automatically selects and highlights the matching element in the
other tree; for inserted or deleted elements, the tool automatically navigates up the tree until it
reaches a matched ancestor.

In ArchConf, the developer typically accepts the comparisonresults. But if the comparison
mismatches some elements, he can manually force or prevent matches between those elements,
and rerun the comparison. Once the developer accepts the comparison results, ArchConf then
creates a conformance view of the designed architecture, and displays the conformance metrics
in an output window.

Back in the AcmeStudio perspective, the developer examines the conformance view, and
investigates unexpected divergences. He uses CodeTraceJ toconfirm a convergence or trace
a divergence to the code. If the divergence is critical, he may modify the implementation to
eliminate the architectural violation. Alternatively, hemay update the designed architecture if
he considers that the conformance analysis highlights an error or omission in the architecture.
He can update the design architecture either manually, or hecan use ArchMod to propagate
components or connectors from the conformance view back to the target architecture.

7.5 Extended Example: Aphyds

We now describe analyzing the conformance of the Aphyds system using the SCHOLIA method-
ology and tools. The experimenter (hereafter “I”) developed several of the tools, but none of the
subject systems.

The process was iterative as a whole, and involved both macro- and micro-iterations. A
macro-iteration consists of documenting the designed architecture, adding the annotations, ex-
tracting an OOG, abstracting it into a built C&C view, and analyzing its conformance. A micro-
iteration can consist of the process of iterating the annotations and extracting OOGs before con-
verting an OOG into a C&C view. One exits a micro-iteration when an OOG has a reasonable
abstraction level, and no longer shows low-level objects such asVectors in the top-level do-
mains. Retrospectively, we present the Aphyds evaluation astwo macro-iterations and show the
evolution of the conformance metrics across the two macro-iterations (Table 7.1).

232 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.7: Aphyds: designed architecture in Acme.

7.5.1 Modeling the Target Architecture

I documented the Aphyds designed architecture in the Acme ADL based on an informal diagram
by the original Aphyds Java developer (Fig. 1.1, Page 3), butiterated the process a few times.
When connecting two components in a group, I initially forgotto put the connector into that
group2, which resulted in badly matched connectors.

In an early iteration, I set the analysis to add thedivergent components to the conformance
view, and noticed apartitionUI divergent component. For consistency, sincefloorPlanUI and
placeRouteUI interact withfloorplanner andplaceRouter, respectively, I added to the designed
architecture apartitionUI that interacts withpartitioner, even though the informal drawing omit-
tedpartitionUI. The resulting designed architecture is in Fig. 7.7.

7.5.2 Iteration 1

7.5.2.1 Adding Annotations

I initially organized the Aphyds objects into two top-leveldomains.UI holds aViewerUI object
and several subsidiary user interface objects.MODEL holds aCircuit object and computational
objects that act on it, such asFloorplanner.

I also defined several private domains to hold objects encapsulated by their parent, such as
Map objects inside aCircuit object (Fig. 7.8). These annotations produce a hierarchical OOG,
as the (+) sign indicates (Fig. 7.9), but one that still has many objects in the top-level domains.

2A predicate in Acme can enforce this rule, and generate a warning when this happens.

7.5. Extended Example: Aphyds 233

1 class Circuit<OWNER> { // Implicit parameter
2 // MODEL Circuit c;=⇒ OWNER = MODEL
3 domain OWNED; // Private domain
4 OWNER Node node; // Make peer to self
5 // Declare reference to Map object in OWNED
6 // Inner OWNER annotation is for map elements
7 // String objects have manifest ownership
8 OWNED Map<String,OWNER Node> nodes;

9 }

10 class Circuit {

11 public domain DB; // Public domain
12 domain OWNED; // Private domain
13 DB Node node;

14 OWNED Map<String,DB Node> nodes;

15 }

16 class Node<OWNER> {// Implicit parameter
17 domain OWNED; // Private domain
18 OWNED Vector<OWNER Terminal> terms;

19 }

20 class Net<OWNER> {// Implicit parameter
21 domain OWNED; // Private domain
22 OWNED Vector<OWNER Terminal> terms;

23 }

24 class ViewerUI<M> { // Domain parameter
25 M Circuit circuit;

26 }

27 class Main { // Root class
28 domain MODEL, UI; // Top−level domains
29 MODEL Circuit circuit;

30 UI ViewerUI<MODEL> viewerUI;

31 }

Figure 7.8: Aphyds: initial annotations during Iteration 1.

7.5.2.2 Extracting Object Graphs

The extracted object graph for Aphyds is in Fig. 7.9. Aphyds did not require using abstraction
by types due to its fairly simple inheritance hierarchy.

7.5.2.3 Abstracting into Built Architecture

I used the default options for abstracting an OOG into the built C&C view.

7.5.2.4 Comparing the Built and Designed Architectures

I used the default options for comparing the built and the designed architectures.

234 Chapter 7. Evaluation of the Conformance Analysis

 UI

 MODEL

FloorplanUI(+)

Displayer(+)

Floorplan

Floorplanner

ChannelRouteUI(+)

PlaceRouteUI(+)

PartUI(+)

Viewer(+)

Circuit(+)Node(+)

Partitioner(+)

Placer(+)

Net(+)

Channel(+)

GlobalRouter(+)

PartitionTranscript(+)
PTnode

Bucket(+)

Terminal
NetGlobalRouting(+)

SlicingTree Vector<Floorplan>

Figure 7.9: Aphyds: OOG using private domains and many peer objects.

7.5.2.5 Analyzing Conformance

The conformance analysis produces neither a readable conformance view (Fig. 7.10) nor good
conformance metrics (Table 7.1). For example,Node andNet are peers ofCircuit instead of
being in its substructure (Fig. 7.8). So the analysis marks asabsent thenode andnet components
insidecircuit, hence the 2 node absences.

The built view has many more components in the top-level tiers than the designed view, which
explains the high node divergence (DN is 11). Moreover, the conformance analysis generates
many summary connectors (SE is 97) to account for possible transitive communication, which
leads to a high number of edge divergences (DE is 89).

For example,Displayer communicates withTerminal, andTerminal with Placer. In
reality,Terminal is part ofCircuit, andCircuit already communicates withPlacer. Ideally,
the analysis should just mark as convergences the connection betweenDisplayer andCircuit,
and the one betweenCircuit andPlacer. Since the analysis lacks information about logical
containment, it shows instead a divergent summary connector from Displayer to Placer, and
many others. This turns the conformance view into an unreadable fully-connected graph. The
low CCM and the 97 summary edges (SE) may not necessarily mean that the designed view
is only 21% accurate, but that the built architecture is not yet meaningfully comparable to the

7.5. Extended Example: Aphyds 235

_lentMain_MainUIFloorplanUI
_lentMain_MainUIDisplayer
_lentMain_MainMODELFloorplan
_lentMain_MainMODELFloorplanner
_lentMain_MainUIChannelRouteUI
_lentMain_MainUIPlaceRouteUI
_lentMain_MainUIPartUI
_lentMain_MainUIViewer
_lentMain_MainMODELCircuit
_lentMain_MainMODELNode
_lentMain_MainMODELPartitioner
_lentMain_MainMODELPlacer
_lentMain_MainMODELNet
_lentMain_MainMODELChannel
_lentMain_MainMODELGlobalRouter
_lentMain_MainMODELPartitionTranscript
_lentMain_MainMODELPTnode
_lentMain_MainMODELBucket
_lentMain_MainMODELTerminal
_lentMain_MainMODELNetGlobalRouting
_lentMain_MainMODELSlicingTree
_lentMain_MainMODELVector_Floorplan_

Figure 7.10: Aphyds: conformance view during Iteration 2.

designed one.

7.5.3 Iteration 2

In SCHOLIA, a developer controls the architectural abstraction usingannotations. So during
Iteration 2, I refined the annotations to get a better match without changing the code.

7.5.3.1 Adding Annotations

Using the designed architecture as a guide (Fig. 1.1), I defined several public domains. Some
public domains contain objects that should not be in the top-level tiers. For example,Viewer
has aDISPLAY public domain to hold aDisplayer object.Displayer is not in the developer’s
diagram (Fig. 1.1), but is not encapsulated either.Displayer is only logically contained inside
ViewerUI, as many otherUI objects, such asFloorPlanUI, reference it directly.

Other public domains abstract low-level objects into more architecturally relevant ones. For
example,Circuit holds objects such asNode andNet inside itsDB public domain, to reflect the
designed architecture (Fig. 7.7).

I also created public domains (not shown) as follows:
• CircuitViewer.DISPLAY: a public domain onCircuitViewer to hold aDisplayer

object that all the other objects in theUI domain had references to;
• Partitioner.DATABASE: a public domain on Partitioner to hold
PartitionTranscript andPTnode objects;

• Floorplanner.DATABASE: a public domain onFloorplanner for objects such as
SlicingTree;

236 Chapter 7. Evaluation of the Conformance Analysis

1 class Circuit {

2 public domain DB; // Public domain
3 domain OWNED; // Private domain
4 DB Node node;

5 OWNED Map<String,DB Node> nodes;

6 }

7 class Node<OWNER> {// Implicit parameter
8 domain OWNED; // Private domain
9 OWNED Vector<OWNER Terminal> terms;

10 }

11 class Net<OWNER> {// Implicit parameter
12 domain OWNED; // Private domain
13 OWNED Vector<OWNER Terminal> terms;

14 }

15 class ViewerUI<M> { // Domain parameter
16 M Circuit circuit;

17 }

18 class Main { // Root class
19 domain MODEL, UI; // Top−level domains
20 MODEL Circuit circuit;

21 UI ViewerUI<MODEL> viewerUI;

22 }

Figure 7.11: Aphyds: refined annotations during Iteration 2.

• GlobalRouter.DATABASE: a public domain on GlobalRouter to hold
NetGlobalRouting objects.

I also reduced the clutter by pushing low-level objects suchasVector<Floorplan> into
private domains or by passing them linearly between objects.

In most cases, defining a public domain required mostly localand incremental changes to
the annotations. With the refined annotations, many objectsthat were in theMODEL top-level
domain, such asNode, Net andTerminal, moved into public domains of other objects, such
asCircuit (Fig. 7.12). As a result, both the extracted OOG and the abstracted built view now
have a system decomposition that is closer to the desired architecture (Fig. 7.7). The reader can
visually compare the annotations I used in Iteration 1 (Fig.7.8) to those I adopted in Iteration 2
(Fig. 7.11) and confirm that the changes are fairly local.

Expressiveness challenges.For Aphyds,WARN% is 5%. The remaining annotation warnings
are due to expressiveness challenges in the ownership domain type system, similar to those I
discussed in Section 4.6.1.3 (Page 135). We believe these warnings do not contribute to missed
architectural violations. A warning potentially corresponds to a missed architectural violation, if
fixing the warning could produce an additional edge in the extracted object graph, or an additional
divergence in the conformance view.

7.5. Extended Example: Aphyds 237

 MODEL

 DB owned

 UI

Partitioner(+)

Circuit

Placer(+)

PlaceRouteUI(+)

Floorplanner(+)

Channel(+)

GlobalRouter(+)
Net(+) Terminal

Node(+)

EnumerateFanout(+)

Hashtable<String,Node>

Hashtable<String,Net>Viewer(+)

ChannelRouteUI(+)

PartUI(+)

FloorplanUI(+)

Figure 7.12: Aphyds: refined OOG after defining public domains.

7.5.3.2 Extracting Object Graphs

The extracted object graph, based on the refined annotations, is in Fig. 7.12.

7.5.3.3 Abstracting into Built Architecture

I used the default options for abstracting an OOG into the built C&C view.

7.5.3.4 Comparing the Built and Designed Architectures

I used the default options for comparing the built and the designed architectures. However, the
structural comparison did not correctly matchNode andNet in the built view, tonode andnet in
the designed view (Fig. 6.7, Page 213). Indeed, this is a casewhere the graph structure not rich
enough to give a good structural match. This was fixed by manually forcing Node to matchnode,
andNet to matchnet, respectively.

7.5.3.5 Analyzing Conformance

In Iteration 2, the conformance analysis matched the components better, with 0 node absences
and 1 node divergence, which corresponds toTerminal. The analysis now marks asconvergent,
both node andnet inside circuit, as well as the connectors between them (Fig. 7.13). In the
built system,node andnet do not communicate directly, but do so throughTerminal. So the
two convergent connectors insidecircuit have the summary decoration. As an aside, the edges

238 Chapter 7. Evaluation of the Conformance Analysis

_lentMain_MainMODELPartitioner
_lentMain_MainMODELCircuit
_lentMain_MainMODELPlacer
_lentMain_MainUIPlaceRouteUI
_lentMain_MainMODELFloorplanner
_lentMain_MainMODELChannel
_lentMain_MainMODELGlobalRouter
_lentMain_MainMODELCircuit_CircuitDBNet
_lentMain_MainMODELCircuit_CircuitDBTerminal
_lentMain_MainMODELCircuit_CircuitDBNode
_lentMain_MainMODELCircuit_CircuitownedEnumerateFanout
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Node_
_lentMain_MainMODELCircuit_CircuitownedHashtable_String_Net_
_lentMain_MainUIViewer
_lentMain_MainUIChannelRouteUI
_lentMain_MainUIPartUI
_lentMain_MainUIFloorplanUI

Figure 7.13: Aphyds: conformance view during Iteration 2.

fromNode toTerminal and fromNet toTerminal are in fact lifted edges. This example justifies
the different kinds of edge summarization: lifting an edge in an OOG and in a C&C view, then
adding summary connectors in the C&C view. In fact, we adaptedthe earlier explanation of
summary connectors (Fig. 6.7, Page 213) from this part of Aphyds.

7.5.4 Summary of Findings

As one would expect from an informal diagram, the designed architecture (Fig. 7.7) is only
about 60% accurate, based on the CCM metric. Indeed, SCHOLIA identified a divergent compo-
nentpartitionUI, several divergences betweenviewerUI and otherUI components, betweenUI and
MODEL components, and betweenMODEL components. Many connections which the devel-
oper thought to be uni-directional were bi-directional in reality. A developer could use ArchMod
to add the divergent connectors to the designed architecture.

One divergence that crosses tiers, fromplacer in MODEL to placeRouteUI in UI, was a red
flag and a potential concurrency bug (this is the connector I manually set to be darker in shade
in Fig. 7.13). As a multi-threaded application, Aphyds mustrespect certain framework-specific
conventions to call back from a worker thread executing a long-running operation into the user
interface thread. I used CodeTraceJ to trace this divergenceto aPlaceRouteUI field inside class
Placer, and manually inspected that the code handled the callback correctly.

Tool performance. The tools are sufficiently interactive to allow iteration. On an In-
tel ® Core™ 2 Quad Processor (2.4 GHz) with 4GB of RAM running Windows XP, the OOG
extraction takes around 10 seconds, and the structural comparison takes between 57 seconds

7.5. Extended Example: Aphyds 239

Table 7.1: Aphyds conformance metrics. We count convergent nodes (CN), divergent nodes (DN), absent
nodes (AN), convergent edges (CE), divergent edges (DE), absent edges (AE) and summary edges (SE).
CCM is the core conformance metric.

Iteration CN DN AN CE DE AE SE CCM
1 11 11 2 23 89 0 97 21%
2 13 1 0 16 11 1 2 57%

(Iteration 1) and 33 seconds (Iteration 2).

7.5.5 Aphyds Discussion

Threats to experimental validity are classified asinternal, whether the results were determined by
the technique or by some other factor, orexternal, to what extent the results can be generalized.
In this section, I mainly discuss internal validity, and defer the discussion of external validity
until after I present the other evaluations (Section 7.9.1).

To what extent are the results of this case study due to our knowledge of the Aphyds code,
and to what extent are they due to using SCHOLIA ? Although I did not author the Aphyds
system, I previously read about re-engineering Aphyds to ArchJava (Aldrich et al. 2002a) and
studied its ArchJava version (Abi-Antoun et al. 2008). But I believe the results of this case study
are due to using SCHOLIA and not to any previous knowledge of the code. The 8,000-linecode
base is too non-trivial for anyone to hold in his head at once.Moreover, when I studied Aphyds
previously, I represented the desired architecture differently (Abi-Antoun et al. 2008, Fig. 19).
I did not express tiers, had onemodel component withplanner, partitioner and others as sub-
components, and did not representcircuit’s substructure3.

Although the experimenter also designed several of the tools, a typechecker kept him honest.
He could not insert an arbitrary annotation without gettinga warning, or otherwise manipulate
the extracted architectures.

Another threat is that an electrical engineering professor—rather than a professional
architect—drew the Aphyds intended architecture. However, we mined the diagram only for
which objects are architecturally significant, the top-level tiers it shows, and the hierarchical
system decomposition it uses forCircuit’s substructure, all general concepts in modeling ar-
chitectures (Clements et al. 2003).

Another confound is whether the built and the designed architectures represent the same in-
formation. For instance, when we redrew the original developer’s diagram (Fig. 1.1), we reversed
the direction of some arrows (Aldrich et al. 2002a, p. 192) and excluded data flow edges. For a
meaningful conformance analysis, the designed and the built architectures must have the same
kind of connectors, here, points-to relations.

3I did not previously havenode andnet inside circuit due to ArchJava’s following limitation: in the Arch-
Java code, different components share instances ofNet andNode. Thus, neitherNet nor Node is an ArchJava
component class. As a result, the tool that extracts a C&C view from ArchJava code does not shownet or node
sub-components insidecircuit because the tool shows only the instances of ArchJavacomponent classes.

240 Chapter 7. Evaluation of the Conformance Analysis

Can SCHOLIA identify at least as many violations as the state-of-the-art in the
static enforcement of runtime architectures? The state-of-the-art would be library-based
(Medvidovic et al. 1996) or language-based (Aldrich et al. 2002b; Scḧafer et al. 2008) solutions.
For instance, the C2 ADL mandates a specific architectural framework (Medvidovic et al. 1996),
but requires developers to follow strict guidelines to avoid introducing architectural violations.
There are no tools to check that an implementation obeys those rules (N. Medvidovic, personal
communication, 2008). Language-based solutions, first exemplified by ArchJava, radically ex-
tend the language to incorporate architectural componentsand ports, and enforce communication
integrity using a type system (Aldrich et al. 2002b; Schäfer et al. 2008).

Using SCHOLIA, we found all the violations that (Aldrich et al. 2002a) previously found for
the same system. However, (Aldrich et al. 2002a) found the architectural violations in Aphyds,
only after they re-engineered the implementation to ArchJava.

Many factors make re-engineering a typical Java implementation to ArchJava hard
(Aldrich et al. 2002a; Abi-Antoun and Coelho 2005; Abi-Antoun et al. 2007a). In Arch-
Java, a developer makes an object architecturally significant by making its declared type
a component class. But ArchJava prohibits taking a reference to any instance ofa
component class as an argument, or returning a reference to one. Also, the developer may
define additional ArchJavacomponent classes, just to capture the intended system decompo-
sition. In a C&C view extracted from ArchJava,Component a appears insideComponent b if
a instantiatesb as one of its fields. As a result, one may define additionalcomponent classes
just to capture the intended system decomposition. Finally, an architecture extracted from an
ArchJava implementation shows only instances of componentclasses and the architectural sys-
tem decomposition they prescribe. A developer cannot drilldown into each component until she
reaches leaf objects that are typically data structures.

Deciding ahead of time which objects are architectural components and which objects are
data structures and should be left as regular Javaclasses, achieving the desired decomposi-
tion, and respecting ArchJava’s restrictions make re-engineering to ArchJava harder than simply
converting each Javaclass into an ArchJavacomponent class.

Indeed, Aldrich identified as an area of future work for the ArchJava project, the need to
address “the dichotomy between the component world and the object world—two different kinds
of entities with different rules” (Aldrich 2003). In ArchJava, classes that have many instances that
are shared or passed between different instances are best left as ordinary Java classes, because
ArchJava’scomponent classes may be too restrictive in those cases.

SCHOLIA does not have instances ofcomponent classes that are distinguished from in-
stances of regular Javaclasses. As a result, SCHOLIA does not have the dichotomy that exists
in ArchJava, since SCHOLIA achieves hierarchy using annotations and without additional classes.
In SCHOLIA, all objects are instances of regular Java classes, and there are fewer restrictions on
passing object references. In SCHOLIA, an object becomes secondary to another object by being
inside one of the domains of that object. The more architectural objects are higher in the owner-
ship hierarchy. In particular, logical containment can impose an arbitrary hierarchy on an object
graph, and allows SCHOLIA to support arbitrary object-oriented code better.

To apply SCHOLIA to Aphyds, we only added annotations to the code. In contrast, for
Aphyds, Aldrich et al. specified within the code over 20 ArchJavacomponent classes and
over 80ports, re-engineered the program to obey the type system’s restrictions, and inadver-

7.5. Extended Example: Aphyds 241

tently injected defects.

Could any other static conformance analysis approach find the violations that SCHOLIA

found? It is a genuine threat to validity to compare a designed runtime architecture to a built
code architecture, or vice versa. All previousstatic conformance approaches deal with the
code architecture(Feijs et al. 1998; Lagüe et al. 1998; Murphy et al. 2001; Sangal et al. 2005;
Eichberg et al. 2008). The closest to astatically extractedruntime architecturefor an object-
oriented system would be an object graph extracted by a static analysis, whether it uses annota-
tions (Lam and Rinard 2003) or not (Jackson and Waingold 2001;O’Callahan 2001). Most flat
object graphs would not convey sufficient architectural abstraction to be used for conformance
analysis. Of course, we could compare SCHOLIA ’s results to those obtained by adynamicanal-
ysis (Sefika et al. 1996b; Schmerl et al. 2006). But a dynamic analysis cannot claim to represent
all possible executions.

Could a static conformance approach for thecode architecture detect all the violations in a
runtime architecture? For example,could Reflexion Models (RM) (Murphy et al. 2001; JRM
2003) find all the violations thatSCHOLIA found? In fact, we modeled SCHOLIA closely after
RM, a standard in analyzing the conformance of code architectures. In RM, a third-party tool
extracts asource modelfrom the implementation. A developer posits a designedhigh-level model
and amapbetween the source and high-level models. RM pushes each interaction described in
the source model through the map to infer edges between high-level model entities. RM then
compares the inferred edges with the edges stated in the high-level model. There are many
similarities between SCHOLIA and RM. For example,WARN is similar to RM’s tracking of
unmapped entries in the source model. The major difference is that RM is designed for the code
architecture. There are also several minor differences. For example, RM has no divergent or
absent nodes. In RM, if the map generates a node that is not the designed view, RM automatically
adds that node to the designed view. In other words, RM has no divergent or absent nodes, nor
does it compute summary edges.

In Aphyds, many important classes are instantiated once, sothe object graph is somewhat
similar to a class diagram with associations. Of course, there are still non-trivial differences
related to the different instantiations of the various container classes such asVector. Out of
curiosity, we ran JRM (JRM 2003) on Aphyds. JRM supports neithertiers nor hierarchical target
architectures, so we used a simplified high-level model thatdid not include tiers and ignored
Circuit’s substructure. In some cases, JRM’s finding was consistent with what SCHOLIA found.
For example, RM found the divergence fromplacer to placeRouteUI, because it corresponds to a
direct field reference declared in classPlacer.

However, JRM produced many divergences and absences, and many were false positives
and false negatives, because it does not show an edge betweentwo high-level elements if they
communicate through a chain of objects. For example, aViewerUI object does not directly
point to aFloorPlanUI object. Instead, aViewerUI points to aDisplayer, andDisplayer
references aFloorPlanUI. Moreover,Displayer is in a public domain ofViewerUI. When
ViewerUI’s substructure is elided, the OOGlifts that relation toViewerUI, and shows alifted
edgefrom ViewerUI to FloorPlanUI, shown as a dotted edge in the OOG (Figs. 7.9, 7.12).

242 Chapter 7. Evaluation of the Conformance Analysis

placer 132

circuitData

5

placeRouteUI

1

viewerUI 374

21

channelRouteUI

0

floorPlanUI

0

partitionUI

1

1

6

338

partitioner

6

57

6

8

floorplanner

1

globalRouter

0

14

159

1

2

3

104

channelRouter

18

2

3

147

4

3

7

6

238

5

2

7

390

router

2

0

492

1

54

4

5

158

Figure 7.14: Aphyds: results using the Reflexion Models tool (JRM 2003).

However, RM showedabsencesbetweenviewerUI andfloorPlanUI (See Fig. 7.14)—instead of
the correct divergences and convergences.

Similarly, RM would not correctly handlecircuit’s substructure. Unlike RM, SCHOLIA dis-
tinguishes theVector of Terminals insideNet, from the one insideNode, and uses object
pulling, object merging, edge lifting, and edge summarization to check the communication be-
tweennode and net. In general, a tool for the code architecture cannot handle the runtime
architecture.

Does SCHOLIA generate many false positives? False positives are possible in general, as with
any sound static analysis, but SCHOLIA attempts to reduce them. For example, the edges in an
OOG are more precise than super-imposing associations froma class diagram. Also, SCHOLIA

checks only matching substructures, and not the entire object hierarchy. There are several sources
of false positives in SCHOLIA. The OOG extraction uses a whole-program and not a reachability
analysis that excludes infeasible paths. Also, the conformance analysis may add summary edges
that are false positives, as in Iteration 1 which had 97 summary edges. But if the built and
the designed architectures have a similar hierarchical decomposition and a similar number of
components at each hierarchy level, the analysis adds fewersummary edges. Indeed, Iteration 2
had only 2 summary edges, and neither one was a false positive. In our Aphyds evaluation, we
used CodeTraceJ to trace each finding to the code, and confirmedthat it does not correspond

7.5. Extended Example: Aphyds 243

to an obvious false positive. Aphyds was written by a professor for one of his classes. So this
may explain the absence of infeasible paths. In addition, Aphyds has no interesting inheritance
hierarchy. As a result, the imprecision due a field assignment through a superclass (Section 2.6.3)
and the lack of object-sensitivity in the OOG extraction do not show up in this case study.

Furthermore, to account for false positives, techniques such as Reflexion Models typically
support manual input (Murphy 1996, pp. 84–88). When studyingthe conformance findings, a
developer can manually override any finding and specify a reason for the override. For each
manual override, a tool can store in the designed architecture the original finding, the overridden
finding, and the reason for the override, together with any associated traceability information.
When re-running the analysis, if a computed edge has a manual override associated with it, the
analysis can compare the traceability of the computed edge to the previously saved one, and raise
a warning if it detects a discrepancy. Similarly, our tools could support such features to annotate
or override a conformance finding (Abi-Antoun et al. 2006).

7.6 Extended Example: JHotDraw

We now analyze the conformance of the JHotDraw subject system we previously discussed in
(Section 4.6, Page 128).

7.6.1 Modeling the Target Architecture

As is the case for many legacy systems, we were unable to find a documented runtime architec-
ture for JHotDraw. We did find however a documented abstracted code architecture (Fig. 4.2).
Of course, the runtime architecture may be significantly different from the code architecture. We
used the code architecture as an estimate to be refined by the conformance analysis step.

For each class in the code architecture, we created a component instance. Then, for each
association in the class diagram, we created a connection between the corresponding components
(Fig. 7.15).

JHotDraw’s architecture posed another challenge. From a previous study, we knew that a
Drawing was actually implemented as aFigure, contrary to the designed code architecture. So
the OOG, and thus by transformation, the built view, represented bothDrawing andFigure with
one runtime component. Had we modeledDrawing andFigure as separate in the designed view,
the structural comparison would not have detected the splitting or merging (Chapter 5). This led
us to mergeDrawing andFigure into oneDrawingFigure component in the designed view.

7.6.2 Adding Annotations

We discussed the JHotDraw annotation process in Section 4.6(Page 128).

7.6.3 Extracting Object Graphs

I discussed various JHotDraw object graphs in Section 4.6 (Page 128). For the conformance
analysis, I chose an object graph with abstraction by designintent types (Fig. 4.24).

244 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.15: JHotDraw: designed architecture documented in Acme.

7.6.4 Abstracting into Built Architecture

I used the default settings. The result is in Fig. 7.16.

7.6.5 Analyzing Conformance

ArchConf detected many renames and a few missing components,such as anUndoable in
CONTROLLER and anUndoManager in MODEL. Many connections, we thought to be unidirectional,
such as between componentsDrawingView andDrawingEditor, turned out to be bi-directional
(Fig. 7.17).

When the built and the designed architectures do not have roughly the same number of top-
level components and architectural decomposition, the summary connectors can make the graph
unreadable. For this reason, ArchConf provides the option ofturning off the generation of sum-
mary connectors. Of course, in that case, the conformance view no longer guarantees commu-
nication integrity. Turning off summary connector might still be useful as an intermediate step,
if a developer cares only about the core objects in the designed architecture (Fig. 7.18), or while
she is refining the target architecture.

There was however one big surprise: there were no callbacks fromMODEL into CONTROLLER!
In the base MVC pattern, a controller registers itself with the model and receives notifications.

7.6. Extended Example: JHotDraw 245

Figure 7.16: JHotDraw: built architecture in Acme.

Since there is no controller component, we suspected that the view acts also as controller, a
common implementation optimization. Indeed, in the JHotDraw “CRC Cards View”, the design-
ers mention thatDrawingView “handles input events” (Gamma 1998, Slide #10), a controller
responsibility.

We looked more closely at the built C&C view and noticed a connection betweenHandle in
Model andUndoable in Controller. But sinceUndoable did not connect toTool, the con-
formance analysis did not add a summary connector betweenHandle andTool. This example
justifies the need for richer conformance metrics that reflect the entire built view and not just
divergences.

In fact, the designed architecture focused on thedomain modeland ignored theapplication
model, which includesUndoManager andUndoable. These components are a later addition, part
of a somewhat independent subsystem to implement undo, not mentioned in the documentation.

246 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.17: JHotDraw: conformance view with summary edges.

Figure 7.18: JHotDraw: conformance view without summary edges.

7.6. Extended Example: JHotDraw 247

Table 7.2: JHotDraw conformance metrics.

System CN DN AN CE DE AE SE CCM
JHotDraw 9 8 0 23 49 0 72 32%
JHotDraw (no summaries) 9 8 0 16 7 0 0 70%

Figure 7.19: HillClimber: designed architecture.

7.6.6 Summary of Findings

Metrics. The low CCM indicates a large proportion of divergences and absences (Table 7.2).
This was expected because of how we obtained the designed view. Moreover, the designed view
is missing several top-level components, in each of the tiers.

7.7 Extended Example: HillClimber

We now analyze the conformance of the HillClimber subject system we previously discussed in
(Section 4.7, Page 154).

7.7.1 Modeling the Target Architecture

I based the designed HillClimber architecture on available documentation (Fig. 7.19).
In HillClimber, the applicationwindowuses acanvasto displaynodesandedgesof agraphto

show the output of a computationalengine. Based on a hint from one of the original framework
developers, we posited in the target architecture that theengine component need not connect to
window or canvas.

7.7.2 Adding Annotations

I previously discussed the HillClimber annotation process in Section 4.7 (Page 154).

248 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.20: HillClimber: built architecture in Acme.

7.7.3 Extracting Object Graphs

I discussed extracting object graphs from HillClimber in Section 4.7 (Page 154).

7.7.4 Abstracting into Built Architecture

I used the default settings. The result is in Fig. 7.20.

7.7.5 Analyzing Conformance

The conformance analysis confirms thatengine connects to bothwindow andcanvas, contrary
to the designed architecture (Fig. 7.21).

7.7.6 Summary of Findings

Metrics. The CCM is high since very few edges were affected (Table 7.3). The high node
divergence is due to a designed view that has fewer elements at the top-level than the built view.

7.7. Extended Example: HillClimber 249

Figure 7.21: HillClimber: conformance view.

Table 7.3: HillClimber conformance metrics.

System CN DN AN CE DE AE SE CCM
HillClimber 4 14 0 10 2 0 12 83%

The developer must either enrich the designed view by representing additional components in the
LOGIC tier, or refine the annotations to push more components in theLOGIC tier into engine’s
substructure.

7.8 Extended Example: CryptoDB4

This case study is an application of SCHOLIA to analyze conformance between a Java imple-
mentation and a security runtime architecture, entirely statically and using annotations. We also
illustrate enforcing constraints both at the code level andarchitecturally. The subject system is
CryptoDB, a secure database system designed by a security expert (Kenan 2006). CryptoDB
follows a database architecture that provides cryptographic protections against unauthorized ac-
cess, and includes a 3,000-line sample implementation in Java. The presence of both a Java
implementation and an informal architectural descriptionmake CryptoDB an appropriate choice
to demonstrate using SCHOLIA to analyze conformance and enforce structural constraints.

Why this case study? CryptoDB has compelling architectural documentation, and atarget ar-
chitecture designed by a security expert5. The target architecture also has richer types, properties
and constraints than the previous architectures that I analyzed using SCHOLIA, which increases
the external validity of the result. Unlike the previous case studies, I conducted the summative
CryptoDB case study to evaluate SCHOLIA after I finished developing the approach. In addi-
tion, this case study illustrates the unique strength of SCHOLIA, the ability to analyze statically

4Preliminary results of the CryptoDB case study appeared in (Abi-Antoun and Barnes 2009a).

250 Chapter 7. Evaluation of the Conformance Analysis

communication integrity, for all possible program runs, which is crucial for the security domain.

Evaluation methodology. During the evaluation, a colleague played the role of the architect,
while I played the role of the developer. The architect controlled the target architecture, and the
developer controlled the annotations and the code. In particular, the developer was not allowed to
change the target architecture directly. Instead, he had toconvince the architect that the proposed
change was justified architecturally, rather than a workaround to apply SCHOLIA. Also, we
forbade ourselves from making changes to the source code, except to annotate it.

7.8.1 Threat Modeling

For many years, companies such as Boeing and Microsoft have been usingthreat modeling
(Howard and Lipner 2003; Torr 2005; Howard and Lipner 2006) as a lightweight approach to
reason about security, to capture and reuse security expertise and to find security design flaws
during development. During threat modeling, development teams construct security architectures
that are later reviewed by security experts.

Although threat modeling often finds security design flaws, it suffers from the two problems
of architectural extraction and conformance analysis. Whena security expert asks a developer to
build a security architecture for a system under study, the developer typically produces a diagram
mostly from his recollection of how the system works, with little tool support to extract such an
architecture from the code. Then, during the security review, the experts study the architecture,
assign to the components different architectural properties such astrustLevel (Abi-Antoun et al.
2007b) orprivacyLevel, and enumerate all possible communication between the moretrusted and
the less trusted components of the system. But if the architecture does not show all the communi-
cation that is present in the system, the results of an architectural-level analysis may be incorrect.
While any architecture-based approach suffers from these problems, security architectures pose
special challenges.

A security architecture is an example of a runtime architecture. Moreover, an analysis at
the level of a security architecture must consider the worstand not the typical case of possible
component communication. Indeed, the analysis results arevalid only if the architecture reveals
all objects and relations that may exist at runtime, in any program run. This requires a static
analysis which can capture all possible executions.

Moreover, SCHOLIA ’s focus on the communication integrity notion of conformance is also
crucial for an architectural-level security analysis. Typically, a security review enumerates all of
the possible information flows between trusted and untrusted parts of the system. However, if the
analyzed architecture does not satisfy communication integrity, the architecture may not show all
information flows that are present in the implementation, and so the architectural analysis cannot
be trusted to be correct. Without enforced communication integrity in the target architecture, the
source code of the entire system must be painstakingly analyzed, and the architecture provides
little benefit for reasoning about the implementation (Aldrich 2003, p. 3).

5In contrast, an electrical engineering professor designedthe Aphyds target architecture (Aldrich et al. 2002a).

7.8. Extended Example: CryptoDB 251

Figure 7.22: CryptoDB: documented Level-1 DFD (Kenan 2006, Fig. 9.1).

7.8.2 Available Documentation

Architectural reasoning about security is best accomplished with a runtime architecture, not a
code architecture. A security architecture6 is an example of a runtime architecture which shows
runtime components and connectors, uses hierarchical decomposition, and partitions a system
into tiers.

7.8.2.1 Documented Architectures

We studied the architectural documentation available for CryptoDB, which consisted of var-
ious Data Flow Diagrams (DFDs) along with accompanying, explanatory text (Kenan 2006).
A DFD is a runtime architecture that can be represented as a Component-and-Connector view
(Clements et al. 2003, pp. 364–365). Fig. 7.22 is a Level-1 DFD. Fig. 7.23 is a Level-2 DFD
which refines in place some of the components from the Level-1DFD.

We mined the diagrams for the architecturally significant elements, the top-level tiers, and the
hierarchical system decomposition. During the course of the study, it also became apparent that
the documentation and the code used slightly different terminology. For example, the textbook
and DFDs referred to a “key manager”, but the code had aKeyTool. In the rest of this discussion,

6Threat modeling typically uses a Data Flow Diagram (DFD) with security-specific annotations to describe how
data enters, leaves and traverses the system by showing datasources and destinations, the processes that data goes
through and the trust boundaries in the system (Torr 2005). Here, we use a slightly different architectural style of a
security architecture, one which shows points-to (not dataflow) connectors, has no explicit data stores or external
interactors, and uses more general boundaries that indicate different runtime tiers.

252 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.23: CryptoDB: documented Level-2 DFD (Kenan 2006, Fig. 6.1).

we will often use the names from the implementation. Similarly, when we chose the names of the
components in the target architecture, we knew that they maynot match exactly the names of the
code elements, and that SCHOLIA ’s structural comparison can detect renames. Table 7.4 shows
a mapping between the components in the target architectureand the corresponding Java classes.
Of course, this mapping is only a first approximation, because one type in the class diagram
can map to multiple instances in the architecture; and multiple types in the class diagram can be
represented by the same canonical component in the runtime architecture.

7.8.2.2 Code Architecture

I used the Eclipse UML tool (Omondo 2006) to extract from the CryptoDB implementation
various views of the code architecture. For instance, Fig. 7.24 shows the CryptoDB package
structure. Fig. 7.25 shows a class diagram with a few selected core types from CryptoDB. A
quick glance shows that these module views are not very comparable to the security architecture
drawn by the system’s designer.

7.8. Extended Example: CryptoDB 253

Architectural Component Java Class Note
CustomerManager cryptodb.test.CustomerManager AKA “crypto consumer”
CustomerManager.Receipts cryptodb.CryptoReceipt Receipts the consumer

holds onto
CustomerInfo cryptodb.test.CustomerInfo AKA “protected data”
CryptoProvider cryptodb.core.Provider
CryptoProvider.ReceiptManager cryptodb.CompoundCryptoReceipt Used by the provider to

produce receipts
CryptoProvider.Encoder cryptodb.Utils
EngineWrapper cryptodb.core.EngineWrapper
EngineWrapper.Engine javax.crypto.Cipher
KeyManifest cryptodb.KeyAlias The key manifest contains

key aliases
KeyVault cryptodb.core.LocalKeyStore The key vault contains keys

(LocalKeys)
KeyManager cryptodb.KeyTool

Table 7.4: CryptoDB: mapping between architectural components and code elements.

cryptodb

cryptodb.core

cryptodb.test

«instantiate»
«import»

«send»

«instantiate»

«import»

«access»

«send»
«instantiate»

«import»

«instantiate»

«import»

Figure 7.24: CryptoDB: layer diagram.

7.8.2.3 Flat Object Graphs

We also used available tools to extract CryptoDB object graphs. As mentioned earlier, non-
hierarchical object graphs mix low-level objects such asHashMap with architecturally relevant
objects such asCryptoReceipt, and a developer has no easy way to distinguish them. These flat
object graph are unreadable, even for a small 3,000-line program, and do not convey sufficient
architectural abstraction to enable analyzing conformance. I obtained Fig. 7.26 using PANGAEA

(Spiegel 2002), and Fig. 7.27 using WOMBLE (Jackson and Waingold 2001).

254 Chapter 7. Evaluation of the Conformance Analysis

CompoundCryptoReceipt

CryptoReceipt

KeyAlias

KeyTool

Utils

EngineWrapper

LocalKey

LocalKeyStore

Provider

CustomerManager

DecryptionResults

«interface»

EncryptionRequest

CustomerInfo

CreditCardInfo

HashMap

«instantiate»

«instantiate»

«instantiate»

«instantiate»

«import»

«instantiate»

«import»

«instantiate»

«instantiate»

«instantiate»

«import»

«instantiate»

 − receipts0..1

cryptoColumn

Figure 7.25: CryptoDB: class diagram, extracted using Eclipse UML (Omondo 2006).

byte[]

<Utils> *byte[]*

SecretKeySpec

SimpleDateFormat

CompoundCryptoReceipt

CryptoReceipt

CryptoReceipt

SecretKeySpec

KeyAlias *Timestamp*

EngineWrapper
IvParameterSpec

LocalKeyStore *LocalKey*

byte[]

Timestamp

CompoundCryptoReceipt

CreditCardInfo

Timestamp

CustomerManager

CustomerInfo

Provider

DecryptionResults

Main

KeyTool

KeyAlias *Timestamp*

<Main>

KeyAlias<KeyAlias>

Figure 7.26: CryptoDB: flat object graph extracted using PANGAEA (Spiegel 2002).

7.8. Extended Example: CryptoDB 255

char[]

cryptodb.test.Main

cryptodb.test.CustomerManager

mgr

cryptodb.core.Provider

provider

cryptodb.core.LocalKeyStore

keyStore

cryptodb.KeyTool

keyTool

java.util.Map

java.lang.Boolean

cryptodb.CryptoReceipt

cryptoReceipt

provider

java.lang.Object

obj_Requests::elts

java.lang.String

EMAIL_ADDR

EXP_DATE

FIRST_NAME

CREDIT_CARD

LAST_NAME

cryptodb.CompoundCryptoReceipt

piiReceipts

java.util.HashMap$Entry[]

java.lang.ref.Reference

java.sql.Timestamp

cdate

javax.crypto.Cipher

javax.crypto.ExemptionMechanismf

java.security.Provider$Service

k

sun.security.util.Debug

a

javax.crypto.CipherSpic

j

n

java.util.List

m

javax.crypto.SunJCE_k

e

d

o

i

p

java.security.Provider

b

java.util.Iterator
l

java.security.Key

javax.crypto.ExemptionMechanismSpi

java.util.HashMap

java.util.HashMap$KeySet

keySet

java.util.Set

entrySet

values

keyStored

exmechSpi

mechanism

provider

iv

aliasId

ciphertext

java.util.LinkedHashMap$Entry

hasKeyAttributes

attributes

java.lang.ClassCLASS0[]

supportedClasses[]

aliases

className

type

algorithm

supportedFormats[]

provider

java.lang.ref.WeakReference

classRef

this$0

cryptodb.core.LocalKey

kekId

keyData

keyId

javax.crypto.spec.SecretKeySpec

key

byte[]

kek

rawKey

receipt

cryptodb.core.EngineWrapper

engine

cryptodb.EncryptionRequest
objRequest

cryptodb.KeyAlias

alias

keyStore

aliasId

java.util.HashMap$Entry
allReceipts::pairs

receipts

plaintext

cipher

localKey
keyStore

key

ciphertext

cryptodb.KeyAlias

activationDate

EXPIRED

RETIRED

aliasId

status

engine

LIVE

PENDING

keyAlias

TERMINATED

keyFamily

ACTIVE

keyId

activationDate

EXPIRED

RETIRED

status

aliasId

engine

LIVE

PENDING

keyAlias

TERMINATED

keyFamily

ACTIVE

keyId

localKey

keyid

keyData

kekSpec

hexDigits

args

prefix

java.lang.ref.ReferenceQueue$Lock

localKey

tmpA

keyStore

aliasId

keyId

b

c

a

java.security.Provider$ServiceKey

originalAlgorithm

type

algorithm

java.util.HashMap$Entry

value
key

java.lang.ref.ReferenceQueue

head

lock
ENQUEUED

NULL

java.util.LinkedHashMap

table

header

values

entrySet

keySet

legacyStrings

serviceMap

knownEngines

entrySet

serviceSet

debug

ALIAS_PREFIX

info

name

ALIAS_PREFIX_LOWER

previousKey

legacyMap

referent

queue

receipt

str1

aliasId

receipts::pairs

algorithm

key

Figure 7.27: CryptoDB: flat object graph extracted using WOMBLE (Jackson and Waingold 2001).

256 Chapter 7. Evaluation of the Conformance Analysis

1 class LocalKeyStore<KEYID> {

2 private domain OWNED, KEYDATA;

3 public domain KEYS;

4 link KEYS -> KEYID, KEYS -> KEYDATA, OWNED -> KEYS;

5 assume OWNER -> KEYID;

6 private OWNED List<KEYS LocalKey<KEYID,KEYDATA>> keys;

7

8 public unique List<KEYS LocalKey<...>> getKeys() {

9 unique List<KEYS LocalKey<...>> copy = copy(keys);

10 return copy;

11 }

12 }

13 class LocalKey<KEYID,KEYDATA> {

14 assume OWNER -> KEYID, OWNER -> KEYDATA;

15 private KEYDATA String keyData; // encrypted key
16 private KEYID String keyId; // encrypted key id
17 ...

18 private OWNER SecretKeySpec key; // Make peer to self
19 }

Figure 7.28: CryptoDB:LocalKeyStore andLocalKey annotations.

7.8.3 Adding Annotations

I added ownership domain annotations to CryptoDB to specify,within the code, object encap-
sulation, logical containment and architectural tiers, asdiscussed earlier. The annotations define
two kinds of object hierarchy, logical containment and strict encapsulation.

Logical containment. As an example of logical containment in CryptoDB,LocalKeyStore

declares a public domain,KEYS, to holdLocalKey objects (line 3 in Fig. 7.28).

Strict encapsulation. As an example ofstrict encapsulationin CryptoDB,LocalKeyStore
stores the list ofLocalKey objects, keys, in a private domain,OWNED (line 6). As a result, the
accessorgetKeys must return a shallow copy of the list, and cannot return an alias (line 8 in
Fig. 7.28).

Domain parameters. I defined on the classLocalKey theKEYID andKEYDATA domain param-
eters (line 13). In turn,LocalKeyStore takes aKEYID domain parameter (line 1). For example,
LocalKeyStore binds its local domainKEYDATA to LocalKey’s KEYDATA parameter (line 6).

Top-level domains. I organized instances of the core CryptoDB types into four top-level do-
mains, as follows (Fig. 7.31, 7.32):

• CONSUMERS: hasCustomerManager, andEncryptionRequests, such asCustomerInfo
andCreditCardInfo;

7.8. Extended Example: CryptoDB 257

 ALIASID

 CONSUMERS

 PROVIDERS

 PLAIN

 KEYID KEYMANAGEMENT

 KEYSTORAGE

 CRYPTO

(+)

(+)

(+)

(+)

(+)

(+)

(+)(+)

Figure 7.29: CryptoDB: Level-0 OOG withString objects.

• PROVIDERS: hasProvider,EngineWrapper;
• KEYSTORAGE: hasKeyAliases andLocalKeyStore;
• KEYMANAGEMENT: has aKeyTool object.

Nested domains. For several classesCi, I also defined one or more nested domainsDi, which
I refer to using theCi::Di notation:

• CustomerManager::RECEIPTS hasCryptoReceipts;
• LocalKeyStore::KEYS has instances ofLocalKey, SecretKeySpec, etc. (Fig. 7.33). In

contrast, the privateOWNED domain contains aList of LocalKeys .
• Provider::RCPTMGR hasCompoundCryptoReceipt objects;

Refining the annotations. I iterated the process of adding the annotations a few times.In
one such refinement, I wanted to reason aboutString objects. In the previous case studies,
String objects were uninteresting, and annotated withshared. However, when reasoning about
security,String objects become interesting. Indeed, in CryptoDB, much communication takes
place throughStrings. To better understand this communication, we declared different domains
for plain-text (PLAIN), encrypted (CRYPTO), alias identifier (ALIASID), and key identifier (KEYID)
Strings. In particular, the annotation typechecker checks that theseStrings are not assigned to
each other, a perfectly valid operation in Java.

For example, Fig. 7.29 shows only the top-level domains and summarizes the field references
between objects in those domains using dotted edges. However, when analyzing conformance
later, we simplified the OOG by binding all the additional parameters forPLAIN, CRYPTO, etc.,
to theshared domain. This required changing only the binding of these domain parameters in
the top-level class, and changing a few lines of annotationsin the top-level class.

An object graph showing explicit top-level domains for the different kinds ofStrings is in
Fig. 7.30.

258 Chapter 7. Evaluation of the Conformance Analysis

 KEYMANAGEMENT

 PROVIDERS

 owned

 owned

 RCPTMGR

 owned

 KEYID

 PLAIN

 CRYPTO

 ALIASID

 KEYSTORAGE

 owned

 KEYS

 KEYDATA

 owned

 CONSUMERS

 owned

 owned

 owned

 RECEIPTS

keyTool(+):
KeyTool

keyid:
String

aliasId:
String

alias:
KeyAlias

keyStore:
LocalKeyStore

(+)

engine:
EngineWrapper

manifests:
Vector<KeyAlias>

receipts:
HashMap<String,CryptoReceipt>

str1:
String

receipt:
CryptoReceipt

cciReceipts:
CompoundCryptoReceipt

provider:
Provider

iv:
byte[]

cust:
CustomerInfo

cci:
CreditCardInfo

ciphertext:
String

now:
Timestamp

localKey:
LocalKey

kekSpec:
SecretKeySpec

keyData:
String

rawKey:
byte[]

keys:
ArrayList<LocalKey>

plaintexts:
HashMap<String,String>

plaintexts:
HashMap<String,String>

(+)

mgr:
CustomerManager

Figure 7.30: CryptoDB: OOG withString objects.

7.8. Extended Example: CryptoDB 259

_lentMain_MainKEYMANAGEMENTKeyTool
_lentMain_MainKEYIDString
_lentMain_MainALIASIDString
_lentMain_MainKEYSTORAGEKeyAlias
_lentMain_MainKEYSTORAGELocalKeyStore
_lentMain_MainPROVIDERSEngineWrapper
_lentMain_MainPROVIDERSProvider_ProviderownedVector_KeyAlias_
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt_CompoundCryptoReceiptownedHashMap_String_CryptoReceipt_
_lentMain_MainPLAINString
_lentMain_MainCONSUMERSCustomerManager_CustomerManagerRECEIPTSCryptoReceipt
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt
_lentMain_MainPROVIDERSProvider
_lentMain_MainCRYPTObyte__
_lentMain_MainCONSUMERSCustomerInfo
_lentMain_MainCONSUMERSCreditCardInfo
_lentMain_MainCRYPTOString
_lentMain_MainKEYSTORAGEKeyAlias_KeyAliasownedTimestamp
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSLocalKey
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSSecretKeySpec
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAString
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAbyte__
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreownedArrayList_LocalKey_
_lentMain_MainCONSUMERSCustomerInfo_CustomerInfoownedHashMap_String_String_
_lentMain_MainCONSUMERSCreditCardInfo_CreditCardInfoownedHashMap_String_String_
_lentMain_MainCONSUMERSCustomerManager

interface EncryptionRequest<PLAIN> {

unique Map<PLAIN String, PLAIN String> getPlaintexts();

}

class DecryptionResults<PLAIN> implements EncryptionRequest<PLAIN> {

private domain OWNED;

OWNED Map<PLAIN String, PLAIN String> plaintexts = new ...;

unique Map<...> getPlaintexts() {

return copy(plaintexts); // Return copy of field
}

}

class CompoundCryptoReceipt<RECEIPTS,PLAIN,CRYPTO,ALIASID> {

private domain OWNED;

OWNED Map<PLAIN String,RECEIPTS CryptoReceipt> receipts = new ...;

}

class CryptoReceipt<CRYPTO,ALIASID> {

CRYPTO String ciphertext;

CRYPTO String iv;

ALIASID String aliasId;

}

Figure 7.31: CryptoDB: annotation excerpts.

7.8.4 Extracting Object Graphs

I then used ArchRecJ to extract an OOG from the annotated CryptoDB code (Fig. 7.35). For
example, inside theProvider’s RCPTMGR domain, aCompoundCryptoReceipt encapsulates a
HashMap that mapsString to CryptoReceipt objects. Separately, eachEncryptionRequest
inside theCONSUMERS domain has aHashMap that mapsStrings toStrings.

Abstraction by types. An object graph without abstraction by types shows separate
CustomerInfo andCreditCardInfo objects (Fig. 7.35). Because the target architecture has
one such component, I used abstraction by types to make the CryptoDB OOG merge objects of
type CustomerInfo, andCreditCardInfo in the CONSUMERS domain, because their classes
implement theEncryptionRequest interface (Fig. 7.31). To do so, I added the interface
EncryptionRequest to the list of design intent types.

Hierarchy. Fig. 7.34 shows the top-level domains and the objects directly inside them, with
their substructure collapsed, after binding all the domainparameters containingStrings to
shared. In Fig. 7.35, we manually expanded the substructures ofmgr, provider, engine, etc.
Here, we collapsed the substructure ofkeyStore (which appears in Fig. 7.33). We also manually
collapsed the private domainOWNED insidekeyStore, which now appears asOWNED(+).

260 Chapter 7. Evaluation of the Conformance Analysis

class CreditCardInfo<PLAIN> implements EncryptionRequest<PLAIN> {

public unique Map<...> getPlaintexts() {

unique Map<PLAIN String, PLAIN String> map = new ...;

map.put(CustomerManager.CREDIT_CARD, creditCard);

...

return map;

}

}

class CustomerManager<CONSUMERS,PROVIDERS,PLAIN,CRYPTO,ALIASID...> {

public domain RECEIPTS;

PROVIDERS Provider<CONSUMERS,PLAIN,CRYPTO,ALIASID,RECEIPTS...> prov;

void testEncrypt() {

CONSUMERS CreditCardInfo<PLAIN> cci = new CreditCardInfo();

prov.RCPTMGR CompoundCryptoReceipt<...> cciRcpts = prov.encrypt(cci, "cci");

}

void testDecrypt() {

prov.RCPTMGR CompoundCryptoReceipt<...> pii = new ...;

RECEIPTS CryptoReceipt<CRYPTO,ALIASID> r1 = new ...;

pii.addReceipt(FIRST_NAME, r1);

CONSUMERS DecryptionResults<PLAIN> piiPlaintexts = prov.decrypt(pii);

}

}

class System {

domain CONSUMERS,PROVIDERS,KEYMANAGEMENT,KEYSTORAGE...;

KEYSTORAGE LocalKeyStore<...> store = new LocalKeyStore();

KEYMANAGEMENT KeyTool<KEYSTORAGE...> tool = new KeyTool(store);

CONSUMERS CustomerManager<...> mgr = new CustomerManager(store);

}

Figure 7.32: CryptoDB: annotation excerpts (continued).

Figure 7.33: CryptoDB:LocalKeyStore OOG.

7.8. Extended Example: CryptoDB 261

 KEYMANAGEMENT

 KEYSTORAGE

 PROVIDERS

 CONSUMERS

tool(+):
KeyTool

tmp(+):
KeyAlias

keyStore(+):
LocalKeyStore

engine(+):
EngineWrapper

provider(+):
Provider

encryptionRequest(+):
EncryptionRequest

mgr(+):
CustomerManager

Figure 7.34: CryptoDB: Level-1 OOG withoutString objects.

7.8.5 Abstracting into Built Architecture

I iterated the process of adding the annotations and extracting OOGs until the OOG had roughly
similar tiers, a similar hierarchical decomposition, and asimilar number of components in each
tier, when visually compared to the target architecture. I then used ArchCog to abstract an
extracted object graph into a C&C architecture represented in Acme (Fig. 7.36).

7.8.6 Modeling the Target Architecture

We designed a target architecture using Acme, basing it largely on the available DFDs (Sec-
tion 7.8.2.1). We represented the DFD processes and data stores using components. We used the
Acme representation feature to include subarchitectures corresponding to second-level DFDs.
We used Acme groups, depicted with dashed lines, to partition the architecture into broad areas
of responsibility.

We added directional connectors based on the information inthe book by (Kenan 2006). In
many cases, the points-to connectors were the reverse of thedata flow connectors in the DFDs.

We went through a process of iteration to get the architecture right. This was due in large
measure to the ways in which the implementation departed from the architecture. The imple-
mentation, in our case, was a demonstrative implementationfound in a security book, not a fully
faithful implementation of the design. In particular, the implementation was simplified in many
respects. For instance, Kenan identifies in principle a number of subcomponents of the crypto-
graphic provider: an initializer, an encoder, a receipt manager, an engine interface, and others
(Kenan 2006, §6.1). In the implementation, the provider wasnearly monolithic; few of these

262 Chapter 7. Evaluation of the Conformance Analysis

_lentMain_MainKEYMANAGEMENTKeyTool
_lentMain_MainKEYSTORAGEKeyAlias
_lentMain_MainKEYSTORAGELocalKeyStore
_lentMain_MainPROVIDERSEngineWrapper
_lentMain_MainPROVIDERSProvider
_lentMain_MainCONSUMERSEncryptionRequest
_lentMain_MainCONSUMERSCustomerManager

 KEYMANAGEMENT

 CONSUMERS

 owned

 RECEIPTS

 PROVIDERS

 owned

 RCPTMGR

 owned

 KEYSTORAGE

 KEYS

 owned

 KEYDATA

keyTool(+):
KeyTool

keyStore:
LocalKeyStore

alias(+):
KeyAlias

card:
CreditCardInfo

cust:
CustomerInfo

(+)

cryptoReceipt4:
CryptoReceipt

mgr:
CustomerManager

provider:
Provider

(+)
receipts:

HashMap<String,CryptoReceipt>

receipts:
CompoundCryptoReceipt

engine(+):
EngineWrapper

kekSpec:
SecretKeySpec

key:
LocalKey

rawKey:
byte[]

keyData:
String

(+)

Figure 7.35: CryptoDB: Level-2 OOG, after binding top-level domains forString to shared.

distinct responsibilities were actually allocated to separate objects. We had to modify our target
architecture to accommodate the casual way in which the implementation realized the described
architecture. Had we not done so, we would have had to deal with these discrepancies later while
analyzing conformance. In a system in which the implementation more faithfully realized the
design, less iteration would be necessary.

This iteration was partly due to the mismatch between conceptual and implementation-level
architectures. In Acme, a component is just a transparent view of a more detailed decomposition
specified by the representation of that component (Section 5.4.2, Page 189). In both the OOG
and the abstracted built architecture, a component collapses one or more objects that constitute

7.8. Extended Example: CryptoDB 263

_lentMain_MainKEYMANAGEMENTKeyTool
_lentMain_MainKEYSTORAGELocalKeyStore
_lentMain_MainKEYSTORAGEKeyAlias
_lentMain_MainCONSUMERSCreditCardInfo
_lentMain_MainCONSUMERSCustomerInfo
_lentMain_MainCONSUMERSCustomerManager_CustomerManagerRECEIPTSCryptoReceipt
_lentMain_MainCONSUMERSCustomerManager
_lentMain_MainPROVIDERSProvider
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt_CompoundCryptoReceiptownedHashMap_String_CryptoReceipt_
_lentMain_MainPROVIDERSProvider_ProviderRCPTMGRCompoundCryptoReceipt
_lentMain_MainPROVIDERSEngineWrapper
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSSecretKeySpec
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYSLocalKey
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAbyte__
_lentMain_MainKEYSTORAGELocalKeyStore_LocalKeyStoreKEYDATAString

Figure 7.36: CryptoDB: built architecture in Acme.

its parts, according to their ownership and type structures.
In general, developers do not use hierarchical decomposition rigorously in DFDs. But in

SCHOLIA, logical containment can push almost any object underneathany other object in the
ownership hierarchy. This allows a developer to use annotations to control the system decompo-
sition in the OOG.

Another change we made in the process of iteration was to exclude the external interactors
from the target architecture. Although useful for showing the endpoints of a system during threat
modeling, they did not correspond to any code elements, since they were external to the system.
We could leave the external interactors in the target architecture, but they would always show up
as absences in the conformance view, thus increasing the noise level.

While iterating the process of adding the annotations and extracting OOGs, we determined
the similarity between the OOG and the target architecture by visual inspection. The CryptoDB
target architecture we converged on is in Fig. 7.37.

7.8.7 Analyzing Conformance

I then analyzed the communication integrity of the CryptoDB target architecture, and established
the traceability between the target architecture and the code. I used ArchConf to create aconfor-
mance viewof the target architecture (Fig. 7.38), which shows convergences, divergences, and
absences, and has traceability to the code.

Renames. Because SCHOLIA uses a structural comparison algorithm to compare the builtand
designed architectures, it was able to handle the naming discrepancies between the target archi-
tecture and the implementation, e.g.,KeyManager versusKeyTool.

264 Chapter 7. Evaluation of the Conformance Analysis

Figure 7.37: CryptoDB: target architecture in Acme.

Figure 7.38: CryptoDB: conformance view in Acme. The representation of some components is inlined.

7.8. Extended Example: CryptoDB 265

Conformance findings. Overall, as the large number of convergences indicates, thetop-level
components in the target architecture (based on a Level-1 DFD) and the implementation were
mostly consistent (Fig. 7.38).

Drilling down into the representations of the some of the top-level components revealed more
interesting differences. For example, the Level-2 DFD (Fig. 7.23) shows anEncoder component
inside theProvider component. However, the implementation represents theEncoder’s func-
tionality using a helper classUtils, which is never instantiated. Hence, the conformance view
shows an absence. One way to resolve this absence is to modifythe code to instantiate a singleton
Utils object, which would not affect the system’s behavior. Alternatively, we could use a “vir-
tual field” annotation that indicates an object allocation,to force the OOG to show an instance of
theEncoder class.

In the process of modeling the target architecture, we confronted a number of architecture–
implementation discrepancies of this nature. We ultimately dealt with them, in most cases, by
modifying the target architecture to match the implementation. This was necessary because of
the departures that the CryptoDB implementation made from the architecture. Had we not rec-
onciled the differences in the target architecture, we would have had more noise to sort through
while analyzing conformance. Naturally, distinguishing between deliberate departures from the
architecture and genuine architecture violations requires careful judgment. However, we view it
as a strength of SCHOLIA that architects have the opportunity to exercise their judgment in this
way to forestall uninteresting violation reports from the tool.

In other cases, we refined the annotations. For instance, we had initially modeled all
instances ofCryptoReceipt and CompoundCryptoReceipt in a RECEIPTS domain inside
the CustomerManager. As a result, the analysis flagged theReceiptManager inside the
CryptoProvider as an absence. Then we looked more carefully at how theProvider and
the CustomerManager exchanged these objects. This led us to define aRCPTMGR domain in-
sideprovider for CompoundCryptoReceipts, and left theCryptoReceipts in theRECEIPTS
domain insidemgr (Fig. 7.31).

7.8.8 Enforcing Code-Level Constraints

We then added to CryptoDB domain links to specify explicit policies that govern how a domain
can reference objects in other domains (Section 2.3.2, Page40).

For example, in CryptoDB, aLocalKey assumesthat its owning domain can access theKEYID

andKEYDATA domain parameters. In turn, when aLocalKeyStore instantiates aLocalKey, and
bindsKEYID andKEYDATA to KEYID andKEYS, respectively,LocalKeyStore must satisfy those
permissions. For the first one, it declares adomain linkfrom KEYS to KEYID (line 4). For the
second one, it linksKEYS to KEYDATA.

We defined domain links and assumptions and typechecked them. The resulting domain link
declarations in the top-level class were largely expected.As can be seen in Fig. 7.29, there are
bidirectional links betweenPROVIDERS andCONSUMERS. But the links are unidirectional from
PROVIDERS andKEYMANAGEMENT to KEYSTORAGE. Of course, there are no links fromCONSUMERS
to KEYSTORAGE. Note that domain link permissions are not transitive.

266 Chapter 7. Evaluation of the Conformance Analysis

class Provider<REQUESTS,KEYSTORAGE...> {

assume OWNER->KEYSTORAGE;

KEYSTORAGE LocalKeyStore<KEYID> keyStore; // (1)
OWNER EngineWrapper<KEYSTORAGE...> engine;

Provider(KEYSTORAGE LocalKeyStore<KEYID> store) {

// Inject architectural violation
this.keyStore = store; // (2)
this.engine = new EngineWrapper(store);

}

}

Figure 7.39: CryptoDB: injected architectural violation.

7.8.9 Enforcing Architectural Constraints

We also wrote architectural constraints to express restrictions on the communication allowed
in the CryptoDB architecture. Then, we formalized these constraints and added them to the
CryptoDB target architecture. Some of the constraints include:

1. KeyManager should not connect toEngineWrapper;
2. KeyVault should not point toKeyManifest;
3. OnlyKeyManager andEngineWrapper should have access toKeyVault.
All these constraints reflect our understanding of the security requirements of the target ar-

chitecture, and indeed they are all roughly derived from commentary in Kenan’s book (Kenan
2006). For example, constraint 3 is an adaptation of the following remark: “Access to the key
vault [. . .] should be granted to only security officers and the cryptographic engine” (p. 71). The
key manager is the architectural agent that security officers use, hence we arrive at constraint 3.

We formalized the above constraints using the Acme predicate language (Monroe 2001), as
follows:

1. forall c : Component in KeyManagement.MEMBERS |

!connected(c, EngineWrapper)

2. !pointsTo(KeyVault, KeyManifest)

3. forall c : Component in self.COMPONENTS |

pointsTo(c, KeyVault) -> c.label=="KeyManager"

or c.label=="EngineWrapper"

The full Acme specification of the CryptoDB target architecture, including the architectural
style and the definition of thepointsTo predicate above, is in Appendix B.

Constraint violations. Once we added the constraints to the target architecture, weused the
AcmeStudio tool to verify them. Due to the traceability SCHOLIA established between the archi-
tecture and the code, we can have confidence that the implementation meets these constraints.

To further validate our approach, we modified the CryptoDB code, injecting a manufactured
architecture violation to confirm that our constraints would catch it. Specifically, we coupled the
Provider and theLocalKeyStore (Fig. 7.39). According to constraint 3 above, theProvider

is not allowed to point to theLocalKeyStore in this way. In the architecture, access to the

7.8. Extended Example: CryptoDB 267

KeyVault is highly restricted due to the sensitivity of the contents.
When we modified the code in this way and ran our analysis, the conformance view showed

an additional divergence between provider and keyVault, and the predicate raised a warning
about the architectural violation in the conformance view.In addition, the domain link checks
alone would not have caught this violation. Bothengine andprovider are peers in the same
PROVIDERS domain (Fig. 7.34). So, there must already be a domain link from PROVIDERS to
KEYSTORAGE for engine to access the key vault. But we still do not wantprovider to access
the key vault.

7.8.10 CryptoDB Discussion

The CryptoDB case study demonstrates that SCHOLIA can relate, entirely statically, a security
runtime architecture to a program written in a widely used object-oriented language, using an-
notations. Such an approach can increase the effectivenessof reasoning architecturally about the
security of existing systems, because it ensures that the architecture is a faithful representation
of the code, which is ultimately the most reliable and accurate description of the built system.
Of course, many approaches identify security vulnerabilities directly at the code level, without
requiring ownership annotations, or following the SCHOLIA approach. However, architectural
analysis matches the way experts reason about security or privacy better than a purely code-based
strategy, as indicated by the well-established threat modeling process.

Architectural security analysis. Various architectural-level security analyses have been pro-
posed (Moriconi et al. 1997; Deng et al. 2003). For example, UMLsec (J̈urjens 2004) extends
UML with secrecy, integrity and authenticity, to allow analyzing security weaknesses at the
design level. However, UMLsec achieves conformance between the architecture and the imple-
mentation using code generation, code analysis, and test-sequence generation. Code generation,
while potentially guaranteeing the correct refinement of anarchitecture into an implementation,
is often too restrictive to be fully adopted on a large scale and cannot account for legacy code.
One could use SCHOLIA to analyze an existing system, after the fact, by adding annotations to
the code.

Similarly, SecureUML (Lodderstedt et al. 2002) recommendsa model-driven approach in
which security constraints are imposed on a model that is later elaborated into code. Of course,
like all model-driven approaches, SecureUML is useful onlyfor construction of new systems, not
for analysis of existing implementations. SCHOLIA is appropriate for use on existing code, re-
quiring only annotations. Another difference is that SecureUML is based on a code architecture,
leaving other views for future work.

Code-level analyses. Many code-level analyses can identify security vulnerabilities by static
analysis directly over the code. SCHOLIA complements, and does not supplant these code-level
analyses. Moreover, the traceability between a security architecture and the code that SCHOLIA

derives can benefit other static analyses. Until now, due to the lack of traceability, much of the
security design intent generated during threat modeling has not been accessible to other code
quality tools. For instance, a static analysis checking forbuffer overruns, e.g., (Hackett et al.

268 Chapter 7. Evaluation of the Conformance Analysis

2006), can use this traceability to assign to its warnings more appropriate priorities based on a
more holistic view of the system.

Security testing. Analysis offers substantial benefits beyond those of testing alone. Perhaps
most significantly, since SCHOLIA is based on static analysis, it can reveal information aboutall
possible runs of a program, while testing is limited to a small number of runs. This difference
is particularly important in the security domain. Similar to testing is dynamic conformance
analysis, which instruments and monitors a system (Sefika etal. 1996b; Schmerl et al. 2006).
We discuss checking conformance using dynamic analysis further in Section 8.9.2.1 (Page 301)

Design enforcement. Many approaches can enforce local, modular, code-level constraints,
e.g., JavaCop (Andreae et al. 2006), SCL (Hoover and Hou 2006).SCHOLIA is complemen-
tary and can enforce structural constraints on the global runtime architectural structure. As we
discussed in Sections 6.5, 7.8.9, documenting an extractedarchitecture in an ADL enables first-
order logic predicates to enforce global constraints on thearchitecture (Monroe 2001).

Conformance to a style. Many approaches can analyze the conformance of an architecture
to an architectural style, but assume that the architectureis extracted somehow. Thus, such ap-
proaches can be seen as addressing the problem ofhorizontal conformance(Ducasse and Pollet
2009), rather thanvertical conformance. For instance, (Medvidovic and Jakobac 2006) check the
conformance of an implementation with respect to an architectural style, but manually relate the
designed and the built architectures. SCHOLIA is an integrated approach to analyze both vertical
and horizontal conformance.

7.9 Discussion

In this section, I discuss the SCHOLIA evaluation. I first discuss theexternal validity, to what
extent the results can be generalized, then revisit the research questions.

7.9.1 External Validity

Can SCHOLIA find architectural violations in other systems? To date, I have evaluated
the end-to-end SCHOLIA approach on four systems, Aphyds, JHotDraw, HillClimber andCryp-
toDB. I did not obtain a designed runtime architecture for LbGrid, so I could not analyze its
conformance. For most systems, the challenge is to find a designed runtime architecture that is
documented, or to have access to a developer’s architectural intent.

In all the architectures we analyzed, SCHOLIA found omitted components, connectors or
entire sub-architectures. For example, the JHotDraw designed architecture omitted several com-
ponents that were a later addition to support undoing commands (Section 7.6).

Can SCHOLIA analyze architectures that specify fine-grained object structures or multi-
plicities? An OOG and its abstracted C&C view provide architectural abstraction by merging

7.9. Discussion 269

equivalent instances in a domain or tier. So, there will be diagrams that show very fine-grained
object structures, for which SCHOLIA ’s abstraction would be too coarse. Similarly to most static
object diagrams, SCHOLIA does not provide any precision regarding multiplicities.

Would an outside developer understand the SCHOLIA technique? Until there are better
tools for adding annotations, SCHOLIA does not have the characteristic of Reflexion Models that
third-party users can run on large bodies of code (Murphy et al. 2001). As a result, a study with
an outside developer would be difficult given the nature of the approach.

We did, however, conduct a field study, and confirmed that an outside professional program-
mer understood abstraction by ownership hierarchy and by types (Section 4.8).

It is true that iteratively improving the annotations and fine-tuning the abstraction and follow-
ing analysis steps in the tool chain may be a challenge. However, this situation is not unique to
SCHOLIA. For example, previous work on code architectures using semi-automated clustering
algorithms, required engineers to spend significant effortfine-tuning the clustering parameters
to derive a good match (Christl et al. 2005). In SCHOLIA, a developer does not rely on a tool’s
hard-coded heuristics but controls the architectural abstraction using annotations. As the eval-
uation showed, I was able to refine the annotations to get a better match, without changing the
code.

Is SCHOLIA more lightweight than other static conformance approaches? For example,
is adding ownership annotations to an existing system less invasive than re-engineering it to
ArchJava to expose its architecture?Our preliminary evidence showed that to be the case
(Abi-Antoun et al. 2007a). The annotations, unlike ArchJava, do not change the system’s runtime
semantics, and support common object-oriented idioms, such as passing references to objects.
For example, an ArchJavacomponent class cannot havepublic fields. When using owner-
ship annotations, such legal Java fields can be placed in public domains. (Aldrich et al. 2002c)
added ownership types to the model part of Aphyds (3.5 KLOC) in4 hours, a quarter of the time
they spent re-engineering that same part to ArchJava.

To more reliably estimate the annotation effort, I conducted a week-long on-site field study.
I spent 35 hours adding annotations and extracting OOGs fromthe 30-KLOC LbGrid module
(WARN is still high). Based on our previous experience with ArchJava (Abi-Antoun and Coelho
2005; Abi-Antoun et al. 2007a), I could not have re-engineered LbGrid to ArchJava in the same
few days that it took me to add the annotations, even after accounting for possible tool and
language familiarity. Thus, adding annotations to an existing system seems more lightweight
than re-engineering the system to use an extended language like ArchJava.

Would SCHOLIA work with an ownership type system other than ownership domains? In
principle, SCHOLIA could use a type system that assumes a singlecontextper object (Clarke et al.
1998). There is, however, a crucial expressiveness advantage in ownership domains that can re-
duce the number of objects in the top-level domains. In anowner-as-dominatortype system, any
access to a child object must go through its owning object (Clarke et al. 1998). As a result, this
forces more objects to be peers. When annotating arbitrary object-oriented code after the fact, it

270 Chapter 7. Evaluation of the Conformance Analysis

is easier to uselogical containmentwith public domains, rather than the strictencapsulationof
private domains, and both can reduce the number of objects inthe top-level domains.

Can SCHOLIA scale to big systems? Architectural extraction is most useful for large systems.
In general, the tools for analyzing the runtime architecture are not as mature as the tools for the
code architecture. For comparison, the closest prior work that used annotations to extract object
models that provide architectural intent was evaluated on one 1,700-line system (Lam and Rinard
2003). In contrast, (Murphy et al. 2001) evaluated Reflexion Models on million-line systems.

As a type-based technique that requires developers to specify architectural intent using an-
notations, SCHOLIA is currently prohibitively costly for systems with millions of lines of code.
Scaling SCHOLIA to large systems requires better tools for inferring the annotations. Alterna-
tively, developers can be required to add and update the annotations during development.

7.9.2 Research Questions (Revisited)

In this section, I discuss how well the evaluation answered the research questions (Section 7.2).

RQ1 – Extraction: In practice, I was able to extract an object graph that expresses architec-
tural intent and conveys architectural abstraction by ownership hierarchy and by types. Indeed,
I was able to reduce the number of top-level objects comparedto a flat object graph, and not
display low-level objects. In addition, I was able to achieve a similar hierarchical decomposition
and a similar number of objects and domains at each hierarchylevel, when visually compared
to a target architecture. However, there still a few annotation warnings, so the extracted object
graph is not guaranteed to be sound.

RQ2 – Abstraction: In practice, I was able to use ArchCog to abstract a hierarchical object
graph into a sensible runtime architecture represented as aC&C view in AcmeStudio. In most
cases, I used the default options for abstracting an object graph.

RQ3 – Comparison: In practice, the structural comparison was able to meaningfully com-
pare the built architecture extracted from the implementation to a designed architecture. In only
a few cases, I had to manually force or prevent matches between the view elements.

RQ4 – Checking: In practice, the conformance analysis was able to match the built and the
designed architectures, display a readable conformance view, enable tracing a finding to the code,
and compute sensible conformance metrics. The conformanceview highlighted communication
that is present in the implementation but not in the designedarchitecture, and vice versa. In
practice, the conformance analysis did not generate too many false positives. And I was able to
trace from the conformance view to the right code locations.In particular, with good annotations,
the conformance analysis did not generate a conformance view which consisted of an unreadable
fully connected graph, which had much noise that I had to wadethrough.

7.9.3 Performance

Table 7.5 shows a performance summary.

7.9. Discussion 271

Table 7.5: Performance measurements of the conformance analysis.CCM is the core conformance met-
rics. LOC measures the lines of code.OOG andSYNC are the OOG extraction and structural comparison
times, respectively, measured in minutes and seconds on an Intel Pentium 4 (3 GHz) with 2 GB of memory.
WARN measures the remaining warnings.

System CCM LOC OOG SYNC WARN
JHotDraw 54 % 15,000 1:22 1:44 60
HillClimber 83 % 15,000 1:08 0:54 42
Aphyds 29 % 8,000 0:37 2:05 72

7.9.4 Evaluation Critique

Our evaluation of the conformance analysis shares several limitations with our evaluation of the
object graph extraction, discussed in Section 4.10.2 (Page175), and suffers from the following
additional limitations.

Target architecture. The process of deriving a reference or target architecture is a research
topic in its own right. There are potentially several issueswith the target architectures we used
in the evaluation of the conformance analysis.

• Aphyds (Section 7.5): the original Java developer designed the target architecture. The
edges mixed control flow and data flow information. The diagram had some system de-
composition information;

• JHotDraw (Section 7.6): we had access to an abstracted class diagram,but did not have a
target runtime architecture designed by one of the originaldevelopers.

• HillClimber (Section 7.7): one of the original developers designed a target runtime archi-
tecture that showed only the top-level components and lacked hierarchical decomposition;

• CryptoDB (Section 7.8): the original Java developer documented various Data Flow Dia-
grams that showed data flow edges, and used system decomposition informally.

Communication integrity. The remaining annotation warnings in the subject systems weaken
the claims that the extracted object graphs are sound. As a result, the analyzed target architectures
of those systems may still not satisfy the communication integrity principle.

7.10 Summary

In this chapter, I evaluated SCHOLIA on several real object-oriented systems. The evaluation
showed that SCHOLIA can be applied to an existing system while changing only annotations in
the code. In all the architectures we analyzed, SCHOLIA found interesting architectural struc-
tural differences between the implementation and the target architecture. In addition, SCHOLIA

established traceability, after the fact, between the target architecture and the code.

272 Chapter 7. Evaluation of the Conformance Analysis

Credits

Jeffrey Barnes read carefully Kenan’s book (Kenan 2006), iterated the process of designing
the CryptoDB target architecture, defined the structural constraints, and tracked down several
AcmeStudio bugs. He also contributed to the writing of the paper (Abi-Antoun and Barnes
2009a) and online appendix (Abi-Antoun and Barnes 2009b).

Acknowledgements

The author would like to thank Bradley Schmerl for his help with Acme and AcmeStudio. In
addition to the thesis committee, David Garlan and Mary Shawgave us very useful feedback.

7.10. Summary 273

Chapter 8

Related Work

SCHOLIA builds on a rich body of research in the area of object-oriented design diagrams
(Section 8.1), software architecture (Section 8.2), ownership type systems (Section 8.3), static
analysis of the runtime structure (Section 8.4), dynamic analysis of the runtime structure (Sec-
tion 8.5), architectural extraction (Section 8.6), architectural comparison (Section 8.7), built-in
conformance (Section 8.8), after-the-fact conformance analysis of architectures (Section 8.9) and
traceability analysis (Section 8.10).

8.1 Object-Oriented Design Diagrams

The structure of an object-oriented system is commonly described using an object-oriented mod-
eling notation, such as the standard Unified Modeling Language (UML) (Rumbaugh et al. 1998).

Class diagrams vs. object diagrams. Most object modeling notations support both class di-
agrams which show the type structure of the system, and object diagrams which represent its
runtime structure.

Static object diagrams vs. dynamic object diagrams. In Chapter 1, I adopted the terminol-
ogy of (Tonella and Potrich 2004) and distinguished betweenstatic object diagramsanddynamic
object diagrams. This distinction is also helpful to organize previous work, and relate SCHOLIA

to that work.
A static object diagramshows all possible objects and relations between those objects, across

all program runs, and is extracted by static analysis over the code. Adynamic object diagram,
which is recovered using a dynamic analysis, shows the objects and the relations that are created
during a specific system execution (Tonella and Potrich 2004).

UML. Paradoxically, the UML specification (version 1.3) seems partly to blame for the lack
of attention paid to object diagrams, and relegating them toplay a smaller role in UML (the
emphasis is mine): “An object diagram is a graph of instances, including objects and data values.
A static object diagram is an instance of a class diagram; it shows a snapshot of the detailed
state of a system at a point in time.The use of object diagrams is fairly limited, mainly to

275

show examples of data structures. Tools need not support a separate format for object diagrams.
Class diagrams can contain objects, so a class diagram with objects and no classes is an ‘object
diagram’ ” (OMG 2008).

UML and ownership. SCHOLIA is not the first approach to represent ownership information
in an object-oriented design diagram. For instance, (Liu and Milanova 2007) augment a UML
class diagram with ownership information. However, they assume an ownership model that does
not have ownership parameters, which is less flexible than the type system SCHOLIA uses. In
addition, displaying object-level ownership on a class diagram is problematic. Typically, a class
diagram shows only one box for a classList. It is unclear how such an approach can display
different instances of aList object that are owned or strictly encapsulated by differentinstances
of some other class.

Program understanding. Many researchers have long recognized the importance of under-
standing the runtime structure of a system. For example, (Kirk et al. 2006) state that object-
oriented frameworks pose particular program understanding challenges, and emphasize that “un-
derstanding the dynamic behavior of a framework is more challenging, particularly given the
separation of the static and dynamic perspectives in the object-oriented paradigm”. (Shull et al.
2000) concur that both “the static and dynamic structures must be understood and then adapted
to the specific requirements of the application [. . .] For a developer unfamiliar with the system
to obtain this understanding is a non-trivial task. Little work has been done on minimizing this
learning curve”.

We believe that SCHOLIA, which can help a developer extract from an implementation a
runtime view for system understanding purposes, is a step inthe right direction.

Empirical evaluation of design diagrams. Several researchers have evaluated empirically
the usefulness of various object-oriented design diagrams, e.g., (Hadar and Hazzan 2004;
Dzidek et al. 2008; Bennett et al. 2008). Unfortunately, these evaluations focus mostly on class
diagrams, or partial runtime views such as sequence diagrams, partly because runtime architec-
tures have been difficult to obtain using previous technology.

More recent empirical evidence is paying greater attentionto the importance of understanding
the runtime structure of an application. (Lee et al. 2008) report on an empirical study where a
participant expressed the need to understand “how objects connect to each other at runtime when
I want to understand code that is unknown: an object diagram is more interesting than a class
diagram, as it expresses more how [the system] functions”.

Other opinions. Many experienced designers have recognized the importanceof paying closer
attention to the runtime structure of object-oriented applications. Trygve Reenskaug, the creator
of the Model-View-Controller design pattern (Reenskaug 1979) and one of the earlier object-
oriented methods (Reenskaug 1996), has been advocating an approach that makes explicit the
following facts about code (Reenskaug 2008):

• What is the network of communicating objects?
• How are the objects interlinked?

276 Chapter 8. Related Work

• How do the objects interact?
Reenskaug advocates however a fundamentally different paradigm. On the other hand,

SCHOLIA can help a developer gain a better understanding of the abovequestions, but for exist-
ing Java code bases and development methodologies, requiring only annotations.

8.1.1 Summary of previous work on design diagrams

Previous work recognized the importance of object diagrams, which show the runtime structure
of a system, in addition to the value of class diagrams. Unfortunately, the previous tool support
to extract meaningful object diagrams is still immature compared to the tools available for class
diagrams.

SCHOLIA fills a previously neglected space, that of hierarchical static object diagrams. Hier-
archy makes an object diagram scale effectively to show the object structures of an entire appli-
cation, instead of just the interactions between a small setof objects. Moreover, we showed how
a hierarchical object diagram can map intuitively onto a standard runtime architecture. Thus,
SCHOLIA bridges even more closely object diagrams and descriptionsof runtime architectural
structure.

8.2 Architectural Description

Architectural description evolved independently from object-oriented design diagrams. Indeed,
bridging and reconciling these two descriptions has been the subject of debate and research
(Garlan et al. 2002b; Khammaci et al. 2005).

Code architecture vs. runtime architecture. There are many analogues between object-
oriented design diagrams and architectural descriptions.For instance, the architectural analogue
to a class diagram is a code architecture or module view. Similarly, the analogue of an object
diagram is theruntime architecture.

Runtime architecture. Software architecture research recognized early on that a component
in the runtime architecture of an object-oriented system would consist of objects and communi-
cation between them, such as procedure calls (Garlan and Shaw 1993; Shaw and Garlan 1996).
In particular, such an architecture would not show inheritance relationships. (Garlan and Shaw
1993) state that “while inheritance is an important organizing principle for defining the types of
objects in a system, it does not have a direct architectural function. In particular, in our view,
an inheritance relationship is not a connector, since it does not define the interaction between
components in a system”.

In SCHOLIA, a runtime architecture shows only objects, domains and relations between ob-
jects, and does not show inheritance relations. In contrast, some object models, e.g., those by
(O’Callahan 2001), inspired from the Alloy object modeling notation (Jackson 2002), show ob-
jects, types as well as inheritance relations.

8.2. Architectural Description 277

Relating runtime architecture to code. Unfortunately, several software architecture ref-
erences are often imprecise when they relate a runtime architecture to object-oriented code
(Garlan et al. 2002a). For instance, one of the standard books on software architecture, “Views
and Beyond” by (Clements et al. 2003), suggests using a class diagram to represent a runtime
architecture, then argues that “representing component instances as classes doesn’t work when a
component appears multiple times in a system” (Clements et al. 2003, p. 161).

Indeed, several approaches relate object-oriented modeling notations to architectural de-
scriptions by mapping an architectural “component” to one or more classesor packages
(Khammaci et al. 2005, Fig. 4) (Chardigny et al. 2008). In SCHOLIA, an object graph contains
only runtime entities, i.e., objects and domains. And when analyzing conformance, SCHOLIA

relates runtime component instances to runtime objects andtheir child objects, rather than static
classes or packages.

Representation of runtime architecture. We designed SCHOLIA to work with a standard
representation of a runtime architecture as a Component-and-Connector view (Shaw and Garlan
1996; Clements et al. 2003). There are alternate methods for modeling architectures, e.g., Funda-
mental Modeling Concepts (FMC), and their corresponding mappings between object-oriented
code and architectural models (Tabeling and Gröne 2003).

8.2.1 Visualization of Software Architecture

Software visualization presents information in a way that takes into account the cognitive limi-
tations of humans. Several software visualization techniques address the issues of diagram size
or complexity. For instance, a hierarchical representation and the associated ability to expand or
collapse elements has been shown to be effective for software architecture (Storey et al. 1999;
Malton and Holt 2005). The RIGI visualization system (M̈uller and Klashinsky 1988) and its
follow-up SHRIMP VIEWS (Storey et al. 1998) produce hierarchical views of the code archi-
tecture. Similarly, RELO (Sinha et al. 2006) shows hierarchical class diagrams. In RELO, the
developer manually adds the classes of interest to each diagram and the tool lays them out. In
other words, there is no automated static analysis behind the user interface.

SCHOLIA leverages the power of hierarchy, and represents a hierarchical object graph as a
nested graph with domains (tiers) and objects (components)inside those domains. This allows
expanding and collapsing objects or domains to achieve different levels of abstraction. In addi-
tion, in a C&C architecture, the architect can view the architecture at the top level, as well as
drill into each component’s sub-architecture.

One could argue that previous attempts to apply these architectural visualization techniques
to the runtime structure of object-oriented systems have been lacking mainly in terms of the
underlying program analyses they used previously, rather than shortcomings of their visualization
techniques.

8.2.2 Summary of previous architectural description

The rich body of work on architectural description has long recognized the importance of doc-
umenting and reasoning about the runtime architecture of a system. SCHOLIA ascribes to the

278 Chapter 8. Related Work

same goals, and focuses on the runtime structure of object-oriented systems. As such, SCHOLIA

benefits greatly from the large body of work on architecturaldescription.
When reasoning about the runtime architecture of an object-oriented system at compile-time,

the ideas and techniques of ownership types seem fundamental. First, ownership types provide
a coarse structure of an application with a granularity larger than an object or a class, which
previous approaches recognized as important (Sefika et al. 1996a). Second, ownership organizes
a flat object graph into an ownership tree, and hierarchy provides abstraction and scalability by
enabling both high-level understanding and detail. Third,different places in the hierarchy can
distinguish between different instantiations of the same class that have distinct conceptual pur-
poses and correspond to different elements in the design, which previous approaches identified
as crucial to obtain meaningful object models (Lam and Rinard2003). Fourth, the types can con-
servatively describe all possible aliasing that could takeplace at runtime, and information about
aliasing is crucial for architectural analyses. Finally, ownership types can convey architectural
intent, more so than a static analysis that computes aliasing information automatically without
relying on annotations, as the negative result by (Rayside etal. 2005) demonstrates. So in the
next section, we discuss ownership types which SCHOLIA leverages.

8.3 Ownership type systems

The SCHOLIA annotations implement the ownership domain type system (Aldrich and Chambers
2004), and the extensions from linear type systems in its AliasJava predecessor (Aldrich et al.
2002c). There are many ownership type systems (Clarke et al. 1998; Noble et al. 1998;
Clarke 2001; Boyapati et al. 2003a; Aldrich and Chambers 2004; Dietl and Müller 2005;
Potanin et al. 2006; Lu and Potter 2006; Schäfer and Poetzsch-Heffter 2007; Dietl et al. 2007;
Müller and Rudich 2007), and new ones appear regularly.

We first discuss various expressiveness features in an ownership type system (Section 8.3.1),
related type systems (Section 8.3.2), previous case studies evaluating ownership types (Sec-
tion 8.3.3), and their inference (Section 8.3.4).

8.3.1 Expressiveness

Ownership type systems can be broadly characterized asowner-as-dominatoror owner-as-
modifier.

Owner-as-dominator. In an owner-as-dominatortype system, any access to a child object
must go through its owning object (Clarke et al. 1998; Noble etal. 1998). Such type systems are
acknowledged to be too restrictive. As a result, they would not easily support annotating code
after the fact. Also, because making an object owned by another object restricts access to the
owned object, this forces more objects to be peers, and leadsto clutter at the top level in the
object graph. In addition, the ownership domain type systemsupports both this notion of strict
encapsulation, as well as logical containment, which can make an object only conceptually part
of another, without restricting access to the contained object.

8.3. Ownership type systems 279

Owner-as-modifier. An owner-as-modifier type system, e.g., (Müller and Poetzsch-Heffter
1999; Dietl and M̈uller 2005; M̈uller and Rudich 2007), supports strictly encapsulated objects1,
peer objects2, and arbitraryreadonly references, as long as only the owner can modify the ob-
ject. Such a type system is fairly flexible. However using such annotations for architectural views
is problematic because a separate analysis would have to resolve thereadonly annotations in
order to represent those objects in the object graph.

Other disciplines. There are other ownership disciplines. For instance,
(Scḧafer and Poetzsch-Heffter 2007) enforces aboundary-as-dominatorproperty, and has
the notion of a “loose domain”, which is a form of an existential domain. Again, a separate
analysis must resolve these domain annotations in order to soundly represent the corresponding
objects in the extracted object graph.

Domain parameters. Some ownership type systems support ownership parameters.But oth-
ers do not, e.g., (Dietl and M̈uller 2005). In object-oriented programming, it is typicalto produce
classes that are reused in different contexts. In particular, reusable or library code is often para-
metric with respect to the object ownership structure. For instance, aList object does not own
its elements. Otherwise, those elements would not be accessible to the outside. As a result, the
List class typically takes an ownership domain parameter for itselements. And every instance
of that class must bind all the domain parameters on the classto other domains that are in scope.
The object graph extraction then resolves these parameters, and ensures that the relevant object
relationships appear in the global application architecture.

Domain parameters add to the annotation burden. However, asI was adding annotations to
the subject systems (Chapter 4), I noted how adding these annotations can help identify tight
coupling through unexpected domain parameters.

Generics. Existing ownership systems differ in their treatment of generics. Generic Ownership
(Potanin et al. 2006) encodes generics in a strict owner-as-dominator model. Generic Universes
(Dietl et al. 2007) encodes generics into an owner-as-modifier type system. We currently follow
SafeJava (Boyapati 2004), and treat generics and ownership domains as orthogonal, perhaps at
the cost of more verbose annotations. Adding existential domains may help make our annotations
less verbose. For example, if an existential domain can correspond to a “raw type” in generics,
then the annotation can be omitted in some cases.

Single vs. multiple contexts per object. Most ownership type systems support assume a single
contextper object (Clarke et al. 1998). As a result, the owner of an object is another object.
Instead of having objects directly inside other objects, ownership domains use an extra level of
hierarchy and group related objects inside adomain.

Simple Loose Ownership Domains (SLOD) (Schäfer and Poetzsch-Heffter 2007) hard-code
the equivalent of one private and one public (orboundary) domain per object.

1Therep annotation is equivalent to using a private domain, e.g.,OWNED.
2Thepeer annotation is equivalent to ourOWNER annotation.

280 Chapter 8. Related Work

8.3.2 Related type systems

Related to ownership types areconfined typesandregion types.

Confined types. Confined types enforce package-level confinement (Bokowski and Vitek
1999; Grothoff et al. 2001). They track that instances of a class are used within a given package.
A packagein confined types is roughly a package-level static ownership domain, and thus fairly
coarse. As a result, confined types do not seem capable of assuring an instance-based runtime
architecture. In particular, using confined types, one cannot distinguish between two instances of
the same class that are used by different classes, within thesame package. In addition, confined
types do not have confined type parameters since all the packages are globally accessible. As a
result, they ave a lower annotation overhead than ownershiptypes.

Static class fields, which are really global variables, are challenging for most ownership type
systems. However, confined type systems can deal readily with code that uses static variables. In
addition, the low annotation overhead makes using confined types attractive, at least for highly
unstructured code. In future work, it might be useful to leverage confined type annotations to
extract an architectural view of a system.

Region types. Also related are region type systems (Boyapati et al. 2003b).Unlike a domain,
which can represent any group of objects, a region represents a group of objects that are deal-
located together. Region types do not protect access to the objects in a region; any object that
can name a region can access the objects inside it. On the other hand, region types allow split-
ting an object across multiple regions. From an architectural standpoint, it may be beneficial to
have that expressiveness. But it is also intuitive to treat a runtime object as an indivisible unit of
computation and state.

Effects systems. Some effects systems, e.g., (Greenhouse and Boyland 1999), implement
ownership-like systems that do not strongly encapsulate, so they may be somewhat similar to
ownership domains. But effects systems require describing somewhat precisely the reading and
writing of mutable state by a method. In contrast, ownershipdomain annotations require speci-
fying only the domains of a method’s formal parameters, the domain of a method’s return value,
and optionally the domain of a method’s receiver. In many cases, formal method parameters are
annotated with a fairly imprecise annotation such aslent to indicate temporary aliasing within
the method’s body.

8.3.3 Case studies for ownership types

Researchers of ownership types have not reported significantexperience with most own-
ership type systems on real code. Many systems are paper-only designs (Lu and Potter
2006; Scḧafer and Poetzsch-Heffter 2007). Only a few systems, notably Ownership Domains
(Aldrich et al. 2002c; Aldrich and Chambers 2004), Universes(Dietl and Müller 2005) and
Generic Ownership (Potanin et al. 2006), have been implemented (ArchJava 2003; Universes
2007; OGJ 2005), and even fewer systems have been evaluated in substantial case studies on

8.3. Ownership type systems 281

real object-oriented code (Aldrich et al. 2002c; Hächler 2005; Abi-Antoun et al. 2007a; Nägeli
2006). Many systems have been evaluated only to check if theycan express the canonical iter-
ator example. Others have applied ownership types to the standard design patterns in isolation.
However, many expressiveness challenges arise in real object-oriented code, and when the same
objects are involved in several design patterns at once. In addition, there are multiple ways to
implement a standard design pattern.

(Hächler 2005) documented a case study in applying the Universes type system
(Müller and Poetzsch-Heffter 1999; Dietl and Müller 2005) on an industrial software applica-
tion and refactoring the code in the process. Although the subject system in the case study was
relative large (around 55,000 lines of code), Hächler annotated only a portion of the system, and
did not report the exact number of annotated lines of code. Hächler also manually generated vi-
sualizations of the ownership structure. In contrast, during my case studies, I used object graphs
to visualize the ownership structure, and adjusted the annotations accordingly.

(Nägeli 2006) evaluated how the Universes and ownership domain type systems express the
standard object-oriented design patterns (Gamma et al. 1994). However, in real world complex
object-oriented code, design patterns rarely occur in isolation (Riehle 2000). My case studies
indicated that it is often these subtle interactions, combined with the single ownership constraint
of the type system, that can make adding the annotations difficult in some cases.

In the process of evaluating SCHOLIA, I conducted and reported on some of the largest case
studies to date in applying ownership types to real object-oriented code.

8.3.4 Ownership inference

Ownership inference is a separate problem and an active areaof ongoing research. Ownership
inference algorithms use static analysis (Aldrich et al. 2002c; Agarwal and Stoller 2004; Cooper
2005), dynamic analysis (Werner and Müller 2007), or a mix of static and dynamic analysis
(Wren 2003). A compile time inference, e.g., (Aldrich et al. 2002c), is preferable to a dynamic
analysis, since the annotations have to soundly describe all possible ownership structures at run-
time. However, many static analyses are unscalable, and it is precisely large systems that require
annotation inference.

To my knowledge, no previous fully automated inference algorithm can create multiple do-
mains in one object and meaningful domain parameters. In SCHOLIA, these are critical for repre-
senting the architectural intent, such as the separateUI andMODEL tiers in Aphyds (Chapter 2.2,
Page 31).

Some ownership inference techniques adopt a restrictive notion of ownership (Ma and Foster
2007), infer only strictly encapsulated objects and unaliased objects, do not map their results
back to a type system, do not infer domain parameters (Ma and Foster 2007; Liu and Milanova
2007), or infer imprecise long lists of domain parameters (Aldrich et al. 2002c).

I am optimistic that active research in this area, e.g., (Milanova 2008; Liu and Smith 2008),
will significantly reduce the cost of adding the annotations, and thus, potentially benefit SCHO-
LIA ’s adoption.

282 Chapter 8. Related Work

8.3.5 Summary of previous work on ownership type systems

SCHOLIA builds on much research in ownership type systems, and uses one of the state-of-the-
art ownership type systems. Most of the research in ownership types has focused on specifying
and enforcing invariants in the code. To our knowledge, SCHOLIA is the first approach that uses
a static analysis to leverage the ownership type annotations in a program, in order to reason about
higher-level architectural representations of the code.

8.4 Static analysis of the runtime structure

SCHOLIA uses program analysis to leverage the ownership type annotations in the program. In
this section, I discuss previous static analyses that extract static object diagrams or object graphs.
We first discuss object graph analyses (Section 8.4.1), points-to analyses (Section 8.4.2) and then
shape analyses (Section 8.4.3).

8.4.1 Object graph analyses

We distinguish static analyses that do not require annotations from those that do.

8.4.1.1 Annotation-free analyses

Several static analyses produce object graphs without requiring annotations, and produce non-
hierarchical object graphs.

WOMBLE (Jackson and Waingold 2001) starts with a class diagram and uses heuristics for
container classes and multiplicities to refine the object model. The follow-on tool, SUPER-
WOMBLE (Waingold 2001), uses additional heuristics for merging types but does not attempt to
be sound. The unsoundness is an engineering tradeoff that isclaimed to produce correct object
models in practice, by masking problems due to other weaknesses of the analysis (namely, that
it is flow-insensitive). SUPERWOMBLE also uses built-in and user-defined abstraction rules for
containers that coalesce a chain of edges in the object modelinto a single edge (Waingold 2001).
SUPERWOMBLE also analyzes all classes that are transitively referenced(through constructor
calls, field references, etc.) from the root set of classes. To avoid analyzing a large number of
classes, most of which would not affect the output, astop-analysis configuration filecontrols
what classes or packages the tool analyzes (Waingold and Lee2002).

AJAX3(O’Callahan 2001) uses a sound alias analysis to build a refined object model as a
conservative static approximation of the heap graph reachable from a given set of root objects.
However, AJAX does not use ownership and produces flat object graphs. AJAX relies heavily on
post-processing raw object graphs, such as by eliding all “lumps” with more than seven incoming
edges or eliding all subclasses of a given type, e.g.,InputStream (p. 248). Moreover, the object
models that AJAX generates tend to expose internal implementation details (p. 252). SCHOLIA

does not suffer from this problem since the annotations typically store an object’s internal im-
plementation details in private domains. On the other hand,AJAX is able to detect fields that
are actually unused. In addition, AJAX can automatically and soundly split classes in the object
model, i.e., determine that an object is indeed of typeY and not of typeZ—even ifZ is a subclass

8.4. Static analysis of the runtime structure 283

of Y, and without any information other than the code. Finally, AJAX’s heavyweight but precise
alias analysis does not scale to large programs.

PANGAEA (Spiegel 2002) produces a flat object graph without an alias analysis and is un-
sound. The PANGAEA output for JHotDraw (Fig. 4.19) is even more complex than that of
WOMBLE (Fig. 4.18). However, having the ability to display flat object graphs for programs
that lack annotations can still be useful. Indeed, I ported the open source PANGAEA4 tool to
Eclipse, to display the object structure of an unannotated system, and perhaps assist a developer
in the process of annotating an unfamiliar system—though a flat object graph is often unreadable.

(Rayside et al. 2005) proposed a static object graph analysisbased on Rapid Type Analysis
(RTA) (Bacon and Sweeney 1996), which produced unacceptableover-approximations for most
non-trivial programs. In SCHOLIA, the ownership annotations prevent the static extraction anal-
ysis from merging objects too much or too little.

8.4.1.2 Annotation-based analyses

Lam and Rinard (Lam and Rinard 2003) proposed a type system and astatic analysis (which I
refer to here as LR) whereby developer-specified annotationsguide the static abstraction of an
object model by merging objects based ontokens. LR supports a fixed set of statically declared
global tokens, and their analysis shows a graph indicating which objects appear in which tokens.
Using token parameters, the same code element can be mapped to different design elements
depending on context. Token parameters are similar to ownership parameters, which predated
them by several years (Clarke et al. 1998), though the Lam and Rinard paper does not explicitly
relate the two.

Unlike ownership domains, there is a statically fixed numberof tokens, all of which are at
the top level, so LR cannot show hierarchy such as alisteners object nested within aModel
object (Fig. 2.3(a)). In contrast, the ownership domains within an object define a sub-architecture
of contained objects, and in the case of recursive types, thedomain structure is hierarchical and
unbounded in depth.

The LR paper does not mention inheritance, and the LR formal system omits it
(Lam and Rinard 2003, Fig. 10). LR has no proof of soundness either with or without inher-
itance. LR’s only case study was an order of magnitude smallerthan one of my larger case
studies, e.g., JHotDraw (15 KLOC vs. 1.7KLOC). If I were to apply LR to JHotDraw anyway,
ignoring inheritance, LR would show at least 200 objects in the top-level tokens. In contrast,
SCHOLIA applies abstraction by ownership hierarchy and by types to show an order of magni-
tude fewer objects in the top-level domains.

3AJAX (O’Callahan 2001) is not publicly available. O’Callahan was kind enough to send me the sources for the
tool. But I was unable to run AJAX successfully, even on trivial examples because it requiresa specific, obsolete
environment, and has various undocumented dependencies. This explains why the flat object graphs that I show for
comparison with SCHOLIA are the output of WOMBLE (Jackson and Waingold 2001) or PANGAEA (Spiegel 2002),
which I was able to obtain and run.

4PANGAEA is publicly available at:http://page.mi.fu-berlin.de/spiegel/pangaea/

284 Chapter 8. Related Work

http://page.mi.fu-berlin.de/spiegel/pangaea/

8.4.2 Points-to analysis

Points-to analysis is a fundamental static analysis to determine the set of objects whose addresses
may be stored in variables or fields of objects (Andersen 1994). The research literature on points-
to analysis goes back several decades, and I do not claim to summarize it here. I discuss briefly
several points-to analyses for Java. They can broadly organized along the following dimensions:

• Context- sensitive vs. insensitive: an analysis is context-insensitive if it analyzes a method
m only once, combining all the calling states ofobj1.m(x1) andobj2.m(x2). A context-
sensitive version will distinguish between these two call sites. As a result, a context-
sensitive analysis can be less scalable than a context-insensitive one. SCHOLIA ’s analysis
does not distinguish between calling contexts, but distinguishes objects based on their
domains. So, one can consider domains as a form of context-sensitivity.

• Flow- sensitive vs. insensitive: an analysis is flow-sensitive if the order of the statements
in a program affects the result of the analysis. SCHOLIA ’s analysis is flow-insensitive and
does not consider the program’s control flow.

• Object- sensitive vs. insensitive: in an object-insensitive analysis, a fieldf declared in
a classC has a class-level scope (C::f). This allows a points-to analysis to distinguish
between fields that belong to two different classes, e.g.,C::f vs. D::f . However, an
object-insensitive analysis cannot distinguish between fields that are declared in a given
class, but belong to different instances of that class, e.g., obj1.f vs. obj2.f , whereobj1
andobj2 are field declarations of typeC. In some cases, the ability to distinguish between
locations that belong to different objects improves substantially the precision of analysis
(Milanova et al. 2005). On the downside, object-sensitivity makes an analysis unscalable.

All previous points-to analyses produce non-hierarchicalgraphs (Tonella and Potrich 2004;
Milanova et al. 2005). The SCHOLIA static analysis can be considered flow-insensitive and
object-insensitive but domain-sensitive (Refer to discussion in Section 3.6.3, Page 118), and
produces hierarchical object graphs.

An Object Flow Graph (OFG) (Tonella and Potrich 2004) is similar to an object-sensitive
points-to graph. It tracks the lifetime of objects from their creation point to their assignment to
program variables.

Object Process Graphs (Eisenbarth et al. 2002) use points-to analysis to statically recover
all possible execution traces for a given object. One application of these graphs is protocol
validation.

Soundness. Not all points-to analysis have soundness proofs. Some of them are written as
pseudo-code, instead of transfer functions, which makes itdifficult to compare between these
different analyses.

Analysis results. Although points-to analysis results are often used for compiler optimization,
the value of points-to analysis for program understanding was previously identified (Tonella et al.
1997; Tonella and Potrich 2004). However, the result of the analysis is typically used only intra-
procedurally, since a points-to graph for an entire system would probably be unreadable.

In the same vein as SCHOLIA, (Milanova et al. 2002) uses the results of a points-to analysis
to construct an Object Relation Diagram, which is a class diagram where the type of the pointed-

8.4. Static analysis of the runtime structure 285

to object is potentially more precise than the declared type. To our knowledge, SCHOLIA is
the first approach to abstract the output of a static points-to analysis into a hierarchical runtime
architecture represented as a C&C view, which is then used to analyze conformance to a target
runtime architecture.

Points-to summary. Most points-to analyses also abstract all the objects that could be created
at one allocation site into one node in the points-to graph. As a result, most points-to analyses
achieve a granularity that is no coarser than an object or a set of objects. In SCHOLIA, a node
in a hierarchical object graph includes all the objects at anallocation site within a domain5,
together with all the objects collapsed underneath that object, based on the ownership domain
parameters, as well as the type structures, when using abstraction by types. In addition, a domain
is a conceptual groups of objects, and provides a granularity coarser than that of an individual
object with its collapsed substructure.

8.4.3 Shape analysis

Our analysis creates a graph that summarizes possible relationships among objects at runtime.
Shape analysis, e.g., (Sagiv et al. 1999), is related, but differs on several counts. First, shape
analyses have not been demonstrated to scale to programs with more than a few thousands of
lines of code. Second, shape analysis represents objects that are being used by the program using
unique materialized objects, while it summarizes objects that are not in use. In contrast, our
analysis, once it merges two objects in a domain, never separates them. So, shape analysis could
produce more precise results for small non-hierarchical graphs. But our analysis can separate
two objects that are in distinct domains, because the underlying type system guarantees they can
never alias. Finally, shape analysis produces very preciseshape graphs consisting of nodes to
represent a set of objects, and edges to represent points-torelations. However, a shape graph is
non-hierarchical in the sense that all the nodes in a graph are at the same level, and objects are
not collapsed underneath other objects.

(Calcagno et al. 2009) proposed a shape analysis that can show, for a given method, the input
and the output shape graph. This analysis works onlyintra-procedurally, which keeps the shape
graphs manageable. However, if one were to apply the analysis to the whole programinter-
procedurally, it is likely to produce very large graphs thatwould not convey any meaningful
architectural abstraction.

Finally, a heavyweight shape analysis may achieve more precision than SCHOLIA in many
cases. Although SCHOLIA sacrifices some precision to gain scalability of the analysis, it conveys
architectural abstraction primarily through hierarchy.

8.4.4 Summary of previous static analysis of the runtime structure

While these approaches produce diagrams that are very useful, they typically extract design
diagrams rather than architectural diagrams, in the sense that they convey little architectural

5Disclaimer: the object graph may not reflectunique objects which may be returned by a factory method. As
discussed earlier, this requires a flow analysis to resolve theunique annotations.

286 Chapter 8. Related Work

abstraction (Section 1.4, Page 9). In particular, all previous static object graph analyses, points-
to analyses, and shape analyses, including some that use annotations, extract non-hierarchical
object graphs. Flat objects graphs do not scale, because thenumber of top-level objects in the
object graph increases with the program size. More importantly, a flat object graph often does
not provide sufficient architectural abstraction to enableanalyzing conformance.

8.5 Dynamic analysis of the runtime structure

When dealing with runtime structure, many have intuitively preferred dynamic analysis. In this
section, I discuss previous dynamic analyses that extract low-level diagrams. I first discuss gen-
eral visualization-oriented approaches (Section 8.5.1),then approaches that make use of owner-
ship (Section 8.5.2), then approaches that mix both dynamicand static analysis (Section 8.5.3).

8.5.1 Visualization of object structures

Many dynamic analyses focus on visualizing the object structures of a running sys-
tem (De Pauw et al. 1993, 1994; Lange and Nakamura 1995; Sefikaet al. 1996a;
Koskimies and M̈ossenb̈ock 1996; Jerding et al. 1997; Walker et al. 1998; Richner and Ducasse
1999; De Pauw and Sevitsky 1999; Gargiulo and Mancoridis 2001; Souder et al. 2001;
Smith and Munro 2002; Oechsle and Schmitt 2002; De Pauw et al.2002; Salah and Mancoridis
2004; Pacione et al. 2004; Reiss and Renieris 2005).

These dynamic analyses handle programs for which source code is not available, do not
require source code annotations, and allow more fine-grained user interaction in producing a
visualization. These task-focused views explain detailedinteractions, help developers under-
stand a program, or find low-level defects, such as memory leaks (De Pauw and Sevitsky 1999;
Rayside and Mendel 2007). The extracted views have the granularity of individual objects and
classes.

Many of these approaches extract one or more collaboration diagrams
(Gschwind and Oberleitner 2003; Koskimies and Mössenb̈ock 1996; De Pauw et al. 1994;
Richner and Ducasse 1999; Walker et al. 1998), rather than a global object diagram for the entire
system. A collaboration diagram that contains all objects and all invocations between them may
be unusable, for anything but the smallest of systems. Most approaches allow the developer
using the tool to focus the interaction diagram to include only specific method invocations,
issued from a starting method of interest.

An alternative solution is to analyze an incomplete system,by including only classes of
interest. SCHOLIA supports analyzing a portion of a system, and allows the use of “virtual
fields” to soundly summarize the un-annotated portions.

In some cases, the recovered views highlight design patterns (Kramer and Prechelt 1996;
Schauer and Keller 1998), but often, they are not architectural, because they are neither abstract
nor global.

8.5. Dynamic analysis of the runtime structure 287

8.5.2 Dynamic ownership analyses

More closely related to SCHOLIA are dynamic analyses that infer the ownership struc-
ture of a running program based on its heap structure (Hill etal. 2002; Rayside et al. 2006;
Flanagan and Freund 2006; Mitchell 2006).

In general, dynamic analyses have the advantages of being more scalable and more precise
than their static counterparts. In addition, dynamic ownership analyses do not require a program-
mer to annotate her code with ownership type annotations. However, previous such analyses
assume a strict owner-as-dominator model which cannot represent many design idioms. In such
a model, a higher-level object cannot collapse underneath it not many low-level objects, so they
end up cluttering the top-level diagram.

Table 8.1 has a comparison of dynamic ownership analyses andstatic object graph analyses,
some of which require neither annotations nor the source code (they operate on the bytecode
version of the program).

288 Chapter 8. Related Work

Table 8.1: Comparison of dynamic ownership analyses and static object graph analyses.

Ownership Scalable Design Sound Comments
Analysis/Viz. (Kind) Intent Analysis

Dynamic ownership analyses
Rayside et al. (Rayside et al. 2006) Inferred Yes/Yes (Matrix) No Yes
Mitchell (Mitchell 2006) Inferred Yes/No (Flat) No Yes
AARDVARK (Flanagan and Freund 2006) Inferred No/No (Flat) No Yes
DINO (Hill et al. 2002; Noble 2002) Inferred Yes/Yes (Both) No Yes
Potanin et al. (Potanin et al. 2004) Inferred Yes/Yes (Both) No Yes
PTIDEJ (Guéh́eneuc 2004) None No/No (Flat) Some No
Static object graph analyses
AJAX (O’Callahan 2001) None No/No (Flat) No Yes Bytecode
WOMBLE (Jackson and Waingold 2001) None No/No (Flat) Some No Bytecode
PANGAEA (Spiegel 2002) None Yes/No (Flat) No No Source
Lam and Rinard (Lam and Rinard 2003) Tokens Yes/No (Flat) Yes Partial Source
SCHOLIA Annotated Yes/Yes (Hierarchy) Yes Yes Source

8.5.D
ynam

ic
analysis

ofthe
runtim

e
structure

289

Hill, Noble and Potter (Hill et al. 2002) and (Potanin et al. 2004) used dynamic analyses
and showed both matrix and graph views of ownership structures and demonstrated that own-
ership is effective at organizing runtime objects. Severalothers followed suit (Mitchell 2006;
Rayside et al. 2006; Flanagan and Freund 2006).

(Rayside et al. 2006) characterize sharing and ownership andproduce a matrix display of
the ownership structure. They later used the results of thisanalysis to investigate memory leaks
(Rayside and Mendel 2007).

Similarly, (Mitchell 2006) uses lightweight ownership inference to examine a single heap
snapshot rather the entire program execution, and scales the approach to large programs through
extensive graph transformation and summarization.

(Flanagan and Freund 2006) propose a dynamic analysis with a10X-50X overhead to recon-
struct each intermediate heap from a log of object allocations and field writes. Then, they apply
a sequence of abstraction-based operations to each heap, and combine the results into a single
object model that conservatively approximates all the observed heaps. Their tool, AARDVARK ,
has the notion of ownership and containment and uses simple heuristics to choose the most ap-
propriate generalization. In addition, AARDVARK ’s dynamic object diagrams have multiplicities,
which SCHOLIA ’s static object diagrams do not have.

This body of work showed that ownership does provide abstraction, and is effective at orga-
nizing large object graphs. SCHOLIA uses the same key insight but in a static analysis which
must address several additional challenges. A static analysis for object-oriented programs must
also deal with issues of aliasing, recursion, inheritance,soundness, precision and scalability.

Dynamic ownership analyses are descriptive and show the ownership structure in a single run
of a program. In contrast, the Ownership Object Graph that SCHOLIA obtains at compile time
is prescriptive and shows ownership relations that will be invariant over all program runs. Thus,
this dissertation proposes a new class of object graphs thatis new, important, and valuable.

8.5.3 Mix of static and dynamic analysis

PTIDEJ (Guéh́eneuc 2004) uses a dynamic analysis to refine a class diagram obtained using a
static analysis, but with manual input. For example, PTIDEJ was evaluated on JHotDraw, and the
UML class diagram it produced did not fit on one page.

(Tonella and Potrich 2002) combine static and dynamic analysis to extract object diagrams
from a C++ library, as well as interaction diagrams (Tonella and Potrich 2003).

8.5.4 Summary of previous dynamic analysis of the runtime structure

The analyses we discussed in this section obtain useful, low-level diagrams, that have the granu-
larity of individual objects or classes. Some dynamic object diagrams also used hierarchy effec-
tively. However, by definition, a dynamic object diagram cannot show all possible objects and
relations.

SCHOLIA is the first approach that uses ownership types to add hierarchy to astatic object
diagram. In SCHOLIA, a hierarchical object graph conveys architectural abstraction, as we dis-
cussed in Section 1.4 (Page 9), and can be abstracted into a standard runtime architecture. The
next section focuses on previous work that extracts architectural diagrams.

290 Chapter 8. Related Work

8.6 Architectural extraction

There is much previous work in the area of architectural extraction, which reverse-engineers
high-level architectural views of a system. Architecturalextraction is also known asarchitectural
recovery, architectural reconstruction, reverse architectingor architectural discovery(Koschke
2008; Ducasse and Pollet 2009).

Many of the previous techniques deal only with the code architecture, rather than the runtime
architecture, which is the subject of this dissertation. Unfortunately, many papers confound the
runtime and the code architectures. They either do not explicitly classify an architectural view
they extract as either a code or a runtime architecture, or use the term “component” to really
mean a “package”, “module” or a collection of classes (Tvedtet al. 2002). This observation
is corroborated by (Ducasse and Pollet 2009) in their extensive survey of previous architecture
extraction techniques: “Because it is complex to extract architectural components from source
code, those are often simply mapped to packages or files. Evenif this practice is understandable,
we think it limits and overloads the term component” (p. 587).

In the following discussion, I restate some of the contributions of previous work using a
terminology that is consistent with the rest of this document, and clarify whether the end result
is a code architecture or a runtime architecture.

Most architectural extraction follows theextract-abstract-presentstrategy (Krikhaar 1997).
It first extractssome information from the code, thesource model, abstractsthat source model
into a high-level model, thenpresentsit, either visually, or using an architectural description
language.

8.6.1 Extracting a source model

An architectural extractor can use static analysis, dynamic analysis, or a mix of the two to extract
a source model.

8.6.1.1 Static extractors

Many static extractors extract information such as packagestructure, class structure, dependen-
cies such as inheritance and method calls (Murphy and Notkin1995). Some of that information,
such as a directory or package structure, is naturally hierarchical. Other approaches require the
hierarchical containment information as a separate input.For instance, the Software Bookshelf
(Finnigan et al. 1997), of which (PBS 2000) is an instantiation, has the notions of:

• hasParts/isPartOf, e.g., aSystem might have constituentSubSystems as parts;
• contains/isContainedIn.
In PBS, a human specifies the containment information separately from the facts that a tool

extracts from the source code. For example, PBS uses two decomposition files which represent
decomposition information for a software system. The first is an “established decomposition”
that a human supplies or verifies, and the second is an “adopted decomposition” that the toolkit
guesses.

(Mendonça and Kramer 2001) developed an approach and a tool, X-RAY , to extract the run-
time architecture using only static analysis, but from procedural C code. X-RAY combines com-

8.6. Architectural extraction 291

ponent module classification, syntactic pattern matching,and structural reachability analysis. It
is unclear that the approach can handle object-oriented code.

8.6.1.2 Dynamic extractors

A dynamic extractor monitors a system’s execution, obtainssnapshots of the runtime heaps, and
analyzes the snapshots either online or offline (Walker et al. 1998).

8.6.1.3 Mixed extractors

Some extractors combine both static and dynamic analysis (Richner and Ducasse 1999).

8.6.1.4 Summary of previous work in extracting source models

With the exception of object graph analysis, points-to analysis and shape analysis, which I dis-
cussed in Section 8.4 (Page 283), most static extractors do not track objects precisely. Instead,
they represent their structural information with respect to files, directories6, packages or classes,
rather than objects. For example, they express that a class is part of some package, or a package
is nested inside some other package.

In SCHOLIA, ownership type annotations provide the containment information. Moreover,
SCHOLIA uses object-level, i.e., an object is “part of” another object. This enables SCHOLIA to
distinguish between different instances of the same class that are in different domains, as well
as between instances of the same class in the same domain but with different actual domain
parameters.

8.6.2 Abstracting a source model into a high-level model

Abstraction techniquesabstract a source model into a high-level architectural view.
(Hochstein and Lindvall 2005) survey various of these approaches. Following
(Sartipi and Kontogiannis 2004) and others, we broadly organize abstraction techniques
into clusteringandpattern matchingmethods.

8.6.2.1 Clustering

Clustering identifies higher-level architectural entitiesby gradually grouping lower-level entities.
Many architectural extraction approaches use clustering to decompose a system into a collec-
tion of hierarchical subsystems, allowing nodes to be collapsed or expanded (Tzerpos and Holt
1996). For example, RIGI (Müller et al. 1993), and several of the following tools such as
DALI (Kazman and Carrière 1999), which was superseded by ARMIN (Kazman et al. 2002), and
SHIMBA (Sysẗa et al. 2000), use this technique. Some tools, e.g. ARMIN, have a scripting inter-
face so a developer can write scripts to aggregate information and produce higher-level views.

6In Java, the package and the directory structures must mirror each other. Languages such as C++ and C# allow
the package and the directory structures to be different.

292 Chapter 8. Related Work

Clustering approaches rely on naming conventions (Kazman and Carrìere 1999), directory
structures (Richner and Ducasse 1999), or graph clustering algorithms (Sartipi and Kontogiannis
2003a; Maqbool and Babri 2007).

Several tools simply apply the same notions of clustering for procedural code to object-
oriented systems. E.g., BUNCH (Mancoridis et al. 1999) organizes Java functions into modules,
by clustering entities in a module dependency graph.

Clustering techniques are attractive because they often produce acceptable results, are scal-
able and can be mostly automated. However, clustering techniques rarely recover a meaningful
decomposition because they do not go beyond the structural relationships explicitly declared
in the code. For example, architectural extraction studiesthat used graph clustering algo-
rithms reported that software developers often used trial and error with the clustering parameters
(Kazman and Carrière 1999; Christl et al. 2005). As a result, clustering approaches are increas-
ingly incorporating user input at the detriment of their automation.

Clustering methods can be complementary to SCHOLIA and may help with annotating an
unfamiliar system. For instance, two strongly connected clusters may suggest creating two top-
level domains corresponding to the two clusters. A small cluster that interacts with almost all
others may indicateshared objects.

8.6.2.2 Pattern matching

Broadly speaking, pattern matching techniques map low-level elements to higher-level elements
by searching for patterns. (Ducasse and Pollet 2009) provide a good overview of previous ap-
proaches that extract architecture based on pattern matching. Examples include extracting com-
ponents according to queries over a relational database containing the code (Kazman et al. 2002),
identifying architectural actions via event sequences in run-time execution that match a state
machine (Schmerl et al. 2006), or using a user-provided map to relate source code entities to
architectural components, as in Reflexion Models (Murphy et al. 2001).

One of the pattern-matching approaches, DISCOTECT (Schmerl et al. 2006), deserves ad-
ditional discussion because it instruments a running system and extracts a built C&C runtime
architecture that is rich with architectural styles and types. In place of annotations, DISCOTECT

requires mapping events from a runtime trace to architectural counterparts, e.g., a method invo-
cation leads to the creation of a port. In addition, it may be possible to reuse a mapping across
several similar systems, which is not the case with ownership type annotations. Because DISCO-
TECT is a dynamic analysis, the results reflect only the particular inputs and exercised use cases.
Also, DISCOTECT generates non-hierarchical C&C views that show one component for each
instance created at runtime. Another analysis must post-process DISCOTECT’s output to consol-
idate similar component instances. Finally, DISCOTECT only extracts the built architecture of a
system and does not analyze its conformance to a target architecture.

At the lowest level, some approaches try to detect the standard design patterns (Keller et al.
1999). Many design patterns are more micro-architectural,low-level and local than the global ar-
chitectural structure that SCHOLIA can extract or analyze. In SCHOLIA, the annotations typically
encode the decomposition of a system into high-level patterns, such as Model-View-Controller.

Pattern matching techniques tend to recover a handful of thestandard design patterns, and
suffer from a large number of false positives.

8.6. Architectural extraction 293

Pattern-matching techniques tend to be less scalable than clustering-based methods. But no
pattern-matching approach can guarantee that every class in the system will be assigned to a
subsystem.

None of them has the desired precision. The resulting decompositions are either not mean-
ingful to a software engineer, or they cover only pieces of the whole system.

8.6.2.3 Summary of previous work in abstracting source models

Most approaches mostly automate extracting a source model,but require the developer to guide
the abstraction step. SCHOLIA is unusual in that developer-specified annotations also guide
the extraction. The annotations help the analysis that extracts the source model to distinguish
between objects that are in different domains. This helps achieve additional precision and bring
the source model closer to an architect’s mental model of theruntime architecture.

In SCHOLIA, an OOG groups objects based on the architectural intent captured by the an-
notations, and on the object ownership and type structures,not according to where objects were
declared in the program or some naming convention. The abstraction by types during the OOG
extraction involves additional manual input, and requiresa developer to specify trivial types or
design intent types.

In SCHOLIA, once the annotations are added to the program to capture thearchitectural intent,
they can evolve with the program.

8.6.3 Case studies in architectural extraction

There are several published case studies in architectural extraction.

8.6.3.1 Non-object-oriented systems

Most published architectural extraction case studies studied big legacy systems written in pro-
cedural languages, rather than object-oriented code, which is the subject of this dissertation.
However, the processes these case studies followed are quite instructive and we followed similar
ones during our own case studies.

For example, a successful case study extracted the code architecture of a 30-KLOC C system
(Harris et al. 1995) and a multi-MLOC C system (Linux) (Bowmanet al. 1999).

To determine the architectural structure of a legacy system, (Tzerpos and Holt 1996) used
a “hybrid” process that combines facts extracted from the code and information derived from
interviewing developers. These steps include: collecting“back of the envelope” designs from
project personnel; extracting raw facts from the source code; collecting naming conventions
for files; clustering code artifacts based on naming conventions; creating tentative structural
diagrams, and collecting the reactions of the developers tothese tentative diagrams; and so on,
until they converged to a code architecture. They concludedthat there is a reasonably well-
defined sequence of steps to go through to extract a code architecture. Indeed, the steps we
undertook while evaluating SCHOLIA during the field study were somewhat similar, although we
dealt with the runtime architecture, and did not use clustering.

294 Chapter 8. Related Work

The Apache modeling project (Gröne et al. 2008) used FMC and manually extracted the ar-
chitecture of Apache, written in C. The architectural extraction seems to have involved ad-hoc
manual techniques and many people—many students enrolled in a class. The only tool used for
the analysis of the source code transformed the C source codeinto a set of syntax highlighted
and hyperlinked HTML files (Gr̈one et al. 2002). The authors justify not using more advanced
tools by saying that “an important amount of information needed for the conceptual architecture
is not existent in the code and therefore cannot be extractedby a tool” (Gr̈one et al. 2002).

8.6.3.2 Object-oriented systems

There a few published case studies in the architectural extraction of object-oriented systems.
Several case studies have studied the Jigsaw system, which has 300 classes (Chardigny et al.

2008; Medvidovic and Jakobac 2006), to evaluate their architectural extraction techniques. How-
ever, they focused on the code architecture.

(Medvidovic and Jakobac 2006) point out that available tools are often unable to discover a
relationship that is implemented indirectly, e.g., by using instances of container classes, such as
Vector, Map, List, to store objects of some other application class. This is further complicated
by introducing user-defined container classes. SCHOLIA can readily address those cases. For
example, in the Listeners system (Chapter 2), the classModel does not directly declare a field
reference of typeBarChart. Rather, the classModel declares aList of Listener objects
(Fig. 2.4, Page 36). After edge lifting, SCHOLIA can show a points-to relation between aModel

object and aBarChart object (Fig. 2.3(b)).
Many architectural extraction studies use various sourcesof information extrinsic to the code,

with no clear exit criteria. It is also fairly common for different people to extract very different
architectures.

In SCHOLIA, the annotations are not completely arbitrary, and have to typecheck. During
the LbGrid field study (Section 4.8, Page 161), we only added annotations, typechecked them,
and occasionally discussed a snapshot with a developer. Themeasurable success criteria are to
minimize the number of objects in the top-level domains, andreduce the number of remaining
annotation warnings.

8.6.3.3 Evaluating an extracted architecture

Evaluating the quality of a extracted architecture is subject to debate, with no generally accepted
evaluation criteria. More generally, this appears to be a common issue in the empirical evalua-
tion of reverse engineering tools. (Tonella et al. 2007) state that “the same piece of information
recovered from the code may be immensely useful or completely unusable depending on the end
user who is performing the current software engineering task and depending on the amount of
knowledge the user already has about the system”. Indeed, this was one of the challenges that
this dissertation work faced.

One approach to measure the “goodness” of an extracted architecture is to compute various
structural metrics. Indeed, clustering methods often use this approach to evaluate the quality of
the result. For example, a clustering is “good” if the clusters are reasonably sized and exhibit
low coupling and high cohesion (Systä et al. 2000).

8.6. Architectural extraction 295

Another common way to evaluate an extracted architecture isto compare it against a target
or reference architecture. This is the approach taken by SCHOLIA and many others.

8.6.3.4 Summary of previous case studies in architectural extraction

The scale of the systems we analyzed using SCHOLIA may pale in comparison to previous case
studies that analyzed the code architecture of large systems. However, SCHOLIA is a type-
based technique that requires developers to specify architectural intent using annotations. This
makes using SCHOLIA to analyze a system with millions of lines of code (MLOC) prohibitively
costly, without annotation inference. Despite this limitation, SCHOLIA is the first entirely static
approach that can extract a runtime architecture. For comparison, the closest prior work that
used annotations to extract object models (Lam and Rinard 2003) was evaluated on one 1700-
line system.

8.6.4 Summary of previous work in architectural extraction

Previous architectural extraction focused predominantlyon the code architecture. The previ-
ous work that addressed the runtime architecture intuitively preferred using dynamic analyses.
(Schmerl et al. 2006) state that “determining the actual runtime architectural configuration of a
system using static analysis is, in general, undecidable”.(Ducasse and Pollet 2009) affirm that
“static information is often insufficient for [software architecture reconstruction] since it only
provides a limited insight into the runtime nature of the analyzed software; to understand behav-
ioral system properties, dynamic information is more relevant” (p. 580).

To my knowledge, no previous approach extracts statically aruntime architecture for an
object-oriented system. The closest to that would be the runtime structure extracted by a static
analysis, which I discussed in Section 8.4 above. Most flat object graphs are too low-level to
be considered architectural views. SCHOLIA is the first approach to demonstrate that the static
extraction of runtime architectures from object-orientedcode is indeed feasible.

8.7 Architectural synchronization

SCHOLIA requires the ability to compare the built and the designed architecture. Several tech-
niques and tools have been proposed for differencing and merging architectural or design views.

Landmark-based algorithms. We group several algorithms that have been proposed for dif-
ferencing hierarchical information under the category of “landmark-based algorithms”: they
have been proposed in the context of program differencing, e.g., JDiff (Apiwattanapong et al.
2004), Dex (Raghavan et al. 2004), and design differencing, e.g., UMLDiff (Xing and Stroulia
2005). These algorithms are based on the assumption that theentities they are trying to match are
uniquely named and many nodes match exactly. This enables them to recognize the unchanged
nodes first and use them as “landmarks” to efficiently identify the other changes. However, these
algorithms are unable to match nodes based on structure alone or based on structure and highly
non-unique semantic information, such as entity types. Forinstance, a heuristic solution with a

296 Chapter 8. Related Work

worst-caseO(N3) supporting arbitrary move, copy and glue operations was tested on instances
where more than 80% of the nodes matched exactly (Chawathe andGarcia-Molina 1997). As a
result, these algorithms are less suitable for comparing architectural views, as they will perform
poorly when all the nodes are renamed, or when most of the renamed nodes are concentrated in
one area of the tree such as when entire subtrees are renamed.This may be atypical when com-
paring two versions of a given program or a design model at a given level of abstraction. In our
architectural views, most names are transient or automatically generated. Both THP and MDIR
would still work even in the total absence of semantic information, i.e., using tree structure only.
For instance, in the Aphyds and Duke’s Bank examples, our inputs had more than half of their
nodes renamed. Finally, none of these algorithms offer the ability to manually force or prevent
matches. It may be possible to easily add the ability to prevent matches to some of them (e.g.,
JDiff), but adding the ability to force matches could be substantially more complicated.

Tree alignment vs. tree edit. Tree differences can be represented using tree alignment instead
of tree edit distance. Each alignment of trees actually corresponds to a restricted tree edit in
which all the insertions precede all the deletions. Algorithms based on tree alignment can detect
unbounded deletes and can generalize to more than two trees,something not easily done with
tree edit distance algorithms (Jiang et al. 1994). But the memory requirements of tree alignment
algorithms, for the tree sizes and branching factors that are typical of our inputs, would be several
orders of magnitude higher than those of MDIR—O(22dN2), whered is the maximum degree of
the tree.

Graph matching approaches. Exhaustive graph matching algorithms, based on variants ofthe
A* algorithm (Messmer 1996), do not scale beyond a few dozen nodes (Hlaoui and Wang 2002).
In the context of architectural views, Sartipi proposed an approach for architectural extraction
using a variant of the A* graph matching algorithm, but with an optimization that may cause it
to miss the optimal solution in some cases (Sartipi and Kontogiannis 2003b).

More scalable, heuristic-based approaches, such as spectral methods, perform poorly when
the graphs are not nearly isomorphic. Furthermore, these algorithms occasionally miss the op-
timal solution (Conte et al. 2004). Others, such as the Similarity Flooding Algorithm (SFA),
have an accuracy of around 50% (Melnik et al. 2002). The accuracy of MDIR is above 90%
on a roughly similar range of graph sizes. Furthermore, SFA relies heavily on labels, which
are different when the graphs originate from different domains, even if they express the same
relationships: “while matching of an XML schema against another XML schema delivers usable
results, matching of a relational schema against an XML schema fails” (Melnik et al. 2002).

(Mandelin et al. 2006) proposed probabilistic matching based on label, region, type or posi-
tion information, but the approach requires training theevidencers. Mandelin et al. also mention
that a simple greedy search algorithm does not work in many cases.

Model transformation. Graph transformation approaches, surveyed by Mens and van Gorp
(Mens and Van Gorp 2005), tackle the same problem, but use a different set of assumptions.
First, in many graph grammars, productions do not delete vertices and edges, which effectively

8.7. Architectural synchronization 297

prohibits insertions and deletions, one of our requirements. Second, graph transformation ap-
proaches do not attempt to find the optimal transformation that would preserve properties of
view elements. Finally, most graph transformation approaches do not yet offer the same level of
automation as the tools illustrated in Section 5.5 (Page 192).

Consistency management. There is significant work in the area of viewpoints, view merging
and inconsistency management, e.g., (Easterbrook and Nuseibeh 1996; Egyed 2006). A view-
point captures data from disparate sources into independent but interrelated units. In view merg-
ing, there is also a notion of knowledge order or degree, i.e., a match can be disputed. When
synchronizing between a built and a designed architecture,one may want to model incomplete-
ness and inconsistency as a first class notion. In our approach, we model both views using the
same viewtype, arbitrarily bridging the inevitable expressiveness gaps in the process. We also
assume that one of the two views is authoritative. Implicitly, when the user decides to commit
some edit actions but not others, they are allowing some acceptable differences to remain. In
future work, it may be interesting to model this more precisely using ideas from inconsistency
management.

Much of the work in view consistency analyzes the consistency of different but related views,
typically at the same level of abstraction, such as a UML class diagram and a UML sequence
diagram. This is a problem inhorizontal conformance(Ducasse and Pollet 2009). On the other
hand, this dissertation is about analyzing consistency between views at different levels of ab-
straction, namely an implementation and a target architecture, which is a problem invertical
conformance(Ducasse and Pollet 2009).

8.8 Built-in conformance

Analyzing conformance, after the fact, between an architecture and an implementation is a fun-
damentally difficult problem. So several approaches attempt to avoid the problem by using code
generation, style-guidelines, library-based solutions and language-based solutions.

8.8.1 Code generation

Because of the difficulty of maintaining and extracting high-level models of a system, some
approaches make the high-level model the primary asset and achieve conformance by generat-
ing an implementation from an architecture (Shaw et al. 1995; Moriconi et al. 1995). However,
code generation guarantees only initial conformance. To maintain conformance, developers must
refrain from changing the code directly. Instead, they mustalways change the models then re-
generate the implementation from the updated models. Such an approach may work in certain
domains, but is often not adoptable for general purpose applications, because a developer is no
longer free to edit the code directly. This restricts architects and developers from working at
the appropriate level of abstraction. More importantly, such an approach does not handle legacy
code. SCHOLIA can analyze the conformance of a system after the fact, handles legacy sys-
tems, and requires mostly adding annotations, without re-engineering the system to a different
language.

298 Chapter 8. Related Work

8.8.2 Style guidelines

In order to maintain conformance, some approaches require an implementation to follow strict
style guidelines that prohibit sharing mutable data between components (Luckham and Vera
1995). The problem with style guidelines is that there are usually no tools to check them.

8.8.3 Library-based solutions

Library-based solutions achieve conformance by requiringdevelopers to implement theiwr sys-
tem on designated architectural frameworks or middleware.For instance, adopters of the C2
ADL can use a specific framework to implement their design (Medvidovic et al. 1996). Simi-
larly, FRACTAL (Bruneton et al. 2006) defines multiple levels of conformance, and supporting
higher levels requires implementing additional interfaces.

In addition to forcing developers to use specific frameworks, such approaches often require
developers to follow strict guidelines to avoid introducing architectural violations. There are no
tools to check that an implementation obeys those rules (N. Medvidovic, personal communica-
tion, 2008).

8.8.4 Language-based solutions

ArchJava (Aldrich et al. 2002b) was the first language-basedsolution that could guarantee, at
compile time, communication integrity between object-oriented code and the intended run-
time structure. ArchJava, however, expresses architecture through Java language extensions,
and requires re-engineering a system to respect ArchJava’stype system (Aldrich et al. 2002a;
Abi-Antoun and Coelho 2005; Abi-Antoun et al. 2007a). We discussed in detail the relation be-
tween SCHOLIA and ArchJava in Section 7.5.5 (Page 240)

8.8.5 Summary of previous work in built-in conformance

Previous approaches to enforce built-in conformance have several drawbacks. They require de-
velopers to use code generation, mandate specialized architectural middleware or frameworks, or
impose strict style guidelines without providing tools to enforce those guidelines. Others require
radical language changes that incorporate architectural constructs at the expense of severe imple-
mentation restrictions. While these approaches may be adoptable in certain restricted domains,
they often do not address existing systems. In contrast, SCHOLIA supports analyzing the con-
formance, after-the fact, of a system written in a general purpose, widely-used object-oriented
language (Java), and that uses available frameworks and libraries.

8.9 Architectural conformance

Others have recognized the drawbacks of enforcing built-inconformance, and worked on ap-
proaches to analyze conformance between an implementationand an architectural view after the

8.9. Architectural conformance 299

fact. In fact, many architectural extraction approaches are designed with the goal of analyz-
ing conformance (Ducasse and Pollet 2009)7. In this section, we focus only on approaches that
analyze horizontal conformance between the implementation and the architecture.

We classify the previous work in terms of approaches that address the code architecture (Sec-
tion 8.9.1), and others that address the runtime architecture (Section 8.9.2).

8.9.1 Conformance analysis of the code architecture

One of the earliest and most influential techniques for analyzing conformance to a code architec-
ture is Reflexion Models (RM) (Murphy et al. 2001). Although RM works on the code architec-
ture only, I modeled SCHOLIA closely after RM and discussed their differences and similarities
in detail in Section 6.6.4 (Page 218).

(Knodel and Popescu 2007) performed a comparative analysisof Reflexion Models and two
other conformance analyses techniques for the code architecture and indicated they have similar
expressiveness.

Many approaches use variations on Reflexion Models. For instance, (Fiutem and Antoniol
1998) check if a system’s code architecture represented as aclass diagram conforms to a design
specified in the OMT modeling language, a precursor to UML. A tool translates both the C++
source code and the target architecture into an intermediate representation, compares the two, and
identifies added or removed classes, attributes, operations, association and inheritance relations.
The comparison uses a maximum match algorithm that computesthe best mapping between
source code classes and entities of the class design based onstring edit distance. Because the
entities in the two representations are at the same level of abstraction, there is no need to map one
representation to the other, as in Reflexion Models. Their experiments on several C++ systems
ranging 5K to 50K confirm that assuming exactly matching names for classes gave poor results
of design-code traceability. That work, among others, justifies SCHOLIA ’s use of a structural
comparison that can detect renames, to compare the built andthe target architectures.

Similarly, the approach by (Guo et al. 1999) works with object-oriented code such as C++.
But the end result shows C++ files as the leaf nodes, and summarizes the conformance between
call relations and variable access relations.

(Postma 2003) describes a method for verifying a module architecture using relational parti-
tion algebra (RPA), which targets high-level architecturalrules only. Then they check the con-
formance of an extracted view against a target view.

(Eichberg et al. 2008) use annotations to define “ensemble” of packages, classes, etc. These
ensembles define a module view that is orthogonal to the code structure. In principle, an ensem-
ble could consist of fields, though the approach does not address the issue of possible aliasing.
In addition, the annotations describe in the code the desired structure of the system, and check it
continuously as part of the build process.

They have the notion of “part of” at the level of files, classesor packages, but not at the level
of objects. Unlike SCHOLIA, their annotations are not typecheckable. Finally, the SCHOLIA

annotations do not describe the desired structure of the system in the code.

7(Ducasse and Pollet 2009) list 34 approaches to extract architecture, and indicate that 12 of them are used to
analyze conformance (Table 1, p. 576). Of these, 9 deal withvertical conformance(Table 5, p. 584).

300 Chapter 8. Related Work

(Kontogiannis et al. 1995) check structural compliance using the notion of concept-to-code
mapping. In this approach, a concept language models abstract properties of a desired code
fragment. The pattern matching process is based on the Markov model, and a similarity mea-
sure between an abstract pattern and a piece of code is definedin terms of the probability that
the abstract pattern can generate that piece of code. To reduce the complexity of the required
computations, they use dynamic programming.

8.9.2 Conformance analysis of the runtime architecture

Previous work in analyzing conformance to a runtime architecture use either dynamic analysis
(Section 8.9.2.1) or static analysis (Section 8.9.2.2).

8.9.2.1 Dynamic analysis

Intuitively, many have preferred using dynamic analysis toanalyze conformance to a runtime ar-
chitecture, by monitoring a few program runs of the system (Sefika et al. 1996b; Madhav 1996).
In contrast, SCHOLIA uses only static analyses, and thus, can make claims about all possible
executions.

(Madhav 1996) instruments an Ada program to produce events at runtime that are tested for
conformance against a reference architecture documented in the RAPIDE ADL.

PATTERNL INT (Sefika et al. 1996b) combines static and dynamic visualization and analyzes
conformance by displaying various complementary views such as a “data sharing graph”, and
inter-class call relations. The rules are converted to Prolog.

(Turner et al. 2003) extend UML object diagrams into Visual Constraint Diagrams and check
at runtime that a UML object diagram satisfies constraints. These constraint are over instances
of classes and express conditions that should not occur if the object-oriented program is correct,
e.g., that a linked list must not contain a cycle. (Crane and Dingel 2003) do something similar,
but require developers to use the Alloy object modeling notation.

(Shomrat and Yehudai 2002) showed that using AspectJ (Kiczales et al. 1997) to enforce ar-
chitectural restrictions is not an ideal choice. Although design problems are cross-cutting, they
often concern static events or structural properties that cannot be captured by existing pointcut
languages. Static analysis, which we use in our approach, seems better suited to ensure structural
properties.

8.9.2.2 Static analysis

Some approaches use static analysis and purport to handle the runtime architecture of object-
oriented systems. However, (van Dijk et al. 2005; Dı́az-Pace and Campo 2005; Blech et al.
2006) map acomponent instancein a runtime architecture to aclass in object-oriented code.
Such a mapping is more suitable for thecode architecture. Implicitly, they make the assumption
that there is a single instance of each class in the system.

In SCHOLIA, runtime component instances are not classes. Rather, components correspond to
objects, i.e., instances of classes. For example, a framework, when instantiated, may contribute
one or more component instances to an architecture. This justifies the use ofobject diagrams

8.9. Architectural conformance 301

instead of class diagrams as the closer analogy for a runtimearchitecture (Clements et al. 2003,
p. 103).

Bauhaus (Raza et al. 2006) is a static analysis toolkit that supports a points-to analysis, etc.
Bauhaus lets a user specify the high-level module view (or a hypothesis thereof) and map the
concrete modules onto the architecture. Then Bauhaus compares a high-level module view to
the concrete modules and their dependencies using a similartechnique to Reflexion Models.
Presumably, Bauhaus can handle Java code. However, the two published case studies used two
large-scale and complex applications, namely, the C compiler sdcc and the GNU C compiler gcc,
with 100 and 500 KLOC, respectively (Koschke and Simon 2003).

8.9.3 Case studies in architectural conformance

Several case studies evaluated the conformance analysis using case studies. When dealing with
the code architecture, the source model can be obtained relatively easily. This allows a technique
such as Reflexion Models (RM) to scale to large code bases. For instance, (Murphy and Notkin
1997) analyzed a 1.2-MLOC system written in C.

(Rosik et al. 2008) conducted anin vivostudy using a variant of Reflexion Models.

8.9.4 Conformance measurement

There are several possible measures of architectural violations in source code.
(Sarkar et al. 2006) measure how many back-calls or up-callsan implementation violates

with respect to the layers in a target code architecture.
(Lagüe et al. 1998) compute metrics that compare the layers in a designed and a built code

architecture.
SCHOLIA is complementary, focuses on the runtime architecture, andrelates a designed and

a built runtime architecture.

8.9.5 Summary of previous work in architectural conformance

There is much previous work in analyzing conformance to a code architecture. However, an
approach designed for the code architecture would not work on the runtime architecture. This is
because one code entity can map to multiple components in a runtime architecture, and similarly,
multiple code elements could correspond to the same object at runtime.

To our knowledge, no previous work can analyze the conformance of a runtime architecture,
and statically relate the runtime component instances in a target architecture to runtime objects.
Still, SCHOLIA is similar in spirit to previous work such as Reflexion Models and many similar
variants. However, SCHOLIA differs from that work on two counts. First, SCHOLIA uses a
more sophisticated source abstraction method and extractsa richer source model that reflects
the application’s hierarchical runtime structure, instead of its code structure. Second, SCHOLIA

relates the source model to a high-level model using a more powerful structural comparison.
The structural comparison does not rely on unique identifiers, and compares two hierarchical
architectural views after the fact. Finally, SCHOLIA deals with hierarchical source models, high-
level models, and maps.

302 Chapter 8. Related Work

8.10 Traceability

Traceability has long been recognized as important (Lindvall and Sandahl 1996;
Spanoudakis and Zisman 2005), and is strongly related to conformance. Similarly tohor-
izontal andvertical conformance, (Lindvall and Sandahl 1996; Spanoudakis and Zisman 2005)
discusshorizontalandvertical traceability. Despite the plethora of approaches to achieve trace-
ability, effective tool support remains a challenge (Spanoudakis and Zisman 2005; Oliveto et al.
2007), and is of limited use in industrial settings.

General purposes approaches use various information retrieval techniques to recover trace-
ability links between use cases, between design diagrams and code classes, or between test cases
and code classes (Giulio et al. 2000; Antoniol et al. 2002; DeLucia et al. 2007). A tool based on
such a technique produces measures of similarity (De Lucia et al. 2008).

ARCHEVOL (Nistor et al. 2005) maintains traceability links between acode architecture and
the implementation, once a human provides the tool with an initial mapping between the archi-
tecture and the implementation.

Previous tools that do establish traceability to the code, often do so with respect to a code
architecture, i.e., they relate some artifact in a high-level model to aclassor a packagein the
code structure, rather than to objects in the application’sruntime structure. In contrast, SCHOLIA

can establish traceability between the built runtime structure and an intended runtime architec-
ture. To our knowledge, SCHOLIA is the first approach that allows a developer to trace from
a component, a connector or a port in runtime architecture, obtained entirely statically, to the
corresponding object references in a general purpose object-oriented language like Java. This
facility was previously available only when tracing from UML class diagrams to Java code.

8.11 Summary of related work

SCHOLIA fills an important gap in extracting statically a hierarchical runtime architecture from
a general purpose object-oriented language like Java, and enforcing communication integrity
against a target architecture.

8.10. Traceability 303

Chapter 9

Discussion and Conclusion

In this chapter, I revisit the requirements on a proposed solution and discuss how well SCHO-
LIA meets them (Section 9.1). I then discuss some of SCHOLIA ’s limitations (Section 9.2), its
usefulness and usability (Section 9.3), possible future work (Section 9.4), and finally conclude.

9.1 Satisfaction of the SCHOLIA requirements

SCHOLIA meets many of the requirements from Section 1.8 (Page 22).

9.1.1 Overall Approach

RQ O1 – Hierarchical architectural models: In SCHOLIA, both the designed and the built ar-
chitectures are hierarchical;

RQ O2 – Static analysis: The SCHOLIA object graph extraction uses a static analysis. The
analyses that abstract an object graph and analyze communication integrity are also static;

RQ O3 – Arbitrary implementation code: I evaluated SCHOLIA successfully on existing
object-oriented code that used available libraries;

RQ O4 – After the fact analysis: I evaluated SCHOLIA on existing code that others had devel-
oped. In many cases, the systems had no documented architectures.

RQ O5 – Automation: I automated many parts of SCHOLIA, as I discuss below. The part of
SCHOLIA that would benefit from significantly more automation is the process of adding
the annotations to a program.

9.1.2 Annotations

RQ ANN1 – Language support for annotations: I designed SCHOLIA ’s annotations to use
existing language support for annotations for most of the cases. There are a few cases
that the existing annotation standard (Bloch 2004) cannot handle. So, we currently use
brittle block comments for those. However, upcoming versions of Java are likely to adopt
the JSR 308 proposal (Ernst and Coward 2006), which allows annotations in more places
such as on generic type arguments;

305

RQ ANN2 – Real object-oriented code:I was able to add annotations to several real object-
oriented systems, which used inheritance, recursion, etc.;

RQ ANN3 – Expressiveness:The annotations that I added to existing object-oriented code im-
plement the ownership domain type system and typecheck for the most part. In the process
of adding annotations, I identified expressiveness challenges in the type system that must
be addressed in future work;

RQ ANN4 – Automation: I implemented a tool to insert default annotations (SectionA.4.4,
Page 326), and another tool to typecheck the annotations.

9.1.3 Architectural Extraction

RQ EXT1 – Summarization:
RQ EXT2 – Hierarchy: The ArchRecJ tool extracts hierarchical object graphs.
RQ EXT3 – Object soundness:We proved formally that an extracted object graph has exactly

a unique representative for each runtime object (Section 3.3, Page 88).
RQ EXT4 – Edge soundness:We proved formally that an extracted object graph has edges

that correspond to all possible runtime points-to relations between the representatives of
the runtime objects (Section 3.3, Page 88).

RQ EXT5 – Traceability: The ArchRecJ tool allows tracing from each node or edge in an ex-
tracted object graph, including from a lifted edge, to the underlying lines of code.

RQ EXT6 – Precision:
RQ EXT7 – Scalability: The object graph extraction static analysis, even though itis a whole

program analysis, does seem to scale. In particular, it avoids known scalability bottlenecks
such as object-sensitivity.

RQ EXT8 – Automation: I developed a tool, ArchRecJ, to extract an object graph from an
annotated program, with a good response time. The tool assists a developer with selecting
the input to the abstraction by types, and refining the objectgraph interactively.

9.1.4 Architectural Comparison

RQ COMP1 – No unique identifiers: The structural comparison does not assume that the ar-
chitectural view elements have unique or persistent identifiers.

RQ COMP2 – No ordering: The structural comparison does not assume that an architectural
view has an inherent ordering among its elements.

RQ COMP3 – Insertions, deletions, and renames:The structural comparison does detect el-
ements that are inserted, deleted and renamed across two architectural views.

RQ COMP4 – Hierarchical moves: The structural comparison does detect elements moved up
or down a number of levels in the hierarchy.

RQ COMP5 – Manual overrides: The structural comparison allows a user to force or prevent
matches between selected view elements. The comparison does then take these constraints
into account to improve the overall match.

RQ COMP6 – Type information optional: The structural comparison does not assume that
the view elements have type information that matches exactly. The empirical evalua-
tion showed that the comparison can recover a correct mapping from structure alone if

306 Chapter 9. Discussion and Conclusion

necessary, or from structure and type information if type information is available. The
comparison also takes advantage of any available type information, and avoids matching
elements that have incompatible types.

RQ COMP7 – Disconnected and stateless operation:The structural comparison works after
the fact, in a disconnected and stateless mode. It does not rely on the ability to monitor or
record any structural changes to an architecture.

RQ COMP8 – Automation: The ArchSynchro tool (Section 5.4.2, Page 189) can synchronize
two architectural C&C views.

9.1.5 Architectural Conformance

RQ CHK1 – Communication integrity: Extracting a sound object graph is a prerequisite for
enforcing communication integrity. Indeed, the extractedobject graph implied by the own-
ership annotations must show all objects and all possible communication between those
objects. The object graph abstraction and conformance analysis preserve soundness since
they may only add but not subtract edges, e.g., in the form of lifted edges in the built C&C
view or summary edges in the conformance view. However, we donot present a soundness
proof that relates a Runtime Object Graph (ROG) to a conformance view.

RQ CHK2 – Few false positives:The evaluation showed that if the built and the designed ar-
chitectures have a similar hierarchical decomposition anda similar number of components
at each hierarchy level, the conformance analysis does not produce too many false posi-
tives. Moreover, a developer can intervene at several stepsin the approach to reduce the
number of false positives, by fine-tuning the annotations, controlling the abstraction step,
guiding the structural comparison, etc.

RQ CHK3 – Traceability: I developed a tool, CodeTraceJ, to allow the developer to trace from
each convergent or divergent component or connector in a conformance view, including a
summary connector, to the underlying lines of code;

RQ CHK4 – Automation: I developed a tool, ArchCog, to abstract an object graph into abuilt
runtime architecture. I also developed a tool, ArchConf, to compare the built architecture
to a target architecture, analyze communication integrityin the target architecture, and
display a conformance view.

9.2 Limitations

SCHOLIA suffers from several limitations.

9.2.1 Overall Approach

Semi-automation. SCHOLIA is not a push-button approach. Architects and developers have to
provide many of the abstractions and manually interpret theresults. This is both a strength and
a weakness. It is a strength because it enables SCHOLIA to obtain meaningful abstractions, in
contrast to a fully automated approach which is more likely to infer a high-level model that may
not match the architect’s mental model (Wong et al. 1995; Murphy et al. 2001).

9.2. Limitations 307

One benefit of extracting an architecture based on annotations is that the abstraction is not
hard-coded in the tool. Indeed, “many tools only support showing a previously abstracted view
[. . .] Maintainers might understand the software better through abstractions they created them-
selves, rather than through the prefabricated abstractions that many tools provide. Facilities
should be available to allow the maintainer to create their own abstractions and label and docu-
ment them to reflect their meaning” (Storey et al. 1999).

On the other hand, the degree of manual input in applying the SCHOLIA may not be worth
the effort for systems that are not business-critical, and may preclude its immediate practical
adoption. Currently, most of the effort required to use SCHOLIA is in manually adding the
annotations to a program.

Based on our field study results, SCHOLIA currently requires roughly a person-week of effort
for a 30-KLOC system. For many systems, this cost is high, andcould be s a significant barrier
to industrial adoption, and thus to practitioners achieving the approach’s benefits.

Batch-oriented interaction. In SCHOLIA, a developer iterates the process of adding anno-
tations which control the abstraction by ownership hierarchy, then the object graph extraction
which controls the abstraction by types. She then abstractsthe object graph by selecting various
options, and structurally compares the abstracted object graph to a target architecture. Based on
the comparison results, she refines the annotations until the extracted object graph has a similar
hierarchical decomposition and shows a similar number of components as the designed architec-
ture. Finally, she must investigate whether the reported divergences or absences are true archi-
tectural violations or could be addressed by refining the annotations, and iterating the process
one more time.

Overall, the process of refining the extracted architectureseems somewhat awkward. The
architect must notice and analyze architectural anomalies, assume some of them are due to an in-
correct ownership relationship in the source code, change the ownership annotations consistently
to reflect the corrected ownership relationship, and then regenerate the architecture. Having to
run a sequence of analyses and tools may make using SCHOLIA tedious and time-consuming.

9.2.2 Annotations

The annotations suffer from the following limitations.

Expressiveness challenges.Like any type system, the ownership domain type system has
some expressiveness challenges. During our evaluation, weencountered several expressiveness
challenges (Section 4.6.1.3, Page 135). In fact, most of ourannotated programs still have an-
notation warnings remaining in them. One way to address these warnings would be to refactor
the code. But having to refactor existing code to annotate it adds to the adoption cost of the
approach. Ideally, we should extend the type system. We believe some of these expressiveness
issues may be resolved in the type system by incorporating a few well-understood constructs
that others have added to other ownership type systems, suchas existential ownership (Clarke
2001; Krishnaswami and Aldrich 2005; Lu and Potter 2006). Other expressiveness limitations,
such as dealing with static fields, may be harder to overcome using an ownership type system.

308 Chapter 9. Discussion and Conclusion

One potentially promising approach would be to use a type system which combines ownership
types and confined types, such as (Potanin 2007).

Single ownership. The ownership domain type system used by SCHOLIA supports only single
ownership, i.e., an object cannot be part of more than one ownership hierarchy. For instance, if
an object is both a mediator in the Mediator pattern and a viewin the Model-View-Controller
pattern, it cannot be in twoMEDIATOR and VIEW ownership domains at once. Proposals for
multiple ownershiplift this restriction in other type systems (Cameron et al. 2007).

Lack of ownership transfer. The ownership domain type system does not supportownership
transfereither, i.e., an object’s owner does not change —onlyunique objects can flow between
any two domains. Some recent type systems lift this restriction and support ownership transfer
(Müller and Rudich 2007).

Annotation inference. The main drawback of SCHOLIA seems to be the abundance of owner-
ship annotations that are needed. The manual annotation effort is a potential obstacle for practi-
cal adoption, but ownership annotations are amenable to automated ownership inference, which
could alleviate this problem, at least partially. With precise and scalable ownership inference,
SCHOLIA can scale to large systems. Ownership inference is a separate problem and an active
area of ongoing research.

Previous ownership inference techniques can infer encapsulated objects in private domains
and unaliased objects (Liu and Milanova 2007; Ma and Foster 2007; Milanova 2008). But they
do not infer public domains, do not infer domain parameters (Liu and Milanova 2007) or infer
too many domain parameters (Aldrich et al. 2002c).

9.2.3 Architectural Extraction

SCHOLIA ’s architectural extraction suffers from the following limitations.

Abstraction by types. The ownership annotations, which control the abstraction by ownership
hierarchy, are the main input to extract object graphs. The object graph static analysis also takes
optional input to further merge objects based on their declared types. This additional input may
be needed to reduce the number of objects at a given level of the hierarchy, and obtain a built
architecture that is comparable to the designed one. But, unlike the ownership annotations which
can be mechanically typechecked for consistency with each other and with the code, there is no
way to automatically validate the types that a developer selects for the abstraction by types. As
a result, selecting the trivial types or the design intent types may require some trial and error.
However, that optional input cannot make an extracted object graph unsound.

Potential unsoundness. For soundness, an OOG requires a complete set of annotations. In
particular, an OOG may be missing objects or edges if the external libraries used by the pro-
gram create architecturally important objects or edges, but are incompletely annotated, or if the
manually-specified virtual field annotations that summarize those libraries are unsound.

9.2. Limitations 309

Handling dynamic reconfiguration. SCHOLIA does not currently capture dynamic architec-
tural reconfiguration (Magee and Kramer 1996); it shows onlythe footprint of any such recon-
figuration in the object graph. Moreover, SCHOLIA currently uses an ADL that describes the
static architecture of a system but one that offers no facilities for specifying runtime architectural
changes (Oreizy et al. 1998). Enriching the extraction analysis to describe possible dynamic
configuration will also require using an ADL that can represent some architectural dynamism.

Handling distributed systems. SCHOLIA currently applies to applications that run in a single
virtual machine, so it handles neither heterogeneous nor distributed systems (Magee et al. 1995;
Mendonça and Kramer 2001).

Precision. SCHOLIA currently relies only on the aliasing precision that the annotations pro-
vides. Namely, that two objects in different domains can never alias. But two objects of compat-
ible types, in the same domain, may alias. In the absence of more precise aliasing information,
this can lead to a precision loss in some cases. To compensatefor this limitation, a developer can
specify more fine-grained domains, but, of course, this addsto the annotation burden. Ideally, a
domain-aware alias analysis might be able to achieve the best of both worlds: take into account
developer-specified annotations, achieve better precision and remain scalable.

Plain Old Java Objects (POJOs). I designed SCHOLIA for systems where each object is a
Plain Old Java Object (POJO). SCHOLIA does not have any special handling for the parts of a
system that use a component framework such as Enterprise Java Beans (EJB), aspect-oriented
programming (Kiczales et al. 1997), etc. While SCHOLIA is a general purpose solution, it is
possible that a domain-specific approach could achieve better results, or require less effort for
certain classes of systems.

9.2.4 Architectural Comparison

Scalability. SCHOLIA uses structural comparison to compare the designed and the built archi-
tectures. If the views are very different, an automated structural comparison may fail to match the
built and the designed views. In that case, the comparison will not produce useful results since
all components will be absences (the comparison will deleteall the elements from one view and
add them to the other). The algorithm does allow the developer to manually match some view
elements, but at the cost of additional effort. Finally, thealgorithm is quadratic in the view sizes.
So, while the algorithm scales to up to a few thousand nodes (Chapter 5), the comparison of very
large architectures may be intractable.

9.2.5 Architectural Conformance

Architectural abstraction. Currently, in SCHOLIA, abstracting an object graph into a built
runtime architecture requires interaction through a user interface, for example to soundly sum-
marize private domains. Future work may specify abstraction rules that a tool can apply automat-
ically to abstract an object graph into a C&C view. In addition, merging objects only based on

310 Chapter 9. Discussion and Conclusion

their ownership or type structures, while sufficient most ofthe time, is not fully general. Future
work may define more general abstraction rules. For instance, a rule can map an entire domain
to a component, or merge objects based on a predicate that takes into account the names or the
types of those objects.

Architectural behavior. SCHOLIA currently supports analyzing the conformance of architec-
tural structure and not of architectural behavior (Allen and Garlan 1994).

Object multiplicities. Currently, the object graphs extracted by SCHOLIA lack information
about multiplicities.

9.3 Usefulness and Usability

In this section, we discuss SCHOLIA ’s usefulness and usability.

9.3.1 Usefulness

(Ducasse and Pollet 2009) classify the output of software architecture extraction as one of the
following:

• Architectural visualization: i.e., a high-level view of the system organization;
• Architectural description: i.e., a description in an architectural description language

(ADL);
• Conformance analysis:i.e., an extracted architecture enables analyzing conformance;
• Architectural analysis: i.e., an extracted architecture enables a quantitative or qualitative

architectural-level analysis.
Throughout this dissertation, I concretely demonstrated how SCHOLIA provides value in each

of the above areas.

Architectural visualization. In Chapter 4, I indicated several instances of how an extracted
object graph highlights facts about the global program structure that may not be obvious from
looking at the code.

Our evaluation doesnotclaim to demonstrate that a visualization based on hierarchical object
graphs can provide actual assistance to a third-party developer in completing a code modification
task. Admittedly, properly evaluating such a claim requires a user study. In such a study, one
could provide some developers with a class diagram, others with the code, with or without the
ownership annotations, and the rest with an OOG. Then, one could measure if the developers
who have access to the OOG can complete some code modificationtasks faster or better than the
ones who have access only to a class diagram or to the code. Such a study, however, is outside
the scope of this dissertation.

9.3. Usefulness and Usability 311

Architectural description. In Chapters 6, 7, I discussed and evaluated how SCHOLIA can
represent an extracted architecture as a C&C view in an ADL, which allows reusing much of the
existing research in architectural modeling and analysis.

Conformance analysis. In Chapters 6, 7, I concretely demonstrated that an extractedarchitec-
ture enables analyzing communication integrity in a targetarchitecture.

A user study is not the only way of demonstrating value. For instance, using the CryptoDB
case study in Section 7.8, (Page 250), I demonstrated how SCHOLIA can potentially be useful
for threat modeling, by ensuring that the security architecture used in a security review shows all
possible entry points and communication in the implementation.

Architectural analysis. I concretely demonstrated how one can enforce various global con-
straints on the architectural structural using the CryptoDBcase study.

Future work. SCHOLIA ’s evaluation to date does not quantify the benefits of the approach
in terms of finding errors or improving the ability to add new functionality to existing code.
This leaves open several questions that future work might try to answer, such as: can an ex-
tracted OOG provide assistance to a developer performing a code modification task? Can an
extracted OOG be useful to an architecture review board (ARB) during an architectural review
(Maranzano et al. 2005)?

9.3.2 Usability

We briefly discuss theusabilityor ease of learning and applying the SCHOLIA approach. While
we leave to future work a more formal usability evaluation byoutside developers, we offer the
following, more qualitative data.

Effort to apply. One measure of usability is the effort needed to apply the approach, and in
particular, the annotation effort. Based on the 35 hours to annotate a 30-KLOC system, an
experienced developer should budget about 1 hour per 1,000 lines of code when adding the
annotations manually.

Effort to learn. Another measure of usability is that we were able to teach theapproach during
a half-day tutorial at the SEI SATURN professional event. Thearchitects, researchers and ex-
perienced developers in attendance learned the approach and used the various tools in less than
three hours. We provided the tutorial participants with a partially annotated CryptoDB system,
and they were able to successfully run the tools on that system. The reader can refer to the tuto-
rial handout (Abi-Antoun and Aldrich 2009c) for more information about the tutorial’s contents
and hands-on exercises.

When trying to teach the approach in an academic setting, however, we noticed that novice
Java developers seemed to have difficulty grasping the annotation semantics and syntax.

312 Chapter 9. Discussion and Conclusion

9.4 Future Work

There are several avenues of future work that could be worth exploring.

9.4.1 Overall Approach

Demonstrate scalability. I evaluated the end-to-end SCHOLIA approach on several extended
examples totaling around 40 KLOC. I also conducted a single field study on a 30-KLOC system
to evaluate the object graph extraction. While these sizes may seem small, the static analysis
of the runtime architecture is not yet mature compared to theanalysis of the code architecture.
For instance, the most relevant previous work was evaluatedon a single 1,700-LOC system
(Lam and Rinard 2003). Still, I would like to apply SCHOLIA to larger systems. For instance,
extracting the architecture of Eclipse, which is currentlyover a million lines of code, would be
a stretch goal. A more intermediate goal is to scale the approach to handle systems an order of
magnitude larger than the ones we have used so far.

Quantify the benefits of runtime architectures. The relation between runtime architectures
and design and coding tasks remains poorly understood. Evenempirical studies that looked at
various design diagrams focused on partial runtime views, such as sequence diagrams. It would
be interesting to investigate the use of runtime architectures for various code modification tasks,
to demonstrate concretely and quantitatively their benefits.

Relate runtime and code architectures. During my field study, I observed that experienced
developers often structure their code architecture carefully. For instance, they place classes that
serve different conceptual purposes into different packages, modules, or layers. They also define
marker interfaces that do not define any methods, to indicatesome design intent. But due to
its static nature, a code architecture cannot represent thedynamic architecture of a system. My
analysis is also influenced by many of these code attributes,such as marker interfaces. I would
like to leverage how a code architecture is structured to display a runtime architecture, e.g., by
overlaying layers in a code architecture and tiers in a runtime architecture. I would also like
to use the extracted architecture to identify potential refactoring opportunities. For example,
excessive merging in an extracted object graph may be due to atype structure that includes many
classes which inherit from a constant interface, a practicewhich is considered an anti-pattern
(Bloch 2001, Item #17).

Explore a more incremental, interactive approach. SCHOLIA currently does not provide
instant gratification. In particular, a developer adding the annotations may need some of the
knowledge provided by the extracted object graph, which makes the process highly iterative. So
there is ample room to make SCHOLIA more interactive. For instance, better tools could help
with refining the annotations based on visualizing the extracted object graph, or support more
flexible ways to abstract an object graph into a component-and-connector architecture.

9.4. Future Work 313

Evaluate usefulness and usability. In future work, it may be informative to have outside de-
velopers use the tools to independently evaluate their usefulness and usability.

9.4.2 Annotations

It may be helpful to improve the annotations and the tool support for adding them.

More flexible type system. One important area of future work on the annotations would beto
extend the type system, to eliminate the remaining annotation warnings.

Non-ownership annotations. Ownership types have been around for over a decade
(Clarke et al. 1998). However, they have yet to be adopted on a wide scale, perhaps due to
the overhead of adding them to existing code bases. Perhaps simpler, non-ownership annotations
might make an annotation-based approach more adoptable by practitioners.

Automation. Automating the process of adding the annotations can greatly help the adoptabil-
ity of SCHOLIA by practitioners.

9.4.3 Architectural Extraction

Notational issues. SCHOLIA requires learning new techniques and displays the object graph
in a notation that is different from widely adopted notations such as the Unified Modeling Lan-
guage (UML). As a result, developers may not be interested ininvesting time to learn it. Grundy
and Hosking mentioned that most dynamic visualizations bear little or no relation to static
architecture visualization (design) notations, making them harder to understand and interpret
(Grundy and Hosking 2003).

Layout issues. In architectural diagrams, color, size and width often convey specific meanings.
Similarly, the location in a hierarchy is important, e.g., whether some object is above or below
another (Koning et al. 2002). It is common to show an “EventBus” connector as wider or thinner
than other components in the diagram. In some architecturalstyles, location matters. In the C2
architectural style, each component has a single top port and a single bottom port, notifications
flow down, and requests flow up (Taylor et al. 1996). Without additional annotations, an OOG
will use the same size, color for all objects. For instance, an OOG will display anEventBus
component with the same size as aCourse component, which may not be as informative. To
partially alleviate the problem, one could define additional annotations to encode visualization
attributes directly in code, as in the UML Graph approach (Spinellis 2003; Fowler 2004).

Add more precision. The focus of this research to date has been on soundness. As a next
step, it may be useful to achieve better precision, e.g., by showing cardinality on object relations.
One idea would be to use a heavyweight shape analysis on demand, to gain additional precision
when displaying the object structures within a domain, by also leveraging the annotations that
are already in place.

314 Chapter 9. Discussion and Conclusion

Support distributed architectures. SCHOLIA currently only works for applications that run
on a single virtual machine. With the increasing popularityof architectural patterns such as
service-oriented architectures, software systems are increasingly distributed. I plan to extend
SCHOLIA to handle the runtime architecture of distributed systems.

Support multiple views. I want to explore how to produce multiple but consistent views of
a runtime architecture of the same software system, e.g., one to show data flow and another to
show control flow. SCHOLIA supports analyzing modules of an entire system. However, once
you extract multiple runtime architectures for different modules of a system, it is unclear how to
tie them together into an overall architecture.

Support architectural dynamism. The static analysis I developed is flow-insensitive and
context-sensitive, which enables it to be scalable. As a result, the extracted architecture cap-
tures only the footprint of any dynamic architectural reconfiguration. With systems becoming
increasingly dynamic, it may be useful to provide more precise information about possible ar-
chitectural reconfiguration.

So far, I have mostly used entirely static analyses. Some extensions may require combining
static and dynamic analysis, to achieve additional precision, track the dynamic loading of code as
used by many modern plugin architectures, or account for theuse of reflection or calls to native
code.

9.4.4 Architectural Comparison

Splitting/Merging. In future work, it may be useful to enhance the structural comparison to
detect the splitting or merging of components across two views.

9.4.5 Architectural Conformance

Continuous checking. It may be useful to make the conformance analysis more continuous,
similar to continuous unit testing (Saff and Ernst 2005). This way, a developer can realize that
she is violating the target architecture as soon she makes a code change with undesired architec-
tural ramifications.

9.5 Conclusion and Broader Impact

As early as 1968, Dijkstra pointed out the importance of partitioning and structuring a system
carefully, in addition to programming it correctly. Dijkstra put forth the notion of a layered struc-
ture, where one layer could only communicate with adjoininglayers. The costs of adopting this
organization for conceptual integrity would be offset by the gains in development and mainte-
nance ease (Dijkstra 1968). Since then, there has been much work in formalizing the notion of
software architecture. One promise was that specifying a software architecture in an architecture
description language would enable various architectural-level analyses for performance, security
and reliability.

9.5. Conclusion and Broader Impact 315

Much of that promise has gone unfulfilled until now, partly for two reasons. First, all sys-
tems have an architecture, but very often, it is not explicitly documented. Second, the relationship
between a designed architecture and the actual system implementation, including the built archi-
tecture, is unclear. The effectiveness of architectural analyses to improve software dependability
in practice requires an implementation to correctly realize the carefully thought-out architecture.

Current object-oriented systems are slowly becoming the legacy systems of the future. Most
software developed today must be compatible with or use legacy systems, which often do not
have documented architectures. We have a serious problem ifwe cannot determine the architec-
ture of these systems for software evolution.

Previous attempts to relate the architecture to the implementation required developing pro-
grams on specific implementation frameworks, or specifyingthe architecture directly in code.
Such proposals imposed strict implementation restrictions or non-backward-compatible lan-
guage extensions. Indeed, re-engineering existing Java implementations to a research language
that specifies the architecture within the code would be prohibitively expensive for the millions
of lines of existing code that power our information age.

Today, practicing software engineers still face big challenges in understanding the global
structure of a software system well enough to effectively evolve it, integrate it with other systems,
or analyze the impact of a change. As qualities such as performance, reliability and security
become more critical, it is increasingly important for engineers to understand not just the code
structure, but also the run-time structure of a system. Since many software systems exceed a
million lines of code in size, architects must rely on architectural documentation to achieve this
understanding—yet this documentation is often missing or out of date, and must extracted from
code.

Statically extracting runtime architectures from code hadbeen an open problem. However,
reasoning accurately about qualities like reliability andsecurity cannot consider only the typ-
ical case, and requires understanding all possible communication between components, which
suggests that asoundapproach based on static program analysis is ideal. Moreover, in today’s
object-oriented systems, the runtime structure showing objects and their relations is often quite
different from the decomposition of the static code structure into source files, classes and pack-
ages.

This dissertation addresses the problem for existing object-oriented languages and existing
designs, requiring only annotations, using the SCHOLIA approach. SCHOLIA is the first en-
tirely static approach that guarantees, at compile time, communication integrity between code
in a widely used object-oriented language and a rich, hierarchical description of an architect’s
intended runtime architecture.

SCHOLIA models runtime architectures as a hierarchy of objects, with architecturally sig-
nificant objects near the top of the hierarchy and data structures demoted further down. Be-
cause architectural hierarchy is not readily observable ina program written in a general purpose
programming language, SCHOLIA uses ownership annotations in the program to impose local
information about object encapsulation and logical containment.

This dissertation demonstrated the feasibility of sound, static extraction and conformance
analysis of the runtime architecture of object-oriented systems. An evaluation on several real
systems showed that SCHOLIA can establish traceability between an implementation and an
intended runtime architecture, and identify interesting structural differences. Admittedly, the

316 Chapter 9. Discussion and Conclusion

approach is costly—requiring roughly a person-week of effort for a 30 KLOC system, because
the approach relies on manually adding type-like annotations ubiquitously throughout the source
code to specify architectural intent that is missing in a general purpose programming language.
This cost is a significant barrier to widespread industrial adoption.

However, even with its current cost, the cost-benefit of SCHOLIA may still be favorable, for
many business-critical systems. Furthermore, as the field study demonstrated, it is both valuable
and possible to add the annotations, extract object graphs and analyze conformance of only a
core sub-system of a larger system.

Until now, developers evolving an object-oriented system had to contend with high-level
views of the code architecture or partial views of the runtime architecture obtained using dynamic
analysis. SCHOLIA now completes the picture.

Enabling the extraction of sound runtime architectures canmake a major impact on the ability
of engineers to understand and effectively evolve complex software systems. Practitioners can
now trace between the architecture and the code. They can also use the traceability information
to determine what part of a system to change, or where performance or security problems are
likely to arise. Easy access to trustworthy architectural diagrams thus could eventually facilitate
significant increases in industry-wide productivity.

9.5. Conclusion and Broader Impact 317

Appendix A

Annotation Language and ArchCheckJ
Typechecker1

This appendix describes the concrete annotation language,which uses existing language support
for annotations, that I designed, and the typechecking toolthat I implemented to typecheck the
annotations.

A.1 Introduction

The previous implementation of ownership domains (Aldrichand Chambers 2004) used non-
backwards compatible extensions of Java (ArchJava 2003). As a result, none of the rich tool
support for Java programs was available to programs with ownership domain annotations2.

In a previous case study (Abi-Antoun et al. 2007a), we discovered that adding ownership
domain annotations to existing code often highlights refactoring opportunities. For instance, a
lengthy domain parameter list is often an indication of tightly coupled code that could benefit
from refactoring—such as extracting an interface and programming to that interface. It is unreal-
istic to assume that it is possible to refactor all such code prior to annotating it. In our experience,
having access to refactoring tool support during the annotation process was invaluable. Using
language extensions also makes it harder to partially and incrementally annotate existing code
and thus conduct case studies on interesting systems. Finally, the previous tool used a modified
research infrastructure (Bokowski and Spiegel 1998) that isno longer actively maintained and
does not support Java generics as of this writing.

To address these adoptability challenges, we re-implemented the ownership domain type sys-
tem using the annotation facility in Java 1.5 (Bloch 2004), sothat Java programs with ownership
annotations remain legal Java 1.5 programs. We also implemented the tool as a plugin to the
Eclipse open source development environment that has become popular with researchers and
practitioners (Goth 2005; Murphy et al. 2006).

1Portions of this chapter appeared in (Abi-Antoun and Aldrich 2007a).
2The Universes tools built on the Java Modeling Language (JML) infrastructure support both language extensions

and stylized comments (Universes 2007).

Annotation Language and ArchCheckJ Typechecker 319

We believe this improved tool support promotes the adoptability of the ownership domain
technique by Java developers as follows. First, all the Eclipse tool support such as syntax high-
lighting, refactoring, etc., remains available to annotated programs. Second, using annotations
makes it easier to support in a non-breaking way additional annotations such as external unique-
ness (Clarke and Wrigstad 2003) orreadonly (Dietl and Müller 2005). Third, using annota-
tions provides the ability to incrementally and partially specify annotations on large code bases.
Fourth, using annotations will make it possible to study theevolution of programs with ownership
annotations, an area that has not received much attention—since no one will maintain a program
with limited tool support. Finally, annotating existing code is difficult and time-consuming and
tools are being developed to add annotations semi-automatically (Aldrich et al. 2002c; Cooper
2005). One of the benefits of using annotations over languageextensions is that an inference
algorithm cannot break an existing program by inserting potentially incorrect annotations.

We made the following design choices for the annotation system. First, we worked within
the limits of Java 1.5 annotations (Bloch 2004), even though annotations may be more verbose
than an elegantly designed language. Moreover, Java 1.5 annotations impose several restrictions,
e.g., no annotations on generic type arguments. Other researchers have tried to eliminate some of
these restrictions by proposing revisions of the language (Ernst and Coward 2006), but until such
proposals are officially adopted, their prototype implementations are not Eclipse compatible, an
important factor for adoptability. Second, to work around the Java 1.5 limitation of allowing
annotations only on declarations, we consistently declareadditional temporary variables and add
annotations to them. This has worked well for new expressions, cast expressions (both implicit
and explicit) and arguments for method and constructors. Third, checking ownership domain
annotations generates only informational messages, i.e.,no errors or warnings, and does not
stop a developer from running the program. Fourth, we hard-code a minimal number of implicit
defaults and provide a separate tool to supply explicit reasonable defaults to reduce the annotation
burden. In the future, this tool can be replaced with a smarter annotation inference tool. Finally,
the annotations are non-executable and do not impact the program’s behavior3; unlike the earlier
implementation, the current system does not include runtime checks. As a result, the annotation-
based system is unsound at casts, but could be made sound using bytecode rewriting to add
necessary dynamic checks.

This appendix is organized as follows: we describe the annotation language in Section A.2,
the tool design in Section A.3 and other relevant features ofthe tool in Section A.4. We conclude
with a discussion of the tool’s limitations and some future work (Section A.5).

A.2 Annotation Design

In this section, we describe the concrete annotation syntax. For maximum flexibility and to
work around some of the limitations of Java 1.5 annotations,all annotation values are strings.
Annotations that are plural take values that are arrays of strings.

We illustrate the annotations using snippets from a canonical Sequence abstract data type,
a common benchmark for ownership type systems. Within theSequence, theiters ownership

3Annotations may increase the memory footprint and slow downclass loading as a result, but no empirical data
has been reported to date.

320 Appendix A

domain is used to holdIterator objects that clients use to traverse theSequence, and the
defaultprivateowned ownership domain is used to hold theCons cells in the linked list that is
used to represent theSequence. The full example is in Fig. A.1.

@Domains: declare public or private domains on a type.
• Format: identifier
• Applies to: type (class or interface).
• Examples: the following declares a privateowned domain (owned is private by naming

convention), and a public domainiters to store theIterator objects of theSequence.
@Domains({"owned","iters"})
classSequence<T> {
...
}

@DomainParams: declare ordered domain parameters on a type or method domainparameters
on a method.

• Format: identifier
• Applies to: type or method.
• Examples: Sequence declares a domain parameterTowner to hold its elements.

@DomainParams({"Towner"})
classSequence<T> {
...
}

@DomainInherits: pass parameters to superclass or implemented interfaces.
• Format: typename < parameter, . . . >
• Applies to: type (class or interface).
• Examples: theIterator interface is also parameterized by theTowner domain parameter.

ClassSeqIterator inherits domain parameterTowner from interfaceIterator, and adds
thelist parameter to access theCons cells.
@DomainParams({"list", "Towner"})
@DomainInherits({"Iterator <Towner>"})
classSeqIterator<T> implementsIterator<T> {
...
}

@DomainLinks: declare domain links.
• Format: fromDomainId -> toDomainId
• Applies to: type (class or interface).
• Examples: the Sequence gives Iterator objects in theiters domain permission to

access objects in theowned domain, including theCons cells.
@DomainLinks({...,"iters -> owned", ...})
classSequence<T> {
...
}

@DomainAssumes:declare domain link assumptions.
• Format: fromDomainId -> toDomainIds
• Applies to: type (class or interface).
• Examples: the Sequence assumes that theowner of the Sequence has access to the
Towner domain containing the sequence elements.

A.2. Annotation Design 321

@DomainAssumes("owner -> Towner") /* default* /
classSequence<T> {
...
}

@Domain: declare the domain, actual parameters and actual array parameters.
• Format: annotation<domParams,...>[arrayParams,...]

annotation: indicate a domain name (e.g.,owned), one of the special alias types
(e.g., unique), or a public domain of an object using a field access syntax (e.g.,
seq.iters);
<domParams,...>: specify actual domain parameters by order of formal domain
parameters, at object creation and access sites;
[arrayParams,...]: in ownership domains, arrays have two ownership modifiers,
one for the array object itself and one for the objects storedin the array. For variables
of array type, this argument specifies the actual array parameters by order of array
dimension (for multi-dimensional arrays).
Applies to: local variable declaration, field declaration, method formal parameter
and method return value.
Examples: the following declares aunique Iterator object and binds thelist
domain parameter onSeqIterator to owned domain onSequence, and theTowner
domain parameter onSeqIterator to the parameter by the same name onSequence.
@Domain("unique<owned,Towner>")
SeqIterator<T> it = newSeqIterator<T>(head);

Examples: alent array ofshared Strings:
@Domain("lent[shared]")String args[];

@DomainReceiver: declare the domain of the receiver of a constructor or a method.
• Format: identifier
• Applies to: constructor or method.
• Examples:

@DomainReceiver("state")
void run(){ ... }

A.3 Tool Design and Implementation

Two visitors on the Eclipse Abstract Syntax Tree (AST) typecheck the ownership domain anno-
tations.

First pass. A first-pass visitor performs the following:
• Identify problematic expressions: a developer will need to replace each one with an

equivalent construct, e.g., by declaring a local variable and adding the appropriate annota-
tions to it;4

4Such an operation requires little effort when using the Eclipse refactoring (“Extract Local Variable”).

322 Appendix A

@Domains({"owned","iters"})
@DomainParams({"Towner"})
@DomainAssumes("owner -> Towner")
@DomainLinks({"owned->Towner", "iters->Towner", "iters->owned"})
classSequence<T> {

@Domain("owned<Towner>") Cons<T> head;
void add(@Domain("Towner") T o) {

@Domain("owned<Towner>")
Cons<T> cons =newCons<T>(o,head);
head = cons;

}
@Domain("iters<Towner>") Iterator<T> getIter(){

@Domain("iters<owned, Towner>") SeqIterator<T> it = newSeqIterator<T>(head);
return it;

}
}

@DomainParams({"Towner"})
@DomainAssumes("owner -> Towner")
classCons<T> {
@Domain("Towner") T obj;
@Domain("owner<Towner>") Cons<T> next;

Cons(@Domain("Towner") T obj, @Domain("owner<Towner>") Cons<T> next){
this.obj = obj;
this.next = next;

}
}

@DomainParams({"Towner"})
interface Iterator<T> {

@Domain("Towner") T next();
booleanhasNext();

}

@DomainParams({"list", "Towner"})
@DomainAssumes({"list -> Towner"})
@DomainInherits({"Iterator <Towner>"})
classSeqIterator<T> implementsIterator<T> {

@Domain("list<Towner>") Cons<T> current;
...
SeqIterator(@Domain("list<Towner>") Cons<T> head){

current = head;
}
public @Domain("Towner") T next(){

@Domain("Towner") T obj2 = current.obj;
current = current.next;
return obj2;

}
}

@Domains({"owned","state"})
classSequenceClient{

final @Domain("owned<state>") Sequence<Integer> seq =newSequence<Integer>();

void run(){
@Domain("state") Integer int5 =new Integer(5);
seq.add(int5);
@Domain("seq.iters<state>")Iterator<Integer> it = this.seq.getIter();
while (it.hasNext()){

@Domain("state")Integer cur = it.next();
...

}
}
...

}

Figure A.1: A Sequence abstract data type with ownership domain annotations.

A.3. Tool Design and Implementation 323

• Read annotations from the AST: the Java 1.5 annotations added to a program are part
of the AST. The visitor locates the annotations nodes in the AST and parses their contents
using a JavaCC (jav 2006) parser. The visitor also locates special block comments on
method invocation expressions as described later. In addition, the visitor infers default
annotations for some AST nodes that cannot be annotated, e.g., it implicitly defaults the
NullLiteral AST node tounique. The visitor maps each AST node to an annotation
structure in preparation for the second pass visitor which will typecheck the annotations;

• Propagate local annotations:the visitor propagates the explicit annotations from the AST
nodes (for types, variables, and methods) to all the expression nodes in the AST, including
translating formals to actuals.

Second pass. A second-pass visitor checks the annotations on each expression based on the
static semantics of ownership domains. Checking the assignment rule requires a value flow
analysis. A Live Variables Analysis (LVA) from a lightweight data flow analysis framework
(Aldrich and Dickey 2006) that also uses the Eclipse AST, is invoked intra-procedurally at each
method boundary using a separate visitor. The LVA analysis verifies that aunique pointer only
has one non-lent read.

A.4 Additional Features

The tool offers the following additional features.

A.4.1 External Libraries

There are two approaches to support adding annotations to the standard Java libraries and other
third-party libraries, one that involves annotating the library and pointing the tool to the annotated
library and one that involves placing the annotations in external files. The earlier tool used the
former approach (ArchJava 2003), but we adopted the latter approach this time since it does not
require changing library or third-party code—which may notbe available and when it is, tends
to evolve separately. Other annotation-based systems adopted the same strategy (Qui 2006).
The tool supports associating ownership domain annotations with any Java bytecode.class file
using an external XML file, following the same annotation constructs described in Section A.2.

A.4.2 Generics

Our annotation system currently treats generic types as orthogonal to ownership domain param-
eters, so generic type parameters and arguments are added separately from ownership domain
annotations—except that nested actual domains may need to be provided where applicable. Pro-
ponents of Generic Ownership (Potanin et al. 2006) argue that this leads to awkward syntax,
which may be true. However, in our case studies annotating two 15,000-line Java programs in-
cluding using generic types, we did not observe this to be a serious problem. Fig. A.2 illustrates
the interaction between generics and ownership domains. The Student class is parameterized

324 Appendix A

@DomainParams({"state"})
classStudent{
...
}
@DomainParams({"state"})
classData ...{

final @Domain("state<state<state>>")
Sequence<Student> vStudent;

@Domain("state<state>")Student
getStudentRecord(@Domain("shared")String sSID){

@Domain("vStudent.iters<state<state>>")
Iterator<Student> i = vStudent.getIter();
while (i.hasNext()){

@Domain("state<state>")
Student objStudent = i.next();
...
}

...
}

}

Figure A.2: Adding annotations to generic code.

classSequence<T> {
...

@DomainParams("TTowner") /* Method domain parameter* /
@Domain("shared") /* Domain for return value* /
static<TT> String

toString(@Domain("lent<TTowner>")Sequence<TT> seq){
...

}
void dump(){

@Domain("owned<shared>")
Sequence<String> seq = ...;

@Domain("shared")
/* Provide<actuals...> using block comment* /
String str = Sequence.toString/*<state>* /(seq);

}
}

Figure A.3: Declaring and binding method domain parameters.

by thestate domain parameter. TheData class maintains aSequence of Student objects and
is also parameterized bystate.

A.4.3 Method Domain Parameters

Java 1.5 annotations cannot be added at method invocation expressions. So we used block com-
ments to specify the actual domains for a parameterized method (See Fig. A.3 for an example).
Unfortunately, proposals to improve the Java 1.5 annotation facilities, e.g., (Ernst and Coward
2006), do not yet address adding annotations to such expressions.

A.4. Additional Features 325

while (objCourseFile.ready()){
this.vCourse.add(newCourse(courseFile.readLine()));

}
/* ABOVE MUST BE REWRITTEN AS* /
while (objCourseFile.ready()){
@Domain("shared")String line = courseFile.readLine();
@Domain("state<state>")Course crs =newCourse(line);
this.vCourse.add(crs);
}

Figure A.4: Re-writing a new expression using a local variable.

A.4.4 Defaulting Tool

To reduce the annotation burden, we implemented a separate tool to add default annotations
such as marking private fields asowned, method parameters aslent, andStrings asshared.
However, an annotation added by the defaulting tool (e.g.,owned) may need to be modified
manually to supply actual domains for domain parameters (e.g.,owned<owned>).

A.4.5 Special Annotations

Annotation ‘owner’. We also added the specialowner annotation, similar topeer in Uni-
verses (Dietl and M̈uller 2005). Usingowner can often eliminate a domain parameter: e.g., in
Fig. A.1,Cons’s owner is Sequence’s owned, SeqIterator’s owner is Sequence’s iter.

A.5 Tool Limitations and Future Work

Java 1.5 annotations suffer from the following limitations: (1) A declaration cannot have multi-
ple annotations of the same annotation type; (2) Annotationtypes cannot have members of the
their own type; (3) It is only legal to use single-member annotations for annotation types with
multiple members, as long as one member is namedvalue, and all other members have default
values. Otherwise, the more verbose syntax is required, e.g., @Name(first = "Joe", last =

"Hacker"); (4) Annotation types cannot extend any entity (class, interface or annotation); and
(5) Annotations are allowed on type, field, variable and method declarations and not allowed on
type parameters or method invocations.

The first restriction prevented us from using the@Domain annotation to specify both the
annotation on the receiver and on the return type of a method.The second restriction pre-
vented us from having shorthand constant annotations for the special alias types, e.g.,@owned
instead of@Domain("owned"): such constants cannot be used inside other annotations as in
@Domain(annotation = @owned, parameters = {@owned}).

To avoid having multiple ways of indicating the same meaning, we use strings for all the
annotations and require annotations of the form@Domain("owned<owned>"). Although devel-
opers may be more likely to introduce spelling mistakes in string annotations, the typechecker
will catch these problems early enough. The third restriction, i.e., the lack of positional argu-
ments, required the use of the verbose syntax@Domains(publicDomains = {"d1", "d2"},
privateDomains = {"pda", "pdb"}).

326 Appendix A

List vCourse = student.getRegisteredCourses();for (int i=0; i<vCourse.size(); i++){
if (((Course) vCourse.get(i)).conflicts(course)){

...
}
} /* ABOVE MUST BE REWRITTEN AS ...* / @Domain("lent<state>") List vCourse = student.getRegisteredCourses();for (int i=0;
i<vCourse.size(); i++){

@Domain("lent<state>")
Course crs = (Course) vCourse.get(i);
if (crs.conflicts(course)){

...
}

}

Figure A.5: Re-writing a cast expression using a local variable.

The final restriction and the current lack of annotation inference require converting some
expressions to more verbose constructs by declaring local variables and annotating them. The
most common such expressions were new expressions (Fig. A.4) and cast expressions (Fig. A.5).

We plan to address some of the following limitations:
• Infer method domain parameters: just as actual type arguments do not have to be passed

to a generic method in Java, it may be possible to infer, in most cases, the actuals for
method domain parameters based on the types of the actual arguments;

• Allow suppressing warnings:reflective code cannot be annotated successfully using own-
ership domains (Aldrich et al. 2002c). Because such code willalways generate warnings,
annotations to suppress spurious warnings can help reduce the number of persistent anno-
tation warnings through which a developer has to wade.

• Display annotations more concisely:an Eclipse plug-in (Eisenberg and Kiczales 2007)
can display verbose annotations using a simpler syntax for interactive editing while the
analysis uses the same Java AST. We could use a similar approach to display the ownership
domain Java 1.5 annotations using a simpler syntax similar to the one we used in this
document.

A.6 Summary

We believe that re-implementing the ownership domain type system as backward-compatible
Java 1.5 annotations, using the Eclipse infrastructure, significantly improved the tool support,
and enabled us to conduct some of the largest case studies to date in applying ownership types to
real object-oriented code.

For example, during our case studies, we often invoked the Eclipse refactoring tools to extract
interfaces and infer generic types while adding the ownership domain annotations. This would
not have been possible with the previous tool support.

The HillClimber subject system was annotated once using language extensions
(Abi-Antoun et al. 2007a), and once using the annotation-based system. Comparing the num-
ber of hours across the two case studies would not be meaningful since the first case study added
ownership annotations to the ArchJava version of HillClimber, HillClimberAJ, rather than the
base Java version. Such a comparison also would not account for the learning effect of anno-
tating roughly the same program twice. Still, anecdotally,we believe we were more productive

A.6. Summary 327

with the annotation-based system than with the earlier toolthat used language extensions.

328 Appendix A

Appendix B

CryptoDB Architecture

Here, we reproduce the entire architectural model, in Acme (Garlan et al. 2000), for the Cryp-
toDB case study. We provide both the family file, SyncFamily.acme (SectionB.1), which defines
the architectural family that supports SCHOLIA, and the target architecture itself, CryptoDBTar-
get.acme (SectionB.2).

B.1 Architectural Style in Acme

This file defines the architectural family SyncFamily. The properties defined here are used by
SCHOLIA for conformance analysis.

import AS_GLOBAL_PATH/families/TieredFam.acme;

Family SyncFamily extends TieredFam with {

analysis isSrcComponent(d1 : SyncCompT, conn : SyncConnT) : boolean =

connected(conn, d1) and

exists src : SyncUserT in conn.ROLES | exists put : SyncUseT in d1.PORTS |

declaresType(src, SyncUserT) and declaresType(put, SyncUseT)

and attached(src, put);

analysis isDstComponent(d2 : SyncCompT, conn : SyncConnT) : boolean =

connected(conn, d2) and

exists dst : SyncProviderT in conn.ROLES | exists get : SyncProvideT in d2.PORTS |

declaresType(dst, SyncProviderT) and declaresType(get, SyncProvideT)

and attached(dst, get);

analysis pointsTo(d1 : SyncCompT, d2 : SyncCompT) : boolean =

exists conn : SyncConnT in self.CONNECTORS |

isSrcComponent(d1, conn) and isDstComponent(d2, conn);

Role Type SyncUserT extends userT with {

Property syncStatus : int;

}

Component Type SyncCompT extends TierNodeT with {

Property syncStatus : int;

CryptoDB Architecture 329

Property label : string;

Property hasDetail : boolean;

Property detailStatus : int;

Property traceability : string;

}

Connector Type SyncConnT extends CallReturnConnT with {

Property syncStatus : int;

Property label : string;

Property traceability : string;

Property summary : int;

}

Port Type SyncUseT extends useT with {

Property syncStatus : int;

}

Port Type SyncProvideT extends provideT with {

Property syncStatus : int;

}

Role Type SyncProviderT extends providerT with {

Property syncStatus : int;

}

}

B.2 CryptoDB Target Architecture in Acme

This file defines the CryptoDB target architecture, includingthe constraints we discussed in
Section 7.8.9 (Page 267).

import families/SyncFamily.acme;

System CryptoDBTarget : SyncFamily = new SyncFamily extended with {

Component KeyVault : SyncCompT = new SyncCompT extended with {

Port KeyVault : SyncProvideT = new SyncProvideT;

Port KeyManager : SyncUseT = new SyncUseT;

Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = ‘‘KeyVault";

}

Component CryptoProvider : SyncCompT = new SyncCompT extended with {

Port KeyManifest : SyncUseT = new SyncUseT;

Port CryptoProvider : SyncProvideT = new SyncProvideT;

Port CustomerManager : SyncUseT = new SyncUseT;

Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = ‘‘CryptoProvider";

Representation CryptoProvider_Rep = {

System CryptoProvider_Rep : SyncFamily = new SyncFamily extended with {

Component ReceiptManager : SyncCompT = new SyncCompT extended with {

Port ReceiptManager : SyncProvideT = new SyncProvideT;

Port CryptoProvider : SyncUseT = new SyncUseT;

330 Appendix B

Property label = ‘‘ReceiptManager";

}

Component Encoder : SyncCompT = new SyncCompT extended with {

Port CryptoProvider : SyncUseT = new SyncUseT;

Port Encoder : SyncProvideT = new SyncProvideT;

Property label = ‘‘Encoder";

}

}

Bindings {

CustomerManager to ReceiptManager.CryptoProvider;

EngineWrapper to Encoder.CryptoProvider;

}

}

}

Component KeyManager : SyncCompT = new SyncCompT extended with {

Port KeyManifest : SyncUseT = new SyncUseT;

Port KeyVault : SyncUseT = new SyncUseT;

Port KeyManager : SyncProvideT = new SyncProvideT;

Property label = ‘‘KeyManager";

}

Component KeyManifest : SyncCompT = new SyncCompT extended with {

Port KeyManifest : SyncProvideT = new SyncProvideT;

Port KeyManager : SyncUseT = new SyncUseT;

Port CryptoProvider : SyncUseT = new SyncUseT;

Property label = ‘‘KeyManifest";

}

Component EngineWrapper : SyncCompT = new SyncCompT extended with {

Port EngineWrapper : SyncProvideT = new SyncProvideT;

Port CryptoProvider : SyncUseT = new SyncUseT;

Port KeyVault : SyncUseT = new SyncUseT;

Property label = ‘‘EngineWrapper";

Representation EngineWrapper_Rep = {

System EngineWrapper_Rep : SyncFamily = new SyncFamily extended with {

Component Engine : SyncCompT = new SyncCompT extended with {

Port Engine : SyncProvideT = new SyncProvideT;

Port EngineWrapper : SyncUseT = new SyncUseT;

Property label = ‘‘Engine";

}

}

Bindings {

EngineWrapper to Engine.Engine;

CryptoProvider to Engine.EngineWrapper;

}

}

}

B.2. CryptoDB Target Architecture in Acme 331

Component CustomerManager : SyncCompT = new SyncCompT extended with {

Port CustomerManager : SyncProvideT = new SyncProvideT;

Port CryptoProvider : SyncUseT = new SyncUseT;

Port CustomerInfo : SyncUseT = new SyncUseT;

Property label = ‘‘CustomerManager";

Representation CustomerManager_Rep = {

System CustomerManager_Rep : SyncFamily = new SyncFamily extended with {

Component Receipts : SyncCompT = new SyncCompT extended with {

Port Receipts : SyncProvideT = new SyncProvideT;

Port CustomerManager : SyncUseT = new SyncUseT;

Property label = ‘‘Receipts";

}

}

Bindings {

CustomerManager to Receipts.Receipts;

CryptoProvider to Receipts.CustomerManager;

}

}

}

Component CustomerInfo : SyncCompT = new SyncCompT extended with {

Port CustomerManager : SyncUseT = new SyncUseT;

Port CustomerInfo : SyncProvideT = new SyncProvideT;

Property label = ‘‘CustomerInfo";

}

Connector CustomerInfo_CustomerManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector CustomerManager_CustomerInfo : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector CustomerManager_CryptoProvider : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector CryptoProvider_CustomerManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector EngineWrapper_CryptoProvider : SyncConnT = new SyncConnT extended with {

Role user : SyncUserT = new SyncUserT;

Role provider : SyncProviderT = new SyncProviderT;

}

Connector CryptoProvider_EngineWrapper : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

332 Appendix B

Connector KeyVault_KeyManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector KeyManager_KeyVault : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector KeyManifest_KeyManager : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector KeyManager_KeyManifest : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector KeyManifest_CryptoProvider : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector CryptoProvider_KeyManifest : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector KeyVault_EngineWrapper : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Connector EngineWrapper_KeyVault : SyncConnT = new SyncConnT extended with {

Role provider : SyncProviderT = new SyncProviderT;

Role user : SyncUserT = new SyncUserT;

}

Attachment CryptoProvider.CustomerManager to CryptoProvider_CustomerManager.user;

Attachment CustomerManager.CustomerManager to CryptoProvider_CustomerManager.provider;

Attachment CustomerManager.CustomerManager to CustomerInfo_CustomerManager.provider;

Attachment CustomerInfo.CustomerInfo to CustomerManager_CustomerInfo.provider;

Attachment CustomerInfo.CustomerManager to CustomerInfo_CustomerManager.user;

Attachment KeyManifest.CryptoProvider to KeyManifest_CryptoProvider.user;

Attachment KeyVault.EngineWrapper to KeyVault_EngineWrapper.user;

Attachment EngineWrapper.EngineWrapper to CryptoProvider_EngineWrapper.provider;

Attachment EngineWrapper.CryptoProvider to EngineWrapper_CryptoProvider.user;

Attachment EngineWrapper.EngineWrapper to KeyVault_EngineWrapper.provider;

Attachment EngineWrapper.KeyVault to EngineWrapper_KeyVault.user;

Attachment CryptoProvider.EngineWrapper to CryptoProvider_EngineWrapper.user;

Attachment CryptoProvider.KeyManifest to CryptoProvider_KeyManifest.user;

Attachment KeyVault.KeyManager to KeyVault_KeyManager.user;

Attachment KeyManager.KeyVault to KeyManager_KeyVault.user;

Attachment KeyManifest.KeyManager to KeyManifest_KeyManager.user;

Attachment KeyManager.KeyManifest to KeyManager_KeyManifest.user;

Attachment CryptoProvider.CryptoProvider to CustomerManager_CryptoProvider.provider;

Attachment CryptoProvider.CryptoProvider to KeyManifest_CryptoProvider.provider;

Attachment CryptoProvider.CryptoProvider to EngineWrapper_CryptoProvider.provider;

B.2. CryptoDB Target Architecture in Acme 333

Attachment KeyManifest.KeyManifest to CryptoProvider_KeyManifest.provider;

Attachment KeyManifest.KeyManifest to KeyManager_KeyManifest.provider;

Attachment KeyManager.KeyManager to KeyManifest_KeyManager.provider;

Attachment KeyManager.KeyManager to KeyVault_KeyManager.provider;

Attachment KeyVault.KeyVault to EngineWrapper_KeyVault.provider;

Attachment CustomerManager.CryptoProvider to CustomerManager_CryptoProvider.user;

Attachment CustomerManager.CustomerInfo to CustomerManager_CustomerInfo.user;

Attachment KeyVault.KeyVault to KeyManager_KeyVault.provider;

Group KeyManagement = {

Members {KeyManager}

}

Group CryptoConsumption = {

Members {CustomerManager, CustomerInfo,

CustomerManager_CustomerInfo, CustomerInfo_CustomerManager}

}

Group CryptoProvision = {

Members {CryptoProvider, EngineWrapper,

CryptoProvider_EngineWrapper, EngineWrapper_CryptoProvider}

}

Group KeyStorage = {

Members {KeyManifest, KeyVault}

}

rule noVaultToManifest = invariant !pointsTo(KeyVault, KeyManifest);

rule keyManagementAndEngineDisconnected = invariant

forall c : Component in KeyManagement.MEMBERS | !connected(c, EngineWrapper);

rule limitedVaultAccess = invariant forall c : SyncCompT in self.COMPONENTS |

pointsTo(c, KeyVault) -> c.label == ‘‘KeyManager" OR c.label == ‘‘EngineWrapper";

}

334 Appendix B

Bibliography

JHotDraw.www.jhotdraw.org, 1996. Version 5.3.

JRM Tool. http://jrmtool.sourceforge.net, 2003.

Annotation File Utilities.http://pag.csail.mit.edu/jsr308/annotation-file-utilities/,
2006. Last accessed: Saturday, January 31, 2009.

JavaCC.https://javacc.dev.java.net/, 2006.

Marwan Abi-Antoun and Jonathan Aldrich. Ownership Domainsin the Real World. In
Intl. Workshop on Aliasing, Confinement and Ownership in Object-Oriented Programming
(IWACO), pages 93–104, 2007a.

Marwan Abi-Antoun and Jonathan Aldrich. Compile-Time Viewsof Execution Structure Based
on Ownership. InIntl. Workshop on Aliasing, Confinement and Ownership in Object-Oriented
Programming (IWACO), pages 81–92, 2007b.

Marwan Abi-Antoun and Jonathan Aldrich. Checking and Measuring the Architectural Struc-
tural Conformance of Object-Oriented Systems. Technical Report CMU-ISRI-07-119R,
Carnegie Mellon University, 2007c.

Marwan Abi-Antoun and Jonathan Aldrich. Static ConformanceChecking of Runtime Architec-
tural Structure. Technical Report CMU-ISR-08-132, Carnegie Mellon University, 2008a.

Marwan Abi-Antoun and Jonathan Aldrich. A Field Study in Static Extraction of Runtime Ar-
chitectures. InWorkshop on Program Analysis for Software Tools and Engineering (PASTE),
pages 22–28, 2008b.

Marwan Abi-Antoun and Jonathan Aldrich. Static Extractionof Sound Hierarchical Runtime
Object Graphs. InWorkshop on Types in Language Design and Implementation (TLDI), pages
51–64, 2009a.

Marwan Abi-Antoun and Jonathan Aldrich. Static Extractionand Conformance Analysis of Hi-
erarchical Runtime Architectural Structure using Annotations. InObject-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), 2009b. To appear.

Marwan Abi-Antoun and Jonathan Aldrich. Practical Static Extraction and Confor-
mance Checking of the Runtime Architecture of Object-Oriented Systems. Half-
day tutorial at the SEI Architecture Technology User Network (SATURN). Available:
www.cs.cmu.edu/~mabianto/talks/09-SATURN_handout.pdf, May 2009c.

Marwan Abi-Antoun and Jeffrey M. Barnes. Enforcing Conformance between Security Archi-
tecture and Implementation. Technical Report CMU-ISR-09-113, Carnegie Mellon University,

335

www.jhotdraw.org
http://jrmtool.sourceforge.net
http://pag.csail.mit.edu/jsr308/annotation-file-utilities/
https://javacc.dev.java.net/
www.cs.cmu.edu/~mabianto/talks/09-SATURN_handout.pdf

2009a.

Marwan Abi-Antoun and Jeffrey M. Barnes. Online addendum. http://www.cs.cmu.edu/ mabi-
anto/cryptodb/, 2009b.

Marwan Abi-Antoun and Wesley Coelho. A Case Study in Incremental Architecture-Based
Re-engineering of a Legacy Application. InWorking IEEE/IFIP Conference on Software Ar-
chitecture (WICSA), pages 159–168, 2005.

Marwan Abi-Antoun, Jonathan Aldrich, Nagi Nahas, Bradley Schmerl, and David Garlan. Dif-
ferencing and Merging of Architectural Views. InAutomated Software Engineering, pages
47–58, 2006.

Marwan Abi-Antoun, Daniel Wang, and Peter Torr. Checking Threat Modeling Data Flow Dia-
grams for Implementation Conformance and Security. Technical Report CMU-ISRI-06-124,
Carnegie Mellon University, September 2006.

Marwan Abi-Antoun, Jonathan Aldrich, and Welsey Coelho. A Case Study in Re-engineering to
Enforce Architectural Control Flow and Data Sharing.J. Systems & Software, 80(2):240–264,
2007a.

Marwan Abi-Antoun, Daniel Wang, and Peter Torr. Checking Threat Modeling Data Flow Di-
agrams for Implementation Conformance and Security (Short Paper). InAutomated Software
Engineering, pages 393–396, 2007b.

Marwan Abi-Antoun, Jonathan Aldrich, Nagi Nahas, Bradley Schmerl, and David Garlan. Dif-
ferencing and Merging of Architectural Views.Automated Software Engineering, 15(8):35–
74, 2008.

Acme. Acme architectural description language.www.cs.cmu.edu/~acme, 2009.

AcmeStudio. AcmeStudio.www.cs.cmu.edu/~acme/AcmeStudio/index.html, 2009.

Rahul Agarwal and Scott D. Stoller. Type Inference for Parameterized Race-Free Java. InInter-
national Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI),
pages 149–160, 2004.

AgileJ. StructureViews.www.agilej.com, 2008.

Marcus Alanen and Ivan Porres. Difference and Union of Models. In International Conference
on the Unified Modeling Language, Modeling Languages and Applications, pages 2–17, 2003.

Jonathan Aldrich.Using Types to Enforce Architectural Structure. PhD thesis, University of
Washington, August 2003.

Jonathan Aldrich and Craig Chambers. Ownership Domains: Separating Aliasing Policy from
Mechanism. InEuropean Conference on Object-Oriented Programming (ECOOP), pages 1–
25, 2004.

Jonathan Aldrich and David Dickey. The Crystal Data Flow Analysis Framework 2.0.
www.cs.cmu.edu/~aldrich/courses/654-sp06/, 2006.

Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting Software Architec-
ture to Implementation. InInternational Conference on Software Engineering (ICSE), pages
187–197, 2002a.

336 Bibliography

www.cs.cmu.edu/~acme
www.cs.cmu.edu/~acme/AcmeStudio/index.html
www.agilej.com
www.cs.cmu.edu/~aldrich/courses/654-sp06/

Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural Reasoning with ArchJava.
In European Conference on Object-Oriented Programming (ECOOP), 2002b.

Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias Annotations for Program Un-
derstanding. InObject-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 311–330, 2002c.

Robert Allen and David Garlan. Formalizing Architectural Connection. InInternational Con-
ference on Software Engineering (ICSE), pages 71–80, 1994.

Manuel M. Ammann and Robert D. Cameron. Inter-Module Renaming and Reorganizing: Exam-
ples of Program Manipulation-in-the-Large. InInternational Conference on Software Mainte-
nance (ICSM), pages 354–361, 1994.

Lars Ole Andersen.Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, 1994.

Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A Framework for Imple-
menting Pluggable Type Systems. InObject-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 57–74, 2006.

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, AndreaDe Lucia, and Ettore Merlo. Re-
covering Traceability Links between Code and Documentation. IEEE Transactions on Soft-
ware Engineering, 28(10):970–983, 2002.

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. A Differencing Algorithm
for Object-Oriented Programs. InAutomated Software Engineering, pages 2–13, 2004.

ArchJava. ArchJava.http://www.archjava.org/, 2003.

Erik Arisholm, Lionel C. Briand, and Audun Foyen. Dynamic Coupling Measurement for
Object-Oriented Software.IEEE Transactions on Software Engineering, 30(8):491–506, 2004.

David F. Bacon and Peter F. Sweeney. Fast Static Analysis of C++Virtual Function Calls.
In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
324–341, 1996.

Len Bass, Paul Clements, and Rick Kazman.Software Architecture in Practice. Addison-Wesley,
2nd edition, 2003.

Kent Beck and Erich Gamma. JHotDraw – Patterns Applied (Tutorial). In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 1997.

Colin J Bennett, Del Myers, Margaret-Anne Storey, Daniel M. German, David Ouellet, Martin
Salois, and Philippe Charland. A survey and evaluation of tool features for understanding
reverse-engineered sequence diagrams.J. Softw. Maint. Evol., 20(4):291–315, 2008.

Christophe Bidan and Valérie Issarny. Security Benefits from Software Architecture.In Intl.
Conf. on Coordination Languages and Models, pages 64–80, 1997.

Martin Blech, Juan P. Carlino, J. Andrés D́ıaz-Pace, and Alvaro Soria. Keeping Design Doc-
umentation Updated through Synchronization of Use-Case-Maps with Implementation. In
Argentine Symposium on Software Engineering, 2006.

Josh Bloch.Effective Java. Addison-Wesley, 2001.

Bibliography 337

http://www.archjava.org/

Joshua Bloch. JSR 175: a Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175, 2004.

Boris Bokowski and Andŕe Spiegel. Barat – a Front-End for Java. Technical Report B-98-09,
Freie Universiẗat Berlin, 1998.

Boris Bokowski and Jan Vitek. Confined Types. InObject-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 1999.

Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a Case Study: its Extracted
Software Architecture. InInternational Conference on Software Engineering (ICSE), pages
555–563, 1999.

Chandrasekhar Boyapati.SafeJava: a Unified Type System for Safe Programming. PhD thesis,
Massachusetts Institute of Technology, February 2004.

Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership Types for Object Encap-
sulation. InPOPL, pages 213–223, 2003a.

Chandrasekhar Boyapati, Alexandru Salcianu, Jr. William Beebee, and Martin Rinard. Owner-
ship Types for Safe Region-Based Memory Mangement in Real-TimeJava. InProgramming
Language Design and Implementation (PLDI), 2003b.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani.
The FRACTAL Component Model and its Support in Java: Experiences with Auto-adaptive
and Reconfigurable Systems.Softw. Pract. Exper., 36(11-12):1257–1284, 2006.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.Pattern-
Oriented Software Architecture: a System of Patterns. John Wiley, 1996.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. InPOPL, pages 289–300, 2009.

Nicholas Cameron, Sophia Drossopoulou, James Noble, and Matthew Smith. Multiple Owner-
ship. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2007.

Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, and Dalila Tamzalit. Extraction of
Component-Based Architecture from Object-Oriented Systems. In Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), pages 285–288, 2008.

Sudarshan S. Chawathe and Hector Garcia-Molina. MeaningfulChange Detection in Structured
Data. InACM SIGMOD International Conference on Management of Data, pages 26–37,
1997.

Ping H. Chen, Matt Critchlow, Akash Garg, Chris van der Westhuizen, and Andŕe van der Hoek.
Differencing and Merging within an Evolving Product Line Architecture. InIntl. Workshop
on Software Product-Family Engineering, pages 269–281, 2003.

Henrik Bærbak Christensen. Frameworks: Putting Design Patterns into Perspective. InAnnual
SIGCSE Conference on Innovation and Technology in Computer Science Education (ITiCSE),
2004.

Andreas Christl, Rainer Koschke, and Margaret-Anne Storey. Equipping the Reflexion Method

338 Bibliography

http://jcp.org/en/jsr/detail?id=175

with Automated Clustering. InWorking Conference on Reverse Engineering (WCRE), pages
89–98, 2005.

Dave Clarke and Tobias Wrigstad. External Uniqueness is Unique Enough. InEuropean Con-
ference on Object-Oriented Programming (ECOOP), pages 176–200, 2003.

David Clarke.Object Ownership & Containment. PhD thesis, University of New South Wales,
July 2001.

David G. Clarke, John M. Potter, and James Noble. Ownership Types for Flexible Alias Pro-
tection. InObject-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 48–64, 1998.

P. Clements, F. Bachman, L. Bass, D. Garlan, J. Ivers, R. Little, R.Nord, and J. Stafford.Docu-
menting Software Architecture: View and Beyond. Addison-Wesley, 2003.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty Years of Graph
Matching in Pattern Recognition.Int. J. Pattern Recognit. Artif. Intell., 18(3):265–298, 2004.

Will Cooper. Interactive Ownership Type Inference. Senior Thesis, Carnegie Mellon University,
2005.

Michelle L. Crane and J̈urgen Dingel. Runtime Conformance Checking of Objects using Alloy.
Electronic Notes in Theoretical Computer Science, 89(2):2–21, 2003.

Eric M. Dashofy, Andŕe van der Hoek, and Richard N. Taylor. A Highly-Extensible, XML-
Based Architecture Description Language. InWorking IEEE/IFIP Conference on Software
Architecture (WICSA), 2001.

Eric M. Dashofy, Andŕe van der Hoek, and Richard N. Taylor. An Infrastructure for the Rapid
Development of XML-Based Architecture Description Languages. InInternational Confer-
ence on Software Engineering (ICSE), pages 266–276, 2002.

Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. Adamsre-trace: traceability link
recovery via latent semantic indexing. InInternational Conference on Software Engineering
(ICSE), pages 839–842, 2008.

Andrea De De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recovering trace-
ability links in software artifact management systems using information retrieval methods.
ACM Trans. Softw. Eng. Methodol., 16(4):13, 2007.

Wim De Pauw and Gary Sevitsky. Visualizing Reference Patterns for Solving Memory Leaks in
Java. InEuropean Conference on Object-Oriented Programming (ECOOP), pages 116–134,
1999.

Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides.Visualizing the Behav-
ior of Object-Oriented Systems. InObject-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 326–337, 1993.

Wim De Pauw, Doug Kimelman, and John M. Vlissides. Modeling Object-Oriented Program
Execution. InEuropean Conference on Object-Oriented Programming (ECOOP), pages 163–
182, 1994.

Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, JohnM. Vlissides, and Jeaha Yang.

Bibliography 339

Visualizing the Execution of Java Programs. InRevised Lectures on Software Visualization,
International Seminar, pages 151–162, 2002.

Yi Deng, Jiacun Wang, Jeffrey J. P. Tsai, and Konstantin Beznosov. An Approach for Mod-
eling and Analysis of Security System Architectures.IEEE Trans. on Knowledge and Data
Engineering, 15(5):1099–1119, 2003.

Elisabetta Di Nitto and David Rosenblum. Exploiting ADLs to specify architectural styles in-
duced by middleware infrastructures. InInternational Conference on Software Engineering
(ICSE), pages 13–22, 1999.

J. Andŕes D́ıaz-Pace and Marcelo R. Campo. ArchMatE: from architectural styles to object-
oriented models through exploratory tool support. InObject-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 117–132, 2005.

Peter J. Dickinson, Horst Bunke, Arek Dadej, and Miro Kraetzl. Matching Graphs with Unique
Node Labels.Pattern Analysis and Applications, 7(3):243–254, December 2004.

Werner Dietl and Peter M̈uller. Universes: Lightweight Ownership for JML.Journal of Object
Technology, 4(8):5–32, 2005.

Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Universe Types. InEuropean
Conference on Object-Oriented Programming (ECOOP), pages 28–53, 2007.

Edsger W. Dijkstra. The Structure of the THE-Multiprogramming System.Communications of
the ACM, 11(5):341–346, 1968.

Liliana Dobrica and Eila Niemel. A Survey on Software Architecture Analysis Methods.IEEE
Transactions on Software Engineering, 28(7):638–653, 2002.

St́ephane Ducasse and Damien Pollet. Software Architecture Reconstruction: A Process-
Oriented Taxonomy.IEEE Transactions on Software Engineering, 35(4):573–591, 2009.

W.J. Dzidek, E. Arisholm, and L.C. Briand. A Realistic Empirical Evaluation of the Costs and
Benefits of UML in Software Maintenance.IEEE Transactions on Software Engineering, 34
(3):407–432, May-June 2008.

S. Easterbrook and B. Nuseibeh. Using ViewPoints for Inconsistency Management.Software
Engineering Journal, 11(1):31–43, 1996.

Alexander Egyed. Instant Consistency Checking for the UML. InInternational Conference on
Software Engineering (ICSE), pages 381–390, 2006.

Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini. Defining and Continu-
ous Checking of Structural Program Dependencies. InInternational Conference on Software
Engineering (ICSE), 2008.

T. Eisenbarth, R. Koschke, and G. Vogel. Static Trace Extraction. In Working Conference on
Reverse Engineering (WCRE), pages 128–137, 2002.

Andrew D. Eisenberg and Gregor Kiczales. Expressive Programs through Presentation Exten-
sion. InAspect-Oriented Software Development (AOSD), pages 73–84, 2007.

Hakan Erdogmus. Representing Architectural Evolution. InConference of the Centre for Ad-
vanced Studies on Collaborative Research, pages 159–177, 1998.

340 Bibliography

Michael D. Ernst and Danny Coward. JSR 308: Annotations on Java types.
http://pag.csail.mit.edu/jsr308/, 2006.

Hoda Fahmy and Richard C. Holt. Software Architecture Transformations. InInternational
Conference on Software Maintenance (ICSM), page 88, 2000.

Loe Feijs, Reńe L. Krikhaar, and Rob van Ommering. A Relational Approach to Support Soft-
ware Architecture Analysis.Software Pract. Experience, 28(4), 1998.

Patrick Finnigan, Richard C. Holt, Ivan Kallas, Scott Kerr, Kostas Kontogiannis, Hausi A.
Müller, John Mylopoulos, Stephen G. Perelgut, Martin Stanley, and Kerny Wong. The Soft-
ware Bookshelf.IBM Systems Journal, 36(4):564–593, 1997.

Roberto Fiutem and Giuliano Antoniol. Identifying Design-Code Inconsistencies in Object-
Oriented Software: a Case Study. InInternational Conference on Software Maintenance
(ICSM), pages 94–102, 1998.

Cormac Flanagan and Stephen N. Freund. Dynamic ArchitectureExtraction. InWorkshop on
Formal Approaches to Testing and Runtime Verification, August 2006.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended Static Checking for Java. InProgramming Language Design and
Implementation (PLDI), pages 234–245, 2002.

Martin Fowler. UML Sketching Tools.http://martinfowler.com/bliki/UmlSketchingTools.html,
2004.

Robert Fuhrer, Frank Tip, Adam Kieżun, Julian Dolby, and Markus Keller. Efficiently Refactor-
ing Java Applications to Use Generic Libraries. InEuropean Conference on Object-Oriented
Programming (ECOOP), pages 71–96, 2005.

Erich Gamma. Advanced Design with Patterns and Java (Tutorial). In European Conference on
Java and Object Orientation (JAOO), 1998. JHotDraw v. 5.1.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

Emden R. Gansner and Stephen C. North. An Open Graph Visualization System and its Ap-
plications to Software Engineering.Software: Practice & Experience, 30(11):1203–1233,
2000.

Juan Gargiulo and Spiros Mancoridis. Gadget: a Tool for Extracting the Dynamic Structure of
Java Programs. InSoftware Engineering and Knowledge Engineering, 2001.

David Garlan and Mary Shaw. An Introduction to Software Architecture. In V. Ambriola and
G. Tortora, editors,Advances in Software Engineering and Knowledge Engineering, I, 1993.

David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural Description of
Component-Based Systems. In Gary Leavens and Murali Sitaraman, editors,Foundations
of Component-Based Systems, pages 47–68. Cambridge University Press, 2000.

David Garlan, Shang-Wen Cheng, and Andrew J. Kompanek. Reconciling the needs of architec-
tural description with object-modeling notations.Sci. Comput. Program., 44(1):23–49, 2002a.

David Garlan, Andrew Kompanek, and Shang-Wen Cheng. Reconciling the Needs of Architec-

Bibliography 341

http://pag.csail.mit.edu/jsr308/
http://martinfowler.com/bliki/UmlSketchingTools.html

tural Description with Object-Modeling Notations.Science of Computer Programming, 44:
23–49, 2002b.

Antoniol Giulio, Bruno Caprile, Alessandra Potrich, and Paolo Tonella. Design-code Traceabil-
ity for Object-Oriented Systems.Annals of Software Engineering, 9(1-4):35–58, 2000.

Greg Goth. Beware the march of this IDE: Eclipse is overshadowing other tool techniques.IEEE
Software, 22(4), 2005.

Aaron Greenhouse and John Boyland. An Object-Oriented Effects System. Inecoop, 1999.

Bernhard Gr̈one, Andreas Kn̈opfel, and Rudolf Kugel. Architecture Recovery of Apache 1.3 –
a Case Study. InInternational Conference on Software Engineering Research and Practice,
2002.

Bernhard Gr̈one, Andreas Kn̈opfel, Rudolf Kugel, and Oliver Schmidt. The Apache Modeling
Project.http://www.fmc-modeling.org/projects/apache, 2008.

Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating Objects with Confined Types.
In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2001.

John C. Grundy and John G. Hosking. Softarch: Tool Support forIntegrated Software Architec-
ture Development.J. Softw. Eng. Klndg. Eng., 13(2), 2003.

Thomas Gschwind and Johann Oberleitner. Improving DynamicData Analysis with Aspect-
Oriented Programming. InEuropean Conference on Software Maintenance and Reengineering
(CSMR), pages 259–268, 2003.

Yann-Gäel Gúeh́eneuc. A Reverse Engineering Tool for Precise Class Diagrams.In Conference
of the Centre for Advanced Studies on Collaborative research, pages 28–41, 2004.

George Yanbing Guo, Joanne M. Atlee, and Rick Kazman. A Software Architecture Reconstruc-
tion Method. InWorking IEEE/IFIP Conference on Software Architecture (WICSA), pages
15–34, 1999.

Thomas Ḧachler. Applying the Universe Type System to an Industrial Application: Case Study.
Master’s thesis, Department of Computer Science, Federal Institute of Technology Zurich,
2005.

Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular Checking for Buffer Over-
flows in the Large. InIntl. Conf. on Software Engineering, pages 232–241, 2006.

Irit Hadar and Orit Hazzan. On the Contribution of UML Diagrams to Software System Com-
prehension.Journal of Object Technology, 3(1):143–156, 2004.

David R. Harris, Howard B. Reubenstein, and Alexander S. Yeh. Reverse Engineering to the
Architectural Level. InInternational Conference on Software Engineering (ICSE), pages 186–
195, 1995.

Trent Hill, James Noble, and John Potter. Scalable Visualizations of Object-Oriented Systems
with Ownership Trees.Journal of Visual Languages and Computing, 13(3):319–339, 2002.

Adel Hlaoui and Shengrui Wang. A New Algorithm for Graph Matching with Application to
Content-Based Image Retrieval. InJoint IAPR International Workshop on Structural, Syntac-
tic, and Statistical Pattern Recognition, pages 291–300, 2002.

342 Bibliography

http://www.fmc-modeling.org/projects/apache

Lorin Hochstein and Mikael Lindvall. Combating architectural degeneration: a survey.Informa-
tion & Software Technology, 47(10):643–656, 2005.

Richard C. Holt, Andy Scḧurr, Susan Elliott Sim, and Andreas Winter. GXL: A graph-based
standard exchange format for reengineering.Science of Computer Programming, 60(2):149–
170, 2006.www.gupro.de/GXL/.

H. James Hoover and Daqing Hou. Using SCL to Specify and Check Design Intent in Source
Code.IEEE Transactions on Software Engineering, 32(6):404–423, 2006.

M. Howard and S. Lipner.The Security Development Lifecycle. Microsoft Press, 2006.

Michael Howard and Steve Lipner. Inside the Windows Security Push. IEEE Security and
Privacy, 1(1):57–61, 2003.

hyperCision Inc. jMetra.www.hypercision.com, 2008.

Anne Immonen and Eila Niemelä. Survey of reliability and availability prediction methods from
the viewpoint of software architecture.Software and Systems Modeling, 7(1):49–65, 2008.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on Software
Engineering and Methodology, 11(2):256–290, 2002.

Daniel Jackson and Martin Rinard. Software Analysis: a Roadmap. In Conference on the Future
of Software Engineering, 2000.

Daniel Jackson and Allison Waingold. Lightweight Extraction of Object Models from Bytecode.
IEEE Transactions on Software Engineering, 27(2):156–169, 2001.

Catherine Blake Jaktman, John Leaney, and Ming Liu. Structural Analysis of the Software
Architecture – a Maintenance Assessment Case Study. InWorking IEEE/IFIP Conference on
Software Architecture (WICSA), pages 455–470, 1999.

Dean F. Jerding, John T. Stasko, and Thomas Ball. VisualizingInteractions in Program Execu-
tions. InInternational Conference on Software Engineering (ICSE), pages 360–370, 1997.

Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of Trees – An Alternative to Tree
Edit. In Annual Symposium on Combinatorial Pattern Matching, pages 75–86, 1994.

A. M. Jimenez. Change Propagation in the MDA: a Model Merging Approach. Master’s thesis,
University of Queesland, 2005.

J. J̈urjens.Secure Systems Development with UML. Springer-Verlag, 2004.

Wolfram Kaiser. Become a programming Picasso with JHotDraw.JavaWorld, February 2001.

Rick Kazman and S. Jeromy Carrière. Playing Detective: Reconstructing Software Architecture
from Available Evidence.Automated Software Engineering, 6(2):107–138, 1999.

Rick Kazman, Liam O’Brien, and Chris Verhoef. Architecture Reconstruction Guidelines, Third
Edition. Technical Report CMU/SEI-2002-TR-034, Software Engineering Institute, 2002.

Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. Pattern-based
reverse-engineering of design components. InInternational Conference on Software Engi-
neering (ICSE), pages 226–235, 1999.

Kevin Kenan. Cryptography in the Database. Addison-Wesley, 2006. Accompanying code at

Bibliography 343

www.gupro.de/GXL/
www.hypercision.com

http://kevinkenan.blogs.com/downloads/cryptodb_code.zip.

Tahar Khammaci, Adel Smeda, and Mourad Oussalah.Handbook of Software Engineering and
Knowledge Engineering, volume Vol 3: Recent Advances, chapter Coexistence of Object-
Oriented Modeling and Architectural Description, pages 119–151. World Scientific Publish-
ing, 2005.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European Conference on
Object-Oriented Programming (ECOOP), pages 220–242, 1997.

D. Kirk, M. Roper, and M. Wood. Identifying and Addressing Problems in Object-Oriented
Framework Reuse.Empirical Software Engineering, 12(3):243–274, 2006.

Barbara Kitchenham, Lesley Pickard, and Shari Lawrence Pfleeger. Case studies for method and
tool evaluation.IEEE Software, 12(4):52–62, 1995.

Jens Knodel and Daniel Popescu. A Comparison of Static Architecture Compliance Checking
Approaches. InWorking IEEE/IFIP Conference on Software Architecture (WICSA), 2007.

R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zundorf. A Study on the Current State of
the Art in Tool-Supported UML-Based Static Reverse Engineering. In Working Conference
on Reverse Engineering (WCRE), pages 22–32, 2002.

Henk Koning, Claire Dormann, and Hans van Vliet. Practical Guidelines for the Readability of
IT-Architecture Diagrams. InInternational Conference on Computer Documentation (SIG-
DOC), pages 90–99, 2002.

K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo. Pattern matching for design
concept localization. InWorking Conference on Reverse Engineering (WCRE), pages 96–103,
1995.

Rainer Koschke. Architecture Reconstruction: Tutorial on Reverse Engineering to the Architec-
tural Level. In Andrea De Lucia and Filomena Ferrucci, editors, International Summer School
on Software Engineering, pages 140–173, 2008.

Rainer Koschke and Daniel Simon. Hierarchical Reflexion Models. In Working Conference on
Reverse Engineering (WCRE), page 36, 2003.

Kai Koskimies and Hanspeter M̈ossenb̈ock. Scene: Using Scenario Diagrams and Active Text for
Illustrating Object-Oriented Programs. InInternational Conference on Software Engineering
(ICSE), pages 366–375, 1996.

Christian Kramer and Lutz Prechelt. Design Recovery by Automated Search for Structural
Design Patterns in Object-Oriented Software.Working Conference on Reverse Engineering
(WCRE), page 208, 1996.

Reńe L. Krikhaar. Reverse Architecting Approach for Complex Systems. InInternational Con-
ference on Software Maintenance (ICSM), pages 4–11, 1997.

Reńe L. Krikhaar, A. Postma, A. Sellink, M. Stroucken, and C. Verhoef. A Two-Phase Process
for Software Architecture Improvement. InInternational Conference on Software Mainte-
nance (ICSM), pages 371–380, 1999.

344 Bibliography

http://kevinkenan.blogs.com/downloads/cryptodb_code.zip

Neel Krishnaswami and Jonathan Aldrich. Permission-Based Ownership: Encapsulating State
in Higher-Order Typed Languages. InProgramming Language Design and Implementation
(PLDI), pages 96–106, 2005.

Philippe Kruchten. The 4+1 View Model of Architecture.IEEE Software, 12(6):42–50, 1995.

Bruno Lagüe, Charles Leduc, André Le Bon, Ettore Merlo, and Michel Dagenais. An Analysis
Framework for Understanding Layered Software Architectures. International Workshop on
Program Comprehension (IWPC), 1998.

Patrick Lam and Martin Rinard. A Type System and Analysis for the Automatic Extraction and
Enforcement of Design Information. InEuropean Conference on Object-Oriented Program-
ming (ECOOP), pages 275–302, 2003.

Danny B. Lange and Yuichi Nakamura. Interactive Visualization of Design Patterns Can Help
in Framework Understanding. InObject-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 342–357, 1995.

Lattix Inc. LDM tool. http://www.lattix.com/, 2008.

Seonah Lee, Gail C. Murphy, Thomas Fritz, and Meghan Allen. How Can Diagramming Tools
Help Support Programming Activities? InVL/HCC, pages 246–249, 2008.

Karl J. Lieberherr and Ian M. Holland. Assuring Good Style for Object-Oriented Programs.
IEEE Software, 6(5), 1989.

Mikael Lindvall and Kristian Sandahl. Practical Implications of Traceability. Softw. Pract.
Exper., 26(10):1161–1180, 1996.

Yin Liu and Ana Milanova. Ownership and Immutability Inference for UML-based Object Ac-
cess Control. InInternational Conference on Software Engineering (ICSE), pages 323–332,
2007.

Yu Liu and Scott Smith. Pedigree Types. InIntl. Workshop on Aliasing, Confinement and
Ownership in Object-Oriented Programming (IWACO), 2008.

Torsten Lodderstedt, David A. Basin, and Jürgen Doser. SecureUML: a UML-Based Modeling
Language for Model-Driven Security. InIntl. Conference on the Unified Modeling Language,
pages 426–441, 2002.

Yi Lu and John Potter. Protecting Representation with EffectEncapsulation. InPOPL, pages
359–371, 2006.

David C. Luckham and James Vera. An Event-Based Architecture Definition Language.IEEE
Transactions on Software Engineering, 21(9):717–734, 1995.

Kin-Keung Ma and Jeffrey S. Foster. Inferring Aliasing and Encapsulation Properties for Java.
In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2007.

Neel Madhav. Testing Ada 95 Programs for Conformance to RapideArchitectures. InAda-
Europe International Conference on Reliable Software Technologies, pages 123–134, 1996.

Jeff Magee and Jeff Kramer. Dynamic Structure in Software Architectures. InFoundations of
Software Engineering (FSE), pages 3–14, 1996.

Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying Distributed Software

Bibliography 345

http://www.lattix.com/

Architectures. InEuropean Software Engineering Conference, pages 137–153, 1995.

Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic. A Style-Aware Architectural Middle-
ware for Resource-Constrained, Distributed Systems.IEEE Transactions on Software Engi-
neering, 31(3):256–272, 2005.

Andrew J. Malton and Richard C. Holt. Boxology of NBA and TA: a basis for understanding
software architecture. InWorking Conference on Reverse Engineering (WCRE), pages 187–
195, 2005.

S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunch: aclustering tool for the recov-
ery and maintenance of software system structures. InInternational Conference on Software
Maintenance (ICSM), pages 50–59, 1999.

David Mandelin, Doug Kimelman, and Daniel Yellin. A BayesianApproach to Diagram Match-
ing with Application to Architectural Models. InInternational Conference on Software Engi-
neering (ICSE), 2006.

Onaiza Maqbool and Haroon Babri. Hierarchical Clustering forSoftware Architecture Recovery.
IEEE Transactions on Software Engineering, 33(11):759–780, 2007.

Joseph F. Maranzano, Sandra A. Rozsypal, Gus H. Zimmerman, Guy W. Warnken, Patricia E.
Wirth, and David M. Weiss. Architecture Reviews: Practice and Experience.IEEE Softw., 22
(2):34–43, 2005.

Nenad Medvidovic and Vladimir Jakobac. Using Software Evolution to Focus Architectural
Recovery.Automated Software Engineering, 13(2):225–256, 2006.

Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages.IEEE Transactions on Software Engineering,
26(1), 2000.

Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor. Using Object-
Oriented Typing to Support Architectural Design in the C2 Style. In Foundations of Software
Engineering (FSE), 1996.

Akhil Mehra, John Grundy, and John Hosking. A Generic Approach to Supporting Diagram
Differencing and Merging for Collaborative Design. InAutomated Software Engineering,
2005.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity Flooding: a Versatile Graph
Matching Algorithm and Its Application to Schema Matching.In International Conference on
Data Engineering, pages 117–128, 2002.

Nabor C. Mendonça and Jeff Kramer. An Approach for RecoveringDistributed System Archi-
tectures.Automated Software Engineering, 8(3-4):311–354, 2001.

Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. InProc. Int’l Workshop
on Graph and Model Transformation, 2005.

B.T. Messmer. Efficient Graph Matching Algorithms for Preprocessed ModelGraphs. PhD
thesis, University of Bern, 1996.

Ana Milanova. Static Inference of Universe Types. InIntl. Workshop on Aliasing, Confinement

346 Bibliography

and Ownership in Object-Oriented Programming (IWACO), 2008.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Constructing Precise Object Relation
Diagrams. InInternational Conference on Software Maintenance (ICSM), pages 586–595,
2002.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized Object Sensitivity for
Points-To Analysis for Java.ACM Transactions on Software Engineering and Methodology,
14(1):1–41, 2005.

Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1.Technical report, Object Man-
agement Group (OMG), 2003.

Nick Mitchell. The Runtime Structure of Object Ownership. InEuropean Conference on Object-
Oriented Programming (ECOOP), pages 57–64, 2006.

Nick Mitchell, Edith Schonberg, and Gary Sevitsky. Making Sense of Large Heaps. InEuropean
Conference on Object-Oriented Programming (ECOOP), 2009.

Robert Monroe. Capturing Software Architecture Design Expertise with Armani. Technical
Report CMU-CS-98-163R, Carnegie Mellon University, January 2001.

Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Correct Architecture Refinement.
IEEE Transactions on Software Engineering, 21(4):356–372, 1995.

Mark Moriconi, Xiaolei Qian, R. A. Riemenschneider, and Li Gong. Secure Software Architec-
tures. InIEEE Symposium on Security and Privacy, page 84, 1997.

Henry Muccini, Marcio S. Dias, and Debra J. Richardson. Towards Software Architecture-Based
Regression Testing. InWorkshop on Architecting Dependable Systems, pages 1–7, 2005.

Hausi Müller and Karl Klashinsky. Rigi – a System for Programming-In-The-Large. InInterna-
tional Conference on Software Engineering (ICSE), pages 80–86, 1988.

Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A Reverse-Engineering
Approach to Subsystem Structure Identification.Journal of Software Maintenance: Research
and Practice, 5(4):181–204, 1993.

Peter M̈uller and Arnd Poetzsch-Heffter. Universes: a Type System for Controlling Represen-
tation Exposure. In A. Poetzsch-Heffter and J. Meyer, editors, Programming Languages and
Fundamentals of Programming, 1999.

Peter M̈uller and Arsenii Rudich. Ownership Transfer in Universe Types. InObject-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2007.

Gail C. Murphy. Lightweight Structural Summarization as an Aid to Software Evolution. PhD
thesis, University of Washington, 1996.

Gail C. Murphy and David Notkin. Lightweight Source Model Extraction. InFoundations of
Software Engineering (FSE), pages 116–127, 1995.

Gail C. Murphy and David Notkin. Reengineering with reflexion models: a case study.Com-
puter, 30(8):29–36, 1997.

Gail C. Murphy, David Notkin, and Kevin J. Sullivan. SoftwareReflexion Models: Bridging the
Gap between Design and Implementation.IEEE Transactions on Software Engineering, 27

Bibliography 347

(4):364–380, 2001.

Gail C. Murphy, Mik Kersten, and Leah Findlater. How are Java Software Developers Using the
Eclipse IDE?IEEE Software, 23(4), 2006.

Stefan N̈ageli. Ownership in Design Patterns. Master’s thesis, Department of Computer Science,
Federal Institute of Technology Zurich, 2006.

Nagi H. Nahas. Algorithms for the Comparison of Unordered Labeled Trees. Master’s thesis,
American University of Beirut, Beirut, Lebanon, May 2009.

J. Nielsen and R.L. Mack, editors.Usability Inspection Methods. John Wiley & Sons, 1994.

Eugen C. Nistor, Justin R. Erenkrantz, Scott A. Hendrickson, and Andŕe van der Hoek.
ArchEvol: Versioning Architectural-Implementation Relationships. InInternational Work-
shop on Software Configuration Management, pages 99–111, 2005.

James Noble. Visualising Objects: Abstraction, Encapsulation, Aliasing, and Ownership. In
Revised Lectures on Software Visualization, InternationalSeminar, pages 58–72, 2002.

James Noble, Jan Vitek, and John Potter. Flexible Alias Protection. InEuropean Conference on
Object-Oriented Programming (ECOOP), 1998.

Object Technology International, Inc. Eclipse Platform Technical Overview.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf, 2003.

Robert W. O’Callahan.Generalized Aliasing as a Basis for Program Analysis Tools. PhD thesis,
Carnegie Mellon University, 2001.

Rainer Oechsle and Thomas Schmitt. JAVAVIS: Automatic Program Visualization with Object
and Sequence Diagrams using the Java Debug Interface (JDI).In Revised Lectures on Software
Visualization, International Seminar, pages 176–190, 2002.

OGJ. Ownership Generic Java (OGJ).www.mcs.vuw.ac.nz/~alex/ogj/, 2005.

Dirk Ohst, Michael Welle, and Udo Kelter. Differences between Versions of UML Diagrams.
In European Software Engineering Conference (ESEC)/Foundations of Software Engineering
(FSE), pages 227–236, 2003.

Rocco Oliveto, Giuliano Antoniol, Andrian Marcus, and Jane Hayes. Software artefact trace-
ability: the never-ending challenge. InInternational Conference on Software Maintenance
(ICSM), pages 485–488, 2007.

OMG. Unified Modeling Language (UML), 2008.

Omondo. EclipseUML.http://www.omondo.com/, 2006.

Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-Based Runtime Soft-
ware Evolution. InInternational Conference on Software Engineering (ICSE), 1998.

Michael J. Pacione, Marc Roper, and Murray Wood. A Novel Software Visualisation Model to
Support Software Comprehension. InWorking Conference on Reverse Engineering (WCRE),
pages 70–79, 2004.

PBS. PBS: The Portable Bookshelf.http://www.swag.uwaterloo.ca/pbs/, 2000.

Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study of Software Architecture.

348 Bibliography

http://www.eclipse.org/whitepapers/eclipse-overview.pdf
www.mcs.vuw.ac.nz/~alex/ogj/
http://www.omondo.com/
http://www.swag.uwaterloo.ca/pbs/

SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

David Pichardie. Constraint based analysis for Java.
www.irisa.fr/lande/teaching/PAS/pointsto.pdf, 2008.

David Poole and Alan Macworth. CISpace: Tools for learning Computational Intelligence.
http://www.cs.ubc.ca/labs/lci/CIspace/, 2001.

Andre Postma. A Method for Module Architecture Verificationand its Application on a Large
Component-Based System.Information and Software Technology, 45(4):171–194, 2003.

Alex Potanin. Generic Ownership: A Practical Approach to Ownership and Confinement in
Object-Oriented Programming Languages. PhD thesis, Victoria University of Wellington,
2007.

Alex Potanin, James Noble, and Robert Biddle. Checking Ownership and Confinement.Con-
currency and Computation: Practice and Experience, 16(7):671–687, April 2004.

Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic Ownership for Generic
Java. InObject-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 397–412, 2006.

John Potter, James Noble, and David Clarke. The Ins and Outs ofObjects. InAustralian Software
Engineering Conference, pages 80–89, 1998.

Shruti Raghavan, Rosanne Rohana, David Leon, Andy Podgurski, and Vinay Augustine. Dex:
a Semantic-Graph Differencing Tool for Studying Changes in Large Code Bases. InInterna-
tional Conference on Software Maintenance (ICSM), pages 188–197, 2004.

Derek Rayside and Lucy Mendel. Object Ownership Profiling: a Technique for Finding and
Fixing Memory Leaks. InAutomated Software Engineering, 2007.

Derek Rayside, Lucy Mendel, Robert Seater, and Daniel Jackson. An Analysis and Visualization
for Revealing Object Sharing. InEclipse Technology eXchange (ETX), pages 11–15, 2005.

Derek Rayside, Lucy Mendel, and Daniel Jackson. A Dynamic Analysis for Revealing Object
Ownership and Sharing. InWorkshop on Dynamic Analysis (WODA), pages 57–64, 2006.

Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus – a Tool Suite for Program Analysis
and Reverse Engineering. InInternational Conference on Reliable Software Technologies
(Ada-Europe), pages 71–82, 2006.

Trygve Reenskaug. Thing-Model-View-Editor – an Example from a planning system. Technical
note, Xerox PARC. Available at:http://heim.ifi.uio.no/~trygver/mvc/index.html,
1979.

Trygve Reenskaug.Working with objects: the OOram Software Engineering Method. Man-
ning/Prentice Hall, 1996.

Trygve Reenskaug. The Common Sense of Object Orientated Programming.
http://heim.ifi.uio.no/~trygver/2008/commonsense.pdf, 2008.

Steven P. Reiss and Manos Renieris. Jove: Java as it Happens. InACM Symposium on Software
Visualization, pages 115–124, 2005.

Jie Ren and Richard Taylor. A Secure Software Architecture Description Language. InWorkshop

Bibliography 349

www.irisa.fr/lande/teaching/PAS/pointsto.pdf
http://www.cs.ubc.ca/labs/lci/CIspace/
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/2008/commonsense.pdf

on Softw. Security Assurance Tools, Techniques, and Metrics, 2005.

Tamar Richner and Stephane Ducasse. Recovering High-Level Views of Object-Oriented Ap-
plications from Static and Dynamic Information. InInternational Conference on Software
Maintenance (ICSM), pages 13–22, 1999.

Dirk Riehle. Framework Design: a Role Modeling Approach. PhD thesis, Federal Institute of
Technology Zurich, 2000.

Roshanak Roshandel, André van der Hoek, Marija Mikic-Rakic, and Nenad Medvidovic. Mae–
a System Model and Environment for Managing Architectural Evolution. ACM Transactions
on Software Engineering and Methodology, 13(2):240–276, 2004.

Roshanak Roshandel, Nenad Medvidovic, and Leana Golubchik. ABayesian Model for Predict-
ing Reliability of Software Systems at the Architectural Level. In International Conference on
Quality of Software Architectures, 2007.

Jacek Rosik, Andrew Le Gear, Jim Buckley, and Muhammad Ali Babar. An Industrial Case
Study of Architecture Conformance. InACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 80–89, 2008.

James Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified Modeling Language Reference
Manual. Addison-Wesley, 1998.

John Rushby, Sam Owre, and Natarajan Shankar. Subtypes for Specifications: Predicate Sub-
typing in PVS.IEEE Transactions on Software Engineering, 24(9), 1998.

David Saff and Michael D. Ernst. Continuous Testing in Eclipse. In International Conference
on Software Engineering (ICSE), pages 668–669, 2005.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric Shape Analysis via 3-Valued
Logic. In POPL, pages 105–118, 1999.

Maher Salah and Spiros Mancoridis. A Hierarchy of Dynamic Software Views: From Object-
Interactions to Feature-Interactions. InInternational Conference on Software Maintenance
(ICSM), 2004.

Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson.Using Dependency Models to Man-
age Complex Software Architecture. InObject-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2005.

Santonu Sarkar, Girish Maskeri Rama, and Shubha R. A Method forDetecting and Measur-
ing Architectural Layering Violations in Source Code. InAsia Pacific Software Engineering
Conference, pages 165–172, 2006.

Kamran Sartipi and Kostas Kontogiannis. A User-Assisted Approach to Component Clustering.
Journal of Software Maintenance, 15(4):265–295, 2003a.

Kamran Sartipi and Kostas Kontogiannis. On Modeling Software Architecture Recovery as
Graph Matching. InInternational Conference on Software Maintenance (ICSM), pages 224–
234, 2003b.

Kamran Sartipi and Kostas Kontogiannis.Managing Corporate Information Systems Evolution
and Maintenance, chapter Software Architecture Analysis and Reconstruction. Idea Group

350 Bibliography

Publishing, 2004.

Jan Scḧafer and Arnd Poetzsch-Heffter. A Parameterized Type System for Simple Loose Own-
ership Domains.Journal of Object Technology, 6(5):71–100, 2007.

Jan Scḧafer, Markus Reitz, Jean-Marie Gaillourdet, and Arnd Poetzsch-Heffter. Linking Pro-
grams to Architectures: An Object-Oriented Hierarchical Software Model based on Boxes.
In The Common Component Modeling Example: Comparing Software Component Models,
LNCS, pages 238–266. Springer, 2008.

Reinhard Schauer and Rudolf K. Keller. Pattern Visualizationfor Software Comprehension. In
International Workshop on Program Comprehension (IWPC), page 4, 1998.

Bradley Schmerl and David Garlan. AcmeStudio: Supporting Style-Centered Architecture De-
velopment. InInternational Conference on Software Engineering (ICSE), pages 704–705,
2004.

Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kazman, and Hong Yan. Discovering
Architectures from Running Systems.IEEE Transactions on Software Engineering, 32(7):
454–466, 2006.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Architecture-Oriented Visualization.
In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
389–405, 1996a.

Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring Compliance of a Software
System with its High-Level Design Models. InInternational Conference on Software Engi-
neering (ICSE), pages 387–396, 1996b.

D. Shasha and K Zhang. Approximate Tree Pattern Matching. InA. Apostolico and Eds Galil,
Z., editors,Pattern Matching Algorithms. Oxford University Press, 1997.

Mary Shaw and Paul Clements. The Golden Age of Software Architecture.IEEE Softw., 23(2):
31–39, 2006.

Mary Shaw and David Garlan.Software Architectures: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and Gregory
Zelesnik. Abstractions for Software Architecture and Tools to Support Them.IEEE Transac-
tions on Software Engineering, 21(4):314–335, 1995.

Mati Shomrat and Amiram Yehudai. Obvious or not? Regulating Architectural Decisions using
Aspect-Oriented Programming. InAspect-Oriented Software Development (AOSD), pages 3–
9, 2002.

Forrest Shull, Filippo Lanubile, and Victor R. Basili. Investigating Reading Techniques for
Object-Oriented Framework Learning.IEEE Transactions on Software Engineering, 26(11):
1101–1118, 2000.

Vineet Sinha, David R. Karger, and Rob Miller. Relo: Helping Users Manage Context during
Interactive Exploratory Visualization of Large Codebases.In VL/HCC, pages 187–194, 2006.

Michael P. Smith and Malcolm Munro. Runtime Visualisation ofObject Oriented Software. In

Bibliography 351

VISSOFT, 2002.

Dilip Soni, Robert L. Nord, and Christine Hofmeister. Software Architecture in Industrial Appli-
cations. InInternational Conference on Software Engineering (ICSE), pages 196–207, 1995.

Tim Souder, Spiros Mancoridis, and Maher Salah. Form: a Framework for Creating Views of
Program Executions. InInternational Conference on Software Maintenance (ICSM), 2001.

George Spanoudakis and Andrea Zisman.Handbook of Software Engineering and Knowledge
Engineering, volume Vol 3: Recent Advances, chapter Software Traceability: A Roadmap,
pages 395–428. World Scientific Publishing, 2005.

André Spiegel.Automatic Distribution of Object-Oriented Programs. PhD thesis, FU Berlin,
2002.

Diomidis Spinellis. On the Declarative Specification of Models. IEEE Software, 20(2):94–96,
March/April 2003.

Bridget Spitznagel and David Garlan. Architecture-Based Performance Analysis. InConference
on Software Engineering and Knowledge Engineering, 1998.

Manu Sridharan and Rastislav Bodı́k. Refinement-based context-sensitive points-to analysisfor
Java. InProgramming Language Design and Implementation (PLDI), pages 387–400, 2006.

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodı́k. Demand-driven points-to
analysis for Java. InObject-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 59–76, 2005.

Margaret-Anne Storey, Casey Best, and Jeff Michaud. SHriMP Views: An Interactive Environ-
ment for Exploring Java Programs. InInternational Workshop on Program Comprehension
(IWPC), pages 111–112, 2001.

Margaret-Anne D. Storey, Hausi A. M̈uller, and Kenny Wong. Manipulating and Documenting
Software Structures. In P. Eades and K. Zhang, editors,Software Visualization, 1998.

Margaret-Anne D. Storey, Frank D. Fracchia, and Hausi A. Müller. Cognitive Design Elements
to Support the Construction of a Mental Model During SoftwareExploration. J. Systems &
Software, 44(3), 1999.

Sun Microsystems. J2EE Tutorials. Dukes Bank.http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank2.html

2006.

Tarja Sysẗa, Ping Yu, and Hausi M̈uller. Analyzing Java software by combining metrics and
program visualization. InEuropean Conference on Software Maintenance and Reengineering
(CSMR), pages 199–208, 2000.

Peter Tabeling and Bernhard Gröne. Mappings between Object-Oriented Technology and
Architecture-Based Models. InSoftware Engineering Research and Practice, pages 568–574,
2003.

Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E.James Jr. Whitehead, Jason E.
Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow. AComponent- and Message-
Based Architectural Style for GUI Software.IEEE Transactions on Software Engineering, 22
(6):390–406, 1996.

352 Bibliography

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank2.html

Alexandru Telea, Alessandro Maccari, and Claudio Riva. An Open Visualization Toolkit for
Reverse Architecting. InInternational Workshop on Program Comprehension (IWPC), pages
3–10, 2002.

Paolo Tonella and Alessandra Potrich. Static and Dynamic C++Code Analysis for the Recovery
of the Object Diagram. InInternational Conference on Software Maintenance (ICSM), pages
54–63, 2002.

Paolo Tonella and Alessandra Potrich. Reverse Engineering of the Interaction Diagrams from
C++ Code. InInternational Conference on Software Maintenance (ICSM), pages 159–168,
2003.

Paolo Tonella and Alessandra Potrich.Reverse Engineering of Object Oriented Code (Mono-
graphs in Computer Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2004.

Paolo Tonella, Giuliano Antoniol, Roberto Fiutem, and Ettore Merlo. Flow insensitive C++
pointers and polymorphism analysis and its application to slicing. In International Conference
on Software Engineering (ICSE), pages 433–443, 1997.

Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. Empirical Studies in Reverse
Engineering: State of the Art and Future Trends.Empirical Software Engineering, 12(5):
551–571, 2007.

Peter Torr. Demystifying the Threat-Modeling Process.IEEE Security and Privacy, 3(5):66–70,
2005.

Andrea Torsello, Dzena Hidovic-Rowe, and Marcello Pelillo.Polynomial-Time Metrics for At-
tributed Trees.IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7):1087–
1099, 2005.

Christopher J. Turner, T.C. Nicholas Graham, Christopher Wolfe, Julian Ball, David Holman,
Hugh D. Stewart, and Arthur G. Ryman. Visual Constraint Diagrams: Runtime Conformance
Checking of UML Object Models versus Implementations. InAutomated Software Engineer-
ing, pages 271–276, 2003.

Roseanne Tesoriero Tvedt, Patricia Costa, and Mikael Lindvall. Does the Code Match the De-
sign? A Process for Architecture Evaluation. InInternational Conference on Software Main-
tenance (ICSM), pages 393–401, 2002.

Vassilios Tzerpos and Richard C. Holt. A Hybrid Process for Recovering Software Architec-
ture. InConference of the Centre for Advanced Studies on Collaborativeresearch (CASCON),
page 38, 1996.

Universes. Universes Tools.www.sct.ethz.ch/research/universes/tools/, 2007.

Christopher van der Westhuizen and André van der Hoek. Understanding and Propagating Ar-
chitectural Changes. InWorking IEEE/IFIP Conference on Software Architecture (WICSA),
pages 95–109, 2002.

Hylke W. van Dijk, Bas Graaf, and Rob Boerman. On the Systematic Conformance Check of
Software Artefacts. InEuropean Workshop on Software Architecture (EWSA), pages 204–221,
2005.

Allison Waingold. Automatic Extraction of Abstract ObjectModels. Master’s thesis, Department

Bibliography 353

www.sct.ethz.ch/research/universes/tools/

of Electrical Engineering and Computer Science, MIT, 2001.

Allison Waingold and Robert Lee. SuperWomble Manual.
http://sdg.lcs.mit.edu/womble/, 2002.

Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright, Darin Swanson, and
Jeremy Isaak. Visualizing Dynamic Software System Information through High-Level Mod-
els. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 271–283, 1998.

Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An Effective Change Detection Algorithm
for XML Documents.International Conference on Data Engineering, pages 519–530, 2003.

Dietl Werner and Peter M̈uller. Exceptions in Ownership Type Systems. InWorkshop on Formal
Techniques for Java-like Programs (FTfJP), 2004.

Dietl Werner and Peter M̈uller. Runtime Universe Type Inference. InIntl. Workshop on Aliasing,
Confinement and Ownership in Object-Oriented Programming (IWACO), 2007.

David S. Wile. Revealing Component Properties through Architectural Styles.J. Systems &
Software, 65(3), 2003.

Lloyd G. Williams and Connie U. Smith. Performance evaluation of software architectures. In
International Workshop on Software and Performance (WOSP), pages 164–177, 1998.

Kenny Wong, Scott R. Tilley, Hausi A. M̈uller, and Margaret-Anne D. Storey. Structural Redoc-
umentation: a Case Study.IEEE Software, 12(1):46–54, 1995.

Alisdair Wren. Ownership Type Inference. Master’s thesis, Department of Computing, Imperial
College, 2003.

Zhenchang Xing and Eleni Stroulia. UMLDiff: an Algorithm for Object-Oriented Design Dif-
ferencing. InAutomated Software Engineering, pages 54–65, 2005.

Guoqing Xu and Atanas Rountev. Merging equivalent contexts for scalable heap-cloning-based
context-sensitive points-to analysis. InInternational Symposium on Software Testing and
Analysis (ISSTA), pages 225–236, 2008.

Kaizhong Zhang and Tao Jiang. Some MAX SNP-Hard Results Concerning Unordered Labeled
Trees.Information Processing Letters, 49(5):249–254, 1994.

354 Bibliography

http://sdg.lcs.mit.edu/womble/

	1 Introduction
	1.1 Introduction
	1.2 Object-Oriented Diagrams
	1.2.1 Example
	1.2.2 Class Diagrams
	1.2.3 Object Diagrams
	1.2.3.1 Static vs. dynamic object diagrams
	1.2.3.2 Global object diagrams

	1.3 Software Architecture
	1.3.1 Code Architecture
	1.3.1.1 Package (layer) vs. runtime tier

	1.3.2 Runtime Architecture
	1.3.3 Benefits of Architecture
	1.3.3.1 System understanding
	1.3.3.2 Qualitative architectural evaluation
	1.3.3.3 Quantitative architectural analysis
	1.3.3.4 Avoiding architectural drift and erosion

	1.4 Architectural Abstraction
	1.5 Object Graph Extraction
	1.5.1 Key Idea: Hierarchical Object Graphs
	1.5.1.1 Annotations to convey architectural intent
	1.5.1.2 Static analysis to achieve soundness

	1.5.2 Example
	1.5.2.1 Logical containment
	1.5.2.2 Strict encapsulation
	1.5.2.3 Sound approximation
	1.5.2.4 Aliasing
	1.5.2.5 Abstraction by hierarchy

	1.5.3 Previous work on architectural extraction
	1.5.4 Summary

	1.6 Architectural Conformance
	1.6.1 Key Property: Communication Integrity
	1.6.2 Establishing traceability
	1.6.3 Previous work in architectural conformance

	1.7 The Scholia approach
	1.8 Scholia's Requirements
	1.8.1 Overall Approach
	1.8.2 Annotations
	1.8.3 Architectural Extraction
	1.8.4 Architectural Comparison
	1.8.5 Architectural Conformance

	1.9 Contributions
	1.10 Thesis Statement and Outline
	1.10.1 Hypothesis: Annotations
	1.10.2 Hypothesis: Extraction
	1.10.3 Hypothesis: Soundness
	1.10.4 Hypothesis: Abstraction
	1.10.5 Hypothesis: Comparison
	1.10.6 Hypothesis: Conformance

	1.11 Summary

	2 Object Graph Extraction
	2.1 Introduction
	2.2 Code vs. Runtime Structure
	2.2.1 Code Structure
	2.2.2 Runtime Structure

	2.3 Annotations
	2.3.1 Object and Domain Annotations
	2.3.2 Permission Annotations
	2.3.3 Special Annotations
	2.3.3.1 OWNER
	2.3.3.2 shared
	2.3.3.3 unique
	2.3.3.4 lent

	2.4 Static Analysis
	2.4.1 Type Graph
	2.4.2 Object Graph
	2.4.2.1 Overview
	2.4.2.2 Abstract interpretation
	2.4.2.3 Recursion
	2.4.2.4 Domain parameters

	2.4.3 Display Graph
	2.4.3.1 Depth limiting
	2.4.3.2 Abstraction by types

	2.4.4 Summary

	2.5 Advanced Features
	2.5.1 Displaying objects with special annotations
	2.5.1.1 shared objects
	2.5.1.2 unique objects
	2.5.1.3 lent objects

	2.6 Discussion
	2.6.1 Assumptions
	2.6.2 Alternate Annotations
	2.6.3 Imprecision
	2.6.3.1 Field assignment in superclass
	2.6.3.2 Imprecision with containers

	2.7 Summary

	3 Formalization of the Object Graph Extraction
	3.1 Annotations (Featherweight Domain Java)
	3.1.1 Syntax
	3.1.2 Typing Rules
	3.1.3 Ownership domain soundness

	3.2 Object Graph (OGraph)
	3.2.1 Data Types
	3.2.2 Constraint-Based Specification

	3.3 Object Graph Soundness
	3.3.1 Instrumented Semantics
	3.3.2 Approximation relation
	3.3.3 Lemmas
	3.3.4 Preservation
	3.3.5 Progress
	3.3.6 Object Graph Soundness
	3.3.7 Limitations

	3.4 Display Graph (DGraph)
	3.4.1 Depth-Limited Unfolding
	3.4.2 Abstraction by Types
	3.4.2.1 Abstraction by trivial types
	3.4.2.2 Abstraction by design intent types
	3.4.2.3 Abstraction by types and soundness

	3.5 Implementation
	3.5.1 Traceability
	3.5.2 Differences between the formal and the concrete systems

	3.6 Discussion
	3.6.1 Our Previous Formalizations
	3.6.1.1 Pseudo-code
	3.6.1.2 Term-rewriting system

	3.6.2 Precision
	3.6.3 Points-to Analysis

	3.7 Summary

	4 Evaluation of the Object Graph Extraction
	4.1 Introduction
	4.2 Research Questions
	4.3 Tool Support
	4.3.1 Annotation Tool
	4.3.2 Object Graph Extraction Tool

	4.4 Extraction Methodology
	4.4.1 Adding and Checking the Annotations
	4.4.1.1 Gathering available documentation.
	4.4.1.2 Typechecking the annotations
	4.4.1.3 Prioritizing the annotation warnings

	4.4.2 Refining the Object Graph
	4.4.2.1 Overall strategy
	4.4.2.2 Refining the ownership annotations
	4.4.2.3 Code changes
	4.4.2.4 Using abstraction by types
	4.4.2.5 Controlling the level of detail

	4.5 Evaluation Methodology
	4.6 Extended Example: JHotDraw
	4.6.1 Annotation Process
	4.6.1.1 Annotation Overview
	4.6.1.2 Annotation Examples and Observations
	4.6.1.3 Expressiveness Challenges
	4.6.1.4 Annotation Summary

	4.6.2 Object Graph Extraction
	4.6.3 JHotDraw Summary

	4.7 Extended Example: HillClimber
	4.7.1 About HillClimber
	4.7.2 Annotation Process
	4.7.2.1 Annotation Overview
	4.7.2.2 Annotation Examples

	4.7.3 Object Graph Extraction
	4.7.4 HillClimber Summary

	4.8 Field Study: LbGrid
	4.8.1 Overview
	4.8.2 Research Questions
	4.8.3 Setup and Methodology
	4.8.4 Annotation and Extraction Process
	4.8.5 Results
	4.8.5.1 Quantitative Data
	4.8.5.2 Qualitative Data

	4.8.6 Validity
	4.8.7 LbGrid Summary

	4.9 Evaluation based on Cognitive Framework for Design
	4.10 Discussion
	4.10.1 Research Questions (Revisited)
	4.10.2 Evaluation Critique
	4.10.3 Soundness
	4.10.4 Performance
	4.10.5 Scalability

	4.11 Summary

	5 Architectural Synchronization
	5.1 Introduction
	5.2 Architectural View Differencing
	5.3 Tree-to-Tree Correction
	5.3.1 Overview of Algorithm
	5.3.2 Forcing and Preventing Matches
	5.3.3 Runtime and Memory Complexity

	5.4 Architectural View Synchronization
	5.4.1 General Approach
	5.4.2 Specialized Tools

	5.5 Evaluation
	5.5.1 Extended Example: AphydsAJ
	5.5.2 Extended Example: Duke's Bank
	5.5.3 Extended Example: HillClimberAJ

	5.6 Conclusion

	6 Conformance Analysis
	6.1 Introduction
	6.2 Abstracting the Object Graph
	6.3 Describing the Architecture
	6.3.1 Architecture description language (ADL)
	6.3.2 Mapping an OOG to a C&C view

	6.4 Analyzing Conformance
	6.4.1 Conformance Findings
	6.4.2 Displaying Conformance
	6.4.3 Traceability
	6.4.4 Analyzing Conformance
	6.4.5 Measuring Conformance

	6.5 Enforcing Architectural Structure
	6.5.1 Code-level constraints
	6.5.2 Architectural constraints

	6.6 Discussion
	6.6.1 False positives
	6.6.2 Why an architecture description language?
	6.6.3 Why structural comparison?
	6.6.4 Relation to Reflexion Models
	6.6.5 Mapping Code to High-Level Models

	6.7 Summary

	7 Evaluation of the Conformance Analysis
	7.1 Introduction
	7.2 Research Questions
	7.3 Tool Support
	7.3.1 ArchCog
	7.3.2 ArchConf
	7.3.3 CodeTraceJ
	7.3.4 ArchMod

	7.4 Evaluation Methodology
	7.5 Extended Example: Aphyds
	7.5.1 Modeling the Target Architecture
	7.5.2 Iteration 1
	7.5.2.1 Adding Annotations
	7.5.2.2 Extracting Object Graphs
	7.5.2.3 Abstracting into Built Architecture
	7.5.2.4 Comparing the Built and Designed Architectures
	7.5.2.5 Analyzing Conformance

	7.5.3 Iteration 2
	7.5.3.1 Adding Annotations
	7.5.3.2 Extracting Object Graphs
	7.5.3.3 Abstracting into Built Architecture
	7.5.3.4 Comparing the Built and Designed Architectures
	7.5.3.5 Analyzing Conformance

	7.5.4 Summary of Findings
	7.5.5 Aphyds Discussion

	7.6 Extended Example: JHotDraw
	7.6.1 Modeling the Target Architecture
	7.6.2 Adding Annotations
	7.6.3 Extracting Object Graphs
	7.6.4 Abstracting into Built Architecture
	7.6.5 Analyzing Conformance
	7.6.6 Summary of Findings

	7.7 Extended Example: HillClimber
	7.7.1 Modeling the Target Architecture
	7.7.2 Adding Annotations
	7.7.3 Extracting Object Graphs
	7.7.4 Abstracting into Built Architecture
	7.7.5 Analyzing Conformance
	7.7.6 Summary of Findings

	7.8 Extended Example: CryptoDB
	7.8.1 Threat Modeling
	7.8.2 Available Documentation
	7.8.2.1 Documented Architectures
	7.8.2.2 Code Architecture
	7.8.2.3 Flat Object Graphs

	7.8.3 Adding Annotations
	7.8.4 Extracting Object Graphs
	7.8.5 Abstracting into Built Architecture
	7.8.6 Modeling the Target Architecture
	7.8.7 Analyzing Conformance
	7.8.8 Enforcing Code-Level Constraints
	7.8.9 Enforcing Architectural Constraints
	7.8.10 CryptoDB Discussion

	7.9 Discussion
	7.9.1 External Validity
	7.9.2 Research Questions (Revisited)
	7.9.3 Performance
	7.9.4 Evaluation Critique

	7.10 Summary

	8 Related Work
	8.1 Object-Oriented Design Diagrams
	8.1.1 Summary of previous work on design diagrams

	8.2 Architectural Description
	8.2.1 Visualization of Software Architecture
	8.2.2 Summary of previous architectural description

	8.3 Ownership type systems
	8.3.1 Expressiveness
	8.3.2 Related type systems
	8.3.3 Case studies for ownership types
	8.3.4 Ownership inference
	8.3.5 Summary of previous work on ownership type systems

	8.4 Static analysis of the runtime structure
	8.4.1 Object graph analyses
	8.4.1.1 Annotation-free analyses
	8.4.1.2 Annotation-based analyses

	8.4.2 Points-to analysis
	8.4.3 Shape analysis
	8.4.4 Summary of previous static analysis of the runtime structure

	8.5 Dynamic analysis of the runtime structure
	8.5.1 Visualization of object structures
	8.5.2 Dynamic ownership analyses
	8.5.3 Mix of static and dynamic analysis
	8.5.4 Summary of previous dynamic analysis of the runtime structure

	8.6 Architectural extraction
	8.6.1 Extracting a source model
	8.6.1.1 Static extractors
	8.6.1.2 Dynamic extractors
	8.6.1.3 Mixed extractors
	8.6.1.4 Summary of previous work in extracting source models

	8.6.2 Abstracting a source model into a high-level model
	8.6.2.1 Clustering
	8.6.2.2 Pattern matching
	8.6.2.3 Summary of previous work in abstracting source models

	8.6.3 Case studies in architectural extraction
	8.6.3.1 Non-object-oriented systems
	8.6.3.2 Object-oriented systems
	8.6.3.3 Evaluating an extracted architecture
	8.6.3.4 Summary of previous case studies in architectural extraction

	8.6.4 Summary of previous work in architectural extraction

	8.7 Architectural synchronization
	8.8 Built-in conformance
	8.8.1 Code generation
	8.8.2 Style guidelines
	8.8.3 Library-based solutions
	8.8.4 Language-based solutions
	8.8.5 Summary of previous work in built-in conformance

	8.9 Architectural conformance
	8.9.1 Conformance analysis of the code architecture
	8.9.2 Conformance analysis of the runtime architecture
	8.9.2.1 Dynamic analysis
	8.9.2.2 Static analysis

	8.9.3 Case studies in architectural conformance
	8.9.4 Conformance measurement
	8.9.5 Summary of previous work in architectural conformance

	8.10 Traceability
	8.11 Summary of related work

	9 Discussion and Conclusion
	9.1 Satisfaction of the Scholia requirements
	9.1.1 Overall Approach
	9.1.2 Annotations
	9.1.3 Architectural Extraction
	9.1.4 Architectural Comparison
	9.1.5 Architectural Conformance

	9.2 Limitations
	9.2.1 Overall Approach
	9.2.2 Annotations
	9.2.3 Architectural Extraction
	9.2.4 Architectural Comparison
	9.2.5 Architectural Conformance

	9.3 Usefulness and Usability
	9.3.1 Usefulness
	9.3.2 Usability

	9.4 Future Work
	9.4.1 Overall Approach
	9.4.2 Annotations
	9.4.3 Architectural Extraction
	9.4.4 Architectural Comparison
	9.4.5 Architectural Conformance

	9.5 Conclusion and Broader Impact

	A Annotation Language and ArchCheckJ Typechecker
	A.1 Introduction
	A.2 Annotation Design
	A.3 Tool Design and Implementation
	A.4 Additional Features
	A.4.1 External Libraries
	A.4.2 Generics
	A.4.3 Method Domain Parameters
	A.4.4 Defaulting Tool
	A.4.5 Special Annotations

	A.5 Tool Limitations and Future Work
	A.6 Summary

	B CryptoDB Architecture
	B.1 Architectural Style in Acme
	B.2 CryptoDB Target Architecture in Acme

	Bibliography

