Learning Search Control Knowledge
to Improve Plan Quality

Maria Alicia Pérez

July 1995
CMU-CS-95-175

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
Jor the degree of Doctor of Philosophy.

Thesis Committee:
Jaime Carbonell, Chair
Tom Mitchell
Reid Simmons
Manuela Veloso
Martha Pollack, University of Pittsburgh

Copyright © 1995 M. Alicia Pérez

This research was supported in part by a scholarship of the Ministerio de Educacién y Ciencia of Spain and in part
by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Advanced
Research Projects Agency (ARPA) under grant number F33615-93-1-1330.

The views and conclusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed .or implied, of Wright Laboratory,
the U. S. Government, or the Spanish Government.

Keywords: Artificial intelligence, planning, problem solving, machine learning, PRODIGY,
plan quality, evaluation of plans, planning performance, search control knowledge.

el e

, 23 ing

Carnegie School of Computer Science
* Mellon

DOCTORAL THESIS
in the field of
Computer Science

LEARNING SEARCH CONTROL KNOWLEDGE
TO IMPROVE PLAN QUALITY

ALICIA PEREZ

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:
2/2(/35
THESIS COMMITTEE CHAIR DATE
W / Zatd 7/ / 7/ 7S

wr ¥ 7 DEPARTMENT HEAD ot DATE

APPROVED:
12 T2M 7/11 /75
{ ad DEAN / [DATE

Abstract

Generating good, production-quality plans is an essential element in transforming planners
from research tools into real-world applications, but one that has been frequently overlooked in
research on machine learning for planning. Most work has aimed at improving the efficiency of
planning (“speed-up learning”) or at acquiring or refining the planner’s action model. This thesis
focuses on learning search-control knowledge to improve the quality of the plans produced by
the planner.

Knowledge about plan quality in a domain comes in two forms: (a) a post-facto quality metric
that computes the quality (e.g. execution cost) of a plan, and (b) planning-time decision-
control knowledge used to guide the planner towards high-quality plans. The first kind is not
operational until after a plan is produced, but is exactly the kind typically available, in contrast
to the far more complex operational decision-time knowledge. Learning operational quality
control knowledge can be seen as translating the domain knowledge and quality metrics into
runtime decision guidance. The full automation of this mapping based on planning experience
is the ultimate objective of this thesis.

Given a domain theory, a domain-specific metric of plan quality, and problems which provide
planning experience, the QUALITY architecture developed in this thesis automatically acquires
operational control knowledge that effectively improves the quality of the plans generated.
QUALITY can (optionally) learn from human experts who suggest improvements to the plans
at the operator (plan step) level. We have designed two distinct domain-independent learning
mechanisms to efficiently acquire quality control knowledge. They differ in the language used
to represent the learned knowledge, namely control rules and control knowledge trees, and in
the kinds of quality metrics for which they are best suited.

QUALITY is fully implemented on top of the PRODIGY4.0 nonlinear planner. Its empirical
evaluation has shown that the learned knowledge produces near-optimal plans (reducing before-
learning plan execution costs 8% to 96%). Although the learning mechanisms and learned
knowledge representations have been developed for PRODIGY4.0, the framework is general and
addresses a problem that must be confronted by any planner that treats planning as a constructive
decision-making process.

iii

Acknowledgements

This thesis, and I, owe much to Jaime Carbonell. From the first day as my advisor Jaime was
encouraging me and telling me that I could do this thesis, this PhD. I have learned many things
from him, and many ideas in the thesis, including the relevance of the topic, originated in very
fruitful and fun discussions with him. Thanks for being always so supportive and patient.

The other members of my thesis committee, Tom Mitchell, Reid Simmons, Manuela Veloso,
and Martha Pollack challenged me to go out of a narrow view of the problem and shared with
me their enthusiasm for the field. My discussions with them were always very enlightening
and suggested new lines of work, not all of which T have been able to explore (yet). And thanks
for reading and commenting on this long document.

I must thank Manuela in a special way. First of all for her friendship. Then for all the things
we shared. Collaborating with Manuela was great and I learned from her much, not only
professionally. Manuela has challenged me so many times... And I am extremely thankful.

The Prodigy team also played a big role in this thesis. The current members provided technical
support and great feedback on talks and papers: Jim Blythe, Mei Wang, Scott Reilly, Rujith
de Silva, Karen Haigh, Rob Driskill, Eugene Fink, Peter Stone, and Luiz Edival de Souza.
And thanks too to the past members gone to greater things: Steve Minton, Craig Knoblock,
Dan Kuokka, Yolanda Gil, Oren Etzioni, Manuela Veloso, Robert Joseph, Michael Miller, Dan
Kahn, Daniel Borrajo, Santiago Rementeria, Angela Ribeiro, Masa Iwamoto, Erica Melis, and
Vincent Poinot. It was fun to work with Oren on DYNAMIC. Yolanda put a lot of work on
the process planning domain and has been a good friend throughout these years. Collaborating
with all of you was (and, I hope, will be) a very enjoyable experience. Out of CMU, Caroline
Hayes provided a lot of knowledge about process planning and Devika Subramanian suggested
different ways to look at the problem of learning plan quality.

I cannot think of a better place to learn and to do research than the School of Computer Science
at Carnegie Mellon. Meeting the very best faculty and graduate students in computer science
has been a great pleasure. I will never forget how much I enjoyed the class taught by Allen
Newell, Tom Mitchell, and Jaime Carbonell on integrated architectures during my second
semester at CMU. I would like to remember specially Allen Newell and Nico Haberman for
sharing with us their grand vision of computer science research. Angel Jordan has always been

v

very supportive. Thanks also to all the facilities staff, to Sharon Burks, and to Satya for letting
me use a Coda laptop during thesis writing and to the Coda group for their technical support.

The Ministerio de Educacion y Ciencia of Spain supported me with a scholarship throughout
most of my graduate studies. I am grateful for their offering me the encouragement to come to
a top university to pursue a doctoral degree.

A PhD is a hard, long process, but many people made mine very enjoyable. First, thanks to
the best officemates in the world: Puneet Kumar, Xuemei Wang, and Henry Rowley. We spent
many, many hours together, and shared many good moments. You have been an extraordinary
mine of knowledge about the mysteries of Unix, Postscript, networks,... anything! I have also
shared offices with Angela Hickman, Ken McMillan, David Long, David Detleffs, and Mike
Young. They endured my poor English and many questions about American culture in my
initial years here.

During this long process many friends have come and gone. Frequently it has been like being
in Spain, but in Pittsburgh. Daniel, Isabel, Alejandro, Teresa, Pepe, José Luis, Matusa, Joserra,
Juan Carlos, Lourdes, Charo, Jests, Elizabeth, Francisco, Maite, Michel, Anibal, Jose, Enrique,
Pablo, Harri, Guillermo, Alfonso, Luis, Pedro, Enrique, Raquel, Javier. They all deserve credit
for some part of this work, for bearing with me and my moods in the hard times, for making
me laugh so much, and for showing me the incredible value of friendship. ;Gracias! Thanks
to the current members of the Spanish troop for enduring with me the last weeks of this thesis
and being genuinely supportive and always available: Aurora (thanks for typing some of this),
Enrique, Pascal, Nieves, Juan, Angélica, Mari Angeles, and Pedro. My friends in Spain, Julia,
Ana, and Irma, were always very supportive. How I regret not having been able to spend more
time with all of them!

My other Pittsburgh friends, in particular those from the Oratory (the Catholic campus chap-
laincy) have helped me keep things of perspective, out of my work and out of the department.
Special thanks to Drew, Joe L., Patty, Sandy, and Dave.

Sr Madeleine Gregg, fcJ and all the Sisters Faithful Companions of Jesus have accompanied
me with their love, support, and prayers, reminding me of why I was doing this. A.M.D.G.

Finally, I would like to thank my family for their support through all these years. My parents
have taught us with their example a sense of responsibility and hard work, and unselfish giving.
But above all they have always shown us unconditional love and support. I have been very
fortunate to grow up with my siblings Maria del Mar, José Manuel, Sonia and Nuria. The one
thing I regret about this doctorate is the time we have not spent together.

M. Alicia Pérez
July, 1995

Contents

33

1 Introduction
1.1 Machine Learning for Planning Systems
1.2 Measuring Plan Quality,
1.3 TheProblem e
1.3.1 Planning Decisions and Plan Quality
14 TheThesis o i v i i e e e e
1.4.1 Overviewofthe Approach.
1.42 Scientific Contributions
1.5 AReader’s Guidetothe Thesis
2 The Process Planning Domain
2.1 Whatis Process Planning? o L.
2.2 Plan Quality in the Process Planning Domain
2.3 An Implementation of Process Planning
24 AnExample e e e e e e
25 SumMmAary e e e e e e e e e e e e e
3 Search Control Rule Learning
3.1 The Architecture e e e e
3.2 The Interactive Plan Checker

32.1 Descriptiono e e
3.2.2 Examples and Further Details
The Control-Rule Learning Algorithm: A Top-Level View

vii

O © Y AR W

13
14

17
17
19
21
26
29

viii

CONTENTS

3.4 Constructing A Problem Solving Trace FromThe Plan 42
3.5 BuildingPlanTrees 0 e 43
3.6 Finding Learning Opportunities 44
36,1 AnExample 49
3.6.2 Why These Learning Opportunities 49
3.7 Learning Operator and Bindings ControlRules 50
3.8 Example Of Learning Operator And BindingsRules 58
3.9 Learning Goal Preference ControlRules 63
3.9.1 When Are Goal Preferences Needed? AnExample 63
3.9.2 How Goal Preference Rules Are Learned 68
3.10 Example Of Learning Goal Preference ControlRules 71
3.11 Learning Control Rule Priorities76
3.11.1 The Problem: Over-General Rules And Conflicting Preferences . .. 76
3.11.2 How To Break Preference Cycles 77
3.11.3 Learning Control Rule Priorities 80
3.11.4 An Example in an Artificial Domain 82
3.11.5 Examples in the Process Planning Domain 83
312 DISCUSSION . v v v v v v e e e e e e e e e e e e e e e e 86
3.13 Experimental Results 90
3.13.1 TheSetting i i e e 90
3.13.2 The TrainingPhase 91
3.133 TheTestPhase 93
314 SUmMIMAary o v o e e e e e e e e e e e e 96
Learning Control Knowledge Trees 97
4.1 Motivation W e 97
4.1.1 Example 1: An Artificial Domain 98
4.1.2 Example 2: A Transportation Domain 100
4.1.3 Example 3: The Process Planning Domain 105

4.1.4 Limitations of Using Control Rules to Produce Quality Plans 107

CONTENTS ix

4.2
4.3
4.4

4.5

4.6
4.7

4.8

4.1.5 Should We Still Learn Control Rules? 108
A Different Approach (A Sketch) 110
A New Representation Formalism for Control Knowledge 113
Learning Control-Knowledge Trees 117
44.1 AnExample e 118
4.4.2 Building a New Control-Knowledge Tree 121
4.4.3 Updating an Existing Control-Knowledge Tree 132
444 Learn and Update Other Cktrees 133
Using Control Knowledge Trees 136
4.5.1 Overview of Control Knowledge Matching 137
4.5.2 Calling the Cktree Matcher 141
453 Cktree Matching as Traversing the Cktree 143
454 Generating and Pruning Alternatives 2 T 144
4.5.5 When to Stop Traversing the Cktree 147
4.5.6 Matching Universally Quantified Cktree Preconditions 149
4.5.7 Exploring Multiple Alternatives Efficiently 150
4.5.8 Reusing Computation Among Alternatives 152
459 Cktree Matching When There Are Interacting Goals 158
4.5.10 Using the Same Cktrees for Different Quality Metrics 168
4.5.11 Goal Ordering Control Knowledge 168
An Example in a Transportation Domain 168
Discussion L. e e e e e 172
4.7.1 Using Cktrees versus Control Rules as a Control Knowledge Repre-
sentation Formalism 173
4.7.2 Efficiency Issues in Using Cktrees 177
473 The Accuracy of the Learned Control Knowledge 180
4.7.4 Tradeoffs Between Plan Quality and Planning Efficiency 183
Experimental Results, 184
4.8.1 The Performance of the Learned Cktrees 184

4.8.2 Effect of the Default Operator Choice 188

CONTENTS

4.8.3 Comparing Learned Control Rules and Learned Cktrees Performance 189

4.8.4 Reusing Learned Cktrees across Quality Metrics 191
49 Summary. e e e e e e e 192
Related Work 193
5.1 Learning Search-Control forPlanning 193
5.2 Interacting witha HumanExpert 196
5.3 Planning Approaches to Generating Good Quality Plans 198
5.3.1 Plan Quality and Goal Interactions 199
5.3.2 Decision Theoretical Planning 200
5.3.3 Domain-Dependent Approaches 202
5.34 Different Quality Metrics 203
Conclusion 205
6.1 SummaryoftheThesis., 205
6.2 Future Research Directions 206
6.2.1 Improvements to the Learning Architecture 207
6.2.2 Other Quality Metrics and Other Domains 207
6.2.3 Quality and Planning Efficiency Tradeoffs 208
6.2.4 Other Planning Techniques 209
The PRODIGY Problem Solver 225
The PRODIGY4.0 Process Planning Domain 229
Learned Quality-Enhancing Control Rules 241

Detailed Experimental Results 249

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3

24
25

2.6

3.1

3.2
3.3
34
3.5
3.6
3.7

3.8

The problem of finding good plans addressed by this thesis.
An example of the effect of goal ordering in plan quality. .

The architecture of QUALITY for learning quality search-control knowledge.

The face-milloperator. e
(a) Dimensions and sides of a part. (b) An example of a part and tool set-up. .

Control rule that rejects moving the part from another machine if the part is
being held by the desired machine <machine>already.

Control rule that expands the machining goals first.

A problem specification in the process planning domain. A problem is specified
by the initial state and the goal statement.

(a) Plan obtained by PRODIGY for the problem in Figure 2.5. (b) A better plan,
according to the quality metric, for the same problem.

Architecture of QUALITY, that learns control knowledge to improve the quality
ofplans e

Interaction with the expert and checking of the plan obtained.
Obtaining the next operator from theexpert.
Testing if the expert-input operator is applicable in the current state.
Lazy inference rule in the process planning domain.
Example of dialog with the interactive planchecker.

A different dialog for the same problem, showing the interactive plan checker
in a verbose mode, and the behavior when an operator cannot be executed. . .

Top level procedure to learn quality-enhancing control knowledge.

X1

23
24

26

27

40

41
41

X1i

3.9

3.10

3.11

3.12

3.13

3.14
3.15

3.16
3.17
3.18
3.19

3.20
321
3.22
3.23

3.24

3.25

3.26

3.27

3.28

3.29

LIST OF FIGURES

(a) and(b) Plan trees corresponding to two solutions of different quality for the
same problem. {c) Computation of the cost of the plantrees. 45

Top-level call to the learning mechanism once the plan trees have been built:
finding learning opportunities given the plan trees and exploring them to create
new control knowledge. oL, 46

Traversing the plan trees to detect learning opportunities. 48
An informal description of the explanation that underlies the algorithms presented. 50
Learning operator and bindings controlrules. 51
Traversing the plan tree to propagate the relevant conditions. 53

Part of the plan tree for the better quality solution of a process planning problem
used to illustrate how propagate_conditions_up works, and rules learned from

thatepisode. e 54
Computing a control rule precondition that justifies why g4 had cost 0. 55
Operationalizing why g4 was a subgoaland hadcostQ. 55
Computing constraints on the type and value of the relevant bindings. 56
Storing in a data structure the information needed to build an operator and/or
bindingscontrolrule. oL L 57
Building controlrules. 57
Template to create an operator preference controlrule. 58
Template to create a bindings preference controlrule. 59
Beginning of the problem solving trace that obtained the plan of cost 28 (plan
(@) of Figure 2.6). e e e e e e e 59
Beginning of the problem solving trace to obtain the better quality plan (plan
(B)of Figure 2.6). e e e e 60
Plan trees obtained from the problem solving traces for plans (a) and (b) of
Figure2.6. e 61
Structure built by create_rule_struct (Figure 3.19) at the end of the propagation
PrOCESS. © & v v v v v e i e e e e e e e e e e e e e e 62
Operator and bindings preference control rules learned from the problem in
Figure 2.5. L 63
An artificial domain used to illustrate the need of quality-enhancing goal pref-
erencecontrolrules. L. Lo L 64

LIST OF FIGURES

3.30
3.31
3.32
3.33

3.34
3.35

3.36
3.37

3.38

3.39
3.40
341

3.42
3.43
3.44
3.45
3.46

3.47
3.48

3.49
3.50

Two solutions for the problem in Figure 3.29 with the corresponding traces.
Partial order corresponding to the better quality solution of Figure 3.30.
Plan trees corresponding to the two solutions in Figure 3.30.

Control rule that makes the correct goal ordering decision in the problem of
Figure 3.29.

Algorithm for learning goal preference controlrules.

(a) An operator that adds and deletes two instantiations of the same predicate.
(b) Partial plan tree where the operatorappears.

Template to create a goal preference controlrule.

Example problem in the process planning domain to illustrate the learning of
goalcontrolrules.

(a) Plan obtained by PRODIGY guided by the current control knowledge. (b) A
better plan, according to the quality metric, input by a human expert. Note that
both plans have the same length but different quality.

Beginning of the problem solving trace that obtained plan (a) of Figure 3.38. .
Beginning of the problem solving trace to obtain plan (b) of Figure 3.38. . . .

Plan trees obtained from the problem solving traces for plans (a) and (b) of
Figure 3.38. e e e e e e

Goal preference control rule learned from the problem in Figure 3.37.

Hierarchy of heuristics to decide among conflicting preferences.
Example to illustrate the use of the proximity heuristic.
Learning preferences among controlrules.

An artificial domain used to illustrate conflicting preferences among the learned
control rules and how learning helps to break them.

(a) and (b): Two problems in the artificial domain of Figure 3.46 and their
respective solutions. (c) and (d): Plan trees constructed from the improved
solution traces. (e) and (f): Control rules learned respectively from problems
(@and (b). e e e e e e e
A third problemin the artificial domain and PRODIGY4.0’s problem solving trace
for solving it. At n22 the control rules learned from the previous problems
give conflicting preferences. oL oL

Two plans of different quality for the problem in Figure 348.

Two bindings control rules learned in the process planning domain and the
priority learned among them.,

Xiii

65
66
67

71

73
73
74

Xiv

3.51

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14
4.15

4.16

4.17

LIST OF FIGURES

Two goal control rules learned in the process planning domain and the priority

learned amongthem. Lo oo oL L 87
Operators in a train and van transportation domain. 101
An example problem in the transportation domain. 102
Two plans for the problemin Figure 4.2. 102

Two plans for a variant of the problem in Figure 4.2 in which two objects need
to be transported between Monroeville and New Hampton. 103

Four examples of quality metrics in the transportation domain and their influ-
ence in the planner’s decision to obtain betterplans. 104

Three control rules that prefer a different alternative for drilling a hole depend-
ing on the subparts of the set-up currently available. 106

A rule learned from a spot hole problem. The top part of the figure shows an
informal description of the rule. The bottom part shows the actual rule. 109

A problem in the process planning domain. The goal is to drill a spot hole on
part5. The spot drillbit is initially set on the available milling machine. . . . 111

(a) The plan trees for two solutions to the problem of drilling a spot hole when
the appropriate ool is set on the available milling machine. (b) The quality

metricused intheexample. oL oL, 111
A new problem in the process planning domain, also to drill a spot hole on
part5. In this case the part is ready on the milling machine mm4. 112
A sketch of the process of reusing past experience to generate a good plan for
thecurrentproblem. oo oo 113
Partial view of the control knowledge tree learned from the plan trees for the
problemin Figure4.9. oo o 114
The data structures used to store each of the types of cktree nodes. 116
Top-level call to the cktree learning mechanism. 117

(a) A problem in the processs planning domain. (b) Two solutions for that
problem. The plan on the left is the plan initially obtained by the planner. The
plan on the right is the improved plan suggested by a human expert. (c) Quality
metric used in this example (higher values indicate lower quality). 119

Planning decisions forced in order to obtain the improved, user-given plan of
Figure 4.15 (b). Step 1 of Figure 4.14 chooses the first of those decisions. . . 120

Plan trees corresponding to the plans of Figure 4.15(b). Some nodes have been
omitted for clarity purposes.o 120

LIST OF FIGURES

4.18
4.19
4.20
4.21

422

4.23

4.24

4.25

4.26

4.27

4.28

4.29
4.30

431

4.32
4.33
4.34
4.35
4.36

4.37

Building anewcktree. oo
Building a cktree operatornode. L. L.
Building acktree bindingnode. L.

The first two steps of cktree construction in the example: (a) The relevant part
of plantree, (cf Figure 4.17). (b) The first goal, operator, and binding cktree
nodesbuilt.

Building acktree goalnode.

Building cktree goal nodes in the example. Pointers from a variable to the
nodes that use it are storedina hashtable.

Keeping track of achievement links. This function is called when building a
cktree goal node prec; for a plan tree node prec, that achieves other goals. . .

Keeping track of achievement links. This function is called when building a
cktree goal node prec.;. for a plan tree node prec, that was achieved by other

Keeping track of deletion links. This function is called when building a cktree
goal node prec,;, for a plan tree node prec, that was deleted by other node. . .

Keeping track of side effects. This function is called when building a binding
node b, corresponding to a plan tree node b, that had side effects.

The part of the cktree built in the example from plantreep (top of Figure 4.17)
showing the achievement and deletion links created.

Updating an existing cktree. Note the similarity with Figure 4.18.

(a) Initial state and goal of a new example problem. (b) The plan tree corre-
sponding to the lower quality solution.

The cktree of Figure 4.28 updated with the new planning episode described in
Figure 4.30. e

Keeping track of achievement links that point to othertrees.
Learning and'updating othercktrees.
A plantree foraplantosolve goalsgyandg,. oL
Two cktrees for goals g; and g, learned from the plan tree in Figure 4.34. . . .

The control knowledge tree learned from the plan trees for the problem in
Figures4.8and4.9.

Using the cktree previously learned to solve a new problem in which the the
part is set on the milling machine and the tool is set on the drill press.

xvi

4.38

4.39
4.40

4.41
4.42
4.43
444
445
446
4.47
4.48

4.49
4.50
4.51
4.52
4.53

4.54

4.55

4.56
4.57
4.58

4.59

4.60

LIST OF FIGURES

Using the cktree previously learned to solve a new problem in which the the

part and the tool are set on the drillpress. 140
Control rules that invoke the control knowledge stored in the cktrees. 142
A control rule that invokes the cktree matcher. This rule was built automatically

when the cktree for is-tappedwaslearned. 142
Definition of meta-predicate current-goal-and-pref-op. 143
The basic cktree matching function. The quality metric is used in Step 28. . . 145
Generating instantiations for a cktree bindingnode. 146
Maintaining the achieved and deleted goals. 148
Estimating the cost of achieving a universally quantified precondition. 149
Matching the available alternatives. 151
Marking the cktree nodes whose estimated cost needs to be recomputed. . . . 153
The_has—hole cktree of Figure 4.28. This figure shows the contents of the hash

table of pointers from the variables to the nodes that use them. 154
Using the cktree to estimate the cost of the first alternative. 155
Reusing previous estimates to estimate the cost of the second alternative. . . . 156
Twoplantreestosolve goalsgiandg,. 159
Two cktrees for goals g; and g, learned from previous planning experience. . . 160
Ilustration of the cktree matching process, that is, the cost estimates found and

the parts of the cktree explored, for op?', the first operator alternative for g;. . 160
Tllustration of the cktree matching process for op?, the second operator alter-

nativeforg;. L 161
The definition of current-goal-and-pref-op revisited to explore the cktrees of

othergoals.. 162
Updating the estimate for an alternative by considering other goals. . ., 162
Traversing other cktrees to update the estimate for the current alternative. . . . 164

Checking whether the goal corresponding to a node will actually become a goal
inthecurrentproblem.o 164

Traversing the same cktree again with an instantiation corresponding to a
differentgoal. L 165

Using the has-spot cktree of Figure 4.36 as control knowledge for the problem
of drilling two spot holes on the same sideofapart. 166

LIST OF FIGURES Xvii

4.61 Using the has-spot cktree to estimate the cost of the second alternative, drill-

in-milling-machine. e 166
4.62 Initial solution and problem solving trace obtained by the planner for the prob-

leminFigure 4.2. e e e 169
4.63 The solution provided by the human expert and the trace generated in order to

obtainthatplan. 170
4.64 Control knowledge tree learned for the problem in Figure 4.2., 171
4.65 A goal preference control rule for the transportation domain. 172
4.66 Analyzing the effect of operatorordering. 189
5.1 A taxonomy of quality metrics.o, 204
A.1 A skeleton of PRODIGY4.0’s nonlinear planning algorithm. 226

A.2 The learning modules in the PRODIGY architecture (from [Veloso et al., 1995]). 228

B.1 The type hierarchy for the process planning domain. 230

Xviit LIST OF FIGURES

List of Tables

2.1

3.1
32

33
34

35

4.1
4.2
4.3

44
45

4.6

4.7

4.8
4.9

A quality metric for the quality of the plans in the process planning domain.

The quality metric used in the experiments described.

Summary of the training phase. The numbers shown were computed for the
19 training problems in which learning was actually invoked.

Experimental results for the trainingphase.

Improvement on the quality of the plans obtained for 180 randomly-generated
problems in the process planning domain.

Effect of the learned control knowledge in the planning CPU time and in the

Operators in an example artificial domain.
An example quality metric for the transportation domain.

Quality of different plans for two problems (moving one and two packages) in
the transportationdomain. L.

Quality of plans for four problems in the process planning domain.

Comparative quality of the plans to drill one and two spot holes depending of
the machineused.

Cost of two alternative plans for the problem of Figure 4.2 for several quality
MELTiCS. o o e e e e e e e

Cost of two alternative plans for the 2-package problem for several quality
metrics. The metrics differ on the cost of the drive-van operator.

The quality metric used in the experiments described in this section.

Summary of the training phase. The numbers shown were computed for the
13 training problems in which learning was actually invoked.

4.10 Experimental results for the training phase.

Xix

27

XX

4.11

4.12

4.13

4.14

4.15

LIST OF TABLES

Improvement on the quality of the plans for 180 randomly-generated problems
obtained by using the learned cktrees. 187

Effect of the learned control knowledge in the planning CPU time and in the
numberof nodessearched. L. 188

An empirical comparison of the two learning approaches: learning control rules
and learning control trees. oL, 190

An experiment to factor out the effect of the learned goal-preference control
rules from the effect of the cktrees., 191

Chapter 1

Introduction

The title of this thesis, Learning Search Control Knowledge to Improve Plan Quality, captures
three basic points that have served as motivation for our line of research. The first one is the
importance of plan quality in planning systems. The second one is the use of search control
knowledge to generate high quality plans. The third one.is the use of machine learning as the
vehicle to automatically acquire quality-enhancing search control knowledge.

Much research on artificial intelligence (AI) planning so far has concentrated on methods for
constructing sound and complete planners that find a satisficing solution, and on how to find
such solution in an efficient way.! The definition of the quality of the planner’s solution implicit
in past planning work is a rather impoverished one: a plan is good if it achieves the specified
goal(s). As planners are applied to more interesting, realistic tasks, plan quality becomes a
crucial factor. Chien et al [1994] report that one of the issues hindering the efforts to field
planning applications is the ability to represent and reason about plan quality. Hayes [1995b]
points that if a “knowledge-based system produces solutions of lower sophistication and quality
than the user can produce on his or her own, the user may consider the system to be a hindrance
and try to work around it instead of with it”. Generating production-quality plans is an essential
element in transforming planners from research tools into real-world applications. This thesis
addresses the problem of producing high quality plans.

Controlling search is a central issue in many Al systems and in particular in classical planners.
Unguided search can be prohibitely slow, even in toy application domains. Domain-specific
search-control knowledge is required to capture heuristics or strategies. This search-control
knowledge serves a double purpose: to increase the efficiency of the planner’s search, so that
plans are found faster (i.e. more efficiently, by pruning the search space), and to improve the
quality of the plans that are found. There is usually more than one plan for a problem, but only

1For a good but somewhat outdated survey on planning techniques see [Hendler et al., 1990]. Most recent
work on planning can be found in [Hendler, 1992, Hammond, 19941,

1

2 CHAPTER 1. INTRODUCTION

the first one that is found will be returned. By directing the problem solver’s attention along a
particular path, control knowledge can express preferences for plans that are qualitatively better
(e.g., more reliable, less costly to execute, etc.). This thesis explores the use and automated
acquisition of search-control knowledge to generate better plans. This is different from other
efforts that improve the quality of the plans by post-facto modification [Karinthi ez al., 1992,
Foulser et al., 1992].

In spite of advances in knowledge acquisition techniques and tools, acquiring knowledge,
and in particular acquiring control knowledge, is still a major bottleneck in building complex
planning domains. Previous research has shown the effectiveness of a variety of machine
learning methods to capture problem solving heuristics expressed in a number of representation
formalisms. In particular, most of the research to date in the application of machine learning
to planning systems has focused on planning efficiency, that is, on acquiring problem solving
strategies that control search in order to make problem solving more efficient. This area of
research has been termed “speed-up learning” [Mitchell et al., 1986, Minton et al., 1989,
Tadepalli, 1989, Etzioni, 1990, Pérez and Etzioni, 1992, Knoblock, 1994, Veloso, 1994, Gratch
et al., 1993]. This thesis looks instead at the application of machine learning to acquire
strategies that lead a planner towards improving plan quality and describes an architecture to
learn quality-enhancing search control knowledge from a combination of planning experience
and interaction with a human expert.

This thesis builds on the PRODIGY4.0 planner [Veloso et al., 1995, Carbonell et al., 1992].
PRODIGY4.0 is a means-ends analysis nonlinear planner. PRODIGY2.0 [Minton et al., 1989],
PRODIGY4.0’s precursor, was designed as a testbed for learning in the context of planning. The
PRODIGY architecture® provides an expressive language for representing independently both
domain knowledge and search-control knowledge. The planner is given a specification of the
domain and can become proficient in it by forming (learning) its own control knowledge and/or
refining its domain knowledge through the analysis of the domain and of its problem-solving
experience. The PRODIGY architecture is well suited as a vehicle for our investigation because it
has clear explicit decision points that permit the infusion of automatically or manually acquired
control knowledge to improve plan quality. (Appendix A describes PRODIGY4.0 in the context
of the PRODIGY architecture and overviews the learning modules.)

2Throughout this document PRODIGY4.0 tefers to the most recent nonlinear planner of the PRODIGY architec-
ture. PRODIGY refers to the whole architecture, which includes the planner and learning modules described in
Appendix A. In some cases PRODIGY is also used when describing features shared by PRODIGY4.0 and the previous
PRODIGY planners (PRODIGY2.0 and NOLIMIT).

1.1. MACHINE LEARNING FOR PLANNING SYSTEMS 3

1.1 Machine Learning for Planning Systems

Although both AI planning and machine learning have been the subject of much research
recently, not many projects have integrated both areas. However this interaction can be very
beneficial. There are three main types of goals for learners in the context of problem solving
systems, namely: domain goals, planning efficiency goals, and plan quality or plan efficiency
goals, all of which we define below. In the case of intelligent autonomous agents the learner’s
goals may be a combination of goals of these three types.

e Learning driven by domain goals: Learning is prompted by a lack of knowledge on the
part of the planner about the domain in which problems are being solved. The planner’s
representation of the domain (available actions and preconditions and effects of each
action) may be incomplete or inaccurate. This lack of knowledge makes the planner
fail to solve certain problems, and a procedure is needed to acquire more knowledge
or correct the existing one. Research in knowledge engineering has addressed this
problem at different levels of automation. In the case of planning systems several
research efforts have focused in fully automating this process [Shen, 1989, Gil, 1992,
Huffman ez al., 1993, Wang, 1995, desJardins, 1994]. The type of learning performed
by all these systems is primarily inductive and goes beyond the reformulation of the
planner’s initial knowledge.

e Learning driven by planning efficiency goals, or speed-up learning: In this case the
goal of learning is to improve the efficiency of the planning process. One can view
such systems as searching the space of knowledge representations in order to find more
effective ways of expressing the knowledge that the system already implicitly has. After
learning, if no resource bound existed at problem solving time, the planner would be
able to solve, more efficiently, the same problems it was able to solve before learning.
However in practice resource bounds do exist, and the effect of the learned knowledge
is to increase the solvability horizon [Veloso, 1994, Iba, 1993]: many problems that
could not be solved within a particular resource bound are solved using the learned
knowledge within the given bound or an even smaller one. Several techniques have
been used in this framework, including learning search control knowledge [Mitchell
et al., 1986, Minton, 1988, Tadepalli, 1990, Etzioni, 1990, Pérez and Etzioni, 1992,
Leckie and Zukerman, 1993, Borrajo and Veloso, 1994a, Katukam and Kambhampati,
1994], macro-operators [Fikes et al., 1972, Korf, 1985, Cheng and Carbonell, 1986,
Segre et al., 1993], chunking [Laird et al., 1986], abstraction hierarchies [Knoblock, 1994,
Christensen, 1990], and problem-solving cases [Veloso, 1994].

e Learning driven by plan quality, or plan efficiency, goals: The goal of learning plan
quality is to acquire heuristics that guide the planner at generation time to produce plans

4 CHAPTER 1. INTRODUCTION

of good quality automatically. Not much research has addressed this kind of performance
goal [Ruby and Kibler, 1990, Iwamoto, 1994, Borrajo and Veloso, 1994b].

Most of the research up to date has concentrated on the first two types of goals. This thesis
concentrates on the third one.

1.2 Measuring Plan Quality

Plan quality metrics can be classified in three large groups ([Pérez and Carbonell, 1993] contains
a detailed taxonomy, that we reproduce in Section 5.3.4):

e Execution cost. Some of the factors that affect a plan’s execution cost can be computed
by summing the costs of all the steps or operators in the plan, that is Cy.:,; = 2¢; where
Ctotal is the total cost of executing the plan and ; is the cost for each operator in the plan.
c; can be the operator execution time, the cost of the resources used by the step, or 1 if
the measure is simply the length of the plan or total number of actions. Several factors
that influence a plan’s execution cost are the execution time, the material resources, or
the agent skill requirements (which refers to the extent to which an agent can perform an
action; plans with less agent skill requirements are typically less expensive).

e Plan robustness or ability to respond well under changing or uncertain conditions [Blythe,
1994, Kushmerick ef al., 1994].

o Other factors that capture the satisfaction of the client with the plan itself (for example the
accuracy of the result, the comfort it provides to the user, or marketing concerns [Kibler,
1993]). In some cases these are hard to quantify.

This thesis addresses execution cost as the plan evaluation metric, and the automated acquisition
of control knowledge is driven by the desire to minimize execution cost in future planning
problems.

1.3 The Problem

Knowledge about plan quality in a domain D comes in two forms: (a) a post-facto quality metric
@ p(P) that computes the quality (e.g. the execution cost) of plan P, and (b) planning-time
decision-control knowledge used to guide the planner towards producing higher-quality plans.
The first kind of knowledge,) p(P), is non-operational; it cannot be brought into play until

1.3. THE PROBLEM , 5

after a plan is produced. Yet, cost functions is exactly the kind of quality knowledge typically
available, in contrast to the far more complex operational decision-time knowledge. Hence,
automatically acquiring the second kind of knowledge from the first is a very useful, if quite
difficult endeavor. In essence, learning operational (planning-time) quality control knowledge
can be seen as a translation problem of domain knowledge D and quality metric Q)p into
runtime decision control guidance

Quality: D x QQp — Decision-Controlp g,

And the full automation of the quality mapping problem is the ultimate objective of this thesis.
In practice, the mapping is learned incrementally with experience.

1.3.1 Planning Decisions and Plan Quality

Planning is a constructive, incremental decision-making process. Each particular planner faces
multiple decisions when generating a complete plan to solve a given problem. The types
of those decisions vary from planner to planner, but they generally include choosing actions
(operators) to achieve goals, choosing objects in the world with which to instantiate those
operators, and choosing orderings on how the problem goals are achieved. The decisions made
at those points have an effect on both planning efficiency and plan quality. A few planners, in
particular PRODIGY, allow planning-time decision-control knowledge to guide those decisions.
Such control knowledge can be hand-coded or automatically acquired (learned) from planning
experience. The problem addressed by this thesis is how to learn control knowledge to guide
the planner to generate high-quality plans.

In this section we present two examples to illustrate how control knowledge is relevant to
plan quality and how it is distinct from other kinds of control knowledge relevant to planning
efficiency. Figure 1.1 summarizes the problem of finding good plans with an example in a
process planning domain. Figure 1.1(a) describes the example problem as it is posed to the
planner: in the initial state a square block of raw material is set on the table of a milling
machine (milling-machine3); the goal is to have a part of height 2 with a hole in one of its
sides (sidel). Three distinct metrics of plan quality in this domain are displayed in the table of
Figure 1.1(b). In this example plan quality corresponds to plan execution cost and the metrics
assign a fixed cost to each operator (lower values are higher quality). However those costs
in general may depend on the particular operator instantiation (bindings), as shown in other
examples throughout the thesis. The total quality (cost) of a plan P is computed by adding
the cost of the plan operators. Figure 1.1(c) presents two plans for the problem in (a). Plan 1
uses a single machine, the milling machine on which the part is set, to both reduce the part
height (using the face-mill operator) and drill a hole (using a drill operator). Plan 2 starts by
cutting the part on the milling machine and then chooses the drill press to make the hole. In
order to do that the part and the only holding device available must be moved to the drill press.
Figure 1.1(d) shows the quality values for each of the plans and the quality metrics. Values in

CHAPTER 1. INTRODUCTION

bold face indicate the cost of the better plan in each case: Plan 1 is better under metrics @), and
()3. Plan 2 is better under metric ()5.

Initial state Goal Three distinct quality metrics

. qlqu q3
oy 5 |

Milling machine operators | 5 = 7 7
™~ - Drill Press operators 11

d 5
";7 - @ - Part set-up operators 1 1 2
2 1

Tool set-up operators 11

| has-hole sidel Plan quality Q.(P)= (op;)
) ; i iFj
Milling-machine3 size-of height 2 op; EP
(@ (b)
Two plans for the problem The quality of the plans
Plan 1 . Plan 2 2, 9, Q T
face-mill face-mill 1 Q1 Q Q3
switch tool | release part Plan1 | 11 15 15
drill in milling machine | move holding device to drill press Plan2 15 13 17
move part to drill press - -
hold part
put-tool (@)
drill in drill press
(©
During planning: has-hole

Which operator ?

drill in drill press drill in milling machine
Which bindings ?
milling-machine7 milling-machine3
©

Figure 1.1: The problem of finding good plans addressed by this thesis.

Figure 1.1 (e) shows the decisions that the planner confronts at problem solving time when
given the example problem. It must make the appropriate decisions regarding operator (drill
in the milling machine or drill in the drill press) and operator instantiation, or bindings,* (e.g.
which of the available milling machines) in order to obtain the better plan. Those decisions are
different depending on the chosen quality metric (since the quality values of the plans obtained

3We use the terms bindings and operator instantiation indistinctly, unless otherwise indicated by the context.
We also use planning (or plan) and problem solving (or solution) interchangeably.

1.3. THE PROBLEM 7

by making the decisions are different). The example shown is a simple one. There may be
other goals to achieve, and thus decisions to make about which goal to work on next, and also
interactions among goals. There may be other alternative operations to achieve the problem
goals, and many resources (tools, machines, different types of raw materials) that must be
selected by the planner.

Thus, the problem we address in this thesis is how to automatically acquire search-control
knowledge that will guide the planner to make the decisions leading to the better plans, for each
particular domain-specific quality metric. Note that such control knowledge is orthogonal to
planning efficiency control knowledge for early pruning of choices that are guaranteed to lead to
failure paths. (Such control knowledge has been the target of previous research [Minton, 1988,
Etzioni, 1990, Pérez and Etzioni, 1992, Katukam and Kambhampati, 1994]). In the case of
quality control knowledge the alternatives decided upon may all lead to success, that is, to plans
for the problem, but those plans have different quality.

In addition to operator and operator instantiation choices, the decision about which goal to
work on next in the context of the PRODIGY4.0 planner is relevant to plan quality.

Planning goals rarely occur in isolation and the interactions between conjunctive goals have an
effect in the quality of the plans that solve them [Wilensky, 1983, Pollack, 1991, Nau, 1993].
In [Pérez and Veloso, 1993] we argued for a distinction between explicit goal interactions
and quality goal interactions. Explicit goal interactions are represented as part of the domain
knowledge in terms of preconditions and effects of the operators. In the simpler case, given two
goals g; and g, achieved respectively by operators op; and op,, if op; deletes ¢, then goals ¢; and
g2 interact because there is a strict ordering between op; and op,. Goal interactions of this type
have been extensively analyzed in the planning literature [Chapman, 1987, Barrett and Weld,
1994]. In least-commitment planners threat-solving mechanisms or critics take care of these
goal interactions by establishing ordering constraints among the conflicting goals. In the case
of PRODIGY goal preference control knowledge is automatically acquired to deal effectively
(in the sense of problem solving effort) with this kind of goal interactions [Minton, 1988,
Etzioni, 1990, Pérez and Etzioni, 1992, Veloso, 1994, Borrajo and Veloso, 1994a, de Silva,
1995].

On the other hand, quality goal interactions are not directly related to successes and failures. As
a particular problem may be solved by many different plans, quality goal interactions may arise
as the result of the particular problem solving search path explored. For example, in a process
planning domain, when two identical machines are available to achieve two goals, these goals
may interact, if the problem solver chooses to use just one machine to achieve both goals, as
it will have to wait for the machine to be idle. If the problem solver uses the two machines
instead of just one, then the goals do not interact in this particular plan [Veloso, 1994]. Similar
examples occur in many domains. These interactions are related to plan quality. Whether one
alternative is better than the other depends on the particular quality metric used for the domain.

8 CHAPTER 1. INTRODUCTION

Initial state Goal
drillbit ' . .
side3 IE/ side3 A quality metric a
Y drill, face-mill 2
. put-tool, remove-tool | 1
|/ © | hold-part, release-part 4
5 /) :
side Plan quality Q(P= 2 {op;)
|] has-hole side1 op;EP
— size-of width 2
milling-
machine (a) ®)
Two plans for the problem
P orthep The quality of the plans
Plan 1 Plan 2
release-part side3 remove-tool drillbit L
hold-part side1 up put-tool milling-cutter P)
drill hole face-mill lan 1
remove-tool drillbit remove-tool milling-cutter Plan2 | 16
put-tool milling-cutter | put-tool drillbit
release-part sidel release-part side3 ()
hold-part side3 up hold-part side1
face-mill drill hole
(©)

Figure 1.2: An example of the effect of goal ordering in plan quality.

Figure 1.2 illustrates another case of goal interactions related to plan quality. The goal of the
problem shown in (a) is to have a part of width 2 with a hole on sidel. Assume that in order
to reduce a part’s width the part must be face-milled with its side3 facing up (i.e. facing the
tool). In the initial state the drill bit to make the hole is ready (a precondition of drilling a hole),
but the part is set with its side 3 facing up (a precondition of face-milling the part’s width).
Both goals (part’s width and hole) interact because in order to achieve each one, the planner
must delete a precondition of the other one already present in the initial state. For example,
in order to face-mill the part, the milling cutter must be in the machine’s tool holder, and
achieving that requires removing the drill bit. Figure 1.2(c) shows two plans for the problem,
corresponding to two different orders of achieving the top-level goals. Figure 1.2(b) shows a
quality metric for the domain. As in our first example, quality refers to plan execution cost
(lower values indicate higher quality). With this metric, switching the machine tool is cheaper,
as it is done automatically in semi-automated machining centers, than turning the part around,
which requires a human operator.. Although the two plans shown for this problem have the
same length, they have different quality according to such metric (Figure 1.2(d)), because the

1.4. THE THESIS 9

cost of reachieving the preconditions deleted from the initial state in each plan is different.*

This example illustrates several points. First, plan length is not necessarily a good measure of
plan quality. Second, goal achievement ordering is another planning decision relevant to plan
quality, in addition to operator and operator instantiation decisions (shown in the first example).
Third, how the goal interactions should be solved to obtain a good plan may depend on the
metric of plan quality for the domain. The control knowledge to guide the planner to solve
these quality-related interactions is harder to learn automatically than in the case of explicit
goal interactions, because the domain theory D, i.e. the set of operators, does not encode these
quality criteria.

In these two examples we have shown how plan quality is affected by operator, operator
instantiation, and goal achievement ordering decisions. Any system that treats planning as
search is faced with decisions, or commitments, to make during search. The type of decisions
varies between planning algorithms, in particular between state-space based planners (such as
PRODIGY4.0) and plan-space based planners. For example, SNLP’s descendants [McAllester
and Rosenblitt, 1991, Penberthy and Weld, 1992] must choose how to solve threats and open
conditions, by adding new causal links (ordering and binding constraints) to the existing plan
steps, or by adding new steps. Making the correct decisions that will lead the planner to good
plans is an issue in any planner, and one that has not received much attention in the literature.

1.4 The Thesis

This thesis addresses the quality mapping problem. Given a general-purpose state-space
planner, a domain theory, a domain-specific metric of the quality of the plans, and problems in
that domain which provide planning experience, the techniques described here automatically
acquire operational, planning-time search-control knowledge that effectively improves the
quality of the plans generated by a planning system. In addition, the system (optionally)
benefits from the interaction with a human expert in the application domain who suggests
improvements to the plans at the operator (plan step) level. The learning techniques we have
developed are independent of the application domain. We have fully implemented them in
the QUALITY architecture and tested it in several domains. This section gives an overview of
QUALITY.

1.4.1 Overview of the Approach

Figure 1.3 shows the architecture of QUALITY. QUALITY is implemented on top of PRODIGY4.0,
the most recent nonlinear planner of the PRODIGY architecture. QUALITY is given a domain

4This example is elaborated in Section 3.10.

10 CHAPTER 1. INTRODUCTION

Domain Domain Plan quality
knowledge D Problems expert metric 0 D
Interactive ‘QUALITY
Plan Checker [
plan irlrgzlroved
] y i ;
search
trace
PRODIGY4.0 | . LEARNER
e improved plan
1
Y
Search control knowledge Search control knowledge
for faster planning for better plans

Figure 1.3: The architecture of QUALITY for learning quality search-control knowledge.

theory D (operators, inference rules, and a hierarchy of the types of objects in the domain)
and a domain-specific function (}p that evaluates the quality of the plans produced. It is
also given problems to solve in that domain; solving those problems provides QUALITY with
planning experience in the form of a search trace, i.e. the sequence of decisions that the planner
made during a problem-solving episode.’ QUALITY analyzes problem-solving experience by
comparing the search trace obtained by solving a problem given the current control knowledge,
and another search trace corresponding to a better plan for the same problem (better according
to the quality metric) obtained as explained below. QUALITY analyzes the differences between
the sequence of decisions that the planner made initially and the ones that should have been
made to generate the better quality plan. The learner interprets these differences as learning
opportunities and identifies and generalizes the conditions under which the individual planning
choices will lead to the desired final plan. In this way QUALITY compiles knowledge to control
the decision making process in new similar planning situations to generate plans of better
quality.

In order to obtain the search trace corresponding to the better plan QUALITY can either function
autonomously or interact with a human expert. In its autonomous mode, once PRODIGY4.0
has come up with the initial plan, QUALITY asks it to further explore the search space finding
plans of increasing quality as determined by the available quality metric (Jp, until the space

SA design principle of the PRODIGY architecture is to make that problem solving information available at any
time to allow introspection by a variety of learning methods.

1.4. THE THESIS 11

is exhausted or some typically large resource bound is met. The best plan found within that
bound and its corresponding search trace are passed to the learner. If the best plan is different
from the initial plan learning is triggered.

Because of the large search spaces in complex domains, finding good enough plans from
which to learn can be computationally very expensive. Optimization by exhaustive search
is exponential in the length of the optimal plan (which may not be the shortest plan). On
the other hand, human expertise is available in many domains, and can be advantageously
used to help the system find useful strategies to obtain good plans. In its interactive mode,
QUALITY asks a human for a better plan and then calls PRODIGY4.0 to produce a search trace
that leads to that plan. QUALITY assumes that the expert’s model of plan quality and the
quality metric ()p are consistent. In particular if the expert’s plan is worse than the initial
one, the expert’s plan is rejected. The interaction with the expert is the task of the Interactive
Plan Checker in the figure. This interaction occurs at the level of plan steps, i.e. concrete
actions in the plan, which correspond to instantiated operators, and not at the level of the
full range of problem-solving time decisions. Thus the expert needs to be familiar with the
available operators, their parameters, preconditions, and effects. QUALITY’s assumption (and
design goal) is that the human is an expert in the application domain but can remain oblivious
to the planner’s algorithm and control knowledge representation language. This relieves
him/her of understanding PRODIGY4.0’s search procedure and control knowledge encoding, a
very important feature to interact productively with domain experts who are not knowledge
engineers.

When we allow the system to learn through interaction with a human, we must consider the gap
between the expert’s view of the world and efficient search control knowledge that captures
such expertise. Ideally the expert should be able to provide advice using terms about the
specific application domain and to ignore the details of the internal representation and the
planning algorithm. On the other hand, the planner’s control knowledge typically refers to
problem solving states (e.g. operators that have been expanded, goals pending exploration) in
which the control decision applies. This kind of control knowledge is hard to give by such an
expert. However s/he can easily provide a plan for the problem and, even better, critique and
improve the plan obtained by the planner by suggesting additions, deletions, or modifications
of plan steps. This advice, if consistent with the quality metric, is then operationalized by the
learning system [Mostow, 1983], that is, translated into knowledge usable efficiently during
problem solving. Thus, the goal of learning problem solving expertise can be seen as translating
a non-operational domain theory into an operational one [Tadepalli, 1990]. In the previous
section we referred to it as the quality mapping problem. In our case the domain theory consists
of the description of the domain (planning operators, inference rules, and type hierarchy) and
the domain-specific quality metric. The goal of learning is to translate it into operational
planning-time search-control knowledge based on the planner’s experience and the advice of a
human expert.

12 CHAPTER 1. INTRODUCTION

We have developed two different domain-independent learning mechanisms within QUALITY
to efficiently acquire quality control knowledge. They differ in the language used to represent
the learned knowledge, in the algorithms themselves, and in the kinds of quality metrics for
which they are best suited:

e Learning search-control rules.

The first mechanism learns control knowledge in the form of control rules, in particular
of PRODIGY’s prefer control rules [Minton et al., 1989, Carbonell et al., 1992]. These are
productions (if-then rules) that indicate a preferred choice of an operator to achieve the
current goal, choice of bindings or instantiation for the chosen operator, or choice of the next
goal to work on among the set of goals still pending. These decisions correspond to some of
PRODIGY’s decision points. The two examples in the previous section illustrated how those
choices are relevant to obtaining good plans. Chapter 3 describes the domain-independent
algorithms that learn quality-enhancing domain-specific control-rules.

Previous algorithms developed in the context of the PRODIGY architecture learned control
rules for PRODIGY2.0, the initial, linear planner of PRODIGY, with the goal of planning
efficiency [Minton, 1988, Etzioni, 1990, Pérez and Etzioni, 1992]. QUALITY focuses on plan
quality. The system described in [Iwamoto, 1994] learns control rules for optimization of
certain classes of problems, primarily in LSI circuit layout. HAMLET [Borrajo and Veloso,
1994b] uses a combination of induction and bounded explanation to learn control rules
that increase planning efficiency and improve plan quality (in particular reduce plan length).
These two approaches have been developed independently of and concurrently with QUALITY
and are described in Chapter 5.

e Learning control knowledge trees.

In the second learning mechanism within QUALITY the learned control knowledge is repre-
sented using a formalism that we call control knowledge trees. The motivation for this new
representation is that, in general, complex quality metrics require reasoning about tradeoffs
and taking a global view of the plan to make a set of globally optimal choices. Acquiring
control rules that apply at individual decision points may prove insufficient. Instead, a more
globally-scoped method is required. Control knowledge trees provide a more global view
of the planning decisions and are used, together with the quality metric, to estimate the
quality of each available alternative at a given planning decision point. The quality metric is
parameterized and therefore the learned control knowledge trees are robust to changes in the
metric. Currently they provide guidance for operator and bindings decisions, but not for goal
ordering decisions. We have designed algorithms to automatically build control knowledge
trees from planning experience and to use them at planning time. These algorithms and the
motivation for the new representation are the subject of Chapter 4.

The learned quality-enhancing control rules provide effective guidance when the quality metric
does not require reasoning about complex global tradeoffs. They are highly operational and

1.4. THE THESIS 13

are efficiently used at planning time. In our empirical evaluation we have found that they do
not reduce planning efficiency but increase it in many cases (when the higher-quality plans are
also shorter in length). On the negative side, as the learned rules are domain and quality metric
specific, if the metric changes they are invalidated and must be relearned. The performance in
improving plan quality of the learned control knowledge trees is equivalent to that of control
rules for simpler non-interacting situations, and superior for more complex interactions and
tradeoff situations. However using control knowledge trees is computationally more expensive
and may reduce planning efficiency. In addition control knowledge trees do not provide goal
ordering control knowledge. In some of our experiments we have used them together with the
goal preference rules learned by the first method achieving a synergistic effect. An important
advantage of control knowledge trees is their robustness to changes in the quality metric.

We have fully implemented all the algorithms described and evaluated their performance in a
complex process-planning domain, in which they lead to significant plan quality improvements.
An additional small transportation domain is also used to test the performance of control
knowledge trees. Each of Chapters 3 and 4 finishes with the results of the empirical evaluation
of the algorithms described and a discussion of their characteristics and limitations.

1.4.2 Scientific Contributions

The scientific contributions of this dissertation include:

e Focus on plan quality instead of just planning efficiency, because generating quality
plans is an essential element in transforming planners from research tools into real-world
applications.

e A demonstration that search-control knowledge can guide a planner’s decisions during
problem solving towards better plans according to externally-defined, domain-specific,
quality metrics. The thesis analyzes which planning decisions are relevant to plan quality
and how the control knowledge to guide them is represented for a particular planning
algorithm.

e The design of a domain-independent algorithm for automatically acquiring domain-
dependent quality-enhancing search-control rules from problem solving experience. The
learned rules indicate preferred goal, operator, and operator instantiation alternatives and
take advantage of the rich control knowledge representation language in the PRODIGY
planner.

e A new formalism for representing search control knowledge, control knowledge trees
which provides operator and operator instantiation guidance. They allow the explicit use
of the quality metric during planning, as the metric is parameterized, and can be reused

14 CHAPTER 1. INTRODUCTION

across different quality metrics. Control knowledge trees are automatically built from
planning episodes by QUALITY and used in subsequent planning.

o A demonstration of how the learning algorithms additionally benefit from the (optional)
interaction with a human user who is an expert in the application domain but remains
ignorant of the planner’s algorithm and control-knowledge representation language.

¢ Full implementation and empirical demonstration of all the algorithms mentioned. The
thesis presents results on their quality improvement performance, as well as in their
effect in problem solving time, across different quality metrics. The results show that
planning efficiency not only does not degrade considerably by the use of the learned
knowledge, but can increase in some cases. The learned knowledge provides significant
improvements in plan quality and can often achieve near-optimal performance across
different quality metrics.

1.5 A Reader’s Guide to the Thesis

This section describes the organization of the thesis. Chapter 1 has motivated this thesis work
in the context of research in planning and machine learning. It has introduced the problem,
generating good quality plans, stated the overall approach of the thesis to the problem, and
enumerated the scientific contributions of the thesis. The algorithms described and imple-
mented throughout the thesis are independent of the application domain, but are illustrated with
examples from two domains: a process planning domain, and a small transportation domain.
Chapter 2 describes the first domain in detail, discussing the characteristics of its implemen-
tation as a large, complex domain in PRODIGY4.0, and the impact of the planner’s decision in
process plan quality.

The core of the thesis is divided in two major parts, which correspond to two approaches
developed for learning quality-enhancing search-control knowledge. Chapter 3 describes the
algorithms we have developed for learning search-control rules that indicate operator, bindings,
and goal preferences. The chapter includes a discussion of the characteristics and suitability of
the approach and an empirical analysis of its performance.

Chapter 4 introduces control knowledge trees as a new formalism to represent control knowledge
for generating good quality plans. First, the new formalism is motivated and compared with
search-control rules. Then algorithms are described in detail for automatically acquiring control
knowledge trees from experience and using them at planning time. This chapter also ends with
a discussion of the approach and an empirical analysis, which includes a comparison with
learning control rules.

1.5. A READER’S GUIDE TO THE THESIS 15

Chapter 5 compares and contrasts this thesis work with other work related to representing and
reasoning about plan quality in planning systems, and to learning search-control knowledge
and problem-solving expertise.

The final chapter restates the contributions of this thesis and discusses some future research
directions.

16

CHAPTER 1. INTRODUCTION

Chapter 2

The Process Planning Domain

This chapter describes the process planning domain which is used throughout the thesis to
demonstrate our methods for learning control knowledge to improve plan quality and to provide
empirical evaluation. First we introduce the task of process planning as one of the stages of
production manufacturing and analyze the importance of plan quality in process planning. Then
we describe its implementation as a complex domain for the PRODIGY planner and introduce an
example problem in this domain.!

2.1 What is Process Planning?

Process planning is one of the intermediate steps of production manufacturing [Doyle, 1985,
Hayes, 1990]. The first stage in preparation for manufacturing is engineering, which entails
building a model that satisfies a set of specifications, selecting the proper materials, ascertaining
the proportions and desired physical properties, and configuring parts into larger assemblies.
In the next step process plans are delineated. This includes listing the steps or operations, i.e.
the process plans, and designating the machines, equipment, and tools needed and performance
expected. A process plan, for instance, may require cutting metal stock, machining it into
a desired shape, drilling holes for bolt-assembly, and polishing its surface. On the basis of
the process plans, operation routines are planned in detail. This phase is called production
planning. The last phase is one of scheduling multiple process plans on available machines and
allocating time, resources, and human operators. The parts are then manufactured according to
the production plans and the master schedule.

Current research on automation of these manufacturing processes includes Computer-Aided
Design (CAD) aids, assembly automation, process planning tools, and factory scheduling

IParts of this section are taken from [Gil and Pérez, 1994].

17

18 CHAPTER 2. THE PROCESS PLANNING DOMAIN

systems. Interest in these types of automation is rapidly increasing due to the need to lower
manufacturing costs, a growing scarcity of experts, and a desire to make customized products
widely available [Gil, 1991]. Customization requires “on-the-fly” process planning for each
differentiatied product version. The process planning task in particular is complex because
there are alternative processes for an operation, alternative parameters for each process, and
many interactions between processes. Also, the nature of the planning goals is diverse; some
deal with materials, sizes, finishes, and features, such as different types of holes and cuts; others
relate to indirect issues such as tolerances for measures or tool conservation. Finally, good
process plans should minimize resource consumption and execution time. All these factors
make process planning an interesting application domain for Al planning techniques.

Most of the research on process planning has focused on domain-dependent algorithms (see
[Chang and Wysk, 1985] for an overview) and pursued several approaches, including generative,
variant, and hierarchical techniques [Nau and Chang, 1985, Descotte and Latombe, 1985,
Gil and Pérez, 1994]. Generative approaches combine elementary process planning operations
into larger sequences in order to produce the final plan. Variant approaches retrieve complete
plans from a plan library and adapt them to the current problem specification. Other systems use
hierarchical planning techniques where generic plans are pre-specified but must be specialized,
instantiated, or interwoven. Some of these systems use Al techniques [Hayes, 1990, Descotte
and Latombe, 1985, Nau, 1987] including general-purpose problem solvers coupled with
special-purpose systems [Kambhampati ez al., 1993].

Research in the PRODIGY framework has put together expressive general-purpose planners with
avariety of machine learning techniques to improve the planner’s performance. The approaches
to process planning mentioned above have direct correlates in PRODIGY’s domain-independent
planning and learning techniques. In our work we have focused on an implementation in
which the planner finds solutions by reasoning from first principles in a generative manner,
and search control rules guide problem solving decisions. Derivational analogy [Veloso, 1994,
Veloso and Carbonell, 1993] reuses planning episodes learned from past experience, adapting
them to the current problem. This technique is a generalization of the variant approach. ALPINE
automatically generates abstraction hierarchies which are used by PRODIGY’s hierarchical plan-
ner [Knoblock, 1994, Blythe and Veloso, 1992], which is comparable to other hierarchical
planners but does not require pre-specified generic plans.

Of all the processes involved in process planning, we have concentrated on the machining,
joining, and finishing operations. Machining refers to the art of creating parts, usually metal,
by carving raw material with power tools such as bandsaws, lathes, milling machines, and drill
presses, and using processes such as drilling, milling, turning, etc [Hayes, 1990]. Joining and
assembly processes include soldering, welding and bolting. Finishing processes change the
surface properties of a part, including cleaning it or removing burrs [Gil, 1991]. Computer
numeric controlled machines (also called CNC machining centers) are used to perform many
of these processes. These machines have a movable work table, a mechanical tool changer,

2.2. PLAN QUALITY IN THE PROCESS PLANNING DOMAIN 19

and a rotating magazine of tools [Hayes, 1990]. Section 2.3 describes our model of process
planning in PRODIGY4.0.

2.2 Plan Quality in the Process Planning Domain

Plan quality is crucial in process planning to minimize both resource consumption and execution
time [Doyle, 1969, Descotte and Latombe, 1985]. Hayes [Hayes, 1995b] enumerates some
quality measures in process planning:

the number of major steps (i.e. set-ups) as a rough measure of plan quality,

the total time to complete the plan, including both machining time and set-up time,
the feasibility of a plan upon execution (i.e. will the plan succeed?),

the total dollar cost of the plan,

the probability that the plan will produce the specified accuracy, and

the reliability of the operations.

Hayes also points several difficulties in measuring plan quality: many factors are hard to
measure without a huge body of empirical data; quality may be defined differently from shop
to shop; and it may also be defined differently for different jobs. As Zhang and Lu [Zhang
and Lu, 1992] rightly point out the ultimate objective is to develop the least-cost plan while
maintaining satisfactory productivity. Their cost analysis includes a number of cost factors
both variable (activity, tooling, set-ups, inventory) and fixed (depreciation and maintenance of
the equipment).2

Set-ups are very important in process planning [Hayes, 1990]. A plan can be seen as a sequence
of set-up steps, where each of those steps groups several operations to prepare the part, machine,
and tools, and one or more machining operation. Set-ups are often the most time-expensive
part of a plan. The number of set-ups roughly measures the cost of executing a plan, and it is
commonly used by machinists as a heuristic to construct efficient plans. Sharing parts of the
set-ups among operations on one or more parts usually reduces the total cost of the process
plan.

Plan length is usually not an accurate metric of plan quality because different operators have
different costs. For example, a tool can be switched automatically whereas resetting a part
requires human assistance [Hayes, 1990]. Therefore plans that share part set-ups are cheaper
than plans that share tools, even though those plans might have the same length. Figure 1.2
provides an example of such plans.

Planning is a constructive, incremental decision-making process. Each particular planner
faces multiple decisions when generating a complete plan to solve a given problem. The

ZFor more detailed descriptions of the economics of process planning see for example [Zhang and Lu, 1992],
and [Doyle, 1969], chapter 20.

20 CHAPTER 2. THE PROCESS PLANNING DOMAIN

types of those decisions vary from planner to planner, but they generally include choosing
actions (operators) to achieve goals, choosing objects in the world with which to instantiate
those operators, and choosing orderings on how the problem goals are achieved. All types
of decisions that the planner makes at problem solving time may influence the quality of the
final plan. In PRODIGY4.0 those decisions correspond to choosing a goal ordering, choosing
an operator to achieve a goal, choosing values of all the parameters to instantiate the operator,
and deciding when to apply an operator (instead of subgoaling on other pending operators) and
which operator to apply. (See Appendix A for the details of PRODIGY4.0 planning algorithm
and decision points.) Some examples of the influence of these decisions in plan quality follow:

e Goal ordering: suppose the problem posed to the planner is to have a part with two holes,
one opening into another. This can be encoded as the conjunction of two goals, one for
each hole. The planner has to start deciding on which hole to work first, i.e. which of the
two goals try to achieve first. The following advice may be used to guide the planner’s
decision:

If a hole H; opens into another hole H,, then one is recommended machining
H, before H; in order to avoid the risk of damaging the drill. [Descotte and
Latombe, 1985]

This advice can be translated into a search control rule. The antecedent preconditions
match when one of the holes actually opens into another. The consequent recommends
with which hole to start planning. It is interesting to realize that the expert advice may
apply only in some circumstances. If machining the holes in the opposite order is faster,
the right decision could have been different, and the rule should only fire when reducing
the risk of damaging the drill is more important than minimizing the time spent on the
operations. Therefore different control rules, or control rule sets, may encode different
strategies, that may require tradeoffs.

e Operator preferences: suppose the planner’s goal is to reduce the size of a part. Some
of the candidate operators to achieve this goal are shape, shape-with-planer, and mill.
The following expert advice may be useful to decide which operator to try first, and can
be translated into one or more control rules whose consequent proposes the appropriate
operator:

In most shaping and planning operations, cutting is done in one direction only.
The return stroke represents lost time. Thus these processes are slower than
milling and broaching, which cut continuously. On the other hand, shaping and
planning use single-point tools that are less expensive, are easier to sharpen,
and are conducive to quicker set-ups than the multiple-point tools of milling
and broaching. This makes shaping or planning often economical to machine
one or a few pieces of a kind. ([Doyle, 1969], p. 597).

2.3. AN IMPLEMENTATION OF PROCESS PLANNING 21

¢ Binding preferences: the choice of the correct machine, tools, and orientation for a given
machining operator may save the cost of resetting the part:

It may be advantageous to execute several cuts on the same machine with the
same fixing to reduce the time spent setting up the work on the machines [De-
scotte and Latombe, 1985].

» Applying an applicable operator versus subgoaling: PRODIGY4.0’s default search strategy
applies the applicable operators in strictly the opposite order in which they were chosen
for expansion. In this domain it is useful to allow application of operators in a different
order when all their preconditions become true. For example, suppose that there exist
several goals to drill holes on one part, and some of the holes are in the same side and
have the same diameter. If the planner has appropriately chosen the same machine and
tool for those holes (at operator and binding decision time), once the preconditions of the
first chosen hole are true, the other holes may be drilled even though the default strategy
might suggest working on other goals.?

All the factors relevant to plan quality mentioned in this section are largely independent of
the planning algorithm. Any planning architecture will need a control strategy that guides the
planner geared toward plans of good quality according to some metric. This is the motivation
of our interest on the process planning domain as a vehicle to explore the representation of
plan quality metrics and the generation of good quality plans. The PRODIGY architecture is well
suited as a vehicle for the investigation because it has clear explicit decision points (discussed
above) that permit the infusion of automatically or manually acquired control knowledge to
improve plan quality.

2.3 An Implementation of Process Planning

A domain in PRODIGY4.0 (and in most Al planning systems) is specified as a set of operators
and inference rules. Operators represent the types of actions available for inclusion in the plan.
Inference rules are used to compute the deductive closure of the set of predicates true in the
current state.* There is also a domain ontology, that is, a hierarchy of the classes of objects in the
domain. Figure B.1 of Appendix B shows the type hierarchy for the process planning domain.
Appendix B also lists the process planning operators and inferences rules in our implementation.
Building a complex domain has the difficulties typical of knowledge acquisition [Marcus, 1990,

3PRODIGY4.Q’s permute-application-order [Carbonell et al., 1992] and SAVTA [Stone et al., 1994] domain-

independent search strategics achieve exactly this effect.
4Appendix A further explains the distinction and describes PRODIGY4.0’s planning algorithm and knowledge

representation.

22 CHAPTER 2. THE PROCESS PLANNING DOMAIN

Joseph, 1992, desJardins, 1994]. In our case an expert job-shop machinist assisted in the
construction of the domain, and helped with the descriptions of the machine shop and real part
specifications. Although our model is far from comprehensive and is limited in many ways,
we have attempted to capture many of the complexities of the process planning task in order
to develop an interesting test bench for our planning and learning research. The domain was
acquired and implemented for the PRODIGY2.0 linear planner by Yolanda Gil and is described
in more detail in [Gil, 1991].

PRODIGY generates plans to produce parts. It is given a request that specifies the material of
the part, its shape (rectangular or cylindrical), its size along each dimension, its surface quality
(roughness) and surface finish (metal coatings and polishing), and its features (holes that can
be reamed, tapped, counterbored, etc). These specifications (or a subset of them) form the goal
state. A description of a shop with machines, tools, and metal stock (i.e. proto-parts) forms
the initial state of a problem. Rectangular parts in this implementation have six sides, and the
location of a feature is determined with x and y coordinates on a given side. The planning
operators represent the machining operations themselves, as well as steps to prepare the part
and tool set-up, to secure the part with a holding device in a certain orientation, to clean the
part and remove metal burrs from its surface, and to install an appropriate tool in the machine.

Consider, for example, an operator for face milling a part. Figure 2.1 shows the corresponding
operator. We need to represent that (a) the size of the part will change along a dimension
corresponding to the part side facing the machining direction, (b) the part must be held by a
holding device in such a way that the desired dimension can be machined, and (c) a milling
cutter needs to be in the machine’s tool holder. The new size of the part must be smaller than
the current size. Also, any surface properties of the side being machined will disappear, and
the part will have dirt and burrs. These facts are represented as the effects and preconditions of
the operator.

The domain implementation makes use of PRODIGY’s ability to represent infinite types (types
with infinitely many instances) and to do Lisp function calls for encapsulated calculations.
Infinite types are used to represent numeric quantities, such as part sizes, hole depths, diam-
eters, and angles. Functions can be used to generate values for variables with infinite types
(for example, by inferring them from the values of other variables) and to perform numeric
calculations. In the face-mill operator, the function smaller is used to constraint the legal
values of part sizes allowed by the operator, and it represents the constraint that the part size
never increases after milling.

Inference rules are used to specify the availability of machines, parts, tools, tool holders, and
holding devices. Figure 3.5 shows one of such rules. Inference rules are also used to determine
which sides should be used to hold a part to machine it in a given dimension.

In the examples discussed throughout the thesis we use parts with rectangular shape. Cylindrical
parts are also allowed. Figure 2.2 (a) clarifies the relationship among the part’s dimensions

2.3. AN IMPLEMENTATION OF PROCESS PLANNING 23

(Operator FACE-MILL
(params <machine> <part> <cutter> <hold-dev>
<gide> <side-pair> <dim> <old-size> <new-size>)
(preconds
({<machine> MILLING-MACHINE)
(<cutter> MILLING-CUTTER)
(<hold-dev> (or 4-JAW-CHUCK VISE COLLET-CHUCK TOE-CLAMP))
(<part> PART)
(<dim> DIMENSION)
(<side> SIDE) ;side facing up
(<side-pair> SIDE-PAIR) ;pair of sides facing the holding device
(<old-size> (and SIZE (gen-from-pred (size-of <part> <dim> <old-size>))))
(<new-size> (and SIZE (smaller <new-size> <old-size>))))
(and (shape-of <part> rectangular)
(side-up-for-machining <dim> <side>)
(sides-for-holding-device <side> <side-pair>)
(holding-tool <machine> <cutter>)
(holding <machine> <hold-dev> <part> <side> <side-pair>)))
(effects ((<surface-coating> SURFACE-COQATING)
(<surface-finish> SURFACE-FINISH))
((del (is-clean <part>))
(add (has-burrs <part>})
(del (surface-coating-side <part> <side> <surface-coating>))
(del (surface-finish-side <part> <side> <surface-finish>))
(add (surface-finish-side <part> <side> rough-mill})
(add (size-of <part> <dim> <new-size>))
(del (size-of <part> <dim> <old-size>)))))

Figure 2.1: The face-mill operator. Operators in PRODIGY4.0 are defined by their preconditions
and effects. Preconditions and effects contain variables (part, tool, machine, etc.) whose types
are specified in the operator and appear in capital letters in the figure. The values of variables
may be constrained by functions, as in the case of <new-size>, the new size of the part, which
has to be smaller than the old size. The preconditions of an operator must be true in the state
for the operator to be applicable. They are represented as a logical expression that may contain
conjunctions, disjunctions, negations, and quantification. The preconditions of face-mill require
that the part and the tool are appropriately set on the milling machine. The effects of the operator
are the predicates to be added (e.g. the part will have a new size and will have burrs after milling)
and deleted (e.g. the part will not be clean) from the state when the operator applies. Milling the
part removes its surface properties, no matter what they are. Therefore <surface-£finish> and
<surface-coating> act as universally quantified variables. Some operators in this domain have
also conditional effects that are to be performed depending on particular state conditions.

(width, length, and height) and the numbering of the part’s sides for rectangular parts. The
sides of a part are uniquely identified, and the orientation of a part held by a holding device
on a machine table is well defined by the side facing up and the pair of opposite sides that
are touching the holding device. In the face-mill operator (Figure 2.1) they correspond to the
instantiations of variables <side> and <side-pair>. Most operations machine the side facing
up (side-milling is an exception). When the part is being held, the sides facing the holding
device are not available for machining. When the planner chooses an operator to achieve a goal,

24 CHAPTER 2. THE PROCESS PLANNING DOMAIN

it must instantiate it, that is, bind the operator variables to objects in the problem. Choosing the
bindings for a machining operator includes determining the part orientation so the desired side
can be machined. There are usually several orientations that allow the machining operation.
The choice of orientation, holding device, and tool is important as it may influence the number
of set-ups in the plan: if the proper values are chosen, several machining operations may be
performed with the same set-up. Figure 2.2 (b) shows the set-up of a part and tool on a drill
press.

Drill ‘/M“hme
Tool
8 Drill-Bit
t height — Holding device
N 748
4 Tength Vise
width Table |

(a) (b) -
Figure 2.2: (a) Dimensions and sides of a part. The numbers indicate how the part sides are
identified and are used in the examples throughout the thesis. (b) An example of a part and tool
set-up (from [Joseph, 1992]). The part is being held by the holding device, which is a vise in the
example of the figure. The part and. holding device are sitting on the table of a machine. The
machine is a drill-press in this example. The machine tool-holder is holding a tool to drill a hole (a
drill-bit).

Some qualitative and quantitative measures of the complexity of this domain follow:

e The precondition expression of some operators and inference rules includes negated pred-
icates, disjunctions, and universal quantification. Some of the preconditions correspond
to predicates derived by inference rules.

e The effects of many operators are not reversible. In addition, some effects are context-
dependent and are encoded in PRODIGY as conditional effects.

e There are 117 rules, that include 73 operators and 44 inference rules. Of the 73 operators,
38 correspond to machining operations, and 35 to set-ups.

¢ The average number of parameters for an operator is 7, the average number of precondi-
tions is 5, and the average number of effects (adds and deletes) is 3, although the most
complex operators may contain considerably more.

2.3. AN IMPLEMENTATION OF PROCESS PLANNING 25

e There are 41 different predicates, of which 7 are static (i.e., they do not change during
problem solving). Eleven Lisp domain-specific functions are defined as part of the
domain and used in the operators to perform numerical computations and constrain
variable values.

» There are 85 different types and subtypes of objects in the type hierarchy, 5 of which are
infinite types.

e In order to increase the search efficiency 18 control rules are used (see below). This num-
ber does not include the quality-enhancing rules learned automatically by the algorithms
described in this thesis.

e The length of many solutions is over one hundred steps (including operators and inference
rules).

e The initial state that represents the machine shop may include more than 500 facts.

Some hand-coded control rules guide the search in order to avoid failure search paths and
thus improve planning efficiency. For example, when the current goal is to set a part free
on the machine table, and the part is being held by that same machine, the planner should
not try to subgoal on bringing the part over from a different machine table, but rather to
release the part from the holding device. That is the purpose of the operator rejection rule
in Figure 2.3. Appendix B lists the set of hand-coded control rules for planning efficiency.
Control rules that make the planner more efficient could be learned by one of PRODIGY’s learning
mechanisms [Minton, 1988, Etzioni, 1990, Pérez and Etzioni, 1992, Borrajo and Veloso, 1994a]
and thus are not the focus of our research.

(control-rule PUT-ON-MACHINE-TABLE-IF-HOLDING
(if {(and (current-goal (on-table <machine> <part>))

{or-metapred

(known (holding <machine> <holding-device> <part> <s> <sl> <s2>))

(known (holding-weakly <machine> <holding-device> <part> <s> <gl> <s82>)))))
(then reject operator PUT-ON-MACHINE-TABLE))

Figure 2.3: Control rule that rejects moving the part from another machine if the part is being held
by the desired machine <machine> already.

This domain, and also other domains used along the thesis, include a control rule that expands
certain goals first before starting work on their subgoals. Figure 2.4 shows this rule. The rule
indicates that machining goals should be expanded before working on goals that setup the work
for the machining operations. Having the set-up subgoals available is useful to make informed
choices of operator and bindings for the remaining machining goals.

26 CHAPTER 2. THE PROCESS PLANNING DOMAIN

(control-rule EXPAND-MAIN-GOALS-FIRST
(if (and
(candidate-goal <goal>)
{goal-instance-of <goal>
has-hole has-spot is-tapped is-countersinked is-counterbored is-reamed
size-of shape-of surface-finish-quality-side surface-coating-side surface-coating)
(candidate-goal <other-goal>)
{(~ (goal-instance-of <other-goal>
has-hole has-spot is-tapped is-countersinked is-counterbored is-reamed
size-of shape-of surface-finish-quality-side surface-coating-side surface-coating))))
(then reject goal <other-goal>))

Figure 2.4: Control rule that expands the machining goals first.

2.4 An Example

We now introduce a simple example problem in the process planning domain. This problem
is used in later sections to illustrate the learning algorithms. Figure 2.5 shows its initial state
and goal statement. The goal is to have a part of height 2 with a spot hole in its side 1 at
coordinates 1.375 x 0.25. The rest of the part features, such as its material, width, or length
remain unspecified. An aluminum part part5 of height 3, length 5, and width 3 is available in
the shop, i.e. in the initial state. There are also some tools, including a spot drill and a plain
mill (a type of milling cutter), and two machines, namely a milling machine and a drill press.
Milling machines can be used both to reduce the size of a part, and to drill holes and spot holes
on it. Drill presses can drill holes and spot holes, and terminate the holes in different ways
(tapped, counterbored, etc). The planner uses inference rules to infer from the state that the
machines, tools, and part are initially free, and that the part available has rectangular shape.
These rules do not change the world state but compute the deductive closure of the facts already
in the state.

Table 2.1 shows the plan quality metric used in the example. It represents the quality of a plan as
its execution cost, computed by adding the cost of the individual operators in the plan. Higher
values of the metric represent worse quality. Each operator has a cost, which in this example is
independent of how the operator variables are instantiated.> PRODIGY4.0 uses inference rules
for planning as if they were operators, i.e. for achieving subgoals, but they do not correspond
to actual process planning operators. As we mentioned before, their application only computes
the deductive closure of the state. They are part of the plan but the quality metric assigns them
cost 0 and for clarity purposes we will not display them as part of the plans in our examples.

The plan quality metric of this example focuses on the cost of setting up the work on the
job-shop machines, and was motivated by the fact that machinists frequently use the number
of major steps, i.e. set-ups, as a rough measure of the quality of the plan [Hayes, 1995b], as

3Section 4.1.2 describes a more complex quality metric that assigns values to the operators depending on the
instantiations of the operator variables.

24. ANEXAMPLE

(objects
; ;machines

{ocbject-is milling-machinel MILLING-MACHINE)
(object-is drilll DRILL)

; ;holding devices

(object-is visel VISE)

;:parts and holes

(object-is part5 PART)
(object-is holel HOLE)

27

;;tools
(object-is spot-drilll SPOT-DRILL)
(object-is twist-drillé TWIST-DRILL)
(object-is plain-milll PLAIN-MILL)
(object-is end-mill3 END-MILL)
(object-is brush7 BRUSH)
(object-is soluble-oil SOLUBLE-OIL)
(object-is mineral-oil MINERAL-OIL))

(state (and (diameter-of-drill-bit twist-drillé 9/64)

(goal ((<part> PART))

(material-of part5 ALUMINUM)
(size-of part5 LENGTH 5)
(size-of part5 HEIGHT 3)
(size-of part5 WIDTH 3)))

(and (size-of <part> HEIGHT 2)
{has-spot <part> holel sidel 1.375 0.25)))

Figure 2.5: A problem specification in the process planning domain. A problem is specified by the
initial state and the goal statement.

[Type 1 Cost J Operators

Machining operators 2 | drill-with-spot-drill, drill-with-twist-drill,
drill-with-high-helix-drill, tap, countersink,
counterbore, ream, drill-with-spot-drill-in-milling-machine,
drill-with-twist-drill-in-milling-machine, face-mill, side~-mill

Machine and 2 | put-holding-device-in-drill, put-holding-device-in-milling-machine,

holding device remove-holding-device-from-machine,

set-up operators put-on-machine-table, remove-from-machine-table,
hold-with-vise, release-from-holding-device

Tool operators 1 | put-tool-on-milling-machine, put-tool-in-drill-spindle,
remove-tool-from-machine

Cleaning operators 2 | clean, remove-burrs

Oil operators 1 add-soluble-oil, add-mineral-oil, add-any-cutting-fluid

Table 2.1: A quality metric for the quality of the plans in the process planning domain. The
operators have been separated in groups for clarity purposes. Next to each group is the cost of each

of the operators in the group.

discussed in Section 2.2. This metric assigns lower costs to the operators for moving tools
than to the operators for preparing and moving parts. The reason is that in computer numeric

28 CHAPTER 2. THE PROCESS PLANNING DOMAIN

controlled (CNC) machining centers tools are switched automatically while holding the parts
requires human assistance and therefore is more expensive [Hayes, 1990].

[A plan | A better plan

put-tool-drill drilll spot-drilll put-tool-mm milling-mach1 spot-drill1
put-holding-device-drill drilll visel put-holding-dev-milling-mach milling-mach1 visel
clean part5 clean part5
put-on-machine-table drilll part5 put-on-machine-table milling-mach! part5
hold drilll visel part5 sidel side2-side5 hold milling-mach]1 visel part5 sidel side3-side6
drill-in-drill-press drilll spot-drilll visel drill-in-milling-mach milling-mach1 spot-drilll

part5 holel sidel side2-side5 visel part5 holel sidel side3-side6

remove-tool milling-mach1 spot-drilll

put-tool-milling-mach milling-mach1 plain-milll put-tool-milling-mach milling-mach1 plain-mill 1

release drilll visel part5

remove-holding-device drilll visel
put-holding-dev'-milling-mach milling-mach1.visel
remove-burrs part5 brush7

clean part5

put-on-machine-table milling-mach! part5

hold milling-mach1 visel part5 sidel side3-side6

face-mill milling-mach1 part5 plain-mill1 visel face-mill milling-mach1 part5 plain-mill1
sidel side3-side6 height 2 visel sidel side3-side6 height 2
cost =28 cost =15
(a) (b)

Figure 2.6: (a) Plan obtained by PRODIGY for the problem in Figure 2.5. (b) A better plan, according
to the quality metric, for the same problem.

Figure 2.6 shows two solutions for the problem described above. The crucial difference between
the two plans is the type of drilling operation. Plan (a) uses the drill press to drill the spot
hole. Step <drill-with-spot-drill drilll spot-drilll visel part5 holel sidel
side2-side5> indicates that holel will be drilled in part5 on the drill press drill1 using as
a tool a drill-bit spot-drill1, while the part is being held with its side 1 up and sides 2 and 5
facing the holding device, visel (cf. Figure 2.2). Plan (b) uses the milling machine to drill
the spot hole, and the drill and mill operations share the same set-up (machine, holding device,
and orientation), so that the part does not have to be released and held again. The ability to
share the set-up is due to the choice of operator to drill the hole (drill-in-milling-machine) and
the choice of the same instantiations for the machine, holding device, and orientation in both
the drill and mill operations. Because of this set-up sharing, plan (b) is a better plan according
to the metric described.

2.5. SUMMARY 29
2.5 Summary

This chapter has described the process planning domain that will be used as an example
throughout the thesis to exemplify the quality-enhancing control-knowledge learning algorithms
and evaluate them empirically. The task of process planning is to generate plans to manufacture
parts given the specifications of the part and the manufacturing environment. In order to
generate production-quality plans, issues about plan quality must be considered. The chapter
has given examples of how those issues affect all the types of planning decisions. In particular
reducing set-up costs is commonly used by human machinists as a rough heuristic to construct
efficient plans. All these characteristics make of process planning and interesting domain for

Al planners.

Process planning has been implemented as a complex domain for the PRODIGY4.0 nonlinear
planner. The implementation includes a large number of operators, which describe machining
and set-up actions, inference rules, and classes of objects organized in the domain ontology.
This chapter has described the implementation and given an example of a planning problem
and a quality metric in this domain

30

CHAPTER 2. THE PROCESS PLANNING DOMAIN

Chapter 3

Search Control Rule Learning

The goal of learning plan quality is to acquire heuristics that guide the planner at generation
time to produce plans of good quality automatically. In this chapter we present one strategy
for addressing this learning problem, and a more complex strategy is presented in Chapter 4.
Section 3.1 presents a high level view of the learning system. Section 3.2 describes the
Interactive Plan Checker that (optionally) allows a human domain expert to interact with
the learner at the operator level to suggest variations of the plan produced that improve its
quality. ! Sections 3.3 to 3.10 describe in detail the learning process, namely finding learning
opportunities, building operator and bindings quality-enhancing control rules, the need for goal
preference rules, and how they are learned. Section 3.11 explains how the learned rules may
be overgeneral and lead to incorrect decisions, and QUALITY’s way of incrementally refining
the learned knowledge by adding new rules and priorities among them. The limitations of this
algorithm and of the use of control rules to represent quality-enhancing control knowledge are
discussed in Section 3.12. These limitations motivate the more complex method discussed in
Chapter 4. Section 3.13 presents the results of a series of empirical evaluations that demonstrate
the effectiveness of the automatically-acquired plan-quality control rules.

The learning methods described in this chapter are independent of the application domain.
Throughout this chapter we will illustrate them with examples from the process planning
domain described in Chapter 2 and from some artificial domains. Section 3.12 discusses some
of the characteristics of the domains and of quality metrics for which our algorithms for learning
quality-enhancing control rules have a good performance.

TAlthough the Interactive Plan Checker and the overall architecture are described in this chapter devoted to
control rule learning, they are also used by the control knowledge trees learning algorithm described in Chapter 4.

31

32 CHAPTER 3. SEARCH CONTROL RULE LEARNING

3.1 The Architecture

Knowledge about plan quality in a domain D comes in two forms: (a) a post-facto quality metric
@ p(P) that computes the quality (e.g. the execution cost) of plan P, and (b) planning-time
decision-control knowledge used to guide the planner towards producing high-quality plans.
The first kind of knowledge, cost functions Qp(P), is non-operational for plan generation; it
cannot be brought into play until after a plan is produced. Yet, cost functions is exactly the
kind of quality knowledge typically available, in contrast to the far more complex operational
decision-time knowledge. Hence, automatically acquiring the second kind of knowledge from
the first is a very useful, if quite difficult endeavor. In essence, learning operational (planning-
time) quality control knowledge can be seen as a franslation problem of domain knowledge D
and quality metric ()p into runtime decision control guidance:
Quality: D x Qp — Decision-Controlp g,

And the full automation of this quality mapping problem is the ultimate objective of this thesis.
In practice, the mapping is learned incrementally with experience.

Figure 3.1 shows the architecture of QUALITY, the core of this thesis, which learns precisely
that mapping. QUALITY is given a domain theory ID (operators and inference rules) and a
domain-dependent metric that evaluates the quality of the plans produced @p(P). It is also
given problems to solve in that domain. QUALITY analyzes the planning episodes by comparing
the search trace? for the plan obtained given the current control knowledge, and another search
trace corresponding to a better plan (better according to the quality metric). The latter search
trace is obtained by asking a human expert for a better plan and then producing a search trace
that leads to that plan. Alternatively, the system can function autonomously by letting the
planner search further until a better plan is found®. The system then analyzes the differences
between the sequence of decisions that the planner made initially and the ones that should have
been made to generate the plan of better quality. The learner interprets these differences as
learning opportunities and identifies the conditions under which the individual planning choices
will lead to the desired final plan. In this way QUALITY compiles knowledge to control the
decision making process in new similar planning situations to generate plans of better quality.

Several points are worth mentioning:

e Learning is driven by the existence of a better plan and a failure of the current control
knowledge to produce it. The learner can actively find the trace corresponding to a better
plan either by letting the planner search further, or by asking a human expert for a better
plan and then producing a search trace that leads to that plan.

2By search trace we mean the sequence of decisions made by the planner when solving the problem.
3Because of the large search spaces in complex domains, this can be computationally very expensive in practice

(cf Section 3.12).

3.1. THE ARCHITECTURE

1 | leamed search-control
| knowledge

search
trace

Learner
] plan o—o—o0—0—0—0—0
Quality : !)
Metric Qy, Quality: Dx @ pXE->7?
I T
Interactive Prodigy4.0 Qualit
User > lan search = iy
chiocker engine Metric Q)
7 Quality
= s Metric Q)
. *-——0—0—0—0—0—0
improved plan =
partial order ® search trace for
plan improved plan

Figure 3.1: Architecture of QUALITY, that learns control knowledge to improve the quality of plans.
QUALITY automates the quality mapping problem of translating the non-operational quality metric
) p into operational quality control knowledge that can be used at planning time.

e The glass-box approach followed in PRODIGY’s design, i.e. the ability to introspect fully
into its decision cycle and thus modify it at will, allows the learner to notice gaps in
the control knowledge and reason about how to fill these gaps [Pérez, 1994]. These
gaps correspond to learning opportunities and arise by finding wrong problem solving
decisions, where search deviated towards the worse plan. These suboptimal decisions
are due either to a lack of control knowledge or to wrong or conflicting preferences
suggested by the current control rules. Only the opportunities that appear earlier in the
search trace (the sequence of the decisions made by the planner) are explored by the
learning mechanism. What is learned depends on the learning opportunity: if no control
knowledge was available that would suggest the desired alternative, a new control rule
is learned; if conflicting preferences were suggested by several control rules, a priority
between the rules is learned. If the present plan cannot be improved, nothing is learned.

e The quality mapping problem Quality(D,Q)p) addressed by QUALITY entails a change
of representation from the knowledge about quality encoded in the domain-dependent
plan quality metric ()p into knowledge operational at planning time. As QUALITY learns
incrementally with experience, the mapping is more precisely defined as:

33

34 CHAPTER 3. SEARCH CONTROL RULE LEARNING

Quality: D x Q)p x E — Decision-Controlp g,

where F is the actual planning experience including the human expert improvements that
bias the learning.

e Operational knowledge is needed because the plan and search tree are only partially
available when a decision has to be made. The translated knowledge is expressed as
search-control knowledge in terms of the problem solving state and meta-state, such as
which operators and bindings have been chosen to achieve the goals, or which are the
candidate goals to expand.

e We do not claim that the learned control knowledge will necessarily guide the planner
to find optimal plans, but that the quality of the plans will incrementally improve with
experience, as the planner sees new interesting problems in the domain.*

The sections that follow describe in detail the different parts of the architecture.

3.2 The Interactive Plan Checker

QUALITY can interact with a human expert so that the expert suggests variations to a given
plan that may produce a plan of better quality. This interaction is performed by a module,
the interactive plan checker, whose purpose is to capture the expert knowledge about how to
generate better plans in order to learn quality-enhancing control knowledge. The interactive
plan checker obtains a better plan from the domain expert and tests whether that plan is correct
and actually of better quality. The interaction with the expert is at the level of plan steps,
i.e. concrete actions to perform, which correspond to instantiated operators, and not at the
level of the full range of planning time decisions. This relieves the expert of understanding
PRODIGY4.0’s search procedure, a very important feature to interact productively with domain
experts who are not knowledge engineers. Section 3.2.1 describes the interactive plan checker.
Section 3.2.2 presents an example and additional details.

3.2.1 Description

The interactive plan checker offers to the expert the initial plan obtained by the planner with
the current knowledge as a guide to build a better plan. The expert can add, remove, or modify
the steps of the initial plan. A plan step is an instantiated operator, and it is represented with the
operator name and the values (bindings) with which the operator variables are instantiated. The

“However the methodology used to evaluate QUALITY’s performance in the experimental results sections
separates the training phase (in which learning occurrs) from the test phase (in which learning is inhibited).

3.2. THE INTERACTIVE PLAN CHECKER 35

initial plan is presented in menu form and the expert suggests in sequence the steps that make
up a better plan. At each point the expert may choose any step from the initial plan, or provide
a new step. The step is checked for applicability in the current state. If the preconditions of
the operator are true in the state, the step execution is simulated and its effects are added to
or deleted from the state, effectively modifying it. Note that the plan is built forward, and the
order in which the steps are provided is important, as the state is updated with each step and the
effects of one step may preclude the applicability of the preconditions of the next. At any time
the expert may ask to see the current state. When the expert finishes inputting the plan steps,
the checker verifies that the plan provided satisfies the problem goal. Note that by construction
both the initial plan and the expert plan are correct > but they differ in their quality. Finally the
quality metric is applied to the plan provided and its value shown to the expert, who may then
decide to abandon the plan and restart the process to provide another plan.

The interaction of the expert with the interactive plan checker, and thus with QUALITY, is only
at the level of plan steps, that is, of instantiated operators. Operators represent actions in the
world. On the other hand, inference rules usually do not correspond semantically to actions in
the world and are used only to compute the deductive closure of the current state [Carbonell et
al., 1992]. The plan checker does not require that the user specifies inference rules as part of the
plan (neither are they shown as part of the initial plan), but it fires the relevant ones as needed.
The features of the interactive plan checker that we have described allow the domain expert
to remain oblivious to the planning algorithm, in particular to PRODIGY4.0’s decision points,
and also to the planner’s control-knowledge representation language. The expert only needs to
know which are the available operators, their parameters (variables), and their preconditions
and effects. This is a reasonable assumption if the expert has provided the knowledge to build
the domain. An additional assumption is that the expert’s model of plan quality is consistent
with the quality metric.

Figure 3.2 describes the interactive plan checker in detail. In Step 5 the expert may pick an
operator from the old plan, which is presented in menu form, or propose a totally new operator.
This process is shown in Figure 3.3. At each point s/he can ask to see the current state (Steps 4-
5). If a new operator is proposed (Steps 7-14 of Figure 3.3) the plan checker verifies that the
input operator name is valid and that the bindings satisfy the type specifications of the variables
indicated in the operator schema. If some bindings are not specified, or they have an illegal
values, the system tries to compute them from the variable’s type specification. For example,
the type specification of operator drill-with-twist-drill indicates that the values of the variables
that represent the diameter of the drill-bit and the diameter of the hole produced can be inferred
given the choice of tool. If more than one value is possible, the checker asks the user, possibly
suggesting a default value.

Then the operator precondition expression is tested in the current state to determine if the

3A plan is valid if the preconditions of every operator are satisfied before the operator execution. A plan is
correct if it is valid and it satisfies the goal statement [Veloso et al., 1995].

36

CHAPTER 3. SEARCH CONTROL RULE LEARNING

Interactive_plan_checker

Input: initial plan. Goal, initial_state, and current_state are global variables.

Output: a sequence new_plan_all_steps of instantiated operators and inference rules that
constitute a correct plan.

A

12.
13.
14.
15.
16.
17.
18.
19.
20.

i~

0.
1

show_operators(initial_plan)
current _state «+ initial_state
new_plan — ()
new_plan_all_steps — ()

op «+ input_operator ;; See Figure 3.3
ifop=0
then ;; user has completed plan

if satisfied_goal_in_state?
A eval_quality(new_plan) > eval_quality(initial plan)

A input_user_satisfied?(new_plan) ;; User wants further improvements
then return(new_plan_all_steps)
else goto 2
else
failed_prec — test_applicable(op) ;; See Figure 3.4
if failed_prec
then inform_user(op, failed_prec) ;;0p can’t be executed
goto 5
else current_state « apply_op(op) ;;execute op

current_state — fire_eager_inference_rules
new_plan «— append(new_plan, op)
new_plan_all_steps +— append(new_plan_all_steps, op)
goto 5

Figure 3.2: Interaction with the expert and checking of the plan obtained. Eval_quality is the plan
quality metric. Apply_op updates the current state with the effects of the instantiated operator.
In this and the next figures bold face indicates a procedure call and italics are used to represent
variables.

operator is applicable. Figure 3.4 shows this process. If the precondition is not satisfied, i.e.
the operator is not applicable, the checker notifies the expert which precondition conjunct failed
to be true (Steps 12-15 of Figure 3.2). If the operator precondition expression is satisfied, the
operator is executed and the state updated (Steps 16-20). When the new plan is completed,
if the goal is not satisfied in the final state (Step 7), or the plan has worse quality than the
previous plan according to the plan quality metric (Step 8), the plan checker informs so and

3.2. THE INTERACTIVE PLAN CHECKER 37

inpuf_operator
Input: initial_plan
Output: an instantiated operator (or 0 to indicate end of plan)

1. user_input — input_next_step

2. case user_input

3. O return(0) ;; User indicates end of plan
4, 1. show(current_state) ;; User asks to see current state
5. goto 2

6. avalid_op_number: return(nth(user_input, initial_plan) ;; Use operator from initial plan
7. *: op-and_args «— input_op_and_bindings ;; Use a new operator
8. if invalid_op_name(op_and_args)

9. then goto 7

10. invalid_bnds «— check_op_type_specification(op_and_args)

11. if invalid_bnds

12. then op_and_args — ask_for_individual_bindings_offer_defaults(invalid_bnds)
13. goto 10

14. else return(op_and_args)

Figure 3.3: Obtaining the next operator from the expert.

prompts the expert for another plan, as the focus is on learning control knowledge that actually
improves plan quality. The plan checker also allows the expert to further improve the quality
of the current plan (Step 9) as in some problems it is easier for him/her to incrementally suggest
improvements that may have been overlooked in the first revision.

As we mentioned, the interaction with the user is at the level of operators, which represent
actions in the world. In domains with inference rules, they usually do not correspond semanti-
cally to actions in the world and are used only to compute the deductive closure of the current
state [Carbonell ez al., 1992]. (Appendix A describes PRODIGY4.0’s inference rules and Fig-
ure 3.5 gives an example.) Therefore the plan checker does not require that the user specifies
them as part of the plan, but it fires the rules needed in a similar way to the planner. Each
time the state changes after executing one step, the eager inference rules are fired (Step 17 of
Figure 3.2). The lazy inference rules fire only on demand, when a precondition of an operator is
not true in the state, and they may fire on a chain (Steps 2-7 of Figure 3.4). A truth maintenance
system keeps track of the rules that are fired, and when an operator is applied and the state
changes, the effects of the inference rules whose preconditions are no longer true are undone.

This process terminates when the expert is satisfied with the quality of the current plan. Actually
the expert may terminate the dialog even if full satisfaction is not achieved (e.g. the expert
runs out of time or patience...). Still, partial quality improvement may be obtained by learning
using the current plan, as learning is incremental and robust, rather than all-or-nothing.

38 CHAPTER 3. SEARCH CONTROL RULE LEARNING

test_applicable(op)
Input: op; current_state is a global variable
Output: the first unsatisfied literal in the precondition expression

1. unsatisfied literal «— process_and_test(precond_exp(op))
2. if unsatisfied_literal

then

3. lazy_rule — find_relevant_applicable_lazy_inference_rule(unsatisfied_literal)

4, if lazy.rule 5; lazy_rule adds unsatisfied_literal
then

5. current_state «— apply_op(lazy_rule)

6. new plan_all_steps «+— append(new_plan_all_steps, lazy_rule) ;; See Figure 3.2
else

7. return(unsatisfied_literal)

8. else return(nil) ;; op is applicable

Figure 3.4: Testing if the expert-input operator is applicable in the current state. Pro-
cess_and_test processes the operator precondition expression handling the rich PRODIGY4.0
syntax (conjunction, disjunction, quantification) and tests its truth in the current state.
Find_relevant_applicable_lazy_inference_rule determines whether the unsatisfied precondition
can be added by a lazy inference rule. Therefore lazy inference rules fire only on demand.

{Inference-Rule HOLDING-DEVICE-EMPTY
(mode lazy)
(params <machine> <holding-device>)

(preconds
((<machine> Machine) (<holding-device> Holding-device))
(forall
{ (<part> Part)
(<side> Side)
(<side-pair> (and Side-Pair (gen-from-pred (sides-for-holding-device <side> <side-pair>)))))
(and (~ (holding-weakly <machine> <holding-device> <part> <gide> <side-pair>))
(~ (holding <machine> <holding-device> <part> <side> <side-pair>)))))
(effects ()

((add (is-empty-holding-device <holding-device> <machine>}))}7J
Figure 3.5: Lazy inference rule in the process planning domain. If the holding device is not holding
any part, then it is empty.

In the end the interactive plan checker returns a list of steps (instantiated operators and inference
rules) that form a correct plan [Veloso et al., 1995], i.e. one that executed sequentially starting
on the initial state will end in a state that satisfies the goal statement.

3.3. THE CONTROL-RULE LEARNING ALGORITHM: A TOP-LEVEL VIEW 39

3.2.2 Examples and Further Details

Figure 3.6 presents an example of the dialog between the interactive plan checker and the human
expert for the problem in Section 2.4.° The expert was shown the initial plan that PRODIGY4.0
found guided by the current control knowledge. That plan is in Figure 2.6(a). The expert
detected ways in which this plan could be improved and suggested them in the dialog. The
underlined text corresponds to the expert’s input. The expert starts by proposing an operator
that is not in the initial plan. S/he only inputs the operator name and is offered default binding
values for the machine and the tool. Other plan steps are input by indicating their number in
the initial plan. The resulting plan corresponds to plan (b) in Figure 2.6.

Figure 3.7 presents a second example of dialog for the same problem using the checker’s
verbose mode. The example illustrates an operator that was suggested but was not appli-
cable in the current state. The expert suggested starting by drilling the spot-hole. How-
ever the tool had not been set yet on the machine spindle and the operator could not be
applied because one of its preconditions was false. Therefore the expert inputs a step to
situate the tool in place. Note that although the precondition (is-available-tool-holder
milling-machinel) was false in the state, it could be added deductively by an inference rule.
The system found the rule, tool-holder-available, and fired it. The verbose mode illus-
trates as well the effects of applying the operator in the current state. Adding (holding-tool
milling-machinel spot-drilll) to the state forced the TMS to retract from the state facts
like (is-available-tool-holder milling-machinel) that were added by inference rules
supported by the operator effect. When the operator was eventually applied, all the eager
inference rules were fired, mimicking PRODIGY4.0’s behavior at operator application time.

3.3 The Control-Rule Learning Algorithm: A Top-Level View

Figure 3.8 shows QUALITY’s basic procedure to learn quality-enhancing control knowledge, in
the case that a human expert provides a better plan. The procedure assumes that the expert and
the system share the quality metric ()p. Steps 2, 3 and 4 correspond to the interactive plan
checking module, described in Section 3.2, that asks the expert for a better solution S, and
checks for its correctness. Step 6 constructs a problem solving trace from the expert solution
and obtains decision points where control knowledge is needed, which in turn become learning
opportunities. Step 8 corresponds to the actual learning phase. It compares the plan trees
obtained from the problem solving traces in Step 7, explains why one solution was better than
the other, and builds new control knowledge. The sections that follow describe these steps in

$Developing the user interface was not a goal of this thesis. Thus the interface shown in the figure leaves
much room for improvement. A more user-friendly interface, possibly integrated with PRODIGY4.0’s graphical

user interface, is under development.

40 CHAPTER 3. SEARCH CONTROL RULE LEARNING

This is the initial solution obtained by the planner:

1. <put-in-drill-spindle drilll spot-drilll>
<put-holding-device-in-drill drilll visel>
<clean parts5>
. <put-on-machine~table drilll part5>
<hold-with-vise drilll visel part5 sidel side2-side5>
<drill-with-spot-drill drilll spot-drilll visel part5 holel sidel side2-side5 1.375 0.25>
<put-tool-on-milling-machine milling-machinel plain-milll>
<release-from-holding-device drilll visel part5 sidel side2-side5>

9. <remove-holding-device-from-machine drilll wvisels>

10. <put-holding-device-in-milling-machine milling-machinel visel>

11. <remove-burrs part5 brush7>

12. <clean part5>

13. <put-on-machine-table milling-machinel part5>

14. <hold-with-vise milling-machinel visel part5 sidel side3-side6>

15. <face-mill milling-machinel part5 plain-milll visel sidel side3-side6 height 3 2>
compute-cost = 28

[IS T N RN

[setting the initial state]
Enter each operator as an operator number (if it was in the previous plan)

for a new operator, or ! to see the current state. Terminate with 0.
Op number> *
Input instantiated operator (no parens): put-tool-on-milling-machine

Variable <MACHINE> has no value. Its type specification is MILLING-MACHINE.
Input a value [MILLING-MACHINEl]:

Variable <ATTACHMENT> has no value. Its tvpe specification is (OR MILLING-CUTTER DRILL-BIT) .
Input a value [END-MILL1]: spot-drilll
#<PUT-TOOL-ON-MILLING-MACHINE [<MACHINE> MILLING-MACHINE1l] [<ATTACHMENT> SPOT-DRILL1]>

Op number> 10
10. #<PUT~-HOLDING-DEVICE-IN-MILLING-MACHINE [<MACHINE> MILLING-MACHINEl] [<HOLDING-DEVICE> VISE1]>

Op number> 12
12. #<CLEAN [<PART> PARTS5]>

Op number> 13
13. #<PUT-ON-MACHINE-TABLE {<MACHINE> MILLING-MACHINEl] [<PART> PART5] [<ANOTHER-MACHINE> ()]>

Op number> 14
14. #<HOLD-WITH-VISE [<HOLDING~DEVICE> VISEl] [<MACHINE> MILLING-MACHINEl] [<PART> PART5] [<SIDE> SIDE1l] [<SIDE-PAIR>

Op number> *
Input instantiated operator (no parens): drill-with-spot~drill-in-milling-machine milling-machinel spot-drilll visel part5

holel sidel side3-sideé

Variable <LOC-X> has no value. Its type specification is (AND HOLE-LOCATION (X-LOCATION-OF #<P-O: PART5 part> <LOC-X>)).

Input a value [NIL]: 1.375
Variable <LOC-Y> has no value. Its type specification is (AND HOLE-LOCATION (Y-LOCATION-OF #<P-O: PARTS part> <LOC-Y>)).

Input a value [NIL]: 0.25
#<DRILL-WITH-SPOT-DRILL-IN-MILLING-MACHINE [<MACHINE> MILLING-MACHINE1] [<DRILL-BIT> SPOT-DRILL1] [<HOLDING-DEVICE> ...

Op number> *
Input instantiated operator (no parens): remove-tool-from-machine milling-machinel spot-drilll

#<REMOVE-TOOL-FROM-MACHINE [<MACHINE> MILLING-MACHINEl] [<TQOOL> SPOT-DRILL1]>

Op number> 7

7. #<PUT-TQOL-ON-MILLING-MACHINE ‘[<MACHINE> MILLING-MACHINE1l] [<ATTACHMENT> PLAIN-MILLL]>

Op number> 15

15. #<FACE-MILL [<MACHINE> MILLING-MACHINEl] [<MILLING-CUTTER>
PLAIN-MILL1] [<HOLDING-DEVICE»> VISELl] [<PART> PART5] [<DIM> HEIGHT] ...
Op number> 0

Solution:
1. <put-tool-on-milling-machine milling-machinel spot-drilll>
2, <put-holding-device-in-milling-machine milling-machinel visel>
3. <clean part5>
4. <put-on-machine-table milling-machinel part5>
5. <hold-with-vise milling-machinel visel part5 sidel side3-side6>
6. <drill-with-spot-drill-in-milling-machine milling-machinel spot-drilll visel part5 holel sidel side3-side6 1.375 0.25>
7. <remove-tool-from-machine milling-machinel spot-drillls>
8. <put-tool-on-milling-machine milling-machinel plain-milll>

9. <face-mill milling-machinel part5 plain-milll visel sidel side3-sidef height 3 2>
compute-cost = 15
Do you want to try another solution? no

Figure 3.6: Example of dialog with the interactive plan checker, slightly edited for presentation
purposes. The underlined text corresponds to the expert’s input. The plan being interactively
improved is the solution plan to the problem introduced in Section 2.4.

3.3. THE CONTROL-RULE LEARNING ALGORITHM: A TOP-LEVEL VIEW 41

[setting the initial state]

Op numbers> *

Input instantiated operator (no parens): drill-with-spot-drill-in-milling-machine milling-machinel spot-drilll visel part5s
holel sidel side3-sideé 1.375 0.25

Checking step #<DRILL-WITH-SPOT-DRILL-IN-MILLING-MACHINE [<MACHINE> MILLING-MACHINEl1] [<DRILL-BIT> SPOT-DRILL1] ...
Precondition #<HOLDING-TOOL MILLING-MACHINEl SPOT-DRILL1> is false in state.
Step #<DRILL-WITH-SPOT-DRILL-IN-MILLING-MACHINE [<MACHINE> MILLING-MACHINEl] [<DRILL-BIT> SPOT-DRILL1l) [<HOLDING-DEVICE> ...

Op number> *
Input instantiated operator (no parens): put-tool-on-milling-machine milling-machinel spot-drilll

Checking step #<PUT-TOOL-ON-MILLING-MACHINE [<MACHINE> MILLING-MACHINEl] [<ATTACHMENT> SPOT-DRILLL]>.

Precondition #<IS-AVATILABLE-TOOL-HOLDER MILLING-MACHINEl> is false in state.
Testing lazy rule TOOL-HOLDER-AVAILABLE... Pired. ’
Adding #<IS-AVAILABLE-TOOL-HOLDER MILLING-MACHINEl> to the state.
Testing lazy rule TOOL-AVAILABLE... Fired.
Adding #<IS-AVAILABLE-TOOL SPOT-DRILL1> to the state.
Applying operator:
Adding #<HOLDING-TOOL MILLING-MACHINEl SPOT-DRILL1> to the state.
Processing dependents...
Deleting #<IS-AVAILABLE-TOOL SPOT-DRILL1> from the state.
Deleting #<IS-AVAILABLE-TOOL-HOLDER MILLING~MACHINEl> from the state.
Step #<PUT-TOOL-ON-MILLING-MACHINE [<MACHINE> MILLING-MACHINEl] {<ATTACHMENT> SPOT-DRILL1]> executed.

Testing eager rule PART-NOT-AVAILABLE~AND-HOLDING-DEVICE-NOT-EMPTY~-AND-MACHINE-NOT-AVAILABLE,
Testing eager rule TABLE-AND-HOLDING-DEVICE-NOT-AVAILABLE.

Testing eager rule TOOL-AND-TOCL-HOLDER-NOT-AVAILABLE... Fired.

Testing eager rule MACHINE-NOT-AVAILABLE.

Figure 3.7: A different dialog for the same problem, showing the interactive plan checker in a
verbose mode, and the behavior when an operator cannot be executed.

. Run PRODIGY4.0 with the current set of control rules and obtain a solution 5,,.
2. Show .5}, to the expert.
Expert provides new solution S, possibly using .5, as a guide.
. Test S,. If it solves the problem, continue. Else go back to step 2.
4. Apply the plan quality metric to S..
If it is better than S, continue. Else go back to step 2.
. Compute the partial order P for S, identifying the goal dependencies between plan steps.
6. Construct a problem solving trace corresponding to a solution .S/, that satisfies P.
This determines the set of decision points in the problem solving trace
where control knowledge is missing.
7. Build the plan trees T} and T, corresponding respectively to the search trees for 57 and S,,.
8. Compare 77 and T, explaining why S, is better than .S, and build control rules.

[y

98]

n

Figure 3.8: Top level procedure to learn quality-enhancing control knowledge.

detail. As it was mentioned before, the subject of this chapter is learning quality-enhancing
control knowledge represented as control rules. Chapter 4 describes a different way to represent
such control knowledge and how it is learned. The only difference in the top-level algorithm
of Figure 3.8 will be Step 8.

42 CHAPTER 3. SEARCH CONTROL RULE LEARNING
3.4 Constructing A Problem Solving Trace From The Plan

Once the expert has provided a correct and good plan, the planner is called in order to generate
a problem solving trace, i.e. a sequence of decisions which if taken by PRODIGY would produce
that plan. The goal of this process is to obtain a set of decision points where the default search
heuristic, or the currently available control knowledge, needs to be overriden in order to guide
PRODIGY4.0 towards the expert’s good quality solution. Those decision points become the
learning opportunities for our algorithm.

To force the planner to generate a given solution, the system uses PRODIGY4.0’s signal and
interrupt handling mechanism [Carbonell ez al., 1992]. The signal mechanism provides a way
to run user-provided code at regular intervals, as often as once per node, during problem solving.
To generate the given solution, PRODIGY4.0 starts searching for a plan using the default control
heuristics and the available control knowledge. At each decision node a function called by the
signal mechanism checks that the current alternative can be part of the desired solution. If the
check fails, an interrupt is generated and PRODIGY4.0 is forced to backtrack. For example, at a
bindings node the interrupt mechanism checks whether the instantiated operator is part of the
expert’s plan, and if not it tries a different set of bindings. To allow plans in which an operator
with the same bindings occurs multiple times, the mechanism keeps track of the operators in
the plan that have already been expanded, and in some cases determines whether the expansion
order will eventually Iead to the desired plan. PRODIGY is not actually told what to do — it is just
told to try again at the appropriate divergence point from the expert’s better solution. Once this
expanded search produces the correct alternative, the node stores the alternative tried initially,
that is, that suggested by the current control knowledge, and the desired one. Later on the
learner will determine what control knowledge would be needed so that the correct alternative
1is explored first in future planning under similar conditions.

To determine the backtracking point when the alternative is rejected because it is not part of
the desired plan, some dependency-directed heuristics are used in addition to PRODIGY4.0’s
default chronological backtracking. For example, if the order of operator application so far is
not consistent with the expert’s solution, backtracking may try a different goal ordering at an
earlier node in the search tree. Due to PRODIGY4.0’s nonlinear behavior and flexibility in the
use of search strategies [Stone et al., 1994], in particular different goal ordering and operator
application ordering strategies, there may be several ways to generate a plan. The backtracking
heuristics used by the algorithm described in this section prefer backtracking to earlier points
on the search trace, and trying different goal orderings.

In some cases the algorithm does not require that the solution obtained be exactly the same as
the one provided by the expert. PRODIGY4.0 includes an algorithm to extract a partially ordered
graph from the totally ordered plan [Veloso, 1994, Veloso et al., 1990] to capture the ordering
constraints among the steps in the plan. For certain plan quality metrics, such as those additive
on the cost of the operators in the plan, all the linearizations of the partial order of a plan are

3.5. BUILDING PLAN TREES 43

equally acceptable because they have the same cost. The algorithm that constructs the search
trace from the expert’s plan is content with obtaining a trace for any of its linearizations. If n is
the number of operators in the plan, p is the average number of preconditions, d is the average
number of delete effects, and a is the average number of add effects of an operator, then the
algorithm that generates the partial order runs in O((p + d + a)n?) [Veloso, 1994]. Empirical
evidence shows that the partial-order generator runs in negligible time compared to the search
time to generate the input totally ordered plan.

3.5 Building Plan Trees

At this point, two problem solving traces are available. One was obtained using the current
control knowledge. The second corresponds to the generation of the better plan. QUALITY
builds a plan tree from each of them. The nodes of a plan tree are the goals, operators, and
bindings, or instantiated operators, considered by PRODIGY4.0 during problem solving in the
successful search path that lead to that solution. The plan trees are built by translating the nodes
in the successful path of the search trace into nodes in the plan tree. Abandoned paths that lead to
_ backtracking are ignored. In the plan tree, a goal is linked to the operator considered to achieve
the goal, the operator is linked in turn to its particular instantiation (bindings) chosen and the
bindings are linked to the subgoals corresponding to the instantiated operator’s preconditions.’
Leaf nodes correspond to subgoals that were true when PRODIGY4.0 tried to achieve them.

The fact that a subgoal is true when PRODIGY4.0 tries to achieve it depends on which operators
have been applied at that point. This information about the order of operator application is
available from the problem solving trace but cannot be represented by just the parent child
relationship between the plan tree nodes. For this reason the plan trees contain additional
information in the form of achievement and deletion links.! Each leaf node records, in a
how-achieved field, how the subgoal in the node was achieved. The content of that field is
one of the following:

e The constant :initial-state if the subgoal was achieved because it was true in the
initial state.

e A link to another goal node in the plan tree that corresponds to the same subgoal if it was
achieved first by subgoaling and is still true.

7PRODIGY4.0 uses inference rules for planning as if they were operators, i.e. for achieving subgoals, When we
mention operators in this context we refer to both operators and inference rules.

81f a subgoal is shared by two or more operators as a common precondition of them, it appears multiple times
in the plan tree. For that reason we call them trees, as a node can only have one parent. Exceptions are nodes
connected by achievement and deletion links.

44 CHAPTER 3. SEARCH CONTROL RULE LEARNING
e A link to a binding node whose application achieved the subgoal as a side effect.’

The goal nodes may also store how-deleted links to binding nodes whose application deleted
the node subgoal as a side effect. Both the achievement and deletion links are bidirectional: a
bindings node may contain applied links to the goal nodes corresponding to its side effects;
a goal node may contain links achieves-too to other goal nodes corresponding to the same
subgoal.

Figure 3.9 shows the plan trees corresponding to two plans for the same problem. The problem
has two top-level goals, g and g,. The two plans are different in that op, and op), were chosen
respectively to achieve goal ¢,. op, and op) have different subgoals. Note that in plan tree (b)
subgoal g1, is shared between the subtrees for the two top-level goals g, and g,, and needs to be
achieved only once. This information is stored in the form of a how-achieved link as shown
in the figure. The reciprocal achieves-too link is not shown. On the other hand, in the plan
tree (a) the subgoals for the two top-level goals are different (g1 and g,2) and more steps are
needed to satisfy both of them. Recapitulating, the two plans differ in the operator and bindings
chosen to achieve g,. Those decisions are the ones for which the guidance provided by control
knowledge is needed. They correspond to learning opportunities.

Assigning cost to the plan tree nodes: After the plan trees have been built, the plan quality
metric is used to assign costs to their nodes, starting with the leaves and propagating them back
up to the root. The box in Figure 3.9 summarizes how the cost computation is done. The leaf
nodes have cost 0. A bindings (instantiated operator) node has the cost given by the quality
metric, plus the sum of the costs of achieving its preconditions, i.e the costs of its children
subgoals. Operator and bindings nodes have the same cost.!° A goal node has the cost of the
operator used to achieve it, i.e. of its child. Note that if a goal had to be reachieved, it has
more than one child operator. Then the cost of achieving the goal is the sum of the costs of the
children operators. Finally the root cost will be the cost of the plan. The plans for the plan trees
in Figure 3.9 have different costs and plan tree (a) corresponds to the plan of worse quality.

3.6 Finding Learning Opportunities

The plan trees corresponding to the two traces are now available for the next step in the
learning algorithm (Step 8 in Figure 3.8), namely generating the new control knowledge. The
rationale of the algorithm is to explain why one solution is better than the other and transform
this explanation into appropriate control knowledge that results in the generation of the better

%If the subgoal is a primary effect of the binding node, it means that the parent of the binding node is that

subgoal, which is precisely the previous case.
107nference rules have cost 0 as their application does not correspond to the performance of any actions, but

rather the internal computation of the state’s deductive closure.

3.6. FINDING LEARNING OPPORTUNITIES

how-achieved

O Goal node
O Operator node
@ Bindings (instantiated operator) node

(a) Plantreep (b) Plantree 4

€;op: cost of instantiated operator zop, given by the plan quality metric
¢(n):cost associated with node n

Y goal node ng, ¢(ny) = 0if ny is a leaf node

c(nop) if nop is a child of ny
¥ operator node 7.y, €(nop) = ¢(N0p) if N40p 18 a child of 7,y
V bindings node niop, ¢(Tiop) = €iop + 2o, cchildren(niop) €(Mg)

(©
Figure 3.9: (a) and(b) Plan trees corresponding to two solutions of different quality for the same
problem. A number next to a node indicates the cost of the subtree rooted at that node. For clarity
some nodes are not displayed. The cumulative cost of each subtree is propagated up to its ancestors.
In the sections that follow the plan tree on the right, which corresponds to the better solution, will
be called plantree 4. The plan tree on the left will be called plantreeg. (c) Computation of the cost
of the plan trees.

45

solution in similar future situations. Figure 3.10 describes the top level view of the process.
Learn is given the two plan trees and produces a set of control rules. Variable plantree 5
corresponds to the improved solution, and plantreep to the more costly solution, i.e. the one

46 CHAPTER 3. SEARCH CONTROL RULE LEARNING

obtained by the planner with the current control knowledge. In Step 2 the plan trees are
compared in order to find the learning opportunities, i.e. reasons why the cost of the solution in
plantree 4 is smaller than that of plantreep. Then these opportunities are explored in Steps 7-11,
possibly leading to the generation of control rules.

learn(plantree 5,plantreeg)

1. rule_structs —)

2. learning_opportunities «+
- analyze_goal(root(plantree 1), root(plantreeg)) ;; Figure 3.11
3. for each learning_opportunity € learning_opportunities
4, g4 « learning_opportunity.A(learning_opportunity)
5. gp + learning opportunity.B(learning opportunity)
6. decision « learning_opportunity.decision(learning_opportunity)
7. case dec_type(decision)
8. :operator_or_bnds ;; Figure 3.13
9. rule_structs «— append(rule_structs, learn_op_and_bnds_dec(g 4 ,decision))
10. :goal ;; Figure 3.34
11. rule_structs «— append(rule_structs, learn_goal_dec(g4,95,decision))
12. create_rules(rule_structs) , ;; Figure 3.20

Figure 3.10: Top-level call to the learning mechanism once the plan trees have been built: finding
learning opportunities given the plan trees and exploring them to create new control knowledge.

A learning opportunity is composed of a goal node g4 in plantree4 which has cost 0, and a
corresponding goal node gg in plantreep with cost greater than 0. The different costs of g4 and
gp support the difference in cost between the two solutions. The algorithm does not exploit
as learning opportunities cases in which cost(ga) < cost(gg) due only to a difference in cost
of the operators that achieve g4 and gg. Section 3.6.2 discusses this limitation. A learning
opportunity also includes a decision point in the problem solving process where the decision
caused the planner to eventually expand those goal nodes and achieve them with such costs.
Step 2 does this credit assignment process. It determines such pairs of goal nodes with cost
divergence in the plan trees and analyzes them finding the relevant decision point for each of
them. The process of constructing the problem solving trace from the good plan (described
in Section 3.4) determined a set of decision points where the planner’s decision needed to
be overriden to lead to that plan. The credit assignment process prefers the earliest of those
points relevant to the two goal nodes g4 and gp. Earliest refers to the order in the sequence
of planner’s decision, not in the final linearized plan. After the learning opportunities are
determined Steps 7-11 in Figure 3.10 utilize the type of the decision, operator and bindings
choice, or a goal ordering, to select a particular learning mechanism.

To determine (Step 2) the learning opportunities, i.e. the goal nodes where there are cost

3.6. FINDING LEARNING OPPORTUNITIES 47

divergences, analyze_goal, in Figure 3.11, simultaneously traverses the plan trees in preorder,
starting at their roots. At each call of analyze_goal the cost of two goal nodes, g_goal_node 4
and g_goal_nodep, is compared. The cost of a goal node is O (a) if that goal was true in the initial
state of the problem, (b) if it was added by an operator chosen to achieve another occurrence of
the same goal in a different subtree, or (c) if it was added as a side effect of an operator relevant
to another goal. Note that this information is stored in the plan tree as links between the nodes
(see Section 3.5).

Two costs are associated with nodes of a plan tree:

e g-node_cost(plantree_node): the cost associated with a plan tree node. It corresponds
to the cost of the subtree rooted at that node. Section 3.5 explained how this cost is
obtained.

e op_cost(plantree_operator_node): the cost that the plan quality metric assigns to the
operator expanded in plantree_operator_node. In general it is applicable at bindings
nodes (i.e. the quality metric applies to instantiated operators).

Analyze_goal stops traversing the plan trees when the cost of achieving g_goal_node 4 is 0 and
the cost of achieving g_goal_nodep is greater than 0 (Steps 5-11). A learning opportunity is
detected in this case, and relevant_decision associates with g_goal_node 4 and q_goal_nodeg a
problem solving decision that lead to their expandsion as subgoals. This is the only case where
the learner is able to exploit a learning opportunity.

Analyze_goal also stops traversing the plan trees when the cost of g_goal_node 4, which corre-
sponds to the good quality solution, is greater than that of g_goal_nodeg, a node in the plan tree
for the lesser quality solution (Steps 12-14). Obviously, this cost divergence cannot explain
why solution A is better than solution B, and the learner ignores it and stops exploring those
subtrees.!! Instead, it tries to find a different branch of the plan tree to explain the cost diver-
gence. Analyze_goal also stops when the cost improvement is due the difference of the cost
of the individual operators chosen (child(g_goal node 4) and child(g_goal_nodeg) respectively
(Step 13) and not to the difference of cost of achieving those operators preconditions. The
learning algorithm is not able to deal with this case and nothing is learned.

In the only remaining case (Steps 15-22), the cost of the subtree for g_goal_node, is smaller
than the cost of the subtree for g_goal nodep. This means that further exploration (or
plan tree traversal) may detect an explanation of the better quality of A. Therefore ana-
lyze_goal is called recursively with the preconditions of the operators child(g_goal_node 4) and
child(g_goal_nodeg) used to achieve g_goal_node 4, and g_goal_nodeg respectively. Compara-
ble_preconds_p matches pairs of preconditions of those operators that have a comparable cost.

"Tgnoring this condition might cause inaccurate overgeneralization if in future similar episddes the difference
in cost between g_goal_node 4 and q_goal_nodep could be larger than the savings obtained by taking the suggested
guidance.

48 CHAPTER 3. SEARCH CONTROL RULE LEARNING
analyze_goal(¢_goal_node, g-goal_nodeg) ;; traverses plantrees in preorder
1. op-_costy «— op-cost(child(g_goal node,) ;> cost according to quality metric
2. op-costg « op_cost(child(g-goal_nodeg)
3. subtree_costy «+ q-node_cost(q_goal_node,) ;; cost of the subtree rooted at node
4. subtree_costg «+ q-node_cost(g_goal nodepg)
5. if subtree_costy, = 0 A subtree_costg >0
then
6. learning_opportunity «— ;; this is a learning opportunity
7. make_learning_opportunity
8. :decision relevant_decision(q_goal_node 4, g_goal_nodeg)
9. A g-goal_node 5
10. :B " g-goal nodep
11. return({learning_opportunity})
12. else if subtree_costy > subtree_costg ;; if subgoal is cheaper in expensive plan tree
13. V (op-costp — op_costs) > (subtree_costp— subtree_cost,)
;; or if improvement is due only to different operator cost
then
14. return(nil) ;; don’t explore further
else
15. learning_opportunities « ()
16. for each <subgoal_gnode 4 ,subgoal_gnodep>
17. such that subgoal_gnode, € children(child(g_goal node,))
18. A subgoal_gnodeg € children(child(g_goal_nodeg))
19. A comparable_preconds_p(subgoal_gnode 4 ,subgoal_gnodep)
20. learning_opportunities «—
21. append(learning_opportunities, analyze_goal(subgoal_gnode 4,subgoal_gnodeg))
22. return(learning_opportunities)

Figure 3.11: Traversing the plan trees to detect learning opportunities. Q_goal_node refers to
a plan tree goal node. Q_mode_cost(rnode) is the cost associated with node in the plan tree.
Op_cost(operator_node) is the cost that the plan quality metric assigns to the operator expanded in
operator_node.

Note that if the operators are different their preconditions may be so, and the algorithm is not
able to analyze them. If the operators differ on their bindings, or have similar preconditions,
analyze_goal is able to proceed down the plan trees. This analysis of related preconditions is
done in a domain independent way. For example, in the case of the two alternative operators
whose effect is drilling a hole in a part, namely drilling in the milling machine and drilling in
the- drill press, their preconditions are very similar, as they require that both the part and an

3.6. FINDING LEARNING OPPORTUNITIES 49

appropriate tool have been placed on the corresponding machine.

3.6.1 An Example

We now illustrate this process with the plan trees in Figure 3.9. The plan tree on the right
corresponds to the better quality solution, plantree, in the algorithms sketched above. An-
alyze_goal is first called with the roots of both plan trees and traverses them recursively in
preorder. The cost of the goal nodes corresponding to g; are first compared. As the cost is
smaller in plantree 4, the traversal proceeds on their subtrees (Steps 15-22 of analyze_goal).
The cost of g1 is higher in plantree 4 than in plantreeg. This corresponds to Step 12 and is one
of the cases that the learner does not explore further, as it does not support in explaining why
solution A is better than solution B.

Analyze_goal proceeds traversing the plan trees. gi» has cost 0 in plantree, and cost 12 in
plantreep. There are links in plantree 4 between the two occurrences of g;,, which indicate that
the cost is 0 because it had already been achieved as a precondition of ¢op}. According to the
algorithm (Steps 5-11) a learning opportunity is detected. Relevant_decision assigns credit for
the O cost of g1 to the choice that the planner made of op), over op, to achieve top level goal
g2- The learning opportunity built is <g12,, 912, , dec_point opa,0p,> where g1, is the plan tree
node for g1, with cost 0 in plantree, g1z, is the plan tree node for ¢y, with cost greater than 0

in plantreeg, and dec_point opa.0p), is the problem solving decision point, where op, should be

preferred over op).
The plan tree traversal continues now comparing the cost of ¢, in both trees. As they are found
equal (Step 12), analyze_goal terminates returning the only learning opportunity detected.

3.6.2 Why These Learning Opportunities

Figure 3.12 presents a high level, informal description of the explanation: the learner finds an
explanation of why solution A is of better quality than solution B by finding instances of nodes
in the plan trees that satisfy the description in the figure and then expressing it in operational
terms. This is a key point of the learning process. The description is operational if it can be
used at problem solving time, i.e. at the decision point captured by the learning opportunity.
These operationalized descriptions will be the core of the left-hand sides of the newly learned
rules and will be tested at future search decision points to guide the planner towards the better
solution. The next section describes how the rules are created.

The learning algorithm exploits only a limited class of learning opportunities: those cases in
which cost(ga) = 0 and cost(gg) > 0. The algorithm cannot learn from other cases in which
cost(ga) < cost(gg), due only to a different cost of the operators used to achieve ¢4 and gg

50 CHAPTER 3. SEARCH CONTROL RULE LEARNING

Solution A is better (cheaper) than solution B because
g-goal_nodeg is a subgoal with cost greater than 0
A q-goal_node 4 is a subgoal and has cost 0
because it was:
a) true in the initial state, or
b) the precondition of some operator, and was achieved as such, or
¢) achieved as a side effect of an operator chosen for another goal

Figure 3.12: An informal description of the explanation that underlies the algorithms presented.

(Step 13). Additionally the algorithm cannot learn when those operators have the same cost
but it cannot find comparable preconditions (Step 19). These cases limit the kinds of quality
metrics for which the algorithm is suited to those in which the improvements in quality, i.e.
savings in plan cost, are due to sharing the work among different parts of the plan. At planning
time this translates in sharing subgoals among plan operators by making appropriate operator
and bindings choices. These sources of improvement are common in many domains. Process
planning is a good example because sharing of subgoals maps into sharing of parts or subparts
of a set-up, and the number of set-ups is frequently related to the quality of the plan.

3.7 Learning Operator and Bindings Control Rules

The last section described how the plan trees are traversed and compared in order to find
learning opportunities. This and the coming sections present the algorithms that exploit those
learning opportunities in order to build quality-enhancing search control rules. Although the
examples used to illustrate these algorithms are mostly taken from the process planning domain,
the algorithms are domain-independent.

Each learning opportunity has associated a decision point where the learner detected a gap in
the current control knowledge. This is the time to reason about how to fill those gaps, and
the learner, in Steps 7-12 of Figure 3.10, selects a particular mechanism to explore each of
them. The choice depends on the kind of control knowledge that is needed at the decision
point, namely to learn operator and bindings control rules, or to learn goal-ordering control
rules. Section 3.9 describes the procedure to learn goal-preference control rules. This section
describes the procedure to learn operator and binding control rules. Note that PRODIGY4.0
distinguishes clearly between choosing an operator schema relevant to a goal and choosing
a way to instantiate that schema among several possible instantiations. Therefore there are
distinct types of control rules for these distinct decisions. However, conceptually, and for the
sake of plan quality, both decisions are sufficiently related to merit simultaneous consideration.
The cost of a plan step and its influence on the cost of the rest of the plan depends equally on

3.7. LEARNING OPERATOR AND BINDINGS CONTROL RULES 51

the operator schema choice and on the bindings choice.

Figure 3.13 describes the top level function of the mechanism to learn operator and bindings
control rules. This function, learn_op_and_bnds_dec is called for each learning opportunity
<g4, 9B, dec_pornt> with the goal node g4 of plantree 4, and the decision point. The function
will determine which conditions are available at the decision point to explain both why g4
became a subgoal and why it was achieved with cost 0. This is done by traversing the tree up,
and can be seen as propagating those facts up the plan tree to the decision point. Figure 3.12
showed the reasons why the cost of g4 may be 0, while the cost of the corresponding goal
node gp in plantreep was greater than 0. Steps 1-13 of learn_op_and_bnds.dec explore them
finding the starting points to traverse the plan tree as follows:

e g4 had cost O because it was true in the initial state (Steps 2-5): learn_op_and_bnds_dec
will go up the plan tree starting on g4 to justify why g4 was expanded as a subgoal.
Every decision in the path up from g4 where an operator was chosen is responsible for
ga becoming a subgoal and supports this explanation. The bindings that appear in g4
are relevant to this explanation, and are also propagated up. Every decision up the tree
that chose one of those bindings among other alternatives is justified in this way. The

learn_op_and_bnds_dec(g 4, dec_point) ;394 18 a g-goal-node
1. case type(how_achieved(g,))
2 :initial_state
3 ga — 9a
4. rel_bnds «— all_bnds(g,)
5. type « :initial_state
6 :subgoaled
7 g}y + goal_to_propagate_up(g4,goal_how_achieved(g,),dec_point)
8. rel_bnds «— all_bnds(g,)
9. type + :subgoaled
10. :side_effect
11. g'y — q-goal_that_caused_side_effect(g4)
12. rel_bnds — bnds_that_caused side_effect(g,)
13. type « :subgoaled
14. rule_structs «—
propagate_conditions_up(g/,, rel_bnds, dec_point, g, type, () ;; Figure 3.14

15. return(rule_structs)

Figure 3.13: Learning operator and bindings control rules.

52 CHAPTER 3. SEARCH CONTROL RULE LEARNING

propagation terminates upon reaching dec_point and its result is the set of features of the
meta-state at dec_point that lead g4 have cost 0, as explained below.

e g4 had cost O because it was also a precondition of another operator and was achieved
by subgoaling (Steps 6-9): this is detected by following the links that indicate how ¢4
was achieved. Goal_to_propagate_up finds the goal node at which to start propagating
up: either g4 or the goal node where it was first achieved. It chooses the node whose
expansion was due to the choice made at the decision point. All the bindings that appear
in the goal node are relevant, as in the first case.

Figure 3.9 can be used to illustrate this process. In the previous section we explained how
the learning opportunity <gi2,, 9125, dec_point op2.0p) > was found. g, in the plan tree
to the right was achieved by subgoaling when it was expanded as a child precondition of
iop,. Goal_to_propagate_up returns that child g;, because its expansion was indirectly
due to the choice at the decision point dec_po_z'nt ops.oph”

e g4 had cost O because it was achieved as a side effect of an operator op relevant to
another goal g’y (Steps 10-13): q_goal_that_caused side_effect returns ¢/,. The relevant
bindings are those bindings of op that appear in ¢/, and caused the side effect g4.

Once learn_op_and_bnds_dec determines the -goal ¢/, and the relevant bindings to start the
traversal up the plan tree, propagate_conditions_up is called in Step 14. Figure 3.14 describes
it. The goal is to find the features of the meta-state at dec_point that are relevant to g4 becoming a
subgoal with cost 0. A propagation step (Steps 11-14) consists of mapping the relevant bindings
for g with the variable names of the operator op that introduced it (propagate_backwards),
pruning the bindings introduced by that operator, i.e. those that do not come from the goal the
operator is relevant for, and propagating them up in the recursive call. There may be other goal
nodes dep, achieved by achieving g and therefore with cost 0. As the algorithm is explaining
why g4 has cost 0 each dep, is also used to propagate conditions up (Steps 15-16), because its
0 cost depends on both dep, and ¢ becoming subgoals.

To illustrate this mechanism with an example, Figure 3.15 shows part of the plan tree for
the better quality solution of a process planning problem. Assume part5 is on the milling
machine table, i.e. (on-table part5 mml) is true in the state and was achieved with cost 0,
and propagate_conditions_up is called with it as the initial value of g. Assume as well that the
dec_point corresponds to the choice of drill-with-spot-drill-in-milling-machine over a different
operator. Both the part and the machine are relevant arguments of on-table for it to be true in
the state. Therefore the bindings for <mach> and <part> are propagated up (marked in gray in
the figure). All the bindings for the operator hold-with-vise came from the right-hand side,
i.e. from its parent goal holding (Step 12); the operator did not introduce any new bindings.
Of all the arguments of holding, only the machine and the part are relevant for (on-table

3.7. LEARNING OPERATOR AND BINDINGS CONTROL RULES 53

propagate_conditions_up (g, rel_bnds, dec_point, g¢',, type, rule_structs)

1. if g = root_of_plantree
2. return (rule_structs) ;;not in dec path
3. else if parent(g) = dec_point
4, goal_precond «— prepare_goal_precond(p, type, dec_point) ;; Figure 3.16
5. rule_structs — ;; Figure 3.19

cons(create_rule_struct(goal_precond,dec_point,rel_bnds), rule_structs)
6. return (rule_structs)

else
7. op «— parent_op(g)
8. if decision_was_made_p(op)
then
9. goal_precond « prepare_goal_precond(p, type, op) ;; Figure 3.16
10. rule_structs «—
cons (create_rule_struct(goal_precond, op, rel_bnds), rule_structs)

11. o «+ propagate_backwards(g, op)

12. introduced_bnds «— op_vars_and_bnds(op) \ rhs-bnds(op,parent_goal(op))
13. ¢'y «— apply_substitution(c, ¢/;)
14. rel_bnds «— apply_substitution(c, rel_bnds \ introduced_bnds)
15. for each dep, € goal_achieves_too(g)
16. rule_structs «—
propagate_conditions_up(dep,, rel_bnds, dec_point, ¢!y, type, rule_structs)
17. g +— parent_goal(op)
18. goto 1

Figure 3.14: Traversing the plan tree to propagate the relevant conditions.

part5 mml) becoming a subgoal (Step 14). They are propagated up. At that point, the choice
of drill-with-spot-drill-in-milling-machine corresponds to a decision point. The bindings for
<part> came from the right-hand side of the operator, i.e from its parent goal (has-spot
part5 holel...). However the binding for the machine was introduced by the operator and
the learned control knowledge will guide the choice of that binding. In addition, as (on-table
part5 mml) has an achievement link to the subtree for another goal, the propagation continues
on that path too (Steps 15-16).

The propagation stops when it reaches the root of the plan tree, or the dec_point. There may be
also other decision points where a decision was made to force PRODIGY4.0 into the good plan.
Decision_was_made_p in Step 8 detects whether the current node of the plan tree corresponds
to one of those operator or binding decisions. Each of these points becomes a candidate for

54 CHAPTER 3. SEARCH CONTROL RULE LEARNING

done

—_-_-___-_-_-___-_-____"‘—-———_

<pazrt> <hole> <side> «<x> <y> . .
HAS-SPOT parts, holel, sidel,1.375,.25 fdevmmnpomt

DRILL-WITH-SPOT-DRIFL- IN-MILLING-MACHINE

¥inkcd¥> <tool> <holding-dev> «<part> <hole> <side> <gide-pair> <x> <y>
| mml, spot-drilll, visel, ~parcs, holel, sidel, side3-side6, 1.375, .25

<mach> <holding-dev> <part> <side> <side-pair>
HOLDING . mml, visel, parts, sidel, side3-sideé

HOLD -W:II:TB -VISE

<mach> <holding-dev> <partd <side> <gide-pairs>

mml, visel, pare5, sidel,side3-sideé
FACE'-MI".'.I.
mml,plain-milll, vigel,parts,
height,sidel, side3-side, 2 ZPREES CHacH>

_.w ON-TABLE partS; mml
HOLDING mml, visgel, part5, side3, side2-side5 e
HOLD-WITH-VISE ,ggb
mml, visel, partS, side3, side2-side5 "op“‘z
Oy
A\
ON-TABLE part5, mml’

(@)

(control-rule prefer-drill-with-spot-drill-in-milling-machine9
(if (and (current-goal (has-spot <part> <hole> <szide> <loc-x> <loc-y>))
(known {on-table <machine> <part>))
(type-of-object <machine> milling-machine)})
(then prefer operator drill-with-spot-drill-in-milling-machine
drill-with-spot-drill))

(control-rule prefer-bnds-drill-with-spot-drill-in-milling-machinel0
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
{(current-operator drill-with-spot-drill-in-milling-machine)

(known (on-table <machine-2> <part>)) (diff <machine-2> <machine-1>)))
(then prefer bindings ((<machine> . <machine-2>)) ((<machine> . <machine-1>))))
(b)

Figure 3.15: (a) Part of the plan tree for the better quality solution of a process planning problem
used to illustrate how propagate_conditions_up works. The grayed arguments correspond to the
bindings propagated up from on-table. Those bindings were relevant for the subgoal to have cost
0. They are propagated up to the instantiated drill operator node, which introduced those variables
and corresponds to a decision point. (b) An operator preference and bindings preference rules that
would be learned from that episode. The next sections describe in detail how the rules are built.

learning control knowledge (Steps 3-5 and 8-10). Note that not only is dec_point a learning
opportunity but so are other decisions made after it on the path that lead to ¢/,’s expansion. At
each of those points, information is recorded about what conditions of the planner’s meta-state
are relevant to the explanation. This information includes:

¢ A control rule precondition expression, computed by prepare_goal_precond (in Fig-

3.7. LEARNING OPERATOR AND BINDINGS CONTROL RULES 55

prepare_goal_precond(p, {ype, dec_point)

1. case type
3. initial_state return(<known op_precond_exp(p)>)
4. :subgoaled operationalize(p, dec_point) ;; Figure 3.17

Figure 3.16: Computing a control rule precondition that justifies why g4 had cost 0.

ure 3.16), that captures why g4 had cost 0, namely if it was true in the state, it was a
pending goal,'? or one of its ancestors was a pending goal. The later case is determined
by operationalize, described in Figure 3.17. In this way the explanation is made opera-
tional to the decision point, this meaning that it is transformed in a condition that can be
tested in the problem solver’s meta-state at the time when the relevant decision should
be made.

e A determination of which of the variable bindings chosen at each decision point are
relevant to g4 becoming a O cost subgoal. These relevant bindings are a subset of the
arguments of g4. In the example of Figure 3.15, the values of <machine> and <parts>
were relevant at the decision point so that (on-table part5 machil) had cost 0.

operationalize(p, dec_point)

1. if current_goal_p(p, dec_point)

2. return(nil)

3. else if pending_goal_at_dec_point(p, dec_point)

4, return(<pending-goal op_precond_exp(p)>)
else

"5 p «— parent_goal(op)

6. operationalize(p, dec_point)

Figure 3.17: Operationalizing why g4 was a subgoal and had cost 0, i.e. representing it as an
expression that can be tested in the planner’s current state and meta-state at the decision point.
The meta-state includes knowledge of the subgoaling links and the operators expanded. A goal is
pending if its parent binding node has been expanded. The function in this figure finds out whether
p was the current goal or a pending goal at the decision point for which learning was invoked. Both
conditions can be checked at that point, i.e. they are operational.

12A pending goal is a goal pending to be achieved for which the planner has still not chosen a relevant operator.
PRODIGY4.0’s search algorithm maintains the set of pending goals at each point, and chooses the next goal to work
on from that set, thus displaying nonlinear character. The meta-predicate pending-goal checks whether its
argument is a pending goal.

56

CHAPTER 3. SEARCH CONTROL RULE LEARNING

static_precs(op, rel_bnds,goal_precond)

1

2

3
4.
5.
6
7

8
9.
10.

relevant_op_static_precs — relevant_static_precs_for_bnds(op_static_precs(op),rel_bnds)
preconds «— relevant_op_static_precs | {goal_precond}
relevant_op_vars «— op.vars_that_appear_in(rel_bnds)

U op_vars_that_appear_in(preconds)

type_precs — {)
for each rel_var € relevant_op_vars

var_type_in_prec « signature_type(rel_var,preconds)
var_type_in_op «— op_var_spec(rel_var, op)
if var_type_in_op C var_type_in_prec

push(<type-of-object rel_var var_type_in_op>, type_precs)

11. return (append (relevant_op_static_precs, type_precs))

Figure 3.18: Computing constraints on the type and value of the relevant bindings. These
constraints must be satisfied for g4 (captured in goal_precond) to become a subgoal of cost 0.

e Constraints on the type and value of those relevant bindings. These constraints are

computed by static_precs in Figure 3.18. Each predicate in a domain requires that its
arguments are of a certain type. We call this the predicate’s signature, and it is computed
at domain creation time by looking at all the operators in which the predicate appears
as a precondition or effect. Given a variable in a predicate, signature_type in Step 7
returns the possible types it can belong to. The allowed types for a variable can be further
constrained if the variable is introduced by a particular operator (Step 8). If the operator-
specified type (or combination of types) is more specific than the type required by the
signature of the conditions in which the variable appears, a type constraint will become
part of the learned rule (Steps 9-10). Summarizing, static_precs computes the constraints
that the variables in the relevant bindings must satisfy for g4 to become a subgoal of
cost 0. These constraints are obtained by looking at the operator’s type specification and
static preconditions.!?

Back to the example of Figure 3.15, in this domain the signature of holding allows any
type of machine as an argument, because holding appears as precondition or effect of all
kinds of machining operations. However, for (on-table <part> <mach>) to be shared
by the face-mill subtree and the drill subtree, the value must be of type milling machine.

All this information is stored in a data structure described in Figure 3.19, which will be later
used to generate control rules. Once all the learning opportunities have been explored, the

13Gtatic preconditions are those that cannot be added or deleted by operators. Therefore they are true only if
they are present in the initial state, or if they are added to the initial state by inference rules supported only by
other static facts. The operator static preconditions are used to prune the possible values of the operator variables.

3.7. LEARNING OPERATOR AND BINDINGS CONTROL RULES 57

create_rule_struct(goal_precond,dec_point,rel _bnds)

1. make_rule_struct

2 :current_goal parent_goal(dec_point)

3 :current_op op

4, :good decision.good(dec_point)

5. :bad decision.bad(dec_point)

6 :relevant_bnds rel_bnds

7 :goal_precond goal_precond

8 :other_preconds static_precs(op,rel_bnds) ;; Figure 3.18
9. :decision_point. dec_point

10. rule_type decision.type(dec_point) ;; ‘operator or :bindings

Figure 3.19: Storing in a data structure the information needed to build an operator and/or bindings
control rule.

create_rules (rule_structs)

1. rule_structs +— merge_rule_structs_for_same_dec_point(rule_structs)
. for each rule_struct € rule_structs
case rule_struct.type(rule_struct)
:operator
. create_operator_rule(rule_struct)
|

2
3
4
5
6. create_bnds_rule(rule_struct)
7 :bindings

8 create_bnds_rule(rule_struct)

9. :goal

0. create_goal_prefer_rule(rule_struct)

Figure 3.20: Building control rules.

control rules are created (Step 12 of Figure 3.10). Create_rules is described in Figure 3.20.
In Step 1 all the structures in rule_structs corresponding to the same decision point are merged
in a single one. The merging corresponds to a conjunction of the conditions. Although each
of the rule structures supports the decision, the better solution has less cost because all of
those conditions happened in this particular learning episode, and each one of them may be
not sufficient to make a decision in a similar problem. We take here a conservative approach,
preferring to err on the side of overly-specific rules.

One or more control rules are built from each of the resulting structures. If the structure
corresponds to an operator decision, it will support the choice of both the operator and its
particular instantiation. The relevant bindings stored in the structure give reasons to choose

58 CHAPTER 3. SEARCH CONTROL RULE LEARNING

bindings for the operator. Therefore the learner creates an operator preference rule and a
bindings preference rule (Steps 4-6). If the structure corresponds to a bindings decision, only
a bindings preference rule is created (Steps 7-8). The operator and bindings rules are created
by filling the templates in Figures 3.21 and 3.22 respectively. Note that these templates use
only the results of the learning algorithms and are justified by the learning target, namely
guide the planner towards better plans. It is important to note that they are independent of the
application domain. Section 3.12 explains why preference rules are created instead of select
rules. Appendix A describes the syntax of preference control rules in PRODIGY4.0 and how
they are used.

create_operator rule(rule_struct)

(control-rule prefer-op-rule_struct.good(rule_struct)-n
(if (and (current-goal rulestruct.current_goal(rule_struct))
rule_struct.goal_precond(rule_struct)
rule_struct.other _preconds(rule_struct))
(then prefer operator rulestruct.good(rule_struct)
rule_struct.bad(rule_struct))

Figure 3.21: Template to automatically create an operator preference control rule using the infor-
mation gathered by learn_op_and_bnds_dec. Note that this template and the one in the next figure
are independent of the application domain. The learned rules will become dependent on the domain
when the template is filled with the results of the learning algorithm.

3.8 Example Of Learning Operator And Bindings Rules

The example in Section 2.4 will be used to illustrate how operator and bindings control rules
are learned. Assume that the planner obtained initially plan (a) in Figure 2.6. This solution was
improved by interaction with a human expert (Figure 3.6) leading to plan (b) in Figure 2.6. Then
a problem solving trace was constructed from the improved plan as explained in Section 3.4.
Figures 3.23 and 3.24 show part of the problem solving traces for both solutions. The differences
between the two plans correspond at problem-solving time with an operator decision (prefer
drill-with-spot-drill-in-milling-machine over drill-with-spot-drill) and an instantiation decision
(bindings for drill-with-spot-drill-in-milling-machine). The search traces corresponding to
plans (a) and (b) are transformed in the plan trees shown in Figure 3.25.

The learner first determines the learning opportunities by traversing the plan trees using the

algorithm in Figure 3.11. Analyze_goal does not explore the right subtrees of both plan trees
because they have equal cost. It goes down the left subtrees because the difference in the

3.8. EXAMPLE OF LEARNING OPERATOR AND BINDINGS RULES 59

create_bnds rule(rule_struct)

(control-rule prefer-bindings-rule _struct.good(rule_struct)-n
(if (and (current-goal rule_struct.current_goal(rule_struct))
. (current-operator rulestruct.good(rule_struct))
rule_struct.goal_precond(rule_struct)
rule_struct.other_preconds(rule_struct))
(then prefer bindings generate_bnds_pairs(rule_struct.relevant_bnds(rule_struct))))

where the result of generate_bnds_pairs has the form
((<op-var-1> . <good-var-1>) ... (<op-var-n> . <good-var-n>))
{ (<op-var-1> . <bad-var-1>) ... (<op-var-n> . <bad-var-n>))

Figure 3.22: Template to automatically create a bindings preference control rule using the informa-
tion gathered by learn_op_and_bnds_dec. Generate_bnds_pairs produces two binding lists using
the variable names that appear in the operator (<op-var-i>) and the variables that appear in the
control rule learned preconditions. Only the variables that were determined as relevant, i.e. those
in rule_struct.relevant_bnds are used, since those are the ones the rule must generate bindings for.

2 n2 (done)
4 nd <*finish* parth>
5 n5 (size-of part5 height 2) [1]
7 n7 <face-mill
milling-machinel part5 plain-milll visel sidel side3-side6 height 3 2> [7]
Firing delete goals EXPAND-MAIN-GOALS-FIRST
8 n8 (shape-of part5 rectangular) [1]
10 nl0 <is-rectangular part5>
Firing delete goals EXPAND-MAIN-GOALS-FIRST
11 nll (has-spot part5 holel sidel 1.375 0.25)
13 nl3 <drill-with-spot-drill
drilll spot-drilll visel part5 holel sidel side2-side5 1.375 0.25> [1]
14 nld4d (holding-tool drilll spot-drilll) [3]
16 nlé <put-in-drill-spindle drilll spot-drilll>

Figure 3.23: Beginning of the problem solving trace that obtained the plan of cost 28 (plan (a) of
Figure 2.6).

subtrees cost supports the fact that plantree 4 is better than plantreep. Step 12 of analyze_goal
(Figure 3.11) decides to abandon the exploration of the holding-tool subtrees because the cost
of the subtree in plantree, is greater than the cost of the subtree in plantreeg. Analyze_goal
stops when it finds that the cost of holding the part as a precondition of the face mill operator is
0 in plantree 4 and greater than O in plantreep. The goal nodes corresponding to this holding
subgoal become a learning opportunity. In Step 8 relevant_decision assigns credit for the O cost
of holding the part to the problem solving decision point in which the planner chose operator

60 CHAPTER 3. SEARCH CONTROL RULE LEARNING

2 n2 (done)
4 n4 <*finish* part5>
5 n5 (size-of part5 height 2} [1]
7 n7 <face-mill
milling-machinel partS plain-milll visel sidel side3-side6 height 3 2> [7]
Firing delete goals EXPAND-MAIN-GOALS-FIRST
8 n8 (shape-of partb rectangular) [1]
10 nl) <is-rectangular part5>
Firing delete goals EXPAND-MAIN-GOALS-FIRST
11 nll (has-spot part5 holel sidel 1.375 0.25)

Op- #<OP: DRILL-WITH-SPOT-DRILL> was not in the solution proposed by the expert.
Backtracking to make new operator decision at node 12.

13 nlS <drill-with-spot-drill-in-milling-machine
milling-machinel spot-drilll visel part5 holel sidel side2-side5 1.375 0.25> [1]

Op #<DRILL-WITH-SPOT-DRILL-IN-MILLING-MACHINE

[<MACHINE> MILLING-MACHINE1l] [<DRILL-BIT> SPOT-DRILL1] [<HOLDING-DEVICE> VISEl] [<PART>

PARTS5] [<SIDE> SIDEl] [<SIDE-PAIR> SIDE2-SIDE5] [<LOC-X> 1.375] [<LOC-Y> 0.25] [<HOLE> HOLEl]>
was not in the solution proposed by the expert.

Backtracking to make new binding decision at node 15.

12 nld drill-with-spot-drill-in-milling-machine
13 nl7 <drill-with-spot-drill-in-milling-machine
milling-machinel spot-drilll visel part5 holel sidel side3-side6 1.375 0.25>
14 nl8 (holding-tool milling-machinel spot-drilll) [2]
16 n20 <put-tool-on-milling-machine milling-machinel spot-drillil>

Figure 3.24: Beginning of the problem solving trace to obtain the better quality plan (plan (b)
of Figure 2.6). This trace was constructed starting with the improvements to the plan suggested
by the human expert. The operator initially chosen at node n11 is not in that plan. PRODIGY4.0
backtracks trying a different operator instead. Similarly the instantiation of the operator at nl5
is not in the improved plan. PRODIGY4.0 backtracks again to try a different instantiation. Later,
control rules will be automatically acquired which, should have they been present, would have lead
to generating the better plan first.

drill-with-spot-drill-in-milling-machine over operator drill-with-spot-drill in order to obtain the
improved plan. This decision point was stored during the construction of the problem solving
trace for the better plan.

Next learn_op_and_bnds_dec (Figure 3.13) explores this learning opportunity. g4 is the node
for the holding precondition of face-mill in plantrees. g4 was also the precondition of another
operatot, drill-with-spot-drill-in-milling-machine, in the subtree on the right. This is detected
by following the goal how_achieved links in the plan tree (Step 1). That precondition was
achieved by subgoaling. In Step 7 goal_to_propagate_up returns that subgoal (¢/;) because its
expansion was due to the choice of the drill operator at the decision point. All the bindings of
(holding mml visel part5 sidel side3-side6) are relevant so that the two subgoals are
shared (Step 8). Finally in Step 14 propagate_conditions_up (Figure 3.14) is called with g4
and all the bindings of holding marked as relevant.

Only one propagation step is needed in this example, and the propagation terminates at node

3.8. EXAMPLE OF LEARNING OPERATOR AND BINDINGS RULES 61

cost = 28
17

size-of palrtS height 2
FACEi—MILL
ml,viseM-sideG

1
holding-tool holding mml,visel,part5
mml, cu'tterl gidel, sidl.eB-sides

PUT~TQOL-MM 12 HOLD—WIITH—VISE
mml,visel, sidel,side3-side6

€ 2
has-device ~(has-burrs is-clean on-table

11

dec-point
has-spot parti_S holel side%

DRILL-WITH~SPOT-DRILL
1 drilll,visel,gidel,side2-gideS

holding-tool holding drillil,visel,part5
drilll, Ispot—drilll sidel,'sidez-aides

PUT-TOOL-DR 6 HOLDI—WITH—VISE
drilll,visel,sidel, side2-side5
2 0
~{has-burrs ig-clean

has-device on-table
mml,visel palrtS) part5 part5, mmi drill:ll.,visel part5) parts part5,drilll
PUT-HOLDING- REM-BURRS CLEAN PUT-ON- PUT-HOLDING-DEVICE-DR CLEAN PUT-ON-
4 DEVICE-MM MACH-TABLE /\ MACH/f\TABLE
2 REMOVE-HD
RELEASE-FROM-HD
drilll,v/:'{el,parts
lantree
P B
done
N cost = 15
. - i1 . dec-point
size-of pazI‘tS height 2 has-spot part‘[S holel sidel “/
FACE-MILL DRILL-WITH-S8POT-DRILL-IN-MILLING-MACHI|
mml,visel, sidel,side3-side6 how-achieved mml, visel sidel, side3-side6 &,

; M 0 LT
holding-tool holding mml,visel,part$s,
mml, cytterl sldel,side3d-sideé

PUT-TOOL-MM \\/\

mml, spo}:—drilll
PUT-TOOL-MM 6

-
holding mml,visel,part5s,
sidel, sife3-side6

HOLD-WITH-VISE
mul,visel, sidel,side3-side6

2 2
84 has-device ~(has-burrsis-clean on-table
mml,visel part5) parts part5,mml
PUT-HOLDING-DEVICE-MM CLEAN PUT-ON-
A\ A\ MACH;{ABLE

plantree A

Figure 3.25: Plan trees obtained from the problem solving traces for plans (a) and (b) of Figure 2.6.
The top plan tree corresponds to the worse quality solution, plantreep in the learning algorithms.
The bottom plan tree corresponds to the better plan, and therefore it is plantree 4. Some parts of
the plan trees have been omitted for clarity and space purposes.

drill-with-spot-drill-in-milling-machine because it corresponds to the decision point. Note that
more steps may be needed in general, such as if has-spot were a subgoal of drilling a hole
(of which drilling a spot hole is the first step) and the learning opportunity were to learn the
appropriate operator and binding choice for drilling the hole. Back to our example, when the
propagation terminates:

e the relevant bindings at that point are those of the part, machine, holding device, side,

62 CHAPTER 3. SEARCH CONTROL RULE LEARNING

and side pair. The tool spot-drilll was not propagated because it was not relevant for
holding. Therefore is not marked as relevant.

e prepare_goal_precond makes operational the factthat g4 was a0 cost subgoal: (holding
mml visel part5 sidel side3-side6) was a pending goal at the decision point
(Steps 3-4 of Figure 3.17).

e static_precs computes the constraints on the type and value of the relevant bindings.
The type specification of the operator variables requires that the type of the machine is
a milling machine. This type is a subset of the types allowed by the signature of the
holding predicate, in which any machine is valid. Steps 7-10 of Figure 3.18 build this
constraint on the type of the machine. The other relevant bindings do not originate other
constraints.

Step 5 of propagate_conditions_up stores all this information in the structure shown in Fig-
ure 3.26. From this structure two control rules are created because the explanation supports the
choice of both the operator and the bindings at the decision point.

e An operator preference control rule, that would override the default operator choice at
node n11.

¢ A bindings preference control rule. The bindings for the part and side are given from the
right-hand side of the operator when it is matched against the goal. Therefore they need
not be specified in the bindings control rule. Given the operator choice the type of the
machine will necessarily be a milling machine. Therefore the constraint on the machine
type need not appear in the bindings rule.

:current_goal has-spot part5 holel sidel 1.375 0.25

:current_op drill-with-spot-drill-in-milling-machine

:good <drill-with-spot-drill-in-milling-machine milling-machine1 spot-drilll
visel part5 sidel side3-side6 1.375 0.25 holel>

:bad <drill-with-spot-drill drill1 spot-drilll

visel part5 sidel side2-side5 holel 1.375 0.25>
:relevant_bnds ((<machine> milling-machinel) (<holding-device> visel)
(<part> part5) (<side> sidel) (<side-pair> side3-side6))
:goal_precond <pending-goal (holding milling-machinel visel part5 sidel side3-side6)>
:other_preconds (type-of-object <machine> milling-machine)
:decision_point #<goal-node 11 #<has-spot part5 holel sidel 1.375 0.25>>
:rule_type :operator

Figure 3.26: Structure built by create_rule_struct (Figure 3.19) at the end of the propagation
process.

3.9. LEARNING GOAL PREFERENCE CONTROL RULES 63

Figure 3.27 shows the two control rules learned from this example. The rules indicate which
operator and bindings are preferred to achieve the current goal, namely to make a spot hole in
a certain part side, if a pending goal (that is, a goal yet to be achieved by the planner) is to hold
that part in a milling machine in certain orientation and with certain holding device.

(control-rule pref-drill-with-spot-drill-in-milling-machine30
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(pending-goal (holding <mach> <holding-dev> <part> <side> <side-pair>))
(type-of-object <mach> milling-machine)})
(then prefer operator drill-with-spot-drill-in-milling-machine
drill-with-spot-drill})

(control-rule pref-bnds-drill-with-spot-drill-in-milling-machine31
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))

(current-operator drill-with-spot-drill-in-milling-machine) .

(pending-goal (holding <mach4> <holding-dev5> <part> <side> <side-pair-6>))

(or (diff <machd4> <machl>) (diff <holding-dev5> <holding-dev2>)

(Aiff <side-pair-6> <side-pair-3>))))
(then prefer bindings ((<mach> . <mach4>) (<hd> . <holding-dev5>) (<sp> . <side-pair-6>))
({<mach> . <machl>) (<hd> . <holding-dev2>) (<sp> . <side-pair-3>))))

Figure 3.27: Operator and bindings preference control rules leamed from the problem in Figure 2.5.

3.9 Learning Goal Preference Control Rules

The previous two sections described how operator and bindings rules are learned and illustrated
it with an example. This section focuses on learning goal preference rules. Section 3.9.1
describes how goal decisions influence plan quality by introducing a small artificial domain.
Section 3.9.2 presents how quality-enhancing goal rules are learned. Then an example in the
process planning domain is used in Section 3.10 to step through the learning process.

3.9.1 When Are Goal Preferences Needed? An Example

Section 2.2 showed the influence of goal decisions in the quality of a plan, thus motivating
the need of quality-enhancing goal preference search-control rules. To explain this point we
introduce in this section a small artificial domain. Figure 3.28 shows the domain and a plan
quality metric. Figure 3.29 describes a simple problem. The goal is to achieve both ¢; and g,.
This example will illustrate how two plans of the same length but different quality are obtained
depending on a particular goal decision.

Given the initial state, in the process of achieving ¢; PRODIGY will necessarily delete go1. ga1
is needed to achieve g;. On the other hand, in the process of achieving g, PRODIGY deletes
g12, which is needed to achieve ¢;. Therefore either order of achieving ¢; and g, will cause a

64 CHAPTER 3. SEARCH CONTROL RULE LEARNING

operator opl operator op2
:preconds (and (gll) (gl2}) :preconds (and (g21) (g22))
:adds (gl) :adds (g2)
operator opll operator op2l
:preconds (g21) :preconds (g211)
:adds (gll) :adds (g21)
:dels (g21)
operator opl2 operator op22
:preconds (and (gl2l) (gl22)) :preconds (and (g221) (gl2))
:adds (gl2) :adds (g22)

:dels - (g12)
operator opl2l :conditional-effects
:preconds (p) (if (p) (del (gl21))
:adds (gl21)

) .. opl | op2 | opll | op2l | opl2 | 0p22 | opl21
Quality metric: 5 | > [1 | 1 | 3 | 5 | 6

Figure 3.28: An artificial domain used to illustrate the need of quality-enhancing goal preference
control rules. The quality metric assigns a cost to each operator. The cost of a plan is the sum of
the cost of each of the plan operators. Higher values mean higher cost and worse quality.

goal clobbering. Figure 3.30 presents two solutions to that problem, corresponding to the two
orderings of achieving g; and g,. Above each solution is its corresponding problem solving
trace. !4 Initially the planner obtains the trace and solution on the left. On the bottom right-hand
side of the figure is the improved solution. From it, the problem solving trace (shown above
it) is obtained, as described in Section 3.4. At n14 the interrupt mechanism detects that the
application of opy, as the first operator in the plan is not consistent with the partial order, in
Figure 3.31, for the desired solution. The interrupt signal forces the planner to backtrack ton10
and try a different goal ordering. Note that an alternative backtracking point would have been
n13, preferring subgoaling on g, to applying op2,>. However the heuristics we have developed
to choose a backtracking point prefer the first option, as it corresponds to an earlier decision
faced by the planner. n14 becomes a decision point open to the need of new control knowledge.
Two points are important in this example:

e PRODIGY4.0 has different domain independent heuristics that detect goal interactions
similar to this one. However they are not enough to guide the planner to the better plan
in this example, since both plans have a similar goal interaction, and their difference in

14The delete goal control rule that fires at node n7 is similar to that described at the end of Section 2.3.

3.9. LEARNING GOAL PREFERENCE CONTROL RULES 65

State: (and (gl2) (g2l) Goal: (and (gl) (g2))
(gl21) (g211)
(gla2) (g221))

Figure 3.29: Example problem in the domain of Figure 3.28.

2 n2 (done) 2 n2 (done)
4 n4 <*finish*> 4 nd <*finish*>
5 n5 (gl) [1] 5 n5 (gl) [1]
7 n7 <opl> 7 n7 <opl>
Firing delete goals rule Firing delete goals rule
8 n8 (g2) 8 n8 (g2)
10 nl0 <op2> 10 nl0 <op2>
11 nll (g22) [1] 11 nll (g22) [1]
13 nl3 <op22> 13 nl3 <op22>
14 nld <QOP22> 14 nl4a <OP22>
15 nl5 <OP2> backtracking to obtain better solution:
16 nlé (gll) [1] prefer other goal after nlo0
18 nl8 <opll> 10 nl0 <op2>
19 nl9 <OP1l1l> 11 nlé (gll)
20 n20 (gl2) 13 ni8 <opll>
22 n22 <opl2> 14 nls <OP1ll>
23 n23 <OP12> 15 n20 <OP1>
23 n24 <OP1l> 16 n2l (g2l) [1]
23 n25 <*FINISH*> 18 n23 <op2l>
19 n24 <OP21>
20 n25 (g22)
22 n27 <op22>
23 n28 <0OP22>

23 n29 <0OP2>
23 n30 <*FINISH*>

Planl: 1. <op22> Plan2: 1. <opll>
2. <op2> 2. <opl>
3. <opll> 3. <op2l>
4. <opl2> 4. <op22>
5. <opl> 5. <op2>
cost = 17 cost = 12
() (b

Figure 3.30: Two solutions for the problem in Figure 3.29 with the corresponding traces. (a) was
obtained initially. (b) was constructed from the improved plan (as described in Section 3.4), shown
at the bottom. n14 is the decision point where new control knowledge is required and therefore
became a learning opportunity. Although both plans have the same length, they do not have the
same cost, since opl2 is more expensive than op21.

66 CHAPTER 3. SEARCH CONTROL RULE LEARNING

needs dels g 12

gl adds 29
dels
821 adds 21

Figure 3.31: Partial order corresponding to the better quality solution of Figure 3.30. The partial
order is used to generate a problem solving trace from the solution.

quality is captured only by the quality metric.

e Both solutions have the same length, and they only differ in opi1» and op,;. This difference
is due to the order in which the top level goals are achieved. This ordering causes different
subgoals (g2 and g7;) to become subgoals, therefore introducing operators op;, and ops;
respectively in the plan. The costs of op;, and op,; are different, hence the costs of the
complete plans are different.

Figure 3.32 shows the plan trees built from the two solutions. The plan trees store information
about how goals were achieved. For example in the first solution g;, was achieved by subgoal-
ing, while in the second solution it was true in the state when needed. The plan trees also store
information about deleted subgoals. For example, op,; deleted gy, in both plans.

The learner generates automatically the rule in Figure 3.33. The rational behind the rule is that
when g, is a candidate subgoal, and ¢ is true in the state and is needed by some operators,
PRODIGY should work towards applying those operators first, because achieving g,; will delete
¢12. When PRODIGY attempts to match the rule at the decision point, <other-goal> gets bound
to the first candidate goal. The control rule matcher works by looking for another candidate,
<pref-goal> that is preferred over the currently first candidate <other-goal>. The control
rule utilizes the following domain-independent meta-predicates:

e (candidate-goal <g>): true if <g> is among the set of goals PRODIGY4.0 may choose
to work on. If <g> is unbound, candidate-goal may generate values for it.

® (known <expr>): tests whether <expr> is true in the state, and can be used as a generator
of values for the variables that appear in <expr>.

¢ (is-subgoal-of-ops <goal> <instantiated-ops>): tests whether <goals is a pre-
condition of one of <instantiated-ops>. It can be used as generator for both <goal>
and <instantiated-ops>, binding them respectively to a literal and a list of instantiated
operators. If <goal>is alist of goals, <ops> is the union of the corresponding instantiated
operators.

3.9. LEARNING GOAL PREFERENCE CONTROL RULES 67

initial state

O Goal node
O Operator node
@ Bindings (instantiated operator) node

initial state
Figure 3.32: Plan trees corresponding to the two solutions in Figure 3.30.

® (is-pending-subgoal-in-subtree <goal> <instantiated-ops>): tests
whether <goal> (a) is currently a pending goal, and (b) is a subgoal in the subgoal tree
below one of <instantiated-ops>. If <goal> is unbound, it can be used as a generator

of bindings for <goal>.
e (first-pending-subgoal-in-subtree <goal> <instantiated-ops>): tests whether

68 CHAPTER 3. SEARCH CONTROL RULE LEARNING

(control-rule prefer-goal-1
(if (and (candidate-goal (g22))
(known (gl2))
(is-subgoal-of-ops (gl2) <ops>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~ (is-pending-subgoal-in-subtree <other-goal> <ops>)})))
(then prefer goal <pref-goal> <other-goal>))

Figure 3.33: Control rule that makes the correct goal ordering decision in the problem of Fig-
ure 3.29. The rule suggests PRODIGY to work on the operators that need g1> while it is true, instead
of working on g2, which would delete g15. This goal preference control rule was automatically
learned from the plan trees in Figure 3.32.

<goals> is the first of the pending goals at the node that belongs to the subgoal tree below
one of <instantiated-ops>. If <goal> is unbound, it binds it to such subgoal.

The rule in Figure 3.33 was learned because of the given quality metric used, in particular
because of the difference in cost of op;; and opy;. Should their cost have been reversed, a
different rule would have been learned.’”

3.9.2 How Goal Preference Rules Are Learned

In previous sections we saw how after the learning opportunities have been found, the learner
selects a particular learning mechanism to explore each learning opportunity based on the type
of decision associated with it (Steps 7-12 of Figure 3.10). Section 3.7 described how operator
and bindings control rules are learned. This section describes the mechanism to learn goal
preference control rules.

The top level function of this mechanism is learn_goal_dec (Figure 3.34). It is called for each
learning opportunity <g, 9B, dec_point> corresponding to a wrong goal decision. Recall that
ga and gp are nodes in planiree and plantreep respectively corresponding to the same goal
g. g4 has cost 0 because it was true when it was needed as a precondition. g has cost greater
than O because it was deleted and needed to be reachieved. For example, in the plantrees of
Figure 3.32 g4 and gp correspond to the ocurrences of ¢i» as precondition of op; in the two
plan trees. The decision point is node n10 in the traces of Figure 3.30.

The goal of the algorithm is to find out how to protect gg from deletion before it is used as
a precondition. The solution is reordering at some point the candidate subgoals, so the goals
that need gp are achieved before the goals that cause its deletion. The candidate point for such

15 Actually no rule would have been learned in this example because the planner would have initially obtained
the better solution. The rule would have been learned if the planner’s default choice had been op,; instead.

3.9. LEARNING GOAL PREFERENCE CONTROL RULES 69

learn_goal_dec(g4, g5, dec_point)

OPdeleting — Op-that_deleted(gz)
Jdeleting — Who_needs_goal(parent_goal(opeiciing), dec_point)
Glreeding — Who_needs_goal(g, dec_point)
U {who_needs_goal(y, dec_point): g € goal_achieves_too(g,)}
rel-bndaneedmg
merge_rel_bnds({ propagate_conditions_up (g,all_bnds(g),dec_point,g,-,0)
- g € Gneeding})
rel_bnngdeletmg 4o
9. merge_rel_bnds(propagate_conditions_up (gjeicting -all_bnds(g),dec_point,gueieting,-,0))
10. constraints «+ extract_constraints (rel_bndsg rel_bndsgdelmng)
11. bnds — common_bnds (rel_bndsg,,.,.,
12. precond,, « generalize(g 4, bnds)
13. precondq,. ding & generalize(Greeging , bnds)
14. precondgddmng «— generalize(g4ecicting, nds)
15. gen_constraints <+ generalize(constraints, bnds)
16. rule_struct «— ;; Figure 3.36
17. create_goal_prefer_rule(precond, ,, precondg,, d'.ng,precondgddeﬁng, gen_constraints)

PN DE RN =

needing ?

rel_bnd.SQdeletmy)

18. return(rule_struct)

Figure 3.34: Algorithril for learning goal preference control rules.

reordering is dec_point, as the better quality solution was achieved by overriding PRODIGY’s
choice at that node. Learn_goal dec starts by finding out which operator opgejeting, deleted
gp in plantreep. Step 2 finds ggereting, @ subgoal candidate at the decision point for which
operator 0pgelering Was selected. Thus achieving ggeieting caused gp’s deletion. Step 3 computes
Glneeding » the set of candidate subgoals at the decision point whose achievement needs g4. This
set also includes subgoals whose achievement needs other instances of g, at different nodes
of the plantree; those other nodes are stored in the :achieves-too slot of node g4 and are
returned by the call to goal_achieves_too. To obtain the better quality plan the planner should
work on Gpeeding before working on gueieting. BOth ggeieting and Gireeding are computed using
who_needs_goal(g, dec_point), which returns g if ¢ is a candidate at dec_point. Otherwise it
returns the goal candidate at the dec_point that lead eventually to subgoaling on g. In other
words, it operationalizes why g is needed, with respect to the meta-knowledge available at the
decision point. It works similarly to operationalize in Figure 3.17.

In the artificial domain (Figure 3.32), 0pgeicting 1S 0p22, Which deleted ¢5. Its parent, go5, is
Jdeleting» @ candidate goal at the decision point which caused gi, to be deleted. ¢, itself is a
candidate as well at the decision point, and becomes the only element in Geeding -

70 CHAPTER 3. SEARCH CONTROL RULE LEARNING

gdeleting
<machy <holding-dev> <parts <slde> <side-pair>
HOLDING axille, viseol, | part0, sidel, side3-gides
(Operator PUT-ON-MACHINE-TABLE HOLD-WITH-VISE
(params <machine> <part>))
{(preconds j«mach> <holding-dev> <part> <side> <side-pair>
((<machine> Machine) Aeille, visel, pazcd, sidel, side3-sideé
(<part> Part))
(and \ e .
(is-available-part <part>) “part> <wmachs>
. . . , _ ON-TABLE D
(is-available-machine <machine>)}) OH-TABLE parto,_ny_rg(_:i.“ LS 9 deleting
leletod 3t e
(effects . . /\/‘ ey PUT-ON-MACHINE-TABLE}
((<other-machine> Machine))
((del (on-table <other-machine> <part>))
. <mach> <part>
(add (on-table <machine> <part>))}))) IS-AVAILABLE-MACHINE drill0 IS-AVATLABLE-PART part0
(@) . (b)

Figure 3.35: (a) An operator that adds and deletes two instantiations of the same predicate. (b)
Partial plan tree where the operator is used to achieve (on-table part0 dril10). A constraint
is built saying that <mach> must be different from mm0. The constraint is needed so that the operator
actually adds and deletes the two different instantiations of on-table.

Next the algorithm computes in Steps 5-9 the relevant bindings of Greeqing and ggeeting SO
that ¢ is needed by Gpeeding and deleted by gueieting. This is done in a similar way as for
the operator and bindings rules in Figure 3.14. The relevant binding propagation may find
constraints on the values of the relevant bindings, and these constraints will be part of the
control rule precondition.!® Figure 3.35 presents an example of how one of these constraints is
found. On the left-hand side there is an operator (to move one part between two machines) that
both adds and deletes two instantiations of the same predicate. That operator was chosen on the
right-hand side of the figure to achieve the goal (on-table drillo part0). Its application
deleted g = (on-table mm0 part0) as asideeffect. When g is analyzed by learn_goal_dec the
instantiation of operator put-on-machine-table becomes 0pgeieting. When the relevant bindings
<machine> and <part> are propagated up, a constraint is added saying that <machine> must
be different from mm0 in order for the operator to delete g.

The relevant bindings found are used in Steps 12-14 to generalize Geeqing and gyeleting-
Their generalization will be used to build the control rule precondition. Generalize generates
consistent variable names throughout all the preconditions based on the relevant bindings,
makes sure that the variables will be properly bound at control-rule matching time, and may
generate constraints on the types of the variables. The types are those specified in the operators
that introduced the subgoals in Geeding and ggeleting in @ Which the variable appears. Finally, a
control rule is created by filling in the template in Figure 3.36.

16We have separated the computation of the constraints as Step 10 for clarity purposes. However they are
actually computed as the propagation occurs.

3.10. EXAMPLE OF LEARNING GOAL PREFERENCE CONTROL RULES 71

create_goal_prefer rule(ga, ¢ieicting , O needing , cONStraints)

(control-rule prefer-goal-n
(1f (and (candidate-goal ggelcting)
if g4 € Greeding then (known ga) ;3 94 needs to be protected
{(pending-goal g¢) suchthatg € Gueeding \ 94}
(is-subgoal-of-ops Greeding <OPS>)
constraints
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~ (is-pending-subgoal-in-subtree <other-goal> <ops>))))
({then prefer goal <pref-goal> <other-goal>))

Figure 3.36: Template to create a goal preference control rule using the information gathered by
learn_goal_dec. The template, as well as the learning algorithm, are independent of the domain.
The rule will become domain-independent when the results of the learning algorithm are used to
fill out the template. The meta-predicates used are described in Section 3.9.1.

3.10 Example Of Learning Goal Preference Control Rules

To illustrate how goal preference control rules are learned, we introduce here another problem
from the process planning domain. Figure 3.37 shows the initial state and goal statement for
this problem. The goal is to have a part of length 0.5 inches with a spot hole on its side 1 at
coordinates .5 x 1.5. An aluminum part of length 5 inches is available in the shop. Given the
large size reduction needed, the part must be face-milled. The part is already clean, and it is
being held on the milling machine with its side 3 facing up. This orientation is appropriate for
face milling the length of the part. The milling machine spindle is holding a spot drill, and
several milling tools are available in the shop. Given this initial set-up roughly two plans to
machine the part are possible:

e Start by drilling the spot hole. To do this, maintain the drilling tool in the machine but
release the part to put side 1 facing up. After drilling the hole, hold the part in the initial
orientation (side 3 facing up), replace the tool, and face mill the part.

e Start by face milling the part. To do this, maintain the part orientation and replace the
drilling tool with a milling tool. After milling the part, change the part’s orientation
(side 1 up), put the drilling tool back, and drill the spot hole.

Figure 3.38 shows the complete plans corresponding to these alternatives. Both plans have the
same length, but plan (a) has a greater cost according to the quality metric of Table 2.1. The
difference in quality is due to the first two operators of each plan, since operators that move

72 CHAPTER 3. SEARCH CONTROL RULE LEARNING

(objects
; imachines ;;tools
(object-is milling-machl MILLING-MACHINE) (object-is spot-drilll SPOT-DRILL)
(object-is drilll DRILL) {object-is twist-drilll3 TWIST-DRILL)
(object-is high-helix-drilll HIGH-HELIX-DRILL)
;;holding devices {object-1is tapl4 TAP)
(object-is visel VISE) {object-is counterbore2 COUNTERBORE)
(object-is tapl TAP)
;:parts and holes (object-is plain-milll PLAIN-MILL)
(object-is part5 PART) (object-is end-milll END-MILL)

(object-is holel HOLE)
(object-is brushl BRUSH)
(object-is soluble-0il SOLUBLE-OIL)
(object-is mineral-oil MINERAL-OIL))

(state (and (diameter-of-drill-bit twist-drilll3 1/4)
(diameter-of-drill-bit high-helix-drilll 1/32)
(diameter-of-drill-bit tapld 1/4)
(size-of-drill-bit counterbore2 1/2)
(diameter-of-drill-bit tapl 1/32)

(material-of part5 ALUMINUM)
(size-of part5 LENGTH 5)
(size-of part5 WIDTH 3)
(size-0of part5 HEIGHT 3)

(has-device milling-machl visel)

(holding milling-machl visel part5 side3 side2-side5)
(holding-tool milling-machl spot-drilll)

(is-clean part5)))

{(goal ((<part> PART)) (and (size-of <part> LENGTH 0.5)
(has-spot <part> holel sidel 1/2 1.5)))

Figure 3.37: Example problem in the process planning domain to illustrate the learning of goal
control rules. The goal is to have a part of length 0.5 with a spot hole on sidel. The part is initially
set on the milling machine in the orientation required for face-milling its length. The spot-drill is
initially ready in the machine tool holder.

tools are cheaper than operators that set up parts and holding devices. Plan (a) was obtained
in PRODIGY’s first attempt to solve this problem using its default heuristics.!” Plan (b) was
the result of the improvements on plan (a) suggested through the interaction with the human
expert. Figures 3.39 and 3.40 show the beginning of the problem solving process to obtain
respectively plans (a) and (b). n13 is the first decision point where PRODIGY’s default decision
was overriden in order to obtain the improved plan.

Given these two solutions, the learner first builds the plam trees in Figure 3.41. The top plan
tree planireep corresponds to the worse quality plan. The bottom one plantree4 corresponds
to the better plan.- The learner then looks for learning opportunities. The cost of holding the

17pRODIGY had already learned control rules to prefer the milling machine for the drilling operation.

3.10. EXAMPLE OF LEARNING GOAL PREFERENCE CONTROL RULES

73

A plan

A better plan |

release milling-mach1 visel part5 side3 side2-side5
hold milling-mach1 visel part5 sidel side2-side5
drill-with-spot-drill-mm milling-mach1 spot-drilll

visel part5 holel sidel side2-side5 1/2 1.5

. L]

remove-tool milling-mach1 spot-drilll
put-tool-mm milling-mach1 plain-mill1l
release milling-mach1 visel part5 sidel side2-side5
remove-burrs part5 brush1
clean part5
hold milling-mach] visel part5 side3 side2-side5
face-mill milling-mach1 part5 plain-mill1l

visel side3 side2-sideS5 length 5 0.5

remove-tool milling-machl spot-drilll

put-tool-mm milling-mach1 plain-mill1

face-mill milling-mach1 part5 plain-milll
visel side3 side2-side5 length 5 0.5

remove-tool milling-mach1 plain-milll

put-tool-mm milling-mach1 spot-drilll

release milling-mach1 visel part5 side3 side2-side5

remove-burrs part5 brushl

clean part5

hold milling-mach] visel part5 sidel side2-side5

drill-with-spot-drill-mm milling-mach1 spot-drill1
visel part5 holel sidel side2-side5 1/2 1.5

cost =18

cost = 16

(a)

(b)

Figure 3.38: (a) Plan obtained by PRODIGY guided by the current control knowledge. (b) A better
plan, according to the quality metric, input by a human expert. Note that both plans have the same

length but different quality.

2 n2 (done)

4 n4 <*finish* parts5>

5 nS (size-of part5 length 0.5)
7 n7 <face-mill

[1]

milling-machinel part5 plain-milll visel side3 side2-side5 length 5 0.5> [7]

Firing delete goals EXPAND-MAIN-GOALS-FIRST
8 n8 (shape-of part5 rectangular} [1]
10 nl0 <isg-rectangular partS>
Firing delete goals EXPAND-MAIN-GOALS-FIRST
11 nll (has-spot part5 holel gidel 1/2 1.5)
Firing operator pref rule

13 nl3 <drill-with-spot-drill-in-milling-machine
milling-machinel spot-drilll visel part5 holel sidel side2-side5 1/2 1.5> [1]

14 nld (holding milling-machinel visel part5 sidel side2-side5) [1]
16 nlée <hold-with-vise milling-machinel visel part5 sidel side2-side5>
17 nl7 {(on-table milling-machinel part5) [3]

Figure 3.39: Beginning of the problem solving trace that obtained plan (a) of Figure 3.38.

part for the milling operation is 0 in planitrees and 8 in plantreeg. The nodes g4 and gp
corresponding to that goal and the relevant decision point n13 become the learning opportunity.
learn_goal_dec (Figure 3.34) is called and computes:

74 CHAPTER 3. SEARCH CONTROL RULE LEARNING

2 n2 (done)
4 nd <*finish* part5>
5 n5 (size-of part5 length 0.5) [1]
7 n7 <face-mill
milling-machinel part5 plain-milll visel side3 side2-side5 length 5 0.5> [7)
Firing delete goals EXPAND-MAIN-GOALS-FIRST
8 n8 (shape-of part5 rectangular) [1]
10 nl0 <is-rectangular part5>
Firing delete goals EXPAND-MAIN-GOALS-FIRST
11 nll (has-spot part5 holel sidel 1/2 1.5)
Firing operator pref rule
13 nl3 <drill-with-spot-drill-in-milling-machine
milling-machinel spot-drilll visel part5 holel sidel side2-side5 1/2 1.5> [1]

14 nld (holding milling-machinel visel part5 sidel side2-side5) [1]
16 nlé <hold-with-vise milling-machinel visel part5 sidel side2-side5>
17 nl7 (on-table milling-machinel part5) [3]

Op #<OP: PUT-ON-MACHINE-TABLE> was not in the solution proposed by the expert.
Backtracking to make new operator decision at node 18.

19 n2l <release-from-holding-device milling-machinel visel part5 side3 side2-sideS5> [20]
20 n22 <RELEASE-FROM-HOLDING-DEVICE MILLING-MACHINEl VISEl PARTS SIDE3 SIDEZ2-SIDES>
Wrong op application sequence: there are other ops that should have Leen applied

before op #<RELEASE-FROM-HOLDING-DEVICE [<MACHINE> MILLING-MACHINE1l]... (at node 22).
Backtracking to make new decision: preferring other goal or applied op at node 16.

16 nlé <hold-with-vise milling-machinel visel part5 sidel side2-side5>
17 n24 (is-empty-holding-device visel milling-machinel) [2}

Backtracking to make new decision: preferring other goal or applied op at node 13.

13 nl3 <drill-with-spot-drill-in-milling-machine

milling-machinel spot-drilll wvisel part5 holel sidel side2-side5 1/2 1.5> T[1]
14 nd7 (holding-tool milling-machinel plain-milll)
16 nd9 <put-tool-on-milling-machine milling-machinel plain-milll>

Figure 3.40: Beginning of the problem solving trace to obtain plan (b) of Figure 3.38. Atnl4
PRODIGY tries first to work on holding the part for the drill operation but realizes that the expert’s
solution will not be obtained with that ordering. Eventually PRODIGY backtracks to n13 and tries
working on switching the tool at n47.

® ODgecleting: <release milling-machinel visel part5 side3 side2—side5>,theop-
erator that deleted gp (Step 1).

® (deleting. (holding milling-machinel visel part5 sidel side2-side5),thecan-
didate goal at the decision point which lead to the expansion of opgeesing (Step 2).

® Gneeding: { (holding milling-machinel visel part5 side3 side2-sideb) }, the
set of candidate goals at the decision point whose achievement needs ¢g4. In this example
the set has only one element, g4 itself (Step 3).

e rel bndsg : all the bindings in g4, namely the machine, holding device, part, side

needing *

up and side pair, are relevant since g4 is in Gpeeding (Steps 5-7).

3.10. EXAMPLE OF LEARNING GOAL PREFERENCE CONTROL RULES 75

daone

cost = 18
6
size-of part5 length .5 has-spot part5 holel sidel
! 8,G . g, . .
FACE-MILL B’ needing DRILL-WITH-SPOT-DRI}L-IN-MILLING-MACHINE deleting
mml,visel, side3, side2-side5){ [mml,visel, sidel, side2-side5 .
2 : 3 holding-tool holding drilll,visel,part5
holding-tool holding mml,visel, part5 © ; Tt visel,
mm1, cuitterl sidel, 51d|e2—s:|.de5 mml, gpot-drilll sidel, side2-side5
HOLD-WITH-VISE 2 HOLD-WITH-VISE

PUT-TOOL-MM 6
g mnl,visel, sidel,side2-side5

mml,plain-milll mml,visel, side3,side2-side5s -, .
[
1/\0 7 S0 . QIR e g e
4 2 has-device~(has-burrs is-cleanon-table is-avail-part

is-avail- is-avail- has-device ~{(has-burrs is-clean on-table 1 visel €5) s 5 1 5
tool-holder -tool mml, visel parts) part5 part5,mmp ™™ "”j_s.e par par part5, mm part
y mm plain-milll REM-BURRS CLEI:AN ~holding lsi::lel -
"hilding:;‘;?ill is-avail-part part5is-avail-part delé};'a-, s Rk
. SPoj * ~holding sidel... parts ~by mml, part5, sidel
REMOVE-TOOL 1 op. . . .
mml, spot-drilll RELEASE-FROM-HD deletmg holding sidel..
. mml, parts, sidel
holding-tool . .
mml, spot-drilll holding sidel...
lantree
4 B
done
cost = 16
4 12
size-of part5 length .5 has-spot part5 holel sidel
FACE-MILL DRILL—WITH—SPOT—DRI]&.L—IN—MILLING—MACHINE
mml,visel,side3, side2-side5 mml,visel,sidel,side2-gside5
2 I 2 8
holding-tool holding mml,vigel,part$s, holding—t:ogl holding mml,visel,part5s,
mml, cytterl side3,side2-side5 . mml, SDOF-drllll sidel, sife2-side5
PU'.I.'—TIOOL-IM PUT—TOOL—W 6 HCOLD-WITH-VISE
nml,plain-milll 7 mml, spot-drilll mml,visel, sidel, side2-side5 o
1 0 - 1 0 [2
; i : . .y ; i i - ice ~ - is-clean on-table is-avail
is-avail- is-avail- is-avail- is-avail- has-device ~(has-burrsis-c
tool-holder “tool gA tool-holder -tool mml,visel parts) part$ part5, mml —paz;.
; mm plain-milll 4 Tm spot-drilll REM-BURRS CL pi.i;
~holding-tool ~holding-tool is-avail—Fart partbis-avail-part
mml, SpOF-drilll mn\l,plslin—milll ~holding side3... "‘., Dal:.t'S
0 L, N
REMOVE-TOOL ... igwd'b’ REMOVE-TOOL RELEASE-FROM-HD e
ml,spof-d.rilll de mml,plain-milll mml, part5, side3 uchieves-too
holding-tool holding side3.

holding-tool

mml, spot-drilll mml,plain-milll

plantree A

Figure 3.41: Plan trees obtained from the problem solving traces for plans (a) and (b) of Figure 3.38.
The top plan tree plantreep corresponds to the worse quality plan, plan (a). The bottom one
plantreey corresponds to the better plan, plan (b).

e rel bnds G deteting in order that achieving ggeleting deletes gp, the only relevant binding is
the binding for the part. This is computed by propagating the deleting effect of opgeicting
Up tO Gyelering N plantreep (top of Figure 3.41). The propagation goes through goal node
(is-available-part part5), which reduces the relevant bindings to the binding for

the part (Steps 8-9).

This information is used to fill in the template of Figure 3.36 and build the rule in Figure 3.42.
The rule suggests to keep working on the subgoals of the operators that will need the known
precondition before working on the candidate goal that matches the first precondition.

76 CHAPTER 3. SEARCH CONTROL RULE LEARNING

(control-rule prefer-goal-1
(if (and (candidate-goal)
(holding <milling-machinel5> <viselé> <part> <sidel7> <side2-side58>))
(known (holding <machine-1> <holding-device-2> <part> <side-3> <side-pair-4>))
(is-subgoal-of-ops
(holding <machine-1> <holding-device-2> <part> <side-3> <side-pair-4>)
<ops>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~ (is-pending-subgoal-in-subtree <other-goal> <ops>))))
(then prefer goal <pref-goal> <other-goal>))

Figure 3.42: Goal preference control rule learned from the problem in Figure 3.37. The rule
advises the planner to focus on the goals that need the holding set-up currently available (known
precondition) instead of changing it (a candidate-goal).

3.11 Learning Control Rule Priorities

The algorithms presented in previous sections learn control rules from single problem solving
episodes. In this section we discuss how those rules may be over general and therefore lead to
incorrect decisions, and how our learner deals with this problem in a domain-independent way.
Both points are illustrated with examples.

3.11.1 The Problem: Over-General Rules And Conflicting Preferences

QUALITY builds an explanation from a single example of a difference between a plan generated
and a quality-improving modification of that plan as suggested by an expert. It compiles the
reasons why one alternative at the decision point should be preferred over the others. The
explanation is incomplete as it does not consider all possible hypothetical scenarios. For
example, back to the example of Section 3.8, assume that in addition to reducing the part’s
height and making a spot hole, a third goal is to have holel counterbored. Counterboring can
only be performed by the drill press. Therefore using the milling machine for the spot hole may
not be the best alternative, as the part has to be set up also in the drill press. However the rules
in Figure 3.27 would still fire choosing the milling machine. Those rules are too general. It
would be computationally too expensive to consider all the possible scenarios (goal statements
and initial states) to build the complete explanation of when and why the alternative suggested
by the rule is going to lead to a better plan. We consider this as an instance of the intractable
theory problem mentioned in the literature on explanation-based learning [Mitchell et al., 1986].
The consequence of using incomplete explanations is learning over-general knowledge. Some
research has addressed this problem in a number of ways including introducing exceptions to the
rule applicability [Tadepalli, 1989], making the domain theory more tractable by introducing
simplifying assumptions [Chien, 1989, Ellman, 1988], learning more specific rules and sorting

3.11. LEARNING CONTROL RULE PRIORITIES 77

If there is a conflict between preferences:
1. Use learned rule-priority information
(only if preferences come from different control rules).
2. Use other heuristics:
a. Proximity heuristic.
b. First candidate goal heuristic (position in candidate goal list).
3. Use PRODIGY4.0’s default heuristics:
a. Left-right order of preconditions.
b. First operator found.
c. First instantiation found.

Figure 3.43: Hierarchy of heuristics to decide among conflicting preferences.

them in a hierarchy [Iwamoto, 1994], or inductively and incrementally refining the learned
rules [Borrajo and Veloso, 1994b].

In the case of QUALITY the rules learned may fire in a context where a different rule (e.g. a more
specific one) may be more appropriate in terms of producing a better quality plan. In addition,
‘several rules learned from different previous problems may fire at a decision point and give
conflicting preferences. PRODIGY4.0 must break that conflict in favor of one of the alternatives.
QUALITY refines the learned knowledge incrementally upon failures. A failure occurs when the
alternative preferred by the learned rules leads to a plan that can be improved. The refinement
process does not modify the applicability conditions of the learned rules. Instead it adds new
rules if needed and sets priorities among rules. In the counterboring example, a new. rule is
learned and it is given priority over the previously-learned rule.

3.11.2 How To Break Preference Cycles

Several over-general rules may fire at a given decision point suggesting conflicting alternatives.!®
A cycle in the rule preferences occur when there is a chain of rule firings ry, r,, ...r,, such that
ri,t = l,...n — 1 prefers alt; over alt;_; and r, prefers alt,, over alt;. PRODIGY4.0 then must
break that conflict and choose one of the alternatives. We have devised a collection of heuristics
to decide among the conflicting preferences suggested by the prefer control rules. Figure 3.43
shows the heuristics used and the order in which they are applied. In the first place PRODIGY4.0
uses available information about priorities among the existing preference rules. These priorities
are learned automatically in a way described in the next section. They capture characteristics
of the plan quality metric. The examples in Sections 3.11.4 and 3.11.5 illustrate the use of this

18Tn PRODIGY4.0 these conflicts only occur when preference control rules fire. Select and reject control rules
choices determine the set of candidates over which the prefer rules will fire and choose the best candidate. From
now on we will refer only to prefer control rules. Appendix A describes how prefer control rules fire.

78 CHAPTER 3. SEARCH CONTROL RULE LEARNING

learned heuristic and its relationship with the plan quality metric. This heuristic is only useful
to break conflicts among alternatives selected by different control rules. If the conflicting alter-
natives were the result of firing the same control rule with different instantiations, information
about priorities among different rules is not useful to break the conflict.

If the conflict could not be broken using the learned control rule priorities, other heuristics are
used. They prefer to keep the planner’s focus of attention:

o The proximity heuristic: prefer operator and bindings alternatives that will share subgoals
closer to the current focus of attention. Some of the operator and bindings preference
control rules learned by the algorithms in Section 3.7 have a precondition of the form
(pending-goal <goal>) (see Figure 3.27 for an example). If the rule fires and its sug-
gested preference is chosen <goal>’s instantiation will be a subgoal whose achievement
cost will be shared by several occurrences. Several of these rules, or one of them instan-
tiated in several ways, may match at a decision point and give conflicting preferences.
The proximity heuristic assigns a value to each of the rule instantiations that fire. Then it
breaks the conflict by preferring the candidate selected by the rule instantiation with the
lowest value. The value is computed as the length of the path (in number of PRODIGY4.0’s
parent-child node links) from the current node (at which the rule is firing) to the node
that introduced <goal>. If <goal> and the current goal do not have a common ancestor,
the value is the depth of PRODIGY4.0’s search tree. This is the case for example when
<goal> and the current goal are chosen to achieve different top-level goals.

Figure 3.44 shows an example of the usefulness of the proximity heuristic. The figure
shows PRODIGY4.0’s search tree for a problem where the goal is to have a countersinked
hole in the side 1 of a part. The sequence of steps to machine such a hole is to first make a
spot hole, second to drill the hole, and last to countersink it. Before this last step the part
needs to be cleaned, and therefore it must be released and then held again. Therefore for
the plan to be good the orientation of the part for countersinking the hole needs not to be
the same as the orientation for making the spot hole and hole. Assume that the planner is
ready to choose an operator to drill the spot hole, and that the control rule in the figure, to
choose bindings for the drill-with-spot-drill operator, has been learned from a previous
episode. Its pending-goal precondition can be bound in two different ways, as there are’
two pending goals that match it. One is a precondition of countersink, with orientation
side2-side5. The other is a precondition for drill-with-twist-drill, with orientation
side3-side6. Therefore the control rule fires twice and suggests two different candidate
orientations to make the spot hole. The figure shows the values assigned by the proximity
heuristic to each candidate. The heuristic prefers the bindings such that the two drilling
operators share their holding subgoals.

o The first candidate goal heuristic: if the conflict is about a goal decision, prefer the
conflicting goal that appears earliest in the list of candidate goals. Although PRODIGY4.0

3.11. LEARNING CONTROL RULE PRIORITIES

done
IS-COUNTERSINKED part5,holel,sidel, ...

COU'N’I‘f:RS INK

drilll, countersinkl,visel,part5,holel, sidel, isidaz—sides

HAS-HOLE part5,holel,sidel, ... IS-CLEAN part5 HOLDING...

DRILL-WITH-TWIST-DRILL oo i
|

HAS-SPOT part5,holel, sidel,... HOLDING...

DRILL-WITH-SPOT-DRILL
l

drilll,spot-drilll,visel,part5,holel, sidel{

two conflicting
preferences

(control-rule prefer-bnds-drill-with-spot-drill?
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill)

(pending-goal (holding <machl0> <holding-devll> <part> <side> <side-pair-12>))

{(or (diff <machl0> <mach7>)
(diff <holding-devll> <holding-dev8>)
(diff <side-pair-12> <side-pair-9>))))

(then prefer bindings ((<mach> . <machl0>} (<hd> . <holding-devl1l>) (<sp> .

((<mach> . <mach7>) {<hd> . <holding-dev8>) (<sp>

‘slde2-side5. proximity heuristic velue=5

79

<side-pair-12>))
. <side-pair-9>))))

Figure 3.44: Example to illustrate the use of the proximity heuristic. The bindings control rule in
the bottom of the figure fired twice suggesting two different sets of bindings for drill-with-spot-drill
(bottom of the tree). The conflictinig alternative to which the heuristic assigns the lowest value is

preferred.

can at any time work on any goal in the set of candidate goals, by default it keeps its focus
of attention and works on the subgoals that have just been expanded. These subgoals
appear first in the list of candidate goals. The first candidate goal heuristic chooses,
among the conflicting alternatives, the one that appears earlier in the list of candidate
goals. This heuristic is different from PRODIGY4.0’s default behavior because it chooses
only among the conflicting goals, instead of considering all the candidate goals. The
rationale for the heuristic is to keep focused on the subgoals recently expanded as the
planner has probably already invested some effort in achieving them that could be wasted

if the focus changes to other subgoals.

Finally, if the above heuristics do not apply the conflict is broken using PRODIGY4.0’s default

heuristics, which among the conflicting alternatives choose:

80 CHAPTER 3. SEARCH CONTROL RULE LEARNING

e the goal that appears first using the left-right depth-first order of goal expansion,
e the operator that appears first in the domain definition, or

¢ the set of bindings that appears first in the order in which they were generated by the
matcher.

3.11.3 Learning Control Rule Priorities

The previous section described how priorities between learned control rules can be used to
overcome the problem of conflicting preferences. This section describes how those priorities
are learned.

Priorities among rules are represented as pairs of control rules such that the first element of the
pair has priority over the second one. Obviously the two elements of the pair are control rules
of the same type. Otherwise the pair of rules would never fire simultaneously and therefore
would never conflict. In the case of operator control rules they suggest relevant operators for
the same goal. In the case of bindings control rules they suggest bindings for the same operator.
The priorities determine a partial order among control rules of the same type. Our learning
algorithm does not check whether adding a priority causes cycles in such partial order.

We have considered extending the priorities with conditions under the which the priority among
the rules applies. That would amount to meta-control-rules. However the schema that we have
developed does not include such conditions. Note that if those conditions were determined,
they could be used instead to modify appropriately the control rules themselves, making them
more specific to constraint their applicability and therefote avoid the conflicts.!?

Previous sections described how the learner is always called upon failure, i.e. when the plan
obtained with the currently available control knowledge can be improved. The construction
of the search trace for the improved plan returns the set of decision points ps_decisions where
the control knowledge failed to make the right choice. Let bad_alternative be the alternative
that was wrongly suggested by the current control knowledge at decision_point € ps_decisions.
Let good_alternative be the alternative that was selected at the same decision_point in order to
guide the planner towards the improved plan. There are two cases in which the learner tries to
add a priority among conflicting rules:

e At decision_point both good_alternative and bad_alternative were suggested by a control
rule. The conflict was broken in favor of bad_alternative (otherwise decision_point would

not be in ps_decisions).

®Determining those conditions and how to modify the rules appropriately is not trivial. For example, if certain
conditions « are used to decide between rules A and B, and certain conditions /3 are used to decide between rules
A and C, pushing both « and 3 into A’s preconditions might not work. See [Borrajo and Veloso, 1994a] for ways
to address the rule refinement problem using inductive methods.

3.11. LEARNING CONTROL RULE PRIORITIES 81

e At decision_point bad_alternative was suggested by a control rule, and the learner has
learned a new rule that will fire preferring good_alternative.

analyze_preference_conflicts(ps_decisions,rule_relative_prefs)
rule_relative_prefs stores the learned preferences.

1. unsolved_decisions_p « nil
2. foreach decision € ps_decisions
3 if preference_conflict_p(decision)
4 then
5. good_alternative «— decision.good(decision)
6 bad_alternative «+ decision.bad(decision)
7 node +— decision.node(decision)
8. rule_for_good_alt — which_rule_preferred_alt(good_alternative,node)
9. rule for_bad_alt — which_rule_preferred_alt(bad_alternative,node)
10. if <rule_for_bad_alt,rule _for_good_alt> € rule_relative_prefs
11. then ;; The opposite priority exists.
12. unsolved_decisions_p — t ;; Cannot learn. Continue
13. else ;; Learn priority among the control rules.
14, rule_relative prefs «— rule_relative prefs
U <rule_for_good_alt,rule_for_bad_alt>
15. ps_decisions «— ps_decisions \ {decision}
16. else
17. unsolved_decisions.p «+— t

18. if unsolved_decisions_p
19. then ...continue learning ...

Figure 3.45: Learning preferences among control rules. This function is called before learning
new control rules and also after adding new rules that may cause conflicts with existing ones in the
problem being solved.

Figure 3.45 describes how priorities among control rules may be learned in both of those
cases: analyze_preference_conflicts is called both before any other learning is attempted,
i.e. before the call to learn in Figure 3.10, and also when new control rules have been
learned which may cause a conflict with the existing rules. The preferences learned are
stored in rule_relative_prefs. In Step 3 preference_conflict_p determines whether there exist
a preference conflict at the decision point.® In Step 8 rule for_good_alt is the control rule
that fired recommending good_alternative. Or it may be a rule just learned that would fire

20We have easily extended PRODIGY4.0 to record which control rules fired at each node, how they were
instantiated, and which alternative(s) they preferred.

82 CHAPTER 3. SEARCH CONTROL RULE LEARNING

operator op (<x> <y>) operator opl (<x>) operator op2 (<y>)
:preconds (and (gl <x>) :preconds (p) :preconds (q)
(g2 <y>)) forall (<obj> object) forall (<obj> object)
:adds (g <x> <y>) :dels (gl <obj>) :dels (g2 <obj>)
:adds (gl <x>) :adds (g2 <y>)

(control-rule EXPAND-MAIN-GOALS-FIRST
(if (and (candidate-goal <goal>)
(goal-instance-of <goal> g)
(candidate-goal <other-goal>)
(~ (goal-instance-of <other-goal> g))))
({then reject goal <other-goal>))

Quality metric:

Figure 3.46: An artificial domain used to illustrate conflicting preferences among the learned
control rules and how learning helps to break them. Higher values of the quality metric mean

higher cost and worse quality.

at that node preferring good_alternative. In Step 9 rule for_bad_alt is the control rule that
fired recommending bad_alternative. The priority of rule _for_good_alt over rule_for_bad_alt is
recorded in the list of rule priorities rule_relative_prefs in Step 14. If rule_for_bad_alt already
had priority over rule_for_good_alt, the learner does not do anything (Steps 10-12). It trusts
that a new rule will be learned later, as it does not have a memory of the problem for which
such priority was learned. The decisions for which a conflict resolving priority is learned do
not need to be analyzed further by the learner and are removed from ps_decisions in Step 15.
Finally the learner continues analyzing the reminding decision points in ps_decisions by calling
the learning functions described-in previous sections.

3.11.4 An Example in an Artificial Domain

Figure 3.46 introduces a small domain to illustrate how over-general learned control rules may
give conflicting preferences, and how control knowledge to break those conflicts can be learned
automatically. The domain has only three operators, namely op, op;, and op,. Operator op is
always used to achieve the top-level goal ¢ by decomposing it in instances of ¢; and g,. op;
achieves a given instance of ¢; and deletes all other instances. Similarly op, achieves a given
instance of ¢, and deletes all other g,’s instances.?! Better plans in this domain reuse ¢; and ¢,

21For simplicity in the representation, assume that the negative effects (:dels) are updated before the positive
effects (zadds).

3.11. LEARNING CONTROL RULE PRIORITIES 83

subgoals common to several top-level goals before deleting them. An example of this occurs in
problem P; in Figure 3.47 (a), in which two of the top level goals share subgoal g;(a,). In the
better plan those two goals are worked on consecutively and they are achieved before g¢;(a1)
is deleted in order to achieve g;(a). Figure 3.47 (c) shows the plan tree corresponding to the
better plan. The control rule in (e) is learned from this problem by the algorithms described in
Section 3.9. Similarly Figures 3.47 (b), (d), and (f) show the solutions, plan tree and learned
control rule for a second problem in this domain. In this case g»(b) is the subgoal shared by
two of the top-level goals.

Now PRODIGY4.0 is given a third problem in the domain (Figure 3.48). In this problem two
of the top-level goals need g,(b;) as a subgoal and a different pair of the top-level goals need
g1(az) as a subgoal. Both of the rules learned from the two previous problems are relevant in
this problem. Figure 3.48 shows the begining of the trace of PRODIGY4.0 solving this problem.
At n22 both rules fire indicating conflicting preferences. The conflict is broken by a default
heuristic: subgoal on goal introduced most recently in the set of candidate goals. PRODIGY4.0
obtains the plan in Figure 3.49 (a) which can be improved. According to the quality metric
for this domain, the cost of reachieving g»(b1), i.e. the cost of ops, is higher than the cost of
reachieving ¢;(b,), i.e. the cost of op;. Therefore the plan is improved if the top-level goals are
achieved in a different order. Figure 3.49 (b) shows the improved plan. The crucial difference
between the two plans from the point of view of their quality is the different cost of op; and
opa.

In order to obtain the better plan, the goal preference conflict at n22 should be broken in a
different way. This amounts to giving priority to control rule prefer-goal-2, which prefers
keeping the focus on g(a1,b;). This priority among the two control rules is learned from
this problem solving episode.?? Note that the rule priority learned is related to the plan quality
metric. Rule prefer-goal-2 protects ¢g»(y). Rule prefer-goal-1 protects g;(z). The priority
captures the greater cost of reachieving g2(y), i.e. of operator op;.

3.11.5 Examples in the Process Planning Domain

In this section we illustrate the usefulness of learning priorities among learned control rules in
the process planning domain. Figure 3.50 shows two control rules learned by the algorithms
described in Section 3.7. The first rule suggests bindings for drilling a spot hole using a machine
on which the part and holding device set-up are ready. The second rule suggests bindings that
use an existing tool set-up. A conflict appears in a problem in which the part is being held
by one machine dr:ll; (the holding precondition is true), and the tool, a spot-drill, is being

ZThere is an even better solution to this problem in which the top-level goals are achieved in the order and
therefore none of their subgoals needs to be reachieved. The learning algorithm is not able to learn the more
complex and global heuristic that by inspecting the top-level goal finds the optimal order of achieving them.

84 CHAPTER 3. SEARCH CONTROL RULE LEARNING

Problem P;

State: (and (p) (q))
Goal: {and (g al bl)
Initial solution:
1. <opl al>
<op2 b3>
<op al b3>
<opl a2>
<op2 b2>
<op a2 b2>
<opl al>
<op2 bl>
9. <op al bl>
Cost = 30

(g a2 b2)

(g al b3))

W 3 Ul WN

Improved solution:
1. <opl al>
2. <op2 b3>
3. <op al b3>
4. <op2 bl>
5. <op al bl>
6. <opl a2>
7. <op2 b2>
8. <op a2 b2>
Cost = 27

op(a2,b2) ¢)
08P1) g (a2)GS

(control-rule prefer-goal-1

(if (and (candidate-goal (g1 <x-2>))
(known (gl <x-1>))
(is-subgoal-of-ops (g1 <x-1>) <ops>)
(diff <x-2> <x-1>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~(is-pending-subgoal-in-subtree <other-goal> <ops>))))

(then prefer goal <pref-goal> <other-goal>))

(e)

Problem P,

State: (and (p) (q))
Goal: (and (g al bl)
Initial solution:
1. <opl a3>
<op2 bl>
. <op a3 bl>
. <opl a2>
. <op2 b2>
<op a2 b2>
<opl al>
<op2 bl>
9. <op al bl>
Cost = 30

(g a2 b2)

(g a3 bl))

W~ Ui W

Improved solution:
1. <opl a3>
<op2 bl>
<op a3 bl>
<opl al>
<op al bl>
<opl a2>
<opZ b2>
8. <op a2 b2>
Cost = 24

N oy w N

op(a2,b2)
D&(E1) g fa2)cS

(control-rule prefer-goal-2

(if (and (candidate-goal (g2 <y-2>))
(known (g2 <y-1>))
(is-subgoal-of-ops (g2 <y-1>) <ops>)
(diff <y-2> <y-1>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~(is-pending-subgoal-in-subtree <other-goal> <ops>))))

(then prefer goal <pref-goal> <other-goal>))

()

Figure 3.47: (a) and (b): Two problems in the artificial domain of Figure 3.46 and their respective
solutions. (c) and (d): Plan trees constructed from the improved solution traces. (e) and (f): Control
rules learned respectively from problems (a) and (b).

3.11. LEARNING CONTROL RULE PRIORITIES 85

State: (and (p)(q@))
Goal: (and (g al bl) (g a2 b2) (g a2 bl))

2 n2 (done)
4 nd4 <*finish*>
5 n5 (g al bl) [2]
7 n7 <op al bl>
Firing delete goals EXPAND-MAIN-GOALS-FIRST
8 n8 (g a2 b2) (1]
10 nl0 <op a2 b2>
Firing delete goals EXPAND-MAIN-GOALS-FIRST
11 nll (g a2 bl)
13 nl3 <op a2 bl>

14 nld (gl a2) [3]
16 nlé <opl a2>
17 nl7 <OP1l A2>
18 nl8 (g2 bl) [2]
20 n20 <op2 bl>
21 n21 <QP2 Bl>

22 n22 <OP A2 Bl>
Firing pref rule PREFER-GOAL-2 for (#<Gl Al>) over #<G2 B2>
Firing pref rule PREFER-GOAL-1 for (#<G2 B2>) over #<Gl Al>
Warning: cycle found in the preference control rules for type :GOAL
Resolving preference cycle...
Candidate #<G2 B2> has value 0.
Candidate #<Gl Al> has value 1.

23 n23 (g2 b2) [1]
25 n25 <op2 b2>
26 n26 <OP2 B2>

27 n27 <OP A2 B2>

Figure 3.48: A third problem in the artificial domain and PRODIGY4.0’s problem solving trace for
solvingit. Atn22 the control rules learned from the previous problems give conflicting preferences.

Initial solution: Improved solution:
1. <opl az2> 1. <opl a2>
2. <op2 bl> 2. <op2 bl>
3. <op a2 bl> 3. <op a2 bl>
4. <op2 b2> 4. <opl al>
5. <op a2 b2> 5. <op al bl>
6. <opl al> * 6. <opl a2>

* 7. <op2 bl> 7. <op2 b2>
8. <op al bl> 8. <op a2 b2>

Cost = 27 Cost = 24

(@) (b)

Figure 3.49: Two plans of different quality for the problem in Figure 3.48. The difference in
quality is due to the different cost of operators op; and op,, marked with a * in the figure.

86 CHAPTER 3. SEARCH CONTROL RULE LEARNING

held in a different machine dr:i/,.2> Both rules would fire suggesting different machines. The
better solution according to our quality metric corresponds to using drill; since it reuses the
most expensive part of the set-up, namely preparing the part and holding device and holding
the part. Consistently with this, the rule priority learning mechanism learns a priority of the
first rule over the second rule.

(control-rule pref-bnds-drill-with-spot-drill-in-milling-machine4
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))

(current-operator drill-with-spot-drill-in-milling-machine)

(known (holding <mach4> <holding-dev5> <part> <side> <side-pair-6>))

(or (diff <mach4> <machl>) (diff <holding-dev5> <holding-dev2>)

(diff <side-pair-6> <side-pair-3>))))
(then prefer bindings ((<mach> . <machd>) (<hd> . <holding-devS>) (<sp> . <side-pair-6>))
((<mach> . <machl>) {(<hd> . <holding-dev2>) (<sp> . <side-pair-3>))))

(control-rule pref-bnds-drill-with-spot-drill-in-milling-machine2
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill-in-milling-machine)
(known (holding-tocl <mach3> <drill-bit-4>))
(or (diff <mach3> <machl>) (diff <drill-bit-4> <drill-bit-2>))))
(then prefer bindings ((<mach> . <mach3>) (<drill-bit> . <drill-bit-4>))
((<mach> . <machl>) (<drill-bit> . <drill-bit-2>))))

11de_rehnive4n%yb= {...<prefer-bnds-drill-with-spot-drill-in-milling-machined4 over
prefer-bnds-drill~with-spot-drill-in-milling-machine2> ...}

Figure 3.50: Two bindings control rules learned in the process planning domain. The algorithm
in Section 3.11.3 learns a priority of the first rule over the second rule which is consistent with the
meaning of the quality metric: changing a tool is cheaper than changing the set-up of the part and
the holding device.

Figure 3.51 illustrates yet another example, this time when two goal prefer control rules conflict.
The two rules were learned using the algorithms in Section 3.9. The first rule advises the planner
to focus on the goals that need the holding set-up currently available. The second rule keeps
the focus on the goals that need the current tool set-up. A priority is learned of the first rule
over the second one and this priority is also consistent with the different cost of switching a
tool and switching a part and holding device, an important factor captured by the plan quality
metric.

3.12 Discussion

The previous sections have described how quality-enhancing control rules can be learned from
problem solving experience. Learning is triggered by failure, when the current control

23Bindings control rules establish preferences only among valid bindings. Therefore they do not need to
consider constraints on the bindings such as the type of the tool and machine.

3.12. DISCUSSION 87

{control-rule prefer-goal-1

(if (and (candidate-goal (holding <drilll5> <visel6> <part> <side27> <side3-side68>))
(known (holding <machl> <holding-dev2> <part> <side-3> <gide-pair-4>))
(is-subgoal-of-ops (holding <machl> <holding-dev2> <part> <side-3> <side-pair-4>)

<ops>)

(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
{(~ (is-pending-subgoal-in-subtree <other-goal> <ops>))))

(then prefer goal <pref-goal> <other-goal>))

(control-rule prefer-goal-2

(if (and (candidate-goal (holding-tool <machine> <td22>))
(known (holding-tool <machine> <drill-bit-1>))
(is-subgoal-of-ops (holding-tool <machine> <drill-bit-1>) <ops>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~ (is-pending-subgoal-in-subtree <other-goal> <ops>))))

(then prefer goal <pref-goal> <other-goal>))

rule-rehzﬁve.prqu: {... <prefer-goal-1l over prefer-goal-2> ...}

Figure 3.51: Two goal control rules learned in the process planning domain and their learned
priority. Again the priority captures the fact that in the plan quality metric changing a tool is
cheaper than changing the set-up of the part and the holding device.

knowledge strategy does not lead to a good plan, according to the quality metric for the domain
and to the critical eye of a domain expert. The divergences between the planner’s initial solution
and the improved solution, or better the divergences in the problem solving decisions made to
arrive to each solution, suggest learning opportunities. These learning opportunities therefore
correspond to decision points where the current control strategy needs to be overridden
in order to obtain the improved solution. Initially that strategy is PRODIGY4.0’s default one:
depth-first search, left-right order of precondition expansion, default order of operators in the
domain description, and default order of the bindings generated by the matcher. New control
rules are learned only to override the current strategy. This need to learn when particular
domain-independent search control heuristics do not produce the desired behavior is an issue
for any planning architecture [Veloso and Blythe, 1994].

Previous work on learning for PRODIGY focused on learning control rules to improve planning
efficiency instead of plan quality [Minton, 1988, Etzioni, 1990, Pérez and Etzioni, 1992].
The cited mechanisms worked for a constrained domain representation language that excluded
disjunction and quantification. We are interested in more complex domains, since it is in
those where plan quality is an interesting issue. Therefore our learning algorithms consider
all of PRODIGY’s rich domain knowledge representation language. As the focus of our thesis
is on improving plan quality, we have assumed that control knowledge for planning efficiency
can be learned by other mechanisms. In our experiments we have made use of such control
knowledge as part of the domain description in order to speed the planning process and reduce

88 CHAPTER 3. SEARCH CONTROL RULE LEARNING

backtracking. However the use or lack of such control knowledge is not a factor for the success
of our methods. The algorithm to build the plan trees takes into account only the successful
paths in the search trace ignoring those who fail and lead to backtracking.

The algorithms described here learn goal, operator, and bindings preference rules. However
PRODIGY4.0’s control language is richer than that and more types of control rules are available.
In particular select and reject control rules are more powerful in pruning candidate alternatives
and reducing the search space. If an alternative is removed from the candidate set by one of
these rules, it is not open for backtracking upon failure. Previous systems that learned control
knowledge for PRODIGY [Minton, 1988, Etzioni, 1990] took advantage of this fact and learned
select and reject control rules. Why then learn only preference rules? The reason is that
our learner does not build complete explanations, or proofs, that the decision is always going
to be a good one. As the rules are not guaranteed to be correct, learning select and reject
control rules might lead to incompleteness. As the learned rules may be over-general we have
chosen to allow several of them to fire?* and then solve the preference conflict as described in
Section 3.11.

Our learning mechanisms are fully independent of the planning domain. Nonetheless there are
certain characteristics of the domain and the plan quality metric that make the methods
succeed in learning control knowledge that improves the quality of the plans. Our method relies
on the fact that the improvements in quality, in particular the savings in plan cost, are due to
sharing the work among different parts of the plan. At problem solving time this means sharing
subgoals among plan operators. If the operator and bindings choice can be guided so that a
subgoal in its subgoaling tree is shared, plan steps are saved. These sources of improvement are
nicely illustrated in the process planning domain where sharing of subgoals can be mapped to
sharing of parts or subparts of a set-up, and the number of set-ups is commonly used by human
experts as a rough measure of the quality of the plan (cf. Section 2.2). Similar characteristics
appear in many other domains.

We have focused on quality metrics that capture the cost of the plan execution and in which
the cost of the whole plan is the sum of the cost of the individual plan steps. The cost of a plan
step depends of the cost of the operator used and the bindings with which it is instantiated. The
fact that the quality metrics are linear on the cost of the operators is used by the algorithms,
in particular to assign cost to the nodes of the plan trees. This disallows the use of nonlinear
functions such as those in which the cost of the plan depends on the occurrence of combinations
of plan steps, or in which the cost of one operator depends on the presence in the plan of
another operator. There is a point of view however from which our quality metrics still capture
nonlinearities as dependencies among steps, since the choice of operator, goal ordering, or
bindings will influence further steps in the plan.

The improved plan can be obtained by asking a domain expert to criticize the first plan proposed

24pRODIGY4.0 allows only one select rule to fire.

3.12. DISCUSSION 89

by the planner. In this case our learner can be seen as a learning apprentice system [Mitchell et
al., 1990]. The improved plan can also be obtained by letting the planner search for multiple
solutions and stop when a good enough solution is found. In this case the learning system
would work completely autonomous as the domain expert is not required and the quality of the
plan is determined solely by the use of the quality metric. Why then did we design the system
so the interaction with a human expert is possible? A practical reason is that because of
the large search spaces in complex domains, it would be too expensive to explore enough of
it to find a good solution. The default search strategy is chronological backtracking. If the
relevant decision (for example which operation to use to drill a hole) is made earlier in the
search process, the space of alternatives explored lower in the tree before trying a different
alternative at the relevant decision point is just too large. Allowing a domain expert to quickly
point the better choices is much more efficient.

The interaction with the human expert occurs at the plan level instead of at the problem
solving level. Note that by expert we mean an expert in the domain, not an expert in Al
planning. For such expert it is easier to criticize the planner’s solutions than its problem
solving decisions. The expert does not need to understand how the problem solver works. It
is easier for a person to think in terms of forward operator execution and change of the world
state than in terms of backward chaining and means-ends analysis.

Lastly, there is a growing interest in the planning community for mixed-initiative planning.
“A mixed-initiative system is one in which both humans and machines can make contributions
to a problem solution, often without being asked explicitly.” (Jaime Carbonell, Sr., cited
in [Burstein and McDermott, 1994]). Allowing a domain expert to interact with the planner
by criticizing a plan and suggesting improvements, and having the learner incorporate that
expertise and use it in future problem solving, is a first step in the direction of an architecture
with truly-mixed initiative. The learned knowledge captures a control strategy to. generate
plans of a quality consistent with the quality metric. If different quality metrics are available,
different control strategies can be learned. Then for a given problem our planner can present
to the domain expert different alternative plans, each of them good according to some quality
metric.

The learning algorithms described suffer of important limitations. First of all, if the plan quality
metric changes, the learned knowledge may become useless and, what is more important,
‘incorrect. Second, the explanation is built from a single example. It is incomplete and leads
to overgeneral rules. We have dealt with this problem by refining the learned knowledge upon
failure. Third, we have described above that the class of quality metrics that can be captured is
limited. If there are tradeoffs in the quality metric, there will be conflicts in the control rules
that need to be broken in a more intelligent way than the one described. An example in the
process planning domain illustrates this point. Assume that the quality metric we have used
so far is modified to assign different cost to different operators for drilling a hole in a part. In
particular using a milling machine becomes more expensive than using a drill press. Then the

90 CHAPTER 3. SEARCH CONTROL RULE LEARNING

cost of a plan to drill a hole depends not only on the availability of part of the set-up, but also
on the type of operation used. The preference for one machine or other will depend on whether
reusing parts of the milling machine set-up overcomes the savings in cost by using the drill
press. If in addition several holes need to be made with the same set-up, the balance may be
different.?> These limitations are not only due to the algorithms themselves but to the choice
of control rules as the formalism to represent quality control knowledge. These limitations
motivated the approach described in Chapter 4.

3.13 Experimental Results

We have fully implemented the mechanisms to acquire automatically the types of control rules
described in the previous sections. This section describes the results of our experiments aimed
to evaluate the plan quality gained by using the learned control knowledge. We also analyze
the cost of learning, and its effect along other dimensions.

3.13.1 The Setting

The experiments were run on the process planning domain described in Section 2.3. Some
default control rules for planning efficiency?® were available to the planner and reduce greatly
the backtracking effort due to failure paths. These are orthogonal to the control rules learned for
efficient plan execution, i.e. good plan quality. A random problem generator was built in order
to generate problems for the experiments. The inputs to the generator are a set of constraints,
namely the number of goals in the problem, the type of the goals, and the manufacturing
environment, that is, how many machines, tools, holding devices, and so on, and of what types,
are available. In the experiments we have concentrated in goals of cutting parts to desired
sizes along their three dimensions, and on drilling and finishing holes of several different types
(counterbored, countersunk, tapped, and reamed) in any of the six part sides.

The quality metric used in these experiments minimizes execution cost and in particular the
cost of setting up the work on the machines. Table 3.1 describes the quality metric. Each
operator is assigned a fixed cost independent of the operator instantiation (bindings). (Note
however that QUALITY also allows metrics in which the cost of the operators depends on the
operator bindings.)

The following two facts motivated our choice of quality metric:

25A similar example is ellaborated in Section 4.1.3.
26Those control rules prune early choices that would lead to failure paths.

3.13. EXPERIMENTAL RESULTS 91

! Type ‘ Cost ‘ Operators

Machining operators 1 drill-with-spot-drill, drill-with-twist-drill,
drill-with-high-helix-drill, tap, countersink,
counterbore, ream, drill-with-spot-drill-in-milling-machine,
drill-with-twist-drill-in-milling-machine, face-mill, side-mill

Machine and 8 | put-holding-device-in-drill, put-holding-device-in-milling-machine,

holding device remove-holding-device-from-machine,

set-up operators put-on-machine-table, remove-from-machine-table,
hold-with-vise, release-from-holding-device

Tool operators 1 put-tool-on-milling-machine, put-tool-in-drill-spindle,
remove-tool-from-machine

Cleaning operators 6 | clean, remove-burrs

Oil operators 3 | add-soluble-oil, add-mineral-oil, add-any-cutting-fluid

Table 3.1: The quality metric used in the experiments described.

e “Set-ups are often the most expensive part of a plan. The number of set-ups roughly
measures the cost of executing a plan, and it is commonly used as a heuristic to construct
efficient plans.”[Hayes, 1990]. Therefore our metric assigns a higher cost to the operators
related to set-up plan steps, and assigns a uniform low cost to the machining operators
(cutting, drilling, etc.)

e Switching tools is cheaper than holding or moving parts. In the machining center de-
scribed in Section 2.4 tools are switched automatically, whereas moving holding devices
and parts, cleaning the parts, and positioning the part precisely on the machine are done
manually and therefore are more expensive operations.

The values assigned to each operator by the quality metric in Table 3.1 capture these aspects of

the domain.

3.13.2 The Training Phase

QUALITY was given 60 randomly-generated problems in order to learn search control knowledge.
For each of the 60 problems, QUALITY called PRODIGY4.0 to solve it and offered the human expert
the plan obtained. If the expert proposed a better plan, QUALITY learned new control knowledge.
The knowledge learned from that problem was incorporated and therefore used to solve the
remaining problems. The expert proposed improvements to 19 of the 60 problems, and therefore
QUALITY learned from 19 problems. Table 3.2 summarizes the results of the training phase.?’

27The experiments used a Sun Sparcstation ELC running Allegro Common Lisp version 4.1 under the Mach/Unix

operating system.

92 CHAPTER 3. SEARCH CONTROL RULE LEARNING

By planning time we mean the time spent by PRODIGY4.0 solving the problem initially and then
solving it to obtain the expert-improved plan, by backtracking when PRODIGY4.0’s decisions
with the currently available control knowledge do not match the desired plan. Learning time
includes the time to construct the plan trees from the problem solving traces, and the time to
traverse and compare the plan trees and build the new control rules. Note that the learning time
is considerably smaller than the planning time, that is, learning is cheap compared to planning.

o Average planning time (initial plan + improved plan): 26.5 s.
e Average learning time: 3.2 s.

¢ Quality-enhancing rules built (total): 36.

Table 3.2: Summary of the training phase. The-numbers shown were computed for the 19 training
problems in which learning was actually invoked.

Table 3.3 shows those results in more detail by separating the 60 training problems in 6
sets. Each of the sets was obtained by the random-problem generator for a particular set of
parameters. The first three sets are one-goal problems to drill holes and spot holes, and to cut
parts along one of their three dimensions. The next set contains problems with three goals to
drill and/or finish holes in a part. The holes may be in different sides requiring setting up the
part in the appropriate orientation. The problems in the last two sets have up to four goals both
to cut parts and to drill and finish holes in one or more parts, and multiple tools are available in
the shop to perform the required machining operations. The goals frequently interact as they
may apply to the same part or can be achieved by sharing the shop resources (machines and/or
tools). We show numbers for each problem set because different parameter settings lead to
problems of increasing difficulty and to different usefulness of the learned knowledge. Note
that overall efficiency improvements may not be as large for complex problems, where only
part of the plan is affected by the new knowledge.

The second row of the table indicates in how many problems of the training set PRODIGY4.0
output a plan to which the expert could suggest any improvements. Only for those problems
QUALITY was invoked and generated new control knowledge automatically. The third and
fourth rows indicate planning and learning time for the problems in which QUALITY learned.
The fourth row shows the number of rules learned for each set. Appendix C lists all those
learned control rules.

The bottom part of Table 3.3 shows data on the quality of the plans obtained during the training
phase. The control rules learned at each point were incorporated immediately and made
available for solving the remaining problems. Thus the values reported in row 8 correspond
to the costs for the plans with the control knowledge learned up to and included that problem.

3.13. EXPERIMENTAL RESULTS 93

‘ Problem set (10 problems per set) J 1 ‘ 2 ‘ 3 [4 I 5 | 6 |
Number of problems learned from 3 3 1 3 6 3
Planning time (secs.) 24.8 | 34.8 | 26.1 | 91.8 | 140.5 | 186.6
Learning time (secs.) 25| 29| 81| 77| 157 | 246
Number of control rules learned 6 4 3 7 8 8
Cost before learning 263 | 309 | 335 | 835 655 | 1297
Cost after learning 245 | 240 | 307 | 668 | 517 | 1121
% Cost decrease (in improved problems only) | 14% | 45% | 36% | 48% | 30% | 32%

Table 3.3: Experimental results for the training phase. Each column corresponds to a set of
10 problems. The second row shows the number of problems of each problem set in which learning
occurred, prompted by the expert suggestions to improve PRODIGY4.0’s initial plan. The third and
fourth rows show respectively the total time spent in planning and the total time spent in learning
considering only those problems in which learning occured. Row 5 shows the number of control
rules learned for each problem set. The bottom table shows plan quality data for the training
problem. Each problem was solved using the control knowledge learned for the previous problems.
The total cost of the plans initially output by PRODIGY4.0 for the 10 problems in each set is shown
in row 7. Row 8 shows the total cost for the plans for the 10 problems in the set after the human
expert suggestions. The last row shows the improvement in quality (or cost decrease) due to the
expert suggestions, now considering only the problems for which the expert made any suggestions
(row 2 from the top of the table).

With this in mind, the last row of the table shows the increase in quality for the problems of
each set in which learning occurred.

3.13.3 The Test Phase

The goal of the test phase was to evaluate the plan quality gained by using the learned control
knowledge. For the test phase PRODIGY4.0 was given 180 randomly-generated problems
different from those in the training set. The 180 problems are grouped in six problem sets,
numbered 1 to 6. Each problem set was produced by the random problem generator given the
same parameters than for the corresponding problem set in the training phase.

3.13.3.1 Effect of the Learned Knowledge in Plan Quality

Table 3.4 shows the effect of the learned knowledge on the quality of the plans for those
180 problems, according to the quality metric of Table 3.1. Row 4 of the table indicates the
number of problems in which the plan quality was actually improved. Row 5 shows the rate

94 CHAPTER 3. SEARCH CONTROL RULE LEARNING

of plan quality improvement considering only those problems.?® The lack of improvement in
the remaining problems was due to the fact that the planner was able to obtain a good plan
without using control knowledge. In three of the 180 problems the quality of the plan decreased
with the use of the learned knowledge, which indicates that there is room for further learning.
Appendix D shows the results for each of the 180 problems.

| Problem set (30 problems per set) | 1] 2] 3] 4] 5] 6]
Cost without learned control knowledge 886 | 1528 | 1716 | 2811 | 3421 | 3834
Cost with learned control knowledge 689 | 755 | 1330 | 2056 | 1472 | 3245
Number of problems with improvement 9 24 14 25 30 20
% Cost decrease (in improved problems only) | 49% | 55% | 40% | 28% | 57% | 20%
Max % cost decrease . 63% | 71% | 87% | 88% | 96% | 34%

Table 3.4: Improvement on the quality of the plans obtained for 180 randomly-generated problems
in the process planning domain. The numbers refer to the quality metric of Table 3.1. Quality
improvement with that metric corresponds to execution cost reduction. The second row of the
table shows the total quality of the plans obtained for the 30 problems in the each set without
using any quality-enhancing control knowledge. Row 3 shows the corresponding values using the
automatically acquired control knowledge. Row 4 shows the number of problems in each set in
which the solution obtained using the learned knowledge was better than that obtained without
any quality-enhancing control knowledge. Row 5 shows the rate of improvement considering only
those problems. The last row shows the maximum rate of improvement in a single problem of the

set.

To further evaluate the quality of the output plans, the human expert analyzed a sample of
them and found them optimal in the sense that the expert could not suggest improvements
(other than systematically exploring the complete space in the hope of finding some overlooked
optimization). Although this is not guarantee of optimality as the expert did not exhaust the
plan space, we consider them virtually optimal.

It is worth pointing out that the rate of quality improvement is quite different form the rate of
planning efficiency (time or nodes explored by the planner) obtained by the speedup learning
systems in the literature [Etzioni, 1990, Knoblock, 1994, Minton et al., 1989, Veloso, 1994].
The reason for this is simple: as the planner’s search space is exponential in size, in the best
case a speedup learner can reach exponential improvements in search reductions. However the
quality of plans according to our metrics is linear in the cost of the operators, and therefore
cannot be improved exponentially. Still even a small quality improvement in production plans,

28These values reflect the improvement between the solutions obtained without any quality-enhancing control
knowledge and those obtained with the learned control knowledge. Therefore they are not directly comparable to
those in the last row of Table 3.3, which captured the improvement between the solution to a problem with the
knowledge learned so far and the solution suggested by the human expert.

3.13. EXPERIMENTAL RESULTS 95

and in many other domains, is economically very important as the savings in cost and resource
use multiply when the plans are executed many times.

3.13.3.2 Effect of the Learned Knowledge in Planning Efficiency

Although the goal of the learning algorithms introduced in this thesis is to produce better quality
plans, we studied the effect of the learned knowledge in planning efficiency, in particular due
to the overhead of matching the rules during planning. Table 3.5 shows the effects of using
the learned control on the efficiency of planning, namely on the time spend and on the number
of nodes expanded during planning. The numbers are averaged over 5 runs for each problem.
The table shows how both the planning time and the number of expanded nodes are reduced
when the learned rules are used. In spite of the slightly increased matching cost that the
planner experiences when the control rules are added to the domain, the planner solves the
problems faster due to the shorter length of the solutions obtained, and therefore the smaller
number of nodes searched.?® Therefore quality-rule learning has positive utility in the Minton
sense [Minton, 1988] even for speed-up learning.

Problem set Planning CPU time (secs.) Number of nodes
(30 problems Without With Without With
per set) learned rules | learned rules || learned rules | learned rules
1 84 71 1405 1135
2 141 99 2196 1594
3 152 204 2111 1852
4 272 249 3633 3083
5 313 214 3915 2432
6 509 426 5546 4590

Table 3.5: Effect of the learned control knowledge in the planning time and in the number of nodes
searched. Each row displays the total planning CPU time and nodes for the 30 problems in the
test set. The values shown are averaged over 5 runs for each problem. Columns 2 and 4 show
the numbers without any quality-enhancing control knowledge. Columns 3 and 5 show the values
when the control rules learned in the training phase are used during planning. Planning time is
reduced (average 15%) when the learned control knowledge is used due to the shorter length of the
plans found.

We have argued before that shorter plan lengths do not mean better plans with the quality metric
used. However for many of the experiment problems the better plan was also the shorter plan.
Note that because some planning efficiency select and reject rules are available in the domain
(in all the experiments described), backtracking due to failure paths is greatly reduced. Most

2 Appendix D shows the planning time and the length of the plans obtained for each problem.

96 CHAPTER 3. SEARCH CONTROL RULE LEARNING

times the planner is able to find a solution without much backtracking. Therefore the number
of nodes explored was highly correlated with the plan length, and better plans required smaller
numbers of explored nodes. This is the reason for the reduced CPU time shown in the table.

However for quality metrics in which better plans have greater length finding them may take
more time and nodes, even if the matching cost of the learned control knowledge were null.
Therefore a price in efficiency would necessarily be paid in order to obtain better quality plans.
In future work we plan to further analyze the effort of using the learned knowledge, and the
possible tradeoff between the matching cost and the savings obtained by using the learned
knowledge instead of doing a more exhaustive search until a reasonably good solution is found
according to the quality metric.

3.14 Summary

This chapter presented a procedure to automatically acquire search-control rules that guide the
PRODIGY4.0 planner towards better plans. QUALITY, the learning architecture, is given a domain
theory and a metric of the quality of the plans specific to that domain. It is also given a problem
to solve in that domain. It compares the search trace (sequence of planning decisions made
by the planner) with the current control knowledge, and the sequence of decisions required
to obtain a better solution, according to the quality metric. The better solution is obtained by
QUALITY in two alternative modes: autonomously, by searching until a better solution is found;
or by interacting with a human expert in the application domain. QUALITY then translates both
search traces into plan trees, compares the plan trees, and explains the differences in them in
terms of why they lead to different quality plans. Finally, operator, binding, and goal ordering
PRODIGY4.0 control rules are generated.

The interaction with the domain expert occurs at the level of plan steps (and not of prob-
lem solving decisions). Thus the domain expert remains oblivious to the planner’s control
representation language and planning algorithm.

QUALITY is domain-independent and has been fully implemented. We have reported experi-
mental results in the process planning domain when the metric of quality is plan execution cost.
The learned control rules considerably improve plan quality, generating plans hard to improve
by the human domain expert. Learning is fast compared to planning. The learned rules have
positive utility, as they speed up planning due to shorter plan lengths.

Chapter 4

Learning Control Knowledge Trees

Chapter 3 described how quality-enhancing search control rules can be automatically learned
from past planning experience. The chapter concluded with some limitations of the learning
approach and of using search control rules as a representation formalism to capture quality
control knowledge. This chapter presents a novel way to represent control knowledge for
improving plan quality, as well as domain-independent algorithms to use such knowledge and
to automatically acquire it incrementally from experience. The first two sections motivate
this approach. Section 4.3 introduces the new knowledge representation formalism that we
call control knowledge trees. Section 4.4 presents the learning algorithms that automatically
build control knowledge trees and Section 4.5 describes the procedures to use them as control
knowledge to guide search. Both sections include illustrative examples from the process
planning domain, aunque both the formalism and the algorithms described are independent of
the application domain. Section 4.6 illustrates how the algorithms are used to produce good
plans in a transportation domain. The chapter concludes with a discussion of this approach and
some experimental results.

4.1 Motivation

The quality metric used throughout the process planning examples of Chapter 3 was a relatively
simple one. It did not account for differences in the costs of the operators corresponding to
machining actions. For example all the operators to drill a hole had the same quality value.
Suppose that this quality metric (in Table 2.1) is modified so that different machining operators
have different cost. In particular, using the drill press for drilling a hole or a spot-hole is much
cheaper than using the milling machine. A problem is given to the planner in which the goals
are to reduce the size of the part (by milling it) and to drill a hole in it. (A similar problem was
described in Figure 2.5). The planner is confronted with a choice of operator to drill the hole.

97

98 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

Operator Preconditions Adds Deletes
op nit=1.n g
ops mit=1,..m g
opii,t =1,..n P
opa,t = 1,..m P2i

Table 4.1: Operators in an example artificial domain.

This choice may turn out to be a difficult one. There is a tradeoff between the savings in cost
of the drilling operations per se, and the savings on seting up the work in each case. If the
difference in cost between the drilling operators is large enough (the drill press being cheaper)
it may be better to perform the two machining operations, namely drilling the spot hole and
milling the part, in different machines. In that case the savings in cost due to the use of the
drill press would be large enough to overcome the costs of setting up the work twice, once per
machine. Setting up the work on the milling machine is needed in any case, since it is the only
way to mill the part. Given all this, in this problem the choice of operator would depend both
on the difference in cost of the alternative drilling actions and on how expensive is to set up the
work on the drill press.

In general, complex quality metrics require reasoning about tradeoffs. And acquiring control
rules that apply at individual decision points may prove insufficient. Instead, a more globally-
scoped method is required. The next sections explore these issues with examples taken from
several domains. The examples illustrate the limitations of the control rule learning algorithms
of the previous chapter to capture more complex quality metrics. These limiting factors provide
the motivation for the approach presented in this chapter.

4.1.1 Example 1: An Artificial Domain

The artificial domain that we now introduce illustrates the difficulty of capturing certain kinds
of quality-enhancing control knowledge in the form of control rules. The domain operators are
summarized in Table 4.1. Two operators, namely op; and op,, achieve the top-level goal g.
They have as preconditions pi;,¢ = 1,...n and py;,¢ = 1,...m respectively. Each p;; can be
achieved by applying a corresponding single operator op;; whose preconditions are always
satisfied. None of the operators have any side effects (deleting or adding goals for which it was
not chosen as relevant operator). Now consider a problem with goal ¢ and initial state P, |J P>
where P; is the set of py; that are true initially and P, the set of p,; that are true initially. A plan
P,p, to achieve g using operator op; will consist of operators op;; such that py; & Py, followed
by op,, and will have a quality value

Q(Pop,) = q(op1) + Xp,¢p, 9(0p1i)

4.1. MOTIVATION 99

where ¢(op,) is the value assigned by the quality metric to op; and g(op;;) is the value assigned
by thequality metric to the operator opi; that achieves py;. Lower values of ¢ and) correspond
to better quality. Similarly, the quality of the plan P,,, to achieve g using operator op, is

Q(Pop,) = q(op2) + 2 pséPy q(op2:)
Therefore if the planner is confronted with the choice of operator to achieve g, it should prefer
op if

q(op1) + Ep,¢p, 9(op1i) > q(0p2) + Lp,iep, a(0p2i)
Let A,, = g(op2) — g(opy), that is, the difference in quality between the operators themselves,
as determined by the quality metric. Then the control knowledge should suggest prefer op; if

Zm.‘ﬂ’l Q(Opli) - zpziGEPz q(0p2¢) < AOP (1]

Note that this value depends on the problem at hand, since P, and P, correspond to the initial
state of the problem. There are many possible initial states, as there are many combinations of
put=1,.nandpy; 7 =1,..m.

A problem with goal ¢ and initial state defined by P, and P,, has two solutions!, namely the
plans P,,, and P,,,. Assume that plan P,,, has better quality than P,,,. The conditions that
contribute to the smaller value Q(P,,,) are py; 5.t p1; € Py, because they add 0 to Q(P,,,). The
conditions that contribute to the higher value of Q(P,,,) are py; s.t p»; € P>, which respectively
add g(opai) to Q(Pop,). These two sets of conditions explain why P, is better than P,,,. A
learner can use those sets of conditions to build a control rule of the form

if (current-goal g)
/\PuEPl (kIlOWIl pli)
Npsigp, — (known py;)

then prefer op; over op,

Such rule is very specific to the problem from which it is learned: if the sets P; or P, change
slightly, the rule does not apply, as all the rule preconditions must be true for it to fire. This is
the key problem. There is not a possibility of a partial match. Rules that do not transfer from
one problem to similar ones are far from ideal, and may lead to the utility problem [Minton,
1988], as the number of rules grows with the number of problems and rules are useful only for
a small set of problems.

Generalizing the rule is not an easy task though. The quality difference, as shown in inequal-

ity [1], is due to the relative costs of the p;; and of the operator alternatives. If some py; € P is
not satisfied in the new problem’s initial state, the sign of the equality may change, depending

1For the purposes of this discussion we are ignoring differences in the plans due to the ordering of the op;;
operators.

100 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

on the value of ¢(op;;). If the sign changes, then operator op, should be preferred and therefore
the precondition corresponding to that p;; must stay in the rule so it does not fire in the new
problem. However if the inequality sign does not change, choosing op; still leads to the better
plan, but the rule does not fire in the new problem because it is too specific. Something similar
happens if some py; € P, is satisfied in the new problem. In some cases changing the truth
value in the initial state of one of the p;; does not affect the relative quality of the plans, but
changing a combination of them does.?

Generalization becomes even more difficult in a domain in which there exist several alternative
operators for achieving each of the subgoals p;;, and the planner needs to subgoal in turn to
achieve the preconditions of those operators. The quality of the alternative operators may
be different and depend on the particular operator instantiation chosen. Which alternative is
preferred may also depend on which other goals the planner needs to solve. All this makes
the generalization of the above explanation and the rule built from it a non-trivial task. The
underlying problem is that matching a control rule requires that all of the preconditions are
matched. If any of them fails to match, the rule does not fire. But there is no indication of how
relevant the failed precondition(s) is to the rule recommendation, as the quality metric values
are not captured in the rule and are not used when the rule is matched.

Additionally, as the quality metric is implicitly captured in this control rule representation,
if the quality metric changes the control rules become invalid, as the recommendation may
change. Then the control knowledge must be learned anew. Section 4.7.1 lists a number of
situations in which a variety of metrics may be available for a domain. In those cases, if the
learned control knowledge could be reused across quality metrics, the learning effort could be
amortized among a larger number of problems in which it may be useful.

Given all these issues, what is needed is a formalism to represent control knowledge that
explicitly captures the quality metric and uses it when such control knowledge is invoked to
provide guidance for the planner’s current decision.

4.1.2 Example 2: A Transportation Domain

This section illustrates the issues just presented by introducing a small train and van trans-
portation domain. Figure 4.1 presents some of the operators. In this domain objects can be
transported between cities using trains and vans. There are operators to load and unload trains
and vans, an operator that moves a van between a pair of cities linked by a road, and an operator
that moves a train between two cities connected by a railway.®> Therefore there may be a choice

2t is interesting to note that in this example a control rule can be built whose precondition were precisely the
test of inequality [1]. However. this simple scheme would not work if achieving some p;; would require subgoaling
and therefore achieving other subgoals. The rule would require enumerating those subgoals.

3This domain is a variation of the logistics domain in [Veloso, 1994]. Jaime Carbonell suggested this example
as a good one to illustrate the point of the previous section.

4.1. MOTIVATION 101

of transport to move an object between two cities. In general that choice influences considerably
the quality of the final plan. The quality of the operators that move vehicles depend both on
the class of vehicle, i.e. train or van, and on the distance traveled. Table 4.2 shows an example
quality metric for this domain.

(OPERATOR LOAD-TRAIN
(params <obj> <train> <city>)
(preconds
{ (<obj> OBJECT)
(<train> TRAIN)
(<city> CITY))

(and (train-station <city>)
{at-obj <obj> <city>)
(at-train <train> <city>)))

(effects ()

((del (at-obj <obj> <city>))

(add (inside-train <obj> <train>)}))))

(OPERATOR RIDE-TRAIN
(params <train> <from> <to>)
{preconds
((<train> TRAIN)
{<from> CITY)
(<to> (and CITY (diff <from> <to>))))
(and
{(railway <from> <to>)
(at-train <train> <from>)))
(effects ()
{{del (at-train <train> <from>))
(add (at-train <train> <to>)))))

(OPERATOR UNLOAD-TRAIN
(params <obj> <train> <city>)
{preconds
{ (<obj> OBJECT)
(<train> TRAIN)
(<city> CITY))

(and (train-station <ecity>)
(inside-train <obj> <train>)
(at-train <train> <city>)))

(effects ()
((del (inside-train <obj> <train>))
(add (at-obj <obj> <city>)))))

Figure 4.1: Three of the operators in a train and van transportation domain. There are three
additional operators similar to the three above for loading, unloading and driving a van.

ride-train(train,x,y)
drive-van(van,x,y)

Operators Cost
load-train, unload-train(obj,train,loc) 5
load-van, unload-van(obj,van,loc) 5

distance(x,y)
5 xdistance(x,y)

Table 4.2: An example quality metric for the transportation domain which corresponds to plan
execution cost. Operators for loading and unloading objects have a fixed cost. The cost of the
operators for moving vehicles depends on the type of vehicle and on the distance traveled.

Figure 4.2 shows a very simple problem in this domain. Monroeville and New Hampton are
cities in the neighborhood of Pittsburgh and Philadelphia respectively. Only the larger cities,
Pittsburgh and Philadelphia, are connected by railways. The numbers next to the lines indicate
distances between cities. Initially there is a van ebro at Monroeville and another van avia
in Philadelphia, and a train loco ready at Pittsburgh’s train station. The problem consists on

102 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

iP1i
e e

Monroeville

20

Pittsburgh

(state (at-obj packagel monroeville)
(at-train loco pittsburgh)
(at-van avia philadelphia)
(at-van ebro monroeville) ...)

(goal (at-obj packagel new-hampton))

Figure 4.2: An example problem in the transportation domain. A package must be transported
from Monroeville, in the outskirts of Pittsburgh, to New Hampton, near Philadelphia.

Solution 1 Solution 2
load-van, drive-van(Mon,NH), unload-van load-van, drive-van(Mon,Pit), unload-van,
load-train, ride-train(Pit,Phil), unload-train,
load-van, drive-van(Phil, NH), unload-van

Figure 4.3: Two plans for the problem in Figure 4.2. Some of the operator parameters have been
omitted for clarity.

Total Plan Cost cost(drive-van(van,x,y))
5xd(xy) | 1.25xd(xy) | d(x,y)
Solution 1 1485 378 305
1 package
Solution 2 480 367 360
Solution 1 1495 388 315
2 packages
Solution 2 510 397 390

Table 4.3: Quality of different plans for two problems (moving one and two packages) in the
transportation domain. The plans for the first problem are in Figure 4.3. The plans for the second
problem are in Figure 4.4. Three different quality metrics are shown, each column corresponding
to one of them. They differ in the cost of the drive-van operator relative to the distance traveled.
The costs of the remaining operators are as shown in Table 4.2. The first column corresponds to
the metric in that figure. The quality of the best plan in each case is highlighted.

moving a package packagel from Monroeville to New Hampton. Consider the two solutions
for this problem listed in Figure 4.3. The first one sends the package by van directly from
Monroeville to New Hampton. The second one uses the train from Pittsburgh to Philadelphia

4.1. MOTIVATION 103

and the van for the shorter distances, i.e. from Monroeville to Pittsburgh and from Philadelphia
to New Hampton. With the quality metric described, the first plan has quality value 1485, and
the second plan has value 480. Although the total distance traveled in the second case is longer,
the second plan is much better because traveling by train is less expensive.

The first and second row entries of Table 4.3 summarize the costs of the two plans using a
variety of plan-quality metrics. The metrics differ in the cost of driving the van. The purpose
of the table is to illustrate how for different metrics, different alternative actions need to be
chosen. The quality of the best plan in each case is highlighted. For example, the third metric
(right column) assigns the same quality to the individual operators for moving the package
by van or by train, and therefore solution 1 is cheaper as the overall distance traversed by the
package is much shorter. The choice depends both on the cost of the transport used and on the
distance traversed in each of the solutions.

Solution 1 Solution 2
load-van(objl, Mon), load-van(obj1, Mon), load-van(obj2, Mon),
load-van(obj2, Mon), drive-van(Mon,Pit),
drive-van(Mon,NH), unload-van(objl, Pit), unload-van(obj2, Pit),
unload-van(obj1, NH), load-train(obj1, Pit), load-train(obj2, Pit),
unload-van(obj2, NH), ride-train(Pit,Phil),

unload-train(obj1, Phil), unload-train(obj2, Phil),
load-van(obj1, Phil), load-van(obj2, Phil),
drive-van(Phil,NH), '

unload-van(obj1, NH), unload-van(obj2, NH)

Figure 4.4: Two plans for a variant of the problem in Figure 4.2 in which two objects need to be
transported between Monroeville and New Hampton.

The choice of action gets more complex when more than one object need to be transported.
Two alternative plans for the case of two objects are shown in Figure 4.4. If the train route is
selected, the objects have to be loaded and unloaded several times, increasing the cost of the
plan linearly on the number of objects. The third and fourth rows of Table 4.3 show the costs
of the two plans for different quality metrics. Note that in the case of the second metric (middle
column), the choice of transport that leads to the best plan is different depending on the number
of objects.

Figure 4.5 graphically shows the quality of the two plans for a variety of quality metrics.
The desired quality-enhancing control knowledge must take into consideration the number of
objects that must be transported and the metric that defines plan quality in order to make the
appropriate choices that lead to the better plans. For the first and fourth metrics of the figure,
the choice is clear (for less than 5 packages), i.e. using the van only and the train respectively.
With the second metric (top rigth) 2 is the minimum number of objects that make solution 1

104 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

(using the van only) less costly. This is consistent with the data in Table 4.3. In the third metric
(bottom left) 3 objects are sufficient to choose that solution.

600 I I T T 600 | T I T

Solution 2 (train) -- - - Solution 2 (train) - - -

Solution 1 (van) — Solution 1 (van) —
500 i 500 N

400 - | 400%
300 ;m:ﬂ~**""""'ﬂfrﬁﬂtﬁﬂarrﬂ: 300

0 1 2 3 4 5 0 1 2 3 4 5
600 I | T T T | T I
Solution 2 (train) --- - 1400 - Solution 2 (train) -««- |
Solution 1 (van) —— Solution 1 (van) —
500 -
o 1000 - |
T
. 600 - e
300 - B S N A
1 1 | | 1] | |
0 1 2 3 4 5 0 1 2 3 4 5

X axis: number of packages
Y axis: plan quality (cost)

Figure 4.5: Four examples of quality metrics in the transportation domain and their influence in
the planner’s decision to obtain better plans. The quality metrics used are obtained from the one in
Table 4.2 by making cost(drive—van(van,z,y)) = m * distance(z,y) where m is 1, 1.25, 1.3,
and 5 respectively (left to right, top to bottom). In each case the costs of solution 1 and solution 2
(Figure 4.3) are shown. The quality of each plan is plotted against the number of packages in the
problem. The graphs show how the minimum number of packages that makes Solution 1 better
varies with the quality metric.

This example illustrates how plan length is not a good indicator of plan quality. In this case it is
not necessarily related to cost minimization. The longer plan can be much cheaper, as in the case
of the first quality metric (left-most column of Table 4.3) where rail transportation is cheaper
than hiring a van for a given distance. Planners would tend to output the first, shorter-length,
solution unless they consider explicitly plan quality knowledge at planning time.

As in the example of Section 4.1.1 the kind of knowledge required to produce good plans is
difficult to express in the form of control rules. The knowledge must capture non-local tradeoffs

4.1. MOTIVATION 105

Q1| Q2
drill-in-drill-press 313
drill-in-milling-machine | 5 | 10

|

S

Goal Initial state Plan Q1| @

Set-up on mm?7 (tool and drill2 | 17 | 17
1 spot hole
part on mm?7) mm?7 5 |10
[Set-up on mm7 (tool and drill2 | 20 | 20
part on mm7) mm?7 10 | 20
Toolondrill2, drill2 | 18 | 18
2 spot holes
part held on mm?7 mm?7 12 | 22
Holding device on dr1112, | drill2 | 14 | 14
tool and part on mm?7 mm7 18 | 28

Table 4.4: Quality of plans for four problems in the process planning domain, where quality
corresponds again to execution cost. The problems differ in the number of goals (one or two holes)
and in the initial states (parts of the set-up ready in any of the machines). For each problem the
quality of two plans is shown. The first plan for each problem uses a drill press dri112 to drill the
spot hole(s). The second plan uses a milling machine mm7. Bold-faced numbers indicate the cost
of the best plan for each of the problems. Two different quality metrics (); and @, are portrayed in
the upper-right corner. Each metric assigns a different cost to drilling in the milling machine. The
costs of the other operators do not change.

due to the existence of other goals (other packages) and to the differences in cost of the different
alternatives. Section 4.6 will ellaborate this example.

4.1.3 Example 3: The Process Planning Domain

The issues discussed in the previous two sections are also relevant to the process planning
domain. This section presents them in that context. Table 4.4 summarizes the quality of plans
for four problems with different initial states, and goals to have one or two spot holes on the
same side of a part. For each problem the quality of two different plans is shown, corresponding
respectively to using a drill press dri112 and a milling machine mm7. Using the second quality
metric (right-most column), the best plan for the first two problems (which have the same initial
state) may change depending on the number of spot holes to drill, and more generally on the
presence of more than one goal. In the third and fourth problems the choice of alternative is
influenced both by the parts of the set-up already available, and by the quality metric used.

106 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

It is clear from the numbers in the table that a control rule, or a set of them, able to make the
appropriate choice of operator in each of these four problems needs to capture the fradeoffs
between the cost of the operators themselves, in this case the machining operators, and the
cost of setting up the work. More generally, these tradeoffs may capture different criteria for
quality evaluation, such as robustness versus cost, or execution time versus dollar cost (cf.

Section 5.3.4).

(control-rule drillhole0

(if (and (current-goal
{has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))

(known (holding <machine> <holding-device> <part> <gide> <side-pair>))
(type-of-object <machine> Milling-machine)
(forall
(and (type-of-object-gen <drill> DRILL)
(type-of-object-gen <hd> HOLDING-DEVICE))
(and (~ (has-device <drill> <hd>))
(has-device <other-mach> <hd>)
{~ (is-clean <part>))
(~ (on-table <drill> <part>))))))
(then prefer operator drill-with-twist-drill-in-milling-machine
drill-with-twist-drill))

(control-rule drillholel

(if (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))

(known (has-device <machine> <holding-device-4>))
(type-of-object <machine> milling-machine)
(known (on-table <machine> <part>))
(known (has-spot <part> <hole> <sgide> <loc-x> <loc-y>))
(forall
(and (type-of-object-gen (<holding-device> HOLDING-DEVICE))
(type-of-object-gen (<driill> DRILL)))
{(~ (has-device <drill> <holding-device>))})})
(then prefer operator drjill-with-twist-drill-in-milling-machine
drill-with-twist-drill))

(control-rule drillhole2

(if (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))

(known (has-device <machine> <holding-device-4>))
(type-of-object <machine> milling-machine)
(known (on-table <machine> <part>))
(~ (known (has-spot <part> <hole> <side> <loc-x> <loc-y>)))
(forall
(and {(type-of-object-gen (<holding-device> HOLDING-DEVICE})
(type-of-object-gen (<drill> DRILL)))
{~ (has-device <drill> <holding-device>}))))
(then prefer operator drill-with-twist-drill

drill-with-twist-drill-in-milling-machine))
Figure 4.6: Three control rules that prefer a different alternative for drilling a hole depending on
the subparts of the set-up currently available. If several instances of the selected machine type are
available in the problem, one or more bindings prefer rules, somewhat similar to the ones above,
are needed to choose the correct machine.

4.1. MOTIVATION 107

Control rules to guide the planner towards the better plan in all these cases need to be specific
enough to capture all the relevant details of the state and goal. In fact, they need to be much
more specific than the rules learned by the algorithms of Chapter 3. Figure 4.6 shows three
operator control rules that suggest an operator to drill a hole in a part. Recall that drilling in
the drill press is cheaper in the milling machine. The first rule prefers drilling in the milling
machine if the part is already being held there, and there is no drill press such that setting up
the work on it would be cheap enough. Note that the drill press is universally quantified to
make sure that no drill press would be better, and the rule prefers the operator independent of
how it gets instantiated. If several instances of a milling machine are available, a bindings rule
should choose the one that is actually holding the part. The rule in the figure is capturing the
fact that even though the drill press operator is cheaper, if enough of the set-up is ready on the
milling machine, the latter is preferred. The second rule says that if a holding device is ready.
on the milling machine, and no holding device is ready on the drill press, drilling in the milling
machine is better. The third rule is very similar but prefers a different operator. Prior to drilling
a hole, a spot-hole needs to be drilled. If the spot-hole must be drilled, the savings of drilling
in the drill press add up and overcome the savings of using the partial set-up on the milling
machine.

4.1.4 Limitations of Using Control Rules to Produce Quality Plans

The examples just described and the ones in the previous sections point out several limitations
of using control rules to produce good plans in these cases:

e The rules capture very specific features of the state and goal in order to suggest a pref-
erence. Unfortunately there may be very many possible combinations of state facts and
goals. See the simple example of drilling one or two spot holes in Table 4.4. Furthermore
such very specific rules would transfer little to new problems, as Section 4.1.1 discussed
for the example artificial domain. These rules would probably have low utility and be
expensive to match, due to their long, specific preconditions, and thus cause the utility
problem [Minton, 1988].

o The rules would probably turn useless if the quality metric changes. For example, if the
gap in cost between the two drill operators becomes larger, the drill press operator will
be preferred in most cases in spite of the set-up available in a milling machine.

e The rules suggest an alternative at a particular decision point, but that decision may affect’
the decisions that the planner should make at other points. The example rules suggest an
operator to drill a hole. If a spot-hole must be drilled first, the choice of the best operator
and bindings to drill a spot-hole is related to the choice made to drill the hole itself. A
good plan uses the same machine for both operations. Although the control rules make

108 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

local decisions, the decisions should be global in nature. Capturing global decisions and
solving global tradeoffs may be hard using local control rules.*

The difficulty of the decisions is greater when the difference in quality among alternative
choices is small, as in the example quality metrics showed for the example domains. Consider
now instead a metric that assigns a much higher cost to one of the alternatives. For example,
consider a metric in which the cost of using the milling machine is much higher that that of
using the drill press, and in fact it is so high that it would always be better to use the drill
press, even if the part and tool were completely set on the milling machine. Then a simple
control rule would be enough: prefer always using the drill press. That control rule would be
tested (matched) and applied very efficiently without a need to consider the particular details
of the problem, i.e. where the tool and part are located. However in our research we are
more concerned with the more interesting cases in which the distinctions are tighter. (See for
example the differences in quality in the problems of Table 4.4.) Note that in these cases the
improvements in plan quality by making the right choice will not be as compelling, because the
differences in quality between alternative plans are not very large. Still in real domains those
small reductions in the plan quality value may lead to large economic (or other) savings.

4.1.5 Should We Still Learn Control Rules?

Motivated by the examples in the previous sections, we implemented a learning mechanism
to build the kind of specific control rules described above. Section 4.1.1 suggested how such
rules could be built. We are not going to present this algorithm in detail here. The algorithm
compared the plan trees for the two different quality solutions for a given problem and extracted
the conditions that supported the difference in quality: the rules were built with the conditions
of cost 0 in the plan tree for the better plan, and the conditions with cost greater than O in the
plan tree for the worse plan. Figure 4.7 shows the rule learned for a simple spot hole problem.
The rule captures which parts of the set-up were and were not available and ready in each
machine. In that training problem the available set-up in the milling machine is enough to
overcome the higher drilling cost associated with it. The algorithm did not reason which of
the conditions were necessary. As Section 4.1.1 pointed out, this is a non-trivial problem. For
example, assume that in a new problem the last precondition of the rule is false, i.e. there exists
a drill press also holding a spot-drill tool. If that is enough, for the given quality metric, to
decide using the drill press, the rule is fine as it will not fire. Otherwise, the rule is too specific,
would not fire for that new similar problem, and the learner would create another over-specific
rule. Removing the precondition from the existing rule is not enough because in other problems

“Note that reasoning globally is always more expensive than reasoning locally. An interesting approach is
taken in [Simmons, 1988al by creating an initial plan using over-general, but local, rules and then “debugging”
the plan with a small amount of global reasoning.

4.1. MOTIVATION 109

(control-rule prefer-drill-with-spot-drill-in-milling-machine9
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
there is a <milling-mach> and a <holding-device> such that
(and <milling-mach> is available
<holding-device> is empty
<milling-mach>’s table is available
the machine is holding a spot-drill tool <drill-bit>)
for every drill press <drill7>
(and <drill7> is not holding the part
the part is not on <drill7>’s table
no holding device is on <drill7>
<drill7> is holding a tool different from a spot-drill
every spot-drill <drill-bit6> is being held by some other machine)))
(then prefer operator drill-with-spot-drill-in-milling-machinedrill-with-spot-drill))

(control-rule prefer-drill-with-spot-drill-in-milling-machine9
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(type-of-object-gen <milling-mach> milling-machine)
(type-of-object-gen <holding-device>
(or 4-jaw-chuck vise collet-chuck toe-clamp))
(forall (and (type-of-object-gen <part3> part)
(type-of-object-gen <sgide3> side)
(type-of-object-gen <sgside-pair3> side-pair))
(and (~(holding-weakly <milling-mach> <holding-device> <part3> <side3> <side-pair3>))
(~(holding <milling-mach> <holding-device> <part3> <side3> <side-pair3>))))
(forall (and (type-of-object-gen <part2> part)
{type-of-object-gen <holding-device2> holding-device)
(type-of-object-gen <side2> side)
(type-of-object-gen <side-pair2> side-pair))
{(and (~(on-table <milling-mach> <part2>})
(~(holding <milling-mach> <holding-device2> <part2> <sgide2> <side-pair2>))))
(forall (type-of-object-gen <another-holding-device-1> holding-device)
(~(has-device <milling-mach> <another-holding-device-1>)))}
(holding-tool <milling-mach> <drill-bit>)
{type-of-object <drill-bit> spot-drill)
(forall (and (type-of-object-gen <machine7> drill)
(type-of-object-gen <holding-device7> (or 4-jaw-chuck vise toe-clamp))
(type-of-object-gen <side-pair7> side-pair))
(and (~{holding <machine7> <holding-device7> <part> <side> <side-pair7>))
(~(on-table <machine7> <part>))
(~(has-device <machine7> <holding-device7>))
({forall (type-of-object-gen <drill-bité> spot-drill)
(and (~(holding-tool <machine7> <drill-bité>))
(holding-tool <machined>» <drill-bité>)
(holding-tool <machine7> <tool5>)))))))
(then prefer operator drill-with-spot-drill-in-milling-machine drill-with-spot-drill))

Figure 4.7. A rule learned from a spot hole problem. The top part of the figure shows an informal
description of the rule. The bottom part shows the actual rule. The rule says that if there is a
milling machine that is free and holding the appropriate tool, and no drill press is even partially
ready, prefer drilling the spot hole in the milling machine.

110 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

other preconditions may be the ones not satisfied, i.e. it is the combination of preconditions and
their added achievement costs what matters. These rules do not transfer well because a single
precondition being false makes the rule unapplicable. There is not a possibility of a partial
match.

These limitations of control rules to represent quality control knowledge suggest the need to
consider the relative costs of achieving each of the preconditions and of applying the operators
themselves, and so to build control knowledge that can transfer better to new problems. Such
mechanism would ideally:

e reuse quality control knowledge learned from a single problem, even when that knowledge
is incomplete and there is only a partial match,

e represent the quality knowledge, that is the quality metric, more explicitly than the above
control rules,

e produce control knowledge with a reasonable matching cost. That cost should depend
on the difficulty of making the choice (cf. end of Section 4.1.3),’

¢ consider more global information and provide more global suggestions than control rules.

These desired characteristics lead to our design and implementation of the novel formalism to
represent control knowledge described in this chapter.

4.2 A Different Approach (A Sketch)

In this section we explain how control knowledge with the properties described above could be
used and learned. Assume the planner is given a simple problem in which the goal is to drill
a spot hole on a part and the fool is initially set on the available milling machine. Figure 4.8
summarizes the initial state and goal of the problem. The left side of Figure 4.9(a) shows
the plan tree corresponding to the initial plan obtained by the planner, which uses operator
drill-in-drill-press to drill the hole. When this plan was presented to a human expert, he or she
improved it by choosing operator drill-in-milling-machine instead, as the tool is ready in the
milling machine. The right-hand side plan tree of Figure 4.9(a) corresponds to that improved
plan. Figure 4.9 (b) partially shows the quality metric. The plan that uses the milling machine
(plan tree on the right) has slightly better quality as the higher cost of the drill in milling-machine
operator is overcome by the savings of having the tool set already.

STt is interesting to see this as a tradeoff between operationality and generality of the learned knowledge, where
the generality extreme would be to say just “choose the highest quality plan”.

4.2. A DIFFERENT APPROACH (A SKETCH) 111

(objects

; ;machines ;;tools
{object-is mmd4 MILLING-MACHINE) (object-is spot-drill3 SPOT-DRILL)
(object-is drill7 DRILL) (object-is twist-drill5 TWIST-DRILL)

; ;holding devices (ocbject-is brushl BRUSH)
(objects-are vise2 VISE) (object-is soluble-o0il SOLUBLE-OIL)

{object-is mineral-oil MINERAL-OIL))
; ;parts and holes
(object-is part5 PART)
(object-is hole3 HOLE)

(state (and (diameter-of-drill-bit twist-drill5 9/64)

(holding-tool drill7 twist-drills)
{holding-tool mm4 spot-drill3)))

(goal (has-spot part5 hole3 sidel 1.375 0.25))

Figure 4.8: A problem in the process planning domain. The goal is to drill a spot hole on part5.
The spot drillbit is initially set on the available milling machine.

14 i decision-point 13 decision-point
hasg-spot par?S hole3 sidel has-spot parﬁs hole3 sidef.;ﬁ;r
DRILL—IN—DIRILL—PRESS DRILL-IN—MII‘.LING"MACHINE

drill7,visel, spot-adrilll,parts,sidel, spair2-5 o mmd, vige2, spot-drill3, parts, sidel, spaira-5

3hol(i:i.x:g-t:oc:l holding &5117, vige2,parts holding-tool holding mmd,vise2,part5s
drill?7, s?ot—drills sidel, sgairz-s mmé, spot-drill3 sidel,lspairz—s
PUT-TOOL-DRILL-PRESS HOLD-WITH-VISE HOLD-WITH-VISE

— —~ drill7,vise2,sidel, spair2-5 mm4, vise2, sidel,spair2-5

available-tool available-tool-

spot-drilll holder drill7 %2 L-f-"",/-;b\ 2

[has-device is~clean omn-table hag-device is-clean on-table

arii7 palrts partsl arill7 mmd part5. part5 mmd
PUT~-HD-DRILL 0 w
av:il -milgh a avail-table avaig. -hd
drilly vise2 mmd visez
(@

Operator Cost || Operator Cost
drill-in-drill-press 3 hold-with-vise 2
drill-in-milling-machine 5 put-holding-device-in-drill | 2
put-tool-in-drill-press 1 clean 2
put-tool-in-milling-machine | 1 put-on-machine-table 2
remove-tool-from-machine 1

(b)
Figure 4.9: (a) The plan trees for two solutions to the problem of drilling a spot hole when the
appropriate tool is set on the available milling machine. (b) The quality metric used in the example.

A new problem (Figure 4.10) with the same goal is now presented to the planner. The drill

112 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

(state (and (diameter-of-drill-bit twist-drill5 9/64)

(holding mm4 vise2 part5 sidel side2-side5)
(has-device mm4 vise2)))

(goal (has-spot part5 hole3 sidel 1.375 0.25))

Figure 4.10: A new problem in the process planning domain, also to drill a spot hole on part5.
In this case the part is ready on the milling maching mm4.

press tool holder is now free, and so is the spot drillbit. The part is all set on the milling
machine mm4. How can the experience in the previous problem be used to find the best plan
in the new problem? The planner knows that in the previous example the choice of operator
to achieve the has-spot goal, and the particular instantiation of such operator, was relevant
to obtain the better plan. Therefore, when the planner is solving the new problem and reaches
that decision point, it stops and thinks about each of the alternatives and how good they may
be according to the given quality metric.

Obviously, computing exactly the quality values of each alternative would amount to finding
the complete plan, i.e. to solve the problem using each alternative. Instead we want to use
the past planning experience to estimate those values. By looking at the plan trees for the
previous problem the planner can decide how good each of the alternatives may be in the
current problem. We sketch now that process and Figure 4.11 summarizes it () indicates the
current quality estimate). To determine how expensive using the drill press would be, the
planner could look at the plan tree on the left of Figure 4.9(a) and add the cost of the drill-in-
drill-press operator to the costs of achieving the operator’s preconditions (the grandchildren of
the operator node). Those preconditions are in the second column in Figure 4.11. The cost
of each precondition can be estimated recursively in the same way using the information in
the plan tree. For example, the cost of the holding-tool subgoal is the cost of the put-tool-
drill-press operator (1) plus the cost of each of its preconditions, namely available-tool
and available-tool-holder (third column in the figure). In the previous problem these
preconditions were achieved by applying some operators. In the current problem they are true
in the curent state, and therefore have cost 0. Given all these, the estimate quality of this
alternative (drill-in-drill-press) is 12. Similarly the cost of using the milling machine can be
estimated. In the previous problem the tool was being held in the milling machine and therefore
the holding-tool subgoal had cost 0. In the current problem the tool is not being held in the
milling machine and therefore the holding-tool subgoal needs to be achieved, but there is no
information in the plan tree to estimate the cost. The planner can only guess that the cost is
going to be at least the cost of the cheapest operator relevant to that subgoal (1). The estimate
found for this alternative (drill-in-milling-machine) is 7. Given the estimates found (12 and 7),
the planner chooses to work on the alternative with the better one (drill-in-milling-machine)
and continue planning.

4.3. A NEW REPRESENTATION FORMALISM FOR CONTROL KNOWLEDGE 113

is-available-tool @ = 0
holding-tool

Q>1 is-available-tool-holder @ = 0
drill-in-drill-press
Q>3 has-device @ > 2
holding is-clean Q) > 2
Q>2 on-table §) > 2
alt drill-in-drill-press:
estimated @ > 3 >6 > 12
holding-tool | don’t know
Q=21
drill-in-milling-machine
Q>5 holding
R=0
alt drill-in-milling-machine:
estimated Q > 5 >6 >17 « choose this alt

Figure 4.11: A sketch of the process of reusing past experience to generate a good plan for the
current problem. Reading the figure from left to right corresponds to traversing the plan trees of
Figure 4.9(a) starting at their roots. Each of the two boxes corresponds to one of the alternatives at
the decision point which were used in the past episode captured by the plan trees. The values of)
are the estimates for the alternative given the part of the plan tree explored so far.

The process described motivated the design of a new control knowledge representation formal-
ism that we present in the next sections. We have only sketched here how the information from
previous planning experience of the type of that stored in the plan trees can be useful to guide
the planner towards better plans. Of course there are many issues not considered in this simple
example. The next sections formalize the process into a new control knowledge representation
formalism (Section 4.3) and the algorithms to learn (Section 4.4) and use (Section 4.5) such
knowledge.

4.3 A New Representation Formalism for Control Knowledge

The previous section suggested a way in which previous problem solving experience can be used
as control knowledge that guides the planner towards the better plan for the current problem.
This section formalizes it proposing a new formalism, control-knowledge trees, to represent
planning control knowledge. The next sections describe algorithms to learn automatically such
control knowledge from planning experience and to use it during problem solving.

A control-knowledge tree (cktree) has three types of nodes corresponding respectively to

114 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

parameterized goals, operators, and bindings. They also correspond to the types of decisions in
PRODIGY’s planning algorithm. The root of a cktree is a parameterized goal. The cktree captures
past problem solving experience relevant to that goal that can be used in future problems to
prefer alternatives towards good solutions. The children of a goal node are operators that may
achieve the goal, in fact they are only the operators that in the past have been used by the
problem solver to achieve the goal.® The child of an operator node is a binding node. The
children of a binding node are the preconditions of the corresponding operator. Figure 4.12
shows part of a cktree learned from the episode described in Section 4.2.”

has~spot <part0> <hole0> <sidel>

DRILL-IN-DRILL-PRESS DRILL-IN-MILLING-MACHINE

!
<mach> <hdev> <«drillbit> <part> <hole> <side> «spair>
<machl> <hdevl> <drillbitl> <part0> <hole0> <side0> <spairil>

holding-tool"ﬂ.ﬂﬂﬂ.ﬂﬂxzzsz;;H:Eichl> <hdevls>
<machi> <Fri11bit1> <part0> <si?eo> <spairl>

PUT-TOOL-I?RILL—PRESS HOLD-WITH-VISE

<mach> <drillbit>
<machl> <drillbitl>
ﬂ_,.ﬂ~*::’~_hﬁh

avall-tool available~tool-
<drillbitl> holder <machl>

Figure 4.12: Partial view of the control knowledge tree generated automatically from the plan
trees for the problem in Figure 4.9. Dotted triangles indicate subtrees omitted from the figure for

simplicity purposes.

Note the similarity between the cktrees and the plan trees.® Section 3.5 explained how a plan
tree 1s built from a successful path in the problem solving trace for a problem. On the other
hand, a cktree is incrementally built from the two plan trees obtained in particular problem
solving episodes as we will describe in the next sections. The differences between plan trees
and cktrees are:

e A plan tree corresponds to a single planning episode. A cktree gathers planning experi-
ence from solving one or more problems.

o The root of a plan tree is PRODIGY’s (done) goal and its descendants correspond to
each of the current problem’s top-level goals. Each goal is linked to the operator used to
achieve itin that particular episode. On the other hand, a cktree captures the planner’s past

6As in the case of the plan trees, operator nodes refer to both operators and inference rules. The cktree learning
and matching algorithms do not make distinctions among the two types.

"The description in the footnote in page 43 for plan trees also applies to control knowledge trees.

8Section 4.7.1 analyzes the similarity between the ckirees and the statically-built problem space
graphs (PSGs) [Etzioni, 1990].

4.3. A NEW REPRESENTATION FORMALISM FOR CONTROL KNOWLEDGE 115

experience for solving a particular goal in one or more different ways. The experience
captured comes from problems in which that goal was either the only top-level goal, or
one of several goals or subgoals.

e A goal node in a plan tree has only one child, namely the operator used to achieve the goal
in the current episode. A goal node in a cktree may be linked to several operator nodes,
which correspond to the operators that achieved the goal in past episodes. Therefore goal
nodes are seen as OR nodes, since they propose alternative ways to achieve a goal. In both
plan trees and cktrees the binding nodes are seen as AND nodes since all of the children,
which correspond to the operator preconditions, must be achieved for the operator to be
applicable. Also in both kinds of trees operator nodes have a single binding node child.’

e The nodes in the plan trees are completely instantiated, and they correspond to nodes
in a given problem solving trace. The nodes in the cktrees are parameterized. They are
created from plan tree nodes by replacing constants with variables. The variable types are
constrained by the type specification of the operator variables, as declared in the operator
schema.

The data structures that represent the nodes in a plan tree and in a cktree are the same, but the
meaning of their slot contents varies slightly:

e The children slot of a plan-tree goal node contains the operator used to achieve that
goal in the given problem. The children slot of a cktree goal node contains a list of
operators that may be used to achieve the goal. In fact it only contains operators that
were actually used in past problem solving episodes.

¢ The name slot of a plan-tree binding node contains the bindings used to instantiate the
operator, i.e. a list of variable/value pairs, where the values correspond to real problem
objects. The name slot of a cktree binding node contains a mapping between the names
of the operator variables and the names of the variables used in the cktree. The variable
names in the cktree nodes are created by goal regression from the root goal, and therefore
they may be different from the names used in the operator schemata.

e The children slot of a plan-tree binding node contains a list of pointers to goal nodes
corresponding to the operator preconditions instantiated for the particular problem, as
they were generated during problem solving. The children slot of a cktree binding
node contains a list of the operator’s uninstantiated preconditions. If a precondition
is universally quantified, it appears only as one child and an indication is kept that its
variables are universally quantified in a slot called forall-expanded-p.

Binding nodes in cktrees simply store the names of the operator variables as they appear in the cktree. We
chose to have separate operator and binding nodes to facilitate cktree building as plan trees and PRODIGY4.0’s own
decision structure distinguish among those types of nodes.

116 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

¢ The how-achieved slot of a plan-tree goal node contains a pointer to another plan-tree
node for the same goal, that was achieved first in the particular planning episode. The
how-achieved slot in a cktree goal node contains one or more pointers to other cktree
goal nodes that may achieve the same goal, since they did in some previous planning
episode(s). The cktree nodes are parameterized. Therefore the fact that the linked nodes
actually correspond to the same goal depends on the instantiation of their variables in the
particular problem being solved. The same applies to the achieves-too, how-deleted,
and applied slots of cktree nodes.

Goal cktree node Operator cktree node Binding cktree node
:name :name :name
:parent :parent tparent
:children :children :children
tcost :cost :cost
:marked-p :marked-p :marked-p
:how-achieved :applied
:achieves-too :forall-expanded-p
:how-deleted :introduces-new-vars-p

:constraints

Figure 4.13: The data structures used to store each of the types of cktree nodes.

Figure 4.13 summarizes the slots for each of the types of cktree nodes. Some of the slots are
particular to cktrees and do not appear in the plan trees. The first five slots appear in every
cktree node. The cost and marked-p slots are used only at cktree matching time, that is,
when the cktree is used to provide guidance for a planner’s decision. They store the current
estimated cost of the subtree rooted at that node, and a mark indicating whether that cost should
be recomputed, for purposes of speeding up the matching. The meaning of these and the
remaining slots will be described in the next sections as their use is justified.

Cktrees are used to guide the planner at any decision point in the process of achieving the
goal at the root of the cktree. That is, the cktree may provide guidance for a sequence of
operator and binding decisions. In this very simple example, the cktree may be used to suggest
an operator to achieve the has-hole goal and an instantiation of that operator. Note that
these decisions correspond to two different control points in the planner’s algorithm. The
cktrees could also provide operator and bindings guidance for the subgoals that appear in it
(for example, an operator to hold the part) and that the planner will confront during search.
Therefore the cktrees provide global guidance. By using the cktrees the planner makes use of
global information to make decisions. These are major differences with using search control
rules to capture quality knowledge.

The cktrees are generated from planning experience captured in the form of plan trees. Chapter 3
described how the plan trees are obtained automatically from a planning episode. From them,

4.4. LEARNING CONTROL-KNOWLEDGE TREES 117

the cktrees are built also automatically. Therefore the complete process of cktree learning is
fully automated given the domain, a quality metric, and a planning episode. How cktrees are
built from planning experience is the subject of the next section. Obviously the motivation
for learning cktrees is to be able to use them to guide planning towards good solutions in
new problems. Section 4.5 explains in detail the algorithms to use the learned cktrees as
search-control knowledge.

4.4 Learning Control-Knowledge Trees

In the previous chapter (Figure 3.8) we described the top-level view of the procedure to learn
quality-enhancing control knowledge. In Step 7 of the procedure the plan trees for the initial and
improved plans are built. With those as an input, Step 8 is the core of the learning architecture.
The previous chapter presented novel algorithms to learn quality-enhancing control rules. This
chapter proposes a different implementation for the learning step (Step 8) of the procedure:
learning control-knowledge trees. Note that Steps 1-7 are common for both learning approaches.

learn(plantree 4 plantreep,decisions) ;» op and bnds decisions only
1. dec_point — earliest_op_or_bnds_decision(decisions)

2. g « parent_goal(dec_point)

3. ckroot «— relevant_cktree(g,cktrees) ;; cktrees is a global variable
4. if ckroot =)

5. then learn_new_cktree(plantree 4 ,plantreeg,dec_point) ;; Figure 4.18
6. else learn update_cktree(plantree 4 ,plantreep,dec_point,ckroot) ;; Figure 4.29

Figure 4.14: Top-level call to the cktree learning mechanism.

Figure 4.14 describes the initial call to the cktree learning algorithm, the learn function. Its
inputs are the two plan trees plantree 4 and plantree g corresponding respectively to the improved
and initial plans. Learn has also as an input the set of decisions in which the choices made in
order to output the improved plan were different from those suggested by the existing control
knowledge. Section 3.4 described how those decisions are obtained as a problem solving trace
is created for the expert-given improved plan. In Step 1 of Figure 4.14 the learner focuses in
the earliest of those decisions and will learn control knowledge in the form of a cktree to make
the right choice at the decision point. Earliest refers to the order in the planning decisions (not
in the final totally-ordered plan). We will refer only to operator and bindings decisions. (See
Section 4.5.11 for a discussion of goal decisions.)

The root of a cktree is a parameterized goal (Section 4.3) that corresponds to the top-level goal
above the decision for which the cktree was built (Step 2). For example, a cktree rooted at a

118 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

has-spot goal is learned if the planner’s decision involved choosing between operators drill-
in-drill-press and drill-in-milling-machine in order to achieve a has-spot goal, or choosing
bindings for one of those operators. Relevant_cktree (Step 3) looks for an existing, previously
learned, cktree relevant to the decision, that is, one whose root matches the top-level goal that
is an ancestor of the decision. Section 4.4.2.1 explains the motivation for this choice. cktrees
is a global variable that stores the roots of the existing cktrees. Depending on whether such
cktree exists, the learner has two alternatives:

e If no existing cktree is relevant to dec_point, build a new one by calling learn_new_cktree
(Step 5).

o If there is a relevant cktree ckroot, update it. The current knowledge in the cktree was
incomplete, or else a correct decision would have been made at dec_point in which case
dec_point would have not been in decisions. Therefore the existing relevant cktree is
updated in Step 6 by calling learn_update_cktree.

Both the creation and update of cktrees can be seen as a process of translation and generalization
of the information stored in the plan trees. The aim is to store problem solving experience
about preferred and preferred-over alternatives in a way that can be efficiently reused in the
future. The next subsections describe in detail the creation and update algorithms, but before
that we introduce an example in the process planning domain that will serve to illustrate the
learning process.

4.4.1 An Example

Figure 4.15(a) summarizes a problem in the process planning domain that will be used through-
out the next sections. The goal is to drill a hole of a given diameter on a part. In the domain
description there are at least two operators to drill a hole, including drill-with-twist-drill, which
uses a drill-press, and drill-with-twist-drill-mm, using a milling machine. Both operators have
as a precondition the existence of a spot-hole at the target location.

Initially the part and the spot-drill, that is, the tool to drill the spot-hole, are set on the milling-
machine. Figure 4.15(b) shows two plans of different quality to solve that problem. The quality
metric is partially described in Figure 4.15(c). The first plan, using the drill press, was output
initially by the planner in the absence of quality control knowledge. The second plan, using the
milling machine, corresponds to the improvements made to the first plan by the human expert.
Note that although the operator to drill in the drill press is cheaper, the plan that uses the milling
machine is better because the work is initially set on the milling machine. Figure 4.16 shows the
planning decisions in which the planner made choices different from the default ones in order
to obtain the improved plan. The learner will focus on the earliest of those decisions, choosing

4.4. LEARNING CONTROL-KNOWLEDGE TREES 119

{objects

; ;machines ;;tools
(object-is mm4 MILLING-MACHINE) (object-is spot-drill3 SPOT-DRILL)
(object-is drill7 DRILL) (object-is twist-drill5 TWIST-DRILL)

(object-is tap4 tap)
; ;holding devices

(objects-are visel vise2 VISE) (object-is brushl BRUSH)
(object-is soluble-oil SOLUBLE-OIL)
;:;parts and holes (object-is mineral-oil MINERAL-OIL))

(object-is part5 PART)
(object-is holel HOLE)

(state {and (diameter-of-drill-bit twist-drill5 9/64)
(diameter-of-drill-bit tap4 9/64)
(is-clean part5s)

(holding-tool drill7 tap4)

(has-device drill7 visel)

(holding-tool mm4 spot-drill3)

(holding mmé4 vise2 part5 sidel side3-sideé6)
(has-device mm4 vise2)))

(goal (has-hole part5 holel sidel 0.3 9/64 1.375 0.25))

(a)
1. remove-tool drill7 tap4 1. drill-with-spot-drill-mmmm4 spot-drill3 vise2
2. remove-tool mm4 spot-drill3 part5 holel sidel side3-side6
3. put-tool-drill drill7 spot-drill3 2. remove-tool mm4 spot-drill3
4. release mm4 vise2 part5 sidel side3-side6 3. put-tool-mm mm4 twist-drill5
5. put-on-machine-table drill7 part5 4. drill-with-twist-drill-mmmm4 twist-drill5 vise2
6. hold-with-vise drill7 visel part5 sidel side3-side6 part5 holel sidel side3-side6
7. drill-with-spot-drill drill7 spot-drill3 visel
part5 holel sidel side3-side6 cost =12
8. remove-tool drill7 spot-drill3
9. put-tool-drill drill7 twist-drill5
10. drill-with-twist-drilldrill7 twist-drill5 visel
part5 holel sidel side3-side6
cost =17
(b)
Operator Cost
drill-with-twist-drill, drill-with-spot-drill (in drill press) 3

drill-with-twist-drill-mm, drill-with-spot-drill-mm

put-tool-drill, put-tool-mm, remove-tool

hold-with-vise, put-holding-device, put-on-machine-table, release
clean

NN =

©
Figure 4.15: (a) A problem in the processs planning domain. (b) Two solutions for that problem.
The plan on the left is the plan initially obtained by the planner. The plan on the right is the
improved plan suggested by a human expert. (c) Quality metric used in this example (higher values
indicate lower quality).

120 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

an operator to achieve has-hole, as indicated in Step 1 of learn (Figure 4.14). Figure 4.17
shows the plan trees built for the two plans.

At goalnode 5 (has-hole part0 hole0 sidel 0.3 9/64 1.375 0.25)
operator drill-with-twist-drill-in-milling-machine was chosen over
operator drill-with-twist-drill.

At goal node 11 (has-spot part0 hole0 sidel 1.375 0.25)
operator drill-with-spot-drill-in-milling-machine was chosen over
operator drill-with-spot-drill.

Figure 4.16: Planning decisions forced in order to obtain the improved, user-given plan of Fig-
ure 4.15 (b). Step 1 of Figure 4.14 chooses the first of those decisions.

17 has-hole paz(-is hole3 side:; dec-point

DRILL-WITH-ITWIST-DRILL
drill7,visel, twist-drill5,part5,sidel, spair3-6

12 0
2
has-spot pazti.s hole3d sidel holding-tool holding 4drill7,visel,part5s

DRILL-WITH-SPOT-DRILL drill7, twist-drills Sidell . 8palr3-6
arill?,visel, spot-drill3,parts, sidel, spair3-6 B TOOLSDRILL-PRESS !

1
6 N R R
lable-tool available-tool- -
holding-tool holding drill7,visel,part5 Lodry ; ;
aril17, spot-ari113 et Bt TR ey SYLSETOEALID. . Bolder anid17
1 wnn-rnzss‘l HOLD-WITH-VISE e REMOVE-TOOL."
avail-tool available-tool- VCFN
spot-drill3 holder drill7 y,g.gevice is-clean on-table achieves-too

| | drill7,visel part5 part5 drill?
PUT-ON-MACHINE-TABLE
2. (holding part5...)
RELEASE
o i
(holding part5...)

1 dec-point

zhas—hole partl:s hole3 sidel

DRILL-WITH-T?WIS'I‘-DRILL-M
mmd,vise2, twist-dri1il5,part5,gidel, spair3-6

5 o 0
has~spot pa.rfiS hole3 sidel dec-point b holding-tool holding mmd,viseZ,part5
DRILL-WITH-§POT-DRILL-MM mmd, twist-drills sidel,spair3-6
mmd, vise2, spot-drill3,part5, sidel, spair3-6 o Mﬂ "
0
holding-tool holding mml,visaz,partso available-tool available-tool-
mmd , spot-drill3 sidel, spair3-6 twist-drills holdelz' mmd

RE‘M(W'lE-TOOL

Figure 4.17. Plan trees corresponding to the plans of Figure 4.15(b). Some nodes have been
omitted for clarity purposes.

4.4. LEARNING CONTROL-KNOWLEDGE TREES 121

learn_new_cktree(plantree 4 plantreeg,dec_point)

. g4 « relevant_subtree(plantree 4,dec _point)

. ckroot +— make_ck_goal_node :name parameterize(q,)

. build_ck_op(q_4,ckroor) ;; Figure 4.19
. learn_other_cktree(plantree 4) ;; Figure 4.33

. <4¢B, gcx> +— which_qnode_and_cknode(ckroot,plantreep,dec_point)
. build_ck_op(gz, g.x)

. learn_other_cktree(plantreep)

. cktrees «— push(ckroot,cktrees)

O~ OV AW —

Figure 4.18: Building a new cktree.

4.4.2 Building a New Control-Knowledge Tree

Let dec_point be the choice point for which learning is invoked (cf Step 1 of Figure 4.14). If no
cktree is available to guide the decision at dec_point, learn_new_cktree (in Figure 4.18) uses
the plan trees of the current problem solving episode to build a new cktree. The process of
building the cktrees can be seen as translating and generalizing the parts of the plan trees that
are relevant to the decision at dec_point. For example, if the problem goal was the conjunction
of two independent goals g; and g,, the root of.the plan tree for a solution to that problem will
have two children s, and s, corresponding to the subtrees rooted at ¢; and g, respectively. If
the decision at dec_point is only relevant to ¢;, only the s; subtree will be considered when
building the new cktree. The fact that the subgoals are independent is captured by the way the
.plan trees are built, in particular in the achievement and deletion links.

4.4.2.1 The Root of the Cktree

The first step in building a new cktree is creating its root node (Steps 1-2 of Figure 4.18). Recall
that plantree, (plantreeg) is the plan tree corresponding to the improved (initial) plan. The
algorithm looks for the node g4 in plantree4 such that (a) ¢4 corresponds to a top-level goal,
i.e. it is a child of the plantree 4 root; and (b) it is an ancestor of the node that corresponds
to dec_point. The goal at node ¢4 is parameterized (by replacing constants with variables)
and becomes the root of the new cktree (Step 2). The cktree is built starting at that root by
traversing the subtree of plantree4 rooted at g4 and building a cktree node for each plan tree
node (Step 3).

Next (Steps 5-6) plantreeg is processed to capture in the cktree the information from the
decisions that lead to the initial, worse quality, solution. Recall that the purpose of storing that
is to estimate the cost of different alternatives in future problem solving at a similar decision

122 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

point. This problem solving knowledge from plantreeg is stored in the cktree just built from
plantree 4 and is attached as a new subtree under the appropriate cktree node. plantrees and
plantreep divergences start at dec_point. Let g, be the cktree goal node corresponding to
dec_point and gp the plan tree goal node in plantreeg also corresponding to dec_point (Step 5).
The new cksubtree will be a child of g, and it will be built by traversing the subtree of
plantreep rooted at ¢p.

In the example of Section 4.4.1 dec_point corresponds to the choice of operator to achieve
has-hole. The plantree in the bottom (top) of Figure 4.17 corresponds to plantree , (plantreep).
The root of the bottom plan tree (plantree,) is parameterized to obtain the root of the cktree:
(has-hole <part0> <hole0> <side0>). Then plantree, is used to start building the cktree.
The first child of the cktree root (Step 3) will be an operator node named drill-with-twist-drill.
After that subtree is built, the top plan tree (plantreeg) is used to build another subtree of
the cktree for has-hole rooted at operator drill-with-twist-drill-mm (Step 5). Next section
describes how the cktree nodes are built.

Assume for a moment a slightly different case in which learning is needed to guide the choice
of operator for has-spot, and plantree4 is the same as in the previous example. plantreep is
different, sharing the first three level of nodes with plantree 4 but diverging on the choice of
operator for has-spot. In this case the root of the cktree would still be has-hole, the top-level
goal in the problem. However the plan tree for the worse plan (plantreeg) would produce a
subtree rooted at cktree goal node has-spot (Step 5). The motivation for learning a cktree for
has-hole instead of has-spot (the decision point) is to capture the context for the decision:
a good choice of operator for drilling the spot hole in this example is related to the operator
chosen to drill the hole.!®

If the goal for which the cktree is being built interacts with other goals in the problem, those
other goals should also be considered to provide guidance to the planner. Therefore the learner
also builds cktrees for the other goals in the problem that interact with the one for which
guidance is being learned (Steps 4 and 7). Section 4.4.4 ellaborates on this.

4.4.2.2 Creating Cktree Nodes

The actual construction of the cktree is done by calling recursively a set of functions (build_ck_op,
build_ck_bindings, and build_ck_goal) that create cktree nodes of different types. In the de-
scription that follows a ck subindex indicates a cktree node, and a ¢ subindex indicates a plan
tree node.

10T the current implementation if a cktree for a top-level goal does not already exist, it is built from scratch
and does not reuse (by pointing at them) possibly existing cktrees rooted at its subgoals. There is no sharing of
cktrees. Adding that capability would increase the transfer of the learned knowledge to new problems and reduce
the space to store the cktrees.

4.4. LEARNING CONTROL-KNOWLEDGE TREES 123

build_ck_op(p,, pcx) 3 pg 15 a plan-tree goal node; p.i is a cktree goal node

1. op, « child(p,)

2. op. «+ make_ck op_node :name operator_name(op,)

3. :parent p.x

4. children(p.) < push(op.,children(p.))

5. if decision_was_made_p(p,) ;; add unsuccessful alternatives
then

6 other_dec_point — decision_point(p,) ;; node in search trace corresponding to p,

7. for each other_op € bad_alts(other_dec_point)

8. other_op. + make_ck_opnode :name other_op

9. :parent pex

10. children(p.;) <« push(other_op.i.children(p.))

11. build_ck_bindings(op,, op.x) ;; Figure 4.20

Figure 4.19: Building a cktree operator node. In this and the next figures a g subindex indicates a
plan tree node and a ck subindex indicates a cktree node.

Creating an operator node

Build_ck_op (Figure 4.19) is given a plan tree goal node p, and a cktree goal node p.; and
creates a cktree operator node op.x, which becomes a child of p.;. The operator at the new
cktree node is op,, the operator chosen during planning to achieve p,. op, and op. are passed
as inputs to build_ck_bindings to build the child cktree binding node (Step 11).

Since the cktree will be used to guide a sequence of planning decisions (not only the top one),
it is useful to store at each cktree node other alternatives that were explored but rejected at
planning time. The reason for the rejection could be that the alternative caused the planner to
fail and backtrack, or that the alternative was not in the path to achieve the desired solution
(the improved expert-given solution). Both kinds of abandoned alternatives are bookept by the
planner at problem solving time and by the backtracking mechanism described in Section 3.4.
The existence of failed alternatives is checked by decision_-was_made_p (Step 5). If they exist,
that is, if other operator alternatives were tried at planning time when solving goal p,, they are
also added to the cktree as children of p.x (Steps 6-10).

Creating a binding node

Build_ck_bindings (Figure 4.20) is given a plan tree operator node op, and a cktree operator
node op.; and creates a cktree binding node b.;. The binding node b, stores the mapping
between the variables used throughout the cktree and the variables used in the operator schema.

124 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

The call to generic_bindings constructs such mapping: Given p., parent goal of op., the
operator is partially instantiated using the arguments of p.; to bind variables in the operator
right-hand side. Note that the arguments of p.; are variables but are used as constants in this
instantiation process. Which of the operator effects was relevant for the parent goal in the
planning episode is determined from op, (in the plan tree). This is needed because the operator
may have different effects with the same predicate name, that is, it could be instantiated in
different ways to achieve p.;.. New names are created for the remaining operator variables
that are not bound from the operator right-hand side. If the operator introduced universally
quantified variables, the slot forall-expanded-p is set.

build_ck_bindings(op,, op.x) ;; 0pg 1S a plan-tree operator node
;; Opex 18 a cktree operator node

1. b, « child(op,)

2. by + make_ck_binding_node :name generic_bindings(op,, op.;)

3. :parent OPck:

4. :forall-expanded-p forall-expanded-p(op,)

5. if side_effects_p(b,) then ﬁll_side_effects(bq, bex) ;; bookkeep side effects (Figure 4.27)

6. children(op.;) «— {b.}

7. build_ck_g(b,, b.x) ;; Figure 4.22

Figure 4.20: Building a cktree binding node.

Finally the binding node b, in the plan tree, and the newly created binding node b, in the cktree
are passed as inputs to build_ck_goal in order to build the children goal nodes corresponding
to the operator preconditions.

Figure 4.21 shows how the first operator and binding nodes of the has-hole cktree are being
built in the example. Figure 4.21 (a) shows the part of plantree, relevant to these first steps;
(b) shows the first nodes built in the cktree, namely the root goal node, the operator node (drill-
with-twist-drill-mm), and the binding node. The binding node stores the mapping between the
variables in the operator schema (e.g. <part>, <mach>) and the variables used throughout the
ckiree (e.g. <part0>, <machl>). Some of these variables are regressed from the root goal node
(e.g. <part0>). Others are introduced by the operator itself (<mach1>) and correspond to the
variables for which bindings would be chosen at the binding node. New, unique names are
generated for those variables. (The coming figures will depict binding nodes more succintly
for clarity purposes.)

Side effects are the effects of an operator application different from the effect that matches the
goal for which the operator was selected as relevant. In addition to subgoaling parent/child
links, a plan tree stores information about achievement and deletion caused by the side effects of
operator applications (cf Section 3.5). The side effects of a plan tree binding node &, are stored

4.4. LEARNING CONTROL-KNOWLEDGE TREES 125

12 dec-point
has-hole parﬁs hole3 sidel

DRILL-WITH-T?WIST-DRILL-M
mmd ,vige2, twist-drill5, part5, sidel, spair3-6
[

5 2
has-spot parlfs hole3 sidel holding-tool holding mmé,vise2,part5
DRILL~WITH-SPOT-DRILL-MM mmd, twist-drills gidel, spair3-6

PUT-TOOL-DRILL-PRESS

has-hole <part0> <hole0> <side0>
DRILL-WITH-TWIST-DRILL-MM
<mach> <hdev> <drillbit> <part> <hole> <agide> <spair>
<machl> <hdevl> <drillbitl> <part0> <holel0> <side0> <spairl>
®
Figure 4.21: The first two steps of cktree construction in the example: (a) The relevant part of
plantreey (cf Figure 4.17). (b) The first goal, operator, and binding cktree nodes built.

inits applied slot. As the side effects cause the operator to delete or achieve other goals, they
may have an influence in the quality of the plan. Therefore the cktree should also capture those
side effects. Step 5 bookkeeps them by calling fill_side_effects described in Section 4.4.2.3.

Creating a goal node

Build_ck_goal (Figure 4.22) is given a plan tree binding node b, and a cktree binding node
b, and creates a set of cktree goal nodes prec,;. These cktree goal nodes correspond to the
preconditions of b.; and become the children of b in the cktree. At planning time PRODIGY
matches the operator precondition and expands it into a conjunction of literals. Preconditions
universally quantified are expanded into multiple instantiated preconditions, one for each set
of variable bindings. The plan tree node b, has a child goal node prec, for each of those
conjuncts. Each prec, is explored in turn by build_ck_goal (Step 3). A cktree goal node
prec.; is created for each prec, except in the case of universally quantified preconditions.
The new nodes prec,; correspond to parameterized preconditions p, obtained in Step 4 by the
partial instantiation of the operator with the variable substitution o stored in b,. The above
description of build_ck_bindings explained how o is obtained. For each universally quantified
precondition only one cktree node is created; created_precs keeps track of the preconditions
already created to that purpose.

In order to make the use of the cktrees at planning time more efficient, the learner stores pointers
from each variable used in the cktree to the cktree nodes where the variable is used (Step 10).

126

CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

build_ck_goal(b,, b ;)

;; by is a plan-tree binding node; b, is a cktree binding node

1. ¢ «— name(b.) ;3 See Step 2 in Figure 4.20
2. created_precs +—)
3. foreach prec, € children(b,)
4. p « regress_prec_name(prec,, by, o) ;; parameterized precondition
5. if p ¢ created_precs

then
6. created_precs «— push(p,created_precs)
7. prec.;. <+ make_ck_goal_node :name p
8. :parent b,
9, children(b.;) < push(prec.;,children(b.))
10. store_var_pointers(prec.;) ;; cf. Section 4.5.8

else ;; it is a quantified precond already created
11. prec., + find p € children(b.)
12. if how_achieved(prec,) ¢ {:subgoaled,:initial-state}
13. then fill_how_achieved(prec,, prec) ;; Figure 4.25
14. if achieves_too(prec,) then fill_achieves_too(prec,, prec.) ;; Figure 4.24
15. if deleted_by(prec,) then fill deleted _by(prec,, prec.x) ;; Figure 4.26
16. add_links_to_other_trees(prec,, precg) ;; Figure 4.32
17. if children(prec,) then build_ck_op(prec,, prec.)

Figure 4.22: Building a cktree goal node.
has-hole <part0> <hole0> <sideO>
DRILL~WITH-TWIST-DRILL-MM
<mach> <hdev> <drillbit> <part> <hole> <gide> <spair> W
<machl> <hdevl> <drillbitl> <part0> <hole0> <sideO> <spairl> ", . Hash table for
has-spot <part0> holding-tool holding <machil> <hdevl> <part0>"::3 variahiles
e e P Wiy | enachl>
‘[<hdevi>

............

*% |l«drillbitls

<spairl>

Figure 4.23: Building cktree goal nodes in the example. Dotted lines indicate the pointers from
each variable to the nodes that use. Those pointers are stored in a hash table. Section 4.5.8 describes

how those pointers are used.

The pointers are stored in a hash table. Entries are added as new variables are created when the
cktree nodes are built. Entry contents are updated when new nodes are created that use those

variables. Section 4.5.8 describes their use in detail.

4.4. LEARNING CONTROL-KNOWLEDGE TREES 127

To illustrate the steps just described Figure 4.23 shows the partial cktree for the example with one
more level of nodes, corresponding to the preconditions of drill-with-twist-drill-mm. (Actually
the nodes for the second and third precondition are built by separate calls to build_ck_goal.)
The figure also shows the pointers from each variable introduced in the cktree to the nodes that

use it.

The information about achievement and deletion that occurred at planning time was stored
in the plan tree and is now added to the created cktree (Steps 12-16 of build_ck_goal). The
next section describes this process in detail. Finally (Step 17) if the plan tree node prec, has
any children, that is, it was achieved by subgoaling, build_ck_op is called to build the new
cksubtree to record how that precondition was achieved.

4.4.2.3 Keeping Track of Achievements and Deletions

The achievement and deletion links are recorded in the ckiree as it is being created using the
experience stored in the plan tree. The functions responsible for this bookkeeping are called
when a cktree goal or binding node is created. Figures 4.24 to 4.27 describe those functions.
Several types of links are used to store achievement and deletion information in a cktree:

e how.achieved, in a ckiree goal node g.;, stores one or more pointers to (a) other cktree
goal nodes that may correspond to the same goal (upon instantiation) and whose achieve-
ment could achieve g.x, since it did in previous planning episodes, or (b) cktree binding
nodes that may achieve g, as a positive side effect, since they did in previous planning
episodes.

® achieves_too, in a cktree goal node g., is the reverse link of how_achieved. It stores
one or more pointers to other cktree goal nodes that may correspond to the same goal,
and may be achieved by achieving g.i, as they were in some previous planning episodes.

e deleted by, in a cktree goal node g, stores a list of pointers to cktree binding nodes
that may delete g.i. as a side effect, since they did in some previous planning episodes.

® applied, in a cktree binding node b, stores a list of pointers to cktree goal nodes that
b.r may add or delete as side effects, as it happened in some previous planning episodes.
The applied link is a reverse of the deleted.by and how-achieved links that point to
binding nodes.

Note that whether a cktree node actually adds or deletes another node depends on how the
variables in the cktree nodes are instantiated when the cktree is used to provide guidance at
planning time. The link is recorded when in some past planning experience the instantiation
was such that the addition or deletion actually occurred.

128 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

fill_achieves_too(prec,, prec.i)

[u—y

. L «— <gq, 9> € achievement_links s.t. g, = prec,}
LA
then
for each <precy,g.> € L .; it is <achiever,achieved>
how_achieved(g.x) «— prec
5. achieves_too(prec ;) «+— push(g...achieves_too(prec.))
else '
for each achieved, € achieves_too(prec,)
7. achievement_links +— push(<prec,achieved>,achievement_links)

o]

W

N

Figure 4.24: Keeping track of achievement links. This function is called when building a cktree
goal node prec . for a plan tree node prec, that achieves other goals.

The above links are bookkept when a cktree goal node prec,y, is being created, and achievement
or deletion information for the current planning episode had been stored in the corresponding
plan tree goal node prec, (Steps 12-15 in Figure 4.22). The links in the plan tree have the same
names enumerated above. The bookkeeping is the task of fill_achieves_too, fill_how_achieved,
and fill_deleted_by. The three functions work in similar ways. (Figures 4.24 to 4.27 give
further details on each function). Assume that prec, is the cktree goal node being created,
and that prec, and prec), are linked in the plan tree by one of the listed achievement links. The
purpose of the bookkeeping functions is to link in the same way the corresponding nodes prec.;,
and prec, in the cktree. Note however that prec,, may have not been created yet, and thus the
link creation must be postponed. Thus two cases are possible when prec,, is being built:

o If node prec;, has not been created yet, the pair < precy,prec; > is stored in some
bookkeeping global variable so that whenever prec’, is created the link is set.

e If node prec,, already exists, a pair of the form <prec,,, prec,> is in the corresponding
bookkeeping global variable and can be accessed by looking for prec,. Then the link
between prec. and prec.,, is added.

Additionally, a fourth bookkeeping function, fill_side_effects (Figure 4.27), is called when a
cktree binding node b, is being created and the corresponding plan tree node b, had side
effects (Step 5 of Figure 4.20). Each side effect of by, is translated into an element of the form
<Pk, type,effect> that is stored in the applied slot of b.x. p.x is the cktree node corresponding
to the side effect added or deleted, {ype indicates whether it was an add or a delete, and effect
indicates which of the operator schema effects is the side effect. effect_in_op computes the
effect (Steps 4 and 7 of Figure 4.27).

4.4. LEARNING CONTROL-KNOWLEDGE TREES 129

fill_ how_achieved(prec,, prec)

1. ger « find g s.t. <gex, prec,>€ achievement_ links

if Gck # m
then
3. how_achieved(prec.t) «— g.i
4, achieves_too(g.;) « push(prec.,achieves_too(g.x))
5. add_bnds_constraints(prec., g.r.) 3 Section 4.4.2.4
else
6. achiever, «+— how_achieved(prec,)
7. achievement_links «— push(<achiever,,prec ;> ,achievement_links)
8. if side_effect_links_p(how_achieved(prec,)) ;; now link side effects with operators
then
9. binding_node «+— how_achieved(prec,) ;; search node that added prec, as a side effect
10. bey + find by, s.t. <binding node,b..>€ side_effect links
11. ifbe #£ 0
then
12. how_achieved(prec.;) + b
13. applied(b..) « push(<prec.,:pos,effect_in_op(prec,)>,applied(b.))
else
14. side_effect_links «— push(<binding_node,prec, p,> ,side _effect_links)

Figure 4.25: Keeping track of achievement links. This function is called when building a cktree
goal node prec.. for a plan tree node prec, that was achieved by other node.

Two bookkeeping global variables are maintained and used by the functions described above:

e achievement_links bookkeeps information to build the how.achieved/achieves_too
links. Each element of achievement_links is a pair < achiever, achieved > of nodes.
Given a call to build_ck_goal(prec,, prec.):

~ if how_achieved(prec,)=achiever, and the cktree node corresponding to achiever,
has not been created yet, an element <achiever,, prec.p> is added to achieve-
ment_links.

— if achieves_too(prec,)=achieved, and the cktree node corresponding to achieved,
has not been created yet, an element <prec.r,achievedy> is added to achieve-
ment_links.

These pairs are added respectively by fill_how_achieved (Steps 6-7) and fill_achieves_too
(Steps 6-7), and are used by those two same functions to set the links when the cktree

130 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

fill_deleted_by(prec,, prec.)

1. binding node — deleted_by(prec,) ;» search node that deleted prec, as a side effect
2. by, « find b, s.t. <binding node,b>¢ side_effect_links
3.if by £ 0

then

4. deleted_by(prec ;) «— push(b.;,deleted_by(prec.;))

5. applied(b.;) « push(<prec.,:neg,effect_in_op(prec,)>,applied(b.)
else

6. side_effect_links « push(<binding_node,prec.;,prec,> side_effect_links)

Figure 4.26: Keeping track of deletion links. This function is called when building a cktree goal
node prec., for a plan tree node prec, that was deleted by other node.

fill_side_effects(b,, b.x)

1. binding node «— applied(b,) ;» Search node corresponding to b,
1. for each <binding_node,p,., p,>€ side_effect_links

2. if deleted by(p,) # 0
then ;; adding a negative side effect

3, deleted_by(p.:) < push(b.;,deleted by(p.z))
4, applied(b.;) < push(<p.,:neg,effect_in_op(p,)>,applied(b.))
5. if how_achieved(p,) # 0
then ;; adding a positive side effect
6. how_achieved(p.;) — b
7. applied(b.;) — push(<pc,:pos,effect_in_op(p,)>,applied(b.;))
8. side_effect_links «— push(<binding node,b ;> ,side_effect_links)

Figure 4.27: Keeping track of side effects. This function is called when building a binding node
bci, corresponding to a plan tree node b, that had side effects.

nodes are created.

o side_effect_links bookkeeps information to build the side effect links, that is links stored
in how.achieved/applied or deleted by/applied slots. It has two kinds of elements:

— <binding node,p.,p;>: added by fill_ how_achieved and fill deleted_by when a
cktree goal node p,;, is being created, and the corresponding plan tree node p, was
added or deleted as a side effect of binding node. The element is added if the

“corresponding plan tree binding node has not been created yet. When it is created,

4.4. LEARNING CONTROL-KNOWLEDGE TREES 131

has-hole <part0> <hole0> <gidel>
DRILL-WITH-TWIST-DRILL-MM DRILL~WITH-TWIST-DRILL
|

<mach> <hdev> <drillbit> <part> <hole> <gide> «<spair>
<mach8> <hdev8> <drillbit8> <part0> <hole0> <sidel> <spairs8>

has-gpot <part0> <hole0> <side0> holding-tool holding <mach8> <hdevB>
<machl> <drillbit8> <part0> <side0> <s}>airs>
DRILL-WITH-SPOT-DRILL PUT—TOOL—IDRILL-PRESS
<mach> <hdev> <drillbit> <pa:r:1:>I <hole> <aide> <spair> <mach> <drillbit>]
<mach9> <hdev9> <drillbit9> <part0> <holel> <sidel> <spair9> <mach8> <drillbits>
holding-tool holding <mach9> <hdev9> available-tool - -
<machg9> <drillbitg> <part0> <side0> <spairg9>w. available-tool

------- <drillblt8> polder <machs> 7
PUT-TOOL-DRILL-PRESS... HOLDWATHVISE e I o

avail-tool availaHlle-tool- B e U

<drillbit9> holder <mach9> _—— | UUUSITTTUUUUed py e [0 how-achieved.

| has-device is-clean on-table T et
<mach9> <hdev9> <part0> <part0> <mach9> achieves-too

......... - Cerananei

Figure 4.28: The part of the cktree built in the example from plantreep (top of Figure 4.17)
showing the achievement and deletion links created.

the link will be set by fill_side_effects.

— <binding_node,b.;>: added by fill_side_effects when a cktree binding node b, is
being created and its corresponding plan tree node b, had positive or negative side
effects. It will be used by fill how_achieved and fill_deleted_by to set the side
effect links when the cktree goal nodes for the side effects are being built.

In both cases binding_node corresponds to a node in the planner’s search trace where an
operator was applied.

There is an additional bookkeeping step, add_links_to_other_trees (Step 16 of Figure 4.22),
that keeps track of the achievement links that point to nodes corresponding to other cktrees. It
will be described in Section 4.4.4.

Figure 4.28 shows the achievement and deletion links added to the cktree when learning from
plantreep in the example (top of Figure 4.17). Note that both in the plan trees and the cktrees
the achievement and deletion links are bidirectional, as described above. The deleted by link
was built in two steps: first, when the node for put-tool-drill-press was created, the link from it
to goal is-available-tool-holder (an applied link) was bookkept in side_effect_links as the goal
node had not been created yet; second, when the goal node for is-available-tool-holder was
created, the applied and deleted by links were added to the cktree. The how.achieved and
achieves_too links were built in a similar way.

132 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

4.4.24 Learning Constraints on Bindings

The cktrees store additional information that is useful to speed up their use at problem solving
time. This information has the form of constraints on the values that operator variables may
take and it is stored at the time in which achievement links are added (Step 5 of Figure 4.25). If
g1 achieves g, a set of constraints is introduced so the arguments of g; and ¢, are the same. The
constraints are stored in the cktree binding nodes that introduce the constrained variables, and
will be used to prune out bindings for that operator that would lead to lower quality solutions.
The purpose of these constraints is only to make the use cktrees more efficient. How these
constraints are used will be explained in Section 4.5.4.

The example in Figure 4.28 serves to illustrate the binding constraints created when an achieve-
ment link is added. In the plan trees for the example (Figure 4.17), the cost of the holding
precondition of drill-with-twist-drill was 0 because it was achieved as a precondition of drill-
with-spot-drill. This is captured by the achievement link in the figure. Therefore the choice
of bindings for drill-with-twist-drill constrains the choice of bindings for drill-with-spot-drill,
so that the two holding preconditions are instantiated in the same way. Consequently when
the achievement link is added to the cktree, constraints on the variables introduced by operator
drill-with-spot-drill are stored at its binding node: the machine <mach9> is constrained to have
the value of <mach8>, the holding device <hdev9> is constrained to be the same as <hdev8>,
and the orientation of the part <spair9> should be the same as <spair8>. The purpose of the
constraints is to focus the planner on bindings that lead to better quality solutions, in this case
to save steps in holding the part.

4.4.3 Updating an Existing Control-Knowledge Tree

Figure 4.14 described the top-level call to the cktree learning mechanism. We discussed how
the learner makes a distinction depending on whether a cktree already exists to guide the current
decision. Let dec_point represent again a control knowledge gap, that is a decision for which
the planner failed to make the choice that leads to the better plan. If a cktree relevant to that
decision exists, it has failed to suggest the desired alternative when used to guide the search
at planning time. Therefore the learner needs to update the existing cktree(s) with the current
planning episode (Step 6 of Figure 4.14).

To update a cktree the learner simultaneously traverses the cktree and the relevant parts of the
plan trees for the current planning episode. Whenever a subtree that appears in the plan tree,
does not have a match in the cktree, the cktree is extended. The extension is built by translating
and generalizing the subtree in a similar way as when a new cktree is created altogether, as
described in Section 4.4.2. Consistency is ensured by the way the new knowledge is added
to the existing cktree: the process consists of adding new subtrees under appropriate nodes
or adding new achievement links in order to capture the planning experience of the current

4.4. LEARNING CONTROL-KNOWLEDGE TREES 133

learn_update_cktree(plantree 4 ,plantreeg dec_point,ckroor)

. g4 < relevant_subtree(plantree ,dec_point)

. match_and learn(ckroot,q4)

. learn_other_cktree(plantree) ;; Figure 4.33
. ¢B + relevant_subtree(plantreeg,dec_point)

. match_and_learn(ckroot,qg)

. learn_other_cktree(plantreeg)

B W=

Figure 4.29: Updating an existing cktree. Note the similarity with Figure 4.18.

episode. Those new subtrees or links may represent alternative additional ways to achieve a
goal different from the ones that the cktree knew about. Thus the new knowledge is added to
the existing one without invalidating it. Figure 4.29 shows learn_update_cktree, the function
that updates the cktree.!!

To illustrate how an existing cktree is updated with a new planning episode, assume that, after
learning from the previous example the cktree in Figure 4.28, a new problem is presented to the
planner and the existing cktree is not able to suggest the correct alternative (drill-with-twist-
drill-mm again). The new problem is summarized in Figure 4.30(a). Again the goal is to drill a
hole, but in the initial state for the new problem there is only one holding device, vise2, which
is on the milling machine, and the drill press is holding the spot-drill tool. Figure 4.30(b) shows
the plan tree for the lower quality solution, plantreeg.

The existing cktree does not contain information to estimate the cost of achieving has-device
since it was true initially in the first example (top of Figure 4.17). Therefore the cktree is
updated with the experience of this planning episode by adding a subtree rooted at has-device.
To find that point the learner traverses simultaneously the has-hole cktree and plantreep
(Figure 4.30(b)) and identifies node has-device as a place where knowledge can be updated.
Figure 4.31 shows the updated cktree. '

4.4.4 Learn and Update Other Cktrees

When several goals in the problem are not independent, there exist achievement and deletion
links that connect the plan trees corresponding to those goals. See for example the bottom
plan tree in Figure 3.25. Therefore estimating the cost of an alternative operator or binding

'In the implementation of learn_update_cktree the cktree is matched as it would be at planning time
(Steps 2 and 5). The purpose of this preprocessing is to aid the bookkeeping described in Section 4.4.2.3 so
the appropriate achievement and deletion links are set between the existing nodes and the nodes that are being
created.

134 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

(objects

; ;machines ;;tools
{object-is mm4 MILLING-MACHINE) (object-is spot-drill3 spot-drill7 SPOT-DRILL)
(object-is drill7 DRILL) (object-is twist-drillS TWIST-DRILL)

(object~is tap4 tap)
;;holding devices

(object-is vise2 VISE) (object-is brushl BRUSH)
{object-is soluble-0il SOLUBLE-OIL)
; ;parts and holes {object-is mineral-oil MINERAL-OIL))

(object-is part5 PART)
(object-is holel HOLE)

(state (and (diameter-of-drill-bit twist-drill5 9/64)
(diameter-of-drill-bit tapd 9/64)
(is-clean part5)

(holding-tool drill7 spot-drill3)
(has-device mmd vise2)
(on-table mm4d parth)))

(goal (has-hole part5 holel sidel 0.3 9/64 1.375 0.25))
(a)

16 has-hole part5 hole3 side‘;[; dec-point

DRILL-WITH-TWIST-DRILL
drill7,vise2,twist-drills,part5,sidel,spair3-6

11 0
has-spot par%s hole3 sidel 2 holding-tool holding drill7,vise2,part5s
DRILL-WITH-SPOT-DRILL dr;ll?,tY}st-drills 5;del,spa1r3-6

drill7,vise2,spot-drill3,part5,sidel,spair3-6 "
0 8 . .
holding-tool holding drill?7,vise2,parts Srererseeeed N

drill?7,spot-drill3 sidel,spair3-6 oo
HOLD-WITH-VISE T
achieves-too
4 0 2
has-device is~clean on-table
drill7,vise2 parts partSIdrill7
1
2 PUT-HOLDING-DEV PUT-ON~-MACHINE-TABLE
% 0 0 :
available-hd vise2 available- ~(holding part5...)
mach drill?

INFER-IS-AVAIL-HD

2 . (has-device

mmd ,IviseZ)

REMOVE-HOLDING-DEV
0 ~{holding part5...)
(b)
Figure 4.30: (a) Initial state and goal of a new example problem. (b) The plan tree corresponding
to the lower quality solution. Some parts have been omitted for clarity.

for a goal may require considering not only the cktree for the goal at the decision point, but
also cktrees corresponding to other problem goals if there are achievement and deletion links
among those cktrees. This section briefly describes how the learner builds the relevant cktrees

4.4. LEARNING CONTROL-KNOWLEDGE TREES 135

has-hole <part0> <hole0> <side0>

DRILL-WITH-TWIST-DRILL-MM DRILL-WITH-TWIST-DRILL

=, {
<mach> <hdev> <«drillbit> <part> <hole> «<side> <«spair>
<mach8> <hdev8> <drillbit8> <part0> <hole0> <side0> <spair8>

has-spot <part0> <hole0> <side0O> holding-tool holding <mach8> <hdev8>
<machl> fdr111b1t8> <part0> <side0l> <ssair8>

DRILL-WITH-SPOT-DRILL

<mach> <hdev> <drillbit> 4part> <hole> <gide> <spair>
<mach®> <hdev9> <drillbit9> <part0> <holel> <sideld> <gpair9>

holding-tool holding <mach9> <hdev9>
<mach9> <drillbit9> <part0> <sidT0> <spair9>w.
HOLD-WITH-VISE "--._.'.'.','jj-.

ST has-device is-clean on-table
<mach9> <hdev9> <part0> <partq> <mach9>

PUT-HOLDING-DEV PUT-ON-MACHINE-TABLE
available-hd <hdevd> avallable- ~(holding <part0>...)
mach <mach9>

INFER-IS-AVAIL-HD

~{(has-device
<otheﬁ-mach> <hdev9>)

REMOVE-HOLDING~DEV
1
~{(holding <part0>...)

Figure 4.31: The cktree of Figure 4.28 updated with the new planning episode described in
Figure 4.30. The cktree existing prior to learning from this episode is indicated with a lighter font.

for other goals. Section 4.5.9 will describe how the cktree matcher uses the cktrees for other
goals.

add_links:to_other_trees(prec,, prec.) ;; other_tree_nodes is a global variable

1. for each achieved, ¢ achieves_too(prec,) s.t. in_other_tree_p(prec,,achieved,)
2. other_tree_nodes «— push(achieved,,other_tree_nodes)

3. achiever, «— how_achieved(prec,)

4. if achiever, # § A in_other_tree_p(prec,,achiever,)

5. then other_tree_nodes < push(achiever,,other_tree_nodes)

Figure 4.32: Keeping track of achievement links that point to other trees.

When a cktree goal node is being built for a plan tree goal node, bookkeeping of the achievement
and deletion links is performed (Figure 4.22). The bookkeeping includes recording (Step 16)
the achievement links that point to subtrees of the plan tree that correspond to other goals.
Figure 4.32 describes this bookkeeping. The achieved nodes which would correspond to other
cktrees are stored in a global variable other_tree_nodes.

Then after the cktree is built for the first goal, other_tree_nodes is used by learn_other_cktree

136 CHAPTER 4. LEARNING.CONTROL KNOWLEDGE TREES

(Figure 4.33) to build other cktrees, in a way similar to the first cktree (cf Figures 4.14, 4.18
and 4.29). First the top nodes of the plan trees for the interacting goals are found, that is, nodes
that (a) are ancestors of nodes in other_tree_nodes and (b) correspond to top-level goals. If no
cktree exists yet for that goal, a new one is built by traversing the plantree (Steps 5-7). If a
relevant cktree exists, it is updated with the current episode (Step 8). We will not elaborate
further on this, since the process is very similar to the one described in previous sections.

learn_other_cktree(plantree)

1. roots « {relevant_subtree(plantree,q) s.t. q € other_tree_nodes} ;; cf Figure 4.32
2. for each g,,,t € roots
3. ckroot — relevant_cktree(g,,.;,cktrees) ;; cktrees is a global variable
4. if ckroot = () ;; cf Figure 4.14
then ;; cf learn_new_cktree in Figure 4.18
5. ckroot — make_ck_goal_node :name parameterize(g.,.;)
6. build_ck_op(g,.:,ckroot)
7. cktrees «— push(ckroot,cktrees)
else ;; cf learn_update_cktree in Figure 4.29
8. match_and_learn(ckroot,g, o.:)

Figure 4.33: Learning and updating other cktrees.

Figure 4.34 shows the plan tree for the better solution to a problem to achieve goals g; and
g2. The relevant decision point in the problem, for which learning is invoked, was the operator
choice to achieve g;. For our purposes it is enough to show the plan tree for one operator
alternative, op?. The learner builds first the cktree for g1, the relevant top-level goal for the
decision point, as described in Section 4.4.2. In the process it keeps track of relevant nodes
in the subtrees for other goals, as indicated by the achievement and deletion links of the plan
trees, namely g»2 and g»11. The rational is that achieving ¢»; and applying operator op;; have
effects in the cost of goal g», and therefore of the whole plan. Then it proceeds to learn (in this
case build anew) a cktree for the other goal, g», the top-level goal that is an ancestor of the two
nodes ¢»; and g;11. Figure 4.35 partially shows the cktrees built from the plan tree.

4.5 Using Control Knowledge Trees

Section 4.4 explained how cktrees are learned from a planning episode. This section describes
how the cktrees are used at planning time to guide the planner towards good plans. We first
overview the process. Then we present the cktree matching algorithms in detail and illustrate

them with some examples.

4.5. USING CONTROL KNOWLEDGE TREES 137

O Goal node

© Operator and bindings node
Figure 4.34: A plan tree for a plan to solve goals g; and g». The decision point in the planning
episode for which learning occurs is the operator to achieve g;. Only the plan tree corresponding
to the better alternative, op]lB , is shown in the figure. A number in brackets next to an operator is
the cost of the operator given the quality metric. A number without brackets next to a goal node is
the cost of the subtree rooted at that node. Operator and binding nodes have been merged together

in the figure for clarity.
& 8
achieves-t0o

.. 821
Topog

827

O Goal node
© Operator and bindings node

Figure 4.35: Two cktrees for goals g; and g, learned from the plan tree in Figure 4.34.

4.5.1 Overview of Control Knowledge Matching

When the planner is making an operator decision or a bindings decision, it checks whether
control knowledge in the form of a cktree that may guide that decision is available. If so,
the cktree is used to estimate the cost of each of the alternatives. We term this process cktree
matching. Note that we use the term estimate since the cktrees capture previous planning

138 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

has-spot part hole side

DRILL-IN-DRILL-PRESS DRILL-IN-MILLING-MACHINE
drill, spot-drill,vise,side,spair mm, vise, spot-drill, side, spair
holding-~too holding drill,vise,part holding~tool holding mm,vise,part
drill, splol:-dr:ill side, lspa:i.zf: mm, gpot-drill s:'.tie,I spair
PUT-TOOL-DRILL~PRESS HOLD~-WITH-VISE HOLD-WITH-VISE
1 1 1
drill, spot-drill drill,vise,side,spair mm,vige,gide, spair
avail-tool avail-tool- has-device is-clean on-table v has-device is-clean on-table [
spot-drill holder drill drill,vise part part drill mm, 1Irise part part mm
PUT-HD-DRILL PUT~-HD-MM l I
—
avail-table avail-hd avail-table avail-hd
drill vise mm vise

Figure 4.36: The control knowledge tree learned from the plan trees for the problem in Figures 4.8
and 4.9. Goal and operator arguments are variables (<> have been omitted for space purposes).

experience and they may have incomplete information to determine exactly the quality of the
alternatives. Figure 3.9 described how the cost of a plan tree is computed by traversing the plan
tree. Similarly a cktree can be traversed and provide an estimate of the cost of an alternative.
Since the ckiree is parameterized, its variables need to be instantiated for the particular problem
being solved by providing bindings for each cktree binding node visited. As there may be
several ways to instantiate an operator, several alternative bindings are tried to choose those
that would lead to a better plan.

Before describing the cktree matching algorithms in detail, we will use some examples in the
process planning domain to explain how the cktrees are exploited to provide guidance for search
decisions. The first example was introduced in Section 4.2. Figure 4.9 (a) showed the two
plan trees available after solving a simple problem in which the goal is to drill a spot hole on
a part (the root of the plan trees) and the tool is initially set on the available milling machine
(note the 0-cost of holding-tool in the second plan tree). Figure 4.9 (b) partially showed
the quality metric. The plan that uses the milling machine (plan tree on the right) has slightly
better quality as the higher cost of operator drill-in-milling-machine is overcome by the savings
of having the tool set already. Note that if either of the preconditions of put-tool-drill-press
had cost 0, the two alternative drill operators would lead to plans of cost 13. Examples of
this situation would occur if drill7’s tool-holder were free, or if there were a free spot-drill
different from spot-drill3. Thus seemingly small differences in the state may lead to prefer
different alternatives at the choice point and therefore generate different plans. Capturing this
kind of knowledge with control rules turned out to be difficult and motivated the development
of control knowledge trees.

Figure 4.36 depicts the cktree learned form this problem using the algorithms described in
Section 4.4. The learned cktree can be used to guide planning for a new problem. To estimate
the cost of achieving a goal using a particular operator alternative, the cktree matcher adds the
cost of the instantiated operator, given by the quality metric, to the cost of achieving the operator

4.5. USING CONTROL KNOWLEDGE TREES 139

has-spot part hole side

13 6
DRILL—IN-DFILL-PRESS DRILL-IN-MILLING~-MACHINE
drill, spot-drill,vise,side,spair mm, vise, spot-drill, side, spair
10
holding-too holding drill,vise,part holding-tcol holding mm,vise,part
drill, sqot—drill side, Ispa:i.:r: mm, spot-drill s:i.de,i spair
PUT-TOOL-DRILL-PRESS HOLD-WITH-VISE 17 HOLD-WITH-VISE
| i i
drill, spot-drill drill,vise,side, spair mm, vise, side, spair
- . - 5 ° —_—
avail-tool avail-tool- has-device is~clean on-table has—deyice is-clean on-table
spot-drill holder drill drilll.vise part part drill mm,w‘n.se palrt part mm
—HD - PUT-HD-MM
0 avail-table avail-hd avail-table avail-hd
drill vise mm vise
22

Figure 4.37: Using the cktree previously learned to solve a new problem in which the the part is
set on the milling machine and the tool is set on the drill press. A lighter font is used in parts of the
cktree that are not explored by the cktree matcher. ? indicates a default value assigned to a goal
node when no knowledge was available to estimate its cost.

preconditions. The operator is instantiated as it would at planning time, that is, with bindings
for the relevant operator effect coming from the goal, and with the problem objects. Thé cost
of achieving each precondition is recursively computed in turn. This process corresponds to
traversing the cktree. The traversal stops at goal nodes that have estimated cost 0 because in
the current problem they are true in the initial state or added (as indicated by the achievement
links), and are not deleted (as indicated by deletion links). The matcher keeps track of the added
and deleted nodes. The traversal also stops at the cktree leaves, in which case the matcher has
no knowledge to estimate the cost of achieving them. A default value is assigned, which is the
minimum cost of achieving that goal by just applying a relevant operator.

To illustrate this process, we now describe how the learned cktree in Figure 4.36 can be used
to guide planning for a new problem in which the goal is also to drill a spot hole. For example,
assume the planner is asked to solve a second problem in which in the initial state the part is set
on the milling machine and the tool is set on the drill press. When the planner must make a choice
of operator to achieve the goal has-spot, it uses the cktrees as control knowledge. Here we
sketch how the cktree is used to estimate the cost of each drilling alternative. Figure 4.37 shows
the cktree matching process and result. The matcher explores the two operator alternatives
in the has-spot cktree, drilling in the drill press and drilling in the milling machine. For
explanation purposes only assume the latter alternative is considered first. It corresponds to
the right subtree. According to the quality metric, the cost of the operator is 5. Then the
matcher estimates the cost of each of the subgoals. Recall that in the current problem the
part is being held in the milling machine. Therefore the cost of holding is 0 and the matcher
does not need to explore further that subtree. Unexplored parts of the cktree are shown with a
lighter font in the figure. When estimating the cost ‘of the holding-tool subgoal, no further

140 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

has-spot part hole side

3 > 6
op cost= 6
DRILL-IN-DRILL-PRESS DRILL-IN-MILLING-MACHINE
drill, spot-drill,vise, side, spair mm, vise, spot-drill, side, spair
0
holding-too holding drill,vise,part holding-tool holding mm,vise,part
drill,sgct-drill side, spair mm, spot-drill side) spair
PUT-TOOL-DRILL-PRESS HOLD-WITH-VISE HOLD-WITH-VISE
| | |
drill, spot-drill drill,vise, side, spair mm,vise, side, spair
avail-tool avail-tool- has-device is-clean on-table has-device is-clean on-table
spot-drill holder drill drilll. vise part part drill mm, \'rise paTrt part mm
J ‘ PUT-HD-DRILL PUT-HD-MM
P e P -
avall-table avail-hd avail-table avail-hd
drill vise mm vise

Figure 4.38: Using the cktree previously learned to solve a new problem in which the the part
and the tool are set on the drill press. The cktree is matched efficiently because the matcher stops
before exploring the drill-in-milling-machine subtree. A lighter font is used to depict parts of the
cktree that are not explored by the cktree matcher.

information is available in the cktree on how to achieve that subgoal, as in the problem from
which the cktrees were learned the tool was being held in the milling machine and the cost of
that subgoal was 0. The matcher gives a default value of 1 (the minimum cost of putting a tool
in the machine according to the quality metric) which is propagated up. Therefore the cost of
drilling in the milling machine is estimated as 6 (5 for the operator, plus O and 1 for the operator
preconditions). The matcher now proceeds to estimate the cost of the drill press alternative,
which turns out to be more expensive (13). Therefore the planner chooses the milling machine
operator and continues planning. The actual cost of the final plan that uses the milling machine
operator is 7 (since the real cost of holding-tool is 2 as the tool has to be released from the
drill press before holding it). The actual cost of the plan that uses the drill press operator is 15
as the real cost of making the vise available is 4 (it is holding the part in the milling machine)
instead of the estimated 2. In spite of limited knowledge the matcher was able to suggest an
adequate choice.

Consider now a third problem with the same goal in which both the part and the tool are set
initially on the drill press. Figure 4.38 illustrates the matching process in this case using the
cktree learned from the first problem. The planner calls again the cktree matcher for guidance
at the operator choice for has-spot. The matcher starts by exploring the drill press alternative,
which has cost 3 (as its subgoals have cost 0). Then it turns to the milling machine alternative.
The cost of the operator itself (drill in the milling machine) is S, larger than 3. Therefore there
is no need to proceed to estimate the subgoal cost. Matching stops and drilling in the drill press
is suggested. (Note that the correct choice in this example is different from that in the previous

ones.)

This example also illustrates another point. In some cases there is more than one way to

4.5. USING CONTROL KNOWLEDGE TREES 141

instantiate an operator. Even if there is only one tool and one drill press available, the drill
operator can be instantiated in two different ways depending on the part orientation, that is, on
the choice of sides facing the holding device (spair in the cktree of Figure 4.36). The best
instantiation is the one whose holding precondition matches the way the part is being held in
the state and thus has cost 0. Otherwise the part would have to be released and held again.
The cktree matcher finds the good instantiation and records it. That information is used when
the planner, in the next decision point after the operator choice of the planning algorithm, must
choose bindings for the drill operator. In this way the matcher records alternatives that were
suggested by the cktree traversal process as guidance for choices that will be made later on in
planning.

The examples just used to introduce the use of cktrees are simple one-goal problems and the
cktree contains no achievement (other than subgoaling) and deletion side effect links. When
those links are present the cktree matcher is able to follow them and keep track of the added and
deleted goals. When the problem has multiple goals and the matcher is finding an alternative
for a given one, more than one cktree may be considered and so goal interactions are captured.
Only the relevant parts of other cktrees are explored. The next sections describe in detail the
cktree matching algorithm.

4.5.2 Calling the Cktree Matcher

The invocation of the cktree matcher is done through a number of PRODIGY4.0’s operator and
bindings preference control rules. We have implemented several meta-predicates that are used
in those rules:

® (current-goal-and-pref-op <op>): callsthe ckiree matcher for the current goal. The
matcher finds the estimated best alternative operator and binds <op> to it. As a side effect
it stores suggestions for future search decisions.

® (op-suggested-for-current-goal <op>): checkif a suggestion for the current oper-
ator decision is available from previous exploration of cktrees. If so, <op> is bound to
the suggested operator.

® (suggested-bindings <op> <bnds>): binds <op> to the current operator and checks
if a suggestion for the current binding decision is available from previous exploration of
cktrees. If 5o, <bnds> is bound to the suggested bindings.

Figure 4.39 (a) shows the control rule that fires the cktree matching at a goal node when an
operator decision must be made. Control rule preconditions are tested in the order in which
they appear in the rule. The rule first tests op-suggested-for-current-goal to check if there
is an available suggestion (from previous exploration of cktree(s)). If there is not, it uses the

142 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

cktrees to provide guidance by testing current-goal-and-pref-op. In the case of a bindings
decision, that is, at an operator node, the control rule in Figure 4.39 (b) is tested to find some
suggested bindings from previous cktree exploration.

(control-rule use-cktrees
(if (or (op-suggested-for-current-goal <op>)
(current-goal-and-pref-op <op>)))
(then prefer operator <op> <other-op>))

(@

(control-rule use-suggested-bindings
(if (and (current-operator <op>)
(suggested-bindings <op> <bnds>)))
(then prefer bindings <bnds> <other-bnds>))

(®)

Figure 4.39: Control rules that invoke the control knowledge stored in the cktrees.

As an implementation detail note that the planner only fires operator preference rules, in
particular the rule in Figure 4.39(a), if more than operator is a candidate to achieve the current
goal. However more than one binding set may be candidate for that operator and the cktrees are
used to guide that binding choice. Therefore rules like the one in Figure 4.40 are constructed
automatically when the cktree is learned for a binding decision. These rules only fire if
there are not suggested-bindings, that is, if the operator control rule has not matched the
cktree(s) and stored some suggested bindings. The rule preconditions are matched in sequence
and PRODIGY4.0’s syntax requires that the bindings rules specify the current operator (tap
in the example) instead of a variable that gets bound to it at matching time. The test of
current-goal-and-pref-op Stores as a side effect bindings suggestions and the final test of
newly.-suggested-bindings binds <bnds> to those suggestions.

(control-rule bnds-for-tap
(if (and (current-operator TAP)
{not (suggested-bindings TAP <bnds>))
(current-goal-and-pref-op
(is-tapped <part> <hole> <side> <hole-depth> <hole-diameter>
<loc-x> <loc-vy>)
TAP)
(newly-suggested-bindings TAP <bnds>)))
(then prefer bindings <bnds> <other-bnds>))

Figure 4.40: A control rule that invokes the cktree matcher. This rule was built automatically when
the cktree for is-tapped was learned.

4.5. USING CONTROL KNOWLEDGE TREES 143

current-goal-and-pref-op

1. g « current_goal

2. ckroot «— relevant_cktree(yg, ckirees) ;; cf Figure 4.14
3. [y « bnds(g,name(ckroot))

4. foreach op € children(ckroot)

5 <alty, costy> «— match_cktree(op, 5y, 5o) ;; Figure 4.42
7 <altpest, costyes;> +— match_all_alts(op, £y, alty, costy) ;; Figure 4.46
9. store_prefs_for_subgoals(alty.s;) ;; See Section 4.5.7.1
11. return(choice(alty.s:))

Figure 4.41: Definition of meta-predicate current-goal-and-pref-op. The variable in the
argument of the meta-predicate (see Figure 4.39(a)) gets bound to the meta-predicate’s result
(Step 11). Steps 1-2 finds the relevant cktree for the current goal and Steps 3-7 explore the cktree
to find the best alternative. In the process the matcher may suggest alternatives for subgoals of the
current goal that will be used later by the planner. Those suggestions are stored in Step 9. This
definition of current-goal-and-pref-op will be completed in Section 4.5.9.2. For clarity we
have kept the same step numbering as in the complete definition.

4.5.3 Cktree Matching as Traversing the Cktree

Figure 4.41 shows a first version of the definition of the current-goal-and-pref-op meta-
predicate. The complete definition will be introduced in Section 4.5.9.2. The matcher starts
by finding an existing cktree relevant to the current goal. The initial set of bindings 3, for the
cktree variables is formed by matching the goal at the cktree root with the current planning
goal.

The matcher traverses the cktree, which is an and/or tree. If more than one alternative operator
is available for a subgoal, that is, if the node corresponding to the subgoal has more than one
child, all of them are tested to find the best alternative. Similarly if an operator variables can be
instantiated in different ways for the current problem, those alternative bindings are explored.
At each point during matching the current alternative is being maintained. It contains bindings
for the cktree variables in the nodes that the matcher has explored already, and the operator
being considered for each subgoal if there are more than one. The remaining alternatives are
stored as the cktree is traversed so they are tested later on. The current alternative initially
contains the bindings 3, that come from the current goal, and is completed as the cktree is
traversed.

The matcher is called for each of the operators relevant to the current goal which are stored in
the cktree as children of the root. These are a subset of the relevant operators, those that the
learner has seen in the past and has stored in the cktree. The matcher starts by generating and

144 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

testing the first alternative for the first operator. This corresponds to the call to match_cktree in
Step 5, which returns the complete first alternative alty and its cost costy. costy becomes a cost
threshold as further alternatives are explored. Then the remaining alternatives recorded during
the cktree exploration are tried (Step 7). Finally the best operator according to the estimated
costs is returned. The complete alternative alt,..; is stored by store_prefs_for_subgoals (Step 9)
in a global variable preferred_alts_for_subgoals that is used by the control rule meta-predicates
suggested-bindings and op-suggested-for-current-goal t0 generate suggestions for
further decisions during planner (see Section 4.5.2).

Figure 4.42 describes the basic cktree matching routine and will be explained throughout the
next sections. Function match_cktree is given a cktree node ¢, the bindings 3, for the variables
in ¢ if it is a goal node, or in ¢’s parent goal node, and the alternative being explored, that is
the bindings for the variables seen so far in the cktree and the choices of operators being tried.
It recursively computes the cost of the subtree rooted at g for the given quality metric. The
computation is done by traversing the cktree. In the case of a binding cktree node, the cost of
the subtree is computed by adding the cost of the operator itself given the quality metric with
the cost of achieving the operator preconditions (Step 28). The call to op_bnds_cost applies
the quality metric to the operator instantiation. Note that the cost of the operator may depend
of the particular instantiation chosen.!> When computing the cost of the preconditions, the case
of universally quantified operator preconditions is dealt with separately (Steps 21-22) and will
be explained later. Otherwise match_cktree is called in turn to estimate the cost of achieving
each of the preconditions, and those costs are added (Steps 23-27).

4.54 Generating and Pruning Alternatives

The previous section explained how at each point the current alternative being explored is
maintained. If a goal node has more than one child operator, the first one is kept as part of the
alternative and the rest are stored to be explored later (Steps 8-10) of match_cktree. Similarly,
in the case of a binding node the matcher computes the possible instantiations (Step 15). If
there are more than one, the first one is kept as part of the alternative and the rest are stored to
be explored later (Steps 17-19).

Figure 4.43 describes how the possible instantiations for a binding node are computed.
First, all the legal bindings B.4q are generated by calling the planner’s operator matcher
(get_all_bindings): given the bindings that come from matching the goal with the operator’s
right hand side, the rest of the variables of the operator are instantiated in all possible ways that
satisfy their type specification.

ZInference rules are represented in the cktree in the same way as operators. However, as inference rules do not
affect the cost of the plan, if the binding node corresponds to an inference rule, op_bnds_cost returns 0.

4.5. USING CONTROL KNOWLEDGE TREES 145

match_cktree(q, 3,, alt)

1.

case type(q)

2. goal cknode:

3.

4,
5
6.

7.
8.
9

10.
. operator cknode:
12.

13.
. binding cknode: ;3 By are the bnds for the parent goal

11

14

15.
16.
17.
18.
19.
20.
21.

22.

23.
24,
25.
26.
217.
28.

if [true_in_state(/) \ in_marked_goals_p(q, 3,)] A — in_deleted_goals_p(q, 3,)
then
<alt', cost> «— <alt,0>

else if children(q) = () ;; no children
<alt', cost> «—<alt,default_cost(q)>

else
O « children(q) ;; the operator alternatives

opo «— car(0)
if |O] > 1 then store_remaining_alts(O — {opo })
<alt', cost> «— match_cktree(opo, 5,, alt U {opy})

b « car(children(q)) ;; operator nodes have only one child
<alt’, cost> «— match_cktree(b, 3,, alt)

B « all_bnds_for_ckop(q, 3,, alt)
if B = () then return(no legal bnds)
Bo « car(B) ;; first bindings alternative
if |B| > 1 then store_remaining_alts(8— {{,})
alt’ — alt U By
if applied(q) then add_side_effects(q, 5p)
if forall_expanded_p(q)
then
<alt', costprecs> «— match_expanded_forall(q, 5y, alt’)
else
€08t precs — 0
for each p € children(g).
<alt', cost,> «— match_cktree(p, 5, alt’)
COSlprecs < COSlprecs + COSE,
add_marked_goal(p, 5o)
cost «— costyrecs + Op-bnds_cost(q, 5o) ;; using the quality metric

29. cknode_cost(q) < cost
30. return(<alt’, cost>)

Figure 4.42: The basic cktree matching function. Note how the quality metric is used in Step 28.

146 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

all_bnds_for_ckop(b, 3,4, alt)

L. Biegar +— get_all_bindings(parent(b),5, ;) ;; the planner’s matcher
2. constraints «+— instantiate(constraints(b),alt)

3. Boruned — {bnd € Bieyar - satisfy_p(bnd,constraints)}

4. If ﬂpruned = @

5. then return(Begq:)

6. else return(By,uned)

Figure 4.43: Generating instantiations for a cktree binding node.

Then the set of those instantiations is pruned using the learned constraints that were described
in Section 4.4.2.4. The purpose of the constraints is to make cktree use more efficient by
pruning out bindings that would lead to lower quality plans. The constraints were learned
when an achievement link was set between two nodes: if g; achieved g,, a set of constraints
was introduced so the arguments of ¢; and ¢, are the same. The constraints were stored in
the binding node that introduced those variables, i.e. that generated values for them. The
constraints are stored in the constraints slot of the binding node b as a list of constraints.
Each element corresponds to an achievement link and has the form ((v; v2)™) where vy is a
variable introduced by the operator at the binding node b and v, is a variable at the constraining
operator (that is, at the other extreme of the achievement link). To test the constraints when the
matcher is visiting node b and generating values for the v;’s, the matcher instantiates the v,’s
with the bindings that appear in the alternative (alt in Figure 4.43) currently being explored.
If any of the v, in a constraint is not yet bound, the constraint is discarded. The remaining
constraints are used to filter the possible bindings: every binding in B, that do not satisfy any
of the constraints is discarded. If none of the bindings satisfy a constraint, no pruning occurs
and all the legal bindings are explored.

The cktree in Figure 4.28 serves to illustrate how the constraints are used. A constraint of the
form

(<mach9> <mach8>) (<hdev9> <hdev8>) (<spair9> <spairs>) [1]

was learned and stored in the binding node for drill-with-spot-drill as described in Sec-
tion 4.4.2.4. Assume now the cktree is used for guidance in a problem where the goal is
to drill a hole and the available machines and tools are a drill press dri117, two holding
devices vise3 and vise5, and two drill bits (a twist drill twist-drill4 and a spot drill
spot-drilll). The cktree matcher starts by exploring one alternative instantiation for drill-
with-twist-drill, say (<mach8> drill7) (<hdev8> vise3) (<drillbit8> twist-drill4)
(<spair8> side2-side5). As it traverses the cktree it needs to generate a choice of operator
and bindings to achieve the has-spot precondition of drilling the hole. The only operator

4.5. USING CONTROL KNOWLEDGE TREES 147

known in the cktree is drill-with-spot-drill. Again there are several possible instantiations for
it by combining the available holding devices and the allowed orientations: <hdev9> can be
vise3 Or viseS5, and <spair9> can be side2-side5 or side3-side6. Applying the constraint
above [1] the resulting instantiation is (<mach9> drill7) (<hdev9> vise3) (<drillbit9>
spot-drilll) (<spair9> side2-side5).

The aim of this pruning is to reduce the set of alternatives tried by focusing on those that can
lead to better plans, as they did in the past. Satisfying the constraints means that the alternative
will lead to a 0-cost subgoal. Note that the constraints may be contradictory, as different
instantiations may lead to different savings by sharing subgoals with different nodes. This is
the case when several achievement links have been learned from different episodes. In that
case the algorithm keeps all the alternatives that satisfy any the constraints.

4.5.5 When to Stop Traversing the Cktree

The traversal stops when the cost of a subtree rooted at a node can be obtained directly, without
having to traverse its children. This occurs when a cktree goal node is being explored in the
following cases:

e The goal node’s cost can be estimated as 0 (Steps 3 and 4 of Figure 4.42). Determining
that a goal node has cost O is not trivial. It may have cost O if it is true in the initial state
and has not been deleted by an operator. It may have cost O if it is added by another
operator. Step 3 in Figure 4.42 captures the conditions under which a goal node has
estimated cost 0. Section 4.4.2.3 described how the adding and deleting information is
stored in the cktree’s achievement and deletion links. Those links were recorded from
previous planning experience in which the additions and deletions actually occurred.
Whether they will occur in the actual planning problem depends on how the variables
in those nodes are instantiated. For example, two holding goal nodes ¢; and g, may
be connected by a how-achieved link if they were instantiated with the same bindings
(machine, orientation, etc) in a past problem; if in the current problem the two goals are
instantiated with different objects, say machines, the how-achieved link will not be used
to estimate a 0 cost for one of the goals.

When the cktree matcher visits a goal node or a binding node, it records its possible
side effects, that is, the nodes linked as achieved or deleted by the current node with the
bindings required for the achievement or deletion to actually happen. Those (possibly)
added or deleted goals are stored respectively in two variables called marked_goals
and deleted_goals. Steps 27 and 20 call respectively functions add_marked_goal and
add_side_effects which are described in Figure 4.44(a) and (b). add_marked_goal
is called after a goal node is explored (Step 27 of Figure 4.42) and adds to the set
marked_goals those nodes that are pointed by the goal’s achieves-too link. add_side_

148 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

effects is called when a binding node is explored (Step 20 of Figure 4.42) and adds the
possible side effects of the binding node (stored in its applied slot) to marked_goals
and deleted_goals depending on whether the effect is positive (add) or negative (delete).
When the matcher is exploring a goal node (Step 3 of Figure 4.42 it looks at these lists to
estimate whether the cost of the goal is 0.

add_marked_goal(p, 5)

1. Bra + {<var,val> € f: var € arguments(p)}

2. for each g € achieves_too(p)

3. marked_goals « push(<g, p, Bre>, marked_goals)

4. wisited_cknodes «— push(<p, B,>, visited_cknodes) visited_cknodes

(@

add side_effects(b, 5)

1. for each <g, type, e> € applied(b)

2 Bre — {<var,val> € B : var € arguments(g)}
3. if type = :positive
4
5

then marked_goals— push(<g, b, B.e1>, marked_goals) ;; a positive side effect
else deleted_goals — push(<g, b, B,.>, deleted_goals) ;; a negative side effect
(b)

Figure 4.44: Maintaining the achieved and deleted goals.

e The node has no children, and therefore there is no further information in the cktree to
estimate the cost of achieving that subgoal (Steps 5 and 6). In that case a default cost
is assigned. For example one can use the minimum of the costs assigned by the quality
metric to the domain operators that are relevant to that goal.

o The estimate for the subtree rooted at the goal node is the same as for the previous
alternative explored. Therefore it has been computed before and can be reused. This
leads to considerable savings in the matching process and will be explained in detail in
Section 4.5.8.

e A threshold value is exceeded. Section 4.5.7 will describe how the matcher explores
multiple alternatives. The best value for the alternatives tried so far is used as a threshold.
When that threshold is exceeded, exploration stops and the current alternative is-discarded.

4.5. USING CONTROL KNOWLEDGE TREES 149

match_expanded forall(s, 3, alt) ;; b is a cktree binding node

. initialize_masks
. cost +— 0
. for each By € generate_forall_bnds(b, 3)
for each p € children(b)
if [mask not_visited_p V in_deleted_goals_p(b, Gv)]
then
<alt, c,> «— match_cktree(p, Gy, alt)
cost «+ cost + ¢,
. for each p € children(b) add_marked_goal(p, : forall)
. return(<alt, cost>)

IR

\© 0 N o

Figure 4.45: Estimating the cost of achieving a universally quantified precondition.

4.5.6 Matching Universally Quantified Cktree Preconditions

If an operator precondition is universally quantified the planner expands it as a conjunction
of all the possible instantiations of the precondition given the scope of the quantification, and
then proceeds to achieve each of the conjuncts. Therefore in a plan tree built from such
planning episode the binding node corresponding to that operator will-have one child for
each of the instantiated preconditions. When a cktree is learned from the plan tree a single
cktree goal node is created for all the instantiations of a universally quantified precondition
(see Section 4.4.2.2). Therefore match_cktree needs to deal in a special way with this case
(Steps 21-22 of Figure 4.42). Figure 4.45 describes the matching of quantified preconditions.
The cost of all the possible instantiations of the preconditions is accumulated and returned as
the cost of achieving the operator precondition.

In what follows we will describe how matching is made more efficient in the case of universally
quantified preconditions by using masks. The instantiated preconditions are generated incre-
mentally. The possible bindings are computed (Step 3) incrementally. Then the preconditions
are instantiated in turn using each of those bindings (Step 4). Note that the same instantiation
may be generated several times when not all the quantified variables are arguments of the
precondition. For example, if the precondition has the form (forall (<a>) (and (pl
<a>) (p2 <a>))) and <a> may take value a; and may take values b, b,, then (p1 @)
will be generated twice, once per value of . The matcher must avoid adding the cost of the
instantiated precondition several times unless the precondition is deleted when other precondi-
tions are achieved. To speed up the matching process by avoiding the computational cost of
instantiating the goal node for the precondition and of calling match_cktree, the matcher keeps
track of the preconditions generated.

150 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

Assume that vary;var,, ...var, are the universally quantified variables, and that an instantia-
tion is represented as a vector inst[vy, vy, ...v,] where v; is the value assigned to var; in that
instantiation. A mask is stored in each goal cktree node corresponding to a quantified precon-
dition (Step 1). A mask for a precondition p is an n-element vector indexed on the quantified
variables, such that mask,[¢] is 1 if var; is an argument of the precondition, and O otherwise.
Every time match_cktree is called for a given goal node and instantiation, a vector 1n.st,,4sked
is also stored in the goal node; inst,, , . ., represents the instantiation inst masked with mask,.
Masking means that inst? . _.[{] = 0 if mask,[t] = 0 and inst? .. .[{] = inst[i] otherwise.
‘When a new instantiation inst’ is proposed (Step 5) mask not_visited_p checks whether the
instantiated precondition has been considered already by masking ¢nst’ and finding it in the
set of visited instantiations {inst? ..;}. If it has been visited already (that is, the cost of
achieving it was computed by calling match_cktree), and has not been deleted subsequently,
the precondition is ignored. This amounts to assigning it cost 0.

Finally, the goal nodes are added to the list of marked_goals. Only one occurrence of each
precondition is added (instead of an element for each possible instantiation). initialize_masks
(Step 1) computes the masks if they have not been computed in previous explorations of the
cktree, or empties the list of visited masks {inst? .} stored in the goal node otherwise.

4.5.7 Exploring Multiple Alternatives Efficiently

Section 4.5.4 described how multiple alternatives may be possible at a node when the cktree is
being traversed. There may be several operators available to achieve a goal stored as children
of the goal cktree node. These correspond to operators that the planner used in the past to solve
the goal either planning by itself or as part of an improved plan proposed by the human domain
expert. There may also be several ways to instantiate the operator in the given problem, even
after using binding constraints to prune them.

Assume that the planner is making an operator decision and op; and op, are the alternatives.
If the planner commits to op;, it will then have to commit to an instantiation among the legal
ones. Then when working on each of its subgoals, it may have to choose an operator among
a set of relevant ones, and so on. Assume that the cktree matcher is invoked (by calling
current_goal_and_pref_op, Section 4.5.2) to estimate the cost of operators op; and op, and
thus choose the one that looks more promising. The estimation of the cost depends on what
further alternatives (bindings, operators for subgoals) are chosen. For example, if op; and
op, are using a drill press and using a milling machine to drill a hole, which operator is more
promising depends not only on the operator itself but on the particular instance of drill press
or milling machine used, and on the choice of tool, holding device, and orientation. Maybe
using milling-machine3 with visel is better than using drill-pressl with visel because visel is
set on milling-machine3, and both of those alternatives are better than milling-machine7 with
visel because that machine is holding a different vise. If multiple alternatives are available at

4.5. .USING CONTROL KNOWLEDGE TREES 151

a cktree node, all of them must be explored to estimate the cost of the alternative at the root of
the cktree.

Figure 4.41 described the basic algorithm for traversing the cktree. In Step 5 match_cktree is
called to estimate the cost costy of the first alternative explored alty. As multiple alternatives
may be available at some of the nodes visited, match_cktree explores the first of those and
stores the rest in a global variable all_alts (Steps 9 and 18 of Figure 4.42). Therefore the
remaining alternatives must be explored now by calling match_all_alts (Step 8 of Figure 4.41),
which is described in Figure 4.46.

match_all_alts(q, By, alty, costpes;) ;; all_alts is a global variable
1. altpren «— altp

2. alt «— next_alt(all_alts)

3. A « diffs_with_prev_alt(alt,,.,, alt)

4. mark_diffs(q, A)

5. <alt',cost,;;> +— match_cktree_marked(q, Gy, alt, costyes:)
6. unmark all nodes
7. other_cktree_nodes — {<gi, g2, B> € marked_goals s.t. in_other_cktree_p(g;, ¢)}
8. store_n_best(alt’, cost,;, marked_goals, deleted_goals, other ckiree_nodes)
9. if costyy < costpes; then <altpest, coOstyes:> — <alt',costyy>
10. if all_alts =)
then
11. return(<altpess, COStpest™)
else
13. altprey — alt’
14. goto 2

Figure 4.46: Matching the available alternatives. Steps 7 and 8 will be explained in Section 4.5.9.2.

The matcher iterates over the available alternatives to estimate their cost. The best cost so far
(initially costy) is used as an upper bound to stop matching when the current alternative is going
to be worse than the best one so far. This is another way to limit the matching effort.

The set of all possible alternatives all_alts is not completely computed upfront. For example, if
an operator is stored pending to be explored, the possible instantiations for it have not been yet
generate. They will only be generated when the operator becomes part of the current alternative
alt. As there may be more than one instantiation, the first one is explored and the rest kept in
all_alts. Therefore all_alts is managed dynamically: when an alternative is explored, it may
prompt the generation of new alternatives that are added to all_alts.

152 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

4.5.7.1 Cktree Matching in Relationship to Planning

We have just described how if multiple alternatives are available at a cktree node, the cktree
matcher must explore all of them to estimate the cost of the alternative at the root of the cktree.
Obviously this process can be expensive; however “all” can be relaxed to make the cktree
matching process efficient. Using binding constraints as described in Section 4.5.4 prunes the
alternatives explored. Other methods are described below. In addition, the choices that lead to
the best alternative during the cktree exploration can be stored and used at planning time when
the planner faces the corresponding decision. In this way the control knowledge captured by
the cktrees is used globally, to guide a sequence of planner’s decisions, instead of locally as
was the case when simply using control rules.

It is worth clarifying the distinction between planning and cktree matching. When the planner
must make an operator or bindings decision, it calls the cktree matcher with the goal g for
which the decision must be made. The cktree matcher uses the cktree to estimate the cost of
each alternative available to the planner. To do that the cktree matcher traverses the cktree(s)
predicting, based on past planning experience, the decisions that the planner will make and the
subgoals that it will explore. The matcher returns guidance for the planner’s decision, that is,
an operator, or a set of bindings, for g. As a side product the matcher stores guidance for future
decisions that the planner will face. Then the planner commits to the cktree matcher’s advice
for ¢ and continues planning. Each time it faces a choice point, it checks, prompted by the
control rules described in Section 4.5.2, whether the previous call to the cktree matcher stored
a suggestion for the new choice point. If so, the suggestion is taken.

4.5.8 Reusing Computation Among Alternatives

The cost of some subtrees may remain the same for different alternatives and therefore can be
reused. For example, if the difference between two alternatives for drilling a hole in a drill
press is the tool used, the cost of holding the part is still the same for both alternatives, and
only the cost of holding the tool needs to be recomputed to estimate the cost of the second
alternative. Step 3 of Figure 4.46 computes the differences A between the current and previous
alternatives. Then A is used to mark the nodes in the cktree such that the cost of the subtrees
rooted on them needs to be recomputed (Step 4). Therefore if a node is not marked the cost
stored in it is reused. (Recall that the cost at each node was stored in Step 29 of Figure 4.42.)

Thus match_cktree_marked (Step 5 of Figure 4.46) is slightly different from match_cktree.
If a node is marked, it recursively computes the cost of the subtree, as match_cktree does.
However if the node is not marked, the cost stored at the node is returned (a test that would
occur at a goal node before Step 3 of match_cktree).

Figure 4.47 describes how the nodes whose cost has to be recomputed are marked. All the
marks are wiped out after exploring each alternative. The differences A between the current

4.5. USING CONTROL KNOWLEDGE TREES 153

mark_diffs(g, A)

1. if Ads_bnds_p(A) ;; A is the instantiation of some variable(s)
then
2. for each <var,val> € A
3. for each fouched € var_hash[var] ;; cf Figure 4.22 (Step 10)
4, mark(touched,q)
else ;; A is an operator for some subgoal
5. q — parent(A)
6. mark _children(A, ¢)
7. marked p(q) —t
8. cost(q) «— unknown
9. M « push(q, M)

10. foreach m € M
11. delete_from(m,marked_goals,deleted_goals,visited_cknodes)

mark(p, q)

1. if - marked p(p) A p #q
then

2. marked_p(p) — t

3. cost(p) «— unknown

4. M « push(p, M)

5. case type(p)

6. goal cknode: for each dep € achieves_too(p) |J how_achieved(p) | deleted_by(p)
7. mark(dep, ¢)

8. binding cknode: for each dep € applied(p)

0. mark(dep, q)

10. - mark(parent(p),q)

mark _children(p, ¢)

1. mark(p, ¢)
2. for each child € children(p) mark_children(child,q)

Figure 4.47: Marking the cktree nodes whose estimated cost needs to be recomputed.

154 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

alternative and the previous alternative are used to determine which nodes to mark. This
difference can be the instantiation of some variables, or the operator chosen to achieve a goal.

e If the difference is some variable binding, all the nodes that are affected by that variable
are marked since their cost estimate must be recomputed (Steps 1-4 of mark_diffs in
Figure 4.47). For example, if the affected node is a goal node, the cost of achieving it
may vary as the goal is instantiated in a different way.

The nodes affected by the change of a variable binding are computed efficiently (Step 3),
since they are stored in a hash table when the cktree is built, as described in Section4.4.2.2.
The hash table is indexed on the variables that appear in the cktree. Figure 4.48 partially
shows the contents of the hash table for the cktree learned in Figure 4.28.

has-hole <part0> <holel> <sidel>

DRILL-WI:I'H-TWIST-DRILL-M‘I DRILL-WITH-TWIST-DRILL
<mach8> <hdev8> <drillbit8> <part0> <hole0> <side0> <spairs8>
""""""" has-spot <part0> <hole0> <side0> holding-tool holding <mach8> <hdev8>
i <machl> <drillbit82 <part0> <side0> <sfatr8>
DRILL-WITH-SPOT-DRILL { PUT-TOOL-DRILL-PRESS . R

1 :
<mach9> <hdev9> «<drillbit9> <part0> <holel> <zide0> <spfir9> <mach8> <drillbit8>

holding-tool holding <mach9> <hdev9> i

3 : : available-tool available-tool- ™.

<mach9> <arillbitod. — <partd> <sided> <spajrd> ! carillbits> _.holder <mach8>
':._ M '.' \ .-

avail-tool available-tool-~ -
<drillbit9> holder <mach9>

Hash table for ;
variables S

<mach8>
<hdev8> I
<drillbit8> |
- |<spairB> e
<mach9>
<hdevd>
<drillbit9>
<spair9s>

Figure 4.48: The has-hole cktree of Figure 4.28. This figure shows the contents of the hash
table of pointers from the variables to the nodes that use them. The pointers are represented by the
unlabeled dotted arcs with origin in the hash table. They are used to mark the nodes whose value
may have changed with respect to the previous alternative explored, thus speeding up the cktree
matching by limiting the number of nodes whose estimate must be recomputed.

e If the difference between the two alternatives is an operator, all the operator node descen-
dants are marked (Steps 5-6 of mark_diffs in Figure 4.47). Note that since the operator

4.5. USING CONTROL KNOWLEDGE TREES 155

is different, those nodes will not be visited and so their cost will not be needed. However
the nodes should be removed from the lists of marked, deleted, and visited nodes, and
the nodes that depend on them via achievement and deletion links need to be marked as
well since their cost may be different for the current alternative.

The marks are stored in the marked_p slot of the node. The middle part of Figure 4.47 (mark)
gives the details of how a node n is marked. First a mark is put in the marked_p slot of node
n and its cost is set to a dummy value. Then all the nodes linked to n by achievement and
deletion links are marked recursively. Also, n will be removed from the lists of marked goals,
deleted goals, and visited nodes, as it will be visited again (if needed). Finally, all the ancestors
of n are marked because n’s cost estimate may change and the ancestors’ costs depend on the
cost of n.

Goal: | has-hole parts holel sidell

has-hole <part0> <hole0> <side0>

15
DRILL-WITH-TWIST-DRILL-MM DRILL-WITH-TWIST-DRILL
|
<mach8> <hdev8> <drillbit8> <part0> <holel> <sideld> <spair8>
10
o
............. has-spot <part0> <hole0> <side0> holding-tool holding <mach8> <hdev8>

<machl> <d|rillbit3> <part0> <sidel> <si>air8>
DRILL-WITH-SPOT-DRILL PUT-TOOL-DRILL-PRESS

1
<mach9> <hdev9> <drillbit9> <part0> <holel> <gidel> <spair9> <mach8> <drillbit8>

1 6 [\ 1
holding-tool holding <mach9> <hdev9> i
M B availabla-tool available-tool-
<mach9> <drillbits> <part0> <side0> <spair9>."_ <drillbit8> .holder <mach8>

0 w&b e HOLD-WITH-VISE

........... o mewovE-oor,

avall-tool avallable-tool-
<drillbit9> holder <mach9>
%

i i

Constraints Variables Alternative

\ o ’[<machB> drill?7
{.*|<hdev8> vise3
i |<arillbit8> | twist-drilld
-"_'_... <spair8> side2-gide5
.l <mach9> drill7
i |<hdevys> vige3
3 <drillbit9> | spot-drilll
*...i<spairg> side2-sideS

Figure 4.49: Using the cktree to estimate the cost of the first alternative. The problem goal is at
the top. A number next to a node indicates the estimated cost of the subtree rooted at that node.
The bottom part of the figure shows the relevant variables, the constraints among them, and the
alternative currently being explored. The constraints are stored at binding node for drill-with-spot-
drill (cf Section 4.5.4).

To illustrate how cktrees can be used efficiently by reusing the cost estimates among alternatives
we now go back to the problem described in Section 4.5.4 in which the goal is to drill a hole

156 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

Goal:| has-hole part5s holel sidell

has-hole <p§rt0> <hole0> <gidel>

17
DRILL—WI:].‘H-TWIST—DRILL—IM DRILL-WITH-TWIST-DRILL
<mach8> <hdev8> <drillbit8> <part0> <hole0> <side0> <spairs8>
12
X 0
""""""" has-spot <part0> <hole0> <side0> holding-tool holding <mach8> <hdev8>
<machl> <drillbit8> <parb{0> <gide0> <s§air8>
DRILL-WITH-SPOT-DRILL PUT—TOOL—I[’RILL—PRESS :
1 -
<mach9> <hdev9> <drillbit9> <part0> <hole0> <sgide0> <spalr9> <mach8> <drillbit8> .’
hold 1+ ? 0 1"
olding-too holding <mach9> <hdev9> available-tool 5l
T : ¥ available-tool-
<mach9> <gr111b1t9> <part0> <sidel> <Bpa:|.r{>:_... <drillbit8> ,.-ho’lder <mach8>

PUT—TOOL-DRILL-PRESS‘ HOLD-WITH-VISE

avail-tool available-teol-
<drillbit9> holder <mach9>

REMOV‘IEZ—TOOL

dg[e,ed.'bj, ..
| Lo T T e ik
Constraints Variables Previous Alt. Alternative A
~+|<mach8> drill? drill7 o
{+|<haeve> vise3 vises vises |
{ |<arillbit8> | twist-drilld twist-drilld :
'__ <ppairB8> side2-sideS Bide2-side5
i <mach9> aril17 arill7 ;
i 7| <hdev9> vise3 vise5 vise5’
<drillbit9> | spot-drilll spot-drilll
“...|<spair9> side2-side5 side2-side5

Figure 4.50: Reusing previous estimates to estimate the cost of the second alternative. The
bottom part shows the previous and current alternatives and the differences (A) among them. The
differences are used to determine which parts of the cktree need to be explored because their
estimate may have changed. Subtrees depicted in a lighter font represent parts of the cktree not
explored because the estimate for the current alternative could be reused.

holel on sidel of part5 and the available machines and tools are a drill press dri117, two
holding devices vise3 and vise5, and two drill bits (a twist drill twist-drill4 and a spot
drill spot-dri1l1). Figure 4.48 shows part of the available cktree and the contents of the
hash table of variable pointers. Assume that the cktree is used to estimate the cost of operator
drill-with-twist-drill. The first alternative tried is depicted in Figure 4.49 with the estimated
cost. A lighter font is used in this figure and the ones that follow to indicate parts of the
cktree that are not explored when estimating the cost of the current alternative. Note that the
constraints stored at the binding node for drill-with-spot-drill are used to prune the possible
bindings for that node. Section 4.5.4 described this step in detail. The second alternative is
explored in Figure 4.50. The difference A between the two alternatives is the holding device
(namely <hdev8> and <hdev9>) used, as shown in column A at the bottom of the figure. Recall
that tha hash table of variable pointers stores pointers to the nodes whose estimate may change
when their instantiations change. The arrows in the figure represent those pointers. Those
nodes are marked so their cost estimates are recomputed. Their ancestors are also marked since

4.5. USING CONTROL KNOWLEDGE TREES 157

their estimates will vary when the new costs are propagated up. In the example, the cost of
holding is higher for the current alternative because the holding device vise5 is not on the
drill press (but vise3, in the previous alternative, is). The figure shows how the estimates for
the holding-tool subtrees for the first alternative can be reused when traversing the cktree for

the second alternative.

4.5.8.1 Discussion: Caching and Reusing Quality Estimates

The algorithm described is an example of caching to exploit redundancy in the computation
by using previously computed information. Our implementation was inspired by Perlin’s
description of network-based programs and of efficient control mechanisms for them [Perlin,
1988]). The data part of a network-based program is a network, or directed acyclic graph.
The control mechanism is some node enumeration algorithm in which each node is visited
exactly once, “after all the node predecessors have been visited. The nodes in the network
may contain memory for executable code and passive data. The node’s code usually acts on
the input data in the context of the node’s memory state, and the result is often stored in the
node’s memory. The node’s memory persists between cycles of data. Network-based programs
are very efficient. If topological sorting is used to traverse the tree, propagating from all the
leaves and keeping newly computed values in the node’s memory guarantees that each node
is recomputed only once. If changes are made to only a subset of the network leaves, by
using the node’s memory the computation needs only be propagated to the transitive closure of
the nodes affected by the changes. This kind of state-saving incremental algorithms perform
minimal recomputation and are directed from just the changes to their input. Further efficiency
gains come by restricting the network traversal to the subgraph influencing only select node
computations. The efficiency gains are greater when only a small fraction of the input data (and
hence the partial computations) changes in every cycle. Programs for conjunctive matching
and constraint reasoning among others are frequently cast in this network form for efficiency.

These features of network-based programs match those of the control knowledge trees and their
use to estimate the cost of planning alternatives. The leaves correspond to the pointers from the
hash table of variables to the nodes that use those variables. The data correspond to the values
assigned to those variables in each alternative. The changes on values are propagated bottom-
up in order to mark the nodes that need recomputation. Therefore the incremental changes in
the variable values between alternatives lead to reducing the computation effort. Each cycle of
the computation corresponds to estimating the value for an alternative by traversing the cktree.
There are differences though between the description of network-based programs and cktrees.
The cktrees are not DAG’s, and the alternatives (e.g. the data) are generated incrementally
as the cktree is traversed. Still the ideas of state-saving (storing the cost of the node for the
previous alternative and reusing it if the node is not marked) and incremental computation
(exploring only the parts of the trees where recomputation is needed) lead the development of

158 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

our algorithm.

4.5.9 Cktree Matching When There Are Interacting Goals

The description of the cktree matcher in previous sections has assumed that estimating the cost
of an alternative operator or binding for a goal was independent of whether other goals were
present in the problem. However in many cases several goals must be achieved and they are
not independent, that is, achieving a goal may have positive or negative effects for achieving
other goal(s). This section describes how cktrees can be used efficiently when there is more
than one goal. Section 4.4.4 described how the learmer builds the relevant cktree in this case.

The fact that two goals are not independent is captured in the cktree formalism by having
achievement or deletion links from a node in a cktree to one or more nodes in another cktree.
Therefore to estimate the cost of a given alternative the nodes in other cktrees should also
be considered. The cktree matcher avoids the full exploration of the cktrees for the other
interacting goals. It selectively traverses only the parts of the other cktrees that are relevant to

the current alternative.

4.59.1 AnExample

This section illustrates with an example how the matcher works when other goals interact with
the goal for which an alternative is being chosen. Assume that the problem at hand is to solve
g1 and g, and the planner is making a choice about which operator to use in order to achieve
¢1. For illustration purposes we start by showing in Figure 4.51 the plan trees that would result
of pursuing two different alternative operators to achieve g;, namely op{* and op?. The quality
metric assigns costs 3 and 5 respectively to these operators. Note that in spite of the smaller
cost of op?, the plan that uses op? is better because of the savings in achieving subgoal gz;.
However if only the part of the plan tree corresponding to achieving ¢; (that is, the subtrees
rooted at g;) is considered the plan that uses op{* looks better, as the costs of those subtrees
are 5 and 14 respectively. Note that when the planner is making the choice of operator for ¢;
the plan trees in the figure are not available. We have presented them here only for illustration
purposes to describe the plans that would result of each alternative.

Assume that the learner has seen similar problems before, i.e. problems in which the goal was
the conjunction of ¢; and g, and has learned the cktrees in Figure 4.52. In order to make the
operator decision for g; the planner calls the cktree matcher. With the algorithms described in
previous sections, the cktree matcher would only look at the g; cktree and estimate the cost
of the two alternatives, op? and op?, as 5 and 14 respectively, suggesting to the planner to
choose op‘{‘. But this is the incorrect choice, as Figure 4.51 showed. The cktree matcher should
consider the need to achieve a second, interacting goal g, and use ¢,’s cktree as well when

4.5. USING CONTROL KNOWLEDGE TREES 159

29

50 deleted:by... 8y
o @ e - ©
Py .. P2
A0 :
811 812
o1y @
° O
QO Goal node

© Operator and bindings node

27

B
&1 Q) .- 822 w821
7T P22 Q@ 021

©6))]
0

0 6 .

3221(:5”f;;;55%; 8211
e

Figure 4.51: Two plan trees to solve goals g; and g». A number in brackets next to an operator is

the cost of the operator given the quality metric. A number without brackets next to a goal node is

the cost of the subtree rooted at that node. Operator and binding nodes have been merged together

in the figure for clarity.

exploring each alternative for ¢;. Exploring the whole g¢,’s cktree for each alternative would
be expensive and is not necessary. For example, it is useless to explore the g,3 subtree when
estimating the cost of op{ and op¥, as g»3 does not interact with g;’s subgoals (there are no
achievement or deletion links between the subtrees), and the cost of ¢,3 is independent of the
alternative operator for g; explored. In other words, knowing the cost of achieving ¢,3 would
not help to decide between opf and op?. However the cost of achieving the g5, subgoal of g,
is relevant. That cost should be added to the estimate of using op{, because g, will need to be
achieved eventually, and it would be achieved for free should op? be the chosen alternative (as
indicated by the achieves_too link in the figure).

160 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

O Goal node

© Operator and bindings node
Figure 4.52: Two cktrees for'goals g; and g, learned from previous planning experience. The
number in parentheses next to an operator node correspond to the quality metric value for the
operator. They are not part of the cktrees, as they may change with the operator instantiation and
with the quality metric itself, but they are shown for illustration purposes.

deleted-by achieves:too. -, | 4
g2 T Bapl 823
rn@e TGO
g --\
82210 82220 21
¢V}
QO Goal node
O Operator and bindings node Estimate for alt opf =5+12=17

@ O Nodes not explored by cktree matcher

Figure 4.53: Illustration of the cktree matching process, that is, the cost estimates found and the
parts of the cktree explored, for opfl, the first operator alternative for g;. A number in brackets next
to an operator is the cost of the operator given the quality metric. A number without brackets next
to a goal node is the estimated cost of the subtree rooted at that node.

Similarly the cost of achieving g;; should be added to the estimate for opf1 since it deletes gzo1
as a side effect. But as this cost is included in the cost of achieving its parent ¢,,, the matcher
does not need to take any action.

Finally, operator opﬁ (a descendant of oplf’) will delete g;17 as a side effect. Therefore the
estimate of cost of achieving g,1; will be added to the estimate for opf, but not to that of op‘l4

4.5. USING CONTROL KNOWLEDGE TREES 161

.. 821) . 827 823

op B . op @

... 1

6 .
8211 3221% 8222

6?) @
0
O Goal node

O Operator and bindings node Estimate for alt oplB =14+1=15

@ O Nodes not explored by cktree matcher

Figure 4.54: Illustration of the cktree matching process for opf’ , the second operator alternative
for g;.

because it will not be deleted in that case. Figure 4.53 shows the estimates and the parts of the
cktrees explored when estimating the cost of the first alternative, op‘f‘. The estimated cost is the
sum of the cost for the op{! subtree (5) and the cost of achieving g;; (12). Figure 4.54 shows
those for the second alternative, op?. In this case the estimated cost is the sum of the cost for
the op? subtree (14) and the cost of achieving g51; (1).

Thus which parts of the ¢, cktree are explored is determined by the achievement and deletion
links from the parts of the g; cktree explored for both alternatives. For example, the cost of g,
is added to the estimate for op{* because g, was linked with an achieves_too link to opP subtree.
Therefore to determine the estimate for op{*, information gathered during the exploration of the
g1 cktree for both opf! and op? is used.

Given these results the matcher suggests the planner to use opi* to achieve g;. Additionally
the matching process will provide guidance for the bindings for op{ and op, that lead to that
estimated cost, since those bindings were relevant for the 0-cost of ¢2;.

4.5.9.2 Cktree Matching Revisited

Section 4.5.3 introduced a first version of the meta-predicate current-goal-and-pref-op
which invokes the cktree matcher for a given goal. That definition was a simplified one that
assumed that estimating the cost of an alternative operator or instantiation of an operator for
a goal did not depend on the existence of other possibly interacting goals. Therefore it only
explored the cktree corresponding to the current goal. The example in the previous section
illustrated how the matcher should explore, at least partially, the cktrees corresponding to other

162 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

current-goal-and-pref-op

1. g « current_goal

2. ckroot + relevant_cktree(g, cktrees) ;;cf Figure 4.14
3. (o < bnds(g,name(ckroot))

4. foreach op € children(ckroot)

5 <alty, costy> «— match_cktree(op, 5o, 5o)

6 store_n_best(alty, costy,marked_goals,deleted_goals,visited_cknodes)

7. match_all_alts(op, 58y, alty, costo)

8. alty,; «— update_with_other_cktrees(g,ckroot,n_best_alts) ;; Figure 4.56
9. store_prefs_for_subgoals(alty.s;)

10. return(choice(alts.,:))

Figure 4.55: The definition of current-goal-and-pref-op revisited to explore the cktrees of other
goals. store_n_best(alt, cost) stores the alternative alt, its cost and the context (marked and
deleted goals and visited nodes) so they are used when the alternative’s estimate is updated with
the exploration of other cktrees.

update_with_other_cktrees(g,ckroot,cost,data,data,per)

1. costypdated — cost + update_alt(ckroot,cost,data,datasiper) ;; Figure 4.57
2. COStupda.ted —
€0Stypdateqd + Update_with_same_cktree_goals(g,ckroot,cost,pdqied.data) ;; Figure 4.59

Figure 4.56: Updating the estimate for an alternative by considering other goals. data refers to
the information stored for the alternative by store_n_best (see Figure 4.55).

goals in the problem. It also illustrated how to determine which parts of other cktrees need
to be explored, by using the information from more than one alternative for the first goal (g;).
Figure 4.55 shows the complete definition of current-goal-and-pref-op that considers the
existence of other possibly interacting goals in the problem. First the matcher explores only the
cktree for the current goal g, as explained in previous sections. The best alternatives explored
are stored (Step 6 and also Step 8 of Figure 4.46) and then their estimates are updated by looking
at cktrees that correspond to other problem goals and have been touched by achievement or
deletion links from the visited nodes in g’s cktree. Step 7 of match_all_alts (Figure 4.46) keeps
track of those nodes in other cktrees.

Figure 4.56 describes how each of the alternatives is updated. For clarity we have decomposed
it in two parts:

e In Step 1 the matcher explores the cktrees that correspond to other problem goals by using

4.5. USING CONTROL KNOWLEDGE TREES 163

the information stored with the current alternative data and other alternatives data e,
Next section explains how this is done.

In Step 2 the matcher considers other problem goals that would correspond to the same
cktree as g, but obviously with a different instantiation. This is a separate step because
the process exemplified above to determine which parts of the other cktrees are relevant
cannot be used here, since it is actually the same cktree. Section 4.5.9.4 describes this
case in detail.

4.5.9.3 Matching (Parts of) the Cktrees for Other Goals

Let g be the goal for which the matcher has been called to find a choice of operator or
bindings, and data be the alternative which is being explored for ¢, and whose estimate is being
incremented by traversing parts of other cktrees. Figure 4.57 states how this traversal occurs.
Its steps can be divided in three stages:

1.

Set the context with the values of marked_goals and deleted_goals resulting from the
exploration of that alternative. They are available as part of data (Steps 1-2)

Determine which parts of other cktrees must be traversed (Steps 3-10).

Traverse the relevant parts of other cktrees and accumulate the resulting costs (Steps 11-
14). This is not different from other calls to the cktree matcher (match_cktree).

We will concentrate now on how the relevant parts of the other cktrees are determined. Two
categories of nodes in other cktrees are candidates for traversal:

e Nodes in other cktrees that have been marked as achieved during the exploration of the

cktree corresponding to g when exploring other alternatives, but not when exploring the
currentone. The achievement cost of those nodes is relevant to finding the best alternative.
The information about the other alternatives is captured in data,pe,. In particular these
relevant nodes can be obtained from the nodes stored in marked_goals(dataiper) (Step4).

Nodes in other cktrees that have been deleted by the current alternative. Their reachieve-
ment cost must be considered. These nodes can be obtained from the nodes stored in
deleted_goals(data) (Step 7).

For each of these nodes in other cktrees the matcher tests whether they would actually correspond
to subgoals in the current problem (Steps 5 and 8). Recall that the achievement links that pointed
to those nodes were recorded from previous planning experience in which the additions and
deletions actually occurred (cf Section 4.5.5). Whether the achievements will occur in the

164 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

update_alt(ckroot, cost, data, datayper)

1. marked_goals +— marked_goals(data)
2. deleted_goals — deleted_goals(data)
3. G0 .
4. foreach <g1, g2, > € marked_goals(data.,) s.t. in_other_cktree_p(g;, ckroot)
5. if “wont_be_subgoal_p(g:, 3)
then
6. g A PUSh(<91,92, ﬂ>a g)
7. foreach <g1, g2, 8> € deleted_goals(data) s.t. in_other_cktree_p(g;, ckroot)
8. if ~wont_be_subgoal p(g;, 3)
then
9. g {——puSh(<gl7g2718>)g)

10. G « prune_common_subtrees(G)

11. foreach <g, ¢, 8> € G

12. <alt,cost,> «— match_cktree(g, 3,alt(data))
13. cost « cost + cost,

14. return{cost)

Figure 4.57: Traversing other cktrees to update the estimate for the current alternative.

wont_be_subgoal_p(g, /) if one of these is true:

® ¢ belongs to a subtree that will not be explored because neither ¢
nor one of g’s ancestors, instantiated with f3, is a pending goal

e ¢ will not be explored because one of ¢’s ancestors is marked as achieved
(in marked_goals)

Figure 4.58: Checking whether the goal corresponding to a node will actually become a goal in
the current problem.

actual planning problem depends on how the variables in those nodes are instantiated, given
the current problem goals and state objects. Figure 4.58 summarizes the criteria to discard goal
nodes that will not correspond to actual subgoals in the current problem and therefore should
not be used to increase the estimated cost of the current alternative. The test checks whether
the nodes belong to subtrees that will not be explored because their roots do not correspond to
goals that would become actual subgoals at planning time. For the node to become a subgoal
first the instantiation of the node in the current problem (3 in the figures) should be the same as
that of the adder/deleter. Second, if p is an ancestor of ¢, and p is true or marked as achieved,

4.5. USING CONTROL KNOWLEDGE TREES 165

g will not become a subgoal and therefore the nodes in the subtree rooted at ¢ should not be
explored.

Once all the relevant nodes G have been determined, any node ¢ in G that has an ancestor p
also in G is discarded (Step 10 of Figure 4.57), as the cost of achieving ¢ will be computed as
part of the cost of achieving p. Finally the cktree matcher is called for each remaining node in
G (Steps 11-13) and the resulting cost is added to the initial estimate (the one based only on the
cktree for ¢). The total cost is returned.

4.5.94 Matching the Same Cktree for Other Problem Goals

When the cktree matcher updates the estimate of an alternative by looking at other possibly
interacting goals, the case in which the other goals correspond to the same cktree as the current
goal is dealt with separately (Step 2 of Figure 4.56). Figure 4.59 describes this case. An
example of this case is the problem of drilling two spot holes on a part, that is, the goal is the
conjunction of two instances of has-spot. The process described in the previous section to
determine which parts of the other cktrees ate relevant cannot be used here, since it actually
is the same cktree. Here the achievement links of -a node can be seen as pointing to the node
itself. In this case the whole cktree is candidate for exploration again, but with the bindings
corresponding to the other goal(s) (Steps 1 and 4-5) and considering the nodes visited in the
initial exploration of the cktree as the marked_goals (which therefore will be assigned cost 0)
(Steps 2-3).

update_with_same_cktree_goals(gy, ckroot, cost, data)

1. G« {g € top_level_goals— {go} s.t. predicate(go) = predicate(g)}

2. marked_goals « visited_cknodes(data)

3. deleted_goals — deleted_goals(data)

4. foreachg € G ;; 1.e. correspond to the same cktree
5 Bo +— bnds(g,name(ckroot))

6 for each op € children(ckroot)

7. <alty, costy> «— match_cktree(op, By, 5o)

8 <altyest, cOStpes:> +— match_all_alts(op, By, alty, costy)

9 cost +— cost + costpest

10. return(cost)

Figure 4.59: Traversing the same cktree again with an instantiation corresponding to a different
goal.

Figure 4.60 shows how the cktree for has-spot introduced at the beginning of this section
(Figure 4.36) is used as control knowledge to solve the problem of drilling two spot holes

166 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

& :|has-spot part5 holel sidel & [bas-spot parts nolez sidel

¥ 1 v
has-~spot part hole side
11 3

has-gpot part hole side

DRILL-IN-DRILL-PRESS

DRILL- IN—]?RII.I.— PRESS
drill, spot-drill,visa,sida,spair

drill, spot-drill,vise, side, spair
0
holding-too
drill, splot-drill
PUT-TOOL-DRILL-PRESS
|

drill, spot-drill

]
holding ill,vise,part
gide, spair
HOLD-WITH-VISE

[
holding-too.
darili, sp'ot-drill

PUT-TOOL-DRILL-FPRESS
I
drill, spot-drill

]
holding drill,vise,part
side, Is;:m:l.:.-

HOLD-WITH-VISE
]
drill,vise,side, spair

N

has-device ie-clean on-table avail-tool avail-tool- has-device is-clean on-table
dril]i,vise part part Id.r:i.ll spot-drill holder drill drilll,vise part part ‘drill
PUT-ON-MACH-TABLE

o PUT-HD—DRILLO PUT-ON-MIACH-TABLE PUT-HD-DRILL ‘ I
e

avail-table avail-hd ~{holding part...) avail-table avail-hd ~(holding part...)
drill vise 27 drill vise

1
drill,vise, side, spair

avail-tool avail-tool-
spot-drill holder drill

Estimate for DRILL-IN-DRILL-PRESS=11+3=14
Figure 4.60: Using the has-spot cktree of Figure 4.36 as control knowledge for the problem

of drilling two spot holes on the same side of a part. The figure shows how the cost of the first
alternative, drill-in-drill-press, is estimated.

g] -'|has-spot: part5 holel s:‘.de]] g2 .'lhas-spot part5 hole2 side]l
- - 7 T :

¥ V o
hag-spot part hole side
8
**® DRILL-IN-MILLING-MACHINE
mm,vige, spot-d!r:ill ,8ide, spair
1 o

holding-tool holding mm,vise,part
mm, spot-drill side,| spair

1? HOLD-WITH-VISE
I
mm,vise,side, spair

has-device is-clean on-table
mm,vise part part mm

PUT-HD-MM | J
N o
avail-table avail-hd
mm vise

) ¥ V
has-spot part hole =side
7

“"* DRILL-IN-MILLING-MACHINE
mm, vise, spot-~-drill, side, spair
0)
holding-tool

holding mm,vise,part
mm,spot-drill .

s:i.c'ie,| spair
HOLD-WITH-VISE
i
mm,vise, side, spair

has-device is-clean on-table
mm,\'rise' part part mm

avail-table avail-hd
mm vise

PUT-HD-MM
e - o

Estimate for DRILL-IN-MILLING-MACHINE =8 +7 =15

Figure 4.61: Using the has-spot cktree to estimate the cost of the second alternative, drill-in-
milling-machine. In this example the quality metric assigns cost 7 to that operator.

4.5. USING CONTROL KNOWLEDGE TREES 167

holel and hole2 on the same side of a part. In this example the part is being held on the
milling machine and the available spot drill is ready in the drill press. There is a second,
free, holding device available on the drill press. The quality metric used assigns values 3 and
7 to operators drill-in-drill-press and drill-in-milling-machine respectively. Assume that the
planner starts working on goal g;, (has-hole part5 holel sidel), and the cktree matcher
is invoked to suggest an operator to achieve that goal. The left side of the figure indicates the
estimated cost. The nodes in parts of the cktree not explored by the cktree matcher are shown
in a lighter font. Then update_with_same_cktree_goals is called with argument cost = 11.
In Step 1 the set G contains the second goal g, (has-hole part5 hole2 sidel) and the
matcher uses the same cktree to estimate the cost of achieving that goal. This is shown on
the right-hand side of Figure 4.60. Note that the holding and holding-tool subtrees have
cost 0 because they were visited in the first pass and now are part of marked_goals (Step 1 of
update_with_same_cktree_goals). That is, the part and tool are set only once for both holes.
The final estimate is obtained by adding the results of both traversals, namely 11 and 3, as
shown at the bottom of the figure. The cktree matcher then proceeds to estimate the cost for
the second alternative for g1, namely drill-in-milling-machine. Figure 4.61 describes this step.

The interesting point here is that should the matcher have considered only the first goal ¢, it
would have suggested using the milling machine (with value 8 for g, only, versus 11 for drilling
in the drill press, as shown on the left sides of Figures 4.60 and 4.61). However considering
the presence of a second has-spot goal and exploring the cktrees appropriately, the correct
choice was made, namely using the drill press. The cktree matcher suggests that choice for g,
and stores the choice of operator and bindings for g, which that will be used when the planner
subgoals on it. Table 4.5 shows the real cost of solving the 1- and 2-goal problems with each
of the alternative operators. The real costs in the case of the milling machine are higher than
the estimates due to the lack of knowledge about achieving holding-tool in the cktree.

Table 4.4 at the beginning of this chapter presented similar examples to motivate the usefulness
of the cktree formalism. The control knowledge needed to make the correct choice in the
example presented is not easily captured in the form of control rules, especially when the
number of goals is generalized.

Total Plan Cost | drill press | milling machine
1 spot hole 11 10
2 spot holes 14 17

Table 4.5: Comparative quality of the plans to drill one and two spot holes depending of the
machine used. The quality metric used assigns values 3 to drilling with the drill press and 7 to
drilling with the milling machine. The numbers in bold face indicate the best plans.

168 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

4.5.10 Using the Same Cktrees for Different Quality Metrics

The cktrees by themselves do not capture a particular quality metric. The quality metric is
parameterized and stored independently. It is the cktree matcher the one that uses the quality
metric to find the corresponding value for the individual instantiated operators, and uses it to
estimate the quality of the alternatives available (Step 28 of Figure 4.42). Therefore if the
metric changes the same learned cktrees can still be used as control knowledge for the domain.
Thus the cost of learning them can be amortized over the use of different quality metrics as the
learned knowledge is robust to changes in the metric. (This was not the case with the control
rules learned in Chapter 3.)

On the other hand the learned knowledge, in particular the choice of which nodes to add to
a cktree, depends on the training episodes, that is, the problems in which the existing control
knowledge lead to a suboptimal plan. And this in turn depends on the quality metric. If the
planner’s default choices lead to good plans, learning is not invoked. Therefore if not much is
learned for a given metric, when the metric changes not much knowledge can be reused. An
extreme example is to use at training time a metric that assigns cost O to all operators. Therefore
any plan is as good as the others and no learning is needed. However if the metric changes no
reuse across metrics is possible.

Sections 4.6 and 4.8.4 show how the cktrees are successfully reused with different quality met-
rics in a transportation domain and in the process planning domain respectively. Section 4.7.1
justifies the use of different quality metrics.

4.5.11 Goal Ordering Control Knowledge

In the discussion of the previous sections we have not mentioned goal choices. The current
cktree matching algorithms only provide guidance for operator and bindings choices. They
do not deal with choosing the next goal to work on at some point. In our implementation we
have used the goal ordering control rules learned with the algorithms described in Chapter 3.
Those rules have served our purposes and worked well in the experiments, slightly increasing
the quality-improvement performance obtained by using the cktrees alone. Note that they were
learned from a more restricted class of quality metrics, as discussed in Section 3.12.

4.6 An Example in a Transportation Domain

The previous sections have described in detail the use of control knowledge trees as a formalism
to represent search control knowledge. The algorithms for learning and using cktrees have been
illustrated with examples from the process planning domain and an artificial domain. In this

4.6. AN EXAMPLE IN A TRANSPORTATION DOMAIN 169

section we demonstrate the generality of the approach by illustrating the usefulness of the
cktrees in the transportation domain introduced at the beginning of this chapter. Figure 4.1 and
Table 4.2 respectively showed the domain description and a quality metric for the domain. This
domain is different from the process planning domain in two aspects related to plan quality.
First the value assigned by the metric to an operator depends not only on the operator but also
on the operator bindings. Second, the quality of a plan does not depend so much on the ability
to share the work among operator subgoals, but on finding a good route to send the packages
given the different cost of moving the packages depending on the kind of transportation and
the distance traveled.

Z nZ [done)

4 n4 <*finish*>

5 n5 (at-obj packagel new-hampton)

7 n7 <unload-van packagel ebro new-hampton> [1]
n8 (inside-van packagel ebro)

[=e]

10 nl0 <load-van packagel ebro monroeville> [3]

11 nll <LOAD-VAN PACKAGE1l EBRO MONROEVILLE>

12 nl2 (at-van ebro new-hampton)

14 nl4 <drive-van ebro monroeville new-hampton> [1]
15 nl5 <DRIVE-VAN EBRCO MONROEVILLE NEW-HAMPTON:>

15 nlé <UNLOAD-VAN PACKAGEl1 EBRO NEW-HAMPTON>

Solution:
1. <load-van packagel ebro monroeville>
2. <drive-van ebro monroeville new-hampton>
3. <unload-van packagel ebro new-hampton>

cost = 1485

Figure 4.62: Initial solution and problem solving trace obtained by the planner for the problem in
Figure 4.2.

Assume the planner is given the problem in Figure 4.2 and the quality metric in Table 4.2.
Figure 4.62 shows the the initial plan obtained by the planner, and the trace of that planning
episode. Figure 4.63 shows the improved plan suggested by a human expert, and the trace
generated (or sequence of decisions made) by the planner in order to obtain that improved plan.
Note that the crucial decision that distinguishes the two plans is the choice of bindings for the
location for operator load-van at n12 (monroeville) and n14 (philly). From these two plans,
the plan trees are built and the cktree in Figure 4.64 is learned. The figure shows the constraints
on the operator instantiations that were learned during the construction of the cktree. These
constraints greatly reduce the space of alternatives explored by the cktree matcher.

The learned cktree can be used to provide guidance in a variety of problems. First, the cktree
provides the correct guidance in spite of changes in the quality metric. Table 4.6 shows the
quality values of the two plans for a range of quality metrics. The metrics differ on the cost of
the drive-van operator. The purpose of the table is to show how different quality metrics require
that the cktree suggests different choices. Using the cktree in Figure 4.64, learned from the

170

Figure 4.63: The solution provided by the human expert and the trace generated in order to obtain
that plan.

CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

<load-van packagel ebro monroeville>
<drive-van ebro monroeville pittsburgh>
<unload-van packagel ebro pittsburgh>
<load-train packagel loco pittsburgh>
<ride-train loco pittsburgh philly>
<unload-train packagel loco philly>
<load-van packagel avia philly>
<drive-van avia philly new-hampton>

. <unload-van packagel avia new-hampton:>
cost = 480

O 001U R W N Y

2 n2 (done)

4 nd <*finish*>

5 n5 (at-obj packagel new-hampton)

7 n7 <unload-van packagel ebro new-hampton> [1]

Op was not in the solution proposed by the expert.
Backtracking to make new binding decision at node 7.

6 n6 unload-van

7 n9 <unload-van packagel avia new-hampton>

8 nl0 (inside-van packagel avia)

10 nl2 <lecad-van packagel avia monrceville> [3]

Op was not 1in the solutlon proposed by the expert.
Backtracking to make new binding decision at node 12.

9 nll load-van

10 nl4d <load-van packagel avia philly> (2]
11 nl5 (at-obj packagel philly)

12 nlé unload-van

Op #<OP: UNLOAD-VAN> was not 1n the solution proposed by the expert.
Backtracking to make new operator decision at node 16.

13 nl9 <unload-train packagel loco philly>

14 n20 (inside-train packagel loco)

16 n22 <load-train packagel loco pittsburgh> [1]
17 n23 (at-obj packagel pittsburgh)

19 n25 <unload-van packagel ebro pittsburgh> [1]
20 n2é6 (inside-van packagel ebro)

22 n28 <load-van packagel ebro monroceville> [3}
23 n29 <LOAD-VAN PACKAGEl EBRQO MONROEVILLE>

24 n30 {at-van ebro pittsburgh) ([2]

26 n32 <drive-van ebro monroeville pittsburgh> [1]
27 n33 <DRIVE-VAN EBRO MONROEVILLE PITTSBURGH>
28 n34 <UNLOAD-VAN PACKAGEl EBRO PITTSBURGH>

29 n35 <LOAD-TRAIN PACKAGEl LOCO PITTSBURGH>

30 n36 (at-train loco philly) [1]

32 n38 <ride-train loco pittsburgh philly>

33 n39 <RIDE-TRAIN LOCO PITTSBURGH PHILLY>

34 n40 <UNLOAD-TRAIN PACKAGEl LOCO PHILLY>

35 n4l <LOAD-VAN PACKAGEl AVIA PHILLY>

36 n42 (at-van avia new-hampton)

38 n44 <drive-van avia philly new-hampton> [1]

39 n45 <DRIVE-VAN AVIA PHILLY NEW-HAMPTON>

39 nd6 <UNLOAD-VAN PACKAGEl AVIA NEW-HAMPTON>
Achieved top-level goals.

4.6. AN EXAMPLE IN A TRANSPORTATION DOMAIN 171

at-obj ollaj 0 city0

UNLOAID-VAN
obj0 wvanl city0

inside-vm} obj0 wvanl at-van wvanl city0
LOADI—VAN DRIV‘E'!-VAN | Constraint
obj0 vanl city2 vanl froImB city0 (from9 city?2)|
at-obj obj0 city2 at-van vanl city2 at-van_vanl from9

UNLOAD-VAN UNLOADI-TRAIN achieves-too
obj0 train3d city2 '

ingide-train obj0 train3 at-train tFainS city2
LOAD-ITRAIN RIDE-ITRAIN | Constraint
obj0 train3 city4d train3 f:r.iomB city2 (from8 cityd)
at-obj olI:;iD cityd at-train at-tra}n train3 from8
UNLOAD-VAN train3 cityd...

achieves-too
obj0 van5 city4

inside-vax} obj0 wvanS at-van vai\ns city4d
LOAD.—VAN DRIVE-VAN | Constraint

] =
obj0 van5 city6 van5 from7 city4d | (Erom7 cit:yG)I
| po—t

achieves-too

Figure 4.64: Control knowledge tree learned for the problem in Figure 4.2,

initial example and quality metric, the planner found the best plan in all the cases enumerated in
the table. This result shows the robustness of the learned knowledge to changes in the quality
metric, a desirable property in many domains.

Total Plan Cost cost(drive-van(van,x,y))

5xd(xy) | 1.25xd(x,y) | 1.2xd(x,y) | dxy)
Solution 1 1485 378 364 305
Solution 2 480 367 366 360

Table 4.6: Cost of two alternative plans for the problem of Figure 4.2 for several quality metrics.
Bold face indicates the better plan in each case. The metrics differ on the cost of the drive-van
operator. The planner was able to find the best plans in all the cases using the cktree learned from
the 1-package problem and the initial quality metric (Figure 4.64).

The cktree of Figure 4.64 also provided correct guidance for a problem in which two packages
need to be moved. Figure 4.4 outlined two plans for this problem. Which of the two plans is
better depends on the particular metric used. Table 4.7 shows the quality of the plans against
different quality metrics. Using the cktree learned for the 1-package problem with the first
metric, the planner successfully obtained the best plan for all the metrics showed in the table.

Figure 4.5 plotted plan quality values for a variety of quality metrics as a function of the number
of packages in the problem. PRODIGY4.0 is able to solve the problems corresponding to all the

172 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

Total Plan Cost cost(drive-van(van,x,y))

5xd(xy) | 1.3xd(xy) [1.25xd(xy) | d(xy)
Solution 1 1495 403 388 315
Solution 2 510 399 397 390

Table 4.7: Cost of two alternative plans for the 2-package problem for several quality metrics. The
metrics differ on the cost of the drive-van operator. The planner was able to find the best plans in
all the cases using the cktree learned from the 1-package problem (Figure 4.64),

cases in that figure (that is, varying the quality metric and the number of packages in the goal)
and obtain the plan of better quality in each case.

As Section 4.5.11 discussed the control knowledge tree formalism does not currently address
goal choices. In the experiments we have made use of a set of simple hand-coded goal
preference control rules. Figure 4.65 shows one of these rules.

(control-rule ACQ4
(if (and (candidate-goal (at-train <train> <loc>))
(candidate-goal (at-obj <package> <other-loc>))))
(then reject goal (at-train <train> <loc>)))

Figure 4.65: A goal preference control rule for the transportation domain.

We also experimented with a different representation of the domain, in which several objects
may be loaded (or unloaded) with a single operation. In this case the number of packages is a
parameter of the operator, and the cost of the load and unload operators depends on the number
of packages loaded. Learning and using control knowledge trees also succeeded in generating
the better quality plans on this version of the domain. '

4.7 Discussion

This section discusses some of the properties of control knowledge trees, and of the mecha-
nisms described to use them to represent quality-enhancing control knowledge. Some of the
characteristics of the control rule learning algorithms described in Section 3.12 are shared by the
cktree learning algorithms. In both cases learning is triggered by failure, when the available
control knowledge does not lead to a good enough plan according to the quality metric.and a
human expert. Both approaches take advantage of feedback from a human domain expert in
the form of improvements to an initial plan. Still the approaches differ along several impor-
tant dimensions. The limitations of using control rules motivated the development of control
knowledge trees. The following subsections explain those differences and other characteristics

4.7. DISCUSSION 173

of the control knowledge tree approach, including accuracy of the learned knowledge, and
issues on efficiency and tradeoffs between plan quality and planning efficiency.

4.7.1 Using Cktrees versus Control Rules as a Control Knowledge Repre-
sentation Formalism

This section presents a comparison of the characteristics of the algorithms for learning control
rules and control knowledge trees described in thesis. The learned quality-enhancing control
rules provide effective guidance when the quality metric does not require reasoning about
complex global tradeoffs. They are highly operational and are efficiently used at planning
time (Section 3.13.3.2). The performance in improving plan quality of the learned control
knowledge trees is equivalent to that of control rules for simpler non-interacting situations,
and superior for more complex interactions and tradeoff situations. However using control
knowledge trees is computationally more expensive and may reduce planning efficiency, as
the results reported in Section 4.8.3 will indicate. In addition control knowledge trees do not
provide goal ordering control knowledge. In some of our experiments we have used them
together with the goal preference rules learned by the first method achieving a synergistic
effect. An important advantage of control knowledge trees is their robustness to changes in
the quality metric, while the learned control rules are quality metric specific, are invalidated
if the metric changes, and must be relearned. Note that the characteristics of both formalisms
are somewhat complementary. An interesting issue, not explored in this thesis, is the design of
an architecture in which both representations are combined, for instance by using simple, local
control rules when the distinctions among choices are clear, and only global control knowledge
trees when needed. (Related issues are explored in [Simmons, 1988a, Goodwin, 1994]). The
rest of this section elaborates on some of the characteristics of the two formalisms.

Less constrained quality metrics. Section 3.12 pointed out the restrictions on the class of
quality metrics suitable for our algorithms for control rule learning. In particular the algorithms
relied on finding ways to share the work among parts of the plan by suggesting operator, binding,
and goal alternatives that lead to common subgoals among the plan operators. Section 4.1
described how the extension of that class of metrics to account for differences in the quality
of the alternative operators, and the tradeoffs originated between the quality of the operators
themselves, and the cost of achieving those operators preconditions, required more complex
control knowledge than the one learned by the previous algorithms. The need to capture such
tradeoffs, that is, information which is more global in nature, prompted our development of the
cktree learning algorithms.

The quality metrics suitable for cktree learning are still constrained to be linear in the cost of
the plan operators. This limitation is due to the mechanisms used to assign costs to the nodes

174 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

of the plan trees and to match the cktrees. The cost of a node depends only on the cost of its
children, and on the node itself if it is a binding node. The metrics are monotonically increasing
in the cost attached to the subgoals in the plan tree, that is, the cost attached to a cktree node by
the cktree matcher must be greater or equal than the cost attached to its children. The cktree
matcher makes use of this property to produce estimates of the quality of each alternative.

Reusing cktrees across different quality metrics. The control rules learned by the algo-
rithms in Chapter 3 capture in an implicit manner the quality metric for which they were built.
Therefore if the metric changes, the rules may give incorrect preferences and need to be dis-
carded and relearned. In contrast the cktrees do not capture a particular quality metric; instead
the metric is parameterized. The cktree building algorithms do not use the quality metric. The
metric is only used at cktree matching time. In general a change of the quality metric may
lead to different planning decisions. The cktree matcher will suggest the appropriate decisions
by using the current quality metric as it traverses the cktree and estimates the quality of each
available alternative. Reusing the same control knowledge, i.e. the cktrees, when the quality
metric changes amortizes the cost of learning along a larger number of problems in which
that knowledge is useful. Section 4.5.10 further discusses cktree robustness to changes in the
metric. Section 4.8.4 presents an empirical demonstration of the reuse of the learned cktrees
across different quality metrics.

There are a number of situations in. which the existence of control knowledge for a domain with
a variety of quality metrics may prove useful. This list is not exhaustive but just suggests some
of those situations. First, the planner can output multiple alternative plans according to different
criteria captured in the quality metric, and let a human expert choose one or a combination of
them. Section 3.12 suggested how this can be useful in mixed-initiative systems. Second, the
quality metric may evolve over time or vary according to some criteria. For example, the cost
of driving may vary in summer or winter; in factory scheduling the weight of different factors
(e.g. tardiness) may be different depending on when the action is scheduled. Third, the quality
metric may also change if it is being learned, possibly from the human expert, as the planner
solves new problems. Learning control knowledge to capture a variety of quality metrics is an
instance of the lifelong learning framework described in [Thrun and Mitchell, 1994]. Inlifelong
learning the system encounters a collection of related learning problems over its lifetime, and
it may employ knowledge gathered in previous tasks to improve its performance.

Global guidance versus local guidance. The control rule learner studies the local decisions
of the planning episode and produces rules. Those rules are used to make individual, local
decisions at planning time. By contrast the cktree learner interprets and stores the relevant
parts of the complete planning episode. The learned cktree is used to provide global guidance,
that is, it can suggest a sequence of planning decisions, the combination of which will produce
a good quality plan. Since control rules capture local decisions their number may grow with

4.7. DISCUSSION 175

the corresponding increase in matching cost, since matching must occur at all the decision
points for which the planner must make a choice. On the other hand the effort of matching a
cktree is amortized over the sequence of decisions for which a single matching episode provides
guidance. Also the cost of matching may be made dependent on the difficulty of the decision,
that is, on how close in quality the alternatives at the decision point are. The third example of
Section 4.5.1 illustrated how the cktree matcher stops when it finds that the current alternative
will be worse than the best so far. In the case of control rules all the rules available at each
point are matched independent of the the difficulty of the choice.

Partial match versus total match. Control rules provide search guidance only when they
match the current situation completely, that is, when the conjunction of preconditions in their
left-hand side is satisfied in the planner’s current state. Section 4.1.3 described the limitations
of this total match with some examples. On the other hand a cktree provides guidance even
when the information to estimate the alternatives in the current situation is incomplete, and
only partially matches the current situation.

Partial match and global guidance are also characteristics of systems that store knowledge as
a library of cases, as in the case of PRODIGY/ANALOGY [Veloso, 1994]. In those systems each
relevant planning episode is parameterized and stored as an individual case. When confronted
with a new similar problem the relevant case(s) is retrieved, instantiated, and possibly adapted
to solve the new problem. A similarity metric decides which case should be retrieved, i.e. it
measures how relevant a case is for the new problem. On the other hand, the cktree learner
determines first which parts of the planning episode are relevant from the plan quality point of
view (by looking at the decisions in which the initial plan and the improved plan differ). The
cktree learner does not store each planning experience in a new structure (cktree) but merges
it with the existing cktree(s). Therefore the cost of retrieval (finding the relevant cktree) is
minimal. The cktree matcher only explores the relevant parts of the cktree, as the case replay
mechanism is able to skip the irrelevant parts of the case being used.

The purpose of using cktrees is instead to lead the planner towards good plans. The cktree
exploration (matching) algorithm is geared to that purpose. Generally cases in the context
of planning systems have been successfully used to reduce the planner’s search space. A
case-based planner that would aim at generating good quality plans should be able to retrieve
a case that leads to a good plan, according to the quality metric, for the current problem.
Therefore some knowledge on estimating the quality of the case for the current problem should
be captured by the similarity metric. Note that the case may need to be adapted to the current
problem by adding or removing steps from it, or maybe merging it with other cases. Therefore
estimating the quality of the suggested case should account also for the changes in quality due
to the steps needed for the adaptation.

176 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

Cktrees and PSGs. Control knowledge trees bear similarities with the Problem Space Graphs
(PSGs) developed by Etzioni [Etzioni, 1990]. PSGs represent all the possible paths in a
backward-chaining search through a problem space. They are derived from the domain def-
inition by unfolding or partial evaluation. A PSG is a directed, acyclic and/or graph, where
nodes corresponding to goals are connected, via OR-links, to the operators that match it. The
operators are partially instantiated by variable substitution and connected via and-links to their
partially instantiated preconditions. The PSGs are built statically from the domain definition,
that is, they do not require any actual planning episode. The PSGs are then used to compute the
conditions under which subgoaling on each node would lead to a failure and would force the
planner to backtrack. These conditions become the antecedents of control rules that guide the
planner’s choices, thus pruning the search space and improving planning efficiency by reducing
the number of search nodes visited. The PSG traversal and control rule building algorithms are
geared towards that aim, that is, finding proofs of success and failure. This is fundamentally
different from finding the relevant reasons why a decision leads to a good quality plan.

The cktree building algorithm parameterizes the nodes found in the plan tree in a way similar
to the partially instantiation used by the PSGs building algorithm. The two formalisms differ
in some fundamental aspects. First, the PSGs are built statically, while the cktrees are built
by translating a current planning episode which is stored in the plan trees. Etzioni [Etzioni,
1990] described (and demonstrated in the STATIC system) how the PSGs are built upfront,
without any planning experience, by exploring the complete problem space. If the domain is
large learning time is long. In addition the planner may suffer of the utility problem: many
of the control rules generated may be never used if the problem distribution is not uniform.
DYNAMIC [Pérez and Etzioni, 1992] showed how the use of planning experience may improve
the performance of a PSG-based learner by pointing out the relevant parts of the problem space
that the static analyzer (or PSG builder) should explore. For example, DYNAMIC only analyzes
goal interactions that occur in training examples. Still once those parts are determined the
PSGs are built without further reference to the planning episode. On the other hand building
the cktrees based on planning experience increases cktree matching efficiency, because only the
parts of the cktree (operator alternatives and goal interactions) that have been used in the past
(either by searching with the existing knowledge or by using the expert’s plans) are actually
built and therefore explored at cktree matching time. Also, the cktree learning algorithm avoids
building recursive explanations by limiting the depth of the explanation to that in the episodes
seen so far. The cktree matching algorithm allows partial match and can use experience learned
from an episode in which the depth of the recursive chain was different from that in the current
problem. The cktrees could be built statically which could lead to high quality performance
without using training examples, at the cost of losing cktree matching efficiency and increasing
learning time.

The second crucial difference between the two formalisms is onhow they are used. The purpose
of building the PSGs is to translate them into control rules. On the other hand the cktrees are

4.7. DISCUSSION 177

used directly at planning time to provide guidance. We have discussed the advantages of doing
so when trying to capture plan quality control knowledge. The third crucial difference has
already been mentioned and concerns the purpose of the learning mechanism. PSGs are built
to reduce the search space and so improve planning efficiency. They fall into the category of
speed-up learning systems. The PSG traversal algorithms are designed with this performance
goal in mind, as discused above. In contrast cktrees are built and explored to produce good
plans given some quality metric that is used in the cktree matching process. The cktree learning
and matching algorithms described in this chapter were designed for this performance goal.

Learning effort. The control rule learning algorithm of Chapter 3 invests effort deriving rules
from the plan trees by explaining the differences in quality between the initial and improved
plans. On the contrary the cktree learning algorithm spends a smaller effort at learning time, as
it translates only the relevant parts of the plan trees into cktrees or subtrees that are incorporated
to the existing cktrees. The rule learner can be characterized as an eager learner, while the cktree
learner is a lazier one. The learning effort by the cktree learner is more comparable to that of
PRODIGY/ANALOGY [Veloso, 1994] which stores annotated traces of planning episodes. These
derivational traces are ellaborated further on an as-needed basis when the planner confronts
new similar problems.

4.7.2 Efficiency Issues in Using Cktrees

Section 4.5 described the cktree matching algorithm. We now discuss some efficiency issues
in that algorithm. In the worst case the number of nodes and alternatives explored by the
cktree matcher can be as high as those explored by exhausting the whole search space of
planning. However even in that worst case, exploring alternatives in the cktree is faster than
in the planner’s space: the cktree is already built and can be traversed fast, while the planner
must build each node explored, with computational overhead in time and space. In addition
the cktree matching algorithm uses several techniques to reduce the number of cktree nodes
explored.

First, the cktree matcher explores only the parts of the cktree that are relevant to the decision
for which guidance is sought. If several goals need to be achieved, the links between their
corresponding cktrees determine whether the goals are independent. If they are, the matcher
only considers the cktree for the current goal and ignores the others. A choice at that point
leading to a good plan is independent of choices for other goals (given the available knowledge,
which can be incomplete if no examples of an interaction have been seen already), given
the characteristics of the quality metric (linear on the cost of the individual operators). By
contrast, if the planner were to explore the complete space to find the best plan, in the absence
of appropriate control knowledge, it would try all the possible ways of interleaving those

178 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

independent goals, even though those interleavings do not affect the quality of the resulting
plan. In the case in which the goals are not independent, the number of cktree nodes explored
is reduced by exploring only the relevant parts of the cktrees for the other goals, as described
in Section 4.5.9.4. '

Second, the cktree matcher is not invoked at every decision point. The cktrees are only used
to provide guidance for a decision if the planner’s choice for a similar decision was overriden
to obtain an improved, expert-given plan in a past planning episode. In that episode learning
was triggered and as a consequence one of the learned, currently existing cktrees is relevant to
guide the current decision. For any given decision, if no cktree is relevant the planner chooses
the default alternative.

Third, the previous section discussed how when the cktree is invoked at a decision point, it may
generate global guidance, that is, guidance for other decisions that the planner will encounter
later on in the search. For example, it may suggest both an operator to achieve a goal, and an
instantiation of that operator. It may suggest as well operators to achieve the new subgoals. In
this way matching cost is amortized along a number of planning decisions.

The cktree matching algorithm includes a number of other efficiency improvements that reduce
the space of alternatives and cktree nodes explored. We review them here.

e Section 4.5.8 described how multiple alternatives can be explored efficiently by reusing
the estimated costs of subtrees, if the matcher determines that those estimates do not
change between alternatives. The nodes whose estimate may change are marked and
their new estimate computed. On the other hand, compare this with the planner finding
a good plan by exhaustively exploring the search space. When the planner backtracks to
try a new alternative, it discards the whole search tree corresponding to it. Then although
successive alternatives may require to expand some subtree repeatedly, the planner does
not take advantage of it and repeats the work instead, as it backtracks to the point where
the alternative was introduced and discards the search tree under it.

e Sections 4.4.2.4 and 4.5.4 explained how constraints on the bindings that an operator may
take were learned and used. The purpose of those constraints is to make cktree matching
more efficient by pruning out bindings that would lead to lower quality plans. Those
constraints are stored in cktree binding nodes. The constraints stored in a node are used
when the cktree matcher is exploring the node and generating bindings for the variables
introduced by the node. The constraints reduce the set of possible instantiations to those
that will cause sharing of subgoals with other operators in the cktree, therefore leading
to a better quality plan. If no alternative satisfies the constraints, all the alternatives are
explored.

e At each point during cktree matching the matcher maintains the best alternative found so
far, and its estimated cost. If the estimate for the current alternative exceeds the best so

4.7. DISCUSSION 179

far, matching for the current alternative stops and the alternative is discarded. Discarding
an alternative whose cost exceeds the best so far is possible because of the linear nature
of the quality metric, which will monotonically increase the value of the estimate as
more nodes are visited. Stopping when a limit is reached leads to savings in matching
time that depend on how close in quality the alternatives are. If one alternative is far
superior to the others and it is explored early on, the matcher will not invest a large effort
on exploring the other alternatives as it will quickly find that they will be worse. The
third example in Section 4.5.1 clearly illustrated this point. Additionally the matcher
always has available an alternative, the best one so far, should it run out of time to make a
decision. Note however that if an anytime solution is needed, the planner should allocate
additional time to complete the search for the plan after that decision is made. Another
limit to the matching effort could be set by putting a bound on the depth up to which the
cktree is traversed. Once that depth bound is reached, the cost of the subtree below the
current node could be estimated in some fixed way (that is, without exploring the subtree
further) and backed up the cktree. The properties, regarding the accuracy of the estimate,
of using such bound would vary from domain to domain. We have not implemented it.

Traversing the cktree to estimate the cost of an alternative is a search problem. The algorithm
described is one way to search the cktree. Other traversal algorithms are possible. In particular
the cktree may be traversed by associating a range (interval) with each node, that is, an upper
and a lower bound on the cost estimate for the subtree rooted at the node, and then successively
refining the estimates associated with the nodes: as new nodes are visited in the subtree their
estimates can be backed up and the range of the root node may be refined until, if necessary, it
converges in a single value. The traversal may stop earlier though, when the upper-bound of
an alternative is no worse (higher) than the lower bound of any of the other alternatives. An
example of such algorithms can be found in [Berliner, 1979]. The DRIPS planner [Haddawy
and Suwandi, 1994] employs intervals to represent the expected utility of an abstract plan. The
interval includes the expected utilities of all possible instantiations of that abstract plan. The
plan is built by refinement, that is, instantiating one of the actions, which tends to narrow the
interval. Again, when the intervals (which corespond in this case to abstract plans) do not
overlap, the plan with the worst interval can be eliminated.

An interval-based search algorithm could be useful to implement cktree traversal. The upper
and lower bounds on the subtree cost estimates can be recorded in the cktree nodes from previous
planning experience. However some characteristics of the nature of the cktrees, and of the
problems we are interested in, may limit the usefulness of the approach. Note that the search
tree traversed by the search algorithm is not the cktree itself, but a tree with a higher branching
factor: each binding node can be instantiated in multiple ways and the cktree matcher explores
(a subset of) them. The intervals would enclose the range of estimated quality values for all the
possible instantiations. Examples throughout this chapter showed how the choice of bindings
may lead to very different quality values and therefore the intervals may be quite wide. Also, in

180 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

those examples, with the quality metrics used, different alternatives, e.g. operator alternatives,
are usually close in quality; this means that the intervals will overlap heavily. Distinguishing
among alternatives may require to traverse nodes close to the cktree leaves. Last, we have seen
examples of how the choices of alternatives for the planning decisions are not independent;
the dependences are captured by the achievement and deletion links. Traversing those links is
needed to accurately estimate the quality of the alternatives. To our knowledge DRIPS assumes
that the subgoals are independent. We have presented examples in which this is not the case,
and how the cktree traversal algorithms described are able to handle them. An interval-based
cktree matcher would have to deal with these cases. In summary, in Section 4.1.3 we argued
that our research has concentrated in cases in which the control knowledge must make tight
distinctions, and how those considerations lead to our development of control knowledge trees.
In such cases the search reduction obtained by interval search may be limited. Still in some
cases implementing cktree traversal using interval search shows promise and we plan to explore
this approach in our future work.

In order to guarantee finding the best plan, a planner must explore the complete search space.
This is computationally very expensive, as we have argued above. Search techniques such as
A* are able to find the best path in a graph given an admissible heuristic function that evaluates
the goodness of each node in the path. However it is difficult to find admissible heuristics that
capture the quality metrics in planning problems, frequently due to the existence of conjunctive
goals. We have chosen to follow a learning approach instead, in which past experience guides
the current choices. This approach does not guarantee that the solutions found are optimal, but
given an adequate experience in solving similar problems, it has been able to obtain significant
plan quality improvements in our experiments.

4.7.3 The Accuracy of the Learned Control Knowledge

The cktree matching algorithm is used at a given decision point to provide guidance on the
available alternatives. Its aim is to estimate the quality of the plans to which each of the
alternatives would lead should it be chosen by the planner. To generate that estimate the cktree
matcher traverses the cktree simulating the choices that the planner would made given its
past planning experience. It considers the operator and bindings alternatives available at each
point. In addition it assumes that the planner will follow a depth-first, left-to-right ordering
in exploring the pending subgoals (relevant to keep track of operator side effects and thus
interactions among subgoals in the cktree). This corresponds to PRODIGY4.0’s default search
strategy. The cktree matcher estimates the quality of the best plan that the planner might find
under these assumptions.

The effect of limited past experience. As in the case of any learner, the performance of the
global system would depend on the problem solving experience accumulated by the learner.

4.7. DISCUSSION 181

If the experience captured by the control knowledge trees is small, the estimates they provide
may not be accurate, in particular when the problem for which guidance is sought belongs to
a class (problem distribution) different from that of the problems used in the learning phase.
When the cktree matcher does not have knowledge to generate an estimate at a cktree goal node,
it uses a default value (the minimum cost of achieving that goal by just applying a relevant
operator). Therefore the value for the goal node itself is underestimated. Also, if achievement
and deletion links are missing, the matcher estimates may be inaccurate. If a goal is achieved
by some node that would be in the missing subtree, the quality value of that goal would be
overestimated (as the matcher does not realize that the goal would have cost 0). On the other
hand, if the goal is deleted by the missing subtree, the matcher underestimates its achievement
cost assigning it a cost 0.

The effect of other available control knowledge. In addition to the control knowledge
encoded in the cktrees, the planner may have at its avail other control knowledge in the form
of control rules, possibly hand-encoded by the domain writer. When the planner is searching,
if those rules are applicable in the current meta-state (which includes the world state, and the
current state of the search process, i.e. the set of pending goals, the expanded operators, etc),
they may change the default search strategy. Therefore in the presence of control rules the
actual control strategy used during planning may be different from the search strategy that the
cktree matcher follows. That is, the space of alternatives explored by the cktree matcher may
be different from the space actually explored by the planner. The presence of those control
rules may reduce the accuracy of the quality estimates found by the cktree matcher: the plan
(that is, the sequence of operator and bindings decisions used to achieve the subgoals) that
the cktree matcher predicts may be different from the plan actually found by the planner, and
therefore have different quality.

PRODIGY4.0 allows several types of control rules. Operator and bindings preference rules
change the order in which the planner explores the available alternatives. As the cktree matcher
explores all of them, (or a subset of them, as explained above) the acuracy of the estimate
obtained should not be affected. On the other hand, select and reject operator and bindings
control rules are used to reduce the set of alternatives that the planner considers. Currently
the cktree matcher ignores these rules and therefore may pursue alternatives that will in reality
would not be available to the planner, leading to inaccurate quality estimates. To extend the
cktree matcher so it considers those rules when it is traversing the cktree, it should be able to
predict the planner’s meta-state at the point where the control rules would be tested in order to
test the applicability of their preconditions. 13

13 After the planner makes the decision suggested by the ckiree matcher, it continues searching (thus updating
its meta-state) including expanding some of the subgoals that appear in the cktree (for which it may have guidance
as well) and applying whatever control rules match at that point.

182 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

However the purpose of some select and reject rules is to prune alternatives leading to dead-end
paths, in order to speed up the planning process. This is the case of the control rules built by
PRODIGY’s speed-up learning mechanisms. The cktree matcher is able to detect whether an
alternative will lead to a dead-end and discard it if so, effectively pruning the alternatives that
the rules would prune. Therefore the accuracy estimate is not affected by the existence of these
types of rules.

Section 3.9 presented examples of the relevance of goal decisions for plan quality, and Sec-
tion 4.5.11 mentioned how the cktree matching algorithm only provides control knowledge for
operator and bindings decisions. It leaves to goal control rules to provide guidance for goal
decisions. Extending the cktree matcher to provide goal ordering guidance would increase its
computational cost, as the number of alternatives to explore would increase.. Using control rules
instead has proved satisfactory in our domains and therefore we have not added that capability
to the cktree matcher yet.

We started this section describing how the matcher assumes a default ordering of goal expansion
and achievement. The planner’s control strategy may change that default by using either control
rules or other search heuristics [Stone ez al., 1994]. As goal ordering affects plan quality, a
difference between the planner’s strategy and the default assumed by the cktree matcher may
reduce the accuracy of the estimates produced by traversing the cktrees. Different goal orderings
may lead to different achievement and deletions of goals and therefore the lists of achieved and
deleted goals maintained by the cktree matcher may be different from the actually achievement
and deletions that the planner would face at planning time.

Quality of guidance and accuracy of the estimates. We have described a number of factors
that may contribute to the inaccuracy in the estimates obtained by the cktree matcher of the
quality of the alternatives available to the planner at a given decision point. However it is
important to note that even when those estimates are not accurate, the guidance provided by
the cktrees can be useful: the planner’s decision is actually guided by the comparison of
those estimates among the alternatives. Their relative value is what matters. Section 4.5.9.3
explained how several alternatives are used to estimate the quality of one of them when there are
interacting goals to avoid exploring the whole cktrees for the interacting goals. The estimates
obtained consider only the parts of the problem relevant for comparing the different alternatives.
In the example of Section 4.5.9.4 the estimates for both alternatives are lower than the real
quality values, as the cktree lacks knowledge to evaluate the quality of part of the plan, i.e.
of achieving some of the subgoals. Still those estimates are good enough to point to the best
alternative at the choice point at which the control knowledge is invoked.

4.7. DISCUSSION 183

4.7.4 Tradeoffs Between Plan Quality and Planning Efficiency

Optimality in plan quality, that is, obtaining always the best plan, can only be guaranteed when
the planner explores the complete search space. This has a high computational cost (in terms of
planning efficiency, i.e. time). Our approach, learning quality-enhancing control knowledge,
aims at finding good plans in an efficient way by exploiting past problem solving experience,
that is, knowledge of which plans were good in the past. This approach is not optimizing plan
quality. We do not claim that the use of the learned quality-enhancing control knowledge will
lead to optimal plans, as the quality values computed are obtained from incomplete knowledge,
from past experiences that may only partially match the problem being current solved. Our
learning approach is not optimizing the efficiency of the search either, as the cktree matcher
explores (a subset of) all the alternatives.

Our focus has been in learning about plan quality and generating good quality plans. Much
previous work in learning for planning systems has focused on improving planning efficiency
(speed-up learning) [Etzioni, 1990, Gratch et al., 1993, Knoblock, 1994, Minton et al., 1989,
Mitchell ez al., 1986, Pérez and Etzioni, 1992, Veloso, 1994]. Although the algorithms described
in this thesis are able to efficiently provide guidance towards better plans, we have largely
ignored the issue of planning efficiency. In some of the examples showed the difference
in quality between the available alternatives was small. Despite that, the matcher invested
computational effort to find a good alternative. We were interested in being able to generate the
better plan in those cases. Those small differences may translate into large economic savings,
for example in the case in which the plan is going to be executed multiple times. However, in
some domains the tradeoff between planning efficiency (i.e. planning time) and plan quality
is an issue worth considering. It may not be worth spending time producing accurate quality
estimates in order to find the best alternative when the second best is almost as good. We plan
to explore this tradeoff in future work.

The use of past experience stored in the form of ckirees to guide future problem solving causes
an additional tradeoff. The cktrees capture the quality of plans in parts of the search space
that have been explored as part of previous experience. The alternatives corresponding both
to the planner’s initial solutions and to the improved solutions provided by the human expert
are stored in the cktree. Other alternatives available in the domain (e.g. other operators for a
given goal) that have not been used in previous episodes are not captured in the cktree. The
cktree matcher provides as guidance only the alternatives stored in the cktree. Therefore it
would not suggest other alternatives yet unexplored that could turn to be better. To avoid this
effect the learner should allow some exploration in which instead of preferring something that
has worked well in the past, it would try something new and learn from it (during training, the
human expert if available provides such guidance).

184 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

4.8 Experimental Results

We have fully implemented the algorithms described in these chapter to automatically acquire
control knowledge trees from experience and use them during planning to obtain good plans.
This section describes our empirical evaluation of the implemented algorithms on the process
planning domain. Section 4.6 analyzed cktree performance in a small transportation domain.
Here we first analyze the performance of cktrees in generating good plans. Then we compare
them with using different default operator choices, and the quality-enhancing control rules
learned in the experiments of Chapter 3. We end with a demonstration of the reusability of
cktrees across metrics different from the one they were generated for.

4.8.1 The Performance of the Learned Cktrees

In the beginning of this chapter we motivated the use of cktrees as control knowledge when
control rules could not suitably capture the desired effect of the domain quality metric for
generating high quality plans requiring non-local tradeoffs. We chose a quality metric of those
characteristics (see Section 4.1.3 for an explanation) and tested the performance of the learned
cktrees.

4.8.1.1 The Setting

Table 4.8 shows the quality metric used in this experiment. This metric assigns costs to the
drill-press machining operators different from those for the milling-machine operators (second

[Type I Cost | Operators
Drill press operators 3 | drill-with-spot-drill, drill-with-twist-drill,
. drill-with-high-helix-drill, tap, countersink,

counterbore, ream

Milling machine 5 | drill-with-spot-drill-in-milling-machine,

operators drill-with-twist-drill-in-milling-machine, face-mill, side-mill

Machine and 2 | put-holding-device-in-drill, put-holding-device-in-milling-machine,

holding device , remove-holding-device-from-machine,

set-up operators put-on-machine-table, remove-from-machine-table,
hold-with-vise, release-from-holding-device

Tool operators 1 put-tool-on-milling-machine, put-tool-in-drill-spindle,
remove-tool-from-machine

Cleaning operators 2 | clean, remove-burrs

Oil operators 1 add-soluble-oil, add-mineral-oil, add-any-cutting-fluid

Table 4.8: The quality metric used in the experiments described in this section.

4.8. EXPERIMENTAL RESULTS 185

and third rows of the table). Thus the choice of operation and machine depends not only on the
set-up cost (as in the experiments of Chapter 3) but also on the cost of the operator itself. In
particular there is a tradeoff between the savings in cost of the drilling operations per se, and
the savings on setting up the work in each case. Sections 4.1 and 4.1.3 give examples of such
tradeoffs. Note that the differences in cost between the operators are not large, and therefore
in many cases the differences in quality between the plans that use those operators will not be
large either. Still we are interested in producing the better plans, as small differences in quality
may translate in huge economic or other savings when these plans are executed thousands of
times (see Section 3.13.3 for a discussion on these issues of our experimental evaluation of

plan quality improvement).

The exact same problems as in the previous experiments were used, namely 60 randomly-
generated problems for the training phase and 180 randomly-generated problems for the test
phase. Note that, since the quality metric changed, the desired solutions for them, and therefore
the planner’s choices, may be different from those in the experiment of Section 3.13. At every
time (in the training phase and the test phase, except when indicated) the goal-preference control
rules learned in the experiments of Section 3.13 were part of the domain (see Section 4.5.11).

4.8.1.2 The Training Phase

As in the experiment of Section 3.13.2 the cktree learner was initially given 60 randomly-
generated problems. For each of the 60 problems, it called PRODIGY4.0 to solve it. However
in this experiment we did not rely on the human expert to generate the improved solutions for
the 60 training problems. Instead those solutions were produced automatically by PRODIGY4.0
finding successive plans until the space was exhausted or the-bound of 20000 nodes was reached.
In order to avoid uninteresting paths (with respect to quality) a branch-and-bound technique
was used, namely: the current path was abandoned if the quality value (given the quality
metric described) of the incomplete current plan exceeded a bound dynamically set to the
quality value of the best plan found so far. Hand-written domain-dependent control knowledge
was available to the planner to guide its backtracking choices to prune paths that looked
unpromising with respect to improving the current best plan.!* This was implemented using
PRODIGY4.0’s interrupt and signal mechanism [Carbonell et al., 1992]: every time a complete
plan was found or the quality bound was exceeded, PRODIGY4.0 backtracked to the most recent
node in which a different choice of machining operator (one of drill-with-spot-drill-in-milling-
machine, drill-with-spot-drill, drill-with-twist-drill, drill-with-twist-drill-in-milling-machine,
face-mill, side-mill, ream, counterbore, tap or countersink) or binding for it was open. The
rationale is that those are the relevant decisions for quality purposes in the training problems.

14This knowledge includes rules for planning efficiency to avoid dead-end paths, which are orthogonal to plan
quality issues, and control knowledge to abandon paths leading to a plan worse than the best one found so far.

186 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

Average planning time (initial plan + improved plan): 25.9s.

Average learning time: 3.5 s.

Problems learned from: 13

Table 4.9: Summary of the training phase. The numbers shown were computed for the 13 training
problems in which learning was actually invoked.

Table 4.9 summarizes the results of the training phase. For 13 of the 60 problems a plan
better than the one initially obtained by PRODIGY4.0 was available; in those cases learning
was automatically invoked. The learned knowledge after each problem was used to solve the
subsequent problems. Table 4.10 shows those results in detail. The third and fourth rows
indicate planning and learning times for the problems in which learning occurred (as shown in
row 2). The bottom part of the table shows data on the quality of the plans before and after
learning. Note that learning is incremental, and the quality increase represented compares the
plan with the knowledge learned up to that point with the better plan available. Therefore the
quality increase refers only to the knowledge added by each individual problems (the table
shows the total of those increases for each 10-problem set). Thus the % increase is not very
large.

4.8.1.3 The Test Phase

We tested the performance of the learned cktrees on a set of 180 problems, different of the
training problems (see Section 3.13.3 for more details on the test set). Table 4.11 shows the
effect of the learned knowledge in plan quality. Row 4 of the table indicates the number of
problems in which the plan quality was actually improved. Row 5 shows the rate of plan quality
improvement considering only those problems. Note that in some problems no improvement
is possible, as the planner obtains a good solution by default, without using control knowledge.
Also, given the nature of the quality metric, the quality values for the different alternative
plans may be close, and therefore there is no room for a large improvement. Still the learned
knowledge captured the relevant distinctions and obtain the better plan. Section 3.13.3.1
explained why plan quality cannot be improved at the exponential rate which is possible when
learning search efficiency control knowledge.

Table 4.12 shows the effect of the learned cktrees in planning efficiency, that is in the time and
number of nodes visited by the planner during search. The number of nodes is smaller when
cktrees are present due to shorter plan lengths (see Section 3.13.3.2 for a discussion). However
planning time increases due to the overhead of matching the cktrees. The time spent increases
with the difficulty of the goal interactions. For example, the cktree matching cost is large in

4.8. EXPERIMENTAL RESULTS 187

[Problem set (10 problems per set) ‘ 1 ‘ 2 I 3 ‘ 4 | 5 I 6 ‘
Number of problems learned from 2 3 1 2 2 3
Planning time (secs.) . 193 | 359 | 55| 377|709 | 1674
Learning time (secs.) 30| 64| 05 85| 83| 19.0
Cost before learning 119 | 146 | 127 | 324 | 376 531
Cost after learning (incremental) 116 | 140 | 121 | 318 | 355 525
% Cost decrease (in improved problems only) | 10% | 11% | 46% | 12% | 28% | 11%

Table 4.10: Experimental results for the training phase. Each column corresponds to a set of 10
problems. The second row shows the number of pfoblems of each problem set in which learning
occurred, prompted by the availability of a better quality solution. The third and fourth rows show
respectively the total time spent in planning and the total time spent in learning, considering only
those problems in which learning occured. The bottom table shows plan quality data, namely the
total cost of the solutions initially output by PRODIGY4.0 for the 10 problems in each set (row 6); the
total cost of the better solutions for the 10 problems of the set (row 7); and finally the improvement
in quality (or cost decrease) due to learning to obtain the better solutions, now considering only
the problems for which a better plan was available (row 2 of the top of the table). Note that each
problem was solved using. the control knowledge learned for the previous problems, that is the
improvement in quality in each problem is between the planner with the current knowledge before

and after learning in that individual problem.

| Problem set (30 problems per set) | 1] 2] 3] 4] 5] 6]
Cost without learned control knowledge 350 | 620 | 764 | 1117 | 1261 | 1570
Cost with learned control knowledge 310 | 446 | 622 | 945 | 898 | 1448
Number of problems with improvement 8 25 18 22 27 21
% Cost decrease (in improved problems only) | 31% | 30% | 25% | 18% | 32% | 8%
Max % decrease 40% | 44% | 40% | 46% | 55% | 23%

Table 4.11: Improvement on the quality of the plans for 180 randomly-generated problems obtained
by using the learned cktrees. The numbers refer to the quality metric of Table 4.8. The second
row of the table shows the total quality of the plans obtained for the 30 problems in the each set
without using quality-enhancing control knowledge (except for the goal-ordering riles learned in
the experiments of previous chapter). Row 3 shows the corresponding values using the learned
cktrees. Row 4 shows the number of problems in each set in which the solution obtained using the
learned cktrees was better than that obtained without quality-enhancing control knowledge. Row 5
shows the rate of improvement considering only those problems. The last row shows the maximum
rate of improvement in a single problem of the set. Note that these values are not comparable to
those in Table 3.4 because they correspond to a different quality metric.

188 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

problem set 5 because some of the problems have the goal of cutting the same part along three
different dimensions (three goal conjuncts) which can be achieved with only two set-ups if
the planner chooses appropriate operators (side-mill or face-mill), bindings (machine instance,
orientation, and tool), and order of goal achievement. Note that in the case of that problem set
the increase in search time corresponds with higher rate of quality improvement (Table 4.11).

Problem Without learned With learned cktrees
set control knowledge
Qual Time Nodes | Qual Time Nodes
350 83 1405 | 310 9 1148
620 143 2196 | 446 139 1616
764 153 2111 | 622 314 1770
1117 275 3576 | 945 303 3089
1261 287 3641 | 898 1264 2467
1570 519 5571 | 1448 566 4781

DA W=

Table 4.12: Effect of the learned control knowledge in the planning time and in the number of
nodes searched. Each row displays the total quality, planning CPU time (seconds), and nodes for
the 30 problems in the test set. The values shown are averaged over 5 runs for each problem.
Columns 1 to 3 show the numbers without quality-enhancing control knowledge. Columns 4 to 6
show the values when the cktrees automatically generated in the training phase are used during
planning.

This fact raises issues on the tradeoffs between plan quality and planning efficiency. In some
cases it may not be worth spending time producing accurate quality estimates in order to find
the best alternative when the second best is almost as good. It is interesting to note that the
overhead of using control rules (Section 3.13.3.2) is significantly less than using cktrees, though
the latter are able to capture nuances and tradeoffs leading to better plan quality.

4.8.2 Effect of the Default Operator Choice

The quality metric used shown in Table 4.8 gives a better quality to the machining operations
performed in drill presses over operations performed in milling machines. Therefore planning
choices that prefer using drill presses will frequently lead to better plans, unless the part is
partially set on a milling machine and resetting it would overcome the savings by using the
drill press. Thus the default planner’s heuristic to choose operators (prefer the first relevant
operator that appears in the domain definition file) may have an effect in the quality of the plans
obtained by the planner in the absence of other control knowledge.

We performed the following experiment to see the effect of this operator choice heuristic and
analyze more accurately the quality improvements obtained by the learned knowledge. Note

4.8. EXPERIMENTAL RESULTS 189

that operator choices are not the only reasons for differences in plan quality (binding and goal
choice are also relevant). We compared the quality of the plans for 80 of the test problems
obtained (a) using the learned cktrees and (b) using different default operator orderings and no
other control knowledge. Figure 4.66 shows the results. No single operator ordering achieves
a better performance than the cktrees. There are two reasons for that. First, even though some
operators are better than others (Table 4.8) in some problems the “locally” worse operator
should be preferred because the savings in set-up cost are greater. Second, other types of
choices, in particular bindings choices, influence quality. The cktrees provide guidance for
those choices as well, while in the other scenarios the PRODIGY4.0’s default bindings heuristics
are the only guidance.

g 600 -
l_’i & =ee-O Without [samed control knowledge 8
3 Hewamaos % Without Isarned control knowladge 7
g
E [T 8 Without learnad control [:]
3 @~ — & Without [earmed control 5 N
500 99— — © Without irarnad cantrol 4 AN
S %= — ¥ Without lsarned control 3 { \.
E +4— — -+ Without learned control 2
- ®— — @ Without lsarned contral 1 "
E ®——& With lsamed control knowledge
g
S 400
g
o
@
& o0}

L " L N " L | s
1 2 3 4 5 6 7 8
Problem set

Figure 4.66: Analyzing the effect of operator ordering. Each data point represents the total cost
of the 10 problems in a problem set. The solid line represents plan quality when using the learned
cktrees. Each of the other lines represents a different default operator ordering.

4.8.3 Comparing Learned Control Rules and Learned Cktrees Perfor-
mance

We have discussed how the quality metrics captured by the control knowledge trees are more
complex than those to which the control rules learned by the algorithms of Chapter 3 are
applicable. This section presents an experimental comparison of the performance of both
approaches, given a quality metric suitable for control rule learning. The metric used is in
Table 3.1. We showed in Section 3.13 how automatically acquired control rules are able to
improve considerably the quality of the planner’s solutions for that metric. The same training
and test sets are used in this experiment, namely 60 randomly-generated problems for training

190 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

Problem | No learned ctrl knowl | Learned control rules Learned cktrees
set Qual Time Nodes | Qual Time Nodes | Qual Time Nodes
886 84 1405 | 689 71 1135 | 689 97 1135
1528 141 2196 | 755 99 1594 | 771 155 1608
1716 152 2111 | 1330 204 1852 | 1218 313 1770
2765 272 3633 | 2056 249 3083 | 2043 410 3087
3421 313 3915 | 1472 214 2432 | 1583 3630 ‘2536
3834 509 5546 | 3245 426 4590 | 3432 653 4874

NN B W NI =

Table 4.13: An empirical comparison of the two learning approaches: learning control rules and
learning control trees. The table shows the quality of the solution obtained, CPU time (in seconds)
to obtain that solution, and the number of nodes explored. The values showed are cumulative over
the 30 problems in each set. The time results are averaged over 5 runs for each problem. The
performance of the planner without any quality-enhancing control knowledge is also shown. The
quality metric used is in Table 3.1. Higher values mean worse quality.

and 180 problems for testing divided in 6 problem sets. Table 4.13 shows the performance
of the learned rules and the learned control trees for the test set described there. The table
also shows the performance of the planner when no quality-enhancing control knowledge is
available.

The performance of the learned cktrees and of the learned control rules is very similar and
considerably better than that of the base planner (i.e. without quality control knowledge). This
is not surprising since the quality metric is one suitable for the control rule learner, as the
experiment in Section 3.13 proved. As we argued there, the learned knowledge was able to
guide the planner toward virtually optimal solutions, i.e. solutions that could not be improved
by the human expert.

This experiments also shows that the learned control rules outperform the cktrees in the time
spent finding those problems. This occurs even though both systems explore a similar number
of nodes. The cktree matching process is more costly than the control rule matching. Only
36 rules were learned (see Section 3.13) leading to a small matching overhead.

In all the experiments with cktrees reported so far the goal-preference control rules learned in
the experiments of Section 3.13 were part of the domain, since the cktree learning algorithms
do not learn goal-ordering control knowledge. The last row of Table 4.14 shows the quality
values (according to the metric in Table 3.1) when the learned goal-preference rules are not
used for problem solving and therefore the effect in plan quality performance is only due to the
learned cktrees. Although some quality performance is lost, these results show that most of the
improvement is indeed coming from the use of the learned cktrees.

4.8. EXPERIMENTAL RESULTS 191

‘ Problem set (30 problems per set) [1 [2] 3 [4 [5 | 6 }
No learned control knowledge 886 | 1528 | 1716 | 2765 | 3421 | 3834
Learned control rules 689 | 755 | 1330 | 2056 | 1472 | 3245
Learned control knowledge trees
with learned goal-ordering rules 689 | 771 | 1218 | 2043 | 1583 | 3432

Learned control knowledge trees
without learned goal-ordering rules | 689 | 771 | 1218 | 2175 | 1617 | 3578

Table 4.14: An experiment to factor out the effect of the learned goal-preference control rules from
the effect of the cktrees. The numbers shown are the total quality of the plans obtained for the 30
problems in each problem set given the metric in Table 3.1. The last row shows the performance
of the learned cktrées when the learned goal-preference rules are not used. For comparison the
quality totals when no learned control knowledge, learned control rules, and learned cktrees (with
goal-preference rules) are shown in rows 2-4. Those values come from Table 4.13. Although some
quality performance is lost by using the cktrees without the learned godl-preference rules (row 4),
these results show that most of the improvement is indeed coming from the guidance provided by
the learned cktrees.

4.8.4 Reusing Learned Cktrees across Quality Metrics

Section 4.7.1 discussed the ability of the cktrees learned for a given quality metric to transfer
and generate good plans for other metrics, as they do not capture a particular one. The metric is
not used when the cktrees are built. It is only used at cktree matching time: the cktree matcher
suggests planning decisions by using the current quality metric as it traverses the cktree and
estimates the quality of each available alternative. Table 4.15 presents experimental results of
this transfer.

{Problem set (10 problems per set) j 1 ‘ 2 | 3] 4 ‘ 5 | ﬂ

Cktrees learned for metric 1 (Table 3.1) | 309 | 451 | 622 | 936 | 929 | 1431
Cktrees learned for metric 2 (Table 4.8) | 310 | 446 | 622 | 945 | 898 | 1448

Table 4.15: Effects in quality of reusing cktrees learned for different metrics. The table shows
the quality, given the quality metric of Table 4.8, of the 60 problems in the test set using two
different sets of cktrees. The second row shows the results when the cktrees learned for the metric
in Table 3.1 are used. (Those are the cktrees learned during the experiment of Section 4.8.3). Thus
those cktrees were learned for a metric different from the one used for testing in this table. For
comparison, the third row shows the results when the cktrees learned for the metric in Table 4.8 are
used (Section 4.8.1.3). The quality values obtained in both cases are comparable, denoting transfer
of the learned knowledge across quality metrics.

192 CHAPTER 4. LEARNING CONTROL KNOWLEDGE TREES

In this experiment the 60 problems of the test set were solved twice using the quality metric
of Table 4.8 (metric 2). In the first pass, we used the cktrees learned in the experiment of the
previous section, that is, for the metric of Table 3.1 (metric 1). Thus the cktrees were learned
for a different metric than that they are being tested on now. Row 2 of Table 4.15 shows the
quality of the plans obtained. In the second pass we used the cktrees learned for the current
metric (metric 2, Table 4.8) and the quality values obtained are shown in row 3. These results
show that the quality of the plans generated for the same quality metric with those two different
control knowledge strategies (cktrees) is comparable.

This is a useful feature of the cktree formalism. Reusing the same control knowledge, i.e. the
cktrees, when the quality metric changes amortizes the cost of learning along a larger number
of problems in which that knowledge is useful.

4.9 Summary

This chapter has introduced control-knowledge trees, a formalism to represent control knowl-
edge. The chapter describes domain-independent algorithms to automatically build cktrees
from planning experience, and to use them during planning in order to generate good quality
plans. The motivation behind this new représentation is to allow a more global view of the
planner’s decisions than in the case of control rules, in order to make globally better choices.
Some quality metrics that capture non-local tradeoffs are difficult to capture by control rules
that make only local decisions.

The experimental results show that cktrees succeed in improving plan quality under those kinds
of quality metrics. Although the overhead of using cktrees is higher than that of using control
rules, they are able to captures nuances and tradeoffs that are relevant for plan quality. In
addition cktrees transfer across quality metrics, since the metric is not captured in them, but
only considered when the cktrees are used during planning.

Chapter 5

Related Work

This chapter describes other research related to this dissertation. Our work is a contribution to
the area of machine learning for Al planning systems. The first section of this chapter reviews
other work in that area. QUALITY can take advantage of the problem solving experience of a
human domain expert, and thus is related to the systems called learning apprentices. Section 5.2
discusses some of that work. Finally Section 5.3 examines other approaches to the problem of
generating good plans in the planning community. QUALITY differs from them in its learning
view.

5.1 Learning Search-Control for Planning

The approach to acquiring quality-enhancing control knowledge described in this thesis falls in
the broader category of systems that learn problem-solving expertise [Mitchell, 1983]. Most of
the research to date on learning search-control knowledge for planning in particular has focused
on making planning more efficient, i.e. on speed-up learning. Several techniques have been
used in this framework, including learning search control knowledge [Mitchell et al., 1986,
Minton, 1988, Etzioni, 1990, Pérez and Etzioni, 1992, Borrajo and Veloso, 1994a, Katukam and
Kambhampati, 1994], macro-operators [Fikes et al., 1972, Korf, 1985, Cheng and Carbonell,
1986, Segre et al., 19931, chunking [Laird ez al., 1986], abstraction hierarchies [Knoblock, 1994,
Christensen, 1990], and problem-solving cases [Veloso, 1994]. Many of these systems report
considerable reductions in the amount of search, but in general they do not pay attention
to plan quality issues. Search reductions in speed-up learning systems frequently are due
to taking advantage of or minimizing the effects of goal interactions. When this happens,
search time is typically reduced and better solutions tend to be found. These solutions are
generally shorter in length, and more direct [Minton, 1988, Ryu and Irani, 1992, Veloso, 1994].
Knoblock [1994] reports some small reductions in solution length by using automatically built

193

194 CHAPTER 5. RELATED WORK

abstraction hierarchies to guide search in a hierarchical planner. However there is no guarantee
that short plans at high abstraction levels lead to short plans at the ground level or that the
best abstract solution will be the most useful for refinement [Bergmann and Wilke, 1995].
Veloso [1994] also reports smaller solution lengths obtained by the analogical problem solver
in PRODIGY due to the strategy chosen (random interleaving) for merging multiple cases during
replay.! The quality metric used in all these cases is plan length.

Some recent research has started to focus on learning about plan quality. In work independent
and simultaneous with ours, Iwamoto [1994] has developed an extension to PRODIGY to solve
optimization problems, and an explanation-based learning (EBL) method to learn control rules
to find near-optimal solutions in LSI design. The quality goals are represented explicitly
and based on the quality of the final state. QUALITY instead represents the quality of the
plan.? The learning method is similar to QUALITY’s control-rule learning algorithm in that it
compares two solutions of different quality. It builds an explanation by backpropagating the
weakest conditions, but excluding the conditions expressed in terms of the predicates related
to quality. QUALITY however makes use of the quality evaluation function to determine the
relevant conditions, which we believe leads to more succinct rules. Iwamoto’s system learns
operator preference rules. QUALITY can learn in addition bindings and goal preference rules.
Both systems build incomplete explanations, which lead to over-general rules. Iwamoto’s
system deals with them by constructing a generalization hierarchy of the learned rules, and
giving priority to the most specific rule (according to the hierarchy) among the matched ones.
QUALITY instead learns priorities among the conflicting rules, as it may not be possible to
order them in terms of a specificity hierarchy (see the examples in Section 3.11.4 and 3.11.5).
Iwamoto’s method does not allow user guidance and uses exhaustive search until the quality
goal is satisfied to find the best solution. This is possible because of the relatively small size of
the search space of the LSI examples used.

HAMLET [Borrajo and Veloso, 1994b, Veloso et al., 1995] learns PRODIGY4.0 control rules that
improve both planning efficiency and also the length of the plans generated, by a combination
of bounded explanation and induction. Instead of relying on a comparison of pairs of complex
plans as in QUALITY, HAMLET assumes that the learner is trained with simple problems for
which the planner can explore the space of all possible plans to find the optimal one(s), and
does not take advantage of human expert guidance. The quality metric is not used during the
explanation process. Over-general rules in HAMLET are refined by looking at episodes in which
they lead to wrong decisions and modifying their applicability conditions. QUALITY instead
learns priorities among rules that match simultaneously and give conflicting preferences.

Since both HAMLET and Iwamoto’s system learn control rules, they may suffer of the limitations

ISection 4.7.1 compares further this thesis work with PRODIGY/ANALOGY.
2In some domains (robot control, assembly, and organic synthesis) the quality of the sequence of operators is
important. In contrast, in some design domains (scheduling and circuit design) the quality of the final state is what

matters [Kibler, 1993].

5.1. LEARNING SEARCH-CONTROL FOR PLANNING 195

of using control rules as representation formalism for control knowledge that we discussed in
Section 4.1 when quality metrics grow in complexity. Our cktrees address those limitations
and can be reused across different quality metrics.

HAMLET, Iwamoto’s system, and QUALITY address the issue of the intractability of construct-
ing complete explanations [Mitchell er al., 1986]. Tadepalli [1990] notes that in general,
intractability can arise from many sources, such as missing information, need for optimal
solutions, or the presence of an active adversary. The solution followed by all these ap-
proaches is building incomplete explanations. As a consequence they may learn over-general
rules. Early work by Minton in the context of learning for game playing [Minton, 1984,
Minton, 1985] suggested that it may be better to learn rules that recommend plausible good
moves rather than provably optimal moves [Tadepalli, 1989]. LEBL [Tadepalli, 1989, Tade-
palli, 1990] confronts the intractable theory problem in game domains also by generalizing
incomplete explanations and incrementally refining the over-general knowledge thus learned
when met with unexpected plan failures. In contrast with our work, refinement occurs by
introducing exceptions. Other systems deal with the intractability of complex theories by mak-
ing simplifying assumptions and refining the learned knowledge upon failure [Chien, 1989,
Bhatnagar, 1992, Ellman, 1988]. To our knowledge none of these systems included plan quality
concerns as a target for learning or worried specifically about plan quality issues. QUALITY fo-
cuses precisely on those. We agree with Kibler [1993] in that “the major concern for real-world
problems is the quality of the solution and not the speed at which the solution is reached. The
value of EBL should not be measured by how much efficiency is improved, but by how much
solution quality is improved.”

SteppingStone [Ruby and Kibler, 1991] learns sequences of subgoals to to deal with interactions
among subproblems. These sequences have the mixed properties of macro-operators and control
rules. It allows soft constraints which measure the quality of a solution. These constraints
are treated as subgoals and ordered along with the other problem subgoals by the learned
knowledge. In its application to VLSI design SteppingStone is able to optimize multiple
constraints (critical path delay and number of gates) simultaneously in spite of the tradeoffs
among them. SteppingStone does not learn operator or binding choices, but uses local search
guided by the learned goal sequences, which performs quite well in the VLSI domain chosen.
It relies in training problems that are small enough for local search alone to produce optimal
designs. EASe [Ruby and Kibler, 1992] is a generalization of SteppingStone, in which problem
solving knowledge about goal sequences is learned and stored in the form of episodes (or
cases). The episode indexing mechanism orders them by the amount they can improve upon
the subgoal they are relevant for, thus using the quality metric to retrieve the best relevant
episode.

R1-Soar’s task [Rosenbloom et al., 1985] is computer configuration. In some of R1-Soar’s

problem spaces the goal includes optimizing over some criterion and therefore the best solution
is found given enough computational resources. Search control knowledge learned by chunking

196 CHAPTER 5. RELATED WORK

prunes considerably the search space allowing the system to satisfy the optimization goals. (It
gets rid of search altogether in some problem spaces.) The learned chunk contains conditions
for the aspects that were accessed when solving the subgoal. It makes no distinction between
decisions to reduce search and decisions to prefer better solutions. QUALITY instead explains
the difference in quality between pairs of paths (solutions), rather than unioning what was
relevant along the two paths. Therefore it may be able to build more general rules.

It is interesting to note that although our work focuses only on learning about plan quality, there
is an implicit relationship with efficiency. If planning consumed few computational resources,
the planner could explore the whole search space and find the optimal solution. However in
practice this is not possible within reasonable computational bounds and motivates the need
for control knowledge, both efficiency-improving and quality-improving. Efficiency control
knowledge prunes portions of the search space and may allow a planner without quality-
improving knowledge to further explore the space and improve the quality of its solutions
within a given limit of computational resources [Williamson and Hanks, 1994, Rosenbloom et
al., 1985]. On the other hand, the knowledge learned by QUALITY improved not only solution
quality but also the planner’s efficiency by leading it to a solution faster (Section 3.13.3.2).3
Kibler [1993] proposes a framework in which planning efficiency, probability of solving a
problem, and quality of the solution are instances of the definition of the quality of a problem
solver.

Some efforts in other areas of machine learning have analyzed the tradeoffs between different
goals for learning, namely learning time, accuracy of the learned knowledge, and cost of
making mistakes if that knowledge is not correct [Provost and Buchanan, 1992, desJardins,
1991]. MAX [Provost, 1993] judges learned potential concept descriptions based on a linear
polynomial that factored in both accuracy and cost.

5.2 Interacting with a Human Expert

Because of the large search spaces in complex domains, finding good enough plans from which
to learn can be computationally expensive. On the other hand, human expertise is available
in many domains, and can be advantageously used to help the system find useful strategies to
obtain good plans. For this reason our architecture is designed so it can benefit from human
guidance. The general idea of systems taking advice was proposed by McCarthy [1968].
Systems that learn from different types of human expert guidance fall are known as learning
apprentice systems [Mitchell et al., 1990]. Some of these systems learn by observing expert
actions [Mitchell et al., 1990, Martin and Redmond, 1989, Wilkins, 1988, Dent et al., 1992,
Wang, 1995]. Others attempt to solve problems and then allow the expert to critique their

3Discussions with Jon Gratch and Steve Chien pointed out this way of looking at quality control knowledge.

5.2. INTERACTING WITH A HUMAN EXPERT 197

decisions [Laird ez al., 1990, Tecucci, 1992, Huffman and Laird, 1994, Porter and Kibler, 1986].
QUALITY falls in the latter category, although the expert does not critique problem solving
decisions directly but only the final plan in order to make oblivious the planning algorithm
and representation language to the expert. Learning apprentices rely in different degrees on
the expert’s interaction, from a non-intrusive observation (for example [Mitchell et al., 1990,
Dent et al., 1992, Wang, 1995]) to direct advice at decision points [Golding ez al., 1987,
Laird et al., 1990] or the expert supplying illustrative examples within the system’s current
knowledge grasp [Golding ef al., 1987]. QUALITY can work autonomously (without human
expert interaction) as the quality metric is known to the planner and it can always solve the
problem from first principles.

Control knowledge used in LEAP [Mahadevan, 1990] to rank alternative circuit implementa-
tions (regarding power or delay) of a boolean specification is learned by asking a user to select
one operator from a list of those that are applicable to refine the current specification. Thus
the user directly provides the problem solver with an example of a control decision. Domain
theories to estimate circuit cost are incomplete at the lower levels of design. LEAP uses deter-
minations to form simple partial theories of circuit cost; they express approximate correlations
between attributes that can be computed at the abstract levels. They are used to discriminate
among alternative operators, and also to further refine the theory by explaining subsequent
decisions. A form of explanation-based learning is used to propagate the information in the
user’s control decisions to refine the partial cost theory. The learned rules are over-specific
and cannot guide high-level abstract decisions because the explanations built use very simple
terms; thus it is restricted to learning simple boolean-level control rules.

Robo-Soar [Laird et al., 1990] (see also [Golding et al., 1987]) actively seeks guidance while
solving problems. The problem solver does not build plans but picks the next action given the
current state and outside advice. When the system is not able to select the next operator it asks
for guidance among the acceptable operators at that point. Therefore guidance is at the level of
individual decisions instead of complete plans. Guidance acts as a heuristic and is verified by
the internal problem solver, which then generates chunks [Laird et al., 1986] using only those
elements of the working memory necessary to derive the result. By being situated in the state in
which the decision must be made, chunking can learn the relevant conditions for the guidance
to apply in the future. PRODIGY’s glass-box approach (Appendix A) makes any problem-solver
state during search available at any time, including at the end of problem solving. Therefore
QUALITY does not need to learn while problem solving is happening. The goal of producing good
plans and PRODIGY4.0’s problem solving algorithm make the operationalization of the outside
guidance a more involved process. QUALITY uses the quality metric to guide learning instead
of just gathering the weakest preconditions for the application of the guidance. Robo-Soar’s
approach to correcting the learned control knowledge is to increase the interaction between the
expert and the system so the expert can point out the relevant features that caused the success
or failure of the system’s choice. QUALITY relies in very simple, if none, expert guidance.

198 CHAPTER 5. RELATED WORK

Search control knowledge can also be acquired by knowledge acquisition methods [Gruber,
1989, Joseph, 1992], as extracting from the human experts justifications for their choices.
QUALITY instead has fully automated the acquisition task by using a purely machine-learning
approach. The expert, if at all present, does not need to make explicit the reasons for the choices
of plan steps. In addition, its focus is on quality-enhancing control knowledge.

Recent research has pointed out the role of planning systems as personal assistants to human
experts as a requirement in real-world domains [Chien et al., 1994, Muscettola and Pell, 1994,
desJardins, 1994, Gutknecht ef al., 1991]. There is a growing interest for mixed-initiative
systems in which both humans and machines can make contributions to a problem solution,
often without being asked explicitly (Jaime Carbonell, Sr., cited in [Burstein and McDermott,
1994]). Although QUALITY is still far from that description, it is able to interact with an expert
and incorporate her/his expertise to use in future problem solving. Guided by QUALITY’s learned
knowledge, the planner can offer different alternative plans for a given problem, each of them
good according to some quality metric.

In the domain of scheduling two interesting pieces of work, CABINS [Sycara and Miyashita,
1994] and the system described in [Hamazaki, 1992], acquire user preferences to generate
good schedules.* Both pieces of work are motivated by the fact that which is a better schedule
depends on user preferences, which balance conflicting objectives and tradeoffs, and are difficult
to express as a cost function. CABINS acquires those preferences in the form of repair tactics to
improve sub-optimal schedules, and of ways to evaluate those repairs. The acquired preferences
are stored as cases and used to guide the iterative solution optimization of job shop schedules.
The knowledge acquired by CABINS is on how to fix a sub-optimal complete schedule,
while QUALITY learns knowledge to guide the generation of a good plan in the first place. In
Hamazaki’s system the expert specifies directly quality factors, their characteristics (hard/soft,
local/global) and priorities among them in as much detail as possible. These quality factors
are used during scheduling. The resulting schedule is then critiqued by the expert. If it is not
satisfactory, the expert specifies which factors should be modified. QUALITY assumes instead
that a quality metric is available and therefore can function autonomously without the human
expert. In future work we would like to loosen that assumption, given what Sycara, Miyashita,
and Hamazaki suggest about how quality knowledge is represented in certain domains, and
explore how the quality metric can be built from the expert’s interaction.

3.3 Planning Approaches to Generating Good Quality Plans

This section overviews planning research on generating good plans. Much of the work on
planning to obtain good plans has aimed at taking advantage of goal interactions. We describe

4Thanks to Austin Tate for the pointer to Takashi Hamazaki’s work.

5.3. PLANNING APPROACHES TO GENERATING GOOD QUALITY PLANS 199

some of that work. Then we overview some research on decision theory and planning related
to this dissertation. Next we review some domain-specific approaches to generating quality
plans, and we end with a brief overview of different types of quality metrics.

5.3.1 Plan Quality and Goal Interactions

Section 1.3.1 described the effect of the interactions between conjunctive goals in the quality of
the plans that solve them [Wilensky, 1983, Pollack, 1991, Nau, 1993, Pérez and Veloso, 1993].
Wilensky [Wilensky, 1983] analyzes the different types of goal interactions and develops meta-
planning mechanisms to deal with them. When a goal overlap, or positive goal interaction
between a planner’s goals, occurs, his planner is able to carry out an action that is in the service of
a number of goals at once. Goal overlap situations provide opportunities to achieve goals more
economically than they could be achieved otherwise, and the planner prefers efficient plans over
inefficient ones. Nau [1993] refers to these situations as enabling-condition interactions. This
principle also seems to be the underlying justification for a number of processes incorporated
in other planning systems. Pollack uses a related strategy called overloading [Pollack, 1991,
Pollack, 1992]. Several of NOAH’s critics [Sacerdoti, 1977] including “use existing objects,”
“eliminate redundant preconditions,” and “optimize disjuncts” are motivated by this idea and
correspond to particular kinds of goal overlap situations. Although these strategies are rather
general, they can lead to suboptimal plans in some cases (e.g. using existing objects can
be bad if robustness is a major plan quality concern, as in the space shuttle domain). In
the case of QUALITY the learned knowledge takes advantage of goal interactions. But those
goal interactions are learned and exploited insofar as they lead to good plans according to the
domain-specific quality metric (see for example Section 3.9.1).

The LCOS planning strategy (Least Commitment to Operator Selection) described in [Hayes,
1994] is related to our use of control knowledge trees. The motivation for LCOS is to take
a global view of the plan in order to make globally optimal operator choices. Commitments
to particular operators are made only when operator choices for all goals have been explored.
When solving a problem with multiple goals, an AND/OR tree is constructed containing all
goals and one or more candidate operators for them; that tree is searched to find both positive
(cost sharing) and negative interactions, and then a set of operators is chosen that satisfies
all the goals and maximizes the quality criteria for the domain. In order to limit the search,
heuristics used by human planners (machinists) are used, such as which alternatives tend to
be more useful. Hayes proposes the use of abstraction or the modification of the operators
preconditions to reduce the search space and indicates that these are good candidates to be
learned automatically. In contrast, QUALITY’s cktrees are learned from past experience and
reused (instead of built for each problem solving episode) and search in them is limited by the
alternatives that proved useful in the past. Instead of exploring alternatives for all the goals, as
in LCOS, past experience captured in the cktrees dictates which cktrees, and thus which goal

200 CHAPTER 5. RELATED WORK

interactions, to explore. The cktrees provide not only operator guidance but also instantiations
of those operators (which are also relevant for generating good plans).

Some planners solve multiple-goal problems by developing separate plans for the individual
goals, combining these plans to form a naive plan for the conjoined goal, and then performing
optimizations to yield a better combined plan [Nau ez al., 1990, Yang ez al., 1992]. However they
restrict the types of goal interactions that may happen. In this context, the quality of a plan is only
considered as far as dealing with and taking as much advantage as possible of goal interactions.
A similar mechanism is also used by some domain-dependent planners [Hayes, 1990, Nau, 1987,
Karinthi et al., 1992].

Several systems perform plan debugging as their problem solving strategy [Sussman, 1975,
Hammond, 1987, Simmons, 1988b]. They employ heuristic rules to generate an initial hy-
pothesis and then debugging if the hypothesis is incorrect. Therefore they fix planning failures
(not execution failures). An example is the Generate, Test and Debug paradigm [Simmons,
1988b] in which the debugger analyzes causal explanations for why a bug arises and fixes it
by replacing those assumptions. The debugger is only used if the heuristic generator produces
an incorrect hypothesis. In contrast our planner generates correct plans and our goal is not to
fix them but to improve their quality. Our approach does not perform post-facto modification
of the plans, but analyzes the problem solving process to extract knowledge that will guide the
problem solver towards better solutions.

5.3.2 Decision Theoretical Planning

Recent research has focused in the application of decision theory to planning. This section
overviews some of that work relevant to this dissertation. In general optimization techniques
in operations research require pre-specifying the available alternatives and thus are not di-
rectly applicable to knowledge-based symbolic problem-solving. Symbolic planning provides
methods for representing planning problems and generating alternative plans for goals. On
the other hand decision theory provides a method for choosing among alternatives and a lan-
guage that allows reasoning about utility and uncertainty. However it provides no guidance
in structuring planning knowledge, no way of generating alternatives, and no computational
model [Haddawy and Hanks, 1993]. Utility functions can be arbitrarily expressive but may
not be amenable at effective problem solving. At worst a problem-solver is forced to generate
complete plans, apply the utility function, and choose the plan with the highest expected value.
To plan effectively the planner must be able to evaluate the (potential) quality of (incomplete)
plans as they are generated in order to discard unpromising ones early in the process. The
approach followed by [Feldman and Sproull, 1977] was to add restrictions (probability and
utility models) to classical planning algorithms. SUDOPLANNER [Wellman, 1988] reasons about
the relative value (dominance) of plans or plan classes. These two pieces of work did not
provide empirical investigations of tractability and did not exploit domain-specific heuristics.

5.3. PLANNING APPROACHES TO GENERATING GOOD QUALITY PLANS 201

DRIPS [Haddawy and Suwandi, 1994] structures actions into an abstraction hierarchy and re-
fines plans whose expected utility is known within an interval. In general our quality metrics
are simpler than the utility functions proposed by the systems above and focus just on quality
(utility) and not uncertainty (see [Blythe, 1994] for probabilistic planning in the context of the
PRODIGY architecture).

The PIRRHUS planner [Williamson and Hanks, 1994] is an interesting extension of the UCPOP
least-commitment planner [Penberthy and Weld, 1992] with a utility model that allows goals
whose value is a function of their satisfaction time, and plan cost as a function of consumption
and replenishment of resources. PIRRHUS uses branch-and-bound search in the space of partial
plans. Each time a complete plan is generated it computes its exact utility and compares it
to the-best found so far. If it is better, it is kept and the bound updated. Partial plans with
worse utility are discarded and planning terminates when the plan queue is empty. Therefore
it guarantees to find optimal plans (given enough computational resources). Williamson and
Hanks empirical tests on a truck world show how heuristic search-control knowledge (inspired
by that of PRODIGY) allows PIRRHUS to find a complete plan more quickly and therefore make
it tractable. They plan to explore other domains, including more realistic ones.

This thesis chooses instead a learning approach. We confronted the problem of making op-
erational at problem solving time the domain-specific definition of the quality (utility) of a
plan. In the case of learned control rules, they capture the quality metric and directly guide the
planner in the path of a good solution. In the case of cktree learning, the range of alternatives
explored during cktree matching is guided and constrained by knowledge of previous planning
experience (which actions produced good plans in the past, and how goals interacted). In both
cases it is the learned knowledge what makes the problem tractable and produces plans of good
quality. The learned control knowledge could be integrated with the approach described above
as Williamson and Hanks’s results suggest. We agree with Williamson and Hanks in that, since
finding an optimal plan is “at least as hard as classical planning, [...] the best we can hope for
is an algorithm [aimed at finding an optimal plan] that is heuristically tractable, that is, one
that can perform well on a class of problems in a particular domain, given an adequate body
of domain-specific knowledge.” In our approach that “given” domain-specific knowledge is
automatically acquired from planning experience.

Simon introduced the idea of “satisficing” [Simon, 1981] arguing that a rational agent does not
always have the resources to determine what the optimal action is, and instead should attempt
only to make good enough, to satisfice. Some current work on planning (for example [Pollack,
1992]) is about the tradeoff between getting around to acting, and spending enough time
thinking. Such resource-bounded reasoning leads to suboptimal behavior. In our work we do
not consider the tradeoff between acting and planning time. We acknowledge the computational
cost of finding the optimal behavior and do not claim that the acquired control knowledge will
necessarily guide the planner to optimal plans, but that plan quality will improve incrementally
over experience as the planner sees new interesting problems and interacts with the human

202 CHAPTER 5. RELATED WORK

expert.

Another body of work consists of methods to choose and/or learn optimal policies of action.
Some examples are reinforcement learning (e.g. [Lin, 1992]), dynamic programming, and real-
time A* [Korf, 1988]. However these methods have been applied to more reactive models and
not so much to solve complex planning problems.

The complexity of the problem of finding optimal solutions in the blocks world is analyzed
in [Gupta and Nau, 1991] and [Chenoweth, 1991]. In both cases optimal solutions are shortest-
length plans.

5.3.3 Domain-Dependent Approaches

. Inthis section we briefly discuss some domain-dependent approaches to generate quality plans,
in particular focusing in the process planning domain.

Hayes’ MACHINIST program [Hayes, 1990] generates plans in a machining process planning
domain. Human machinists often spend a large amount of time in the early planning stages
looking over the part specification for feature interactions and exploring the limitations that
those features impose on the plan. Machinists have specialized knowledge which helps them
to quickly focus on the situations in which interactions are likely. This knowledge is acquired
through experience. Hayes analyzed the way features interact and encoded this specialized
knowledge in form of rules in the MACHINIST program. This program first constructs a
plan that deals with feature interactions, and retrieves from memory a plan to square the part
(squaring is getting the raw material into a square and accurate shape with the minimum waste
of material). Then these two plans are merged to produce a final plan as short as possible.
Although plan length and plan cost are not the same, machinists and MACHINIST use it as an
estimator of plan cost, because setup cost is almost always a much larger cost than all the other
costs [Hayes, 1995al.

SIPP [Nau and Chang, 1985] is a process planning system that produces plans for the creation of
metal parts. It utilizes a frame hierarchy to represent problem solving knowledge. In particular,
actions have cost slots that contain relative costs derived from actual process costs and shop
preferences. The problem solving strategy utilizes a least-cost-first branch and bound algorithm
to find the least-cost sequence of processes for making each of the part’s machinable surfaces.
SIPP selects the least cost manufacturing method for an individual feature, in isolation from
considerations about other features, and therefore it does not care to find an overall low-cost
plan. SIPP is domain-dependent although they anticipate it will be useful in other domains as
well.

GARI [Descotte and Latombe, 1985] is a process planner for metal cutting that uses a constraint

satisfaction algorithm. Knowledge is represented by manufacturing rules: the left-hand side
consists of conditions about the desired part, the available machines, and/or the machining

5.3. PLANNING APPROACHES TO GENERATING GOOD QUALITY PLANS 203

plan. The right-hand side contains pieces of advice representing technological and economical
preferences, and so it encodes knowledge about the quality of the plans. In contrast with
PRODIGY, there is no separation in the representation between domain knowledge and search
control knowledge. Experts have to assign a weight to each piece of advice according to the
importance of its satisfaction. These weights are an extremely condensed representation of a
large body of knowledge, and human experts have difficulty in expliciting them. The initial
state of a problem contains global pieces of information such as the quality desired for the part.
To our knowledge this system has not been applied to other domains.

In contrast to these approaches QUALITY avoids the knowledge acquisition effort to capture
quality control knowledge by learning it from problem solving experience when a quality
metric is available. QUALITY’s learning mechanisms are fully independent of the application

domain.

IRS [Sun and Weld, 1992] is an interesting approach to diagnosis and repair that combines
partial-order planning with model-based diagnosis. IRS uses a cost function that accounts for
both the eventual need to repair broken parts and the cost of probing to make the diagnosis. The
top-level of IRS is a diagnostic reasoner, and the planner (UCPOP) is called as a subroutine to
generate actions sequences (given a fault suggested by the diagnoser) and estimate their cost.
That cost is used by the diagnoser as part of the larger cost function to eventually find the
best diagnostic operation. However the planner does not use guidance or the cost function to
generate a good plan. All the quality decisions are made by the diagnoser. Thus the problem
is different from the one QUALITY attacks.

5.3.4 Different Quality Metrics

Section 1.2 briefly described there groups of quality metrics. Figure 5.1 shows the taxonomy
in more detail. We refer the reader to [Pérez and Carbonell, 1993], from where the taxonomy
is taken, for details. Of the classes of metrics shown, QUALITY has concentrated on reducing
the plan execution cost. Note that the taxonomy only captures plan quality metrics, and not
planning efficiency metrics.

CHAPTER 5. RELATED WORK

204

max
solution
\\\\\\Fﬁ?
min max max
execution cost plan client

\\\\\l\\\\\\ / Hov¥mnbmmm vwm».mnnﬁ

i : . I\llnl\l\l\\llull |||‘|.I||.|I.|I||.|||||. max max
min min min min max comfort accuracy

execution agent skill material probability probable probability of (o o rrayel (e.g.fine-grain
ailure

min min min min max (e.g.contain- max
time per consumable energy non-consumable Hmn<nuvnm able failures) number of
operator resources (e.g.fuel, resources ° uwmw m%num viable

’ electricit: cesstul plan alternatives
BMM\\\ lllwwa ctr <rmﬂ\\\ ////. {e.g. deriv.anal.) e —
non-renewable renewable scheduled time n#MMme prefer max max max
resources resources for machines ; : . lines with *built-in*
! (e.g.plane non-interacting "partial success" .
Aw.n. break (e.g. buy agents, planes, flights) plans possibility ::meHOMmm {pre membmav
ast key) more metal) ete, alternatives alternatives
_ & (for run-time and
prefer .l replanning contingencies
linearly plan and recovery)
min decomposable redundancy

lan i
.||W\ml\oosbwmmwmw. plans
min min
op complexity plan
(choose ops less structure
likely to fail or complexity
act unpredictably} \ /

min min
plan plan topology
length complexity
(resource concurrency,

dependencies, ..)

Figure 5.1: A taxonomy of quality metrics (from [Pérez and Carbonell, 1993]). These metrics can be classified in three broad categories,
namely those regarding execution cost, those related to robustness of the plan obtained, and those considering the degree of
satisfaction of the client with the solution obtained. Note that this taxonomy does not consider planning efficiency metrics.

Chapter 6

Conclusion

In this final chapter we summarize this thesis and its contributions, and outline some directions
for future research.

6.1 Summary of the Thesis

This thesis has explored a general framework to solve the problem of generating good plans
in Al planning systems. The approach chosen has two fundamental characteristics. The first
one is representing knowledge about plan quality as operational, planning-time search-control
knowledge. The second one is automatically acquiring such control knowledge from planning
experience in a machine learning approach. Our motivation has been that typically the kind of
knowledge about quality that is available takes the form of a cost function or quality metric.
However such knowledge is non-operational, as it cannot be used until after a plan is produced.
The problem thus is how to translate such quality knowledge into planning-time decision
control guidance. Automating this mapping based on planning experience and the (optional)
interaction with a human domain expert has been the objective of this thesis. This general
framework has been implemented in QUALITY, an architecture built on top of PRODIGY4.0,
the most recent nonlinear planner of the PRODIGY architecture. PRODIGY has proved a suitable
vehicle for our investigation because it has clear explicit decision points that permit the infusion
of automatically, or manually, acquired control knowledge to improve plan quality.

In this general framework we have developed two distinct learning mechanisms to efficiently
acquire quality control knowledge. Both mechanisms are domain independent and require only
a domain definition, a metric of the quality of the plans specific to that domain, and problems
from which to draw problem solving experience. They differ in the language used to represent
the learned knowledge, namely quality-enhancing search control rules and control knowledge
trees. They also differ in the kinds of quality metrics they are suited for.

205

206 CHAPTER 6. CONCLUSION

The learned quality-enhancing control rules provide effective operator, bindings, and goal
ordering guidance when the quality metric does not require reasoning about complex global
tradeoffs. They lead to near-optimal plans in many cases. They are highly operational and
very efficiently used at planning time. The performance in improving plan quality of the
learned control knowledge trees is equivalent to that of control rules for simpler non-interacting
situations, and superior for more complex metrics that require reasoning about tradeoffs and
taking a global view of the plan to make a set of globally optimal choices. However using
control knowledge trees is computationally more expensive and may reduce planning efficiency,
since cktrees are less operational than control rules. Control knowledge trees do not provide
goal ordering control knowledge. In our experiments we have used them together with the goal
preference rules learned by the first method and achieved a synergistic effect. An important
advantage of control knowledge trees is their robustness to changes in the quality metric,
which is parameterized. On the other hand the learned control rules are quality metric specific,
are invalidated if the metric changes, and must be relearned. Integrating the two learning
mechanisms to take advantage of their complementary characteristics remains an open issue.

In addition to acquiring control knowledge from planning experience, QUALITY can benefit
from the interaction with a human expert in the application domain. This interaction is at the
level of plan steps. Our objective was that the expert could remain oblivious to the planning
algorithm and representation language, thus reducing the knowledge engineering effort of
acquiring quality-enhancing control knowledge.

QUALITY has been fully implemented and its empirical evaluation has shown that the learned
knowledge significantly improves the quality of the plans without a considerable loss of planning
efficiency. In fact, in some of our experiments the learned knowledge improves planning
efficiency, in addition to plan quality. Although the approach, the learning mechanisms, and
the learned knowledge representations have been developed for the PRODIGY4.0 planner, the
framework is general and addresses a problem that any planner that treats planning as search,
as a constructive decision-making process, must confront. Therefore our framework is suitable
for other planners.

Generating good plans is an essential step in moving our current Al planners from research
tools towards real-world applications. This thesis is a step in that direction.

6.2 Future Research Directions

This thesis has opened some lines of future research. They are discussed in this final section.

6.2. FUTURE RESEARCH DIRECTIONS 207

6.2.1 Improvements to the Learning Architecture

The implementation of the learning algorithms described in this thesis has left room for im-
provements. Some of them are mentioned here. One is the use of other search techniques to
traverse the cktrees, for example interval-based search as we discussed in Section 4.7.2.

It is interesting to explore the effect of the training problems and the training sequence for
learning cktrees. Which are good training examples? Since cktrees are used to estimate the
cost of different alternatives, problems that require a deeper exploration of the search space
may lead to cktrees that provide better estimates. In our experiments we have noticed that if the
“right” example is seen first (e.g. one in which the complete set-up must be built for machining
a hole) the learned knowledge is enough to provide guidance in a whole set of related problems.
A teacher can be useful in providing examples that explore parts of the space for which the
learned knowledge is not able yet to produce good quality estimates. The cktrees do not capture
alternatives that have not been seen in past problems, and thus they are not suggested as good
alternatives. It would be nice to have an exploratory mode in which the learner, instead of
preferring something that has worked well in the past, would try something new and learn from
it.

The interaction of the learner with the domain expert through the Interactive Plan Checker
(Section 3.2) has not been at the core of our research, and in fact QUALITY can learn without it.
The interaction can be improved in different directions: offering further default alternatives,
flexibility to retract steps, a better display of the current state, and the integration with PRODIGY’s
graphical user interface. As planners address more realistic problems and move towards
more interactive, mixed-initiative approaches, the role of user interfaces increases. Quoting
[Lieberman, 1994], “the machine learning problem is really one of interaction. The key is to
establish an interaction language for which the human teacher finds it easy to convey notions
of interest, and at the same time, for which the computer as a student is capable of learning
the appropriate inferences.” QUALITY closes the gap between the expert advice and the level
of inferences required by the learner. Machine learning for planning systems can get increased
leverage by a careful interaction with the experts to whom they support, especially when solving
problems closer to the real world. We would like to further explore that interaction in the larger
context of PRODIGY as an integrated planning and learning system.

6.2.2 Other Quality Metrics and Other Domains

As planning and learning research moves towards real-world applications, plan quality issues
are becoming increasingly important [Chien et al., 1994]. A challenging future direction for
our work is to apply the quality-improving control-knowledge learning techniques to real-world
domains. The process planning domain we have described can easily contemplate more realistic
quality factors. For example the choice of a shaping, milling, or turning operation to reduce

208 CHAPTER 6. CONCLUSION

a part’s size depends on many variables such as price, desired accuracy, or tool life [Zhang
and Lu, 1992]. Database query optimization [Siegel et al., 1991, Arens et al., 1993] is a
knowledge-intensive domain that has been cast out as an interesting planning problem that we
plan to explore. In a realistic transportation domain [Strom, 1994] factors such as weather
forecasts, vehicle availability, or seasonal increases in package traffic affect plan quality.

More realistic domains may require to extend the class of quality metrics allowed by our
algorithms. Section 1.2 briefly presented different factors that, in addition to plan execution
cost, influence plan quality. These may also include maximizing a plan’s robustness, reliability,
or possibility of recovery, minimizing its uncertainty, or maximizing other factors that are not
easily quantifiable. Even more challenging is the fact the these factors can appear combined
and lead to tradeoffs. Additionally in some domains user preferences are a more natural way
than cost functions to represent plan quality [Sycara and Miyashita, 1994, Hamazaki, 1992].
We plan to further explore the gamut of quality metrics. Our control knowledge trees formalism
can deal with tradeoffs in the metric. Although we have only considered plan cost factors, the
tradeoffs could be due to other kinds of factors. However due to the way the quality metric is
currently used by the cktree matcher, it must be additive on the operator costs, or at least the
cost of the plan must be monotonically increasing in the costs attached to the subgoals in the
plan trees or cktrees. Currently the metric is an input to the learner, and it is consistent with
the expert’s advice. Acquiring the metric itself from the interaction with the expert is another

open problem.

6.2.3 Quality and Planning Efficiency Tradeoffs

Although we have concentrated on improving plan quality, we have generally ignored the
tradeoffs between finding good plans and finding them quickly, that is, between the cost of
plans and the cost of planning. This is an open avenue for our work. If the best and the second
best solutions are close in cost, is it worth the time spent finding the best one? These issues are
especially interesting when plan generation and plan execution are interleaved. Some questions
to address are: Are there tradeoffs between response time and quality? Is it better to find the
best solution or to find quickly a good enough solution? Can we generate good, robust plans?
How to recover from execution failures without compromising (too much) quality?

The two learning algorithms subject of this thesis have different characteristics that can be
seen as complementary. Control rules are applied efficiently to make local choices. Control
knowledge trees are computationally more expensive to use but provide global guidance in the
presence of non-local tradeoffs. An interesting research direction is to explore an architecture
in which both representations are combined. A reasonable architecture could use simple,
local control rules when the distinctions among choices are clear, and only use global control
knowledge trees when needed. Other work [Simmons, 1988a, Goodwin, 1994] addresses these

6.2. FUTURE RESEARCH DIRECTIONS 209

meta-level issues on how to achieve good performance without consuming too many resources
in the process.

6.2.4 Other Planning Techniques

Another line of future work is to apply our quality learning techniques to other classical
planning architectures such as least-commitment planners. We want to analyze what aspects
of the techniques are relevant to the particular planning algorithm used (PRODIGY4.0) and how
they can improve the performance of other planners.

In Section 4.7.1 we compared cktrees with cases. With the ideas we have gathered about quality
metrics and the relevance for plan quality of control decisions during planning, we want to
explore the use of cases to provide that control guidance. What would be needed to extend
PRODIGY/ANALOGY [Veloso, 1994] to deal with plan quality? Which would a good similarity
metric be? It would have to estimate the quality of the case’s solution for the current problem
given that the case may need to be adapted.

210 CHAPTER 6. CONCLUSION

Bibliography

[Arens et al., 1993] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock.
Retrieving and integrating data from multiple information sources. International Journal on
Intelligent and Cooperative Information Systems, 2(2):127-159, 1993.

[Barrett and Weld, 1994] Anthony Barrett and Daniel S. Weld. Partial-order planning: Evalu-
ating possible efficiency gains. Artificial Intelligence, 67(1):71-112, 1994,

[Bergmann and Wilke, 1995] Ralph Bergmann and Wolfgang Wilke. Building and refining
abstract planning cases by change of representation language. Journal of Artificial Intelli-
gence Research, Forthcoming, 1995. Also as technical report: Report LSA-95-07E, Centre
for Learning Systems and Applications, Univ. of Kaiserslautern, Kaiserslautern, Germany.

[Berliner, 1979] Hans Berliner. The B* tree search algorithm: A best-first proof procedure.
Artificial Intelligence, 12:23—40, 1979.

[Bhatnagar, 1992] Neeraj Bhatnagar. Learning by incomplete explanations of failures in re-
cursive domains. In D. Sleeman and P. Edwards, editors, Machine Learning: Proceedings
of the Ninth International Conference, ML92, pages 30-36. Morgan Kaufmann, San Mateo,
CA., 1992.

[Blythe and Veloso, 1992] Jim Blythe and Manuela Veloso. An analysis of search techniques
for a totally-ordered nonlinear planner. In Proceedings of the First International Conference
on Al Planning Systems, College Park, MD, June 1992.

[Blythe, 1994] Jim Blythe. Planning with external events. In Ramon Lépez de Mantaras
and David Poole, editors, Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence, pages 94—101, Seattle, WA, July 1994. Morgan Kaufmann.

[Borrajo and Veloso, 1994a] Daniel Borrajo and Manuela Veloso. Incremental learning of con-
trol knowledge for nonlinear problem solving. In Proceedings of the European Conference
on Machine Learning, ECML94, Sicily, Italy, 1994. Springer Verlag.

211

212 BIBLIOGRAPHY

[Borrajo and Veloso, 1994b] Daniel Borrajo and Manuela Veloso. Incremental learning of
control knowledge for improvement of planning efficiency and plan quality. In Working
Notes of the AAAI 1994 Fall Symposium Series, Symposium on Planning and Learning: On
to Real Applications, New Orleans, November 1994,

[Burstein and McDermott, 1994] Mark H. Burstein and Drew McDermott. Mixed-initiative
military planning: Directions for future research and development. In Mark H. Burstein,
editor, ARPA/Rome Laboratory Knowledge-Based Planning and Scheduling Initiative, Work-
shop Proceedings, pages 467-483, Tucson, AZ, February 1994.

[Carbonell et al., 1992] Jaime G. Carbonell, and the PRODIGY Research Group: Jim Blythe,
Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn, Craig Knoblock, Steven Minton,
Alicia Pérez, (editor), Scott Reilly, Manuela Veloso, and Xuemei Wang. PRODIGY4.0:
The manual and tutorial. Technical Report CMU-CS-92-150, School of Computer Science,
Carnegie Mellon University, June 1992.

[Chang and Wysk, 1985] Tien C. Chang and Richard A. Wysk. An Introduction to Automated
Process Planning Systems. Prentice Hall, Englewood Cliffs, NJ, 1985.

[Chapman, 1987] David Chapman. Planning for conjunctive goals. Artificial Intelligence,
32:333-378, 1987.

[Cheng and Carbonell, 1986] Patricia Cheng and Jaime Carbonell. The FERMI system: Induc-
ing iterative macro-operators from experience. In Proceedings of the National Conference
on Artificial Intelligence, pages 490-495, Philadelphia, PA, 1986.

[Chenoweth, 1991] Stephen V. Chenoweth. On the NP-hardness of blocks world. In Proceed-
ings of Ninth National Conference on Artificial Intelligence, pages 623—-628, Anaheim, CA,
July 1991.

[Chien et al., 1994] Steve Chien, Randall W. Hill, and Kristina Fayyad. Why real-world
planning is difficult. In Working Notes of the AAAI 1994 Fall Symposium Series, Symposium
on Planning and Learning: On to Real Applications, pages 28-33, New Orleans, November

1994.

[Chien, 1989] Steve A. Chien. Using and refining simplifications: Explanation-based learn-
ing of plans in intractable domains. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pages 590-595, Detroit, MI, 1989.

[Christensen, 1990] Jens Christensen. A hierarchical planner that creates its own hierarchies. In
Proceedings of the Eighth National Conference on Artificial Intelligence, pages 1004—1009,
Boston, MA, 1990.

BIBLIOGRAPHY 213

[de Silva, 1995] Rujith de Silva. Reasoning about goal-interactions in non-linear planners.
Thesis proposal. School of Computer Science, Carnegie Mellon University, 1995.

[Dent et al., 1992] Lisa Dent, Jesiis G. Boticario, John McDermott, Tom Mitchell, and David
Zabowski. A personal learning apprentice. In Proceedings of the National Conference on
Artificial Intelligence, pages 96—103, San Jose, CA, 1992.

[Descotte and Latombe, 1985] Yannick Descotte and Jean-Claude Latombe. Making com-
promises among antagonist constraints in a planner. Artificial Intelligence, 27:183-217,
1985.

[desJardins, 1991] Marie desJardins. Probabilistic evaluation of bias for learning systems. In
Proceedings of the Eighth International Workshop on Machine Learning, pages 495-499.
Morgan Kaufmann, 1991.

[desJardins, 1994] Marie desJardins. Knowledge development methods for planning systems.
In Working Notes of the AAAI 1994 Fall Symposium Series, Symposium on Planning and
Learning: On to Real Applications, New Orleans, November 1994,

[Doyle, 1969] Lawrence E. Doyle. Manufacturing Processes and Materials for Engineers.
Prentice-Hall, Englewood Cliffs, NJ, second edition, 1969. Third edition available, 1985.

[Doyle, 1985] Lawrence E. Doyle. Manufacturing Processes and Materials for Engineers.
Prentice-Hall, Englewood Cliffs, NJ, third edition, 1985.

[Ellman, 1988] Thomas Ellman. Approximate theory formation: An explanation-based ap-
proach. In Proceedings of the National Conference on Artificial Intelligence, pages 570-574,
St. Paul, MN, 1988.

[Etzioni, 1990] Oren Etzioni. A Structural Theory of Explanation-Based Learning. PhD thesis,
Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, 1990. Also
appeared as Technical Report CMU-CS-90-185.

[Feldman and Sproull, 1977] Jerome A. Feldman and Robert F. Sproull. Decision theory and
artificial intelligence II: The hungry monkey. Cognitive Science, 1:158-192, 1977.

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing
generalized robot plans. Artificial Intelligence, 3(4), 1972.

[Foulser et al., 1992] David E. Foulser, Ming Li, and Qiang Yang. Theory and algorithms for
plan merging. Artificial Intelligence, 57:143—181, 1992.

214 BIBLIOGRAPHY

[Gil and Pérez, 1994] Yolanda Gil and M. Alicia Pérez. Applying a general-purpose planning
and learning architecture to process planning. In Working Notes of the AAAI 1994 Fall
Symposium Series, Symposium on Planning and Learning: On to Real Applications, pages
48-52, New Orleans, November 1994.

[Gil, 1991] Yolanda Gil. A specification of process planning for PRODIGY. Technical Report
CMU-CS-91-179, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, August 1991.

[Gil, 1992] Yolanda Gil. Acquiring Domain Knowledge for Planning by Experimentation.
PhD thesis, Carnegie Mellon University, School of Computer Science, August 1992. Avail-
able as technical report CMU-CS-92-175.

[Golding et al., 1987] Andrew Golding, Paul S. Rosenbloom, and John E. Laird. Learning
general search control from outside guidance. In Proceedings of the Tenth International
Conference on Artificial Intelligence, pages 334-337, Milan, Italy, 1987.

[Goodwin, 1994] Richard Goodwin. Reasoning about when to plan and what to plan. Thesis
proposal. School of Computer Science, Carnegie Mellon University, February 1994.

[Gratch et al., 1993] Jonathan Gratch, Steve Chien, and Gerald DeJong. Learning search
control knowledge for deep space network scheduling. In Machine Learning. Proceedings
of the Tenth International Conference, pages 135-142, Ambherst, MA, June 1993. Morgan
Kaufmann.

[Gruber, 1989] Thomas R. Gruber. Automated knowledge acquisition for strategic knowledge.
Machine Learning, 4:293-336, 1989.

[Gupta and Nau, 1991] Naresh Gupta and Dana S. Nau. Complexity results for blocks-world
planning. In Proceedings of Ninth National Conference on Artificial Intelligence, pages
629-633, Anaheim, CA, July 1991.

[Gutknecht et al., 1991] Matthias Gutknecht, Rolf Pfeifer, and Markus Stolze. Cooperative
hybrid systems. In Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, IJCAI91, pages 824829, Sydney, Australia, 1991.

[Haddawy and Hanks, 1993] Peter Haddawy and Steve Hanks. Utility models for goal-directed
decision-theoretic planners. Technical Report 93-06-04, Department of Computer Science
and Engineering, University of Washington, June 1993.

[Haddawy and Suwandi, 1994] Peter Haddawy and Meliani Suwandi. Decision-theoretic re-
finement planning using inheritance abstraction. In Proceedings of the Second International
Conference on Al Planning Systems, AIPS-94, pages 266271, Chicago, IL, June 1994.

BIBLIOGRAPHY 215

[Haigh et al., 1994] Karen Zita Haigh, Jonathan Richard Shewchuk, and Manuela Veloso.
Route planning and learning from execution. In Working Notes of the AAAI 1994 Fall
Symposium Series, Symposium on Planning and Learning: On to Real Applications, pages
58-64, New Orleans, November 1994.

[Hamazaki, 1992] Takashi Hamazaki. High quality production scheduling system. In Pro-
ceedings of SPICIS 92, pages 195-200, 1992.

[Hammond, 1987] K. Hammond. Explaining and repairing plans that fail. In Proceedings of
the Tenth International Conference on Artificial Intelligence, Milan, Italy, 1987.

[Hammond, 1994] Kristian Hammond, editor. Proceedings of the Second International Con-
ference on Al Planning Systems, AIPS-94, Chicago, IL. The AAAT Press, Menlo Park, CA,
June 1994.

[Hayes, 1990} Caroline C. Hayes. Machining Planning: A Model of an Expert Level Planning
Process. PhD thesis, The Robotics Institute, Carnegie Mellon University, December 1990.

[Hayes, 1994] Caroline C. Hayes. Planning using least-commitment to operator selection.
In Working Notes of the AAAI 1994 Fall Symposium Series, Symposium on Planning and
Learning: On to Real Applications, pages 65—71, New Orleans, November 1994,

[Hayes, 1995a] Caroline C. Hayes. Personal communication, June 1995,

[Hayes, 1995b] Caroline C. Hayes. QUEM: A method for measuring the solution quality and
experience level of knowledge-based systems. IEEE Transactions on Data and Knowledge
Engineering, forthcoming, 1995.

[Hendler et al., 1990] James Hendler, Austin Tate, and Mark Drummond. Al planning: Sys-
tems and téchniques. Al Magazine, 11(2):61-76, Summer 1990.

[Hendler, 1992] James Hendler, editor. Proceedings of the First International Conference on
Al Planning Systems, AIPS-92, College Park, MD. Morgan Kaufmann, San Mateo, CA,
June 1992.

[Huffman and Laird, 1994] Scott B. Huffman and John E. Laird. Learning from higly flex-
ible tutorial instruction. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, pages 506-512, Seattle, WA, July 1994. AAAI Press/The MIT Press.

[Huffman et al., 1993] S. Huffman, D. Pearson, and J. Laird. Correcting imperfect domain
theories: A knowledge-level analysis. In Susan Chipman and Alan L. Meyrowitz, editors,
Foundations of Knowledge Acquisition: Cognitive Models of Complex Learning. Kluwer
Academic Publishers, Boston, 1993.

216 BIBLIOGRAPHY

[Iba, 1993] Glenn A. Iba. Speedup and scale-up in experiential learning. In Proceedings of
3rd International Workshop on Knowledge Compilation and Speedup Learning, in ML93,
pages 90-95, Amherst, MA, June 1993.

[Twamoto, 1994] Masahiko Iwamoto. A planner with quality goal and its speedup learning
for optimization problem. In Proceedings of the Second International Conference on Al
Planning Systems, pages 281-286, Chicago, IL, 1994.

[Joseph, 1992] Robert L. Joseph. Graphical Knowledge Acquisition for Visually-Oriented
Planning Domains. PhD thesis, Carnegie Mellon University, School of Computer Science,
August 1992. Also appeared as Technical Report CMU-CS-92-188.

[Kambhampati et al., 1993] Subbarao Kambhampati, Mark R. Cutkosky, Jay M. Tenenbaum,
and Soo Hong Lee. Integrating general purpose planners and specialized reasoners: Case
study of a hybrid planning architecture. IEEE Transactions on Systems, Man and Cybernet-
ics, Special Issue on Planning, Scheduling, and Control, 23(6), 1993.

[Karinthi ef al., 1992] Raghu Karinthi, Dana S. Nau, and Qiang Yang. Handling feature interac-
tions in process planning. Applied Artificial Intelligence, 6(4):389-415, October-December
1992. Special issue on Al for manufacturing.

[Katukam and Kambhampati, 1994] Suresh Katukam and Subbarao Kambhampati. Learning
explanation-based search control rules for partial order planning. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 582-587, Seattle, WA, July
1994. AAAI Press/The MIT Press.

[Kibler, 19931 Dennis Kibler. Some real-world domains for learning problem solvers. In
Proceedings of KCSL93, 3rd International Workshop on Knowledge Compilation and Speed-
up Learning (in ML93), Amherst, MA, 1993.

[Knoblock, 1994] Craig A. Knoblock. Automatically generating abstractions for planning.
Artificial Intelligence, 68, 1994.

[Korf, 1985] Richard E. Korf. Macro-operators: A weak method for learning. Artificial
Intelligence, 26:35-77, 1985.

[Korf, 1988] R.E.Korf. Real-time heuristic search: New results. In Proceedings of the Seventh
National Conference on Artificial Intelligence, St Paul, MN, 1988. Morgan Kaufmann.

[Kushmerick ez al., 1994] Nicholas Kushmerick, Steve Hanks, and Danield Weld. An algo-
rithm for probabilistic least-commitment planning. In Proceedings of the Twelfth National
Conference on Artificial Intelligence, pages 1073-1078, Seattle, WA, July 1994. AAAI
Press/The MIT Press.

BIBLIOGRAPHY 217

[Laird et al., 1986] JohnE. Laird, Paul S. Rosenbloom, and Allen Newell. Chunking in SOAR:
The anatomy of a general learning mechanism. Machine Learning, 1:11-46, 1986.

[Laird et al., 1990] John E. Laird, Michael Hucka, Eric S. Yager, and Christopher M. Tuck.
Correcting and extending domain knowledge using outside guidance. In Bruce W. Porter
and Ray J. Mooney, editors, Machine Learning: Proceedings of the Seventh International
Conference, ML90, pages 235-243, Austin, TX, June 1990. Morgan Kaufmann.

[Leckie and Zukerman, 1993] Christopher Leckie and Ingrid Zukerman. An inductive ap-
proach to learning search control rules for planning. In Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI93, 1993.

[Lieberman, 1994] Henry Lieberman. A user interface for knowledge acquisition from video.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 527-534,
Seattle, WA, July 1994. AAAI Press/The MIT Press.

[Lin, 1992] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8, 1992.

[Mahadevan, 1990] Sridhar Mahadevan. An Apprentice-Based Approach to Learning Problem-
Solving Knowledge. PhD thesis, Rutgers, The State University of New Jersey, Department
of Computer Science, May 1990. Technical Report ML-TR-30.

[Marcus, 1990] Sandra Marcus, editor. Knowledge Acquisition: Selected Research and Com-
mentary. Kluwer Academic Publishers, 1990.

[Martin and Redmond, 1989] Joel D. Martin and Michael Redmond. Acquiring knowledge for
explaining observed problem solving. SIGART Newsletter, Knowledge Acquisition Special
Issue, 108:77-83, April 1989.

[McAllester and Rosenblitt, 1991] David McAllester and David Rosenblitt. Systematic non-
linear planning. In Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 634-639, Anaheim, CA, 1991.

[McCarthy, 1968] John McCarthy. Programs with common sense. In Marvin Minsky, editor,
Semantic Information Processing, pages 403—418. MIT Press, Cambridge, MA, 1968.

[Minton et al., 1989] Steven Minton, Jaime G. Carbonell, Craig A. Knoblock, Daniel R.
Kuokka, Oren Etzioni, and Yolanda Gil. Explanation-based learning: A problem-solving
perspective. Artificial Intelligence, 40:63-118, 1989.

[Minton, 1984] Steven Minton. Constraint-bases generalization: Learning game-playing plans
from single examples. In Proceedings of the National Conference on Artificial Intelligence,
pages 251-254, Austin, TX, 1984.

218 BIBLIOGRAPHY

[Minton, 1985] Steven Minton. A game-playing program that learns by analyzing examples.
Technical Report CMU-CS-85-130, School of Computer Science, Carnegie Mellon Univer-
sity, May 1985.

[Minton, 1988] Steven Minton. Learning Effective Search Control Knowledge: An
Explanation-based Approach. Kluwer Academic Publishers, Boston, MA, 1988. PhD thesis
available as Technical Report CMU-CS-88-133, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

[Mitchell ef al., 1986] Tom M. Mitchell, Richard Keller, and Smadar Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine Learning, 1(1), 1986.

[Mitchell et al., 1990] Tom M. Mitchell, Sridhar Mahadevan, and Louis 1. Steinberg. LEAP:
A learning apprentice system for VLSI design. In Yves Kodratoff and Ryszard Michalski,
editors, Machine Learning: An Artificial Intelligence Approach, volume III, pages 271-289.
Morgan Kaufmann, San Mateo, CA, 1990.

[Mitchell, 1983] Tom M. Mitchell. Learning and problem solving. In Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAI83, volume 2, pages 1139-
1151, Karlsruhe, Germany, 1983. Computers and Thought Lecture.

[Mostow, 1983] D. Jack Mostow. Machine transformation of advice into a heuristic search
procedure. In R. S. Michalsky, J. G. Carbonell, and T. M. Mitchell, editors, Machine
Learning, An Artificial Intelligence Approach. Tioga Press, Palo Alto, CA., 1983.

[Muscettola and Pell, 1994] Nicola Muscettola and Barney Pell. Toward real-world science
mission planning. In Working Notes of the AAAI 1994 Fall Symposium Series, Symposium
on Planning and Learning: On to Real Applications, New Orleans, November 1994.

[Nau and Chang, 1985] Dana S. Nau and Tien-Chien Chang. Hierarchical representation of
problem-solving knowledge in a frame-based process planning system. Technical Report
TR-1592, Computer Science Department, University of Maryland, November 1985.

[Nau ez al., 1990] DanaS. Nau, Qiang Yang, and James Hendler. Optimization of multiple-goal
plans with limited interaction. In Proceedings of the Darpa Workshop on Innovative Ap-
proaches to Planning, Scheduling and Control, pages 160-165, San Diego, CA, November
1990.

[Nau, 1987] Dana S. Nau. Automated process planning using hierarchical abstraction. Texas
Instruments Technical Journal, Winter:39—46, 1987.

[Nau, 1993] Dana S. Nau. Enabling-condition interactions and finding good plans. In Working
Notes of the AAAI 1993 Spring Symposium Series, Symposium on Foundations of Automatic

BIBLIOGRAPHY 219

Planning: The Classical Approach and Beyond, pages 93-97, Stanford University, CA,
March 1993.

[Penberthy. and Weld, 1992] J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, com-
plete, partial order planner for ADL. In B. Nebel, C. Rich, and W. Swartout, editors, Prin-
ciples of Knowledge Representation and Reasoning: Proceedings of the Third International
Conference, KR92, pages 103-114, San Mateo, CA, October 1992. Morgan Kaufmann.

[Pérez and Carbonell, 1993] M. Alicia Pérez and Jaime G. Carbonell. Automated acquisition
of control knowledge to improve the quality of plans. Technical Report CMU-CS-93-142,
School of Computer Science, Carnegie Mellon University, April 1993.

[Pérez and Etzioni, 1992] M. Alicia Pérez and Oren Etzioni. DYNAMIC: A new role for
training problems in EBL. In D. Sleeman and P. Edwards, editors, Machine Learning: Pro-
ceedings of the Ninth International Conference, ML92, pages 367-372. Morgan Kaufmann,
San Mateo, CA., 1992.

[Pérez and Veloso, 1993] M. Alicia Pérez and Manuela M. Veloso. Goal interactions and plan
quality. In Working Notes of the AAAI 1993 Spring Symposium Series, Symposium on
Foundations of Automatic Planning: The Classical Approach and Beyond, pages 117-121,
Stanford University, CA, March 1993.

[Pérez, 1994] M. Alicia Pérez. The goal is to generate better plans. In Working Notes of the
AAAI 1994 Spring Symposium Series, Symposium on Goal-Driven Learning, pages 88-93,
Stanford University, CA, March 1994,

[Perlin, 1988] Mark W. Perlin. Transforming programs into networks: Call-Graph Caching,
applications, and examples. Technical Report CMU-CS-88-202, School of Computer Sci-
ence, Carnegie Mellon University, December 1988.

[Pollack, 1991] Martha E. Pollack. Overloading intentions for efficient practical reasoning.
Noiis, 25(4):513-536, 1991. Also as Technical Note 497 of SRI International.

[Pollack, 1992] Martha E. Pollack. The uses of plans. Artificial Intelligence, 57:43—-68, 1992.

[Porter and Kibler, 1986] Bruce Porter and Dennus Kibler. Experimental goal regression: A
method for learning problem-solving heuristics. Machine Learning, 1:249-286, 1986.

[Provost and Buchanan, 19921 Foster John Provost and Bruce Buchanan. Inductive policy. In
Proceedings of the Tenth National Conference on Artificial Intelligence, pages 255-261, San
Jose, CA, July 1992. AAAI Press/The MIT Press.

220 BIBLIOGRAPHY

[Provost, 1993] Foster John Provost. Goal-directed inductive learning: Trading off accuracy
for reduced error cost. In Working Notes of the AAAI 1993 Spring Symposium Series,
Symposium on Foundations of Automatic Planning: The Classical Approach and Beyond,
pages 94-100, Stanford University, CA, March 1993,

[Rosenbloom et al., 1985] Paul S. Rosenbloom, John E. Laird, John McDermott, Allen Newell,
and Edmund Orciuch. RI-Soar: An experiment in knowledge-intensive programming
in a problem-solving architecture. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-7(5):561-569, September 1985. '

[Ruby and Kibler, 1990] David Ruby and Dennis Kibler. Learning steppingstones for problem
solving. In Proceedings of the Darpa Workshop on Innovative Approaches to Planning,
Scheduling and Control, pages 366-373, San Diego, CA, November 1990.

[Ruby and Kibler, 1991] David Ruby and Dennis Kibler. Steppingstone: An empirical and
analytical evaluation. In Proceedings of the Ninth National Conference on Artificial Intelli-
gence, pages 527-532, Anaheim, CA, 1991.

[Ruby and Kibler, 1992] David Ruby and Dennis Kibler. Learning episodes for optimization.
In D. Sleeman and P. Edwards, editors, Machine Leaming: Proceedings of the Ninth
International Conference, ML92, pages 379-384. Morgan Kaufmann, San Mateo, CA.,
1992.

[Ryu and Irani, 1992] Kwang R. Ryu and Keki B. Irani. Learning from goal interactions in
planning: Goal stack analysis and generalization. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 401-407, San Jose, CA, July 1992. AAAI
Press/The MIT Press.

[Sacerdoti, 1977] Earl Sacerdoti. A Structure for Plans and Behavior. Elsevier, North Holland,
New York, 1977.

[Segre et al., 1993] Alberto M. Segre, David Sturgill, and Jennifer Turney. Neoclassical plan-
ning. In Preprints of the AAAI 1993 Spring Symposium Series, Symposium on Foundations
of Automatic Planning: The Classical Approach and Beyond, Stanford University, CA,
March 1993.

[Shen, 1989] Wei-Min Shen. Learning from the Environment Based on Percepts and Actions.
PhD thesis, Carnegie Mellon University, School of Computer Science, June 1989. Available
as technical report CMU-CS-89-184.

[Siegel et al., 1991] Michael Siegel, Edward Sciore, and Sharon Salveter. Rule discovery for
query optimization. In George Piatetsky-Shapiro and William J. Frawley, editors, Knowledge

BIBLIOGRAPHY 221

Discovery in Databases, pages 411-427. AAAI Press/The MIT Press, Menlo Park, CA.,
1991.

[Simmons, 1988a] Reid G. Simmons. Combining associational and causal reasoning to solve
interpretation and planning problems. Technical Report 1048, Artificial Intelligence Labo-
ratory, Massachusetts Institute of Technology, May 1988. PhD thesis.

[Simmons, 1988b] Reid G. Simmons. A theory of debugging plans and interpretations. In
Proceedings of the Seventh National Conference on Artificial Intelligence, pages 94-99, St
Paul, MN, 1988. Morgan Kaufmann.

[Simon, 1981] Herbert A. Simon. The Sciences of the Artificial. The MIT Press, Cambridge,
MA, second edition, 1981.

[Stone et al., 1994] Peter Stone, Manuela Veloso, and Jim Blythe. The need for different
domain-independent heuristics. In Proceedings of the Second International Conference on
Al Planning Systems, AIPS-94, pages 164—169, Chicago, IL, June 1994.

[Strom, 1994] Stephanie Strom. A wild sleigh ride at Federal Express. The New York Times,
December, 20. Pages C1-C2, 1994.

[Sun and Weld, 1992] Ying Sun and Daniel S. Weld. Beyond simple observation: Planning to
diagnose. In Proceedings of the Third International Workshop on Principles of Diagnosis,
DX92, pages 67-75, October 1992.

[Sussman, 1975] Gerald J. Sussman. A Computer Model of Skill Acquisition. American Else-
vier, New York, 1975. Also available as technical report AI-TR-297, Artificial Intelligence

Laboratory, MIT, 1975.

[Sycara and Miyashita, 1994] Katia Sycara and Kazuo Miyashita. Case-based acquisition of
user preferences for solution improvement in ill-structured domains. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 4449, Seattle, WA, July 1994.
AAAI Press/The MIT Press.

[Tadepalli, 1989] Prasad Tadepalli. Lazy explanation-based learning: A solution to the in-
tractable theory problem. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, pages 694-700, Detroit, MI, 1989.

[Tadepalli, 1990] Prasad Tadepalli. Tractable Learning and Planning in Games. PhD thesis,
Rutgers, The State University of New Jersey, Department of Computer Science, May 1990.
Technical Report ML-TR-31.

222 BIBLIOGRAPHY

[Tecucci, 1992] Gheorghe D. Tecucci. Automating knowledge acquisition as extending, updat-
ing, and improving a knowledge base. IEEE Transactions on Systems, Man and Cybernetics,
22(6), November/ December 1992.

[Thrun and Mitchell, 1994] Sebastian Thrun and Tom M. Mitchell. Learning one more thing.
Technical Report CMU-CS-94-184, School of Computer Science, Carnegie Mellon Univer-
sity, September 1994.

[Veloso and Blythe, 1994] Manuela Veloso and Jim Blythe. Linkability: Examining causal
link commitments in partial-order planning. In Proceedings of the Second International
Conference on Al Planning Systems, AIPS-94, pages 170-175, Chicago, IL, June 1994.

[Veloso and Carbonell, 1993] Manuela M. Veloso and Jaime G. Carbonell. Derivational anal-
ogy in PRODIGY: Automating case acquisition, storage, and utilization. Machine Learning,
10:249-278, 1993.

[Veloso et al., 1990] Manuela M. Veloso, M. Alicia Pérez, and Jaime G. Carbonell. Nonlinear
planning with parallel resource allocation. In Proceedings of the Darpa Workshop on
Innovative Approaches to Planning, Scheduling and Control, pages 207-212, San Diego,
CA, November 1990. Morgan Kaufmann.

[Veloso et al., 1995] Manuela Veloso, Jaime Carbonell, M. Alicia Pérez, Daniel Borrajo, Eu-
gene Fink, and Jim Blythe. Integrating planning and learning: The PRODIGY architecture.
Journal of Experimental and Theoretical Artificial Intelligence, 7(1), January 1995.

[Veloso, 1989] Manuela M. Veloso. Nonlinear problem solving using intelligent casual-
commitment. Technical Report CMU-CS-89-210, School of Computer Science, Carnegie
Mellon University, 1989.

[Veloso, 19941 Manuela M. Veloso. Planning and Learning by Analogical Reasoning. Springer
Verlag, Berlin, Germany, 1994. PhD thesis available as technical report CMU-CS-92-174,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

[Wang, 1995] Xuemei Wang. Learning by observation and practice: An incremental approach
for planning operator acquisition. In Proceedings of the Twelfth International Conference
on Machine Learning, Tahoe City, CA, 1995.

[Wellman, 1988] Michael P. Wellman. Formulation of tradeoffs in planning under uncertainty.
Technical Report MIT/LCS/TR-427, Massachusetts Institute of Technology. Laboratory for
Computer Science, August 1988. PhD Thesis.

[Wilensky, 1983] Robert Wilensky. Planning and Understanding. Addison-Wesley, Reading,
MA, 1983.

BIBLIOGRAPHY 223

[Wilkins, 1988] David C. Wilkins. Knowledge base refinement using apprenticeship learning
techniques. In Proceedings of the National Conference on Artificial Intelligence, pages
646-651, St. Paul, MN, 1988.

[Williamson and Hanks, 1994] Mike Williamson and Steve Hanks. Optimal planning with a
goal-directed utility model. In Proceedings of the Second International Conference on Al
Planning Systems, AIPS-94, pages 176181, Chicago, IL, June 1994,

[Yang et al., 1992] Qiang Yang, Dana S. Nau, and James Hendler. Merging separately gener-
ated plans with restricted interactions. Computational Intelligence, 8(4), 1992.

[Zhang and Lu, 1992] Guangming Zhang and Stephen C-Y. Lu. An expert system framework
for economic evaluation of machining operation planning. In F. Famili, S. Kim, and D. S.
Nau, editors, Al Applications in Manufacturing, pages 133—156. AAAI/MIT Press, Menlo
Park, CA, 1992. Also Technical Research Report, University of Maryland Systems Research
Center, TR 89-87.

224 BIBLIOGRAPHY

Appendix A

The PRODIGY Problem Solver

PRODIGY is a domain-independent problem solver that serves as a testbed for planning and
machine learning research. Given an initial state and a goal expression, PRODIGY searches for
a sequence of operators that will transform the initial state into a state that matches the goal
expression. The current version of PRODIGY, PRODIGY4.0, is a nonlinear and complete planner.
It follows a means-ends analysis backward chaining search procedure reasoning about multiple
goals and multiple alternative operators relevant to achieving the goals. Detailed descriptions
of PRODIGY4.0 appear in [Carbonell et al., 1992, Veloso et al., 1995].

PRODIGY4.0 provides a rich action representation language coupled with an expressive control
language. A planning domain is defined by a set of types of objects, i.e., classes, used in the
domain, and a library of operators and inference rules that act on these objects. Each operator
is defined by its preconditions and effects. The description of preconditions and effects of
an operator can contain typed variables. In addition variable bindings (i.e. values a variable
can take) can be constrained by arbitrary Lisp functions. Preconditions in the operators can
contain conjunctions, disjunctions, negations, and both existential and universal quantifiers.
The effects of an operator consist of a list of predicates to be added or deleted from the
state when the operator applies. An operator may also have conditional effects that are to
be performed depending on particular state conditions. Inference rules deductively change a
particular planning state by adding semantically redundant information to the state, in constrast
to operators which specify real changes to the state. They have the same syntax as operators.
PRODIGY4.0 allows two types of inference rules: eager inference rules fire automatically every
time there is a change in the state whenever their preconditions are satisfied; they are used
only in a forward-chaining manner. Lazy inference rules are used for backward chaining; they
only fire on demand and PRODIGY4.0 subgoals on their preconditions if they are not true. A
truth-maintenance system (TMS) keeps track of all the inference rules (both eager and lazy)
that are fired. When an operator is applied, the effects of inference rules whose preconditions
are no longer true are undone.

225

226 APPENDIX A. THE PRODIGY PROBLEM SOLVER

‘A planning problem is defined by (1) a set of available objects of each type, (2) an initial
state I, and (3) a goal statement (5. The initial state is represented as a set of literals. The goal
statement is a logical formula equivalent to a preconditions expression, i.e. it can contain typed
variables, conjunctions, negations, disjunctions, and universal and existential quantifications.
A solution to a planning problem is a sequence of operators that can be applied to the initial
state, transforming it into a state that satisfies the goal. A sequence of operators is called a
total-order plan. A partial-order plan, that is, a partially ordered set of operators, can be
obtained efficiently from the total-order plan [Veloso, 1989].

1. Check if the goal statement is true in the current state, or there is a reason to suspend the current
search path.

If yes, then either return the final plan or backtrack.
2. Compute the set of pending goals G, and the set of possible applicable operators A.

A pending goal is a precondition of an operator previously expanded (in Step 4) that is not true in
the current state. An applicable operator is an operator whose preconditions are true in the state.

3. Choose a goal G from G or select an operator A from .A that is directly applicable.
4, If GG has been chosen, then

¢ get the set O of relevant operators for the goal,
choose an operator O from O,

get the set B of possible bindings for O,

¢ choose a set B of bindings from B,

e gotostep 1.

5. If an operator A has been selected as directly applicable, then

e apply A,
e gotostep 1.

Figure A.1: A skeleton of PRODIGY4.0’s nonlinear planning algorithm (adapted from [Veloso,
1989]). Problem solving decisions, namely selecting which goal/subgoal to address next, which
operator to apply, what bindings to select for the operator, or where to backtrack in case of failure,
can be guided by control knowledge. PRODIGY’s trace provides all the information about the
decisions made during problem solving so it can be exploited by machine learning methods.

Table A.1 describes the basic search cycle of PRODIGY4.0’s nonlinear planner [Veloso, 1989].
This search algorithm involves several decision points, namely:

e Which goal to subgoal on, from the set of pending goals.

e Which operator to choose in order to achieve a given goal.

227

e Which bindings to choose in order to instantiate the selected operator.

o Whether to apply an applicable operator (and which one) or defer application and continue
subgoaling.

Control knowledge may direct the choices in each of these decision points. In PRODIGY, there
is a clear division between the declarative domain knowledge (operators and inference rules)
and the more procedural control knowledge. This simplifies both the initial specification of a
domain and the incremental learning of the control knowledge. Control knowledge can take
the form of control rules (usually domain-dependent), complete problem solving episodes to be
used by analogy [Veloso, 1994], and domain-independent heuristics [Blythe and Veloso, 1992,
Stone et al., 1994].1

Control rules are productions (if-then rules) that indicate which choices should be made (or
avoided) depending on the current state and other meta-level information based on previous
choices or subgoaling links. They can be hand-coded by the user or automatically learned.
They are divided into these three groups: select, reject, and prefer rules. Select and reject rules
are used to prune parts of the search space, while prefer rules determine the order of exploring
the remaining parts. Alternatives pruned by select and reject control rules are not tried should
the planner backtrack to the node where the rule fired. Control rules choose goals, operators,
bindings, or subgoaling versus apply. They can also choose nodes to backtrack to.

Chapter 3 of this dissertation presents algorithms to learn prefer control rules. Therefore it is
worth describing those rules here in some detail. The right-hand side of a prefer rule indicates
two alternatives, namely the one preferred, should the rule fire, and the one to be tried upon
backtracking should the preferred alternative fail. A prefer rule is considered for matching
only if the preferred-over alternative matches the current preference. If a prefer rule matches,
it fires, that is, its preference is chosen as the current preference; then all the prefer rules are
considered for matching again. Several prefer rules (or instantiations of the same rule) match
giving conflicting preferences. A cycle in the rule preferences occur when there is a chain
of rule firings rq, ra,...r, such that r;,2 = 1,...n — 1 prefers alt; over alt;,_; and r, prefers
alt, over alt;. As all the rules are considered again after one of them matches, the current
preference is continually overriden by some rule. We have slightly modified PRODIGY4.0 so
the cycle is detected, the set of preferred alternatives {alt;,7 = 1,...n} built, and one of them
is chosen by some heuristic (see Section 3.11.2).

PRODIGY is designed with a “glass-box” approach: all the decisions made by the search engine
and all the information available to make those decisions are captured in a problem’s trace.
This provides an information context in which learning can take place. Figure A.2 shows the
learning modules developed in PRODIGY, according to their learning goal, namely: learn control
knowledge to improve the planner’s efficiency in reaching a solution to a problem [Minton, 1988,

IChapter 4 of this thesis presents a fourth form, control knowledge trees.

228 APPENDIX A. THE PRODIGY PROBLEM SOLVER

LEARNING CONTROL KNOWLEDGE
TO IMPROVE PLANNING EFFICIENCY

PRODIGY/EBL STATIC ALPINE PRODIGY/ANALOGY

Explanation-based Static domain Generation of Analogical reasoning

learning \ evaluation abstraction hiérarch/

\ /
~\ 7 -

OBSERVE HAMLET
Expert observation PIEIODIGY Incremental and inductive
and own practice anner explanation and refinement
EXPERIMENT APPRENTICE QUALITY
Controlled experiments Graphical knowledge Evaluation and quality
refine incomplete domain acquisition analysis of alternative plans
LEARNING PLANNING LEARNING CONTROL KNOWLEDGE
DOMAIN KNOWLEDGE TO IMPROVE PLAN QUALITY

Figure A.2: The learning modules in the PRODIGY architecture (from [Veloso et al., 1995]).

Etzioni, 1990, Pérez and Etzioni, 1992, Knoblock, 1994, Veloso, 1994, Borrajo and Veloso,
1994b]; learn control knowledge to improve the guality of the solutions produced by the
planner([Borrajo and Veloso, 1994b, Iwamoto, 1994] and this thesis); and learn domain
knowledge, i.e., learn or refine the set of operators specifying the domain [Gil, 1992, Wang,
1995], or acquire them through a graphical apprentice-like dialog [Joseph, 1992].

The machine learning and knowledge acquisition work supports PRODIGY’s casual-commitment
method?, as it assumes there is intelligent control knowledge, exterior to its search cycle, that
it can rely upon to make decisions, both to make planning more efficient and to obtain good
quality plans. PRODIGY has been applied to a wide range of planning and problem-solving
tasks: robotic path planning [Haigh et al., 1994], the blocksworld, several versions of the
STRIPS domain, matrix algebra manipulation, discrete machine-shop planning [Gil and Pérez,
1994] and scheduling, computer configuration, logistics transportation planning, and several
others. Other research in the PRODIGY project has focused in studying different planning
techniques and heuristics [Blythe and Veloso, 1992, Veloso and Blythe, 1994, Stone et al., 1994,
Blythe, 1994].

2In a casual-commitment strategy at each decision point the planner commits to a particular alternative, and
backtracks upon failure. This is in contrast to a least-commitment strategy where decisions are deferred until all
possible interactions are recognized.

Appendix B

The PRODIGY4.0 Process Planning
Domain

This appendix provides the details of the process planning domain. A domain in PRODIGY4.0
is described by the type hierarchy (an ontology of the classes of objects in the domain) and
a set of operators and inference rules. Figure B.1 shows the type hierarchy for the process
planning domain. Then we list all the operators and inference rules of the domain relevant
to the examples used throughout this thesis. We also list the hand-coded control rules for
planning efficiency, that is, to prune search paths leading to dead-ends, that we used during the
experiments. Those control rules are not relevant to plan quality and their effect is orthogonal
to that of the learned quality-enhancing control knowledge.

229

230 APPENDIX B. THE PRODIGY4.0 PROCESS PLANNING DOMAIN

metal-arc-welder

_\—‘

milling-machine gas-welder
<circular-saw
band-saw

e

machine -—————= planecr

shaper
1athe
drill

elecwic-arc-spray-gun

grinder

collet-chuck

4-jaw-chuck

centers

holding-device ——————— toe-clamp

‘“\‘x‘—-‘

tool vise lathe-toolbit

v-block cutting-tool

hole-location magnetic-chuclk elecrode

hole-diameter machi. 1

___-‘_‘_‘_‘_‘_‘_-_‘_‘—‘—-__

hole-depth welding-rod

band h

]

\

]

reamer

counterbore

countersink

tap
core-drill
///' gun-drill

drill-bit ————————————— gil-hole-drill

high-helix-drill

straight-fluted-drill

center-drill

spot-drill

twist-drill

v-thread

finish-toolbit

rough-toolbit

knurl

roughing-cutting-tool

finishing-cutting-tool

saw-band

S

shape

dimension

band-file

circular-saw-attach

center-hole milling-cutter

hole torch
________._,———"""_/J
side-pair operator-tool abrasi loth
‘—-\\\"——‘-._
top-type side lathe-file
-.._\N\\-
part brush

arit

hardness

surface-finish-quality

surface-finish

surface-coating

alloy

material

angle

al-wire soluble-oil

—

wire spraying

fluid ————— cutting-fluid mineral-oil

Figure B.1: The type hierarchy for the process planning domain.

cold

‘-‘_‘-_‘--‘_‘_‘_""‘-——-
h-‘__‘—‘_‘—\

friction-saw

Plain-mill

end-mill

231

{I1T2d-30ds <3TQ-TTTIp>)
(11TIQ <dutyoBur)) spuooaxd)
(<K-00T> <X-00T> <ITEd-opTS>
<OPTIS> <2TOY> <3xed> <adTASpP-LUTPTOY> <3JTQ-[[TIP> <auTydeu> suexed)
T1I¥d-I0dS-HIIM-TITHA Xo3esadp)

sa1oy Buryew o3 siojexado !

ATq-1T7TId 2d4A3 3O 29 03 sey Toon

dNTIO-E0L ESIA MDOTH-A MONHD-MVL-p -

(TTI¥I-NI-EJIAIQ-DNICTOH-I0d x03e1ado 99s) TITIP B UO PASN S Ued S80TAep 88ay3 ATuo
B TIING ENIHOVI
tliCIC«ii#iklﬁt{‘«.¢.C.‘.i*«ti«.itﬁ*«td*khﬁl*i*lkﬁk«klfiikl«.&*i*«~

szojeIrado
ft.tttI&Ik#tit#«*t&&*«titim

* KERRERY

(dxacumu, ¢ o16uy adA3-s3TUuTIUT)

{dxacumu, § 2215 adA3-s3TUTFUT) (dIaqunu,$ UOTILIOT-9T0H odA3-83TUTIUT}
(dxaqumu, § I938WeTg-2ToH 2dAl-s3TUTIuUT) (drscqumu, yideg-eTon odA3-ajturyut)
(adeys TYOTYANITAD ¥VINONVIONN jFo-asueisutd) (9dAr-doy: adeys Fo-=dAad)
sadeys 3xeg’!!

(UOTSUSWTQ YALAWYIA IHOIFH HIONHT HIAIM JO-3ouejsutd) {adAz-dor: uotsuswid Fo-2d43d)
suoTsuewTtqg 3xRgli!

{®TOH-I93U8D
SEAIS-ETOH-YIALNGD £EQIS-ITOH-MIINGD Fo-souejisurd) (SdAr-doL: 9TOH-I93U9) yo-adAid)
{8dAL-dos: 8TOH Jo-adX3d)
soTo! ‘!

{(1T04-3PTS
9HAIS-£EAIS SEAIS-ZIUIS PEAIS-TIAIS Jo-oduejsutd) (sdAr-dog: ITel-opls 3o-2dA3d)
(spT1S
(edAz-dox: °p1s Jo-2dAad)
(28X1-dog: 32ed Jo-adAad)
syteg ‘!¢

9EQIS SEAIS VEAIS €EJIS ZIAIS TAAIS QIAIS Jo-sdueisutd)

(3TID ITUD-HSUYOD LIND-ENIL Jo-soueisurd) (9dAg-dog: 311D Jo-sdAad)

T@ays 3o sitapn!?!
(ssoupIeq L30S QUVH Jo-souejsutd) (9dAgz-dog: sssuprey jo-adAad)
STeTI®jew 30 SoSsoupaey’!!

y
(R3rTenb-ysTUTI-208IINS QNOOYD %uw:”mu«z Jo-spue3suTd)
(2diz-dog: AjrTenb-ysTury-2dEgIng Jo-odA3d)
saratrenh ysTuri edeyang!i!

(USTUTI-80BFING TANVIC-HONOE ONIWD-HONOW QIIVHS-HONOY NMNI~HONOM TIIH-HOOOM
QENVId-ESINIA ONI¥O-HSINTI GIJVHS-HSINIS NEOI-HSINIL TITW-HSINT A

QITION JEdd¥d IODMYS AEHSITO4 QETION-ATI03 Fo-soueisutd)

(edAg-dog: ysturg-soezang jo-adAad)

S8YSTUTI soeyang! ‘!

(ButyeOD-20R7ING
TYIER-0ISNI INVISISHY-UVAM INVISISEY-IVEH INVISISEM-NOISOMNOD Fo-aouejsutd)
(2dAz-dog: Burieoy-sorians Jo-adAad)
shuTIe0d sodegang! !
(AOTTY SNOYNEI-NON SNOWNEA yo-aouejsurd) (odAr-dor: KoTrv Fo-9dA3d)
sAoTTv!!!

(T®TI93eR FAIXO-WANIKATY HAIXO-WAINODMIZ WANIAEXTON NILSONAL NONT
HZNOYE AMINA SSY¥H TIFIS-SSAINIVIS TEHLS WONIHATY HEIS0D Jo-souejsutd)

(2dAL-dog: TeTaajeq jJo-adAad)
STeTISIBR! ¢ !

(PTOTI-BUTIIND TTO-TeIBUTH Jo-sdAad)
(PTNTd PINTI-BuUTIIND Jo-adiad)

(PTRT4-6UTIIND TTO-STANIOS Fo-3dAad)
(edAL-dol: pINTI Fo-odAad)
sprInTgl ¢!

sXTM-TRIBH-BuTAexds :soxtmi!!
Y2IOL ‘YIOTI-SATSRAQY ‘S1Td-2Y3eT :87003-1038I3d0 Iay30!! (Toog-Io3leradp ysnig jo-adhad)
sT00L Xo3exsdg! !¢

{2233ND-BUTTTTH TTIH-PUE Fo-adkad)
(2333n)-BUTTTTH TTIH-UTRTd Jo-2dA3d)
Sx933n) SUTTTTR! !¢

STTI-PUEE ‘PUBRG-MES :JUSWUORIIY-MBS-pURH
MRS-UOTIDTII ‘MES-PTOD !SIUSMOLIIY MES IBTNOXTD

L1
11t

(T00L-BUT3IND TOQI-BUTIIND-BUTYsTuTa F0-adi3d)
(1003-5ut3and TooL-buriyny-Burybnoy jo-adAad)
SToOL Buraandii

Tanwl 'pesIul-A ‘ITGIOOL-YSTUTA ‘ITQIOOL-UYBNnoy :s3Tqrool ayjeT!!!?

{319-TTTaQ TTITIC-ISTML FO-9dA3d)
(3TE-TITIQ Towe™y JO-2dA3d)
(3T2-T1TId 230QI27UN0Y Fo-9dA3d)
{3T9-TTTIQ YuTsIIUNO) Fo-9dA3d)
{3Tg-TT1T2a dey Fo-adiad)

‘TTTIq-830D 'TTTIA-UND 'TTTAA-STOH-TTO!! (ITE-TTTIA TTTIA-XTTOH-UBTH Fo-odA3d)

‘1TTIa-
PRINTL-3USTRIIS ‘TITIQ-ISIUSD :SITA-TTTIP T9yjo!! (ATE-TTTAA TT1TIA-30ds Fo-odAd)
s3TE-TTTIaA! ¢ ¢

JUDUYORIIY-MRS-IBNOIT) ’IUSUNIL]IY-MeS-pueg? ¢
' TOSUM-BUTPUTIS ‘ITHIOOL-ay3eT! ¢
Pod-BUIpIaM ‘SpoIq0STd STO0I-SUTYDLW ISYI0! !

(ToOoL-8utyoeR IB33ND-BUTTTIR Fo-2dA3d)
{TO0L-3UTYIBR TOOL-6ut3indy Fo-adiid)
{1T00L-duTyYDEN ITE-TITIq FOo-odA3d)
STOOL-SUTUIBK JO Sputy’!!

(100l 100x-1031eandp Fo-adAid)
{TOOL TOOL-IUTYSBRH FO-2dA3d)
(edAL-dog: Tool Fo-adAad)

AOUYD-2TIBUBER ‘YONYD-IDTTOD ‘NONYD-#eL-p!!
SI93Ul] ‘dweTd-80L ‘DOTH-A :S9DTASp BUTPTOY ISYIO

{901ARQ-BUTPTOH 95TA JO-2dA3d)
{edAL-doy: adTASQ-BUTPTOH Jo-9dAad)

ung-Aeads-o0I¥-01I308TH (ISPTaM-SeD!
'ISPTAM-DIY-TRIADH) ISPTSM ‘MES-Ie[NIIT) ‘mes-pueg!!
‘aoputan ‘Foueld ‘radeys ‘eylel :SIUTyDRW I8yjo!!

(SUTYDER SUTYDEH-BUTI{TH Jo-adiad)
(dutyseR T1tag Fo-adiad)
{8dA1-doL: autyseH Jo-adiszd)

L N Y LI I T LTIty I E
sadiy, !4

R R L L L T EF Y P PP Y R PP PP PRy

(005 (pumog-yadep: («ooeds-ws1qoid-jUsIInd, 35TTd-soeds-werqoxd: :3d) 3ia6) 73128)

{3 Jusaano: Buturyoew-py, 2oeds-waygord-s3esas)
i

B R S L LT T LT TP T

"9I9Y UMOYS 2Ie STSaY3 ¢

2yl Inoybnoiyl ssTdwexa 2Y3 Ul pasn 59dA3 pur ‘S9N SousIsIUT ‘sI0jerado syl ATuo !
Z66T Aej ‘zaxed BTOTIV Aq (" pADIQO¥d 03 peiersuesy !

'

'

‘aTUn UOTTSH STHsUTIR) ‘IDuUSTOS I2INAWOD FO [OOUDS ‘6LT-T6-SO-OWD 3xoder TeoTUYOSL
T1TD EpueToX ‘.BUTUURT4 J0F S95S8D0I1d BUTINIORINUSK JO uoTIecTzToads Y. eousIegew !

:
1
'
‘

APPENDIX B. THE PRODIGY4.0 PROCESS PLANNING DOMAIN

232

{<holding-device> {(or 4-JAW-CHUCK VISE TOE-CLAMP))

(<part> Part)

{<side> side) ;side up

{«<side-pair> Side-Pair) ;sides to holding-device

(<hole> Hole) -

(<loc-x> (and Hole-Location (x-location-of <part> <log-x>))})
(<loc~y> (and Hole-Location (y-location-cof <part> <loc-y>))))

{and (sides-for-holding-device <side> <side-pair>)

(holding-tool <machine> <drill-bit>)
(holding <machine> <holding-device> <part> <side> <side-pair>)))

{effects () ({del (is-clean <part>))

{add (has-burrs <part>))
{add (has-spot <part> <hole> <side> <loc-x> <loc-y>)))))

(Operator DRILL-WITH-TWIST-DRILL
{params <machine> <drill-bit> <holding-device> <part> <hole>

<side> <side-pair> <hole-depth> <hole-diameter>
<drill-bit-diameter> <loc-x> <loc-y>)

{preconds ({<machine> Drill)

1222

r>)})

{<drill-bit> Twist-Drill)
(<holding-device> (or 4-JAW-CHUCK VISE TOE-CLAMF))
(<hole> Hole),
{<drill-bit-diameter>
(and Hole-Diameter
{gen-from-pred (diameter-of-drill-bit <drill-bit> <drill-bit-diameter>

(<hole-diameter> (and Hole-Diameter (same <hole-diameter> <drill-bit-diamete

{<side> Side)
{<side-pair> Side-Pair)
{<part> Part)

{<loc-x> (and Hole-Location (x-location-of <part> <loc-x>)))
{<loc-y> (and Hole-Location (y-location-of <part> <loc-y>)))
(<hole-depth> Hole-Depth))

;sides to holding-device .

{and (sides-for-holding-device <side> <side-pair>)

(has-spot <part> <hole> <side> <loc-x> <loc-y>)
(holding-tool <machine> <drill-bit>)
(holding <machine> <hclding-device> <part> <side> <side-pair>)))

(effects () {(del ({is-clean <part>))

{add (has-burrs <part>))
{add (has-hole <part> <hole»> <side> <hole-depth> <hole-diameter>
<loc-x> <loc-y>}))))

(Operator UNHH.PlSHHIIEHmm|EHFHM.|UEHHH.
(params <machine> <drill-bit> <holding-device> <part> <hole>

<side> <side-pair> <fluid> <hole-depth> <hole-diameter>
<loc-x> <loc-y>)

(preconds ({<machine> Drill}

{<drill-bit> High-Helix-Drill)

{<holding-device> {or 4-JAW-CHUCK VISE TOE-CLAMP) }

(<fluid> Fluid)

(<part> Part}

(<side> Side)

(<side~paix> Side-Pair}

(<hole> Hole}

{<loc-x> (and Hole-Location (x-location-of <part> <loc-x>)))

(<loc-y> (and Hole-Location {y-location-of <part> <loc-y>)))

(<hole-depth> Hole-Depth)

{<hole-diameter>

{and Hole-Diameter .
(gen-from-pred (diameter-of-drill-bit <drill-bit> <hole-diameter>)})))

;sides to holding-desvice

{and (sides-for-holding-device <side> <side-pair>)

(has-fluid@ <machine> <fluid> <parts)
(has-spot <part> <hole> <side> <loc-x> <loc-y>}

(holding-tool <machine> <drill-bitx>)
{holding <machine> <holding-device> <part> <side> <side-pair>)))

{effects () ({del (is-clean <part>)}

{add (has-burrg <part>))
{add (has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <1

oc-y>})})}

;; operators for finishing holes

(Operator TAP
(params <machine> <drill-bit> <holding-device> <part> <hole> <side>

<side-pair> <hole-depth> <hole-diameter> <drill-bit-diameter>
<loc-x> <loc-y>}

(preconds ({<machine> DRILL)

1))

(<drill-bit> TAP}

{<holding-device> (or 4-JAW-CHUCK VISE TOE-CLAMP})

{<part> PART)

{<hole> HOLE)

{<side> Side)

{<side-pair> Side-Pair)

{<hole-depth> Hole-Depth)

{<drill-bit-diameter>

{and Hole-Diameter
(gen-from-pred (diameter-of-drill-bit <drill-bit> <drill-bit-diameter>)

;sides to holding-device

{<hole-diameter> (and Hole-Diameter (same <drill-bit-diameter> <hole-diameter

>))
{(<loc-x> (and Hole-Location (x-location-of <part> <loc-x>}))
(<loc-y> (and Hole-Location (y-location-of <part> <loc-y>))))
(and (sides-for-holding-device <side> <side-pair>)
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>)
(holding-tool <machine> <drill-bit>}
{~ (has-burrs <part>))
(is-clean <part>)
(holding <machine> <holding-device> <part> <side> <side-pair>)))
(effects ()

{({del (is-clean <part>)}
(add (has-burrs <part>))

(if

nn

{is-reamed <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>)
{(del ({is-reamed <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc~y>

(add (is-tapped <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))))}

(Operator COUNTERSINK
(params <machine> <drill-bit> <holding-device> <part> <hole> <side»

<side-pair> <hole-depth> <hole-diameter> <angle> <loc-x>
<loc-y>)

(preconds ((<machine> DRILL)

(and

(<drill-bit> COUNTERSINK}
(<holding-device> (or 4-JAW-CHUCK VISE TOE-CLAMP))
(<part> PART)
{<hole> Hole)
(<side> Side)
(<side-pair> Side-Pair)
(<hole-depth> Hole-Depth)
{<hole-diameter> Hole-Diamster)
(<loc-x> (and Hole-Location {x-location-of <part> <loc-x>}))
(<loc-y> (and Hole-Location (y-location-of <part> <loc-y>}))
(<angle>
{and Angle (gen-from-pred (angle-of-drill-bit <drill-bit> <angle>))))}
{sides-for-holding-device <side> <side-pair>)
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>)
(holding-tool <machine> <drill-bit>)
(~ (has-burrs <part>}}

isides to holding-device

233

((¥2AIS TEAIS), <opTe> Jo-suo)! dn Buroey apTs!

(<1Ted-8DTIS> <3PTIS> SOTASP-SUTPTOY-I0J-SSPTS)
(<OPTS-ydeW> <IPTS> <wIp> TTTW-SPTS-I0I-SPTSE) pue)
{({{(<onTeA> <pTO-SNTEA> UTZ-UBY3-IDTTRWS)
(<pTO-9nTeA> <3nTeA> ISTTEWS) 92ZTS PUB) <anieEA>}
(({{<pTO-dnTRA> <WTIP> <1Ted> JO-BZTS) paad-woxz-usb) a8zIg pue)
<pro-anteas)
{({<1Ted-apTs> <apIS-yoew> ITed-spIS-UI-jou) SPIS pue}
uotieasdo syl Ag payonol spIs!? <SPIS-Yoews)
90TASP-BUTPIOY 03 SopIs! (ITR4-3PTS <aATRd-3pPTS>)
(3pTS <opTS>)
(UCTSUSWTIQ <WTP>)
((dNVID-ZOL MDAHI~IFTIOD HSIA MINHD-MYL-} I0) <3DTASP-GUTPTOU>)
(METLOD-ONITIIN <I2IIND-BUTTTTW>)
(3xed <3zmd>)
(ANTHOYH-SNITIIN <SUtydew>)) spucosad)
{<an{eA> <plo-3U[BA> <WIP> <IPTS-UYoew> <ared-aprs> <opis>
<VOTABP-BUTRTOY> <I2IINO-BUTTTTW> <3xed> <surysews suexed)
TIIR-3A1S Z03exsdo)

{({{{<pTO-2nTRA> <WIpP> <1IERd> JO-32TS) ToPR)
{(<onyea> <wrp> <3jzed> Jo-szTS) ppe)
((TTIN-HONOY <epTIs> <3Ied> SPIS-YSTUTI-20VIINS) ppR)
((<ysTUTI-80RIINS> <BPIS> <3Ied> SPTIS-YSTUTI-9DEIINS) TeP)
({<BuTlEe0D-200IINS> <PPTS> <3Ted> SpTS-BUTILOD-DOLFINS) ToP)
({<3zed> siing-sey) ppe)
{({<31ed> UEDdTD-ST) TOP))
{ (YSTUTI-2DRIING <YSTUTJ-2DEIINS>)
(BuT3EOD-80BIING <BUTILOD-9OBRFANS>)) S3D8IF8)
(((<aTed-2p18> <apTS> <jred> <PITASP-BUTIPTOU> <aUTUIBRW> BUTpTOY)
(<a®3300-BuT{TTU> <BUTYDEW> TOO3-Butproy)
(<xTed-2pTS> <dPTIS> SOTASP-BUTPTOY-I0J-S3PTS)
(<2pTS> <Wp> BUTUTYUDRW-I03-dn-spIs)
(MYINONVIOAY <3iTed> jo-adeys) pue)
(({(<PTO-3nTRA> <8NTRA> ISTTRPWS) SZTS PUB) <SNTRA>)
((((<pTO~anTRA> <WIP> <3jred> 3o-22T§) poxd-worj-usb) =215 pue)
* <pTO-8nTeA>)
(ITRd-8PT5S <aTRd-2PIS>)
{8PTS <opTS>}
(uoTsUsWTa <wTP>)
{3184 <371EG>}
{ {(dAVID-TOL MONHO-IITIOD ESIA MDOHI-MYL~F XO) <IDTASP-BUTPIOY>)
{SEIIND~ONITIIN <ISINO-BUTTTTU>)
(ENTHOVH-DNITIIN <SUuTyodews)) spuodaid)
(<anTEA> <PTO-DNTEA> <WIP> <ITed-SpPTS> <BPIS>
<80TASDP-BUTPTOY> <I93IND-BUTTTTU <3rTed> <auTyDEw> suered)
TIIR-EI¥S xo3exsdp)

S0TASP-BUTPTOY 03 SOPTS!

CTITW-PUS S UMOWY OSTE ST T[TW-3prs !!!

ITQ-TTTIQ Z233IND-BUTTTIH ~ !¢

:9q ued sreog ¢

dRYTD-H0L MDOHD-IATIOD ISIA MOOTH-A ¥DONHO-MYL-¥ - ¢
{ENIHOYH-ONTTIIH-NI-HOIASI-ONIQIOH-I0d ¢

295) Suryoew BUT{ITW ® UC POSN 2q Ued SeoTadp asayl ATuo !
ANTHOVA ONITIIH *ENIHOVH !

R Y L L LT T T T R T Y TY T prpvpeprynpgepvgvavgvpuyaunpey |

({(((=A-D0T> «X-DOT> <adIBWRIP-BT0Y> <Y1dop-3TOU> <OPTE> <BT0Y> <IIEd> PIWRDI-ST) ppe)
{ (<A-DOT> <X-DOT> <I9IBUERTP-3TOU> <yrdep-a1oy> <3PTS> <ITOY> <3xed> peddel-sT) T2p)

((<3xRd> SiIng-sey) ppe)
{(<31ed> UE21D-S5T) T3P))
() s309338)
(({<xted-sp1s> <9pTS> <37ed> <30TAOP-BUIPTOY> <SUTUDEW> BUTPTOW)
(<3xed> ueayo-sT)

{ («322d> sxang-sey) -)

(<3TQ-TTTIP> <JUTYIBW> TOO3-Burtpioy)

(<A-00T> <X-00T> <IVJSURTP-ITOY> <YIdop-STOY> <3PIS> <3ITOY> <3aed> oTOY-SEY)
{<31ed> <pInlI> <BUTYOEW> DPINTI-Sey)

{<zted-opTs> <OP1S> 80TAep-BUTplOY-I0J-SOPTE) puE)

(({ (<1333 TP-3Tq-TTTIP> <IDIJWLTP-STOY> SWes)
Is333ueTJ-2TCH PUB)
<IsjsureTp-a8Toy>)

<I238WRTP-1Tq-TTTIP> <ITA-TTTIP> 3ITG-TTTAR-3O-I935uwTp) peid-woij-ush)

JI3jsueTg-sTCH pue}

<I93JWRTP-ITA-TTTIP>)

{uoT3enorI-aToH <A-201>)

{UOTIBRDOT-STOH <X-D0T>)

({(z <y3dsp-aToy> xarews) yideg-aT0H pue) <yYidep-oToy>)
(a101d <pTniF>)
(2TRd-9PTS <IaTed-spIs>)
(3pTS <3PT5>)

(4708 <3T0Y>)

(1yvd <zaed>)

{ (dNY¥'ID-FOL ASIA MONHD-MYL-§ I0) <30TASP-BUTPTOY>)
(YERVEY <3TQ-TLTIP>)

30TASP-BUTPTOY 03 S2PIS!

484

. (T1I¥@ <3uTyorw>)) spuosaxd)

(<&-00T> <X-D0T> <I@]aWRTIP-3ITY-TITID>
<IDIBURTP-ITOY> <YIdap-2TOU> <PINTI> <ITed-SPIS> <IPTS>

<2TOU> <3xed> <e0Tadp-burproy> <3TQ-TITIP> <SUTYDRW> swered)
KYEy xo3exadp)

{(({{(<2ZTE-8I0QIBIUNCO> <A-D0T> <X-DOT>"

<ISISUETP-3TOU> <UIdSp-3T0U> <3PTS> <3TO0U> <3iXeds> PaIOGISIUNGD-ST) DPE)

((<3xed> sxang-sey) ppe)

{(<31ed> uesaTo-s5T) 13p)) () S3Na3F9)

{{{<ITEd-BPTS> <apTS> <3red> <20TASP-BUTPTOU> <SUTYDRW> GUTPTOY)

(«3Ted> UEaTD-ST)

((<3xed> szang-sey) -}

{(<3ITI-TTTIP> <UTYSBW> T0OI~-LUTPTOU}

{<A-DOT> <X-DOT> <IDIDURTP-STOU> <yIdSpP-8[0Y> <PTS> <B[O0U> <iIed> BTOY-Sey)

{<17ed-9pPIS> <SPTS> SOTASP-BUIPTOY-I0J-SopTs) pue)

({EOT3IBROT-3TOH <A-DOT>)
{UOT3IBD0T-BTOH <X-D0T>}
{I835WeTA-3TOH <IDJDWRTP-STOY>)}
(yadag-a1oH <y3idsp-aT1oU>}

({{{<22T5-270QI13qUNOD> <ITY-TTTIP> 3ITQ-TTTIP-FO-IZIS)

poad-wor-ush) I9JOUWRTI-STOH pue)
<2ZTS-3I0IIIUNCDS>)
(IT2g-8pTS <ITEd-9PTS>}
(5PTS <9PTS>)

(2TOH <oToU>)

{3184 <33800>)

{ (aN¥ID-F0L HSIA MOOHO-MUL-F I0) <IDTASP-LUIPTOU>}
(FHOTAINAOD <3TG-TTTIP>)

aDdTASp-BUTPTOY 03 SopTs!

("TII¥a <suTyDRW>)) Spuodaxd)

(<R-DOT> <X-DOT>
<®ZTS-3I0QIIJUNOI> <IIJBWeETP-ST0Y> <Yldop-a1oy> <iTed-spIs>

<3PTE> <BTOY> <1Ied> <BITASDR-BUTPTOU> <ITY-TTTIP> <SuTlyDew> suered)
TEOTUHINAOD I03eIad0)

((({{<@TBuE> <A-D0T> <X-20T>

<IDJBURTP-STOU> <YIIOP-2TOU> <SPIS> <ITOY> <3Ied> PayuUTSIDIUMOD-ST) ppe)
{{<33ed> siing-sey} ppe)
((<3aed> uea1o-ST) T9P))

{) sape738)

({(<xTed-2pTS> <dpTsS> <3jred> <@DTASP-SUTPTOU> <dUTYDEW> Butproy)
(<3xed> UBSTD-ST)

APPENDIX B. THE PRODIGY4.0 PROCESS PLANNING DOMAIN

234

{holding-tocl <machine> <milling-cutters)
{holding <machine> <holding-device> <part> <side> <side-pair>)))
{effects ((<surface-coating> Surface-coating)
(<surface-finish> Surface-finish)}
((del (is-clean <part>))
{add (has-burrs <part>))
(del (surface-coating-side <part> <mach-side> <surface-coating>))
{del (surface-finish-side <part> <mach-side> <surface-finish>))
(add (surface-finish-side <part> <mach-side> ROUGH-MILL))
{add (size-of <part> <dim> <value>))
{del (size-of <part> <dim> <value-old>)))}}

{Operator DRILL-WITH-SPOT-DRILL-IN-MILLING-MACHINE
{params <machine> <drill-bit> <holding-device> <part> <hole> <side>
© <side-pair> <loc-x> <loc-y>)
(preconds ({<machine> MILLING~MACHINE}
{<drill-bit> SPOT-~DRILL)
{<holding-device> (or 4-JAW-CHUCK VISE COLLET-CHUCK TOE-CLAMP))
{<part> Part)
{<side> Side)
(<side~pair> Side-Pair) ;sides to holding-device
(<loc-x> (and Hole-Locaticn (x-location-of <part> <loc-x>)))
{<loc-y> (and Hole-Location {y-location-of <part> <loc-y>}))
{<hole> Hole))
(and (sides-for-holding~device <side> <side-pair>)
{holding-tool <machine» <drill-bit>)
{holding <machine> <holding-device> <part> <side> <side-pair>)})
(effects (} ({del (is-clean <part>))
{add (has-burrs <part>))
{add (has-spot <part> <hole> <side> <loc-x> <loc-y>)))))

(Operator DRILL-WITH-TWIST-DRILL-IN-MILLING-MACHINE
{params <machine> <drill-bit> <holding-device> <part> <hole>
<side> <side-pair> <hole-depth> <hole-diameters
<drill-bit-diameter> <loc-x> <loc-y>)
{preconds (({<machine> MILLING-MACHINE)
{<drill-bit> TWIST-DRILL)
(<holding-device> (or 4-JAW-CHUCK VISE COLLET-CHUCK TOE~CLAMP))
(<part> Part}
(<side> Side}
{«<side-pair> Side-Pair)
(<hole> Hole)
{<drill-bit-diameter>
{and Hole-Diameter (gen-from-pred
(diameter-of-drill-bit <drill-bit> <drill-bit-diameter>

;sides to holding-device

102D}
{<hole-diameter>
(and Hole-Diameter (same <drill-bit-diameter> <hole-diameter>)})
{<loc-x> Hole-Location)
{<loc-y> Hole-Location)
{<hole-depth> Hole-Depth))
{and
(sides-for-holding-device <side> <side-pair>}
(has-spot <part> <hole> <side> <loc-x> <loc-y>)
(holding-tool <machine> <drill-bit>)
(holding <machine> <holding-device> <part> <side> <side-pair>)))
(effects () {(del (is-clean <part>))
(add (has-burrs <part>)}
(add (has-hole <part> <hole> <side> <hole-depth> <hole-diameters>
<loc-x> <loc-y>))}})

R R R L L T T LT T

PP
ii7 OTHER OPERATIONS

(Operator CLEAN

(params <part>)

{preconds (({<part> PART))
{is-available-part <part>))

(effects () ((add (is-clean <part>)))))

{Operator REMOVE-BURRS
{params <part> <brush>)
{preconds ((<brush> BRUSH)
{<part> PART})
{is~available-part <part>))
(effects () ({(del (is-clean <part>))
{del (has-burrs <part>)))))

PR L T hk ok *xk

cperators for preparing the machines
HERE KA KA AR AR ARk dek R AR A& Kk R KRR R KKK R KA AR R KRR KR KA AR A E R

; tools in machines

this allows any kind of drill-bit to be held by the milling machine,
::;but the ops only can use spot-drills and twist-drills.

{Operator PUT-TOCL-ON-MILLING-MACHINE
{params <machine> <attachment>)
{preconds {(<machine> MILLING-MACHINE) (<attachment> (or MILLING-CUTTER DRILL-BIT)))
{and (is-available-tool-holder <machine>)
(is-available-tool <attachment>)))
{effects () ((add (holding-tool <machine> <attachment>}))})

{Operator PUT-IN-DRILL-SPINDLE
{params <machine> <drill-bit>)
{preconds {(<machine> DRILL} (<drill-bit> DRILL-BIT))
{(and (is-available-tool-holder <machine>)
(is-available-tool <drill-bit>)})
{effects () ((add (holding-tool <machine> =<drill=~bit>}})))

{Operator REMOVE-TOOL-FROM-MACHINE

{params <machine> <tool>)

(preconds ((<machine> MACHINE) (<tool> TOOL))
(holding-tool <machine> <tcol>))

(effects (} ((del (holding-tool <machine> <tool>)))})

P R e S R T L L e LR T LTS
; holding devices in machines
{Operator PUT-HOLDING~DEVICE-IN-MILLING-MACHINE

(params <machine> <holding-devices)

{preconds ({(<machine> MILLING-MACHINE)

{<holding-device> (or 4-JAW-CHUCK V-BLOCK VISE COLLET-CHUCK TOE-CLAMP)))
(and (is-available-table <machine> <holding-devices)
(is-available-holding-device <holding-device>)))
{effects () ({add (has-device <machine> <holding-device>))))})

(Operator PUT-HOLDING-DEVICE-IN-DRILL
{params <machine> <holding-device>)
{preconds ((<machine> DRILL) (<holding~device> (or 4-JAW-CHUCK V-BLOCK VISE TOE-CLAMP)))
(and (is-available-table <machine> <hcolding-device>)
{is-available-holding-device <holding-device>)))
{effects () ((add (has-device <machine> <holding-device»)))))

(Operator REMOVE-HOLDING-DEVICE-FROM-MACHINE
(params <machine> <holding-device>)
(preconds ({(<machine> Machine) (<holding-device> Holding-device))
(and (has-device <machine> <holding-device>)

235

- {<T003> surexed)
FTEVIIVAY-T00L @ [0l-20UaIaTuL)

((({(<euTyoEW> IBPTOY-T00I-STARTTRAE-ST) Ppe)) () S309332)
{({({<1003> <2uryDEW> T003-BUTPTOY) -)
({T00L <7003>)) TTRI0Z)
({3UTYDBH <SUTYORW>)) spuodaxd)
(<outyoww> surered)
FTEYIIVAY-HAQTIOH-TO0L 2TNY-3oUuUaIsyuI)

({({(<duTyoRW> SUTYSPE-STQE[TRAR-ST) 13p)) () S30273F8)
{{<31x2d-T3U10> <SUTUORW> STRI-UO)

{(31ed <3xRd-I3Y30>) (SUTYDEH <IUTYO®RW>))} spucoaxd)
{<dutydeu> sueied)

(xa56e0 apowr)

FTEVIIVAY-ION-ENIHOVH 9Tny¥-20usIsjul)

(({{{<outyoEWw> suTYORW-ITqe{TRAR-ST) ppe)) () 530933°)
{({{{{<aTed-apTS>
<3pTE> <jied> <3DTASP-BUTPTOU> <2UTYDEw> Hutproy) -)
{{<3zed> <surtyoEW> STQEI-UO} ~) PuUrR)

{{{<a1ed-sp1s> <opTS> 90TASP-BUTPTOY-203~59pTs) paad-uciz-usb) ITed-3PTS pue)
<ited-apTS>)
(P18 <opTS>)
(30TASQ-BUTPTOK <23TASP-LUTPTIOY>) (11Bd <3xeRd>)) TTeX03)
{{dutyoen <autyoeur-)) spuocosid)
(<auryorw> surexzed)
ATEVIIVAY-ENIHOVR 8TNd-S0USIaJUI)

A3TTTqeTTeAR 10J Se[NI 90ULISFUT !

.«..«.kI.fla.lﬂ«Gi.«l&ktklkk«kt.«.i*i&««*«ki.«ikii.ﬂ«.li&.i«ﬁ!ﬂl.«dtlﬁ«kﬁ&...
sy @dousIsyur !

o1
B T T T T T v TTYyT ey

MYEM-FOIARA-ONIQIOH-HOUA-ASYATEY I103ex2d0)
MO0HD-DILANOYH-HIIM-QTOH Iojexado)

ADNHD-LATIOD-HLIM-ATOH Xo3exsdg)

MDNHI-MYL-p-HIIM-TIOH Zojexsdo)

SHAINID-HIIM-JTOH T03exsdo)

ARV IO-F0L-HLIM-HUNDES To3ex=ado)

SI¥VE -YVINONYLOTE - dHYTO-H0L-HIIM-ATOH I03exsdo)

SILAVA - TEOTYANITAD-dHVTI-H0L-HIIM-U'IOH To3ea=ado)

©tt AD0TE-A-HIIM-UTIOH Zo3exsdQ)

*(STseyl ayl 3noybnoiyy soTdwexs ayj uT pasn jou =I1e A9yl 2snedsql!
308339 pue SUOTITpuoddad ITSY3 peljTwo sAey aM) sxojexsdo ButpToy asyao!!

({({{<3Ted> <aUTYORW> STEI-UO) PpPe)
{(<3TRd-2pTS> <9PTS> <3ded> <80TASP-BUTPTOU> <dUTYoRUW> Butploy) [op)) ()} S3os3ze)
{ (<xTed-9pTS> <apTIS> <3IEd> <B2TASP-BUTPTOY> <dUTUDews BUIpTOY)

({¥IVd-3Als <ated-sprs>) (FAIS <2PTS>)

(Lyvd <3xed>)

{90TASP~-OUTPIOH <30TASP-BUTPTOY>)
(INIHOYW <PUTUOEW>)) spuodazd)
(<2Ted-9pTS> <apTs> <3Ied> <SOTASP-BUTPTOY> <8UTYOEW> swered)
ADIAAA-DNITTOH~RONI-ESVETEY I03exadg)

{{{{{<37ed> <suTyoeu> ®TqEl-uUC) T2P)) () S308333)
{{{<3aed> 31ed-8[gETTRAR-ST)
(<3Ted> <dUTYIPW> 8fgel-uc) pue)
{{37ed <3jred>) (ANIHDVYN <2UTYSRW>)) spucosad)
(<3Ted> <dUTYDEW> Surexed)
ATTYL-ENTHOVH-HOY4-FAORIY 103ex8dD)

{({({{{<aTRd-8DTS> <OPTE> <3Ted> <HDTASP-BUTPTOY> <aUTYDew> Butproy) ppe))
(MYINONYLIOEY <3xed> Jo-adeys) 1)
{({{(<xred-spTs> <apTs> <ixed> <20TASP-BUTPIOY> <suTyoems AryEem-Burproy) ppe))
(TUOTHANITAD <3xed> Fo-sdeys) 3t)
{{<3xed> <3UTYORW> DTCEl-UC) I3pP)
() s3os339)
(((<312d> jTed-3TqRTTEAE-ST)
(<ouTyORW> <2OTASp-bUTpioy> 20TASpP-BUTPTOY-A3dNE-ST)
{<3aed> <autyoERW> 2TCEI-UO)
{<3xed> uearo-sT)
{{<31ed> saing-sey) ~)
(<20TASP-BUTPTOY> <BUTYIBW> SITASP-SEY) Pue)
((1Ted-2pTs <iTed-sprs>)
{PPTS <ZDY-2PTS>) (IPTS <IPU-2DTS>) ! (SPTE <9PTS>)
{31Rd <3IEBd>)
{SUTYUDRH <dUTYIEW>)
(ISIA <30TASp-BUTPIOY>)) Spucasad)
{<1TRed-2pTS> <OPTS> <3aed> <VOTASP-BUTETOU> <auilyoeuws sureied)
ASTA-HIIM-GTOE T03229d0)

{{{{{<3120> <aUTYORW> 2TCE3-UC) Ppe)

{ (<aTed> <dUTYSBRW-ISYIoue> S[gel-ud) [Sp))
((SUIYOER <2UTUDBW-IDYIOUR>)) SI0DIFD)

({ (<duTyDEW> BUTYOBW-ITIETTIRAR-ST)
{<3xed> 31ed-oTqETTeAER-ST) pue)
({31Bd <3I1Rd>)

JuswoTdmon! ((Iodeys SUTUDBH JHOD) <Sutlyodeurs)) spucosaxd)
(<azed> <autysew> suexed)
ATEVL-ANIHOVH-NO-INd 103213d0)

md..n:um_zm:wwu..;wUmnuw.smukmnmcﬂﬁacnucumuoumumno:.‘
B Y L L L LT LT T Y T R DT T R P I P p I VIV ps 4

((({{<2xed> <pTNIF> <3UTUORW> PTNII-SeY) PPE)) () 5359339)
{{ (¥¥ad0D <3jred> jo-TeTIajEw)
(FZNONME <3xed> Jo-TeTIosew)
{sswyg <3TEd> JO-TPTISlEew) I0)
({dINTI-DNILIND <PINT3F>} (A3ed <3xed>) (SUTUDERH <dUTyoew:-)) spucoaxd)
(<pPINTI> <dUTYORW> surezed)
AIATA-ONILLOD-ANY-aay I03exado)

({({(<310d> <pTO[3> <SuTyORU> DPINTI-SBY) Ppe)) () $303733)
((NO¥I <3xed> Jo-YeTIajew)
{(TIO-TVHEANIR <PINTF>) (3Xed <3Ted>) (SUTYDEH <dUTHORW>)) spuocdadxd)
{<pPINI3I> <8UTYOEW> surexed)
TIO~TVEENIR-0dY Io3exado)

({({(<aTed> <pTNTI> <cUTUPRW> PINTI-SBY)} PPER)) () 5309339)
{ ({(AIONTANTY <3aed> Jo-TeTa=slew)
('I331s <31ed> jo-TeTI=2IEW) I0)
{(1I0-37ANTOS <PTINTI>) (IIed <ired>) (SUTYDEH <SUTYITW>)) Spuodsxd)
{<pIN[I> <SUTYORUL suexed)
TI0-31ENT0s-ady ao3exado)

PInT3 Burijno Aue :ezuoxq ‘zaddoo ‘sseaq -
TTO~TANTOS :UMUTUMTE ‘{9838 -
1TO-TEIDUTH IUOIT -

:Tetaslew aUy3l uo spuadep adiy pruly Sy ‘¢!
SSUTYORW UT PINTI Hurijno

B L R R T L PP e S P S P

({<3DTASDP-5UTPTOY> <BUTYDEM> I0TASP-SEY) TIR)) () S309333)

[4R¢
{ { (<BuTyORW> <3DTASP-BUTRTOY> 90TASP-BUTRTOY-AJdus-ST)

APPENDIX B. THE PRODIGY4.0 PROCESS PLANNING DOMAIN

236

{preconds (({<tool> Tocl))
(forall ((<machine> Machine))
(~{holding-tool <machine> <tool>))))
(effects {) ({add (is-available-tool <tool>}}}))

(Inference-Rule TOOL-AND-TOOL-HOLDER-NOT-AVAILABLE
{mode eager}
(params <machine>)
(preconds ((<machine> Machine) (<tool> Tool))
(holding-tool <machine> <tool>))
(effects () ({del (is-~available-tool-holder <machinex>})
{del (is-available-tool <tool>)}}}})

(Inference-Rule TABLE-AVAILABLEL
{params <machine>)
{preconds ({<machine> Machine}
{<holding-device> TOE-CLAMP))
£)
{effects ()} ({add (is-available-table <machine> <holding-device>)}))))
{Inference-Rule TABLE-AVAILABLE2
(params <machine>)
{preconds ({<machine> Machine) ({<holding-device> Holding-Device})
(forall ((<another-hoclding-device> Holding-device))
(~ (has-device <machine> <another-holding-device>)}))
(effects () ({add (is-available-table <machine> <holding-device>))))}

{Inference-Rule HOLDING-DEVICE-AVAILABLE
(params <holding-device>)
(preconds ((<holding-device> Holding-device))
(forall {(<machine> Machine))
{~({has-device <machine> <holding-device>))))
(effects () ((add (is-available-holding-device <holding-device»)))})

{Inference-Rule TABLE-AND-HOLDING-DEVICE-NOT-AVAILABLE
(mode eager)
(params <machine>)
(preconds ((<machine> Machine) {<another-holding-device> Holding-device))}
{has-device <machine> <another-hclding-device>})
(effects
;:1if the holding device is a Toe-Clamp, the table is available
{ {<holding-device>
(and (comp Holding-Device TOE-CLAMP)
(diff <holding-device> <another-holding-device>})))
((del (is-available-table <machine> <holding-device>))
(del (is-available-holding-device <another-holding-device>))))}

(Inference-Rule PART-AVAILABLE
(params <part>)
(preconds {(<part> Part))
(forall
{ (<«machine> Machine)
(<holding-device> Holding-device)
{<side> §ide)
{<side-pair> ;;Side-Pair
;{and side-Pair (compute-side-pair <side> <side-pair>)) ;;slower
{and Side-Pair (gen-from-pred {sides-for-holding-device <side> <side-pair>)})})
{and
{-(holding-weakly <machine> <holding-device> <part> <side> <side-pair>))
{~tholding <machine> <holding-device> <part> <side> <side-pair>))}}}
{effects () ((add (is-available-part <part>)})})

{Inference~-Rule PART-NOT-AVAILABLE-AND-HOLDING-DEVICE-NOT-EMPTY-AND-MACHINE-NOT-AVAILABL
E

{mode eager)
{params <part>)

{preconds (({<part> Part)
(<machine> Machine)

{<holding-device> Holding-device}

{<side> Side) ({<side-pair> Side-Pair)}

{or (holding-weakly <machine> <holding-device> <part> <side> <side-pair>)
{holding <machine> <holding-device> <part> <side> <side-pair>)))

(effects ()

({del {is-available-part <part>)}

{del (is-empty-holding-device <holding-device> <machine>)}
{del (is-available-machine <machine>)})))

(Inference-Rule HOLDING-DEVICE-EMPTY
(params <machine> <holding-device>)

(preconds ((<holding-device> Holding-device)

{forall
{{<part> Part)
(<side> Side)
(<side~pair>

(<machine> Machine))

{and Side-Pair (gen-from-pred (sides-for-holding-device <side> <side-pair>}}}))
{and (~ (holding-weakly <machine> <holding-device>» <part> <side> <side-pair>))
(~ {holding <machine> <holding-device> <part> <side> <side-pair>}))))

{effects ()

Pii

{{add (is-empty-holding-device <holding-device> <machine>})}))

R T T R T e T T

;: Inference rules to generate legal orientations {only fire at the beginning of
i: planning, because they are eager and they involve static predicates)

(Inference-Rule SIDES-FOR-HD

{mode eager)
{params}
{preconds () t)
{effects () ((add
(add
(add
(add
(add

;args are <side-up> <side-pair>

(sides~for-holding-device
{sides-for-holding-device
{sides-for-holding-device
{sides-for-holding-device
{sides-for-holding-device
{sides-for-holding-device
(sides-~for-holding-device
(sides-for-holding-device
(sides-for-holding-device
(sides-for-holding-device
(sides-for-holding-device
(sides-for-holding-device

(Inference-Rule SIDE-UP

(mode eager}
(params)
{preconds () t)
(effects () (({add
{add
{add
{add
{add
{add
{add
{add

orientation,

SIDELl
SIDEL
B5IDE2
SIDEZ2
SIDE3
SIDE3
SIDE4
SIDE4
SIDES
SIDES
SIDE6
SIDE6

SIDE2-SIDES))
SIDE3-SIDE6))
SIDE1-SIDE4))
SIDE3-SIDEG))
SIDEZ-SIDES))
SIDE1-SIDE4))
SIDEZ-SIDES))
SIDE3-SIDE6))
SIDE1-SIDE4))
SIDE3-SIDE6))
SIDE1-SIDE4})
SIDE2-SIDES}))}))

{side-up-for-machining LENGTH SIDE3))
{side-up-for-machining LENGTH SIDE6))
{side-up-for-machining WIDTH SIDE2))
{side-up-for-machining WIDTH SIDES))
{side-up-for-machining HEIGHT SIDE1))
{side-up-for-machining HEIGHT SIDE4))
{side-up-for-machining DIAMETER SIDE1)})
{side-up-for-machining DIAMETER SIDE0)))))

Side-mill is the only operator that does not machine the part that
is up, but one of the sides. Once the part is held with some

it is impossible to side-mill both sides as one is
being covered by the holding device. This is avoided in the
SIDE-MILL operator. Therefore to machine both sides the part has
to be released and held again.

237

({({(<®xt#> Jurod-BuraT2w-YBTY-SBY) PpPe)) () S3983738)
{ ((RONATEATON <2ITM> JO-TRTIdJEm)
{NALSONNL <2ITM> JO-TeTIdeW) 2a)
((ZMIM <22TM>)) Spuodexd)
(<ax1TM> surexed)
INIOd-ONIITIH-HOIH STMy-sduaIajur)

({({{{@avH <3xed> Jo-sseupxeu) ppe)) ()} s30=3F3)
((snowyaa <3xed> 3o-AorTE)

{{(3xed <31Ed>}) spuosaad)

(<3zed> suwered)

QIVH~TVIHALYR-J0-SSANTNYH STN-32UaI97ul)

(((({2805 <37ed> JO-ssauprey) ppe)) () $3I093F3)
{ { (RONIROTY <33ed> Jo-TeTiajew)
{SNOMNAI-NON <3xed> 3o-A0TTB) I0)
{(33ed <1aed>)) spuodaxd)
(<3xed> swexed)
LI0S~TVINALYH-JA0-SSANAUVE STNY-20USI5IUT)

{{{{(SnowgaI-NON <311ed> JO-ASTTR) PPE)) () S309338)
{((gazZNo¥H <3zed> jo-TerIajeun)
(4Edd0D <3xed> yo-TerIdjew)
{§svyg <jxed> jo-TeTI=ajew) I0)
((3xed <3xed>)) spucasid)
(«3xed> surexed)
SNOYMEA-NON-TVIEIIVH STNY-sousIsjul})

({{{{snowuas <ized> go~AoTTR) ppe)) () S309333)
{{{NOMI <3Ted> Jo-TeTID3eW)
{13515 <3xed> jo-Tetielew) I0)
{{a1Egd <3jred>)) spucnsad)
(<3zed> swered)
SNOMIEI-TVIMALYA STNY-SOUSISIUI)

umuspgATow -
usisbuny -
¢ INIOd-DNILIIH-HDIH
snoxIisy -
paey -
STOIIDI-UOU ~
umutumTe -
az0s -
: SSHNAHVH
uoIT -
18938 -
SNOIIDT -
szuoaq -
aaddoo -
sseaq -
SNOIIDI-UOU -
' SAOTTY
:sTetxa3ew jred yo sailxadoig

R e L R P Y B B T T R P P

3
1
1
:
:

({{({93a1S <3zed> FO-®pTS) ppE)
({gEaIS <3Ied> Jo-2pTS) ppe)
({03aIs <3red> 3o-9pTs) ppe)) () s3I09F39)
(("TYDTHANITXD <3xed> Jo-adeys)
({37183 <371ed>)) Spucosad)
(<3zed> sweied)
LY -TEIINANITAD-A0-SRAIS-TUY STNH-SOUSIBIUI)

((({(98015 <3xed> o-2pTs) pPpE)
((SEAIS <3Ted> JO-2pTS) ppe)
{(ya01S <3xed> JO-SPTS) ppR)
{(£=2aIs <3zed> JO-9PTS) pPpE)
{(zEd1s <3zed> jo-apIs) ppe)
({T2aI1s <3red> Jo-3PTs) ppe))

((({(TeOINANITAD <3xed> jo-adeys) ppe))

(((({<p> YALINYIQ <3Ted> Jo-2z1s) pard-woIrj-usb)
A338WETJ-JTOH PuUR) <p>)
({((<T> HIONAT <3jIed> JO-82z1s) peid-woij-uab) 8215 pue) <i>)

() s30@339)
{ (MYINONVYIOTY <3xed> Jo-adeys)

((32184 <3zed>)) spuooaxd)

{<3zed> suezed)

LYY -¥YINONVIDIE - A0-SAAIS-HIY 2 TNY-S0U2I2JUT)

() s303339)

(3

(3xed <3aed>)) spuooaid)
{<37ed> suexed)
TYOTYANTTAD-SI STNy-souaIagulr)

({({ (MVINONYLOEE <3xed> Fo-sdeys) ppe))

({({{{<y> IEOIFH <3jImd> JO-82TS) peid-worl-usf) SzIS pue) <U>)
(({{<m> HIQIM <3xed> Jo-3215) pead-worz-ush) ST pue) <M>)
(({({<T> HIONAT <3jied> jo-azTs) paid-worj-usb) ®zTI5 pue) <I>)

() s193339)

&)

{314 <3Ied>)) spucsazd)
{<axed> swezed)
AYINONVIOTY-SI STNY-80U8IBFUL)

adeys 10J S9TNI S0USIIJUT

]

:

B 2T T T Y T TR R P R P R T P P

(((((yaAIS 9=ATS JHOITH TITW-IPTS-IOF-IPTS) pPRe)
({190IS 94AIS IHOIAH [TTW-SPTS-I0J-OPTS) PpeE)
({y&QIS SZAIS IHOIEH TTTW-9PTS-I0F-ODTS) DDPE)
((TEAIS SIATS IHOIFAH TTTW-SPTS-IOF-IPTS) pPpe)
((y3AIS €IAIS IHOIEH TITW-OPTS-10I-8pTS) PpeE)
((THAIS £@AIS IHDIHH T[TW-SPTS-I0I-IPIS) ppe)
((PHAIS ZEQIS IHOIEH TTTW-SPTS~10J-3pTS) ppe)
{(THATS ZIAIS IHDIFH TTTW-SPTS-I0F-SPIS) pre)

{(99AIS SEATS HIOHNAT [ITW-SPTE-I0F-IPTS) ppe)
((€EQIS STAIS HIONAT TTTW-SPTS-ICy-90TS) ppe)
{(9FAYS PHATS HIHNIT TTTW-SPTS-IOI-9PTS) ppe)
{(€3AIS PEAIS HIONAT [[TW-SPTE-IOJ-SPTS) ppe)
{(93AIS ZAAIS HIONAT TTTW-SPTS-ICI-IPTS) ppe)
((£HAIS ZHAIS HIONAT [[TW-8pTS-I0J-SPIs) ppe)
((93AI$ TAAIS HIONAT TTTW-SPTS-ICI-IPTS) ppe)
{{£3AdIS THAIS HIONAT TTTW-SPTS-I03-9pTS) ppe)

({SEQIS 93QIS HIQIM TTTW~SPTS-103J-8nT8) ppeE)
((Z3AIS 93AIS HIAIM TTTW-SPTE-I0I-PTS) ppe)
({S3dIS vAAIS HIAIM TTTW-SPTS-I0I-3pTS) ppe)
((ZAAIS PEATS HIQIM TTTW-SPTS-I0F-3PTS) ppe)
({SIATIS £EATS HIAIM T[TTW-SPTS-ICI-3PIS) pPre)
((ZaAIS £EAIS HIQIM TTTW-SPTS-I0J-8PTS) ppE)
({S3AIS TAALS HIQIM TTTW-SPIS-I0I-SPTS) PpeE)
({z3dIS TIAAIS HIAIM TTTE-IPTS-I0I-IPTS) ppe))
<SPTS-PBUTYDEW> <dN-3pTS> <WIp> 23 sbae!!

() s329339)

(3 () spuoceaid)

(swexed)
(106es spouw)
TIIN-ANE-¥0J-ZQIS STnyg-eousIaFur})

*SuUOTIRIUSTIO pue SIPTS ATed Syl [epown om BIsH

’

‘

APPENDIX B. THE PRODIGY4.0 PROCESS PLANNING DOMAIN

238

(Inference-Rule HAS-CENTER-HOLES1
(params <part> <x2> <y2>)
(preconds ({<part> PART)
{<x> {and Size (gen-from-pred (size-of <part> WIDTH <x>))})
(<y> (and Size (gen-from-pred (size-of <part> HEIGHT <y>}}))
(<x2> (and Hole-Location (half-of <x> <x2>)})
{<y2> (and Hole-Location {half-of <y> <y2>)}))
{(and (shape-of <part> RECTANGULAR)
(has-center-hole <part> CENTER-HOLE-SIDE3 SIDE3 <x3> <y2>)
(is-countersinked <part> CENTER-HOLE-SIDE3 SIDE3 1/8 1/16 <x2> <y2> 60)
{has-center-hole <part> CENTER-HOLE-SIDE6 SIDE6 <x2> <y2>)
{is-countersinked <part> CENTER-HOLE-SIDE6 SIDE6 1/8 1/16 <x2> <y2> 60)))
{effects () ({add (has-center-holes <part>}))))

(Inference-Rule HAS-CENTER-HOLES2
(params <part> <x2> <y2>)
(preconds ({<part> PART)
{<x> (and Size (gen-from-pred (size-of <part> DIAMETER <x>}}}}
(<y> (and Size (same <y> <x>)))
{<x2> (and Hole-Location (half-of <x> <x2>}))
(<y2> (and Hole-Location {same <y2> <x2>})}}
(and (shape-of <part> CYLINDRICAL)
{has-center-hole <part> CENTER-HOLE-SIDE3 SIDE3 <x2> <y2>)
(is-countersinked <part> CENTER-HOLE-SIDE3 SIDE3 1/8 1/16 <x2> <y2> 60)
(has-center-hole <part> CENTER-HOLE-SIDE6 SIDE6 <x2> <y2>)
(is-countersinked <part> CENTER-HOLE-SIDE6 SIDE6 1/8 1/16 <x2> <y2> 60}))
(effects {) ((add (has-center-holes <part>)}})))

R R A R R T T T TP T R T DT T T T e

iii

;iVises hold cylindrical parts weakly only. Then we need another
;;device (toe clamp) to hold them so the machining op can be done.
;iTherefore if the goal is holding we can’t use a vise when the part
;7is cylindrical.

(control-rule AVOID-VISE-FOR-CYLINDRICAL-PARTS
{if (and (current-goal-first-arg <part>)
;icheck if the part is cylindrical
(known (size-of <part> DIAMETER <d>))
;;all ops that may use vises
(current-ops (DRILL-WITH-SPOT-DRILL DRILL-WITH-TWIST-DRILL
DRILL-WITH~HIGH-HELIX-DRILL
TAP COUNTERSINK COUNTERBORE REAM
SIDE-MILL FACE-MILL
DRILL-WITH-SPOT-DRILL-IN-MILLING-MACHINE
DRILL-WITH-TWIST~DRILL-IN-MILLING-MACKINE) }
(type-of-object-gen <vise» VISE}))
(then reject bindings (({<holding-device> . <vise>}}))

PR R R L L R T g S P D ar U

{control-rule PUT-ON-MACHINE-TABLE-IF~NOT-HOLDING

(if (and (current-goal (on-table <machine> <part>))
(~ (type-of-cbject <machine> SHAPER))
(false-in-state-forall-values
(holding <machine> <holding-device> <part> <s> <sp>}
{<holding-device> HOLDING-DEVICE)
{<s> SIDE) (<sp> SIDE-PATIR))
{false-in-state-forall-values
(holding-weakly <machine> <holding-device> <part> <s> <sp>)
{<holding-device> HOLDING-DEVICE)
(<s> SIDE) ({(<sp> SIDE-PAIR))))

(then select operator PUT-ON-~MACHINE-TABLE))

(control-rule PUT-ON-MACHINE-TABLE-IF-HOLDING
{if {(and (current-goal (on-table <machine> <part>))

{or-metapred
{(known

(holding

<machine> <holding-device> <part> <s> <gl> <s52»))
(knowa

{holding-weakly

<machine> <holding-device> <part> <s> <S§1> <s2>))}))}

(then reject operator PUT-ON-MACHINE-TABLE))

(control-rule REMOVE-FROM-TABLE
(if {and (current-goal (~ (on-table <machine> <part>)))
(not-candidate-goal {on-table <other-machine> <part>)}})
{then select operator REMOVE-FROM-MACHINE-TABLE))

{control-rule DONT-MAKE-RECTANGULAR-TO-HOLD-WITH-VISE
{if (and (current-goal
(holding <machine> <holding-device> <part> <s> <sp>))
;:this is to ask if the part is cylindrical
(known (size-of <part> DIAMETER <diameter>)})}
{then reject operator HOLD-WITH-VISE))

R L e A AL s ST T a TS

rules for choosing the fluids.

(control-rule USE~-MINERAL~QIL
(if (and (current-goval-first-arg <part>)

{current-ops {DRILL-WITH-OIL-HOLE-DRILL DRILL-WITH-HIGH-HELIX-DRILL
DRILL-WITH-GUN-DRILL REAM
ROUGH-GRIND-WITH-HARD-WHEEL ROUGH-GRIND-WITH-SOFT-WHEEL
FINISH-GRIND-WITH-HARD-WHEEL
FINISH-GRIND-WITH-SOFT-WHEEL
CUT-WITH-CIRCULAR-FRICTION-SAW))

{known (material-of <part> IRON)}

{type-of-object-gen <fluid> soluble-oil)})

{then reject bindings ({(<fluid> . <fluid>))))

{control-rule USE-SOLUBLE-OIL -
{if (and {current-goal-first-arg <part>}

{current-ops (DRILL-WITH-OIL-EQLE-DRILL DRILL-WITH-HIGH-HELIX-DRILL
DRILL-WITH-GUN-DRILL REAM
ROUGH-GRIND-WITH-EARD-WHEEL ROUGH-GRIND-WITH-SOFT-WHEEL
FINISH-GRIND-WITH-HARD-WHEEL
FINISE-GRIND-WITH-SOFT~WHEEL
CUOT-WITH-CIRCULAR-FRICTION-SAW))

(or {(known (material-of <part> STEEL})

{known (material-of <part> ALUMINUM)))

(type-of-object-gen <f> mineral-oil}})

{then reject bindings ((<fluid> . <£>))))

::: Rule for choosing operators to add the fluids

{control-rule ADD-OIL-ANY
{if (and {current-goal (has-fluid <mach> <fluid> <part>))
{known (material-of <part> <mat>})
{one-of-metapred <mat> (BRASS BRONZE COPPER})))
{then select operator ADD-ANY-CUTTING-FLUID))

{control-rule SIZE-BEFORE~SURFACE
{if (and (candidate-goal {size-of <part> <dim> <value>))
f {known (side~up-for-machining <dim> <side>)}}}
{then prefer goal (size-of <part> <dim> <value>)
(surface-finish-side <part> <gide> <sf>}))

239

(({<h> <x> <Tp> <p> <S> <Y> <d> 9T0y-sey) Teob joslox usyz)
((({{<h> <x> <TP> <p> <> <y> <d> pPIWEDI-ST) TLO6-3)LPIPUERD)
{{<e> <&> <x> <Ip> <p> <S> <> <&> PONUTSIDIUNOD-ST) TeCH-23EpIpURD)
{{<8> <A> <X> <IpP> <pP> <S> <y> <d> paI0ogIsIUNOD-ST) TeoB-93eRIpued)
{{<&> <X> <Tp> <p> <S> <y> <d> peddel-si) Frob-sjepTpued)
poadeisu-10)

{{<h> <x> <IpP> <pP> <8> <U> <d> 9TOY-5By) TEO6-2IEPIPUED) PUE) 3IT)

TEOB-2T0Y-309[9X STNI-TOIJUOD)

240 APPENDIX B. THE PRODIGY4.0 PROCESS PLANNING DOMAIN

Appendix C

Learned Quality-Enhancing Control
Rules

:problem ‘tst-0
(control-rule prefer-drill-with-spot-drill-in-milling-machine7
(if (and (current-goal (has-spot <part> <hole> <sgide> <loc-x> <loc-y>))
(known {(holding-tool <machine> <drill-bit>))
(type-of-object <drill-bit> spot-drill)
(type-of-object <machine> milling-machine)))
(then prefer operator drill-with-spot-drill-in-milling-machine drill-with-spot-drill)))

(control-rule prefer-bnds-drill-with-spot-drill-in-milling-machine8
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill-in-milling-machine)
(known (holding-tool <machine-3> <drill-bit-4>))
(or (diff <machine-3> <machine-1>) (diff <drill-bit-4> <drill-bit-2>))))
(then prefer bindings {(<machine> . <machine-3>) (<drill-bit> . <drill-bit-4>))
((<machine> . <machine-1>) (<drill-bit> . <drill-bit-2>))))

:problem ‘tst-1
(control-rule prefer-drill-with-spot-drill-in-milling-machine9
(if (and (current-goal (has-spot <part> <hole> <gide> <loc-x> <loc-y>))
(known (on-table <machine> <part>))
(type-of-object <machine> milling-machine)))
(then prefer operator drill-with-spot-drill-in-milling-machine drill-with-spot-drill)))

(control-rule prefer-bnds-drill-with-spot-drill-in-milling-machinel0
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill-in-milling-machine)
(known (on-table <machine-2> <part>)}) (diff <machine-2> <machine-1>)))
(then prefer bindings ((<machine> . <machine-2>)) ((<machine> . <machine-1>))})

:problem ‘tst-3
(control-rule prefer-drill-with-spot-drill-in-milling-machinell
(if (and (current-goal (has-spot <part> <hole> <gide> <loc-x> <loc-y>))
{known (has-device <machine> <holding-device>))
(type-of-object <machine> milling-machine)})
{then prefer operator drill-with-spot-drill-in-milling-machine drill-with-spot-drill)})

(control-rule prefer-bnds-drill-with-spot-drill-in-milling-machinel2

241

242 APPENDIX C. LEARNED QUALITY-ENHANCING CONTROL RULES

(1f (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill-in-milling-machine)
(known (has-device <machine-3> <holding-device-4>))
(or (diff <machine-3> <machine-1>)
(diff <holding-device-4> <holding-device-2>))))
(then prefer bindings ((<machine> . <machine-3>) (<holding-device> . <holding-device-4>))
{ (<machine> . <machine-1>) (<holding-device> . <holding-device-2>))))

:problem ’'tst2-1
(control-rule prefer-drill-with-twist-drill-in-milling-machinel3
(if (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))
(known (has-device <machine> <holding-device>))
(type-of-object <machine> milling-machine)))
(then prefer operator drill-with-twist-drill-in-milling-machine drill-with-twist-drill)))

(control-rule prefer-bnds-drill-with-twist-drill-in-milling-machinel4
(if (and (current-goal
(has-hcole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))
(current-operator drill-with-twist-drill-in-milling-machine)
(known (has-device <machine-3> <holding-device=-4>))
(or (diff <machine-3> <machine-1>)
(diff <holding-device-4> <holding-device-2>))})
(then prefer bindings ((<machine> . <machine-3>) (<holding-device> . <holding-device-4>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>))))

:problem ’'tgt2-2
(control-rule prefer-bnds-drill-with-spot-drill-in-milling-machinel5
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill-in-milling-machine)
(pending-goal (holding <machine-4> <holding-device-5> <part> <side> <side-pair-6>))
(or (diff <machine-4> <machine-1>)
(diff <holding-device-5> <holding-device-2>)
(diff <side-pair-6> <side-pair-3>))))
{(then prefer bindings ((<machine> . <machine-4>) (<holding-device> . <holding-device-5>)
(<side-pair> . <side-pair-6>))
{ (<machine> . <machine-1>) (<holding-device> . <holding-device-2>)
(<side-pair> . <side-pair-3>))})))

iproblem ‘tst2-3
(control-rule prefer-bnds-drill-with-spot-drilllsé
(1f (and (current-goal (has-spot <part> <hole> <sgide> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill)
(pending-goal (holding <machine-4> <holding-device-5> <part> <side> <side-pair-6>))
(or (diff <machine-4> <machine-1>)
{(diff <holding-device-5> <holding-device-2>)
(diff <side-pair-6> <side-pair-3>))))
(then prefer bindings ((<machine> . <machine-4>) (<holding-device> . <holding-device-5>)
(<side-pair> . <side-pair-6>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>)
(<side-pair> . <side-pair-3>)))))

:problem ‘tstd-0
(control-rule prefer-side-milll?7
(if (and (current-goal (size-of <part> <dim> <value>))
(or-metapred
(known (holding <machine> <holding-device> <part> <sgide> <side-pair>))
(pending-goal (holding <machine> <holding-device> <part> <side> <side-pair>)))
(known (sides-for-holding-device <side> <gide-pair>))
(known (side-for-side-mill <dim> <side> <mach-side>))

243

(not-in-side-pair <mach-side> <side-pair>)
(type-of-object <machine> milling-machine)))
({then prefer operator side-mill face-mill})

(control-rule prefer-bnds-side-millil8
(if (and (current-goal (size-of <part> <dim> <value>))
{current-operator side-mill)
(or-metapred
(known (holding <machine-5> <holding-device-6> <part> <side-7> <side-pair-8>))
(pending-goal (holding <machine-5> <holding-device-6> <part> <side-7> <side-pair-8>)))
(or (diff <machine-5> <machine-1>)
(diff <holding-device-6> <holding-device-2>) (diff <side-7> <side-3>)
(diff <side-pair-8> <side-pair-4>))))
(then prefer bindings
((<machine> . <machine-5>) (<holding-device> . <holding-device-6>) (<side> . <side-7>)
(<side-pair> . <side-pair-8>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>) (<side> . <side-3>)
(<side-pair> . <side-pair-4>})))

(control-rule prefer-bnds-face-milll9
(if (and (current-goal (size-of <part> <dim> <value>))
(current-operator face-mill)
(pending-goal (size-of <part> <dim-1> <value-2>})
(known {sides-for-holding-device <side-7> <side-pair-8>))
(known (side-for-side-mill <dim-1> <side-7> <mach-side>))
(not-in-side-pair <mach-side> <side-pair-8>)
(forall-metapred (known (side-for-side-mill <dim-1> <side-3> <mach-side-9>))
(or {~ (known (sides-for-holding-device <side-3> <side-pair-4>)))
(~ (not-in-side-pair <mach-side-9> <side-pair-4>))))
(or (diff <side-7> <side-3>) (diff <side-pair-8> <side-pair-4>)}))
(then prefer bindings
((<machine> . <machine-5>) (<holding-device> . <holding-device-6>) {<side> . <side-7>)
(<side-pair> . <side-pair-8>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>) (<side> . <side-3>)
(<gide-pair> . <side-pair-4>})})})

:problem ’tst5-2
(control-rule prefer-drill-with-spot-drill25
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(known (has-device <machine> <holding-device>))
(type-of-object <machine> drill)))
(then prefer operator drill-with-spot-drill drill-with-spot-drill-in-milling-machine))})

(control-rule prefer-bnds-drill-with-spot-drill2é
(if (and (current-goal (has-spot <part> <hole> <gide> <loc-x> <loc-y>))

(current-operator drill-with-spot-drill)

(known (has-device <machine-3> <holding-device-4>))

(or (diff <machine—3> <machine-1>)

(diff <holding-device-4> <holding-device-2>})))
(then prefer bindings ((<machine> . <machine-3>) (<holding-device> . <holding-device-4>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>))))

{control-rule prefer-drill-with-spot-drill27

(if (and (current-goal {has-spot <part> <hole> <side> <loc-x> <loc-v>))
(pending-goal (holding <machine> <holding-device> <part> <gide> <side-pair>))
(known (sides-for-holding-device <side> <side-pair>))
{tyvpe-of-object <machine> drill)))

(then prefer operator drill-with-spot-drill drill-with-spot-drill-in-milling-machine))

(control-rule prefer-bnds-drill-with-spot-drill28

244 APPENDIX C. LEARNED QUALITY-ENHANCING CONTROL RULES

(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill)
(pending-goal (holding <machine-4> <holding-device-5> <part> <side> <side-pair-6>))
(or (diff <machine-4> <machine-1>)

(diff <holding-device-5> <holding-device-2>)

(diff <side-pair-6> <zside-pair-3>})))
(then prefer bindings ((<machine> . <machine-4>) (<holding-device> . <holding-device-5>)

(<gide-pair> . <side-pair-6>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>)
(<side-pair> . <side-pair-3>))))

:problem ‘tst5-3

(control-rule prefer-goal-30

(if (and (candidate-goal (holding <drill05> <vise06> <part> <sidel?7> <side2-side58>))
(known (holding <machine-1> <holding-device-2> <part> <side-3> <side-pair-4>))
(is-subgoal-of-ops

(holding <machine-1> <holding-device-2> <part> <side-3> <side-pair-4>) <ops>)

(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>) :
(~ (is-pending-subgoal-in-subtree <other-goal> <ops>))))

(then prefer goal <pref-goal> <other-goal>)}))

:problem ‘tst5-9 i
(control-rule prefer-drill-with-twist-drill-in-milling-machine31l
(if (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))
(known (on-table <machine> <part>))
(type-of-object <machine> milling-machine)))
(then prefer operator drill-with-twist-drill-in-milling-machine drill-with-twist-drill)))

{(control-rule prefer-bnds-drill-with-twist-drill-in-milling-machine32
(if (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))
(current-operator drill-with-twist-drill-in-milling-machine)
(known {(on-table <machine-2> <part>))
(diff <machine-2> <machine-1>))}
(then prefer bindings ({<machine> . <machine-2>)) ({(<mac¢hine> . <machine-1>))))

:problem "’ tst6-1
(control-rule prefer-drill-with-twist-drill-in-milling-machine33
(1f (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))
(pending-goal (size-of <part-1> <dim-2> <value-3>}}))
(then prefer operator drill-with-twist-drill-in-milling-machine drill-with-twist-drill)))

:problem ‘tst6-2

(control-rule prefer-goal-34

(if (and (candidate-goal (is-available-tool-holder <machine>))
(known (holding-toocl <machine> <milling-cutter>))
(is-subgoal-of-ops (holding-tool <machine> <milling-cutter>) <ops>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
{~ (is-pending-subgoal-in-subtree <other-goal> <ops>))))

({then prefer goal <pref-goal> <other-goal>)))

:problem ‘tst6-3
(control-rule prefer-side-mill3s
(if (and (current-goal (size-of <part> <dim> <value>))
(pending—goal
(has-hole <part> <hole-1> <side> <hole-depth-2> <hole-diameter-3> <loc-x-4> <loc-y-5>))

245

(known (sides-for-holding-device <side> <side-pair>))
(known (side-for-side-mill <dim> <side> <mach-side>))
(not-in-side-pair <mach-side> <side-pair>)))

({then prefer operator side-mill face-mill)))

{control-rule prefer-bnds-gside-mill36
(if (and (current-goal (size-of <part> <dim> <value>))
(current-operator side-mill)
(pending-goal
(has-hole <part> <hole-1> <side-2> <hole-depth-2> <hole-diameter-3> <loc-x-4> <loc-y-5>)})
(diff <side-2> <side-1>)))
(then prefer bindings ((<side> . <side-2>)) ((<side> . <side-1>))))

:problem ‘tst6-4
(control-rule prefer-bnds-drill-with-twist-drill-in-milling-machine37
(if (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))
(current-operator drill-with-twist-drill-in-milling-machine)
(pending-goal
(holding <machine-4> <holding-device-5> <part> <side> <side-pair-6>))
(or (diff <machine-4> <machine-1>)
(diff <holding-device-5> <holding-device-2>)
(diff <side-pair-6> <side-pair-3>))))
(then prefer bindings ((<machine> <machine-4>) (<holding-device> . <holding-device-5>)
(<side-pair> . <side-pair-6>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>)
(<side-pair> . <gide-pair-3>)))))

:problem ‘tst6-5
(control-rule prefer-drill-with-spot-drill-in-milling-machine38
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(pending-goal (holding <machine> <holding-device> <part> <side> <side-pair>))
(type-of-object <machine> milling-machine)))
(then prefer operator drill-with-spot-drill-in-milling-machine drill-with-spot-drill)))

(control-rule prefer-bnds-drill-with-spot-drill-in-milling-machine39
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(current-operator drill-with-spot-drill-in-milling-machine)
(pending-goal
(holding <machine-4> <holding-device-5> <part> <side> <side-pair-6>))
(or (diff <machine-4> <machine-1>)
(diff <holding-device-5> <holding-device-2>)
(diff <side-pair-6> <side-pair-3>))))
(then prefer bindings ((<machine> . <machine-4>) (<holding-device> . <holding-device-5>)
(<side-pair> . <side-pair-6>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>)
(<side-pair> . <side-pair-3>))))

rule-relative-prefs =
((prefer-drill-with-spot-drill-in-milling-machine38 prefer-drill-with-spot-drill25))

:problem ‘tst6-6
{control-rule prefer-bnds-face-mill40
(if (and (current-goal (size-of <part> <dim> <value>))
(current-operator face-mill)
(pending-goal (holding <machine-5> <holding-device-6> <part> <side-7> <side-pair-8>))
(or (diff <machine-~5> <machine-1>)
(diff <holding-device-6> <holding-device-2>) (diff <side-7> <side-3>)
(diff <side-pair-8> <side-pair-4>))))
(then prefer bindings

246 APPENDIX C. LEARNED QUALITY-ENHANCING CONTROL RULES

((<machine> . <machine-5>) (<holding-device> . <holding-device-6>) (<side> . <side-7>)
(<side-pair> . <side-pair-8>))

((<machine> . <machine-1>) (<holding-device> . <holding-device-2>) (<side> . <side-3>)
(<side-pair> . <side-pair-4>)))})

:problem ‘tst7-2
(control-rule prefer-goal-42
(if (and (candidate-goal (holding <machine-2> <holding-device> <part06> <side27> <sidel-sided8>))
(known (has-device <machine-1> <holding-device>))
(pending-goal (holding <machine-1> <holding-device> <part03> <gide24> <side3-side65>))
(is-subgoal-of-ops
(holding <machine-1> <holding-device> <part03> <side24> <side3-side65>) <ops>)
(diff <machine-2> <machine-1>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~ (is-pending-subgoal-in-subtree <other-gocal> <ops>))))
(then prefer goal <pref-goal> <other-goal>)))

(control-rule prefer-goal-43

(if (and (candidate-goal (holding <machine-2> <vise06> <part> <side27> <sidel-sided8>))
(known (on-table <machine-1> <part>))
(pending-goal (holding <machine-1> <vise(03> <part> <sgideld> <side3-side65>))
{(is-subgoal-of-ops (holding <machine-1> <vige03> <part> <sideld> <side3-side65>)

<ops>)
(diff <machine-2> <machine-1>)
(first-pending-subgoal-in-subtree <pref-goal> <ops>)
(diff <pref-goal> <other-goal>)
(~ (is-pending-subgoal-in-subtree <other-goal> <ops>))))
(then prefer goal <pref-goal> <other-goal>))

:problem ‘tst7-4
(control-rule prefer-drill-with-twist-drill4?7
(if {and (current-godl
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>))
{(known (holding <machine> <holding-device> <part> <side> <side-pair>)) :
(type-of-object <machine> drill)))
(then prefer operator drill-with-twist-drill drill-with-twist-drill-in-milling-machine)))

(control-rule prefer-bnds-drill-with-twist-drill4sg
(if (and (current-goal
(has-hole <part> <hole> <side> <hole-depth> <hole-diameter> <loc-x> <loc-y>})
{current-operator drill-with-twist-drill)
(known (holding <machine-4> <holding-device-5> <part> <side> <side-pair-6>))
(oxr (diff <machine-4> <machine-1>)
(diff <holding-device-5> <holding-device-2>)
(diff <side-pair-6> <side-pair-3>))))
(then prefer bindings ((<machine> . <machine-4>) (<holding-device> . <holding-device-5>)
(<side-pair> . <sgide-pair-6>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>)
(<side-pair> . <side-pair-3>))))

{control-rule prefer-drill-with-spot-drill4?9

(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))
(known (holding <machine> <holding-device> <part> <sgide> <side-pair>))
(type-of-object <machine> drill)))

(then prefer operator drill-with-spot-drill drill-with-spot-drill-in-milling-machine))

(control-rule prefer-bnds-drill-with-spot-drill50
(if (and (current-goal (has-spot <part> <hole> <side> <loc-x> <loc-y>))}
(current-operator drill-with-spot-drill}

247

(known (holding <machine-4> <holding-device-5> <part> <side> <side-pair-6>))
(or (diff <machine-4> <machine-1>)
(diff <holding-device-5> <holding-device-2>)
(diff <side-pair-6> <side-pair-3>))))
(then prefer bindings ((<machine> . <machine-4>) (<holding-device> . <holding-device-5>)
(<side~pair> . <side-pair-6>))
((<machine> . <machine-1>) (<holding-device> . <holding-device-2>)
(<side-pair> . <side-pair-3>})))

248 APPENDIX C. LEARNED QUALITY-ENHANCING CONTROL RULES

Appendix D

Detailed Experimental Results

The experiments described in Chapters 3 and 4 were run in Allegro Common Lisp 4.1 on a Sun
Sparcstation ELC under the Mach/Unix operating system. The tables below show the data for
the complete set of problems in the test phase using the quality metric of Table 3.1. For each
problem results are shown of solving it (a) without any quality-enhancing control knowledge,
(b) with the control rules learned from the training set (see Section 3.13.2), and (c) with the
control knowledge trees learned from the same training set (see Section 4.8.3). The meaning
of the columns is the following:

e Prob num: the problem number; the prefix indicates the problem set to which it
belongs.

Quality: the quality value of the solution found.

e Time: the CPU time, in seconds, that the PRODIGY4.0 took to solve the problem.
e Nodes: the number of nodes searched.

Plan length: the length of the solution found, i.e. the number of steps of the plan,
including the inference rules fired.

38
46
53
36
44

Prob | No quality control knowledge Learned control rules Learned cktrees

Num | Qual Time Nodes Length | Qual Time Nodes Length | Qual Time Nodes Length
1-0 26 3 47 38| 26 3 47 38| 26 4 47

1-1 41 4 63 48 24 3 42 46 24 4 42

1-2 24 3 42 53 24 3 42 53 24 4 42

1-3 40 4 59 62 25 3 46 36 25 4 46

1-4 24 3 39 44 24 2 39 44 24 3 39

1-5 24 2 39 35 24 2 39 35 24 3 39

35

249

250 APPENDIX D. DETAILED EXPERIMENTAL RESULTS

Prob | No quality control knowledge Learned control rules Learned cktrees

Num | Qual Time Nodes Length | Qual Time Nodes Length | Qual Time Nodes Length
1-6 24 2 39 35 24 3 39 35 24 3 39 35
1-7 25 3 46 36 25 3 46 36 25 4 46 36
1-8 24 2 39 44 24 2 39 44 24 3 39 44
1-9 41 4 63 60 15 2 25 24 15 2 25 24
1-10 26 3 47 38 26 3 47 38 26 4 47 38
1-11 24 3 42 46 24 3 42 46 24 4 42 46
1-12 49 4 67 61 23 2 29 25 23 3 29 25
1-13 23 2 32 36 23 2 32 36 23 3 32 36
1-14 23 2 35 42 23 2 35 42 23 3 35 42
1-15 24 3 45 40 24 3 45 40 24 3 45 40
1-16 23 2 29 31 23 2 29 31 23 3 29 31
1-17 1 0 8 5 1 0 8 5 1 1 8 5
1-18 33 3 56 53 33 3 56 53 33 4 56 53
1-19 50 4 71 62 23 2 29 31 23 3 29 31
1-20 23 2 32 32 23 2 32 32 23 3 32 32
1-21 32 3 52 52 32 3 52 52 32 4 52 52
1-22 16 2 35 34 16 2 35 34 16 3 35 34
1-23 33 3 56 51 24 3 42 53 24 4 42 53
1-24 18 2 43 37 18 2 43 37 18 3 43 37
1-25 24 2 39 44 24 3 39 44 24 3 39 44
1-26 23 2 35 42 23 2 35 42 23 3 35 42
1-27 48 4 63 74 25 2 43 36 25 3 43 36
1-28 50 4 71 62 23 2 29 31 23 3 29 31
1-29 50 4 71 62 23 2 29 31 23 3 29 31
2-0 47 3 53 61 .26 3 47 38 26 4 47 38
2-1 56 6 86 93 28 4 67 72 28 6 67 72
2-2 56 5 83 68 28 4 64 51 28 6 64 51
2-3 55 5 73 70 27 3 54 53 27 5 54 53
2-4 72 7 100 103 29 4 68 64 29 6 68 64
2-5 62 5 79 73 28 4 67 © 57 28 6 67 57
2-6 56 6 86 93 28 4 67 72 28 6 67 72
2-7 56 5 80 85 28 4 61 64 28 6 61 64
2-8 31 3 42 34 31 3 42 34 31 5 42 34
2-9 55 4 70 65 27 3 51 48 27 5 51 48
2-10 49 4 67 75 25 3 43 45 25 4 43 45
2-11 42 4 67 61 15 2 25 30 15 3 25 30
2-12 | 56 5 80 85| 28 4 61 64 | 28 6 61 64
2-13 62 5 79 73 28 4 67 57 28 6 67 57
2-14 56 5 83 87 28 4 64 66 28 6 64 66
2-15 80 7 104 92 28 4 61 61 52 7 85 75
2-16 54 5 69 60 26 3 50 43 26 5 50 43
2-17 64 6 93 81 28 4 67 69 28 6 67 69
2-18 26 3 47 38 26 3 47 38 26 5 47 38
2-19 25 3 49 41 25 3 49 41 25 5 49 41
2-20 72 7 100 114 21 4 61 61 21 6 61 61

251

Prob | No quality control knowledge Learned control rules Learned cktrees

Num | Qual Time Nodes Length | Qual Time Nodes Length | Qual Time Nodes Length
2-21 33 3 56 49 24 3 45 52 24 4 45 52
2-22 1 0 8 4 1 0 8 4 1 2 8 4
2-23 81 7 108 94 26 3 47 50 26 5 47 50
2-24 4 1 26 24 4 1 26 24 4 3 26 24
2-25 56 6 83 94 36 5 74 83 28 6 64 73
2-26 41 4 63 63 25 3 46 47 25 5 46 47
2-27 73 7 104 82 27 3 54 53 27 5 54 53
2-28 81 7 108 109 28 4 61 64 28 6 61 64
2-29 26 3 50 38 26 3 50 38 26 5 50 38
3-0 60 5 65 71 32 4 46 50 32 6 46 50
3-1 24 3 45 51 24 3 45 51 24 4 45 52
3-2 25 3 49 53 25 3 49 53 25 4 49 53
3-3 106 9 109 125 78 15 90 104 78 18 90 104
3-4 90 8 98 113 62 14 79 92 62 28 79 92
3-5 53 5 65 71 53 6 66 71 25 9 46 50
3-6 76 6 76 87 76 7 77 87 76 10 76 87
3-7 16 2 35 42 16 3 35 42 16 4 35 43
3-8 76 6 76 87 76 7 77 87 76 10 76 87
3-9 32 3 52 61 32 4 52 61 32 5 52 62
3-10 78 7 90 101 50 6 71 80 50 10 71 80
3-11 91 8 102 115 63 16 83 94 63 30 83 94
3-12 41 4 63 63 41 4 63 63 41 5 63 63
3-13 82 7 88 97 54 14 69 76 54 25 69 76
3-14 91 8 102 105 63 15 83 84 63 29 83 84
3-15 89 7 88 97 89 20 89 97 61 22 69 76
3-16 48 4 63 73 48 5 63 73 48 5 63 73
3-17 32 4 52 51 32 4 52 51 32 5 52 52
3-18 52 4 55 66 24 4 36 45 24 6 36 45
3-19 32 3 51 55 4 2 29 29 4 5 29 29
3-20 62 5 79 79 34 5 60 58 34 9 60 58
3-21 41 4 63 74 41 4 63 74 41 6 63 74
3-22 60 5 65 71 60 6 66 71 32 9 46 50
3-23 33 3 56 53 33 4 56 53 33 4 56 53
3-24 24 3 42 45 24 3 42 45 24 4 42 46
3-25 70 6 86 89 70 8 87 89 42 11 67 68
3-26 62 5 79 79 34 5 60 58 34 9 60 58
3-27 54 5 72 79 26 4 53 58 26 6 53 58
3-28 54 5 66 71 32 4 51 55 32 6 51 55
3-29 62 5 79 90 34 5 60 69 34 9 60 69
4-0 79 8 113 124 51 7 94 103 51 9 94 103
4-1 142 14 178 172 | 114 14 159 155 | 114 20 159 155
4-2 93 9 116 125 65 8 97 104 65 17 97 104
4-3 151 15 181 184 97 13 157 145 97 19 157 145
4-4 91 9 128 117 63 8 109 100 63 10 109 100
4-5 121 12 158 136 93 11 139 119 | 138 17 166 189

252 APPENDIX D. DETAILED EXPERIMENTAL RESULTS

Prob | No quality control knowledge Learned control rules Learned cktrees

Num | Qual Time Nodes Length | Qual Time Nodes Length | Qual Time Nodes Length
4-6 87 8 117 100 59 9 98 83 59 10 98 83
4-7 62 5 79 .90 80 8 107 124 62 8 79 90
4-8 138 15 182 185 | 109 14 159 178 | 110 18 163 168
4-9 173 19 222 191 | 117 18 184 157 | 117 23 190 163
4-10 | 127 13 171 151 99 12 152 134 99 16 152 134
4-11 | 104 10 141 125 73 8 104 119 73 10 104 119
4-12 | 107 11 145 129 76 8 108 124 76 10 108 124
4-13 91 10 142 124 92 11 136 146 61 18 109 104
4-14 25 3 43 45 3 2 22 19 3 6 22 19
4-15 54 5 69 73 26 4 50 52 26 55 50 52
4-16 | 131 10 134 152 87 9 112 116 87 18 112 125
4-17 95 8 117 123 71 8 96 113 71 12 96 112
4-18 31 3 42 52 31 3 42 52 31 8 42 52
4-19 87 8 117 100 59 7 98 83 59 9 98 83
4-20 87 8 117 125 59 7 98 104 59 12 98 104
4-21 34 5 46 42 34 3 46 42 34 3 46 42
4-22 | 117 11 140 159 83 10 128 142 83 13 128 142
4-23 65 6 83 88 65 8 83 88 65 6 83 88
4-24 41 4 63 74 41 4 63 74 41 9 63 74
4-25 81 7 108 94 78 7 90 101 81 13 108 94
4-26 96 10 134 117 81 9 111 126 68 11 115 100
4-27 73 7 104 82 26 3 50 55 26 5 50 55
4-28 | 150 16 191 203 92 12 139 150 92 19 139 150
4-29 32 3 52 62 32 4 52 62 32 6 52 62
5-0 80 10 110 123 36 6 74 82 64 17 93 103
5-1 115 10 126 141 35 5 64 69 35 94 64 69
5-2 92 7 93 103 27 4 54 53 55 16 73 70
5-3 115 10 126 148 58 8 94 79 58 181 94 80
5-4 107 9 116 132 79 9 97 111 46 71 89 70
5-5 132 11 144 150 56 7 80 89 56 203 80 88
5-6 132 11 144 150 56 8 81 88 84 80 99 109
5-7 107 9 113 127 79 16 94 106 79 585 94 106
5-8 88 9 116 127 86 10 102 116 60 380 97 106
5-9 115 10 126 141 35 6 64 69 35 35 64 69
5-10 | 123 10 130 143 30 6 72 58 30 183 72 58
5-11 | 124 11 140 152 | 100 11 120 127 | 100 167 119 127
5-12 | 131 11 134 152 55 7 71 76 55 109 70 76
5-13 | 164 16 185 210 87 11 118 119 31 167 76 81
5-14 | 104 .9 125 127 4 2 29 29 4 8 29 29
5-15 | 156 13 159 179 80 10 105 118 80 143 104 110
5-16 86 8 108 113 5 3 33 27 5 80 33 27
5-17 88 8 117 123 36 5 74 72 36 9 74 72
5-18 80 7 104 108 50 5 71 80 80 18 104 108
5-19 | 138 15 153 165 49 8 107 85 49 223 107 85
520 | 110 10 137 153 59 8 99 100 59 13 98 100

253

Prob | No quality control knowledge Learned control rules Learned cktrees

Num | Qual Time Nodes Length | Qual Time Nodes Length | Qual Time Nodes Length
5-21 | 154 14 167 191 50 8 85 94 50 76 84 94
5-22 85 8 104 111 34 6 65 58 34 72 65 57
5-23 | 162 15 171 185 11 5 69 56 11 42 69 56
524 | 139 14 163 163 47 8 99 104 75 221 118 125
5-25 79 7 100 105 51 6 81 93 79 18 100 105
5-26 79 7 103 112 35 5 70 82 63 16 89 102
5-27 | 140 14 164 174 56 9 107 118 84 381 126 139
528 | 111 11 141 155 30 5 69 67 30 9 69 67
5-29 85 9 96 104 56 7 84 76 56 13 83 76
6-0 88 9 124 102 88 10 124 102 88 12 124 102
6-1 64 6 93 91 64 7 93 91 64 7 93 91
6-2 56 5 80 85 56 6 80 85 56 6 80 85
6-3 138 15 182 150 | 115 14 152 170 | 115 15 152 170
6-4 149 16 188 201 | 121 18 169 181 | 121 23 172 186
6-5 83 8 108 120 83 9 108 120 83 9 108 120
6-6 174 42 342 250 | 174 44 346 250 | 174 56 364 262
6-7 125 15 180 166 | 125 17 180 170 | 172 24 221 244
6-8 129 14 171 149 | 114 14 151 172 | 114 15 151 172
6-9 142 15 178 195 | 114 14 159 174 | 114 16 159 174
6-10 | 152 18 198 212 | 124 16 179 191 | 124 20 179 191
6-11 114 20 211 142 | 109 11 133 152 | 109 13 133 152
6-12 | 147 26 259 172 99 13 152 121 | 131 20 203 178
6-13 87 9 123 133 87 12 123 133 | 117 16 140 162
6-14 | 146 16 186 177 | 117 15 163 179 | 117 16 163 179
6-15 87 9 123 133 87 10 123 133 87 11 123 133
6-16 | 166 29 279 200 [115 13 149 162 | 148 19 200 184
6-17 | 153 28 258 212 | 113 13 158 160 | 137 20 198 210
6-18 | 129 14 171 178 | 101 13 152 157 | 101 15 152 157
6-19 68 7 106 91 68 8 106 91 68 12 106 91
6-20 | 115 13 163 141 84 10 126 132 84 115 126 132
6-21 116 11 140 151 88 10 121 130 88 15 121 130
6-22 | 114 12 145 160 92 11 130 144 92 12 130 144
6-23 | 223 37 333 240 | 148 21 214 234 | 149 28 218 190
6-24 | 119 12 158 134 91 11 139 117 91 14 139 117
6-25 | 112 11 145 126 | 109 11 127 141 | 109 12 127 141
6-26 | 219 27 275 238 | 176 28 236 262 | 163 32 240 207
6-27 98 10 134 138 98 11 134 138 98 13 134 138
6-28 | 194 39 322 251 | 145 20 196 203 | 178 37 251 250
6-29 | 127 16 171 149 | 140 16 167 183 | 140 30 167 183

