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Abstract
The field of machine learning, particularly deep learning, has witnessed tremen-

dous recent advances due to improvements in algorithms, compute, and datasets.
Systems built to support deep learning have primarily targeted computations used to
produce the learned model. This thesis proposes to instead focus on the role of data
in both training and validation. For the first part of the thesis, we focus on training
data, demonstrating that the data pipeline responsible for training data is a prime
target for performance considerations. To aid in addressing performance issues, we
introduce a form of data subsampling in the space of data transformations, a reduced
fidelity I/O format, and a system for automatically tuning data pipeline performance
knobs. In the second part of the thesis, motivated by the trend toward increasingly
large and expressive models, we turn to the validation setting, developing a system
for automatically querying and validating a large language model’s behavior with
standard regular expressions. We conclude with future work in the space of data
systems for machine learning.
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Chapter 1

Machine Learning Data Pipelines

Machine learning (ML) has seen a recent boom in applications in the past decade. The field,
which focuses on algorithms that improve as a function of data or experience [201], has evolved
from a specialized set of applications (e.g., ads [195], recommendation systems [60, 106, 213],
spam detection [316]) to being applied to nearly every technical discipline. For example, deep
learning is applied to gameplay [261, 286], protein folding [143], robotics [80], a range of natural
language processing tasks [43, 55], and is projected to reach a point of ubiquity that may lead to
major economic disruptions [87].

At the forefront of this revolution has been the subfield of deep learning [108, 173]. Deep
learning uses a cascade of layers—mathematical operations—to assemble a model. The layers
are jointly learned such that earlier layers simplify the task at hand for subsequent layers. Deep
networks, while perhaps less theoretically understood than other ML or AI approaches, have
shown that methods that are general yet computationally taxing eventually dominate algorithms
that take advantage of additional specialization [268]. Such computationally taxing, yet general,
methods have benefited from trends such as Moore’s Law [209]—the exponential scaling of
hardware performance—as well as hardware and software specialization [165, 275]. Today’s
plethora of deep learning software raises a case that deep learning is perhaps even more accessible
today than the alternatives—training a state-of-the-art model merely requires access to model
specification code, which is usually open-source and readily available. The core of deep learning
technology has been both commoditized and democratized, allowing anyone to benefit from
human-years of research and development.

However, while routine aspects of using deep learning are more accessible, there are still
fundamental problems that remain to be solved and impact the downstream performance of many
applications. One way to taxonomize these problems (and their corresponding solutions) is by
grouping them between the three areas of 1) ML algorithms, 2) compute, and 3) data. Each of
these three areas have been optimized to continue advancements in the field and have been cited
as key sources that led to the rise of deep learning [35]. For instance, a lack of training data and
compute, are attributed to the decline of deep networks in the early 2000s [35]. The lack of these
factors was perhaps not rectified until a decade later, when record performance was achieved on
the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition [71], The
winning submission, AlexNet [156], was a deep convolutional neural network (CNN) and had
been trained on a million images with the help of graphics processing units (GPUs). There have
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also been advances in ML algorithms, which have made learning more efficient. For instance,
ReLU activations and dropout, mathematical operations widely used to accelerate learning, were
key algorithmic components of the 2012 submission [156, 173]. When these advancements
were combined, the resulting model had surpassed the next best submission by a significant 10%
absolute error and started a revolution in computer vision [173]. Today’s recent trends in natural
language processing can be similarly viewed as a core algorithmic innovation [285] being scaled
to massive data and compute [43, 55], resulting in predictable advancements in performance.

At the forefront of democratizing machine learning are machine learning systems [239]. These
systems encompass and solve sufficiently formulaic parts of the machine learning methodology,
enabling practitioners to focus their time on other problems. If ML algorithms, compute, and data
are the pillars holding up modern ML, then machine learning systems are the tools used to put
them into place. Today’s systems include facilities for symbolic manipulation of mathematical
expressions, portability across a variety of hardware platforms, distributed execution, and libraries
pre-packaged with commonly used utilities and mathematical expressions [11, 49, 96, 222]. The
choice of functionality to support in these frameworks goes beyond a matter of convenience—
support can change the direction of the field as a whole [29, 128]—thus motivating studying
which avenues future ML systems should invest in.

As part of this thesis, we explore several directions for new or revised functionality in the
modern machine learning stack, placing a focus on the treatment of data throughout the stack.
Data is important to study because it is the most dynamic of the three problem areas—data can
always be refined to cover additional samples, additional features, or certain types of behavior,
while a model (and compute) is necessarily fixed to function over some type of data. Furthermore,
optimizations to data can result in significant application gains, spurring research in data-centric
AI [3]. However, the lunch is not free and changes to data are easier said than done. A lack of
theoretical understanding means that, for any new type of machine learning task, a practitioner
will likely have to test what combination of data works best. Without proper data abstractions, a
single change in the task may cause a practitioner to manually assess and tune the characteristics
of the application’s data. Not only is it tedious to tune aspects of the data, the act of characterizing
the model’s as well as the system’s performance as a function of data requires expertise in machine
learning and systems, respectively—expertise that is typically split among different groups of
people. If the goal of ML systems is to support practitioners in solving repetitive problems, then it
is reasonable to expect ML systems to enable rapid configuration and prototyping with respect
to data. Simply put, data pipelines should be first-class citizens in the ML systems stack—they
should not be an afterthought bolted on to tools that support models and compute.

The organization of the rest of this chapter is as follows. First, we give an overview of how
machine learning systems are built and evaluated (§1.1). We then provide an overview of how the
workloads found in machine learning are fundamentally changing, splitting the community into
two (§ 1.2) and motivating a fundamentally different treatment of machine learning systems. We
then turn to motivation for the thesis, revisiting the significance of data in the current machine
learning environment (§ 1.3). Finally, we introduce the thesis statement and provide an overview
into the chapters of this document (§1.4). Readers familiar with the current state of machine
learning and machine learning systems may skip the “textbook material” of Section 1.1 and
Section 1.2 and move directly to Section 1.3.
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1.1 Machine Learning Systems
This thesis places a heavy emphasis on the design of machine learning systems, which solve
certain parts of the machine learning methodology. In this section, we specify the focus of this
thesis in the language of both machine learning and systems (§1.1.1). We begin by introducing
machine learning from the theoretical perspective so that we can theoretically define the scope of
this thesis. We then switch to describing the components of machine learning systems in § 1.1.2,
allowing us to describe the focus of this thesis in terms of logical components. Afterwords, we
define how machine learning systems optimizing certain components can be evaluated (§ 1.1.3).

1.1.1 Machine Learning Theory
Machine learning’s goal is to fit a model to data such that the model is expected to perform well
on future, potentially unseen, data. Since this thesis focuses on deep learning, we briefly review
the mathematical language used in that area of machine learning. Let (x,y) ∼ D be examples
of inputs, x, and labels, y, drawn from the training distribution, D. The inputs, x ∈ X, can
be imagined to be a vector representing some real-world data, such as images, audio, text, and
the labels, y ∈ Y, can be thought of as metadata about x (e.g., what object is contained in the
image) or data which is somehow missing from x (e.g., pixels that are left unspecified)1. The
goal is to learn a function f : X→ Y that is accurate in predicting the label, y, from the input,
x. Specifically, we seek a function f ∈ F that minimizes the expected loss, L, on unseen test
data, Dtest: minf∈F E(xtest,ytest)∼DtestL(f(xtest),ytest). The loss, L, is a function mapping from two
labels to a real, non-negative, number: L : Y× Y→ R+. If the loss is binary—1 for incorrect
predictions and 0 for correct predictions—we are finding the function f that gives us maximum
accuracy. In the general case, the loss can be intuitively thought of as a “distance” between the
predicted label and the actual label, and it can be Euclidean distance in the case of regression,
for example. Since L can be expected to be 0 when f(x) = y, a perfect predictive function,
f , would have 0 loss. However, such a perfect function is not necessarily achievable because
the relationship between labels and inputs in (xtest,ytest) ∼ Dtest may have elements of true
randomness (e.g., noise or labeling error)—in that case we want the expected loss to be as low as
we can expect it to be.

There are a few issues with this formulation. First, data from Dtest is supposed to be
unseen—at the very least, we aren’t supposed to have labels. Thus, we cannot directly fit
a model to data from Dtest. We can, however, assume that D and Dtest are identical distri-
butions. Thus, we can directly minimize over the training set: minf∈F E(x,y)∼DL(f(x),y).
Second, we don’t have access to D in general; instead, we have some representative samples{

(x(i),y(i)) ∼ D : ∀i ∈ {1, 2, . . . , N}
}

. We can thus minimize expected loss on D in the finite
sample case: minf∈F

1
N

∑
{(x(i),y(i))∼D: ∀i∈{1,2,...,N}} L(f(x(i)),y(i)). Third, with a sufficiently

powerful model, we can simply memorize parts of D e.g., if f ∈ F is a hashtable that stores all
samples. Memorization is undesirable because it is a cause of overfitting and poor generalization—
where the model fits to noise in the data more than an actual trend. The hashtable has an especially
degenerate case of generalization because it is undefined outside the training set and thus has no

1Note that we treat both x and y as vectors for generality, though y may be a scalar for some tasks.
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generalization. However, if we instead use the nearest sample’s label (i.e., nearest neighbor), we
can see that only a single sample is responsible for the prediction—thus, the prediction cannot be
said robust to small changes in the data. To avoid overfitting, we can empirically evaluate over an
additional “validation” split of data, Dvalid, which functions as Dtest, but has ground-truth labels
to estimate the validation loss. If the model performs well on Dvalid, we can expect it will also
perform well on Dtest. Forth, we haven’t defined f ∈ F and how it is found. If F is very big (or
infinite), we can’t feasibly find f by simply iterating over F—we need a better algorithm, which
means we need to make some assumptions on the structure of F. For deep learning, the key idea is
to use a differentiable loss, L, combined with a differentiable model, f(x;θ), such that calculus
can be applied to find changes in θ that reduce the loss.

Remarks on Seemingly Unspecified Data Algorithms

The theory described above focuses extensively on how to fit the model. However, it never defined
how to create the data. The algorithm for computing the training data, (x(i),y(i)) ∼ D, is not
defined because it is application dependent—no single treatment exists—leaving a number of
questions for practitioners. Where do (x(i),y(i)) come from? Are they easily computable? What
order do these samples arrive in—is i arbitrary? If a list of samples defines the training distribution
D, then are we sampling from the list uniformly? Can we resample the same samples multiple
times? If the data is media data, what is the impact of quality and resolution? What domain
knowledge can we incorporate into the data to make the problem easier to learn—can we encode
invariances into the problem by transforming samples in a way that preserves their labels (e.g.,
an image rotation)? Should we normalize the data in some way? Since most of these decisions
are not independent, how do they compose with each other and what order do you apply them
in? In abstracting away implementation details of data, we’ve only specified the solution for
a general class of modeling problems. However, this thesis attempts to demonstrate that the
“implementation details” of data matter, both from a machine learning point of view as well as a
systems one—a practitioner faces many potential design and implementation decisions when it
comes to data.
ML-Oriented Thesis Theme: A theme of this thesis is investigating the design and performance
of training data (x(i),y(i)) ∼ D as well as testing data (x

(i)
test,y

(i)
test) ∼ Dtest. The system’s

performance implications of sampling from the training set are given in §2 and §5, a method for
choosing samples (i.e., values of i) is given in §3, a method for approximating D is covered in §4,
and a system for specifying Dtest is given in §6. From a machine learning point of view, this thesis
is interested in addressing tradeoffs between system performance and model generalization from
the point of view of data.

1.1.2 The Machine Learning Components
A machine learning configuration can be broken up into a few components. A configuration
is typically involved in an interactive workflow [32], where the preferable configurations are
found via trial and error. In essence, the theory presented in §1.1.1 must be broken down into a
process or algorithm that is fully or semi-automated. We outline the major components involved
in training below and show the flow of data in Figure 1.1. In short, data stored as raw bytes is
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transformed into a matrix (or matrix-like object), and the matrix can be efficiently operated over
with an accelerator. This thesis primarily focuses on the first two blocks.

Data and Task. The data is a set of examples, each of which has a fixed set of features
and, optionally, labels. For example, a dataset may be an album of cat and dog images, where
the features are the pixels of each image, and the label is whether an image is of a cat or dog.
The input to a machine learning algorithm is training data, and held-out (unseen) data used to
evaluate the algorithm is validation data or test data. The machine learning task is to predict
some features or labels for the unseen data as a function of the training data (e.g., predictions to
label unlabeled data when trained on labeled data). The data and task are entirely determined
by the practitioner and vary significantly. Domain experts may have knowledge of task-specific
invariances, which are captured by augmenting training or testing data to improve the model’s
performance by effectively increasing its dataset size. Typical examples of augmentations are
translations, rotations, and crops for image classification, and their benefits include increasing the
effective size of training data as well as reducing variations in test-time predictions [156]. The
system responsible for feeding input into the model is the data loader or input pipeline. Note that
while the term “data pipeline” is overloaded to cover any process that moves data, for the purpose
of this thesis, we treat it as synonymous with data loader and input pipeline—this thesis is only
concerned with data systems interacting with a model during training or testing.

Model and Optimizer. The model is the part of a machine learning that learns from the
data. Given an input, the model returns a prediction of the output. Models encompass everything
from decision trees to logistic regression to deep neural networks. This thesis focuses on models
that have a fixed set of parameters, which can be tuned by an optimizer. The optimizer’s goal
is to maximize the model’s performance on the task; examples include batch gradient descent,
stochastic gradient descent, and ADAM [41, 151]. Training is the part of the machine learning
workflow where the optimizer uses training data to update the model. The subsequent testing
phase treats the model’s parameters as fixed, removing any need for the optimizer—this phase
runs over the testing data to form predictions for unknown features or labels. While the model and
optimizer are separately configurable, we will refer to the combination of both as just “model” for
short. The choice of modeling framework is up to the practitioner, though practitioners often limit
themselves to well-studied models that have been shown to robustly generalize across a variety of
datasets and tasks.

Hardware and Software. Each of the above pieces needs to be run on a physical computer,
composed of hardware components. Examples include a disk drive for storing data, a central pro-
cessing unit (CPU) for performing data manipulation and orchestration, and an accelerator, such
as a graphics processing unit (GPU) [215], tensor processing unit (TPU) [109, 140, 165], field pro-
grammable array (FPGA), or some other application-specific integrated circuit (ASIC) [137, 248].
Software is what enables such a hardware setup to be programmed to do a variety of tasks—
enabling the same hardware setup to run an effectively infinite number of combinations of data,
task, and model. While software is an integral part of all layers of modern computer systems,
we pay particular attention to machine learning frameworks, which abstract common application
logic into a ML-specific language or library. Frameworks such as TensorFlow [11], JAX [96],
PyTorch [222], and MXNet [49] provide practitioners with utilities to create and run tensors,
which generalize matrices, as well as other mathematical functions. The frameworks either implic-
itly or explicitly model how to schedule and execute these operations on a variety of hardware and
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Figure 1.1: The flow of data from storage to host nodes to accelerators. Storage may be disag-
gregated from host nodes (communication represented by crossed arrows), which are potentially
distributed but directly connected to their own accelerators (represented by a straight arrow). Data
may be compressed in storage, decompressed and processed in the host nodes, and finally passed
as numeric matrices into the accelerators. Text in blue represents hardware and systems. Text in
red represents data. The bottom right hand corner of each block represents that if the system is
represented as a graph with vertices and edges G = (V,E), each of these blocks may have the
number of vertices |V | equal to M , N , or O, respectively—E is otherwise constrained to allow
the shown inter-block communication with potential intra-block communication.

can do so automatically. In turn, users do not have to understand how to best execute matrix-heavy
workloads, but rather express them in a form similar to their mathematical expression.
Systems-Oriented Thesis Theme: A theme of this thesis is investigating the design and perfor-
mance of training data pipelines as well as testing data pipelines. We investigate the extent to
which training pipelines impact datacenter performance in §2 and we propose to fix a class of
performance issues with automatic tuning in §5. We additionally investigate the role of approx-
imation in training pipelines by selectively omitting the generation of samples in §3 as well as
selectively downsampling training images in §4. Finally, we provide a system for specifying a
user-defined test set by using regular expression programming with §6. From a systems point of
view, this thesis is interested in abstractions that reduce data pipeline configuration from the point
of view of the user.

1.1.3 The Metrics
Practitioners are concerned with two broad metrics when evaluating configurations of machine
learning components: the system’s utility compared to its cost.

• Utility. First, how good is the resulting model’s statistical performance i.e., its utility? In
the simplest case, this refers to the model’s generalization, or the ability of the model to
perform on the test data. Typical metrics used to measure generalization are accuracy and
residuals. For simplicity, we will refer to all forms of generalization as “accuracy”, and they
may encompass both learning effects as well as error introduced by the implementation
(e.g., reduced precision [199]). For model testing, we are interested in how accurately the
test reflects the true value of the intended measurements (e.g., if accuracy metrics for a
model reflect performance in production). Note that models can have high utility yet may
be incorrect due to unaccounted for dimensions of performance.

• Cost. Second, how much does a workflow cost, in terms of resources? Cost can include
hardware time, programmer effort, energy, training job duration, or test construction effort.
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These non-monetary costs can often be converted to a monetary value required to complete
the workflow.

A configuration is arguably better than an alternative if it performs better in terms of at least
one of these metrics, and it is strictly better if it performs better across all metrics. The former
is called Pareto efficient or Pareto optimal. The latter can be referred to as optimal, and Pareto
dominates all other solutions. Machine learning systems should return configurations that are
arguably Pareto efficient. For instance, the system may default to using a numeric representation
which is lower precision if it delivers higher performance—as long as a higher precision format
does not match this performance, the choice is sensible. Users and applications may not treat all
configurations equally, so it is also reasonable to expect the system to expose some flexibility in
choosing between configurations.

It is worth noting that such a treatment of metrics is theoretical and is often approximated in
practice. Today, it is uncommon for systems to be fully automated because there isn’t a complete
understanding of how configurations impact utility as well as cost. For instance, choosing between
numerical representations requires an understanding of application error bounds with respect to
numerical approximation error as well as an understanding of the performance properties of the
hardware using these different representations. Not only is the set of numerical representations too
large to iterative over, systems only have efficient implementations of a few of the representations
(e.g., IEEE-754 floating point). When the ingredients required to make an informed decision on
tradeoffs do not exist, the system will either have to be configured empirically over a benchmark
or heuristically using common defaults. The effort required to find the configuration will still be
accounted toward the cost; however, without rigorous analysis, it is not possible to guarantee the
solution is optimal. Nevertheless, the set of Pareto optimal configurations is useful in establishing
an absolute, rather than a relative, scale of performance—it is, by definition, impossible to
dominate the performance of these configurations, making them ideal points of comparison for
any system.

1.2 A Simplified Worldview: A Dichotomy of ML Models
Recent trends have disrupted the traditional workflows associated with machine learning. Machine
learning practice has made it clear that general, data-driven methods can usually outperform
specialized methods [268] once sufficient data is obtained. To simplify: there are two types of
models in the world: 1) small, specialized ones and 2) large, general ones. Thus, it is interesting
to wonder what would happen if compute and data were scaled to their limits (e.g., training on the
entire internet) for a fixed learning algorithm. A sufficiently large model would be able to take
advantage of all of the data—potentially solving the learning problem to optimality. If this were to
happen—a class of learning algorithms were to be “solved”—then machine learning systems used
for training would have limited usefulness—they’d only be used once to train that model. Even
if the trained model turns out to be an approximation of the optimal model (e.g., within a factor
ε of the optimal model’s performance), the cost of retraining would be astronomical and it may
be hard to justify a full retrain. This thought experiment is reflective of what is happening today
with the rise of large pretrained models—also known as foundation models [40]—in general and
Large Language Models (LLMs) in particular.
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model type training time training cost training frequency inference usage

task-specific minutes to days $10-$1k hourly to weekly bulk streaming
large pretrained weeks to months $100k-$100M yearly interactive

Table 1.1: A breakdown of traditional task-specific machine learning models compared to the
more recent large pretrained models. Workloads are fundamentally different between the two
categories because the investment in large pretrained models is orders of magnitude higher. Large
pretrained models are train-once and can be used on a broad set of downstream tasks, albeit with
high computational expense.

Large pretrained models make the case that training a large model on a large amount of data
using a large amount of compute may outperform a smaller, more specialized model in terms of
predictive accuracy. Specifically, the larger model may perform well on tasks that were difficult
for smaller models—a term called emergent ability [298]. For example, a large pretrained model
can be applied in the zero-shot setting—where it is only evaluated on the test set without seeing
the training set—and it may perform competitively compared to a smaller model that learned
directly from the training set [236]. Alternatively, there is the few-shot setting, where a handful
of examples are given at inference time. This setting is powerful because it allows just enough
task-specific tuning to solve complicated tasks—through the process of generating generic text, a
large pretrained model can learn the basic rules of arithmetic [43]. The significance of emergent
abilities cannot be understated—if certain larger models perform well on many tasks without
specialized training—what point is there to train smaller models? In some sense, large pretrained
models are the next iteration of bitter lessons [268]—if deep learning trumps hand-engineered
features, then large pretrained models trained over massive datasets trump deep learning models
limited to smaller, specialized datasets. However, as usual, the lunch is not free—these models can
still be outperformed in terms of training cost, inference cost, or application accuracy if enough
effort is put into a specialized model. Therefore, the constraints of an application will dictate
whether a large pretrained model will be used in production.

We take note of two broad categories of machine learning models to help forecast their
training workloads and inference usage, as shown in Table 1.1. First, there are traditional machine
learning models, which are highly specialized to a task and are generally efficient in terms of
number of parameters. We call the models in this bin task-specific models because they solve
specific well-studied problems used in production, such as recommendations, spam detection,
and image classification [122]. Second, there are large pretrained models [40], which are much
larger than task-specific models in terms of model size and resources utilized. Currently, these
models are most popular in natural language processing because the subproblem of understanding
the semantics and syntax of grammar is common across most natural language processing tasks,
and thus solving it once can translate to many downstream applications. Unfortunately, these
models can be so large that a single application inference can be over $32. With inference being
so expensive, large pretrained models are most cost-effective on complex, high-value tasks, such

2GPT-4 at $0.12 per 1000 sampled tokens at a context length of 32k is $3.84 [217]. ChatGPT is estimated to cost
$700k per day [208].
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as writing and programming [87]. In contrast, high-volume, low-value tasks, such as filtering
spam, are more appropriately solved with traditional task-specific models. Additionally, since
large pretrained models are so costly to train3, they cannot be easily retrained from scratch and
thus necessarily suffer from a “freshness” problem4

Overall, it’s reasonable to expect application costs to be a dominant factor in the decision to
choose between task-specific or large pretrained models. Task-specific models are more amenable
to automation and running continuously because they are generally cheaper to train, cheaper to
deploy, and easier to monitor and debug. On the other hand, the training of large pretrained models
is so high stakes that manual intervention is justified [7, 8]. Since the large pretrained models are
trained once, but deployed for a long time, it is reasonable to expect a significant fraction of cost
to be incurred logically closer to the application, via inference expenses or runtime bugs.

1.2.1 The Difficulty of Testing: Knowing What You Don’t Know

The relevance of this dichotomy to this thesis is that task-specific models are meant to be automated
while large pretrained models are meant to be interacted with in a potentially creative way (i.e.,
exploiting their emergent behavior). In Figure 1.2, we can see the effects that large pretrained
models may have on machine learning systems through the lens of data. Data from image
classification datasets, such as ImageNet [71], poised a conceptually straightforward task: given
an image of an object, return which of the 1000 classes of objects is best represented by it. While
this task presented computer vision and machine learning challenges, it was obvious how to
check for accuracy—with only 1 correct class for each image, a prediction was correct only if it
matched the correct class. In code, this was as simple as is_correct = y_pred == y_label,
for prediction y_pred and class label y_label. Similarly, during training, it was easy to reason
about the images—for example, a crop or rotation of the image should preserve the class label.
However, today’s large pretrained models are not only able to be dynamically parameterized with
the space of classification labels [237], they’re capable of generating free-form examples of both
images and text. Stable Diffusion [250] and ChatGPT [5], for example, are capable of forming
images and text, respectively, given a prompt specifying what type of output they should have.
These outputs are no longer easy to check—they are high-dimensional (e.g., pixels in an image or
character strings in text), and we can’t make strong assumptions about how transformations to the
prompt will change what the model perceives. The combination of these factors means it is hard
to predict the error-modes of large pretrained models.

To demonstrate how difficult it is to understand large pretrained model behavior, consider the
case of natural language understanding. Humans have long used language to communicate with
each other, yet an algorithm for understanding all human language has not yet been found. On
the other hand, there is a convincing case that human language is understood by large pretrained
models [228]. Therefore, since we do not know of an algorithm that parses human language, we
can use large pretrained models to read human language, but we cannot algorithmically determine
the correctness of the model behavior. Another form of this issue is in AI alignment, where it is a
matter of debate of how to algorithmically specify the value-system of an AI agent [149]. It is

3GPT-4 is estimated to cost over $100 million to train [303].
4For instance, ChatGPT was released in November 2022 [5], yet it was trained on data from 2021 and before [94].
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Persian cat

(a) ImageNet

A cat with wings in the style of a cartoon.

(b) Stable Diffusion

Why do cats have wings?

Cats do not have wings. Wings are a specialized ap-

pendage used for flight, and cats are not capable of

flight. While there are some breeds of cats that may

have skin flaps or folds that resemble wings, they are

not functional for flight or any other purpose. It’s pos-

sible that you may have seen images or videos online

that have been edited or altered to make it appear as

though cats have wings, but in reality, they do not.

(c) ChatGPT

Figure 1.2: Various notions of cats according to classification datasets (Figure 1.2a), as well as
more recent generative models (Figure 1.2b and Figure 1.2c). While it used to be the case that
manipulating data was conceptually straightforward, today’s generative models are capable of
producing arbitrary images and descriptions of objects which stretch the boundaries of free-form
creativity. While predictions over Figure 1.2a require a mere equality check for “Persian cat”,
it is much more difficult to automatically assess the free-form content found in Figure 1.2b and
Figure 1.2c. Data systems will have to meet the needs of both specialized and open-ended content
in the future during both training and inference.

thus likely that we cannot verify the correctness of large pretrained models in general because the
only practical way to do so is to develop algorithms that can be proven to satisfy similar properties
without any aspects of learning.

In effect, the “art” and “science” of large pretrained models comes at a disagreement because
testing them requires knowing what you don’t know. Unlike task-specific models, which have
relatively restricted output spaces (e.g., a limited number of classes) and reasonable baselines
(e.g., hand-engineered features), it seems fundamentally more difficult to reason about large
pretrained model errors. Large pretrained models can make syntactic as well as semantic errors,
and applications may desire that the output isn’t offensive, nonfactual, or biased—each of which
may require extensive testing to rule out. The first chapters of this thesis are set in a world of
task-specific models, leaving one chapter on addressing the world of large pretrained models.

1.3 The Case for Data-Centric Machine Learning

A rising trend in the machine learning community is that of data-centric machine learning [3,
6, 229]. The observation is that, while models have been the focus of the machine learning
community, the bulk of practitioner time is spent on tuning the dataset. From a research point
of view, nearly all time is spent assuming the dataset quality is fixed and effort must be spent on
improving modeling methods. However, in practice, nearly all time is spent assuming the model
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is good enough and effort must be spent on improving the data. These trends are again shifting
modeling research toward addressing practical problems such as distribution shift, labeling error,
privacy, and fairness. From a systems point of view, this paradigm shift means that more effort
will be placed on programming aspects of data, placing a larger emphasis on the performance and
usability of machine learning data systems.

1.3.1 Historical Context

The work in this thesis began in 2018, 3 years before the term “data-centric AI” [3] was coined.
While data-centric ideas were already in existence, they had yet to hit mainstream. Machine
learning systems research was predominantly model-centric—the narrative at the time was that
model architectures and model scale were dominant factors holding back the practice. Accelerators,
such as GPUs, were widely available, but it was difficult to automatically parallelize a model
among a cluster of networked computers. The bottleneck at the time was perceived to be a lack of
software to coordinate the parallelization and communication of a model’s layers and gradients,
motivating work in auto-parallelization and gradient compression. At the time, it was unorthodox
to look at data systems for machine learning, because making a model larger would lead to
more interesting computational problems and arguably a higher accuracy model. For instance,
it is estimated that AlexNet and ResNet-50 each took about a week to train at the time of their
publications [113, 156]. These models were considered huge given the resources of the time and
a practitioner would of course want an even bigger model, if given the chance.

The narrative has changed dramatically in the years since, due to advances in both hardware
and software. Today, a single compute node typically has 8× high-end accelerators, which are
sufficient to train many models without going over the network. Each compute node is connected
with high-speed interconnects [140, 141]. The parallelization software is very good—capable of
parallelizing models across thousands of accelerators in this environment [165]. Machine learning
and HPC clusters are effectively converging—many of the Top-500 supercomputers are tuned
for AI workloads, featuring the same GPUs used for ML training [9]. Today, ResNet-50 can
be trained in 11.5 seconds to MLPerf Training standards for approximately $50 [204]—tuning
these models is now potentially bottlenecked by the time it takes for a practitioner to simply
think about the experiment, much less manually optimize the model 5. Furthermore, the narrative
that scaling models will solve all problems has taken a complicated twist. On one hand, experts
argue that current architectures are fundamentally flawed [170]. On the other hand, larger models
trained over larger datasets are having breakthroughs in more challenging domains, such as
natural language processing [43, 55]. Automatic parallelization and training optimizations are
as important as ever for these massive models, but for many practical applications, the rush for
training larger models seems over.

The community has since adapted to these changes. MLPerf now has a Data-Centric AI
leaderboard called DataPerf [193]. Papers are being written about data pipeline bottlenecks [134,
206, 322]. On the large model front, researchers and practitioners are worried that models are too
big to be realistically trained and deployed outside a few well-funded organizations [40]. Today,
it seems more acceptable that the entire ML workflow, from data collection to model serving, is

5The median 2021 software professional’s hourly pay is $52 [216], approximately the cost of training ResNet-50.
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Tradeoffs in Data-Centric ML

Figure 1.3: Data-centric computing brings a new dimension to creating Pareto optimal
configurations—the effort required to tune and configure data-related systems. As the train-
ing or testing dataset is being tuned more, the model or tests on the model may become more
accurate. However, the trade-off is that additional tuning may incur the cost of practitioner or
system effort. Navigating these trade-offs is a new challenge for up-and-coming systems.

important, and large models are not a silver bullet. The reader should thus keep in mind that in
the time it took to perform the research in this thesis, the narrative has shifted from one which
was completely orthogonal to the thesis to one which is more favorable toward its message.

1.3.2 The New Metric: Data Tuning
From a systems point of view, data-centric machine learning adds a new metric: the effort used
to tune the dataset. In concrete terms, data is no longer fixed and thus the only constraint in
determining the optimal configuration is that it performs well on the provided task. With this new
degree of freedom, practitioners and system designers are interested in the set of Pareto optimal
configurations, which outperform other configurations on some metric while varying the dataset.
Systems that efficiently traverse this new set of Pareto optimal configurations will be positioned
to outperform what was state-of-the-art when data was fixed. The intuition for these trade-offs is
shown in Figure 1.3. The curves reflect what one may encounter in practice: empirically, accuracy
often follows power-laws of dataset size [145], and cost is a linear function of dataset size if the
optimization procedure is kept similar (e.g., the number of epochs is fixed). The primary challenge
faced in this thesis is building data systems and methods that reduce the effort required to train
and test machine learning models.

1.4 Thesis Overview
The main argument of this thesis is that:
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Thesis Statement: Machine learning systems can improve programmer productivity and system
efficiency by making datasets a first-class optimization target. Automated data tuning can
increase traditional model training efficiency while abstractions for inference may help control
for uncertainties in large pretrained model inference.

While ML systems have traditionally focused on ensuring that it is easy and efficient to
program the model fabric, they have placed little emphasis on understanding training or validation
data. Modern frameworks tend to treat training and validation data as black-box placeholders
that are materialized during the execution of the program. Meanwhile, efforts in data cleaning
(traditionally a database problem), do not focus on performance and have strict notions of
correctness. This thesis claims that there are potentially significant gains in understanding and
exploiting structure that is present within the training and validation set values—the statistical
distribution of values in the training and validation sets are important. Understanding the data
allows the system and the user to make more informed decisions about configurations in the space
of accuracy and cost.

1.4.1 Contributions
Our novel contributions are as follows and correspond to the outline of the thesis:

• An Industrial Case-Study of Data Bottlenecks. We demonstrate evidence of performance
issues relating to data pipelines over real-world industrial jobs (§2). We find that, in practice,
1–10% of ML jobs are bottlenecked waiting for data at any point in time. We find that a
significant fraction of bottlenecked jobs are not utilizing resources allocated to the data
pipeline, indicating that they are potentially misconfigured or I/O bound. The work was
published in [159].

• A Method for Subsampling Augmentations. We provide a methodology for automati-
cally subsampling augmentations (§3). While it is standard practice to augment all training
data, it is not necessarily efficient as augmentations may themselves involve extensive
computation or manual verification. We find that 10% of the augmentation set can achieve
99.86% of the full augmentation performance by revisiting a classical method in the context
of neural networks. The work was published in [157].

• A Progressive I/O Image Format. We provide a methodology for automatically tuning
image fidelity along with a progressive on-disk image format (§4). We observe that I/O
bandwidth in image classification is a precious resource, which motivates reducing image
fidelity at the cost of task accuracy. We find that half the image fidelity is sufficient to retain
accuracy for many tasks, enabling 2× speedups for I/O bound workloads. We additionally
develop static and dynamic methods for tuning the quality automatically as a function of
the model, dataset, and task. The work was published in [158].

• An Automatic Pipeline Tuning Framework. We provide a general system and framework
for measuring and optimizing input pipeline throughput (§5). We develop an interpretable
modeling framework for CPU, disk I/O, and in-memory caching, mapping a set of input-
pipeline statistics to expected input-pipeline performance. We implement this cost model
along with the statistics collection in a tool, Plumber, which traces and tunes pipelines
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with one line of code. We find that Plumber can achieve 47× speedups compared to
misconfigured pipelines and outperforms state-of-the-art tunes by up to 50%. The work was
published in [159].

• A Regular Expression Query Interface for LLMs. We provide a system for searching
and validating large language models (§6). We built a system, ReLM, which allows running
standard regular expression queries on large language models. ReLM achieves a 15×
speedup or 2.5× higher data efficiency over traditional approaches in memorization and
toxicity finding. Additionally, ReLM facilitates novel tests for bias and easily recovers
prompt tuning behavior necessary for state-of-the-art zero-shot performance. This work
was published in [160].

Finally, we reflect on some of the lessons learned and future directions in §7.

1.4.2 Code
The code repositories to go along with this work are found at:

1. https://github.com/mkuchnik/Efficient Augmentation

2. https://github.com/mkuchnik/PCR Release

3. https://github.com/mkuchnik/PlumberApp

4. https://github.com/mkuchnik/relm
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Chapter 2

Background and Fleetwide Analysis

This chapter outlines key background material relevant to the thesis, with a primary focus on
training data pipelines, or simply input pipelines. While the presentation focuses on Tensor-
Flow’s tf.data, the concepts discussed are general and can exist in other implementations. For
instance, PyTorch has started supporting a functional dataloading library of its own [24], thus
demonstrating that the functional abstraction discussed in this section are generally applicable to
multiple frameworks. The programming of input pipelines is discussed throughout §2.1. We then
shift to an empirical study of input pipelines in §2.2, highlighting the impact data pipelines have
in industrial settings. Well-configured input pipelines are key to efficient datacenter performance,
because a misconfiguration can create disastrous bottlenecks for its workload. Similarly, a machine
should be sized to fit its input pipeline workload to avoid bottlenecks. This chapter looks into the
divide between these two types of bottlenecks. In doing so, it motivates tools that characterize
and tune input pipeline performance as well as methods that reduce CPU and I/O resource usage.

2.1 What are Input Pipelines?
All ML training begins with input data, which is curated by input pipeline frameworks. In
this section, we outline the abstractions provided by input pipeline frameworks, noting design
decisions that have an effect on understanding performance (§2.1.1). We next jump into common
tools for understanding bottlenecks (§2.1.2).

2.1.1 Input Pipeline Architecture

Input pipelines specify: a data source, transformation functions, iteration orders, and grouping
strategies. For example, image classification pipelines read, decode, shuffle, and batch their
(image, label) tuples, called training examples, into fixed-size arrays [71, 156]. Unlike batch
processing frameworks (e.g., Spark [23], Beam [2], Flume [4]), which may be used to create the
data used for training, the main goal of input pipeline frameworks is to dynamically alter the
training set online. Three major reasons for online processing are: 1) data is stored compressed in
order to conserve storage space, 2) data is randomly altered online using data augmentations, and
3) practitioners may experiment with features throughout modeling.
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1 model = model_function() # Initialize model
2 ds = dataset_from_files().repeat()
3 ds = ds.map(parse).map(crop).map(transpose)
4 ds = ds.shuffle(1024).batch(128).prefetch(10)
5 for image, label in ds: # Iterator Next()
6 model.step(image, label) # Grad Update

Figure 2.1: Python pseudo-code for ImageNet-style training. Line 2 is file reading, line 3 is
user-defined image processing, and line 4 samples, batches, and prefetches data. Lines 5–6 are
the critical path of training, instantiating an Iterator.

Input pipelines are programmed imperatively or declaratively, each with different APIs. Im-
perative frameworks, like PyTorch’s and MxNet’s [58, 212] DataLoader, allow users to specify
their pipelines in plain Python by overriding the DataLoader. Declarative libraries, like
DALI [115] and TensorFlow’s tf.data [211, 272], compose functional, library-implemented
primitives, which are executed by the library’s runtime. While both styles are equally expressive
in terms of pipeline construction, frameworks leave a large part of implementation to the user. In
contrast, the libraries decouple specification from implementation, requiring the user to merely
declare the pipeline structure, offloading optimizations to the runtime. We focus our discussion on
tf.data, because it allows for various backends to service similar pipeline definitions, enabling
tracing and tuning behind the API, and can be used with all major training ML frameworks.

Input Pipeline Abstractions. In tf.data, Datasets are the basic building blocks for
declaring input pipelines. In Figure 2.1, each function call chains Datasets. Instantiating
a Dataset (line 5) yields a tree composed of one or more Iterators, which produces a
sequence of training examples through an iterator interface that maintains the current position
within a Dataset. Figure 2.2 illustrates how Datasets are unrolled into an Iterator tree.
Some Datasets (see Map) implement multi-threaded parallelism within the corresponding
Iterator, while others (see TFRecord) can only be parallelized by reading from multiple
sources in parallel (e.g., using Interleave). An Iterator implements the following three
standard Iterator model [111, 187] methods:

• Open defines Iterator parameters and references to child Iterators and initializes
internal state.

• Next yields an example from the Iterator or a signal to end the stream. Source nodes read
from storage or memory to yield examples. Internal nodes call Next on their children to gather
examples before applying transformations to them. In Figure 2.1, the data source outputs file
contents, which then undergo image processing, shuffling, and batching.

• Close releases resources and terminates the Iterator.

User-Defined Functions. User-defined functions (UDFs) comprise the bulk of data pipeline
execution time and are used to implement custom data transformations. Figure 2.1 shows an
example of a computer-vision pipeline utilizing UDFs, which perform image decoding, image
preprocessing, and tensor transposing for efficient execution on accelerators. Users are able to
write UDFs in a restricted form of Python, which is compiled into an efficient and parallel
implementation.
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Figure 2.2: Top (Dataset View): A tf.data pipeline is composed of Dataset objects
characterized by attributes, e.g., by their level of parallelism. Bottom (Iterator View):
The root Dataset is instantiated into an Iterator tree at runtime, which feeds the model.
Iterators pull data from their children in a recursive manner.

2.1.2 Understanding Input Bottlenecks

An input bottleneck occurs when the input pipeline is not able to generate batches of training
examples as fast as the training computation can consume them. If the time spent waiting for the
input pipeline exceeds tens of microseconds on average, the input pipeline is not keeping up with
model training, causing a data stall [206] The current practice of pipeline tuning, which optimizes
the throughput (rate) of the pipeline, is explained below.

Profilers. Event-based profilers, such as the TensorFlow Profiler [271], can emit metadata
at particular software events to aid in determining control-flow. As there are thousands of
concurrent events per second for a pipeline, it is difficult to quantitatively determine which events
actually caused a throughput slowdown. To automate and generalize past heuristics deployed
in guides [273], the TensorFlow Profiler added a bottleneck discovery feature [274]. This
tool works by finding the Iterator with highest impact on the critical path of a Dataset.
However, it can only rank Datasets by slowness, and it can’t predict their effect on performance.
Furthermore, critical-paths are not well-defined for concurrent and randomized event graphs (e.g.,
execution times of individual operations overlap and are data-dependent), forcing heuristics to be
used.

Tuners. tf.data applies dynamic optimization of pipeline parameters when users specify
AUTOTUNE for supported parameters, such as the degree of parallelism and size of prefetch
buffers [211]. The autotuning algorithm works by representing Iterators in a pipeline as an
M/M/1/k queue [169, 260], and a formulation for the queue’s latency is analytically determined.
Statistics about the execution of Iterators are recorded with a lightweight harness. Combining
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the analytical model with the runtime statistics enables tuning the latency of the pipeline with
respect to performance parameters. Specifically, the processing time of each element is normalized
by the parallelism and the ratio of input to output elements. This statistic is then combined with
“input latency” statistics of the children nodes in a node-type dependent way to get an “output
latency”. Output latency tuning is done via hill-climbing or gradient descent and ends when the
tuning plateaus or reaches a resource budget. While AUTOTUNE works in practice, it is hard
to understand and extend for two reasons. First, open-systems, like M/M/1/k queues, have a
throughput purely dependent on input arrival rates, which are not applicable for closed-systems.
Second, because resource utilization is not modeled, the output latency function can be driven to
zero if parallelism is allowed to increase unbounded, forcing heuristic constraints to be used.

2.2 Fleetwide Analysis
We analyzed over two million ML jobs that ran in Google datacenters to determine whether input
bottlenecks are common and characterized their most typical root cause. The jobs we analyzed
used tf.data and ran over a one-month period from July to August of 2020. The workload
included production and research jobs from a variety of ML domains, including image recognition,
natural language processing, and reinforcement learning. To measure the frequency of input
bottlenecks in practice, we measured the average time spent fetching input data per training step
across jobs.

2.2.1 Are Input Bottlenecks Common?
We detect input pipeline bottlenecks by measuring the average latency across all Iterator
Next calls, which is the average time the job spends blocked waiting for input data in each
training step.
Observation 1: For a significant fraction of ML jobs, the input data pipeline produces data at a
slower rate than the model is able to consume it.

Figure 2.3 shows that for 62% of jobs, the average Next latency per training step exceeds
1ms and for 16% of jobs, the average wait time exceeds 100ms. Since the input pipeline affects
both end-to-end training performance and hardware accelerator utilization, it is a critical part
of ML training to optimize. We note that fetch latency applies to each iteration of the training
process—over ten thousand times in a typical session. At any point in time, between 1–10% of
the fleet is waiting on input data, which is significantly costly at the scale the fleet operates at.

2.2.2 Why Do Input Bottlenecks Occur?
We classify input pipeline bottlenecks into two categories: hardware and software bottlenecks.
Hardware bottlenecks occur when hardware resources used for data processing saturate. The
hardware resources typically used for input processing are CPU cores, host memory, and local or
remote storage. Many workloads do not use local storage for I/O, but pull their data from external
data sources (e.g., distributed filesystems) [211]. Thus, external I/O resources may bottleneck
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Figure 2.3: Time spent fetching training examples using Next, in ms. On average, for 92% of
jobs Next latency exceeds 50µs, for 62% of jobs it exceeds 1ms, and for 16% of jobs it exceeds
100ms. Fetch latencies for well-configured pipelines are in the low tens of microseconds.

training jobs. Hardware resource saturation can be remedied by adjusting the resource allocation,
e.g., switching to a node with more cores, memory, or I/O bandwidth.

Software bottlenecks occur because the software is not driving the hardware efficiently, e.g.,
by using too little or too much parallelism, or incorrectly sizing prefetch buffers to overlap com-
munication and computation. When a user is confronted with a software bottleneck, they must
find the root cause and fix it; otherwise, they risk underutilizing hardware performance. We note
I/O bottlenecks can also be caused by software configuration, due to inefficient access patterns
and low read parallelism.
Observation 2: Host hardware is rarely fully utilized for jobs with high input pipeline latencies.
Thus, input bottlenecks are likely rooted in software or I/O inefficiencies, rather than hardware
saturation.

To understand the breakdown between these categories of input bottlenecks, we measure
the host CPU and memory bandwidth resource utilization for the jobs captured in our analysis.
In Figure 2.4, we show a breakdown of different jobs’ average Next call latencies organized
according to the CPU and memory bandwidth utilization of the pipeline host. We exclude jobs
with latency below 50µs because for those jobs the input pipeline is not a bottleneck, as it takes
tens of microseconds to read input data that is readily available from a prefetch buffer (including
thread wakeup and function invocation time). Our data indicates that jobs with latency between
50µs and 100ms (small, dark dots) utilize more of the host’s resources than those with latency
higher than 100ms (large, blue dots). For context, a TPUv3-8 [140, 203] takes roughly 120ms to
process a minibatch for ResNet-50 [123]. Jobs where the average fetch latency exceeds 100ms
are, then, significantly input-bound, and as shown in the Figure 2.4 their resource usage for both
memory bandwidth and CPU is concentrated below 20%.
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Figure 2.4: CPU utilization of training jobs compared to their memory bandwidth utilization.
Larger points are for jobs with longer pipeline latency. We annotate three major clusters. The
average CPU and memory-bandwidth usage is 11% and 18%, respectively, for jobs with pipeline
latency of 100ms or more. The majority of jobs do not saturate host resources, suggesting
bottlenecks in software.

2.3 Related Work in Input Pipeline Bottlenecks
The analysis in this section is just a snapshot of how impactful input pipelines can be in prac-
tice. Recent studies have analyzed ML workloads and found that input pipelines can become
bottlenecks [206, 211]. This line of work is further supported by empirical evidence of bottle-
necks in recommendation models [322]. Workloads for end-to-end workflow managers, such
as TFX [32], see that many models are in fact shallow models and that these pipelines can be
extremely complex [308]. Thus, on top of the analysis in this section, there is growing evidence
that input pipelines should be accepted as a key aspect of machine learning performance.

2.4 Discussion
Training ML models requires reading and transforming large quantities of unstructured data. Our
analysis of real ML training jobs at Google shows that data pipelines do not adequately utilize their
allocated hardware resources, leading to potential bottlenecks, which waste precious accelerator
resources. The analysis additionally indicates that many jobs are misconfigured or suffer from
excessive I/O, motivating work on I/O reduction (§4) and pipeline tuning (§5). Overall, this
chapter shows that the training input pipeline has a key role in datacenter performance in practice
and should be optimized like any other part of the machine learning system stack.
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Chapter 3

Selective Data Preparation and
Augmentation

This chapter focuses on data augmentation and how to reduce the cost associated with the
augmentations by subsampling them. Data augmentation is commonly used to encode invariances
in learning methods and is a key transformation in input pipelines. However, this process is often
performed in an inefficient manner, as artificial examples are created by applying a number of
transformations to all points in the training set. The resulting explosion of the dataset size can be
an issue in terms of storage and training costs, as well as in selecting and tuning the optimal set of
transformations to apply. We demonstrate that it is possible to significantly reduce the number
of data points included in data augmentation while realizing the same accuracy and invariance
benefits of augmenting the entire dataset. We propose a novel set of subsampling policies, based
on model influence and loss, that can achieve a 90% reduction in augmentation set size while
maintaining the accuracy gains of standard data augmentation. In turn, systems can choose to drop
augmentations in order to: 1) reduce the amount of online processing or 2) allow the augmented
set to be cached in memory.

3.1 Introduction

Data augmentation is a process in which the training set is expanded by applying class-preserving
transformations, such as rotations or crops for images, to the original data points. This process has
become an instrumental tool in achieving state-of-the-art accuracy in modern machine learning
pipelines. Indeed, for problems in image recognition, data augmentation is a key component in
achieving nearly all state-of-the-art results [57, 79, 112, 253]. Data augmentation is also a popular
technique because of its simplicity, particularly in deep learning applications, where applying
a set of known invariances to the data is often more straightforward than trying to encode this
knowledge directly in the model architecture.

However, data augmentation can be an expensive process, as applying a number of transfor-
mations to the entire dataset may increase the overall size of the dataset by orders of magnitude.
For example, if applying just 3 sets of augmentations (e.g., translate, rotate, crop), each with 4
possible configurations, the dataset can easily grow by a factor of 12 (if applied independently),
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all the way to 64× (if applied in sequence). While this may have some benefits in terms of
overfitting, augmenting the entire training set can also significantly increase data storage costs and
training time, which can scale linearly or superlinearly with respect to the training set size. Further,
selecting the optimal set of transformations to apply to a given data point is often a non-trivial
task. Applying transformations not only takes processing time, but also frequently requires some
amount of domain expertise. Augmentations are often applied heuristically in practice, and small
perturbations are expected (but not proven) to preserve classes. If more complex augmentations
are applied to a dataset, they may have to be verified on a per-sample basis.

We aim to make data augmentation more efficient and user-friendly by identifying subsamples
of the full dataset that are good candidates for augmentation. In developing policies for subsam-
pling the data, we draw inspiration from the Virtual Support Vector (VSV) method, which has
been used for this purpose in the context of support vector machines (SVMs) [44, 70]. The VSV
method attempts to create a more robust decision surface by augmenting only the samples that are
close to the margin—i.e., the support vectors. The motivation is intuitive: if a point does not affect
the margin, then any small perturbation of that point in data space will likely yield a point that
is again too far from the margin to affect it. The method proceeds by applying class-preserving
data augmentations (e.g., small perturbations) to all support vectors in the training set. The SVM
is then retrained on the support vector dataset concatenated with the augmented dataset, and
the end result is a decision surface that has been encoded with transformation invariance while
augmenting many fewer samples than found in the full training set.

Although proven to be an effective approach for SVMs, methods utilizing support vectors may
not generalize well to other classifiers. We aim to develop policies that can effectively reduce the
augmentation set size while applying to a much broader class of models. A key step in developing
these policies is to determine some metric by which to rank the importance of data points for
augmentation. We build policies based on two key metrics. First, we make a natural generalization
of the VSV method by measuring the loss induced by a training point. Second, we explore using
the influence of a point as an indicator of augmentation potential. Influence functions, originating
from robust statistics, utilize more information than loss (i.e., residuals) alone, as they take into
account both leverage and residual information.

The contributions of this chapter are as follows. First, we demonstrate that it is typically
unnecessary to augment the entire dataset to achieve high accuracy—for example, we can maintain
99.86% or more of the full augmentation accuracy while only augmenting 10% of the dataset in
the case of translation augmentations, and we observe similar behavior for other augmentations.
Second, we propose several policies to select the subset of points to augment. Our results
indicate that policies based off of training loss or model influence are an effective strategy over
simple baselines, such as random sampling. Finally, we propose several modifications to these
approaches, such as sample reweighting and online learning, that can further improve performance.
Our proposed policies are simple and straightforward to implement, requiring only a few lines of
code. We perform experiments throughout on common benchmark datasets, such as MNIST [171],
CIFAR10 [155], and NORB [172].
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3.2 Related Work

In the domain of image classification, most state-of-the-art pipelines use some form of data
augmentation [57, 79, 112, 253]. This typically consists of applying crops, flips, or small affine
transformations to all the data points in the training set, with parameters drawn randomly from
hand-tuned ranges. Beyond image classification, various studies have applied data augmentation
techniques to modalities such as audio [282] and text [188]. The selection of these augmentation
strategies can have large performance impacts, and thus can require extensive selection and
tuning [240].

Motivated by the ubiquity of data augmentation and the difficulty in selecting augmentations,
there has been a significant amount of work in selecting and tuning the best transformations to use
when performing augmentation. For example, Fawzi et al. [90] use adaptive data augmentation to
choose transformations that maximize loss for the classifier; Ratner et al. [240] propose learning
a sequence model of composed transformations; and Cubuk et al. [61] suggest a reinforcement
learning approach. In contrast to these works, our aim is instead to select which data points to aug-
ment while holding transformations fixed. Our subsampling policies are therefore complementary
to many of the described approaches, and in fact, could be quite beneficial for approaches such as
reinforcement learning that can quickly become infeasible for large datasets and transformation
spaces. Finally, we note that several recent works have proposed augmentation strategies based on
adversarial training approaches, such as robust optimization frameworks or generative adversarial
networks (GANs) [19, 107, 287]. These approaches generate artificial points from some target
distribution, rather than by directly transforming the original training points. We view these works
as orthogonal and complementary approaches to the proposed work, which is designed in concert
with more traditional data augmentation strategies.

The area of work most closely related to our own is that of the Virtual Support Vector (VSV)
method [44, 70]. This method was proposed in the support vector machine literature as a way to
reduce the set of points for augmentation by limiting transformations to only support vectors. In
the context of SVMs, the motivation is straightforward, as points that are far from the margin are
unlikely to affect future models if they are transformed via small perturbations. However, to the
best of our knowledge, there has been no work extending these ideas to methods beyond SVMs,
where the notion of support vectors is not directly applicable.

Inspired by the VSV work, we similarly seek ways to downsample the set of candidate points
for augmentation, though through metrics beyond support vectors. We begin by generalizing
the notion of a support vector by simply measuring the loss at each training point1. We also
explore model influence, which has been rigorously studied in the field of robust statistics as
a way to determine which data points are most impactful on the model. Model influence has
been studied extensively in the regression literature [59, 126, 232, 288], and more recently, in
non-differentiable (SVMs) and non-convex (deep networks) settings [153]. We provide additional
details on these metrics in Section 3.4.

Finally, we note that this work is closely related to work in subsampling for general dataset
reduction (i.e., not in the context of data augmentation). For example, works using gradients

1We also investigate a more direct generalization of the VSV method—sampling points according to their distance
from the margin— although this method generally underperforms the other metrics.
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[325], leverage [81, 82, 190], and influence functions [196, 277, 292] have shown better results
than uniform sampling of data samples in the original dataset. Our scenario differs from the
subsampling scenarios in these works as we ultimately anticipate increasing the size of the dataset
through augmentation, rather than decreasing it as is the case with subsampling. Subsampling
methods are motivated by being unable to train models on entire datasets due to the datasets being
too large. Our motivation is instead that the full augmented dataset may be too large, but the
original training set is sufficiently small to be handled without special consideration. We therefore
assume it is possible to obtain information (e.g., influence, loss, etc.) by fitting a model to the
original data. Further, the interpretation of our scenario differs, as the subsampling is performed
with the ultimate aim being to retain the accuracy of some yet-to-be-determined fully augmented
dataset, as opposed to the original dataset.

3.3 Motivation: On the Effectiveness of Subsampling
In this work, we seek to make data augmentation more efficient by providing effective policies
for subsampling the original training dataset. To motivate the effect of subsampling prior to
augmentation, we begin with a simple example. In Table 3.1, we report the effect that performing
translation augmentations has on the final test accuracy for several datasets (MNIST, CIFAR10,
NORB). In the second column, we provide the final test accuracy assuming none of the training
data points are augmented, and in the last column, the final test accuracy after augmenting all
of the training data points (i.e., our desired test accuracy). Note that the test dataset in these
examples has also been augmented with translation to better highlight the effect of augmentation;
we provide full experimental details in Section 3.5. In columns 3–8, we report test accuracies
from augmenting 5, 10, and 25 percent of the data, where these subsamples are either derived
using simple random sampling or via our proposed policies (to be discussed in Section 3.4).

An immediate take-away from these results is that, even in the case of simple random sampling,
it is often unnecessary to augment the entire dataset to achieve decent accuracy gains. For example,
augmenting just 25% of the dataset selected at random can yield more than half of the total
accuracy gain from full augmentation. However, it is also evident that subsampling can be done
more effectively with the appropriate policy. Indeed, as compared to random sampling, when
augmenting just 10% of the data, these optimal policies can achieve almost identical results to full
augmentation (within .1% for CIFAR10 and higher accuracy than full augmentation for MNIST
and NORB). These results aim to serve as a starting point for the remaining chapter. We describe
our proposed policies in detail in Section 3.4, and we provide full experiments and experimental
details in Section 3.5.

3.4 Augmentation Set Selection Policies
In this section, we provide details on our augmentation policies, including their general structure
(described below), the metrics they utilize (Section 3.4.1), and improvements such as reweighting
or online learning (Section 3.4.2).

Setup. The aim in this work is to find some subset S := {(xi, yi), . . . , (xj, yj)} of the
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Dataset No Aug. Baseline Random Policy Best Policy Full Aug.

0% 5% 10% 25% 5% 10% 25% 100%

MNIST 93.2% 99.0% 99.3% 99.5% 99.7% 99.8% 99.7% 99.6%
CIFAR10 96.3% 96.6% 96.8% 97.0% 97.0% 97.2% 97.3% 97.3%

NORB 87.3% 88.0% 88.3% 88.4% 89.9% 89.8% 89.7% 89.7%

Table 3.1: Best observed policy vs. expected baseline with translate augmentations for various
percentages of the training set being augmented. The best policies are capable of reaching near
full augmentation performance with a small augmentation budget.

full training set D := {(x1, y1), . . . , (xn, yn)}2, such that augmenting only the subset S results
in similar performance to augmenting the entire dataset D. More precisely, the goal is to
minimize the size of S, |S|, subject to the constraint that perf(Saug) ≈ perf(Daug), where Saug
and Daug represent the dataset after appending augmented examples generated from the original
examples in S or D, respectively. We note that while the performance measure perf(·) may be
broadly construed, we specifically focus on measuring performance based on test accuracy in our
experiments.

General Policies. Our proposed policies consist of two parts: (i) an augmentation score
which maps each training point (xi, yi) to a value s ∈ R, and (ii) a policy by which to sample
points based on these augmentation scores. In Section 3.4.1, we describe two metrics, loss and
model influence, by which augmentation scores are generated. In terms of policies for subset
selection based on these scores, we first explore two simple policies—deterministic and random.
In particular, given a set of augmentation scores {s1, . . . , sn} for the n training points, we select a
subset S ⊆ D either by ordering the points based on their scores and taking the top k values (in a
deterministic fashion), or by converting each augmentation score si to a probability πi(z) ∈ [0, 1],
where zi := (xi, yi), and then sampling according to this distribution without replacement. As
the augmentation scores (and resulting policies) may be affected by updates to the model after
each augmentation, we additionally explore in Section 3.4.2 the effect of iteratively updating or
re-weighting scores to adjust for shifts in the underlying model. A non-exhaustive overview of
the various augmentation policies is provided in Table 3.2.

3.4.1 Metrics: Loss and Influence
We propose two metrics to determine our augmentation scores: training loss and model influence.

Training loss. One method to obtain augmentation scores is the loss at a point in the training
set. This can be viewed as a more direct generalization of the Virtual Support Vector (VSV)
method, as support vectors are points with non-zero loss. However, studying loss directly will
allow us: (i) to extend to methods beyond SVMs, and (ii) to expand the augmented set to data
points beyond just the fixed set of support vectors.

Influence. We also explore policies based on Leave-One-Out (LOO) influence, which mea-
sures the influence that a training data point has against its own loss when it is removed from the

2Note that we assume classification tasks, thus y is a scalar.
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Policy Type Selection Function Update Scores Downweight Points

Baseline P (zi) = 1
n

X X
Random Prop. P (zi) = si∑

j sj
X X

Deterministic Prop. Rank(zi) = SELECT−1
S (si) X X

Random Prop. Update P (zi) = si∑
j sj

X X
Rand. Prop. Downweight P (zi) = si∑

j sj
X X

Table 3.2: Overview of the augmentation policies and their parameters, where si is the augmenta-
tion score given to point zi := (xi, yi). The SELECT−1

S function corresponds to the inverse of an
order statistic function. As a baseline, we compare to sampling data points at random, ignoring the
augmentation scores. Note that the notation here is simplified to allow sampling with replacement,
though in practice we perform sampling without replacement.

training set. We follow the notation used in Koh and Liang [153]. Let θ̂ be the minimizer of the
loss, which is assumed to be twice differentiable and strictly convex in θ. LetHθ̂ be the Hessian
of the loss with respect to θ evaluated at the minimizer. We define the influence of upweighting a
point, z, on the loss at a test point, ztest, as Iup,loss(z, ztest) := −∇θL(ztest, θ̂)>H−1

θ̂
∇θL(z, θ̂). It

follows that if the test point is z, then the LOO influence can be calculated as:

ILOO(z) := Iup,loss(z, z) = −∇θL(z, θ̂)>H−1

θ̂
∇θL(z, θ̂) . (3.1)

For our augmentation scores, we care only about the magnitude of the LOO influence, so it can be
assumed that the sign is dropped.

To understand the potential of using training loss and model influence for scoring, we provide a
histogram of model influence across the CIFAR10 and NORB datasets in Figure 3.1. In Figure 3.1,
we see that while most of the mass is centered around 0 (which we utilize to avoid points), there
is sufficient variability to allow for ranking points by preference. Further, as seen in Figure 3.2,
these values are correlated before and after augmentation, indicating that these metrics are a
reliable measure of the future impact of a data point after augmentation. We observe Spearman’s
rank correlations [264] between 0.5 and 0.97 with p-values less than 0.001 (and usually orders of
magnitude less).

3.4.2 Refinements: Sample Reweighting and Score Updating
Reweighting. To motivate reweighting individual samples, consider an augmentation which is
the identity map: fT : zi → {zi}. Since we add augmentations back to the training set, our
augmentation policy will duplicate selected samples, resulting in a net effect which reweights
samples with twice the original weight. Using transformations that result in larger augmentation
sets will result in larger weights. One approach is post-processing; Fithian and Hastie [93], for
example, show that the case of class imbalanced sampling can be corrected with a shift of the
logistic regressor’s bias. To normalize for the effect of this implicit reweighting, we divide the
weights of the original samples and its augmented samples by the size of that set, |fT (zi)|. Under
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Figure 3.1: Distribution of influence function values on initial training set for translate augmenta-
tions. Most values are not influential and can therefore be augmented with low priority. We find
similar results when measuring training loss.

this scheme, we guarantee that we conserve the weight originally assigned to a point (and conserve
the ratios of labels). More sophisticated policies, such as reweighting samples by a measure
of how trustworthy they are (e.g., perhaps some bounds can be derived on the label-preserving
properties of an augmentation), remain to be investigated as future work.

We find that in many cases, the performance of reweighting is similar in expectation to the
base case. However, in some cases, reweighting can have a negative impact, as we discuss in
Section 3.5.2. We expect this policy to be more useful in the case of class imbalance, where the
duplication of minority class samples may significantly alter the distribution over classes.

Updating scores. Once we decide to augment a data point, we can either continue to use the
same influence information which we derived for the un-augmented dataset, or we can choose
to update it. The reason for doing this is to account for the drifting model behavior as points
are added to the training set and the model is retrained. However, if having a single estimate
of influence for the whole lifetime of the model is sufficient, then avoiding repeated influence
calculations will reduce the amount of computation required while also enabling an increased
level of parallelism (e.g., minibatching, distributed computations). We find that this modification
results in similar behavior to that of reweightings, where expected performance of a policy remains
similar. Overall, we have not observed a significant enough effect to suggest that this technique is
justified given the extra cost it requires. The benefit of this is that it implies that many applications
may need to only compute selection metadata one time throughout the augmentation process.

3.5 Experiments
In this section, we provide detailed results on the performance of our proposed policies for
data subsampling. For all experiments, we use a convolutional neural network (CNN) to create
bottleneck features, which we then use as input into a linear logistic regression model. This
is equivalent to freezing the weights of the CNN, or using a set of basis functions, φi(·), to
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Figure 3.2: Influence distribution on initial training set (x-axis) vs. final training set (y-axis) for
translate augmentations. Points that are uninfluential typically remain uninfluential.

transform the inputs [39], and allows us to quickly calculate training loss and model influence. We
explore the results of our augmentation policies on three datasets: binary classification variants
of MNIST, CIFAR10, and NORB. For MNIST features, we use a LeNet architecture [171] with
ReLu activations, and for CIFAR10 and NORB, we use ResNet50v2 [124]. While for CIFAR10
and NORB we generate the bottleneck features once due to cost, for MNIST, we additionally
study the effect of re-generating these features as new points are selected and augmented (i.e.,
training both the features and model from scratch throughout the experiments).

In terms of augmentations, we consider three examples: translation, rotation, and crop. To
control for sources of variance in model performance, all augmentations under consideration
are applied exhaustively in a deterministic fashion to any selected samples, and the resulting
augmented points are then added back to the training set. Formally, given a data point, z :=
(x, y) ∈ X × Y, our augmentation is a map from a data point to a finite set of data points:
fT : z → {z1, . . . ,zn : zi ∈ X × Y}. We controlled for augmentation-induced regularization
by performing a simple cross validation sweep for the regularization parameter λ each time the
model was re-trained, and we found regularization to have negligible impact in the trends we
observed. For all datasets and augmentations, we make the effect of augmentation more apparent
by adding augmented test points to the test set. For example, in the case of translation, we test the
performance of applying translation augmentations to the original training set, and then determine
the accuracy using an augmented variant of the test data that has been appended with translated
test examples. All augmentations are performed using Imgaug [144], and our code is written in
Python using Keras CNN implementations.
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(a) MNIST-translate
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(b) CIFAR10-translate
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(c) NORB-translate
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(d) MNIST-rotate
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(e) CIFAR10-rotate
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(f) NORB-rotate
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(g) MNIST-crop
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(h) CIFAR10-crop
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Figure 3.3: The performance of random policies using influence and loss vs. the baseline (simple
random sampling). Random sampling based on loss/influence consistently outperforms the
baseline.

3.5.1 General Policies: Influence and Loss

In Figure 3.3, we explore a first set of policies in which we randomly sample points for augmenta-
tion proportional either to their loss (green) or influence value (blue). To calculate the loss and
influence, we incur a one-time cost of training the model on the original dataset. As a baseline
(red), we compare these methods to a simple strategy in which data points for augmentation
are drawn entirely at random (irrespective of loss or influence). The red-dotted horizontal line
indicates the test accuracy with no augmentation, and the green-dotted line indicates the test
accuracy after augmenting the entire training set. Note that all policies have the same accuracy
when the number of points is 0 or k, where k is the number of points in the original training
set, which correspond to the un-augmented training set and the fully augmented training set,
respectively3. We observe similar behavior in terms of the deterministic policy.

Across the datasets and transformation types, we notice several trends. First, the policies based

3In practice, the non-convexity of CNNs results in accuracies which may vary slightly.
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on loss and influence consistently outperform the random baseline. This is particularly true for the
rotation augmentation for all three datasets, where the random-influence and random-loss policies
achieve the full augmentation accuracy with only 5–10% of the data, compared to 90–100%
of the data for random sampling. Second, we note that the policies based on influence vs. loss
behave very similarly. While influence has slightly better performance (particularly on the NORB
dataset), the policies are, for the most part, equivalent. A benefit of this is that the loss calculation
is slightly simpler than influence to calculate, as it does not require calculating the inverse Hessian
component,H−1

θ̂
, as described in 3.1. Third, we note that it is possible to achieve higher accuracy

than full augmentation using only a reduced set of points for augmentation, as observed in several
of the plots (most notably on NORB). We believe that this higher performance may be due to a
stronger bias towards harder examples in the dataset as compared to full augmentation.

Finally, we explore the effect of using support vectors for augmentation, which was proposed
in the Virtual Support Vector literature [44, 70]. In particular, we find VSV points by tuning a
linear SVM on the bottleneck features of the original training set, and then using these points
as the set of augmentation points for the logistic regression model with bottleneck features. We
use search over C ∈ {0.01, 0.1, 1, 10, 100} via cross-validation, and the best resulting model is
used to obtain support vectors. Interestingly, we note that, though this transfer approach was
not originally proposed in the VSV literature, it results in strong performance on a few of our
tests (e.g., NORB-translate, NORB-crop, CIFAR10-rotate). However, the approach is not as
reliable as the proposed policies in terms of finding the optimal subset of points for transformation
(performing significantly below optimal, e.g., for MNIST and CIFAR10-translate), and the major
limitation is that the augmentation set size is fixed to the number of support vectors rather than
being able to vary depending on a desired data budget.

3.5.2 Refinements: Sample Reweighting and Score Updating

We additionally investigate the effect of two refinements on the initial policies: (i) reweighting the
samples as they are added back to the training set and (ii) updating the scores as the augmentation
proceeds, as described in Section 3.4.2. The latter policy assumes that the method is run in
an online fashion, in contrast to the policies described thus far. This adds extra expense to the
total run time, because the model must be continually updated as new points are augmented.
In Figure 3.4, we observe the effect of these modifications for all datasets using the rotation
augmentation with model influence as the score. Interestingly, while reweighting points seems to
have a positive (if negligible) effect for MNIST, we see that it can actually hurt performance in
CIFAR10 and NORB. This may indicate that the amplifying effect of augmentation may in fact be
beneficial when training the model, and that reweighting may increase the role of regularization in
a detrimental manner. In terms of the score updating, we see that, although updating the score can
have a slight positive impact (e.g., for NORB-rotate), the performance appears to roughly match
that of the original policy. Given the extra expense required in model updating, we therefore
conclude that the simpler policies are preferable.
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Figure 3.4: The performance of policies when point downweighting is used or augmentation
scores are updated.

Figure 3.5: Points with highest influence / loss (top) and lowest influence / loss (bottom).
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3.5.3 Understanding Policies
Finally, to give insight into the behavior of the proposed polices, we examine the 10 points with
highest influence/loss vs. least influence/loss for MNIST. We observe similar results for the other
datasets (CIFAR10, NORB). These examples help visualize the benefits of downsampling, as it is
clear that the bottom set of points are all quite similar. The top points, in contrast, appear more
diverse—both in terms of class label as well as features (thin lines, thick lines, slanted, straight,
etc.). We postulate that promoting this diversity and removing redundancy is key in learning
invariances through augmentation more efficiently.

3.6 Discussion
In this chapter, we demonstrate that not all training points are equally useful for augmentation,
and we propose simple policies that can select the most viable subset of points. Our policies,
based on notions of training loss and model influence, are widely applicable to general machine
learning models. Obtaining access to an augmentation score vector can be obtained in only one
training cycle on the original data (e.g., a fixed cost), yet the potential improvements in augmented
training can scale superlinearly with respect to the original dataset size. With many fewer data
points to augment, the augmentations themselves can be applied in a more efficient manner in
terms of compute and expert oversight. At an extreme, they can be specialized on a per-example
basis.

A natural area of future work is to explore subset selection policies that take the entire subset
into account, rather than the greedy policies described. For example, even if two samples may
independently have large leave-one-out influence, it may be the case that these points influence
each other and leave-one-out influence may be an overestimate (e.g., consider the case of two
identical samples). Including second-order information or encouraging subset diversity (e.g., via
a determinantal point process (DPP) [161]4) may therefore help to improve performance even
further.

More recently, works such as dataset echoing have been proposed to satisfy high load on
input pipelines [53]. Rather than exhausting the full set D, echoing repeats a subset of D for a
pre-configured number of times. In effect, the traversal of D is fixed to contain sufficient locality
to cache and repeat the augmentations. Dataset echoing has been further expanded to support
caching partially augmented samples [174]. Dataset echoing is similar to this work in that a subset
of (a usually infinite set of) samples is repeated. If this subset contains S concatenated with the
original training set, the policy is identical to ours. However, unlike this work, dataset echoing
does not usually take into account how influential a data point is, and therefore, there is room to
further expand on these works, taking into account both the points relevance to a task as well as
allowing a more general framework for repeating the points. In any case, these types of pipeline
approximations can be implemented in a pipeline tuning framework (§5) with either materialized
caches or sample repetitions, both of which can be modeled.

4Our experiments using DPP indicate that DPP is more computationally taxing with little benefit for the setup we
use.
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Chapter 4

Progressive Data Loading and Image
Fidelity

In this chapter, we introduce a new data loading format compatible with all major training
frameworks. The major distinguishing factor for this format is that it is dynamic—the same files
can be read at varying levels of fidelity without any data reorganization. In turn, the system can
increase or decrease image fidelity to cope with system cost constraints while still matching the
fidelity necessary for the model being trained. The cost model and techniques developed in this
chapter are general and can be integrated with a system, such as the one introduced in §5.

4.1 Introduction

Deep learning training consists of three key components: the data loading pipeline (storage), the
training computation (compute), and, in the case of parallel or distributed training, the parameter
synchronization (network). A plethora of work has investigated scaling deep learning from a
compute- or network-bound perspective [11, 15, 63, 64, 69, 139, 179, 181, 297, 301, 321, 324].
However, little attention has been paid to scaling the storage layer, where training data is sourced.

Current hardware trends point to an increasing divide between compute and the rest of the
hardware stack, including network or storage bandwidth [167, 176, 179] and main memory [168,
257, 307]. Indeed, in the last decade, the amount of compute available to deep learning (DL) has
increased exponentially [227]. However, I/O bandwidth has been slower to evolve, potentially
resulting in I/O becoming a dominating factor in the overall runtime of deep learning tasks [167,
176, 202, 294]. Recent evidence highlights that, while accelerators are the workhorse of any ML
fleet, 30% of resources are spent on the data pipeline [211] in industrial workloads and up to 65%
of epoch time is spent in data pipelines in research workloads [206]. While I/O is only a part
of the data pipelines, it has the possibility to create bottlenecks and thus lower end-to-end ML
training efficiency.

The resource requirements for I/O can be prohibitive, either due to cost, scaling limits of
filesystems, or quality of service requirements. Figure 4.1 shows that this can be problematic
even at small scales. We mark the time it takes to fetch one training batch using 1GiB/s of data
bandwidth with a dashed red line, since cloud instances are typically limited to 1–4 GiB/s of
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Figure 4.1: Three generations of single-node TPU hardware performance on ResNet/ImageNet
(batch size of 1024 images). A 1GiB/s (observed in §5.2.4) limit of data bandwidth is shown (red
line) with the corresponding expected mean slowdown. Faster hardware combined with smaller
models places more stress on the input pipeline.

network [103] and 1GiB/s of disk bandwidth [102]. We have trained ResNet [123] models of
varying complexity (ResNet18 being the least complex) using the ImageNet [71] dataset. We find
that TPUv2 [140], Google’s second version of their custom AI accelerator, completes computation
on a given training batch within the time it takes to fetch the next batch (according to the dashed
red line). However, the least complex of the models, ResNet18, is expected to toe that line. TPUv2
is 6 years old, and the third version of Google’s accelerator manages to pack enough compute to
speed up batch computations so that two out of the three ResNet models spend more time fetching
the next training batch than computing on the current one. This is projected to become a problem
for even more complex models, according to publicly available per-core performance numbers for
TPUv4 [203], which we include in the figure.

These trends highlight that I/O, if left unaltered, stands to dominate training costs. Worse, if
the underlying data used in training were to get larger, the problem could become much worse.
Contrary to conventional wisdom, datasets like ImageNet consist of small images with an average
image resolution that is 7× smaller than industry workloads [242], and thus the combination of
training rates and data sizes are likely to increase.

To cope with the divide between compute and I/O, architects have turned to hardware/software
co-design in an attempt to meet scaling and efficiency goals [140, 165]. Two common, comple-
mentary approaches to optimize the storage layer include caching [162, 206] and reducing data
volume [147, 185]. From the caching point of view, I/O pressure can be relieved by keeping a
subset of the workload in memory, and optimizing access patterns to hit in the cache and thus
avoid I/O. However, for large datasets, one must choose between prohibitively large cache sizes
or weaker forms of sampling [197]. From the point of view of data reduction, practitioners can
resize images to reduce their size. However, choosing the resize parameters is task-specific, and is
subject to error [280], which diminishes task performance. In this work, we show deep neural
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Figure 4.2: The design space of ML image file formats. File-per-Image (Row 1) formats randomly
read files in the logical storage address space. Record layouts (Row 2) batch a subset of files into
a single, large sequential read, promoting locality in address accesses. PCRs (§4.3, Row 3) group
by image fidelity (3 shown) to maintain the sequential behavior of record layouts while enabling
dynamic compression without the need for duplicating data. Reading a full record recovers the
full data fidelity for all images. Metadata (not shown) is small and can be kept in memory.

network training is amenable to a range of JPEG compression; however, unlike resizing, this fact
can be exploited as a mechanism for dynamic data reduction. Notably, we show that different
training tasks—a product of the dataset, model(s), and objective, and it is non-trivial to determine
these levels a priori, which motivates a need for dynamic compression.

In this work, we propose Progressive Compressed Records (PCRs), a novel data format that
reduces the bandwidth cost associated with DL training. Our approach leverages a compression
technique that decomposes each data item into a series of deltas, each progressively increasing
data fidelity. PCRs use deltas to dynamically access entire datasets at a fidelity suitable for each
task’s needs, while avoiding inflating the dataset’s size. This allows training tasks to control the
trade-off between training data size and fidelity. The careful layout of PCRs ensures that data
access is efficient at the storage level. Switching between data fidelities is lightweight, enabling
adaptation to changing runtime conditions.

4.2 Background

Advances in scalable training methods, software, and compute (e.g., accelerators) suggest that
the time spent on training computation is decreasing relative to time spent accessing data [162,
167, 176, 179, 206, 294]. Data bandwidth is therefore an increasingly important bottleneck to
consider for machine learning pipelines. Two complementary concepts make up the process of
storing/loading data: the data layout, which helps to utilize the bandwidth of the underlying
storage system, and the data representation, which can increase bandwidth by reducing the
amount of data transferred. In this work, we develop a novel, flexible, and efficient storage format,
PCRs, by combining a data representation (progressive compression) with an efficient data layout.
Our work serves to lower three fundamental storage costs: storage capacity, storage operations
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(IOPS), and storage/network bandwidth.

Record Layouts. Learning from data requires sampling points from a training set. In the
context of image data, perhaps the simplest way to access data is with a File-per-Image layout,
such as PyTorch’s ImageFolder, which can cause small, random accesses that are detrimental to
storage bandwidth and latency, while also stressing filesystem metadata [194, 234, 300]. Record
layouts, such as TensorFlow’s TFRecords [276], MXNet’s ImageRecord [241], or even TAR
files [234], attempt to alleviate this problem by batching data together into records. Record layouts
increase performance (i.e., read rate) by exploiting locality (Figure 4.2). Our experiments indicate
a single epoch can take 25× longer with File-per-Image formats compared to reading Record
formats—limiting their practicality without caching. To achieve randomness, each Record is read
into memory, where it may be shuffled with other Records and broken into minibatches by the
data loader. While Record layouts improve over File-per-Image layouts, they are designed to
store data at a specific fidelity level, thus requiring multiple copies of each dataset at different
fidelities in order to realize efficient training across tasks. In this work, our aim is to combine the
efficiency of Record layouts with dynamic compression schemes (described below) to offer quick,
easy access to data at multiple fidelity levels.

Image Compression. Compressed formats are commonly used to represent training data.
JPEG [290] is one of the most popular formats for image compression and is used ubiqui-
tously in machine learning [71, 88, 180, 252]. Most compression formats (including JPEG)
require the compression level to be set at encoding time, which often results in choosing this
parameter in an application-agnostic manner. However, as we show in Section 4.5, it is difficult to
set the compression level for deep learning training without over- or under-compressing, as the
appropriate level may vary significantly across training tasks. Current approaches resort to storing
multiple copies of the dataset at different compression levels, particularly for applications using
multiple data fidelities within a single training task [147]. This is infeasible for larger datasets.
For example, we find duplicating a 2GiB dataset at 9 resolutions can amplify the dataset size by
1.5−40× and require hours of extra processing time. Terabyte-sized datasets rely on distributed
frameworks to reduce dataset creation from weeks to days [21].

In Figure 4.3, we provide a simplified illustration of the JPEG algorithm. First, an image is
split into blocks of size 8 × 8, which are then converted into the frequency domain. The low
frequencies (top left of the matrix) store the bulk of the perceptually relevant content in the image.
Quantization, which discards information from the block and results in compression, is used
to diminish the high frequency values, compressing the data. Sequential formats serialize the
image’s blocks from left to right, top to bottom. Decoding the data is simply a matter of inverting
this process.

Progressive Image Compression. Progressive compression is an alternative to standard image
compression, which—combined with an additional rearrangement of data (Section 4.3)—forms
the basis of the idea behind PCRs. Progressive formats allow data to be read at varying degrees of
compression without duplication. As an example, over slow internet connections, these formats
allow images to be decoded dynamically as they are transmitted over the network. With the
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(a) Scan 1 (b) Scan 3 (c) Scan 10

Figure 4.3: Top: JPEG carves an image into blocks, which are then converted into frequencies,
quantized, and serialized. Progressive compression writes out key coefficients from each block
before re-visiting the block. Bottom: Higher scans (a→c) have greater fidelity from more
frequencies.

sequential case, data is ordered by blocks, and thus partially reading the data results in “holes”
in the image for unread blocks [290]. Dynamic compression schemes interleave information
(deltas) from each block, allowing all blocks (and thus the entire image) to be approximated
without reading the entire byte stream. As progressive formats are simply a different traversal
of the set of quantization matrices, they contain the same information as sequential JPEG [142]
and are actually often smaller in practice. As we depict in Figure 4.3, while non-progressive
formats serialize the image matrix in one pass, progressive formats serialize the matrix in disjoint
groups of deltas which are called scans. Scans are ordered by importance (e.g., the first few scans
improve quality more than subsequent scans). Thus, any references to images generated from scan
n will implicitly assume that the image decoder had access to prior scans. Progressive formats
exist not only for images, but also for modalities such as audio [205] and video [256].

4.3 Progressive Compressed Records

We present Progressive Compressed Records (PCRs), a novel storage format that reduces data
bandwidth for ML training. We specifically explore PCRs for training deep neural networks with
image data, but note that the ideas behind PCRs could be readily extended to other modalities
(e.g., audio [205] or video [256]), and compression strategies (e.g., cropping [263], interlaced
PNG, or neural compression [278]). PCRs define a data layout that ensures bandwidth is fully
utilized, and a data representation that permits accessing data at multiple levels of fidelity with
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Figure 4.4: PCRs encode label metadata followed by all scan groups. Accessing the dataset at
lower quality requires reading up to a given scan group. Reading all scan groups returns the full
quality data, and decodes to identical bytes as the conventional JPEG format.

minimal overhead.

PCRs are optimized to allow the entire training dataset to be read at a given fidelity. To
achieve this, data is rearranged into scan groups, i.e., collections of deltas of the same fidelity
that are stored together in the address space. To dynamically increase the fidelity of data read
and decoded, a task then merely needs to read subsequent scan groups until the desired fidelity
level is reached. PCRs differ from other formats (e.g., TFRecord, RecordIO) because PCRs allow
these lower fidelity versions of each record to be accessed efficiently (without space/throughput
tradeoffs). This efficiency is achieved by using progressive compression and changing the order
that data is stored and accessed. Space overhead for PCR conversion is negligible; PCRs are
usually 5% smaller than TFRecords. This is because record format size is dominated by the image
payload, which is simply rearranged with progressive compression. File size differences stem
from the efficiency of entropy coding in JPEG, which typically has higher compression ratios over
progressive layouts [266]. Since PCRs allow a lower fidelity version of the entire dataset to be
accessed efficiently, they can drop the effective size and utilized bandwidth of a record by a factor
of 2–10×.

Figure 4.4 depicts the PCR format as it is organized on the storage medium. PCRs logically
consist of two parts: metadata and data. Metadata consists of sample metadata (e.g., labels,
bounding boxes) as well as PCR metadata (e.g., mapping of files and scans to storage addresses).
Metadata is small in size (e.g., an image label can be represented by a 32 bit int, while an image
is 100kiB or more) and can be kept in a database, mapped in memory, or pre-pended to PCRs (for
per-sample metadata e.g., labels). The data, which is orders of magnitude larger, consists of the
images themselves, organized in terms of increasing levels of fidelity. Each fidelity level for an
image is a scan and each grouping of images of the same fidelity is a scan group. For example,
the scan 1 representation of the shark in Figure 4.3 can be retrieved by reading its data from scan
group 1. Likewise, the scan 3 representation will be available once the records up to scan group 3
are read, and the reconstructed representation will be of higher fidelity than that of scan 1. As
scan groups consist of scans of the same fidelity, every image contained in a record of the same
group offset is available at the same fidelity. Users of PCRs can read data at a given fidelity by
simply reading the on-disk byte stream from the start of the PCR to the end of the corresponding
scan group. This way of dynamically selecting data fidelity allows for bandwidth savings without
re-encoding the data.

38



4.4 Design
The key insight behind PCRs is that, for storage or network I/O bound workloads, training tasks
can be sped up by reducing data fidelity (and, thus, the amount of data read) to match the available
I/O bandwidth. Figure 4.5 shows the training throughput obtained by using PCRs vs. the traditional
TFRecord format. As a fair point of comparison, we use our tf.data [211, 272] implementation,
and thus only the dataset reader operation has changed. As we describe in Section 4.4.1, PCRs can
reduce the bytes read per image, and thus proportionally increase the throughput of the end-to-end
training process (up to the compute limits of the accelerator). However, a speedup is only possible
if the CPU overhead introduced by PCRs can be absorbed by the machine (Section 4.4.2). The
final part of the design of PCRs involves choosing the image quality level automatically, which
we describe in Section 4.4.3.

4.4.1 I/O Speedup Analysis
End-to-End Slowdown. Amdahl’s Law [18] states that if p fraction of a program is waiting for
data (see red/blue bars in Figure 4.1), a 1

1−p speedup can be obtained by removing the wait. Recent
work determines possible speedups empirically by finding the gap between the data preparation
rate and the I/O rate [206]. However, because PCRs are dynamic, it is important to know what
PCR configurations can actually lead to a speedup (i.e., what scan group to select). Although
we observe over 500× max/min range on ImageNet, mean size-per-sample, Ex∼D[s(x)], is all
that is required for an accurate performance model. We tabulate this information in Table 4.1 and
motivate the model below.

Table 4.1: Image size reduction for various scans and the size of an average image, which can be
combined to predict I/O speedups. Scan 10 is approximately the same size as baseline JPEG, and
scan 5 is roughly half.

Dataset Scan 1 Scan 2 Scan 5 Scan 10 Ex∼D[s(x)]

ImageNet 16× 7× 2× 1× 110kB
HAM10000 30× 15× 3× 1× 250kB
Cars 14× 6× 2× 1× 110kB
CelebAHQ 7× 4× 3× 1× 80kB

Input Pipeline Throughput. Using closed-system Little’s Law [119, 182] and basic assump-
tions on the characteristics of a storage system (i.e., the cost of large reads is proportional to bytes
read), the image throughput, X (e.g., images per second), of an image pipeline is explained by the

equation: X =
W

Ex∼D[s(x)]
, where W is the bandwidth and Ex∼D[s(x)] is the mean image size

(average size of an image sample). The number of bytes in a record (a large read) is, by linearity
of expectation, the number of images, n, times the average image size. Thus, the amortized cost
per image (dividing by n) is the average image size, and time taken is proportional to W . If a
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Figure 4.5: The training rate of a 10-node TitanX GPU cluster with a ResNet-18 workload
using PCRs (the scans) and TFRecord. The throughput of the training process is dominated by
I/O bandwidth until the compute limit of the GPU is reached. PCRs at scan 10 are approximately
the same size as TFRecord, and thus have similar performance. Predicted rates are shown.

model/accelerator trains at 500 images/second (a function of the resized and cropped input-matrix
dimensions [123, 156, 262]), we can conclude that, using ImageNet images, it will use up to
110kB ∗ 500s−1 = 55MB/s (Table 4.1), as demonstrated in Figure 4.5.

Dataset-Level Bounds. To remove dependence on the accelerator’s speed, the equation can be
applied on both scans and the original data: Theorem 4.4.1 presents the asymptotic bounds for
the impact of data reduction on training speedups. It is derived by noticing that, when a system
with fixed W is bound by the throughput of the I/O subsystem, X , one can calculate the speedup
ratio X̂ / X , where X̂ is using a reduced image size. In sum, reducing the mean data read results
in proportionally higher I/O throughput, which results in proportional speedup on I/O bound
workloads. For example, using Table 4.1, which displays the ratios, one can anticipate that a 2×
speedup would be seen on ImageNet with scan 5.

Theorem 4.4.1 If a training pipeline is data bound, then the maximum achievable system speedup,
Smax, for switching from dataset D to D′ is the ratio of mean sample sizes, s(x):

Smax (D,D′) =
Ex∼D[s(x)]

Ex′∼D′ [s(x′)]
.
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4.4.2 Data Preparation Decoding Overhead
Changing the dataset encoding inevitably changes data-preparation work, which consumes CPU
resources and must be managed. The cost of progressive compression is dependent on the image
size, scan configuration, and decoder implementation [312]. To analyze the cost of this progressive
decoding, we test the rate of decoding 30k images using one thread—these rates can then be
multiplied by the number of cores on the machine in a parallel training scenario. The figures
are shown in Table 4.2, indicating that decoding with a subset of scans can be comparable to
traditional decoding. On the other hand, using all the scans is over 2× slower than traditional
decoding. On a many-core machine (e.g., a 32+ core setup like the one used in Section 4.5.1),
this overhead can be absorbed by idle cores—in Figure 4.5, we do not see any slowdown by
using PCRs relative to baseline JPEG TFRecords because each of the 10 machines can decode
3k images in the worst case. However, for less core-heavy machines, we note three optimization
paths to lower decoding overhead. First, excessive and unused scans can be removed. Second,
using spectral selection can lower decoding overhead. Third, hardware acceleration can be used.

Table 4.2: The single-core decoding rate (images/s) of various JPEG encodings across the datasets.
Progressive decompression can be over 2× more expensive than baseline decoding.

Dataset Scan 1 Scan 2 Scan 5 Scan 10 Baseline

ImageNet 433 412 340 146 419
HAM10000 465 438 275 96 240
Cars 266 240 225 127 268
CelebAHQ 239 213 195 129 286

4.4.3 Autotuning Image Fidelity
Lossy compression of input data creates concerns for the output of model training, and thus
creates questions for how to select a tolerable scan group. To analyze the effect of lower image
fidelity, we observe that deep learning training is based on stochastic gradient descent, which
involves taking a “step” in the direction (a vector) that improves the model. If two datasets, D and
D′, yield the same direction, then they will yield the same model. Therefore, we may intuitively
find an alternative dataset D′, which is close to the original dataset D in terms of how the model
views the gradient direction of the loss function, L. More formally, we want the angle between
gradient vectors to be small.

To accomplish this, we freeze the model mid-training and empirically measure the gradient
direction,∇θL, over the full fidelity dataset, D, which contains batches of images, X, and labels,
y. As the parameters are frozen, we can also measure the gradient on the lower fidelity dataset, D′,
which has alternative images, X′. The angle between the lower fidelity dataset and the original
dataset yields the similarity score, which ranges between -1 and 1. Maximizing similarity would
yield an identical model.

score (D,D′) = sim (∇θL(X,y),∇θL(X′,y))
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Figure 4.6: The similarity of gradients across epochs for ResNet/HAM10000 (max of 1.0). Legend
shows bandwidth savings. Gradient similarity is exact for scan group 10 and decreases for other
scans as the model converges. Higher quality scans lead to gradients within 0.1 of the baseline’s
gradient, and thus should result in similar final models.

where similarity is the cosine similarity:

sim (A,B) = cos(θ) =
A · B
||A||||B||

We evaluate this procedure with HAM10000/ResNet, using 2560 images to estimate the
gradient and 3 trials to get 95% confidence intervals. As shown in Figure 4.6, decreasing image
fidelity decreases the similarity with respect to the true gradient. Scan 10 is bit-identical to the
baseline dataset, and thus we observe maximum similarity in that case. Meanwhile, scan 1 has the
lowest similarity, and the difference increases as the model converges. Given the gradients are
well-behaved with respect to fidelity, it is natural to parameterize scan tuning to match some level
of gradient similarity.

Using gradient similarity for autotuning quality requires choosing a minimum gradient sim-
ilarity threshold for scans throughout training, which is the main drawback of this approach.
As is shown in Figure 4.6, the similarity for high quality data is bounded within a threshold of
0.8—therefore, we find this threshold a good default. The computational cost of evaluation is
on the order of tens of gradient steps, and is proportional to the number of scans, epochs, and
minibatches used. Our implementation tunes once every 20 epochs and does not tune for the
first 5 epochs because models are unstable during this period [110, 123]. As training progresses,
low scans become too dissimilar (in terms of gradients) from the higher scans, and therefore
are avoided. This, in turn, allows the faster scans to apply a burst of speed to the training pro-
cess before fine-tuning at a higher fidelity (e.g., when learning rates drop). Compared to static
schedules [295], there is only one hyperparameter (the threshold), which is independent of other
schedules (e.g., learning rates), and the parameter does not require validation data. We leave
tuning using QoS/congestion information [95] to future work.
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4.5 Evaluation
We evaluate the flexibility and efficiency of PCRs using a suite of large-scale image datasets. We
begin by describing our experimental setup (§4.5.1) and present an end-to-end evaluation of PCRs
(§4.5.2), demonstrating their ability to reduce training time. We show that dynamic compression
is crucial because the appropriate level of compression varies across models and training tasks
(§4.5.3). We explore metrics that can be used to explain the effectiveness of compression on a
training task (§4.5.4) and introduce autotuning heuristics for dynamic training (§4.5.5).

Table 4.3: PCR dataset size and record count information. Datasets vary in terms of number of
images, their JPEG quality, and the image sizes. Some datasets, such as HAM10000, have image
sizes larger than average. Record sizes concentrate around the dataset size divided by the record
count.

Dataset Records Images Size Quality Classes

ImageNet 1251 1281167 129GiB 91.7% 1000
HAM10000 125 8012 2GiB 100% 7
Cars 63 8144 887MiB 83.8% 196
CelebAHQ 93 24000 2GiB 75% 2

4.5.1 Experimental Setup
Our evaluation uses the ImageNet ILSVRC [71, 252], CelebAHQ [147], HAM10000 [281], and
Stanford Cars [154] datasets. For CelebAHQ, we classify if the celebrity is smiling or not. A
summary of each dataset is given in Table 4.3. We aimed to select datasets that vary in terms
of the image resolution, number of examples, number of classes, and image/scene type. All of
the datasets are in fact already compressed before progressive compression is applied, making
the presented speedups conservative estimates of the potential benefit of PCRs. Specifically, the
datasets natively use a JPEG quality level varying from 75% (CelebAHQ) to 100% (HAM10000)
(§4.3). Experiments use resizing, crop, and horizontal-flip augmentations, as is standard for
ImageNet training [269, 280] The sizes of each dataset’s scan groups (used in Table 4.1) are
shown in Figure 4.8; sizes decrease for lower scan groups.

Training Regime. We evaluate two loader implementations of PCRs, comparing PCR scans
against themselves and then comparing PCRs against strong baselines (TFRecords). For both
setups, we use PyTorch [222] for all model training; the two loaders are using DALI [214] Loader,
which was used for initial prototyping, and tf.data [211, 272], which we have since made
native operator extensions to for maximum performance. In our experiments we use pretrained
ImageNet weights for HAM10000 and Cars due to the limited amount of training data. We use
standard ImageNet training, starting the learning rate at 0.1 with gradual warmup [110], and
dropping it on epochs 30 and 60 by 10×. After augmentations, all inputs are of the same size;
thus, a model’s update rates are the same across datasets. The pretrained experiments (HAM10000
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(a) ImageNet ResNet
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(b) ImageNet ShuffleNet
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(c) CelebAHQ ResNet
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(d) CelebAHQ ShuffleNet

Figure 4.7: Top-1 test performance (with 95% confident intervals) using ResNet and ShuffleNet
on ImageNet (a,b) and CelebAHQ (c,d). Lower scan groups (corresponding to further compressed
data) can provide faster overall training, often without sacrificing accuracy. However, the ap-
propriate level of compression depends on the model, infrastructure, and data—necessitating
the ability to easily access data at multiple fidelities, as with PCRs. We explore these factors in
Sections 4.5.3, 4.5.4, and 4.5.5.

and Cars) start at a learning rate of 0.01 to avoid changing the initialization too aggressively.
We use mixed-precision training [22, 199] for the DALI runs. We use ResNet-18 [123] and
ShuffleNetv2 [189] architectures for our experiments with a batch size of 128 per worker. We run
each experiment at least 3 times to obtain confidence intervals. We sample test accuracy every 15
epochs for non-ImageNet datasets. Our evaluation focuses on the differences obtained by reading
various amounts of scan groups. For the DALI runs, we consider reading all the data (up to scan
group 10) to be the baseline, as the baseline formats will perform similarly under I/O bounds—we
later provide a direct comparison with baseline TFRecords when using tf.data. Our results are
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(a) ImageNet (b) HAM10000

(c) Stanford Cars (d) CelebAHQ

Figure 4.8: The size in bytes of various levels of scans read. Scan group 0 (not shown) contains
only labels and is typically ∼100 bytes. Each scan adds roughly a constant amount of data (i.e.,
linear scaling), although certain scans add considerably more than others (i.e., sizes sometimes
cluster) due to techniques like chroma subsampling. Using all 10 scans can require over an order
of magnitude more bandwidth than 1–2 scans. Interquartile ranges are shown.
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(a) ImageNet ResNet (heavy)
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(b) ImageNet ShuffleNet (heavy)

Figure 4.9: Top-1 test performance on ImageNet with ResNet and ShuffleNet, using double the
compute (20 workers with same configuration). Doubling the compute forces bottlenecks to
appear by approaching hardware limits of aggregate disk throughput. We run this experiment
once and terminate at epoch 90, showing a 2× speedup for scan 5.

conservative as we are already utilizing pre-compressed data and we include evaluation times in
our results. For the purpose of evaluation, all scan groups within a dataset were run for the same
number of epochs (90 for ImageNet, 150 for HAM10k, 250 for Cars, and 90 for CelebAHQ). We
also provide annotated (dashed) lines for subsequent epochs.

System Setup. Our experiments were run on a 16 node Ceph [299] cluster with NVIDIA TitanX
GPUs and 4TB 7200RPM Seagate ST4000NM0023 HDD. We use six Ceph nodes: five dedicated
Object Storage Device (OSD) nodes, and one Metadata Server (MDS). The remaining 10 nodes
are machine learning training workers. This 2:1 ratio between compute and storage nodes results
in 400+ MiB/s of peak storage bandwidth; we have also tested a heavily I/O bound 10:1 ratio
and found the trends comparable. Ceph is a common production-grade open-source filesystem,
but our results would generalize to any setup with a mismatch between compute power and
data bandwidth (either storage or network). In addition to microbenchmarks, we evaluated the
generalization of PCRs to SSD setups in the cloud using n1-instance-16 with a P100 GPU,
and found that we can get 2× speedups over TFRecords in this alternative setting. Since state of
the art compute is 150× faster than our own setup on a more expensive model (ResNet-50) [315],
we focus on models which are fast to train (while still being modern; AlexNet [156] is potentially
faster) while limiting read parallelism. The DALI setup uses O DIRECT to ignore caching effects
and highlight bandwidth usage. To reflect what PCRs may look like in realistic, heavy-load
situations, we provide 20 node experiments in Figure 4.9 with the same storage system and double
the workers, which allows speedups to be seen with full read parallelism per node (over 700MiB/s
of peak bandwidth). This setup uses our tf.data loader implementation to fairly compare
against TFRecords and File-per-Image formats, showing its effectiveness. We use the same setup
in Figure 4.14.
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(a) HAM10000 ResNet (b) HAM10000 ShuffleNet

Figure 4.10: Test accuracy on HAM10000. While ResNet is robust to additional compression,
ShuffleNet requires higher fidelity data (at least scan group 5) for higher accuracy. Time is relative
to first epoch. 95% confidence intervals are shown.

(a) Original Multiclass (b) Binary Is-Corvette

Figure 4.11: Test accuracy with ResNet-18 on the Stanford Cars dataset and a binary variant. The
gap between scan groups closes as the task is simplified. Time in x-axis is relative to first epoch.
95% confidence intervals are shown.
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4.5.2 Reducing Time to Accuracy via Compression

Observation 3: Training time can be reduced by up to 2× using data compression. PCRs
capitalize on this by dynamically reducing training data size, all without adding space overhead.

We begin our empirical study by exploring the effect of data compression on training time and
training loss/test accuracy. We provide time-to-accuracy results for ResNet-18 and ShuffleNetv2
training on ImageNet and CelebAHQ (Figure 4.7), HAM (Figure 4.10), and Cars (Figure 4.11).
Across these experiments, we find that PCRs can provide a 2× boost on average in time-to-
accuracy compared to the baseline, by dynamically providing data at a higher level of compression.
We make several observations about these results. First, we note that we tend to see larger speedups
for smaller, faster models (e.g. ShuffleNet), than for bigger models (e.g., ResNet). Indeed, the
current speedups may in fact become significantly larger with faster compute [e.g., 164, 167, 315].
Such a trend is visible in the heavy ImageNet experiments featured in Figure 4.9—both TFRecords
and scan 10 are about the same size, and therefore finish simultaneously, but scan 1 and 2 finish
nearly an hour faster for ShuffleNet. For this same setup, we observe Files-per-Image take over
2 hours per epoch due to a lack of sequential reads—25× slower than TFRecords, which scan
5 improves by 2×; therefore, we conclude that progressive compression and record formats are
both necessary for performance.

Second, while time-to-accuracy is reduced as we move to lower scan groups, there is a
statistical efficiency cost. Namely, models trained on scans 1 and 2 may not always converge to an
acceptable solution, as shown for ImageNet (Figure 4.7). Certain tasks like CelebAHQ, however,
can tolerate this fidelity loss, either because they consist of less compressed images or because the
training task is less dependent on high-frequency image features. These results suggest that, while
compression saves bandwidth and offers a potential speedup, the ideal amount of compression
depends on two factors: (i) the speed of the model and the underlying compute infrastructure, and
(ii) the structure of the task and the images in the dataset. We explore these factors in more detail
below.

4.5.3 Task Tolerance to Data Fidelity

Observation 4: Different models can tolerate different fidelities.

Given a fixed dataset, we show that there is variation in the data fidelity/compression level that
different models can tolerate for training. This motivates an important use-case of PCRs, as the
format allows data to be stored once but then accessed at multiple compression levels while models
are tuned or various models are applied to the problem at hand. In Figure 4.10, both ResNet and
ShuffleNet are trained with the HAM10000 dataset. While ResNet consistently tolerates low
fidelity images, ShuffleNet training tends to degrade with low fidelity data. ShuffleNet reaches
its best accuracy at scan 5, but our other results suggest that lowering fidelity results in lower
accuracy for the same epoch in nearly all cases (Figure 4.12). This suggests that different models
will experience different speedups for similar accuracy levels, depending on their sensitivity to
fine-grained features unavailable in low fidelity data.
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(a) Epoch Accuracy (b) MSSIM

Figure 4.12: Left: Top-1 test performance vs. epoch on ResNet-18/ImageNet; other models/-
datasets are similar. Using lower quality scans can only degrade performance; it does not act as
a beneficial data augmentation. Right: Corresponding image quality degradation according to
MSSIM.

Observation 5: Different tasks, e.g., multi-class classification vs. binary classification, can
tolerate different levels of data fidelity. The same PCR dataset can service these different tasks.

The difficulty of a task, or training objective of interest, also affects the amount of compression
that can be tolerated. Harder tasks, e.g., multi-class classification with a large number of classes,
require higher fidelity data. We validate this empirically in Figure 4.11 (and additional evidence is
provided in the supplement). This experiment reduces the number of classes for the classification
task, demonstrating that lower scan groups can be used for easier tasks. The full range of classes
investigated includes: Baseline (i.e., Car Make, Model, Year), Make-Only (i.e., car Make only),
and Is-Corvette, a binary classification task of Corvette detection. Compared to the original task,
the coarser tasks reduce the gap between scan groups, decreasing the gap from baseline to the
binary case. These results suggest that the optimal image encoding can be dependent on the exact
labeling or task complexity. Thus, while static approaches may need one encoding per task, a
fixed PCR encoding can support multiple tasks at optimal fidelity by simply changing the scan
group depending on how the labels (metadata) are remapped.

4.5.4 Compression Level Estimation

Observation 6: MSSIM image similarity is a reliable estimator of the accuracy loss between scan
groups, and can be used to determine appropriate levels of compression for training with PCRs.

To better explain the effectiveness of compression, we compare how various scans approximate
the reference image through MSSIM [296], a standard measure of image similarity. We find

49



0.85 0.90 0.95 1.00
MSSIM

0

20

40

60

80
To

p-
1 

Te
st

 A
cc

ur
ac

y

ShuffleNet
y=329.0x-274.6
P-value=7.21e-06

ResNet18
y=461.8x-378.5
P-value=2.80e-11

(a) MSSIM Regression (b) Clustered Convergence

Figure 4.13: MSSIM vs. accuracy for the Cars dataset with ResNet18 and Shufflenet. We obtain
similar results for other datasets. Left: There is a linear relationship between MSSIM and the
final test accuracy. Right: Scan groups (ShuffleNet) cluster by MSSIM and accuracy.

a correlation between MSSIM and final test accuracy, especially when comparing scan groups
within a task. Our preliminary tests show that scan groups with similar MSSIM achieve similar
accuracy (Figure 4.13), which is why only scan groups 1, 2, 5, and the baseline are shown.
Due to the way progressive JPEG is coded by default, groups tend to cluster, e.g., scans 2, 3,
and 4 are usually similar, while 5 introduces a difference. Such “banding” or clustering is seen
in the accuracy trends; the major jumps correlate with the appearance of Y (luminance) AC
coefficients in the JPEG encoding. Scan groups of 5 or higher have an MSSIM of 95%+, which
is likely why they consistently perform well. MSSIM can therefore be used as a diagnostic for
choosing scans, although we acknowledge that changes in perception are hard to predict for large
deviations (MSSIM < 95%). For some datasets, linear regression on MSSIM recovers final test
accuracy even with different models (Figure 4.13) or augmentations. Test accuracy per epoch
degrades with worse image fidelity across our experiments (Figure 4.12), further highlighting that
time-to-accuracy speedups are caused primarily by bandwidth reduction (rather than e.g., a form
of regularization induced by lower scans).

4.5.5 Autotuning Compression Level

Observation 7: It is possible to automatically determine an appropriate level of compression at
runtime by dynamically accessing various data qualities via PCRs.

In cases where training resolution is not structured into learning [147] or image fidelity
heuristics prove too costly to tune (§4.5.4), automatic tuning of the scan hyperparameter may be
desirable. One way of doing this is by tuning with a measurement of the bias of the gradient given
a lower fidelity image (§4.4.3), intuitively measuring how the model “sees” the image similarity.
As we showed in Section 4.2, a similarity threshold of 0.8 or higher is sufficient to avoid bad
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(a) ResNet (b) ShuffleNet

Figure 4.14: Adaptive tuning on ImageNet for 90 epochs compared to TFRecord training, which
is comparable to Scan 10 training. For adaptive tuning, epochs are marked with scatter points.
Training is fastest after epoch 5, when autotuning search is enabled. Changing the threshold from
0.8 (shown) to 0.9 results in the last few epochs switching to scan 10.

scans throughout training—Figure 4.6 clusters low-quality scans below that point. We apply this
threshold and the rest of the procedure described in Section 4.4.3 to the ImageNet dataset and
observe that such autotuning repeatedly matches accuracy while almost being as fast as a pure
scan 5 approach. The main slowdown is due to starting at scan 10 for the first 5 epochs of training,
blending the latencies of scan 10 with those of scan 5. We note that, unlike MSSIM, which is
statically concentrated above 95% for good quality scans, the gradient similarity changes over
training. For example, ResNet18 has a similarity of 0.88 by epoch 85, whereas it had a similarity
of 0.95 at epoch 5. We observe that using a higher threshold, approaching 0.9, forces scan 10 to
be used for the last few epochs of training when gradient similarity is lower, retaining similar
accuracy at slightly longer training times.

4.6 Related Work

Numerous works have explored methods for decreasing training time with large datasets [110,
136, 164, 167, 311, 315, 317], motivating a need for improved I/O internals [14, 32, 51, 56, 233],
formats [234], caching [165], and data pipeline frameworks [211]. We discuss caching, forms of
compression, and frequency-domain DL literature below.

Dataset Caching. Caching places data in faster storage tiers to offload the bandwidth burden
from slower devices. ML applications lack locality due to uniform sampling [162], requiring
either prohibitively large cache sizes or weaker forms of sampling [197]. However, when done
correctly, caching can obtain significant speedups [206]. PCRs are designed for datasets which do
not fit in caches, and, by virtue of accessing less data, can increase cache hit rates.
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Dataset Cardinality Reduction. “Big data” spawned interest in dataset reduction techniques
that aim to reduce the number of training samples while maintaining model accuracy [26, 65, 91,
146, 178, 191, 305]. Similarly, dataset echoing [53, 320] re-uses subsamples to speedup the data
pipeline. PCRs differ in that they reduce I/O burden by modifying data representation and layout.

Dataset Sample Compression. Techniques such as compression [12, 185] or resizing [147]
reduce data size by lowering fidelity, reducing I/O pressure. Prior work has shown that resizing
as a form of data reduction is particularly effective for DL tasks, as resized data can speed up
training, transfer to high fidelity test points, and in some cases, even increase accuracy when
combined with certain data augmentations [52, 147, 280]. However, resizing parameters are
chosen statically and heuristically (therefore suboptimally [280]), and thus may not meet the
needs of all applications without duplicated work. PCRs differ in that they provide a dynamic
mechanism for adjusting I/O load, and thus can adapt to both the system and task at runtime.

Similar to our work, MLWeaving [295] has shown that transposed layouts (i.e., column major)
can accelerate machine learning training. However, this work differs in that we focus on I/O in
the context of deep learning models, whereas MLWeaving focuses on memory bandwidth for
general linear models. Additionally, the compression method differs. For image data, the three
canonical dimensions of compression are 1) quantization, 2) frequency selection, and 3) spatial
selection [290]; MLWeaving uses the first while PCRs use the first and second (via JPEG). More
recently, transposed layouts have been used to reduce I/O in industrial settings for recommendation
systems [322] by progressively ordering columns by access frequency. These techniques are
complementary to ours as one can perform training over images and tabular data jointly, exploiting
both domain-specific and statistical access patterns to reorder the reads.

Neural compression [278], which learns custom compression formats using neural networks,
is an interesting direction for future work and is compatible with PCRs. However, while neural
compression can outperform JPEG in terms of quality [278], it does so at significant cost. Using
state-of-the-art neural compression [27, 28, 198], we find decoding to be between 900× and
5000× the cost of baseline JPEG, and thus incompatible with real-time performance.

General Compression. Bandwidth reduction extends to databases, memory hierarchies, and the
web [10, 13, 223, 224, 327]. Progressive compression has been used in the context of dynamically
saving bandwidth for mobile phone downloads [312]. HippogriffDB [176] uses GPUs to compress
data in the context of databases, which lowers I/O bandwidth to get a speedup. Other work has
investigated how image degradation affects inference [77, 225, 284, 323]. In contrast, our work
is focused on compression for I/O savings in deep learning. Reinforcement learning has been
used to choose JPEG parameters for cloud inference [175]; other work has hand-designed JPEG
encodings for training [185]. These works are similar to ours in that they tune compression
for the model, though they differ in that they are static. Other work investigates compressing
models [20, 50, 73, 116, 117, 118, 132, 309] or network traffic [15, 179, 181, 297, 301, 321];
these are orthogonal to our work.

Frequency Domain Deep Learning. Prior work modifies models to directly train over com-
pressed representations [97, 114, 279, 283] or with frequency-domain operators [85]; our work
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does not modify the model. Other work investigates generalization performance from the view of
low [31, 310] and high [293] frequencies, which provides insight into our work. JPEG mostly
filters low frequency components, and thus prior work has attempted to use JPEG as a defense
mechanism against adversarial attacks [66, 86, 186]. Motivated by adversarial attacks exploiting
spurious, high-frequency features [105, 133] other work investigates if frequency filters can
impact model robustness [78, 314]; our work primarily focuses on retaining test accuracy under
non-adversarial conditions.

4.7 Discussion
We introduce a novel storage format, Progressive Compressed Records (PCRs), to reduce the
bandwidth cost of training over large datasets. PCRs use progressive compression to split
training data into multiple fidelity levels, while avoiding duplicating space. The format is easy to
implement and can be applied to a broad range of tasks dynamically. PCRs provide applications
with the ability to trade off data fidelity with storage and network demands, allowing the same
model to be trained with 2× less bandwidth while retaining model accuracy. We introduce
methodology for choosing the particular data fidelity necessary for a task, as well as a tuning
heuristic that can be applied automatically. Using PCRs, our approaches can dynamically switch
between multiple data fidelities while training without loss of accuracy. Future directions include
alternative compression methods, data modalities, and hardware acceleration. In particular,
hardware acceleration for image processing combined with lightweight compression algorithms
seem to be the most promising path toward incorporating PCRs ubiquitously. In the next chapter
(§5), we’ll discuss how to generalize the I/O performance model to the full input pipeline.
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Chapter 5

Automated Input Pipeline Configuration

To address the challenges that users face in configuring input data pipelines in ML jobs (§2),
we introduce Plumber, an extensible tool that automatically detects and removes input data
bottlenecks. From a modeling point of view, Plumber is a generalization of I/O techniques
developed for PCRs (§4), combined with novel CPU-profiling and cache estimation techniques.
The breadth and generality of the modeling allows a novel solver to be proposed and evaluated,
eliminating a significant fraction of configuration for the user.

5.1 Plumber
Using a top-down approach, we start with the architecture of Plumber (§5.1.1) and then ex-
plain tuning methodology (§5.1.2). We later formulate the resource allocation problem across
Datasets as a LP (§5.1.3), which relies on per-Dataset resource rates derived by Plumber
(§5.1.4). Plumber is released as an open-source artifact and consists of a 3k line patch on top of
tf.data’s C++ AUTOTUNE infrastructure and 8k lines of Python interface.

5.1.1 Software Architecture

Plumber reasons about performance in a layered fashion. The goal of the layers is to abstract
basic Dataset-level statistics into costs, which can be compared, optimized over, and extended.
We demonstrate this architecture with a simplified, misconfigured ImageNet pipeline in Figure 5.1.
This pipeline requires reading from TFRecords in parallel, decoding the examples of each
record, and randomly augmenting the examples with crops and flips. Each of the pipeline
components has a tunable, except for the TFRecords, which is parallelized by Interleave.

Tracing. By enabling a runtime flag, tracing collects Dataset-level statistics, such as
counters for elements processed, CPU time spent, and the number of bytes per element. Plum-
ber periodically dumps these statistics into a file along with the entire serialized pipeline program.
Joining the Datasets with their program counterpart enables building an in-memory model of
the pipeline dataflow. The bottom of Figure 5.1 shows how a TFRecord Dataset is traced,
which reads a single TFRecord file. Plumber’s tracing instruments all read() calls into the
filesystem within tf.data, allowing it to see all the reads into the 144MB file. Each record is
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Figure 5.1: An ImageNet pipeline with Plumber’s various states of processing. Plumber starts
with Dataset-level tracing, which is then followed by analysis for CPU, disk, and memory
costs, which are subsequently modeled and optimized. Reading a TFRecord, for example, is
converted from bytes read to an I/O cost per minibatch, which can then be linked with available
I/O resources to find bottlenecks.

unpacked into roughly 1200 elements (110kB images), which Plumber counts. By inspecting
the serialized program, Plumber knows that there are 1024 total TFRecord files, and thus can
estimate that the dataset contains 1024× 1200 elements—ImageNet has 1.2 million. To get CPU
usage, Plumber wraps a thread-level CPU timer around Next calls, which only counts active
(not blocked) CPU-cycles. All Next calls are instrumented such that: 1) CPU timers stop when
Datasets call into their children and start when control is returned and 2) statistics (e.g., counts
and sizes) about each yielded element are attributed to the producer. The statistics necessary for
optimization total less than 144 bytes per Dataset.

Analysis. To find bottlenecks, Plumber must analyze the traced data using analytical
modeling, which puts each Dataset in units of cost that can be compared. Plumber treats the
pipeline as a closed system, with each component operating asynchronously yet sharing the same
resource budget. For example, we can see that TFRecord reads at a rate of 15MB per minibatch,
but decoding consumes 1/2 core per minibatch. Determining which Dataset is the bottleneck
depends on the resource allocation of CPU and I/O—for example, 30 minibatches per second can
only be hit with 450MB/s of I/O and 15 CPU cores.

Optimizer. Plumber supports reasoning about CPU and disk parallelism, caching, and
prefetch injection. Achieving optimal CPU and I/O parallelism requires allocating sufficient paral-
lelism to keep the pipeline balanced in terms of throughput capacity, which we formalize in the LP.
Caching reduces the amount of work done by avoiding re-computing data dependencies, and the
optimal cache minimizes total work by placing it as high in the pipeline as possible. Prefetching
is a subsequent pass which injects prefetching proportional to the idleness in the pipeline under

56



a benchmark workload. As shown in the example, by placing caching at MapDecode, we can
avoid all CPU and I/O operations except for the subsequent Crop and Batch at the expected
cost of 790GB of memory. In this example, the optimizer knows that the machine only has
300GB of memory and thus it must settle with caching at the 148GB Interleave. By caching
Interleave, Plumber can redistribute remaining CPU resources to other stages with the LP.

Extensions. Extending Plumber requires minimal effort by cleanly interacting with existing
optimizations. For example, to add the ability to cache materialized results to disk in addition to
memory, one can reuse all caching logic up to the cache decision itself, which would dispatch to
in-memory caching preferably and disk caching if space and disk bandwidth allow it. Significant
extensions (e.g., networking or GPU data transfer I/O) require adding the corresponding tracing
and rates at the lower levels, which can then be incorporated as LP expressions and constraints.
Two areas of future work are in extending Plumber’s optimizer to reason about correctness
optimizations, such as reusing data [53], and extending Plumber to perform optimal resource
provisioning for matching a target throughput (e.g., to minimize cost).

5.1.2 Tuning Methodology
The intuition behind Plumber’s performance debugging methodology is that input pipeline
performance is limited by the Dataset with the lowest throughput and can be alleviated by
adjusting the resource allocation (out of the available hardware resources) for this Dataset.
However, simply maximizing the number of threads used to compute elements for a parallelizable
Dataset is not always productive, as threads compete for CPU and memory resources. The
end-to-end throughput of the input pipeline can also be limited by I/O bandwidth. Caching
Datasets in memory alleviates CPU or I/O bottlenecks at the cost of memory capacity. As all
Plumber traces are also valid programs (that can be rewritten), Plumber simply requires a way
for a user to mark the program for tracing, and thus one entry point is sufficient for Plumber to
accomplish all tuning.

Tuning Interface. Plumber introduces tuning annotations to add on top of existing data
loading code. A data loading function is one which returns a tf.data Dataset, which has
an associated signature. Tagging the code with an @optimize annotation gives Plumber
permission to intercept one or more Datasets and return an optimized variant matching the
Dataset signature. The annotation provides Plumber with an entry point into the loader
allowing Plumber to trace it under a benchmark workload, and rewrite it before passing it back
to the application. An example of the API can be seen in Figure 5.2.

We note that there are cases where two query algorithms implement the same logical goal,
with different performance characteristics, and thus a plain annotation is not sufficient to expose
all optimizations. For example, JPEG files can be decoded then randomly cropped, or the two
can be fused. The tradeoff is the former is amenable to caching (after decode), while the latter is
faster to decode—therefore, the optimal implementation depends on runtime conditions (namely,
memory capacity). To get around Plumber’s lack of a logical query system, Plumber allows
users to specify multiple pipelines, each with the same signature. In practice, this is on the order
of two pipelines (keeping the choice fast), and Plumber will automatically trace both and apply
any optimizations it can before picking the fastest pipeline. The optimization shown in Figure 5.2
is a difficult optimization to perform for an online tuner, like AUTOTUNE, because, even with
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1 @plumber.optimizer(pick_best={"cache": [True, False]})
2 def loader_fn(data_dir, cache):
3 ds = my_dataset(data_dir)
4 if cache:
5 return ds.map(decode).map(crop)
6 else:
7 return ds.map(fused_decode_crop)

Figure 5.2: Python pseudo-code for optimizing a pipeline via annotations. Plumber will trace
both caching paths and pick the one best suited for runtime conditions (e.g., memory allows
caching). We note that the cached-path will typically have user-defined caching, though Plumber
discards such performance-optimizations as suggestions and inserts them itself, if possible, for
each of the different code-paths—avoiding memory errors and duplicate caches.

both pipelines to inspect, the effect of caching does not kick in until a whole epoch into the
training. Plumber, knowing that cache cold-start is a factor, can simulate the steady-state effects
of caching by truncating the cached data with advanced rewriting, yet still return the normal
dataset. We use these annotations for our end-to-end ResNet experiments, which feature the fused
decode and crop example in the figure.

Modeling. Plumber maximizes throughput by modeling the input pipeline as an asyn-
chronous closed-system in the context of operational analysis [72], which explicitly defines
bottlenecks. The operational framework has few statistical assumptions, unlike Markovian queues,
and parameterizes each component of a system with a cost relative to the resource usage, usually
expressed in units of time. Plumber further measures the resources and traces the analytical
network to automatically “operationalize” and tune an arbitrary input pipeline.

5.1.3 Allocating Hardware Resources

In order to derive an improved input pipeline configuration, we need to understand how each
Dataset’s performance is affected by changing the fraction of hardware resources allocated to
it, e.g., by changing the degree of parallelism of a Dataset or inserting prefetching or caching
Datasets which consume extra memory. We are interested in characterizing the usage of three
types of resources in input pipeline execution: CPU, disk bandwidth, and memory capacity. We
first formulate a Linear Program (LP) to solve for the optimal CPU resource allocation before
moving onto disk and, finally, memory capacity. The calculation of the inputs into this LP are
discussed in the following subsection (§5.1.4).

CPU. For CPU optimizations, we optimize over a Dataset tree in the input pipeline to
decide what fraction of the CPU-time each Dataset should receive such that throughput is
maximized. Having two Datasets in series with rate R1 and R2 yields an aggregate rate
of X = min(R1, R2). The bottleneck Dataset determines performance. For example, in
Figure 2.2, if Map has rate R1 and Batch has rate R2, to increase X , we must assign the slower
of the two Datasets more resources. However, the above is only true if we can parallelize the
bottleneck node and if we have resources left.

We optimize Maxθ [X = mini∈D[θi ∗Ri]] subject to constraints:
∑

i∈D θi ≤ nc; θi∈D ≥ 0;
θi∈S ≤ 1. In the above equations, D is the set of Datasets in consideration, S ⊆ D a subset
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of sequential Datasets, nc the total number of cores, X throughput, Ri the measured rate of
minibatches per second per core, and θ the fractional number of cores allocated. The equation
maximizes the input pipeline throughput X by maximizing the aggregate rate (θi ∗ Ri) of the
slowest Dataset (the minimum). We constrain sequential Datasets to have at most one core,
and we cannot exceed all cores on the machine.

Disk. As shown in Figure 2.2, data flows from disk (TFRecordDataset) into the CPU
section of the pipeline. Therefore, if the data source is slower than the rest of the pipeline, the
entire pipeline is disk-bound. For large reads (e.g., records), there are two factors that can cause
a disk bound: 1) insufficient read parallelism and 2) max disk I/O bandwidth. The latter can be
found via benchmarking tools [25], but Plumber goes a step further by benchmarking entire
empirical parallelism vs. bandwidth curve for a data source (via rewriting). The source parallelism
results can then be fit with a piecewise linear curve to be injected into the optimizer to determine
a minimal parallelism to hit max bandwidth.

Memory. Caching aggressively is always desirable, because it allows I/O to be entirely
reduced and some CPU processing to be partially reduced. The potential speedup grows as one
goes up the pipeline, but so does the memory requirement to cache, which may exceed system
memory. Plumber checks if operators are random functions (e.g., augmentations)—randomized
functions have infinite cardinality and cannot be cached. However, if an operator’s output is finite,
Plumber estimates the materialized size.

To check for randomness, we are interested in the relation: if a function, f , accesses a random
seed, s: f −→ s. The transitive closure, f +−→ s, measures if any child functions of f touch a
random seed. If f +−→ s is true, then we cannot cache f or any operations following it. This
simple relation can be computed via a graph traversal and holds nearly always, as random seeds
are necessary in implementations that enable determinism for reproducibility. To solve memory
caching for typical, linear-structure pipelines, Plumber uses a greedy (yet optimal) approach to
select the Dataset closest to the root that fits in memory. Plumber can also solve for more
generic topologies by adding Boolean decision variables for each cache candidate over the LP
already presented.

5.1.4 Resource Accounted Rates

The LP construction (§5.1.3) assumes the existence of calculated rates (for CPU and disk I/O) as
well as the materialized size (for caches), and uses those values as inputs into the algorithm. This
section explains how those values are calculated by using resource accounted rates. Resource
accounted rates encompass the cost of an operation or decision to cache in the pipeline. For CPU
and I/O, the cost is the ratio of CPU core-time or I/O bytes per minibatch, which are throughput
bounds. Memory capacity measures the cost in terms of bytes required for materialization at a
particular Dataset, and is a throughput optimization. The middle of Figure 5.1 illustrates all
three of these costs. The full algorithm for resource accounted rates can be found in the appendix;
however, we give a brief description here.

Common Units. The root of the pipeline gives a common set of units for CPU and I/O:
minibatches. Children of the root do not necessarily output elements in terms of minibatches
(e.g., prior to batching); thus, a conversion factor between an arbitrary Dataset’s elements and
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that of the root must be calculated—this is called the “visit ratio”, Vi, and represents the mean
number of completions at Dataset i for each completion from the pipeline. To calculate Vi,
we start with the pipeline’s root “visit ratio” V0 := 1. Then, we apply the following recurrence:
Vi = (Ci/Ci−1) × (Ci−1/C0), where Ci is the average number of items of work completed at
Dataset operation i. The former ratio is the Dataset’s local input-output ratio, and the latter
is calculated in the recurrence. Intuitively, the visit ratio allows one to say that n elements are in a
batch, and thus dependencies to batching must have a throughput n times faster to “keep up”.

Throughput Cost. The throughput at the root, X0, is the number of minibatches completed,
C0, in a timeframe, T , and the child Datasets have Xi = ViX0. However, this equation does
not explain the bottleneck cause, which requires reparameterizing the throughput in terms of CPU
core time or I/O bytes. As Xi = Ci/T , we factor the equation into 1) the product of completions
per resource (e.g., elements per core-seconds) and 2) resource per time (core-seconds per time).
The former is the ratio of two traced variables (element completions and CPU-time or bytes used),
and the latter is a knob for modeling adding or removing resources (e.g., CPU parallelism or extra
bandwidth). In the LP (§5.1.3), Ri is the first factor normalized by Vi, and θi is the second factor;
in a bottleneck, they determine X0.

Materialization Cost. Estimating the size of a Dataset’s materialized artifacts is similar
to the prior operational treatment but involves propagating the estimates up from data source
to root. The materialized size of a data source is the product of 1) the number of elements
(cardinality) and 2) the average size of each element. Both are necessary because a Dataset’s
semantics may modify one or the other; for example, truncation only modifies the former and
decompression only the latter. To start, the size of a data source is the number of files, n, times the
average bytes per file, b̄. Propagating the number of elements, ni, involves multiplying n by an
input-output completion ratio. The sum of output bytes and the number of completions for each
Dataset is measured in tracing, and thus b̄i is readily computed. ni can grow unbounded (and
thus uncacheable) if the data is infinitely repeated or augmented. Datasets that are children to
a cache can be modeled as having no steady-state cost (e.g., after the first epoch).

5.2 Evaluation
We evaluate CPU bottleneck removal in §5.2.1, showing that Plumber can indeed find bottle-
necks, and we further analyze how Plumber’s solutions differ from those of baselines. We
additionally evaluate disk and caching in §5.2.2 and §5.2.3. End-to-end results are presented in
§5.2.4. Plumber’s overhead on modern hardware is less than 21% (due to text workloads) and
drops to below 5% on vision workloads. We compare against a naive configuration, which has
minimal parallelism, to two strong baselines: AUTOTUNE [211] and HEURISTIC, which set the
parallelism tunables to the number of cores on the machine.

Hardware. For microbenchmarks, we evaluate over two setups to ensure our results generalize.
Setup A is a consumer-grade AMD 2700X CPU with 16 cores and 32GiB RAM. Setup B is an
older enterprise-grade 32–core Intel E5–2698Bv3 Xeon 2GHz CPU with 64GiB RAM. Setup C
is for end-to-end results and is a TPUv3-8 [140] with 96 Intel Xeon cores and 300GB of RAM.

Workloads. Our evaluation uses the MLPerfv0.6 subset of MLPerf training [192] benchmarks,
which is representative of datacenter workloads and covers both images and text. We use the
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(b) ResNet (Setup B)

Figure 5.3: Plumber outperforms random walks by 2–3×, demonstrating that Plumber’s
signal is markedly better than guessing. X-axis denotes the optimization step, starting at minimal
parallelism. Y-axis denotes the pipeline rate in minibatches per second with 95% confidence
intervals.

following tasks and datasets: ResNet/ImageNet [71, 123], Mask RCNN/COCO [180, 243],
MultiBoxSSD/COCO [183], Transformer/WMT [258, 285], and GNMT/WMT [92, 306].

5.2.1 CPU Bottleneck Removal

To assess how accurately bottlenecks are found, we use Plumber’s analysis layer to rank nodes
by bottleneck. The pipeline’s parallelism parameters are initialized to the naive configuration
(parallelism=1) with prefetching, and Plumber iteratively (using 1 minute of tracing) picks
the node to optimize by ranking nodes by their parallelism-scaled rates. To compare against
uninformed debugging, we plot a random walk, which randomly picks a node to parallelize for
each “step” (x-axis in our plots). We run each experiment three times to get confidence intervals.

Sequential Tuning. Figure 5.3 shows the ResNet workload across both setups; other work-
loads look similar. Plumber is consistently better than the random walk, as expected. We observe
that both HEURISTIC and AUTOTUNE are equivalent in terms of reaching peak performance—
over-allocation does not usually result in performance degradation. On the ResNet workload, the
bulk of the work is in the JPEG decoding Dataset, which services 2.5 minibatches/second/core
on Setup A. Most of Setup A’s steps are spent increasing the parallelism of this Dataset, a
transpose operation being the second bottleneck. The bumps in Setup B correspond to increasing
the parallelism of Transpose rather than JPEG decoding and occur roughly once every 8 steps.
We observe that, across all pipelines, such transition regions are the only regions (in addition
to fluctuations at convergence) where Plumber struggles to characterize the locally optimal
decision (see MultiBoxSSD example Figure 5.7). While Setup B has 2× more cores than A, the
per-core decoding rates for B are lower, resulting in only a 1.2× higher throughput.
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(a) ResNet (Setup A)
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(b) ResNet (Setup B)

Figure 5.4: Before optimizations begin, Plumber is able to bound performance within 2× with
the LP, and the gap decreases over time. Setup B exhibits superlinear scaling around step 10 and
also exhibits more pronounced bottlenecks, as it takes longer to converge. The AUTOTUNE model
does not account for saturation and therefore has unbounded predicted throughput.

Observation 8: Plumber’s bottleneck finder converges to the optimal throughput in 2–3× fewer
steps than a random walk. Inspecting the individual Dataset rates offers pipeline and machine
performance insights.

Linear Programming. Figure 5.4 demonstrates that Plumber can understand performance
through the LP formulation on ResNet; other workloads are similar. As a baseline, we include
a “local” method, which allocates all remaining resources to the current bottleneck node. This
baseline is unable to see past one bottleneck and thus oscillates as the bottleneck node changes
(the “bumps” in Figure 5.3). Meanwhile, the LP steadily declines—upon inspecting the solution,
we find a strong correlation with the LP’s decline and the value of Ri for the bottleneck node
(JPEG decoding). WhileRi typically decreases (e.g., due to scaling overhead), we find it increases
briefly especially on Setup B, peaking at step 10 and resulting in a “bell shape” LP prediction
(JPEG rate peaks at 1.8 and then drops to 1.4 by the end of training), explaining the peak in the
LP. AUTOTUNE, being oblivious to saturation, either overestimates or underestimates throughput
without bounding it.
Observation 9: Plumber’s LP solution captures both resource utilization and bottlenecks,
bounding throughput to within 2× from when optimization starts for pipelines like ResNet and
MultiBoxSSD. The bounds get tighter as optimization proceeds due to differences in empirical
rates.

Large UDF Parallelism Challenges. As shown in Figure 5.5, RCNN on Setup A is challeng-
ing and displays counter-intuitive behavior. The reason is that RCNN features a large UDF in its
MapDataset, which is transparently parallelized by the TensorFlow runtime. Parallelizing
the Map is dangerous because the parallelism compounds with UDF parallelism—1 parallelism
uses nearly 3 cores! As parallelism increases for this Dataset, the corresponding per-core
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(b) RCNN Predictions

Figure 5.5: RCNN on Setup A, along with its predictions. RCNN exhibits heavy UDF parallelism,
which causes thread over-allocation to quickly deteriorate performance. AUTOTUNE has high
variance estimates of latency.

rate drops, causing the LP prediction to drop and baselines to overshoot peak performance on
both setups. While the LP overestimates peak performance by 4×, it is still qualitatively better
than AUTOTUNE, which oscillates in predictions. Upon inspection, AUTOTUNE allocates 16
parallelism to the bottleneck node, but 3 parallelism to a different MapDataset node. The
bottleneck node operates at 0.5 minibatches/second/core, while the other node operates at 20
minibatches/second/core. Thus, the optimal policy, which Plumber follows, is to only allocate
parallelism to the main bottleneck (thus bounded by 0.5∗16 = 8). In fact, due to UDF parallelism,
only 4–5 parallelism is necessary. Counterintuitively, this policy is no longer optimal for our
end-to-end results (§5.2.4), which have 6× more cores.
Observation 10: AUTOTUNE and HEURISTIC are vulnerable to over-allocation, which can
cause performance degradation. Pipelines with heavy UDF parallelism may experience drops on
the order of 10%. Dynamic parallelism makes end-to-end performance hard to predict.

Characterizing Local Behavior. While Plumber may be able to converge to a good so-
lution 2–3× faster than an uninformed user, it is worth knowing how optimal are Plumber’s
predictions. While we cannot enumerate all possible convergence paths, we can test if there was
a better Dataset selection to be made by Plumber. To test this, we sample three one-step
deviations from Plumber’s recommended action. We highlight MultiBoxSSD in Figure 5.7,
which exhibits many transitions between bottlenecks. For MultiBoxSSD, we observe similar bot-
tleneck behavior as ResNet; Plumber prioritizes the image processing operation and alternates
to the TFRecord parsing operation every 4 steps (nearly twice as often as ResNet cycles). For
ResNet, we observe local optimality except at the bottleneck transitions (once every 8 steps). For
the other datasets, we don’t observe any significant mispredictions before convergence. Across
the datasets, we observe that both transition regions and resource saturation cause measured
rates to become correlated—the rates begin spiking/oscillating together, which makes ranking
Datasets unpredictable On ResNet, for example, we observe oscillations begin at 90% of peak
performance. Therefore, choosing the bottleneck node among similarly bottlenecked nodes is

63



0.0 2.5 5.0 7.5 10.0 12.5 15.0
Step

1000

2000

3000

4000

5000

Ra
te

 (m
in

ib
at

ch
/s

ec
)

Rate Type
Observed Rate
Estimated Max Rate (Local)
Estimated Max Rate (LP)
Estimated AUTOTUNE Rate

(a) Transformer Predictions
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(b) GNMT Predictions

Figure 5.6: Transformer and GNMT predictions on Setup A. Transformer and GNMT exhibit
small operations, which are a mismatch to the Iterator model. It is difficult to fully saturate a
CPU with Dataset parallelism alone—caching or outer parallelism are required.
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(a) MultiBoxSSD (Setup A)
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(b) MultiBoxSSD (Setup B)

Figure 5.7: MultiBoxSSD with local perturbations. Plumber is able to find optimal Dataset
choices when Datasets are different with respect to performance. MultiBoxSSD exhibits two
bottlenecks alternating every 4 steps, resulting in confusion at the steps. There are diminishing
returns to pursuing an existing bottleneck, which slightly lag behind the rates measured.

64



ambiguous. For workloads with larger dynamic ranges between slower nodes, performance is
nearly always optimal.
Observation 11: Plumber’s model tends to accurately predict the current bottleneck operator
until transitions between bottlenecks. Bottleneck transitions and resource saturation are inherently
difficult to model in terms of the current bottleneck.

Text Processing (NLP) Challenges. We observe that both Transformer and GNMT are
difficult to optimize in practice. As shown in Figure 5.6, both pipelines are predicted to be 2–8×
faster than they actually end up being. Upon investigation, we observe that nearly all operations
in NLP are very small e.g., grouping a few integers in a vector. The operations are so small that
they are significant compared to the Iterator abstraction’s overhead, causing idle “bubbles”.

According to Plumber, GNMT is bottlenecked by ShuffleAndRepeatDataset; this
Dataset is performing minimal work and thus the result is unexpected. Before getting to
this point, Plumber allocated 9 parallelism to the first MapDataset and then gave up upon
seeing the non-optimizable Dataset. Similarly, for Transformer, after alternating optimizing
the 3 MapDatasets (all similarly fast), Plumber indicates Transformer is bottlenecked by
FilterDataset, which is operating at about half of its max rate (explaining the 2× difference).
Using outer-parallelism for both pipelines, introducing inner-parallelism for Batching (GNMT),
and resuming Plumber’s optimization results in closing the predicted performance gap to less
than 2× (Transformer) and 4× (GNMT).
Observation 12: Text pipelines can require significant tuning to overcome framework overheads.
An in-memory cache materializing results is ideal, when possible.

5.2.2 Disk Microbenchmarks

To simulate various bandwidths, we implement a token-bucket bandwidth limiter in the Tensor-
Flow filesystem layer and use the most I/O intensive pipeline, ResNet. Plumber correctly
concludes that ImageNet records are approximately 110KB on average and infers that 128 records
are necessary for 1 minibatch. It thus infers that the I/O load per minibatch is 128 ∗ 110 KB,
or 6.9 minibatches per 100MB/s of bandwidth, which it can join with known bandwidth (e.g.,
from token-bucket or fio [25]). Using this bound, Plumber predicts the pipeline’s performance
within 5% from 50MB/s to 300MB/s, when the compute bottleneck begins. We observe similar
results for RCNN and MultiBoxSSD, though MultiBoxSSD is easier to bottleneck consistently
due to its faster CPU speed. Plumber estimates that RCNN and MultiBoxSSD can push 145
minibatches/sec on 100MB/s, since they use the same dataset and same batch size; therefore,
MultiBoxSSD is 25× more I/O bound for a fixed CPU.

We then run this experiment on setup B with a real HDD (Seagate ST4000NM0023) and
NVMe SSD (400 GB Intel P3600), which have 180MB/s and 2GB/s of read bandwidth, respec-
tively. We run the load for one minute to prevent the page cache from kicking in (when the
dataset reads repeat). For ResNet, Plumber predicts 11.06 minibatches/sec, and we are bound
at 12.7 (15% error). On the NVMe SSD, Plumber predicts 135 minibatches/sec, and, indeed,
we observe a compute bound. On RCNN, Plumber predicts disk bounds of 970 and 11850
minibatches/sec, respectively; for both, we observe the compute bound of 14 minibatches/sec.
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On HDD with MultiBoxSSD, Plumber predicts 235 minibatches/sec, whereas we observe 215
(10% error). On NVMe SSD with MultiBoxSSD, Plumber predicts a disk bound of 2900
minibatches/sec; we observe the compute bound being hit before the drive is saturated. The text
datasets are too small to test.
Observation 13: Plumber is able to bound disk-bound workloads to within 15% of the observed
throughput, notifying users of potential hardware misconfigurations.

5.2.3 Memory (Cache) Microbenchmarks

We evaluate Plumber’s predictions on memory optimization and summarize them below. Plum-
ber predicts that 148GB are necessary to cache ImageNet for ResNet; 20GB to cache COCO for
RCNN and MultiBoxSSD; and 1GB and 2GB for the Transformer and GNMT WMT datasets,
respectively, which matches their known size. While this is expected for a full sweep of the
training set (by simply tracking all file sizes), it also holds for sampling the dataset. Empirically,
we find that observing a small subset of the data is sufficient: 1% of files provide a relative error
of 1% for ImageNet and 2% for COCO, and 5 files gives less than 2% relative error for WMT
datasets.

For materialized caches, we observe that Plumber predicts no changes until a node is hit,
which changes the bytes/element. For ImageNet, we observe that, if Plumber is fed a fused
decode and crop pipeline, it predicts caching is only possible at the source, because the crop
is random. However, when the ImageNet pipeline is not fused, image decoding amplifies the
dataset size by 6×, which Plumber observes as 793GB of a true 842GB, or 6% error with 60
seconds of profiling. For this pipeline, we observe that relative error decreases as a function of
tracing time, saturating at 2 minutes and yielding relative error rates below 1%, offering a knob
for refining estimates at the expense of tuning time. RCNN can only be cached at the disk-level,
since the following UDF is randomized. For MultiBoxSSD, Plumber detects it takes 84GB of a
true 97GB (14% error) to materialize the dataset in memory after image decoding with only 60
seconds of profiling, with 2 minutes yielding a 5% error, which continues to drop by ∼1% for
each additional minute. Plumber additionally detects that the filter in the pipeline reduces the
dataset by less than 1%.
Observation 14: Plumber captures dataset sizes at the source exactly, and, for large datasets,
it is able to subsample 1% of files to obtain 1% error. For materialized caching, Plumber
propagates changes to dataset sizes (e.g., data decompression and filtering).

5.2.4 End-to-End Pipeline Optimization

The end-to-end benefits of Plumber’s optimizations, evaluated over 5 epochs of training, are
shown in Figure 5.8. None of the pipelines have caches inserted manually, naive configurations
have 1 parallelism and no prefetching, and HEURISTIC uses the prefetching hard-coded into
the dataset. We observe overprovisioning (HEURISTIC) is competitive, if not faster, than
AUTOTUNE across all trials. Plumber can go beyond both of these strong baselines because
of caching, obtaining up to a 47× speedup. Such a speedup, an absolute throughput of over
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Figure 5.8: Relative speedups over the naive configuration for end-to-end model training on
TPUv3-8. Apart from RCNN, Plumber surpasses strong baselines by adding caching, yielding
speedups of up to 47× compared to naive and 50% compared to tuners. While text pipelines are
challenging to improve on MLPerf, using a smaller Transformer combined with a more complex
pipeline can increase the tuners gap to 2.5×.
14k images/second, is only possible because caching bypasses the (Plumber-derived) 11k
image/second data source bottleneck for the cloud storage. For ResNet-18, it is sufficient to cache
at the data source, which is only 148GB; therefore, Plumber picks the CPU-optimized branch
of the pipeline. However, when we use a linear model for ResNet, we use the smaller validation
set, which allows Plumber to cache the 6× bigger decoded images in memory, avoiding a CPU
bottleneck. We also evaluate ResNet-50 and find that Plumber obtains a 24× speedup over the
naive configuration, though it cannot improve over other baselines, as the model’s throughput
limits are hit at 8k images/second.

Compared to AUTOTUNE, Plumber obtains a 36–59% speedup on three of the MLPerf
benchmarks and ties on Transformer and GNMT (due to model throughput). These numbers are
conservative—we observe that AUTOTUNE on ResNetLinear often sets the I/O parallelism to 1,
which results in a 35% performance drop compared to what is shown in Figure 5.8 and creates a
2.4× performance gap between AUTOTUNE and Plumber. To allow more competitive tuning
from AUTOTUNE on that workload, we set the I/O parallelism to the default value of 10 used in
MLPerf submissions, which improves its final performance. For RCNN, Plumber may perform
worse than AUTOTUNE because Plumber is conservative in its parallelism allocation, while
AUTOTUNE tends to allocate maximum parallelism to all Datasets. Plumber estimates that
one MapDataset is two orders of magnitude more expensive than the other. In some cases,
Plumber allocates 95 parallelism to the former, leaving only 1 parallelism for the remaining
MapDataset, which results in the shown 23% performance loss. However, we also observe
cases where Plumber matches the throughput of the baselines because it allocates at least 2
parallelism to the cheaper Dataset, which removes the bottleneck—suggesting that a mild
form of “hedging” would be effective in preventing under-allocation for such skewed workloads.
For MultiBoxSSD, Plumber is able to materialize the data after filtering is performed, which
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makes the cache smaller and increases throughput by removing load from the CPU. While we
don’t see a large benefit from Plumber’s optimizations on the MLPerf NLP pipelines, we do see
improvements when moving to the related official Flax implementations of Transformer when it
is configured to use a single-layer Transformer (TransformerSmall). We see a 2.5× difference be-
tween strong baselines and Plumber on TransformerSmall because the Flax pipeline performs
text-processing and packing on-the-fly, which, when combined with a smaller model, makes peak
throughput only achievable with aggressive caching.
Observation 15: Plumber frees the user from making individual caching and parallelization
decisions, enabling 50% end-to-end improvements over AUTOTUNE and heuristics and 40×
improvements over naive configurations.

5.3 Related Work

Pipeline Optimization. Dataset Echoing [53] repeats input pipeline operations to match compute
rate. DS-Analyzer predicts how much file cache memory is necessary to match the compute
steps [206]. Progressive Compressed Records [158] match compression levels to likewise mini-
mize I/O. Each of these works is characterizing a piece of the input pipeline, all of which can be
homogenously dealt with via Plumber—the first is a visit ratio and the latter two are memory
caching/disk.

Systems have also been built to natively support the data pipeline workload. A cache library
has been developed to carefully partition and coordinate caches in distributed training [206]
Dataset echoing has been further expanded to support caching partially augmented samples [174].
Filesystem middleware has been developed to natively support data prefetching [83]. While
Plumber primarily focuses on native tf.data primitives, it could also be used to hook into
such systems to perform cross-system optimization.

Bottleneck Detection. Tools in the big-data domain (e.g., Spark [319]) have similar per-
formance problems as those found in ML pipelines [219, 220], but the differences in domain
encourage a different approach. Notably, Monotasks [220] enables bottleneck finding by designing
Spark primitives to be easily measured on a per-resource level. In contrast, Plumber does not
modify the framework and instead elects to carefully instrument selected resource usage, though
the design is similarly simplified by having resource-specialized operations. Big data systems,
such as DyradLINQ [318], have similarly benefited from dedicated debugging utilities [135] and
dynamic query rewriting [148]. Roofline [45, 302] models bound compute kernels with CPU
limits. Plumber generates similar plots using Dataset and resource limits.

Recent work has also characterized the design space of input pipelines with a profiling
tool [134]; we do not focus on general pipeline decisions (e.g., the choice of image resolution),
but rather focus on automatic tuning of performance knobs. These works all highlight a growing
need for systems which better support the input pipeline workload.
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5.4 Discussion
Today, it is common for input pipelines to be manually configured to better utilize their hardware
and improve training performance. Motivated by evidence of data pipeline misconfiguration
in practice (§2), this chapter introduces Plumber, an extensible tracing and optimizing tool.
Plumber localizes bottlenecks to an individual operator by tracing both the resource usage and
rate of each operator, enabling both bottleneck-finding as well as inferences on future performance.
By adding caching in addition to tuning, Plumber can surpass the end-to-end performance of
existing tuners by 50%. Future extensions to Plumber include: distributed and accelerator-
infeed level profiling, optimal resource allocations for pipelines, and semantic-level re-writing of
augmentations. In the final chapter (§7), we discuss generalizations of Plumber’s model as well
as what system designers can learn from experience with Plumber.
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Chapter 6

Validation Systems for Language Models

6.1 Validating Language Models with Regular Expressions
Large language models are being increasingly used as a way to better understand and generate
natural human language. Language models need to be validated, because they express surprising
biases in their learned behavior (e.g., learning private information or hate speech). Unlike the
trends in vision and recommendation systems, which have been successful with moderately-sized
models, these language models are only continuing to grow, making them train-once and reuse-
often. Such foundation models [40] have new properties: 1) they must be deployed and transferred
in a variety of contexts, 2) they can only be trained a few times due to cost, and 3) they will
continue to showcase surprising behavior well-after they are originally evaluated. In turn, training
is essentially a special case, and most time will be spent wrangling with the errors and biases of
the resulting model.

This chapter describes a general-purpose mechanism through which language model validation
tests can be built by exposing a general “search” interface to language models. This chapter
therefore shifts the thesis from a focus on training data to that of validation data. The proposed
mechanism provides an efficient and reusable abstraction capable of testing a wide range of
models—leveraging the powerful yet well-understood theory of regular grammars. Additionally,
the mechanism is implemented at decode-time, which may allow it to be used to steer models out
of bad behavior at runtime.

6.2 Introduction
Large language models (LLMs), such as GPT-3 [43] and PaLM [55], are a popular tool for many
natural language processing tasks. While it is well understood that these models are expensive
to train and deploy, there are growing concerns around even the seemingly simple problem
of validating LLM behavior [42, 265]. Validation is particularly important in that LLMs may
have unintended effects [40], such as returning memorized training data [48], encoding bias in
results [34], and generating inappropriate content [43, 104, 218]. While there have been extensive
efforts to perform such testing on LLMs, the tests are written in an ad-hoc manner, where test
maintainers explicitly code out the test’s logic using LLM-specific utilities [100, 150, 265]. Test
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(a) Multiple Choice (b) Free Response (c) Any Date

Figure 6.1: Testing an LLM’s knowledge of George Washington’s birth date (LLM predictions
highlighted in pink). (6.1a) Using 4 out of all possible dates and ranking them. An LLM
classifying on year alone is sufficient to guess the answer correctly, limiting test resolution. Note
that the answers can alternatively be encoded in the prompt, with predictions over the answer’s
letter. (6.1b) Allowing the LLM to output any completion, resulting in unexpected responses.
(6.1c) A structured query over all dates of the form <Month> <Day>, <Year>, obtaining the
specificity of 6.1a with the generality of 6.1b. Our approach finds that, among a search space of
all dates, GPT-2XL’s highest ranked prediction is incorrect, though the correct prediction is in the
top 10. The same approach shows that the small variant of GPT-2 cannot discern the date even in
6.1a.

users then add tasks by extending the existing code or supplying template parameters for that
code (e.g., via millions of lines of JSON). In these approaches, it is up to the user to convert the
expected LLM behavior into a sequence of test vectors that can be executed, making it difficult to
maintain, modify, and extend test functionality.

As an example, consider testing if an LLM knows the birth date of George Washington via a fill-
in-the-blank query: George Washington was born on , as shown in Figure 6.1.
Today’s standard solution is to prompt the model with a “multiple-choice” assessment using a
few dates [265] (Figure 6.1a). However, such “closed-choice” assessments have shortcomings:
with 12 months in a year, 31 days in a month, and thousands of years to consider, there are
millions of candidates, and thus, the selection of dates can bias the evaluation. For example,
the selected answer will always change if a more probable candidate was introduced, making
the test prone to false positives. The alternative, sampling open-domain “free-response” strings
(Figure 6.1b), is more challenging to test, as it requires grading arbitrary strings relative to all
representations of the correct date. While the former case may bias performance, the latter seems
impossible to control: every possible response, including this day in 1732 or a farm,
must be considered and graded, which requires carefully tuning the evaluation to avoid false
positives and false negatives [231, 247]. The inability to control the response of the LLM is in
itself a testing bottleneck, motivating structured queries (Figure 6.1c), which are guaranteed
to be drawn from the full set of expected strings (e.g., those of the pattern <Month> <Day>,
<Year>) without unexpected responses.

In this work, we introduce the first queryable test interface for LLMs. Our system, ReLM, is
a Regular Expression engine for Language Models and enables executing commonly-occurring
patterns—sets of strings—with standard regular expressions. ReLM is the first system expressing
a query as the complete set of test patterns, empowering practitioners to directly measure LLM
behavior over sets too large to enumerate. The key to ReLM’s success is its ability to compactly
represent the solution space via a graph representation, which is derived from regular expressions,
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compiled to an LLM-specific representation, and finally executed. As a result, users do not have
to understand implementation details of the LLM itself—tests have the same effect as if all string
possibilities were materialized. In addition to introducing ReLM, we demonstrate how various
LLM evaluation tasks can be mapped onto ReLM’s string patterns.

For ReLM users, programming a validation task consists of two components: 1) formally
specifying a set of strings of interest via a regular expression and 2) instructing the engine on how
to enumerate and score the strings. For example, memorization tests can be expressed as finding a
sample of training data in the LLM, bias can be expressed as the co-occurrence of data in sampled
LLM sentences, toxicity can be expressed as finding insults within LLM-generated sentences,
and knowledge can be expressed by assigning higher likelihood to the correct answer. However,
unlike enumerating the sequences in a pattern, ReLM’s queries are succinctly defined with a graph
representation, allowing ReLM to scale to queries with billions of strings in a few lines of code.
Using the examples of URL memorization, gender bias, toxicity, and language understanding
tasks with GPT-2 models, we demonstrate that ReLM is both efficient and expressive in executing
common queries—dramatically lowering the bar to validate LLMs. Our contributions are:

(1) A formalization of regular expressions on LLM predictions. Unlike multiple choice questions,
which are few and enumerable, regular expressions can model sets of infinite size. Unlike free
response questions, which may result in spurious answers, ReLM’s results are always well-defined.
(2) An identification and construction of two commonly used classes of LLM inference queries,
conditional and unconditional generation. For unconditional generation, we find that a fixed query
string can be represented by many token sequences, motivating a compressed representation. To
the best of our knowledge, we are the first to support these alternative encodings via automata.
(3) The design and implementation of a regular expression to inference engine, which efficiently
maps regular expressions to finite automata. We implement both shortest path and randomized
graph traversals that yield outputs in seconds at competitive GPU utilizations.
(4) An evaluation of memorization, gender bias, toxicity, and language understanding tasks using
GPT-2 models, where we demonstrate the efficacy of ReLM within the context of LLM validation.
ReLM achieves a 15× speedup or 2.5× higher data efficiency over traditional approaches in
memorization and toxicity finding, respectively. As a diagnostic tool, ReLM exposes testing over
character- and token-level transformations, measuring the robustness of bias to input represen-
tations. As a tuning tool, ReLM effortlessly supports common prompt tuning transformations
necessary for state-of-the-art zero-shot performance, enabling practitioners to quickly iterate on
their prompt design.

6.3 Background and Related Work

This work, being a regular expression engine for LLMs, primarily spans classical formal language
theory as well as modern LLM architectures. We motivate the problem of LLM validation
in Section 6.3.1 and then discuss how prompts and tests are structured in Section 6.3.2. In
Section 6.3.3, we re-cast the specification of LLM prompts and LLM outputs using formal
languages. Finally, we focus on the semantics of testing for particular behavior in autoregressive
models in Section 6.3.4.
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6.3.1 The Shifting Landscape of LLM Validation
The Transformer architecture [285] resulted in the backbone of many LLMs. Autoregressive
models, such as the GPT family [43, 235, 236], were able to adapt to downstream tasks by
representing the task specification itself inside the input (i.e., in the prompt) [249]. Masked models,
of the BERT [74] family, instead filled the role of transfer via fine-tuning. Subsequent work
unified the interface of transfer-focused models such that all inputs and outputs are strings [238].
Recently, LLMs have exceeded human capabilities on many benchmarks [291], raising concerns
that standard benchmarks are no longer sufficient for tracking progress in the field [42, 265].
These trends point to a need for more rigorous and holistic validation efforts [177], where an
LLM’s performance is measured over tasks spanning: 1) strings in both input and output space,
2) enough difficult content to generate a “grading curve”, and 3) a variety of model behavior such
that performance is broken down by area (e.g., memorization, bias, toxicity, knowledge). There
are currently primarily two ways to grade LLMs in a black-box fashion: multiple choice and free
response questions [265], which we discuss formally below (§6.3.4). Multiple choice questions
present typically 2–10 completions to the LLM, which are scored, and the most likely response is
used as the LLM’s answer. Free response questions allow the LLM to generate any completion.
In both cases, the LLM’s answer is checked (usually verbatim) against a reference solution to
assign a score. LLM validation is thus analogous to software-engineering’s unit-tests over strings
in the LLM’s output space (e.g., over 104000 for GPT-2).

6.3.2 Specifying the Input/Output of LLMs
In LLMs, both the inputs and outputs of the model are often strings. The use of strings as a data
representation makes it possible to form predictions over mostly arbitrary objects, by simply
converting their representation into a string form. The act of forming a string input is called
prompt engineering and is an active research area [101, 138, 184, 244, 254]. The act of testing
a string output has many names, but most forms of testing can be viewed as generalizations of
fill-in-the-blank tests. These tests, introduced as cloze tests in human psychology [270], were
used to measure human aptitude in understanding and reasoning about context, and can similarly
be used for LLMs. The use of a cloze is a training primitive for masked LLMs, where randomly
selected words are masked out and predicted, as well as autoregressive LLMs, which have a
causal constraint on the mask [238]. The design of tests is itself an active research area; one major
focus [150] has been to disregard randomly sampled natural data and focus mostly on adversarial
inputs—inputs that have been analytically or empirically found to fool certain models. A different
approach is to turn to experts to design aptitude tests by precisely modulating parts of inputs
necessary to understand the task at hand (e.g., the digits of a number in addition tasks) [84, 267].
Others advocate for large (or difficult), precisely constructed datasets that also test bias [42].

6.3.3 Expressing Input/Output via Formal Languages
For many LLM tasks, there is precise definition of input/output relations i.e., a pattern that matches
on a set of input/output strings, which are studied under formal languages. An alphabet, Σ, is a
finite set of symbols. Symbols may represent ASCII characters, LLM tokens, or other discrete
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character-like entities (e.g., emojis or states). Strings are lists of symbols, and a language L over
an alphabet Σ represents a set of strings out of all possible strings Σ∗ in Σ. A fundamental pattern
for defining languages is the family of regular expressions [129], which extend string literals (a
concatenation of symbols) to more operations, namely disjunction (e.g., a|b) and zero or more
repetitions (e.g., a∗). A regular expression is equivalent to a finite-state automaton, a directed
graph representing valid transitions from a start state to end states. A finite-state automaton
is defined by Q, the set of states, Σ, the set of input symbols, δ, the transition function over
Q× Σ→ Q, q0 ∈ Q, the initial state, and F ⊆ Q, the set of final states. Conversion from regular
expressions to automata is covered by textbooks [129]. Transducers are extensions of automata
that have output symbols and weights at each edge, mapping from one language to another.
Algebraic operations, like difference, intersection, and composition, can be used to transform
languages abstractly [207, 226]. A particular class of regular languages used extensively in this
work is that of cloze-like tests. If a prompt or premise consists of some string, α, followed by
a pattern or mask, β, then the test operates over the language defined by their concatenation
L = αβ.

6.3.4 Testing LLMs with Formal Languages
A language model assigns probabilities over vast sets of strings—some are even designed to
be Unicode-complete [236]. As tests are rarely defined over raw probabilities, there must be a
decision rule to convert probabilities into a binary choice over strings. Autoregressive LLMs,
which we focus on, form a total probability by iteratively predicting the next token of a string, from
left to right: p(x1, x2, . . . , xn) =

∏n
i=1 p(xi|x1, x2, . . . , xi−1), where xi is a token representing

characters, subwords, or whole words [98, 236] in a sequence x = x1, x2, . . . , xn. LLMs form a
language when combined with a decision rule. Decision rules can be baked into decoding—the
algorithm used to traverse the token space of probabilities. For instance, if top-k decoding is used,
a token not in the top k most likely tokens for each step is rejected [89]. Likewise, greedy decoding
uses k = 1 and top-p uses a distributional cutoff [127]. A natural decision rule is to accept a string
into a language if that string can be emitted from the model under the decoding scheme [47]:
p(x) > 0. Under this decision rule, vanilla sampling (e.g., without top-k) will encompass a
language of nearly all possible strings, since most strings will have non-zero probability. LLM
generation can include an input prefix—a string, α, that precedes conditional generation and is
not affected by decoding rules (i.e., it is defined to be in the language). Similarly, LLM output
generation can be either open-ended (e.g., free response) or closed (e.g., multiple choice). For the
former, β = Σ∗, while the latter can be enumerated via disjunction (§6.3.3). Since unaugmented
LLMs are regular languages [255], this programming model is equivalently powerful. This work
focuses on validation tasks, where a task is formulated in a formal language and solved for given
the LLM decision rules (e.g., with top-k).

6.4 ReLM
ReLM is a system for expressing LLM validation tasks via formal languages (§6.3). The input to
ReLM, which we refer to as a query, is the combination of 1) a formal language description, 2) an
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Figure 6.2: ReLM’s workflow. A user constructs a query and feeds it along with an LLM to ReLM
(bottom right). ReLM compiles the regex in the query into an automaton (Ġ is a space). That
automaton is then compiled into an LLM-specific automaton. The engine then traverses the LLM
automaton by scheduling to visit LLM tokens (pink) on the GPU, ultimately yielding a matching
output tuple, x.

LLM, 3) LLM decoding/decision rules, and 4) a traversal algorithm. Our implementation of ReLM
uses a regular expression (regex) to specify the language. The other three query parameters are
directly referenced when constructing the ReLM query. The output of ReLM is the set of matching
strings in the LLM, given the query constraints. Formally, given the language, Lr, defined by the
regular expression and the language defined by the LLM and its decision rules, Lm, ReLM outputs
the language at the intersection Lr ∩ Lm. The particular order that these outputs are generated is
defined by the traversal algorithm. ReLM consists of over 7000 lines of Python and Rust code
and is released as an open-source package (§1). While our prototype of ReLM is currently focused
on GPT-2 [236] models, our design should be applicable to other LLMs. Additionally, while
ReLM is motivated by LLM validation, it can be used in other constrained decoding applications
(e.g., generation from keywords).

6.4.1 The ReLM Software Architecture

The ReLM architecture is shown in Figure 6.2 for a query over The ((cat)|(dog)). ReLM
is a framework that is called from a user program, which is written in Python; the precise API
that ReLM exposes is covered later (§6.4.4). The program takes an existing LLM defined in an
external library, such as Hugging Face Transformers [304], and passes it along with a
Query Object into ReLM. The Query Object contains the regex, the LLM decision rules, as well
as the traversal algorithm. As can be seen in the diagram, the regex portion of the query is first
parsed by a regex parser, which constructs an automaton (§6.3.3) that is equivalent to the regex.
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The resulting automaton, which we refer to as a Natural Language Automaton, is not yet ready to
be executed over an LLM, as the Natural Language Automaton is defined over ASCII or Unicode
strings. As the regex to automaton conversion is well understood (§6.3.3), the bulk of ReLM’s
challenges are faced in the subsequent steps. As discussed in (§6.4.2), ReLM must compile that
automaton into a new automaton, which we term the LLM Automaton that operates in the LLM’s
alphabet (in token space). With the LLM Automaton constructed, ReLM can then execute the
query given the LLM, the LLM decision rules, and the traversal algorithm. The result of this
execution is a stream of matching tuples that are passed into the user program, where the program
can act on the tuples (e.g., log them in a database) or start a new query. In the example, The
cat is returned to the user. For deterministic traversals, the query can continue running until the
language is exhausted; random queries are of infinite length because of resampling.

6.4.2 ReLM’s Graph Compiler
The primary hurdle ReLM has to make is taking a formal language over ASCII or Unicode
characters and mapping it to GPT-2 tokens, which we outline in this section. For this section,
we assume that a regular expression has been parsed to the Natural Language Automaton. In
Figure 6.3, this corresponds to the regex The being mapped to a directed graph with exactly
one path: T–h–e. ReLM’s Graph Compiler takes the regex-derived automaton and processes it
into one of the two forms shown in Figure 6.3, depending on the configuration. We discuss both
graphs below.

Representing the Full Set of Encodings. In Figure 6.3a, we can see that the simple regex
The was transformed into an automaton with 4 non-zero probability strings. This automaton has
the following interpretation: any of the accepting strings in the automaton, when decoded, will
yield a string in the input regex. Specifically, The can be encoded in 4 ways—T–h–e, Th–e,
T–he, and The, because the number of partitions grows at a rate of 2n−1 for string length n, and
GPT-2 has tokens for all these partitions. This automaton thus represents an overparameterization
of some LLMs, which makes it impossible to recover what token sequence produced a given
string—which is why we term them all ambiguous encodings or the full set of encodings.

While one can define a canonical representation among these redundant encodings, there is
no guarantee that sampling from an LLM will always produce that canonical encoding, since
doing so would require backtracking during inference. In practice, the canonical encoding is the
shortest one and is stable under repeated encodings and decodings. We observe that non-canonical
encodings are sampled in practice—approximately 3% of unprompted, randomly generated
samples from GPT-2 and 2% for GPT-2 XL are not canonical. We can view the full set of
encodings as representing the space of unconditional generation, because there isn’t a constraint
that prevents them from being used.

To construct the full set of encodings, ReLM treats the LLM tokenization scheme as a trans-
ducer (§6.3.3), a map from language to language. ReLM performs a variant of transducer compo-
sition with the automaton to yield a new automaton with transitions in the token space. For GPT-2,
this algorithm can be implemented by adding “shortcut” edges between the states of an automaton
over characters such that each “shortcut” represents a token that can be used to obtain equivalent
subword or word behavior. In Figure 6.3a, the query The will be converted to the automaton
T–h–e. Using depth-first search (DFS) starting at the vertex before T, we can match against the
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accepted word and token The, allowing a “shortcut” arc to be placed representing the discovered
token. Similarly, DFS over h will match with he. Running this algorithm (see appendix) to
completion takes O(V kmmax) time, for vertex count V , vocabulary size k, and maximum length
mmax of words in the vocabulary.

Representing Only Canonical Encodings. In Figure 6.3b, we can see that most edges have
0 probability—only the token The can be used as a transition. This scenario corresponds to using
only the canonical encoding, which is common when inputs or outputs for an LLM are fixed by
the user. For example, the query in Figure 6.2 can be viewed as a multiple choice over cat and
dog. Rather than consider the 4 tokenizations of The for this task, the user may pass The into
the LLM encoder, which encodes its inputs into their canonical representations. cat and dog
would then be evaluated using The as the prefix. Therefore, this automaton can be associated
with conditional generation.

Recovering the canonical encoding automaton is more involved than the full encoding au-
tomaton. Observe that the set of paths used in the canonical automaton is a subset of the full
automaton. Specifically, the shortest path per string is used. To recover this behavior, there are
three options: First, one can enumerate all the strings in the regex automaton and simply encode
them to create a canonical automaton. This solution is adequate for small sets, but can become
intractable otherwise. Second, the full automaton can be dynamically traversed, performing
backtracking during runtime when a non-canonical token is discovered. Third, canonical tokens
can be directly substituted into the regex automaton with string rewriting mechanisms, such as
transducer composition [16, 200]. Rather than adding an arc to the automaton for a fixed token,
the “shortcut” introduced by the token replaces all matching substrings with the shortcut. This
process can be iterated over all k tokens in the order used by the tokenizer to merge subwords.
Compared to ambiguous tokenization, this procedure is functional—mapping each string in the
domain of the automaton to a unique output—because the string replacements are obligatory
rather than optional [200].

6.4.3 ReLM Executor and Traversals
After deriving an LLM automaton, ReLM has all the necessary data necessary to execute a
query. The input into the ReLM Executor is the LLM automaton and the traversal algorithm,
and it returns a stream of token tuples, which are passed to the user. The ReLM Executor is the
most performance-sensitive aspect of ReLM, as 1) it schedules massive sets of test vectors on
accelerators, and 2) it applies properties of decoding/decision rules to prune the set of test vectors.
The latter is the primary determinant of the complexity of a query: for GPT-2, top-k decoding
drops the branching factor of the graph traversal from 50257 to k. Furthermore, if a string is
eliminated via top-k, any strings sharing the eliminated prefix are also transitively eliminated,
allowing for large sets of test vectors to be eliminated in one traversal step. While any traversal
algorithm can be used with the Executor, the most common traversals we use are shortest path
and random sampling.

Shortest Path Traversals. Dijkstra’s shortest path algorithm [46, 75] is the basis for the
shortest path traversal, and can be implemented by log transforming the LLM’s probabilities to
create an additive cost function. Shortest path traversals are used to recover the highest probability
strings in a language (e.g., memorization or inference). While most of the traversal is standard,
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(a) Full/Unconditional (b) Canonical/Conditional

Figure 6.3: Two different token-space representations of the query, The. LLM probabilities and
active edges are red. In 6.3a, any encoding that results in The is used, resulting in 4 potential paths.
With top-k=2, T, h, and he are unreachable (dashed). Training enforces canonical encodings,
making them relatively more likely. In 6.3b, only the canonical encoding of The is used. Current
practice samples conditionally from 6.3b as a proxy for templates over 6.3a.

a notable difference is how edge costs are accounted. Recall that some queries have a prefix,
which bypasses the typical decoding rules (e.g., top-k). As all prefixes incur no cost, we initially
treated all prefix edges to have 0 cost, creating a truly uniform distribution over the set of prefixes.
However, the major drawback to this approach is that the latency for returning the first tuple can
increase dramatically, as all prefixes have to be visited first. The heuristic we apply is to prioritize
prefixes based on their original costs (as if they were not prefixes), though we do not eliminate any
prefixes with decoding rules. This prioritizes the most likely sequences, enabling startup latencies
of tens of seconds, without compromising the semantics of the query.

Randomized Traversals. Randomized sampling is used to estimate the probabilities of events.
To be useful, it should be unbiased i.e., reflect the true probability. Sampling with prefixes requires
special consideration as uniformly sampling prefix edges does not result in uniform sampling over
the prefixes. For example, the language a, b, bb, bbb has a 50% chance of picking either a or b
under uniform sampling of the first transition, even though a only leads to 1 string and b leads to 3.
Normalization is necessary in practice: without it, our bias experiments (§6.5) have 80% of prefix
edits occur in the first 6 characters, as opposed to uniformly over ∼ 20 characters. Surprisingly,
correctly setting the sample weights can be done quickly and efficiently with combinatorics.

To get uniform sampling over prefixes, each edge should be weighed proportionally to the
number of walks, the sequences of edges visited, leaving it with respect to the rest of walks
from the edge’s start vertex: p(e) = walks(e)

Σe′∼edges(e.from)walks(e′) , for edge e. Note that we do not directly
consider the case where there are cycles present, because the number of walks can grow unbounded.
LLMs have finite state, so a workaround is to “unroll” the cycles until the LLM’s max sequence
length. We refer the reader to the automata notation introduced in Section 6.3.3 and point
interested readers to additional papers [313]. Encode the initial state q0 ∈ Q in a sparse vector
s(q0), where the only nonzero entry is at q0, which is set to 1. We construct an adjacency
matrix, A, counting the one-step state transitions possible Q → Q. Raising A to a power An

represents the number of walks of length n. Like the start state, encoding the final transitions
F ⊆ Q in a sparse vector f(F ) allows selecting the counts of walks leading to a final state
after n transitions: walks(q0, n) = s(q0)> · An · f(F ). The total number of strings is therefore
walks(q0) = Σnwalks(q0, n). To count the number of walks from a vertex, v, we set it to be
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1 query = relm.SearchQuery(
2 "My phone number is ([0-9]{3}) ([0-9]{3}) ([0-9]{4})",
3 prefix="My phone number is", top_k=40)
4 ret = relm.search(model, query) # Launch
5 for x in ret: # Print resulting strings
6 print(x) # My phone number is 555 555 5555

Figure 6.4: Python pseudo-code for searching for phrases involving phone numbers with ReLM.
The query specification describes potential matches, while also allowing users to change execution
semantics (e.g., if top-k is to be used or the traversal algorithm). The prefix is also a regular
expression and avoids traditional decoding constraints (e.g., top-k), which affect the rest of the
query. The results of the query can be accessed through a Python iterator.

the start state: walks(v). The amount of strings leaving v is the amount of strings coming from
v minus any strings emitted at v, giving the denominator of p(e). The numerator of p(e) is
the number of strings coming from the destination of e. After sampling a prefix, the suffix is
determined with the LLM. Sampling may require that the suffix be followed by the LLM’s end-
of-sequence ( EOS ) token in order to disambiguate between returning a shorter string or continuing
to generate additional characters i.e., b vs. bb or bbb.

6.4.4 The ReLM API

As shown in Figure 6.4, ReLM exposes a Python interface to programmers, which allows them
to compose a language model with a query. The query contains the regular expression as well
as the decoding parameters. In the example, the prefix My phone number is is fixed and
sampled from conditionally using top-k decoding. While this prefix is a string literal, ReLM is
able to take a regular expression as a prefix. In the example, only matches on the phone number
pattern are traversed and returned. Some queries utilize flags, which are not shown, to specify the
traversal or sampling method. One of these additional parameters is a list of Preprocessors, which
transform the query and prefix.

Preprocessors. The API shown in Figure 6.4 is sufficient to express a broad range of
queries. However, in many applications, users are aware of domain-specific invariances, which
preserve query semantics. For example, synonym substitutions and minor misspellings should
not significantly change the meaning of a language. Enumerating all of these transformations is
slow and error-prone, so ReLM allows users to submit Preprocessors with their query to augment
the original query automaton. Specifically, we can define a preprocessor as a transducer (§6.3).
Transducers are applied in sequence to the Natural Language Automaton.

While there are many possible preprocessors, we namely point out two: Levenshtein automata
and filters. The Levenshtein automata [121] represent character-level edits. They can transduce
an automaton representing a language, L, to a new automaton, L̂, which represents all strings
that are within 1 edit distance of strings in L. As models can partially memorize text [48], users
may want to search over all strings within some edit distance of the source string. Higher-order
edits can be made by repeatedly composing Levenshtein automata e.g., an edit distance of 2
corresponds to two chained Levenshtein automata. Filters, on the other hand, are used to remove
stop words or toxic content from a query by mapping those strings to the empty string. In many
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Figure 6.5: ReLM compared to the best of baseline sampling on the URL memorization task.
ReLM extracts valid URLs faster because it traverses the URL pattern by shortest path, avoiding
duplicates and low-likelihood sequences.

cases, removing strings from a language can significantly increase the size of automata, so ReLM
supports deferring filtering to runtime.

6.5 Evaluation
We evaluate ReLM using a GTX-3080 GPU, AMD Ryzen 5800X, and PyTorch [222]. Unless
otherwise stated, we use the GPT-2 XL (1.5B parameter) model for our evaluation. Efficiency and
memorization concerns are evaluated in Section 6.5.1, and we focus on bias and the flexibility of
the regex abstraction in Section 6.5.2. Toxic content generation is investigated in Section 6.5.3.
Language understanding is investigated in Section 6.5.4. As the semantics we use for extraction
are vacuous for unfiltered decoding (§6.3), we use top-k = 40 for memorization and toxicity
evaluations, mirroring the original publication [236]. We don’t use it for bias evaluations (to
avoid invalidating certain template configurations), and we set it conservatively to k = 1000 for
language understanding. We don’t use top-p or temperature scaling. The research questions we
aim to answer are: 1) What classes of validation problems can benefit from programming with
regular expressions? 2) How is task performance affected by changes to the query, such as the
tokenizations considered? 3) What qualitative insights can ReLM provide in task workflows?

6.5.1 Testing for Dataset Memorization
Memorization refers to recovering training data at inference time and poses security risks [46,
47, 48]. We use URL extraction to measure memorization because it is minimally invasive
to verify. Specifically, we request the webpage for potentially valid and unique URLs and
check if the HTTPS response code is less than 300, avoiding redirects. We note it is easy
to extend the approach to structured objects such as phone numbers, emails, or physical ad-
dresses by similarly verifying their existence. We query ReLM with a simple URL pattern:
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Figure 6.6: The validated URLs/second throughput for ReLM and random generation baselines of
fixed length. The optimal baseline n is 16, which is still 15× slower than ReLM.

https://www.([a-zA-Z0-9]| |-|#|%)+.([a-zA-Z0-9]| |-|#|%|/)+. We use
ReLM’s shortest path backend (§6.4.3), and we compare to the official Transformer’s gener-
ation example [130], which randomly samples generations. We use the prefix https://www.
for both the baseline as well as ReLM. For the baselines, we use a stop length, n, as a power of
2: n ∈ {2i|i ∈ 0..6}. We sample 10000 samples from GPT-2 XL with a batch size of 1. We can
view the baseline as a form of prefix attack [47], where the prefix captures the URL scheme of
common websites.

Quantitative Evaluation

The first 5 minutes of results are shown in Figure 6.5. After submitting a query, the latency to
return the first result is only 5 seconds, and thus performance is dominated by throughput. In terms
of nvidia-smi GPU utilization, ReLM averages 67% compared to 65–72% for the baselines.
ReLM is able to match on valid URLs on 27% of queries, and does so with a variable but typically
low amount of tokens, making it both fast and precise. On the other hand, the baselines at or below
n = 8 are not able to generate unique valid URLs consistently, successfully completing 3% or
less of URL attempts. Meanwhile, n = 64 manages to obtain a competitive 25% completion rate.
However, when measured by wall clock time, the competitive baselines are no longer competitive:
for example, n = 64 takes 48× longer (per attempt) to run than ReLM, which reflects poorly in
the throughput of Figure 6.6.

Qualitative Evaluation

We observe that many of the baseline URLs are either too short due to token length limitations,
abbreviated (e.g., https://www.npr.org/.../man-hunt-), or refer to realistic-looking
yet fabricated content (e.g., random hashes for a video). Additionally, the rate of duplicates ranges
from over 90% for n ≤ 8 to 25% for n = 64, while ReLM avoids these costly duplicates by
construction. Compared to the untargeted extraction of 50 URL samples out of 600k attempts in
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prior work [47], these results indicate that structured queries and deterministic traversals of the
query space are more efficient in retrieving particular memorized content than random sampling.
Observation 16: ReLM is 15× faster at extracting memorized content than randomized sampling
by bypassing stop-length selection and focusing on the most likely candidates.

6.5.2 Testing for Gender Bias

Bias can be defined as the tendency of a model to favor certain subgroups of people by con-
ditioning on a protected attribute (e.g., race, gender) [54]. To evaluate ReLM’s capabilities
to detect bias, we query ReLM with a query similar to prior work [37, 152, 166, 259] to
correlate a bias between two slots in a template. Specifically, we assume the protected at-
tributes are the binary genders, x ∈ {man,woman}, and we are interested in if there is a
difference in distribution of the profession P (y|x), where y ∈ {art, science, . . . ,math}. The
query we use is: The ((man)|(woman)) was trained in ((art)|(science)|
(business)|(medicine)|(computer science)|(engineering)|
(humanities)|(social sciences)|(information systems)|(math)). The
((man)|(woman)) was trained in is used as a prefix, unless otherwise noted. For this
experiment, we utilize one of ReLM’s automata preprocessors (§6.4.4), which calculates the
set of valid strings within 1 Levenshtein distance of the original strings. We study edits in this
context because they are a measure of the robustness of the bias to input perturbations. Unlike
the memorization example, which uses a shortest path solver, we randomly sample examples to
estimate the distributions that are relevant for bias. We use 5000 examples for each gender, and
we measure across encodings as well as the presence of a prefix (i.e., if the model generates the
entire string without conditional generation).

Qualitative Evaluation

In Figure 6.7, we show the calculated probabilities of each profession, conditioned on the gen-
der. We can see that canonical encodings exhibit some stereotypical associations. As shown in
Figure 6.7c, medicine, social sciences, and art are biased toward women. Meanwhile, computer
science, information systems, and engineering are biased toward men. We note that these biases
are inline with prior work [152] and match the exact conditional probabilities. However, the
story changes when examining the results under all encodings, which we sample without using a
prefix for conditioning. As shown in Figure 6.7a, this setting results in a majority of professions
being art, regardless of gender. Manual inspection indicates that a non-canonical encoding of
trained is 10× more likely to be sampled than the canonical variant. That encoding leads to
completions favoring words that share characters with art e.g., The woman was trained
in artificial. Using all encodings with a prefix (Figure 6.7b) similarly forces the distri-
bution to be flat, with nearly as many predictions falling on art. These results suggest that most
bias is captured by canonical encodings. In Figure 6.7d, we can see that edits swap the bias in
both art and business, while also evening out the outcomes of lower-probability events, suggesting
that the characteristics of bias may be dependent on the existence of edits. Like Figure 6.7a, the
distribution is peaked on art. Experiments on the smaller GPT-2 model also demonstrate similar
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Figure 6.7: ReLM used to evaluate gender bias over professions with varying encodings and
traversals. (6.7a) Using all encodings without a prefix, which heavily favors art and thus is plotted
with log scale. (6.7b) Using all encodings with a prefix, which also favors art. (6.7c) Using
canonical encodings with a prefix, which demonstrates some gender stereotypes. (6.7d) Using
canonical encodings with a prefix and edits, which makes the distribution flatter and favors art.
Queries with minor differences in interpretation lead to different bias conclusions.
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phenomenon.
Observation 17: Probing bias from various angles, including encodings, edits, and the presence
of a prefix, each result in different bias distributions and, therefore, conclusions. LLM bias
behavior may be influenced by overlap between concepts in subwords.

Quantitative Evaluation

We run the χ2 test on each outcome to test for gender bias. For example, for Figure 6.7a, which
doesn’t condition on a prefix, we can calculate the p-value to be approximately 10−18. With the
prefix (Figure 6.7b), the value is on the order of 10−10. On the other hand, the canonical encoding
(Figure 6.7c) has a p-value of 10−229, which is more significant in concluding a bias. The character
edits experiment (Figure 6.7d) shows that single character edits perturb the distribution, with a
p-value of 10−54.
Observation 18: ReLM can be used to estimate statistical measures of bias across encodings
and local character perturbations. Canonical encodings strongly demonstrate bias, while LLM
behavior changes for all encodings and edits, measurably diminishing statistical significance.

6.5.3 Testing for Toxic Content Generation

Toxic content consists of hateful or offensive language. While the classification of toxic content
is itself subjective [163], a significant fraction of toxic content consists of explicit toxicity i.e.,
the use of profanity or swear words [120], making it easier to classify and detect. We focus on
explicit content, as it naturally exposes a regular expression representation and can scale to large
datasets without annotations.

To uncover explicit toxic content, we take the first file from The Pile [99] dataset (41GiB
uncompressed), and query it with a regular expression matching 6 insult words (i.e., strong
profanity used nearly exclusively for personal attacks). Using grep finds 2807 matches in 2–7
seconds, and we take these results and feed them into ReLM. We analyze two settings: prompted
and unprompted. In the prompted setting, we take the resulting sentences and use them to construct
prompts, stopping the prompt before the matching profanity. The prompts are used as a prefix
in the extraction of the profanity. In the unprompted setting, we take the resulting sentences and
attempt to extract the entire result with no prompt. For the prompted setting, we run ReLM for
5 hours, which allows over 150 prompts to be visited and we measure if a single result can be
extracted per input sample. These results are displayed in Figure 6.8a. The baseline consists of
the standard practice of attempting an extraction without edits over canonical encodings. We
compare the baseline to ReLM’s edit-distance preprocessor with Levenshtein distance 1 (§6.4.4),
which gives an additional degree of search freedom, in addition to enabling all encodings. For the
unprompted setting, we run ReLM on all 2807 matches in 4 hours. We measure how many samples
can be extracted per input sample—maxing out at 1000 per sample. We similarly compare with
encodings and edits, and we measure the total number of token sequences extracted, rather than
if a single example was extracted, as we did in the prompted case. The results are shown in
Figure 6.8b.
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Figure 6.8: ReLM’s ability to extract prompted and unprompted toxic content. Figure 6.8a
shows prompted extractions. ReLM uses all encodings and edits, unlocking 2.5× more hits per
sample, compared to only canonical encodings for the baseline. Figure 6.8a shows the volume of
unprompted extractions broken down by encodings and edits. ReLM extracts 6616 instances from
2807 inputs, mostly due to edited instances over longer strings.

Qualitative Evaluation

For prompted attacks, the easiest content to extract is nearly uniquely defined as an insult. Extrac-
tion attempts with generic or unusual prefixes often fail because the insult does not necessarily
follow the prefix. However, adding edits and alternate encodings allows some of these texts to
still be extracted. Prompts that are long and lead with toxic or sexually charged material are also
commonly extracted. Some of these extractions are common sayings or material that appears to
be scraped from online posts. For the unprompted attacks, the most common extractions (900+
extractions) are long and appear to have a generic prefix. We observe that enabling edits and all
encodings enables some prompts to cover the first character of the bad word via edits, enabling
extraction of the subsequent subword tokens. However, edits occasionally produce false positives
by altering the profanity. A common pattern is to border the query with special characters (e.g.,
>, (, [, ?) or include special characters (e.g., *, @, #, -) or phonetic misspellings in the bad words.
Observation 19: ReLM extracts toxic samples by deriving templates from a dataset. Enabling
character edits preserves toxic content while enlarging the query space.

Quantitative Evaluation

In Figure 6.8a, we can see that prompted toxic content is 2.5× more successful using all of
ReLM’s encodings as well as edits. As the baseline can never be better than using all of ReLM’s
features, the baseline drops extraction success rates from 91% to only 27% (same dataset subset)
or 37% (full dataset). For the unprompted case, we see that only 18% of extractions are successful
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for the same subset, or 8% for the full dataset. Therefore, as one would expect, the use of a prompt
leads to more extractions, especially when the extractions are longer. For the unprompted case,
we additionally measure the volume of extractions possible per sample, up to a maximum of 1000.
On average, 2.4 samples are extracted per input.

For unprompted extractions (Figure 6.8b), we can see that the bulk of results come from edits.
Specifically, 97% of extractions are from edits and 67% are non-canonical. Conditioning on both
edits and encodings, we observe that only 1.1% of returned results have no edits and are canonical,
31.7% are canonical but have edits, 1.8% are not canonical and have no edits, and 65.4% are not
canonical and have edits. The most common additions/removals include: -, *, ., ,, !, ’, [, #, @
and i, ", u, ,, c, e, f, b, o, respectively.
Observation 20: In the prompted setting, enabling edits and alternative encodings unlocks 2.5×
more extractions per sample. Doing the same in the unprompted setting results in 93× more
examples of toxic content extractions per input, indicating verbatim toxicity generation may
severely underestimate toxicity exposure, especially for longer queries.

6.5.4 Testing for Language Understanding
To see if ReLM can be used as a tool for inference, we revisit one of the benchmarks used in
the original GPT-2 paper [236]. Specifically, we focus on the LAMBADA dataset [221], which
measures long-range reasoning by measuring how accurately a model can predict the last word,
given a long string of context. GPT-2 was evaluated in the zero-shot setting, meaning that the
model is never fine-tuned on this dataset, and achieved state-of-the-art performance. Tuning LLM
inference for this dataset is regarded as tricky [43], which may require coding many different
implementations to find the optimal solution. However, if a practitioner could program the
optimizations through the ReLM API, there is a case that the optimal prompt could be found more
easily.

For each line in the dataset, we split the line into context and the last word. Then, we
feed ReLM the context as a prefix and try to predict the last word using four approaches.
Intuitively, each of the approaches forces the completion to be a word [a-zA-Z]+ with
optional punctuation and varying additional constraints. First, with context <X>, we query
ReLM with <X>([a-zA-Z]+)(\.|!|\?)?(")?, which we refer to as baseline. Note that
we escape . and ? as literals with \, and we use <X> as a prefix. We then query ReLM
with baseline but with only the words in the context used, as mentioned in the paper: <X>
(<words>)(\.|!|\?)?(")?, where <words> is the set of words in context <X> separated
by |. We refer to this method as words. Next, we query ReLM with baseline but with EOS

concatenated at the end, which we refer to as terminated. Finally, we query ReLM with terminated
but apply filters (§6.4.4) to stop words, defined by nltk [38], which we refer to as no stop.
We use ReLM’s shortest path sampler with GPT-2 and GPT-2XL over the first 500 samples in
OpenAI’s test set variant.

Qualitative Evaluation

Filling in a blank with any string does not necessarily correspond to the language of words, because
a string can be matched by a subword (§6.3). Even if a token represents a word, the model may be
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model baseline words terminated no stop

GPT-2XL 41.6% 56.6% 65% 71%

GPT-2 27% 43% 46.4% 52.2%

Table 6.1: Zero-shot LAMBADA accuracy on 500 examples.

using it to complete a sequence with additional words, rendering it invalid. For baseline, we get
completions like I can make it there on my own, but (Shane) or took a slow
drag on [the cigarette] without ever taking his eyes off of, J (Jo-
ran). The former is an example of an attempted multi-word completion and the latter is an example
of a subword. Using words changes the first prediction to I (incorrect) and the latter to Joran
(correct), leading to a 15 point improvement with the addition of structure. The first prediction
can be improved by ensuring that the predicted word is final i.e., terminated—the addition of

EOS changes the former to be thanks, which is still incorrect but is a reasonable last word
completion.

Lastly, the explicit filtering of vocabulary enhances few-shot performance by avoiding words
that are likely to be word completions but unlikely to be specific enough to finish the cloze. For
example, pronouns or it or that are too generic to be correct: Someone is to blame
for what happened to her is replaced with Vivienne. Such stop-word filtering is not
necessary for generic language modeling, but, in this case, it’s a useful bias to add into the model
given the type of task that is being performed.

Quantitative Evaluation

The first two approaches use the most common predictions “the”, “a”, “her”, and “and” approxi-
mately 12% of the time in sum. Adding EOS makes the most common words “him”, “her”, “me”,
“it”, which account for 7% of returns. Finally, removing stop-words makes repeated words rare:
the common words are “right”, “Helen”, “menu”, “Gabriel”, and “food”, which only consist of
3% of returns. The latter closely matches the reference distribution, which consists of “Sarah”,
“drown”, “menu”, “Gabriel”, and “portal”, which similarly are 3% of results. The accuracy results
for GPT-2 XL, along with GPT-2, are in Table 6.1. We can see that we recover the zero-shot
performance reported in the paper after using all optimizations. Note that we even exceed the
63.24 accuracy reported in the paper—these can be either due to 1) the first 500 samples being
easier, 2) minor differences in problem representation, as there is no publicly available reference
implementation, and 3) more thorough decode and search space semantics. Regardless, we can
see that tuning the regular expression in local ways results in between 10 [236] and 30 point
differences in zero-shot performance.
Observation 21: ReLM can enhance zero-shot accuracy by up to 30 points with minimal user
effort and without complex heuristics by injecting task constraints into the query.
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6.6 Additional Related Work
Formal Languages in NLP. The OpenGrm library compiles regular expressions and context-
sensitive rewrite rules into automata, which can then be used to build an n-gram model [246].
Extensions to pushdown automata have similarly been used [17]. More recently, a query language,
LMQL, was proposed in [36], exposing both declarative SQL-like constructs as well as imperative
ones to write LLM prompt programs. ReLM, in contrast, is purely declarative and focuses
primarily on LLM evaluation.

Adversarial Attacks and Controlled Generation in NLP. Adversarial attacks have been
used to construct inputs into NLP systems, which fool them into generating incorrect or harmful
content [210, 289]. Controlling the inference behavior of NLP models has prompted works in
fine-tuning model behavior [230]. One related idea to ReLM is the use of a trie in decoding to
enforce a constrained beam search [67]. Frameworks offer some tools to customize the set of
tokens allowed during inference, though it is difficult to make them work consistently due to
tokenization ambiguities [131]. ReLM, by explicitly modeling the language of interest, can both
avoid bad words and control generation to a fixed set of words. The most related work to ReLM
that we are aware of is CheckList [245], which uses templates to test a language model. ReLM
builds off of these insights by generalizing templates to character-level regular expressions which
are enforced during decoding.

6.7 Discussion
The complexity of natural language combined with rapid progress in large language models
(LLMs) has resulted in a need for LLM validation abstractions. In this work, we introduce
ReLM, the first programmable framework for running validation tasks using LLMs. ReLM can be
used to express logical queries as regular expressions, which are compiled into an LLM-specific
representation suitable for execution. Over memorization, gender bias, toxicity, and language
understanding tasks, ReLM is able to execute queries up to 15× faster, with 2.5× less data, or in a
manner that enables additional insights. While our experience with ReLM presents a convincing
case against ad-hoc LLM validation, new challenges arise in dealing with queries in a systematic
manner (e.g., left-to-right autoregressive decoding has an affinity toward suffix completions). In
future work, we plan to extend ReLM to other families of models and add additional logic for
optimizing query execution. In the final chapter (§7), we discuss generalizations of ReLM’s query
model to other models and modalities. We also briefly discuss problems that machine learning
researchers may finding interesting related to experience with ReLM.
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Chapter 7

The Future of ML Data Pipelines

This thesis focused on the role of data pipelines in machine learning. In this chapter, we briefly
discuss lessons learned (§7.1) and potential directions for future research (§7.2). Finally, reflecting
on our experience with data pipelines, we look at potential shortcomings of metrics in the field of
machine learning systems (§7.3).

7.1 Lessons Learned

This thesis can be summarized with the following lessons:
• The Prevalence of Data Bottlenecks. As machine learning hardware and software get

better over time, it is reasonable to expect that data bottlenecks will continue to be seen
in practice. We find that, in practice, 1–10% of ML jobs are bottlenecked waiting for
data at any point in time (§2). While many current bottlenecks appear to be caused by
misconfiguration or I/O, it’s possible that an increasing amount of bottlenecks in the future
will be caused by inadequate amounts of host resources.

• The Power of Approximating Data Augmentations. Data preprocessing in the data
pipeline is a potentially expensive process. We find that 10% of the augmentation set can
achieve 99.86% of the full augmentation performance by revisiting a classical method [44,
70] in the context of neural networks (§3).

• The Utility of Progressive I/O Image Formats. I/O bandwidth in image classification is
a precious resource, which motivates reducing image fidelity at the cost of task accuracy.
We find that half the image fidelity is sufficient to retain accuracy for many tasks, enabling
2× speedups for I/O bound workloads (§4). We also find that the model, dataset, and task
can influence the optimal amount of image fidelity.

• The Ease of Automatic Pipeline Tuning. Evidence of potential misconfiguration in prac-
tice (§2) has motivated a need for tools to automatically configure input pipelines. By
developing an interpretable modeling framework for CPU, disk I/O, and in-memory caching,
we are able to predict and optimize the performance of an input pipeline (§5). We find that
our implementation can achieve 47× speedups compared to misconfigured pipelines and
outperforms state-of-the-art tuners by up to 50%. Not only is this performance model easy
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to understand, it is just as easily applied—requiring only one line of code.
• The Expressiveness of Regular Expressions for Language Modeling. LLMs are known

to have many failure modes, and a lack of testing infrastructure prevents them from being
deployed responsibly. Perhaps surprisingly, all outputs of an LLM are representable with
regular expressions, motivating using regular expressions to solve LLM validation tasks
(§6). Our prototype of a regular expression engine for LLMs ReLM achieves a 15× speedup
or 2.5× higher data efficiency over traditional approaches in memorization and toxicity
finding. Additionally, it facilitates novel tests for bias and easily recovers prompt tuning
behavior necessary for state-of-the-art zero-shot performance.

7.2 Future Directions and Extensions
While this thesis covers some aspects of data pipelines, there are many remaining problems which
should be solved in future work. We outline more general problems first (§7.2.1). In the remaining
subsections, we cover extensions that seem promising to particular work introduced in this thesis.

7.2.1 The Pipeline Interface and Primitives
While this thesis emphasizes methods to optimize data pipelines automatically, the best user-facing
interface (and the primitives it supports) for input pipelines is still an open question. Systems such
as Plumber (§5) can only react to the decisions made by the programmer, but it is often difficult
or impossible to make complex decisions without the full programmer intent. For instance, it is
difficult to cover the full space of optimizations in Plumber because the primitives exposed to
users are coupled with the implementation (e.g., reading data is tied to how the data is stored). One
cannot simply “update the schema” and hope it propagates to every implementation in existence.
From the interface perspective, it’s not clear whether an existing language such as SQL will work
for data pipelines, or if some domain-specific modeling language (e.g., matrix-based in the case
of training or regular expressions in the case of testing (§6)) will be appropriate.

Approximations. Related to the interface, there is potential to approximate many aspects of
data pipelines, yet it is unsafe to do so, since full accuracy cannot be guaranteed. If approximation
systems were to be fully automatic, they would have to be able to reason about the error introduced
by approximations. While it may not be possible to entirely predict the impact of approximations,
there is hope (and evidence §3, §4) that their impact could be sufficiently characterized such
that empirical laws or strong heuristics could be developed. However, these heuristics would
be enforced after the interface, raising questions about how one can “approximately” specify a
pipeline to a system.

Large Scale Pipelines. Tuning a single pipeline can be very useful (§3), but tuning the
pipeline in isolation may be suboptimal in terms of resource usage at a datacenter level, especially
if a job is already highly distributed. Managing a fully distributed system of data pipelines would
present different challenges, such as efficient management of the tuning sessions (e.g., sharing
tuned parameters and metadata between jobs). It’s not clear how the role of the data pipeline will
evolve as the machine learning community embraces more complex systems with more stringent
metrics of success (e.g., energy and carbon usage [322]).
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Hardware Acceleration. Today, data pipelines are in still predominantly in the CPU era, and
they can benefit from hardware specialization, such as JPEG decoding offload (§4). While there is
some support for accelerator offload [214], such support is not ubiquitous and it’s not portable
across different accelerator vendors. Enabling data pipelines to run on a variety of accelerators is
an area of future work.

7.2.2 Beyond Modeling Dataflow
Plumber (§5) optimizes data pipelines written in tf.data, which have a dataflow-like ap-
proach due to their functional nature. Similarly, research on Spark, which also has a functional set
of abstractions, has led to other debugging tools [219, 220]. These tools are orthogonal in spirit to
other profilers, which attempt to debug and make sense of general classes of programs with no
constraints on how data is processed [30]. What general lessons can be learned from these works?
Can performance tuning be both general and complete? Here, we outline some guidelines on how
performance modeling can be achieved in more general systems.

• Resource Accounting. It seems clear that any performance tools must do resource ac-
counting, since performance is intimately tied to resource usage. Resource accounting
can be either done proactively by design [159, 220] or it can be done reactively in the
traditional profiler sense [30]. The accounting must be done across resource types that
impact performance, such as CPU time, disk I/O, memory usage, etc.

• Framework Constraints. Dataflow makes the entire computation explicit, removing the
need for many modeling assumptions. Monotasks asserts that there is significant gain to
be had by separating work explicitly by resource type [220] so that resource accounting
can, by design, trigger alerts when a resource is oversubscribed (i.e., saturating some work
queue). However, experience with Plumber contradicts this assertion, since Plumber is
able to reason about operators using multiple resources (e.g., reading TFRecords uses
both CPU and disk resources in one operator). Experience with Plumber indicates that
throughput dominant workloads are remarkably simple to model. Throughput bottlenecks
compose simply (e.g., using primitives from linear programming over averages) rather than
requiring the mathematical heavy-lifting of computing the resulting latency distribution
from a sequence of queues [119, 169]. From the practical side, the systems community has
long known that latency performance is difficult to scale and is best avoided [68].
What makes workloads like those in tf.data different from other systems? The primary
reason that tf.data workloads are almost entirely throughput driven is that the “pipeline”
is nearly always working with low work variations. Bottlenecks are therefore entirely
driven by steady-state “average” behavior rather than any transient latency spikes (e.g.,
“stragglers”) that appear at fine-grained timescales. The key criteria for the Plumber
simplification are that pipeline work is: 1) consistent in distribution in the statistical
sampling sense, 2) sufficiently long-running, 3) prefetched, and 4) multithreaded. The first
two criteria are necessary for work estimation via measuring average behavior and the
latter two are necessary for removing transient latency spikes. We additionally note that
caching estimation is much easier in the machine learning setting, where data skew is low
and sampling is near ideal. Concretely, machine learning workloads typically ensure that
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data is distributed independently and identically by carefully selecting the data and shuffling
it afterwords. These statistical regularities allow Plumber to project cache accounting for
subsets of the data to the full dataset.
It seems therefore that there are two types of framework constraints at play. First, there are
latency-heavy workloads, such as those in Spark or general programs. Monotasks [220]
proposed to simplify analysis by ensuring that operators are resource independent, allowing
direct resource measurement at a resource queue level. Meanwhile, Magpie [30]’s approach
would be to infer the cause of queueing without modifying the application. For these
workloads, the bottleneck is a critical path in the execution graph. If the critical path
is observed to have high resource usage over some of the resource types, then it’s clear
that adding more resources of those types would reduce the duration of the critical path.
Nevertheless, the critical path can only be reduced by some degree, as there is always
intrinsic latency from sequential processes in the system—adding infinitely more resources
does not necessarily reduce latency [220]. Second, there are throughput-heavy workloads,
such as those in tf.data. Systems like Plumber only have to track running averages
of each resource type to estimate the end-to-end performance without requiring resource
independence across operators. For these workloads, the bottleneck is insufficient resources
or an inability to utilize the resources (i.e., a sequential implementation). Unlike latency
workloads, throughput-heavy workloads can be scaled as a function of resources assuming
that work is sufficiently independent.

• Framework Knobs. Lastly, we look at what criteria are necessary to act on profiler
information. For general programs [30], there are no “knobs” to tune—the programmer
must rewrite the program by hand or add resources. Even with an accurate model of Spark
runtimes, semi-automatic changes are limited to optimizations such as caching deserialized
data in memory and adding more resources [220]. Experience with Plumber similarly
requires automatic changes to happen using the semantics of operators implemented via
iterators [111]. These changes are limited to increasing the thread count, adding caches, and
adding prefetch buffers. It thus seems that the primary “knobs” that can be tuned are ones
directly related to a straightforward consumption of a resource type rather than any control
logic. The most common mechanism for adding a knob is to place it in the operator itself
(e.g., number of threads) or add a new operator that composes with other iterators [111].

7.2.3 Modeling Secondary Storage Caches

One notable extension to Plumber (§5) is using secondary storage (e.g., HDD and SSD) as a
cache, which we analyze here. Part of this extension is straightforward, because Plumber already
has a method for computing the materialized size of the cache, and thus can determine whether or
not the secondary storage device has enough capacity to store the materialized data. However, the
primary limitation for secondary storage is bandwidth and not materialized cache size. However,
we note that Plumber already optimizes bandwidth I/O at the Dataset file-reading level. As
we will see, secondary storage caching is actually a combination of two primitive models already
used in Plumber: an ideal cache and an I/O device. Intuitively, secondary storage caching is
merely an ideal cache from the CPU perspective (e.g., CPU work is reduced from caching), but it
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has an ideal I/O device of limited bandwidth as a data source.
As a concrete example, let us assume the materialized Dataset size is B for N samples.

From this, we can calculate the average size of a data sample, x. For each sample x with size
s(x), we’d expect its size to be Ex∼D[s(x)] = B/N bytes per sample. Then with I/O bandwidth
constraints of W , we’d expect W/Ex∼D[s(x)] samples per second, as discussed in Section 4.4.1.
Note that limW→∞W/ED[s] grows unbounded—a device with infinite bandwidth has only a
cache size limitation. Using this modeling framework, Plumber models in-memory caches as
infinite bandwidth devices.

We can revisit Plumber’s performance model (§5.1.3) using some concrete numbers. To
demonstrate the throughput bounds of a storage device, assuming we are storing raw image
tensors (i.e., post image decompression and cropping) of a square size. We plot the estimated
image throughput assuming images are stored in 8-bit RGB (i.e., 3 bytes per pixel) 32-bit RGB
(i.e., 3 32-bit floats per pixel). For reference, we show approximate JPEG numbers assuming
that JPEG compresses an image size by the multiplicative constant 0.2, as can be deduced from
the ImageNet example in Figure 5.11 We assume the following device performance: HDD has
150MB/s, Low-End SSD has 500MB/s, High-End SSD has 10GB/s, and Memory has 100GB/s.
The results are shown in Figure 7.1. We can see that in-memory caches of this bandwidth can
supply tens of thousands of 32-bit RGB images per second for commonly used ranges of training
(close to 224× 224). However, an HDD can only supply hundreds of 32-bit RGB images for the
same range. In this situation, the system would be likely be better off reading compressed JPEG
images, which it can read at a rate of thousands per second. However, reading JPEG images is
only better assuming that there are enough CPUs to do the JPEG decompression work.

Mathematically, we’d like to use the faster of the two configurations if both are possible (e.g.,
caching after decode and crop will fit in the secondary memory). To express this, let the throughput
be expressed as the better of the two configurations: X = max

(
ˆXcache(W ), ˆXno cache

)
. ˆXno cache

would be the throughput without any caching. ˆXcache(W ) = min(W/Ex∼D′ [s(x)], ˆXideal cache)
would be the throughput with caching data D′ using an I/O device with W bandwidth, where

ˆXideal cache is the throughput assuming an infinite bandwidth device, as Plumber assumes for
in-memory caches. All of these measures of throughput are in samples per second due to using
samples rather than batches for the throughput bounds W/Ex∼D′ [s(x)]. The conversion to batches
per second is explained in §5.1.4 using “visit ratios”.

One can obtain this behavior from algorithm in two ways. For linear pipelines (e.g., without
exotic “joining” between different data sources), a greedy cache-insertion approach can still
work. A cache should be put as high up in the pipeline (i.e., closest to Dataset root), assuming:
1) the materialized size of the data will fit in the cache, and 2) the current throughput of the
pipeline X given the caching device’s bandwidth constraints is not lowered. Importantly, the
estimated throughput of the pipeline should reflect prior caching options (e.g., a cache is only
inserted if it is “faster” than caching lower in the Dataset). For the simple case we describe
where we can choose between materializing decompressed RGB images and not, this algorithm
would work as follows. First, Plumber would calculate the throughput without caching ˆXno cache,
which corresponds to the “default” of reading compressed images from storage. For HDD using

1This is a crude approximation as JPEG compression efficacy is data-dependent and tunable. Furthermore, the
effect of image cropping to 224× 224 is rolled in to this approximation.
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Figure 7.1: The limits of caching by device type and uncompressed image representation. x-axis
represents the image length (or width) for a square image and thus contributes quadratically to
the area. y-axis represents the maximum throughput reading images from the cache on a log
scale. For reference, the 224 × 224 image length/width used in many vision benchmarks is
annotated with a (gray) dashed vertical line. The decision to use Plumber’s caching technique
for secondary storage would have to account for these bandwidth limits, which deviate from
Plumber’s “idealized” version of an in-memory cache.

224× 224 JPEG images, the disk bound is roughly 1250 images/second. Plumber could then
compare this to reading decompressed 32-bit RGB images cached on the HDD, which would be
roughly 250 images/second. These would be the two respective Dataset source constraints and
both would be treated effectively the same as Plumber’s “disk” calculation (§5.1.3). The only
difference is that ˆXno cache would include CPU work for decompressing and cropping images in
the linear program (as usual), and ˆXcache would not (CPU work would be bound by ˆXideal cache).
Thus, caching on secondary storage is equivalent to solving a “fused” problem between idealized
caching and disk I/O.

This procedure can be generalized for Datasets of tree-like form using an integer Linear
Program by adding a binary decision variable to account for all possibilities of where to put
a cache, and what device to cache with. We note that this formulation can also be used with
Progressive Compressed Records (§4) by having another tuning “knob” over the scan group which
incorporates constraints on the image fidelity (e.g., gradient similarity). For future work, it would
be interesting to see if, using a similar formulation, pipeline cost could be optimized given all
the resource configurations available in public clouds (e.g., fine-grained configurables of CPU,
memory, and I/O resources). One can imagine deciding between a single-core machine and a
storage-cached Dataset or a many-core machine capable of recomputing the Dataset. For
this type of formulation, one would seek the minimum cost configuration capable of saturating
the accelerator.
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7.2.4 Approximations for LLM Validation

ReLM (§6) offers a way to run arbitrary regular expressions easily with powerful traversal
algorithms. However, best first algorithms, such as shortest path, are prone to large time and space
complexities, leaving the user responsible for constructing queries that are efficient approximations
of the task. For example, if the LLM is highly uniform in predictions over tokens, shortest path
will degenerate to a breadth first traversal. In this case, the search will expand the search tree at a
rate of bd, for branching factor b (i.e., the vocabulary size) and depth, d. On top of this, ReLM
has to maintain a queue of elements to visit, each of which consume O(d) space. We note that
random sampling, which ReLM supports, does not have this problem because it greedily samples
at each step.

Experience with ReLM seems to indicate that time complexity is the more important issue
of the two. For example, on the memorization task (§6.5), the size of the priority queue grows
roughly linearly as a function of time, resulting in around 350k elements in the priority queue
once 10k URLs are returned. The elements being processed at this point are 10s of tokens long, so
we’d expect less than 100× (350× 103)× 4 bytes of space (i.e., assuming average length of 100
and 4 bytes per sample). Profiling resident memory agrees with this estimate; roughly 200MB was
allocated over the process when starting with 5.6GB of resident memory. While the worst-case
size of the query’s automaton has the same exponential worst-case behavior (e.g., consider the
query matching on everything, .*, with exactly one string removed), the practical memory usage
is very tolerable. For example, the free-response over alphanumeric characters, [a-zA-Z0-9]*,
matches on infinite strings of variable length, yet is 1 state with 15823 edges, which is a modest
directed graph. Queries that aren’t “high-entropy” will likely never hit the worst-case behavior.

An obvious extension to ReLM is to add better support for search approximations, such
as beam search [1]. ReLM already has some support for beam search, though it has not been
thoroughly evaluated due to a lack of motivation for validation. Specifically, the beam search’s
results are strongly coupled to the query—running a query with free response generation will
select for different beams than if the query was multiple choice. Top-k, in contrast, is independent
of the query—the top-k property stems from the LLM’s predictions only, and changes to the query
would have the same top-k results for any token sequences that are common between the queries.
Nevertheless, if the user is willing to tolerate false negatives, this approach can be useful.

7.2.5 Applying ReLM to Larger Models and Prompts

ReLM can be applied to even larger models than GPT2-XL. For models that are hosted online
(i.e., in an LLM-as-a-service format), the ReLM backend simply has to convert calls to a local
model to calls to the remote model. For models hosted locally, these could be handled in a similar
manner by self-hosting a distributed inference engine and connecting ReLM to it. While ReLM
can work more-or-less “out of the box” for these larger models, it may be impractical in terms
of inference cost. Some mix of query engineering combined with heuristics (e.g., beam search
§7.2.4) will likely be necessary in these cases.

Similarly, users have an enormous space of “attack vectors” that can be used to invoke
undesirable behavior in the LLM. As this search space grows exponentially (§7.2.4), it’s not
feasible to look through all of it. The best approach, it seems, is to be proactive with validation
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heuristics while also using runtime constraints to detect and correct unvalidated and potentially
incorrect responses to queries. Systems, such as ReLM, could be used to either “rewrite” the
output of the model or to simply avoid particular patterns during the sampling process.

Lessons For LLM Tokenization

LLM tokenization, and BPE [98] in particular, is a crucial part of LLM training (and thus
inference). However, while BPE can help with compressing the inputs and outputs, it creates
new attack vectors for the model, such as an inherent intolerance to character-level perturbations.
For instance, certain “glitch” tokens have recently been found to create a failure mode [251]
in GPT models. In the general case, the number of tokenizations of a string of length n grows
exponentially (§6), meaning the validation surface also increases exponentially. In computer
architecture, there was a long debate on “reduce instruction set computers” (RISC) compared to
“complex instruction set computers” (CISC) [125]. The argument was that the simple “reduced”
instructions would be easier to maintain in the long term, even though the “complex” instructions
could do impressive tasks in hardware alone. There seems to be a similar argument accruing for
character-based encodings compared to BPE. It would be interesting to explore to what extent the
token space of LLMs could be simplified to a reduced set of tokens.

7.2.6 Beyond Regex: New Grammars and Modalities
Even though LLM output can be expressed with regular grammars, non-regular grammars may be
beneficial in certain domains, such as the generation of code in specific programming languages.
Furthermore, generative models may act over images, audio, or video, as shown in Figure 1.2.
Would each of these domains be dealt with piecemeal or would some unifying idea be able to
validate them all?

For grammars, it’s still not clear what the implications of using a more powerful grammar are.
It’s certainly true that regular expressions are not efficient at expressing certain concepts, such as
matching parenthesis or other context-free grammar constructs, though they can emulate them.
Programming languages seem the most natural fit for stronger grammars, since they are formally
defined via more powerful grammars. However, the tradeoff is that the user and the system
have to deal with reasoning about a more powerful grammar, which may introduce performance
and correctness concerns. Furthermore, languages such as Python are not fully context-free;
thus, it may be the case that validating Python would be best served with a custom Python
interpreter. In any case, it seems the adoption of particular grammars may follow the same path of
the adoption of programming languages—there are factors beyond the theoretical ones that would
drive adoption, and no single grammar would be the winner.

The other limitation of ReLM is its focus on natural language. ReLM, being a regular expression
engine, is not applicable to other modalities, such as images, audio, or video tasks. However,
ideas from ReLM could be applied to these other modalities with additional work. For example,
suppose a model is tasked with scanning license plates found in a user’s garage. Now suppose
that in this particular task, the user is the owner of exactly two cars and knows that there are
only two possible license plates: 123456 and 654321. In terms of strings, the language can be
expressed with the regular expression (123456)|(654321). If the model were to predict
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654327, then we’d know that was an error, since that’s outside the language. Just as ReLM
maximizes the probability of a sequence of tokens, a system could maximize the probability of
a sequence of vision primitives given some prior belief (e.g., that there are only two possible
answers). It’s unlikely, however, that the vision primitives could themselves be programmed in
this manner, since that would enable solving the vision task without any learning at all. This
sort of “composition” idea can be expressed with audio and video; indeed one of the primary
applications of transducers is the construction of acoustic models via composition [16].

7.3 Reflections on ML Systems in the Real World
In some cases, the application of machine learning seems disconnected from the machine learning
systems community. Since the deep learning revolution started, ML research has focused on
the newest models and standardized datasets. There is a good reason for this—standardization
facilitates comparisons and new models motivate new research. However, without knowing
precisely how a benchmark fits into real applications, it’s not clear how important the results of the
benchmark are in the context of the whole machine learning workflow. Because benchmarks act
as a proxy for progress in the field, it is always worth reflecting on whether or not the benchmarks
reflect real progress.

The difference between benchmarks and reality is already being noted. For example, in
the TPUv4 paper [141], the Deep Learning Recommendation Model (DLRM) from MLPerf is
said to be unrealistic, citing work on industrial recommendation systems [322]. However, the
goal of MLPerf is to be a “representative benchmark suite for ML that fairly evaluates system
performance” [192]. While DLRM may have been reflective when it was added as a benchmark,
it seems that it (and perhaps other benchmarks) are no longer representative. The few entities
who control MLPerf should continue to update MLPerf benchmarks such that they reflect recent
production workload trends and drive the community’s goals to relevant problems. This quote
from reflections on the Standard Performance Evaluation Corporation (SPEC) benchmark bears
warning about how quickly benchmarks can lose their reputation: “The reputation of current
benchmarketing claims regarding system performance is on par with the promises made by
politicians during elections.” [76].

Creating benchmarks is difficult and impossible to get perfectly correct; however, the fact
that the ML systems community, which serves one of the fastest moving technical communities,
doesn’t proactively assess potential shortcomings means that the wrong problems are being
worked on almost surely. With regards to this thesis, standard benchmark pipelines (e.g., MLPerf
training [192]) are potentially misrepresented for a few reasons, which are outlined below:

• Old Research Datasets. The datasets used in benchmarks is academic data meant for proof-
of-concept rather than a real product. Not only is this data typically acquired in a manner
that was most convenient at the time (e.g., at lowest cost), the data is old. ImageNet [71]
is over a decade past its creation—data in use today may be measurably different than it
used to be. For instance, in MLPerf inference, one of the datasets is not used in native
resolution—instead it is upscaled to more closely match high resolution sensors, which
are found in automotive and industrial-automation applications [242]. If the data must be
upscaled, then clearly the data is not representative of the expected image’s information
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density and mere resizing means the model is doing more work without benefiting from
additional predictive information2. Camera technology improves constantly (e.g., due to
algorithmic innovation or technology scaling such as Moore’s Law [209]), so it’s reasonable
to expect that all datasets will drift away from reality over time. Furthermore, the data
will likely be larger and the infrastructure used may be more complex (e.g., a distributed
datastore). Thus, it’s reasonable to expect that the complexity with regard to all aspects of
data is increasing, which may add unexpected strain throughout the data system stack e.g.,
Figure 7.1.

• Simple Preprocessing. The training-time preprocessing and transformations used in these
benchmarks are remarkably simple and enforced by MLPerf rules. It seems unlikely that
there hasn’t been a single advancement in data pre-processing since the reference model
was published [33, 61, 62, 90, 240, 280]. A pertinent example is the default 224 × 224
training-set image cropping used in many works (dating even back to AlexNet [156]),
which was later found to be too large to match the statistics of the similarly-configured
validation set [280]. Not only does making the image smaller speed up training, it makes
the accuracy higher—thus, using 224 × 224 images overemphasizes the accelerator and
adds an unnecessary source of error to the training process. Thus, it’s reasonable to expect
that pipelines used in practice are more sophisticated than those used in benchmarks—
researchers may be researching novel augmentations while practitioners may be using them
on top of complex data transformation code.

• Workload Feedback and Drift. The workload characteristics are not reflective of industrial
use-cases because the data and model can be more complex [141, 322]. Unlike research
datasets, which are static, the data and model are jointly optimized to account for sources
of statistical signal found through a tuning process (e.g., A/B testing). The end result is
that each job has a dynamic amount of features (e.g., for embedding generation) from
the point of view of the data system [141, 322]. Furthermore, workloads can change on
a bi-monthly to yearly basis [141], which is faster than a benchmark can be expected to
change. However, it seems possible for benchmarks to be constructed such that there is
some level of agreement between industrial use cases and benchmarks. For instance, if
the number of features is expected to vary over time in production use-cases [141], then it
seems reasonable for benchmarks to be constructed such that they can be instantiated with a
number of features m where a ≤ m ≤ b for some reasonable bounds of a and b (e.g., 0 to a
million). Ironically, it seems that synthetically generated data could be even more realistic
than datasets that are a decade past publication. Now that humans are being used to monitor
model training [7, 8] and provide a reward model for training [5, 326], it seems harder
than ever to create accurate and objective benchmarks. It’s thus reasonable to expect that
separation between benchmarks and reality will continue to diverge as workflows become
more ad-hoc and dynamic.

Work that helps confirm or deny the realism of benchmarks in industry as well as research labs
seems to be one of the most impactful problems in the ML systems community, especially as large
models are turning research from a transparent community to one which is closed. Nevertheless,

2Consider how uninteresting it would be to resize a 1× 1 pixel to some large dimensions.
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while the community may never converge on perfect benchmarks, it should always be possible to
update and improve upon them over time to reduce known differences. Indeed, just as machine
learning has changed dramatically since AlexNet in 2012 [156], we should expect the benchmarks
of today to hold much less value a decade from now.
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[17] Cyril Allauzen, Bill Byrne, Adrià de Gispert, Gonzalo Iglesias, and Michael Riley. Push-
down automata in statistical machine translation. Computational Linguistics, 40(3):687–
723, September 2014. doi: 10.1162/COLI a 00197. 6.6

[18] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Spring Joint Computer Conference, page 483–485, 1967. 4.4.1

[19] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative
adversarial networks. arXiv preprint arXiv:1711.04340, 2017. 3.2

[20] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point optimization of deep
convolutional neural networks for object recognition. In International Conference on
Acoustics, Speech and Signal Processing, pages 1131–1135, 2015. 4.6

[21] ApacheBeam. Apachebeam. https://www.tensorflow.org/datasets/beam
datasets. Accessed: 07-26-2021. 4.2

[22] Apex. Nvidia apex. https://github.com/NVIDIA/apex. Accessed: 07-26-2021.
4.5.1

[23] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley,
Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark
SQL: Relational data processing in Spark. In Conference on Management of Data, 2015.
2.1.1

[24] PyTorch Authors. Iterable-style datapipe. https://pytorch.org/data/main/
torchdata.datapipes.iter.html, 2023. Accessed: 04-19-2023. 2

[25] Jens Axboe. fio-flexible i/o tester. https://fio.readthedocs.io/en/latest
/fio doc.html, 2021. 5.1.3, 5.2.2, .1

[26] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for
machine learning. arXiv preprint arXiv:1703.06476, 2017. 4.6

104

https://www.tensorflow.org/datasets/beam_datasets
https://www.tensorflow.org/datasets/beam_datasets
https://github.com/NVIDIA/apex
https://pytorch.org/data/main/torchdata.datapipes.iter.html
https://pytorch.org/data/main/torchdata.datapipes.iter.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
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[83] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and Torsten Hoefler. Clairvoyant prefetch-
ing for distributed machine learning I/O. In International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021. 5.3

[84] Jesse Dunietz, Greg Burnham, Akash Bharadwaj, Owen Rambow, Jennifer Chu-Carroll,
and Dave Ferrucci. To test machine comprehension, start by defining comprehension. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 7839–7859, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.701. 6.3.2

109



[85] Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron Elmore, and Michael Franklin.
Band-limited training and inference for convolutional neural networks. In International
Conference on Machine Learning, 2019. 4.6

[86] Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M. Roy. A study of the effect
of JPG compression on adversarial images. arXiv preprint arXiv:1608.00853, 2016. 4.6

[87] Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. Gpts are gpts: An
early look at the labor market impact potential of large language models. arXiv preprint
2303.10130, 2023. 1, 1.2

[88] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (VOC) challenge. International Journal of
Computer Vision, 88:303–338, 2010. 4.2

[89] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 889–898. Association for Computational Linguistics, 2018.
6.3.4

[90] Alhussein Fawzi, Horst Samulowitz, Deepak Turaga, and Pascal Frossard. Adaptive data
augmentation for image classification. In International Conference on Image Processing,
pages 3688–3692, 2016. 3.2, 7.3

[91] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Symposium on
Discrete Algorithms, pages 1434–1453, 2013. 4.6

[92] First Conference on Machine Translation. WMT. http://www.statmt.org/wmt
16/, 2016. 5.2

[93] William Fithian and Trevor Hastie. Local case-control sampling: Efficient subsampling in
imbalanced data sets. The Annals of Statistics, 42(5):1693–1724, 2014. 3.4.2

[94] OpenAI Forums. Knowledge Cutoff Data of September 2021. 2023. 4

[95] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and Keith
Winstein. Salsify: Low-latency network video through tighter integration between a video
codec and a transport protocol. In USENIX Symposium on Networked Systems Design and
Implementation, pages 267–282, 2018. 4.4.3

[96] Roy Frostig, Matthew Johnson, and Chris Leary. Compiling machine learning programs
via high-level tracing. Systems for Machine Learning, 2018. 1, 1.1.2

[97] Dan Fu and Gabriel Guimaraes. Using compression to speed up image classification in
artificial neural networks. Technical report, 2016. 4.6

[98] Philip Gage. A new algorithm for data compression. https://www.drdobbs.com/
a-new-algorithm-for-data-compression/184402829, 1994. 6.3.4, 7.2.5,
.2

[99] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor
Leahy. The Pile: An 800gb dataset of diverse text for language modeling. arXiv preprint

110

http://www.statmt.org/wmt16/
http://www.statmt.org/wmt16/
https://www.drdobbs.com/a-new-algorithm-for-data-compression/184402829
https://www.drdobbs.com/a-new-algorithm-for-data-compression/184402829


arXiv:2101.00027, 2020. 6.5.3

[100] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria
Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation. https://github.com/EleutherAI/lm
-evaluation-harness, September 2021. 6.2

[101] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better
few-shot learners. In Proceedings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 3816–3830, Online, August 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.295. 6.3.2

[102] GCPDiskBandwidth. Gcpdiskbandwidth. https://cloud.google.com/compu
te/docs/disks/performance, 2021. Accessed: 07-26-2021. 4.1

[103] GCPNetworkBandwidth. Gcpnetworkbandwidth. https://cloud.google.com/c
ompute/docs/network-bandwidth, 2021. Accessed: 07-26-2021. 4.1

[104] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith.
RealToxicityPrompts: Evaluating neural toxic degeneration in language models. In Find-
ings of the Association for Computational Linguistics: EMNLP 2020, pages 3356–3369.
Association for Computational Linguistics, 2020. 6.2

[105] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,
and Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing
shape bias improves accuracy and robustness. In International Conference on Learning
Representations, 2019. 4.6

[106] Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system: Algorithms,
business value, and innovation. ACM Transactions on Management Information Systems, 6
(4), dec 2016. 1

[107] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, 2014. 3.2

[108] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org. 1

[109] Google Cloud. TPU Troubleshooting. https://cloud.google.com/tpu/docs/
troubleshooting, 2021. 1.1.2

[110] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:
Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677, 2017. 4.4.3, 4.5.1, 4.6

[111] Goetz Graefe. Volcano - an extensible and parallel query evaluation system. Transactions
on Knowledge and Data Engineering, 1994. 2.1.1, 7.2.2

[112] Benjamin Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014. 3.1,
3.2

111

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://cloud.google.com/compute/docs/disks/performance
https://cloud.google.com/compute/docs/disks/performance
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
http://www.deeplearningbook.org
https://cloud.google.com/tpu/docs/troubleshooting
https://cloud.google.com/tpu/docs/troubleshooting


[113] Sam Gross and Michael Wilber. Training and investigating residual nets. 2016. 1.3.1

[114] Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, and Jason Yosinski. Faster neural
networks straight from JPEG. In Advances in Neural Information Processing Systems,
2018. 4.6

[115] Joaquin Anton Guirao, Krzysztof Lecki, Janusz Lisiecki, Serge Panev, Michal Szolucha,
Albert Wolant, and Michal Zientkiewicz. Fast AI Data Preprocessing with NVIDIA DALI.
https://devblogs.nvidia.com/fast-ai-data-preprocessing-wit
h-nvidia-dali, 2019. 2.1.1

[116] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in Neural Information Processing Systems, 2015.
4.6

[117] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and
William J. Dally. EIE: efficient inference engine on compressed deep neural network. In
International Symposium on Computer Architecture, pages 243–254, 2016. 4.6

[118] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. In International
Conference on Learning Representations, 2016. 4.6

[119] Mor Harchol-Balter. Performance modeling and design of computer systems: queueing
theory in action. Cambridge University Press, 1st edition, 2013. 4.4.1, 7.2.2

[120] Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece
Kamar. ToxiGen: A large-scale machine-generated dataset for adversarial and implicit
hate speech detection. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 3309–3326. Association for
Computational Linguistics, 2022. 6.5.3

[121] Ahmed Hassan, Sara Noeman, and Hany Hassan. Language independent text correction
using finite state automata. In Proceedings of the Third International Joint Conference on
Natural Language Processing: Volume-II, 2008. 6.4.4

[122] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhul-
gakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee, Jason
Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. Applied
machine learning at facebook: A datacenter infrastructure perspective. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages
620–629, 2018. doi: 10.1109/HPCA.2018.00059. 1.2

[123] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Conference on Computer Vision and Pattern Recognition, 2016.
2.2.2, 4.1, 4.4.1, 4.4.3, 4.5.1, 5.2

[124] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European Conference on Computer Vision, pages 630–645. Springer,
2016. 3.5

[125] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.

112

https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali


Elsevier, 2011. 7.2.5

[126] David C. Hoaglin and Roy E. Welsch. The hat matrix in regression and ANOVA. The
American Statistician, 32(1):17–22, 1978. 3.2

[127] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of
neural text degeneration. In International Conference on Learning Representations, 2020.
6.3.4

[128] Sara Hooker. The hardware lottery. Communications of the ACM, 64(12):58–65, nov 2021.
1

[129] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. 3rd edition, 2007. 6.3.3

[130] HuggingFace. run generation.py. https://github.com/huggingface/trans
formers/blob/main/examples/pytorch/text-generation/run gen
eration.py, 2021. 6.5.1

[131] Huggingface. bad words ids not working. https://github.com/huggingface
/transformers/issues/17504, 2022. 6.6

[132] Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural network design
using weights +1, 0, and −1. In Workshop on Signal Processing Systems, 2014. 4.6

[133] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. In Advances in
Neural Information Processing Systems, volume 32, 2019. 4.6

[134] Alexander Isenko, Ruben Mayer, Jedele Jeffrey, and Hans-Arno Jacobsen. Where is
my training bottleneck? Hidden trade-offs in deep learning preprocessing pipelines. In
International Conference on Management of Data, 2022. 1.3.1, 5.3

[135] Vilas Jagannath, Zuoning Yin, and Mihai Budiu. Monitoring and debugging DryadLINQ ap-
plications with daphne. In International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum, 2011. 5.3

[136] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang
Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangxiao Hu, Shaohuai Shi,
and Xiaowen Chu. Highly scalable deep learning training system with mixed-precision:
Training ImageNet in four minutes. In Neural Information Processing Systems Workshop
on Systems for ML, 2018. 4.6

[137] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. Dissecting the
graphcore IPU architecture via microbenchmarking. arXiv preprint arXiv:1912.03413,
2019. 1.1.2

[138] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. How can we know what
language models know? Transactions of the Association for Computational Linguistics, 8:
423–438, 2020. doi: 10.1162/tacl a 00324. 6.3.2

[139] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin,
Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben

113

https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-generation/run_generation.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-generation/run_generation.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-generation/run_generation.py
https://github.com/huggingface/transformers/issues/17504
https://github.com/huggingface/transformers/issues/17504


Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony,
Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter,
Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick
Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-datacenter performance analysis of a tensor processing unit. In International Symposium
on Computer Architecture, volume 45, page 1–12, 2017. 4.1

[140] Norman P Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon,
Cliff Young, and David Patterson. A domain-specific supercomputer for training deep
neural networks. Communications of the ACM, 2020. 1.1.2, 1.3.1, 2.2.2, 4.1, 5.2

[141] Norman P. Jouppi, George Kurian, Sheng Li, Peter C. Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Cliff Young, Xiaoping
Zhou, Zongwei Zhou, and David A. Patterson. TPU v4: An optically reconfigurable
supercomputer for machine learning with hardware support for embeddings. arXiv preprint
arXiv:2304.01433, 2023. 1.3.1, 7.3

[142] JPEGTran. JPEGTran libjpeg.txt. https://github.com/cloudflare/jpegtr
an/blob/master/libjpeg.txt, 2015. Accessed: 07-26-2021. 4.2

[143] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex
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Extended Algorithms and Examples

We provide an extended version of Plumber’s resource accounted rates in Section .1 For ReLM,
we provide an example of ambiguous automaton construction in Section .2 and the ReLM API in
Section .3.

.1 Plumber: Extended Resource Accounted Rates
The LP formulation in the main text hinges on our ability to predict two resource accounted
rates: 1 the rate Ri of a Dataset given its configuration (e.g., number of cores assigned to
each operation) and how that rate would change when one operation is assigned more cores, and
2 the number of bytes needed to cache a Dataset at a given operation, accounting for bytes

added/removed by data transformations applied by prior operations.
The intuition behind the computation of 1 is that the rate of each operation from the source

(e.g., data read from disk into the pipeline) to the root (i.e., minibatches exiting the pipeline)
differs. For example, map operations may filter or amplify their inputs. We therefore begin with
the root of the Dataset tree and traverse the pipeline until the source, accounting for every
operation’s rate in the process. The intuition behind the computation of 2 is that the total data
that needs to be cached is known at the source (i.e., when it enters the pipeline) and needs to be
recomputed after each operation is applied. We therefore begin with the source of the Dataset
tree and traverse the pipeline until the root.

1 Work Completion Rates. In input pipelines, each Dataset operation is potentially
characterized by different units of work. Looking at Figure 2.2, we do not know how many
bytes are in a minibatch or how Map operations turn bytes into training examples, but we
can observe that 128 images are batched into a minibatch. We thus rely on visit ratios from
Operational Analysis [72], i.e., normalization constants, to compute the equivalent of root units,
i.e., minibatches per second per core, that are generated by the source. Each Dataset operation
is characterized by its local rate, ri, which is defined as the average items of work completed per
second per core, and can be computed by tracking two items: the items arrived and the items
completed. The visit ratio, Vi, then, for a given Dataset operation is the constant that converts
the local rate, ri, to the global rate, Ri, which expresses the average amount of work completed
by the operation in minibatches per second per core, i.e., the unit of work of the Dataset root
given one core. Starting with the pipeline’s root visit ratio, V0, which is equal to 1, Plumber
computes each Dataset operation’s visit ratio using Vi = (Ci/Ci−1)× (Ci−1/C0) = ri × Vi−1,
where Ci is the average number of items of work completed at Dataset operation i.

While the pipeline is running, Plumber collects counters on items arrived and completed
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across all operations of a given Dataset, which is used to model CPU performance. This rests
on two simplifying assumptions, which do not affect Plumber’s efficiency in practice (§5.2):
CPU work per item is fixed, and there is linear scaling of operation performance. Extending this
approach to measure disk bandwidth usage only requires measuring filesystem reads and dividing
by the wallclock time of the process. Converting usage to utilization is a matter of dividing the
bandwidth usage by the available bandwidth, which Plumber measures by profiling the training
directory using fio [25].

2 Cache Amplification Rates. In ML settings, the benefit of caching is heavily skewed
toward caching the entire disk-resident data—there is no locality due to random sampling. The
fastest caching solution is one that is closest to the root of the Dataset, while remaining in
memory. We note that random Datasets, which call into randomized functions, do not qualify
for caching. By virtue of being random, their effective size is infinite—often, one can continue
generating unique results forever.

To determine memory requirements for caching, Plumber assumes that files are consumed
to completion and tracks the size of all input files (i.e., bytes read until end of file) used during
the pipeline’s operation. Once a new file is recorded, the file is added into a system-wide map
tracking filename to bytes used. The space requirements are moderate for realistic use-cases; only
two integers are needed per filename with hashing, and the number of files is likely small due to
large files (e.g., ImageNet has 1024 files).

To calculate how many bytes it takes to materialize each Dataset, we approximate two
statistics: the number of elements (cardinality), ni, and the average size of each element (byte
ratio), bi. For a data source, we have the Dataset size in bytes:

∑
f∈F Sf , where Sf is the size

of a file f in the set of recorded files, F. As the source data flows through the input pipeline, ni
and bi will change as training examples are grouped, filtered, and/or transformed (e.g., parsed and
decoded in Map). To build intuition, let us revisit Figure 2.2. bi for Map is just the “decompression
ratio” from records to images, which is often approximated to be 10× for JPEG. Likewise, the
Batch makes bi 128 times bigger in the process of grouping, while making ni 128 times smaller.
Therefore, we can conclude the root Dataset is an order of magnitude larger than it was at the
source.

We first tackle how to solve ni. For exposition, assume the common case that we only have
one source (e.g., Figure 2.2) and the source is finite—we will be propagating our analysis up from
this source until we hit the root. Readers emit elements at per-row or per-record granularity, thus,
for source Datasets, we overload ri from visit ratios to denote this ratio (though it is a ratio of
records/byte). The initial dataset size at source i is thus ni = (

∑
f∈F Sf )× ri. For a Dataset, i,

the subsequent Dataset, j, follows the recurrence nj = rj × ni, where rj follows previously
defined semantics from visit ratios. Intuitively, we convert the size in bytes to the size in records
to the size in training examples, and so on. Special care must be taken to account for Datasets
repeating examples or truncating the examples stream. Generalizing to multiple children (i.e.,
sources) requires some Dataset-specific aggregation (e.g., sum).

To obtain bi, we can use entirely local information. Plumber tracks one local quantity, the
bytes-per-element, bi = bytes produced(i)/Ci, where the numerator is a counter for bytes
produced at i, and Ci is the counter for number of completions from i. The accuracy of estimating
the materialized size with bi × ni depends on the variance of each component’s estimate.

To deal with large datasets, which may take longer than the Plumber tracing time to iterate
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through, we obtain a subsample, s, of the set of file sizes, S, which we can use to approximate
S. If we have n of m samples, we can simply rescale the subsampled size,

∑
n s, by m/n to

get an estimate of the full dataset size, m
n
× E[

∑
n s]. Empirically, the estimate is sufficiently

accurate: 1% of files gives relative error of 1% ImageNet and 2% for COCO, and 5 file gives less
than 2% relative error for WMT datasets. This allows Plumber to get a tight estimate of the
true dataset size in seconds with sufficient read parallelism. The normal distribution of error we
observe matches intuition that the Central Limit Theorem applies.

.2 ReLM: Ambiguous Automaton Construction

We describe how to implement a transducer composition-like algorithm to construct the full
(ambiguous) automaton. Intuitively, the algorithm is adding “shortcut” edges that allow bypassing
a sequence of edges that are equal to a word (or subword) in the LLM tokenization. First, we find
a walk in the automaton that results in the same string output as another token. Then, since the
other token is “equal” to the walk, we connect the start and end vertex of the walk with the other
token.

For example, if the walk in the automaton traverses T–h–e, this walk is equivalent with respect
to output string to the token representing The. Since T–h–e is a valid walk in the automaton (i.e.,
yields a valid substring from the particular state in the automaton), and The is equivalent to the
walk, we can add a “shortcut” edge connecting the starting and ending vertex of T–h–e with the
edge value of The. One can view this procedure as an optional rewrite [200], where the sequence
T–h–e is optionally rewritten to The.

We note that while the examples we provide are tailored toward the ASCII subset of Unicode,
an implementation covering the full Unicode range requires care in handling Byte-Pair Encodings
(BPE) [98, 236]. Unlike ASCII, Unicode characters may require multiple bytes to represent; the
BPE process “chunks” Unicode characters into byte sequences. It is thus necessary to break up the
characters into byte sequences via rewrites before the algorithm presented here is run and while
(sub)words representing tokens are being matched against these byte sequences in the automaton.

We show the algorithm pseudo-code in Algorithm 1 and Algorithm 2. Algorithm 1 is an
inner method of Algorithm 2. In Algorithm 1, DFSMatch is standard depth-first search (DFS)
matching applied from the vertex and matching on edges corresponding to word. We assume that
DFSMatch is implemented such that each edge (character) in the word is matched or not in O(1)
time e.g., if the edges are represented in a dense array or hashtable. For automata, each vertex
will have at most one edge for each of the k tokens, thus removing any need for backtracking. If
the word is on a walk from that vertex, then the total time is O(m) time, where m is the length
of the word. Over all vertices, this compounds to O(V m) time and returns O(V ) edges. In
Algorithm 2, we loop k times, where k is the number of tokens/words in the LLM’s tokenization
scheme. Combining with the prior result, the runtime is O(V mmaxk), where mmax is the size of
the largest m.
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.3 Extended ReLM API Example
Figure 2 provides an example of the full API that can be used to generate the George Washington
birth date example from Figure 6.1. Compared to Figure 6.4, there are more parameters to
configure, such as the search strategy (e.g., shortest path or random sampling) and the tokenization
options (e.g., canonical or all). Additionally, the role of the tokenizer is now made explicit. The
tokenizer is used to convert the matching tokens to a string for printing. Note that only the first
match is shown.

Algorithm 1 Get Connecting Walks (DFS)
input: Automaton automaton
input: String word
all matching walks = []
for vertex in automaton.vertices() do

matching walk = DFSMatch(automaton, vertex, word)
if matching walk then

all matching walks.append(matching walk)
end if

end for
return all matching walks

Algorithm 2 Add Ambiguous Edges Algorithm (DFS)
input: Automaton automaton
input: Dict[String,Int] word token map
for word in word token map.keys() do

if len(word) > 1 then
walks = GetConnectingWalks(automaton, word)
token = word token map[word]
for walk in walks do

automaton.addEdge(walk.vertex from, walk.vertex to, token)
end for

end if
end for
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1 query_string = relm.QueryString(
2 query_str=("George Washington was born on "
3 "((January)|(February)|(March)|(April)|"
4 "(May)|(June)|(July)|(August)|(September)|"
5 "(October)|(November)|(December)) "
6 "[0-9]{1,2}, [0-9]{4}"),
7 prefix_str="George Washington was born on"
8 )
9 query = relm.SimpleSearchQuery(

10 query_string=query_string,
11 search_strategy=relm.QuerySearchStrategy.SHORTEST_PATH,
12 tokenization_strategy=relm.QueryTokenizationStrategy.ALL_TOKENS,
13 top_k_sampling=None,
14 sequence_length=None)
15 ret = relm.search(model, tokenizer, query)
16 for x in ret: # Print resulting strings
17 print(tokenizer.decode(x)) # George Washington was born on July 4, 1732

Figure 2: Python code for the George Washington birth date example in Figure 6.1. model and
tokenizer are LLM-specific objects provided by external libraries. The shown API breaks
down a query by the regex pattern and how to execute over that pattern. Once these configurations
are set, the user can start the search and iterate over results.
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