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Abstract

Advances in genomics allow researchers to measure the complete set of transcripts
in cells. These transcripts include messenger RNAs (which encode for proteins) and
microRNAs, short RNAs that play an important regulatory role in cellular networks.
While this data is a great resource for reconstructing the activity of networks in cells,
it also presents several computational challenges. These challenges include the data
collection stage which often results in incomplete and noisy measurement, developing
methods to integrate several experiments within and across species, and designing
methods that can use this data to map the interactions and networks that are activated
in specific conditions. Novel and efficient algorithms are required to successfully
address these challenges.

In this thesis, we present probabilistic models to address the set of challenges
associated with expression data. First, we present a novel probabilistic error correction
method for RNA-Seq reads. RNA-Seq generates large and comprehensive datasets
that have revolutionized our ability to accurately recover the set of transcripts in cells.
However, sequencing reads inevitably contain errors, which affect all downstream
analyses. To address these problems, we develop an efficient hidden Markov model-
based error correctionmethod for RNA-Seq data . Second, for the analysis of expression
data across species, we develop clustering and distance function learning methods for
querying large expression databases. The methods use a Dirichlet Process Mixture
Model with latentmatchings and infer soft assignments between genes in two species to
allow comparison and clustering across species. Third, we introduce new probabilistic
models to integrate expression and interaction data in order to predict targets and
networks regulated by microRNAs.

Combined, the methods developed in this thesis provide a solution to the pipeline
of expression analysis used by experimentalists when performing expression experi-
ments.
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1Introduction
The last couple decades have seen an explosion of biological data generated using ad-
vanced high-throughput methods such as microarray or deep sequencing technology.
The emergence of large datasets leads to a new era of data-driven biology which requires
new methods in biology, computer science, and machine learning. Many studies utilize
and integrate different datasets to uncover the complex dynamics underlying biological
systems. The new technologies and studies raise the need for computational methods
that are robust against noise and can handle specific data characteristics arising from
different technological limitations, experimental design, and measurement errors to sup-
port these types of studies [2]. Moreover, methods integrating information from different
experiments or different sources of data are one of the keys to overcome the low signal
to noise ratio and for insights into difficult biological problems [3]. Machine learning
methods, specifically probabilistic models, which are the focus of this thesis, promise to
help analyze these large biological datasets and can lead to testable hypotheses improving
our understanding of biological systems of interest.

This thesis proposes new computational methods that address challenges arising from
the study of gene expression. These challenges include preprocessing data, querying large
databases of experiments to facilitate cross-species analysis, and mapping expression
data onto regulatory interaction networks. Before elaborating on these challenges and
providing an overview of our contributions, we briefly review the technologies that are
used tomeasure gene expression in cells and concepts that are important for the discussion
in this thesis.

1.1 Growing amount of genomics data

1.1.1 Gene expression and regulation process

Gene expression is the process, in which the genetic code stored in DNA is used to synthe-
size functional gene products (Figure 1.1). This highly regulated process, linking the static
DNA code to the dynamics of living cells, underlines many biological processes including
cell differentiation, cell cycle, development, metabolism, apoptosis, and signaling [4].
Recent literature has reported the link between the dysregulation of gene expression and
complex human diseases such as cancer [5] or activity of viruses that specifically target
pathways in the regulatory network to weaken the host immune response [6]. While gene
expression is a complex system, we focus our efforts on transcription, the first step of ex-
pression, during which DNA is copied to generate transcripts including messenger RNAs
(mRNAs) as well as other short RNAs (such as microRNAs). These transcripts convey
genetic information from DNA and are transported from the nucleus to the cytoplasm,
where ribosomes carry out the instructions to assemble proteins.

The transcriptome includes the total set of transcripts, RNA molecules, present in a
particular sample or tissue at a given time. Messenger RNAs, which composes a large
part of the transcriptome, carrying the coding information out of the nucleous to the
sites of protein synthesis, reflects the amount of genetic code transcribed or the gene
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1. Introduction

Figure 1.1: An overview of the information flow in gene expression. @2010 Nature
Education All rights reserved.

activity. Several important processes concerning mRNAs include splicing, where certain
non-coding sequences (introns) are removed from the pre-mRNA; editing where certain
nucleotide positions are changed after transcription; and mRNA denadenylation and
decay. mRNAs can also be post-transcriptionally regulated by proteins that bind to specific
mRNA targets and affect their translational rates. One of the key post-transcriptional
regulation processes is driven by microRNAs.

MicroRNAs (miRNAs) MicroRNAs are a family of small, non-coding RNAs that reg-
ulate gene expression at the post-transcriptional level. Since the initial discovery of the
two miRNAs in Caenorhabditis elegan, hundreds of microRNAs have been found in many
eukaryotes, including mammals, worms, flies, and plants [7]. MicroRNAs are single-
stranded RNAs of 19-25 nucleotides long, initially transcribed by RNA polymerase II
(RNAPII) either from miRNA genes or from introns of protein-encoding genes. These
primary precursor RNAs (pri-miRNAs) contain one or more stem-loops, each containing
mature miRNA sequences. Pri-miRNAs are processed through two main steps catalysed
by two members of the RNase III family of enzymes, Drosha and Dicer, operating in
complexes with dsRNA-binding proteins (dsRBPs). The first nuclear step produces pre-
miRNAs, which are transported from the nucleus into the cytoplasm. In the following
step, the pre-miRNA hairpin is cleaved by the enzyme Dicer yielding a miRNA-miRNA*
duplex about 22 nucleotides in length. One strand of this duplex is incorporated into
an miRNA-induced silencing complex (miRISC), while the other strand is released and
degraded [8].

MiRNAs are regulators of post-transcriptional gene expression in a diverse range of
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Figure 1.2: The role of MicroRNAs. @2009 National Cancer Insitute All rights reserved.

biological functions such as cell differentiation, division, and apoptosis. MicroRNAs
were recently discovered as a class of regulatory RNA molecules that regulate the levels
of messenger RNAs (mRNAs) (which are later translated to proteins) by binding and
inhibiting their specific targets [9]. Most miRNAs imperfectly bind to sequences in the
3’-UTR of target mRNAs based on Watson-Crick complementary, down-regulate the
expression of the targets, and inhibit protein synthesis by either repressing translation or
promoting mRNA deadenylation and decay (Figure 1.2). It has been found that miRNA
regulation is very ubiquitous as one microRNA can target thousands of genes. Different
combinations of miRNAs are expressed in different cell types and coordinately regulate
cell-specific targets [7]. Expression profiles of miRNAs have also been used to predict
cancer survival, andmiRNAdysregulation has also been linked tomany inherited diseases
and cancers [10]. These findings suggest that miRNAs are important regulators of a wide
range of cellular processes.

Mapping interactions between genes and RNA transcripts to create a complex regula-
tory network is one particular subject of this thesis.
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1.1.2 Transcriptome analysis and expression data

Unlike the genome, which is static and relatively fixed for a particular cell type, the tran-
scriptome is dynamic and reflects how gene activity varies across cells. These variations
are important because they underline a wide range of cellular activities, developmental
processes as well as differences between healthy and disease tissues. Transcriptome anal-
ysis can explain the bridge between the genetic code and the functional gene product
and phenotype by using genomics data to explore gene transcription, key regulators,
and interaction between RNA molecules. Therefore, it is an important tool to study the
complex dynamics of cells, human diseases, and for developing new drugs.

Below we discuss the technologies used to determine expression levels and highlight
features that lead to challenges when performing downstream analysis.

Microarray technology

Figure 1.3: Hybridization to an Affymetrix array. Other brands of microarray work
similarly. @2007 Affymetrix All rights reserved.

Over the last decade, microarrays have became a de facto tool for scientists to measure
genome-wide transcription levels. This high-throughput technology allows the activity
of thousand genes to be quantified in one pre-manufactured chip. The technology relies
on a sequence-based design and hybridization to quantify expression levels of a set of
known transcripts (Figure 1.3). Since hybridization requires high abundance of biological
materials, amplification is needed, making microarrays less sensitive to lowly expressed
genes.

Each chip contains thousands of DNA probes which are short sequences of genes for
profiling. RNA material is extracted from samples or tissues and RNA molecules are
broken into small pieces, purified and amplified for detection. These small pieces are used
as substrates for reverse transcription in the presence of fluor-derivatized nucleotides (most
commonly Cy3 and Cy5 dyes). The samples containing dye-labeled cDNAs are hybridized
onto a microarray chip. The arrays are scanned in a specialized machine to visualize the
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1.1. Growing amount of genomics data

fluorescence for quantifying the hybridization intensity of each probe. Computational
tools analyze the scanned images, subtract background noise using statistical models and
eventually output the detected gene expression levels for each gene.

Unfortunately, although microarrays provide a very cost-effective means for assessing
the transcriptome, the technology suffers from some technical limitations. First, the inter
and intra-platform reproducibility of microarray measurements has been questioned [11],
mostly due to the hybridization noise. Second, measuring hybridization intensity for
individual probes to infer the transcript abundance level is difficult, requiring careful de-
sign of probes with sufficient sensitivity and specificity to avoid cross-hybridization. This
raises a third limitation where probe design requires existing prior sequence information
of genes or transcripts. In many cases, this knowledge is not available such as in detection
of new transcripts and isoforms, or post-transcriptional modifications, or genetic variants
in complex diseases such as cancers.

Sequencing technology

Figure 1.4: Improvements of sequencing technology. Source: [12].

The sequencing technology dates back to 1977, when Fred Sanger and Alan R. Coulson
introduced methods to determine DNA sequences [13]. On the wake of the Human
Genome Project, this sequencing method has been refined through parallelization and
automation into a much more cost-effective and reliable tool. In 2005, 454 Life Sciences
launched the first next-generation DNA sequencer that could read one gigabase of DNA
sequence in a couple of days. Subsequently, Solexa (later bought by Illumina) has intro-
duced new sequencers that improved on both speed and cost. In recent years, there has
been a remarkable improvement in the rate of sequencing (Figure 1.4).
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RNA sequencing (RNA-Seq) RNA Sequencing (RNA-Seq) [14] is a recently developed
approach to transcriptome measurement that employs next generation sequencing ma-
chinery for a complete assessment of RNAs in a sample. Compared to hybridization
approaches, e.g. microarrays, RNA-Seq provides several key advantages. It does not
require knowledge of the sequences necessary to design probes, hence it allows detec-
tion and quantification of novel transcripts, new RNA molecules, genetic variants, and
complex transcriptional events. It also does not suffer from high background noise due to
cross-hybridization as in microarray technology. RNA-Seq can provide precise locations
of transcription boundaries facilitating discovery of new isoforms, alternative splicing
events, fusion genes or trans-splicings.

Each sequencing run could produce a few hundred million reads of 50-200 bases
in length1. For instance, Illumina’s HiSeq2000 outputs up to 35Gb per day for a 2×100
bp run2. RNA-Seq data is massive and without computational tools, it is impossible to
analyze this data. Problems in storing, searching, assembling RNA-Seq reads have been
actively studied recently.

Expression databases
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Figure 1.5: Growth of microarray databases. Growth in microarray datasets deposited
in GEO in the last decade. The growth resembles the impressive growth of sequence
databases in the 90’s.

The lower cost, and the increased speed in generating gene expression data, has led to
a tremendous increase in the number of datasets produced over the years (Figure 1.5). Col-
laborative efforts have created many public repositories for genomics experiments such as
the Gene Expression Omnibus (GEO), the ArrayExpress Archive, and the Sequence Read
Archive. These databases, which archive and freely distribute microarray, next-generation
sequencing, and other forms of high-throughput data, provide data storage, encourage
data sharing among researchers, and in some cases deliver curated data for follow-up
analyses. In addition, many journals require authors to public deposit their data before

1as of May 2013
2http://www.illumina.com/Documents/systems/hiseq/datasheet_hiseq_systems.pdf, May 2013
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1.2. Review of probabilistic models

publication. This creates challenges to store, archive and analyze data, especially when
analysis requires integrating many different data sources across different experiments.

1.2 Review of probabilistic models
Throughout this thesis, we employ probabilistic models to help analyze noisy data, rec-
ognize patterns, and make inference and learning about the generative process of data.
Probabilistic models have been known to perform well when dealing with noisy data, and
provide confidence values. We discuss the detailed computational models in the specific
chapters. Here we provide a brief overview of the general classes of probabilistic models
that are used in this thesis.

Probabilistic graphical models Graphical models provide a framework to represent
complex distributions over variables using a graph-based representation. Variables are
nodes in the graph and dependency between variables are directed or undirected edges.
This representation is a natural way to describe the model and compactly describes the
dependencies. It allows inference about some variables given observations of the other
variables, learning of parameters, making decision, and finding the most appropriate
dependency structure of model variables for the observed data.

1.2.1 Nonparametric Bayes: infinite models

Fitting a probabilistic model to data is hard and requires choosing the right model com-
plexity to balance between bias and variance, or solving the famousmodel section problem.
Model selection is an important problem when analyzing real world data. Many clus-
tering algorithms, including Gaussian mixture models, require as an input the number
of clusters or in other models, the number of features is not known. In addition to do-
main knowledge, this model selection question can be addressed using cross validation.
Bayesian nonparametric methods provide an alternative solution allowing the complexity
of the model to grow based on the amount of available data. Under-fitting is addressed by
the fact that the model allows for unbounded complexity while over-fitting is mitigated
by the Bayesian assumption. The model which we proposed in this thesis use two popular
infinite models: the Dirichlet Process Mixture Model and the Indian Buffet Process.

Dirichlet Process Mixture Model

Dirichlet Process The Dirichlet process is a nonparametric prior distribution for par-
titions over a set of objects. We could describe the Dirichlet process by the Chinese
restaurant process, a discrete-time process. Consider N customers going to a chinese
restaurant with an infinite number of tables. The first customer enters the restaurant and
sits at a random table. The following customers enter one after the others and choose
tables as follows: the nth customer either sits at an empty table with probability α

n−1+α or
an occupied table with probability c

n−1+α , where c is the number of customers sitting at
the table.
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Dirichlet Process Mixture Model (DPMM) Dirichlet process has been used as a non-
parametric prior on the parameters of a mixture model. This model is referred to as
Dirichlet Process Mixture Model. In this model, the mixture membership variables are
given a Dirichlet process prior. The number of clusters is inferred from the data.

Indian Buffet Process

We also use a binary matrix Z to represent interactions between miRNAs and mRNAs in
our model. Griffiths and Ghahramani [15] proposed the Indian Buffet Process (IBP) as a
nonparametric prior distribution on sparse binary matrices Z. The IBP can be derived
from a simple stochastic process, described by a culinary metaphor. In this metaphor,
there are N customers (entities) entering a restaurant and choosing from an infinite array
of dishes (groups). The first customer tries Poisson(α) dishes, where α is a parameter.
The remaining customers enter one after the others. The ith customer tries a previously
sampled dish k with probability mk

i , where mk is the number of previous customers who
have sampled this dish. He then samples a Poisson( α

i ) number of new dishes. This process
defines an exchangeable distribution on the equivalence classes of Z, which are the set of
binary matrices that map to the same left-ordered binary matrices [15]. Exchangeability
means that the order of the customers does not affect the distribution and that permutation
of the data does not change the resulting likelihood.

1.3 Overview of this thesis
Advances in genomics allow researchers to quantify the set of transcripts in cells at a low
cost and much higher efficiency than ever before. While this expression data is a great
resource for reconstructing the activity of networks in the cells, it also presents several
challenges. These challenges begin with the data collection stage since the technology
used to generate the data is not perfect, leading to incomplete and noisymeasurement. The
first part of this thesis discusses SEECER, a general method for preprocessing RNA-Seq
data, which improves many downstream analyses. Successful analysis of expression data
requires researchers to integrate experiments from multiple conditions and studies. One
particular type of analysis, cross-species study, compares and contrasts high throughput
data including gene expression across species to reveal an overall role of common genes
and processes underlying biological systems, and to study the differences between species
driving speciation and adaptation. The second part of this thesis develops methods to
facilitate cross-species analysis, namely querying of large expression databases and infer-
ring orthologs using expression data. The dynamics of expression data allows researchers
to construct regulatory networks and identify key regulators of gene expression. The last
part proposes two newmodels to infer condition-specific targets of miRNAs, an important
class of regulators.

Combined, the methods developed in this thesis provide an improvement to the
pipeline of expression analysis used by experimentalists when performing expression
experiments as summarized in Figure 1.6. These methods highlight the importance of
data preprocessing, modeling of data characteristics, and encapsulation of structure to
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model the underlying biology. Probabilistic models and efficient inference algorithms
allow us to scale these methods to handle large expression datasets.

Experimental
Design

Data
Analysis

Pattern
Recognition

Models and
Systems

1. Error Correction 
method for RNA-Seq

2. Cross-Species 
analysis

3. Mapping MiRNA 
regulation

Figure 1.6: Typical steps in analyzing genomics data.

1.4 Organization of this thesis
The thesis is organized as follows. Chapter 2 presents SEECER, a method for error
correction in RNA-Seq data and examines its performance through a series of analyses.
Chapter 3and 4 discuss our treatment of cross-species analysis of expression data. We
argue for the importance of querying large expression experiments and provide one
method for performing such queries. For integrating experiments across species, we
present the DPMMLM method, which allows discovery of “core” and “divergent” sets of
genes in cross-species with probabilistic assignments of genes. Chapter 5 and 6 introduce
two probabilistic models for inferring cooperative groups of regulatory miRNAs and
their gene targets. These models incorporate other data sources such as sequence-based
prediction databases and protein-protein interaction data. Finally, we conclude the thesis
in Chapter 7 with some discussions and several directions for future work.
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Collecting and preprocessing gene
expression data
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2SEECER: a probabilistic method for
error correction of RNA-Seq1

Transcriptome analysis has been revolutionized by next-generation sequencing tech-
nologies [17]. The sequencing of polyadenylated RNAs (RNA-Seq) is rapidly becoming
standard practice in the research community due to its ability to accurately measure
RNA levels [18, 19], detect alternative splicing [20], and RNA editing [21], determine
allele [22] and isoform specific expression [23, 24], and perform de novo transcriptome
assembly [25, 26, 27].

2.1 Introduction
Although RNA-Seq experiments are often more accurate than their microarray predeces-
sors [18, 23], they still exhibit a high error rate. These errors can have a large impact on
the downstream bioinformatics analysis and lead to wrong conclusions regarding the
set of transcribed mRNAs. One class of errors concerns biases in the abundance of read
sequences due to RNA priming preferences [28, 29], fragment size selection [30, 31], and
GC-content [32]. Sequencing errors, that are a result of mistakes in base calling of the
sequencer (mismatch), or the insertion or deletion of a base (indel), are another important
source of errors for which no general solution for RNA-Seq is currently available. For
example, error rates of up to 3.8% were observed when using Illumina’s GenomeAna-
lyzer [33]. Table 2.1 summarizes common errors and error rates for commercially available
platforms.

Instrument Primary Errors Single-pass Error Rate (%) Final Error Rate (%)

3730xl (capillary) Substitution 0.1− 1 0.1− 1
454, all models Indel 1 1
Illumina, all models Substitution ∼ 0.1 ∼ 0.1
Ion Torrent - all chips Indel ∼ 1 ∼ 1
SOLiD - 5500xl A-T bias ∼ 5 ≤ 0.1
Oxford Nanopore deletions ≥ 4 4
PacBio RS CG deletions ∼ 15 ≤ 15

Table 2.1: Error rates for several sequencing platforms. Source: [1]

A common approach to sequencing error removal is read trimming of bad quality bases
from the read end to improve downstream analysis [20, 34]. Such an approach reduces
the absolute amount of errors in the data, but can also lead to significant loss of data
which affects our ability to identify lowly expressed transcripts.

1 This work is published in [16].
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Anumber of approaches were primarily proposed for the correction ofDNA sequencing
data [35]. These methods use suffix trees [36, 37], k-mer indices [38, 39], and multiple
alignments [40]. While successful, these approaches are not always suited for RNA-Seq
data. Unlike genome sequencing which often results in uniform coverage, transcripts
exhibit non uniform expression levels. The only error correction method that we are
aware of that explicitly targets non uniform coverage data is Hammer [41]. Unfortunately,
Hammer cannot be used to correct reads as it only outputs corrected k-mers of much
shorter length. Even after contacting the authors of Hammer and using their implemen-
tation, we could not use it with standard methods for read alignment or assembly and
we are not aware of other papers that had. Finally, all the above methods often fail at the
border of alternatively spliced exons which may lead to false positive corrections.

Other sequencing error correction methods have been designed for tag-based sequenc-
ing or microRNA sequencing where the read spans the complete tag or transcript region
under investigation [42, 43, 44]. These methods, including SEED [44], are based on clus-
tering similar read sequences, but do not consider partially overlapping read sequences,
alternative splicing, and the correction of indel errors.

Here we present the first general method for SEquencing Error CorrEction in Rna-
seq data (SEECER) that specifically addresses the shortcomings of previous approaches.
SEECER is based on a probabilistic framework using hidden Markov models (HMMs).
SEECER can handle different coverage levels of transcripts, joins partially overlapping
reads into contigs to improve error correction, avoids the association of reads at exon
borders of alternative splicing events, and supports the correction of mismatch and indel
errors. Because SEECER does not rely on a reference genome, it is applicable to de novo
RNA-Seq. We tested SEECER using diverse human RNA-Seq datasets and show that the
error correction greatly improves performance of the downstream assembly and that it
significantly outperforms previous approaches. We next used SEECER to correct RNA-Seq
data for the de novo transcriptome assembly of the sea cucumber. The ability to accurately
analyze de novo RNA-Seq data allowed us to identify both conserved and novel transcripts,
and provided important insights into sea cucumber development.

2.2 Methods
Figure 2.1 presents a high level overview of SEECER’s read error correction. The overall
goal is to model each contig with a HMM allowing us to model substitutions, insertions,
and deletions. We start by selecting a random read from the set of reads that have not
yet been assigned to any HMM contig. Next, we extract (using a fast hashing of k-mers
method) all reads that overlap with the selected read in at least k nucleotides. Because
the subset of overlapping reads can be derived from alternatively spliced or repeated
segments, we next perform clustering of these reads selecting the most coherent subset
for forming the initial set of our HMM contig. Using this set we learn an initial HMM
using the alignment specified by the k-mer matches. This learning step can either directly
rely on the multiple alignment of reads or use standard HMM learning (Expectation
Maximization) but with a limited number of indels in order to keep the run time of the
Forward-Backward algorithm linear. Next, we use the consensus sequence defined by the
HMM to extract more reads from our unassigned set by looking for those that overlap
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Figure 2.1: An overview of SEECER. Step 1: We select a random read that has not yet
been assigned to any contig HMM. Next, we extract all reads with at least k consecutive
nucleotides that overlap with the selected read. Step 2: We cluster all reads and then select
the most coherent subset as the initial set of the contig HMM. Step 3: We learn an initial
HMM using the alignment specified by the k-mer matches of selected reads. Step 4: We
use the consensus sequence defined by the contig HMM to extract additional reads from
our unassigned set. These additional reads are used to extend the HMM in both directions.
Step 5: When no more reads can be found to extend the HMMwe determine for each of
the reads that were used to construct the HMM the likelihood of being generated by this
contig HMM. For those with a likelihood above a certain threshold, we use the HMM
consensus to correct errors. Step 6: We remove the reads that are assigned or corrected
from the unassigned pool.

the current consensus in k or more nucleotides. These additional reads likely overlap the
edges of the HMM (because those overlapping the center have been previously retrieved)
and so they can be used to extend the HMM in both directions in a similar manner to
the method used to construct the initial HMM. This process (learning HMM, retrieving
new overlapping reads, etc.) repeats until no more reads overlap the current HMM or the
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2. SEECER: a probabilistic method for error correction of RNA-Seq

entropy at the edges of the HMM exceeds a predefined threshold.
When the algorithm terminates for a HMM, we determine for each of the reads that

were used to construct the HMM how likely it is that they have been generated by this
contig HMM. For those reads where this likelihood is above a certain threshold, we use
the HMM consensus to correct errors in places where the read sequence disagrees with
the HMM. We use several filtering steps to avoid false positive corrections including
testing for the number of similar errors at the same position, the entropy of a position in
the HMM and the number of corrections made to a single read.

The rest of this section describes these steps in more details.

2.2.1 Overview of SEECER

Error correction of a read is done by trying to determine its context (overlapping reads
from the same transcript) and using these to identify and correct errors. SEECER builds a
set of contigs from reads where each contig is theoretically a subsequence of a transcript.
Ideally, we would like each contig to be exactly one transcript. However, in several cases
transcripts may share common subsequences due to sequence repeats or alternative
splicings. In such cases, each contig in our model represents an unbranched subsequence
of some transcript.

We use a profile hidden Markov model (HMM) to represent contigs. Such models
are appropriate for handling the various types of read errors we anticipate (including
substitutions and insertion / deletion). Due to several restrictions imposed by the read
data, even thoughwemay need to handle a large number of contigs, learning these HMMs
can be done efficiently (linearly in the size of the reads assigned to the contig).

2.2.2 Contig Hidden Markov Model (HMM)

Profile HMM is a HMM that was originally developed to model protein families in order
to allow multiple sequence alignment with gaps in the protein sequences. The set of
states in profile HMMs: Q = {I, D, M}, are respectively the insertion, deletion (gaps)
or match state. Emission probabilities in the match and insertion states corresponds
to a distribution of possible nucleotides for a particular position in the alignment. The
transition probabilities between all pairs of hidden states except for DarrowI are non-zero.
More details of profile HMMs can be found in [45].

Profile HMM provides a theoretical framework for aligning sequences from the same
family. Here, we extend profile HMMs to model the sequencing of reads from a contig.
We thus call this a contig HMM. Each contig HMM includes a consensus sequence based
on the set of reads assigned to this contig. The consensus is constructed from the most
probable output nucleotides of the match states. Using this consensus sequence we can
make correction to the reads assigned to this contig HMM.

In order to determine if the HMM parameters converged during learning, we use a
convergence criterion that is commonly used in the Machine learning community. We
stop the learning procedure for a contig HMM whenever the total absolute change in the
parameters of the models (emission probabilities) is within ε (in our case, ε = 1e−6).

The core functionality of SEECER is constructing the contig HMM from sequencing
reads. We now outline the details of each step in the following sections.
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2.2. Methods

Pool of reads We maintain a global pool P (Figure 2.1, step 0) of reads during the
execution of our method. SEECER creates many threads, each independently builds a
separate contig HMM. For each such HMM we start with a random read as the seed and
iteratively extend it using overlapping reads. To avoid collision between two HMMs (i.e.
prevent two threads from reconstructing the same transcript) we do the following. First,
we randomize the seeds so that threads running in parallel would likely use seeds from
different transcripts. In addition, we keep track of whether a read has been assigned to
a contig. When a thread tries to assign a read that has been assigned to another contig
HMM, we detect this as a collision and stop the construction of the new contig.

2.2.3 Selecting an initial set of reads for a contig HMM

Using the seed read we obtain an initial set of reads to use for constructing the HMM
contig (Figure 2.1, step 1). We build a k-mer hash dictionary, where the keys are k-mers
and the values are the indices of the reads and the position of the k-mers within them.
This hash table could be large, hence we discard k-mers appearing in less than c reads
(here we use c = 3). Counting of k-mers is efficiently done using Jellyfish [46], a parallel
k-mer counter. After counting, only k-mers that appear at least c times are stored in a hash
table that also records the positions of the k-mer within a read, and as a result, we keep
memory requirements as small as possible. Read sequences are saved in the ReadStore
from the SeqAn library [47].

SEECER starts the contig construction by selecting (without replacement) a random
read (or seed) s from the pool P of reads. We use the dictionary to retrieve a set S of reads
(S ⊆ P) such that each read in S shares at least one k-mer with the seed s. At the same
time, we record the locations of the shared k-mers among the reads to construct a multiple
sequence alignment AS . For each column i (1 ≤ i ≤ n) of AS , let Ti be the nucleotide that
is the most frequent in that column. Let T = {T1, . . . , Tn} be set of such nucleotides from
all columns. Using our current alignment we define mi = {x ∈ S : AS (x, i) 6= Ti}, that
is, mi are the set of reads that have a mismatch with Ti. For each read x, we also define
m(x) = {i : AS (x, i) 6= Ti}. In other words, m(x) are the set of columns for which x has
a mismatch with T.

T A A AC A TC G G A A
k-mer overlap

X X

X

X

XX X

X

X

XX

X

X

X

X X X

X X X

X X

Figure 2.2: An example of a multiple alignment of RNA-Seq reads with genuine sequenc-
ing errors (gray crosses) and intrinsic differences (red crosses). Cluster analysis on the
alignment columns marked with crosses is used to separate both sets of reads, see text.

17



2. SEECER: a probabilistic method for error correction of RNA-Seq

2.2.4 Cluster analysis of reads initially retrieved by k-mer overlaps

Because it is only based on k-mer matches, our initial set S is most likely from a mixture
of different transcripts. This situation arises from genomic repeats and alternative splices.
To build a homogenous contig, we use cluster analysis to identify the largest subset S∗ of
S which satisfies a quality measure.

In order to identify the largest subset, the main challenge is in distinguishing genuine
sequencing errors from other intrinsic differences such as polymorphisms in repeats.
Note that real biological differences should be supported by a set of reads with similar
mismatches to the consensus. This means that we could identify a set of reads associated
with intrinsic differences by looking at the intersections of mi’s. For example in Figure 2.2,
there are 4 reads with mismatches at red marked locations which means that most likely
these 4 reads are from a different transcript.

Based on this intuition we use the following steps (Figure 2.1, step 2) to identify S∗.
We consider only columns i such that |mi| > α since columns with smaller number of
mismatches are more likely due to errors. The value of α is empirically set to 3 as discussed
in Section 2.4.2. Let M be the set of these columns. For a pair of columns i and j, their
similarity score is defined as:

wij =

{
1

1+exp(−(|mi∩mj |−3)) , i 6= j

1, i = j.
(2.1)

Using this similarity score, we use spectral clustering [48] and a spectral relaxation of
k-means [49] to find clusters of columns in M. The number of clusters is determined by
spectral clustering [50]. For each cluster C, we remove all reads having at least five or half
of the mismatches at the columns in the cluster from S . The remaining reads constitute
S∗:

S∗ = {x ∈ S : ∀C, |m(x) ∩ C| < min(5,
|C|
2

)} . (2.2)

Spectral clustering of columns in M

Spectral clustering is a well studied clustering algorithm method, which has been shown
to performwell in practice. This clustering method is particularly suitable for our purpose
since it is robust against noise [50] and is implemented by matrix decompositions, which
are numerically stable and we can take advantage of existing optimized implementation.
The normalized Laplacian matrix is defined as:

L = I−D−1/2WD−1/2 (2.3)

where D is the diagonal degree matrix: di = ∑j wij.
Spectral clustering compute the first k eigenvectorsu1, . . . , uk ofL and letX = [u1, . . . , uk].

Instead of running k-means on the rows of X to assign cluster membership, we use a
spectral relaxation of k-means approach by a pivoted QR decomposition of X [49]. Given
the QR decomposition with a permutation P:

XTP = QR = Q[R11, R12] (2.4)
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where Q is a k-by-k orthogonal matrix, and R11 is a k-by-k upper triangular matrix. The
cluster membership of each column is determined by the row index of the largest element
in absolute value of the corresponding column of R̂ defined by:

R̂ = R−1
11 [R11, R12]PT = [I, R−1

11 R12]PT (2.5)

This approach yields a global optimal solution, hence is more stable and faster. The
number of clusters k is determined by the largest decrease in values of eigenvalues of the
normalized Laplacian matrix [50].

2.2.5 Learning the parameters of the contig HMM

SEECER has two learning options (Figure 2.1, step 3). In the first one, we implemented
online EM algorithm [51] in which we restricted the alignment to have at most v indels to
speed up the Forward-Backward algorithm. In the second one, we estimate the parameters
based on the alignment of reads using k-mer positions. The first option is much slower
than the second because we have to run Forward-Backward algorithm until the the EM
converges. The second option is faster because we only need to do one pass over all reads.
Our experiments show that the second option is good enough for correction and keeps
the runtime tractable, because often the set of reads is consistent and the amount of errors
is low, therefore yielding a good read alignment.

Implementation of the cluster analysis of reads retrieved by k-mer overlaps This clus-
tering step can be implemented efficiently as follows. It takes O(nL) time complexity,
where n and L are the number of reads and the read length respectively, to find the set M,
the columns with errors to the consensus. We then use Spectral Clustering (see above)
and compute the normalized Laplacian matrix between columns in M. This matrix is of
size |M|2 so this clustering step takes at most O(|M|3) additional time complexity. Note
that in total, this step only adds a linear computational cost in the number of reads and
|M| is upper bounded by L.

2.2.6 Consensus extension using Entropy

We discard positions in the contig HMMwith high entropy of the emission probabilities in
the match states. Entropy is a probabilistic statistic which captures the uncertainty in the
discrete distribution of emissions. Positions with high entropy (default max entropy=0.6)
indicate that the initial alignment estimation is not reliable because the set of reads is not
consistent. For example, at splitting positions in alternative splicing events, reads from
different isoforms may be retrieved, which will lead to high entropy. By discarding these
ambiguities, we improve the contig quality and reduce false positive corrections.

Contig Extension Before contig extension (Figure 2.1, step 4) all parameters learned
for the HMM thus far are fixed. We iteratively extend the contig HMM by repeatedly
retrieving more reads sharing k-mers with the new consensus using the dictionary. Each
additional read is partially aligned to the HMM and read bases that are not overlapping
the HMM are used to learn the newly extended columns of the HMM, repeating cluster
analysis, and entropy computation. This iterative process stops when we cannot retrieve
any new reads or extend the consensus further.
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Probabilistic assignment and correction of reads After the construction of the contig
HMM, each read that was used in the construction, is aligned to the HMM using Viterbi’s
algorithm. Reads whose log-likelihood of being generated by the contig HMM exceeds
a threshold of −1 are considered ’assigned’ to that HMM. We also restrict the number
of corrections for a single read to 5 to avoid making false positive corrections. Finally,
assigned reads are removed from the pool of reads (Figure 2.1, step 6).

Handling of ambiguous bases and poly-A tails We remove ambiguous bases (Ns) from
the read sequences before running SEECER by randomly substituting anNwith one of the
nucleotides (A,T,G,C). However, if there are regions with many Ns in a read, we discard
the whole read unless these regions occur at the end, in which case, we truncate and keep
the read if the new truncated length is at least half of the original. Reads that have more
than 70% of their bases all As or all Ts are also discarded, as they likely originate from
sequenced poly-A tails.

2.3 Experimental setup
The spliced alignment of reads was performed using TopHat version 1.3.3 and Bowtie
version 0.12.5 [52]. Number of aligned reads is reported for uniquely mapped reads
as described in [19]. Quake version 0.3 [38] was run as suggested in the manual for
RNA-Seq data, the k-mer size was set to 18 and the automatic cutoff mode was dis-
abled, instead all k-mers with count 1 were classified as erroneous. The other pro-
grams were run as follows: Coral version 1.4 [40] with the -illumina option, HiTEC
64bit version 1.0.2 [37] with options 57000000 4, and Echo version 1.12 [39] with options
--ncpu 8 -nh 1024 -b 2000000.

De novo RNA-Seq assembly While the ability to align individual reads is important,
another important goal of de novo RNA-Seq experiments is transcriptome assembly. To test
the impact of error correction on downstream assembly we used the Oases (version 0.2.5)
for the de novo RNA-Seq assembly for the human and sea cucumber datasets. Similar
to [27] we conducted a merged assembly for k = 21, . . . , 35 using default parameters.
SEED (version 1.5.1) was run with default parameters, and the resulting cluster sequences
were used as input to Oases as described in [44].

Computational infrastructures SEECER and other error correction methods were run
with a 8 core Intel Xeon CPU with 2.40GHz and 128GB RAM. The de novo assembly with
Oases was run on a 48 core AMD Opteron machine with 265GB RAM.

2.4 Robustness and comparison with other methods
We first tested SEECER on human data in order to compare it with other approaches that
are widely used for other sequencing data (primarily DNA sequencing as mentioned
above).
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Human datasets Three human paired-end RNA-seq datasets were downloaded for the
comparisons: 55M reads of length 45 bps (ID SRX011546, http://www.ncbi.nlm.nih.gov/
sra/) [22], 64M reads of length 76bps [53] were downloaded from the GEO database [54]
(Accession: GSM759888) and 145M reads of length 101bps from the ENCODE consortium
(http://genome.ucsc.edu/cgi-bin/hgFileUi?g=wgEncodeCshlLongRnaSeq) .

2.4.1 Evaluation metrics

Read alignment with TopHat Unlike de novo RNA-Seq data, when analyzing human
data we can utilize a reference genome to determine the accuracy of the resulting cor-
rections and assembly. An established metric to measure the success of error correction
after read alignment is the gain metric [35], which is defined as the ratio of newly created
versus correctly removed errors.

To compute the gain metrics, we used Tophat to align original and corrected reads to
the human reference sequence. Using the reference sequence as ground truth we used the
following definitions [55]: a false positivewas a base that was changed (corrected) although
it was correct in the original read. A true positive was a base that was corrected to the
nucleotide in the reference. A false negativewas a base that was not corrected even though
it is wrong while a true negative was a base that was left uncorrected and aligned with
the reference. The gain metric was computed as explained in [55]. See Appendix A.1 for
more details.

De novo RNA-Seq assembly The evaluation of the human assemblies was conducted
by aligning assembled transfrags to the human genome with Blat version 34 [56] and
comparing to Ensembl 65 transcript annotation to derive 80% and full length covered
transcripts, as previously described [27]. The evaluation metrics were computed using
custom scripts.

2.4.2 Influence of parameters

Prior to testing SEECER on the human data we used a subset of ∼34 Million reads to
assess the influence of the two main parameters for SEECER, the length of k-mers k for
the initial hashing phase and the value for the maximum entropy at a position.

Influence of value k on error correction

In order to assess the performance of the SEECER algorithm for different parameters we
have benchmarked the influence of the value k on the performance of alignments and de
novo assembly using a subsample of the complete human dataset, using only 3 of the 5
lanes resulting in∼ 34.7 of the 55 Mreads. The performance difference after SEECER error
correction (the number of alignments reported by TopHat) with k = 11, 13, 15, 17, 19, 21,
and 23 for spliced alignment of reads is presented in Figure 2.3. The same parameters
have been tested for assembly with Oases in Figure 2.4. The experiments show that small
k-values of 11-15 lead to fewer corrections, most likely because no homogeneous contigs
for the HMM can be formed for parts of the read population, due to random overlaps
and repeats. k = 17 performs best in both alignment and assembly (for the 3 lane data)
and is used in this analysis and as default value in the software. For k-values larger than
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Figure 2.3: Performance of spliced alignment with TopHat after SEECER error correction
with different values for the hash length k on 3 lane human data.
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Figure 2.4: Performance of Oases de novo transcriptome assembly after SEECER error
correction with different values for the hash length k on 3 lane human data. We show the
number of alignments reported by TopHat. We show the number of transfrags reported
by Oases that are reconstructed from a known human transcript to full and 80% length.)
with

17 the number of corrections starts to deteriorate again, because many read-read overlaps
are lost due to higher influence of sequencing errors for larger k.

Influence of Entropy value for border extension

Wealso analyzed the influence of themaximumentropy value allowed for contig extension.
The performance difference after SEECER error correction, with varied entropy value
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Figure 2.5: Performance of spliced alignment with TopHat after SEECER error correction
with different values for themaximum entropy value for contig extension on 3 lane human
data. We show the number of alignments reported by TopHat.

from 0.2 to 1 in steps of size 0.2, for spliced alignment of reads is presented in Figure 2.5.
The result is that entropy of 0.6 (default value for SEECER) is the best value to achieve the
largest number of error free reads. If the entropy threshold is low, it means that contigs
get rarely extended and as such many reads are not being corrected.

Influence of α used in the cluster analysis of reads

Cluster analysis of reads is an important step which allows SEECER to handle overlapping
effects of alternative splices and genomic repeats. As discussed in Section 2.2.4, we only
analyze columns that contain at least α mismatches. Figure 2.6 depicts the performance of
alignment and de-novo assembly using SEECER-corrected data with different values of α.
Cluster analysis is less comprehensive with large values of α. As a result, more corrections
are false positives and may lead to loss of transcripts and other genomic variants. Indeed,
the number of transcripts assembled by Oases to full length drops after the value of 3. In
contrast, the performance of spliced alignment is improved with large values of α because
false positive corrections reduce differences among the reads, so more reads are mappable
although many of them may be aligned to wrong locations.

2.4.3 SEECER outperforms other methods

We next have used these parameters (k = 17 and entropy was set to 0.6) to compare
SEECER to 4 other methods for correcting the reads by initially testing their ability to
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Figure 2.6: Performance of spliced alignment and de-novo assembly after SEECER error
correction with different values for α on 3 lane human data. We show the percentage of
improvement over the original data.

Method orig SEECER Quake SEED Coral HiTEC Echo

aligned reads (M) 31.2 33.8 (+8.4%) 32.3 (+3.6%) - 32.6 (+4.5%) 31.2 (+0.0%) 31.6 (+1.3%)
proper pairs (M) 22.1 25.5 (+15.1%) 23.4 (+5.8%) - 24.0 (+8.7%) 22.1 (-0.0%) 22.7 (+2.5%)
0 error reads (M) 18.3 27.3 (+49.6%) 22 (+20.4%) - 23.9 (+30.7%) 18.3( 0.1%) 19.6 (+7.2%)
gain - 0.56 0.25 - 0.38 0.00 0.024

full length 1749 2120 (+21%) 1979 (+13%) 1358 (-22%) 2092 (+19.6%) 1713(-2.7%) 1916 (+9.6%)
80% length 13852 14833 (+7%) 14267 (+3%) 9686 (-30%) 14643 (+5.7%) 13450 (-2.9%) 14273 (+3.0%)
memory (GB) - 27 32 - 34.3 49 72
time (hours) - 12.25 7.25 - 2.42 6.33 13.7

Table 2.2: Evaluation using a RNA-Seq dataset of 55M paired-end 45bps reads of human
T cells. Percentages in brackets denote performance compared to original data. - means
not applicable. The evaluation is based on Ensembl v.65 annotation.

improve the unique alignment of reads to the human genome after correction. We used
three diverse datasets to compare SEECER with the k-mer based methods: Quake [38]
and ECHO [39], Coral [40] which relies on multiple alignments of reads for correction, as
well as with HiTEC [37] which builds a suffix tree and automatically estimates parameters
for correction.

The first dataset we used was derived from human T-cell RNA sequencing resulting in
55 million paired-end reads of length 45 bps [22]. In Table 2.2 we list important statistics
regarding the success of the error correction methods. Using SEECER, the number of
aligned reads increased by 8.4% when compared to the uncorrected reads, much higher
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than Quake (3.6%), Coral (4.5%) and ECHO (1.3%). Unlike the other methods, error
correction with HiTEC did not result in a higher number of reads mapped. Similarly,
the number of reads that align without mismatch errors to the reference sequence using
SEECER increased by 50%, which was by far the biggest improvement for all methods
tested (Figure 2.7). None of the error correction methods uses paired-end information,
therefore the number of properly aligned read pairs can serve as a good indicator for
the accuracy of the error correction. Again SEECER error corrected reads showed the
highest improvement with 15% more pairs properly aligned. The gain metric shows the
normalized difference between true positive and false positive corrections (Table A.1 and
Appendix A.1) and again SEECER outperforms the other methods.

Distribution of errors in aligned reads
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Figure 2.7: Distribution of inconsistent bases with the reference, errors, after TopHat
alignment. For each program, reads are partitioned into one of four groups: (i) perfect
alignment,(ii) one error, (iii) two errors, and (iv) three errors.

We provide a fine grained analysis of the number of errors per aligned TopHat read
from the results in Table 2.2. As can be seen in Figure 2.7, after error correction with
SEECER, more reads are aligned and the number of reads with 0 errors is increased.
Roughly, the total number of reads that align with≤ 1 error after SEECER error correction
is similar to the total number of original reads aligned with up to three errors. This
explains the improvement for the de novo assembly results (see below), because exact
k-mer overlaps between reads are important for de Bruijn graph based assemblers, like
Oases. The reduced error rate should simplify other downstream analyses, including the
detection of RNA editing events.
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Figure 2.8: The distribution of mismatches to the reference of pair-mapped reads (using
TopHat alignment) of the 55M paired-end 45bps reads of human T cells dataset: only
reads that are aligned both before and after error correction are shown.

In addition, we investigated the error bias in terms of readpositions and forward/reverse
read strands. Figure 2.8 presents the distribution of mismatches following TopHat align-
ments relative to the read positions before, and after error correction by SEECER. As
can be seen, the previously reported bias that higher error rates are found at read ends
for Illumina data [33], is observed in our data as well. However, after SEECER error
correction much of this bias is removed and the corrected reads have a more uniform
distribution of mismatches along the read positions. See Figs. A.2-A.5 and Appendix A.3
for details on other types of corrections made by SEECER.

SNP analysis in error corrected RNA-Seq data

In order to further test the influence of error correction on downstream analysis we inves-
tigated the ability to identify homozygous SNPs before and after error correction. This
analysis demonstrates the usefulness of error correction for such downstream SNP studies
and in particular shows that using SEECER corrected reads leads to the identification of
the highest number of SNPs.

We downloaded the table _loc_snp_summary.txt from dbSNP build 132 [57]. All
variants classified as “trueSNP“ were retrieved for the analysis. We used the SnpStore
program ([58], http://www.seqan.de/projects/snpstore/) to call SNPs from the TopHat
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Figure 2.9: SNP calling from TopHat alignments using SnpStore on the T-cell data. Pre-
dicted SNPs are compared to annotated SNPs in the dbSNP database (y-axis). The
minimum read coverage c for which SNP calls are produced was varied (x-axis).

read alignments before and after correction. A non-reference base b was called a SNP at a
genomic position if (i) read coverage on the position≥ c , (ii) and the relative frequency of
b was ≥ 0.8 to investigate homozygous SNPs. All non-reference SNP calls were compared
to non-reference SNPs annotated in dbSNP. We denote as Precision the percentage of SNP
calls that are annotated (with the correct base) in dbSNP, i.e., Precision=|annotated in
dbSNP|/|total calls|.

In Table A.6 we show the number of SNP calls, their overlap with dbSNP, and the
precision for each method. We compute the SNP calls for varying read coverage cutoff
(c = 5, 10, 15) to investigate different levels of confidence in SNP calling. Figure 2.9
examines the number of annotated SNPs in dbSNP that were called by all methods.
SEECER corrected data leads to the highest number of SNP calls and the largest number
of SNP calls that are annotated in dbSNP, albeit having a higher precision compared to
the other methods. All methods improve upon using the original data in the number
of annotated SNPs that were called, although HiTEC and ECHO show only a minor
improvement.

2.4.4 De novo RNA-Seq assembly

While the ability to align individual reads is important, another important goal of de novo
RNA-Seq experiments is transcriptome assembly. To test the impact of error correction
on downstream assembly we used the Oases de novo assembler [27]. In addition to the
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read based error correction methods we compared to above, we have compared to SEED
read clustering and subsequent Oases assembly as previously suggested [44]. In Table 2.2
the results for the human T-cell data are shown. An important metric for assembly
comparisons is the number of full length assembled transcripts. Compared to the original
reads, after SEECER error correction 21% more transcripts are reconstructed to full length.
SEECER also leads to a 46% increase of detected alternative isoforms (Table A.4). Quake,
Echo and Coral led to a lower improvement of assembled full length transcripts with
13%, 9.6% and 19.6% respectively, whereas SEED and HiTEC resulted in a reduction
of full length reconstructed transcripts of -22% and -2.7% respectively. The clustering
approach used by SEED discards some of the data which leads to loss of lowly to mid-level
expressed transcripts (Figure A.1).

Example figure from IGV for improvement after error correction

To illustrate how the correction made by SEECER improves both the alignment of reads
and the de novo assembly with Oases, we show in Figure 2.10 assembled transfrags from
both the original and corrected data in the genomic region containing the transcript
ENST00000380876 (EIF3CL). We aligned all transfrags to the human genome and display
two longest transfrags which are the best hits to the transcript: Locus_621_Transcript_11
(from SEECER corrected data) shown in red, and Locus_9156_Transcript_20 (from orig-
inal data) shown in blue. As shown in the bottom box of the figure, with error cor-
rection, the transcript ENST00000380876 (EIF3CL) was assembled 95% in length in Lo-
cus_621_Transcript_11 as opposed to only 45% in length in Locus_9156_Transcript_20.
This improvement in the assembly clearly comes from the removal of errors in the reads,
as shown in the top box of the figure. Here, we show the alignment of reads of both
data to the region containing exons 9-13 using TopHat. Mismatches of the reads with
the reference are denoted as red/blue/green/orange dots. Most of the mismatches were
removed from SEECER corrected reads. As a result, Oases using these corrected reads
was able to assemble all exons of the transcript ENST00000380876 (EIF3CL).

2.4.5 Additional comparisons using larger datasets with longer reads

To test the scalability of SEECER when using datasets with more reads and longer read
length we further tested SEECER on two additional human datatsets: a HeLa cell line
dataset of 64M reads of length 76bps (GEO Accession: GSM759888) [53] and 145 M reads
of length 101bps from the ENCODE consortium. Due to the time requirements of the
assembly step, we have only focused here on the top three performing methods in our
original analysis (SEECER, Quake and Coral). SEECER scales well and for both datasets
it achieves the best performance for the number of aligned reads, read pairs, full length
assembly and gain (Tables 2.3 and 2.4). Additional information about the number of true
positive and false positive corrections can be found in Tables A.2 and A.3. While SEECER
memory requirements scaled more or less linearly with the size of the dataset, Coral’s
requirements did not scale in a similar manner. Specifically, we could not run Coral on
the largest dataset (Table 2.4) because its memory requirements were beyond the available
memory on the machine we used to test all methods.
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Method original SEECER Quake Coral

aligned reads (M.) 28.9 30.9 (+6.9%) 30.6 (+5.9%) 29.5 (+2.1%)
proper pairs (M.) 19.4 21.4 (+10.4%) 20.8 (+7.2%) 20.0 (+2.8%)
0 error reads (M.) 13.7 16.9 (+23.4%) 15.5 (+12.7%) 14.9 (+8.7%)
gain - 0.21 0.11 0.07

assembly full length 4067 4422 (+8.7%) 4113 (+1.1%) 4378 (+7.65%)
assembly 80% length 25647 26507 (+3.4%) 25644 (-0.0%) 26414 (+2.99%)
memory (GB) - 52 32 37.3
time (hours) - 20.33 1 3.5

Table 2.3: Evaluation using a RNA-Seq dataset of 64M paired-end 76bps reads of HeLa
cell lines. Percentages in brackets denote performance compared to original data. - means
not applicable. The evaluation is based on Ensembl v.65 annotation.

Method original SEECER Quake Coral

aligned reads (M.) 119.0 123.1 (+3.47%) 121.9 (+2.46%) -
proper pairs (M.) 81.1 85.4 (+5.4%) 83.5 (+2.9%) -
0 error reads (M.) 76.2 105.3 (+38.2%) 92.4 (+21.3%) -
gain - 0.58 0.32 -

assembly full length 13148 18851 (+43.4%) 14968 (+13.84%) -
assembly 80% length 61522 61178 (-0.6%) 62231 (+1.2%) -
memory (GB) - 113 60 >130
time (hours) - 40.25 3 -

Table 2.4: Evaluation using a RNA-Seq dataset of 145M paired-end 101bps reads from the
Long RNA-seq of IMR90 cell lines from ENCODE Consortium. Percentages in brackets
denote performance compared to original data. - means not applicable. The evaluation is
based on Ensembl v.65 annotation.
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Figure 2.10: An illustrating example how Oases benefits from SEECER error correction.
Top: Tophat read alignments in the EIF3CL gene for exons 9-13 before (1st track) and after
(2nd track) SEECER correction with human data. Colored dots highlight positions with
deviations to the reference sequence in the gray read alignments. Bottom: Summary view
of the whole region displaying the longest transfrag assembled. Oases assembled the
transcript ENST00000380876 (EIF3CL) to 95% of its length with SEECER corrected data
(red transfrag) whereas it was only assembled to 45% of its length when using the original
data (blue transfrag).

2.5 Assembly of error corrected RNA-Seq sea cucumber
data

The sea urchin Strongylocentrotus purpuratus is a model system for understanding the
genetic mechanisms of embryonic development, e.g., [59]. Other species of echinoderms,
including the Californian warty sea cucumber Parastichopus parvimensis (Figure 2.11A),
are being developed as comparative developmental model systems, e.g., [60]. This work
however is limited by the absence of a sequenced genome for the sea cucumber. It is thus
critical for comparative studies that methods are developed to inexpensively obtain highly
accurate transcriptome for organisms for which no sequenced genome exists.
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2.5. Assembly of error corrected RNA-Seq sea cucumber data

2.5.1 Sea cucumber sequencing and validation

Gravid P. parvimensis adults were spawned by heat shock and embryos grown in artificial
sea water at 15 degrees Celsius. Total RNA was extracted from 2 day old gastrula and 6
day old larvae using the Total Mammalian RNAMiniprep kit (Sigma). RNA was sent to
the Wistar Institute for library preparation with Illumina adaptors and 72bp paired-end
sequencing was performed on a Solexa Genome Analyzer II. First strand cDNA synthesis
was performed with the iScript Select cDNA Synthesis Kit (BioRad).

From the top 100 expressed transfrags that were expressed in both time points 14
were randomly selected, 7 with a match to either RefSeq or Swissprot and 7 without a
match. For the validation, PCR primers were designed with Primer3Plus [61] to amplify
approximately 300bp to 500bp products corresponding to the 14 selected transfrags. The
PCR was performed using GoTaq (Promega) standard protocols on RNA samples from
the first time point.

2.5.2 Sea cucumber transcriptome analysis

Experimental setup For peptide searches we used Blastx [62] with an E-value cutoff
of 10−5 to avoid spurious alignments in Swissprot [63] and the Sea Urchin known pro-
teome (SPU_peptide.fasta at http://www.spbase.org/SpBase/download/) . Similarly
for the search in Refseq [64] we used Blastn with the same cutoff. The expression of all
assembled transfrags was quantified using RSEM with default parameters [65] after read
alignment of the reads to the transfrags with Bowtie [66]. The Gene Ontology annota-
tion for the known and predicted Sea Urchin proteome was downloaded from SpBase
( annotation.build6.tar at http://www.spbase.org/SpBase/download/) . Gene Ontol-
ogy enrichment analysis was done using FuncAssociate 2.0 [67] with a multiple-testing
corrected P-value cutoff of 0.05.

To test how SEECER can help in this direction we have produced two new datasets for
the transcriptome of P. parvimensis. These datasets allow us to determine the expressed
mRNAs at the embryonic gastrula (time point 1) and feeding larval (time point 2) stages,
which provides insights into the development of this species. Illumina paired-end 72nt
sequencingwas conducted and resulted in 88,641,446 and 85,575,446 reads for time points 1
and 2, respectively. We have next used SEECER to correct errors in these datasets resulting
in 28,655,078 and 25,546,050 corrections for 19,465,515 and 17,305,905 reads, respectively.
Each corrected read set was then used to produce a de novo RNA-Seq assembly. Error
correction took ∼ 4.7 and ∼ 4.6 hours, whereas de novo assembly took ∼ 11.3 and ∼ 13
hours for time points 1 and 2. 850,056 transcript fragments (transfrags) were assembled
for the embryonic stages (time 1) and 682,913 transfrags for the larval (time 2) stage using
Oases (Methods).

The only other echinoderm with a sequenced genome is the sea urchin S. purpuratus
which last shared a common ancestor with sea cucumbers almost 350 million years
ago [68]. Thus, we initially analyzed the similarity between the transfrags we obtained
and sea urchin proteins. For the embryonic and larva stages 261405 and 189101 transfrags
mapped to fragments of 13330 and 11793 distinct known peptides in sea urchin (min
length 50 amino acids for each match). Although we only sequenced RNAs from two
developmental stages, thereby not sampling much of the long developmental process and
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2. SEECER: a probabilistic method for error correction of RNA-Seq

Figure 2.11: De novo assembly of sea cucumber data. A) A living sea cucumber P. parvi-
mensis. B) Distribution of BlastX matches of sea cucumber transfrags to known sea urchin
peptides. The percentages represent the subset of sea urchin peptides that we have sig-
nificantly matched to at least one transfrag in time point 1 and / or time point 2 and
those that were not matched to any transfrag. C) Ethidium bromide stained image of
PCR products amplified from sea cucumber cDNA. Primer pairs were designed against
14 assembled transfrags, 7 of which matched to known peptides of RNAs (top row) and 7
other which had no match in the data base (bottom row). 100bp size standard ladders are
in the first and last lanes. Each lane is followed by the appropriate no template control to
demonstrate that amplification was not due to non specific contamination.

many adult tissues of these organisms, the assembled transfrags from both time points
nonetheless matched to more than 50% of known sea urchin peptides. This suggests both
that we have achieved a high sequence coverage in the assembly, and that many of the sea
cucumber genes are already being expressed during early development. In addition, the
fact that 14% of these matches were restricted to only one of the two time points suggests
that we are able to detect stage specific developmentally regulated genes, an important
requirement for developmental studies (see Figure 2.11B). To illustrate the usefulness of
de novo sequencing, we next performed a Gene Ontology (GO) enrichment analysis for
sea urchins peptides matched to both time points, and those matched only to time point 1
or time point 2. The results are presented in Tables A.7-A.9.

Time point 1 embryos are undergoing active development including cell movements
involved with gastrulation. Larval stages (time point 2) meanwhile are actively swimming
and feeding in the water column. As can be seen in the GO analysis, many differences in
expression between these stages are of mRNAs that encode for proteins involved in energy
metabolism which is likely due to a switch in how sessile non feeding embryos and motile
feeding larvae utilize energy resources. We also find an enrichment of expression of genes
involved in RNA splicing and translation control in time point 1 (embryos) which may be
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related to the active transcriptional processing requirements of early embryogenesis. This
analysis thus provides an entry point into understanding these important processes.

Even though 62-65% of transfrags matched known sea urchin peptides, 297,173 and
255,672 sea cucumber transfrags for time points 1 and 2 did not significantly match any sea
urchin peptide (Methods). We computed the expression levels of the assembled transfrags
and investigated the top 100 expressed transfrags that we could not match to sea urchin
peptides from both time points in more detail. In the top 100, 28 and 9 transfrags matched
to the RefSeq and Swissprot data bases, respectively. Still, we were unable to match 64
transfrags expressed in both time points to any known entry in these data bases. To
further test the accuracy of our correction and assembly and whether the non matched
transfrags are indeed novel expressed RNAs we have performed additional follow up
experiments. We selected 14 transfrags that were highly expressed in both time points
and performed RT-PCR analysis on these to confirm that the predicted products could
be amplified from sea cucumber derived embryonic cDNA (Figure 2.11C). Of the 14, 7
were derived from transfrags that matched known peptides and another 7 were derived
from transfrags with no match to any of the databases we looked at. As can be seen in
Figure 2.11C, all 14 transfrags were successfully validated indicating that these are indeed
expressed mRNAs and lending support to our correction and assembly procedure.

2.6 Discussion
We have developed and tested SEECER, a newmethod based on profile HMMs to perform
error correction in RNA-Seq data. Our method does not require a reference genome. We
first learn a contig HMM using a subset of reads and use the HMM to correct errors
in reads that are very likely associated with the HMM. Our method can handle non
uniform coverage and alternative splicing, both key challenges when performing RNA-
Seq. We tested SEECER using complex human RNA-Seq data and have shown that it
outperforms several other error correction methods that have been used for RNA-Seq data,
in some cases leading to a large improvement in our ability to correctly identify full length
transcripts. We next applied it to perform de novo transcriptome correction and assembly
of sea cucumber expression data providing new insights regarding the development of
this species and identifying novel transcripts that cannot be matched to proteins in other
species. We note that although a recent report of a 454 sequencing analysis of mixed
embryo, larval and adult tissues provides some coverage of an unrelated species, the
Japanese sea cucumber Apostichopus japonicas [69], to the best of our knowledge this is the
first published transcriptome of Parastichopus parvimensis.

Our analysis of the sea cucumber data indicates that we were able to obtain good
transcriptome coverage. The expressed genes from the two developmental stages matched
50% of the protein coding regions of sea urchin. In addition, de novo correction and
assembly was able to accurately detect taxon specific transcripts. This is critical for
comparative development studies which, in the absence of a genome sequence, often rely
on gene discovery from homology searches in related model species. Full appreciation of
the role of species specific genes is essential in order to understand the developmental
origins of animal diversity.
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Even though one of the main motivations for developing SEECER are applications of
de novo RNA-Seq, the human data is useful because alignments allow us to explore the
accuracy of the methods and it is thus a common practice for testing sequencing error
correction approaches [35]. However, wewould like to point out that the classification into
false and true positives/negatives is based on the human reference sequence, which may
miss haplotype alleles. Thus, the false positive rates reported in the tables may be slightly
higher than the real false positive rates. Nevertheless, we doubt that this approach favors
any of the methods, because none of them use the reference sequence for performing
corrections.

The genome read error correction methods Quake and Coral were able to correct many
reads but resulted in a large number of false negatives, as indicated by their lower rates
of aligned reads and the drop in the gain statistic compared to SEECER. Coral was the
closest to SEECER in terms of the resulting number of full length assembled transcripts
for two of the three datasets. However, Coral seems to suffer from lack of scalability which
may be problematic as dataset size increase. Indeed, its memory requirements for the
largest dataset we analyzed were larger than the capacity of our machine cluster.

Our experiments have shown that read clustering leads to a loss of assembled full
length transcripts especially for low-to-mid level expressed transcripts, because parts of
the data are discarded. Due to non-uniform expression levels in RNA-Seq data, error
correction sensitivity critically depends on a methods’ ability to detect errors. The per-
formance drop for HiTEC and ECHO, compared to the other methods tested, may be
explained by their uniform coverage assumption leading to missing higher frequency
errors in highly expressed genes. In contrast, Quake and Coral do not have these strong
assumptions and perform much better. However, unlike SEECER they do not employ a
probabilistic HMMmodel and read clustering. These steps allowed SEECER to outper-
form all other methods in the number of alignable reads, full length assemblies, and false
negative rate with only linear increase in memory requirements for larger datasets.

While we have focused here on the improvement to RNA assembly following error
correction, it has been shown that de novo assemblies allow reliable detection of genes that
are differentially expressed between two conditions [70]. Thus, by improving the resulting
assembly SEECER is likely to improve downstream differential expression analyses as
well.

There are many directions to improve SEECER further by utilizing base call quality
scores to improve performance on lowly expressed transcripts or using the paired-end
information to improve construction of contigs. Currently, SEECER was designed to work
without an available reference sequence (de novo RNA-Seq) but an available reference
sequence could help with correction of repetitive regions and lowly expressed transcripts.

Finally, while we have primarily developed SEECER for RNA-Seq data, it may also
prove useful for single cell and single molecule sequencing. In other studies, including
metagenomics and ribosome profiling experiments, researchers encounter sequencing
data where the coverage is non-uniform and as such SEECER, which does not assume
uniformity, can improve the analysis of these data as well.
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Part II

Cross-species analysis of functional
genomics pathways
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3Querying large cross-species databases
of expression experiments 1

In the previous chapter, we discuss preprocessing of gene expression data, specifically
RNA-Seq data. To support the use of expression data in cross-species analysis, we aim
to facilitate the retrieval of similar experiments in large databases of expression studies.
Querying cross-species sequence databases have been successfully used before to identify
and characterize coding and functional non coding regions in multiple species [56]. Since
most drugs are initially tested on model organisms, the ability to compare expression
experiments across species may help identify pathways that are activated in a similar
way in human and other organisms. However, while several methods exist for finding
co-expressed genes in the same species as a query gene, looking at co-expression of
homologs or arbitrary genes in other species is challenging. Unlike sequence, which is
static, expression is dynamic and changes between tissues, conditions and time. Thus, to
carry out cross species analysis using these databases we need methods that can match
experiments in one species with experiments in another species.

3.1 Introduction
Advances in sequencing technology have led to a remarkable growth in the size of se-
quence databases over the last two decades. This has allowed researchers to study newly
sequenced genes by utilizing knowledge about their homologs in other species [72]. Align-
ment and search methods, most notably BLAST [73], have become standard tools and
are extensively used by molecular biologists. Cross species analysis of sequence data
is now a standard practice. However, similar usage of expression databases has not
materialized. Expression databases, including Gene Expression Omnibus2 (GEO) and Ar-
rayExpress3 hold hundreds of thousands of arrays from multiple species (see Figure 1.5).
Co-expression is a powerful method for assigning new function to genes within a single
species [74]. If we are able to identify a large set of matched expression experiments
across species, this method can be extended and used in a cross-species analysis setting
as well. Consider a human gene with unknown function that is co-expressed (across
many different conditions) with a mouse gene with known function. This information
can provide useful clues about the function of the human gene. This information is also
useful for identifying orthologs. If a gene has multiple homologs in another species then
the homolog with the highest co-expression similarity in several conditions is likely its
orthologs since they are involved in the same processes in both species.

While promising, querying expression datasets to identify co-expressed genes in
other species is challenging. Unlike sequence, which is static, expression is dynamic
and changes between tissues, conditions and time. Thus, a key challenge is to match

1 This work is published in [71].
2www.ncbi.nih.gov/geo/
3www.ebi.ac.uk/Databases/microarray.html
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3. Querying large cross-species databases of expression experiments

experiments in one species with experiments in another species. Almost all studies that
have analyzed expression datasets in multiple species relied on one of two methods.
They have either carried out experiments under the same condition in multiple species
or have looked at co-expression within a species and tested whether these relationships
are retained across species. Examples of the former set of methods include comparison
of cell cycle experiments across species [75], comparing response programs [76] and
comparing tissue expression between human and mouse citegeneatlas. Examples of the
latter strategy include the metaGene analysis [77] and cross-species clustering methods
citeoscar. See [78] for a recent review of these methods.

While successful, the approaches discussed above are not appropriate for querying
large databases. In almost all cases it is impossible to find a perfect match for a specific
condition in the database. Even in the rare cases when such matches occur, it is not
clear if the same pathways are activated in the different species. For example, many
drugs that work well on animal models fail when applied to humans, at least in part
because of differences in the pathways involved [79]. Looking at relationships within
and between species would also not answer the questions we mentioned above since
these require knowledge of orthologs assignment to begin with. These methods are also
less appropriate for identifying one-to-one gene matchings because they are focusing on
clusters instead.

The only previous attempt we are aware of to facilitate cross species queries of expres-
sion data is the nonnegative matrix factorization (NMF) approach presented by Tamayo
et al. [80]. This unsupervised approach discovers a small number of metagenes (similar to
principal component analysis) that capture the invariant biological features of the dataset.
The orthologs of the genes included in the metagenes are then combined in a similar
way in the query species to identify related expression datasets. While the approach was
successfully used to compare two specific experiments in humans and mouse, as we show
in Results, the fact that the approach is unsupervised makes it less appropriate for large
scale queries of expression databases.

In this chapter, we present a new method for identifying similar experiments in
different species. Instead of relying on the description of the experiments we develop a
method to determine the similarity of expression profiles by introducing a new distance
function and utilizing a group of known orthologs. Our method uses a training dataset
of known similar pairs to learn the parameters for distance functions between pairs of
experiments based on the rank of orthologous genes, thus it overcomes problems related
to difference in noise and platforms between species. We show that the function we learn
outperforms simpler rank comparison methods that have been used in the past [81, 82].
We next use our method to compare millions of array pairs from mouse and human
experiments. The resulting matches highlight conditions and diseases that are activating
similar pathways in both species and can also hint at diseases were these pathways seem
to differ. Given the large number of arrays in current databases our methods can also be
used to aid manual annotations of cross species similarity by focusing on a small subset
of the millions of possible matches.

We note that while the discussion below focuses on microarray data and we have
only tested our methods on such data, our methods are appropriate for deep sequencing
expression data as well. As long as a partial orthologs list can be obtained the methods
we present below can be used to compare any expression datasets across species.
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3.2 Methods
3.2.1 Using ranking for comparing microarrays across species

Our goal is to obtain a distance function that given two microarray datasets outputs a
small distance between experiments that are very similar and a large distance for those
pairs that study different processes or in which different pathways are activated in the two
species being compared. Since we are comparing experiments from different platforms
and species, the first decision we made was to compare the ranking of the genes in each
array rather than their expression levels (previous methods for comparing experiments in
the same species have relied on ranking as well citecellmontage). There are a number of
other properties that we seek for such scoring functions. First, they should of course be
able to separate similar pairs from non similar pairs. In addition, it would be useful if the
function is a metric or a pseudometric (a pseudometric satisfies all properties of a metric
except for the identity, that is d(x, y) could be 0 even if x 6= y). This will guarantee useful
distance properties including symmetry and triangle inequality (See Appendix B). Finally,
we would like to be able to determine some statistical properties for these scoring methods
in order to determine a p-value for the similarity / difference between the experiments
being compared (Section 3.2.3).

Notations

We first provide notations that are used in the rest of this chapter. As mentioned above our
function would be constructed from metrics on permutations (ordering) of ranks. Each
microarray experiment is a vector in Rn, where each dimension is the expression value
for a specific gene. We consider the problem of comparing a microarray X of a species A
with nA genes and a microarray Y of a species B with nB genes. There are m orthologs
between the two species. In other words, there is a one-to-one mapping O from m species
A genes to m species B genes. 1, . . . , m are the orthologs, x = {xi : 1 ≤ i ≤ m} and
y = {yi : 1 ≤ i ≤ m} are the expression values of the orthologs in X and Y , respectively.
Let π and σ be the rank orderings of the expression values of the orthologs in X and Y .
For simplicity, we assume that there are no ties in rankings. Therefore, π and σ are two
elements of the permutation group Gm. Recall that π, σ : {1, . . . , m} → {1, . . . , m} are
bijections: πi and σi are the ranks given to the ortholog i, with lowered numbered ranks
given to higher expression values. Also let Im be the identity permutation in Gm.

Assume we have a metric d on Gm. For our significance analysis we test the null
hypothesis H0 that π and σ are not associated versus the alternate hypothesis that they
are. One way is to ask how large d(π, σ) would be if σ were chosen uniformly at random.
More formally, let Dd be the distribution of d(π, σ) when σ is drawn uniformly from Gm.
We reject the null hypothesis H0 if d(π, σ) is significantly smaller than E(Dd). This setting
is a standard approach in literature [83].

3.2.2 Fixed distance function: Spearman’s rank correlation

Below we discuss distance functions that satisfy the requirements mentioned above for
cross-species analysis. We first discuss a method that does not require any parameter
tuning. Such methods have been extensively used for comparing permutations. However,
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as we show in Section 3.3 they are less appropriate for gene expression data due to the
unique properties of such data. In the next section we discuss modification of these
methods that are more appropriate for the expression data we are working with.

The Spearman’s rank correlation R metric is defined as:

R(π, σ) =

√
m

∑
i=1

(πi − σi)2 (3.1)

In other words it is the L2 distance between π and σ. Hence, it is a metric. Moreover,
using Hoeffding’s central limit theorem it can be proved that R2 has a limiting normal
distribution [83]. Note that frequently, R is standardized to have values in [−1, 1]. This
yields the widely used Spearman’s rank correlation ρ.

ρ = 1− 6R2(π, σ)

(m3 −m)
(3.2)

3.2.3 Adaptive Metrics

While fixed methods that do not require parameter tuning have proven useful for many
cases they are less appropriate for expression data. In such data the importance of the
ranking is not uniform. In other words genes that are expressed at very high or very low
levels compared to baseline may be very informative whereas the exact ranking of genes
that are expressed at baseline levels may be much less important. Thus, rank differences
for genes in the middle of the rankings are more likely due to noise. An appropriate way
to weight the differences between the rankings may lead to a better distance function
between arrays. The key challenge is to determine what are the important ranks and
how they should be weighted. Below we present a number of adaptive methods that
can address this issue. The methods we present differ in the number of parameters that
needs to be learned and thus each may be appropriate for different cases depending on
the amount of training data that exists.

Weighted Rank Metric

Using a weight vector w of length m, we can modify the Spearman’s rank correlation and
define the following metric:

d(π, σ) =

√
m

∑
i=1

(wπi − wσi )
2 (3.3)

The vector w defines the weight of each rank and thus captures the significance of each
rank in measuring the association of two microarrays. Consider two arrays (1, 2, 3, 4) and
(1, 3, 2, 4). Their Spearman R distance is

√
2 while for a weight vector w = (1, 0, 0, 1),

their distance would be 0. Such a weight vector places the weight on the top and bottom
matches and disregards middle orderings. This vector w defines a mapping of the ranking
vectors in Gm ontoRm.

The resulting function is no longer a metric, but rather a pseudo-metric in the original
π, σ space (d(π, σ) = 0 does not imply π = σ). However, it is easy to see that it is a metric
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in the transformed w-space because it is a L2 distance between the vectors wπ and wσ,
where wπ = (wπ1 , . . . , wπm) and similarly for wσ. In other words the w-transformation
makes some of the permutations indistinguishable indicating that the changes made are
not significant and so the two permutations result in the same weighted vector. However,
for those permutations that are still distinguishable following the w-transformation the
metric properties are preserved. The distribution Dd of d(π, σ)when σ is drawn uniformly
from Gm is asymptotically normal. See Appendix B for proof. We can calculate the mean
and variance of Dd through exact calculation or random sampling. P-value can then be
calculated based on this normal distribution.

A specific assignment of weights which is in line with our assumptions regarding
the importance of genes expression ranks is the following modified Spearman’s rank
correlation.

Top-Bottom R (TBR)

For any 0 < k < 1 and r > 0 we can define w as following:

wi =


r(i− km) if 1 ≤ i < km,
r
(
i− (1− k)m

)
if (1− k)m < i ≤ m,

0 otherwise.
(3.4)

Note that genes expressed at a high level will have negative weights and those with low
levels positive weights allowing the method to penalize experiments in which genes move
from one extreme to the other. All middle ranks [km, (1− k)m] are assigned the same
weight so genes that have ranks changed within this interval do not affect the distance at
all. At the same time, it scales the high and low ranks r times to a wider range to increase
the granularity of rank difference. Choosing the value of k and r can either be done using
cross validation or it could be manually specified.

Learning a complete weight vector w

While the above method leads to different weights for different rankings it specifies a
very strict cutoff which may not accurately represent the importance of the differences
in ranking. An alternative approach is to assign weights that are continuously changing
based on the ranking by learning a weight vector from training data. Here we assume
that we have access to such training data which is indeed the case for a number of pairs
of species (most notably tissue data for human and mouse as we use in Section 3.3).
Assume we have M microarrays of species A and N microarrays of species B and for each
microarray, let S be the set of pairs of similar arrays and D is the set of pairs of dissimilar
arrays. If the dissimilar arrays are not known, we can select D as the set of all pairs that
are not in S .

Each permutation π can be represented as a binary m-by-m matrix Mπ such as:

Mπ(i, j) =

{
1 if πi = j,
0 otherwise.

(3.5)
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Using this notation we can define an L2 metric d as:

d(π, σ) = ‖Mπw−Mσw‖2 (3.6)

=
√

wT(Mπ −Mσ)T(Mπ −Mσ)w (3.7)

Our goal is to learn a vector w such that this distance be small for the positive set and
large for the negative set. This leads to the following optimization problem:

min ∑
(x,y)∈S

wT(Mπx −Mπy)
T(Mπx −Mπy)w (3.8)

s.t ∑
(x,y)∈D

wT(Mπx −Mπy)
T(Mπx −Mπy)w = 1 (3.9)

Note that the summation is on different groups. The optimization (top) is summed over
the similar pairs whereas the constraint (bottom) is summed over the dissimilar pair. The
choice of the constant 1 on the right hand side of (3.9) is arbitrary. However, replacing it
with any constant c > 0 results only in w being multiplied by

√
c which leads to the same

order of scores for microarray pairs and so does not change our results. We can further
simplify the problem to

min wTZSw (3.10)
s.t wTZDw = 1 (3.11)

with

ZS = ∑
(x,y)∈S

wT(Mπx −Mπy)
T(Mπx −Mπy)w

ZD = ∑
(x,y)∈D

wT(Mπx −Mπy)
T(Mπx −Mπy)w

The matrices ZS and ZD are positive semidefinite since they are sums of positive semidef-
inite matrices (Mπx −Mπy)

T(Mπx −Mπy). Although this optimization is not convex,
there exists global minima based on the reformulation of this problem to finding eigen-
values of the Rayleigh quotient. The derivation is similar to Fisher’s Linear Discriminant
Analysis [84].

Relational Weighted Rank Metric

A drawback of the weight vector distance metric discussed above is that it assigns weights
to ranks in eachmicroarray independent of the ranks in the other microarray. To overcome
this problem we extend the vector weight w into a full matrix W to incorporate the
dependence between ranks in two microarrays. For a pair of microarrays with ortholog
rankings π and σ, define a symmetric m-by-m matrix MF

π,σ, whose entries (i, j) are non-
zeros if and only if there exists a gene g such that g is ranked i and j in the microarrays,
respectively. Formally,

MF
π,σ(i, j) = 1

[
π−1(i) = σ−1(j)

]
+ 1

[
π−1(j) = σ−1(i)

]
(3.12)
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In other words, MF
π,σ is a matrix where an entry of 1 in location (i, j) indicates that the

gene in location i in the first experiment is the same as the gene in location j in the second
or vice versa. By definition, MF

π,σ is a symmetric matrix. Note that this definition implies
that if a gene g is ranked ith in both π and σ then MF(i, i) = 2 and when π = σ, MF = 2I.
Let W be a positive semidefinite m-by-m matrix, with each entry wij being the weight
assigned to a gene having rank i and j in the two microarrays. The larger the entries are,
the more dependent the two ranks are.

Given these notations we define the distance between the two microarrays as:

d(π, σ) =

√√√√ m

∑
i=1

m

∑
j=1

(
(2I−MF

π,σ) ◦W
)

i,j (3.13)

=

√√√√√ ∑
i,j:π−1(i)=σ−1(j)
or π−1(j)=σ−1(i)

(wii + wjj

2
− wij

)
(3.14)

=
√

tr
(
(2I−MF

π,σ)W
)

(3.15)

As mentioned above, if the two permutations are identical then MF = 2I and the distance
is 0. Otherwise, the penalty for a disagreement of a pair (i, j) between the rankings
is (wii + wjj)/2− wij. This captures both the importance of the individual ranks (very
high or very low ranking genes maybe more important than middle genes) as well as
the penalty for the disagreement between the pair. Equation (3.14) also shows that the
entity under the square root is non-negative since for a positive semidefinite matrix W,
(wii + wjj)/2 ≥ wij, ∀i, j. Equation (3.15) follows from Equation (3.13) since MF has only
one entry in each column or row. This distance function is a pseudometric in the original
permutation space and a metric in the W-transformed space (see Appendix B).

Learning algorithm To determine the values of W using the training data we solve the
following optimization problem:

min ∑
(x,y)∈S

tr
(
(2I−MF

πx ,πy)W
)

(3.16)

s. t. ∑
(x,y)∈D

tr
(
(2I−MF

πx ,πy)W
)
= 1 (3.17)

W � 0 (3.18)

Like for the weight vector the constraint (equality to 1) is arbitrary and guarantees that
dissimilar arrays are distant from each other. This optimization is a semidefinite program
(SDP) [85]. The objective function is a summation of traces of semi-definite matrices and
so this is a convex optimization problem and there exists a global minimum solution.
However, thematrix W is very large (m-by-m) andwould require large amounts of training
data for learning. Since such data is limited using a full rank matrix will likely lead
to overfitting. Instead we seek a low-rank approximation of W. Let Z be the rank-k
approximation of W: W ≈ Z = UUT, where U ∈ Rn×k. Given these changes the
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optimization problem is:

min tr(UTUSY) (3.19)
s.t. tr(UTZDU) = 1 (3.20)

with

ZS = ∑
(x,y)∈S

(Mπx −Mπy)
T(Mπx −Mπy)

ZD = ∑
(x,y)∈D

(Mπx −Mπy)
T(Mπx −Mπy)

Regularization An additional constraint that is useful for controlling overfitting is to
regularize the solution. In our case, since nearby locations can be affected by small
amounts of noise a reasonable regularization policy is to require that the W matrix is
smooth. To achieve this we add linear inequality constraints to enforce that column-
adjacent entries in U differ by at most δ > 0:∣∣uij − u(i+1)j

∣∣ ≤ δ, ∀1 ≤ i < m, 1 ≤ j ≤ k

We solve this optimization by using the augmented Lagrangian approach. Similarly, we
can incorporate the smoothness constraints to the Lagrangian. See [85] for a detailed
discussion on the augmented Lagrangian method.

3.3 Results: Testing distance metrics on data from human
and mouse tissues

We first used a training dataset from human and mouse tissues to learn parameters for
our distance functions and to test the different methods on a dataset for which the correct
answer is known. We next downloaded a large number of microarray expression datasets
from GEO and applied our distance function to select pairs of experiments that are similar.
For this section we consider the cross-species analysis between human (Homo sapiens)
and mouse (Mus musculus) biological samples. We obtained the list of 16,376 human
and mouse orthologs from Inparanoid4. For evaluation and comparisons of all metrics
discussed in this chapter, we used an expression dataset, which we call ‘Toronto dataset’,
consisting of expression profiles for 26 human tissues and their corresponding tissues
in mice [86]. These 26 tissues pairs were profiled using species specific custom arrays.
For each tissue, we had one human and one mouse arrays, which were processed and
normalized by the authors of [86]. See Table B.1 for the list of tissues. We computed the
log2 fold changes by using the means of expression values in all tissues as the controls.

3.3.1 Additional methods

In addition to the NMF method [80] and the distance metrics discussed in Section 3.2,
we tested the Pearson correlation, which differs from the Spearman’s rank correlation

4http://inparanoid.sbc.su.se
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3.3. Results: Testing distance metrics on data from human and mouse tissues

by using the expression values instead of the ranking of genes. We also examine the
performance of a distance function DiffExpr, which was computed as follows. Let de(xi)
denote a function that assigns the value 1 to the top x% expressed orthologs, −1 to the
bottom x% expressed orthologs, and 0 otherwise. We define DiffExpr as follows:

DiffExpr(x, y) = ∑
i
|de(xi)− de(yi)| (3.21)

In essence, DiffExpr computes the difference between the sets of (non)-differentially
expressed orthologs in two different microarrays.

3.3.2 Experimental setup

Gene Variance While the methods described in Section 3.2 can work for any number of
orthologs, the larger the number the more data we would need to fit the weight vector
and matrix methods. Since all our expression levels were log ratios to a reference data
(see below) we have excluded from the analysis genes that did not vary much within each
species. We selected the top 500 most varying orthologs for further analysis. We note
two things. First, methods that are not affected by over-fitting (in our case Spearman’s
correlation and TBR) were also tested using all orthologs with results very similar to the
results obtained from the 500 gene list. Second, while such a selection favors genes with
high variance across a large number of experiments, at no stage in the selection have
we considered the agreement between the actual levels of orthologous genes in specific
experiments.

We used 2 fold cross-validation with 10 random permutations of tissues to compare
the performance of the NMFmethod [80] and the five different distance metrics discussed
above. For Pearson correlation, we select the varying 500 genes based on their expression
values. For NMF we used the R code provided by the authors which also performs
model selection to limit the number of metagenes [87]. The human samples were used
to discover the metagenes and the mouse orthologs of these genes were used for the
mouse metagenes. For training of the methods, we use the set of similar tissues as the
positive set and all the remaining pairs as negative examples. Using parameters learned
in the training phase we rank all test pairs by their distance and plot a Precision-Recall
(PR) curve for all methods. Since the data set is highly skewed (i.e. there are many more
negative than positive pairs), PR curves provide a more informative picture of the metrics’
performance than the Receiver Operator Characteristic (ROC) curves [88].

3.3.3 Comparison of cross species comparison metrics

Different rank values of the weight matrix method We assessed the performance of
the weight matrix method with the rank values of 2,3 and 4 in Figure 3.1. Both ranks 2
and 4 do not improve the overall success. We also have tested using a different number of
negative examples for each array in the training set (since the number of positive examples
is only 1 it is hard to change that number). For this test we used 5 negative examples (in
the original analysis we used 12). As can be seen in Figure 3.1, this change did not affect
the results much and the PR curve for such setting is very close to the original PR curve.
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3. Querying large cross-species databases of expression experiments

DiffExpr with different values of x We tried different values of x to determine differ-
entially expressed orthologs in DiffExpr. Figure 3.2 depicts the performance of DiffExpr.
x = 1% yields the best result and is used to compare with other methods.
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Figure 3.1: PR curves of Matrix Weight
metrics with different rank values.
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Figure 3.2: PR curves of DiffExpr with
different values of x.

DiffExpr is the best method for this dataset. Since this dataset contains one-to-one
corresponding tissues between human and mouse, the list of differentially expressed
orthologs highly overlaps between human and mouse samples for each tissue. DiffExpr
achieve high recall and precision by exploiting this particular structure in the data. As
can be seen in Figure 3.3 other methods (except for Spearman’s rank correlation) achieved
a very high precision to begin with (80% and higher). However, this precision level drops
and when reaching 20% recall only the weight matrix and DiffExpr method achieve a
precision that is higher than 90%. As for the other methods we believe that Spearman’s
rank correlation performs worse than Pearson correlation because the test dataset is well
normalized so nonparametric methods lose statistical power. For NMF, the fact that it
is unsupervised and does not use information from the query species to construct the
components likely led to its weaker performance. Figure 3.4 presents the residual weights
(wii + wjj)/2− wij which are the penalties for differences in a ranked pair as shown in
(3.14). High (red) values indicate bigger penalty while lower (blue) values indicate that
the penalty is smaller. Interestingly the method seems to focus more on the repressed
genes and puts a higher weight on genes that move from being unexpressed to being
expressed at a high or medium level. We also observed similar trend in the learned weight
vector w of the Vector method (Figure 3.5).

3.3.4 Novartis dataset

Wehave repeated the above analysis (comparison of methods) using another, independent,
human-mouse tissue dataset, which we term the ‘Novartis dataset’, from [89].

For an additional evaluation of all metrics discussed in this paper, we used a second
human-mouse expression dataset consisting of 79 human and 61 mouse tissues from
[89] (note that some are repeats). In cases where the cell types differed between human
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Figure 3.3: Comparison of different metrics using human-mouse tissues. PR curves of
Spearman’s rank correlation, TBR, NMF, Vector and Matrix Weight metrics.

and mouse we have assigned each human tissue sample to at most three mouse samples
based on a mapping by a pathologist (Oltvai). The assignment of human tissues to mouse
tissues are based on the following criteria (see Website for complete assignments):

1. Same organs, cell types, and developmental stages.

2. Spatially closer structures within an organ.

3. Insights that are not necessarily evident from anatomy, e.g, the ontogenic similarity
of brown adipose tissue and muscle.

We next used 4 fold cross-validation with 4 random permutations of the tissues to
compare the performance of the NMFmethod [80] and the four different distance matrices
discussed above. The results presented used an approximation matrix with rank 3.

The overall success for this dataset is lower than for the Toronto dataset. This agrees
with the initial analysis of this data that indicated a large deviation between human and
mouse expression data for some of the tissues [89]. Due to this main reason, DiffExpr
does very poorly and has the lowest recall and precision. We tried different x values for
DiffExpr (Figure 3.7).

As can be seen in Figure 3.6, the weight matrix method achieves a high precision (65%)
for a much larger recall (10%). As discussed previously, the reason NMF does not perform
well on this dataset is likely related to the fact that it is unsupervised and does not use
information from the query species to construct the components. Figure 3.8 presents
the residual weights, which are the penalties for differences in a ranked pair as shown
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Figure 3.5: The weight vector w learned
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data.
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Figure 3.6: PR curves of Spearman’s rank correlation, TBR, NMF, Vector and Matrix
Weight metrics.

in (3.14). We note the similarity with the learnt matrix in Figure 3.4 in putting a higher
weight on genes that move from being repressed although the penalty is smaller. Thus,
the overall weighting seems to be dataset and platform independent.

Weighmatrix method is the best overall method In application to large, heterogenous,
datasets the assumption of normalization across the datasets is less likely. We need to
use methods that are robust against difference in normalization techniques, thus we
need a method that works well in both the “Toronto“ and “Novartis“ datasets. Since

48



3.4. Results: Identifying similar experiments in GEO

Recall

A
ve

ra
ge

 p
re

ci
si

on

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

DiffExp (top 20%)
DiffExp (top 10%)
DiffExp (top 0.5%)
DiffExp (top 1%)

Figure 3.7: PR curves of DiffExpr with
different values of x (Novartis dataset).

 

 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.8: The penalty matrix between
ranks learned from the Novartis dataset.

there are hundreds of thousands of expression experiments in GEO, precision is more
important than recall for our goals. At these high precision rates theweightmatrixmethod
dominates the other methods we have considered. The weigh matrix method is most
appropriate for querying large cross-species gene expression databases and thus we used
it in all subsequent analyses.

3.4 Results: Identifying similar experiments in GEO
The previous section shows that our weight matrix performs better than standard metrics
on the Toronto and Novartis datasets and moreover can get a very high precision for
the recall value of 20%. Our goal is to apply this new metric for retrieving cross-species
similar pairs of microarray experiments in a large dataset.

Data Collection We downloaded 715 human and 769 mouse datasets from GEO and
used GDS data and metadata to identify control samples for each dataset (Website). Such
samples are important for properly normalizing and transforming the data so that all data
used is log2 ratio of the response sample to its control. We excluded from the analysis all
datasets for which we could not positively identify the control sample leaving us with
3416 human and 2991 mouse microarrays from 535 human and 641 mouse datasets.

Identification of associated pairs of microarrays

We used the weight matrix trained using the full set of human-mouse tissue pairs. We
used the results of Figure 3.3 to select a similarity cutoff corresponding to the cutoff that
led to 95% precision and 10% recall. Using this cutoff we ended up with 301, 453 pairs of
microarrays whose distances are smaller than the cutoff which is roughly 3% of all pairs
tested. These pairs are from 14493 dataset pairs (many array pairs are from the same pair
of human and mouse datasets).

We also looked at the distribution of scores under the null hypothesis (since more than
95% of microarray pairs are not similar, this can be done by selecting random human-
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3. Querying large cross-species databases of expression experiments

mouse array pairs) and determined that the p-value for the null hypothesis is uniformly
distributed, as expected. As a sanity check for our results we also computed the Pearson
correlation across the pairs determined to be significant by our method for all human and
mouse orthologs that were not part of the 500 genes we used for learning the parameters.
Figure 3.9 shows the histogram of this correlation and the histogram of the correlation for
the same set of genes in a randomly selected set of 301, 453 microarray pairs. As can be
seen the selected experiments are indeed more similar for many of the orthologs when
compared to random selected pairs indicating that our method can identify correlated
array pairs without using the experiment description.
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Figure 3.9: Blue curve: Correlation of orthologs not used for training in a random sample
of 301,453 microarray pairs from human and mouse. Red curve: Correlation of orthologs
not used for training in the set of microarray pairs selected by our method.

Description and dataset analysis

The list of pairs derived by our method allows us to address many questions. We first
asked what conditions / organs / tissues are the most similar between human and
mouse in terms of expression. We used the titles provided in the metadata section
of the GDS to identify common words that are significantly over-represented in the
microarray pairs we extracted. For each pair of similar experiments, a word that appears
in both titles could provide information about the relationship between the pair. For
each word we have also computed the number of times it appeared in a title for all
microarrays used from each species and the expected number of times it should have
appeared in the pairs we selected. Using the hypergeometric distribution we computed
the overrepresentation P-value for each word. Table 3.1 presents the results of the analysis
of over represented words in matched titles. As can be seen some organs and tissue types
are much more represented than others. For example, brain, muscles and blood appear
to have similar expression patterns between the two species. Certain conditions are also
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overrepresented, most notably immune response. Several words are associated with
experiments related to such response including different types of cells participating in
the response (macrophages, dendritic, cd8). In contrast, cancer, one of the most common
words in the human studies (roughly 10% of human datasets contained cancer in the
title) was not overrepresented supporting recent results that most mice are not an ideal
model system for at least some types of cancer [90, 91]. We repeated this analysis using
the abstracts provided instead of the titles leading to similar results (see Website for full
results). We have also looked beyond pairwise similarities and identified entire datasets
(GDS files) that contained several similar pairs of arrays between human and mouse.
An expert pathologist (Oltvai) manually inspected the top 100 matched datasets and
determined that over 80% of them make biological sense (see Table B.3). Many of the
datasets identified as similar contained experiments for the same tissue (most notably
muscle, but also blood and brain). However, some of the matches were less obvious.
Fibrosis is a chronic progressive and often lethal lung disease. One of the top 50 matches
in our results was between a human dataset titled non-diseased lung tissue (GDS1673) and
the mouse dataset titled Pulmonary fibrosis(GDS251). However, upon a closer inspection
of the mouse dataset it can be seen that it compares two mouse strains treated with
bleomycin. One is determined to be susceptible to fibrosis (C57BL6/J) whereas the other
is determined to be resistant (BALB/c). When looking at the similarities computed by our
method it can be seen that the vast majority of the top 100 matches are for the BALB/c
strains. Thus, our cross-species comparisons can be used to identify cases in which similar
pathways are activated even though the conditions may be different.

Quarrying GEO to identify cycling mouse genes

To demonstrate the utility of our method for quarrying large cross-species databases like
GEO we used a set of 50 known human cycling genes extracted from [92]. For each of
these genes we used all 301,453 microarray pairs determined to be similar to identify the
set of similarly expressed mouse genes using Spearman correlations (regardless of their
sequence similarity). We retrieved the top 10 most similar mouse genes for each query
human gene resulting in a set of 206 genes. Note that the database we used contained a
diverse set of experiments and, while a few may have been focused on cell cycle studies
the vast majority were not. Importantly, our analysis here did not rely on any specific cell
cycle time series dataset.

We used STEM [93] to determine significant GO categories associated with this list
of mouse genes. As can be seen in Table 3.2, all top categories that are enriched for this
set are related to cell cycle (including cell cycle itself). The set of mouse genes contains
orthologs of the original set of human genes including CDC2A, a cell division control
protein and CCNB1, an essential component of the cell cycle regulatory machinery. The
list also contains many knownmouse cell cycle genes with no homologs on the human list.
These include members of a highly conserved complex which is essential for the initiation
of DNA replication (ORC1L and ORC6L) and PRIM1 and PRIM2 which are involved in
chromosomal replication during cell cycle. See Website for complete list. These results
highlight the potential use of our method for identifying functionally related genes across
species.
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3. Querying large cross-species databases of expression experiments

Rank P-value Word #Pairs

Identified Expected

1 7.14429e-13 MUSCLE 121 28.46752
2 7.39409e-13 DENDRITIC 24 2.13506
3 1.76946e-11 SKELETAL 42 12.12506
4 3.12418e-11 MACROPHAGE 18 2.21414
5 1.89634e-08 ERYTHROID 6 0.15815
6 2.52933e-08 OBESITY 9 0.63261
7 8.35063e-08 HEMATOPOIETIC 13 1.84512
8 2.36749e-07 BRAIN 19 4.42828
9 1.52768e-06 CD8+ 5 0.18451
10 1.67619e-06 CARDIAC 6 0.34266
11 1.45374e-05 STEM 43 20.87618
12 2.02795e-05 HAIR 5 0.31631
13 9.19217e-05 FIBROBLASTS 12 3.08398
14 2.04560e-04 AIRWAY 7 1.15979

Table 3.1: Top 14 words identified in titles of pairs determined to be similar. #Pairs
Identified is the number of time this pair was observed. #Pairs Expected is the number of
time expected based on single species occurrences. The P-value is computed using the
hypergeometric distribution.

# Genes

Rank Category Name Assigned Expected P P adj

1 cell cycle 39.0 9.1 8.5E-15 <0.001
2 cell division 26.0 4.5 5.5E-13 <0.001
3 cell cycle phase 26.0 4.7 1.6E-12 <0.001
4 M phase 24.0 4.2 4.8E-12 <0.001
5 cell cycle process 26.0 5.5 4.6E-11 <0.001
6 mitotic cell cycle 21.0 3.8 2.4E-10 <0.001
7 mitosis 17.0 2.9 6.7E-9 <0.001
8 nuclear division 17.0 2.9 5.8E-9 <0.001
9 M phase of mitotic cycle 17.0 3.0 6.7E-9 <0.001

Table 3.2: GO enrichment analysis for mouse genes using STEM.
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3.5 Conclusions and future work
The growth ofmicroarray databases opens the door to applications that can simultaneously
query sequence and expression databases to identify both static and dynamic matches.
However, these methods would require a set of matching expression datasets in the
species being queried. Such matches are hard to come by. It is rare to find the exact same
experiment (condition, time, tissues etc.) in multiple species. To allow the use of these
databases we looked at several different distance metrics between expression experiments.
We defined a new distance function which utilizes the ranking of orthologs in both species.
Our method uses a training dataset to learn weights for differences in rankings between
the species and these differences are then summed up to determine the similarity between
the two experiments. Testing this method on a training dataset of known similar pairs
showed that it indeed improves upon other distance measures and that it can achieve
high precision.

We used our new distance function to retrieve similar experiment pairs from GEO.
The set of experiments identified by our method allowed us to look at questions regarding
the conditions and tissues that activate similar expression patterns in human and mouse
and to find a set of cycling mouse genes based on a set of known human cycling genes.
Many of these mouse genes are known to be cycling and the rest of the genes identified
are candidates for further study into their role in the cell cycle.

Our method attempts to learn a new distance function for permutations based on
training data. There has been recent work in Machine Learning on trying to learn new
distance function for feature vectors [94], though we are not aware of any work so far that
attempted to learn such methods for permutations. A number of the methods developed
for feature vectors were later kernelized allowing for much faster computations. It would
be interesting to see if theMatrix weightmethod discussed here can also be kernelized. We
have primarily relied on one-to-one orthologymatches for computing the distance between
pairs of experiments. Since many orthology assignments are many to one or many-to-
many, methods that can utilize such information may be able to improve upon the results
suggested in this chapter. Our overall goal is to compile a large set of expression pairs that
can be used for querying human and mouse genes. As we noted in the introduction our
method can also help in distinguishing between orthologs and homologs by looking for
genes with similar sequence that are also co-expressed in the set of similar experiments.
We would also like to extend this work to other species and we are looking for training
data for these species.

53





4Cross-species Expression Analysis with
Latent Matching of Genes1

While useful, cross-species analysis of expression data is challenging. In addition to
the regular issues with expression data (noise, missing values, etc.) when comparing
expression levels across species researchers need to match genes across species. For
most genes the correct match in another species (known as ortholog) is not known. In
developing the method in the previous chapter, we have primarily relied on one-to-
one orthology matches for computing the distance between pairs of experiments. In
this chapter, we relax the one-to-one orthology requirement by incorporating a latent
matching component, which can determine probabilistically the matchings of genes in
two species, into a unified model to assign genes into clusters.

4.1 Introduction
A number of methods have been suggested to solve the matching problem. The first
set of methods is based on a one-to-one deterministic assignment by relying on top
sequence matches. Such an assignment can be used to concatenate the expression vectors
for matched genes across species and then cluster the resulting vectors. For example,
Stuart et al. [96] constructed “metagenes“ consisting of top sequence matches from four
species. These were used to cluster the data from multiple species to identify conserved
and divergent patterns. Bergmann et al. [97] defined one of the species (species A) as
a reference and first clustered genes in A. They then used matched genes in the second
species (B) as starting points for clustering genes in B. When the clustering algorithm
converges in B, genes that remain in the cluster are considered “core“ whereas genes
that are removed are “divergent“. Quon et al. [98] used a mixture of Gaussians model,
which takes as input the expression data of orthologous genes and a phylogenetic tree
connecting the species, to reconstruct the expression profiles as well as detecting divergent
links in the phylogeny. The second set of methods allowed for soft matches but was either
limited to analyzing binary or discrete data with very few labels. For example, Lu et al.
combined experiments from multiple species by using Markov Random Fields [99] and
Gaussian Random Fields [100] in which edges represent sequence similarity and potential
functions constrain similar genes across species to have a similar expression pattern.

While both approaches led to successful applications, they suffer from drawbacks that
limit their use in practice. In many cases the top sequence match is not the correct ortholog
and a deterministic assignment may lead to wrong conclusions about the conservation
of genes. Methods that have used soft assignments were limited to summarization of
the data (up or down regulated) and could not utilize more complex profiles. Here we
present a new method that uses soft assignments to allow comparison and clustering
across species of arbitrary expression data without requiring prior knowledge on the
phylogeny. Our method takes as input expression datasets in two species and a prior on

1 This work is published in [95].
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matches between homologous genes in these species (derived from sequence data). The
method simultaneously clusters the expression values for both species while computing
a posterior for the assignment of orthologs for genes. We use Dirichlet Process model to
automatically detect the number of clusters.

We have tested our method on simulated and immune response data. In both cases
the algorithm was able to find correct matches and to improve upon methods that used a
deterministic assignment. While the method was developed for, and applied to, biological
data, it is general and can be used to address other problems including matchings of
captions to images (see Section 4.5).

4.2 Problem definition
In this section, we first describe in details the cross-species analysis problem for gene
expression data. Next, we formalize this as a general clustering and matching problem
for cases in which the matches are not known in advance.

Using microarrays or new sequencing techniques researchers can monitor the expres-
sion levels of genes under certain conditions or at specific time points. For each such
measurement we obtain a vector whose elements are the expression values for all genes
(there are usually thousands of entries in each vector). We assume that the input consists
of microarray experiments from two species and each species has a different set of genes.
While the exact matches between genes in both species are not known for most genes, we
have a prior for gene pairs (one from each species) which is derived from sequence data
[101]. Our goal is to simultaneously cluster the genes in both species. Such clustering can
identify coherent and divergent responses between the species. In addition, we would
like to infer for each gene in one species whether there exists a homolog that is similarly
expressed in the other species and if so, who.

The problem can also be formalized more generally in the following way. Denote
by X = (x1, . . . , xnx )

T and Y = (y1, . . . , yny)
T the datasets of samples from two different

experiment settings, where xi ∈ <px and yj ∈ <py . In addition, let M be a sparse
non-negative nx-by-ny matrix that encodes prior information regarding the matching of
samples in X and Y. We define the match probability between xi and yj as follows:

p(xi and yj are matched) =
Mij

Ni
= πij (4.1)

p(xi is not matched) = 1
Ni

= πi0 (4.2)

where Ni = 1 + ∑
ny
j=1Mij.

πi0 is the prior probability that xi is not matched to any element in Y. We use πi to
denote the vector (πi0, . . . , πiny)

T. Finally, let mi ∈ {0, 1, . . . . , ny} be the latent matching
variable. If mi = 1 we say that xi is matched to ymi . If mi = 0 for we say that xi has no
match in y. Our goal is to infer both, the latent variables mi’s and cluster membership for
pairs of samples (xi, ymi )’s.
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4.3 Model
Model selection is an important problemwhen analyzing real world data. Many clustering
algorithms, including Gaussian mixture models, require as an input the number of
clusters. In addition to domain knowledge, this model selection question can be addressed
using cross validation. Bayesian nonparametric methods provide an alternative solution
allowing the complexity of the model to grow based on the amount of available data.
Under-fitting is addressed by the fact that the model allows for unbounded complexity
while over-fitting is mitigated by the Bayesian assumption. We use this approach to
develop a nonparametric model for clustering andmatching cross-species expression data.
Our model, termed Dirichlet Process Mixture Model with Latent Matchings (DPMMLM)
extends the popular Dirichlet Process Mixture Model to cases where priors are provided
to matchings between vectors to be clustered.

4.3.1 Dirichlet Process

Let G0 a probability measure on a measurable space. We write G ∼ DP(α, G0) if G is a
random probability measure drawn from a Dirichlet process (DP). The existence of the
Dirichlet process was first proven by [102]. Furthermore, measures of G are discrete with
probability one. This property can be seen from the explicit stick-breaking construction
due to Sethuraman [103] as follows.

Let (Vi)
∞
i=1 and (ηi)

∞
i=1 be independent sequences of i.i.d random variables: Vi ∼

Beta(1, α) and ηi ∼ G0. Then a random measure G defined as

θi = Vi

i−1

∏
j=1

(1−Vj) (4.3)

G =
∞

∑
i=1

θiδηi (4.4)

where δη is a probability measure concentrated at η, is a random probability measure
distributed according to DP(α, G0) as shown in [103] .

4.3.2 Dirichlet Process Mixture Model (DPMM)

Dirichlet process has been used as a nonparametric prior on the parameters of a mixture
model. This model is referred to as Dirichlet Process Mixture Model. Let z be the mixture
membership indicator variables for data variables X. Using the stick-breaking construction
in (4.3), the Dirichlet process mixture model is given by

G ∼ DP(α, G0) (4.5)
zi, ηi | G ∼ G (4.6)
xi | zi, ηi ∼ F(ηi) (4.7)

where F(ηi) denotes the distribution of the observation xi given parameter ηi.
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4.3.3 Dirichlet Process Mixture Model with Latent Matchings (DPMMLM)

In this section, we describe the new mixture model based on DP with latent variables for
data matching between X and Y. We use FX(η), FY(η) to denote the marginal distribu-
tion of X and Y respectively; and FX|Y(y, η) to denote the conditional distribution of X
given Y. The parameter η is a random variable of the prior distribution G0(η | λ0) with
hyperparameter λ0. Also, let zi be the mixture membership of the sample pair (xi, ymi ).
That is zi = k if the datapoint belongs to the kth cluster.

Our model is given by:

Figure 4.1: Graphical model of
DPMMLM.

G ∼ DP(α, G0)

zi, ηi | G ∼ G
mi | πi ∼ Discrete(πi)

ymi | mi, zi, ηi ∼ FY(ηi), if mi > 0

xi | mi, zi, ηi, Y ∼
{

FX|Y(ymi , ηi) if mi > 0
FX(ηi) otherwise

(4.8)

The major difference between our model and a regular DPMM is the dependence of
xi on y if mi > 0. In other words the assignment of x to a cluster depends on both, its
own expression levels and the levels of the y component to which it is matched. If x is
not matched to any y component then we resort to the marginal distribution FX of the
mixture.

4.3.4 Mean-field variational methods

For probabilisticmodels, mean-field variationalmethods [104, 105] provide a deterministic
and bounded approximation to the intractable joint probability of observed and hidden
variables. Briefly, given a model with observed variables x and hidden variables h, we
would like to compute log p(x), which requires us to marginalize over all hidden variables
h. Since p(x, h) is often intractable, we can find a tractable probability q(h) that gives the
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best lower bound of log p(x) using Jensen ’s inequality:

log p(x) = log
∫

h
p(x, h) dh (4.9)

= log
∫

h

p(x, h)q(h)
q(h)

dh (4.10)

≥
∫

h
q(h) log p(x, h)− q(h) log q(h) dh (4.11)

= Eq[log p(x, h)]− Eq[log q(h)] (4.12)

Maximizing this lower bound is equivalent to finding the distribution q(h) that minimizes
the KL divergence between q(h) and p(h | x). Hence, q(h) is the best approximation
model within the chosen parametric family.

4.3.5 Variational Inference for DPMMLM

Although the DP mixture model is an “infinite“ mixture model, it is intractable to solve
the optimization problem when allowing for infinitely many variables. We thus follow
the truncation approach used in [106], and limit the number of cluster to K. When K is
chosen to be large enough, the distribution is a drawn from the Dirichlet process [106].
To restrict the number of clusters to K, we set VK = 1 and thus obtain θi>K = 0 in (4.3).

For convenience, we use mj
i to denote a binary variable indicating whether mi equals j.

That is mj
i = 1[mi = j]. Similarly, zk

i indicates whether zi equals k. The likelihood of the
observed data is:

p(X, Y | α, λ0) =
∫

m,z,v,η

p(η | λ0) p(v | α)
nx

∏
i=1

p(zi | v)

K

∏
k=1

{(
πi0 fX(xi | ηk)

)m0
i

ny

∏
j=1

(
πij fX|Y(xi | yj, ηk) fY(yj | ηk)

)mj
i
}zk

i (4.13)

where p(zi | v) = vzi ∏zi−1
k=1 (1− vk) and v is the stick breaking variables given in Sec-

tion 4.3.1. The first part of (4.13) p(η | λ0) p(v | α) is the likelihood of themodel parameters
and the second part is the likelihood of the assignments to clusters and matchings.

Following the variational inference framework for conjugate-exponential graphical
models [107] we choose the distribution that factorizes over {mi, zi}i=1,...,nx , {vk}k=1,...,K
and {ηk}k=1,...,K−1 as follows:

q(m, z, v, η) =
nx

∏
i=1

{
qφi (mi)

ny

∏
j=0

qθij(zi)
mj

i
} K−1

∏
k=1

qγk (vk)
K

∏
k=1

qλk (ηk) (4.14)

where qφi (mi) and qθi,j(zi) are multinomial distributions and qγk (vk) are beta distributions.
These distributions are conjugate distributions for the likelihood of the parameters in (4.13).
qλk (ηk) requires special treatment due to the coupling of the marginal and conditional
distributions in the likelihood. These issues are discussed in details in section 4.3.6.
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Using this variational distribution we obtain a lower bound for the log likelihood:

log p(X, Y | α, λ0) ≥ E[log p(η | λ0)] + E[log p(v | α)]

+
nx

∑
i=1

{
E[log p(zi | v)] +

ny

∑
j=0

K

∑
k=1

E[mj
iz

k
i ](log πij + ρijk)

}
− E[log q(m, z, v, η)] (4.15)

where all expectations are with respect to the distribution q(m, z, v, η) and

ρijk =

{
E[log fX|Y(xi | yj, ηk)] + E[log fY(yj | ηk)] if j > 0
E[log fX(xi | ηk)] if j = 0

To compute the terms in (4.15), we note that

E[mj
izik] = φijθijk = ψijk

E[log p(zi | v)] =
K

∑
k=1

q(zi > k)E[log(1− vk)] + q(zi = k)E[log vk]

where q(zi > k) = ∑
ny
j=0 ∑K

t=k+1 ψijt and q(zi = k) = ∑
ny
j=0 ψijk.

Coordinate ascent inference algorithm

The lower bound above can be optimized by a coordinate ascent algorithm. The update
rules for all terms except for the qλk (ηk), are presented below. These are direct applications
of the variational inference for conjugate-exponential graphical models [107]. We discuss
the update rule for qλk (ηk) in section 4.3.6.

• Update for qγk (vk):

γk1 = 1 +
nx

∑
i=1

ny

∑
j=0

ψijk (4.16)

γk2 = α +
nx

∑
i=1

ny

∑
j=0

K

∑
t=k+1

ψijt (4.17)

• Update for qθij(zi) and qφi (mi):

θijk ∝ exp
(
ρijk +

k−1

∑
k=1

E[log(1− vk)] + E[log vk]
)

(4.18)

φij ∝ exp
(

log πij +
K

∑
k=1

θijk
(
ρijk +

k−1

∑
k=1

E[log(1− vk)] + E[log vk]
))

(4.19)
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4.3.6 Application of the model to multivariate Gaussians

The previous sections described the model in a general terms. In the rest of this section,
and in our experiments, we focus on data that is assumed to be distributed as a mul-
tivariate Gaussian with unknown mean and covariance matrix. The prior distribution
G0 is then given by the conjugate prior Gaussian-Wishart distribution. In a classical DP
Gaussian Mixture Model with Gaussian-Wishart prior, the posterior distribution of the
parameters could be computed analytically. Unfortunately, in our model, the coupling
of the conditional and marginal distribution in the likelihood makes it difficult to derive
analytical formulas for the posterior distribution. Note that if (X, Y) ∼ N (µ, Σ) with

µ = (µX , µY) and Σ =

(
ΣX ΣXY

ΣYX ΣY

)
then X ∼ N (µX , ΣX), Y ∼ N (µY, ΣY) and

X|Y = y ∼ N (µX + ΣXYΣ−1
Y (y− µY), ΣX − ΣXYΣ−1

Y ΣYX). (4.20)

Therefore, we introduce an approximation distribution for the datasets which decouples
the marginal and conditional distributions as follows:

fX(x | µX , ΛX) = N (µX , Σ = Λ−1
X ) (4.21)

fY(y | µY, ΛY) = N (µY, Σ = Λ−1
Y ) (4.22)

fX|Y(x | y, W, b, µX , ΛX) = N (µX + b−Wy, Σ = Λ−1
X ) (4.23)

where W is a px-by-py projection matrix and Λ is the precision matrix. In this approxima-
tion, we assume that the covariance matrices of X and X|Y are the same. In other words,
the covariance of X is independent of Y. The matrix W models the linear correlation of X
on Y, similar to −ΣXYΣ−1

Y in (4.20).
The priors for µX , ΛX and µY, ΛY are given by Gaussian-Wishart(GW) distributions

with hyper-parameters {κX0, mX0, SX0, νX0} and {κY0, mY0, SY0, νY0}. A flat improper
prior is given to W and b, p0(W) = 1, p0(b) = 1 for all W, b. These assumptions lead
to decoupling of the marginal and conditional distributions. Therefore, the distribution
qλk (ηk) can now be factorized into two GW distributions and a distribution of W. To avoid
over-cluttering symbols, we omit the subscript k of the specific cluster k.

q∗λk
(ηk) = GW(µX , ΛX | κX , mX , SX , νX) GW(µY, ΛY | κY, mY, SY, νY) g(W) g(b)

Posterior distribution of µY, ΛY The update rules follow the standard posterior distri-
bution of Gaussian-Wishart conjugate priors.

Posterior distribution of µX , ΛX and W, b

Due to the coupling of µX , ΛX with W, we do a coordinate ascent procedure to find the
optimal posterior distribution. We do a point estimation of W and b. (The posterior
distribution of W, b is a singleton discrete distribution g such that g(W∗) = 1, g(b∗) = 1.)
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Update for posterior distribution of µX , ΛX

κX = κX0 + nX (4.24)

mX =
1

κX
(κX0mX0 + nXx) (4.25)

S−1
X = S−1

X0 + VX +
κX0nX

κX0 + nX
(x−mX0)(x−mX0)

T (4.26)

νX = νX0 + nX (4.27)

where

nX =
nx

∑
n=1

ny

∑
j=0

ψijk (4.28)

x =
1

nX

nx

∑
i=1

(
ψi0kxi +

ny

∑
j=1

ψijk(xi − b + W∗yj)
)

(4.29)

VX =
nx

∑
i=1

{
ψi0k(xi − x)(xi − x)T +

ny

∑
j=1

ψijk(xi − b + W∗yj − x)(xi − b + W∗yj − x)T
}

(4.30)

Update for W∗, b∗ We find W∗, b∗ that maximizes the log likelihood. Taking the deriva-
tive with respect to W∗ and solving for W∗, we get

W∗ =
( nx

∑
i=1

ny

∑
j=1

ψijk(xi −mX − b)yT
j

)( nx

∑
i=1

ny

∑
j=1

ψijkyjyT
j

)−1

b∗ = −
( nx

∑
i=1

ny

∑
j=1

ψijk(xi −mX + W∗yj)
)

/
nx

∑
i=1

ny

∑
j=1

ψijk

4.4 Experiments and Results
4.4.1 Simulated data

We demonstrate the performance of the model in identifying data matchings as well
as cluster membership of datapoints using simulated data. To generate a simulated
dataset, we sample 120 datapoints from a mixture of three 5-dimensional Gaussians with
separation coefficient = 2 leading to well separated mixtures2. The covariance matrix
was derived from the autocorrelation matrix for a first-order autoregressive process
leading to highly dependent components (ρ = 0.9). From these samples, we use the first
3 dimensions to create 120 datapoints x = [x1, . . . , x120]. The last two dimensions of the
first 100 datapoints are used to create y = [y1, . . . , y100] (note that there are no matches for
20 points in x). Hence, the ground truthMmatrix is a diagonal 120-by-100 matrix. We

2Following [108], a Gaussian mixture is c-separated if for each pair (i, j) of components, ‖mi − mj‖2 ≥
c2D max(λmax

i , λmax
j ) , where λmax denotes the maximum eigenvalue of their covariance.
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selected a large value for the diagonal entries (τ = 1000) in order to place a strong prior for
the correct matchings. Next, for t = 0, . . . , 20, we randomly select t entries on each row of
M and set them to τ

2 r, where r ∼ χ2
1. We repeat the process 20 times for each t to compute

the mean and standard deviation shown in Figure 4.2a and Figure 4.2b. We compare
the performance of our model(DPMMLM) with a standard Dirichlet Process Mixture
Model where each component in x is matched based on the highest prior: {(xi, yj∗) | i =
1, . . . , 100 and j∗ = argmaxjM(i, j)} (DPMM). For all models, the truncation level (K) is
set to 20 and α is 1. Figure 4.2a presents the percentage of correct matchings inferred by
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Figure 4.2: Evaluation of the result on simulated data.

DPMMLM and the highest prior matching. For DPMMLM, a datapoint xi is matched
to the datapoint yj with the largest posterior probability φi,j. With the added noise,
DPMMLM can still achieve an accuracy of 50% when the highest prior matching leads to
only 25% accuracy. Figure 4.2b and 4.2c show the Normalized Mutual Information (NMI)
and Adjusted Rand index [109] for the clusters inferred by the two models compared to
the true clusters. As can be seen, while the percentage of correct matchings decreased
with the added noise, DPMMLM still achieves high NMI of 0.8 and Adjusted Rand index
of 0.92. In conclusion, by relying on matchings of points DPMMLM can still performs
very well in terms of its ability to identify correct clusters even with the high noise levels.
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4.4.2 Immune response dataset
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Figure 4.3: The heatmap for clusters inferred for the immune response dataset.

We compared human and mouse immune response datasets to identify similar and
divergent genes. We selected two experiments that studied immune response to gram
negative bacteria. The first was a time series of human response to Salmonella [110]. Cells
were infected with Salmonella and were profiled at: 0.5h, 1h, 2h, 3h and 4h. The second
looked at mouse response to Yersinia enterocolitica with and without treatment by IFN-γ
[111]. We used BLASTN to compute the sequence similarity (bit-score) between all human
and mouse genes. For each species we selected the most varying 500 genes and expanded
the gene list to include all matched genes in the other species with a bit score greater than
75. This led to a set of 1476 human and 1967 mouse genes which we compared using our
model. TheMmatrix is the bit scores between human and mouse genes thresholded at
75.

The resulting clusters are presented in Figure 4.3a. In that figure, the first five dimen-
sions are human expression values and each gene in human is matched to the mouse gene
with the highest posterior. Human genes which are not matched to any mouse gene in
the cluster have a blank line on the mouse side of the figure. The algorithm identified
five different clusters. Clusters 1, 4 and 5 display a similar expression pattern in human
and mouse with genes either up or down regulated in response to the infection. Genes in
cluster 2 differ between the two species being mostly down regulated in humans while
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slightly upregulated in mouse. Human genes in cluster 3 also differ from their mouse
orthologs. While they are strongly upregulated in humans, the corresponding mouse
genes do not change much.

P value Adj P GO term description

2.86216e-10 <0.001 regulation of apoptosis
4.97408e-10 <0.001 regulation of cell death
7.82427e-10 <0.001 protein binding
4.14320e-10 <0.001 regulation of programmed cell death
4.49332e-09 <0.001 positive regulation of cellular process
4.77653e-09 <0.001 positive regulation of biological process
8.27313e-09 <0.001 response to chemical stimulus
1.17013e-07 0.001 cytoplasm
1.28299e-07 0.001 response to stress
2.20104e-07 0.001 cell proliferation
5.06685e-07 0.001 response to stimulus
6.15795e-07 0.001 negative regulation of biological process
7.70651e-07 0.001 cellular process
7.78266e-07 0.002 regulation of localization
1.09778e-06 0.002 response to organic substance
1.42704e-06 0.002 collagen metabolic process
1.91735e-06 0.003 negative regulation of cellular process
3.23244e-06 0.005 multicellular organismal macromolecule metabolic process
3.39901e-06 0.005 interspecies interaction
3.66178e-06 0.005 negative regulation of apoptosis

Table 4.1: The GO enrichment result for cluster 1 identified by DPMMLM.

We used the Gene Ontology (GO, www.geneontology.org) to calculate the enrichment
of functional categories in each cluster based on the hypergeometric distribution. Genes
in cluster 1 (Table 4.1) are associated with immune and stress responses. Interestingly the
most significant category for this cluster is “regulation of apoptosis“ (corrected p-value
<0.001). Indeed, both Salmonella and Yersinia are known to induce apoptosis in host cells
[112]. When clustering the two datasets independently the p-value for this category is
greatly reduced indicating that accurate matchings can lead to better identification of core
pathways (see Appendix). Cluster 4 contains the most coherent set of upregulated genes
across the two species. One of top GO categories for this cluster is ’response to molecule
of bacterial origin’ (corrected p-value < 0.001) which is the most accurate description of
the condition tested. See Appendix for complete GO tables of all clusters. In contrast
to clusters in which mouse and human genes are similarly expressed, cluster 3 genes
are strongly upregulated in human cells while not changing in mouse. This cluster is
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enriched for ribosomal proteins (corrected p-value <0.001). This may indicate different
strategies utilized by the bacteria in the two experiments. There are studies that show
that pathogens can upregulate the synthesis of ribosomal genes (which are required for
translation) [113] whereas other studies indicate that ribosomal genes may not change
much, or may even be reduced, following infection [114]. The results of our analysis
indicate that while following Salmonella infection in human cells ribosomal genes are
upregulated, they are not activated following Yarsinia infection in mouse.

We have also analyzed the matchings obtained using sequence data alone (prior)
and by combining sequence and expression data (posterior) using our method. The top
posterior gene is the same as the top prior gene in most cases (905 of the 1476 human
genes). However, there are several cases inwhich the prior and posterior differ. 293 human
genes are not matched to any mouse gene in the cluster they are assigned to indicating
that they are expressed in a species dependent manner. Additionally, for 278 human
genes the top posterior and prior mouse gene differ. To test whether these differences
inferred by the algorithm are biologically meaningful we compared our Dirichlet method
to a method that uses deterministic assignments, as was done in the past. Using such
assignments the algorithm identified only three clusters as shown in Figure 4.3b. Neither
of these clusters looked homogenous across species.

4.5 Conclusions
We have developed a newmodel for simultaneously clustering and matching genes across
species. The model uses a Dirichlet Process to infer the number of clusters. We developed
an efficient variational inference method that scales to large datasets with almost 2000
datapoints. We have also demonstrated the power of our method on simulated data and
immune response dataset. While the method was presented in the context of expression
data it is general and can be used for other matching tasks in which a prior can be obtained.
For example, when trying to determine a caption for images extracted from webpages
a prior can be obtained by relying on the distance between the image and the text on
the page. Next, clustering can be employed to utilize the abundance of images that are
extracted and improve the matching outcome.
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Part III

Using expression data to infer
condition-specific miRNA targets
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5GroupMiR: Inferring Interaction
Networks using the Indian Buffet
Process 1

MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that regulate
gene expression post-transcriptionally. These single-stranded RNAs, 19-25 nucleotides
long, are initially transcribed as longer independent genes, or together with host genes
(and then processed out of their introns). MiRNAs are now known to play a major role in
development [116], various brain functions [117], and diseases [118]. Since their discovery,
several hundred miRNAs were identified in each of several different species including
mammals, worms, flies, and plants [7]. Most miRNAs target the genes they regulate by
binding to the 3’-UTR of the target mRNAs (using complementary base-pairing) and
recruiting additional machinery to either degrade these mRNAs or prevent them from
being translated. The miRNA regulation is ubiquitous and a single miRNA can target
hundreds and even thousands of genes. Since the effect of each miRNA on any single
target is often limited, they often work cooperatively with multiple miRNAs targeting
the same mRNA in a specific condition [119, 8]. They were shown to play an important
role in a number of diseases including cancer, and determining the set of genes that are
targeted by each miRNA is an important question when studying these diseases.

5.1 Introduction
Initial discovery of large sets of miRNAs relied heavily on sequence and conservation anal-
ysis [116], though recent advances in sequencing capacity are now allowing researchers
to validate and identify additional miRNAs experimentally [120]. While these predictions
are useful, due to the short length of miRNAs, they lead to many false positives and
some false negatives [121, 122]. In addition to sequence information, it is now possible
to obtain the expression levels of miRNAs and their predicted mRNA targets using mi-
croarrays. Since miRNAs inhibit their direct targets, integrating sequence and expression
data can improve predictions regarding the interactions between miRNAs and their tar-
gets [122, 123, 124] This has led to several studies that isolated themiRNA target prediction
task by integrating sequence, mRNA and miRNA expression data [123, 122, 124, 125]. Un-
like sequence data, expression data is dynamic and condition-specific and thus provides
useful clues about the set of active miRNAs and mRNAs. A number of methods, mostly
based on (anti) correlation or regression analysis using the expression levels of miRNAs
and predicted mRNA targets were suggested for this task [126, 127]. A representative
example for this group is GenMiR++ [122], one of the first methods to integrate miRNA
and mRNA expression profiles in a unified probabilistic model.

Expression data Consider making predictions using the expression profiles of M mes-
senger RNA (mRNA) transcripts and R miRNA transcript across P samples. Let X =

1 This work is published in [115].
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(x1, . . . , xM)T, where each row vector xi is the expression profile of miRNA i in all samples.
Similarly, let Y = (y1, . . . , yR)

T represent the expression profiles of R mRNAs.

GenMiR++ Given a set of putative miRNA-mRNA interactions C (ckg = 1 if miRNA k
is predicted to target mRNA g), GenMIR++ employs a generative model in which each
miRNA expression profile is used to explain the down-regulation of the expression of
its mRNA targets. The model depends on nuisance variables {Λ, Γ} and parameters
Θ = {µ, Σ, π, α} and σ2. The variables Λ = {λ1, λ2, . . . , λM} > 0 is a vector of down
regulation effect of miRNAs and Γ = diag(γ1, . . . , γP) is a diagonal matrix of positive
sample-scaling parameters that considers the normalization difference between different
sample. The most important variable S is a M-by-R binary matrix where skg = 1 means
mRNA g is a target of miRNA k. The generative model specifies the relationship between
expression profiles X and Y as follows [128]:

p(yg|Y, S, Γ, Λ, Θ) = N (xg; µ−∑
k

λkskgΓxk, Σ) (5.1)

p(S|C, Θ) = ∏
(k,g)

p(skg|C, Θ) = ∏
(k,g)|ckg=0

(1− sgk) ∏
(k,g)|ckg=1

πskg(1− π)(1−skg)

(5.2)

The learning and inference was done by a Variational Bayesian technique approximat-
ing the posterior distribution of S and the optimal values of Θ. The target prediction is
made based on the posterior over S for each putative target in the set C.

While methods utilizing expression data improved upon methods that only used
sequence data, they often treated each target mRNA in isolation. In contrast, it has
now been shown that each miRNA often targets hundreds of genes, and that miRNAs
often work in groups to achieve a larger impact [129]. Thus, rather than trying to infer
a separate regression model for each mRNA, we proposed GroupMiR, a probabilistic
model to infer a joint regression model for a cluster of mRNAs and the set of miRNAs
that regulate them. Such a model would provide statistical confidence (since it combines
several observations) while adhering more closely to the underlying biology. In addition
to inferring the interactions in the dataset, such a model would also provide a grouping
for genes and miRNAs which can be used to improve function prediction.

We present GroupMiR in the following sections as follows. First, we derive a distribu-
tion on infinite binary matrices starting with a finite model and taking the limit as the
number of features goes to infinity. Second, we apply this distribution to the miRNA
target prediction problem using a Gaussian additive model, completing the description
of GroupMiR.

5.2 Interaction model
Let zik denote the (i, k) entry of a matrix Z and let z,k denote the kth column of Z. The
group membership of N entities is defined by a (latent) binary matrix Z where zik = 1 if
entity i belongs to group k. Given Z, we say that entity i interacts with entity j if zikzjk = 1
for some k. Note that two entities can interact through many groups where each group
represents one type of interaction. In many cases, a prior on such interactions can be
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Data Sources Results

miRNA/mRNA expression noisy beliefs Predicted interactions

Source: [122]

1

0.6
-0.3
0.7
0.1

2

-0.1
-0.5
0.7
-0.4

3

1.0
0.0
-0.2
0.1

2.0
0.3
-0.2
1.1

a

0.4
-0.3
0.0
-2.1

b
1

a

2

3

b

1a

2

3
b

Figure 5.1: The data sources used by GroupMiR.

obtained. Assume we have a N-by-N symmetric matrix W, where wij indicates the degree
that we believe that entity i and j interact: wij > 0 if entities i and j are more likely to
interact and wij < 0 if they are less likely to do so.

Nonparametric prior for Z Griffiths and Ghahramani [15] proposed the Indian Buffet
Process (IBP) as a nonparametric prior distribution on sparse binary matrices Z. The IBP
can be derived from a simple stochastic process, described by a culinary metaphor. In
this metaphor, there are N customers (entities) entering a restaurant and choosing from
an infinite array of dishes (groups). The first customer tries Poisson(α) dishes, where α is
a parameter. The remaining customers enter one after the others. The ith customer tries
a previously sampled dish k with probability mk

i , where mk is the number of previous
customers who have sampled this dish. He then samples a Poisson( α

i ) number of new
dishes. This process defines an exchangeable distribution on the equivalence classes of Z,
which are the set of binary matrices that map to the same left-ordered binary matrices.
[15]. Exchangeability means that the order of the customers does not affect the distribution
and that permutation of the data does not change the resulting likelihood.

The prior knowledge on interactions discussed above (encoded by W) violates the
exchangeability of the IBP since the group membership probability depends on the
identities of the entities whereas exchangeability means that permutation of entities does
not change the probability. In [130], Miller et al. presented the phylogenetic Indian Buffet
Process (pIBP), where they used a tree representation to express non-exchangeability.
In their model, the relationships among customers are encoded as a tree allowing them
to exploit the sum-product algorithm in defining the updates for an MCMC sampler,
without significantly increasing the computational burden when performing inference.
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We combine the IBP with pairwise potentials using W, constraining the dish selection
of customers. Similar to the pIBP, the entries in zk are not chosen independently given πk
but rather depend on the particular assignment of the remaining entries. In the following
sections, we start with a model with a finite number of groups and consider the limit as
the number of groups grows to derive the nonparametric prior. Note that in our model,
as in the original IBP [15], while the number of rows are finite, the number of columns
(features) could be infinite. We can thus define a prior on interactions between entities
(since their number is known in advance) while still allowing for an infinite number
of groups. This flexibility allows the group parameters to be drawn from an infinite
mixtures of priors which may lead to identical groups of entities each with a different set
of parameters.

5.2.1 Prior on finite matrices Z

We have an N-by-K binary matrix Z where N is the number of entities and K is a fixed,
finite number of groups. In the IBP, each group/column k is associated with a parameter
πk, chosen from a Beta(α/K, 1) prior distribution where α is a hyperparameter:

πk|α ∼ Beta
( α

K
, 1
)

P(z,k|πk) = exp
(

∑
i

(
(1− zik) log(1− πk) + zik log πk

))
The joint probability of a column k and πk in the IBP is:

P(z,k, πk|α) =
1

B( α
K , 1)

exp
(

∑
i

(
(1− zik) log(1− πk) + zik log πk

)
+
( α

K
− 1
)

log πk

)
(5.3)

where B(·) is the Beta function.
For our model, we add the new pairwise potentials on memberships of entities. Defin-

ing Φz,k = exp
(

∑i<j wijzikzjk
)
, the joint probability of a column k and πk is:

P(z,k, πk|α) =
1
Z′

Φz,k exp
(

∑
i

(
(1− zik) log(1− πk) + zik log πk

)
+
( α

K
− 1
)

log πk

)
(5.4)

where Z′ is the partition function. Note that IBP is a special case of our model when all
w’s are zeros (W = 0).

Following [15], we define the lof-equivalence classes [Z] as the sets of binary matrices
mapped to the same left-ordered binary matrices. The history hi of a feature k at an entity
i is defined as (z1k, . . . , z(i−1)k). When no object is specified, h refers to the full history. mk
and mh denote the number of non-zero entries of a feature k and a history h respectively.
Kh is the number of features possessing the history h while K0 is the number of features
having mk = 0. K+ = ∑2N−1

h=1 Kh is the number of features for which mk > 0.
By integrating over all values of πk, we get the marginal probability of a binary
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matrix Z:

P(Z) =
K

∏
k=1

∫ 1

0
P(z,k, πk|α) dπk (5.5)

=
K

∏
k=1

1
Z′

Φz,k

∫ 1

0
exp

(( α

K
+ mk − 1

)
log πk + (N −mk) log(1− πk)

)
dπk (5.6)

=
K

∏
k=1

1
Z′

Φz,k B
( α

K
+ mk, N −mk + 1

)
(5.7)

The partition function Z′ could be written as: Z′ = ∑2N−1
h=0 ΦhB

(
α
K + mh, N −mh + 1

)
.

Taking the infinite limit

The probability of a particular lof-equivalence class of binary matrices, [Z], is:

P([Z]) = ∑
Z

P(Z) =
K!

∏2N−1
h=0 Kh!

K

∏
k=1

1
Z′

Φz,k B
(
mk +

α

K
, N −mk + 1

)
(5.8)

Taking the limit when K → ∞, we can show that with Ψ = ∑2N−1
h=1 Φh

(N−mh)!(mh−1)!
N! :

lim
K→∞

P([Z]) = lim
K→∞

K!

∏2N−1
h=0 Kh!

K+

∏
k=1

Φz,k

B(mk +
α
K , N −mk + 1)

B( α
K , N + 1)

K

∏
k=1

1
Z′

B(
α

K
, N + 1) (5.9)

=
αK+

∏2N−1
h=1 Kh!

K+

∏
k=1

Φz,k

(N −mk)!(mk − 1)!
N!

exp
(
− αΨ) (5.10)

The detailed derivations are shown in C.1.

5.2.2 The generative process

We now describe a generative stochastic process for Z. It can be understood by a culinary
metaphor, where each row of Z corresponds to a customer and each column corresponds
to a dish. We denote by h(i) the value of zik in the complete history h. With Φh =

Φh
(N−mh)!(mh−1)!

N! , we define Ψi = ∑
h: hi=0 and h(i)=1

Φh so that Ψ = ∑N
i=1 Ψi. Finally, let z<ik

be entries 1, . . . , (i− 1) of zk.
Assume that we are provided with a compatibility score between pairs of customers.

That is, we have a value wij for the food preference similarity between customer i and
customer j. Higher values of wij indicate similar preferences and customers with such
values are more likely to select the same dish. Therefore, the dishes a customer selects may
depend on the choices of previous customers. The first customer tries Poisson(αΨ1) dishes.
The remaining customers enter one after the others. The ith customer selects dishes with
a probability that partially depends on the selection of the previous customers. The
probability that a dish would be selected is ∑

h: hi=z<ik and h(i)=1
Φh/ ∑

h: hi=z<ik

Φh. He then
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5. GroupMiR: Inferring Interaction Networks using the Indian Buffet Process

samples a Poisson(αΨi) number of new dishes. This process repeats until all customers
have made their selections. Although this process is not exchangeable, the sequential
order of customers is not important. Thismeans thatwe get the samemarginal distribution
for any particular order of customers. Let K(i)

1 denote the number of new dishes sampled
by customer i, the probability of a particular matrix generated by this process is:

P(Z) =
αK+

∏N
i=1 K(i)

1

K+

∏
k=1

Φz,k exp
(
− αΨ) (5.11)

If we only pay attention to the lof-equivalence classes [Z], since there are ∏N
i=1 K(i)

1

∏2N−1
h=1 Kh !

matrices

generated by this process mapped to the same equivalence classes, multiplying P(Z) by
this quantity recovers Equation (5.10). We show in Appendix C that in the case of the IBP
where Φh = 1 for all histories h (when W = 0), this generative process simplifies to the
Indian Buffet Process.

5.2.3 Related work in Machine Learning

Determining interactions between entities based on observations is amajor challengewhen
analyzing biological and social network data [131, 132, 9]. In most cases we can obtain
information regarding each of the entities (individuals in social networks and proteins in
biological networks) and some information about possible relationships between them
(friendships or conversation data for social networks and motif or experimental data for
biology). The goal is then to integrate these datasets to recover the interaction network
between the entities being studied. To simplify the analysis of the data it is also beneficial
to identify groups, or clusters, within these interaction networks. Such groups can then
be mapped to specific demographics or interests in the case of social networks [131] or to
modules and pathways in biological networks [133].

A large number of generative models were developed to represent entities as members
of a number of classes. Many of these models are based on the stochastic blockmodel
introduced in [134]. While the number of classes in such models could be fixed, or
provided by the user, nonparametric Bayesian methods have been applied to allow this
number to be inferred based on the observed data [135]. The stochastic blockmodel
was also further extended in [131] to allow mixed membership of entities within these
classes. An alternate approach is to use latent features to describe entities. [136] proposed a
nonparametric Bayesianmatrix factorizationmethod to learn the latent factors in relational
data whereas [132] presented a nonparametric model to study binary link data. All of
these methods rely on the pairwise link and interaction data and in most cases do not
utilize properties of the individual entities when determining interactions.

Here we present a model that extends the Indian Buffet Process (IBP) [15], a non-
parametric Bayesian prior over infinite binary matrices, to learn the interactions between
entities with an unbounded number of groups. Specifically, we represent each group
as a latent feature and define interactions between entities within each group. Such
latent feature representation has been used in the past to describe entities [15, 136, 132]
and IBP is an appropriate nonparametric prior to infer the number of latent features.
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5.3. Regression model for mRNA expression

However, unlike IBP our model utilizes interaction scores as priors and so the model is
not exchangeable anymore. We thus extend IBP by integrating it with Markov random
field (MRF) constraints, specifically pairwise potentials as in Ising model. MRF priors
has been combined with Dirichlet Process mixture models for image segmentation in
a related work of Orbanz and Buhmann [137]. Pairwise information is also used in the
distance dependent Chinese restaurant process [138] to encourage similar objects to be
clustered. Zhou et al. [139, 140] present a dependent hierarchical beta process using
covariate-dependent features to impose that objects with similar covariates are likely to be
clustered. The relationship between objects are summarized by a matrix A using a kernel
K. One way to apply this prior to our biological application would require converting the
prior likelihood C matrix to the summary matrix, by defining a kernel over covariates. In
contrast, our model avoids this requirement since all samples are drawn from a single
process that encapsulates the dependencies.

Our model is well suited for cases in which we are provided with information on
both link structure and the outcome of the underlying interactions. In social networks
such data can come from observations of conversation between individuals followed by
actions of the specific individuals (for example, travel), whereas in biology it is suited for
regulatory networks.

5.3 Regression model for mRNA expression
In this section, we describe the application using the nonparametric prior to the miRNA
target prediction problem. However, the method is applicable in general settings where
there is a way to model properties of one entity from properties of its interacting entities.
Recall that our input data are expression profiles of R messenger RNA (mRNA) transcripts
and M miRNA transcript across P samples: X = (x1, . . . , xM)T, and Y = (y1, . . . , yR)

T.
Furthermore, suppose we are given a M-by-R matrix C where cij is the prior likelihood
score for the interaction of miRNA i and mRNA j. Such matrix C could be obtained from
sequence-based miRNA target predictions as discussed above. Applying our interaction
model to this problem, the set of N = M + R entities are divided into two disjoint sets
of mRNAs and miRNAs. Let Z = (UT, VT)T where U and V are the group membership

matrices for miRNAs and mRNAs respectively, W is given by
(

0 C
CT 0

)
. Therefore,

miRNA i and mRNA j interact through all groups k such that uikvjk = 1.

5.3.1 Gaussian additive model

In the interaction model suggested by GenMiR++ [122], each miRNA expression profile is
used to explain the downregulation of the expression of its targeted mRNAs. Our model
uses a group specific and miRNA specific coefficients ( s = (s1, . . . , s∞)T , with sk > 0 for
groups and r = (r1, . . . , rM)T for all miRNAs) to model the down-regulation effect. These
coefficients represent the baseline effect of group members and the strength of specific
miRNAs, respectively. Using these parameters the expression level of a specific mRNA
could be explained by summing over expression profiles of all miRNAs targeting the
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5. GroupMiR: Inferring Interaction Networks using the Indian Buffet Process

mRNA:
yj ∼ N

(
µ− ∑

i: uT
i vj 6=0

(ri + ∑
k: uikvjk=1

sk) xi, σ2I
)

(5.12)

where µ represents baseline expression for this mRNA and σ is used to represent mea-
surement noise. Thus, under this model, the expression of a mRNA are reduced from
their baseline values by a linear combination of expression values of the miRNAs that
target them. The probability of the observed data given Z is:

P(X, Y|Z, Θ) ∝ exp
(
− 1

2σ2 ∑
i
(yj − yj)

T(yj − yj)
)

(5.13)

with Θ = {µ, σ2, s, r} and yj = µ−∑i: uT
i vj 6=0(ri + ∑k: uikvjk=1 sk) xi.

5.3.2 Priors for model variables

We use the following as prior distributions for the variables in our model:

sk ∼ Gamma(αs, βs) (5.14)
r ∼ N (0, σ2

r I) (5.15)
µ ∼ N (0, σ2

µ I) (5.16)

1/σ2 ∼ Gamma(αv, βv)

where the α and β are the shape and scale parameters. The parameters are given hyper-
priors: 1/σ2

r ∼ Gamma(ar, br) and 1/σ2
µ ∼ Gamma(aµ, bµ). αs, βs, αv, βv are also given

Gamma hyperpriors.

5.4 Inference by MCMC
As with many nonparametric Bayesian models, exact inference is intractable. Instead
we use a Markov Chain Monte Carlo (MCMC) method to sample from the posterior
distribution of Z and Θ. Although, our model allows Z to have infinite number of
columns, we only need to keep track of non-zero columns of Z, an important aspect which
is exploited by several nonparametric Bayesian models [15]. Our sampling algorithm
involves a mix of Gibbs and Metropolis-Hasting steps which are used to generate the new
sample.

5.4.1 Sampling from populated columns of Z

Let m−ik is the number of one entries not including zik in zk. Also let z−ik denote the entries
of z,k except zik and let Z−(ik) be the entire matrix Z except zik. The probability of an entry
given the remaining entries in a column can be derived by considering an ordering of
customers such that customer i is the last person in line and using the generative process

76



5.4. Inference by MCMC

in Section 5.2.2:

P(zik = 1|z−ik) =
Φz<ik ,zik=1

Φz<ik ,zik=1 + Φz<ik ,zik=0

=
exp

(
∑j 6=i wijzjk

)
(N −m−ik − 1)!m−ik!

exp
(

∑j 6=i wijzjk
)
(N −m−ik − 1)!m−ik! + (N −m−ik)!(m−ik − 1)!

=
exp

(
∑j 6=i wijzjk

)
m−ik

exp
(

∑j 6=i wijzjk
)
m−ik + (N −m−ik)

We could also get the result using the limiting probability in Equation (5.10). The probabil-
ity of each zik given all other variables is: P(zik|X, Y, Z−(ik)) ∝ P(X, Y|Z−(ik), zik)P(zik|z−ik).
We need only to condition on z−ik since columns of Z are generated independently.

5.4.2 Sampling other variables

Sampling a new column of Z: New columns are columns that do not yet have any entries
equal to 1 (empty groups). When sampling for an entity i, we assume this is the last
customer in line. Therefore, based on the generative process described in Section 5.2.2, the
number of new features are Poisson( α

N ). For each new column, we need to sample a new
group specific coefficient variable sk. We can simply sample from the prior distribution
given in Equation (5.14) since the probability P(X, Y|Z, Θ) is not affected by these new
columns since no interactions are currently represented by these columns.

Sampling sk for populated columns: Since we do not have a conjugate prior on s, we
cannot compute the conditional likelihood directly. We turn to Metropolis-Hasting to
sample s. The proposed distribution of a new value s∗k given the old value sk is q(s∗k |sk) =

Gamma(h, sk
h ) where h is the shape parameter. The mean of this distribution is the old

value sk. The acceptance ratio is

A(sk → s∗k ) = min
[
1,

P(X, Y|Z, Θ \ {sk}, s∗k ) p(s∗k |αs, βs) q(sk|s∗k )
P(X, Y|Z, Θ) p(sk|αs, βs) q(s∗k |sk)

]
In our experiments, h is selected so that the average acceptance rate is around 0.25 [141].

Sampling r, µ, σ2 and prior parameters: Closed-form formulas for the posterior distri-
butions of r,µ and σ2 can be derived due to their conjugacy. For example, the posterior
distribution of 1/σ2 given the other variables is:

p(
1
σ2 | αv, βv, X, Y, Z, Θ \ {σ2}) ∝ p(

1
σ2 |αv, βv)P(X, Y|Z, Θ)

Hence,
1
σ2 | αv, βv, X, Y, Z, Θ \ {σ2} ∼ Gamma

(
αv +

MT
2

,
( 1

βv
+

∑i(xi − xi)
T(xi − xi)

2
)−1)
(5.17)

Equations for updates of r and µ are omitted due to lack of space. Gibbs sampling steps
are used for σ2

r and σ2
µ since we can compute the posterior distribution with conjugate

priors. For prior parameters {αs, βs, αv, βv}, we use Metropolis-Hasting steps discussed
previously.
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5.5 Results
In this section we compare the performance of GroupMiR with GenMiR++ [122], which
is one of the popular methods for predicting miRNA-mRNA interactions. However,
unlike our method it does not use grouping of mRNAs and attempts to predict each one
separately. Besides, there are two other important differences of GenMiR++ from our
method: 1) GenMiR++ only consider interactions in the candidate set while our method
consider all possible interactions. 2) GenMiR++ accepts a binary matrix as a candidate set
while our method allows continuous valued scores. To our best knowledge, GenMiR++,
which uses the regression model for interaction between entities, is the only appropriate
method2 for comparison.

5.5.1 Synthetic data

We generated 9 synthetic datasets. Each dataset contains 20 miRNAs and 200 mRNAs. We
set the number of groups to K = 5 and T = 10 for all datasets. The miRNA membership
U is a random matrix with at most 5 ones in each column. The mRNA membership V
is a random matrix with density of 0.1. The expression of mRNAs are generated from
the model in Equation (5.12) with σ2 = 1. The remaining random variables are sampled
as follows: x ∼ N (0, 1), s ∼ N (1, 0.1) and r ∼ N (0, 0.1). Since the sequence based
predictions of miRNA-mRNA interactions are based on short complementary regions
they often result in many more false positives than false negatives. We thus introduce
noise to the true binary interaction matrix C′ by probabilistically changing each zero
value in that matrix to 1. We tested different noise probabilities: 0.1, 0.2, 0.4 and 0.8. We
use C = 2C′ − 1.8, α = 1 and the hyperprior parameters are set to generic values. Our
sampler is ran for 2000 iterations and 1000 iterations are discarded as burn-in.

Figure 5.2 plots the estimated posterior distribution of K from the samples of the
9 datasets for all noise levels. As can be seen, when the noise level is small (0.1), the
distributions are correctly centered around K = 5. With increasing noise levels, the
number of groups is overestimated. However, GroupMiR still does very well at a noise
level of 0.4 and estimates for the higher noise level are also within a reasonable range.

We estimated a posterior mean for the interaction matrix Z by first ordering the
columns of each sampled Z and then selecting the mode from the set of Z matrices.
GenMiR++ returns a score value in [0, 1] for each potential interaction. To convert these
to binary interactions we tested a number of different threshold cutoffs: 0.5, 0.7 and 0.9.
Figure 5.4 presents a number of quality measures for the recovered interactions by the two
methods. GroupMiR achieves the best F1 score across all noise levels greatly improving
upon GenMiR++ when high noise levels are considered (a reasonable biological scenario).
In general, while the precision is very high for all noise levels, recall drops to a lower rate.
From a biological point of view, precision is probably more important than recall since
each of the predictions needs to be experimentally tested, a process that is often time
consuming and expensive.

In addition to accurately recovering interactions betweenmiRNAs andmRNAs, Group-
MiR also correctly recovers the groupings of mRNA and miRNAs. Figure 5.3 presents a

2We also tested with the original IBP (by setting W = 0). The results for both the synthetic and real data
were too weak to be comparable with GenMIR++. See Lemma C.2.1.

78



5.5. Results

Figure 5.2: The posterior distribution of K.

(a) Truth (b) 0.1 (c) 0.2 (d) 0.4 (e) 0.8

Figure 5.3: An example synthetic dataset.
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graphical view of the group membership in both the true model and the model recovered
by GroupMiR for one of the synthetic datasets. As can be seen, our method is able to
accurately recover the groupings of both miRNAs and mRNAs with moderate noise levels
(up to 0.4). For the higher noise level (0.8) the method assigns more groups than in the
underlying model. However, most interactions are still correctly recovered. These results
hold for all datasets we tested (not shown due to lack of space).
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Figure 5.4: Performance of GroupMiR versus GenMiR++. Each data point is a synthetic
dataset.

5.5.2 Application to mouse lung development

To test GroupMiR on real biological data, we used a mouse lung developmental dataset
[142]. In this study, the authors used microarrays to profile both miRNAs and mRNAs at
7 time points, which include all recognized stages of lung development. We downloaded
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the log ratio normalized data collected in this study. Duplicate samples were averaged and
median values of all probes were assigned to genes. As suggested in the paper, we used
ratios to the last time point resulting in 6 values for each mRNA and miRNA. Priors for
interaction between miRNA and mRNA were downloaded from the MicroCosm Target3
database. The prior score was computed by taking − log 10(p-value) thresholded at the
maximum value of 5. Selecting genes with variance in the top 10%, led to 219 miRNAs
and 1498 mRNAs which were used for further analysis.
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Figure 5.5: Interaction network recovered by GroupMiR. Each node is a pie chart corre-
sponding to its expression values in the 6 time points (red: up-regulation, green: down-
regulation).

We collected 5000 samples of the interaction matrix Z following a 5000 iteration burn-
in period. We only kept every 10th sample to get a set of 500 samples. Convergence of the
MCMC chain is determined by monitoring trace plots of K in multiple chains. Since there

3http://www.ebi.ac.uk/enright-srv/microcosm/
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are many more entries for real data compared to synthetic data we computed a consensus
for Z by reordering columns in each sample and averaging the entries across all matrices.

We further analyzed the network constructed from groups with at least 90% posterior
probability. The network recovered by GroupMiR is more connected (89 nodes and 208
edges) when compared to the network recovered by GenMiR++ (using equivalent 0.9
threshold) with 37 nodes and 34 edges (Figure C.1). We used Cytoscape [143] to visualize
the 6 groups of interactions in Figure 5.5. The network contains several groups of co-
expressed miRNAs controlling sets of mRNA, in agreement with previous biological
studies [144].

To test the function of the clusters identified, we performed Gene Ontology (GO)
enrichment analysis for the mRNAs using GOstat [145]. The full results (Bonferroni
corrected) are presented in Appendix C. As can be seen, several cell division categories
are enriched in cluster (b) which is expectedwhen dealing with a developing organ (which
undergoes several rounds of cell division). Other significant functions include organelle
organization and apoptosis which also are associated with development (cluster (c)). We
performed similar GO enrichment analysis for the GenMiR++ results and for K-means
when using the same set of mRNAs (setting k = 6 as in our model). In both cases we did
not find any significant enrichment indicating that only by integrating sets of miRNAs
with the mRNAs for this data we can find functional biological groupings. We also tried
running GenMiR++ with threshold 0.6 (Figure C.1). The network has no clear modular
structure. The miRNAs and mRNAs seem to be divided into two connected components,
one with down-regulated genes and one with up-regulated genes. See Appendix C.4 for
details.

We have also looked at the miRNAs controlling the different clusters and found that in
a number of cases these agreed with prior knowledge. Cluster (a) includes 2 members of
the miR 17-92 cluster, which is known to be critical to lung organogenesis [146]. MiRNA
families miR-30, miR-29, miR-20 and miR-16, all identified by our method, were also
reported to play roles in the early stages of lung organogenesis [142]. It is important to
point out that we did not filter miRNAs explicitly based on expression but these miRNAs
came in the results based on their strong effect on mRNA expression.

5.6 Conclusions
We have described an extension to IBP that allows us to integrate priors on interactions
between entities with measured properties for individual entities when constructing
interaction networks. The method was successfully applied to predict miRNA-mRNA
interactions and we have shown that it works well on both synthetic and real data. While
our focus in this chapter was on a biological problem, several other datasets provide
similar information including social networking data. Our method is appropriate for
such datasets and can help when attempting to construct interaction networks based on
observations.
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6PIMiM: Protein Interaction based
MicroRNAModules
The previous chapter discusses GroupMiR, an integrated model to infer cooperative
regulation of clusters of miRNAs and sets of target mRNAs. The model associates each
miRNA with a feature corresponding to a group of cooperative miRNAs and target
mRNAs. Although this representation allows discovering group structure in miRNA
regulation, it may be too restrictive–it requires every miRNAs and mRNAs in a group to
interact. Building onGroupMiR,we developed PIMiM, a newmethodwhich infers groups
of target miRNAs participating in common pathways using protein-protein interaction
data.

6.1 Introduction
An approach to link miRNAs with pathways is to project mRNA expression data on
pathway databases and compute the correlation between miRNAs and average pathway
expression levels to identify likely regulators of signaling pathways [125]. While this
method does not identify specific targets, it can be used to infer the function of specific
miRNAs based on the pathways they regulate. Recently, there is growing evidence that
interacting proteins are more likely to be co-regulated by the same miRNAs [147, 148].
It has also been shown that some miRNAs coordinately target protein complexes [149].
While such complimentary information may be important, few prior works has taken
advantage of it to predict condition-specific interactions. An exception is a recent work
by Zhang et al. which developed SNMNMF [150] to integrate protein interactions with
miRNA and mRNA expression data. The method is based on a non-negative matrix
factorization analysis which factorizes the two expression data matrices such that the
two share one common factor, which is assumed to be the module basis matrix W. Note
however that while this method was successfully applied to analyze Ovarian cancer data,
it does not use a regression model to explain mRNA expression levels, or require that
miRNAs andmRNAs in the samemodule be anti-correlated, and so the resultingmodules
do not fully utilize current knowledge regarding the inhibitory role of miRNAs which
may lead to missing important interactions.

The methods discussed above successfully integrated expression and sequence data.
However, a major point that is often ignored by these prediction methods is the combi-
natorial aspect of miRNA regulation. To allow the use of such group- or module-based
regulatory model, we discussed GroupMiR in Chapter 5 which uses a nonparametric
Bayesian prior based on the Indian Buffet Process (IBP [15]) to identify modules of co-
regulated miRNAs and their target mRNAs. As we have shown, by using a module-based
approach we can improve upon methods that treat miRNAs or mRNAs individually
improving the set of correctly recovered miRNA-mRNA interactions [115].

Here, we present the Protein Interaction based MicroRNA Modules (PIMiM) method
which extends the regression framework of GroupMiR by using an additional type of
data: protein interactions. As we show, by defining a new target function that encourages
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interacting proteins to belong to the same module we can utilize such data and integrate it
with expression and sequence-based data in a probabilistic model. We develop an iterative
learning procedure to learn the parameters of our model and show that it converges to a
local minima. Comparison of PIMiM to previous methods indicates that by combining a
module based approach with protein interaction data we can improve upon both methods
that only rely on modules (GroupMiR) and methods that rely on protein interaction
(SNMNMF). We used PIMiM to study miRNA in several types of cancer allowing us to
identify novel regulators that either span multiple cancer types or are unique to specific
cancers.

6.2 Methods
6.2.1 Overview

2.0
0.3
-0.2
1.1

0.4
-0.3
0.0
-2.1

miRNA expression

0.6
-0.3
0.7
0.1

-0.1
-0.5
0.7
-0.4

1.0
0.0
-0.2
0.1

mRNA expression x x
x

xxx
xx

Predicted interactions
(MicroCosm, miRanda,

TargetScan)

x x
x

xxx
xx

Protein interactions
(BioGRID, TRANSFAC)

= a modular network of miRNAs and mRNAs.
Each module corresponds to a set of miRNAs and mRNAs
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Figure 6.1: Data used as input for PIMiM. In addition the miRNA and mRNA expression
data, PIMiM uses sequence based predictions of miRNA-mRNA interactions and protein-
protein interactions.

We developed PIMiM, a module-based method which predicts targets for miRNAs by
assigning them, together with the mRNAs they regulate, to one of K modules. Modules
may contain several miRNAs and many mRNAs, and both miRNA and mRNAs can be
assigned to 0, 1 or multiple modules and thus modules may overlap.

The input to PIMiM is condition specific miRNA and mRNA expression data (usually
multiple measurements from patients or different time points). In addition, we use
sequence-based predictions of miRNA-mRNA interactions (any probabilistic predictions
can be used) and static protein interaction data. Using these datasetswe learn a regularized
probabilistic regression model in which mRNA data is regressed to the expression data
of miRNAs assigned to modules regulating it. The down-regulation effect of a miRNA on
the expression of its target mRNA is aggregated across all modules allowing information
to be shared between modules in the learning process. Our probabilistic model rewards
the assignments of predicted miRNA-mRNA pairs to the same module and also rewards
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assignment ofmRNAs of interacting proteins to the samemodule. Combined, themodules
explain the observed mRNA expression data as a function of their regulating miRNAs
and the set of proteins they interact with.

6.2.2 Notations

Following the same notation in the previous chapter, we assume that there are M miR-
NAs and R mRNAs in each sample. We denote expression profiles of miRNAs by
X = (x1, . . . , xM)T and of mRNAs by Y = (y1, . . . , yR)

T, where xi and yj are vectors
with the expression levels of miRNA i and mRNA j, respectively, in all samples. Both
matrices have P columns corresponding to the P matched samples. In addition, let Ω
(sparse R-by-R matrix) be the weighted adjacency matrix of the protein interactions (ob-
tained from databases such as BioGRID [151] or TRANSFAC [152]) and Φ (sparse M-by-R
matrix) be the list of predicted interactions of miRNAs and mRNAs from sequence data
(obtained from prediction databases such as MicroCosm [153]). We also define 1Φ and
1Ω as binary matrices indicating whether an entry of Φ and Ω respectively is non-zero.

For learning K modules our goal is to determine (learn) the values of the membership
parameters uik and vjk, which represent the propensity that miRNA i or mRNA j belong
to module k. Naturally, we restrict these parameters to be non-negative: uik ≥ 0 and
vjk ≥ 0 , where we interpret that a miRNA or mRNA is not assigned to a module if
the corresponding parameter is zero. We use matrices U = (u1, . . . , uM)T and V =
(v1, . . . , vR)

T to represent this complete set of membership parameters. Lastly, we use the
following subscript such as u,k or v,k to denote the kth column of the matrices.

U, V : miRNA and mRNA module membership
K : number of modules

ui, vj : ith or jth rows of the matrices
u,k, v,k : kth columns of the matrices
1Φ,1Ω : binary indicators of Φ, Ω

6.2.3 Probabilistic regression model

Following previous works [128, 115], we employ a regression-based method to link the
expression profiles of miRNAs and mRNAs. Expression values of mRNAs are assumed to
be down-regulated from a baseline expression level by a linear combination of expression
profiles of all their predictedmiRNA regulators. For example, mRNA j’s expression values
are distributed as: yj ∼ N

(
µ−∑i∈Sj

wijxi, Σ), where µ is the baseline expression level,
wi are weights associated with miRNAs (which previous methods learn individually for
each mRNA) and Sj is the set of predicted miRNA regulators of mRNA j.

We depart from these previous models in how we specify miRNA regulators and
how we learn the weights wi. First, each mRNA is assumed to be a target of all miRNAs
assigned to the modules it belongs to as long as they are predicted to regulate it (φij 6= 0).
Formally, mRNA j is the target of the set of miRNAs Sj = {i : uT

i vj > 0 and φij 6= 0}.
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Secondly, the down-regulation weights are aggregated across all modules such as wij =

uT
i vj.
Given these assumptions, the likelihood of the observed expression values is:

p(Y | U, V, X, µ, Σ) = ∏
j
N (yj | µ− ∑

i∈Sj

uT
i vjxi, Σ)

= ∏
j
N (yj | µ− XT((1Φ),j ◦ (Uvj)

)
, Σ)

(6.1)

where Σ = diag(σ2
1 , . . . , σ2

P) are the per-sample variance terms.

6.2.4 Utilizing protein interactions

So far PIMiM only uses expression values in a regression setting (while we constrain the
regulators to come from the sequence-based predicted set, the regression model itself
does not directly encourage the assignment of miRNA and predicted mRNA targets to
the same module). To incorporate the input interaction data (predicted miRNA-mRNA
pairs Φ and protein interactions Ω), we use a function that rewards assignments to the
same module based on the strength of the predicted edge as follows:

p(1φij = 1 | U, V) =
1

1 + exp(−α φijuT
i vj)

= σ(α φijuT
i vj)

p(1φij = 0 | U, V) = 1− σ(α uT
i vj)

p(1ωjj′ = 1 | V) = σ(β ωjj′v
T
j vj′)

(6.2)

Where α and β are positive tuning parameters which are used to adjust the contributions
of the two types of interaction data in our model and σ(.) is the logistic-sigmoid function.
If available (as is the case for the miRNA-mRNA interaction data) we use probabilities for
Φ and Ω derived directly from the prediction or experimental databases (see Results).
We deliberately do not include penalty terms for zero entries of Ω because this interaction
matrix is extremely sparse (the number of known protein-protein interactions is small
compared to the total number of possible interactions). Penalizing zero entries when
using such a sparse matrix would lead to very small modules and may be less biologically
accurate since not all co-targets of a miRNA interact.

These terms indicates that the higher the probability of interaction (both miRNA-
mRNA and protein-protein) the more likely it is that the interacting entities would be
assigned to the same set of modules. This is done globally across all modules. For instance,
if φij is positive, we have a prior knowledge that miRNA i and mRNA j interact. In order
to maximize the likelihood p(φij|U, V), we would need to learn parameters that lead to
large values of uT

i vj, which means that the method is more likely to place them in the
same module.
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6.2.5 Overall log-likelihood

To summarize, our target is to minimize the following negative log-likelihood:

L(Y, X, Φ, Ω) = − log p(Y|U, V, X, µ, Σ)

−∑
i,j

log p(1φij |U, V)− ∑
j 6=j′

log p(1ωjj′ = 1|V) (6.3)

The first term evaluates how well the miRNA expression explains the observed mRNA
expression whereas the second and third terms are rewards for assigning predicted
miRNA-mRNA pairs and protein interaction pairs to the same module, respectively. This
function is non-convex and thus can havemultiple localminima solutions. To constrain the
set of solutions we add a number of regularization terms. First, we add two sets of `1 norm
constraints for the vectors {ui} and {vj}. `1 norm contraints encourage sparsity leading
to smaller and tighter modules. Since our goal is to reduce false positives, such constraints
are very useful as they reduce the set of predicted miRNA-mRNA pairs. Specifically, we
require that:

‖ui‖1 ≤ C1, i = 1, . . . , M
‖vj‖1 ≤ C2, j = 1, . . . , R

We are using two different regularization parameters C1 and C2. This is because the
number miRNAs and mRNAs are very different so a single number does not yield good
solutions. Moreover, we choose to use these constraints explicitly instead of adding them
to the objective function (using Lagrangian multipliers) since this formulation is simpler
to solve in our optimization procedure.

Together, our learning phase solves the following optimization:

min
U≥0,V≥0,µ,Σ

F = L(Y, X, Φ, Ω)

s.t. ‖ui‖1 ≤ C1, i = 1, . . . , M
‖vj‖1 ≤ C2, j = 1, . . . , R

(6.4)

6.2.6 Learning the parameters of our model

In this section, we discuss how to solve the optimization problem from (6.4) in order to
determine values for the parameters of our model. As mentioned above, this problem is
non-convex and we cannot analytically compute general solutions. However, we notice
that by holding U and V fixed, we can solve for µ and Σ in a closed form using standard
linear regression:

µ̂p =
1
N

N

∑
j=1

(zjp + yjp) (6.5)

σ̂2
p =

1
N

N

∑
j=1

(µ̂p − yjp − zjp)
2 (6.6)
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where zjp = xT
,p
(
(1Φ),j ◦ (Uvj)

)
for j = 1, . . . , R and p = 1, . . . , P.

To solve for U and V for given values of µ and Σ, we use a projected quasi-Newton
(PQN) method [154]. Quasi-Newton methods construct an approximation to the Hessian
by using the observed gradients at successive iterations. We use the MATLAB implemen-
tation min_PQN1. There are several reasons why we chose this method instead of directly
working with the Hessian. First, our set of constraints is convex and the projection on
this set can be done analytically. Second, although we can compute both the gradients
and Hessian of F , the memory required to store the Hessian is often too large given
the dimensions of the expression data (O((M + R)2K2)). Moreover, due to interactions
between miRNAs and mRNAs, the Hessian is not necessary sparse even if both Φ and Ω
are. During the projection step, to speed up the convergence of the algorithm, we set the
entries of U which do not have predicted interactions to zero.

Using the updated values for U and V we once again solve for µ and Σ and so on.
These two steps lead to an iterative procedure to solve (6.4) along the lines of coordinate-
descent methods. This procedure converges to the local minima due to the fact that the
objective function is bounded below and the sequence of function values is monoton-
ically decreasing and the gradients at the convergence are zeros. Since the problem is
non-convex, we perform the learning process several times, randomly initializing the
parameters each time. After repeating this process several times (10 iterations in our
experiments), we select the parameters from the result that leads to the lowest value for
our objective function.

Finally, the regularization and data type weighting parameters K, α, β, C1 and C2 are
chosen based on an external evaluation discussed in Results.

6.3 Constraintmodule learning formultiple condition anal-
ysis

So far we have discussed our approach for identifying miRNA regulated modules using a
condition-specific expression dataset. Although the optimization problem in Eq. (6.4) can
be used with expression data from multiple conditions (e.g. different types of cancer), the
output is one set of modules for all conditions. In some cases, directly identifying similar
and divergent modules across conditions is an important goal. Consider for example
joint analysis of multiple types of cancers. While some researchers may be interested in
regulatorymodules that are activated in all different cancer types, othersmay be interested
in unique aspects, or modules, of a specific cancer type when compared to other types of
cancer.

In our problem, we would like to learn a set of modules for T different conditions. The
interaction input matrices Φ and Ω are fixed while for each condition t, we have a set of
expression measurements Xt and Yt. Given this input we jointly learn T sets of modules
{Ut, Vt}t=1,...,T . The number of modules is also fixed for all conditions.

This type of learning is called multi-task learning [155] in the machine learning com-
munity, where many related models are learned simultaneously using the same internal
representation. Such learning allows different models (or cancer types) to share some

1http://www.di.ens.fr/~mschmidt/Software/PQN.html
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parameters which improves learning while at the same time it can also identify unique
parameters for specific types. In several cases such framework was shown to lead to
better solutions [155]. Many existing methods proposed for multi-task learning focus on
multi-output regression problems, where it is often desirable to obtain sparse solutions
by performing covariate selection. They rely on regularization technique to jointly select
a set of covariates that are relevant to many tasks. One can apply `1/`2 penalty of group
lasso to select covariates relevant to all tasks [156].

Here we adopt the `1/`2 penalty of group lasso to regularize the modules over T
conditions with the following penalty:

λ

(
∑
i,k

√
∑

t
(ut

ik)
2 + ∑

j,k

√
∑

t
(vt

jk)
2

)

This penalty encourages entries {ut
ik}t=1,...,T and {vt

jk}t=1,...,T to be selected together which
means that miRNAs and mRNAs are assigned to the same modules across conditions.
Since the penalty is not differentiable at 0, we reformulate the optimization problem by
moving the non-differentiable part to the constraints as suggested in [157]:

min
U≥0,V≥0,µ,Σ,{aik ,bjk}

F + λ
(
∑
i,k

aik + ∑
j,k

bjk
)

s.t.
√

∑
t
(ut

ik)
2 ≤ aik;

√
∑

t
(vt

ik)
2 ≤ bik

‖ui‖1 ≤ C1; ‖vj‖1 ≤ C2

i = 1, . . . , M; j = 1, . . . , R; k = 1, . . . K

(6.7)

Here we have introduced new variables {aik} and {bjk} into the problem. We update
the projection step in Section 6.2.6 with the projection on the new `2 norm balls in the
constraint set as shown in [157] (Theorem 4).

6.4 Results
6.4.1 MiRNA regulation in ovarian cancer

To test PIMiM and to compare it with previous methods for determining condition-
specific miRNA regulation (SNMNMF and GroupMiR) we use the ovarian cancer dataset
from [150]. This dataset contains 385 samples from cancer patients, each measuring the
expression of 559 miRNAs and 12456 mRNAs and was downloaded from the Cancer
Genome Atlas data portal (TCGA)2. In addition to expression data, the sequence-based
prediction of miRNA-mRNA interactions was downloaded from MicroCosm [153] and
protein interaction data was downloaded from TRANSFAC [152]. We only useMicroCosm
here to allow a fair comparison to SNMNMF which only uses this data. In subsequent
analysiswe use other sequence-based predictionmethods aswell. To evaluate the accuracy
of each method, we used a set of 115 cancer miRNAs that were determined to participate

2https://tcga-data.nci.nih.gov/tcga/
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in ovarian cancer in a recent review article ([158] Table 1 and 2). Using this set we compute
the Precision, Recall and F1 score (the harmonic mean of Precision and Recall) of the set
of miRNAs identified by each method.

The number of modules K was set to 50 for the non negative matrix factorization
method (SNMNMF) as suggested in [150]. PIMiM also requires setting regularization
and weight parameters α, β, C1 and C2. To set these we performed an iterative line search
(holding 3 of the 4 parameters fixed and adjusting the value of the 4th until convergence)
to determine the values of these parameters using the F1 score as the target function to
optimize. Based on this analysis we selected K = 40 for PIMiM (See Figure D.3 for details).
SNMNMF was also run with the optimized set of parameters and input data described
in [150]. Unlike PIMiM and SNMNMF, GroupMiR uses a nonparametric Bayesian prior
for the number of modules and so this number cannot be fixed in advance. Thus, for
GroupMiR we report modules and interactions with posterior probability at least 0.3
to get a set of comparable size to other methods. Previously, GroupMiR was shown to
outperform several other methods [115] including GenMiR++ [128] and so we omitted
comparison to these methods here. Figure 6.2 presents a graphical view of the modules
identified by PIMiM and SNMNMF. We color interaction edges between genes using
different colors for each module. The modules identified by PIMiM are more dense and
so are in better agreement with previous findings regarding the regulation of interacting
proteins by miRNAs.
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Figure 6.2: Interactions between genes of the modules. We show an edge between two
genes if they are members of a module and their interaction exists in the database. Each
color corresponds to one module. Genes with no edges are omitted to improve visualiza-
tion.
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Evaluation: identifying cancer miRNAs.

We first looked at the set of miRNAs identified by each method (those belonging to the
modules returned by each of the methods). The results in Table 6.1 demonstrate that
using the protein interaction data greatly increases precision, recall and the F1 score. Both
methods that use this data (PIMiM and SNMMNF) clearly outperform GroupMiR on this
set. In addition, using a regression model also helps as indicated by the increase in F1
score PIMiM obtains over SNMNMF.

Table 6.1: Evaluation of all methods on the ovarian cancer dataset. The expression corre-
lation values and number of genes are averaged across modules. Expression correlation:
the correlation of expression values of miRNAs and mRNAs.

Cancer miRNAs Expression Correlation #genes / module

F1 Precision Recall

PIMiM 0.3768 0.3230 0.4522 -0.0131 67.80
SNMNMF 0.3588 0.3197 0.4087 0.0745 79.26
GroupMiR 0.1227 0.2083 0.0870 -0.0408 54.82

Expression coherence.

In addition to analyzing the set of identified miRNAs we also computed the average
anti-correlation between miRNAs and mRNAs in the modules identified by each of the
methods (Table 6.1). In this analysis, GroupMiR achieves the highest anti-correlation
between miRNAs and the mRNAs they regulate in a module. This is the result of a much
smaller module size identified by GroupMiR. Since protein interactions are not used,
mRNAs in these modules are selected because they are strongly anti-correlated with the
miRNAs predicted to regulate the modules. This requirement leads to smaller modules
and a better (anti) correlation between miRNAs and mRNAs. Still, PIMiM improves upon
SNMNMF in identifying anti-correlated miRNA-mRNA pairs. SNMNMF’s objective
function does not explicitly include a component for expression anti-correlation between
miRNAs and mRNAs, which may explain why it does not capture the inhibitory role
of miRNAs. Thus, PIMiM provides a useful compromise between relying strongly on
protein interactions which improves accuracy and using the observed expression values
in a regression setting.

MSigDB and Gene Ontology (GO) enrichment analysis

To test the biological function of the modules we looked at the Gene Ontology enrichment
analysis for mRNAs in the modules identified by the different modules using TopGO [160]
(which uses the Fisher count statistics, reporting up to 100 enriched terms for eachmodule).
We also used 880 gene sets of canonical pathways (C2-CP, v.3.0) from MSigDB [159]. We
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Figure 6.3: MSigDB enrichment analysis. Pathway enrichment analysis was done using
880 gene sets of canonical pathways (C2-CP) fromMSigDB [159]. P-values were computed
using hypergeometric test (with 10000 random permutations) on the intersection of the
set of genes in each module with MSigDB gene sets. Benjamini-Hochberg procedure was
used to control the FDR rate. Top: Number of modules significantly enriched for at least
one MSigDB category for different significance cut-offs. Bottom - number of MSigDB
categories identified as in enriched in at least one of the modules for different significance
cut-off.
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Figure 6.4: Gene Ontology (GO) enrichment analysis. We used topGO [160] with the
Fisher count statistics to perform GO enrichment analysis.

used the hypergeometric distribution to compute enrichment p-values for each of the
modules with each of theMSigDB gene sets. To correct for themultiple hypothesis testings
we used the Benjamini-Hochberg procedure implemented in the R function p.adjust
which computes a q-value for each intersection. The results are presented in Figure 6.3
and 6.4 which depicts the number of modules with at least one enriched set in theMSigDB
or GO enrichment analysis and the total number of unique enriched GO terms or gene
sets. PIMiM outperforms SNMNMF, achieving both better enrichment for individual
modules and better coverage of different MSigDB sets. MSigDB pathways are biased
towards cancer pathways and so may be more relevant for the data we are analyzing here
than Gene Ontology analysis. In addition to cancer hits, top hits for MSigDB include
signatures for Beta cells that have been linked to cancer [161] and several translation
related categories.
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The effect of β on the performance of PIMiM

To test the effects of using the protein interaction data in PIMiM, we re-run PIMiM with
different β values. The results are presented in Figure 6.5 As the figure shows, when
decreasing the value of β, the performance of PIMiM on all evaluation metrics decreases
indicating the PPI data is useful for identifying coherent modules. On the other hand,
increasing β too much leads to very high weight for PPI data at the expense of the
expression information which also negatively affects the performance of PIMiM. Thus,
balancing the two data types, which is done by setting an intermediate value for β is key
to the success of PIMiM.
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Figure 6.5: The effect of protein interaction data to the result. We varied the value of β
and tested the different metrics: box plots are shown for different initializations, MSigDB
result is only shown for the initialization leading to the best likelihood value. As can be
seen, both high and low values lead to reduced performance.
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6.4.2 Integrating data from multiple types of cancers

To further investigate miRNA control of different cancers, we applied PIMiM to a dataset
of three cancer types using the multi-task learning framework described in Section. 6.3.
We learn three sets of modules for three types of cancer: Breast invasive carcinoma (BRCA),
Glioblastoma multiforme (GBM) and Acute Myeloid Leukemia (AML). The miRNA and
gene expression profiles of 89 BRCA, 498 GBM and 173 AML patients were downloaded
from the TCGA. This set has 285miRNAs and 10922mRNAs in common. Herewe combine
the miRNA-mRNA predicted interactions from three public databases (MicroCosm [153],
miRanda [162] and TargetScan [163]) and protein interaction data from TRANSFAC [152].
For each cancer type, PIMiM learns one set of 50 modules. The parameters were set by
optimizing for the F1 score of identifying miRNAs relevant to this dataset based on the set
of cancer-related miRNAs from [158]. Figure 6.6 displays the miRNA regulating modules
in all three cancer types.

Table 6.2: MiRNAs specifically identified for a cancer type.

MiRNAs Predicted type BRCA GBM AML

hsa-miR-663 BRCA [164] - -
hsa-miR-433 GBM - [165] -
hsa-miR-99b AML - - [166]

Analysis of identified miRNAs

Several of the modules identified by PIMiM are regulated by known cancer miRNAs. The
overall F1 score for cancer miRNAs for the joint analysis was high for all three cancer types:
BRCA (0.6167), GBM (0.5789) and AML (0.6111). Well known cancer miRNAs reported by
PIMiM include the let-7b/c/d/e (active in BRCA: [167], GBM: [168] andAML: [169]), mirR-
302a/b/c/d cluster (suppression of the CDK2 and CDK4/6 cell cycle pathways [170]) and
miR-96 (active in BRCA:[171], AML:[172]), miR-34a (active in BRCA: [173], GBM: [174],
AML: [175]) , miR-15a/b ( active in AML: [176]). Some members of the miR-17-92 cluster
(miR-18b,miR-19a, miR-20a/b,miR-93) are also identified by PIMiM (active in BRCA: [177],
GBM: [178], AML: [179]). Note that some well known cancer miRNAs including miR-17
and miR-92 are missing from the modules because their expression is not available for
enough of the samples. Several other subsets of miRNAs were assigned to cooperatively
regulate modules in multiple types of cancer as shown in Figure 6.6.

Cancer specific miRNAs

In addition to finding common cancer regulators, PIMiM can be used to identify cancer
type specific regulators. These can either be used as biomarkers for a sub-type or can
be studied to determine the unique properties of each cancer type. While it is very hard
to obtain negative information (i.e. a paper that mentions that a certain miRNA does
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Figure 6.6: Inferred miRNA modules of the three cancer types (BRCA, GBM and AML).
The x-axis shows the 50× 3 modules learned for the three cancer types (each x-axis bar
is subdivided into 3 with the color corresponding to the cancer type). The y-axis shows
miRNAs ordered by hierarchical clustering of their module membership vector. In several
cases the same miRNAs are predicted for all or two of the three cancer types.
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not regulate a specific cancer type) several of the predictions made by PIMiM agree with
current literature that, at least so far, only mentions their role in the cancer they were
assigned to by PIMiM. Table 6.2 lists a few of these miRNAs and the cancer type they
were predicted to regulate.

Analyzing the miRNAs and mRNAs in identified modules

In addition to identifying important miRNAs for this particular study, PIMiM returns
a set of modules providing predictions of cooperative regulation of miRNAs and their
mRNAs targets. To demonstrate the informative power of this modular structure, we
analyze in more details one of these modules.
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Figure 6.7: MiRNAs and mRNAs assigned to Module 11 in all three cancer types. Color
indicate the specific cancer type for which the mRNA or miRNA was selected as part of
the module.

Module 11 Figure 6.7 depicts a network of miRNAs and mRNAs identified as part
of Module 11. Across all cancer types, PIMiM identified a set of 14 strongly connected
proteins. MiR-200a/b/c, miR-141 andmiR-429 are predicted to regulate this set of mRNAs
in all types of cancer. These miRNAs have previously been reported to play a role in
cancer and cell proliferation [180, 181]. Interestingly, the miR-200 family is located in
two chromosomal regions on 1p36.33 (200b, 200a and 429) and 12p13.31 (200c and 141),
respectively [182], which may support our prediction of their cooperative regulation.
Applying Gene Ontology analysis (using FuncAssociate [183]) and MSigDB enrichment
analysis to the set of 14 mRNAs in this module indicates that this set is enriched with
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members of transcription factor TFTC/STAGA and TFFIID complexes. Recent findings
support the link between between these complexes and cancer [184]. This module also
includes a tumor suppressor gene MSH2 [185] and a famous breast-cancer susceptibility
gene BRCA1 [186].
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Figure 6.8: Network of miRNAs and mRNAs of Module 23.

Module 23 This module (Figure 6.8) includes the miR-302 and miR-520 clusters. These
two clusters are shown to display similar expression pattern in the differentiation of human
embryonic stem cells [187]. Specifically, the miR-302 family is known for coordinately
suppressing genes in the CDK2 and CDK4/6 cell cycle pathways [170]. Indeed, miRNAs
in the miR-302 family were assigned to the same module by PIMiM indicating that
the module-based approach can help in recovering cooperative regulation of groups
of miRNAs. Among the top terms and gene sets from Gene Ontology and MSigDB
enrichment analysis are: cell death, CD40 receptor complex, regulation of apoptosis, B
cell immune response, TNF receptor signaling pathway, . . . (Table D.2).

Module 48 (Figure 6.9 and Table D.3) All miRNAs in this module were previously
reported as active in cancer: miR-130a/b [188], miR-328 [189] and mirR-504 which nega-
tively regulates tumor suppressor p53 [190]. Mutation of the gene hub CEBPE is shown
to increase the risk of acute leukemia[191].
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Figure 6.9: Network of miRNAs and mRNAs of Module 48.

6.5 Conclusions
Wepresented PIMiM, a newmethod for inferring condition-specific regulation of miRNAs
and for identifying their targets. PIMiM combines sequence, expression and interaction
data to discover miRNA regulated modules of mRNAs. We use a probabilistic model that
combines regression with network information to discover these modules. We developed
an iterative learning procedure to learn the parameters of our model and a multi-task
learning method for combining data from multiple conditions.

We tested PIMiM on ovarian cancer expression data and have shown that it can identify
miRNAs regulating this cancer type and that it is able to group relevant genes together.
Comparison to other methods indicates that by using protein interaction data we can
improve accuracy while at the same time PIMiM also maintains expression coherence
among mRNAs and anti-correlation between miRNAs and the mRNAs they are predicted
to regulate improving upon previous methods that have also used protein interaction
data. Application of the method to compare and contrast three types of cancer identified
both common and unique regulators, which can allow researchers to determine the core
cancer regulatory network and the differences in regulation among the various cancers
we studied.

While we believe PIMiM can already be of use to researchers that collect mRNA and
miRNA expression data, there are a number of extensions that can further improve it. As
mentioned above, we follow several other papers in isolating the miRNA target prediction
task from the combinatorial analysis of miRNA-TF regulation. While such an approach
leads to good results as discussed above, our longer term goal is to develop a method
that can incorporate both types of regulation in a single modeling framework. For this,
we would need to determine the role a specific TF plays (activator or repressor) and its
activity level (either based on its expression levels or on the set of its targets [192]). With
this information we can incorporate TFs into our regression model to account for their
part in regulating expression which will hopefully lead to better results regarding the role
played by specific miRNAs. In addition, we would like to incorporate additional types of
high-throughput data, for example epigenetic data to our analysis framework.
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7.1 Conclusions
This thesis proposes solutions to challenges in analyzing gene expression data using
probabilistic models. Computational tools introduced here enable researchers to collect
and preprocess RNA-Seq data, to conduct cross-species analysis to find coherent patterns
of expression of sets of genes, and to predict gene targets of miRNAs active in specific
conditions of interest.

Chapter 2 presents SEECER, which we believe is the first error correction method for
generic RNA-Seq data. Previous methods either assume a uniform coverage of reads
[36, 37, 38, 39, 40] or were developed for a specific type of sequencing technology such
as single molecule sequencing [193]. We demonstrated using three datasets of different
sequencing depth and read length that SEECER outperforms other methods in correcting
more errorswhilemaking a smaller number of false positive corrections. More importantly,
de novo assembly of corrected reads leads to a more accurate transcriptome. We observed
an improvement across the spectrum of expression levels, notably in lowly expressed
genes which are more difficult to analyze. The method was used to perform de novo
transcriptome correction and assembly of sea cucumber expression data providing new
insights regarding the development of this species. We were also able to experimentally
validated 14 highly expressed transcripts by RT-PCR analysis.

Even though expression data has become available for increasing number of species
in recent years, it is still difficult to search for similar experiments in large expression
databases across species. In Chapter 3, utilizing the ranking of orthologs in two species,
we proposed a distance function which is learned using a training dataset of known
similar pairs of experiments. To demonstrate its ability, we retrieved similar experiment
pairs from GEO and asked a pathologist to evaluate their relevance. We also determined a
set of mouse genes which are most coherent in expression values with a set of human cell
cycle genes in these pairs of experiments. The results suggest that the identified pairs are
meaningful and the set of mouse genes are significantly enriched with cell cycle related
genes. We believe this is a helpful step toward building a query system of cross-species
expression databases. Since the publication of our work [71], some approaches were
introduced along this line of research such as [194] and [195], the latter of which was built
upon the work presented in this thesis.

Building on our experience with cross-species analysis, Chapter 4 presents DPMMLM,
a method for discovery of core and divergent sets of genes between two species. Most
cross-species analyses assume a one-to-one mapping between genes in two species. This
mapping is usually determined by a top match, for example sequence similarity, which in
many cases is not the correct ortholog. While this assumption is acceptable for high level
analysis such as querying large databases (Chapter 3), it may lead to wrong conclusions in
other situations. To address this issue, DPMMLM allows soft matching of genes based on
a prior given by sequence similarity and infers the best matching probabilistically using
both the prior and the observed expression data. The method uses the Dirichlet Process
to guide the selection of the number of sets of genes to report. The fact that DPMMLM
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performed better on both simulated and immune response data suggests that probabilistic
matching is suitable for cross-species analysis.

Lastly, we discuss in Chapter 5 and 6 two methods that integrate expression data with
other evidence sources to infer miRNA regulatory networks. Determining such target
set is important for fully understanding the role of various miRNAs, and to model the
networks they regulate in a condition of interest. Since the effect of each miRNA on any
single target is often limited, it often works cooperatively with multiple miRNAs targeting
the same mRNA in a specific condition. To allow the use of such group- or module-based
regulatory models, we introduced GroupMiR [115] which uses a nonparametric Bayesian
prior based on the Indian Buffet Process (IBP [15]) to identify modules of co-regulated
miRNAs and their target mRNAs. As we have shown, by using a module-based approach,
we can improve upon methods that treat miRNAs or mRNAs individually, improving the
set of correctly recovered miRNA-mRNA interactions [115]. With growing evidence that
interacting proteins are more likely to be co-regulated by the same miRNAs, we extended
GroupMiR in Chapter 6 to discover miRNA targets that are connected and participate
in common pathways. We did so by formulating an optimization problem in PIMiM
using an additional data source: protein-protein interaction data. Finally, we applied
PIMiM to study miRNA regulation in several types of cancer, allowing us to identify novel
regulators that either span multiple cancer types or are unique to specific cancers.

7.2 Themes shared by the methods in this thesis
In summary, these methods are successful for many reasons. Foremost, while developing
thesemethods, we carefully considered specific data characteristics and incorporated these
considerations in the probabilistic models. SEECER (Chapter 2) improved upon other
existing methods for error correction significantly by adaptively and locally constructing
alignments of readswithout any assumption on the coverage of data. Othermethodsmake
many false negative error corrections resulting in lower rates of aligned reads because they
assume uniform coverage. DPMMLM, which probabilistically matches genes, enables
the discovery of gene sets that otherwise were masked because of incorrect orthology
assignments. GroupMiR and PIMiM are superior in identifying key miRNA regulators
because they specifically model the biological group structure of miRNA regulation,
hence adhere more closely to the biology. We also want to emphasize the importance of
abstraction in modeling these problems to make it possible to scale these methods to large
biological data. Although it may be computationally attractive to design complex and rich
models, striking a balance between complexity and data interpretation is challenging.

Secondly, a common theme running through this thesis is integrating many evidence
sources: sequence data, prediction databases, sequence similarity scores, and protein
interaction data. The main idea is that each source of data tells us a different aspect
of the biological picture. Sequence data, which is static and less noisy than expression
data, is useful to overcome the noise level. Prediction databases, which are built on
many existing approaches based on conservation and sequence analysis, increase the
confidence of our results. Utilizing protein interaction data in the work described in
Chapter 6 was supported by biological evidence and experimental results. Combining
many datasets such as the work on cancer data (Chapter 6), where we apply PIMiM to
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compare and contrast three types of cancer, may lead to interesting hypotheses. This could
allow researchers to determine the core cancer regulatory network and the differences in
regulation among the various cancers.

Finally, preprocessing is an important factor leading to a successful use of expression
data. For instance, a common practice in working with sequencing data is discarding
reads with no or multiple alignments to a reference genome. By improving the quality
of RNA-Seq data and the mappability of reads to the reference, SEECER should benefit
many downstream analyses in data utility. One particular instance we have shown in this
thesis is de novo transcriptome assembly, in which case, the assemblers could produce
longer contigs yielding a more compact transcriptome.

7.3 Future work

Wewrap up the thesis with some directions for future research on these topics. In general,
we would like to add additional features to SEECER and investigate their effects on variant
analyses such as SNP calling. SEECER can also be applied to other types of sequencing
data. We also suggest using other information sources to extend the work in Chapter 3-6.
A longterm direction is to include non-linear dynamics of expression data in these models.

7.3.1 Additional features for SEECER

Sequence data includes a quality value for each base of reads. This integer value indicates
the level of confidence when a base is called by the sequencing machines and processing
tools. Because quality values help identify erroneous locations in the reads, methods
treating these locations with different levels of confidence can lead to more accurate
assessment of the data [196, 33]. Many genome error correction methods already use this
information to guide the search and remove sequencing errors [20, 34, 38]. The current
version of SEECER does not use quality values in building contigs and estimating the
HMMmodels. Quality values could be used to discard bad alignments, improving the
filtering step of SEECER. We could also use them in estimating parameters by assigning
weights to different alignments proportional to their qualities. These additions should
result in a smaller number of false positive corrections made by SEECER. Especially in the
regions of low coverage, rather than discarding these reads (because of few alignments),
SEECER could construct a contig if the alignments are of high quality.

Currently, SEECER only supports outputs in FASTA format, which does not include
quality values. SEECER does not compute and output quality values because it is unclear
how to assess the quality of corrections (mismatches and indels). One option is to scale
the likelihood of each read appropriately and use this as a quality value. For deletion
corrections, we may also want to downgrade the quality values of adjacent bases to
indicate a low confidence region. A more complicated option is to consider the quality of
each base in addition to the likelihood of alignment; if these values disagree substantially,
we should assign a low quality value.
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7.3.2 Effect of error correction on SNP and other analyses

One of the major concerns in error correction is controlling the number of false positives.
This is particularly important for sensitive analysis such as SNP calling or variant detection.
There is possibility that SEECER makes some corrections that remove heterozygous SNP
or other true variants in the data. This issue is difficult because low-coverage SNPs
or variants are inevitably removed by most of the error correction methods since it is
impossible to distinguish them from errors. We provide some crude assessment on the
number of SNPs existing before and after error correction in Section 2.4.3. The current
implementation of SEECER uses a simple heuristic dictating that correction is only made
if by doing so the likelihood is increased by at least a certain margin. Nevertheless,
we need to investigate the effect of error correction on SNP and variant detection more
systematically and thoroughly. With the growth of SNP databases [197], this type of
analysis could be more easily done in the future. In addition, it has been shown that de
novo assemblies allow reliable detection of genes that are differentially expressed between
two conditions [70]. Thus, by improving the resulting assembly, SEECER is likely to
improve downstream differential expression analyses as well.

7.3.3 Extending SEECER to other data: Chip-Seq data

SEECER makes few assumptions about a particular sequencing technology. Most notable
is the non-uniform coverage, which many other types of sequencing data possess. Many
new experimental methods use deep sequencing technology as a way to analyze biological
samples. Thus, SEECER can also be applied to these types of data.

ChIP-Seq [198], a technology combing immuno-precipitation and deep sequencing,
is one potential candidate. The main application of ChIP-Seq is to survey interactions
between proteins and DNA or to study histone modifications. The current processing
pipeline starts with aligning reads to a reference genome. Then, the locations of enriched
binding sites, called peak locations, are determined based on the abundance of reads.
Sequences around these peak locations are extracted from the genome and then used as
input to a motif discovery tool. SEECER can already be used to help align more reads to
the reference, hence improving this processing pipeline. However, in some cases where
there is no reference genome, we may be able to apply SEECER to ChIP-Seq data. We
note that SEECER produces contigs from partial overlaps of reads as intermediate results.
For ChIP-Seq data, where there is no alternative splicing events, most of these contigs
would likely overlap with sequences identified by the peak locations. If we find the same
motifs in these contigs as in the genome sequences, we can establish a new pipeline to
analyze ChIP-Seq without a reference genome. This new technique opens the door for
applications of ChIP-Seq data in new organisms for which no draft genome exits. Studies
of cancer samples, in which mutations or genomic rearrangements make the reference
unreliable, should also benefit from this new pipeline.

7.3.4 Improving cross-species analysis

Despite our encouraging results in Chapter 3, expression data itself seems insufficient
for building a good retrieval system of cross-species expression databases. Expression
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studies usually contain many samples corresponding to different time-points or stimuli.
Our experience shows that while it is usually not difficult to retrieve pairs of studies that
are similar, our method is incapable of discriminating among samples within these pairs.
We envision a system that works more accurately at a finer granularity. A promising
direction is to integrate other evidence sources into the model such as text information.
One example is proposed in [195]. Their method uses our distance function coupled with
a text-based classifier in a co-training framework to exploit the complimentary information
between text and expression data, hence were able to improve the performance. There has
been recent work in Machine Learning on developing distance functions or classification
algorithms for distributions [199, 200]. Since each expression sample can be thought of as
a distribution of expression values, we could apply some of these methods to our problem.
We note that distributions of expression values are multi-modal and this fact should be
taken into account properly.

The latent matching component is important to the success of DPMMLM. However,
the matching is biased to one species. That means we only try to map genes of one
species onto the other species. While this may result in many-to-many matchings, the
probabilities are only shared among genes in the second species. A full treatment of this
matching problem would be to match a groups of genes in both species together. Scaling
DPMMLM to multiple species is also another interesting research problem.

7.3.5 MiRNAs, Transcription factors and combinatorial regulation

In addition, transcription factors (TFs) also play a major role in regulating gene expression
and they have been shown to work combinatorially with miRNAs [201]. Our longterm
goal is to develop a model that takes into account both TFs and miRNAs. For this, we
would need to determine the role a specific TF plays (activator or repressor) and its activity
level (either based on its expression levels or on the set of its targets [192]). With this
information, we can incorporate TFs into our regression model to account for their part
in regulating expression, which will hopefully lead to better results regarding the role
played by specific miRNAs.

Moreover, the regression component that we considered in PIMiM uses a simple linear
model to explain the regulation effect of multiple miRNAs. We could also extend this
to incorporate other complex combinatorial analysis. MicroRNAs regulate their mRNA
targets by base pairing. In plants, nearly perfect pairing of a miRNA to its mRNA target
leads to mRNA cleavage [202]. We hypothesize that in other organisms, an mRNA can
have multiple binding sites corresponding to many miRNAs. Any of these miRNAs that
binds to the target is enough to trigger mRNA cleavage. We can think of this scenario
as OR-like regulation of multiple miRNAs, where a change in expression of any of the
miRNAs may lead to the negative regulation of the mRNA. One way to accommodate
this phenomenon in a model is using the maximum of over-expression levels of multiple
miRNAs to explain the down-expression of the target mRNA. On the other hand, while
cleavage seems to be restricted to perfect pairing, translational repression may happen
even when partial complementarity to mRNA occurs within the 3’ UTR [116]. Binding of
a single miRNAmay not be enough for repression and research [203] shows that multiple
target sites can increase the level of translational repression. In this case, multiple miRNAs
can cooperatively mediate the regulation of the samemRNA. This scenario corresponds to
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anAND-likemechanism, wheremultiplemiRNAs are necessary formeditating regulation
of a transcript.

Finally, we would like to continue our work on cancer, where other genetic variants
and mutation information can be incorporated into the model to reduce false predictions
(for example, [204]).
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ASupplementary materials for Chapter 2

A.1 Detailed analysis of false positive and false negatives
after TopHat alignment with the human data

Here we present a more detailed analysis of the number of false positive and false negative
corrections on the 5 lane human data for all three investigated tools. The analysis is
restricted to the set of reads that was uniquely aligned by all the methods tested for a
dataset, to be fair, but the relative values of gain, sensitivity and specificity are similar even
without this restriction. Table A.1 lists the number of true and false positives as well as true
and false negatives for bases of aligned reads compared to the human reference sequence
and the read sequence in the original experiment on the 5 lane human data. Among
all methods, SEECER and Echo have the highest number of true positives. Echo has a
larger number of true positives but it makes much more false positive corrections, about
∼ 9 times more than SEECER. Therefore, despite a better sensitivity for Echo, SEECER
provides the largest gain among all methods. Gain values for SEECER are roughly twice
as high compared to Quake that has the second best gain value for all methods. All
methods have similarly high specificity values. SEECER yields the largest gain in the
other datasets we tested (Table A.2 and Table A.3).

A.2 De novo assembly results by expression
In order to understand the impact of error correction on de novo transcriptome assem-
bly with Oases [27], we have computed the reconstruction accuracy (with and without
correction) as a function of the expression levels. We used the express software with
default parameters ([205] version 0.9.4) to quantify the expression of Ensembl (version
65) transcripts after alignment of the original reads with bowtie [66]. In Figure A.1 the
results for all tested preprocessing methods are depicted. In general SEECER improves
reconstruction for a wide range of expression levels compared to the original data, but
most notably for the most highly expressed transcripts. The read clustering with SEED,
gives good results, given that the number of reads is significantly reduced, and for the
most highly expressed transcripts assembly improves over the original data for full length
transcripts. The other genome error correction approaches, except HiTEC, generally lead
to an improvement of reconstructed transcripts but all of them have the biggest gap com-
pared to SEECER in the two second highest expression quantiles. This result demonstrates
that genome error correction approaches have reduced sensitivity for the correction of
errors in very highly expressed transcripts.

A.3 Detailed analysis of types of correctionsmadebySEECER
SEECER can make mismatch, insertion and deletion corrections to the reads. Figure A.2
shows the distribution of these three types of correction in terms of the read positions for
the 55M paired-end 45bps reads of human T cells. As can be seen, mismatch corrections
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Figure A.1: Analysis of transcript reconstruction accuracy (y-axis) according to expression
level by grouping Ensembl transcripts (v.65) with similar expression into quantiles of the
same size (x-axis). The assembly performance with Oases on the original data is compared
to preprocessing methods, SEED, ECHO, Quake,HiTEC, Coral and SEECER. The number
of Ensembl transcripts covered to at least 80% (top) and full length (bottom) are shown.
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Figure A.2: The number of corrections that SEECER made to the 55M paired-end 45bps
reads of human T cells.
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Figure A.3: The number of different types of mismatch corrections that SEECER made to
the 55M paired-end 45bps reads of human T cells.
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Figure A.4: The number of different types of insertion corrections that SEECER made to
the 55M paired-end 45bps reads of human T cells.

are more common than the other types. In agreement with the fact that Illumina reads
accumulate errors at the ends of reads [33], SEECER made many more corrections at the
read ends.

We also show the frequency of different types of mismatch, insertion and deletion
corrections in Figure A.3, A.4 and A.5. We observe that there are significant biases in
substitution corrections such as A to C versus A to G/T, T to G versus T to A/C. Again
recapitulating what was observed before for Illumina data [33].

A.4 Factors affecting running time of SEECER
Table A.5 summarizes runtime properties of SEECER when using different number of
reads and read lengths. We fixed the sequencing throughput (total megabases = # reads×
read length) to the same value of the T cells dataset by subsampling reads from the other
two datasets (Hela cell lines and IMR90 cell lines). We find that different factors affect the
run time and that it is hard to determine in advance how such factors will materialize in
specific experiments:

1. The complexity of the transcriptome. This affects the amount of collisions and
duplicated computational work due to random seeding performed by the algorithm.

2. The number of resulting contigs (which depends both on the species and the con-
dition studied). Length of contigs rather then read length increases the run time.
Thus, while the table can provide a rough guide as to what to expect when running
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SEECER on comparable datasets, runtime is heavily experiment dependent and it is
hard to interpret the running time as a function of read number or length.
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Figure A.5: The number of different types of deletion corrections that SEECER made to
the 55M paired-end 45bps reads of human T cells.

Table A.1: Analysis of false positives and false negatives on the 5 lane human data.

metric SEECER Quake Coral HiTEC Echo
# common aligned reads 10975133 10975133 10975133 10975133 10975133
True Positives 3768807 2038505 2887722 668387 4105244
True Negatives 487571328 487459161 487374550 487400380 484080485
False Positives 472479 584646 669257 643427 3963322
False Negatives 2068371 3798673 2949456 5168791 1731934
Sensitivity 0.6456557 0.3492278 0.494712 0.1145052 0.7032926
Specificity 0.9990319 0.9988021 0.9986287 0.9986816 0.9918792
Gain 0.5647126 0.2490688 0.3800578 0.004276039 0.02431346
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Table A.2: Analysis of false positives and false negatives on the 64M paired-end 76bps
reads of HeLa cell lines.

metric SEECER Quake Coral
# common aligned reads 28214429 28214429 28214429
True Positives 8521449 5513033 4025984
True Negatives 2112496518 2112468492 2112751956
False Positives 2228188 2256214 1972750
False Negatives 21050449 24058865 25545914
Sensitivity 0.2881604 0.1864281 0.1361422
Specificity 0.9989463 0.998933 0.9990671
Gain 0.2128122 0.1101322 0.06943193
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Table A.3: Analysis of false positives and false negatives on the dataset of 145M paired-end
101bps reads.

metric SEECER Quake
# common aligned reads 117345990 117345990
True Positives 41552282 23392458
True Negatives 11782184102 11783039248
False Positives 3193840 2338694
False Negatives 25014766 43174590
Sensitivity 0.62421698495628 0.351411977890322
Specificity 0.999728999781278 0.999801559694436
Gain 0.576237690456095 0.316279069487954

method single multi mean sd
original 437 140 1.3917 0.9423
SEECER 499 204 1.4993 1.0362
Coral 494 196 1.4826 1.0281
SEED 385 130 1.4369 1.0444
ECHO 460 154 1.4186 0.9519
HiTEC 434 134 1.3592 0.8086
Quake 466 177 1.4666 1.0078

Table A.4: Analysis of full length reconstruction of alternative isoforms with Oases [27] on
the human T-cell data for different error correction methods. For each method, full length
assembled Ensembl (v.65) transcripts were grouped into genes with only one isoform
reconstructed (single), genes with at least two isoforms reconstructed (multi) and the
mean and standard deviation (sd) of number of reconstructed transcripts per gene was
computed. Only Ensembl transcripts with an estimated expression level ≥ 5 RPKM were
used for the analysis. SEECER corrected reads lead to a higher number of reconstructed
genes and more isoforms.
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Dataset length # of reads total megabases Time (hours)
Human T cells 45 55394464 2492 12.25
HeLa cell line 76 32775682 2490 16.3
IMR90 cell line 101 24526546 2477 4

Table A.5: Running time of SEECER (5th col) for different datasets of similar total sequence
throughput in megabases (4th col) but using different read length (2nd col) and absolute
number of reads(3rd col).

Table A.6: Analysis of SNP calls on the T-cell dataset after TopHat alignments. For all
methods tested (1st col), the minimum coverage threshold (2nd col) for SNP calling was
varied and the number of SNP calls (3rd col), calls annotated in dbSNP (4th col) and the
methods Precision are shown.

method coverage c total calls overlap dbSNP Precision
Quake 5 22092 3423 0.154942966
Quake 10 10963 1647 0.150232601
Quake 15 6793 992 0.146032681
SEECER 5 23539 3834 0.162878627
SEECER 10 11952 1950 0.16315261
SEECER 15 7381 1143 0.154857065
original 5 18178 2928 0.161073826
original 10 8767 1365 0.155697502
original 15 5084 764 0.150275374
HiTEC 5 18176 2931 0.161256602
HiTEC 10 8826 1374 0.155676411
HiTEC 15 5082 772 0.151908697
ECHO 5 19518 3298 0.168972231
ECHO 10 9171 1492 0.16268673
ECHO 15 5179 815 0.157366287
Coral 5 23221 3798 0.163558848
Coral 10 11069 1863 0.168307887
Coral 15 6310 1057 0.167511886
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Table A.7: GO table for the top 200 expressed Sea urchin peptides matched in both time
points.

N X P-value corrected P-val GO terms Descriptions

69 154 2.81E-115 <0.001 GO:0003735 structural constituent of ribosome
67 148 5.41E-112 <0.001 GO:0005840 ribosome
68 233 7.90E-98 <0.001 GO:0006412 translation
68 1557 1.68E-39 <0.001 GO:0005622 intracellular
8 14 1.32E-14 <0.001 GO:0015935 small ribosomal subunit
8 92 2.59E-07 <0.001 GO:0007017 microtubule-based process
7 78 1.21E-06 <0.001 GO:0043234 protein complex
7 78 1.21E-06 <0.001 GO:0051258 protein polymerization
7 82 1.70E-06 <0.001 GO:0005874 microtubule
9 181 5.10E-06 <0.001 GO:0003924 GTPase activity
3 8 1.82E-05 3.00E-03 GO:0015934 large ribosomal subunit
3 10 3.87E-05 7.00E-03 GO:0004129 cytochrome-c oxidase activity
6 99 6.82E-05 2.10E-02 GO:0005198 structural molecule activity

Table A.8: GO table for the top 200 expressed Sea urchin peptides only matched in the
first time point.

N X P-value corrected P-val GO terms Descriptions

9 455 5.95E-06 1.00E-03 GO:0000166 nucleotide binding
5 92 7.10E-06 1.00E-03 GO:0007017 microtubule-based process
3 20 2.59E-05 7.00E-03 GO:0030414 peptidase inhibitor activity
4 78 7.89E-05 1.60E-02 GO:0051258 protein polymerization
4 78 7.89E-05 1.60E-02 GO:0043234 protein complex
4 82 9.59E-05 2.20E-02 GO:0005874 microtubule
5 181 1.82E-04 2.80E-02 GO:0003924 GTPase activity
4 99 1.99E-04 2.90E-02 GO:0005198 structural molecule activity
12 1253 2.06E-04 2.90E-02 GO:0003676 nucleic acid binding
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Table A.9: GO table for the top 200 expressed Sea urchin peptides only matched in the
second time point.

N X P-value adj P-val GO terms Descriptions

6 37 6.85E-10 <0.001 0015986 ATP synthesis coupled proton transport
4 18 1.50E-07 <0.001 0015078 hydrogen ion transmembrane=transporter activity
5 99 7.51E-06 3.00E-03 0005198 structural molecule activity
4 78 6.20E-05 1.80E-02 0051258 protein polymerization
4 78 6.20E-05 1.80E-02 0043234 protein complex
2 5 7.38E-05 2.00E-02 0046034 ATP metabolic process
2 5 7.38E-05 2.00E-02 0016469 proton-transporting two-sector ATPase complex
4 82 7.54E-05 2.00E-02 0005874 microtubule
4 92 1.18E-04 2.40E-02 0007017 microtubule-based process
2 7 1.54E-04 3.40E-02 0015992 proton transport

Table A.10: Analysis of blastx alignment matches to sea urchin peptides after de novo
assembly of sea cucumber transcripts for timepoint two data (larval stage). Column 3 and
4 report the number of sea urchin peptides that are covered to at least 50% (3rd col) and
60% (4th col) of their length by an assembled Oases transfrag after error correction with
SEECER, Quake or Coral (1st col). We also contrast SEECER with k=17 (default) to k=21.

Method transfrags cov >= 0.5 cov >= 0.6
quake 1298830 690 96
SEECER-k17 628913 801 108
SEECER-k21 1097826 797 112
Coral 906846 777 101
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B.1 Metric properties
For completeness we list below the properties of distance metrics.

1. Non-negative: d(π, σ) ≥ 0

2. Symmetric: d(π, σ) = d(σ, π)

3. Identity: d(π, σ) = 0 if and only if π = σ

4. Triangular inequality: d(π, σ) ≤ d(π, τ) + d(τ, σ) for any τ ∈ Gm

B.2 Proof of Asymptotic Normality
Proof Since d(π, σ) = d(ππ−1, σπ−1) = d(Im, σπ−1), the distribution Dd is the distribution of
d(Im, τ) when τ is a uniformly random permutation in Gm. Applying Hoeffding’s Combinatorial
Central Limit Theorem [206] with cm(i, j) = (wi −wj)

2, we only need to verify the condition (12) of
the theorem 3.

Define dm(i, j) as in the equation (11). Let α = min
1≤i,j≤m

dm(i, j) and β = max
1≤i,j≤m

dm(i, j). α and β

exist because −∞ < w(i) < ∞ for all i .

lim
m→∞

max
1≤i,j≤m

[dm(i, j)]2

1
m

m
∑

i=1

m
∑

j=1
[dm(i, j)]2

≤ lim
m→∞

β2

1
m

m
∑

i=1

m
∑

j=1
α2

(B.1)

= lim
m→∞

β2

mα2 (B.2)

= 0 (B.3)

B.3 Pseudometric properties of the relationalweighted rank
matrix

Belowwe prove that Equation 3.13 is a pseudometric in the original permutation space and a metric
in the W-transformed space.

Lemma B.3.1
MF

π,σ = MT
πMσ + MT

σMπ (B.4)

2I−MF
π,σ = (Mπ −Mσ)

T(Mπ −Mσ) (B.5)

Proof Since Mπ and Mσ are permutation matrices, MT
πMσ = Mσπ−1 and MT

σMπ = Mπσ−1 .
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Therefore, by the definition of the permutation matrix in (3.5), Mσπ−1 (i, j) = 1 if and only
if σπ−1(i) = j or π−1(i) = σ−1(j). Similarly, Mπσ−1 (i, j) = 1 if and only if π−1(j) = σ−1(i).
Equation (B.4) follows from the definition of MF

πσ in (3.12).

2I−MF
π,σ = MT

πMπ + MT
σMσ − (MT

πMσ + MT
σMπ)

= (Mπ −Mσ)
T(Mπ −Mσ)

Theorem B.3.2 If the matrix W is positive semidefinite, the distance is a pseudometric.

Proof

d(π, σ) =
√

tr((2I−MF
π,σ)W)

=
√

tr
(
UT(Mπ −Mσ)T(Mπ −Mσ)U

)
= ‖(Mπ −Mσ)U‖F

Since the Frobenius norm ‖.‖F is ametric, our distance d(π, σ) satisfies non negativity, symmetry and
triangular inequality. Therefore, the distance is a pseudometric. d(π, σ) = 0 implies MπU = MσU,
hence the distance is a metric in the W-transformed space.

B.4 Matrix and Vector Weight metrics
We show that the vector weight discussed in section 3.2.3 is a special case of the general weight
matrix when that matrix has a rank of 1.

Proof Since W is ranked 1, W = wTw with w is a vector of length n. Let d1 and d2 be the metric in
Section 3.2.3 and Section 3.2.3 respectively. Recall from the proof of Theorem B.3:

d1(π, σ) =
√

wT(Mπ −Mσ)T(Mπ −Mσ)w (B.6)

d2(π, σ) =
√

tr
(
wT(Mπ −Mσ)T(Mπ −Mσ)w

)
(B.7)

=
√

wT(Mπ −Mσ)T(Mπ −Mσ)w (B.8)

Therefore, the metric in Section 3.2.3 is a special case of the metric in Section 3.2.3.

B.5 Normality of the null distribution
Figure B.1 experimentally confirms that the null model follows a normal distribution. The red curve
is a normal distribution fit using Matlab.

B.6 Robustness of the methods
B.6.1 Effect of ortholog assignment on the performance of the Matrix

method
Inparanoid contains over 10000 known orthologs between human and mouse making them one of
the best annotated pairs of species. As noted above, from this set we select a subset of 500 genes and
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Figure B.1: The histogram of the Spear-
man correlation of 2000 random pairs of
microarrays and the Gaussian distribu-
tion fit using Matlab.
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Figure B.2: PR curves for the Matrix
Weightmetric when startingwith fewer or-
thologs. The blue curve is the result when
starting with all orthologs (same curve as
in Figure 3.3).

use these in our algorithms. To test whether our methods would be appropriate to other species
pairs for which much fewer orthologs are known we repeated the analysis discussed above starting
with a smaller set of orthologs. We selected random sets of 2000 orthologs (roughly 12% of all
orthologs) and then reran our method using this initial set (selecting the top 500 varying genes
from this smaller subset and running the matrix algorithm discussed above). Figure B.2 presents
results for seven of these random sets. The blue curve are the results when starting with the full set
of orthologs. As can be seen our method is robust and is appropriate for pairs of species with much
fewer known orthologs as well.

B.6.2 Comparison of cross species comparison metrics using 1000 most
variant genes

We reran experiments with 1000 orthologs and the results are presented in Figure B.3 . Indeed, as
the reviewer suspected the matrix method did slightly worse when compared to the results using
500 genes. However, for the highest precision rates Matrix was still the best method (though by a
much lower margin when compared to the vector method which requires far fewer parameters).
The results of using 500 genes are slightly better than using 1000 genes at the 0.9 precision range
(for a recall of 0.21 the 500 genes method achieves a 0.92 precision whereas the 1000 genes achieves
0.91). Of course, these results are also a function of the training data size. With a larger training
datasets the ability to fit parameters to more sophisticated models increases and so more complex
methods, like the Matrix method, are likely to outperform the simpler methods.

B.6.3 Randomized dataset
To demonstrate that how well different methods perform relative to random prediction, we have
carried out the experiment on a randomized dataset, by randomly permuting expression values in
each array. The results are presented as Figure B.4. As can be seen, all methods do very badly and
the results are essentially a flat PR curve as expected from random data.
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B.7 Human and mouse tissue list
Table B.1 shows the list of 26 human and mouse tissues used in this analysis.

B.8 Identifying similar experiments in GEO

B.8.1 Histogram of the correlation of 500 selected genes
Figure B.5 shows distributions of correlations for the selected highly varying 500 genes. When
using the 500 selected genes the results look pretty similar to the results presented in the paper
though the mean correlation is slightly higher (0.1057 vs. 0.1021).
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Figure B.5: Blue curve: Correlation of 500 orthologs used for training in a random sample
of 301,453 microarray pairs from human and mouse. Red curve: Correlation of 500
orthologs used for training in the set of microarray pairs selected by our method.
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Human Mouse

Adrenal Cortex Adrenal
Bladder Bladder

Bone Marrow Bone Marrow
Brain Brain

Brain Cerebellum Cerebellum
Brain Cerebral cortex Cortex

Epididymis Epididymus
Heart Heart
Kidney Kidney
Liver Liver
Lung Lung

Pancreas Pancreas
Placenta Placenta 12.5
Prostate Prostate

Salivary Gland Salivary
Skeletal Muscle Skeletal Muscle
Small Intestine Small Intestine
Spinal Cord Spinal Cord

Spleen Spleen
Stomach Stomach
Testis Testis

Thymus Thymus
Thyroid Thyroid
Tongue Tongue
Trachea Trachea
Uterus Uterus

Table B.1: The one-one similarity list of human and mouse tissues.

B.8.2 Description analysis on random sets of array pairs

We repeated the analysis with random sets of array pairs. As can be seen in Table B.2, for these
pairs the p-values are much higher (less significant). Specifically, there are no matched terms with
a p-value lower than 10−10 (whereas in the identified matching there are 4 such words) and only 3
of the top random match words would be ranked in the top 10 of the words identified using the
matches made by the algorithm. Thus, such p-values are significant and would not be expected
from random assignments.
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Rank P-value Word #Pairs

Identified Expected

1 1.13469e-09 BONE 51 19.13650
2 3.91648e-09 ACUTE 43 15.18268
3 1.26953e-06 MARROW 15 3.16306
4 1.49012e-05 GASTROCNEMIUS 8 1.05435
5 2.02795e-05 STEROID 5 0.31631
6 7.76604e-05 METAPLASIA 3 0.07908
7 1.34712e-04 LIPOPOLYSACCHARIDE 8 0 1.44973
8 2.29396e-04 PULMONARY 15 05.00818
9 3.32228e-04 PROGENITOR 8 0 1.66061
10 5.00167e-04 IFN-GAMMA 5 0.63261
11 7.80427e-04 DYSTROPHY 14 5.06089
12 7.86850e-04 DUCHENNE 8 1.89783
13 7.94474e-04 REGIONS 9 02.37229
14 1.34160e-03 LEUKEMIAS 2 0.05272

Table B.2: Top 14 words identified in titles of pairs determined to be similar. #Pairs
Identified is the number of time this pair was observed. #Pairs Expected is the number of
time expected based on single species occurrences.

B.8.3 Heat map of similarity between 3416 human and 2991 mouse
microarrays

Figure B.6 presents a heatmap showing all human by mouse arrays where the color indicates the
level of similarity from the Weight Matrix metric. Smaller value means more similarity.

B.8.4 Human assessment of identified matched dataset pairs.
To test whether the identified matched pairs are indeed a feasible solution we have asked an expert
pathologist (Oltvai, a co-author of the paper) to examine the top 100matched dataset pairs identified
by our method. Based on the description for that dataset the expert assigned each match to one of
three categories: A correct match (Y), an incorrect match (N) and an inconclusive. As can be seen
in Table B.3, there were 83 Y assignments in the top 100 matches with the other 17 determined to
either be mistakes (N, 13) or inconclusive (4). Given that almost all random matches would not
make sense this is a very high accuracy rate and it clearly indicates that this method can be use to
help improve, and speed up, human assessment of similarity. We have changed the introduction
and results sections to reflect this idea and to highlight the ability of the method to aid in human
assessment of similarity.
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Figure B.6: The similarity between 3416 human and 2991 mouse microarrays.

Table B.3: The result of human assessment of identified matched dataset pairs.

Human Dataset Description Mouse Dataset Description Assessment

GDS2767 Blood response to various bev-
erages: time course

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y/ inconcl.

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS2330 Acute myocardial infarction
model: time course (MG-U74B)

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y
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Table B.3: The result of human assessment of identified matched dataset pairs.

GDS1815 High-grade gliomas (HG-
U133A)

GDS2159 Spinal cord injury model: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2330 Acute myocardial infarction
model: time course (MG-U74B)

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS488 Myocardial infarction time
course

Y

GDS2056 Skeletal muscle types (HG-
U133B)

GDS2330 Acute myocardial infarction
model: time course (MG-U74B)

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS2330 Acute myocardial infarction
model: time course (MG-U74B)

Y

GDS2678 Brain regions of humans and
chimpanzees

GDS2159 Spinal cord injury model: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS488 Myocardial infarction time
course

Y

GDS2767 Blood response to various bev-
erages: time course

GDS2150 Spleens of males and females at
puberty

N

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y

GDS2373 Squamous cell lung carcinomas GDS2334 Myod and Myog expression ef-
fect onmyogenesis: time course

N

GDS2373 Squamous cell lung carcinomas GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

N

GDS2373 Squamous cell lung carcinomas GDS1244 Phosgene effect on lungs: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS234 Muscle regeneration (U74Av2) Y

GDS2767 Blood response to various bev-
erages: time course

GDS1336 T cell anergy induction regula-
tion by Egr-2 and Egr-3 (MG-
U74A)

Y/ inconcl.

GDS1673 Non-diseased lung tissue GDS1244 Phosgene effect on lungs: time
course

Y

GDS2373 Squamous cell lung carcinomas GDS1072 Platelet derived growth fac-
tor effect in the presence of
Src family kinase inhibitors
(MOE430A)

Inconcl.

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS488 Myocardial infarction time
course

Y
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Table B.3: The result of human assessment of identified matched dataset pairs.

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS2335 Exercise effect on the diabetic
cardiac muscle: time course

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS627 Cardiac development in em-
bryo

Y

GDS2767 Blood response to various bev-
erages: time course

GDS1514 Interferon-gamma tolerogenic
effect on CD8+ dendritic cells

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2408 B cell-activating factor of the
TNF family effect on B cells

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS993 Naive CD8+ T cells prolifera-
tive response to lymphopenia:
time course

Y/ inconcl.

GDS2055 Skeletal muscle types (HG-
U133A)

GDS1541 Exercise effect on diabetic skele-
tal muscle: time course

Y

GDS2056 Skeletal muscle types (HG-
U133B)

GDS1541 Exercise effect on diabetic skele-
tal muscle: time course

Y

GDS2678 Brain regions of humans and
chimpanzees

GDS2917 Various brain regions of several
inbred strains

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2335 Exercise effect on the diabetic
cardiac muscle: time course

Y

GDS596 Large-scale analysis of the
human transcriptome (HG-
U133A)

GDS2159 Spinal cord injury model: time
course

Inconcl.

GDS2678 Brain regions of humans and
chimpanzees

GDS1406 Brain regions of various inbred
strains

Y

GDS2373 Squamous cell lung carcinomas GDS1058 Uterus response to 17beta-
estradiol: time course

N

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS1766 Extraocular and hindlimb skele-
tal muscle cell differentiation:
time course (MG-430B)

Y

GDS1340 Exercise effect on aged muscle GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS1340 Exercise effect on aged muscle GDS2330 Acute myocardial infarction
model: time course (MG-U74B)

Y

GDS198 Inflammatory myopathy GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2373 Squamous cell lung carcinomas GDS1277 Obliterative bronchiolitis and
tracheal allograft

Y

GDS1673 Non-diseased lung tissue GDS251 Pulmonary fibrosis Y
GDS2767 Blood response to various bev-

erages: time course
GDS882 Neuromedin U effect on type-2

Th cells: time course
Y/ inconcl.

GDS2168 HIV viremia effect on mono-
cytes

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y
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Table B.3: The result of human assessment of identified matched dataset pairs.

GDS707 Aging brain: frontal cortex ex-
pression profiles at various ages

GDS2159 Spinal cord injury model: time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS1765 Extraocular and hindlimb skele-
tal muscle cell differentiation:
time course (MG-430A)

Y

GDS2373 Squamous cell lung carcinomas GDS1631 Osteoblast differentiation (MG-
U74A)

N

GDS2373 Squamous cell lung carcinomas GDS1071 Platelet derived growth factor
effect in the presence of Src
family kinase inhibitors (MG-
U74A)

Y

GDS198 Inflammatory myopathy GDS234 Muscle regeneration (U74Av2) Y
GDS2767 Blood response to various bev-

erages: time course
GDS1285 Macrophage response to

lipopolysaccharide and CstF-64
overexpression

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS1315 Immune response to sup-
pressive vs. stimulatory
immunomodulators

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS1654 Dendritic cell subpopulations:
spleen (MG-U74A)

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2741 TCR-alpha/beta CD8-
alpha/alpha intestinal in-
traepithelial lymphocytes

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2957 Resting and activated natural
killer cells

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS658 Thymocyte selection by agonist Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS827 Acute ethanol administration
effect on Toll-like receptor 3 sig-
naling in macrophages

Y/ inconcl.

GDS2056 Skeletal muscle types (HG-
U133B)

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2083 Limb immobilization effect on
skeletal muscle

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS2083 Limb immobilization effect on
skeletal muscle

GDS2330 Acute myocardial infarction
model: time course (MG-U74B)

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS40 Cardiac development, matura-
tion and aging

Y

GDS2373 Squamous cell lung carcinomas GDS1865 Chondrocyte differentiation:
time course

N

GDS2767 Blood response to various bev-
erages: time course

GDS2521 Megakaryocytes at successive
stages of maturation

Y

GDS395 Biomaterial engineering GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

N

GDS2113 Pheochromocytomas of various
genetic origins

GDS2159 Spinal cord injury model: time
course

Y
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Table B.3: The result of human assessment of identified matched dataset pairs.

GDS1036 Microglial cell response to
interferon-gamma: time course

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Inconcl.

GDS1684 Cardiac allograft rejection: time
course

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Y

GDS1684 Cardiac allograft rejection: time
course

GDS2330 Acute myocardial infarction
model: time course (MG-U74B)

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS1541 Exercise effect on diabetic skele-
tal muscle: time course

Y

GDS2740 Lengthening and shortening
contractions effect on the mus-
cle: time course

GDS2335 Exercise effect on the diabetic
cardiac muscle: time course

Y

GDS833 Alternative pre-mRNA splicing
in various tissues and cell lines
(Rosetta/Merck Splicing Chip
5)

GDS2162 CH1domain deletion, p300 and
CBP heterozygous null mutant
hypoxic fibroblasts response to
trichostatin A

N

GDS833 Alternative pre-mRNA splicing
in various tissues and cell lines
(Rosetta/Merck Splicing Chip
5)

GDS1244 Phosgene effect on lungs: time
course

N

GDS1284 Multiple myeloma molecular
classification

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS198 Inflammatory myopathy GDS488 Myocardial infarction time
course

Y

GDS2055 Skeletal muscle types (HG-
U133A)

GDS627 Cardiac development in em-
bryo

Y

GDS2373 Squamous cell lung carcinomas GDS951 Hormone-induced adipoge-
nesis suppressed by 2,3,7,8-
tetrachlorodibenzo-p-dioxin
and EGF

N

GDS424 Normal human tissue expres-
sion profiling (HG-U95C)

GDS2329 Acute myocardial infarction
model: time course (MG-
U74A)

Inconcl.

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS1336 T cell anergy induction regula-
tion by Egr-2 and Egr-3 (MG-
U74A)

Y/ inconcl.

GDS2528 Basal plate of the placenta
frommidgestation to term (HG-
U133A)

GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

Y

GDS1340 Exercise effect on aged muscle GDS488 Myocardial infarction time
course

Y

GDS2056 Skeletal muscle types (HG-
U133B)

GDS488 Myocardial infarction time
course

Y

GDS1340 Exercise effect on aged muscle GDS234 Muscle regeneration (U74Av2) Y
GDS2373 Squamous cell lung carcinomas GDS857 Corneal stromal cell differenti-

ation
N

GDS1815 High-grade gliomas (HG-
U133A)

GDS2917 Various brain regions of several
inbred strains

Y
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Table B.3: The result of human assessment of identified matched dataset pairs.

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS1541 Exercise effect on diabetic skele-
tal muscle: time course

Y

GDS2106 Lymphoblastoid cell lines from
various CEPH pedigrees

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y

GDS2310 Exercise effect on white blood
cells

GDS2047 Lipopolysaccharide effect on
macrophages pretreated with
carbon monoxide: time course

Y

GDS2772 Sevoflurane and propofol effect
on the heart during off-pump
coronary artery bypass graft
surgery

GDS388 Cardiac remodeling (Mu11K-B) Y

GDS1962 Glioma-derived stem cell fac-
tor effect on angiogenesis in the
brain

GDS2159 Spinal cord injury model: time
course

Y

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS1514 Interferon-gamma tolerogenic
effect on CD8+ dendritic cells

Y

GDS2255 Transmigrated neutrophils in
the alveolar space of endotoxin-
exposed lung

GDS2408 B cell-activating factor of the
TNF family effect on B cells

Y

GDS738 Intervertebral disc cells and os-
motic loading

GDS981 Uterine response to physio-
logic and plant-derived estro-
gen: time course

N

GDS395 Biomaterial engineering GDS2162 CH1domain deletion, p300 and
CBP heterozygous null mutant
hypoxic fibroblasts response to
trichostatin A

N

GDS2435 Male and female venous blood GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS2959 Granulocyte colony-
stimulating factor mobilized
leukocytes

GDS1077 Hematopoietic stem cells from
different recombinant inbred
strains

Y

GDS2767 Blood response to various bev-
erages: time course

GDS2011 Lupus-prone BWF1 males and
females: spleen (MG-U74A)

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2041 Type II activated macrophage Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS2651 Macrophage cell line response
to Chlamydia pneumoniae in-
fection

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS433 CD8+ effector and central mem-
ory T cells (MG-U74A)

Y/ inconcl.

GDS2767 Blood response to various bev-
erages: time course

GDS684 T regulatory and T effector cells
in prediabetic lesion

Y/ inconcl.

GDS2055 Skeletal muscle types (HG-
U133A)

GDS2001 Utrophin/dystrophin-
deficient double mutant
and dystrophin-deficient mdx
mutant skeletal muscles

Y
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C.1 Taking the infinite limit
Lemma C.1.1 For any real numbers ak(k ≥ 1), which are constants with respect to n and 1 < T < ∞,

lim
n→∞

(1 +
T

∑
k=1

ak
nk )

n = exp(a1) (C.1)

Proof The limit is in the indeterminate form 1∞, we apply a transformation and L’Hôpital’s rule:

lim
n→∞

(1 +
T

∑
k=1

ak
nk )

n = exp lim
n→∞

ln(1 + ∑T
k=1

ak
nk )

1/n
(transformation) (C.2)

= exp lim
n→∞

−∑T
k=1

kak
nk+1 /(1 + ∑T

k=1
ak
nk )

−1/n2 (L’Hôpital’s rule) (C.3)

= exp lim
n→∞

∑T
k=1

kak
nk−1

1 + ∑T
k=1

ak
nk

(C.4)

= exp(a1) (C.5)

Here we show that:

lim
K→∞

K!

∏2N−1
h=0 Kh!

K+

∏
k=1

Φz,k

B(mk +
α
K , N −mk + 1)

B( α
K , N + 1)

K

∏
k=1

1
Z′

B(
α

K
, N + 1) (C.6)

=
αK+

∏2N−1
h=1 Kh!

K+

∏
k=1

Φz,k

(N −mk)!(mk − 1)!
N!

exp
(
− αΨ) (C.7)

We consider each term separately.

K!

∏2N−1
h=0 Kh!

K+

∏
k=1

Φz,k

B(mk +
α
K , N −mk + 1)

B( α
K , N + 1)

(C.8)

=
K!

∏2N−1
h=0 Kh!

K+

∏
k=1

Φz,k

Γ( α
K + mk)Γ(N −mk + 1)

Γ( α
K )Γ(N + 1)

(C.9)

=
K!

∏2N−1
h=0 Kh!

K+

∏
k=1

Φz,k

(N −mk)!
α
K ∏mk−1

j=1 (j + α
K )

N!
(C.10)

=
αK+

∏2N−1
h=1 Kh!

K!
K0!KK+

K+

∏
k=1

Φz,k

(N −mk)! ∏mk−1
j=1 (j + α

K )

N!
(C.11)

By the same argument as shown in [15],

lim
K→∞

K!

∏2N−1
h=0 Kh!

K+

∏
k=1

Φz,k

B(mk +
α
K , N −mk + 1)

B( α
K , N + 1)

(C.12)

=
αK+

∏2N−1
h=1 Kh!

K+

∏
k=1

Φz,k

(N −mk)!(mk − 1)!
N!

(C.13)
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K

∏
k=1

Z′

B( α
K , N + 1)

=
K

∏
k=1

∑2N−1
h=0 ΦhB( α

K + mh, N −mh + 1)
B( α

K , N + 1)
(C.14)

=

(
2N−1

∑
h=0

Φh
Γ( α

K + mh)Γ(N −mh + 1)
Γ( α

K )Γ(N + 1)

)K

(C.15)

=

(
1 +

α

K

2N−1

∑
h=1

Φh
(N −mh)! ∏mh−1

j=1 (j + α
K )

N!

)K

(C.16)

=

(
1 +

α

K

2N−1

∑
h=1

Φh
(N −mh)!(mh − 1)!

N!
+ (

α

K
)2 · · ·+ . . .

)K

(C.17)

Using Lemma C.1.1, we get:

lim
K→∞

K

∏
k=1

Z′

B( α
K , N + 1)

= exp
(

α
2N−1

∑
h=1

Φh
(N −mh)!(mh − 1)!

N!

)
= exp

(
αΨ
)

(C.18)

Combining (C.13) and (C.18), we arrive at (C.7).

C.2 The generative process

In Section 5.2.2, we described the generative process using a culinarymetaphor. The customers select
dishes one after the other as follows. The first customer tries Poisson(αΨ1) dishes. The remaining
customers enter one after the others. Customer i selects dishes with a probability that partially
depends on the selection of the previous customers. For each dish, the probability that it would be
selected is specified by: ∑

h: hi=z<ik and h(i)=1
Φh/ ∑

h: hi=z<ik

Φh. He then samples a Poisson(αΨi) number

of new dishes. This process repeats until all customers have made their selections.

We show here that this process simplifies to the Indian Buffet Process when Φh = 1 for all h.

Theorem C.2.1 If Φh = 1 for all h,

Ψi =
1
i

(C.19)

Therefore, each customer selects Poisson( α
i ) new dishes as in the IBP.
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Proof

Ψi = ∑
h: hi=0 and h(i)=1

Φh (C.20)

= ∑
h: hi=0 and h(i)=1

(N −mh)!(mh − 1)!
N!

(C.21)

=
N−i

∑
t=0

(
N − i

t

)
(N − t− 1)!t!

N!
(C.22)

=
(i− 1)!(N − i)!

N!

N−i

∑
t=0

(
N − t− 1

i− 1

)
(C.23)

=
(i− 1)!(N − i)!

N!
N(N−1

i−1 )

i
(C.24)

=
1
i

(C.25)

Theorem C.2.2 If Φh = 1 for all h,

∑h: hi=z<ik and h(i)=1 Φh

∑h: hi=z<ik
Φh

=
mk
i

(C.26)

Therefore, each customer selects an old dish with probability mk
i as in the IBP.

Proof

∑
h: hi=z<ik ,h(i)=1

Φh = ∑
h: z<ik ,h(i)=1

(N −mh)!(mh − 1)!
N!

(C.27)

=
N−i

∑
t=0

(
N − i

t

)
(N − t−mk − 1)!(t + mk)!

N!
(C.28)

=
1

(mk + 1)( i
mk+1)

(C.29)

∑
h: hi=z<ik

Φh = ∑
h: z<ik

(N −mh)!(mh − 1)!
N!

(C.30)

=
N−i+1

∑
t=0

(
N − i + 1

t

)
(N − t−mk)!(t + mk − 1)!

N!
(C.31)

=
N−i+1

∑
t=0

(
N − i + 1

t

)
(N − t−mk)!(t + mk − 1)!

N!
(C.32)

=
1

mk(
i−1
mk

)
(C.33)

Together,

∑h: hi=z<ik ,h(i)=1 Φh

∑h: hi=z<ik
Φh

=
mk(

i−1
mk

)

(mk + 1)( i
mk+1)

(C.34)

=
mk
i

(C.35)
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Furthermore, an equivalence class [Z] can be represented by a frequency vector K = (K1, . . . , K2N−1).
We can define a distribution on K by assuming that each Kh is generated independently by a Poisson
distribution with parameters αΦh. The probability is given by:

P(K) =
2N−1

∏
h=1

(αΦh)
Kh

Kh!
exp(−αΦh) (C.36)

This could be easily seen to be the same as Equation (5.10).

C.3 GO results for clusters in Figure 5.5
Table C.1 show the GO enrichment results for cluster (b), (c) and (d) in Figure 5.5 by GOstat[145].
We only show terms with corrected P-value less than 0.01. Cluster (a), (e) and (f) have no significant
terms.

C.4 Comparison with GenMiR++, K-means, and IBP
Figure C.1 shows the network inferred by GenMiR++ with threshold of 0.9. We did not find any
significant enrichment with corrected P-value less than 0.01. We ran K-means on the same set of
mRNAs in Figure 5.5 using k = 6 as inferred by GroupMiR. We did not find any GO enrichment
indicating that only by integrating sets of miRNAs with the mRNAs for this data we can find
functional biological groupings.

We also tested with the original IBP (W = 0). Not surprisingly, the results for both the synthetic
and real data were weak (the IBP is of course not intended for our data since it cannot use the prior
interaction information). Specifically, for the synthetic data the average F1 when using a noise level
of 0.4 (a high but reasonable level) is 0.8418 for our method and only 0.5163 for the original IBP. For
the real data, the IBP failed to recover any significant groupings. Without the priors the ability to
identify significant interactions is greatly weakened.

C.5 Networks at 60% posterior probability.
We also report networks constructed with 60% posterior probability by GroupMiR in Figure C.2
and 0.6 threshold by GenMiR++ in Figure C.3.

Table C.2 show the GO enrichment results for two connected componentsin Figure C.3 by
GOstat[145]. We only show terms with corrected P-value less than 0.01.
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Term ID Description P value

GO:22402 cell cycle process 7.32E-05
GO:7049 cell cycle 1.77E-04
GO:22403 cell cycle phase 3.17E-04
GO:278 mitotic cell cycle 2.94E-03
GO:279 M phase 2.94E-03

5.5b

Term ID Description P value

GO:45859 regulation of protein kinase activity 8.83E-03
GO:51338 regulation of transferase activity 8.83E-03
GO:165 MAPKKK cascade 8.83E-03

5.5c

Term ID Description P value

GO:724 double-strand break repair via homologous recombination 3.29E-03
GO:725 recombinational repair 3.29E-03
GO:6281 DNA repair 3.29E-03
GO:6974 response to DNA damage stimulus 3.93E-03
GO:6310 DNA recombination 3.93E-03
GO:9314 response to radiation 3.93E-03
GO:9719 response to endogenous stimulus 3.93E-03
GO:51053 negative regulation of DNA metabolic process 3.93E-03
GO:8630 DNA damage response, signal transduction resulting in induction

of apoptosis
4.13E-03

GO:6302 double-strand break repair 4.78E-03
GO:51052 regulation of DNA metabolic process 4.78E-03
GO:10212 response to ionizing radiation 4.78E-03
GO:9411 response to UV 6.28E-03
GO:7568 aging 7.34E-03
GO:8629 induction of apoptosis by intracellular signals 7.87E-03
GO:6996 organelle organization 9.95E-03
GO:9628 response to abiotic stimulus 9.95E-03
GO:42770 DNA damage response, signal transduction 9.95E-03

5.5d

Table C.1: GO enrichment analysis of clusters in Figure 5.5.
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Figure C.2: Network inferred by GroupMiR with 60% posterior probability.
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Figure C.3: Network inferred by GenMiR++ with threshold of 0.6.
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C.5. Networks at 60% posterior probability.

Term ID Description P value

GO:0044421 extracellular region part 0.00541
GO:0005615 extracellular space 0.00541
GO:0005624 membrane fraction 0.00857
GO:0016798 hydrolase activity, acting on glycosyl bonds 0.00857
GO:0005529 sugar binding 0.00907

Component 1

Term ID Description P value

GO:0022402 cell cycle 3.79e-71
GO:0006259 DNA metabolic 3.25e-31
GO:0000279 cell cycle phase M 7.76e-29
GO:0000278 mitotic cell 4.86e-27
GO:0000087 M phase of mitotic cell 1.61e-26
GO:0005524 adenyl ribonucleotide binding 4.16e-12
GO:0051726 regulation of cell cycle 1.64e-10
GO:0044430 response to DNA damage 1.87e-08
GO:0032555 purine ribonucleotide 2.47e-08

Component 2

Table C.2: GO results for genes in Figure C.3.
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D.1 Solving the optimization problem (6.4)

As discussed in Section 6.2.6, we solve the optimization (6.4) by an iterative procedure. We show
here how to compute the gradients of the objective function, which are required for using minPQN.
We begin with the objective function:

F = − log p(Y|U, V, X, µ, Σ)−∑
i,j

log p(φij|U, V)− ∑
j 6=j′

log p(ωjj′ 6= 0|V) (D.1)

The first term can be expanded to :

log p(Y|U, V, X, µ, Σ)

=∑
j

logN (yj | µ− XT((1Φ),j ◦ (Uvj)
)
, Σ)

=−∑
j

∑
p

log(
√

2πσp)−
1
2

(
µ− XT((1Φ),j ◦ (Uvj)

)
− yj

)T
Σ−1

(
µ− XT((1Φ),j ◦ (Uvj)

)
− yj

)

(We abuse the notation in (µT − Y) a bit. When subtracting a matrix from a row vector, we need to
vertically replicate the row vector.)

=− N ∑
p

log(
√

2πσp)−
1
2

tr{(µT − Y)Σ−1(µT − Y)T}

+ tr{(µT − Y)Σ−1((VUT ◦ 1T
Φ)X

)T} − 1
2

tr{
(
(VUT ◦ 1T

Φ)X
)
Σ−1((VUT ◦ 1T

Φ)X
)T}

Define:

Φ∗ = Φ + (1− 1Φ)

Ω∗ = Ω + (1− 1Ω)

(basically replacing the zero entries with ones.)

We take the derivatives:
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Procedure ProjectOnSimplex(v, C)
output :arg min

w
‖w− v‖2 s.t. ∑i wi ≤ C, w ≥ 0

Procedure Project(U, V, C1, C2)
// Threshold
for i, k do

uikarrow0 if uik < ε ;
for j, k do

vjkarrow0 if vjk < ε ;
for k do

// Remove redundant entries in U
for i ∈ {i : uik > 0 and uikvT

,kŒi = 0} do
uikarrow0 ;

// Projection
u,karrow ProjectOnSimplex(u,k, C1);
v,karrow ProjectOnSimplex(v,k, C2);

Figure D.1: Projection procedure to solve the optimization problem (6.4).

∂F
∂U

= −
(
XΣ−1(µT − Y)T) ◦ 1ΦV + XΣ−1XT((UVT) ◦ 1Φ

)
◦ 1ΦV︸ ︷︷ ︸

from ∂ log p(Y|U,V,X,µ,Σ)

+ α(σΦ − 1Φ) ◦Φ∗V︸ ︷︷ ︸
from ∂ ∑i,j log p(1φij |U,V)

where
σΦ = σ

(
α Φ∗ ◦ (UVT)

)
∂F
∂V

= −
(
(µT − Y)Σ−1XT) ◦ 1T

ΦU +
((

(UVT) ◦ 1Φ

)TXΣ−1XT
)
◦ 1T

ΦU︸ ︷︷ ︸
from ∂ log p(Y|U,V,X,µ,Σ)

+ β(σΩ − 1Ω) ◦ΩV︸ ︷︷ ︸
from ∂ ∑i,j log p(1ωjj′

=1|V)

+ α(σΦ − 1Φ)T ◦Φ∗
TU︸ ︷︷ ︸

from ∂ ∑i,j log p(1φij |U,V)

where
σΩ = σ

(
β Ω∗ ◦ (VVT)

)
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D.2. Distribution of module sizes

D.2 Distribution of module sizes
Figure D.2 shows the size of modules identified by SNMNMF and PIMiM. Modules identified by
both methods have comparable size.
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Figure D.2: The histogram of the size of modules of SNMNMF and PIMiM.

D.3 Choosing the parameters K and α

We select the parameter K of PIMiM that yields the best F1 score as shown in Figure D.3. In addition,
we varied the values of α to examine the interplay effect of predictions of miRNA targets and protein
interaction data. The result is shown in Figure D.4.

D.4 Enrichment results of severalmodules fromTCGAdataset
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Figure D.3: Performance of PIMiM with different values of K.
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Figure D.4: We varied the value of α and tested the different metrics. On one hand, low
values and high values lead to smaller F1 score. On the other hand, small values lead to
more coherent gene modules, which explains the better expression correlation.
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D.4. Enrichment results of several modules from TCGA dataset

ID Name Adj.P-value

GO:0033276 transcription factor TFTC complex <0.001
GO:0070461 SAGA-type complex <0.001
GO:0000123 histone acetyltransferase complex <0.001
GO:0005669 transcription factor TFIID complex <0.001
GO:0005667 transcription factor complex <0.001
GO:0044428 nuclear part <0.001
GO:0016578 histone deubiquitination <0.001
GO:0006352 transcription initiation, DNA-dependent <0.001
GO:0019219 regulation of nucleobase, nucleoside, nu-

cleotide and nucleic acid metabolic pro-
cess

<0.001

GO:0051171 regulation of nitrogen compound
metabolic process

<0.001

GO

Gene Set Name Description P value

MIPS TFTC COMPLEX TFTC complex (TATA-binding protein-
free TAF-II-containing complex)

0E0

MIPS GCN5 TRRAP HISTONE
ACETYLTRANSFERASE COM-
PLEX

GCN5-TRRAP histone acetyltransferase
complex

0E0

KEGGBASALTRANSCRIPTION
FACTORS

Basal transcription factors 5.55E-16

MIPS TFIID BETA COMPLEX TFIID-beta complex 1.86E-13
MIPS TFIID BETA COMPLEX 1 TFIID-beta complex 1.86E-13
MIPS STAGA COMPLEX STAGA complex (SPT3-TAF9-GCN5

acetyltransferase complex)
3.02E-13

MIPS DA COMPLEX DA complex 7.05E-13
MIPS PCAF COMPLEX PCAF complex 7.85E-11
MIPS TFIID COMPLEX TFIID complex 1.85E-10
MIPS TFIID COMPLEX B CELL
SPECIFIC

TFIID complex, B-cell specific 1.85E-10

MSigDB

Table D.1: Enrichment analysis of the set of genes in Module 11.
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ID Name Adj. P-value

GO:0010941 regulation of cell death <0.001
GO:0010942 positive regulation of cell death <0.001
GO:0035631 CD40 receptor complex <0.001
GO:0042981 regulation of apoptosis <0.001
GO:0043065 positive regulation of apoptosis <0.001
GO:0043067 regulation of programmed cell death <0.001
GO:0043068 positive regulation of programmed cell

death
<0.001

GO:0008624 induction of apoptosis by extracellular sig-
nals

0.004

GO:0009898 internal side of plasma membrane 0.005
GO:0006917 induction of apoptosis 0.015
GO:0012502 induction of programmed cell death 0.015
GO:0048522 positive regulation of cellular process 0.015
GO:0048518 positive regulation of biological process 0.031
GO:0004842 ubiquitin-protein ligase activity 0.032
GO:0019787 small conjugating protein ligase activity 0.041
GO:0051090 regulation of sequence-specific DNAbind-

ing transcription factor activity
0.047

GO:0051092 positive regulation of NF-kappaB tran-
scription factor activity

0.047

GO:0035304 regulation of protein dephosphorylation 0.05

GO

Gene Set Name Description P value

KEGG SMALL CELL LUNG
CANCER

Small cell lung cancer 1.62E-9

BIOCARTA TALL1 PATHWAY TACI and BCMA stimulation of B cell im-
mune responses

1.02E-7

BIOCARTA TNFR2 PATHWAY TNFR2 Signaling Pathway 1.82E-7
PID CD40 PATHWAY CD40/CD40L signaling 9.97E-7
SIG CD40 PATHWAYMAP Genes related to CD40 signaling 1.33E-6
KEGG PATHWAYS IN CANCER Pathways in cancer 1.48E-6
PID TNF PATHWAY TNF receptor signaling pathway 3.35E-6
PID CERAMIDE PATHWAY Ceramide signaling pathway 3.81E-6
LAU APOPTOSIS CDKN2A UP Genes up-regulated by UV-irradiation in

cervical cancer cells after knockdown of
CDKN2A

5.77E-6

REACTOME CELL DEATH SIG-
NALLING VIA NRAGE NRIF
AND NADE

Genes involved in Cell death signalling
via NRAGE, NRIF and NADE

7.51E-6

MSigDB

Table D.2: Enrichment analysis of the set of genes in Module 23.

144



D.4. Enrichment results of several modules from TCGA dataset

ID Name Adj.P-value

GO:0071930 negative regulation of transcription in-
volved in G1/S phase of mitotic cell cycle

0.005

GO:0035189 Rb-E2F complex 0.008
GO:0000122 negative regulation of transcription from

RNA polymerase II promoter
0.01

GO:0005634 nucleus 0.032
GO:0003700 sequence-specific DNA binding transcrip-

tion factor activity
0.033

GO:0001071 nucleic acid binding transcription factor
activity

0.033

GO:0003677 DNA binding 0.038
GO:0019219 regulation of nucleobase, nucleoside, nu-

cleotide and nucleic acid metabolic pro-
cess

0.045

GO

Gene Set Name Description P value

PID HES HEYPATHWAY Notch-mediated HES/HEY network 1.1E-8
MARKS ACETYLATED NONHI-
STONE PROTEINS

Non-histone proteins that are acetylated 6.14E-8

PARK TRETINOIN RESPONSE
AND RARA PLZF FUSION

Genes up-regulated by tretinoin (all-trans
retinoic acid, ATRA) in U937 cells (acute
promyelocytic leukemia, APL) made re-
sistant to the drug by expression of the
PLZF-RARA fusion

2.08E-7

PARK TRETINOIN RESPONSE
AND PML RARA FUSION

Genes up-regulated by tretinoin (all-trans
retinoic acid, ATRA) in U937 cells (acute
promyelocytic leukemia, APL)made sensi-
tive to the drug by expression of the PML-
RARA fusion

5.46E-7

MAGRANGEAS MULTIPLE
MYELOMA IGLL VS IGLK UP

Up-regulated genes discriminating mul-
tiple myeloma samples by the ype of im-
munoglobulin light chain they produce:
Ig lambda (IGLL) vs Ig kappa (IGLK)

1.54E-6

TONKS TARGETS OF RUNX1
RUNX1T1 FUSION HSC DN

Genes down-regulated in normal
hematopoietic progenitors by RUNX1-
RUNX1T1 fusion.

2.67E-6

PID RB 1PATHWAY Regulation of retinoblastoma protein 5.81E-6
RAMJAUN APOPTOSIS BY
TGFB1 VIA MAPK1 DN

Apoptotic genes dependent on MAPK1
and down-regulated in AML12 cells (hep-
atocytes) after stimulation with TGFB1

8.09E-6

QI PLASMACYTOMA UP Up-regulated genes that best disciminate
plasmablastic plasmacytoma from plas-
macytic plasmacytoma tumors

9.69E-6

PID CMYB PATHWAY C-MYB transcription factor network 1.26E-5

MSigDB

Table D.3: Enrichment analysis of the set of genes in Module 48.
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