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Abstract

This thesis is centered around the problem of attribute learning � using the

joint e�ort of humans and machines to describe objects, e.g., determining that a

piece of music is �soothing,� that the bird in an image �has a red beak�, or that

Ernest Hemingway is an �Nobel Prize winning author.� In this thesis, we present

new methods for solving the attribute-learning problem using the joint e�ort of the

crowd and machines via human computation games.

When creating a human computation system, typically two design objectives

need to be simultaneously satis�ed. The �rst objective is human-centric � the task

prescribed by the system must be intuitive, appealing and easy to accomplish for

human workers. The second objective is task-centric � the system must actually

perform the task at hand. These two goals are often at odds with each other,

especially in the casual game setting. This thesis shows that human computation

games can accomplish both the human-centric and task-centric objectives, if we

�rst design for humans, then devise machine learning algorithms to work around

the limitations of human workers and complement their abilities in order to jointly

accomplish the task of learning attributes. We demonstrate the e�ectiveness of our

approach in three concrete problem settings: music tagging, bird image classi�cation

and noun phrase categorization.

Contributions of this thesis include a framework for attribute learning, two new

game mechanisms, experiments showing the e�ectiveness of the hybrid human and

machine computation approach for learning attributes in vocabulary-rich settings

and under the constraints of knowledge limitations, as well as deployed games

played by tens of thousands of people, generating large datasets for machine learning.

Thesis Committee:

Luis von Ahn (CMU) � co-chair

Tom Mitchell (CMU) � co-chair

Jaime Carbonell (CMU)

Eric Horvitz (Microsoft Research)

Rob Miller (MIT)
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Machine Learning
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Chapter 1

Introduction

1.1 Motivation

How do we recognize the objects that we see? What mood does a piece of music

evoke? While the question of exactly how humans perceive is an important scienti�c

one, our ability to build machines that can mimic human perception, i.e., identify

objects and classify music, etc., can help address one of the most pressing tech-

nological problems today�the need to organize the billions of multimedia objects

(images, music and videos) on the Web so that users can �nd the needles in the

haystack with little e�ort.

Unfortunately, perception is a di�cult problem for machines; and training ma-

chine learning algorithms to perceive like humans necessitates a huge amount of

labeled data, which is typically costly and time consuming to collect. To address

this challenge, human computation systems � systems that elicit the help of human

workers to perform computation � were introduced. The ESP Game, for example,

is a human computation system that maps images to tags, by engaging humans to

play a game in which they are rewarded each time they agree on a description for

an image. It was shown that these so-called Games with a Purpose are a reliable

way to quickly collect millions of accurate descriptors for images, music, and videos,

which can then used to index objects on the Web and facilitate search.

This thesis is centered around the problem of attribute learning � using the joint

e�ort of human game players and machine learning algorithms to describe objects,

e.g., to determine that a piece of music is �soothing�, that the bird in an image

�has a red beak�, or that Ernest Hemingway is an �Nobel Prize winning author�.

Attributes are compoundable, making them extremely useful for information

retrieval (e.g., complex queries such as �asian women with short hair, big eyes and

high cheekbones�) and identi�cation (e.g., �nd an actor whose name you forgot,

or an image that you have misplaced in a large collection). In recommendation

systems, indexing objects by attributes make it possible to explain the reason why a

particular item is chosen for the user (e.g., this song is recommended to you because

it is �calm� and �sentimental� just like the other ones that you like). Consider the

following concrete applications where attribute learning would be useful:

Scenario 1: Naming Plants

Alice saw a beautiful tree in the Redwood National Park. Being a novice botanist,

she was really interested in knowing the identity of the species. Luckily, there is

a tool that allows Alice to enter attributes such as �the tree is found on the West
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Coast,� �the leaves have saw-like edges, and are long and narrow,� and retrieve a set

of candidate species names (along with some representative images for each species).

Scenario 2: Identifying People

Bob is having a conversation with someone, debating who is going to win best

supporting actress award in the upcoming Oscars ceremony. Bob remembers really

enjoying the performance of this particular actor in a movie he saw, but could

not quite remember her name. By answering a set of questions presented by the

computer (e.g., �what movie did she star in?�, �does she have brown hair?�, �does

she have thick eyebrows?�, etc.), Bob is able to retrieve a set of candidate actresses

along their headshots, and �nd the name of the actress he is looking for.

Scenario 3: Discovering Birds

Eve is doing a school projects about birds. She wants to �nd a set of birds that live

in the tropics, that are �small�, and have �brilliant colors�. Eve is able to issue a

complex search query and �nd a set of birds that �t those descriptions.

Scenario 4: Locating Objects

Co-bot is a robot that helps people, e.g., fetching objects that a person has misplaced.

Imagine the following interaction: Tom is looking for his cup and asks Co-bot for

help. Co-bot asks Tom a series of questions, e.g., �is a co�ee mug?�, �is it dark

in color�, �does it have writings on it?�, etc. Equipped with the answers to these

questions, Co-bot goes around the room and attempts to classify each object by those

attributes, in order to locate Tom's cup.

1.2 Thesis Overview

This dissertation is centered around the problem of attribute learning � using the

joint e�ort of human game players and machine learning algorithms to describe

objects, e.g., to determine that a piece of music is �soothing,� that the bird in

an image �has a red beak,� or that Ernest Hemingway is an �Nobel Prize winning

author.� In this thesis, we present new methods for solving the attribute learning

problem via human computation games using the joint e�ort of the crowd and

machines.

When creating a human computation system, there are typically two design ob-

jectives that need to be satis�ed simultaneously. The �rst objective is human-centric

� the task prescribed by the system must be intuitive, appealing and easy to ac-

complish. The second objective is task-centric � the system must accomplish the

task at hand. These two goals are often at odds with each other, especially in the

casual game setting; in designing a system that is human-friendly, the system often

ends up falling short of accomplishing its tasks. This thesis shows that it is possible

to design human computation games that accomplish both the human-centric and
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task-centric objectives, by �rst designing for humans, then devising machine learn-

ing algorithms to work around the limitations of human workers and complement

their abilities in order to jointly accomplish the task of learning attributes. We

demonstrate the e�ectiveness of our approach in two concrete problem settings.

In the �rst problem setting (chapter 3), we focus on the problem of learning at-

tributes in a vocabulary-rich setting, where the input object (e.g., music) can be de-

scribed using a vast and diverse set of attributes that may be synonymous or impre-

cise. We introduce a new game mechanism (and a deployed game called TagATune)

that is capable of extracting music attributes. While TagATune is designed to be hu-

man friendly, the collected attributes are noisy, making them unamenable as training

data for machine learning algorithms. We devise a new algorithm that is capable of

leveraging the open vocabulary labels collected by TagATune to train music tagging

algorithm, and evaluate its performance both in terms of data and time e�ciency.

In the second problem setting (chapter 4), we address the problem of learn-

ing attributes under knowledge limitations, where either the attributes or entities

are unfamiliar to the average worker. We present a new game mechanism called

complementary-agreement (and an implemented game called The Perfect Split) for

extracting attributes and attribute values, and evaluate its e�ectiveness in two con-

trasting case studies, namely bird image classi�cation and noun phrase categoriza-

tion. In the case of bird image classi�cation, we show that instead of asking people to

directly categorize bird images, a better approach is to collect perceptual attributes

from humans, then use these human-generated attributes as features for training

a classi�er to predict the actual categories. In the case of noun phrase categoriza-

tion, we show that transforming the representation of the entities (i.e., turning noun

phrases into images) enables the crowd to verify categorical facts, despite the fact

that most of noun phrases are obscure and unknown. Furthermore, we show that

the complementary-agreement mechanism can be used to categorize noun phrases

by images, showing that a game-based approach is feasible for engaging the crowd to

supervise a continuous, never-ending web mining system like NELL (Never-Ending

Language Learner).

1.2.1 Framework

In order to provide a unifying language for describing the attribute learning problem,

games with a purpose and joint human and machine computation, we introduce

here a framework for attribute learning, which we will refer to throughout this

dissertation while addressing speci�c challenges.

Formally, the attribute learning problem can be described as the task of �lling in

a N ×M matrix V, where the rows are a set of entities ei, i = 1 . . . N , the columns

are a set of attribute aj , j = 1 . . .M , and each cell of the matrix vij = fj(ei) is

the true value of the attribute aj for entity ei. For simplicity, we assume that

vij = [0, 1], representing the probability that the attribute describes an entity.
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Here are a few examples of the (ei, aj , vi,j) tuples in di�erent domains:

� ei = national_anthem.mp3, aj = patriotic, vij = 0.98

� ei = specimen.jpg, aj = horns_is_long, vij = 0.7

� ei = �Barack Obama�, aj = is_a_democrat, vij = 1

� ei = parade.mov, aj = people_dancing, vij = 0

One can see the matrix V as a huge matrix, which has a pre-de�ned set of entities

and all the possible attributes in the world. The problem of attribute learning

involves two subtasks � (i) discovery: determining which attributes (or columns

of the matrix) are relevant to the entities and the task at hand, and (ii) scoring:

extracting the true values of the attributes for each entity (i.e., �ll in the cells of the

selected columns of the matrix). In general, the relevant attributes are the ones that

discriminate between di�erent entities or di�erent sets of entities. For example, if our

objective is to categorize the bird images, then the relevant attributes (or columns of

the matrix) are the properties of the birds (e.g., color and shape of particular body

parts) that can be used to discriminate between di�erent species. If our objective

is to annotate music, then the relevant attributes are the ones that help to identify

di�erent pieces of music, allowing users to retrieve them with ease. In both cases,

attributes that have values that are the same for all entities are not relevant or

useful; for example, the attribute �has a head� will have the value 1 for every bird

image, and the attribute �music� will have the value 1 for every piece of music.

The task of discovery and scoring can be accomplished by both machines and

humans. There exist now web mining systems that can crawl the Web and collect

attributes associated with a wide variety of entities. Alternatively, there are also

human computation systems that collect attributes from paid crowdworkers and

unpaid volunteers (e.g., gamers) about images, music, videos and named entities.

Once the relevant attributes are collected, both machines and humans can infer

the attribute values of an entity. A machine learner can, for each attribute aj and

entity ei, learn a function f̂mj (rm(ei)) that predicts the value of the attribute of

the entity, where rm(ei) is some machine-interpretable features that are typically

extracted automatically (e.g, color histogram for images, spectrogram features of

music). Humans can perform the same task f̂hj (rh(ei)), where f̂
h
j is a human function
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that outputs the value of the attribute aj given a human interpretable representation

rh(ei) of the entity.

In this thesis, we address two particular challenges that arise within this frame-

work, speci�cally learning attributes when the entities can be described by a huge

number of synonymous attributes, or when attribute values are di�cult for humans

to determine because of knowledge limitations. There are wide variety of attribute

learning problems in this framework that are beyond the scope of this thesis, but the

framework and the �ndings presented here should o�er solid grounding for future

work.

1.3 Summary of Contribution

At a high level, this thesis contributes new techniques for achieving the human-

centric objective in human computation games, and demonstrates the learning chal-

lenges and opportunities these a�ord for the task-centric objectives, i.e.,

� new, generalizable game mechanisms for learning attributes for a variety of

entity types, including music, images and text.

� new methods for combining humans and machines in a human computation

system, in order to simultaneously achieve both the human-centric and task-

centric objectives.

� a general framework and language for describing speci�c challenges associated

with the attribute learning problem.

More concretely, this thesis addresses two types of challenges in Attribute Learn-

ing. First, using music tagging as a case study, we study the challenge of learning

attributes for vocabulary-rich input data. Speci�cally, we introduce

� a new game mechanism called input-agreement that (i) poses an easier task for

game players, and (ii) extracts more informative attributes than the widely

adopted output-agreement mechanism.

� a deployed game called TagATune, which has interacted with tens of thou-

sands of game players and collected over a million music tags, which in turn,

became one of the largest content-based music tag dataset distributed to the

music information retrieval research community. The TagATune game, as our

experiments show, is useful not only for collecting music attributes, but also

human evaluations of automated music tagging algorithms.

� a new machine learning algorithm that can be trained e�ciently using crowd-

generated, open vocabulary data collected by TagATune. This algorithm is (i)

both data-e�cient (i.e., can utilize an arbitrary open vocabulary of tags) and

time-e�cient (i.e., reduces training time by 94% compared to learning from

tag labels directly), and (ii) achieves similar performance for annotation and
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superior performance for retrieval when compared to the traditional approach

of performing multiple binary classi�cations.

Second, using two case studies � bird image classi�cation and noun phrase cate-

gorization � we investigate the challenge of knowledge limitations in attribute learn-

ing, where crowdworkers are asked to determine the attribute values when either

the attributes or entities are unfamiliar to them. Speci�cally, we introduce

� a new game mechanism called complementary-agreement that can (i) extract

attributes and attribute value explicitly, (ii) generate informative attributes

that distinguish among sets of objects, and (iii) incentivize players to answer

multiple-entities, binary choice questions truthfully.

� an implemented game called The Perfect Split (based on the complementary-

agreement mechanism) and a user study evaluating the e�ectiveness of several

modes of the game at collecting attributes and attribute values.

� experiments showing that a human computation system can achieve both the

human-centric and task-centric objectives, by using machines to complement

the abilities of crowd workers and to overcome their limitations. Speci�cally,

for bird image classi�cation, instead of asking crowd workers to directly cate-

gorize bird images, the system allows them to provide attributes of their own

choosing, then trains a machine learning algorithms using this crowd-generated

data to infer actual categories. In the case of noun phrase categorization, we

showed that by transforming the representation of the entity (i.e., from noun

phrases into images), we can overcome the knowledge limitations of crowd

workers, enabling them to perform a task previously deemed impossible.



Chapter 2

Techniques for Attribute

Learning: An Overview

There has been substantial research on attribute learning. In this section, we will

review some of the related work that are most relevant to the challenges addressed

by this thesis.

2.1 Human Computation

2.1.1 What is Human Computation?

Since 2005, the phrase �human computation�1 [von Ahn 2008a] has become syn-

onymous with many other equally loosely de�ned research areas, such as �crowd-

sourcing,� �social computing,� �socio-computational systems,� and �collective intel-

ligence.� In clearly de�ning what we mean by �human computation,� we can outline

the scope of this research area, pinpoint the fundamental research questions, identify

end goals and focus our e�orts in reaching them.

To understand what we mean by �human computation,� we must �rst de�ne the

word �computation.� In our formulation, computation is the process of mapping

of some input representation to some output representation using an explicit, �nite

set of instructions (i.e., an algorithm). In the classic work by Alan Turing, compu-

tation is similarly de�ned, where the input and output representations are symbols,

the process is the writing of symbols in each cell of an unlimited tape, and the set

of instructions or algorithm is a state transition table that determines what symbol

should be written for the current cell. Similarly, a human computer who is given two

quantities (input representation) and asked to multiply them together (explicit in-

struction) to generate a product (output representation) is performing computation.

In fact, the Turing Machine was meant to mimic the capability of human computers

in carrying out mathematical calculations. In Turing's own words, �the idea behind

digital computers may be explained by saying that these machines are intended to

carry out any operations which could be done by a human computer� [Turing 1950].

Following this de�nition, human computation is simply computation that is

carried out by humans. Likewise, human computation systems can be de�ned as

intelligent systems that organize humans to carry out the process of computation�

whether it be performing the basic operations (or units of computation), taking

1Some of the materials in this section come from our previously published book on Human

Computation [Law 2011a]
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charge of the control process itself (e.g., decide what operations to execute next

or when to halt the program), or even synthesizing the program itself (e.g., by

creating new operations and specifying how they are ordered). The meaning of

�basic� varies, depending on the particular context and application. For example,

the basic unit of computation in the calculation of a mathematical expression can

be simple operations (such as additions, subtractions, multiplications and divisions)

or composite operations that consist of several simple operations. On the other

hand, for a crowd-driven image labeling system, a user who generated a tag that

describes the given image can also be considered to have performed a �basic� unit

of computation. In an experiment for solving the graph coloring problem using

distributed human computation [Kearn 2006], the basic unit of computation each

human solver performed was to �change the color of his or her node, given the

current colors of the neighboring nodes.� The system's job was to simply take the

output from each human solver and update the state (i.e., color of each node) of the

network.

By our de�nitions, human computation systems must involve humans playing a

conscious role in determining the outcome of the computation. Therefore, volunteer

computer projects (where people donate their idle CPU power to help solve large

computational problems) or participatory sensing project (where participants are

merely sensor carriers) are not considered human computation systems.

2.1.1.1 Explicit Control

How does the concept of human computation di�er from other concepts, such as

crowdsourcing, collective intelligence and social computing? In the spirit of crowd

wisdom, let's �rst examine these concepts as they are de�ned in Wikipedia (Figure

2.1).

Table 2.1: Related Concepts [Wikipedia 2012]

Crowdsourcing The act of outsourcing tasks, traditionally performed by an

employee or contractor, to an unde�ned, large group of peo-

ple or community (a crowd) through an open call.

Collective Intelligence A shared or group intelligence that emerges from the collab-

oration and competition of many individuals and appears in

consensus decision making in bacteria, animals, humans and

computer networks.

Social Computing Technology for supporting any sort of social behavior in or

through computational systems, e.g., blogs, email, instant

messaging, social network services, wikis and social book-

marking.

Technology for supporting computations that are carried

out by groups of people, e.g., collaborative �ltering, online

auctions, prediction markets, reputation systems, computa-

tional social choice, tagging and veri�cation games.
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Based on these de�nitions, �crowdsourcing� can be considered a method or a

tool that human computation systems can use to distribute tasks through an open

call. However, a human computation system does not need to use crowdsourcing;

a system that assigns tasks to a closed set of workers hired through the traditional

recruitment process (e.g., resumes, in-person interviews) can still be considered a

human computation system.

The term �social computing� is a broad concept that covers everything to do

with social behavior and computing. Human computation intersects social comput-

ing in that some, but not all, human computation systems require social behavior

and interaction amongst a group of people. That is, human computation does not

necessarily involve large crowds, and workers are not always required to interact

with one another, either directly or indirectly (e.g., through a market mechanism).

Finally, �collective intelligence� refers to the emergent intelligent behavior of a

group of individuals, which includes non-humans and non-living things. Collective

intelligence, therefore, is an even broader concept that subsumes crowdsourcing, so-

cial computing and human computation. Consult [Doan 2011] for a detailed survey

and alternative perspectives on Web-based mass collaboration systems.

Most importantly, none of the related concepts emphasize the idea of ex-

plicit control. In fact, they assume that a large part of the computational out-

come is determined by the natural dynamics (e.g., coordination and competition)

[Kittur 2008, Kittur 2007] between the individuals of a group, which the system

cannot or does not deliberately control. There is no explicit decomposition or as-

signment of task, nor are there any explicitly designed mechanisms for ensuring

that the human computers tell the truth. In reality, the amount of explicit control

in crowd-driven systems is a continuum. For example, many crowd-driven systems

(e.g., Wikipedia) do enforce rules, protocols and standards (such as �technical spec-

i�cations� or �routinized processes� [Malone 1998]) by which individuals need to

abide. What is di�erent about human computation systems is the level of explicit

control, which is on the greater end of the spectrum. In other words, instead of

focusing on studying human behavior, the focus of human computation research is

on algorithms, which either specify exactly what gets processed, by whom and how,

or explicitly organize human e�orts to solve the problem in a well-de�ned manner.

Conceptually, there are three aspects ��what,� �who� and �how� � of any human

computation systems (depicted in Figure 2.1) where explicit control can be applied.

The �What� Aspect

In order to generate a solution to a computational problem, we must have an

algorithm that outlines exactly how to solve the problem. An algorithm consists of a

set of operations and a combination of control structures that specify how the opera-

tions are to be arranged and executed. Similar to algorithms in the traditional sense,

some human computation algorithms are more e�cient than others. For example, if

our computational problem is to map a set of images to tags, an e�cient algorithm

would make use of machine intelligence (e.g., active learning [Settles 2012]) to se-
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WHAT

HOW WHO

decide what operations need to be 
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Figure 2.1: Three central aspects of human computation systems.

lect only images that the computer vision algorithm does not already know how to

classify. Such an algorithm can greatly reduce the costs of the computation, both in

terms of time and monetary payment to human workers. Some research questions

relevant to the �what� aspect of human computation include the following.

� What tasks can be performed adequately by machines, therefore eliminating

the need for human involvement? Can we leverage the complementary abilities

of both humans and machines [Horvitz 2007b] to make computation more

accurate and e�cient?

� How do we decompose complex tasks into manageable units of computation

and order them in such a way to handle the idiosyncrasy of human workers?

� How do we aggregate noisy and complex outputs from multiple human com-

puters in the absence of ground truth?

The �Who� Aspect

Knowing what operations need to be performed, the next question is to whom

each operation should be assigned. While for some tasks, aggregating the work of

non-experts su�ces, other tasks are knowledge intensive and require special exper-

tise. For example, a doctor who is asked to verify that the fact �Obacillus Bordetella

Pertussis is a bacterium� is likely a better (and faster) judge than someone with-

out any medical training. Some research questions relevant to the �who� aspect of

human computation include:

� What are some e�ective algorithms and interfaces (e.g., search or visualization)

for routing tasks?
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� How do we model the expertise of workers, which may be changing over time?

� What are some optimal strategies for allocating tasks to workers, if their

availability, expertise, interests, competence and intents are known versus un-

known?

The �How� Aspect

Finally, the �how� aspect pertains to the question of design�how can the system

motivate workers to participate and to carry out the computational tasks to their

best abilities (i.e., truthfully, accurately and e�ciently). Much of the work contained

in this thesis addresses questions about this aspect of human computation. Some

research questions relevant to the �how� aspect of human computation include:

� How do we motivate people to have a long-term interaction with the system,

by creating an environment that meets their particular needs (e.g., to be en-

tertained, to have a sense of accomplishment or to belong to a community)?

� How do we design game mechanisms [von Ahn 2008b] that incentivize workers

to tell the truth, i.e., generate accurate outputs?

� What are some new markets, organizational structures or interaction models

for de�ning how workers relate to each other (as opposed to working completely

independently)?

2.1.1.2 De�nition and Fundamental Questions

we adopt with the following condensed de�nition of human computation:

�Given a computational problem from a requester, design a solu-

tion using both automated computers and human computers.�

Following this de�nition, the �ve most fundamental questions in human computation

are the following:

1. What computational problems can or should be solved using human comput-

ers?

2. What are di�erent types of solutions to a computational problem? For more

explicit solutions, what are some programming paradigms for designing algo-

rithms with humans in the loop?

3. For a requester, how do we guarantee that the solution is accurate, e�cient

and economical?

4. For a worker, how do we design an environment that motivates their partici-

pation and leverage their unique expertise and interests?
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5. How do we leverage the joint e�orts of both automated and human comput-

ers as workers, trading o� each of their particular strengths and weaknesses?

What other roles does machine intelligence play in human computation?

2.1.1.3 Markets

In human computation systems, a market refers to a pool of individuals who are

available to work on the computation tasks at hand. The possible motivations for

human computers to want to participate are varied, but there is one thing in com-

mon: the particular computational problem that workers decide to devote time and

e�ort to help solve has signi�cant value to them. This value is often more than just

monetary. Workers might be seeking access to valuable resources, entertainment,

the opportunity to contribute to the common good or learn something new; in re-

turn, they are willing to perform small units of computation. On the other hand,

requesters are also the stakeholders of any human computation systems, whose goal

is to solve the computational problem of interests in the most accurate, e�cient and

economical way possible. A human computation system is not sustainable without

satisfying the needs and wants of both workers and requesters.

Usability is a concern in the design of any software systems; for human

computation systems, it is no exception. First, a design that is easy to learn implies

a low barrier of entry for new users and encourages them to revisit the system.

This is especially important for human computation systems, such as games, where

workers are volunteering their time and e�ort. If they do not �nd the task worth

their while, it is not likely that they will continue to participate. In this section, we

will focus on the two human computation markets � Mechanical Turk and Gamers

� that are most relevant to this thesis. We will describe the characteristics of the

workers in these two markets � who they are and what motivates their participation.

Mechanical Turk and Paid Crowdsourcing

There exist many di�erent crowdsourcing platforms. The most well known is

Amazon Mechanical Turk (AMT), released in late 2005 [MTurk 2012]. The name

Mechanical Turk is borrowed from a 18th century machine called �The Turk,� a

seemingly automatic chess-playing machine that is actually operated by a human

in the background. Amazon Mechanical Turk provides a platform for requesters to

post tasks to workers to perform in return for monetary payment. These tasks are

called HITS, which stands for �Human Intelligence Tasks.� This service quickly grew

in popularity. By 2010, there has been an estimated 400,000 workers on Mechanical

Turk [Ross 2010].

Tasks distributed through Mechanical Turk are typically small (i.e., quick to

complete), as are the monetary reward for each task�90% of the HITs have a re-

ward of less than 10 cents [Ipeirotis 2010a]. Typical tasks include classi�cation

(e.g., images, music, documents), transcription, as well as the creation of orig-

inal content (reviews, stories, blog posts) [Ipeirotis 2010a]. Psychologists, soci-
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Figure 2.2: Requester interface.

ologists and economics are beginning to distribute their experiments, previously

done in a laboratory, as tasks on Mechanical Turk [Mason 2010, Horton 2010,

Paolacci 2010], because of the lower cost and comparable results [Paolacci 2010]

as well as the access to a larger, more global and heterogeneous pool of sub-

jects [Mason 2010]. Tasks can be created programmatically through an API, or

manually based on a set of templates provided by the Mechanical Turk Requester

Interface [MTurkRequestorInterface 2012], as shown in Figure 2.2.

Anyone can sign up to become a worker on Mechanical Turk. For workers,

Mechanical Turk provides functionalities (see Figure 2.3) for searching for tasks by

keywords and minimum payment, and allows workers to order results by the recency,

number of assignments, reward amount, expiration date, title and duration of the

HITs. Upon the completion of a task and the approval of the requester, workers

earn the prede�ned reward amount, sometimes supplemented with a bonus.

There has been research documenting the demographics of workers on Mechan-

ical Turk using surveys [Ross 2010, Ipeirotis 2010b, Mason 2010]. In a survey con-

ducted in 2010 of 1,000 Mechanical Turk workers [Ipeirotis 2010b], workers are found

to represent 66 countries, with the majority (∼ 80%) from the United States and

India. The survey asked workers questions about their age, income and education

level, marital status, household size, and their experiences on Mechanical Turk such

as time spent per week, number of HITs completed, amount of money earned, and

their primary motivation for working as Turkers.

One interesting conclusion from the survey [Ipeirotis 2010b] is that the charac-

teristics of the workers and their motivation depend heavily on workers' cultural

background. It was found that there are signi�cantly more (> 2:1 ratio) female than
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Figure 2.3: Worker interface.

male workers in the United States, while the reverse is true in India. Turkers are

on average younger and have lower income than the general population. However,

a much higher skew is observed amongst workers in India than the United States.

Likewise, the motivations for doing tasks on Mechanical Turk are di�erent for

American and Indian workers. Workers from the United States reported their

work on Mechanical Turk as a secondary source of income and as a source of

entertainment; while workers from India see work on Mechanical Turk as a primary

source of income. Similar �ndings were reported in [Ross 2010] which, additionally,

analyzes the shifts in the demographics of Turkers, using six surveys conducted at

semi-regular intervals within a 20 month period. They reported that Turkers seem

to be getting younger, have lower income but higher education. Turkers report to

earn, on average, only approximately $2.00 per hour, and some work for as many

as 15 hours a week, making the work on Mechanical Turk a part-time job for some.

Gamers

It is estimated that over 200 million users, i.e., over 25% of all Internet users, play

online games every week [IGDAWhitePaper 2009]. Many of the online gamers play

a genre of games called casual games. Causal games, which have been coined �video

games for the mass consumers,� have several properties [IGDAWhitePaper 2009]

that make them appealing to even those who do not normally consider themselves

as gamers. First, casual games have low barrier to entry, e.g., they can be easily

accessed online with minimum to no setup. Second, They typically have only a

few simple controls, and therefore extremely easy to learn. Third, they are non-

punishing, e.g., allowing players ample of opportunities to score. Fourth, they can

be consumed within short periods of time, e.g., 5�20 minutes during work breaks.

Finally, casual games are typically inclusive, gender-neutral, and contain little vi-

olent content. This makes causal games suitable for players of di�erent ages and

from all walks of life.

The idea of using causal games as a medium for computation was intro-
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duced by von Ahn and Dabbish in 2002, with the introduction of the ESP

Game [von Ahn 2004]. The idea is to engage pairs of players in a simple game,

where they tag images independently and are rewarded when their tags agree. De-

spite its simplicity, the ESP game was played by hundreds of thousands of people,

rapidly generating keywords that can be used to index images to power Web image

search. The ESP Game was licensed by Google in 2006, who made its own version

called the Google Image Labeler [GoogleImageLabeler 2012]. Since then, there have

been many human computation games developed to tackle a variety of AI prob-

lems. For example, GWAP.com (see Figure 2.4) now hosts, in addition to the ESP

Game, six human computation games�TagATune (for collecting music tags), Ver-

bosity (for collecting common sense facts), Squigl (for locating objects in images via

tracing), Matchin (for ranking images by preferences), FlipIt (for measuring image

similarity) and PopVideo (for collecting tags of videos).

Figure 2.4: GWAP.com.

According to the 2008�2009 Causal Games White Paper released by The In-

ternational Game Developers Association (IGDA) [IGDAWhitePaper 2009], gamers

play causal games in order to �relax, pass time, socialize, or achieve certain goals

and challenges,� and typically do not see themselves as being �gamers.� In terms

of demographics, it was found that 74% of causal gamers are female between the

ages of 30 to 45 years old, playing mostly puzzle, word and card games. Currently,

there exists no equivalent survey on the demographics of gamers who are attracted

speci�cally to human computation games; this information would be invaluable.

2.1.2 Games with a Purpose

There are major di�erences between how humans and machines compute. While

one can safely assume that machines will give a consistent (i.e., always the same)

answer, unlike machines, the same question asked to human computers might yield

di�erent answers that are biased by their particular competence and expertise, inten-

tions, interpretation of the question, personal preferences and opinions, and general

physical and psychological limitations, e.g., fatigue, lack of motivation and cognitive

overload. Quality control, therefore, is a central challenge in human computation.
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Within a human computation system, there are several points of intervention

for quality control. For example, before computation takes place, the system can

route tasks to the most competent worker. Likewise, after computation, the system

can determine if the output is correct by aggregating redundant, but independent,

answers, or by �ltering out the bad outputs. Ultimately, high-quality outputs are

not achievable if the human computers are unmotivated or unwilling to tell the truth

in the �rst place. One way to elicit truthful responses from workers is to design a set

of rules for interacting with the system in which workers bene�t the most by being

truthful. This set of rules, referred to as a mechanism [Jackson 2003, Nisan 2007],

de�nes the set of permissible actions for the worker and speci�es how the �nal

outcome will be computed based on those actions. These mechanisms are safeguards

that are placed at the time of computation, instead of before or afterwards.

Our use of the term mechanism is borrowed from a �eld of research called mech-

anism design [Nisan 2007], which studies systems in which multiple self-interested

agents hold private information (that we want revealed truthfully) that is essential

to the computation of a globally optimal solution. Because each participant is con-

sidered rational, i.e., with the sel�sh goal of maximizing one's own expected payo�,

he or she may want to withhold or falsify information. In order to achieve the

best economic outcomes, the goal of the system designer is to �nd a set of rules in

which participants bene�t the most by sharing their private information truthfully.

A canonical example is the Vickrey-Clarke-Groves (VCG) mechanism�when used

in a single-item auction, the mechanism speci�es that the agent with the highest

bid should receive the item, but charged the price of the second highest bid. It has

been shown that the VCG mechanism is incentive-compatible [Hurwicz 1972]�the

bidders cannot do better by mis-reporting their true valuation of the item. An

important premise behind mechanism design is that agents cannot be instructed,

taught or forced to behave in a certain way; however, by designing rules that align

the motivation of the agents with the objectives of the system, we can encourage

agents to report their private information truthfully.

In human computation, the term mechanism takes on a similar but slightly

di�erent meaning. Here, the private information that the human computers hold,

and that our system wants to collect, is the true output to a computation task.

We design mechanisms�a set of rules governing how the output of each human

computer will jointly determine an outcome (i.e., reward or penalty)�in order to

incentivize human computers to produce outputs in a truthful way. In this section,

we will show how these mechanisms can be embedded in multi-player online games.

Games are a particularly powerful vehicle for computation as they have the potential

to reach a huge number of willing participants over the Web.

The �rst human computation game, the ESP Game [von Ahn 2004] (Figure 2.5),

was created to collect tags that can be used to describe and index images, making

them easily retrievable on the Internet. In this game, two players are given the

same image, and asked to independently enter tags that describe that image. Upon

agreeing on a tag, the players are rewarded with points and the image is successfully

labeled.
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Figure 2.5: The ESP game.

To motivate truthful responses, the ESP Game combines three ideas�

independence, agreement and shared information. By having two players inde-

pendently generate the same tag, the system has higher con�dence that the tag

is correct than if the tag is generated by a single person. Furthermore, the only

common information that the two players share is the image; in the absence of ex-

tra information (i.e., assuming that players do not communicate with each other),

players are more likely to �nd a matching tag if they limit themselves to only the

tags that are relevant to the image, a search space that is much smaller than the

set of all words in the English language. The ESP Game is a speci�c instance of

a mechanism called �output-agreement,� where two players get the same input and

are rewarded when their outputs agree.

Mechanisms are generalizable�in fact, the output-agreement mecha-

nism has been successfully applied to other problems, including image

preference [Bennett 2009, Hacker 2009], music classi�cation [Mandel 2009b,

Turnbull 2007b], ontology construction [Siorpaes 2008, Vickrey 2008] and senti-

ment analysis [Seemakurty 2010]. In Matchin [Hacker 2009], for example, two

players are shown a pair of images and asked to vote for the one they think their

partner will prefer. They are rewarded with points if their votes match. A global

ranking of image preferences can then be derived from the aggregate votes. Another

example is Squigl [Lee 2009], a game for gathering segmentation data for images

in which two players are shown the same image and an associated label, then are

asked to draw an outline around the object in the image with that label. Points are

awarded based on how much the two outlines of the object overlap. In PictureThis

[Bennett 2009], players are shown a label and a list of images and asked to select

the image that is the most relevant to that label. Players are again rewarded if their

selections match. The output-agreement mechanism has also been extended to

games for knowledge extraction, such as Ontogame and Ontotube [Siorpaes 2008],
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Figure 2.6: Verbosity.

in which players are given various types of input objects (e.g., Wikipedia excerpts,

YouTube videos, eBay auctions) and an ontology, then asked to annotate the

input object using the given ontology. In all of these games, the reward system is

the same as the one originally introduced in the ESP Game: matching on the output.

Leveraging Communication

There are some games that allow for communication between partner. An impor-

tant class of games that allow for open communication is called function computation

mechanisms, where players are given some partial input for which they need to per-

form some computation in order to compute an auxiliary function which determines

the reward of both players.

Verbosity [Speer 2010] and Peekaboom [von Ahn 2006a] are two examples of hu-

man computation games that use an asymmetric version of the function computation

mechanism to elicit truthful outputs from players. Verbosity [von Ahn 2006b] (Fig-

ure 2.6) is a game for collecting common sense facts. In this game, players alternate

between the role of a describer and guesser. The describer is given a secret word

(e.g., �crown�) which he has describe to his partner, the guesser, by revealing clues

about the secret word (e.g., �it is a kind of hat�). Both players are rewarded if the

guesser is able to guess the secret word. The mechanism requires the guesser to

compute the auxiliary function �what is the secret word� given the outputs (i.e.,

clues) of the describer. It is asymmetric in the sense that only one of the players is

responsible for computing this auxiliary functional and that the communication is

(mostly) unidirectional.

Another example of an asymmetric function computation game is Peekaboom

(Figure 2.7). Peekabom is a game for locating objects in images and involves two

players�the boomer and the peeker. The boomer is given an image and a secret
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Figure 2.7: Peekaboom.

word (e.g., the word �cow) and must click on and reveal the part of the image

associated with the secret word to his partner, the peeker. On the other hand, the

peeker is initially given a blank image that is slowly unveiled by the boomer, and

must guess the secret word as quickly as possible. Both players are rewarded when

the peeker guesses the correct secret word.

In both Verbosity and Peekaboom, the auxiliary function asks �what is the se-

cret input object your partner holds, given his or her descriptions of that object?�

Asymmetric function computation mechanisms with this type of auxiliary functions

are referred to as inversion problem mechanisms [von Ahn 2008b].

Designers of human computation games are faced with the challenge of building

a system that simultaneously meet two (and often competing) objectives�to satisfy

the players and to perform e�cient and accurate computation. On the one hand,

one can design a fun game that attracts a lot of players, but which does not collect

any useful data. On the other hand, if the game is designed to collect the cleanest

possible data, without paying attention to the enjoyability of the task, then no

player would be interested.

In function computation games, e.g.,Verbosity and Peekaboom, this tradeo�

is apparent. Granting players more freedom of expression (e.g., allowing them to

enter free form text, or communicate with each other) can make the game more

entertaining, but can lead to noisy data that requires a great deal of post-processing.

In Verbosity, a signi�cant amount of �ltering needs to be done to the collected

data before they are considered trusted [Speer 2010]. This is because the describers

sometimes cheat by entering clues that are not common sense facts, but shortcuts

for revealing the answer to the guesser [Speer 2010]. Common cheats include clues

about the number of letters in the secret word (e.g., �it has three letters�), or

mnemonics (e.g., �it sounds like king�).

A Brief Survey of Games and Mechanisms

There has been a large number of human computation games invented to tackle
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di�erent problems, many of them are identical in terms of the underlying mecha-

nisms. Table 2.2 provides a summary of some existing human computation games

and their underlying mechanisms; consult [Thaler 2011] for a comprehensive survey

of human computation games for knowledge acquisition.

Table 2.2: Survey of human computation games.

Game Description Mechanism AI Problem

The ESP Game two players match on a tag for

the same image

output-

agreement

object recogni-

tion

Peekaboom player 1 reveals parts of the

image associated with a secret

word, player 2 must guess the

secret word

function compu-

tation (problem

inversion)

object location

Verbosity player 1 describes the properties

of the entity associated with a

secret word, player 2 must guess

the secret word

function compu-

tation (problem

inversion)

knowledge ex-

traction

FoldIt players fold protein structures

to minimize total energy

function compu-

tation (optimiza-

tion)

protein folding

HerdIt players select tags that describe

the music

output-

agreement

music classi�ca-

tion

Categorilla players name an entity that �ts

a template (e.g., Things that

�y)

output-

agreement

natural language

processing

MoodSwings players click on a 2-dimensional

grid to indicate the valence and

intensity of the mood of a music

clip

output-

agreement

music mood clas-

si�cation

Phrase Detective players identify relationships

between words and phrases in a

short piece of text

output-

agreement

natural language

processing

Phylo players align colored blocks by

moving them horizontally and

inserting gaps

output-

agreement

genome align-

ment

2.2 Machine Computation

2.2.1 Music

One of the key challenges in music information retrieval is the need to quickly

and accurately index the ever growing collection of music on the Web. There

has been an in�ux of recent research on machine learning methods for auto-

matically classifying music by semantic tags, including Support Vector Machines

[Li 2003, Mandel 2005], Gaussian Mixture Models [Turnbull 2007a, Turnbull 2008b],

Boosting [Bertin-Mahieux 2008a], Logistic Regression [Bergstra 2006a], and other

probabilistic models [Ho�man 2009]. The majority of these methods are supervised

learning methods, requiring a large amount of labeled music as training data, which
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has been traditionally di�cult and costly to obtain.

There is now a proliferation of online music websites, where millions of users visit

daily, providing an unprecedented amount of useful information about each piece

of music. For example, collaborative tagging websites, such as Last.FM, collects on

the order of 2 million tags per month [Lamere 2008a]. Without prompting, human

users are performing meaningful computation each day, mapping music to tags.

There are a variety of ways to obtain tags for music, e.g., conducting a survey,

harvesting social tags, through the use of human computation games, and mining

web documents [Turnbull 2008a]. Recently, the Million Songs Dataset was created

from mining the Web. It should be noted that the mined music tags are largely

associated at the artist-level or album-level, and not at the song-level.

2.2.2 Images

Object Recognition is a topic in Computer Vision where there has been substantial

work [Grauman 2011]. Beyond object recognition, there has been a recent move-

ment towards using an intermediate layer of human-understandable attributes for

classi�cation. Instead of learning a classi�er to map images features to classes (e.g.,

`dog�), one can map image features �rst to a set of semantic attributes (e.g., `has

four legs�, `is furry�, `is brown�) and then map the predicted semantic attributes to

the class with the most similar set of attributes. This method is scalable � since

many objects in the world can be succinctly described using only a small num-

ber of semantic attributes, learning to map low level features to this e�cient code

can allow instances to be classi�ed into new categories where no training exam-

ples is available. This idea of zero shot learning has been studied in the context of

thought prediction using fMRI images [Palatucci 2009] and visual object recogni-

tion [Farhadi 2010, Farhadi 2009, Kumar 2009, Lampert 2009] The second bene�t

is explanatory power: the learning system can now describe to users the reasons

behind its predictions.

With the exception of [Parikh 2011], most previous works study the feasibil-

ity of image classi�cation using an intermediate layer of a �xed set of manually

curated attributes. For example, Kumar et al. [Kumar 2009] manually created

65 attributes for face recognition, and paid $5000 to obtain attribute values from

workers on Mechanical Turk. The Animal with Attributes dataset was created using

the 50 attributes proposed in [Kemp 2006]. The outdoor scene datasets provided by

[Farhadi 2009, Farhadi 2010] uses a �xed set of 64 attributes, describing the objects'

shape (e.g., `cylindrical�), parts (e.g., `has window�) and material (e.g., `is shiny�).

On the other hand, there has also been recent work on using text corpus to auto-

matically characterize the visual attributes of objects [Berg 2010, Rohrbach 2010]

without any human supervision.
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2.2.3 Named Entities

In text mining, there are now many systems that can automatically extract facts

about real world entities from the Web. There has been a large amount of work

on relation learning. For example, NELL (which stands for Never-Ending Language

Learner) [Betteridge 2009, Carlson 2009, Carlson 2010b] is a system that can con-

tinuously extract instances of categories and relations from the Web to populate a

structured knowledge base (i.e., an ontology). Using a semi-supervised approach

[Blum 1998, Carlson 2010b, O. Chapelle 2006] on hundreds of millions of webpages,

the system iteratively learns assertions (e.g., the names of individual athletes, what

sport they play, their team, which stadium and city the team plays in, who their

coach is) by discovering text patterns associated with particular categories (e.g., the

text string `sports �gures like X� suggests that X is an athlete) and relations (e.g.,

`X superstars such as Y� suggests that athlete Y plays sport X). The current version

of the system ([Carlson 2010b, ReadTheWeb 2012]) has already learned to extract

a knowledge base containing over a million assertions with an accuracy around 85%

and over 10 million additional assertions in which it has lower con�dence. The even-

tual goal of NELL is to be able to continuously learn to read, i.e., from the same

text corpora, `extract more information more accurately� [Carlson 2010a] than the

day before. In the context of NELL, we use the word attributes to refer to either

categories (e.g., `dog�, `athlete�) or relations (e.g., `has tail�, `plays football�). Other

similar open information extraction systems include TextRunner [Banko 2007] and

WOE [Wu 2010].

2.3 Joint Human-Machine Computation

Most previous work on systems that combine humans and machines focus on the

role of machines as an optimizer � to help improve the accuracy and e�ciency of

human computation algorithms, or help reduce the cost of human computation by

choosing only informative questions to ask.

Human-in-the-loop systems are automated systems that involve humans to per-

form part of their functions, in order to overcome sensing and reasoning limita-

tions. This is prevalent in robotics, where the performance of automated sys-

tems is often not deemed adequate to handle real world situations in the fail-

safe manner [Hearst 1999, Rosenthal 2010]. An important subclass is human-in-

the-loop learning systems, which are systems that are capable of self improving

given human feedback during the learning or execution process. Humans can act

as coaches to the system and teach the system what to learn, e.g., by providing

training labels [Settles 2012, Lewis 1994], feature values [Maytal 2009], reward sig-

nals [Thomas 2006], target controlled policies [Abbeel 2004] and information about

hidden states [Kapoor 2008]. Alternatively, humans can also act as critics, by pro-

viding evaluative (e.g., is the answer correct or not) and corrective (e.g., the right

answer is X) feedback to the learning system [Culotta 2006, Shilman 2006].

One important dimension of human-in-the-loop learning systems is whether tasks
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are assigned using a push (where the machine needs to actively seek for human help)

versus pull (where the humans seek for tasks to perform) model. If tasks are assigned

using the push model, then it matters greatly that the system can accurately predict

whether humans are available, willing to help, and do not mind being interrupted

from their current activities. This is important whether the machine is trying to

help the humans with their tasks (e.g., schedule a meeting, guide noti�cations, etc.)

[Kapoor 2007] or perform its own tasks (e.g., �nding a room) [Rosenthal 2010]. In

contrast, under the pull model, a system will not give users tasks unless they ask for

one. Here, the feedback is often implicit, with humans performing an activity while

the machine is observing in the background. For example, search engines can retrieve

relevant documents for human users, whose clicks are noisy indication of whether the

retrieved results are relevant or not [Joachims 2005]. Human computation systems,

for example, use the pull-based model � by aligning system and user interests, people

will come voluntarily and ask for tasks, which the system needs to hand out whether

it is ready or not. On the other hand, human computation systems need not concern

themselves with issues such as availability and interruptibility.

An e�ective human computation system should be able to interweave ma-

chine and human capabilities seamlessly. This idea is not new; many re-

search concepts familiar to the AI community, such as complementary comput-

ing [Horvitz 2007b], mixed-initiative systems [Horvitz 2007a] and interactive ma-

chine learning [Yue 2009, Fogarty 2008, Shilman 2006, Kapoor 2012], address sim-

ilar questions. There are already several human computation projects where we

see hybrid solutions emerging. CrowdPlan [Law 2011b] asks workers to decompose

high-level search queries (in the form of missions such as �I want to quit smoking�)

into a set of goals and transform the goals into search queries, leaving the actual

search task to machines. Shahaf et al. [Shahaf 2010] introduces the use of machine

intelligence to manage human computers as a resource, by taking into account com-

petencies, availabilities, and payment. Branson et al. [Branson 2010] introduces a

computer vision algorithm for classifying bird images, that upon facing uncertain-

ties, asks Turkers to answer questions (e.g., �is the belly red�) to re�ne the answer.

To compute a crowd kernel (i.e., a similarity matrix over a set of objects), Tamuz

et al. [Tamuz 2011] uses an algorithm to adaptively select maximally informative

triplets of objects to query for human similarity judgments, thereby approximately

the true answer with fewer number of queries. Another example of joint machine

(machine vision) and human computation (human classi�cation) is the work on

CrowdSynth � where human input and machine-recognized features of galaxies in

sky survey are combined via models learned with machine learning [Kamar 2012].

2.3.1 Active and Proactive Learning

Active learning is a machine learning model in which the learner intelligently chooses

the data from which it learns [Settles 2012]. This typically involves a iterative pro-

cess, with the learner alternating between querying (asking an oracle a question

about the data) and updating (incorporating the answers into the current model).
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Most active learners use a supervised learner as its underlying learning algorithm

and queries for the label of an instance or a batch of instances. There exist many

di�erent selection strategies for choosing instances to query for information � e.g.,

selecting instances whose labels have the most uncertain or ambiguous classi�ca-

tion (uncertainty sampling) [Lewis 1994], are disagreed upon by the most experts

(query-by-committee) [Seung 1992], or have the most e�ects on improving the gen-

eralization power of the classi�er (Expected Error Reduction) [Roy 2001] etc. The

performance of the active learner is judged by how quickly it can improve the classi-

�cation accuracy, compared to the baseline performance of random selection. In this

section, we will discuss two ways in which active learning in the human computation

setting diverges from the traditional model and mention some related works.

Active learning typically assumes a hypothetical existence of a single, perfect,

omniscient oracle. This assumption breaks down as we move towards a framework

with human computers as oracles, who may be imperfect, unreliable and reluc-

tant to answer. These issues have been explored extensively in Proactive learning

[Donmez 2009a], which examines instance selection strategies when there are many

imperfect oracles. For example, Pinar et al. [Donmez 2008] studied the problem of

how to make as few queries as possible, while obtaining data from the best oracle

to train a classi�er using a �xed budget. The algorithm has a discovery phases for

probing the characteristics of each worker and a task assignment phase in which the

(task, worker) pairs are chosen to maximize the cost-bene�t tradeo�s. They model

several types of workers, including reliable (who always answer) versus unreliable

workers (who sometimes refuse to answer), faillable versus infallible workers, and

workers with uniform costs versus those with costs that vary across tasks.

Instead of the two phase procedure (i.e., used in [Donmez 2008]) of �rst esti-

mating utilities of each worker, then performing the task assignments to maximize

the estimated utilities, there are algorithms that interweave the estimation and task

routing process. At every time step, the algorithm can decide whether to explore,

i.e., assign an information gathering [North 1990] task to learn about a worker's

characteristics, versus exploit, i.e., assign a task to the worker that the system

currently believes is best. A particular online algorithm for assigning tasks to mul-

tiple oracles with variable reliability is discussed in [Donmez 2009b]. The idea is to

adapt the Interval Estimation (IE) algorithm for selecting oracles (each with dif-

ferent level of competence) for a labeling task. Interval Estimation (IE) Learning

[Kaelbling 1993, Kaelbling ] is a technique for choosing actions (e.g., the action of

assigning a task to a particular worker) that balances the exploration and exploita-

tion tradeo�. For each action ai, the IE algorithm keeps tract the number of times

ni the action has been executed and the number of times wi that the execution

was successful. At each time step, the algorithm estimates the con�dence inter-

val of the success probability of each action, and chooses the one with the highest

upper bound. The upper interval value can be large either due to a high sample

mean of the success probability, or due to the uncertainties in our estimates. As

more actions were performed, the interval shrinks and the algorithm is able to then

select the best workers for any task. In the particular adaptation of the IE algo-
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rithm [Donmez 2009b], called IEThres, the goal is to minimize the number of queries

and �lter out the unreliable oracles early in the process. IEThres was also used in

[Donmez 2010a] to select oracles with time-varying accuracy � the idea being that

the accuracy of human workers is likely to change over time, becoming less accurate

as they are fatigued or get bored, or more accurate as they gain skills and knowledge

by performing particular tasks. In [Donmez 2010b], a sequential Bayesian model was

used to estimate the accuracy of a worker at time t based on previous observations;

based on these accuracy estimates, IEThres was then used to select the best human

oracles for the task. This idea of using variance to indicate which worker needs to

be explored is also used in the online EM approach proposed by [Welinder 2010].

2.3.2 Closed versus Open World

Many AI and machine learning algorithms make the closed world assumption (i.e.,

what is not known to be true must be false) and the closed domain assumptions

(i.e., there are no other objects in the world except for the ones the system knows

about). Learning algorithms typically assume that objects can be classi�ed into a

�xed set of classes and represented by a �xed set of features and feature values. For

example, several music tagging algorithms trained on the data extracted by human

computation games [Turnbull 2007b, Mandel 2009b] assume that the absence of a

tag for a given music clip means that it is irrelevant for that clip (i.e., the absence

of the `happy� tag means that the music is sad).

In the real world, these assumptions rarely hold. For example, when players are

presented with images to process in a human computation game, they may come

up with a tag that already exists in the current vocabulary, or a new one that

the system has never seen before. Consider Horvitz's characterization of the open

world problem [Horvitz 2008]: `The open-world assumption is the assumption that

the truth value of a statement is independent of whether or not it is known by any

single observer or agent to be true. I use open world [more broadly] to refer to models

of machinery that incorporate implicit or explicit machinery for representing and

grappling with assumed incompleteness in representations, not just in truth-values.�

An active learner that acquires feedback through a human computation system

must deal with the open world problem, i.e., it must decide when it has incomplete

knowledge of the world, and ask humans to help extend its representation. For

example, an active learner for NELL needs to decide when to acquire new categories

and relations to add to its ontology, and when to simply ask for humans to help

evaluate and correct its current beliefs. The active learner must also have some

notion of con�dence about the beliefs in the system, using which to detect incorrect

beliefs even when the system strongly believes them to be true.





Chapter 3

Learning Attributes in

Vocabulary-Rich Settings

3.1 Overview

Querying by semantic tags is arguably one of the most intuitive meth-

ods for retrieving music. However, until recently [Bertin-Mahieux 2008b,

Chen 2009, Ho�man 2009, Turnbull 2008b], most retrieval methods focused on

querying by metadata [Whitman 2002] (e.g., artist or album names), similar-

ity [Goto 2004], humming [Dannenberg 2004], beatboxing [Kapur 2004] and tap-

ping [Eisenberg 2004], or using a small, �xed set of categories (e.g., genre

[Tzanetakis 2002, Tzanetakis 2001], mood [Trohidis 2008], or instrumentation

[Herrera 2003]) as keywords. Retrieval by semantic tags is still not a prevalent

music retrieval strategy, because there is a large amount of music on the Web that

remained untagged, and music tagging algorithms are not yet accurate enough to

be useful. Yet, Music tags are incredibly valuable � they enable users to browse,

organize, and retrieve music in an semantic way.

One potential source of music tags is collaborative tagging websites, such as

Last.FM, which collect on the order of 2 million tags per month [Lamere 2008a]

from tens of thousands of users. However, there are two known issues with using

such �social tags� as labeled data for multimedia objects. First, only the popular

items are typically tagged, leaving a large proportion of the multimedia objects

on the Web untagged [Lamere 2008a]. Second, for multimedia objects with a time

component, such as sound, music, and video clips, social tags found online often

describe the object as a whole, making it di�cult to link tags with speci�c content

elements. This makes social tags unsuitable as data for training algorithms for

music and video tagging, which rely on speci�c content elements being tagged (as

opposed to the overall content). Other approaches, such as human computation

games, became an attractive alternative method for collecting music tags.

While objects in images can typically be referenced in a limited number of ways,

music can be described by a vast and diverse vocabulary. In this chapter, we inves-

tigate how to design an e�ective human computation system for learning attributes

in such vocabulary-rich settings.
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3.2 Game Mechanism for Learning Music Attributes

3.2.1 Motivation

Games with a purpose, as we mentioned in the previous chapter, have proven to be

an e�ective method for extracting attributes from game players. The ESP Game

mechanism, in particular, was hugely successful: millions of image tags have been

collected via the game, and a few years after its deployment, the game is still visited

by a healthy number of players each day. This game mechanism has been re-used as

the design template for many other games, including games for music annotation. By

2007, there are three human computation games for music annotation that follow the

ESP Game (or output-agreement) mechanism (see Figure 3.1), namely Major-Miner

[Mandel 2009b], the Listen Game [Turnbull 2007b], and MoodSwings [Kim 2008].

MajorMiner [Mandel 2009b] is a single-player game in which players are asked to

enter descriptions for ten-second music clips. Players receive points for entering

tags that agree with tags that were previously entered for the same music clip. The

scoring system encourages originality by giving a player more points to be the �rst to

associate a particular tag with a given music clip. The Listen Game [Turnbull 2007b]

is a multiplayer game in which players are asked to describe 30-second music clips

by selecting the best and worst tags from six choices. In the �freestyle� rounds,

players can suggest new tags for a clip. Players are rewarded based on agreement

and response speed. Finally, MoodSwings [Kim 2008] is a game for annotating the

mood of a given piece of music in which players are asked to indicate the mood,

in terms of arousal and valence, by clicking on a two-dimensional grid. Players are

given points for agreeing with each other in terms of the proximity of their mouse

clicks. All of these games use variants of the output-agreement mechanism.

The output-agreement mechanism, however, has serious shortcomings. It has

been noted that the image tags produced by the ESP Game tend to be common

and uninformative [Weber 2009, Jain 2008]. This is a direct consequence of the

output-agreement mechanism�needing to agree with his partner, a player's best

strategy is to enter common tags that are likely to be entered by any person. A

possible remedy is to use rewards to motivate players to enter more speci�c tags�

e.g., the Google Image Labeler gives players higher scores for more speci�c labels.

Another solution is to impose restrictions on what the players are allowed to enter.

In the ESP Game, taboo words [von Ahn 2004] are introduced to prevent players

from re-entering high frequency tags. None of these approaches seem to solve the

problem completely [Weber 2009]. In fact, in many output-agreement games, the

improper use of restrictions can lead to bad results. For example, in the e�ort to

collect a diverse set of results, the game Categorilla [Vickrey 2008] forces players to

enter only an answer that begins with a particular letter, without knowing if such

an answer actually exists. As a result, players often have great di�culty coming up

with such word, and end up generating nonsensical answers instead.

The research covered in this chapter answers the following questions: Is output-

agreement an e�ective mechanism for extracting music attributes? If not, what



3.2. Game Mechanism for Learning Music Attributes 35

(a) MajorMiner

(b) The Listen Game (c) MoodSwings

Figure 3.1: Output-agreement human computation games for collecting music data

are the alternatives? How would a di�erent game mechanism impact the system's

ability to achieve its task-centric objective, i.e., to collect music tags that are useful

for training automated tagging algorithms? In the following sections, we will discuss

our �ndings for each of these questions in turn.

3.2.2 Evaluation of the Output-Agreement Mechanism

Is output-agreement an e�ective game mechanism for extracting music attributes?

To begin investigating this question, we built a prototype music annotation game

called TagATune, which used the output-agreement mechanism. In the prototype

game [Law 2007], two players were presented with 30-second audio clips and asked

to type descriptions for them (see Figure 3.2).

The initial prototype served sounds only (not songs). Players were rewarded

when descriptions matched. �Taboo words� [von Ahn 2004] were also used to en-

courage players to enter new tags. Although the prototype game was able to collect

semantically meaningful tags, the average enjoyability rating was only 3.4 out of 5,

based on a survey submitted by 54 participants in a user study [Law 2007]. More-

over, it was found that 36% of the time, players opted to pass instead of entering a

description [Law 2007].

There were two additional opportunities for gathering informal observations on
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Figure 3.2: TagATune prototype

.

the TagATune prototype game: a game demo session at the ISMIR 2007 Conference

and a human computation workshop for elementary school students (held at Creative

TechNight, a weekly event run by Carnegie Mellon School of Computer Science

to foster young girls' interest in technology). In both game-playing sessions, the

key observation was that players were often frustrated by being unable to match

on a tag. Speci�cally, players often entered tags that meant the same thing, but

that were expressed di�erently (e.g., 'cars on a street' versus 'tra�c'). Moreover,

since players were not allowed to communicate with each other (this requirement

of output-agreement games safeguards against cheating), players found no good

strategies to produce tags that match, except to enter tags that were as general as

possible (e.g., 'music,' 'classical') or to rely on random chance.

The game design strategies used in MajorMiner and the Listen Game re�ect

this underlying problem. Because it is di�cult for two players to match on a tag,

MajorMiner instead uses the agreement between a player and all previous players,

while the Listen game uses the agreement among a group of players for a small

prede�ned set of tags. There are disadvantages to such design approaches: having

people play by themselves eliminates the social aspects of online games and limiting

players to a prede�ned set of tags may make the game signi�cantly less enjoyable

and useful.

The main problem with using the output-agreement mechanism to collect data

for audio clips is that it can be very di�cult for two players to agree on a description.

Unlike images, which often contain only salient objects that can be described using

words that are commonly known to people, music can be described in a wide variety

of ways � e.g., by abstract concepts, such as �temperature� (e.g., chilly, warm), mood

(e.g., dark, angry, mysterious), or the image it evokes (e.g., busy streets, festival),
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Figure 3.3: Input-agreement mechanism

.

as well as categorizations that have no clearly de�ned boundaries (e.g., acid-jazz,

jazz-funk, smooth jazz) � and the language used to describe the di�erent aspects

of music may not be as standardized. The di�culty with arbitrary sound clips is

even more marked, since the content is not always readily recognizable. In other

words, music and sound clips have high description entropy, making it di�cult, if

not impossible, to match on any tags other than ones that are simple and general.

3.2.3 TagATune and Input-Agreement Mechanism

If not the output-agreement mechanism, what are the alternatives? What kind of

game mechanisms can be used to collect detailed, informative tags for input objects

that have high description entropy?

Our answer is a game mechanism that can motivate players to tell the truth,

and yet, does not require players to match their outputs with each other. In this

mechanism, two players are shown either the same music clip or di�erent music

clips and each is asked to type a description of their given music clip. Unlike

output-agreement games, where all communication is forbidden, all of the players'

descriptions are revealed to each other. Based on these descriptions, the players must

decide whether they have been given the same music clip or not. The descriptions

that players enter are exactly what we are interested in.

This mechanism belongs to a class of mechanisms called function computation

mechanisms, where players are given some partial input (e.g., a music clip) for which

they need to perform some computation (e.g., generate tags), in order to compute

an auxiliary function (e.g., whether the two pieces of music are the same or di�erent)

which determines the reward of both players. TagATune employs a speci�c instance

of the function computation mechanism called input-agreement [von Ahn 2008b]

(Figure 3.3), where the function to compute is 1 if the input objects given to the

two players are the same, 0 if they are di�erent.

We designed a new version of the TagATune game that instantiates the input-

agreement mechanism. A screenshot of the interface for a normal round of TagATune

is shown in Figure 3.4.
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Figure 3.4: TagATune

.

In each round, two players are given either the same audio clip or di�erent audio

clips. They are provided with a basic music player interface to start, stop, and adjust

the volume of the audio clip to which they are listening. Each player describes the

given audio clip by typing in any number of tags, which are revealed to the partner.

By reviewing each other's tags, the players decide whether they are listening to the

same thing by selecting either the same or di�erent button. After both players have

voted, the game reveals the result of the round to the players and presents the next

round. The game lasts three minutes in total.

The inspiration for TagATune (and the input-agreement mechanism) comes from

a psychology experiment [Healey 2007] that studies the emergence and evolution of

graphical symbol systems. The experiment involved a music drawing task, where

pairs of participants were given a 30-second piece of piano music and were asked to

draw on a shared virtual whiteboard. Based on the drawings, the players had to

decide whether they had been given the same piece of music. Remarkably, using just

drawings � whether abstract (e.g., contours, lines, or graph-like representations) or

�gurative (e.g., recognizable objects, �gures, or scenes) � players were able to guess

correctly whether their inputs were the same.

3.2.3.1 Input Data

The data served to the players consists of 56,670 short (30 second) music

clips from Magnatune.com and 28,715 sound clips from the FreeSound Database

(http://freesound.org). Broadly speaking, the genres of music include classical, new

age, electronica, rock, pop, world music, jazz, blues, heavy metal, and punk. All

audio clips are provided under the Creative Commons License, allowing for much

less restrictive usage than other typical music licenses. This allows audio �les to be

freely distributed to the public and greatly facilitates research on the data collected

by the game. Moreover, the use of less well-known music minimizes the possibility

that players will recognize the actual song or artist and simply describe the audio

clip using tags that are already known. Finally, the shorter audio segments ensure
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that there is a more direct, though not guaranteed, link between content of the

music and the descriptions provided. For each round, the audio clips are selected

randomly. Because the input data to the game is a pair of audio clips, the number

of all possible pairs of sound and music clips is large enough that random selection

su�ces to ensure that players will not encounter the same pair of input data too

often.

3.2.3.2 Scoring Mechanism

TagATune is a cooperative game, as can be seen from its scoring mechanism: the

players score points only if they both guess correctly whether they are listening

to the same audio clip. Neither gains points if one of them guesses incorrectly.

This provides a natural incentive for players to be truthful to each other, which in

turn, generates labeled data that accurately describes the audio clip at hand. If

TagATune were a competitive game, each player would be motivated to win against

their partner, possibly by being malicious and misleading, and entering tags that did

not describe the actual content of the audio clip. The consequence of this malicious

behavior would be erroneously labeled data. Thus, a game that uses the input-

agreement mechanism must be cooperative. The points in TagATune compound:

the more rounds the players successfully win in a row, the more points the players get

for each subsequent round. This is a general scoring mechanism to motivate players

that is shared by most games on the GWAP.com game portal, where TagATune is

deployed.

Figure 3.5: Score Board

.

A leader board is shown on the left of the main game panel throughout the game

(see Figure 3.4). When the game is completed, a scoreboard displays the �nal score

and the player's current GWAP level (see Figure 3.5). A GWAP level is a rank

assigned to players who attain a speci�c number of points and each level carries

a special title. The scoreboard also shows the player's best score for TagATune,
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the player's total accumulated score, the number of points needed to achieve the

next GWAP level, and the number of points needed for the player to become the

top player of the day. The leader board and scoreboard are game design elements

common to all games on GWAP.com, and serve to motivate the players to strive for

higher scores by playing better and more frequently.

Figure 3.6: Game Recap

.

Finally, the game recap provides an opportunity for players to learn from their

mistakes by reviewing their detailed performance in the game (see Figure 3.6). Play-

ers can also replay every audio clip that was presented to them during the game,

and click the Get It button to download the song. This Get It functionality gives

TagATune a dual purpose as a Web application for sampling new music.

3.2.3.3 Bonus Round

When the players reach 1,000 points, a bonus round is added along with an extra

minute of game play. During the bonus round (Figure 3.7), players are asked to

listen to three pieces of music or sound clips. Each must decide individually which

one of the three clips is most di�erent from the other two. If they agree, they both

obtain points. Figure 7 shows the interface for the bonus round of TagATune.

The reason for including a bonus round is that it produces two types of additional

data. First, similarity data for music is useful for powering and improving music

recommendation systems. Second, the similarity between songs is potentially a good

indication of the level of di�culty that a particular pair of songs would present

during a normal round of TagATune. More speci�cally, two songs that are very

similar will require a great number of more speci�c descriptions in order for the

players to distinguish them. This similarity data can be used later to adjust the

di�culty of the game and thus increase the enjoyment for the players.

This is what we can call a coupled learning [Carlson 2010b] scenario. In a normal

round of the game, we are collecting data that can be used to learn a function
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Figure 3.7: Bonus Round

.

f1 : s → {t1, t2, ...tT} that maps a given song s to its associated set of tags {t1 ,

t2 , . . . tT }. In addition, we are collecting data about the similarity distance

between pairs of songs, i.e. a function f2 : s × s → [0, 1], from the bonus round

of the game. A closer examination reveals the relation between the two functions

f1 and f2. Suppose that each song can be represented by an arbitrarily long bit

string, where each bit represents a tag and is 1 if the tag describes the song and 0

otherwise. If two songs (and consequently the two bit strings) are very di�erent, it

is likely that revealing only one or two bits will enable the players to tell that the

songs are di�erent. Conversely, if two songs are very similar but di�erent, it will

take more exchange of bits for the players to arrive at the correct response. To learn

f1, the function that maps songs to tags, the optimal solution is for the game to

select, for the normal rounds, pairs of songs that are very similar yet not identical,

so that the players reveal as many bits (i.e. tags) as possible before guessing whether

the songs are the same or di�erent. In other words, knowing the similarity of songs

(i.e. f2) can help us ask the right questions to human users to learn f1. The idea of

using related functions to pick examples to learn a function has not been explored in

active learning, and raises interesting questions about how to select which function

to learn at a given time in order to minimize the number of queries and optimize

performance. In this thesis, we focus on the e�ciency of TagATune in collecting

high-quality attributes for music. Therefore, our analysis will be centered mainly

on the results of normal rounds of TagATune.

3.2.3.4 Game Statistics

TagATune has been deployed since May 15, 2008. The statistics reported here is

over the course of the �rst seven months since TagATune's deployment.

A total of 49,088 unique games were played by 14,224 unique players, equaling

439,760 normal rounds. Based on the statistics collected in mid-December 2008,
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the number of games each person played ranged from 1 to 6,286, and the total

time each person spent in game play ranged from three minutes to 420 hours. The

average number of games played was four. Figure 8 shows the rank-frequency curve

of how many people played x number of games. The graph in Figure 3.8 almost

resembles a power law: there are many people who played only a few games, and

a few people who played many games. We refer to this rank-frequency curve as

the player retention curve, since the curve is a useful indicator of the proportion of

players who re-visited the game and the frequency of their revisits.

Figure 3.8: Number of people who played x number of games

.

The relative �atness of the slope of the user retention curve is a way to compare

the enjoyability and popularity of di�erent human computation games. A steep slope

implies that many people played only one or a few times before abandoning the game,

and not many people returned to play the game again. In contrast, a �atter slope

indicates that only a few people abandoned the game after playing just a few times,

while many people played a large number of games. For example, Figure 9 shows a

comparison of the player retention curves for di�erent games on GWAP.com. The

results show that the player retention curves for TagATune and Squigl are similar

(in terms of slopes and intercepts), indicating that the number of players who played

x number of games is similar between the two games, regardless of what x is. In

comparison, there are more players for the ESP Game and Matchin, for any given

number of games x. Finally, when compared to other games on GWAP.com (Figure

3.9, there are substantially more players who played a large number of games of

Verbosity.

Of the 439,760 rounds, players only passed on 2,203 rounds, or 0.50% of the

total number of rounds. In contrast to the 36% pass rate of the prototype version

of TagATune, this indicates that players are less likely to give up on a round when

the new mechanism is used. In 97.36% of the rounds, both players voted same or

di�erent before the end of the round. We refer to these rounds as completed rounds.
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Figure 3.9: Player retention for games on GWAP.com

.

The remaining 2.64% are called missed rounds, where one or both players did not

submit their vote, most likely due to a timeout of the game.

Figure 3.10: Successful versus failed rounds

.

Of the completed rounds, 80% were successful, meaning that both players

guessed correctly whether they were listening to the same tune or di�erent tunes;

while 20% of the rounds were failures, where one or both players guessed incorrectly.

Figure 3.10 provides a summary of these statistics. The success rate for rounds in

which the tunes were the same was 85%, whereas the success rate for rounds in

which the tunes were di�erent was 81%, suggesting that it may be slightly harder

to distinguish between tunes that are di�erent.



44 Chapter 3. Learning Attributes in Vocabulary-Rich Settings

3.2.3.5 Tag-Based Statistics

The results (see Table 3.1) show that the popularity and throughput of TagATune

are superior to other human computation games for collecting music metadata. In

fact, TagATune resulted in one of the largest labeled music datasets [Law 2012]

publicly available to MIR researchers.

Table 3.1: Comparison of human computation games for music (some of these statistics are

taken from [Mandel 2009b, Kim 2008])

TagATune MajorMiner The Listen Game MoodSwings

Users 14,224 490 440 100

Clips Labeled 30,237 2,300 250 1,000

Data collected 108,558 12,000 26,000 50,000

veri�ed tags veri�ed tags choices valence-arousal labels

Unique Tags 70,908 6,400 120 Not applicable

Prior to compiling statistics on the tags, a basic level of preprocessing was per-

formed to convert all tags into lowercase, delete leading and trailing spaces, and

remove punctuation marks (such as ?, !, ., *, - and quotation marks). After prepro-

cessing, there were a total of 512,770 tags collected, of which 108,558 were veri�ed

by at least two players and 70,908 were unique. Based on this, the average number

of tags generated per minute of play is approximately four.

The 50 most frequently used tags (the �head list�) are shown in Table 3.2. There

are a few observations. First, as also con�rmed in other studies [Mandel 2009b,

Turnbull 2007b], the most common tags used to describe music fall into the cate-

gories of genre (e.g., classical, rock, techno), instrumentation (e.g., guitar, piano,

violin, drums, singing), or aspects of the music itself (e.g., fast, soft). Second, there

are some tags in the �head list��speci�cally `same,' `di�,' `yes,' `no'�that have noth-

ing to do with the content of the music, but instead are communication vehicles

between partners in a game. Players use the words `same' or `di�' to signal their

decision for that round to their partner. Although these communication tags are

problematic, they are relatively easy to �lter out since they often occur in the same

formats.

A third observation is that this game generates negation tags, which are tags

that describe what is not in the audio �le, e.g., 'no vocals.' This is also a consequence

of communication between the partners. For example, if one player types 'singing,'

their partner might type `no vocals' to indicate the di�erence between his or her tune

and that of the partner. Other examples of negation tags include `no piano,' `no

guitar,' `no drums,' `not classical,' `not English,' `not rock,' `no lyrics,' etc. Negation

tags are a unique product of TagATune and its underlying input-agreement mecha-

nism, and are not often found in output-agreement games where communication is

forbidden. Finally, even among the most frequently used tags, there are still many

equivalent tags that were considered distinct due to di�erences in spelling, wording,

and pluralization. This property of the data is useful for search, since keywords

entered by users can be just as varied. However, as a dataset for training machine
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Table 3.2: Head List: top 50 most frequently used tags

Tag Count Tag Count

classical 37,781 no vocals 6126

guitar 30,093 soft 5,642

piano 27,718 sitar 5,642

violin 19,525 no vocal 5,285

slow 18,485 classic 5,228

strings 17,484 male 5,216

rock 17,413 singing 5,059

techno 15,627 solo 5,047

opera 14,512 vocals 5,014

drums 13,667 cello 4,966

same 12,610 loud 4,957

�ute 12,149 woman 4,321

fast 11,435 pop 4,213

di� 11,046 male vocal 3,951

electronic 10,333 choir 3,576

ambient 8,733 violins 3,454

beat 7,683 new age 3,390

yes 7,352 beats 3,387

harpsichord 7,261 no voice 3,252

indian 7,255 harp 3,172

female 7,071 voice 3,080

vocal 6,964 weird 3,056

no 6,659 instrumental 2,946

synth 6,530 dance 2,896

quiet 6,167 female vocal 2,873

learning algorithms, this indicates the need for more post-processing.

In contrast to the head list, the �tail list� consists of tags that have been used

very infrequently. Some of the tags are simply uncommon, e.g., `helicopter sound,'

`Halloween,' `cookie monster vocals,' `wedding reception music,' etc. The tail list

tags can be divided into four categories: misspelled tags, longer communication tags,

compound tags (tags that contain multiple descriptors), and transcription tags (tags

that transcribe lyrics). Examples of each kind are shown in Table 2.

Table 3.3: Tail List examples

Compound Tags Transcription Tags

eastern female voice �ll me up...

long slow tones rain on my parade

trombone and guitar from shore to shore

light violin the highest of sunny days

piano male voice he'll never love you the way

Misspelled Tags Communication Tags

churhc music pick sooner

coubtry you have to give me info

otiental sound you're good too

instrumental hello :)

ipano yes agree
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While the �rst two types of tail list tags are not of interest to us, compound tags

can be converted into individual keywords for search, and tags which transcribe

lyrics are invaluable since they support the prevalent strategy of searching for music

by lyrics.

3.2.3.6 Tune-based Statistics

On average, each game serves about nine songs. After seven months of game play,

there were a total of 30,237 audio clips annotated and 108,558 veri�ed (con�rmed

by at least two players) tags collected. Throughout this section, the term �veri�ed�

is used to refer to tags that have high con�dence (because they have been indepen-

dently generated by multiple players) and �unveri�ed� to refer to tags that have low

con�dence.

Figure 3.11: Number of songs that are tagged by x number of unique players

Figure 3.11 shows the number of the audio clips that have been tagged by x

number of players. The data indicates that 92% of the audio clips have been anno-

tated by two or more players, 61% have been annotated by ten or more players, and

26% have been annotated by 20 or more players. In order to attain a high level of

con�dence about the tags, an important criterion is that most songs are evaluated

by multiple players. These results show that even using a simple random selection

strategy for picking songs to present to players, this criterion is satis�ed.

One question is whether allowing free-form text entry and open communication

between partners results in tags that are accurate descriptions of the audio clips.

In order to evaluate the quality of the tags, we conducted an experiment that

evaluated how well the collected tags described the audio clips based on a small

sample of the data.
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Methodology

Twenty music clips with at least �ve veri�ed tags were chosen at random, then

100 participants were solicited via Mechanical Turk (http://www.mturk.com) to

answer a set of 20 questions. For each question, the participant was given a music clip

and was asked to answer four sub-questions. The �rst two sub-questions pertained to

the quality of the veri�ed tags, i.e., tags that were con�rmed by at least two players.

The second two sub-questions pertained to the quality of unveri�ed tags, i.e., tags

that were entered once only for that particular audio clip. Note that the number

of veri�ed and unveri�ed tags varies among di�erent music clips. On average, each

music clip had around 7 veri�ed tags and 17 unveri�ed tags. The two sub-questions

for the veri�ed tags were as follows:

1. Which of the following tags would you use to describe the piece of music to

someone who could not hear it?

2. Which of the following tags have *nothing* to do with the piece of music (i.e.,

you don't understand why they are listed with this piece of music)?

The same two sub-questions were asked for the unveri�ed tags; we will refer to

them in order as questions 3 and 4. For each question, participants were asked to

count the number of tags that would be appropriate answers and to respond by a

picking a number from a combo box.

Results

We retained results from 80 of the participants who spent at least 1,000 seconds

on the task, which is the time needed to listen to the entire audio clip for each

question plus at least �ve seconds to answer each of the four sub-questions. Note

that for this experiment, we did not perform any post-processing to remove the

easily �lterable junk words�such as `same,' `di�,' `yes,' `no'�before presenting the

tags to the participants. This is because we were also interested in �nding out

whether there were fewer junk words among the veri�ed tags than unveri�ed tags.

The results of this survey are summarized in Figure 3.12. As desired, for question

1 the mean was 78.26% (s.d.=9.45), equal to roughly 5-6 out of 7 tags. This indicates

that the veri�ed tags are useful for describing the audio clip. The mean of 16.67%

(s.d.=8.59) for question 2, or roughly 1 out of 7 tags, indicates that there are very

few of the veri�ed tags that do not describe the audio clip at all. This small error can

be attributed mostly to the easily �lterable junk words that we decided to present

to the participants during this experiment (such as `same,' `di�,' etc.).

The results for questions 3 and 4 indicate the quality of the unveri�ed tags.

One would expect the mean percentage for question 3 to be lower than for question

1, and the mean percentage for question 4 to be higher than for question 2. This

is exactly what is observed in the results. For question 3, the mean is 51.84%

(s.d.=7.33), which is equivalent to 8-9 out of 17 tags, indicating that in general, a
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Figure 3.12: Results of questions 1-4 in tag quality survey

.

smaller proportion of the unveri�ed tags are useful for describing an audio clip. For

question 4, the mean is 36.61% (s.d.=6.8) or 6 out of 17 tags, suggesting that a

greater proportion of the unveri�ed tags have nothing to do with the content of the

music than the veri�ed tags. The di�erence between the percentage of good quality

tags in question 1 and 3 is statis-tically signi�cant (F(1,38)=92.74, p � 0.001), and

likewise for the di�erence between question 2 and 4 (F(1,38)=62.96, p � 0.001).

However, it is worth noting that there are usually many more unveri�ed tags than

veri�ed tags. In some ways, the result is surprising in that a non-trivial proportion

of the unveri�ed tags actually describe the content of the music. This implies that

the tail list of the collected tags is still potentially useful as data for search.

3.2.3.7 Discussion

One of the key ideas of the output-agreement mechanism �rst utilized in the

ESP Game is that labeled data can be assigned high con�dence if it is veri�ed

by multiple players, which motivated the use of agreement. We have shown that

agreement is neither the only nor always the best mechanism for data extraction. In

this section, we outline the major characteristics of the input-agreement mechanism

and the conditions under which it is most applicable for data collection.

Multiple Levels of Veri�cation

The input-agreement mechanism allows multiple opportunities to verify that a

tag is in fact a good description for an audio clip. First, each player's descriptions are

implicitly veri�ed by their partner during the game; that is, players will only choose

'same' if they believe that their partner's descriptions are appropriate for the audio

clip they themselves are listening to. Likewise, players will only choose 'di�erent' if

they believe that their partner's descriptions do not adequately describe the audio
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clip. In other words, the task of guessing whether the players are listening to the

same or di�erent audio clips is a good indicator of whether the tags are appropriate

for the audio clips.

A second level of veri�cation takes place o�ine after the data has been collected,

where descriptions become o�cial tags for the audio clip only if they are veri�ed

by greater than x players. The higher x is, the more con�dence we have about

the appropriateness of the descriptions for the audio clip. This utilizes the idea of

agreement that is prevalent in the output-agreement games. However, the main

di�erence here is that agreements between tags are not captured during the game,

but afterwards. This is essential for collecting descriptions for data which has

high description entropy�such as sounds, music, and videos�where agreement of

descriptions between two partners is di�cult to attain during the game, and which,

in turn, may cause user dissatisfaction.

Lack of Cheating Strategies

The prevention of cheating is one of the major issues in the design of human

computation games. In the ESP Game, for example, a pair of players can cheat

if they settle on a strategy of typing in the same tag in order to match with each

other, regardless of the content of the image. This problem is usually addressed by

two countermeasures: (1) adding a delay in the player matching process so it is not

guaranteed that two people who click `play' simultaneously will be matched, and

(2) giving players inputs for which the correct answers are already known.

An important property of the input-agreement mechanism is that there is no

obvious strategy for cheating. While our goal is to collect tags for audio clips, the

objective of the game is not to tag, but to judge from the tags entered whether

the players are listening to the same audio clip. There are three basic features

of the input-agreement mechanism that result in a lack of cheating strategies, as

well as a lack of need for cheating: (1) neither player holds the ground truth, (2)

each player must derive this ground truth from the other's descriptions, and (3)

players are rewarded only if both of them obtain the ground truth. In short, by

being truthful to each other, players increase their probability of obtaining the

ground truth and scoring points, which as a result, generates valid descriptions

for the audio clips served in the game. The pre-agreed cheating strategies that

are potentially detrimental to an output-agreement game are not a problem here,

because the players are allowed to communicate anyway.

Increased Complexity of Collected Tags

One of the common problems in output-agreement games is that in their e�orts

to match with each other, players choose to enter short, obvious, and general

descriptions. This problem is alleviated, but not completely solved, by the introduc-

tion of �taboo� words. In input-agreement games, the goal is not to match on the

tags, but to provide descriptions of the input data that are as detailed and accurate
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as possible so that the partners can guess the ground truth successfully. This allows

tags to be longer and more varied. This is evident in the results obtained from the

experiment presented in the previous section, showing that a non-trivial number of

the longer, more complex tags in the tail list are valid descriptions of the audio clips.

Conditions of Applicability

As mentioned previously, the input-agreement mechanism can be applied to col-

lect data about input objects with high description entropy. In fact, the TagATune

game can be readily transformed to handle images, videos and text. The appli-

cability of the input-agreement mechanism is not limited to multimedia objects.

Indeed, since the launch of TagATune, two games [Law 2009a, Ma 2009] have al-

ready been developed in the domain of Web search using a modi�ed version of the

input-agreement mechanism.

3.2.4 Using TagATune for Evaluation

3.2.4.1 Motivation

An unanticipated �nding was that TagATune can be used to evaluate the perfor-

mance of automated music tagging algorithms. This new use of games for eval-

uation diverges from the conventional way to evaluate audio tagging algorithms,

which involves measuring the level of agreement between the output generated by

the algorithm and the ground truth set. Agreement-based metrics, e.g. accuracy,

precision, F-measure and ROC curve, have been long-time workhorses of evaluation,

accelerating the development of new algorithms by providing an automated way to

gauge performance.

The most serious drawback to using agreement-based metrics is that ground

truth sets are never fully comprehensive [Law 2008]. First, there are exponentially

many sets of suitable tags for a piece of music � creating all possible sets of tags and

then choosing the best set of tags as the ground truth is di�cult, if not impossible.

Second, tags that are appropriate for a given piece of music can simply be missing in

the ground truth set because they are less salient, worded di�erently (e.g. baroque

versus 17th century classical), or that they do not facilitate the objectives of the

particular annotator. For example, a last.FM user who wants to showcase his ex-

pertise on jazz music may tag the music with highly obscure and technical terms. In

output-agreement games such as MajorMiner [Mandel 2009b] and the Listen Game

[Turnbull 2007b], where the scoring depends on how often players' tags match with

one another, players are motivated to enter (or select) tags that are common, thereby

omitting tags that are rare or verbose. Furthermore, because an exhaustive set of

negative tags is impossible to specify, when a tag is missing, it is impossible to know

whether it is in fact inappropriate for a particular piece of music.

Agreement-based metrics also impose restrictions on the type of algorithms that

can be evaluated. To be evaluated, tags generated by the algorithms must belong
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to the ground truth set. This means that audio tagging algorithms that are not

trained on the ground truth set, e.g. those that use text corpora or knowledge bases

to generate tags, cannot be evaluated using agreement-based metrics.

Finally, the evaluation of algorithms in Music Information Retrieval (MIR) also

requires substantial human e�ort. MIREX [Mirex 2012] is an annual benchmark-

ing competition for evaluating and comparing MIR algorithms, e.g., for classifying

audio, measuring music similarity, detecting onsets and keys, and retrieving music

via a variety of modalities. In some cases, human judges were needed to evaluate

the output of the algorithms. For example, to evaluate the algorithms submitted

for the �music similarity and retrieval� track, typically around 40�50 researchers

are required to each invest 3�4 hours of their time to help evaluate the competing

algorithms.

To be useful, tags generated by audio tagging algorithms must, from the per-

spective of the end user, accurately describe the music. However, because we do

not yet fully understand the cognitive processes underlying the representation and

categorization of music, it is often di�cult to know what makes a tag �accurate� and

what kinds of inaccuracies are tolerable. For example, it may be less disconcerting

for users to receive a folk song when a country song is sought, than to receive a sad,

mellow song when a happy, up-beat song is sought. Ideally, an evaluation metric

should measure the quality of the algorithm by implicitly or explicitly capturing the

users' di�erential tolerance of incorrect tags generated by the algorithms. The new

evaluation metric we are proposing here has exactly this desired property.

The problems highlighted above suggest that music tagging algorithms, espe-

cially those used to facilitate retrieval, would bene�t enormously from evaluation by

human users. Manual evaluation is, however, often too time-consuming or costly to

be feasible. Human computation is a new area of research that studies how to build

systems, such as simple casual games, to collect annotations from human users. In

this work, we investigate the use of a human computation game called TagATune

to collect evaluations of algorithm-generated music tags. In an o�-season MIREX

[Downie 2008] evaluation task, we compared the performance of �ve audio tagging

algorithms under the newly proposed metric, and present our �ndings.

3.2.4.2 TagATune as an Evaluation Platform

In TagATune, when a human partner is not available, a player is paired with a

computer bot, which outputs tags that have been previously collected by the game

for the particular music clip served in each round. This so-called aggregate bot

serves tags that are essentially the ground truth, since they were provided by human

players.

The key idea behind TagATune as an evaluation platform is that the aggregate

bot can be replaced by an algorithm bot, which enters tags that were previously gen-

erated by an algorithm. An interesting by-product of playing against an algorithm

bot is that by guessing same or di�erent, the human player is essentially making

a judgment on the appropriateness of the tags generated by the algorithm. Unlike
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the conventional evaluation metrics where a tag either matches or does not match

a tag in the ground truth set, this evaluation method involves set-level judgments

and can be applied to algorithms whose output vocabulary is arbitrarily di�erent

from that of the ground truth set.

3.2.4.3 Special TagATune Evaluation

To solicit submissions of audio tagging algorithms whose output can be used to

construct the TagATune algorithm bots, a �Special TagATune Evaluation� was run

o�-season under the MIREX rubric. Participating algorithms were asked to provide

two di�erent types of outputs:

1. a binary classi�cation decision as to whether each tag is relevant to each clip.

2. a real valued estimate of the `a�nity' of the clip for each tag. Larger values

of the a�nity score indicate that a tag is more likely to be applicable to the

clip.

The Dataset

In the context of the o�-season MIREX evaluation task, we trained the partici-

pating algorithms on a subset of the TagATune dataset, such that the tags they

generated could be served by the algorithm bots in the game. The training and test

sets comprise of 16289 and 100 music clips respectively. The test set was limited

to 100 clips for both the human evaluation using TagATune and evaluation using

the conventional agreement-based metrics, in order to facilitate direct comparisons

of their results. Each clip is 29 seconds long, and the set of clips are associated

with 6622 tracks, 517 albums and 270 artists. The dataset is split such that the

clips in the training and test sets do not belong to the same artists. Genres include

Classical, New Age, Electronica, Rock, Pop, World, Jazz, Blues, Metal, Punk etc.

The tags used in the experiments are each associated with more than �fty clips,

where each clip is associated only with tags that have been veri�ed by more than

two players independently.

Participating Algorithms

There were �ve submissions, which we will refer to as Mandel, Manzagol,

Marsyas, Zhi and LabX1 from this point on. A sixth algorithm we are using for

comparison is called AggregateBot, which serves tags from a vocabulary pool of

146 tags collected by TagATune since deployment, 91 of which overlap with the 160

tags used for training the algorithms. The inclusion of AggregateBot demonstrates

1The LabX submission was identi�ed as having a bug which negatively impacted its perfor-

mance, hence, the name of the participating laboratory has been obfuscated. Since LabX essen-

tially behaves like an algorithm that randomly assigns tags, its performance establishes a lower

bound for the TagATune metric.
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the utility of TagATune in evaluating algorithms that have di�erent tag vocabulary.

Game-friendly Evaluation

An important requirement for using human computation games for evaluation is

that the experiment does not signi�cantly degrade the game experience. We describe

here a few design strategies to maintain the enjoyability of the game despite the use

of algorithm bots whose quality cannot be gauged ahead of time.

First, a TagATune round is randomly chosen to be used for evaluation with

some small probability x. This prevents malicious attempts to arti�cially boost or

degrade the evaluation of particular algorithms, which would be easy to do if players

can recognize that they are playing against an algorithm bot. Second, while it may

be acceptable to use half of the rounds in a game for evaluating good algorithms,

one round may be one too many if the algorithm under evaluation always generates

completely wrong tags. Since we do not know ahead of time the quality of the

algorithms being evaluated, x must be small enough such that the e�ects of bad

algorithms on the game will be minimized. Finally, using only a small portion of

the game for evaluation ensures that a wide variety of music is served, which is

especially important when the test set is small.

Despite the small probability of using each round for evaluation, the game ex-

perience can be ruined by an algorithm that generates tags that are contradictory

(e.g. slow followed by fast, or guitar followed by no guitar) or redundant (e.g. string,

violins, violin). Our experience shows that players are even less tolerant of a bot

that appears �stupid� than of one that is wrong. Unfortunately, such errors occur

quite frequently. Table 3.4 provides a summary of the number of tags generated (on

average) by each algorithm for the clips in the test set, and how many of those are

removed because they are contradictory or redundant.

Algorithm Generated Contradictory or Redundant

Mandel 36.47 16.23

Marsyas 9.03 3.47

Manzagol 2.82 0.55

Zhi 14.0 5.04

LabX 1.0 0.00

Table 3.4: Average number of tags generated by algorithms and contradictory/redundant

ones among the generated tags

To alleviate this problem, we perform the following post-processing step on the

output of the algorithms. First, we retain only tags that are considered relevant

according to the binary outputs. Then, we rank the tags by a�nity. Finally, for

each tag, starting from the highest a�nity, we manually remove lower a�nity tags

with which it is mutually exclusive. Although this reduces the number of tags

available to the algorithm bots to serve in the game, we believe that this is a sensible
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post-processing step for any tag classi�cation algorithms.

An alternative method of post-processing would be to �rst organize the

�relevant� tags into categories (e.g. genre, volume, mood) and retain only the tag

with the highest a�nity score in each category, thereby introducing more variety

in the tags to be emitted by the algorithm bots. We did not follow this approach

because it may bias performance in an unpredictable fashion and favour the output

of certain algorithms over others.

Evaluation Using The TagATune Metric

During an evaluation round, an algorithm is chosen to emit tags for a clip drawn

from the test set. The game chooses the algorithm-clip pair in a round robin fashion

but favors pairs that have been seen by the least number of unique human players. In

addition, the game keeps track of which player has encountered which algorithm-clip

pair, so that each evaluator for a given algorithm-clip pair is unique.

Suppose a set of algorithms A = {ai, . . . , a|A|} and a test set S = {sj , . . . , s|S|}
of music clips. During each round of the game, a particular algorithm i is given

a clip j from the test set and asked to generate a set of tags for that clip. To be

a valid evaluation, we only use rounds where the clips given to the human player

and the algorithm bot are the same. This is because if the clips are di�erent, an

algorithm can output the wrong tags for a clip and actually help the players guess

correctly that the clips are di�erent.

A human player's guess is denoted as G = {0, 1} and the ground truth is denoted
as GT = {0, 1}, where 0 means that the clips are the same and 1 means that the

clips are di�erent. The performance P of an algorithm i on clip j under TagATune

metric is as follows:

Pi,j =
1

N

N∑
n

δ(Gn,j = GTj) (3.1)

where N represents the number of players who were presented with the tags gen-

erated by algorithm i on clip j, and δ(Gn,j = GTj) is a Kronecker delta function

which returns 1 if, for clip j, the guess from player n and the ground truth are the

same, 0 otherwise. The overall score for an algorithm is averaged over the test set

S:

Pi =
1

S

S∑
j

Pi,j (3.2)

Evaluation Using Agreement-Based Metrics

We have chosen to compute the performance of the participating algorithms

using a variety of agreement-based metrics that were included in the 2008 MIREX

ATC task, as a comparison against the TagATune metric. These metrics include

precision, recall, F-measure, the Area Under the Receiver Operating Characteristic
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curve (AUC-ROC) and the accuracy of the positive and negative example sets for

each tag. We omitted the �overall accuracy� metric, as it is a very biased statistics

for evaluating tag classi�cation models where there is a large negative to positive

tag ratio.

As the TagATune game and metric necessarily focus on the �rst few tags returned

by an algorithm (i.e. tags that have the highest a�nity scores), we chose to also

calculate the Precision-at-N (P@N ) score for each algorithm. This additional set

of statistics allows us to explore the e�ect of sampling the top few tags on the

performance of the algorithms.

Algorithm TagATune metric Precision Recall F-measure

AggregateBot 93.00% � � �

Mandel 70.10% 0.1850 0.7313 0.2954
Marsyas 68.60% 0.4684 0.4583 0.4633
Manzagol 67.50% 0.4574 0.1398 0.2141
Zhi 60.90% 0.2657 0.4030 0.3203
LabX 26.80% 0.03 0.0033 0.0059

Table 3.5: Evaluation statistics under the TagATune versus agreement-based metrics

Algorithm Precision at N Precision for AUC-ROC
3 6 9 12 15 `relevant' tags

Mandel 0.6133 0.5083 0.4344 0.3883 0.3387 0.1850 0.8514
Marsyas 0.7433 0.5900 0.4900 0.4308 0.3877 0.4684 0.9094
Manzagol 0.4767 0.3833 0.3222 0.2833 0.2520 0.4574 0.7521
Zhi 0.3633 0.3383 0.3100 0.2775 0.2480 0.2657 0.6697
LabX � � � � � 0.03 �

Table 3.6: Precision and AUC-ROC statistics collected for each algorithm

Statistical Signi�cance

Friedman's ANOVA [Downie 2008] is a non-parametric test that can be used to

determine whether the di�erence in performance between algorithms is statistically

signi�cant. For each algorithm, a performance score is computed over the test set.

Using the TagATune metric, this performance score is the percentage of unique

players that correctly judged that the clips are the same or not using the tags

emitted by the algorithm, computed using equation (1) and (2). For automated

statistical evaluations, such as those performed during the MIREX ATC task, these

may be the F-measure or P@N for the �relevant� tags generated for each clip, or

the AUC-ROC for the �a�nity� scores. These scores can be viewed as a rectangular

matrix, with the di�erent tagging algorithms represented as the columns and the

clips (or the tags, in the case of F-measure aggregated over each tag) forming the

rows.

To avoid having variance introduced by di�erent tags a�ecting the scaling and

distribution of the scores, Friedman's test replaces the performance scores with their
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ranks amongst the algorithms under comparison.

Friedman's ANOVA is used to determine if there exists a signi�cant di�erence

in performance amongst a set of algorithms. If a di�erence is detected, then it is

common to follow up with a Tukey-Kramer Honestly Signi�cant Di�erence (TK-

HSD) test [Tukey 1953, Kramer 1956] to determine which pairs of algorithms are

actually performing di�erently. This method does not su�er from the problem that

multiple t-tests do where the probability of incorrectly rejecting the null hypothesis

(i.e. that there is no di�erence in performance) increases in direct proportion to the

number of pairwise comparisons conducted.

3.2.4.4 Results

Tables 3.5 and 3.6 provide summaries of the evaluation statistics collected for each

algorithm under the TagATune metric as well as agreement-based metrics. Each

of the summary results was computed over the 100 clips in the test set, while the

statistical signi�cance tests were computed over the results for each individual

clip. The following sections detail additional statistics that were collected by the

TagATune evaluation.

Algorithm Ranking

According to the TK-HSD test on the TagATune metric results, AggregateBot's

performance is signi�cantly better than all the others. A second group of equally

performing algorithms consists of Mandel, Manzagol, Marsyas, and Zhi. LabX is the

sole member of the worst performing group. Figure 3.13 highlights these TK-HSD

performance groupings.

Several authors have speculated on the possibility of a �glass-ceiling� on the

performance of current music classi�cation and similarity estimation techniques. As

identi�ed by Aucouturier [Aucouturier 2006], many of these techniques are based

on `bag-of-frames' approaches to the comparison of the audio streams. Hence, the

lack of a signi�cant di�erence among the performances of the correctly functioning

algorithms is not surprising.

The TK-HSD ordering of the algorithms using the F-measure scores (Table 3.5

and Figure 3.14) is di�erent from that produced by the TagATune scores. Notably,

the Marsyas algorithm signi�cantly outperforms the other algorithms and the Zhi

algorithm has improved its relative rank considerably.

These di�erences may be attributed to the fact that the performance of the

Marsyas and Zhi algorithm is more balanced in terms of precision and recall than

the Mandel algorithm (which exhibits high recall but low precision) and the Man-

zagol algorithm (which exhibits high precision but low recall). This conclusion is

reinforced by the positive and negative accuracy scores, which demonstrate the ten-

dency of the Mandel algorithm to over-estimate and Manzagol to under-estimate

relevancy. Metrics that take into account the accuracies of all tags (e.g. F-measure)

are particularly sensitive to these tendencies, while metrics that consider only the
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top N tags (e.g. the TagATune metric and P@N ) are a�ected little by them.

These results suggest that the choice of an evaluation metric or experiment must

take into account the intended application of the tagging algorithms. For example,

the TagATune metric may be most suitable for evaluating retrieval algorithms that

use only the highest ranked tags to compute the degree of relevance of a song to a

given query. However, for applications that consider the all relevant tags regardless

of a�nity, e.g. unweighted tag clouds generators, the TagATune metric is not neces-

sarily providing an accurate indication of performance, in which case the F-measure

might be a better candidate.

Game Statistics

In a TagATune round, the game selects a clip from the test set and serves the

tags generated by a particular algorithm for that clip. For each of the 100 clips in

the test set and for each algorithm, 10 unique players were elicited (unknowingly)

by the game to provide evaluation judgments. This totals to 5000 judgments,

collected over a one month period, involving approximately 2272 games and 657

unique players.

One complication with using TagATune for evaluation is that players are

allowed to make the decision of guessing same or di�erent at any point during a

round. This means that the number of tags reviewed by the human player varies

from clip to clip, algorithm to algorithm. As a by-product of game play, players

Figure 3.13: Tukey-Kramer HSD results based on the TagATune metric
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Figure 3.14: Tukey-Kramer HSD results based on the F-measure metric

Figure 3.15: Tukey-Kramer HSD results based on the AUC-ROC metric
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Figure 3.16: Number of tags available and reviewed by players before guessing

are motivated to guess as soon as they believe that they have enough information

to guess whether the clips are the same or di�erent. Figure 3.16, which shows that

players reviewed only a small portion of the generated tags before guessing, re�ects

this situation.

Figure 3.17 shows the average number of tags reviewed by players and how

many of the reviewed tags are actually true positive tags (according to the ground

truth) in success rounds (where the human player made the correct guess) versus

failed rounds (where the human player made the wrong guess). Results show that

generally the number of true positive tags reviewed is greater in success rounds

than in failed rounds, suggesting that players are more likely to fail at guessing

when there are more top-a�nity tags that are wrong. Additionally, the average

number of tags reviewed before guessing is fewer in the failed rounds than in the

success rounds, with the exception of Mandel, possibly due to outliers and the

much greater number of tags that this algorithm returns. This suggests that players

make their guesses more hastily when algorithms make mistakes.

A natural question to ask is whether one can detect from game statistics which

of the reviewed tags actually caused players to guess incorrectly.

To investigate this question, we consult the game statistics for the most frequent

behavior of human players in terms of the number of tags reviewed before guessing,
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Figure 3.17: Number of overall and true positive tags evaluated in success and failed rounds

in the case when the guess is wrong. For example, we might �nd that most players

make a wrong guess after reviewing n tags for a particular algorithm-clip pair. The

hypothesis is that the last tag reviewed before guessing, i.e. the nth tag, is the

culprit.

System failed round success round

Mandel 86.15% 49.00%
Marsyas 80.49% 45.00%
Manzagol 76.92% 33.33%
Zhi 84.38% 70.10%
LabX 100.0% 95.77%

Table 3.7: Percentage of the time that the last tag displayed before guessing is wrong in a

failed round versus success round

Table 3.7 shows the percentage of times that the nth tag is actually wrong in

failed rounds, which is above 75% for all algorithms. In contrast, the probability

of the last tag being wrong is much lower in success rounds, showing that using

game statistics alone, one can detect problematic tags that cause most players to

make the wrong guess in the game. This trend does not hold for LabX, possibly

because players were left guessing randomly due to the lack of information (since

this algorithm generated only one tag per clip).

In this section, we demonstrate how TagATune is a feasible evaluation platform



3.3. Learning from TagATune Data 61

for collecting a large number of evaluations from human users in a timely fashion.

While there are many benchmarking competitions for algorithms, little is said about

the level of performance that is acceptable for real world applications. In particular,

we show how aggregated data can be used as a benchmark against which algo-

rithms are judged. Speci�cally, human players can correctly guess that the music

are the same 93% of the times when paired against the aggregate bot, while only

approximately 70% of the times when paired against an algorithm bot.

3.3 Learning from TagATune Data

In the previous section, we introduced a new human computation game called

TagATune that outperforms the output-agreement mechanism for extracting mu-

sic attributes from players. The remaining question is, are the data extracted by

TagATune actually useful for training music tagging algorithm.

The ideal datasets used in training supervised learning algorithms should have

a large and roughly equal number of examples for each class. Now consider two

di�erent versions of human computation games that collect tags for music. One

solution, as prescribed in the Listen Game [Turnbull 2007c], is to randomly draw

a small set of tags (e.g., �classical,� �slow,� �violin�) from a pre-de�ned pool of 82

tags, and have game players choose the ones that describe the music clips. Another

solution is to allow a pair of players complete freedom in entering any tags that

come to mind. TagATune, for example, gives a pair of players two pieces of music,

allow them exchange tags freely, and reward players when they can guess correctly

whether the two pieces of music are the same or di�erent. TagATune proved to be

extremely fun�it has been played by tens of thousands of players, collecting over a

million annotations. However, the data it collected was also extremely noisy. There

are synonyms (e.g., �calm� versus �smoothing,� �violins� versus �strings�), spelling

mistakes, communications between players (e.g., �yes,� �how are you,� �di�erent�),

and compound phrases (e.g., �cookie monster vocal�) that are associated with very

few examples. Learning from such open vocabulary data requires the development

of new methods. TagATune is a prime example of sacri�cing clean data (which is the

system's objective) in order to make the game more fun and attractive to players.

In this section, we explore the challenges of training machine learning algorithms

using noisy data collected by human computation games. Speci�cally, we answer

the question of whether music tagging algorithms can be trained using the noisy,

open vocabulary music tags collected by TagATune. We present a new technique

for classifying multimedia objects by tags, that is scalable (i.e., makes full use of the

huge number of noisy labels that are freely available over the Web) and e�cient (i.e.,

the training time remains reasonably short as the tag vocabulary grows). The main

idea of our technique is to organize noisy tags into well-behaved labels using topic

modeling, and learn to predict tags accurately using a mixture of topic labels. Using

the TagATune [Law 2009b] dataset as a case study, we compare the tags generated

by our proposed method (Topic Method) versus binary classi�cation using tags
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directly as labels (Tag Method), both in terms of their relevance for each music

clip, as well as their utility in facilitating the retrieval of relevant music by text.

We also highlight a longstanding issue regarding the evaluation of music classi�ers

by ground truth set comparison, which is especially severe on open vocabulary

tasks. Speci�cally, using the results from several Mechanical Turk studies, we show

that human evaluations are essential for measuring the true performance of tag

classi�ers, which the traditional evaluation methods will consistently underestimate.

In addition, tag diversity is found to be an important factor in human judgment of

annotation quality not considered by most evaluation metrics or learning algorithms.

3.3.1 Motivation

In order to e�ectively organize and retrieve the ever growing collection of music

over the Web, many automatic tag generation algorithms have been developed

[Bertin-Mahieux 2008b, Ho�man 2009, Turnbull 2008b]. These so-called music tag-

gers are useful for generating tags for songs that are rarely annotated by any Internet

users, such as new music that just emerged on the market, or existing music be-

longing to lesser-known artists. Once generated, these tags can be used to support

music search and recommendation on a semantic level.

In previous work, the labels used to train music taggers are considered to

be devoid of errors and belonging to a small �xed vocabulary, and hence, can

be directly used for training. For example, there exist music taggers using

a variety of machine learning techniques, including Support Vector Machines

[Li 2003, Mandel 2005], Gaussian Mixture Models [Turnbull 2007a, Turnbull 2008b],

Boosting [Bertin-Mahieux 2008b], Logistic Regression [Bergstra 2006b], and other

probabilistic models [Ho�man 2009]. All of these methods are trained on labels

that are on the order of tens to few hundreds, as opposed to thousands to tens of

thousands. For example, the Gaussian Mixture Model proposed in [Turnbull 2007a]

is trained on a dataset collected from 66 paid volunteers, with 500 songs and a

vocabulary size of 159 unique tags. Bertin-Mahieux et al. [Bertin-Mahieux 2008b]

retained only 360 of the most popular tags from Last.FM as labels for training a

artist-level tag classi�er. This is in contrast to the TagATune dataset used for our

experiments, which has over 30,000 clips, over 10,000 unique tags collected from

tens of thousands of users.

In contrast, the tags collected by collaborative tagging websites or human com-

putation games are noisy, i.e., they can be misspelled, redundant (due to synonyms),

irrelevant to content (e.g., for organizational purpose only), and unlimited in num-

bers. It is di�cult, from a learning perspective, to know what classes to learn, or

determine when the number of examples is su�cient for training a particular class. It

is also computationally ine�cient to train a classi�er for each tag, as the vocabulary

can grow to be in the tens of thousands, or millions.

The broad problem that this work addresses is the problem of noise in datasets.

Most previous work focuses on noise that is introduced when examples are misclassi-

�ed into a di�erent class [Brodley 1999, Rebbapragada 2007, Zhu 2003], and suggest
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a variety of methods for discarding, correcting, or re-weighting instances that are

deemed incorrectly labeled, in order to improve classi�cation accuracy.

In our work, we address a di�erent noise problem in datasets � the over-

fragmentation of the label space due to synonyms, misspelling and compound

phrases. This label noise problem is readily found in the tags produced by collabo-

rative tagging websites (such as last.FM) [Lamere 2008b] and human computation

games such as TagATune [Law 2009b], where an open vocabulary is allowed.

Source Type Example

last.FM content irrelevant albums I own, favorites, awesome

synonyms deutsch, german

misspelling harpsicord (harpsichord)

compound eclectic celtic, political hip-hop

TagATune content irrelevant hello, you're good too, yes agree

synonyms choir, choral, chorus, singing

misspelling chello (cello), ipano (piano) vioin (violin)

compound country techno, guitar plucking

Table 3.8: Examples of Noisy Tags.

Table 3.8 shows examples of noisy tags from last.FM and TagATune by types.

First, some tags are irrelevant to the audio characteristics of the music, and serve

only the purpose of organization (e.g., �albums I own�), expression of opinions (e.g.,

�awesome�), or communication with the partner, in the case of games (e.g., �hello�).

The second, and likely the most common, type of noise are synonyms and mis-

spellings, which render music that should be in the same class to belong to di�erent

classes. Finally, a large portion of the tags are compound phrases with multiple

descriptors. These tags tend to be highly speci�c, but are associated with very few

music clips. When used as labels to train a music tagger, compound tags result in

classes that contain very few positive examples.

Some recent work focuses on mitigating the problem of noisy tags from collabo-

rative tagging websites, by learning the distinction between content relevant versus

content irrelevant tags [Iwata 2009], or by discovering higher level concepts using co-

occurrence statistics in the tags [Laurier 2009, Levy 2007]. However, none of these

work explored the use of these higher-level concepts as labels in training annotation

and retrieval algorithms.

3.3.2 Problem Formulation

This section presents the music annotation and retrieval problem formally. All

vector quantities are denoted in bold. In both problems, we are given as training

data a set of N music clips C = {c1, . . . , cN} each of which has been annotated by

humans using tags T = {t1, . . . , tV } from a vocabulary of size V . Each music clip

ci = (~ai, ~ri) is represented as a tuple, where ~ai = ZV is a the ground truth tag vector

containing the frequency of each tag in T that has been used to annotate the music

clip by humans, and ~ri = RM is a vector of M real-valued acoustic features, which

describes the characteristics of the audio signal itself.
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(a) Training (b) Inference

Figure 3.18: The training and inference phase of the proposed model

The goal of music annotation is to learn a function f̂ : R× T → R, which maps

the acoustic features of each music clip to a set of scores that indicate the relevance

of each tag for that clip. Having learned this function, music clips can be retrieved

for a search query q by rank ordering the distances between the query vector (which

has value 1 at position j if the tag tj is present in the search query, 0 otherwise) and

the tag probability vector for each clip. Following [Turnbull 2008b], these distances

are measured using KL divergence, which is a common measure of distance between

two distributions. Note that the query vector is a valid multinomial distribution

(i.e. sums to 1) for one-word queries, which are what we used to evaluate retrieval

performance in this work.

3.3.3 Proposed Algorithm

As mention previously, most prior works train music taggers using the ground truth

tags directly as labels. This training approach becomes infeasible when ground truth

tags are collected by applications, such as collaborative tagging websites or human

computation games, that do not enforce a controlled vocabulary. In this work, we

propose an new method of generating tags, by �rst learning a mapping from audio

features to a small set of topic labels that can cover all tags in the vocabulary, then

using these high-level labels to recover the tags that are the most relevant for any

music clip.

The inspiration of our approach comes from the work by Palatucci et al

[Palatucci 2009] on zero-shot learning, where the problem is to learn a classi�er

to predict a huge number of labels, many of which can be missing from the training

set. The particular application they are interested in, is predicting the word that

a person is thinking about (e.g., dog) from the fMRI image of that person's brain.

To train such a classi�er using supervised learning, one would need to create a

dataset containing multiple fMRI images corresponding to each word in the English

language, which would be too costly. Instead, the authors advocate an alternative

method of mapping image features to a set of semantic codes that can cover all words

in the English language (e.g., a boolean vector indicating the answers to questions

such as �Does it breathe under water?�, �Is it slow moving?�, �Is it furry?�, �Is it

carnivorous?� etc). Given a new fMRI image, the classi�er can predict the semantic

code of that image, then �nd the word in the knowledge base whose semantic code
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is closest to the prediction [Palatucci 2009].

In this section, we will describe in detail the training and inference phase of our

proposed method, as depicted in Figure 3.18.

3.3.3.1 Training Phase

Our training phase (Figure 3.18(a)) is a two stage process. In the �rst stage, we

induce a topic model using the ground truth tags associated with each music clip

in the training set. This topic model allows us to infer the topic distribution of

each music clip in the training set, and use these inferred topic distributions as new

labels. The second stage involves training a classi�er to predict topic distributions

from audio features.

Stage 1: Topic Modeling using LDA

A topic model [Blei 2003, Steyvers 2007] is a hierarchical probabilistic model

that describes the process for generating the constituents of an entity (e.g., words of

an article [Erosheva 2004], musical notes in a score [Hu 2009], or pixels in an image)

from a set of latent topics. In the �rst stage of the training phase, our goal is to

drastically reduce the size of the label space, from thousands of tag labels to tens of

topic labels, by learning a set of topics over the ground truth music tags that were

collected by TagATune.

In our topic model, each topic is a distribution over music tags, and each music

clip is associated with a set of topics with di�erent probabilities. Figure 3.19(a)

shows an example of a topic model (with 10 topics) learned over the music tags col-

lected by TagATune. Figure 3.19(b) and Figure 3.19(c) show the topic distributions

for two very distinct music clips and the ground truth tags associated with them (in

the caption). The music clip represented by Figure 3.19(b) is associated with topic

4 (the �classical violin� topic) and topic 10 (the �female opera singer� topic), and

the music clip represented by Figure 3.19(c) is associated with topic 7 (the ��ute�

topic) and topic 8 (the �quiet ambient music� topic).

In this work, we adopt a widely used method in topic modeling called the Latent

Dirichlet Allocation (LDA) [Blei 2003], as depicted in Figure 3.20. Given N music

clips, V unique tags, and K topics, LDA is a probabilistic latent variable model,

where the observed variables (shaded in grey) are ai,j , the ground truth tags associ-

ated with music clip ci, and the hidden variables to be inferred (circled in bold) are:

(i) θi, the topic distribution for each music clip ci, (ii) Ψk, the probability of each

ground truth tag aj in topic k, and (iii) Zi,j the topic responsible for generating the

ground truth tag ai,j for music clip ci, where i = 1, . . . , N and j = 1, . . . , V , and

k = 1, . . . ,K.

The central innovation in LDA, over other topic model formulations such as

Probabilistic Latent Semantic Indexing (pLSI) [Hofmann 1999], is the use of a

Dirichlet prior on the topic distribution θi (with hyperparameters α = α1 = · · · =

αK) and on the tag distribution Ψk for each topic (with hyperparameter β). These
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1 electronic beat fast drums synth dance beats jazz

2 male choir man vocal male_vocal vocals choral singing

3 indian drums sitar eastern drum tribal oriental mid-

dle_eastern

4 classical violin strings cello violins classic slow orchestra

5 guitar slow strings classical country harp solo soft

6 classical harpsichord fast solo strings harpsicord classic harp

7 �ute classical �utes slow oboe classic clarinet wind

8 ambient slow quiet synth new_age soft electronic weird

9 rock guitar loud metal drums hard_rock male fast

10 opera female woman vocal female_vocal singing fe-

male_voice vocals
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(c) chimes, new age, spooky,

�ute, quiet, whsitling, whistle,

�uety, ambient, chime, snare,

soft, high pitch, bells

Figure 3.19: An example of a topic model learned over music tags, and the representation

of two music clips by topic distribution.

θi Ψkα βZi,j ai,j
V

N K

Figure 3.20: Latent Dirichlet Allocation Model.

hyperparameters are �xed.

Together, LDA speci�es a joint distribution over observed and hidden variables.

The inference problem, then, is to learn the parameters of the posterior probabil-

ity distribution of the hidden variables (θi, Ψk, Zi,j) conditioned on the observed

data (ai,j) and the hyperparameters (α, β). Because it is intractable to learn this

posterior distribution exactly, approximate methods (e.g., Mean Field Variational
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Inference [Blei 2009], Gibbs Sampling [Steyvers 2007]) have been used to solve LDA.

The particular implementation used in this work is provided by the Mallet toolkit

[McCallum 2002], which uses the Gibbs Sampling method speci�ed in Steyvers et

al [Steyvers 2007].

LDA provides an interesting generative story about how players of TagATune

might have generated the tags for the music clips they are listening to. According

to the model, each player of TagATune would have a topic structure in mind when

describing music. Given a music clip, the player �rst selects a topic according

to the topic distribution for that clip, then generates a tag according to the tag

distribution of the chosen topic. Under this interpretation, our goal in building

a topic model over tags is to discover the topic structure that the players used

to generate tags for music, so that we can leverage a similar topic structure to

automatically tag new music.

Stage 2: Topic Distribution Classi�cation by Maximum Entropy

The topic model derived in stage 1 of the training phase can be used to assign

a ground truth topic distribution to each music clip. In the second stage, our goal

is to learn a function g that maps audio features to topic distributions, using the

ground truth topic distributions as labels for training. Our classi�er of choice is

Maxent (maximum entropy classi�er) [Csiszar 1996], which has been used exten-

sively in text classi�cation [Berger 1996, Nigam 1999], but to our knowledge, rarely

for music tagging. The particular implementation we adopted is from the Mallet

toolkit [McCallum 2002], which uses Limited Memory BFGS [Nocedal 1995] to max-

imize the likelihood of the parameters, and a slight modi�cation of the optimization

procedure provided by Yao et al [Yao 2009] to enable the use of topic distributions,

instead of a single topic, as labels for training the classi�er.

The training phase of our method is a currently a two-step process: we �rst

learn a topic model over tags, then learn a mapping from audio features to topic

distributions. In the future, we may investigate a training procedure that combines

the two steps into one. For example, there has been recent work on topic models

that are learned from not only text, but other metadata associated with the docu-

ments, such as sLDA [Blei 2007] and DMR [Mimno 2008]. Another class of methods

to investigate are semi-supervised techniques for performing factorization and clas-

si�cation simultaneously, such as Support Vector Decomposition Machine (SVDM)

[Pereira 2006] or Collective Matrix Factorization [Singh 2008].

3.3.3.2 Inference Phase

Figure 3.18(b) depicts the process of generating tags for new music clips. For an

unseen music clip c′ and given only its audio features, we can use the function g

learned in stage 2 of the training phase to infer the topic distribution of that clip.

Given this predicted topic distribution, each tag can be given a relevance score for

the music clip c′, by multiplying the probability of that tag in each topic and the
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probability of that topic in c′, summing over all topics, i.e.

p(tj |ri) =

K∑
k

p(tj |z = k) · p(z = k|ri)

where j = 1, . . . , V , i = 1, . . . , N and k = 1, . . . ,K, In reality, there are many

di�erent ways to generate tags from a topic model. For example, one can add a

restriction that says that the generated tags can only come from the top Q topics,

whereQ << K. In future work, we may experiment with di�erent inference schemes,

and compare their e�ectiveness in generating relevant tags for music.

3.3.4 Experiments

Our goal is to compare our proposed method (Topic Method) against the methods

of generating tags using binary classi�cation (Tag Method) or at random (Random

Method), using 5-fold cross validation. The experiments are guided by �ve central

questions:

Feasibility Given a set of noisy music tags, is it possible to learn

a reduced representation of the tag space that is (i) se-

mantically meaningful, and (ii) predictable by content-

based features (e.g., timbre, rhythm etc) of the music?

Annotation How accurate are the generated tags?

Retrieval How well do the generated tags facilitate music re-

trieval?

E�ciency How do the training times compare between methods?

Evaluation To what extent are the evaluations a re�ection of the

true performance of the tag classi�ers?

3.3.4.1 Dataset

The dataset consists of music features and tags collected by TagATune. Figure 3.21

shows the characteristics of the TagATune dataset, in terms of how many ground

truth tags each music clip has, and how many music clips are available to each tag

as training examples. Figure 3.21(a) is a rank frequency plot showing the number of

music clips (y-axis) that have a certain number of ground truth tags (x-axis). The

plot reveals that a majority of the music clips (> 1500) have under 10 ground truth

tags, with around 1300 music clips with only 1 or 2 ground truth tags, and very

few music clips that have a large number (e.g., > 100) of ground truth tags. This

disparity in the number of ground truth tags creates a problem in our evaluation �

many of the generated tags will not be found amongst the ground truth tags, and
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therefore will be considered incorrect when they are in fact correct. Figure 3.21(b)

is a rank frequency plot showing the number of tags that have a certain number of

music clips available to them as training examples. The plot shows that the vast

majority of the tags have few music clips to use as training examples, while a small

number of tags are endowed with a large number of examples. This highlights the

aforementioned sparsity problem that emerges when tags are used directly as labels,

a problem that is addressed by our proposed method.
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Figure 3.21: Characteristics of the TagATune Dataset

We did a small amount of pre-processing on a subset of the data collected by

TagATune until April 2009, tokenizing tags, removing punctuation and four ex-

tremely common tags that are not related to the content of the music, i.e. �yes�,

�no�, �same�, �di��. These tags are natural consequences of the game, since play-

ers communicate with each other in other ways beyond just describing the music

[Law 2009b], such as saying �yes� or �no� to con�rm whether the partner's tags also

describe one's own music clip, or �same� or �di�� to notify the partner of the player's

current guess of whether the music is the same or di�erent.

We also eliminated tags that have fewer than 20 music clips available as training

examples, in order to conduct a comparison against the Tag Method, which requires

su�cient amount of training examples for each binary classi�cation task. This

reduces the number of music clips from 31867 to 31251, and the total number of

ground truth tags from 949,138 to 699,440, and the number of unique ground truth

tags from 14506 to 854. For the purpose of comparison, this reduced set of ground

truth tags is used in both the Topic Method and the Tag Method. Note that we

are throwing away a substantial amount of tag data when we require that each tag

be associated with a minimum number of examples. A motivation for using topic

models to generate tags is that we do not need to throw away any tags at all. Rare

tags, i.e. tags that are associated with only one or two music clips, can still be

grouped into a topic, and used in the annotation and retrieval process.

Each of the 31251 music clips is 29 seconds in duration, and is represented by
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a set of ground truth tags collected via TagATune, as well as a set of content-

based (spectral and temporal) features extracted using the technique described in

[Mandel 2009a]. Spectral features consist of summary statistics (mean and covari-

ance) of a clip's Mel-Frequency Cepstral Coe�cients (MFCC), which describe the

power spectrum of an audio signal on a scale composed of frequencies that are

meaningful to human hearing. Temporal features describe the total magnitude of

di�erent frequency levels over time. The detail of this feature extraction scheme is

available in [Mandel 2009a].

3.3.4.2 Experiment 1: Feasbility

Table 3.9 shows the top 10 words of each topic learned by LDA using the tags col-

lected via TagATune with the number of topics �xed at 10, 20 and 30. In general,

the topics are able to capture meaningful grouping of tags, e.g., synonyms (e.g.,

{�choir�, �choral�, �chorus�}, or {�male�, �man�, �male_vocal�, �male_voice�}), mis-

spellings (e.g., {�harpsichord�, �harpsicord�} or {�cello�, �chello�}), or associations

(e.g., {�indian�, �drums�, �sitar�, �eastern�, �tribal�, �oriental�} or {�rock�, �guitar�,

�loud�, �metal�} ). As we increase the number of topics, there emerge new topics

that are not captured by topic models with fewer number of topics. For example,

in the topic model with 20 topics, topic 3 (which describes soft classical music),

topic 13 (which describes jazz), topic 17 (which describes rap, hip-hop and reggae)

are new topics that are not evident in the topic model with 10 topics. We also

observe some repetition (or re�nement) of topics as the number of topic increases

(e.g., topics 8, 25 and 27 in the 30-topic model all describe female vocal music, but

are slightly di�erent in terms of genre).

It is di�cult to know exactly how many topics can succinctly capture the con-

cepts underlying the music in our dataset. For all our experiments, we empirically

tested how well topic distribution and the best topic can be predicted using audio

features, �xing the number of topics at 10, 20, 30, 40, and 50 topics. Figure 3.22

summarizes the results. We evaluated performance using several metrics, including

accuracy and average rank of the most relevant topic, as well as the KL divergence

between the ground truth and the predicted topic distribution. Although we see a

degration of performance as the number of topics increases, all models (under the

accuracy, average rank, KL divergence metrics) signi�cantly outperform the ran-

dom baseline, which uses random distributions as labels for training. Moreover,

even with 50 topics, the average rank of the most relevant topic is still around 3,

which suggests that the classi�er is capable of predicting the most relevant topic

well. This is crucial, as the most appropriate tags for a music clip are likely to be

found in the most relevant topics for that clip.
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10 Topics
1 electronic beat fast drums synth dance beats jazz electro modern
2 male choir man vocal male_vocal vocals choral singing male_voice pop
3 indian drums sitar eastern drum tribal oriental middle_eastern foreign fast
4 classical violin strings cello violins classic slow orchestra string solo
5 guitar slow strings classical country harp solo soft quiet acoustic
6 classical harpsichord fast solo strings harpsicord classic harp baroque organ
7 �ute classical �utes slow oboe classic clarinet wind pipe soft
8 ambient slow quiet synth new_age soft electronic weird dark low
9 rock guitar loud metal drums hard_rock male fast heavy male_vocal
10 opera female woman vocal female_vocal singing female_voice vocals female_vocals voice

20 Topics
1 indian sitar eastern oriental strings middle_eastern foreign guitar arabic india
2 �ute classical �utes oboe slow classic pipe wind woodwind horn
3 slow quiet soft classical solo silence low calm silent very_quiet
4 male male_vocal man vocal male_voice pop vocals singing male_vocals guitar
5 cello violin classical strings solo slow classic string violins viola
6 opera female woman classical vocal singing female_opera female_vocal female_voice operatic
7 female woman vocal female_vocal singing female_voice vocals female_vocals pop voice
8 guitar country blues folk irish banjo �ddle celtic harmonica fast
9 guitar slow classical strings harp solo classical_guitar soft acoustic spanish
10 electronic synth beat electro ambient weird new_age drums electric slow
11 drums drum beat beats tribal percussion indian fast jungle bongos
12 fast beat electronic dance drums beats synth electro trance loud
13 jazz jazzy drums sax bass funky guitar funk trumpet clapping
14 ambient slow synth new_age electronic weird quiet soft dark drone
15 classical violin strings violins classic orchestra slow string fast cello
16 harpsichord classical harpsicord strings baroque harp classic fast medieval harps
17 rap talking hip_hop voice reggae male male_voice man speaking voices
18 classical fast solo organ classic slow soft quick upbeat light
19 choir choral opera chant chorus vocal vocals singing voices chanting
20 rock guitar loud metal hard_rock drums fast heavy electric_guitar heavy_metal

30 Topics
1 choir choral opera chant chorus vocal male chanting vocals singing
2 classical solo classic oboe fast slow clarinet horns soft �ute
3 rap organ talking hip_hop voice speaking man male_voice male man_talking
4 rock metal loud guitar hard_rock heavy fast heavy_metal male punk
5 guitar classical slow strings solo classical_guitar acoustic soft harp spanish
6 cello violin classical strings solo slow classic string violins chello
7 violin classical strings violins classic slow cello string orchestra baroque
8* female woman female_vocal vocal female_voice pop singing female_vocals vocals voice
9 bells chimes bell whistling xylophone whistle chime weird high_pitch gong
10 ambient slow synth new_age electronic soft spacey instrumental quiet airy
11 rock guitar drums loud electric_guitar fast pop guitars electric bass
12 slow soft quiet solo classical sad calm mellow very_slow low
13 water birds ambient rain nature ocean waves new_age wind slow
14 irish violin �ddle celtic folk strings clapping medieval country violins
15 electronic synth beat electro weird electric drums ambient modern fast
16 indian sitar eastern middle_eastern oriental strings arabic guitar india foreign
17 drums drum beat beats tribal percussion indian fast jungle bongos
18 classical strings violin orchestra violins classic orchestral string baroque fast
19 quiet slow soft classical silence low very_quiet silent calm solo
20 �ute classical �utes slow wind woodwind classic soft wind_instrument violin
21 guitar country blues banjo folk harmonica bluegrass acoustic twangy fast
22 male man male_vocal vocal male_voice pop singing vocals male_vocals voice
23 jazz jazzy drums sax funky funk bass guitar trumpet reggae
24 harp strings guitar dulcimer classical sitar slow string oriental plucking
25* vocal vocals singing foreign female voices women woman voice choir
26 fast loud upbeat quick fast_paced very_fast happy fast_tempo fast_beat faster
27* opera female woman vocal classical singing female_opera female_voice female_vocal operatic
28 ambient slow dark weird drone low quiet synth electronic eerie
29 harpsichord classical harpsicord baroque strings classic harp medieval harps guitar
30 beat fast electronic dance drums beats synth electro trance upbeat

Table 3.9: Topic Model with 10, 20, and 30 topics. The topics in bold in the 20-topic model

are examples of new topics that emerge when the number of topics is increased from 10

to 20. The topics marked by * in the 30-topic model are examples of repeated or re�ned

topics that emerge as the number of topics is increased.
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Figure 3.22: Results showing how well topic distributions or the best topic can be predicted

from audio features. The metrics include accuracy and average rank of the most relevant

topic, and KL divergence between the assigned and predicted topic distribution.
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Figure 3.23: Most music clips are assigned only 1 or 2 topics with non-trivial probabilities.

We also experimented with using the most relevant topic as the label to train

the maximum entropy classi�er, and observe that it produced the same results as

using the topic distribution as a label for training. There are two possible explana-

tions. First, Yao et al [Yao 2009] reported a similar observation, that the �output

of the topic proportion classi�er is often overly concentrated on the single largest

topic�. Therefore, this phenomenon can be an artifact of the particular classi�er

and optimization method we used. Second, we observe that for most music clips

in the TagATune dataset, the topic model assigns very high probabilities to only

a few topics, and low probabilities for all other topics. Figure 3.23(a) shows the

probability of topics at di�erent rank (rank 1= most relevant topic, rank 10 = least

relevant topic), averaged over all music clips. It reveals that the most relevant topic

has average probability of approximately 0.7, followed by the second ranking topic
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with probability < 0.2, and the third ranking topic with probability < 0.05, and the

rest of the topics with very small probabilities. Figure 3.23(b) is a rank frequency

plot showing the number of music clips whose topic distribution have X number

of topics with non-trivial (> 0.1) probability. It is evident that for the majority of

music clips in the TagATune dataset, their topic distributions contain only 1 or 2

topics with non-trivial probabilities.

3.3.4.3 Experiment 2: Annotation Performance

Following [Ho�man 2009], we evaluate the accuracy of the top 10 tags for each

music clip, under three di�erent metrics: per-clip metric, per-tag metric and

omission-penalizing per-tag metric.

Per-Clip Metric

The per-clip precision@N metric measures the proportion of correct tags (ac-

cording to agreement with the ground truth set) amongst the N tags that have the

highest inferred probabilities for each clip, averaged over all the clips in the test set.

The results are presented in Figure 3.24.
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Figure 3.24: Per-clip Metrics. The light-colored bars represent Topic Method with 10, 20,

30, 40 and 50 topics. The dark-colored bar represents the Tag Method. The horizontal line

represent the random baseline, and the dotted lines represent its standard deviation.

Topic Model (using 50 topics) and the Tag Method are almost indistinguishable

under this metric.

Per-Tag Metric

Alternatively, we can evaluate annotation performance by computing the

precision, recall and F-1 measures for each tag, averaged over all the tags that are

outputted by the algorithm (i.e. if the music tagger does not output a tag, the

scores for that tag are simply ignored). Speci�cally, given a tag t, its precision Pt,

recall Rt and F-1 measure Ft can be computed as follows:
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Pt = ct
at

Rt = ct
gt

Ft = 2 · Pt·Rt
Pt+Rt

where gt is the number of music clips that has the tag t in their ground truth sets,

at is the number of clips that are annotated with the tag t by the tagger, and ct is

the number of clips that has been correctly annotated with the tag t by the tagger,

according to the ground truth set. The overall per-tag precision, recall and F-1

scores for a test set are Pt, Rt and Ft for each tag t, averaged over all tags in the

vocabulary.
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Figure 3.25: Per-tag Metrics. The light-colored bars represent Topic Method with 10, 20,

30, 40 and 50 topics. The dark-colored bar represents the Tag Method. The horizontal line

represent the random baseline, and the dotted lines represent its standard deviation.

Results (in Figure 3.25) show that the Topic Method signi�cantly outperforms

the Tag Method under this set of metrics.

Per-Tag Metric (Omission Penalizing)

Although informative, two of the metrics � per-clip precision@N and per-

tag precision � are problematic in that a system can output the most common

tags, leaving out the rare ones, and still perform reasonably well under these

metric [Turnbull 2008b]. In response to this criticism, several previous work

[Bertin-Mahieux 2008b, Ho�man 2009, Turnbull 2008b] has adopted a set of per-

tag metrics that penalizes algorithms for omitting tags that could have been used

to annotate music clips in the test set.

Following [Ho�man 2009, Turnbull 2008b], the omission-penalizing per-tag pre-

cision and recall can be computed as follows:

Pt =

{ ct
at

if present

Et if omitted
Rt =

{
ct
gt

if present

0 if omitted

where Et is the empirical frequency of the tag t in the test set. This speci�cation

penalizes classi�ers that leave out tags, especially ones that are rare. Note that
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Figure 3.26: Omission-Penalizing Per-tag Metrics. The light-colored bars represent Topic

Method with 10, 20, 30, 40 and 50 topics. The dark-colored bar represents the Tag Method.

The horizontal line represent the random baseline, and the dotted lines represent its stan-

dard deviation. Figure (e) shows the precision of individual tags at rank 1, 21, 41, · · · , 854
etc. It is evident that the Topic Method loses in precision by failing to output many of the

rarer tags.
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these metrics are upper bounded by a quantity that depends on the number of tags

outputted by the algorithm. This quantity can be computed empirically by setting

the precision and recall to 1 when the tag are present, and Et and 0 when a tag is

omitted.

Results (Figure 3.26 (a)�(d)) shows that for the Topic Method, performance in-

creases with more topics, but reaches a platform as the number of topics approaches

50. We investigated additional models with 60, 70, 80, 90, and 100 topics, and found

that this plateau persists in these models. In particular, Figure 3.27(a) shows that

under the per-tag metric, precision keeps increasing when we increase the number

of topics, but recall hits a plateau. The same performance plateau is observed under

the omission-penalizing per-tag metric (Figure 3.27(b)).
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Figure 3.27: How performance varies as the number of topics increases.

The performance plateau can be attributed to the fact that the number of tags

outputted by the topic models plateau at around 127 (Figure 3.27(c)). This is a

somewhat expected, and problematic, behavior of the Topic Method, where common

tags (e.g., classical) tend to be ranked higher in any given topic, and therefore,

are more likely to be generated. The plateau also explains why the Tag Method

outperforms the Topic Method under this metric � it generated roughly twice the

number of unique tags (Figure 3.26(d)).

Figure 3.28, 3.29 and 3.30 shows the detailed performance of the Topic Method

(with 10 and 50 topics) and Tag Method for classifying individual tags, con�rming

our intuition about why the Tag Method is performing better than the Topic Method

under the omission-penalizing metrics. Results shows that the Tag Method omits

much fewer tags than the Topic Method, therefore, gaining precision scores for rarer

tags (such as �meditation�, �male_and_female� etc), for which the Topic Method

receives zeros. The plots also show that the Topic Method and Tag Method are

very similar in their precision, recall and F-1 performance for more common tags

(e.g., �opera�, �drums�, �strings� etc), and that the model with more topics (i.e. 50)

generally outperforms that with fewer topics (i.e. 10) on the same tags.
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3.3.4.4 Experiment 3: Retrieval Performance

The tags generated by a music tagger can be used to facilitate retrieval. Given

a search query, music clips can be ranked order by the KL divergence be-

tween the query tag distribution and the tag probability distribution for each

clip. We measure retrieval performance using the mean average precision (MAP)

[WikipediaMAPDe�nition 2012] metric, which computes precision (the number of

retrieved music clips whose ground truth tags include the search query) while placing

more weight on the higher ranked clips.
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Figure 3.31: Retrieval Performance, in terms of average mean precision

Figure 3.31 shows the retrieval performance of the three methods under this

metric. The retrieval performance of the Topic Method (with 50 topics) is indis-

tinguishable from the Tag method, and both methods signi�cantly outperform the

random baseline.

3.3.4.5 Experiment 4: E�ciency

One of the main motivation behind using the Topic Method to generate tags is

e�ciency, i.e., it is much faster to train a classi�er to predict 50 topic classes than

834 tag classes.
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Figure 3.32: Comparison of e�ciency in terms of training time

Figure 3.32 shows a rough estimate of the training time (averaged over folds) of

the di�erent models. While the training time does increase as the number of topics
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(a) Missing Ground Truth Annotation

(i) sitar eastern
TP: indian sitar eastern guitar oriental strings middle_eastern slow drums arabic
TG: indian sitar guitar eastern slow drums oriental india strings solo

(ii) rock
TP: rock guitar male male_vocal pop loud man vocal metal drums
TG: rock male male_vocals male_vocal guitar male_voice pop loud man vocals

(iii) singing
TP: choir choral opera vocal vocals chorus chant singing female classical
TG: choir choral vocal opera singing chorus vocals female voices woman

(b) Vocabulary Mismatch

(i) faster jazzy beat fast disco guitar dance pop cymbals drums rock 80s upbeat
electro
TP: electronic drums synth rock beat fast guitar dance electro beats
TG: electronic beat drums synth electro fast electric beats guitar rock

(ii) woman popish female_voice pop female vocal female_singer synth
TP: female woman vocal female_vocal female_voice singing pop vocals female_vocals voice
TG: female woman pop female_vocal singing vocals female_voice vocal guitar female_vocals

(iii) celtic classic violins violin medival strings
TP: classical violin guitar strings slow irish harp classic violins country
TG: classical strings violin classic guitar �ddle violins string baroque medieval

Table 3.10: In bold are the ground truth tags. TP and TG refers to the Topic Method and

Tag Method respectively.

increases, the training time plateaus and are very similar for topic models with

30, 40 or 50 topics. The most important observation is that the Topic Method is

approximately 94% times faster to train than the Tag Method, which con�rms our

belief that our proposed method will be signi�cantly more scalable as the size of

the tag vocabulary grows.

Experiment 5: Evaluation

The performance metrics we have used so far can only approximate the quality of

the generated tags. The reason is that the ground truth tags collected by TagATune,

which we are using as if they were gold standards, can never be fully complete. When

deciding if a generated tag is accurate, comparison against the ground truth set

will systematically under-estimate performance, due to missing tags or vocabulary

mismatch.

Consider the examples in Table 3.10. Table 3.10(a) shows examples of music

clips that have only one or two ground truth tags (in bold). In this case, generated

tags that cannot be found amongst ground truth tags are counted as wrong, when

in fact they are correct. For example, the tags �india�, �oriental�, �middle eastern�

(example i), or �guitar�, �loud�, �drums� (example ii), or �vocal�, �chorus�, �chant�

(example iii) are not considered correct tags, even though they are either equivalent

in meaning to the ground truth tags, or highly correlated and likely to be correct

(e.g., in the case of �drums� and �rock�). Figure 3.10(b) show examples where the

ground truth set tags do provide su�cient coverage, but because of vocabulary
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Figure 3.33: Mechanical Turk Annotation Experiment: Interface

mismatch, there are again many false negatives. Examples of vocabulary mismatch

include �electro� versus �electronic�, �beats� versus �beat� (example i), or �female

voice� versus �female vocals�, �pop� versus �popish� (example ii), or �celtic� versus

�irish�, �medival� versus �medieval�, or �strings� versus �string� (example iii).

Annotation Performance

In order to compare the true merit of the competing approaches, we conducted

a Mechanical Turk experiment where we ask humans to evaluate the tags generated

by the Topic Method (with 50 topics), Tag Method and Random Method. We

randomly selected a set of 100 music clips (20 in each fold) and solicited evaluations

from 10 unique turkers for each music clip. For each clip, the turker is given three

lists of tags of the same size, generated by the Topic Method, Tag Method, and

the Random Method respectively. The order of the three lists are randomized to

eliminate any presentation bias. The turkers are asked to (1) click the checkbox

beside a tag if that tag is appropriate for the music clip (i.e. describes the music

well), and (2) rank order the three lists based on how well they describe the music

clip overall. Figure 3.33 shows the interface for the Mechanical Turk annotation

experiment.

Figure 3.34 shows the per-tag precision, recall and F-1 scores as well as the

per-clip precision scores of the three methods, when we evaluate tags by comparing

to the ground truth set versus using human evaluation. Results show that when

tags are judged based on whether they are found amongst the ground truth tags,

the performance of the tagger is grossly underestimated under any metrics. In fact,

of the tags (generated by either Topic Method or Tag Method) that the turkers

considered as �appropriate� for any music clip, on average, approximately 50% of
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Figure 3.34: Mechanical Turk Annotation Experiment: Results

them are not found in the ground truth sets.

While the performance of Topic Method and Tag Method are similar in this

experiment, when asked which list of tags the human user prefers the most, second

most and the least, the average numbers of votes (out of 10) are 6.20 for the Tag

Method, 3.34 for the Topic Method, and 0.46 for the Random Method, in strong

favor of the Tag Method. Our hypothesis is that people actually prefer the Tag

Method because its tag coverage is better than the Topic Method. This observation

has interesting implications for how tags should be evaluated, individually versus

as a whole.

Retrieval Performance

We conducted a similar experiment for evaluating retrieval performance. Figure

3.35 shows the interface for the Mechanical Turk annotation experiment.

Similar to the annotation task, our hypothesis is that the retrieval performance

of the three methods, under the mean average precision metric, is underestimated

because many of the retrieved music clips are false negatives if the search query

cannot be found amongst their ground truth tags. To test this hypothesis, we ran a

similar Mechanical Turk experiment, where we provide each turker a search query

and three lists of music clips retrieved for that search query by the Tag Method,

Topic Method and Random Method. Again, the order of the lists is randomized to
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Figure 3.35: Mechanical Turk Retrieval Experiment: Interface

prevent presentation bias. There are 100 one-word queries in total, and 3 users for

evaluating the music clips retrieved for each query. Users are asked to check the

checkbox of each music clip that they consider �relevant� for the query. In addition,

they are asked to rank order the three lists in terms of their overall relevance to the

query.
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Figure 3.36: Mechanical Turk Retrieval Experiment: Results

Figure 3.36 shows the mean average precision, when the ground truth tags versus

human judgment is used to evaluate the relevance of each music clip in the retrieved

set. Results show that when humans evaluate the retrieved list, the mean average

precision of all methods are signi�cantly higher than if we use the ground truth tags



3.4. Conclusion 85

as the judge. Finally, when asked which list of music clips the turker prefers the

most, second most and the least, the average numbers of votes (out of 3) are 1.17

for the Tag Method, 1.78 for the Topic Method, and 0.56 for Random Method, in

favor for the Topic Method.

3.4 Conclusion

3.4.1 Reference to the Framework

Recall from our framework description in chapter 1, that the attribute learning

problem can be described as the task of �lling in a N ×M matrix V, where the

rows are a set of entities ei, i = 1 . . . N , the columns are a set of attribute aj ,

j = 1 . . .M , and each cell of the matrix vij = fj(ei) is the value of the attribute aj
for entity ei.

In this chapter, we introduced a new game mechanism (and an implemented

game called TagATune) for eliciting attributes for music. In general, one can think

of games with a purpose as a query model for populating the matrix V. For

example, the query model of the ESP Game (where players enter tags until one of

their tags match) chooses a single entity ei (i.e., a row in the matrix) to present to

two game players, and receives a set of (attribute, attribute value) tuples {(aj , vi,j)},
where vi,j is the number of times the attribute aj has been associated with entity

ei by di�erent players.

Figure 3.37: Query Model of the ESP Game

.

Figure 3.37 shows an example of the query model of The ESP Game. Here, the

query selects image e2 and presents it to two players. One of the players entered

the tag �cute,� �kitten� and �dog�, while the other player entered the tag �cat� and

�dog�. Based on the tag counts, the query receives {(cute, 1),(kitten 1),(dog 2),(cat

1)} from the two players.

In the TagATune game, the query model is di�erent. In the case where the

music clips are the same, the system selects one music clip ei to present to both

players, and receives a set of (attribute, attribute value) tuples {(aj , vi,j)}, where
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(a) Same Music Clip

(b) Di�erent Music Clips

Figure 3.38: Query Model of TagATune

vi,j is the number of times the attribute aj has been associated with the music clip

ei by di�erent players. For example, Figure 3.38(a) shows an example where the

two players were given the same music clip (John Lennon's Imagine). One player

enters �male solo,� �soft,� �yes� (in response to the other player's tag �piano�), while

the other player enters enters �male solo� and �piano.� In the case where the music

clips are di�erent, the system selects two di�erent music clips ei and ek, one for

each of the two players, and receives two sets of (attribute, attribute value) tuples

{(aj , vi,j)} and {(aj , vk,j)}. Figure 3.38(b) shows an example where the two players

were given di�erent music clips (John Lennon's Imagine and Queen's Bohemian

Rhapsody). The player given a music clip from Imagine entered the tags �piano,�

�male solo,� �soft�, while the other player entered the tags �piano,� �mellow,� �group.�

From these two examples, one can see why TagATune is an appropriate game

mechanism for extracting attributes in a vocabulary-rich setting, where the input

data (in this case, music) can be associated with a huge number of columns in the

matrix. Here, it is much more di�cult for players to �nd the same column of the

matrix if the game is implemented using the output-agreement (the ESP Game)
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mechanism. Furthermore, by allowing communication and rewarding players for

successfully determining whether their music clips are the same or di�erent, players

are motivated to enter tags that discriminate between two pieces of music, instead

of ones that their partner is likely to type. As the result, the tags that we retrieve

from TagATune are much more informative and speci�c.

From the same two examples, however, we observe that the data collected from

TagATune data presents some challenges if it were to be used for training machine

learning algorithms to predict tags. For example, some attributes, e.g., �yes,� are

irrelevant to the content of the music, while others, e.g., �mellow� and �soft,� are

redundant, causing the training examples for �mellow,� �soft� and other similar

attributes to be split amongst these synonymous classes. Traditionally, machine

learning algorithms are trained on a small number of mutually exclusive labels: the

learner is given a small matrix where the columns are partially �lled in, and the

goal is to predict the rest of the values of the matrix. In contrast, here the columns

can be redundant, impossible to learn (e.g., in the case of the attribute �yes�), and

the matrix itself can be huge in terms of the number of columns. In this chapter,

we presented a technique that makes use of this noisy data collected by TagATune

to train a music tagger e�ciently.

Figure 3.39: Using TagATune for Evaluation

.

The data collected from TagATune also creates a very sparse matrix, with many

missing attributes values. Using the TagATune data as ground truth for evaluation

poses a problem: just because an attribute value is missing does not mean that

that attribute does not apply to the music clip. For example, if a music tagging

algorithm predicted Imagine to be �mellow,� it should be marked as correct even

though no previous users have associated that particular tag to the music clip. The

idea of using TagATune for evaluation is illustrated in Figure 3.39: the game serves

music attributes generated by an algorithm (in the order of their probability) and

the strength of the algorithm is measured by the percentage of players who are able

to guess correctly that the music clips given to them and the algorithm are the same.
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3.4.2 Lessons Learned

Until recently, e�orts of research in human computation have largely been centered

around the development of games that follow existing mechanisms, with less focus

on the invention of new game mechanisms for data collection. The main contribu-

tion of this chapter is the introduction of the input-agreement mechanism, a new

method for collecting data in human computation games. We developed a game

called TagATune that uses this new mechanism to collect tags for music and sound

clips, and presented statistics on the data collected during the seven-month period

after the game was launched. Results show that the popularity and throughput

of TagATune are superior to other human computation games for collecting music

metadata. Moreover, this new mechanism is readily extensible to images and videos.

In re-designing TagATune to be more human friendly, however, we introduced

problems: the data collected by TagATune is extremely noisy and unamenable to

training standard machine learning algorithms for music tagging. We created a

machine learning algorithm to make use of the vast, open vocabulary data extracted

from TagATune. In particular, we showed that topic models can be used to de�ne a

reduced set of labels, using which the task of mapping from audio features to tags

is made more e�cient. We compared the Topic Method and Tag Method on �ve

criteria: feasibility, annotation performance, retrieval performance, computational

e�ciency, and annotation and retrieval performance as judged by human evaluators.

Our main results show that our proposed method is feasible, both data-e�cient (i.e.,

can utilize an arbitrary open vocabulary of tags) and time-e�cient (i.e., reduces

training time by 94% compared to learning from tag labels directly), and achieves

comparable performance for annotation and superior performance for retrieval.

This work reveals the delicate balance between designing the system to achieve

the human-centric versus task-centric objectives, and illustrates our approach to hu-

man computation: to �rst design the system to achieve the human-centric objective,

then tackle the task-centric objective with the help of machine learning algorithms.



Chapter 4

Learning Attributes under

Knowledge Limitations

4.1 Overview

Many attribute learning tasks distributed on crowdsourcing platforms today are

perceptual tasks that require only common sense knowledge and no special expertise.

In other words, these tasks can be tackled equally well by anyone who can see and

hear � most people are equally competent at identifying �bicycles� and �cows� in an

image, or describing a piece of music as �soothing,� �slow� and containing �female

vocals�. In fact, most, if not all, human computation games are built to distribute

perceptual tasks that are di�cult for machines, but trivial for any average game

player from the general population.

Not all attributes, however, are easy to determine. In particular, identifying the

category of an entity � e.g., whether the bird in an image is a Pied-Billed Grebe,

whether a piece of music belongs to the genre blues or jazz, whether Jon Kyl is a

politician, whether a piece of art is impressionist or expressionist � usually requires

special knowledge about either the entity itself (e.g., knowing who Jon Kyl is) or how

attributes map to categories (e.g., knowing that Grebes are usually �found on water�,

have �lobed toes�, are �plain-colored in dark browns and whites.�) In analyzing the

TagATune data, we encountered some evidence of this phenomenon; for example,

there exist game partners where one player entered the tag �harpsichord�, while the

other player responded with the question �what is a harpsichord?� Knowledge limi-

tations may not be as problematic in paid crowdsourcing setting, where workers can

be given additional time and resources (e.g., a search engine) to look up information

to perform a knowledge-intensive task. In contrast, knowledge limitations can be

detrimental in a game setting, where players' perception of how enjoyable the game

is depends highly on the degree to which they can successfully accomplish the tasks

posed by the game. Moreover, causal games are usually fast-paced; expecting play-

ers to read up extensive amount of information in order to play the game is simply

infeasible.

In this chapter, we explore how to design a hybrid human and machine computa-

tion system for learning attributes under knowledge limitations, e.g., when workers

are unfamiliar with the attributes or the entities themselves. To explore this prob-

lem, we will �rst present a new game mechanism called complementary-agreement

for extracting attribute and attribute values, and evaluate its e�ectiveness using two

case studies � the �rst case study involves bird image categorization in the casual
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game setting, while the second case study involves noun phrase categorization in

the paid crowdsourcing setting.

4.2 Complementary-Agreement Mechanism

Human computation games like the ESP Game and TagATune ask open-form ques-

tion, where players are allowed to describe the entity (i.e., images or music) freely,

without having to answer in a way that adheres to any vocabulary or language

restrictions. Categorization, on the other hand, is usually concerned with classify-

ing entities into a set of pre-de�ned categories; hence, closed-form questions, which

present an entity along with a �xed set of categories, are more appropriate.

Categorization tasks can take many formats. Suppose that there are N entities

and M categories, the most common formats are:

� single-entity, binary-choice query, which presents one entity en and one cate-

gory cm and ask if the entity belongs to that category.

� single-entity, multiple-choice query, which presents one entity en and multiple

categories c1, c2, . . . cK , K ≤ M , and ask if the entity belongs to one (or

several) of the categories.

An alternative and less common format is the multiple-entity, binary-choice

query, which presents one category cm and multiple entities ei, . . . eK , K ≤ N ,

and ask which entity belongs to that category. An intuitive interface for asking this

type of query is show in Figure 4.1, where the worker is presented with a category

and a grid of entities and asked to select the entities in the grid that belong to that

category.

Figure 4.1: Multiple-Entity, Binary-Choice Query in a Grid

The multiple-entity, binary choice query has the advantage of asking many bi-

nary questions in a single query. However, it raises new questions about how to

verify workers' answers for this type of query. Speci�cally, when presented on a

paid crowdsourcing platform, how can we prevent lazy workers from selecting as few
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entities as possible, or spam workers from selecting entities at random or all the enti-

ties all the time? When presented in a human computation game, what mechanism

is appropriate for ensuring that players are motivated to select only those entities

that belong to the category, no more and no less?

(a) Positive Worker (b) Negative Worker

Figure 4.2: Complementary-Agreement Mechanism

The method we propose here is called the complementary-agreement mechanism

(Figure 4.2). In this mechanism, a pair of workers are shown a categorical attribute

(e.g., is a capital city) and a grid of entities (e.g., names of cities) in randomized

order, and asked to split the entities into two sets � one set of entities that belong

to that category, and the other set of entities that do not belong to that cate-

gory. To encourage workers to select only the entities they think belong to the

category, the mechanism gives the query to two di�erent workers, and asks one of

the workers (which we refer to as the positive worker) to select entities that can be

described by that categorical attribute, and the other worker (which we refer to as

the negative worker) to select entities that cannot be described by that categorical

attribute. Each workers is required to select at least one entity from the grid, and

is rewarded for selecting as many entities as possible while not overlapping with the

other worker's selections.

The complementary-agreement mechanism elicits truthful outputs by explicitly

preventing players from entering outputs that the system considers undesirable.

This game mechanism was inspired by the game KissKissBan [Ho 2009], which adds

a third player (called the blocker) to the ESP Game, who acts as an adversary that

enters tags to block the other two players from matching. Like the KissKissBan

game, in the complementary-agreement mechanism, players are generating comple-

mentary data that is used to constrain each other's outputs. As a result, the positive

player is motivated to select only entities that truly belong to the category, in order

to minimize the chances of overlap with the negative player's outputs, vice versa.

Applied to a categorization task, the complementary-agreement mechanism es-

sentially asks workers to generate the values of a categorical attribute for the given

set of entities, where the value is 1 if an entity belongs to that category, 0 oth-

erwise. Beyond eliciting the values of categorical or non-categorical attributes, the

complement-agreement mechanism can be used to discover new attributes from work-

ers, e.g., by asking one of the workers to enter an attribute a that split the set of
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entities, then asking both workers to determine the value of a for each entity in the

grid. In the next section, we will present a human computation game that makes

use of these two di�erent modes of the complementary-agreement mechanism.

4.3 Case Study I: Bird Image Classi�cation

4.3.1 Motivation

In the �rst case study, we are interested in using the complementary-agreement

mechanism for classifying bird images within the context of a human computation

game. Bird classi�cation is a task well suited for our inquiry � visually identify the

correct species of a bird requires specialized knowledge, and doing so in a human

computation games, where the average player may not be an avid birder, is especially

challenging. This begs the questions of whether there exist a hybrid approach,

involving both humans and machines, that can help overcome humans' knowledge

limitation in bird image categorization.

In this section, we will describe the design of a new game called The Perfect

Split, which implements the complementary-agreement mechanism, and how it can

be used to extract attributes and attribute values for bird images. Through a

user study involving 30 game players, we compare two approaches for classifying

bird images by species � the human categorization approach, where players directly

classify bird images by category, and the hybrid categorization approach, where the

game asks players to provide perceptual attributes and attribute values, then uses

the collected data as features to train a machine learning algorithm to perform the

actual categorization.

4.3.2 The Perfect Split

The Perfect Split is a two-player image annotation game. In this game, two players

are shown a grid of images, and asked to split them into two sets � one set of bird

images that has a particular attribute, and the other set of bird images that do

not have that attribute. Players alternate between being the positive player, who

selects images that have a particular attribute, or the negative player, who selects

the images that do not have a particular attribute. Attributes can be categorical

(e.g., �Owl,� �Western Tanager�) or non-categorical (e.g., �blue head,� �white spot

on wing�), pre-speci�ed by the game or entered by game players.

4.3.2.1 Game Modes

The game consists of two distinct modes: attribute scoring mode and attribute

discovery mode. In the attribute scoring mode (Figures 4.3), the game provides

the players with an attribute. Players simply have to select the images that have

(or do not have) the given attribute. Players can select or unselect the images by

clicking on them, and submit their selections when they are ready.
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(a) Positive Player (b) Negative Player

Figure 4.3: The Perfect Split: attribute scoring mode for a non-categorical attribute

(a) Positive Player (b) Negative Player

Figure 4.4: The Perfect Split: attribute scoring mode for a categorical attribute

At the end of each round, the game provides feedback to both players (Figure

4.5), including (i) the total number of images selected by the two players, (ii) the

number of overlap selections, (iii) the round score, and (iv) a message to indicate

to players how well or poorly they performed in that round (e.g., �Terrible,� �Just

OK,� �Fantastic,� �You Rock,� �Perfect Split�).

Figure 4.5: End of Round Feedback

In the attribute discovery mode, the attribute is not provided by the game;

instead, one of the players (speci�cally, the positive player) enters an attribute that

split the images. The player-generated attribute is then revealed to both players,

who then proceed to the scoring mode to select images that do (or do not) have
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(a) Positive Player (b) Negative Player

Figure 4.6: The Perfect Split: Discovery Mode

that particular attribute. Figure 4.6 shows the interface for the discovery mode of

the game.

There is a slight variation of the discovery mode, called the targeted discovery

mode, where the positive player is shown a set of highlighted images, and is asked

to enter an attribute to distinguish the highlighted images from the other images.

Upon seeing the positive player's attribute, the negative player selects the images

that do not have that attribute. Figure 4.7 shows the two steps process of the

targeted discovery mode.

(a) Positive Player (Step 1) (b) Negative Player (Step 1)

(c) Positive Player (Step 2) (d) Negative Player (Step 2)

Figure 4.7: The Perfect Split: Targeted Discovery Mode
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4.3.2.2 Vocabulary Restrictions

In the discovery mode, the game prompts the positive player to enter an attribute

in two di�erent ways. In some rounds, the player is provided with a textbox where

he or she can enter any attribute up to 25 characters in length (e.g., Figure 4.6(a)).

In other rounds, the player is given some restrictions on the types of attributes they

can enter (e.g., Figure 4.7(a)); speci�cally, they are provided with a textbox that

imposes a stricter character limit (i.e., 15 characters), followed by the name of a

commonly known body part, such as head, wing, breast, belly, back and beak. In

this case, the positive player is asked to enter an attribute to describe that particular

body part of the bird.

actual or similar bird family and species
owl, bald eagle, waterbirds, pigeon-like, ducks

eyes
red circle around eye, black eye

chest
birds with spotted upper chest

visibility of body parts
bird can see its back, birds can see their back

wings
brown dotted wings

belly
white belly, bird with spotted belly

legs
long legs, red feet

feathers
brownish grey feathers, yellow feathers, red feathers, grey and white feather, black feathers, blue
feather, red feather, brownish feathers, blue feathers, birds with yellowish feathers, birds with
black feathers,

head
black and white head, top of head brown and white, black head, white head, red head, pure
white heads, no black head, birds with a red head, blue head

beak
thin long beaks, long beak, long thin beak, yellow beak, red mouth, blue beaks

general colors
yellow, black bird, blue bird, birds with brown shade, birds having yellow, yellow birds, no yellow,
brown, is completely black, birds with yellow, no yellow in image, not black, have YELLOW color,
no blue color, almost white all over, bluish birds, all yellow birds, blue birds, black and white,
red birds, blue colored bird, almost entirely bright blue or black, brown, monochrome, yellow
body

poses, actions and locations
facing camera, fully front facing, beak open, back of bodies facing camera, can swim, birds
walking, standing on a twig or limb, on tree limb, not STANDING, swimming, not in the water,
not �ying, standing on a tree, �ying, standing in water, sitting on the ground, in water, ponds,
birds in �ight, birds on water, birds swimming, bird sitting on the �oor, bird �ying, swimming
birds, birds walking on the ground, grass and sitting on a tree, birds in water

compound attributes
birds that don't have any red or pink in picture, hummingbirds/birds with red neck and long
beak, grey bird on the ground and on cactus and on a tree, brown body black feathers, sparrows
on trees, thin beak no red head, ducks in water, white stomach and dark color on the back, grey
bird on the ground, ogange feather and facing left, long tail without feathers, brown head white
body

other
cactus-like, white background, two birds

Table 4.1: Examples of Collected Attributes in Game Pilot
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In an informal pilot study involving 10 users, we found when players were given

no restrictions, the vocabulary of the collected attributes is extremely diverse. Table

4.1 illustrates this diversity: while players do describe speci�c body parts (where

color is predominantly the attribute used in their description), more often, they de-

scribe the general colors, poses, actions and locations of the bird, or other attributes

irrelevant to classi�cation, such as �white background� and �two birds.� Some body

parts, such as feather, head and beak, are described more often than other body

parts. The same attributes are often described in di�erent ways, e.g., �blue bird,�

�blueish blue,� and �blue colored birds.�

In the current design of the game, we adopted the approach of imposing vo-

cabulary and attribute length restrictions some of the times, while allowing players

the freedom to enter arbitrary, lengthier descriptions at other times. Our goal is

two-fold � to reduce the diversity of the vocabulary, and to encourage players to

describe a variety of body parts, even those that are less salient (e.g., belly, wings,

legs).

4.3.2.3 Selection of Images

There are two considerations when selecting the set of images to present to players

in each round of the game. First, the system decides randomly whether to present

a small number (3) versus a large number (5-8) of image clusters, where a cluster

contains birds that all belong to the same category. Second, the system decides

randomly whether to draw images based on coarse grain categories (e.g., family-level

categories such as Owls versus Ducks) or �ne-grained categories (e.g., species-level

categories such as Snowy Owl versus Barn Owl). This variation in the granularity

and in the number of clusters allows for varying levels of di�culty in the game, and

prevents players from being able to guess the answer by anticipating the composition

of the images in the grid.

4.3.3 User Study

We conducted a user study involving 30 participants playing The Perfect Split. Our

primary objective is to understand the di�erences between two approaches to cate-

gorization � the human categorization approach, where players classify bird images

directly, and the hybrid categorization approach, which asks players to generate and

score perceptual attributes, then uses these perceptual attributes (and their values)

as features to train a machine learning algorithm to perform the actual classi�cation.

In particular, we are interested in how these two approaches compare in terms of

the extent to which they can achieve the human-centric object (i.e., the game is fun

and easy for players) and task-centric objective (i.e., the game performs accurate

categorization of bird images) of the system.
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Family Examples

Blackbird (15) Baltimore Oriole, Boat-tailed Grackle, Bobolink, Brewers Blackbird
Bunting (3) Indigo Bunting, Lazuli Bunting, Painted Bunting
Chickadee (4) Black-capped Chickadee, Carolina Chickadee, Chestnut-backed Chickadee
Corvid (7) American Crow, Blue Jay, Chihuahuan Raven, Common Raven, Fish Crow
Dove (7) Band-tailed Pigeon, Common Ground Dove, Eurasian Collared Dove
Duck (20) Red-breasted Merganser, American Wigeon, Black-bellied Whistling Duck
Eagle (3) Bald Eagle, Golden Eagle, Osprey
Finch (12) American Gold�nch, Black-headed Grosbeak, Common Redpoll
Flycatcher (12) Ash-Throated Flycatcher, Black Phoebe, Eastern Kingbird, Eastern Phoebe
Grebe (3) Eared Grebe, Pied-billed Grebe, Western Grebe
Gull (6) California Gull, Great Black Backed Gull, Herring Gull, Laughing Gull
Hawk (10) American Kestrel, Coopers Hawk, Merlin, Northern Harrier, Peregrine Falcon
Heron (11) Black-Crowned Night Heron, Cattle Egret, Great Blue Heron, Great Egret
Hummingbird (5) Allens Hummingbird, Annas Hummingbird, Black-chinned Hummingbird
Mimic (5) Brown Thrasher, California Thrasher, Curve-Billed Thrasher, Gray Catbird
Nuthatch (3) Pygmy Nuthatch, Red-breasted Nuthatch, White-breasted Nuthatch
Owl (5) Barn Owl, Barred Owl, Eastern Screech Owl, Great Horned Owl, Snowy Owl
Quail (4) California Quail, Gambels Quail, Northern Bobwhite, Scaled Quail
Shorebird (17) American Avocet, American Woodcock, Black-Bellied Plover
Small-Dull (8) Black-crested Titmouse, Blue-gray Gnatcatcher, Bushtit
Sparrow (20) American Pipit, American Tree Sparrow, California Towhee, Canyon Towhee
Swallow (6) Barn Swallow, Cli� Swallow, Northern Rough-winged Swallow
Tanager (3) Scarlet Tanager, Summer Tanager, Western Tanager
Thrush (8) American Robin, Eastern Bluebird, Hermit Thrush, Swainsons, Veery
Vireo (6) Huttons Vireo, Red-eyed Vireo, Warbling Vireo, White-eyed Vireo
Warbler (17) American Redstart, Black-and-white Warbler, Black-throated Green Warbler
Woodpecker (11) Acorn Woodpecker, Downy Woodpecker, Golden-fronted Woodpecker
Wren (5) Bewicks Wren, Cactus Wren, Carolina Wren, House Wren, Marsh Wren

Table 4.2: Composition of the Dataset

4.3.3.1 Dataset

The dataset consists of 1850 bird images belonging to 236 species and 28 families.

One image per species is manually extracted from the allaboutbirds.org website;

these images are curated by expert birders and therefore highly reliable. For each

species, we extracted more images from the Web automatically, by querying for the

species names using Google Image Search. Table 4.2 shows the composition of the

dataset, including the number of species (in bracket) and a few examples of the

species in each bird family.

4.3.3.2 Users

We recruited 30 participants through the Center for Behavioral and Decision Re-

search (CBDR), a service provided by Carnegie Mellon University for recruiting

subjects for experiments. Participants vary in ages (ranging from 20 to 62 years

old), ethnic, socioeconomic and educational background. Each session involves two

participants, who play The Perfect Split together as game partners. At the begin-

ning of the session, participants were given a �ve-minute explanation of the game,

and were told to not to verbally communicate with their game partner or use any

external resources (e.g., search engine) to help them play the game. Each session



98 Chapter 4. Learning Attributes under Knowledge Limitations

lasts for roughly one hour, and each participants is paid $10 for their participation

in the experiment.

4.3.3.3 Experimental Design

The session is divided into four parts. In each part, participants play a particular

version of the game for 12 minutes, then �ll in a short survey about their experi-

ence playing that version of the game. The four versions of the game (with their

abbreviated names in brackets) include:

� Scoring Mode / Categorical Attributes (SC): each round of the game

is in the scoring mode; players are provided with a category name as the

attribute and a set of bird images some of which are known to belong to the

category.

� Discovery Mode(D): each round of the game is in the discovery mode; the

positive player is provided with no attribute, and asked to specify an attribute

to split the images.

� Targeted Discovery Mode (TD): each round of the game is in the targeted

discovery mode; the positive player is provided with some highlighted images

and no attribute, and asked to enter an attribute to distinguish the highlighted

images from other images.

� Scoring Mode / Player-Generated Attributes (SA): each round of the

game is in the scoring mode; players are provided with an attribute that has

been entered by players of previous games.

Our experiment follows a within-subject design, where each participant played

all four versions of the game in one session. Within-subject design has the advan-

tage of yielding more statistical signi�cant results; however, there may be carryover

e�ects if all subjects are asked to play the four versions of the game in the same

order. To minimize these e�ects, we randomized the order of the game versions

that participants play in each session, such that no two pairs of participants were

exposed to the same ordering.

4.3.3.4 Results

The human categorization approach refers to the SC (Scoring Mode / Categorical

Attributes) version of the game, where players were asked to select images that

belong (or do not belong) to a category; in other words, this approach asks play-

ers to categorize bird images directly. The hybrid categorization makes use of a

combination of the other three more open-ended versions of the game � namely, D

(Discovery Mode), TD (Targeted Discovery Mode) and SA (Scoring Mode / Player

Generated Attributes) � to collect perceptual attributes and attribute values from
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players, and uses a simple maximum entropy algorithm to predict the categories of

the bird images using these player-generated attributes.

As mentioned before, our primary objective is to understand how these two

approaches achieve the human-centric versus task-centric objectives of the system.

In terms of the human-centric objective, we evaluate each version of the game in

terms of how much players enjoyed their experience and how well they completed

each round of the game. In terms of the task-centric objective, we compared the

two approaches in terms of their classi�cation performance across 28 di�erent bird

categories.

(a) Averaged Round Score (b) Averaged Overlap

(c) Averaged Selection Total

Figure 4.8: Game Statistics Across Four Game Versions

Results (Figure 4.8(a), 4.8(b), 4.8(c)) show that players are much less successful

in the game in the SC version, where they were asked to score categorical attributes

directly, than the other three versions (D, TD and SA) of the game, where they

were asked to generate perceptual attributes and attribute values. Speci�cally, in

the SC version of the game, players have the lowest round scores (p = 5 × 10−5),

greatest number of overlapped selections (p = 1.8 × 10−4) and the least number of

images selected (p = 4.6× 10−5), averaged �rst over the rounds of each game, then

over all the games belonging to the each version. SC is colored in light blue, while

the other three versions are colored in dark blue to show the distinction between

the human (light blue) versus hybrid (dark blue) categorization approaches. The

results are statistically signi�cant by the Friedman Test [FriedmanTest 2012].

These results suggest that directly categorizing bird images is di�cult for
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Figure 4.9: Average Round Score by Category

players. This is true especially for categories that are less commonly known. Figure

4.9 shows the average round score by family-level categories in the SC version of the

game, showing that players were less successful at classifying bird images directly

when the categories are unfamiliar.

The game statistics suggest that SC version (where players score categorical

attributes) is the most di�cult and the D version (where players name and score

attributes of their own choosing) is the least di�cult. These results are consistent

with the self-reported answers provided in the surveys. In the survey, we asked

participants to rate, on a 5-point scale, how enjoyable the game is (1=not at all,

5=very much), how di�cult the game is (1=very easy, 5=very di�cult), as well as

how often they are con�dent about their answers (1=rarely, 5=very often). Figure

4.10(a), 4.10(b) and 4.10(c) shows that players report having the least con�dent

playing the SC of the game (p << 0.001), as well as �nding it the least enjoyable

(p = 0.014) and the most di�cult (p << 0.001); in contrast, they are the most

con�dent playing D version of the game, and �nd it the most enjoyable and the

least di�cult.

We also asked participants to rate, on a 5-point scale (1=rarely, 5=frequently)

how often they encountered di�erent types of di�culties in each version of the

game. Table 4.3 shows that in the D version, the di�culties players encountered

were attributed to their game partner's inability to select the right images; while in

SC version, the di�culties were attributed to the fact that players themselves did

not know what the attribute meant and which images to select. It is also interesting

to note that players enjoyed the D version of the game, where they get to both

name and score the attributes of their own choosing, more than the SA version of

the game, where they as asked to score the attributes that were named by previous

players.
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(a) Level of Enjoyment (b) Con�dence

(c) Perceived Di�culty

Figure 4.10: Self-Reported Game Experience

Types of Di�culties SC D TD SA

I have a hard time coming up with an attribute NA 1.63 2.28 NA

I didn't know what the attribute meant 3.77 1.33 1.56 1.44

I didn't know which images to select 3.80 1.77 1.94 2.00

I selected the right images, but my partner didn't 2.67 2.27 2.06 2.11

Table 4.3: Frequency of di�erent types of di�culties

All the results discussed thus far suggest that asking players to name and score

perceptual attributes is better than asking them to score categorical attributes di-

rectly. Given that players neither enjoyed nor excelled at categorizing bird images

directly, can we design a system that asks players to provide attributes of their own

choosing, then uses machine learning algorithms to predict the actual categories?

How would this hybrid categorization approach compare against the human cate-

gorization approach in terms of its performance (i.e., precision) in categorizing bird

images? To answer this question, we trained a maximum entropy classi�er using

the attributes and attribute values collected from the D, TD and SA versions of the

game to predict the actual bird categories.

Figure 4.11 shows the precision of both approaches across di�erent coarse grained

categories. The results are averaged over the 5-fold cross validation. Out of 28 cate-

gories, the hybrid categorization approach outperforms human categorization in 16

of the categories. It is interesting to note that some of the biggest performance gaps
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Figure 4.11: Precision: Human Categorization Approach versus Hybrid Categorization

Approach

Category Most Positively Weighted Attributes

Blackbird black beaks, solid black tail, pointy thin tail, blu yelw bla head, blue head, yellow breast
Finch red brown features, red head, yellow body, not yel/wh belly, long tail, red on body tail
Vireo on thin branch, greenish head, not yellow belly, white belly, on branch, on branches,

brownspotted breast, grey tail
Grebe water, water wing, duck
Chickadee not spotted wing, grey tail, odd white spot on heads, on branch, shorter beak
Mimic whitish belly, not all wh breast, beige or tan breast, very long beak
Tanager red and yello, red body, �at tail, red head, red feathers, red parts
Bunting blue head, slanting up tail

Table 4.4: Attributes most positively weighted by the maximum entropy classi�er

when humans perform better are categories that are more common, such as Dove,

Woodpecker, Shorebird, Sparrow, Gull, Heron, Hawk, Duck; while the categories

where the hybrid approach performs better are categories that are less visually fa-

miliar, such as Black Bird, Grebe, Chickadee, Mimic, Tanager, Bunting, Finch, etc.

Table 4.4 shows the most positively weighted attributes in the maximum entropy

classi�er for these categories.

Note that the data used to train the maximum entropy classi�er is extremely

sparse, i.e., many attribute values are missing. Even so, the hybrid categorization ap-

proach outperforms human categorization, especially for predicting categories that

are less familiar to humans. The performance of the hybrid categorization approach

can be further enhanced by allowing more players to complete the matrix, then re-

training the learning algorithm. In conclusion, the hybrid categorization approach

is superior: it satis�es not only the task-centric objective of the system, but also the

human-centric objective, since naming and scoring attributes of their own choosing

is a much easier and enjoyable task for game players.
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4.4 Case Study II: Noun Phrase Categorization

In the previous case study, we show that knowledge limitations can severely hinder

human performance in a task where workers are unfamiliar with the attributes (e.g.,

they do not know how the birds belonging to the species �Corvids� look like), but

that these limitations can be overcome with the help of machines. In this next

case study, we consider a di�erent kind of knowledge limitations, where human

workers are familiar with the attributes but unfamiliar with the entities themselves.

Speci�cally, we consider how to design a human computation system where humans

verify categorical facts (e.g., �Washington is a city,� �Marion Cotillard is an actress�)

that are extracted from a web mining system called NELL (Never-Ending Language

Learner).

4.4.1 Motivation

NELL is a web mining system that continuously reads the Web and extracts cat-

egorical attributes (e.g., �Husky is a dog�) and relational attributes (e.g., �Sidney

Crosby plays for the Pittsburgh Penguins�) of real world entities. NELL consists of

four major components: (1) coupled pattern learner (CPL), which uses context pat-

terns such as `animals such as X�, or `X is headquartered in Y� to extract instances

of categories and relations, (2) coupled SEAL (CSEAL), which mines lists and ta-

bles to extract instances of a certain category or relation, (3) coupled morphological

classi�er (CMC), which uses logistic regression to map morphological features (e.g.,

words, capitalization, a�xes, part of speech) to categories, and (4) rule learner (RL),

which learns probabilistic Horn clauses. The system starts with a manually crafted

ontology (with a set of categories and relations and a set of constraints, e.g., mutual

exclusion between certain categories) and a set of seed examples for each predicate

in the ontology. Each of the four components proposes candidate facts and beliefs,

along with probabilities and a summary of the evidence. A Knowledge Integrator

then evaluates the reports from each component, and makes a decision as to whether

to promote any given candidate facts.

It has been noted that iterative learning in NELL can su�er from the accumu-

lation of errors if left unsupervised [Carlson 2010a]. For example, the class �baked

goods� su�ers from concept drift due to the incorrectly promoted named entity `in-

ternet cookie�, and becomes a category populated with entities related to computers

instead of pastries. In addition, the NELL ontology of categories is manually spec-

i�ed by humans. It is not yet known how to compare di�erent manually speci�ed

ontologies, and how they may or may not provide adequate coupling constraints

[Carlson 2010b] for NELL. There has been recent e�orts on extending the ontology

automatically, by learning new subclasses (e.g., using text patterns like `Y like cows

and X,� `X and other nonhuman Y,� `X are mostly solitary Y,� `X and other hoofed

Y�) and relations [Mohamed 2011]. An important next step for NELL, therefore,

is to consider what new thing to learn next [Banko 2007]. These observations all

point to the need for human supervision in NELL. In this work, we address the
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challenges in designing a human computation system to elicit one form of human

supervision, where the crowd helps to verify facts (i.e., categorize noun phrases)

that are extracted by NELL.

NELL is also a continuous web mining system, built to extract massive amount

of facts on a daily basis. To be cost-e�ective, we would ideally want a human com-

putation system where people are motivated to volunteer their time and e�ort in

verifying the facts in NELL. Designing a system that enables people to accurately

categorize noun phrases is challenging: many of the noun phrases extracted by NELL

refer to real-world entities that are obscure and not commonly known to people. It

is even more challenging to embed such a task in a game, where players may be dis-

couraged by their inability to complete the task successfully. In designing a human

computation system for verifying facts in NELL, we tackle two questions. First, how

severe is the knowledge limitation in noun phrase categorization? Can we enhance

people's ability to categorize noun phrases, by transforming noun phrases automat-

ically into another representation (i.e., images), and asking workers to classify the

images instead? Second, can we transform the noun phrase categorization task into

a game format? Through two Mechanical Turk experiments, we show that (i) the

performance of human workers in categorizing noun phrases improves dramatically

when they are provided with images than if they are given the noun phrase alone,

and (ii) the complementary-agreement mechanism can be applied successfully to the

noun phrase categorization task, suggesting that games with a purpose is feasible

avenue for human supervision for NELL.

4.4.2 Knowledge Gap and Entity Representation

A central hypothesis in this case study is that transforming the representation of the

entities (i.e., from noun phrases into images) will enhance the ability of the crowd to

categorize noun phrases, despite the fact that the noun phrases extracted by NELL

are not always commonly known by an average worker. To test this hypothesis, we

conducted a Mechanical Turk study, where we asked workers to perform a series of

multiple-choice categorization tasks. In each task, workers are shown a noun phrase

and asked to classify the noun phrase into one of four categories. If none of the

choices are appropriate, workers can choose �other� as the category and specify what

he or she believes the category to be. In addition to selecting a category, workers

must specify their con�dence in their answer, by selecting one of four submit buttons

(�just guess,� �unsure,� �quite sure,� �100% certain.�)

Figure 4.12: Google images extracted using �rebecca book� as the search query
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The experiments have two conditions - the vanilla view condition, where workers

are shown the noun phrase only (Figure 4.13), and the image condition, where

workers are shown a noun phrase and a set of Google images (up to 8) associated

with the noun phrase (Figure 4.14). The Google images are extracted from the

Web automatically, using �np category� as the search query, where category is the

current, highest probability category of the noun phrase in NELL (see Figure 4.12

for an example). Despite the danger of biasing workers, including category in the

search query is necessary because there are many noun phrases that are either under-

speci�ed (e.g., �Rebecca�) or polysemous (e.g., �Washington�).

Figure 4.13: Vanilla View

Figure 4.14: Image View

The Mechanical Turk task provides workers with instructions to log onto a server

and complete a series of 20 multiple choice questions. The system keeps track of
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which noun phrases each worker has seen, and serves him or her one, not both, of the

views for any given noun phrase. There are 3919 noun phrases in total belonging to

20 di�erent NELL categories. The noun phrases are randomly drawn from the head

and tail list (in terms of occurrence frequency on the Web as measured by Google

HIT count) of the noun phrases in each category. Each noun phrase is classi�ed by

at least 5 unique workers. In total, our system collected 21,615 classi�cations by

422 unique workers. Workers were paid 10 cents for their participation.

4.4.2.1 Results

Do workers face knowledge limitation in categorizing noun phrases? If so, how

severe is this limitation? How does this limitation vary across di�erent categories?

We compare the vanilla view and image view using four di�erent measures:

response entropy, response con�dence, agreement with NELL, and categorization

performance (as measured against ground truth).

Response Entropy

For each multiple choice question, the response entropy Re is a measure of the

consensus level between the responses of independent workers: Re = −
∑
c∈C

pc·log2 pc,

where C is the set of choices of categories o�ered by the question (including the cate-
gory other). Figure 4.15 compares the average response entropy (over all the multiple

choice questions) in the vanilla versus image view across 20 di�erent categories. Re-

sults show that workers have lower response entropy (i.e., higher consensus) when

given the image view than the vanilla view in all but one (i.e., the category bank)

categories. The di�erences in response entropy between the vanilla and image views

are statistically signi�cant for every category by the paired t-test (p = 0.03), ex-

cept for the categories bank, biotech company, music song and movie. This graph

displays the categories in order of lowest to highest response entropy in the vanilla

view, showing that the easiest noun phrases to categorize without images are bank,

winery, plant, movie, while the hardest are ceo, athlete, coach and music song. For

categories such as bank and winery, one explanation for the high level of consen-

sus between workers is that the noun phrases themselves give the category away �

e.g., since names of banks usually contain the word �bank� and names of wineries

typically contain the word �winery.�

Figure 4.16 shows how much the noun phrase to image transformation actually

helps to lower the response entropy (i.e., increase consensus). Results show that for

many of the categories that are most challenging for humans, e.g., athlete, coach,

book, writer and chef, the response entropy is reduced ≥ 38% when workers are

shown the image view. Amongst the most di�cult, there are some categories �

e.g., ceo and music song � where the presence of images (i.e., ≤ 20% reduction)

did not help much. In other words, while for some categories images help to reveal

the identity and category of the named entities, for other categories the images

are much less informative. In the extreme case, e.g., bank, images actually caused
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Figure 4.15: Average response entropy by category: vanilla versus image view. The di�er-

ences are statistically signi�cant in every category except the ones marked with *.

Figure 4.16: Percent decrease in response entropy going from vanilla view to image view

confusion, resulting in workers diverging in their answers.

Response Con�dence

In terms of response con�dence, the results are very similar. For each multiple

choice question, the response con�dence is 0 if the workers selected �just guessing�

upon submitting their answer, 0.25 for �unsure,� 0.75 for �quite sure,� and 1 for

�100% certain.�

Figure 4.17 compares the average response con�dence (over all the multiple

choice questions) in the vanilla versus image view across 20 di�erent categories.

Results show that workers have higher response con�dence when given the image

view than the vanilla view. The di�erences in response con�dence between the

vanilla and image views are statistically signi�cant for every category by the paired
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Figure 4.17: Average response con�dence by category: vanilla versus image view. The

di�erences are statistically signi�cant in every category except the ones marked with *.

t-test (p = 0.02), except for the categories bank, movie, television show and bacteria.

This graph displays the categories in order of highest to lowest response con�dence

in the vanilla view, showing that the easiest noun phrases to categorize without

images are bank, winery, fungus, movie, while the hardest are writer, athlete, coach

and actor. These results are fairly well aligned with the response entropy results: the

categories in which workers have the least (or most) consensus with each other are

also ones where they are the least (or most) con�dent in their individual responses.

Figure 4.18: Percent increase in response con�dence going from vanilla view to image view

Figure 4.18 shows how much the noun phrase to image transformation actually

helps to increase the response con�dence. Results show that for many of the

categories where workers have the least con�dence in their responses, e.g., writer,

athlete, coach, actor, ceo, the response con�dence is increased between 22% to

close to 40% when workers are shown the image view. Likewise, there are some
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categories � e.g., movie and bank � where the improvement in con�dence is minimal

(≤ 2%).

Agreement with NELL

Overall, the results so far suggest that by transforming noun phrases into im-

ages, workers converge more frequently towards the same answer and have higher

con�dence in their individual response. In addition to these e�ects, we also observe

that the image view produced predictions that agree with NELL more often than

the vanilla view.

Figure 4.19: Agreement with NELL: vanilla versus image view. The di�erences are statis-

tically signi�cant in every category except the ones marked with *.

We evaluate the crowd's predicted category (by majority) for each noun phrase,

using the highest probability category inferred by NELL as ground truth. The

crowd's precision in a category, then, is measured by tp/(tp + fp), where tp is the

number of true positive predictions and fp is the number of false positive predictions.

Results (Figure 4.19) show that in all but one category, the crowd's prediction agrees

with NELL more when images are present. The di�erences in precision between the

vanilla and image views are statistically signi�cant for every category by the paired

t-test (p = 0.03), except for the categories bank, plant, biotech company, music song

and ceo. This graph displays the categories in order of highest to lowest agreement

in the vanilla view.

Again, we can look at the ranking of the categories in terms of the percentage

increase in agreement with NELL, showing how much noun phrase to image

transformation bias workers towards NELL's beliefs in di�erent categories. Figure

4.20 shows there is more than 100% increase in agreement with NELL for the four

most di�cult categories, namely, chef, book, coach and athlete. This is particular

interesting because NELL's beliefs are derived from analyzing text data, while the

crowd's predictions are based on images.



110 Chapter 4. Learning Attributes under Knowledge Limitations

Figure 4.20: Percent increase in agreement with NELL going from vanilla view to image

view

Categorization Performance

The ultimate question is whether this transformation actually helps in terms of

resulting in more accurate categorizations. Note that using NELL's beliefs as ground

truth is only an approximation of precision, as some of NELL's extractions might

be incorrect (as mentioned in chapter 2, NELL is currently extracting millions of

assertions, but with accuracy at roughly 85%). To get a better sense of the actual

categorization performance of the vanilla view, image view and NELL, we obtained

the ground truth category from Mechanical Turk, where we ask 3 workers to evaluate

each (noun phrase, category) pairs, using search engines to check whether the noun

phrase belongs to the category (if not, what the alternative category is), and also

enter the URL of a webpage that contains evidence supporting their claims. We then

use the majority vote category as the ground truth category of the noun phrase.

To answer this question, we evaluate the crowd's predictions in the vanilla view

and image view as well as NELL's beliefs against the ground truth obtained from

Mechanical Turk. Categorization performance can be measured in terms of preci-

sion, recall and F-1 measure. As shown in Figure 4.21 on the next page, results show

that the vanilla view outperforms the image view and NELL in terms of precision,

but is much worse in terms of recall. Overall, based on the F-1 measure, the image

view and NELL outperforms the vanilla view in terms of categorizing noun phrases

accurately.

4.4.3 Applying the Complementary-Agreement Mechanism

Categorizing noun phrases by images works because people appear to be familiar

with the categories that are in NELL's ontology and what visual attributes map

to those categories. Having established that humans can categorize noun phrase

with higher consensus, con�dence and accuracy when given images, next we will
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(a) Precision

(b) Recall

(c) F1

Figure 4.21: Categorization Performance: Vanilla View, Image View, NELL
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investigate whether the noun phrase categorization task can be embedded in an

image game like The Perfect Split, so that the crowd would be motivated to supervise

a continuous, never-ending web mining system for free.

4.4.3.1 Experiments

We conducted a Mechanical Turk experiment, where workers are asked to perform

the noun phrase categorization tasks using the complementary agreement mecha-

nism. In each HIT, a worker is shown a category name (e.g., �plant�), a grid of 12

images each corresponding to a noun phrase, along with the noun phrases themselves

beneath each image. We created the grid by choosing a category, then drawing some

images that belong to that category, and others that do not belong to that category

(according to NELL's beliefs). Note that each noun phrases is associated with be-

tween 3 and 8 images extracted automatically using Google Search; therefore, each

noun phrase will appear multiple times as a di�erent image in di�erent grids.

Figure 4.22: Complementary-Agreement Mechanism on Mechanical Turk: Example 1

For each noun phrase, there is a pair of HITs (Human Intelligence Task) to be

completed by two di�erent workers � one HIT will ask the worker to choose the

images that belong to the category, the other HIT will ask the worker to choose

the images that do not belong to the category. The pair of HITs are assignments

that belong to two di�erent Mechanical Turk tasks, labeled Version 1 and Version 2.

Workers are told that they should perform HITs that belong to one of the versions



4.4. Case Study II: Noun Phrase Categorization 113

(a) Perfect Answer (b) Acceptable Answer

(c) Rejected Answer (d) Rejected Answer

Figure 4.23: Tutorial of the Complementary Agreement Mechanism

only, and not both. There are 2650 HITs in each version, and a total of 1932 noun

phrases to be veri�ed using the game mechanism.

In the instructions, workers are told that their answer will be veri�ed against

that of another worker, and that (i) both he and the other worker must select at least

1 noun phrase, or both of their work will be rejected; (2) in the perfect situation, his

selections and the other worker's selections do not overlap and together they should
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(a) Average Total Number of Images Selected

(b) Average Overlap Selections

(c) Overall Score

Figure 4.24: Human-Centric Objective

have selected all 12 noun phrases; and (3) if his selections and the other worker's

selections overlap too much (> 3 noun phrases) if together they selected too few

noun phrases (< 9), both of their work will be rejected. Workers are also given a

tutorial (Figure 4.23), which shows examples of work that are considered the perfect

answer, acceptable answer, and rejected answers.

Figure 4.24 shows how well the workers are able to perform the categorization

tasks using the complementary-agreement mechanism across di�erent categories, in

terms of the number of overlap selections (Figure 4.24(b)), total number of images

selected (Figure 4.24(a)), overall score (total number of images selected minus the



4.4. Case Study II: Noun Phrase Categorization 115

(a) Precision

(b) Recall

(c) F1

Figure 4.25: Categorization Performance: complementary-agreement versus image view

number of overlap selections) averaged over pairs of workers. Based on the overall

scores, the easiest categories are winery, bacteria, fungus, animal and bank, and the
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most di�cult categories are writer, television show, ceo, politician and actor.

Lastly, we evaluate how the performance of the workers compare when they

categorize noun phrases using the complementary-agreement mechanism versus not

using the complementary-agreement mechanism (i.e., by answering multiple choice

questions under the image view). Results (Figure 4.25) show that across all the cat-

egories, categorization by complementary-agreement mechanism has slightly lower

precision than the image view, but much higher recall. Based on the F-1 mea-

sure, complementary-agreement mechanism outperforms the image view in terms of

categorizing noun phrases accurately.

The exact reason for this superior performance is unclear. There are many pos-

sible reasons: (1) in the complementary-agreement mechanism, each noun phrase

is essentially evaluated multiple times using di�erent grids, whereas in the image

view, each noun phrase is evaluated �ve times but the same information is given

to each worker; (2) in the complementary-agreement mechanism, each image of the

noun phrase is explicitly marked as belonging to a category or not, whereas under

the image view, workers are given all the images belonging to a noun phrase, and

make a decision based on the entire set; (3) in the complementary-agreement mech-

anism, workers are making binary decisions, whereas in the image view, workers

are given multiple-choice questions. Uncovering the real reason behind the supe-

rior performance of the complementary-agreement mechanism requires additional

investigation in future work.

In this section, we address the challenge of engaging the crowd to evaluate facts

from a web mining system, where workers' performance is severely hindered by their

knowledge limitations. Our results show that workers are much more con�dent and

capable of categorizing noun phrases via images. Furthermore, we show that asking

workers to categorize noun phrases using the complementary-agreement mechanism

yields better categorization performance (according to the F-1 measure) than asking

workers to categorize noun phrases via images in a multiple-choice format, suggesting

that human supervision of NELL via a game is not only feasible, but potentially

more accurate.

4.5 Conclusion

4.5.1 Reference to the Framework

Similar to TagATune and the ESP Game, The Perfect Split (and more generally,

the complementary-agreement mechanism) is a query model for completing the cells

of the matrix.

Figure 4.26 and 4.27 shows an example of this query model: the system chooses

a set of entities {ei} (e.g., images) to present to the players. In the scoring mode

(Figure 4.26), the game selects an already revealed column of the matrix and presents

the associated attribute aj (e.g., �colorful�) along with the set of entities to the

players. In return, the game receives a set of attribute values {(aj , vi,j)}, where
vi,j is the number of times the attribute aj has been associated with entity ei by
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Figure 4.26: Query Model for The Perfect Split: Scoring Mode

.

Figure 4.27: Query Model for The Perfect Split: Discovery Mode

.

di�erent players. Note that in the example the counts returned by the two players

can be 0 (both players agree that the attribute does not apply), 1 (only one of

the players agree that the attribute applies) and 2 (both players agree that the

attribute applies). In the discovery mode (Figure 4.27), the game presents only the

set of entities to the player, and allows one of the players to reveal the column and

then asks both players to �ll in the attribute value for the entities.

In this chapter, we focus on the task of classifying attributes that are unfamiliar

(e.g., bird species names) to players. Consider the example shown in Figure 4.28,

where the attributes of interests are �Finch� and �Owl.� Our results show that,

instead of asking players to score unfamiliar attributes, a better approach is to

query them for attributes of their own choosing (e.g., �colorful,� �huge eyes�), then

use the collected data as features to train a classi�er to predict the attribute values

of interests. This approach allows the game to satisfy both the human-centric and

task-centric objectives of the system simultaneously.

We also consider another type of knowledge limitation in attribute learning,

namely, when workers are familiar with the attributes, but do not what attributes

the entities have. Our case study focuses on designing a human computation sys-

tem (ideally, a game that can collect data for free) for verifying categorical facts
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Figure 4.28: Hybrid Categorization Approach

.

(a) Entities are Noun Phrases

(b) Entities are Noun Phrases Transformed into Images

Figure 4.29: Transforming the Representation of the Entities

extracted by a web-mining system called NELL. Our solution, as depicted in Fig-

ure 4.29 is to imperfectly transform the noun phrases into images, i.e., �nd a new

representation rh(e) such that the output of the human computers is improved. Ex-
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periments show that workers can indeed categorize noun phrases with much higher

consensus, con�dence and accuracy if the noun phrases are transformed into images.

Furthermore, the transformation allows the noun phrase categorization task to be

embedded in a game setting, i.e., use the complementary-agreement mechanism to

query for the values of the relevant columns of the matrix.

4.5.2 Lessons Learned

In this chapter, we introduce new techniques for enabling crowdworkers to perform

knowledge intensive tasks, speci�cally, the task of scoring attributes when workers

are unfamiliar with either the attributes or the entities themselves. Furthermore,

we present a new, incentive-compatible game mechanism called complementary-

agreement for handling attribute learning tasks both in the casual game and paid

crowdsourcing settings, and evaluate its e�ectiveness in two contrasting case studies,

namely bird image classi�cation and noun phrase categorization.

In the case of bird image classi�cation, we created a new game called The Per-

fect Split based on the novel complementary-agreement mechanism. In a user study

involving 30 users, we �nd that game players struggle with the game when they

are asked directly to categorize images of birds (especially those belonging to less

commonly known species), both in terms of their game score as well as their abil-

ity to identify the correct species in the images; more importantly, players do not

�nd the game appealing, which violates the human-centric objective of our human

computation system. To address this problem, we introduce a hybrid approach for

categorization � we ask players to provide attributes and attribute values of some

perceptual characteristics (e.g., has blue head, has long tail) of the birds in the

images, then use this player-generated data as features to train a simple maximum

entropy algorithm to classify bird images into categories. Results show that the

hybrid categorization approach outperforms the approach of asking players to cat-

egorize bird images directly. Furthermore, players have greater success at playing

the game and rate the game as more enjoyable when they are asked to name and

score attributes of their own choosing.

In bird image classi�cation, game players have di�culty classifying images be-

cause they are unfamiliar with the attributes. In the second case study, we consider

the situation where human workers are familiar with the attributes, but are unfa-

miliar with the entities themselves. Speci�cally, we address the following question:

�how do we design a system where humans can help to categorize arbitrary noun

phrases extracted from the Web by a continuous web-mining system, where many

of the noun phrases are obscure and unfamiliar to them?� Similar to the case of

bird classi�cation, we �nd that human workers perform poorly at the categoriza-

tion task due to knowledge limitations, but that this knowledge limitations can be

overcome by transforming noun phrases into images and asking people to catego-

rize noun phrases using the images as hints. Furthermore, we evaluate the use of

the complementary-agreement mechanism to categorize noun phrases on Mechan-

ical Turk, by presenting images and noun phrases in a grid, and asking workers
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to �nd complementary sets of entities that belong or do not belong a particular

category. Results are promising � they show that workers are able to achieve low

(less than 3 out of 12 images) overlap 83% of the time. In addition, workers have

higher categorization performance when asked to categorize noun phrases using the

complementary-agreement mechanism than to answer multiple-choice questions di-

rectly. This suggests that a game like The Perfect Split can be used to elicit the

help of game players to supervise NELL, though more experimentation is required

to con�rm this speculation.

In both cases, we take the approach of designing a system to achieve the human-

centric objective of the system, then using machines to either overcome some lim-

itations of the human worker or complement their ability. Results show that our

hybrid human and machine computation approach allows knowledge-intensive tasks

to be completed more successfully than using human computation alone.



Chapter 5

Design Space of Human

Computation Games

While there has been a proliferation of human computation games in the past few

years, there has been little work on de�ning the design space of human computation

games. In this section, we will outline the design space of games for attribute

learning, including questions such as: What are the main components of a human

computation game for attribute learning? What are the design decisions important

for each of these dimensions? How can the existing game mechanisms � output-

agreement (e.g., ESP Game), problem inversion (e.g., Verbosity, Phetch), input-

agreement (e.g., TagATune), complementary-agreement (e.g., The Perfect Split) �

be described or classi�ed in relation to the design space? How does one know what

game mechanism to apply and when?

5.1 Components and Design Decisions

For attribute learning, human computation games are essentially platforms that

serve tasks for scoring or discovering attributes for a given set of entities, and reward

players when the tasks are completed successfully. Therefore, this type of human

computation games has �ve main components: (i) input, (ii) query, (iii) output, (iv)

mechanism, (v) player.

The �rst two components � input and query � determine what question the game

is asking the players in each round, and which input entities to focus on. Design

decisions related to these two components include the following: In each round of

the game, do we ask players to name relevant attributes, score attributes, or both?

Are players given a single entity, or multiple entities to process? Depending on

the answers to these questions, the game is essentially designed to ask di�erent

types of attribute discovery and scoring questions. For example, in the output-

agreement mechanism (e.g., the ESP Game), players are presented with a single

entity (e.g., an image) and asked to provide a tag. The ESP game is essentially

asking a single-entity, open-ended question. In the problem-inversion mecha-

nism (e.g., Verbosity and Phetch), the game presents a single entity to the describer

(e.g., a word in the case of Verbosity, and an image in the case of Phetch) and

asks him to provide a tag to the guesser. This game is also asking the players,

or more speci�cally the describer, to answer a single-entity, open-ended question.

Likewise, in TagATune, each player is given a music clip and asked to generate tags
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and share them with his partner; in other words, each player is essentially answering

a single-entity, open-ended question.

In contrast, in The Perfect Split, the game presents a set of entities to both

players. In the discovery mode, the game asks the positive player to name a rel-

evant attribute, i.e., answer a multiple-entities, open-ended question. In the

scoring mode, the players are given an attribute and asked whether that attribute

applies to each entity in the set, i.e., answer a multiple-entities, close-ended

(binary-choice) question. Open-ended questions allow players freedom to enter

any attributes, which has the e�ect of making the game more fun but the data more

noisy. Closed-ended questions give players less freedom, but allow attributes to be

collected in a much more targeted way.

The third component pertains to whether there is any explicit restrictions on

what players can enter into the system. Both TagATune and Phetch, for example,

impose zero restrictions on what the players can enter. In contrast, the ESP Game

prevents players from entering some tags (called taboo words) that have been fre-

quently entered by previous players. In Verbosity, the describer must describe the

attribute of the secret word/object using one of the sentence templates (e.g., �It is

[blank],� �It has [blank]�) provided by the game. In The Perfect Split, players are

asked to provide an attribute that is post�xed by the name of a body part (e.g.,

head, neck, tail, wing) provided by the game.

The fourth component � mechanism � is a major component that distinguishes

human computation games from other paid crowdsourcing platforms. A mechanism

consists of a set of rules that determines how the players should interact with each

other or with the system, as well as a reward system that determines when players are

successful and how much they should be rewarded. This set of rules determine the

answers to questions like �what information are the players allowed to communicate

with the system or with each other?�, �is the communication between players, if

any, uni-directional or bi-directional,� or �are all the players given the same set of

entities, or are certain entities hidden from some players?�

Di�erent from the typical reward system used in paid crowdsourcing platforms

(e.g., Mechanical Turk) where workers are paid using a �at rate, human computation

games reward workers when they are successful in achieving a goal, where the goal

is designed to be always easier to reach if and only if workers are telling the truth.

For example, in the ESP Game, players are rewarded only if their tags match; since

communication between game partners are prohibited and the image is the only

information that both players share, players are more likely to succeed in agreeing

with each other if they make use of the shared information and enter tags that

describe the content of the image. In TagATune, players are more likely to be able

to guess whether the two pieces of music are the same or di�erent, if they describe

to their partners as accurately as possible what they are listening to. In problem-

inversion games (e.g., Verbosity), the guesser is more likely to succeed in guessing

the secret entity if the describer enters accurate tags that singly describe that entity

and distinguish it from other entities. Lastly, in The Perfect Split, players are less

likely to overlap with each other if they are careful to name an attribute whose
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values are easy to determine from the images, and if they select only the images

that have (or do not have) a particular attribute, no more and no less. The last

three games are distinctly di�erent from the ESP Game in that communication

between game partners are allowed, and the mechanism is designed to encourage

truthful communication between game partners.

Finally, there are a set of design decisions about the players in the game, includ-

ing the number of players allowed in each game (e.g., a pair versus multiple) as well

as how the players are matched with each other (e.g., randomly versus by some crite-

ria, such as expertise or compatibility). Most game mechanisms to-date involve only

two players, with the exception of Phetch, where there is one describer but many

guessers all racing to be the one who guesses the secret image �rst. In general, games

that involve multiple players lend themselves well to competitive mechanisms, which

have been much less studied than cooperative game mechanisms.

1. input
How many entities are presented to the players?
How are these entities chosen?

2. query
Are players asked to answer open-ended or closed-ended questions?
Are players asked to name relevant attributes, score attributes, or both?

3. output
Are there any restrictions on what players can enter as their outputs?

4. mechanism
What are the rules of the game?
Are communication between players allowed?
Is the communication uni-directional or bi-directional?
Are all the entities visible to all players, or are some entities hidden from some players?
How does the game determine when players have successfully completed the task?
How much are players rewarded?
Are the players supposed to cooperate or compete?

5. player
How many players are allowed in each game?
How are the players matched (e.g., randomly, by expertise/compatibility)

Table 5.1: Design Space

Table 5.1 summarizes the list of components of human computation games for

attribute learning, and the design decisions that are associated with each of these

components.

5.2 Choosing a Game Mechanism

Given the design space described above, how does one decide which game mechanism

to use when? Table 5.2 highlights some of the key di�erences amongst existing games

in the context of the design space. Based on this table, we will discuss a few useful

questions to consider when choosing a game mechanism to apply to a given attribute

learning problem.

First, do the entities of interests have high description entropy, i.e., is there a

diverse language for describing attributes associated with the entities? For example,

in music, the same mood can be described using many di�erent words; while for
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ESP Game Verbosity Phetch TagATune The Perfect
Split

input single single single pair multiple

query open-ended open-ended open-ended open-ended open-ended
and close-
ended

output taboo words template none none template
restriction

success criteria agreement function function function complementary
computation computation computation agreement

nb of players 2 2 multiple 2 2

Table 5.2: Games in the Design Space

images, objects can be described using more restricted language. In the case of

vocabulary-rich input objects, a suitable game mechanism would be one that allows

communication between game partners and does not enforce that players agree with

each other. TagATune, Verbosity and Phetch are all examples of this scenario. In

Verbosity, there can be a large number of attributes associated with the words that

refer to real-world entities, e.g., apple can be described by many di�erent attributes

(including color, function, taste, category, etc.) and the number of ways to describe

the same attribute can be varied (e.g., �It is red,� �It has red skin,� �It looks red.�)

Likewise, by allowing communication, the game Phetch achieves the intended goal

of collecting elaborate descriptions of images, useful for improving accessibility for

blind users on the Web. In both cases, agreement-based mechanisms would not be

appropriate.

The second question to consider is the actual task-centric objective of the system.

For example, if the goal is to extract attributes such that each entity is distinguished

from each other, then the game can present pairs of entities to the players and ask

them for attributes that distinguish them, as in TagATune. If the task is to discrim-

inate between sets of entities, then the complementary-agreement mechanism would

be appropriate, as it presents a set of entities to players and asks for an attribute

that are common to some entities and not others. In general, game mechanisms that

serve only a single entity are unlikely to yield attributes that are discriminative.

Finally, The Perfect Split (which implements the complementary-agreement

mechanism) is the only game (amongst the ones shown in Table 5.2) that asks

close-ended questions, i.e., it presents an attribute and a set of entities to players

and asks players to specify the value of that particular attribute for those entities.

Being able to explicitly ask for the value of an attribute opens up new opportuni-

ties for hybrid human and machine computation � the machine can automatically

discover a new attribute and its values for all the entities, then ask game players to

evaluate its performance via a game like The Perfect Split. In fact, we have illus-

trated this phenomenon in the case study using The Perfect Split game to evaluate

facts extracted by a continuous web mining system called NELL.
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Conclusion

6.1 Summary

The goal of this work is to advance our understanding about the design of hybrid

human and machine computation systems. In particular, we focus on the role of

machines to complement human ability and overcome their limitations, instead of

their role in optimizing the process of human computation. Within the context of

the attribute learning problem, this thesis makes a set of conceptual and practical

contributions as follows.

6.1.1 Conceptual Contributions

We introduce a framework for characterizing the problem of attribute learning. The

attribute learning problem is framed as the problem of �lling in a matrix, where the

rows are entities and columns are all the possible attributes in the world. Given

an objective (e.g., to distinguish between di�erent entities or group of entities),

the tasks of a hybrid human and machine computation system is to identify the

relevant attributes (i.e., columns of this matrix) and to �ll in the attribute values

(i.e., complete the cells of the relevant columns) in this matrix.

Throughout this thesis, we have tackled a variety of questions within this frame-

work:

1. We show that games with a purpose can be viewed as a query model for editing

the matrix, and introduce two game mechanisms which can motivate workers

to reveal columns of the matrix in order to discriminate between individual en-

tities or groups of entities. For example, in chapter 3, we address the problem

of learning attributes in vocabulary-rich settings, i.e., where the input object

(e.g., music) can be described by a vast and diverse vocabulary. We introduce

a new game mechanism called input-agreement (and a game called TagATune)

for annotating music, which is capable of yielding music attributes that are

much more discriminative than what the widely used output-agreement mech-

anism can collect. In this mechanism, two workers (or game players) are given

either the same entity or two di�erent entities, and are asked to exchange tags

with each other until they are able to guess whether the entities given to them

are the same or di�erent. The input-agreement mechanism is a speci�c in-

stance of a general category of game mechanisms called function computation

mechanisms, where workers are each given partial inputs and must cooperate

(e.g., by combining their partial inputs) in order to successfully compute an
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auxiliary function (e.g., guessing whether the entities are the same or di�er-

ent).

In chapter 4, we introduce a new game mechanism called complementary-

agreement (and a game called The Perfect Split) that allows us to extract

attributes that can help discriminate between sets of entities (e.g., bird im-

ages belonging to di�erent species). Given an attribute, this mechanism asks

one player to select entities that have that attribute, while the other player is

asked to do the opposite, i.e., select entities that do not have that attribute.

The mechanism ensures output reliability by having each player generate out-

puts to constrain the other player's outputs. The complementary-agreement

mechanism can be used to discover attributes: by presenting a set of entities

to (one of) the players, and asking them to enter an attribute to split the

images.

Both of these game mechanisms share a similar query model � instead of

presenting one entity to the players, these games present a set of entities and

ask players to exchange attributes that can discriminate between the entities.

2. We demonstrate the intricate dependency between the human-centric and

task-centric objectives of human computation games. For example, while be-

ing human-friendly, the data collected by TagATune is extremely noisy. That

is, the matrix generated by the crowd via TagATune ends up having a vast

number of columns (i.e., attributes) that are redundant. This poses a problem

for achieving the task-centric objective of the system, i.e., to complete the

matrix using the help of machine learning algorithms, since most existing au-

tomated music tagging algorithms adopt the traditional approach of training

multiple binary classi�ers and are designed to handle a small number of mutu-

ally exclusive attributes as labels. In chapter 3, we propose an algorithm that

can learn e�ciently using this type of crowd-generated matrices for attribute

learning. The algorithm is trained in two stages: �rst learn a topic model us-

ing the tags collected by TagATune for each music clip, then learn a mapping

between audio features and the topic distribution assigned to each music clip

by the topic model. This algorithm is both more (i) data-e�cient (i.e., can

utilize an arbitrarily large number of open vocabulary tags as training data)

and time-e�cient (i.e., reduces training time drastically), when compared to

the traditional multiple binary classi�cation approach.

3. We show a new use of games to elicit the help of humans to evaluate machine

learning algorithms, i.e., having machines predict the values of the cells in

the matrix, and ask humans to verify machine output by scoring the same

cells. In chapter 3, we show that by having music tagging algorithms pose as

game players in TagATune, we can evaluate their performance by observing

the percentage of the times players are able to guess that the music clips given

to them and their game partner (i.e., an algorithm) are the same. In chapter

4, we show that it is feasible to elicit the help of crowdworkers to supervise a
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web mining system called NELL continuously.

4. Through experimentation, we show that human workers are poor at determin-

ing the values of attributes, when either the attributes or the entities them-

selves are unfamiliar. In chapter 4, we show that this knowledge limitation can

be overcome by (i) changing the representation of the entity (e.g., by trans-

forming noun phrases into images, in the case of noun phrase categorization),

or (ii) asking humans to identify other more commonly known attributes and

determine their values, using which to train machine learning algorithms to

predict the values of the unfamiliar attributes (e.g., asking humans to provide

perceptual attributes like �red head,� and �long tail� and use them to predict

if a bird image contains a �Finch� or a �Corvid�).

5. in chapter 5, we describe the design space of human computation games for

attribute learning, including the key components of such games and the design

decisions associated with each of the components. We also place existing game

mechanisms within the context of this design space, and o�er a few suggestions

on how to choose what game mechanism to apply when given a new attribute

learning problem with certain characteristics.

6.1.2 Practical Contributions

In addition to conceptual contributions, we implemented and deployed two actual

systems that are shown to be e�ective at achieving both human-centric and task-

centric objectives. In particular, TagATune has been deployed, interacted with tens

of thousands of game players over several years, and generated a large amount of

music tags that have been used by the research community to train automated music

tagging algorithms. The complementary-agreement mechanism has been shown to

be useful for encouraging truthful outputs on paid crowdsourcing platforms such as

Mechanical Turk and in a game called The Perfect Split.

6.2 Future Directions

6.2.1 Interweaving Human and Machine Intelligence

The premise behind human computation is that given the right conditions, an un-

precedented number of human workers can be mobilized to solve problems that are

di�cult for machines to solve. However, as a resource, human computers are still

typically more costly than machines. Hybrid solutions, involving both human and

machine intelligence, as we show in this thesis, can be powerful for future human

computation systems.

Human computation games must select, for each round, entities to be presented

to players. Some games, e.g., The Perfect Split, must additionally select the type of

queries to ask using di�erent modes. The games presented in this thesis do not make

use of any intelligent policies for choosing entities or which modes of the game to
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Figure 6.1: Mark My Bird

present next to players. In reality, information about di�erent entities have di�erent

utilities, and di�erent modes of the game can have di�ering cost (e.g., in terms of

di�culty level for players) and bene�t (e.g., in terms of asking for information

that actually moves the system towards achieving its task-centric objective). An

important next step in our work is to investigate some active learning or decision

theoretic framework (similar to [Kamar 2012]) for automatically choosing entities

and di�erent modes to present to players during each round of the game.

6.2.2 Applications in Citizen Science

Modern science is data intensive. In order to test hypotheses about our natural

environment, e.g., about climate patterns, species distribution and trajectories of

stars, often we need to collect and analyze data over large geographical regions and

many time periods. When carried out by a few scientists, this process is tedious,

time-consuming and sometimes impossible. The idea of citizen science is to en-

gage non-scientists in the collection and interpretation of data in order to answer

some scienti�c questions. Citizen science projects existed as early as 1900s where

people volunteered to collect daily climate data at regular time intervals and re-

port their measurements via telegraph [Grier 2005]. The National Audubon Society

holds an annual Christmas Bird Count, which has lasted more than 100 years and

engaged more than 50,000 birding enthusiasts in collecting bird count information in

2005 [Baron 2006]. The American Association of Variable Star Observers (AAVSO)

[Williams 2001] has engaged amateur astronomers for more than a century in track-

ing the variation of brightness in stars.

With new Internet and mobile technologies at our �ngertips, it is becoming

easy for vast number of people all over the world to participate as citizen scien-

tists, to collect �eld data to help answer speci�c scienti�c hypothesis, to map and

monitor animal and plant species, and to annotate massive amount of scienti�cally

interesting images and �eld recordings; all these are still beyond the capabilities
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of machines. Galaxy Zoo [Lintott 2008, Lintott 2010], for example, has more than

200,000 participants from 113 countries making more than 100 million classi�ca-

tions of galaxies [Raddick 2010], resulting in new discoveries [Cardamone 2009] and

an expanded project called Zooinverse [Zooniverse 2012]. E-bird [EBird 2012], an

Internet-based citizen science project run by Cornell Lab of Ornithology, has over

a period of �ve years attracted over 500,000 users and collected 21 million bird

records [Sullivan 2009].

Technologies can be used to bridge the knowledge gap of citizen scientists. For

example, one of the biggest science-related human computation (i.e., citizen science)

projects that exist is called e-Bird, launched in 2002 by the Cornell Lab of Ornithol-

ogy at Cornell University and the National Audubon Society, where hundreds of

thousands of birders submit observational data about birds they encountered and

identi�ed to a central database. Many birders are novices who might not be able to

identify the correct species of the bird. A promising approach, as adopted by com-

puter vision tools such as Visipedia [Perona 2010], is to allow users to upload the

photo of a bird, which is then fed to a computer vision algorithm that determines

its category. However, bird identi�cation remains a challenging task for computer

vision, and human computation becomes an attractive alternative.

For example, the Merlin project at Cornell's Lab of Ornithology is investigating

an approach for bird identi�cation, where birders can con�rm the identity of a bird

they saw in the �eld by entering visual attributes into a system, which then returns

a set of candidate species and their images. In order for this identi�cation tool to

work, it is necessary to collect large amounts of attribute data about birds. Human

computation games, such as Mark My Bird (Figure 6.1), are already being developed

to collect color-related bird attributes for Merlin. In the future, we will investigate

whether the data we collected via The Perfect Split can be used to power similar

identi�cation system for a variety of animal species.

Figure 6.2: Scoring unfamiliar attributes

Finally, the problem of learning unfamiliar attributes appear in many citizen

science problems. Figure 6.2 shows an example of such task, where workers are given

an unfamiliar attribute postorbital bar and asked to score the value of that attribute

to be complete or incomplete. Here, there are added di�culties that the attribute

is di�cult to describe, and workers might require substantial training before they

are capable of scoring the values of such an attribute accurately. In future work, we
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hope to investigate new methods for overcoming this type of knowledge limitation

in attribute learning.
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