
 Finding Correlated Equilibria in
General Sum Stochastic Games

 Chris Murray and Geoff Gordon

June 2007
CMU-ML-07-113

Finding Correlated Equilibria in

General Sum Stochastic Games

Chris Murray and Geoff Gordon

June 2007

CMU-ML-07-113

School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

Often problems arise where multiple self-interested agents with individual
goals can coordinate their actions to improve their outcomes. We model
these problems as general sum stochastic games. We develop a tractable
approximation algorithm for computing subgame-perfect correlated equi-
libria in these games. Our algorithm is an extension of standard dynamic
programming methods like value iteration and Q-learning. And, it is con-
servative: while it is not guaranteed to find all value vectors achievable in
correlated equilibrium, any policy which it does find is guaranteed to be
an exact equilibrium of the stochastic game (to within limits of accuracy
which depend on the number of backups and not on the approximation
scheme).

Our new algorithm is based on the planning algorithm of [1]. That
algorithm computes subgame-perfect Nash equilibria, but assumes that
it is given a set of “punishment policies” as input. Our new algorithm
requires only the description of the game, an important improvement since
suitable punishment policies may be difficult to come by.

Keywords: Multi-agent planning, subgame perfect correlated equilibrium,
stochastic games.

1 INTRODUCTION

We model the multi-agent planning problem, where self-interested rational agents
interact with each other and with the world, as a general sum stochastic game.
The world state and the players’ joint action determine the rewards to each
player and the world’s next state, and the process repeats.

Since our agents are self-interested, simply finding a policy that achieves
some value for each agent will not suffice: we need to find policies where ev-
ery agent has an incentive to cooperate, that is, equilibria of the game. An
equilibrium keeps every agent in line by promising rewards for compliance or
threatening punishment for deviation. More specifically, in order to give agents
the maximum flexibility in jointly choosing actions, we will look for policies that
are subgame-perfect correlated equilibria.

Unlike Nash equilibria, correlated equilibria allow agents to correlate their
actions at any given point in the game. That is, agents sample from a distri-
bution over joint actions, rather than each agent individually sampling her own
action and having the joint action distribution be the product of the individual
action distributions. Correlated equilibria allow a richer set of policies to be
achieved, and allow agents to avoid executing unintended joint actions. In addi-
tion, as we will see below, targeting correlated equilibria allows us to develop a
cleaner algorithm, since each backup operation can be viewed as approximating
a convex set of payoff vectors.

Subgame perfection means that our equilibrium policies will contain no in-
credible threats: even after a deviation by one agent (which might lead to a
situation which can never be observed in equilibrium play), no agent wishes to
make another deviation. In other words, if our policy deters deviation with the
threat of some punishment, the punishment policy is itself an equilibrium. (Of
course, if we just wish to compute correlated equilibria without worrying about
subgame perfection, our algorithm also provides a way to do so.)

Our focus here is on the planning problem: given a stochastic game, we
want to find the set of values that can be achieved in correlated equilibrium,
and policies to achieve these values. We won’t focus on the problem of selecting
an equilibrium from this set or executing a policy once it is chosen: we will
imagine that a moderator can serve both of these functions. If a moderator is
unavailable, the negotiation protocol in [1] can be used to select an equilibrium1

and the cryptographic protocol in [2] can be used to sample from a distribution
over joint actions.

1The negotiation protocol requires a disagreement policy as input, which we can take to
be any prespecified element of V(sstart). Good choices for a disagreement policy are often
domain-specific, but one reasonable domain-independent choice might be that, if the players
disagree, they will pick a value vector uniformly at random from the Pareto frontier of V(sstart)
and use it as a target.

3

2 STOCHASTIC GAMES

A stochastic game represents a multi-agent planning problem in the same way
that a Markov Decision Process [3] represents a single-agent planning problem.
As in an MDP, transitions in a stochastic game depend on the current state
and action. Unlike MDPs, the current (joint) action is a vector of individual
actions, one for each player. More formally, a general sum stochastic game G
is a tuple (S, sstart, P,A, T,R, γ). S is a set of states, and sstart ∈ S is the start
state. P is the number of players. A = A1 × A2 × . . . × AP is the finite set
of joint actions. We write a for a joint action, and α for a player’s individual
action. When a joint action a should be executed, but player p deviates and
plays individual action α′ instead of α, we write the resulting joint action as
ap:α′ . We deal with fully observable stochastic games with perfect monitoring,
where all players can observe the true state and true joint action.

T : S × A 7→ P (S) is the transition function, where P (S) is the set of
probability distributions over S. R : S × A 7→ ℜP is the reward function. We
will write Rp(s, a) for the pth component of R(s, a). γ ∈ [0, 1) is the discount
factor. Player p wants to maximize the expectation of her discounted total value
for the observed sequence of states and joint actions s1, a1, s2, a2, . . .:

Vp =

∞
∑

t=1

γt−1Rp(st, at)

A (stationary, joint) policy is a function πp : S 7→ P (A) which tells the players
how to pick their joint action at each state. A nonstationary policy is a function
π : (∪∞t=0 (S×A×A)t×S) 7→ P (A) which takes a history of states, recommended
joint actions, and actual joint actions, and produces a distribution over recom-
mended joint actions for the next time step. For any nonstationary policy, there
is a stationary policy that achieves the same value at every state [4]; but, the
stationary policy may not be an equilibrium even if the original nonstationary
policy is.

For both kinds of policy, we imagine that there is a moderator who observes
the current state s (or the history of states and actions h), samples a joint action
a from π(s) (or π(h)), and tells each player her recommended action ap. We
need such a moderator (or an equivalent cryptographic protocol) to make sure
that no player learns another player’s recommended action before choosing her
own action.

The value function V π
p : S 7→ ℜ gives expected values for player p under

joint policy π at every state. (For a nonstationary policy π we will define
V π

p (h) to be the value after observing history h.) And, the action-value function
Qπ

p : S×A 7→ ℜ gives expected values if we start at state s and perform action a.
(If π is nonstationary, we will write Qπ

p (h, a) for its value to p when starting at
history h and performing joint action a.) The value and action-value functions
for π satisfy the linear equations:

V π
p (h) =

∑

a

(π(h))(a)Qπ
p (h, a, a) (1)

4

Qπ
p (h, a, a′) = Rp(s(h), a′) + γ

∑

s′

P (s′ | s(h), a′)V π
p (〈h, a, a′, s′〉) (2)

Here s(h) is the state corresponding to history h (i.e., the last element of h).
Note that V π

p (h) in Eq. 1 depends only on Q-values for matching recommended
and actual actions, but Eq. 2 defines Q-values for both matching and non-
matching cases. Also note that we have written Eqs. 1–2 for the more general
case of nonstationary policies; if π is stationary, we can simplify the equations
by replacing each history with its final state.

The value vector at state s, V π(s), is the vector with components V π
p (s)

(and similarly for V π(h)). We will write V(s) to represent the set of value
vectors which are achievable starting from state s and following any correlated
equilibrium policy (either stationary or nonstationary). This set is convex, since
the moderator can randomize.

3 CORRELATED EQUILIBRIUM

A joint policy π is a correlated equilibrium if, when following π, no player ever
has incentive to deviate. It’s tempting to think of the correlated equilibrium
condition as simply V π

p (s) ≥ V π′

p (s) for any policy π′ which is the same as π
except that player p plays some individual actions differently. However, this is
not correct for two reasons. First, if player p deviates from π, the other players
may react and change their actions at subsequent states to punish p. So, the
immediate benefit which p achieves by deviating must be weighed against her
predicted future loss from being punished.

Second, and more subtly, p may consider not only unconditional deviations
of the form “ignore what I’m supposed to do and play action α instead,” but
also conditional deviations. During the execution of a policy, at some time t
and state s, p first learns the individual action α which she is recommended,
and then decides whether or not to follow that action. Learning α tells player
p a conditional distribution on what joint action will be followed; so, player p
can easily compute the conditional expectation of her future discounted value
having been recommended action α. Crucially, this value depends on the recom-
mendation α. Similarly, p’s expected loss from being punished after deviating
can also depend on α. So, p may wish to deviate after some recommendations
and not others.

Putting these two requirements together, if a policy wants to recommend
some individual action α to player p after a history h, it must promise player
p more by following α than p would get from any possible deviation (and the
resulting punishment). More formally, write Qπ

p (h, α, α′) for player p’s expected
value if she receives recommendation α and plays α′ instead, given that the
current history is h and the policy is π:

Qπ
p (h, α, α′) =

∑

a

Pπ(a | α, h)Qπ
p (h, a, ap:α′) (3)

5

For convenience, we will define Qπ
p (h, α, α′) to be zero if π never recommends

action α to player p given history h. Note that Qπ
p (h, a, ap:α′) can include a

penalty for player p if α′ 6= α, since π can prescribe that the other players will
change their behavior after observing ap:α′ instead of a.

With these definitions, the subgame-perfect correlated equilibrium condition
is just

(∀h, p, α, α′) Qπ
p (h, α, α) ≥ Qπ

p (h, α, α′) (4)

We can relax the condition of subgame perfection by requiring Eq. 4 to hold
only at histories h which are reachable during on-policy play.

4 VALUE BACKUPS

The algorithm we use to find all the achievable value vectors in a stochastic game
is based on dynamic programming, and is similar to (but more complicated than)
value iteration or Q-learning for MDPs. The final result of the algorithm will
be a P -dimensional convex set for each state, telling what vectors of values are
achievable in correlated equilibrium beginning in that state. The algorithm will
also return information sufficient for us to reconstruct a policy that achieves any
one of those value vectors. The value backups themselves aren’t that different
from the normal MDP value backups, as long as the multiplication and addition
operators are defined properly to work on convex sets of vectors. However, we
must also include a pruning step which removes policies where some agent has
an incentive to deviate.

In this section we will describe the simpler backup operator that doesn’t
enforce equilibrium constraints, and thus finds all value vectors achievable by
any policy in a game, rather than only those achievable via a correlated equilib-
rium policy. In Section 5, we will show how to add in the incentive constraints
to arrive at the complete backup operator which does enforce equilibrium con-
straints.

4.1 MDP backups

To derive the set-valued backup operator, we will start from the ordinary Bell-
man equations for Markov decision processes:

QMDP(s, a) = R(s, a) + γ
∑

s′

P (s′ | s, a)V MDP(s′) (5)

V MDP(s) = max
a

QMDP(s, a) (6)

Here P (s′ | s, a) is the probability of transitioning from state s to state s′

when taking action a. The MDP backup works by treating Eqs. 5 and 6 as
assignments: the operator TMDP can be written

TMDP(V)(s) = max
a

[

R(s, a) + γ
∑

s′

P (s′ | s)V (s′)

]

6

or, in matrix notation,

TMDP(V) = max
a

[Ra + γPaV] (7)

In this notation, the max operation operates componentwise.

4.2 Set-valued backups

In the multi-player generalization, V(s) ⊂ ℜP is a set of value vectors achievable
starting from state s: each v ∈ V(s) has one component for every player. But,
the rules for backing up the value for a single player under a fixed joint action
are exactly the same as in Eq. 5. To apply Eq. 5 to an entire set of value vectors
at once, we can define addition and multiplication to work in the usual way on
sets of vectors: for two sets A and B, a scalar c, and a vector d,

cA = {ca | a ∈ A} d+A = {d+a | a ∈ A} A+B = {a+b | a ∈ A, b ∈ B}

If V is a vector of sets and M is a matrix of scalars, the above definitions of
addition and scalar multiplication also allow us to interpret the matrix multi-
plication MV.

With these definitions, assuming that Vnoprune(s) is the set of achievable
value vectors at state s, we can write

Qnoprune(s, a) = R(s, a) + γ
∑

s′

P (s′ | s, a)Vnoprune(s′) (8)

for the set of all value vectors that we can achieve by starting at state s and
executing action a.

Eq. 8 is one half of the Bellman equations for stochastic games without
pruning. The remaining half defines V in terms of Q:

Vnoprune(s) = conva∈A Qnoprune(s, a) (9)

Here the conv operator first takes the union of its arguments, and then finds the
convex hull of the result. The reason we need conv in Eq. 9 (instead of the max
in Eq. 6) is that we want all value vectors that can be achieved from state s,
not just the one which maximizes some player’s payoff. (Convex combinations
of achievable value vectors are achievable since the moderator can randomize
among joint actions.)

By combining Equations (8) and (9), we can define the simplified transition
operator, which is the same as one iteration of the exact value iteration algorithm
except that it omits the pruning step.

Tnoprune(V) = conva∈A [Ra + γPaV] (10)

If our goal were to find all value vectors achievable via any policy, regardless of
equilibrium constraints, then repeated application of Tnoprune would converge

7

to the correct answer.2 However, we want to prune out those values that aren’t
achievable by a correlated equilibrium policy. The following section details how
to do so.

5 INDIVIDUAL RATIONALITY

In the full Bellman equations for discounted stochastic games (and in the corre-
sponding backup operator), we can define Q exactly as we did for the no-pruning
case (cf. Eq. 8):

Q(s, a) = R(s, a) + γ
∑

s′

P (s′ | s, a)V(s′) (11)

But now, instead of finding V(s) by taking the convex hull of Q(s, a) for all
a, we need to define a new pruning operation which removes non-equilibrium
action distributions so that

V(s) = prunea Q(s, a) (12)

The rest of this section defines the prune operator; Appendix A shows that our
definition is correct. (That is, it shows that the unique maximal solution of
Eqs. 11–12 consists of exactly the value vectors achievable in subgame-perfect
correlated equilibrium.) In the expression V = prunea Qa, the set V and all of
the sets Qa are subsets of ℜP .

5.1 Analyzing V
π(〈s〉)

By definition, V(s) consists of all value vectors V π(〈s〉) that can be achieved
starting from state s under any subgame-perfect correlated equilibrium policy
π. We can break π into two pieces: first, we have an immediate distribution
over recommended actions, ω = π(〈s〉). And second, we have a policy for the
future: if we recommended an action a and took a possibly-different action a′,
then our future policy is πs,a,a′(h) = π(〈s, a, a′, h〉).

From Eqs. 1–2 and the definitions of ω and πs,a,a′ , we know that

V π(〈s〉) =
∑

a

ω(a)

[

R(s, a) + γ
∑

s′

P (s′ | s, a)V πs,a,a(〈s′〉)

]

(13)

Eq. 13 shows that the future policy πs,a,a′ influences V π(〈s〉) only through the
value vectors V πs,a,a(〈s′〉) at states s′ that we might reach after one step. Since
we can choose our future policy arbitrarily (our future actions are not limited
by how we arrived at s′), and since V(s′) tells us what value vectors we can
achieve at s′, Eq. 13 means that we don’t need to worry about our exact future

2Repeated application will converge as long as we initialize V(s) to a nonempty, bounded
set for each s. For the full algorithm, we will in addition need to initialize V(s) to a set
containing the correct answer, such as the large cube suggested in Fig. 1.

8

policy: for purposes of computing V(s), we just need to keep track of how much
value our future policy will give us at each state s′ having followed each possible
joint action a.

In fact, by examining Eq. 11, we can see that the term in brackets in Eq. 13
is an element of Q(s, a). So, we have

V π
p (〈s〉) =

∑

a

ω(a)qa (14)

where ω is a probability distribution over actions and where qa ∈ Q(s, a) for
each a.

If we allowed all choices of ω and qa, we would arrive at the no-pruning
Bellman equations described in Sec. 4. But, not every choice of ω and qa will
correspond to an equilibrium policy. (So, prunea Q(s, a) will be a subset of
conva Q(s, a).) Therefore, to compute V(s), we still need to enforce the indi-
vidual rationality constraints, Eq. 4.

5.2 Enforcing Eq. 4

Fixing h = 〈s〉 and substituting the definition of Qπ
p (h, α, α′) into Eq. 4, we

have:
∑

a

Pπ(a | α, s)Qπ
p (〈s〉, a, a) ≥

∑

a

Pπ(a | α, s)Qπ
p (〈s〉, a, ap:α′) (15)

For π to be rational at s, Eq. 15 must hold for all p, α′, and α with Pπ(α | s) > 0.
By Bayes’ rule, Pπ(a | α, s) = Pπ(α | a, s)Pπ(a | s)/Pπ(α | s). The first

term, Pπ(α | a, s), is either 0 or 1 depending on whether α is consistent with
a. The second term, Pπ(a | s), is given by our immediate action distribution ω.
And, since the last term is positive and doesn’t depend on a, we can factor it
out and cancel it from both sides of Eq. 15:

∑

a|α

ω(a)Qπ
p (〈s〉, a, a) ≥

∑

a|α

ω(a)Qπ
p (〈s〉, a, ap:α′) (16)

for all p, α, and α′. (We can drop the qualification Pπ(α | s) > 0 since Eq. 16
is vacuous if Pπ(α | s) = 0.) The sum is over all actions a which are consistent
with the recommendation α.

On the left-hand side of Eq. 16, Qπ
p (〈s〉, a, a) is just the pth element of qa

from Eq. 14 above. On the right-hand side, Qπ
p (〈s〉, a, ap:α′) tells us how much

value player p will get by deviating to α′.
Since the off-policy Q-value Qπ

p (〈s〉, a, ap:α′) does not directly influence V π(s),
we don’t need to be concerned with its exact value except to make sure that
Eq. 16 is satisfied. That is, we only need to make sure that policy π punishes
deviations sufficiently severely to deter them.

By varying the future policy πs,a,a′ over equilibrium policies, we can make
the vector Qπ(〈s〉, a, ap:α′) be an arbitrary element of Q(s, ap:α′). So, define

Q
p
(s, a) = min

Q∈Q(s,a)
Qp

9

And, define Q(s, a) to be the vector whose pth element is Q
p
(s, a).

Q
p
(s, a) is the value of the harshest punishment that the other players can

impose on player p (within the bounds of equilibrium) given that we start with
state s and action a. So, if Eq. 16 can be satisfied at all, it will be satisfied
when Qπ

p (〈s〉, a, ap:α′) = Q
p
(s, ap:α′). That means that Eq. 16 reduces to

∑

a|α

ω(a)qa ≥
∑

a|α

ω(a)Q(s, ap:α′) (17)

for all players p, recommendations α, and deviations α′. Here ω is a probability
distribution, and qa ∈ Q(s, a) for each a. In Eq. 17, the ≥ operation on length-P
vectors is interpreted componentwise.

If we wish to compute correlated equilibria without regard to subgame per-
fection, we can replace Q

p
(s, a) by the minimal value that any feasible policy

assigns to player p; since this punishment will not be visited during equilibrium
play, it does not need to be an equilibrium unless we want subgame perfection.
To compute the minimal feasible value for each player at each state and action,
we can run the no-pruning version of our algorithm to completion.

5.3 Putting it together

Summarizing, we have that

V(s) =

{

∑

a

ω(a)qa

}

(18)

where the distribution ω and the value vectors qa ∈ Q(s, a) are constrained to
satisfy Eq. 17.

Eqs. 17–18 constitute a definition of the prune operator from Eq. 12. How-
ever, to make it easier to compute V(s), we will rearrange this definition slightly:
define

q̄a = ω(a)qa

And, assume that we are given a system of inequalities defining Q(s, a),

Q(s, a) = {q |Maq + ba ≥ 0}

(A matrix Ma and vector ba for such a system always exist, since Q(s, a) is a
convex set; however, Ma and ba may be infinitely tall if Q(s, a) has a curved
boundary.) Then V(s) is characterized by the linear system of inequalities

V =
∑

a

q̄a (19)

∑

a|α

q̄a ≥
∑

a|α

ω(a)Q(s, ap:α′) ∀p, α, α′ (20)

Maq̄a + ω(a)ba ≥ 0 ∀a (21)

10

∑

a

ω(a) = 1 (22)

ω(a) ≥ 0 ∀a (23)

The constants Q(s, a) in Eq. 20 can be precomputed from Q(s, a). Inequality 21
ensures that q̄a ∈ ω(a)Q(s, a), where ω(a)Q(s, a) is a copy of Q(s, a) scaled
down by ω(a).

5.4 Policy execution

If we have a solution to the Bellman equations (Eqs. 11–12), then we can use
Eqs. 19–23 to find, for any target value vector v ∈ V(s), a probability distribu-
tion ω(a) and value vectors qa ∈ Q(s, a) such that v =

∑

a ω(a)qa. (If q̄a = 0,
then qa is not determined, but may be chosen arbitrarily since ω(a) = 0.) And,
we know that each qa satisfies

qa = R(s, a) + γ
∑

s′

P (s′ | s, a)va(s′) (24)

for some vectors va(s′) ∈ V(s′). The distribution ω and vectors va(s′) for all a
and s′ tell us how to achieve the target value vector v from state s:

1. Draw a joint action a according to the distribution ω(a).

2. Attempt to execute that joint action.

3. If player p deviated, switch to the policy corresponding to Q
p
(s, a).3

4. Else, let s′ be the new state.

(a) Set the current state s to be s′.

(b) Set the target value vector v to be va(s′).

(c) Recompute ω, qa, and va(s) for all a, s according to Eqs. 19–23
and 24.

(d) Goto 1.

6 ALGORITHM

Using the Bellman equations (Eqs. 11–12) and the linear-inequality representa-
tion of the prune operator (Eqs. 19–23), we can design a dynamic programming
algorithm which computes an approximation to V(s) for all s. We first present a
conceptual, exact algorithm that is intractable to implement; below, in Sec. 6.1,
we show how to modify the algorithm so that we can implement it efficiently.

3A subsequent deviation by another player p′ will cause us to switch to some other pun-
ishment policy, corresponding to Q

p′
(s′, a′) for the state s′ and action a′ involved in the

deviation.

11

Initialization
for s ∈ S

V(s)← {V | ‖V ‖∞ ≤
Rmax

1−γ
}

end

Repeat until converged
for iteration← 1, 2, . . .

for s ∈ S

Compute value vector set and punishment value for each joint action
for a ∈ A

Q(s, a)← {R(s, a)}+ γ
∑

s′∈S P (s′ | s, a)V(s′)
for p ∈ {1 . . . P}, Q

p
(s, a)← minQ∈Q(s,a) Qp

end

Do backups for enforceable one-step joint-action distributions
V(s)← {V | (V, ω, q̄a) ∈ IRC}

end

end

Figure 1: Dynamic programming using exact operations on sets of value vec-
tors. The set IRC is the intersection of the individual rationality constraints in
Eqs. 19–23.

In our algorithm, the set V(s) for each state is initialized to a large P -
dimensional hypercube, centered at the origin and extending a distance Rmax

1−γ
in

each direction, where Rmax is the absolute value of the largest reward available
in the game. This initialization means that V(s) starts out containing all value
vectors which players could ever hope to achieve.

From this initial value of V, we compute Q according to Eq. 11. Then,
for each state s, we intersect the linear inequalities 19–23 to find value vectors
V , probability distributions ω, and scaled Q-values q̄a that are consistent with
individual rationality for one step into the future. We update V(s) to be the
set of all one-step individually rational value vectors V .

We then continue in this manner, alternately recomputing Q and V; each
additional such backup extends the planning horizon and the individual ratio-
nality constraints another step into the future. Finally, once we have computed
V to the desired accuracy, we can select an element of V(sstart) and begin
executing our policy as described in Sec. 5.4.

Write V ← T (V) for the backup operation. We show in Appendix A that
T k(V) converges as k →∞. Unfortunately, we have not been able to show that
the convergence is linear as it is for MDPs: the problem is that we could need to
find a very accurate approximation to V(s′) before we realize that some action
distribution ω is irrational at s. If that action distribution was being used as a
punishment to support equilibria, such a change could cause a rapid adjustment
to our value sets.

12

6.1 Approximate backups

The algorithm given in the previous section is intractable since it operates on
arbitrary convex sets. We can make a tractable algorithm by storing a finite
number of points to represent each convex set V(s). Since the sets are convex,
we need only store points on the exterior. Since the value vectors lie in ℜP , we
use a finite set of directions w1 . . . wK ∈ ℜ

P and store only the points on the
exterior of the convex sets farthest in each direction wi.

More precisely, at step k of the algorithm we approximate each convex set
T k(V0)(s) as

Vk(s) = conv {V i
k (s) | i = 1 . . . K}

where V i
k (s) is the point in T (Vk−1)(s) farthest in the wi direction,

V i
k (s) = arg max

V ∈T (Vk−1)(s)
V · wi

This approximation is conservative, since our approximate Vk(s) is contained in
the exact T k(V0)(s). So, while our approximate algorithm might miss equilibria,
it will never erroneously claim that a non-equilibrium is an equilibrium.

Using this representation, the approximate algorithm is the same as the
exact algorithm in Fig. 1, except that we replace the line

V(s)← {V | (V, ω, q̄a) ∈ IRC}

with
for i = 1 . . . K, V i(s)← arg max

V
V · wi s.t. (V, ω, q̄a) ∈ IRC (25)

The constraints and objectives for the maximizations in Eq. 25 are linear, so we
can implement the approximate algorithm via calls to a standard LP solver. In
particular, since the sets Q(s, a) are represented as the convex hull of finitely
many points, there are finitely many linear constraints on the qa vectors. We
can save some time by not computing Q(s, a) explicitly, but instead finding the
farthest point in Q(s, a) in the direction wi directly from the points V i(s):

arg max
Q∈Q(s,a)

Q · wi = R(s, a) + γ
∑

s′

P (s′ | s, a) arg max
v∈V(s)

V · wi

= R(s, a) + γ
∑

s′

P (s′ | s, a)V i(s)

7 EXPERIMENTS

In order to test our algorithm and our intuition, we created a simple repeated
game called three-way matching pennies.4 This is a three-player asymmetric
game where every player holds a penny and each turn can reveal heads or tails.
If players one and two reveal the same side of the coin, player three gets a

4Repeated games are a subset of general sum stochastic games.

13

Table 1: Payoff matrix to the three-way matching pennies game.

Player 1 Player 2 Player 3

Tails Heads
Tails Tails (0,0,1) (0,0,1)
Tails Heads (1,1,0) (0,0,1)
Heads Tails (0,0,1) (1,1,0)
Heads Heads (0,0,1) (0,0,1)

point. If players one and two reveal different sides of their coins, they may earn
a point, depending on what side player three shows. Thus the game inherently
favors player three. The payoffs are shown in table 1. An important point is
that players one and two will both be better off if they coordinate their joint
actions: any time they both reveal the same side of the coin they will do poorly.
Thus we expect that solution policies which are correlated equilibria will allow
players one and two to do better than solution policies which are merely Nash
equilibria.

Figure 2 shows the achievable value vectors for this game. By coordinating
their actions and always playing either HT or TH, players one and two can do
as well as player three and score half the time (corresponding to the point (1, 1)
in the figure). This is the best players one and two can do: if they play HT
more than half the time (or less than half the time), player three will just play
T (or H) and reduce their score.

If players one and two didn’t coordinate but made their action choices inde-
pendently, they would score a quarter of the time (corresponding to the point
(0.5, 1.5)), since they would often end up playing the same side of the coin and
guaranteeing player three a point. And, if players one and two anticoordinate
their action choices, they can score none of the time (corresponding to the point
(0, 2)). This unfortunate outcome is still an equilibrium: players two and three
acting together can keep player one from scoring any points (and likewise play-
ers one and three can keep player two from scoring), so with the threat of such
a punishment, there is no incentive for player one or two to deviate.

8 CONCLUSION

We presented a tractable approximation algorithm for finding subgame-perfect
correlated equilibria in general sum stochastic games. This planning algorithm
is important since it allows self-interested agents to find policies where they can
jointly achieve higher payoffs by cooperating, and since subgame-perfect corre-
lated equilibrium is a strong condition. To use this algorithm in practice, the
agents would need to coordinate on a value vector in V(sstart) and would need
to simulate a moderator; for these purposes the agents can use the negotiation
protocol in [1] and the cryptographic protocol in [2], respectively.

14

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Value to players 1 and 2

V
al

ue
 to

 p
la

ye
r

3

Figure 2: Achievable correlated equilibrium value vectors for the three-way
matching pennies game with a discount factor of γ = 0.5. Though the true
value vectors lie in three dimensions, the game’s payoff structure treats players
one and two the same, so the plot shows value to players one and two on the X
axis and value to player three on the Y axis.

Acknowledgements

The authors would like to thank Ron Parr for helpful comments and discussion
at an early stage of this work. This research was supported in part by a grant
from DARPA’s Computer Science Study Panel program.

References

[1] Chris Murray and Geoff Gordon. Multi-robot negotiation: Approximating
the set of subgame perfect equilibria in general-sum stochastic games. In
NIPS, 2006.

[2] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to
a game theoretic problem. In Lecture Notes in Computer Science, volume
1880, page 112. Springer, Berlin, 2000.

[3] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci-
entific, Massachusetts, 1995.

[4] Prajit K. Dutta. A folk theorem for stochastic games. Journal of Economic
Theory, 66:1–32, 1995.

15

A Proofs

In this appendix we will prove that the exact algorithm presented in Figure 1
is correct. We do so by making the following arguments:

Monotonicity The sets of value vectors stored by the algorithm decrease
monotonically as the algorithm progresses, so if the algorithm is allowed to
run for long enough they will converge to final sets of value vectors. (Since
T is continuous, the final sets form a fixed point V∗ of T , TV∗ = V∗.)

Achievability After the algorithm has converged, all value vectors that it
stores are achievable in subgame-perfect correlated equilibrium.

Conservative initialization The value vector sets are initialized to contain
all possible value vectors that could be achieved in the game.

Conservative backups As the algorithm runs, it never throws out a value
vector which is achievable in correlated equilibrium.

These properties, together, assure that the algorithm finds all value vectors
achievable in correlated equilibrium.

It is interesting to note that there may be more than one solution to the
Bellman equations (Eqs. 11–12). (In particular, setting V(s) = ∅ for all s yields
a trivial fixed point.) The achievability property means that all of these fixed
points contain only value vectors achievable in subgame-perfect correlated equi-
librium. However, because of the conservative initialization and conservative
backup properties, our algorithm finds the (unique) largest fixed point, which
includes all equilibrium value vectors.

The conservative initialization property is easy to show: Figure 1 initializes
V(s) to the hypercube [−Rmax/(1− γ), Rmax/(1− γ)]P , and no policy can pos-
sibly achieve more than this amount of reward. The following sections contain
proofs of the remaining properties.

A.1 Monotonicity

We will show, first, that the backup operator T is monotone. That is, if V and
W are two set-value functions with V(s) ⊆ W(s) for all s (we will write this
property as V ⊆W) then

T (V) ⊆ T (W) (26)

We will then show that, as long as we pick our initial set-value function V0

appropriately,
T (V0) ⊆ V0 (27)

Using (27) as a base case and (26) as an inductive step, we will then have
that, as claimed, our sequence of value functions decreases monotonically as our
algorithm progresses.

Lemma 1 T is monotone (Equation (26)).

16

Proof: Write
Qa(V) = Ra + γPaV (28)

Then by definition
T (V)(s) = pruneaQa(V)(s) (29)

It is easy to see that, if V(s) ⊆W(s) for all s, then Qa(V)(s) ⊆ Qa(W)(s) for
all s and a: linear operations on sets preserve subset relationships. So, if we
can show that the pruning operator also preserves subset relationships, we will
have the desired result.

The sets Qa(V)(s) appear in two places in Eqs. 19–23 (the definition of the
pruning operator): first, they influence the feasible set for q̄a, and second, they
influence the punishment values Q(s, a). In the first case, shrinking Qa(V)(s)
only leads to a tighter constraint on qa. And, in the second case, shrinking
Qa(V)(s) only leads to a higher value for Q(s, a); since Q(s, a) appears with
positive sign on the right-hand side of a ≥ constraint, raising Q(s, a) also results
in a tighter constraint. So, the feasible set described by Eqs. 19–23 when using
Qa(V)(s) is contained in the feasible set when using Qa(W)(s), which is what
we wanted to prove. 2

Lemma 2 With V0 defined as in the initialization of Fig. 1, T (V0) ⊆ V0.

Proof: By a standard MDP argument, Qa(V0) ⊆ V0: the stochastic matrix Pa

maps the origin-centered cube V0 into itself, and the discount factor γ shrinks
the cube enough that the offset Ra cannot place the resulting set outside of V0.
But, as argued in Sec. 5, prunea Qa ⊆ conva Qa; the desired result follows. 2

Given these two lemmas, the inductive argument outlined at the beginning
of the section shows that (T k+1(V0))(s) ⊆ (T k(V0))(s) for each s and k. So, the
sequence (T k(V0))(s) converges for each s, since it is decreasing and bounded
below by the empty set. (In fact, T k(V0) is bounded below by any fixed point V:
because no policy can achieve more than Rmax/(1−γ) or less than −Rmax/(1−
γ), we know V ⊆ V0. By monotonicity, T kV ⊆ T kV0, and by the fixed
point assumption, T kV = V. So, T kV0 contains V for all k. Therefore,
V∗ = limk→∞ T kV0 contains any fixed point V, meaning that V∗ is the unique
largest fixed point of T .)

A.2 Achievability

Lemma 3 Let V∗ be a fixed set of T , that is, V∗ = T (V∗). For any v ∈ V∗(s),
the policy πv,s described in Sec. 5.4 achieves v in expectation starting from state
s. And, no agent has an incentive to deviate from πv,s at any step.

Proof: The proof will be by induction. Specifically, we will show that, for all
v and s, following πv,s for k steps will yield an actual expected discounted value
vector Ak(v, s) which satisfies

‖Ak(v, s)− v‖ ≤ γk Rmax

1− γ
(30)

17

(The norm will always be the max (infinity) norm, but we will leave off the
subscript to avoid clutter.) So,

lim
k→∞

Ak(v, s) = v (31)

for all s and v ∈ V∗(s). Since the pruneaQa operation enforces incentive con-
straints under the assumption that the Qa sets correctly describe achievable
values, Eq. 31 means that incentive constraints are correctly enforced. (More
precisely, the incentive for any player to deviate is bounded by twice the max-
norm error in achieving a target value vector; since Eq. 31 shows that this error
is zero in the limit, there is no incentive to deviate.)

Base case: Following any policy for 0 steps from state s achieves A0(v, s) = 0,
while v ∈ V∗(s) means that ‖v‖ ≤ Rmax

1−γ
. So, ‖A0(v, s)− v‖ ≤ γ0 Rmax

1−γ
.

Inductive case: By the inductive hypothesis, we can start in any state s
and, for any v ∈ V∗(s), achieve in k steps a value vector Ak(v, s) satisfying
‖Ak(v, s)− v‖ ≤ γk Rmax

1−γ
.

Since V∗ is a fixed set, for every v ∈ V∗(s) there exists a distribution ω and
values va,s′ for all a and s′ satisfying one-step incentive constraints and

v =
∑

a

ω(a)

[

R(s, a) + γ
∑

s′

P (s′ | s, a)va,s′

]

(32)

va,s′ ∈ V∗(s′) (33)

Our k + 1-step policy will use the action distribution ω on the first step, and
will target va,s′ for the next k steps to achieve

Ak+1(v, s) =
∑

a

ω(a)

[

R(s, a) + γ
∑

s′

P (s′ | s, a)Ak(va,s′ , s′)

]

(34)

This lets us write the max-norm distance between the value achieved by the
k + 1-step policy and the target value as

‖Ak+1(v, s)− v‖

=

∥

∥

∥

∥

∥

Ak+1(v, s)−
∑

a

ω(a)

[

R(s, a) + γ
∑

s′

P (s′ | s, a)va,s′

]∥

∥

∥

∥

∥

(35)

=

∥

∥

∥

∥

∥

∑

a

ω(a)γ
∑

s′

P (s′ | s, a) [Ak(va,s′ , s′)− va,s′]

∥

∥

∥

∥

∥

(36)

≤ γ
∑

a

∑

s′

ω(a)P (s′ | s, a)‖Ak(va,s′ , s′)− va,s′‖ (37)

≤ γ
∑

a

∑

s′

ω(a)P (s′ | s, a)γK Rmax

1− γ
(38)

= γK+1 Rmax

1− γ
(39)

18

Here Eq. 35 expands v using equation 32. Eq. 36 expands Ak+1(v, s) using
equation 34. This expansion lets the reward terms

∑

a ω(a)R(s, a) cancel out.
Equation 37 uses the fact that the norm of a sum of terms is not greater than
the sum of the norms of the terms. Equation 38 uses the inductive hypothesis,
which says that a K-step policy starting from any state s′ can can achieve a
value within γK Rmax

1−γ
of any value v(s′) ∈ V∗(s′). The last equation uses the

fact that probability distributions sum to one.
Taking Eqs. 35–39 together, we have verified the inductive case and have

therefore proven the lemma. 2

A.3 Conservative backups

Lemma 4 If V0 contains the value vectors for all subgame-perfect correlated
equilibria at all states, then T k(V0) also contains the value vectors for all
subgame-perfect correlated equilibria at all states.

Proof: The proof is by induction. The base case (k = 0) is assumed in the
lemma. For the inductive step, assume the lemma is true for T k. The backup
operator consists of two steps, defined in Eqs. 28–29. The first step throws out
only value vectors that are not achievable by an arbitrary initial action followed
by any equilibrium policy. The second step throws out only value vectors for
which the individual rationality constraints are violated at the first step, and
must therefore leave subgame-perfect correlated equilibria untouched. 2

19

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

