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Abstract. Strings are a basic data type in most programming languages,
but substrings are seldom accorded first class status on a par with, say,

integers. Substrings are important as the result of search and parsing
algorithms since the calling routine may need to access both the matched

substring and adjacent text or punctuation. To promote substrings, this

paper describes a new algebra for subsequences which, when specialized

to substrings, yields appropriately first class values. The key idea is that

the basic data type is not sequences or references to positions in

sequences, but rather references to subsequences. Primitive operations for
the algebra are constants, concatenation, and four new functions--base,

start, next, and extent--which map subsequence references to subsequence
references.

This paper informally presents the algebra, shows that it is sufficient to
define search functions, and then contrasts it with other models of

substring values. Later sections of the paper contrast various models of

substring values, show how the subsequence algebra can be concisely
implemented, and touch on the many other aspects and advantages of the

algebra. Examples are given in Ness, a language incorporating the
algebra which is implemented as part of the Andrew Toolkit.
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Despite the importance of text and strings, programming languages have offered no
innovations in string data types or operations since the introduction of pattern matching
and substr which happened at least as early as COMIT [Yngve, 1963] and PL/I [IBM,
1965], respectively. The most recent innovations, in Icon [Griswold, 1983], retain the
standard string data types and augment them with carefully designed control structures.

This paper defines and demonstrates a new data type for strings by introducing a
subsequence algebra and specializing it to strings. In the algebra each value is a
reference to a subsequence of a base sequence, so each single string value represents an
entire substring. With other string models multiple variables are required to represent a
substring, leading to more complexity and errors. Please note that although this paper
discusses an algebra, the presentation is informal and not algebraic. See [Hansen, 1989a]
for a formal definition.

That there is a need for a new string data type is a consequence of three emerging trends:

Desktop publishing is accustomizing users to text with typographic formatting, multiple
character sets, and even embedded objects: rasters, drawings, equations, footnotes,
references, and so on. Such text can be dealt with in existing programming languages by
the addition of various library packages and augmentation of the compiler and runtime
system to accept non-ASCII characters in string values. However, since much effort is
required to make these enhancements it is appropriate to introduce a new data type at the
same time.

Applicative programming can be characterized as programming without side effects; an
expression as written can be examined purely for its value so the reader need not keep the
many details of possible side-effects in mind. The psychological advantages of this
approach have not been explored in depth, but are related to the notions of modularity
reviewed in section 3.4.2 of [Shneiderman, 1980]. As section 4 will show, traditional
string value architectures encourage the use of side effects, at least to the extent of
requiring two separate statements to record the position of a substring in one variable and
its length in another.

"Professional non-programmers" denote professionals who are not programmers, but
who happen to program computers as a tool in their work. Recent interactive systems
such as Hypercard [Atldnson, 1987] have introduced programming languages intended
for these people. While it is true that these languages do not permit control over every
CPU cycle, they compensate by allowing clear and concise programs.

To satisfy these three emerging trends, the string facility of a language should be
something that can be described as follows.
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Simple. Programs are short and straightforward. A minimal number of
data types and concepts are required to read and write programs.

First Class. Strings and substrings are as well supported as numeric
values. Syntactic forms are offered for concatenation, string constants,
and declaration of substring variables. Semantically, substring values can
be passed as arguments to functions and returned as values. Comparison
and assignment apply to substrings.

Unbounded. String values are not declared with size bounds and string
expressions have no such bounds. The implementation manages the space
for all strings.

Rich. String values support typographic styling, a large, potentially
infinite character set, and the inclusion of embedded objects such as
images, equations, and tables.

No widely used programming languages combine all four characteristics. Most lack
Simplicity and First Class substrings, as will be discussed in Section 4. A few language
provide Unbounded string values; for instance Icon, LISP [Steele, 1984], Awk [Aho,
1979], and REXX [IBM, 1987]. The latest version of C [ANSI, 1990] has reached
toward Rich strings to the extent of offering a data type for "wide" characters and library
functions for conversions between wide and multi-byte representations. Despite this
added complexity, C cannot be said to support typographic styles or embedded objects.
That no language currently offers Rich strings is not surprising given how recently
desktop publishing has become practical. Most languages with First Class strings could
be extended to provide Rich strings as well by redefining the syntax of string constants,
providing a suitable implementation and defining functions to operate on typography and
embedded objects.

The only two languages satisfying all four criteria, Noss [Hansen, 1989b; Hansen,
1990] and cT [CDEC, 1989], both base their string data type on the subsequence algebra
presented here. Both were originally implemented under the Andrew Toolkit (ATK)
[Morris, 1986; Palay, 1988], although cT has recently been re-implemented. The
capability range of ATK is illustrated by this paper: a single file with various embedded
objects created using ATK's ez text editor. Examples below are given in NOSS, the full
power of which can be noted from the fact that under 2600 lines of Ness code are
needed for a translator to ATK format from Microsoft's Rich Text Format (RTF)
[Microsoft, 1990]. Typographic styling is permitted in Ness programs; the programs
below were compiled and executed without removing the styles.

In this paper, the subsequence algebra is introduced in the first section followed by
descriptions of non-primitive and searching functions in the next two sections. The fourth
section contrasts the algebra with alternative models of strings. The comparison is
continued in the fifth section with an in-depth examination of solutions to a practical
problem. The sixth section discusses implementation showing that the algebra cannot be
comfortably implemented as a subroutine package but can be readily compiled. Many
additional aspects of the algebra are summarized briefly in the seventh section.
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1. An Algebra for Subsequences

We first define a subsequence reference algebra and then specialize it to Rich strings.

A subsequence reference algebra is a four-tuple [E, S, R, O] where E is a arbitrary set of
elements and O a set of operations defined over a domain R derived from the set S of
sequences over E. Specifically we define these terms:

A sequence in S is a finite, ordered collection of elements from E. Before
each element and after the last is a "position". 1

Each element of R is a triple [b, 1,r] where b is a sequence in S and I and
r are positions in b.

An element of R is called a subsequence reference, or subseq. A subseq
[b, 1, r] is said to refer to the elements of b between the two positions 1
and r. If I and r are the same, the subseq is said to be empty.

For discourse, the elements in a sequence are imagined to be in a horizontal line with
earlier elements to the "left" of later elements. Note that empty sequences are not all
equivalent; they may differ as to their locations within their bases. Usually the operators
O will include a nullary operator for constants which maps the denotation of a sequence
of elements into a subseq with that sequence as a base and positions at its opposite ends.
Other operators map subseqs to subseqs.

When a subsequence algebra is incorporated as a data type in a programming language,
there is no need for values which are elements of E or S since both can be represented by
elements of R. For a single element from E, the subseq in R has a base string containing
the element and the two positions on each side of it. For a sequence from S, the subseq
in R has that sequence as its base and the two positions at opposite ends.

For common programming languages the specialization of a subsequence reference
algebra would define the set E as set of ASCII characters. Several languages implement
the operator set O with mixed domain functions like substr(r, i, j) where the first
argument is a string and the others are integers. Usually however, the resulting reference
is to a new base sequence rather than the original r. The specialization in this paper
employs a richer set of elements, a set of operations defined solely over the domain of
substrings, and result values that refer to the base strings of their arguments.

When the elements referred to by a subseq are characters it will be common below to talk
of it as a substring. Figure 1 shows three substring or subseq values, m, s, and p, defined
on the base sequence "'Twas brillig and the slithy toves" and referring respectively to
"s bril", an empty subsequence, and toves.

lIn a more formal presentation,S is a mappingfrom a range of integers to elementsand positionsare
denotedby integers. Thisprecisionis notneededhere.
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m\ s\ p\J L J L
<'Twas brillig and the slithy toves>

Figure 1. Three subseq values on a base sequence. The base sequence
is shown between < and >. The end positions of subseq value are shown
as arrows pointing between elements of the base. For an empty subseq the
value is shown as a vertical arrow; for a non-empty subseq the value is
shown as two half arrows joined with a horizontal line.

In the rest of this paper we specialize to "the" subsequence algebra [E*, S*, R*, O*]
where:

An element in E* is a character from an arbitrary character set with
arbitrary typographic styling or an object implemented in an object-
oriented programming system.

S* and R* are the sets of sequences and references to subsequences
analogous to S and R.

The operators O* are the set

{"...", start, base, next, extent, ~}

as defined below.

The operators base, start, next, and extent are illustrated in Figure 2. These and the
others are defined thus:

"..." denotes the set of nullary constants with a member of S*
substituted for the ellipses. The value produced is a reference to the base
sequence composed of the elements of that member of S* with positions
at the opposite ends.

For example, we might have the constant:

"_ _T _ _ _ _isJapaneseforDoyouplaygo?"

which illustrates Rich strings whether the Japanese characters are in a font or in a raster
image as they are here.

start(x) - Returns the empty subseq at the beginning of its argument.
Specifically the value is on the same base as x and has both positions the
same as the leftmost of the positions in x.

base(x) - Returns a subseq for the entire base of x. Specifically, the
return value is on the same base as x and has the two positions at opposite
ends of that base.
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jm\ L J L
<'Twas brillig and the slithy toves>
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start(m) nbxt(m)(m_)/starn_!S_)e(_)// start(P_bX_Pe

m\ s\J L -_ J L
<'Twas brillig and the slithy toves>

1 r
[ extent(re, p)/1 /

eXtee;tt(_'(;_m)fT extent(p, s)f T

Figure 2. Four primitive functions. The subseq values below the base
show the result of applying the primitive functions to m, s, and p. Values
for extent(s, m) and extent(s, p) are given in the text.

In the Figure, start(m) is the empty subseq between a and s; and the values of base(m),
base(p), and base(s) are each the entire sequence between < and >. To get an empty
subseq at the beginning ofx's base sequence, we can write start(base(x)). The opposite
composition, base(start(x)), returns exactly the same value as base(x) because x and
start(x) are both on the same base sequence.

next(x) - This function returns a subseq for the element following x.
Specifically, the base of the result is the same as that of x, one position is
at the rightmost position of x, and the other position is one element further
to the fight in the base. If the argument x extends all the way to the end of
its base string, then next(x) returns an empty subseq for the position at the
end of the base.

Next(m) and next(s) in the figure are both single elements, while next(p) is empty. The
element just after start of x is next(start(x)), while the empty subseq at the end of x is
start(next(x)). Next(base(x)) is the empty subseq at the end of base(x).

extent(x, y) - In general, returns a subseq for everything from the
beginning of x to the end of y. Specifically, when x and y are on the same
base, the result subseq is also on that base and has one position at the end
of start(next(y)); the other position is either start(x) or start(next(y)),
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whichever is further left in the base. If x and y are on different bases, the
result is an empty subseq on a unique empty base.

One non-empty result in Figure 2 is extent(s, p) which extends from s to the end of the
base; conversely, extent(s, m) gives an empty subseq at the same position as extent(p ,m).
All of the base before m is extent(base(m), start(m)) and all of the base after m is
extent(next(m), base(m)); observe that for both the result is shorter than base(m) even
though that is one of the arguments.

Given two subseqs x and y, it is possible to determine whether both are on the same base
sequence as long as both are not on empty bases. They are on the same base if (base(x)
= base(y) and extent(base(x), base(y)) = base(x)).

x - y - Tilde denotes concatenation and generates a new base string
composed of copies of the subsequences referred to by x and y. The value
returned is a reference to the new base string with positions at its opposite
ends.

In terms of Figure 2, m ~p is a subseq whose base is the new value "s briltoves" and
whose positions are at the extremes of that base.

In examples below, subseq variables are declared 2 with the form:

subseq m, p, s

Function arguments and values are subseq values by default. Assignment of subseq
values does not copy the string referenced; instead it copies only the reference.
Comparison, however, compares the strings referenced and does not distinguish between
strings on different bases.

Given a subseq value we can write simple operations to scan through the base string. If m
refers to a blank, we can advance it to point to the nearest following non-blank with:

while m = " "do m := next(m) end while

Note that this loop will terminate with m referring to either a non-blank or to the empty
subseq at the end of the base. Of course, if m originally referred to a non-blank, it would
remain unchanged. Denoting the initial value of m as mo, the loop invariant before the
predicate is that extent(mo, start(m)) is all blanks.

Suppose m refers to a word, that is, consecutive non-blank characters with adjacent
blanks on both ends. To find the next word we must first skip the blanks following m
and then build a subseq referring to everything prior to the next blank. In the Noss
implementation of the algebra, this is written as:

2In the NOSSandcT implementationsof thealgebra,the declaratoris "marker"insteadof "subseq."
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function nextword(m)
while next(m) = " " do m := next(m) end while
m := next(m) -- first letter of word
while next(m)/= ....and next(m)/= .... do

-- another non-blank: include it in m

m := extent(m, next(m))
end while
return m

end function

The first while loop scans across all blanks after m and the second scans across all
subsequent non-blanks to accumulate the word. The test next(m)/= ....checks to see if m
ends at the end of its base, in which case it is deemed to be at the end of a word. When
there is no word, nextword returns an empty string. For a shorter version of this function
see Section 3.

Even this brief example can illustrate how values in the algebra are First Class and aid in
applicative programming: the result of one function can be directly passed as an
argument to another. For instance the statement

if m = "function" then addToTable(nextword(m), functiontable) end if

will pass to addToTable the entire word returned from nextword. No global variables or
side effects are required; the computation within nextword or addToTable can be
arbitrarily complex and the same functions can be utilized in other contexts. As sections
4 and 5 will discuss, coding this statement is more awkward with other popular models of
string values.

The operators start and next are asymmetric with respect to text order in that one moves
from left-to-right and the other returns the leftmost position in its argument, while the
corresponding operators for the reverse direction are non-primitive. This asymmetry
reflects a decision to engineer the primitives for the most common order of examining
text. Indeed, in some implementations utilizing multi-byte character encoding there may
be a performance penalty for right-to-left traversal.

2. Non-primitive Functions

With the primitive functions as a foundation we can write expressions for interesting
substrings relative to a given substring. Commonly used functions include those
identified in Figure 3 and defined in Table 1.
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Figure 3. Non-primitive functions. For the subtle difference between
first and front, see Table 1.

Function Definition Expression

finish(x) the empty string at the point start(next(x))
where x ends

front(x) the element which starts where next(start(x))
x starts (even if x is empty)

rest(x) all ofx past its first element extent(next(front(x)), x)
(empty if x is empty)

first(x) first element of x, but empty if extent(x, start(rest(x)))
x is empty

last(x) the last element in x, or x itself, {see text }
if it has no elements

previous(x) the element preceding x last(extent(base(x), start(x)))

Table 1. Non-Primitive Functions. The function named in the first

column and defined in the second can be implemented with the expression
given in the third.

Finish is analogous to start and also produces an empty subseq, but at the other end of its
argument. Functions front, first, last, and previous all produce subseqs for single
elements analogously with next. Rest(x) returns a subseq one element shorter than x.

Figure 4 illustrates further the non-primitive functions of Table 1. Here variable m has
the same properties as q in Figure 3 and variables s and p show the results for empty and
one element values, respectively. First and front differ in their values only for the empty
subseq s; in this case, first(s) is s itself and front(s) is the element next(s). Note that for s
and p the functions first and last both return their arguments as their values.
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m\ s pJ L \H
<In winter, when the fields are white,>

/H1 / r /H /H
previous(m) /}-[rest(m)/}--[ previous(s)/H ,revious(p) ITfirst(m), front(m) last(m) ?'_ front(s) rest(p), finish(p)

finish(m) I (_ T front(p),/_ }-[
first(s), rest(s), last(s), finish(s) / first(p), last(p)

Figure 4. Examples of non-primitive functions.

The expressions for rest and first exploit the definition of extent. When x has one or
more elements, the value of next(front(x)) begins just after the first element, so the
expression for rest produces a value extending from just after that first element to the end
of x. When x is empty, its end precedes the start of next(front(x)), so the result for rest is
the empty subsequence at the end of x, which is the same value as x itself, as per the
definition of rest. The same trick applies in the definition of first, which gives the single
element preceding rest(x) if x is non-empty, but otherwise x itself.

One way to implement last(x) is with a loop examining each of the subseqs

start(x),
next(start(x)),
next(next(start(x))),

looking for one, say t, for which extent(finish(t), finish(x)) yields the empty string. Then t
is the desired last element. A more elegant recursive definition relies on rest:

function last(x)
if rest(x) = "" then return x
else return last(rest(x)) end if

end function

The then case applies when x is initially empty or when the recursion has descended to
the last element; otherwise the else case recurs to compute the last element in the rest of
x, which will be the same as the last element of x. In practice, of course, last is
implemented about the same way as next.

For more insight into the algebra, the reader is invited to define functions of subseq m
which produce the second element of m or the subsequence from the beginning of m to
the end of its base. It is also amusing to find the middle of m without doing arithmetic.
With the latter as a function named middle, there is a simple solution to one typical
formal language theory problem: the expression
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extent(s, start(middle(s))) = extent(middle(s), s)

has the value True when the two halves of s are identical.

3. Searching Strings

It is common in string algorithms to scan a string looking for a substring satisfying some
property described with a regular expression, a context free grammar, or some more
general scheme. Such advanced pattern matching is beyond the scope of this paper, but a
few simple search operations will serve as valuable examples and tools for later
Algorithms.

The search operations below each have two arguments, a subject and a specification. By
convention in Noss, the subject both bounds the range in which the search is conducted
and specifies the value returned if no satisfactory substring is found. If the subject
argument is non-empty, the range is that substring; but if empty, the range extends from
the location of the subject argument to the end of its base. Since a successful search
always yields a non-empty substring, failure is indicated by returning an empty string,
usually the one at the end of the subject argument. These conventions are related since
the end of the subject argument appears in both. Although this relationship has not
proven awkward in the many programs written so far, there is certainly room for
argument as to exactly what conventions are best.

In the descriptions below, when the second argument--the specification--is obj, the match
must be an exact match, character-for-character; but when it is set, the string is treated as
a set of characters. A typical set value is "0123456789" for the set of all digits. These
functions are illustrated in Figure 5.

search(subj, obj) - Scans the range from left to fight looking for an
instance of obj and returns a subseq referring to the first such
instance encountered. If none is found, the function returns
finish(sub j).

match(sub j, obj) - If the range has obj as its initial elements, a subseq for
those elements is returned; otherwise the function returns
finish(sub j).

span(sub j, set) - Returns a subseq for start(sub j) and all contiguous
succeeding elements of the range which are characters from set. ff
front(sub j) is not in set, the function returns start(sub j).

token(subj, set) - Returns a subseq for the leftmost contiguous
subsequence in the range which is composed of characters from
set. If none is found, the function returnsfinish(subj).

trim(subj, set) - Returns a subseq for all of the range except for any
trailing characters which are in set. If all elements of the range are
in set, the value start(sub j) is returned.
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q m_J L
<I'll sing this song for your delight.>

span(q, "less")--> _ search(m, "fo")-> _ search(m, "igh")-->

search(q, "ng") _ _-_ match(m, "p') _ _-_ token(m, "ghij") -_

Figure 5. Examples of search functions. Note that when m is the search
subject, the value of token does not extend beyond finish(m) and "igh" is
not found.

Utilizing the search operations we can now rewrite nextword of Section 1 more briefly as

function nextword(m)
m := finish(span(finish(m, .... )))
return extent(m, start(search(m, " ")))

end function

Of course, if we had a variable wordCharacters giving a complete set of characters
allowed in words, nextword would be simply

token(finish(m), wordCharacters)

This latter approach suffices for English or the European languages, but perhaps not for
the universe of all letters of all languages.

The search functions can be defined entirely in terms of the primitive operations of the
algebra. We begin with a simple support function which searches a string src looking for
a single character c. If found, a subseq for it is returned, otherwise the function returns
an empty subseq at the end of subj:

function findchar(src, c)
while src/= ....and c/= first(src) do

src := rest(src)
end while

return first(src)
end function

This function illustrates one form of loop; at each cycle around the while loop, src is
one character shorter by virtue of the call on rest(src). The loop ends if either src
becomes empty or its first character matches c. If c should happen to be empty, this
version offindchar will also return an empty subseq, although not without first searching
all of src. The loop invariant before the predicate is that c is not equal to any character in
extent(srco, start(src)), where srco denotes the initial value of src.

Algorithm 1 expresses span as a function in terms of findchar and the primitive
operations. The first if-then sets s to be the range of the search as defined by the search
conventions: if subj is non-empty, the search is limited to its length, but if empty the
search extends from the beginning of subj to the end of the base, as computed by
extent(s, base(s)). The loop has the same paradigm as the one in findchar, calling rest(s)
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at each step to shorten s by one element.

function span(subj, set)
marker s -- the search range
s := subj
if s = "" then s := extent(s, base(s)) end if

while findchar(set, first(s))/= ....do
s := rest(s)

end while
return extent(subj, start(s))

end function

Algorithm 1. Span. Returns a subseq for all elements following
start(subj) which are in set. The loop invariant before the predicate is that
all elements in extent(sub j, start(s)) are characters in set.

Sometimes a loop advances through a string in steps longer than one character at a time,
as illustrated by the search function in Algorithm 2. Each cycle of the while loop calls
findchar to find the first character of obj and then calls match to determine if all of obj
has been found. If so the appropriate value is returned, but if not, there is no point to re-
checking extent(s, f), so s is set to everything afterf. If s becomes empty, findchar returns
an empty subseq and the loop exits via the test off = ....

function search(subj, obj)
marker s -- the search range
marker f -- a location in subj of first(obj)
marker m -- the result of matching obj at f

s := subj
if s = "" then s := extent(s, base(s)) end if

while True do

f := findchar(s, first(obj))
if f = "" then return finish(subj) end if -- fail
m := match(start(f), obj)
if m /= "" then return m end if -- succeed
s := extent(finish(0, s)

end while
end function

Algorithm 2. Search. Find the leftmost occurrence of obj in the search
range. An invariant of the loop is that a substring matching obj does not
begin in extent(sub j, start(s)).

In the Noss implementation of the subsequence algebra, search is coded with a far faster
non-linear search [Sunday, 1990]. The details of match, token, and trim are left as
exercises to the reader.
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One common programming technique in Ness-- which has neither arrays nor structures--
is to store data tables in strings and look up values in them with search. The result of the
search is a position in the table and associated data can be found at adjacent locations.
Algorithm 3 utilizes this technique to scan a text and replace names of games with icons.
A sample execution might convert

Go is older and more interesting than chess and checkers.

to

_M_ is °lder and m°re interesting than I and _

Note that the program builds the result by concatenating strings.

subseq GameNames := "chess: 1 checkers:_ Go:_ "

function IconifyNames(text)
subseq word, icon
subseq result := ""
while True do

word := token(text, letters)

result := result - extent(text, start(word))
if word = "" then return result end if
text := extent(finish(word), text)

icon := next(search(GameNames, " "-word-":"))
if icon/= "" then

result := result - icon
else

result := result ~ word

end if
end while

end function

Algorithm 3. Converting names to icons. IconifyNames(text) goes
through the text and produces a copy having the names of certain games
replaced with their iconic representations. Denoting the initial value of
text as texto, an invariant of the loop just before the first if is that result is a
copy of extent(texto, start(word)) with all game name replaced with icons
and extent(word, text) is that portion of texto which has not been copied.

At each step in the loop the token operation gets a reference to the next word and then
characters preceding it are concatenated with the result. If no word was found, word
will be the empty subseq at the end of text, so the result is complete and can be returned.
The call on search determines if the word is in the GameNames table and, if not, returns

an empty at the end of the table so that next will also return an empty value. The final if-
then-else inserts either the icon or the word into the result. Note that a space and colon
are appended to word as the second argument of search; this prevents partial word
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matches so, for instance, check will not be converted to its following character, e.

4. Models of string values

With the subsequence algebra as one model we can now consider the models found in
existing languages with respect to whether they are Simple and First Class as required in
the Introduction. The discussion will show that while string values in the other models
can be First Class, they do not represent substrings; no models other than the
subsequence algebra offer First Class substrings.

Unitary. In the Unitary model of strings, also sometimes called the "free monoid over
the character set," each string value is a distinct, atomic object. Operations and string
functions return values that are effectively new strings with no relation to other existing
strings. Unitary strings can certainly be First Class, given the right implementation,
however, they are not always Simple to use. Problems arise for parsing and searching
operations because the result of a search must report not only the string which matched,
but also its position. For instance, it may be desirable to test adjacent punctuation.

Although there are no major languages with a pure Unitary model of strings, the
possibility has been demonstrated by Eli [Glickstein, 1990]. In this Lisp-like language,
search functions return a list of three strings which could be concatenated to recreate the
original subject string. The middle element of the list satisfies the search specification
and the other elements are (copies of) the preceding and following portions of the
subject.

Starting at least as early as XPL [McKeeman, 1970], implementations of Unitary string
values have not actually copied strings to produce new values. Instead each new
substring value is produced by creating a reference to it within its base. Although this is
much like the values posited in the subsequence algebra, these languages do not expose
this machinery, so it is impossible to define the primitives next, base, and extent.

Positional. In the Positional model, a string value is a pointer to a string or an integer
index to an element of a string (usually the latter is in the Unitary model). Such values
can easily be First Class since integers and pointers are themselves First Class, but the
Positional model is not quite so Simple. Complexity is increased if there are both
positions and unitary values; it is also increased by having recourse to a domain--
integers or pointers--outside the domain of strings. Simplicity suffers also because a
position by itself cannot select a substring without conjoining a length or another
position. These extra values entail extra variables and more assignments, thus increasing
program size and decreasing its comprehensibility. Confusion is compounded by the
potential for off-by one errors: does a position value refer to an element or the gap
between elements? With integer positions, is the first zero or one?
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The quintessential example of the Positional model with pointers is C, wherein a string
value is a pointer to a string or a tail of a string. To illustrate the awkwardness of
returning substrings in the positional model, consider the function token which finds a
substring and returns a reference to it. The function must be defined with an additional
argument pointing to where to store the length:

char *token(x, len) char *x; int *len; {
... compute position and length ...
*len = length;
return position;

}
If token(x, &n) is evaluated, the substring it locates cannot be directly passed as an
argument to another function as in

g(token(x, &n), n) /* WRONG */

because the value of n passed to g would not necessarily be the value assigned by token
to *len. To be correct, the computation needs two steps

p = token(x, &n);
g(p, n);

Such extra steps and variables can increase the opportunity for error in a large program.

Integer positions are found in many languages, including PL/I and Fortran [ANSI, 1978].
Pointer and integer positions are not entirely equivalent. If a string is copied, integer
values referring to positions in the original will refer to the same positions in both copy
and original. With pointers, pointer arithmetic is needed to compute from a pointer into
the original a corresponding pointer into the copy.

Overlays. There are a few languages, like Lisp, PostScript [Adobe, 1985], and even
COBOL [ANSI, 1985], which permit one string to be defined as an overlay on top of
another, thus making the defined string a subsequence reference. None of these
languages, however, offer functions sufficient to enable implementation of next, base, or
extent; the overlaid string behaves as though it were itself a Unitary value.

APL algorithms sometimes employ a very general form of substring; the algorithm
associates a bit vector with a base string and the one bits in the vector select elements of
the string to be in the substring. For instance, this expression

(b_#\b<--t='''')/t

removes from t all substrings quoted with paired apostrophes [Bernecky, 1991].
Execution begins with the subexpression b <---t = ' ' ' ' which assigns to b a bit vector
with ones in the positions of the apostrophes, the 4\ converts to a vector for the
characters inside the apostrophes, and finally ¥ computes a vector indicating the positions
of characters to be retained in the result, which is produced by the final /t. Bit vectors
are a very general tool since they can select non-contiguous subsets of the characters in a
string; however, to pass arguments to general functions both the bit vector and the base

string have to be passed. Moreover, functions cannot return both a string and a bit vector
as a single value.
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1con. To reduce program size and the need for extra variables, Icon provides a special
operator, .9,for pattern scanning. The expression

s ? operations

first makes string value s be the value of the global variable &subject and then executes
the operations. The current position in the subject is given by another global variable,
&p0s, which initially has the value which indicates the position before the first character.
String operations upto, many, find, any, match, and bal examine &subject starting at
&pos and return a new position, depending on their nature. Two other functions, tab
and move, change the value of &p0s and return the string portion between the old and
new values of &pos. Thus it is common to write statements like

t := tab(many(letters))

which advances &pos across a sequence of letters and assigns to t a copy of the string
value passed over, in this case the next sequence composed entirely of characters from
the set letters. Since functions like many may not find any instances of the set, the
concept of failure is employed in Icon. If no values are found, the expression "fails,"
which initiates backtracking or, if that is not possible, terminates the scanning operation
and all other operations on the stack up to a conditional statement.

Not only does Icon have the additional complexity of offering both the Unitary and
Positional models, but there are separate sets of functions for each. There is a potential
for confusion between tab and move, the Unitary model functions, and many, upto, and
the other Positional model functions. Indeed, it would be interesting to know if omission
of required tab and move operations is a common error in Icon programs.

Subsequence references incorporate both a string value and the position of that value
within its base. Thus it is a First Class value for substrings suitable to return from
parsing or other searching/scanning operations. It is common in programs written with
the subsequence algebra to utilize a single variable both for its value and its position: In
Algorithm 1, variable s is utilized for its first character with first(s), its position with
start(s), and its extent with rest(s). In Algorithm 2, the results offindchar and match are
stored in f and m respectively. Since both are on the same base as s, the new value of s
can be set to begin afterf and the value of m can be returned, both retaining the position
in the original base string. In Algorithm 3, the variable word appears both for its value
and its position in its base. In all these cases more variables and assignment statements
would be required with other string models.

Although internally more complex than integers, subsequence references are Simple in
that they reduce the required number of concepts, even beyond the fact that the single
concept obviates the need for both Positional and Unitary values. With a subsequence
reference model of strings, neither character nor string values are required, as shown in
the beginning of Section 1. Moreover, instead of requiring the semantics of multiple
domains, subsequence references require only those described in Section 1. This can be
valuable when presenting string processing to users who are uncomfortable with
numbers.
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5. Approaches to a string processing problem

The models of string values presented in the previous section are illustrated here with
functions written in three different languages to solve a practical problem: normalization
of C preprocessor statements. Some, but not all, C compilers have allowed whitespace--
blanks and tabs--within preprocessor statements and some compilers allow arbitrary text
after #else and #endif while others allow only comments. Thus in converting software to
be more portable, a program is needed to scan for preprocessor lines and reformat them
appropriately. As part of such a program, we require a function NormalizeLine(line)
which returns a possibly modified copy of its argument. A line is modified if it has the
form:

<WS> # <WS> <key> <WS> <text> <WS> <newline>

where <WS> is whitespace, <key> is one of five words, and <text> is arbitrary text.
When <key> is if, ifdef, or ifndef the output is

# <key> <space> <text> <newline>

but when <key> is else or endif the output when <text> is non-empty is

# <key> <space>/* <space> <text> <space> */<newline>

and when <text> is empty is

# <key> <newline>

If the input line does not have one of the expected forms, it is returned unchanged.

Subsequence Algebra and Noss

In the subsequence algebra, as instantiated in Ness, the problem can be coded as in
Algorithm 4. Note that keytable is defined in 4a with a "long constant" construct
delimited by//and \\. The text between the delimiters is the exact constant, newlines
and all. If there were tabs, other control characters, and escape sequences, they too
would remain untranslated. This form of constant is a valuable addition to the syntax of
string languages because it allows the programmer to encode strings exactly as they are
to appear. In addition to keytable, 4a defines whitespace and letters, which are later used
as arguments to span and trim. The function skipwhite defines a particular scanning
function suited to the problem; it could easily be written in a language with a Positional
model since it effectively returns the position following any whitespace after its
argument. The other function, nex_eld, is an excellent illustration of subsequence
references; its argument is a reference to a semi-colon-delimited field in keytable and it
returns the following such field.

NormalizeLine itself, in Algorithm 4b, utilizes variable t as the current position in the
line. The algorithm begins by skipping whitespace, checking for a "#", and skipping
more whitespace. Next, t is set to <key> by spanning subsequent letters and <key> is
sought in keytable with the result being assigned tofix. The last assignment to t gives it a
value extending from the first non-whitespace character after <key> to the last non-
whitespace character on the line. This value together with the fields following fix are
used to build the final result value.
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IIIAlgorithm 4 about HERE III

The usage of nexqield in Algorithm 4b deserves emphasis. Since its value is an entire
field, that value is suitable for concatenation to construct the result as in the final return
statement. But since its value is a subsequence reference, it can also serve as argument to
a function (in this case, itself) to locate and return the next following field, as in
nexCeld(nexCeld(fix)). The reader is invited to try to code this expression in other
languages.

C

The C programming language is very close to hardware level, as befits a language
intended for writing a compiler and operating system. String constants are provided, but
all other string operations are deferred to library functions. The usual C paradigm is to
perform swing operations with in-line loops. For instance, to skip across whitespace the
code might be:

while (isspace(*t)) t++;

The need for these loops is reduced with functions like strspn, but they still occur as in
the loop to trim the text.

The C version of NormalizeLine in Algorithm 5 begins by skipping whitespace, checking
for a "#" and skipping more whitespace. The next lines set key and t to opposite ends of
the key and then search for the key in keytable. Subsequent lines find the <text> by
skipping whitespace after the key and then scanning backward to find the last non-space
character. The last section of the algorithm builds the output by copying the prefix from
the table, the text from the input, and the postfix from the table.

IllAlgorithm 5 about HERE III

It may be obvious to the reader that textlen can be negative, but was not so to the author.
Consequently, this was the only one of the versions that had a bug beyond syntax errors.
This sort of error is more common in Positional model programs because there are more
variables to keep in mind while coding.

In the actual C program from which the problem was taken, NormalizeLine modified its
argument rather than returning a copy. This requirement is crucial because without it, as
in the Algorithm, the program is seriously flawed: The first three return statements return
the initial value of line, the fourth returns a pointer to a constant, and the last returns
newly allocated memory. Since the calling routine cannot effectively distinguish the
storage class of the result, it cannot deallocate the allocated memory and the program
will consume memory proportional to the input. This problem of managing storage is
one of the chief defects of C for string processing.
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Icon

Icon is a large language featuring many innovative constructs beyond those of Ness and
C, so two versions of NormalizeLine are presented, one utilizing a subset and the other
the full language. The subset is limited to approximately the control constructs and data
structures which are available in Ness and is utilized in Algorithm 6. Here the function
many(cset, string, i) scans string starting at position i and returns the position of the
first charactrer encountered which is not in cset; if none is found, it fails. Subscript
expressions of the form [i:j] select the substring extending between positions i and j. The
find operator not only returns the location of the beginning of what it finds, but also
succeeds or fails. Thus it is essential in the Algorithm that the first assignment to tblloc
be inside the if predicate to determine whether key was found. In the next line the
expression t+*key computes the position after the key as the starting point for skipping
more whitespace. In constructing the result value, fieldend computes the end of fields
whose beginnings must then be held in other variables; in this case tblloc and postloc.

IllAlgorithm 6 about HERE Ill

The full Icon language is exploited by Algorithm 7, which employs the string scanning
operator ? described in Section 4. Each of the calls on tab or the = operator advance
&pos so it serves as the start for subsequent operations. The '1 Npos' clauses provide a
default value for tab in case the many function fails to find any of the characters it is
looking for. The \keytable[...] expression searches the keytable for the key; if found, fix
is set to the record found, but otherwise keytable has the value null which is converted by
the backslash operator into a failure which propagates out to the if (after some futile
backtracking).

IIIAlgorithm 7 about HERE III

Comparison

Cursory examination shows the Ness and full Icon versions of NormalizeLine in
Algorithms 4b and 7b to be briefer than the others, to use fewer variables, and to avoid
explicit recourse to arithmetic. The flow of the logic matches the number of statements,
without extra assignments to save separately the two opposite ends of substrings. For
more detailed comparison we can consider the algorithms to have four phases: skip hash
and white space, find and process <key>, isolate <text>, and build output. The first phase
is roughly comparable in all the languages since it is simply a matter of moving a
position past unwanted material, but the other phases differ considerably.

In the <key> phase, the Ness version utilizes a single variable, t, to represent the key,
whereas C and the subset Icon code each need two (key and t for C; t and *key for subset
Icon). The string scanning operation hides this in the full Icon version:
tab(many(&lcase)) advances &pos across the key and returns a copy of its string value.
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For the <text> phase, the Ness and subset Icon versions both set a single variable to the
text. The C code is more complex only because the trim function is performed explicitly
with a loop. The full Icon code illustrates Icon's potential for convoluted code: the
function name trim is considerably separated from its arguments, tab(0) and
whitespace++'\n'; and surrounding these is an if statement semantically linked to the =
and \ operators inside trim's first argument.

In the final output phase, the Ness and full Icon versions simply concatenate the
appropriate values. The other two versions illustrate the deficiencies of the Positional
Model by requiting several variables to keep track of the ends of the pieces to be
concatenated.

The four versions of NormalizeLine reflect markedly different programming languages.
We can say qualitatively that Ness is wordy and uses few concepts, C is low level, and
Icon achieves brevity through special operator characters and a variety of data structures.
These notions can be informally quantified by counting the number of operator instances,
as shown in Table 2. The operators counted are listed in the body of Table 3.

# unique operators

# operators words symbols # concepts

Ness 49 11 4 6

C 74 12 13 12

Icon subset 58 8 9 10

Full Icon 49 7 10 14

Table 2. Number of operators and concepts in the versions of
NormalizeLine. "Words" are those operators encoded with letters alone
and "symbols" are those coded with non-alphabetic characters.
Declarations are not counted as operations, but operations within
initializations are counted.

In Table 2 we see that C uses the most operators, subset Icon fewer, and Noss and full
Icon the least. Note, however, that Ness uses sixteen fewer operations to initialize
keytable and nine more to extract fields from it; for this example the Icon language
could benefit from constants for table initialization and Ness could benefit from some

form of table construct. From the relative use of words versus symbols for operators, it is
apparent that Ness de-emphasizes syntax, despite the disadvantage of longer program
texts. With infix operators for the primitives and shorter function names, the Ness
definition of the body of NormalizeLine would be about the same size as the full Icon
version.
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IIITable 3 about HERE III

The real difference in complexity can be seen by counting the "concepts" required to
understand each version. One way to do this is to classify each operator according to
what concepts it employs, as shown in Table 3. Clearly the reader can argue with at least
one of the assignments of operator to concept, but it seems clear that the Icon versions
use about twice as many concepts as the Noss version. There are two ways to consider
this: if language complexity is to be minimized, Icon is far more complex; but if
complexity is acceptable, the subsequence algebra can be incorporated in a complex
language permitting NormalizeLine to be expressed even more succinctly. With the
algebra, the extra complexity of additional data types is not required in order to attain
short programs.

6. Implementation

Before considering implementation of the subsequence algebra as part of a programming
language, we must consider whether it can be provided instead as a library package. This
is problematical in C, and will be challenging even in a language designed to support
packages.

The biggest problem is management of string storage: to conserve space, a base sequence
can and should be deleted when no subseq refers to it. In a low-level language like C
which does not provide storage management, the string manager must keep track of all
subseqs to manage their space and that of the base sequences. This may be impossible,
however. Consider expressions where a string value returned from one function is passed
as argument to another as in this fragment from Algorithm 4:

extent(skipwhite(t), line)

Skipwhite allocates a subseq and returns either it or a pointer to it. But then, which
routine deallocates that memory and when? The simplest option is to never free the
memory occupied with subseqs and base sequences, but this profligacy may lead to
excessive paging or program termination. Subseqs and base strings constitute a non-
circular smacture and can be managed with references counts instead of more general and
costly tools. However, if the algebra is implemented in a higher level language with
storage reorganization, the more general tools are likely to be used--with consequent
excess cost.

When successfully implemented as a package, the algebra must be defined in terms of
some more primitive notion of strings provided in the language itself. This means two
separate string mechanisms with an attendant loss in efficiency and increase in the
number of concepts a program reader may encounter.

Finally, a string facility requires lexical support for string constants and a primitive
operation--preferably syntactic--for concatenation. Few languages are flexible enough to
be extended in these directions. Moreover, if strings are to support typographic styles
and embedded objects there is the further requirement that the program development
support system also support editing of programs containing such constants. Thus
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program editing must move closer to word processing and programs can begin to have
typographic styles themselves.

Given the deficiencies of a library implementation, it is reasonable to assume that we are
implementing the subsequence algebra as the native tool for strings in a high level
programming language. Although this paper has claimed no interest in efficiency, it
turns out that the subsequence algebra can be implemented without undue overhead.
Should the algebra become widely used, appropriate compiler optimizations will ensure
acceptable execution speed. With even wider use, computer hardware will adapt to the
algebra as it has for floating point and programming languages, as in [Hester, 1990].

Central to an implementation are data structure definitions for subseq values and base
strings. Additional data structures are needed for typographic styles and embedded
objects, to whatever extent they are supported by the implementation. The Nos$
implementation of the algebra relies on the Andrew ToolKit (ATK) implementations of
these data structures, so the language development entailed little new data structure
design.

In ATK, base strings are stored as a physical sequence of characters in a space larger than
the string itself. The unused space is retained as a gap within the base at the position of
the most recent modification (since ATK and Noss allow modification of base
sequences). If consecutive modifications tend to happen at nearby locations, the
overhead of copying characters to make changes is imperceptible [Hansen, 1987].

One alternative to physically sequential storage is a list of characters. Insertions and
deletions are far faster, but space requirements mushroom and performance degrades
with increased paging as the list gets fragmented among many pages. Experience has
demonstrated that sequential text storage reduces paging sufficiently to offset the cost of
copying strings when changes are made. Of course there are numerous intermediate data
structure designs with linked lists of elements each having a physically sequential block
of text. We have not tried this approach because the physically sequential approach has
been satisfactory.

The minimal implementation of an immutable subseq is three words: a pointer to the
base, and representations of the leftmost and rightmost positions. When the elements are
stored consecutively, integers suffice to indicate positions, so a subseq value can be
described in C as:

struct subseq {
struct basestring *b; /* the base */
long 1,r; /* the leftmost and rightmost positions */

I;
A fourth word is required if the implementation chooses to implement "reference
counting" by linking together all subseqs on each base. The algorithms below assume
that a struct basestring has at least got fields l and r to indicate the two positions at its
ends.
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Operations in the algebra are most succinctly implemented by modifying their argument,
so, in an applicative environment, the code compiled to pass a subseq as an argument
copies its value to the stack. Suppose these stack elements are struct subseqs as above
with x pointing to the first argument on the stack and y to the second. Then the four
primitive functions can be compiled as if they were:

start: x->r = x->l;

base: x->l = x->b->l; x->r = x->b->r;

next: x->l = x->r; if (x->r < x->b->r) x->r++;

extent: if (x->b l= y->b) *x = <UniqueEmptyString>;
else {x->r = y->r; if (x->l > y->r) x->l = y->r;}
<pop y from stack>;

In two places integer comparison determines the ordering of positions; this would have
to be changed if base strings were not stored consecutively. Similarly, the ++ in next
must be modified if elements occupy more than one byte. Conceptually, these are the
only places in the implementation that require knowledge of the implementation of base
sequences.

For a simple assignment like

m := start(s)

the stack is inefficient. An optimizing compiler could copy s into m and then set m->r=
m->l. If we are compiling for the IBM RISC architecture, the entire statement could take
as few as three instructions: a load-multiple and a store-multiple to transfer the subseq
representation and an additional store to m->r. For assignment of an expression with
more operators, the overhead of copying the initial value is distributed among them all
and is thus proportionately lower, so the average number of instructions per primitive is
low.

7. Other Advantages of the Algebra

Examples above have primarily operated on ASCII strings, but the implementation
clearly permits more general sequences. These deserve discussion, but there is not room
here for more than a brief mention of additional aspects of the subsequence algebra.

Invariants. In writing invariants, it is often desirable to express attributes of
subsequences. As shown in various of the examples above, invariants can be succinctly
expressed in the subsequence algebra.

Integer positions. While the algebra permits ignorance of a Positional model of strings, it
does not preclude it. For instance, the primitives are sufficient to implement nextn(s, n)
as the result of applying next a total of n times starting with the initial value s. Then the
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traditional function substr(s, i, j)--which returns the substring of s starting with the i'th
character and extending forj characters--is

extent(nextn(start(s), i), nextn(start(s), i+j)).

By defining substr in terms of next, there is no question that the indices refer to elements
rather than byte positions in an array.

Arrays. With nextn and a simple trick, sequences can subsume one-dimensional arrays.
The trick is to address the array by a reference to the empty element at its start. Thus if A
is an array, nextn(A, i) returns the i'th element of the array. A compiler could optimize
such applications so the user could deal with arrays without the introduction of special
syntax or the complexity of understanding a new data organization.

Formatted text. In addition to permitting text with arbitrarily styled segments, it is
valuable to have operators to manipulate styles. These operations are convenient to
define with the subsequence algebra because a style naturally applies to a subsequence of
the text. In the Nes$ implementation, functions are provided to add styles, remove them,
interrogate the style of text, and traverse the text in sections delimited by style change
boundaries.

Embedded Objects. When sequences permit embedded objects the language needs
operations to convert an object into an element of a sequence and to extract an object
from a sequence. It is also useful to be able to interrogate an element to see if it is an
object, and determine its type.

Multi-media. This term sometimes means just voice and video, but is more generally
applicable to text or applications with embedded objects of all sorts. A voice recording,
video clip, or other multi-media component can be incorporated in a document as a
single embedded object and manipulated with the object operators of the preceding
paragraph. An exciting possibility is to represent the time sequence of the voice or video
object as a subseq. Arbitrary reference to and rearrangement of such sequences would
then be possible under program control.

Mutability. Much literature has been devoted to applicative versus imperative
programming. The subsequence algebra has been presented in a purely applicative form
above, but a sequence modification operator can easily be defined (and not quite so easily
implemented). Replace(s, r) modifies the base sequence of s so the portion that was
referred to by s contains a copy of r. In some applications--for instance text editors--
where the base may have numerous subseqs referring to its parts, such modification can
be a useful tool because the other subseqs remain attached to the base whereas if a new
base were constructed it would have no subseqs on it. Replace is also useful when it can
be employed to avoid creating new strings; the overhead of copying strings is not too
bad, but the overhead of allocating memory and paging-in non-adjacent strings can be
large.
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General sequences. In an abstract view, there is little to choose between sequences and
Lisp lists. The algebra can subsume lists if subseq values can be objects embedded in
sequences. Of course, with this extension simple reference counting will no longer work
and garbage collection will be necessary.

Unbounded sequences. The most general sequences are potentially infinite by virtue of
being defined with a function to generate successive elements. The subsequence algebra
is entirely adequate to deal with such sequences because only the next operator need
access further along in the sequence--it would call the generator if necessary. The base
operator would return a general sequence including a reference to the generator function.

8. Conclusion

The introduction described three trends that will benefit from introduction of a new data

type for substrings; and the remainder of the paper described such a data type. In it data
values are references to subsequences of underlying base sequences. As a consequence,
a search or parsing algorithm can return a single value which incorporates both the string
that matched and its location in the base. The function caller can then examine both the

string that matched and surrounding punctuation or text. The operators of the algebra are
the set

{ "...", -, next, start, base, extent} ,

all of which are closed over the domain of references to subsequences. This paper
introduced these operations in the first section and showed in the second and third
sections that these operators are sufficient to access other relevant substrings of a base
string and to define various searching functions.

Also introduced in the Introduction were four characteristics that should be found in any
substring data type; it should be Simple, First Class, Unbounded, and Rich.

That the algebra is Simple is discussed at length in Section 4 and
demonstrated graphically in Table 3 of section 5. That table shows that
programs written with the algebra can be as short as they could be with a
far richer language and also that they can be understood with half as many
concepts.

That substring values with the algebra are First Class is evident from the
definition; subsequence references are arguments and return values for the
primitive functions; and other functions can share this property. That
substring values are not First Class in other models of substring values is
shown in Section 4.

Unbounded string values require automatic storage management as
shown in section 6. Any language with storage management can have
unbounded strings. But with the subsequence algebra, management of the
string space can be more efficient.
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Rich strings are supported by the algebra in that its abstraction completely
hides the physical representations of strings and sequences. A substring
reference is precisely the correct value to serve as an argument to setting
typographic styles or to return from a search for text in a given style.
Objects can be elements in base sequences, and the description of an
object can be a sequence itself.

Despite their advantages, it is difficult to implement substring references as a library
package in most existing programming languages, as shown in Section 6. However that
section goes on to show they can be implemented quite efficiently if incorporated in the
language.

Subsequence reference values raise many interesting practical issues, several of which
are discussed in Section 7. Some of the most interesting are:

1. Syntax: Are there good graphic symbols for next, start, base, and
extent? What language constructs best support pattern matching?

2. Semantics: Is there a better set of primitive operations? What are the
best search conventions?

3. Implementation: What optimizations are possible and desirable in
compiling subsequence expressions? What are the best data structures to
support the algebra? Can modification of base sequences be implemented
efficiently?

4. Generality: Can the subsequence algebra subsume arrays and list
processing, thus reducing further the number of programming concepts?
Can unbounded lists be handled satisfactorily with lazy evaluation?

While we have much to learn about subsequence references, they already can be a
valuable tool in simplifying programming by professional non-programmers for desktop
publishing and other applications.
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-- keytable:
-- Each <key> is followed by three semicolon-separated fields:
-- the output if <text> is empty, the prefix, and the postfix.
-- If <text> is non-empty, the output is
-- prefix <text> postfix
subseq keytable :=
//
<if>;#if
;#if ;

<ifdef>;#ifdef
;#ifdef ;

<ifndef>;#ifndef
;#ifndef ;

<endif>;#endif
;#endif/* ; */

<else>;#else
;#else/* ; */

\\

subseq whitespace := "ktkb\?" -- space, tab, backspace, del
subseq letters :=

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

-- Return the empty subseq following t and any adjacent whitespace
function skipwhite(t)

return finish(span(finish(t), whitespace))
end function

-- Return field after f. Fields are separated with semicolons
function nextfield(f)

f :-- finish(next(f)) -- after the semicolon
return extent(f, start(search(f, ";")))

end function

Algorithm 4a. Declarations for bless version of NormalizeLine.
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function NormalizeLine(line)
subseq t, fix
t := skipwhite(start(line))
if next(t)/= "#" then return line end if
t := skipwhite(next(t))
t := span(t, letters) -- get <key>

fix := search(keytable, "<" ~ t ~ ">")
if fix = "" then return line end if

t := trim(extent(skipwhite(t), line), whitespace ~ 'ha")
-- build the result from 'fix' and 't'
if t = "" then return nextfield(fix) end if
fix := nextfield(nextfield(fix)) -- skip to prefix field

return fix ~ t ~ nextfield(fix)
end function

Algorithm 4b. Hess version of NormalizeLine.

const struct namepair {
char *name, *notext, *pre, *post;
int namelen, prelen, postlen;

} keytable[6] = {
"if", "#itha", "#if ", 'ha", 2, 4, 1,
"ifdef", "#ifdef\n", "#ifdef ", 'ha", 5, 7, 1,
"ifndef", "#ifndefkn", "#ifndef ", 'ha", 6, 8, 1,
"endif", "#enditha", "#endif/* ", " *An", 5, 10, 4,
"else", "#elsekn", "#else/* ", " *An", 4, 9, 4,
0,0,0,0,0,0,

};
const char letters[] =

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
const char whitespace[] = "ktkb";

char *stmput(t, str, len) char *t, *str;
{ strncpy(t, str, len); return t+len; }

Algorithm 5a. Declarations for C version of NormalizeLine
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char *
NormalizeLine(line)

char *line;
{

char *t, *key, *text;
int textlen;
struct namepair *kx;

t = line + strspn(line, whitespace);
if (*t != '#') return line; /* no # */
t += strspn(t+l, whitespace);
key = t; /* location of key */
t += strspn(t, letters);
for (kx = keytable; kx->name; kx++)

if (kx->namelen == t-key &&
strncmp(kx->name, key, t-key) == 0)

break;
if ( ! kx->name) return line; /* not a key we process */
t += strspn(t, whitespace);
text = t;
t = text+strlen(text);
while (isspace(*(t-1))) t--; /* aim whitespace */
textlen = t - text; /* NOTE: textlen may be negative */

/* now build line from kx->pre text...(textlen) kx->post */
if (textlen <= 0) return kx->notext;
line = (char *)malloc(textlen + kx->prelen + kx->postlen + 1);
t = strnput(line, kx->pre, kx->prelen);
t = strnput(t, text, textlen);
t = strnput(t, kx->post, kx->postlen);
• t = 'x0';
return line;

}

Algorithm 5b. C version of NormalizeLine.
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global keytable

procedure fieldend(index)
return upto(';', keytable, index)

end

procedure NormalizeLine(line)
static whitepace, letters
local t, key, text, tblloc, postloc
initial {

whitespace := ' \b\t'
keytable := "<if>;#ifkn;#if ;\n;"

II"<ifdef> ;#ifdef_n;#ifdef ;\n;"
II"<ifndef>;#ifndef_n ;#ifndef ;\n;"
II"<endif>;#endifkn;#endif/* ; *An;"
II"<else>;#else\n ;#else/* ; *An;"

letters := &lcase ++ &ucase
}
<<body of procedure>>

end

Algorithm 6a. Declarations for Icon subset version of NormalizeLine.

t := many(whitespace, line, 1)
if line[t:t+l] "== "#" then return line
t := many(whitespace, line, t+l)
key := line[t:many(letters, line, t)]
if not (tblloc := find("<"llkeyll">", keytable)) then

return line

t := many(whitespace, line, t+*key)
text := trim(line[t:0], whitespace ++ '\n')

# found a preprocessor line, create new version
tblloc := fieldend(tblloc) + 1
if text == ....then

return keytable[tblloc:fieldend(tblloc)]
tblloc := fieldend(tblloc) + 1
postloc := fieldend(tblloc) + 1
return keytable[tblloc:postloc-1] IItext II

keytable[postloc:fieldend(postloc)]

Algorithm 6b. <<Body>> of procedure for Icon subset version of
NormalizeLine.
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procedure NormalizeLine(line)
static whitepace, keytable
local text, fix
record affixes(notext, pre, post)
initial {

whitespace := ' \b\t'
keytable := table()
keytable["if"] := affixes("#if_n", "#if ", "\n")
keytable["ifdef"] := affixes("#ifdef_n", "#ifdef ", "\n")
keytable["ifndef"] := affixes("#ifndef_n", "#ifndef ", "\n")
keytable["endif"] := affixes("#endif_n", "#endif/* ", "*An")
keytable["else"] := affixes("#else\n", "#else/* ", " *An")

}
<< body of procedure >>

end

Algorithm 7a. Declarations for full Icon version of NormalizeLine.

if text := trim (line ? {
tab(many(whitespace) I &pos)

tab(many(whitespace) I &pos)
fix := \ keytable[tab(many(&lcase))]
tab(many(whitespace) I &pos)
tab(O)

}, whitespace ++ '\n')
then

# found a preprocessor line, create new version
if text == ....then return fix.notext

return fix.pre IItext IIfix.post
else

#fail to match, return unmodified line
return line

Algorithm 7b. <<Body>> of full Icon version of NormalizeLine.
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Concept Ness C Subset Icon Icon

assignment := = += ++ __ := :=

function call return return return return

condition = /= != ! <= == && == ---= not ==

strncmp isspace
strspn

ff ff ff if if

string references - next start
extent finish
nextfield

search conventions span search stmcmp strspn find many trim many trim
skipwhite trim upto fieldend

loops while break for

arithmetic + - += ++ __ + _

sUing values II [ tab II

sUing positions * strspn strlen * find many many trim tab
strncpy strnput trim upto
strncmp fieldend

pointer *

memory malloc

character sets isspace ++ ++ many

record -> affixes .

failure if not if many I - --

generator

alternation

suing scanning ? =

table table [

Table 3. Classification of operators according to concept. This table
shows all the pieces of syntax that were counted as operatos in Table 2. It

also shows one way to classify them into concepts.


