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Abstract

A gesture-based interface is one in which the user specifies commands by simple drawings,
typically made with a mouse or stylus. A single intuitive gesture can simultaneously specify
objects, an operation, and additional parameters, making gestures more powerful than the "clicks"

and "drags" of traditional direct-manipulation interfaces. However, a problem with most gesture-
based systems is that an entire gesture must be entered and the interaction completed before the

system responds. Such a system makes it awkward to use gestures for operations that require
continuous feedback.

GRANDMA, a tool for building gesture-based applications, overcomes this shortcoming through
two methods of integrating gesturing and direct manipulation. First, GRANDMA allows views that

respond to gesture and views that respond to clicks and drags (e.g. widgets) to coexist in the same

interface. More interestingly, GRANDMA supports a new two-phase interaction technique, in which
a gesture collection phase is immediately followed by a manipulation phase. In its simplest form,
the phase transition is indicated by keeping the mouse still while continuing to hold the button down.
Alternatively, the phase transition can occur once enough of the gesture has been seen to recognize
it unambiguously. The latter method, called eager recognition, results in a smooth and natural

interaction. In addition to describing how GRANDMA supports the integration of gesture and direct

manipulation, this paper presents an algorithm for creating eager recognizers from example gestures.

1. Introduction

Gestures are hand-drawn strokes that are used to command computers. The canonical example is a
proofreader's mark used for editing text [2, 4] shown in figure 1.

Gesture-based systems are similar to handwriting systems [26], in that both rely on pattern
recognition for interpreting drawn symbols. Unlike a handwritten character, a single gesture indicates

an operation, its operands, and additional parameters. For example, the gesture in figure 1 might

be translated "move these characters to this location," with the referents clearly indicated by the
gesture.

Generally, the end of the gesture must be indicated before the gesture is classified and command

execution commences. In almost every gesture-based system to date, the gesture ends when the user
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Figure 1: A move text gesture (from Figure 2: Moving objects in OEdit (from
Buxton [2]) Kurtenbach and Buxton [14])

relaxes physically, e.g. by releasing the mouse button or lifting the stylus from the tablet. (Examples
include IBM's Paper-Like Interface [11, 21], Coleman's proofreader's marks [4], MCC's HITS [1(_],
and Buxton's char-tee note input tool [3].) The physical tension and relaxation of making a gesture
correlates pleasantly with the mental tension and relaxation involved in performing a primitive task
in the application [2]. However, since command execution begins only after the interaction ends,

there is no opportunity for semantic feedback from the application during the interaction.

Referring to the move text gesture, Kurtenbach and Buxton [14] claim that application feedback
is unnecessary during the imeraction. They do admit that in the case of a drawing editor (figure 2)

the lack of feedback hampers precise positioning. In the text case, they are probably correct that
actually moving the text during the interaction is undesirable. What is desirable, I claim, is feedback
in the form of a text cursor, dragged by the mouse but snapping [1] to legal destinations for the text.

Such a cursor confirms that the gesture was indeed recognized correctly, and allows the user to be
sure of the text's destination before committing to the operation by releasing the mouse button.

Direct manipulation [25] is an accepted paradigm for providing application feedback during

mouse interactions. The goal of the present work is to combine gesturing with direct manipulation.
One way this might be done is via modes: after a gesture is recognized, the following mouse interac-

tion is interpreted as a manipulation rather than another gesture. A better way ] is to interpret mouse
interactions as gestures when they begin on certain objects, and otherwise as direct manipulation.
This is done in GEdit [14]: a mouse press on a shape causes it to be dragged, while a mouse press

over the background window is interpreted as gesture. An alternative would be to use one mouse
button for gesturing and another for direct manipulation. While these techniques work, they may

result in a primitive application task in the user's mental model ("create a rectangle of a given size
and position") being serialized into multiple interactions ("create a rectangle" then "manipulate its

size", then "manipulate its position"). This serialization undoes the correlation between physical
and mental tension.

This paper advocates integrating gesture and direct manipulation in a single, two-phase interac-

tion. The intent is to retain the intuitiveness of each interaction style, while combining their power.

1Modes,the"globalvariable"of userinterfaces,ate generallyfirownedupon.
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The first phase of the interaction is collection, during which the points of the gesture are collected.
Then the end of the gesture is indicated, the gesture classified, and the manipulationphase is entered.

The classification of the gesture determines the operation to be performed. The operand and some
parameters may also be determined at classification time. During the manipulation phase, additional
parameters may be determined interactively, in the presence of application feedback.

GRANDMA (Gesture Recognizers Automated in a Novel Direct Manipulation Architecture)
is a system I built for creating gesture-based applications [22, 23]. Written in Objective-C [5],
GRANDMA runs on a DEC MicroVax II under MACH [27] and X10 [24]. In GRANDMA, the
time of the transition from collection to manipulation is determined in one of three ways:

1. when the mouse button is released (in which case the manipulation phase is omitted),

2. by a timeout indicating that the user has not moved the mouse for 200 milliseconds, or

3. when enough of the gesture has been seen to unambiguously classify it.

The last alternative, termed eager recognition, results in smooth and graceful interactions. Citing my

dissertation, Henry et. al. [9] describes hand-coded eager recognizers for a particular application.

The present work focuses on trainable recognition, in which gesture recognizers, both eager and

not, are built from example gestures. The discussion begins with GDP, a gesture-based drawing
program which combines gesture and direct manipulation. The next section describes an algorithm
for constructing eager recognizers from training examples. Performance measurements of the

algorithm are covered in the following section. A concluding section summarizes the work and
presents some future directions.

2. GDP: A gesture-based drawing program

GDP is a gesture-based drawing program based on (the non-gesture-based program) DP [7].
GDP is capable of producing drawings made with lines, rectangles, ellipses, and text. This section

sketches GDP's operation from the user's perspective.

Figure 3 shows the effect of a sequence of GDP gestures. (Eager recognition has been turned
off, so full gestures are shown.) The user presses the mouse button and enters the rectangle gesture
and then stops, holding the button down. The gesture is recognized, and a rectangle is created

with one endpoint at the start of the gesture, another endpoint at the current mouse location. The
latter endpoint can then be dragged by the mouse: this enables the rectangle's size to be determined
interactively.

The lino and ollipso gestures work similarly. The group gesture generates a composite object
out of the enclosed objects; additional objects may be added to the group by touching them during

the manipulation phase. The copy gesture replicates an object, allowing it to be positioned during
manipulation. The rnovo gesture, not shown, works analogously. The initial point of the rotate-

scale gesture determines the center of rotation; the final point (i.e. the mouse position when the
gesture is recognized) determines a point (not necessarily on the object) that will be dragged around

to interactively manipulate the object's size and orientation. The deleto gesture deletes the object
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Figure 3: Some GDP gestures and parameters (adapted from [22])
Gestures are shown with dotted lines. The effect of each gesture is shown in the

panel to its right. Under each panel are listed those parameters that are determined at
the time the gesture is recognized, and those that may be manipulated in the presence
of application feedback.

at the gesture start. During the manipulation phase, any additional objects touched by the mouse
cursor are also deleted.

In a modified version of GDP, the initial angle of the rectangle gesture determines the orientation
of the rectangle (with respect to the horizontal). For this to work, the rectangle gesture was trained
in multiple orientations. In the version shown here, only the "U' orientation was used in training.
Also in the modified version, the length of the line gesture determines the thickness of the line.
To keep things simple, the modified version was not used either to generate the figure or in the

remainder of this paper. It is mentioned here to illustrate how gestural attributes may be mapped to
application parameters.

Not shown is an edit gesture (which looks like "27"). This gesture brings up control points on an
object. The control points do not themselves respond to gesture, but can be dragged around directly
(scaling the object accordingly). This illustrates that systems built with GRANDMA can combine
gesture and direct manipulation in the same interface.

Note that each gesture used in GDP is a single stroke. This is a limitation of GRANDMA's

gesture recognition algorithm. Supporting only single stroke gestures reinforces the correlation
between physical and mental tension, allows the use of short timeouts, and simplifies both non-eager
gesture recognition and eager recognition. The major drawback is that many common marks (e.g.
"X" and "--_>") cannot be used as gestures by GRANDMA. A number of techniques exist for

adapting single-stroke recognizers to multiple stroke recognition [8, 15], so perhaps GRANDMA's
recognizer will extended this way in the future.
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3. Support for gesture and direct manipulation in GRANDMA

The following summary of GRANDMA's architecture is intended to be sufficient for explaining how
gesture and direct manipulation are integrated. Much detail has been glossed over; the interested
reader is referred to [23] for the full story.

GRANDMA is a Model/View/Controller-like system [13]. In GRANDMA, models are applica-
tion objects, views are objects responsible for displaying models, and event handlers deal with input
directed at views. GRANDMA generalizes MVC by allowing a list of event handlers (rather than a
single controller) to be associated with a view. Event handlers may be associated with view classes

as well, and are inherited. Associating a handler with an entire class greatly improves efficiency, as
a single handler is automatically shared by many objects.

3.1. Gesture and direct-manipulation in the same interface

Each class of event handler implements a particular kind of interaction technique. For example, the

drag handler handles drag interactions, enabling entire objects (or parts of objects) to be dragged by
the mouse. A gesture handler contains a classifier for a set of gestures, and handles both the collection

and manipulation phases of the two-phase interaction. Thus, it is straightforward in GRANDMA to

have some views respond to gesture while other respond to direct manipulation: simply associate
gesture handlers with the former's class and drag handlers (or other direct-manipulation style
handlers) with the latter's. Similarly, views of different classes may respond to different sets of
gestures by associating each view class with a different gesture handler.

A single view (or view class) may respond to both gesture and direct manipulation (say, via
different mouse buttons) by associating multiple handlers with the view. Each handler has a

predicate that it uses to decide which events it will handle. It is simple to arrange for a handler

to deal only with particular types of events (e.g. mouse down, mouse moved, mouse up) or only
with events generated by a particular mouse button. The handlers associated with a particular view
are queried in order whenever input is initiated at the view; any input ignored by one handler is
propagated to the next.

3.2. Gesture and direct-manipulation in a two-phase interaction

As mentioned above, the gesture handler implements the two-phase interaction technique. Each
instance of a gesture handler recognizes its own set of gestures, and can have its own semantics

associated with each gesture. The handler is responsible for collecting and inking the gesture,
determining when the phase transition occurs, classifying the gesture, and executing the gesture's
semantics.

The gesture semantics consist of three expressions: recocj, evaluated when the gesture is

recognized (i.e. at the phase transition), raan±p, evaluated for each mouse point that arrives during
the manipulation phase, and done, evaluated when the interaction ends (i.e. the mouse button is
released). For example, the semantics of GDP's roctangle gesture are:

J
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Figure 4: A full rectangle gesture and all its subgestures.

recog = [ [view createRect]

setEndpoint:0 x:<startX> y:<startY>] ;

manip = [recog setEndpoint:l x:<currentX> y:<currentY>] ;
done = nil;

The syntax is that of Objective-C messages. The expressions areevaluated by a simple Objective-
C message interpreter built into GRANDMA. During evaluation, the values of many gestural
attributes are lazily bound to variables in the environment, and are thus available for use as parameters
in application routines. In the above example, view refers to the object at which the gesture is
directed, in this case the window in which GDP runs. This view is sent to message createRec£,
which returns a newly created rectangle. The attributes <startX> and <startY> refer to the

initial point of the gesture; the newly created rectangle is sent a message making this point one comer
of the rectangle. The rectangle is conveniently stored in the variable recog for use in the manip
semantics. In response to each mouse point during the manipulation phase, the manip semantics

makes the other comer of the rectangle <currentX>, <currentY>, thus implementing the
interactive "rubberbanding" of the rectangle. The done expression is null in this case, as the

processing was done by raanip. There are many other attributes available to the semantics writer;,
see [22, 23] for details.

This section described how, using GRANDMA, gestures and direct manipulation may be com-
bined in an interface by associating different handlers with different views (or with the same view

but having different predicates). The two-phase interaction technique, in which gesture and direct-
manipulation are combined in a single interaction, is implemented by the gesture handler class. Each

gesture handler knows how to collect gestures, classify them as elements of the gesture set expected
by the handler, and execute the corresponding gesture semantics.

4. Eager Recognition

As has been seen, gestures may be combined with direct manipulation to create a powerful two-
phase interaction technique. This section focuses on how the transition between the phases may be
made without any explicit indication from the user. Thus far the paper has concentrated (1) on the

description of the two-phase interaction technique, (2) on GRANDMA, a system which supports
the technique, and (3) on the use of the technique in GDP, an example application. The treatment in

this section is at a lower level: here we are concemed with the pattem recognition technology that

is used to implement eager recognition, a particular flavor of the two-phase interaction technique.
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4.1. Gestures, subgestures, and full gestures

A gesture is defined as a sequence of points. Denote the number of points in a gesture g as [g[,
and the particular points as gp = (xp,yp,tp), 0 _<p < [g[. The triple (x,y,t) represents a two-
dimensional mouse point (x, y) that arrived at time t. (The actual content of the points turns out to
be largely irrelevant for the eager recognition algorithm presented below, and is only given here for
concreteness.)

The ith subgesture of g, denoted g[i], is defined as a gesture consisting of the first i points of g.

Thus, g[i]e = ge and Ig[i][ = i. The subgesture g[i] is simply a prefix of g, and is undefined when
i > Igl. The term full gesture is used when it is necessary to distinguish the full gesture g from its
proper subgestures g[i] for i < Igl(see figure 4).

4.2. Statistical single-stroke gesture recognition

We are given a set of C gesture classes, and a number of (full) example gestures of each class, gee,
0 < c < C, 0 < e < E e, where E _ is the number of training examples of class c. In GDP, C = 11
(the classesare line, rectangle, ellipse, group, text, delete, edit, move, rotate-scale, copy, and
dot) and typically we train with 15 examples of each class, i.e. E e = 15.

The (non-eager) gesture recognition problem is stated as follows: given an input gesture g,
determine the class c to which g belongs, i.e. the class whose training examples gee are most

like g. (Some of the vagueness here can be eliminated by assuming each class c has a certain
probability distribution over the space of gestures, that the training examples of each class were
drawn according to that class's distribution, and that the recognition problem is to choose the class

c whose distribution, as revealed by its training examples, is the most likely to have produced g.) A
classifier C is a function that attempts to map g to its class c: c = C(g). As C is trained on the full
gestures g_e, it is referred to here as afull classifier.

The field of pattern recognition in general [6], and on-line handwriting recognition in particular
[26], offers many suggestions on how to compute C given training examples gee. Popular meth-

ods include the Ledeen recognizer [18] and connectionist models (i.e. neural networks) [8, 10].
Curiously, many gesture researchers [3, 9, 12, 14, 17] choose to hand-code C for their particular
application, rather than attempt to create it from training examples. Lipscomb [15] presents a

method tailored to the demands of gesture recognition (rather than handwriting), as does the current
author[22, 23].

My method of classifying single-stroke gestures, called statistical gesture recognition, works by
representing a gesture g by a vector of (currently twelve) features f. Each feature has the property
that it can be updated in constant time per mouse point, thus arbitrarily large gestures can be handled.
Classification is done via linear discrimination: each class has a linear evaluation function (including

a constant term) that is applied to the features, and the class with the maximum evaluation is chosen

as the value of C(g). Training is also efficient, as there is a closed form expression (optimal given
some normality assumptions on the distribution of the feature vectors of a class) for determining the

evaluation functions from the training data.

There are two more properties of the single-stroke classifier that are exploited by the eager
recognition algorithm below. The first is the ability to handle differing costs of misclassification:
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simply by adjusting the constant terms of the evaluation functions, it is possible to bias the classifier
away from certain classes. This is useful when mistakenly choosing a certain class is a grave error,

while mistakenly not choosing that class is a minor inconvenience. The other property used below
is a side effect of computing a classifier. Theoretically, the computed classifier works by creating
a distance metric (the Mahalanobis distance[6]), and the chosen class of a feature vector is simply
the class whose mean is closest to the given feature vector under this metric. As will be seen, the

distance metric is also used in the construction of eager recognizers.

4.3. The Ambiguous/Unambiguous Classifier

In order to implement eager recognition, a module is needed that can answer the question "has
enough of the gesture being entered been seen so that it may be unambiguously classified?" If the

gesture seen so far is considered to be a subgesture g[i] of some full gesture g that we have yet to
see, we can ask the question this way: "are we reasonably sure that C(g[i]) = C(g)?" The goal is to
design a function 79 (for "done") that answers this question: 79(g[i]) = false if g[i] is ambiguous

(i.e. there might be two full gestures of different classes both of which have g[i] as a subgesture),
and 79(g[i]) = true if g[i] is unambiguous (meaning all full gestures that might have g[i] as a

subgesture are of the same class).

Given 79, eager recognition works as follows: Each time a new mouse point arrives it is appended
to the gesture being collected, and 79 is applied to this gesture. As long as 7) returns false we

iterate and collect the next point. Once 79 return true the collected gesture is passed to C whose
result is return and the manipulation phase entered.

The problem of eager recognition is thus to produce 79 from the given training examples. The
insight here is to view this as a classification problem: classify a given subgesture as an ambiguous
or unambiguous gesture prefix. The recognition techniques developed for single-path recognition
(and discussed in the previous section) are used to build the ambiguous/unambiguous classifier

(AUC). 79 returns true if and only if the AUC classifies the subgesture as unambiguous.

4.4. Complete and incomplete subgestures

Once the idea of using the AUC to generate 79 is accepted, it is necessary to produce data to train

the AUC. Since the purpose of the AUC is to classify subgestures as ambiguous or unambiguous,
the training data must be subgestures that are labeled as ambiguous or unambiguous.

We may use the full classifier C to generate a first approximation to these two sets (ambiguous

and unambiguous). For each example gesture of class c, g = ge_, some subgestures g[i] will be
classified correctly by the full classifier C, while others likely will not. A subgesture g[i] is termed
complete with respect to gesture g, if, for all j, i < j < Igl,C(g[j])= C(g).The remaining subgestures

of g are incomplete. A complete subgesture is one which is classified correctly by the full classifier,
and all larger subgestures (of the same gesture) are also classified correctly.

Figure 5 shows examples of two gestures classes, U and D. Both start with a horizontal segment,
but U gestures end with an upward segment, while D gestures end with a downward segment. In
this simple example, it is clear that the subgestures which include only the horizontal segment are



ambiguous, but subgestures which include the comer are unambiguous. In the figure, each poim
in the gesture is labeled with a character indicating the classification by C of the subgesture which
ends at the point. An uppercase label indicates a complete subgesture, lowercase an incomplete

subgesture. Notice that incomplete subgestures are all ambiguous, all unambiguous subgestures are
complete, but there are complete subgestures that are ambiguous (along the horizontal segment of
the [3 examples). These subgestures are termed accidentally complete since they happened to be

classified correctly even though they are ambiguous.

It turns out that even if it is possible to completely determine which subgestures are ambiguous
and which are not, using the training methods referred to in section 4.2 to produce a single-stroke
recognizer to discriminate between the two classes ambiguous and unambiguous does not work

very well. This is because the training methods assume that the distribution of feature vectors within
a class is approximately multivariate Gaussian. The distribution of feature vectors within the set
of unambiguous subgestures will likely be wildly non-Gaussian, since the member subgestures

are drawn from many different gesture classes. For example, in the figure the unambiguous
U subgestures are very different than the unambiguous D gestures, so there will be a bimodal
distribution of feature vectors in the unambiguous set. Thus, a linear discriminator will not be
adequate to discriminate between two classes ambiguous and unambiguous subgestures. What

must be done is to turn this two-class problem (ambiguous or unambiguous) into a multi-class
problem. This is done by breaking up the ambiguous subgestures into multiple classes, each of

which has an approximately normal distribution. The unambiguous subgestures must be similarly
partitioned.

To do this, instead of partitioning the example subgestures into just two sets (complete and
incomplete), they are partioned into 2C sets. These sets are named C-c and I-c for each gesture class
c. A complete subgesture g[i] is placed in the class G-c, where c = C(g[i]) = C(g). An incomplete

subgesture g[i] is placed in the class I-c, where c = ¢(g[i]) (and it is likely that c _ C(g)). The sets
I-c are termed incomplete sets, and the sets C-c, complete sets. Note that the class in each set's
name refers to the full classifier's classification of the set's elements. In the case of incomplete
subgestures, this is likely not the class of the example gesture of which the subgesture is a prefix.

In figure 5 each lowercase letter names a set of incomplete subgestures, while each uppercase letter
names a set of complete subgestures.

4.5. Moving Accidentally Complete Subgestures

The next step in generating the training data is to move any accidentally complete subgestures into

incomplete classes. Intuitively, it is possible to identify accidentally complete subgestures because
they will be similar to some incomplete subgestures (for example, in figure 5 the subgestures along

the horizontal segment are all similar even though some are complete and others are incomplete.) A
threshold applied to the Mahalanobis distance metric mentioned in section 4.2 may be used to test
for this similarity.

To do so, the distance of each subgesture g[i] in each complete set to the mean of each incomplete
set is measured. If g[i] is sufficiently close to one of the incomplete sets, it is removed from its

complete set, and placed in the closest incomplete set. In this manner, an example subgesture that
was accidentally considered complete (such as a right stroke of a 13 gesture) is grouped together

with the other incomplete right strokes (class 1-13in this case).
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Figure 5: Incomplete and complete subgestures of U and D

The character indicates the classification (by the full classifier) of each subgesture.
Uppercase characters indicate complete subgestures, meaning that the subgesture and

all larger subgestures are correctly classified. Note that along the horizontal segment
(where the subgestures are ambiguous) some subgestures are complete while others are
not.
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Figure 6: Accidentally complete subgestures have been moved

Comparing this to figure 5 it can be seen that the subgestures along the horizontal
segment of the D gestures have been made incomplete. Unlike before, after this step all

ambiguous subgestures are incomplete.
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Figure 7: Classification of subgestures of U and D

This shows the results of running the AUC on the training examples. As can

been seen, the AUC performs conservatively, never indicating that a subgestures is
unambiguous when it is not, but sometimes indicating ambiguity of an unambiguous
subgesture.



Quantifying exactly what is meant by "sufficiently close" turns out to be rather difficult. The
threshold on the distance metric is computed as follows: The distance of the mean of each full

gesture class to the mean of each incomplete subgesture class is computed, and the minimum found.
However, distances less than another threshold are not included in the minimum calculation to avoid

trouble when an incomplete subgesture looks like a full gesture of a different class. (This is the case

if, in addition to U and D, there is a third gesture class consisting simply of a fight stroke.) The
threshold used is 50% of that minimum.

The complete subgestures of a full gesture are tested for accidental completeness from largest
(the full gesture) to smallest. Once a subgesture is determined to be accidentally complete, it and

the remaining (smaller) complete subgestures are moved to the appropriate incomplete classes.

Figure 6 shows the classes of the subgestures in the example after the accidentally complete
subgestures have been moved. Note that now the incomplete subgestures (lowercase labels) are all
ambiguous.

4.6. Create and tweak the AUC

Now that there is training data containing C complete classes (indicating unambiguous subgestures),

and C incomplete classes (indicating ambiguous subgestures), it is a simple matter to run the single-
stroke training algorithm (section 4.2) to create a classifier to discriminate between these 2C classes.
This classifier will be used to compute the function 7) as follows: if this classifier places a subgesture

s in any incomplete class, D(s) = faZse, otherwise the s is judged to be in one of the complete
classes, in which case 79(s) = true.

It is very important that subgestures not be judged unambiguous wrongly. This is a case where the
cost ofmisclassification is unequal between classes: a subgesture erroneously classified ambiguous

will merely cause the recognition not to be as eager as it could be, whereas a subgesture erroneously
classified unambiguous will very likely result in the gesture recognizer misclassifying the gesture

(since it has not seen enough of it to classify it unambiguously). To avoid this, the constant terms

of the evaluation function of the incomplete classes i are incremented by a small amount. The
increment is chosen to bias the classifier so that it believes that ambiguous gestures are five times
more likely than unambiguous gestures. In this way, it is much more likely to choose an ambiguous
class when unsure.

Each incomplete subgesture is then tested on the new classifier. Any time such a subgesture is

classified as belonging to a complete set (a serious mistake), the constant term of the evaluation
function corresponding to the complete set is adjusted automatically (by just enough plus a little

more) to keep this from happening.

Figure 7 shows the classification by the final classifier of the subgestures in the example. A
larger example of eager recognizers is presented in the next section.

4.7. Summarizing the eager recognition training algorithm

While the details are fairly involved, the idea behind the eager recognition technology is straight-
forward. The basic problem is to determine if enough of a gesture has been seen to classify it
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Figure 8: A set of gestures not amenable to eager recognition

Because all but the last gesture is approximately a subgesture of the one to its right,
these gestures would always be considered ambiguous by the eager recognizer, and thus
would never be eagerly recognized. The period indicates the firstpoint of each gesture.

unambiguously. This determination is itself a classification problem to which the same trainable
gesture recognition technology may be applied. The main hurdle is to produce data to train this

classifier to discriminate between ambiguous and unambiguous subgestures. This is done by running
the full classifier on every subgesture of the original training examples. Any subgesture classified

differently than the full gesture from which it arose is considered ambiguous; also ambiguous are
those subgestures that happen to be classified the same as their full gestures but are similar to

subgestures already considered to be ambiguous. For safety, after being trained to discriminate be-

tween ambiguous and unambiguous subgestures, the new classifier is conservatively biased toward
classifying subgestures as ambiguous.

5. Evaluating Eager Recognition

How well the eager recognition algorithm works depends on anumber of factors, the most critical
being the gesture set itself. It is very easy to design a gesture set that does not lend itself well to

eager recognition; for example, there would be almost no benefit trying to use eager recognition
on Buxton's note gestures [3] (figure 8). This is because the note gestures for longer notes are
subgestures of the note gestures for shorter notes, and thus would always be considered ambiguous
by the eager recognizer.

In order to determine how well the eager recognition algorithm works, an eager recognizer was
created to classify the eight gestures classes shown in 9. Each class named for the direction of its

two segments, e.g. "ur" means "up, right." Each of these gestures is ambiguous along its initial
segment, and becomes unambiguous once the comer is turned and the second segment begun.

The eager recognizer was trained with ten examples of each of the eight classes, and tested on
thirty examples of each class. The figure shows ten of the thirty test examples for each class, and
includes all the examples that were misclassified.

Two comparisons are of interest for the gesture set: the eager recognition rate versus the
recognition rate of the full classifier, and the eagerness of the recognizer versus the maximum

possible eagemess. The eager recognizer classified 97.0% of the gestures correctly, compared to
99.2% correct for the full classifier. Most of the eager recognizer's errors were due to a comer

looping 270 degrees rather than being a sharp 90 degrees, so it appeared to the eager recognizer the

second stroke was going in the opposite direction than intended. In the figure "E" indicates a gesture

misclassified by the eager recognizer, and "F" indicates a misclassification by the full classifier.
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Figure 9: The performance of the eager recognizer on easily understood data



On the average, the eager recognizer examined 67.9% ofthe mouse points of each gesture before
deciding the gesture was unambiguous. By hand I determined for each gesture the number of mouse
points from the start through the comer turn, and concluded that on the average 59.4% of the mouse

points of each gesture needed to be seen before the gesture could be unambiguously classified.
The parts of each gesture at which unambiguous classification could have occurred but did not are

indicated in the figure by thick lines.

Figure 10 shows the performance of the eager recognizer on GDP gestures. The eager recognizer
was trained with 10 examples of each of 11 gesture classes, and tested on 30 examples of each class,
five of which are shown in the figure. The GDP gesture set was slightly altered to increase eagerness:
the group gesture was trained clockwise because when it was counterclockwise it prevented the
copy gesture from ever being eagerly recognized. For the GDP gestures, the full classifier had a

99.7% correct recognition rate as compared with 93.5% for the eager recognizer. On the average
60.5% of each gesture was examined by the eager recognizer before classification occurred. For

this set no attempt was made to determine the minimum average gesture percentage that needed to
seen for unambiguous classification.

From these tests we can conclude that the trainable eager recognition algorithm performs accept-
ably but there is plenty of room for improvement, both in the recognition rate and the amount of
eagemess.

Computationally, eager recognition is quite tractable on modest hardware. A fixed amount of

computation needs to occur on each mouse point: first the feature vector must be updated (taking
0.5 msec on a DEC MicroVAX II), and then the vector must be classified by the AUC (taking 0.27
msec per class, or 6 msec in the case of GDP).

6. Conclusion

In this paper I have shown how gesturing and direct manipulation can be combined in a two-

phase interaction technique that exhibits the best qualities of both. These include the ability to
specify an operation, the operands, and additional parameters with a single, intuitive stroke, with
some of those parameters being manipulated directly in the presence of application feedback. The
technique of eager recognition allows a smooth transition between the gesture collection and the

direct manipulation phases of the interaction. An algorithm for creating eager recognizers from
example gestures was presented and evaluated.

There is an unexpected benefit of combining gesture and direct manipulation in a single interac-

tion: gesture classification is often simpler and more accurate. Consider the "move text" gesture in
figure 1. Selecting the text to move is a circling gesture that will not vary too much each time the
gesture is made. However, after the text is selected the gesture continues and the destination of the

text is indicated by the "tail" of the gesture. The size and shape of this tail will vary greatly with
each instance of the "move text" gesture. This variation makes the gesture difficult to recognize in
general, especially when using a trainable recognizer. Perhaps this is why many researchers hand

code their classifiers. In any case, in a two-phase interaction the tail is no longer part of the gesture,
but instead part of the manipulation. Trainable recognition techniques will be much more successful
on the remaining prefix.
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The two-phase interaction technique is also applicable to multi-path gestures. Using the Sensor
Frame [16] as an input device, I have implemented a drawing program based on multiple finger
gestures. The results have been quite encouraging. For example, the translate-rotate-scale gesture

is made with two fingers, which during the manipulation phase allow for simultaneous rotation,
translation, and scaling of graphic objects. Even some single finger gestures allow additional fingers

to be brought into the field of view during manipulation, thus allowing additional parameters (such
as color and thickness) to be specified interactively.

In the future, I plan to incorporate gestures (and the two-phase interaction) into some existing
object-oriented user-interface toolkits, notably the Andrew Toolkit[20] and the NeXT Applica-
tion Kit[ 19]. Other extensions including handling multi-stroke gestures, and integrating gesture

recognition with the handwriting recognition used on the notebook computers now beginning to
appear. Further work is needed to utilize devices, such as the DataGlove[28], which have no explicit
signaling with which to indicate the start of a gesture.
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