
_cua uon_erence
Computer Graphics 86
May 1986, Anaheim CA

CMU-ITC-080

Helping Developers See the
User's Poin¢ of View:

A Graphic Designer's Perspective

Daniel J Boyarski
Interface Design Consultant
Information Technology Center
Carnegie Mellon University
Pittsburgh PA 15213

ABSTRACT

Members of a development team, often from diverse backgrounds, bring
a different perspective on how to design and produce a user inter-
face for a computer system. However, these experts are coming to
agree that a good interface is crucial to the success of the system,
because to the user, the interface is the system. This paper discus-
ses my experiences as a member of a development team and provides
recommendations on how experts from diverse backgrounds can work
together effectively to develop a usable and elegant computer system.

INTRODUCTION

More and more developers, designers, and marketing experts have come
to accept the fact that user-interface design will be one of the
major factors affecting computer purchase and usage in the future.
Put simply, to the user, the interface is the system.

Having said this, why is there still the tendency to regard interface
design as icing on the cake, when, in fact, it is one of the main
ingredients? Why is it that development teams rarely consult with
interface designers when a development project begins? Interface de-
signers are brought into the picture when the system has gone
through its major design phase and "window dressing" or "icing" is
now required to make the system look presentable and friendly. One
of the reasons, I believe, is that the work of an interface designer
is not understood very well and, therefore, is not fully appreciated.

As a graphic designer, and as a member of an interface design team,
I will discuss my role as part of a development team, show examples
of our work, and provide recommendations on how experts from diverse
backgrounds can work together effectively to develop a usable and
elegant computer system.

What is a Graphic Designer?

A graphic designer is a visual communicator of information that is
transmitted from a sender to a receiver. A graphic designer gives
form to this information using type (letters) and images. The images
may be photographs, illustrations, diagrams, or type itself. The
information may be a birth announcement, a concert poster, a plane
schedule, a book on Australia, or instructions on how to use a com-
puter. The majority of what a graphic designer designs ends up being
printed -- that's where the term "graphic" comes from. However,
there are other formats for visual communications road signs, exhibi-
tions, television and film graphics, computer screens, and the like.

What is common to allthe work of a graphic designer is the organiza-
tion, the giving of graphic form, and the transmission of information

from a sender (the client) to a receiver (the audience). To accom-

plish this, a _phic designer has to wear several h_s, th_ of
psychologist, sociologist, artist, linguist, and businessperson. AS
a problem solver, a designer helps the client understand _d define
the problem at hand. On_ with this definition of the problem -- its
function, its audience, its constraints -- can a desig_r proceed
with the process of designing. This is not u_ike the process fol-
lowed by architects, writers, and engineers, all problem solvers.

Fibre I. Examples of graphic desi_ work. Clockwise, from far left,
menu cover, train route map, poster, _d sign s_bols for the U.S.
Depa_ment of Tra_portation.

The Information Technology Centers Background

In the fall of 1982, Carnegie Mellon University (CMU) and IBM signed
a contract whereby CMU would become the first university to complete-
ly computerize its campus with a distributed, as opposed to a time-
sharing, computer system. IBM was to develop the hardware. CMU estab-
lished the Information Technology Center (ITC) to develop the soft-
ware. Though the primary goal was to develop course applications and
to use the computer in the classroom, the total system is to be used
by everyone on campuss students, faculty, and staff. That meant that
the audience for this system would be far from homogeneous, and
would run the gamut from completely computer naive to completely
computer literate. How could the ITC meet the needs of such a diverse
audience?

The Interface Design Team

That was precisely our concern when three of us -- a writer, a gra-
phic designer, and a graduate student in Rhetoric -- began work at
the ITC, in mid-1984, on user interface and documentation design. As
non-computer experts working in an environment dominated by develo-
pers with Ph.D.'s in Computer Science, how could we ensure that the
final system would be usable by our constituents, non-experts, who
comprise a significant proportion of the campus community? Our team
of three was actually part of a larger interface design group at
the ITC, which was made up primarily of developers. The work of this
group covered the design and implementation of a base editor, upon
which course applications could be built, a text editor, a mail and
bulletin board system, and Tutor85, an integrated authoring/program-
ming environment.

We stated our goal this way, "The interface for Andrew (the name

given to the system) should be elegant, friendly, and transparent.
The user, from novice to expert, should be able to work on Andrew
with a minimum of instruction, apprehension, and wasted time." We
still subscribe to that principle and it continues to guide us as we
work on interface design issues.

Process

Since we were brought into the ITC a year and a half into the deve-
lopment of the system, a large part of our work there has been to
evaluate the current system and to make suggestions for improving it.
We have worked on menus, scrollbars, cursors, icons, status indica-
tors, fonts for display and output, defaults/preferences, the general
screen appearance, and documentation. My particular emphasis has
been on the visual aspects of the interface, given my background as
a visual communicator. For example, the design of a book is very
similar to the design of a display screen. There are many levels of
information that need to be organized, prioritized, and given clear
graphic form. Issues of information heirarchy, legibility, formatting
of text and graphics, sequencing, and, yes, even aesthetics, are
common to both design projects.

My two colleagues brought their expertise in writing, cognitive psy-
cholo_, and testing procedures to these same issues. With a similar

humanistic background in problem-solving skills, the three of us
developed a process of working, very similar to that used by design-
ers and writers. Since communication between user and computer is
ultimately what we are dealing with, this process is very appro-
priate. It looks something like thiss

definition of the problems
what is it?
what will it do?

who is it for?
build, design, or write, according to the definition
review this initial work
refine

test on users (the intended audience)
review test results
refine

(retest, re-review, refine, if necessary)
release

This outline is just that, an outline. The linearity of it at times
gives way to referring back to previous steps, for the sake of a
clearer problem definition. This definition drives the work being
produced, and, in turn, all work produced is evaluated on how it
solves the problem. No more, no less.

A Case Study, Cursors

When we started working at the ITC, one basic cursor was in use
(figure 2). This same arrow represented the mouse cursor, the text

editor cursor, the scrollbar cursor, and the menu cursor. In Andrew,
the cursor is the image (object) on the screen that moves when the
mouse is moved. I shall limit this discussion to this particular cur-
sor! other cursors now exist, but would complicate the issue.

With testing, it was shown that, especially in the text editor, users
had difficulty pointing to a specific spot between characters
(letters), to correct a misspelling, for example. The reason was

that the arrow cursor had a basic horizontal axis (figure 3), not
helpful in making what is basically a vertical move (figure 4).

Thus started a series of arrow

cursor options (figure 5) that I

designed and released, and were p, ,

tested on the !TC staff and seleo- gr _.ted novice users. Their comments

were helpful in determining what.
did and didn't work. I looked for
objective comments like, "...this

really helps me correct typos Figure 2. Figure 3.
easily! I can point directly to a
spot between letters," and I tend-
ed to place less importance on

subjective comments like, "...what _h_i_
is that ugly bent harpoon for?" gr _ _.
I should point out that this
series of trial cursors was not

greeted happily by everyone at the
ITC_ some developers were dis-

turbed that I was tampering with Figure 4.a "familiar friend."

With much trial and error, the _ _ &

shape of the cursor that is cur-

rently implemented (figure 6) is
based on a clear understanding of
the function of that particular J
cursor and on the test results. It

is also the result of a happy com- &u Ill
promise between the functional i
needs of that cursor and the intui-
tive needs of the users, who L
favored a "flowing" arrow instead Jm
of a static one, since this cursor

represents the motions made with _ _

the mouse. Form follows function.

Through this process, it became
clear that a specific function or L
action requires a specific cursor. Figure 5.
So, the action of pointing to a
spot between characters in a text
requires a specific cursor to aid

in that action (figure 7). On the _I
other hand, the action of select- gr_.f_.,_ic_
ing a menu item is a different
action, and, therefore, requires
yet another cursor to aid in that
action (figure 8). Different

actions require different cursors. Figure 6. Figure 7.
Different modes sometimes require
different cursors, as a visual _w_d°_,
signal that the user is, in fact, _po,,,
in a new mode. T_,w_do.

This case study covers only one
cursor in a broad and sophistica- _"
ted system. Our goal is to stan- _P
dardize all cursors, so that z,p

i. they properly serve their

function, Figure 8. New
2. they give the user a clear mode, new cursor.

signal of being in a different
mode, and

3. they work as a consistent set
of cursors.

These issues of semantics (the
meaning), syntactics (the form),

and pragmatics (the fitting into a family or set of symbols) are
always considered by graphic designers in the design of communica-
tion symbols, as illustrated, in figure i, by the symbols for the
U.S. Department of Transportation. These same issues should drive

the design of cursors, icons, and symbols for any computer system.

Another Case Studyl Console

As Andrew grew in size and complexity, there also grew a need to con-
solidate various status indicators, error message indicators, as
well as clock and date indicators (figure 9). One of the developers
took it upon himself to design a console window that grouped together
those relevant indicators. As he worked on this project, he realized
that different developers (users) wanted to design and/or customize
their own consoles. What resulted was a range of consoles that varied
in size, complexity, and looks. This was fine for the individual
developer and his specific needs, but would have been confusing to
users unfamiliar with console. This was the opinion of the smaller
user interface team.

So, we sat down with the developer Jock Oct 4 1985 parnassus
and, together, over a period of a ,.-_.
few weeks, designed a basic con-
sole that displayed indicators for :o.-./

system load, clock, day and date,narmer_.......................................ito duquesne
printer delivery, mail delivery, fetchin,qfile /unJx/sun/usr/ucb/teinet

system trouble, file server acti- removing /itc/lucas/Jogin from file cache.
adding /unix/common/usr/andrew/fonts/andytype@f.fwm

vity, and error and status messa- removing /itc/lucas/bin/romp from file cache.

ges. These were all organized into adding /unix/sun/usr/ucb/telnetto filecache.
a fairly compact window, using __....................
icons and words. Principles of v,s_a_ - duquesne

"form follows function" and "keep cPu _.____
it simple, keep it consistent"
were constantly stressed by us. z/o .=,_.__

With much discussion, trial and Figure 9. Before.
error, give and take, we arrived
at the current version (figure 10).

Console Monitor parnassus

With this console as a model, Lo_ .-..._ Tuesday,1213185

other developers proceeded with " " illtheir custom-made consoles. There y _:._7 :_ _resulted a family of consoles,
all variations on the same theme. Done Fe¢ching rpost (itc) (8:34:27 PM)

Andrew users are now given a Disk /dev/hdOa is 100"/. furl. (8:,33:_8 PM 1

choice of consoles to select from, '" " ' " '
depending upon their needs.

Figure 10. After.

What made this small project a
success was the team-work of the

user interface designers and the
developer. Each one had something
to offer, each one had input, and,
in the end, the team designed the
product, the basic console.

Observations

I believe, as do my two colleagues, that the improvements we have
been able to suggest are largely a result of our humanistic problem
solving skills. While everyone at CMU is a problem solver, including
the ITC system developers, the humanist brings a different set of
problem solving skills, a different perspective, and a different
focus to a problem and can thus arrive at workable solutions a deve-
loper may never think of. Briefly, let me discuss our objectivity
and our focus on the audience.

Objectivity

Because we are not actually writing the software, we have less at
stake in the current design, and we often don't know how much or how
little work would be involved in implementing our recommendations.
As a result, we are free to make recommendations based on what we

believe is really necessary for the interface, not on constraints
like how difficult it would be to implement them.

Focus on the Audience

Training in our individual humanistic disciplines has given us heu-
ristics for attending to and solving human problems rather than
machine problems. We maintain this focus on the audience by regularly
training and testing users, often computer novices, which helps us
from becoming too immersed in the ITC world. Users remind us that •
simplicity, memorability, and ease of use are very important prin-
ciples which often get sacrificed to speed, complexity, and multi-
plicity. Also, in many ways, we are members of the intended audience,
and as a faculty member (myself)_--student, and staff member (the
writer), we interact daily with a large segment of the campus com-
munity and have a good sense of their needs and expertise.

On the other hand, the majority of the developers do not interact
very much with the campus community. They spend eight to ten (often
more) hours each day, writing code. Their focus on heavy programming,

as a perceived need by Andrew users, does not represent the majority
of users at CMU.

More Observations

Our comments and suggestions have been greeted with a range of
reactions, from applause to disgust, within the ITC. Progress, I be-
lieve, has been made, both in improving the interface for Andrew,
and in our interactions with the developers. Early in our tenure at
the ITC, we were looked upon with question! we weren't one "of them."
Over time, however, we have worked side-by-side with some developers,
reaching agreement on issues, and providing the system with the
start of an elegant and friendly interface. We have proven, over the
course of a year and a half, that we do have an important contribu-
tion to make to the development of Andrew. We, too, have realized
that working with the developers, instead of springing our ideas on
them, generally produces better results. Of course, this works both
ways.

It has, however, been a slow process. A great deal of time is often
spent in meetings, reviewing and revising a specific program function
or some minor detail of the interface. This is due, far too often,

to unclear problem definitions, outright resistance, or a lack of
communication among the members of the larger interface group.

This brings me to my observations as a member of a large development
teams

I. Different backgrounds support and promote different languages.
l've heard Computer Science, UNIX, hacker-slang, design, psychology,
and some English spoken at meetings and in the halls. Meetings in
which these languages surface produce chaos and little progress.

2. Different priorities are the result of different backgrounds.
Generally, our smaller interface design team stressed the needs of
the user and keeping the interface simple, consistent, and predic-
table. The developers generally stressed speed, complexity (in more
options and customization), and their own needs as programmers.

3. Different problem-solving strategies are also the result of

different backgrounds. Some tend to favor a top-down approach, while

others favor the opposite. Top-down starts with defining goals,
audience, and individual tasks. Bottom-up, the opposite, has members
working on their own, experimenting, "messing around," then sharing
the resultsl the "hey, look what I've come up with" approach. Then,
there follows an attempt to pull all these results together into
some coherent whole.

Both approaches have merit. History illustrates that both have pro-
duced wonderful discoveries as well as solid solutions. Where would

we be if Alexander Fleming hadn't experimented with agar plates and
accidentally discovered penicillin? On the other hand, the Macintosh

interface was designed top-down, with a clear set of guidelines
and goals defined and agreed to by the developers from the beginning. 1

Diversity in the members of a team can be a positive factor and can
contribute to a challenging and fruitful working relationship. On
the other hand, such diversity can also produce a lack of under-
standing and appreciation for each other's work, a lack of self-
worth as a team member, and, in the long run, an absence of motiva-
tion for the project. The challenge here is to work together as
partners, to learn from one another, and to build on each other's

strengths. It takes a serious commitment to the project on everyone's
part, a subduing of individual egos, and a good leader/manager for
a project of this, or any, scale to be successful.

Recommendations

1. Construct a development team made up of experts from a variety
of disciplines. This includes experts in hardware, software, human
factors, professional writing, graphic design, testing, management,
and marketing. This diversity is necessary, due to the complexity
of such a project.

2. Put this team together at the beKinninK of the project.

3. Select a leader who will guide _the development of the project
w_th objectivity, wisdom, strength, and nurturing. This person
should be a manager of resourcess human, technical, and financial.

4. Clearly define the project's goals, based on an understanding
of the project and its audience. User surveys, when possible, can be
an indispensable aid.

5. Clearly define each member's tasks within the larger picture of
the project's goals, and conduct regular progress reports. This gives
each member a specific place in the team and fosters a mutual respect
among everyone. Members should adhere to their assigned tasks,
instead of drawing up their own private agendas, ones that may have
little to do with the set goals of the project.

6. Draw up a calendar that everyone subscribes to, and stick to it.

7. Promote regular communication among members. Well-organized and
planned meetings are one way to achieve this. Electronic bulletin
boards and newsletters are other ways.

8. Test, test, test. Keep the user in mind. After all, this is whom
you are working to please.

9. Learn from existing models. There is usually a great deal of
written material about systems on the market or in development, and
reviewing them can help in a team's setting of project goals.

By no means is this an exhaustive list. It is one I put together,
based on my experiences and on discussions with other user interface
designers.

"User-interface design is still an art, not a science. Many times...
we were amazed at the depth and subtlety of user-interface issues,
even such supposedly straightforward issues as consistency and

. simplicity. Often there is no one 'right' answer. (Because user-
interface design is new), much of the time, there is no scientific
evidence to support one alternative over another, just intuition.
Almost always there are trade-offs. Perhaps by the end of the

decade, user-interface design will be a mo_e rigorous process."
(discussing the Xerox Star user interface)

There is some very fine interface design work being produced today.
However, given the growing number of computer systems being deve-
loped and manufactured, it is not enough. It is imperative that
development teams take advantage of the expertise of individuals
from various relevant backgrounds, including interface designers.
Such a mixture of skills can only contribute to computer systems
that are humane, elegant, easy to use, and, sometimes, even fun!

FOOTNOTES

1. Horn, Bruces Macintosh software developer. Private lecture.

2. Smith, David Canfield, Eric Harslem, Charles Irby, Ralph Kimball,
and Bill Verplank. "Designing the Star User Interface." Byte,
April 1982.

