
A Capability-Based Module System
for Authority Control

Darya Melicher,˚ Yangqingwei Shi,˚
Alex Potanin,: and Jonathan Aldrich˚

June 2017
CMU-ISR-17-106R

This is a technical report accompanying a paper that was published at ECOOP 2017 [21].
This is an updated version of CMU-ISR-17-106, May 2017.

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

˚School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
:School of Engineering and Computer Science, Victoria University of Wellington, Wellington,
New Zealand

This work was supported in part by NSA lablet contract #H98230-14-C-0140 and by Oracle Labs Australia.

Keywords: Language-based security, capabilities, authority, modules

Abstract

The principle of least authority states that each component of the system should be given author-
ity to access only the information and resources that it needs for its operation. This principle is
fundamental to the secure design of software systems, as it helps to limit an application’s attack
surface and to isolate vulnerabilities and faults. Unfortunately, current programming languages
do not provide adequate help in controlling the authority of application modules, an issue that is
particularly acute in the case of untrusted third-party extensions.

In this paper, we present a language design that facilitates controlling the authority granted to
each application module. The key technical novelty of our approach is that modules are first-class,
statically typed capabilities. First-class modules are essentially objects, and so we formalize our
module system by translation into an object calculus and prove that the core calculus is type-safe
and authority-safe. Unlike prior formalizations, our work defines authority non-transitively, allow-
ing engineers to reason about software designs that use wrappers to provide an attenuated version
of a more powerful capability.

Our approach allows developers to determine a module’s authority by examining the capabil-
ities passed as module arguments when the module is created, or delegated to the module later
during execution. The type system facilitates this by identifying which objects provide capabilities
to sensitive resources, and by enabling security architects to examine the capabilities passed into
and out of a module based only on the module’s interface, without needing to examine the mod-
ule’s implementation code. An implementation of the module system and illustrative examples in
the Wyvern programming language suggest that our approach can be a practical way to control
module authority.

1 Introduction
The principle of least authority [34] is a fundamental technique for designing secure software sys-
tems. It states that each component of a system must be able to access only the information and
resources that it needs for operation and nothing more. For example, if an application module
needs to append an entry to an application log, the module should not also be able to access the
whole file system. This is important for any software system that divides its code into a trusted
code base [33] and untrusted peripheral code, as in it, trusted code could run directly alongside
untrusted code. Common examples of such software systems are extensible applications, which
allow enriching their functionality with third-party extensions (also called plug-ins, add-ins, and
add-ons), and large software systems, in which some developers may lack the expertise to write
secure- or privacy-compliant code and thus should have a limited ability to access system resources
in their code. Enforcing the principle of least authority helps to limit the attack surface of a soft-
ware system and to isolate vulnerabilities and faults. However, current programming languages
do not provide adequate control over the authority of untrusted modules [3,38], and non-linguistic
approaches also fall short in controlling authority [4, 18, 35, 42].

Application security becomes even more challenging if an application uses code-loading facili-
ties or advanced module systems, which allow modules to be dynamically loaded and manipulated
at runtime. In such cases, an application has extra implementation flexibility and may decide what
modules to use at runtime, e.g., responding to user configuration or the environment in which the
application is run. On the other hand, untrusted modules may get access to crucial application
modules that they do not explicitly import via global variables or method calls. For example, al-
though a third-party extension may import only the logging module and not the file I/O module, the
extension could receive an instance of the file I/O module via a method call as an argument or as a
return value. Dynamic module loading can be modeled as first-class modules, i.e., modules that are
treated like objects and can be instantiated, stored, passed as an argument, returned from a func-
tion, etc. However, in a conventional programming language featuring first-class modules (e.g.,
Newspeak [2], Scala [31], and Grace [15]), it is difficult to track and control modules accesses.

In this paper,1 we present a module system that helps software developers to control the author-
ity of code by treating modules as first-class, statically typed capabilities [5]—i.e., communicable
but unforgeable references allowing to access a resource—and making access to security- and
privacy-related modules capability-protected, in the style of the E programming language [25].
Specifically, if module A wants to access module B, A may do so only if A possesses an appropri-
ate capability. Leveraging capabilities allows us to support first-class modules (e.g., representing
dynamic module loading, linking, and instantiation) while still providing a strong model for rea-
soning about application security and module isolation.

The design of the module system and the accompanying type system of the language simplify
reasoning about module authority. To determine the authority of a module via capability-based
reasoning, a security expert or a system architect must understand what capabilities the module can
access. Since our module system is statically typed (in contrast to Newspeak [2], which provides
a capability-safe but dynamically typed module system), the architect needs to examine only the

1A one-paragraph poster abstract for this work appeared elsewhere [16].

1

module’s interface and the interfaces of its imports and does not need to examine the code of
any module. For example, suppose an application has a trusted logger module that legitimately
imports a module for file I/O, and the logger module is the only module imported by an extension.
To ensure that the extension does not have access to the file I/O module, except as mediated (i.e.,
attenuated [25]) by the logger module, it is sufficient to verify that the extension does not import
the file I/O module directly and that the extension cannot get direct access to a file I/O capability
by calling the logger’s methods. The first condition is a syntactic check, and the second condition
requires inspecting only the logger’s interface, e.g., to ensure that none of the methods in the
interface return a file object (or indeed the file I/O module itself, since modules are first-class).
Our module system enjoys an authority safety property that statically guarantees that the above
two possibilities are all a developer has to consider. This is in contrast to conventional languages
and module systems, in which global variables, unrestricted reflection, arbitrary downcasts, and
other “back doors” make capability-based reasoning infeasible.

Our work has four central contributions. The first contribution is the design of a module system
that supports first-class modules (cf. Newspeak, Scala, and Grace) and is capability-safe [22, 25].
Our approach forbids global state, instead requiring each module to take the resources it needs as
parameters, which ensures that modules do not carry ambient authority [40] (similar to Newspeak,
but in contrast to Scala and Grace). For practical purposes, our module system supports module-
local state and does not restrict the imports of non-state-bearing modules (in contrast to Newspeak).

The second contribution is a type system that distinguishes modules and objects that act as
capabilities to access sensitive resources, from modules and objects that are purely functional
computation or store immutable data. This design makes it easy for an architect to focus on the
parts of an interface that are relevant to the authority of a module. Overall, the type system allows
developers to determine the authority of a module at compile time by examining only the interfaces
of the module and the modules it imports, without having to look at the implementation of the
involved modules.

The third contribution of our work is the formalization of authority control in the designed
module system, in which we introduce a novel, non-transitive definition of authority that explicitly
accounts for attenuated authority (e.g., as in the logger example above). We also introduce a defini-
tion of authority safety and formally prove the designed system authority-safe. Our result contrasts
prior, transitive definitions of authority safety that cannot account for authority attenuation [7,20].

The final contribution is the implementation of the designed module system in Wyvern, a stati-
cally typed, capability-safe, object-oriented programming language [29], demonstrating the feasi-
bility and practicality of the proposed approach.

We start the paper by describing the Wyvern module system from the perspective of a software
developer in Section 2 and present the formalization of the designed module system in Section 3.
We continue by introducing the definition of authority safety, state authority-related properties of
Wyvern’s module system, and prove Wyvern authority-safe in Section 4. Then, we report on the
implementation of the Wyvern module system and on the limitations of our approach in Sections 5
and 6 respectively. Finally, we compare our approach to other language-based approaches in Sec-
tion 7 and conclude in Section 8.

2

Wyvern Libraries Word Processor

Collections

System
Resources

Extensions

listFactory

logger
wordCloud
prettyChartnetwork

...

...

queueFactory

fileIO
Platforms

python
...

java

...

wordProcessor

Figure 1: A module import diagram of a word processor application used in code examples. The
boxes represent modules, and the arrows represent module imports. If an arrow goes from module
A to module B, A imports B. The arrows with black arrowheads correspond to importing resource
modules; the arrow with an unfilled arrowhead corresponds to importing a pure module. The dark
background delineates the trusted code base.

2 Wyvern Module System
In Wyvern, modules have several features distinguishing its module system from others:

• Modules are first-class, i.e., they are treated as objects and can be instantiated, stored, passed
as arguments into methods, and returned from methods.

• Modules are treated as capabilities in the style of [1], i.e., we unify the notion of having
a reference to a module with the notion of having a capability to access that module. If a
module can access another module, we say that the former module has a capability to use
the latter module. (The same is true for objects.)

• Modules are divided into two categories: resource modules, i.e., security- or privacy-related
modules (system resources, modules containing application data, or state-bearing modules),
and pure modules, i.e., non-state-bearing utility modules.

To illustrate our approach, let us consider a sample application that allows third-party ex-
tensions. Figure 1 shows a module import diagram of a word processor application, similar to
OpenOffice or MS Word, that extends its feature set by allowing third-party extensions. The ver-
tical dotted line represents a virtual border between standard language-provided libraries and the
word processor code. The boxes represent modules, which are clustered according to their con-
ceptual type. The arrows represent module imports. If an arrow goes from module A to module B,
module A imports module B. The arrows with black arrowheads correspond to importing resource
modules, while the arrow with an unfilled arrowhead corresponds to importing a pure module.
Being able to import a resource module, which corresponds to arrows with black arrowheads on
the diagram, is equivalent to having unconditional control and thus authority over the imported
module.

Wyvern provides a number of standard libraries: Collections refer to a set of pure modules that
provide implementations of basic functionality, e.g., list and queue factories. System Resources
refers to a set of language-provided modules that implement system-level functionality, e.g., file
and network access. Platforms refer to the modules that implement the Wyvern back end. Plat-

3

forms and system resources may be used to subvert the word processor, and thus access to them
requires the possession of special capabilities.

The word processor system consists of core modules, which are considered trusted, and ex-
tension modules (marked so on the diagram), which are provided by third parties and considered
untrusted. The diagram presents only a subset of modules of the word processor’s core that are
used in our examples: the wordProcessor module is the main module of the word processor,
and the logger module provides a logging service and can be used by multiple word processor’s
modules.

We use the word processor example to introduce Wyvern’s two types of modules—resource
modules and pure modules—and to show how one can determine a module’s authority. For brevity,
all module definitions and their types in code examples are put together; however, in reality, each
module definition and type resides in a separate file.

2.1 Threat Model
Our approach focuses on ensuring the principle of least authority and assumes a software sys-
tem that is divided into a trusted code base [33] and untrusted peripheral code. All the code in
the trusted code base is vetted by security or privacy experts. The untrusted code may be mod-
ules within the same code base or third-party extensions. Our module system aims at giving the
untrusted modules the least possible authority over security- and privacy-related modules of the
trusted code base, thus minimizing the possible damage if the untrusted code is malicious or vul-
nerable. The authority given to untrusted modules is scrutinized, but their code is not examined,
except for their interfaces.

The following two common scenarios fit our threat model:
Malicious third-party code. In an extensible software system, an attacker writes a malicious ex-

tension and tricks the user into loading it into the system. We wish to limit the damage that
such an extension can do.

Fallible in-house code. In a large software system, a trusted core is written by security experts,
who have the knowledge to securely access sensitive resources, e.g., the network and file
system, while the rest of the system is written by non-security experts, who may introduce
vulnerabilities that could be exploited by an attacker. We wish to limit the damage that may
result from exploits to the non-core parts of the system.

In both scenarios, modules written by less trusted parties can access security- and privacy-
related modules, e.g., system resources, only via safe interfaces written by experts. We leverage
module system capabilities to ensure that attackers cannot do anything to security- or privacy-
critical resources beyond what is permitted by the safe interfaces. Vulnerabilities inside the trusted
code base are explicitly outside of our security model. We discuss the limitations of this model
more in Section 6.

The word processor example is presented as the first scenario, but it can be adapted to the
second scenario as well. In Figure 1, the trusted code base is marked by the dark background.

4

1 module def wordProcessor(io : FileIO) : WordProcessor
2 import logger
3 var log : Logger = logger(io)
4 ...
5 resource type FileIO
6 def read(file : File) : String
7 ...
8 resource type Logger
9 def appendToLog(entry : String) : Unit

10 module def logger(io : FileIO) : Logger
11 def appendToLog(entry : String) : Boolean
12 io.open("˜/log.txt").append(entry)

Figure 2: A Wyvern code example demonstrating resource modules, their imports, and instantia-
tions.

2.2 Resource Modules
Resource modules are defined as modules that:

1. encapsulate system resources (e.g., java and fileIO),
2. use other resource modules (e.g., wordProcessor and logger), or
3. contain mutable state (e.g., wordProcessor).

A module is a resource if it has one or more of these characteristics. For example, the wordProcessor
module is a resource module because it imports the system resource fileIO and has state (details
upcoming). It is important for state-bearing modules to be resources, as they may contain pri-
vate application data and also may facilitate communication between modules that import them,
potentially allowing illegal sharing of capabilities.

Figure 2 presents a code example with several resource modules and types. By convention,
module names start with lowercase letters, while type names are capitalized. The code snippet
starts with the definition of the main module of the word processor application, wordProcessor,
which is a resource module. The module imports a module instance of a resource type FileIO

(defined on lines 5–7) via the argument passing mechanism. In Wyvern, each resource module is
an ML-style functor [19], i.e., it is a function that accepts one or more arguments, each of which
is a module instance of a required type, and produces a module instance as a result. In the case
of wordProcessor, the module functor accepts a module instance of type FileIO and returns an
instance of the wordProcessor module.

FileIO is a resource type that gives access to the file system, and since wordProcessor imports
an instance of this type, wordProcessor is a resource module too. To access a resource module of
the FileIO type, wordProcessor needs to have an appropriate capability. The capability must be
passed into the wordProcessor module on its instantiation by either another module or top-level
code.

The wordProcessor module instantiates the logger module (defined on lines 8–12) by, first,
importing the definition of the logger module using the import keyword and then calling the
imported logger functor definition with appropriate arguments to get an instance of the logger

5

module. (Technically, logger(io) is syntactic sugar for logger.apply(io), where apply() is a
default method called on a resource module to instantiate it.) The argument that logger requires
is a module instance of the FileIO type, and by passing in io, wordProcessor gives logger

the capability to use the module instance of the FileIO type it received on instantiation. The
created instance of logger is immediately assigned to a local variable log, which may be used
later in the wordProcessor’s code. Note that wordProcessor imports a module instance of the
FileIO type, but it instantiates, i.e., creates a local instance of, the logger module. Generally,
any resource module can instantiate other resource modules from its initialization block and even
provide them with access to resource modules to which it itself has access. Since logger is a
resource module, instantiating it creates a capability for it, which, in this case, belongs to the
wordProcessor module.

Alternatively, if wordProcessor did not want to provide logger access to the file system,
wordProcessor could create and pass in a dummy module of type FileIO as follows:
module def wordProcessor(io : FileIO) : WordProcessor
import logger
var dio : FileIO = dummyIO
var log : Logger = logger(dio)
...

This would disallow the logger module from having any access to the file system.
To run the program, the top-level code is as follows:

platform java
import fileIO
import wordProcessor
let io = fileIO(java) in
let wp = wordProcessor(io) in ...

First, the back end to be used is specified using the platform keyword. This keyword can appear
only on the top level and is used to create a resource module instance representing the back-end
implementation. Then, the definitions of the fileIO and wordProcessor module functors are
imported, and the two modules are instantiated receiving the arguments they require. The two
newly created module instances are assigned to two variables in two nested let constructs and can
be used in the rest of the code contained in the inner let’s body.

The top-level code exercises high-level control over accesses to resource modules, performing
two important functions. First, it instantiates resource modules, implicitly creating capabilities that
allow using the instantiated modules. Second, it grants module access permissions (conceptually,
in the Newspeak style [2]; syntactically, in the ML-functor style [19]): the instantiated modules
(and implicit capabilities to use them) are passed as arguments to authorized modules.

For brevity, the top level code can be shortened as follows:
require fileIO : FileIO
import wordProcessor
let wp = wordProcessor(fileIO) in ...

Here we use syntactic sugar (the keyword require) for specifying the platform (the default plat-
form is chosen), and importing the functor definition of and instantiating the fileIO module. This

6

1 module listFactory : ListFactory
2 def create() : List
3 ...
4 module def wordCloud(log : Logger) : WordCloud
5 import wyvern : listFactory as list
6 var words : List = list.create()
7 ...

Figure 3: A Wyvern code example demonstrating a pure module and its import.

syntactic sugar can be used for resource modules that import only the resource module representing
the back-end implementation, and is usually used for short programs, e.g., “Hello, World!”

Notably, two modules may share a module instance and potentially use it for communication.
For example, if both extensions prettyChart and wordCloud would like to append to the word
processor’s log, they may share one instance of the logger module:
require fileIO
import wordCloud
import prettyChart
let log = logger(fileIO) in
let wCloud = wordCloud(log) in
let pChart = prettyChart(log) in ...

This makes the language more flexible and simplifies certain implementation tasks.

2.3 Pure Modules
The definition of a pure module is the opposite from the definition of a resource module. Pure
modules are those modules that:

1. do not encompass system resources,
2. do not import any resource module instances,
3. do not contain or transitively reference any mutable state,
4. have no side effects.

For a module to be pure, all of these conditions must be satisfied. The third condition has a caveat:
The prohibition is on whether a module and its functions capture state, not whether they affect it.
Functions defined in a pure module may have side effects on state, but only if the state in question
is passed in as an argument or created within the function itself.

Thus pure modules are harmless from the security perspective, and for more convenience, in
Wyvern, any module can import any pure module.

Figure 3 shows an example of a pure module and how it can be imported. The listFactory

module is the implementation of a list factory and belongs to the standard Wyvern library. It does
not contain mutable state, but only creates new lists, and therefore is a pure module. In Wyvern,
pure modules are not functors, and a module that imports a pure module receives an instance of
the pure module.

The wordCloud module is a third-party extension module that creates a word cloud—an image

7

1 module def wordCloud(log : Logger, list : ListFactory) : WordCloud
2 var words : List = list.create()
3 ...
4 // top level
5 require fileIO
6 import wordCloud
7 import listFactory as list
8 let log = logger(fileIO) in
9 let wCloud = wordCloud(log, list) in ...

Figure 4: A Wyvern code example demonstrating how a pure module can be passed to a module
as an argument.

logger wordCloudfileIOjava

x x

x

Figure 5: Authority distribution between fileIO, logger, and wordCloud. If an arrow goes from
module A to module B, A has authority over B. Crosses on arrows mean that such authority is not
granted. In Wyvern, authority is non-transitive.

composed of words used in a text passage, in which the size of each word indicates its frequency—
and pastes it into a word processor document. The wordCloud module uses a list to store the words
it operates on and therefore imports the listFactory module using the import keyword. Since,
for pure modules, the import statement produces a module instance, it can be immediately assigned
to a local variable using the as keyword. The import of listFactory by wordCloud is invisible
to the module or top-level code that instantiates the wordCloud module.

Wyvern’s module system includes additional features that are not essential to the capability
model, but are useful for software engineering purposes. For example, pure modules can be as-
signed a resource module type, allowing them to be treated as resource modules, e.g., for testing
purposes. Furthermore, we could make the wordCloud module generic in the particular implemen-
tation of lists that it uses by adding a pure module parameter of type ListFactory, as shown in
Figure 4. We do not discuss these features further as they do not impact capability-based reasoning.

2.4 Authority Analysis
As stated in our threat model, we are concerned with the authority granted to third-party extensions,
as well as minimizing access to system resources by all application modules. In this section, we
demonstrate how an architect can verify that the authority of the modules in the word processor
application matches the authority shown in Figure 5. (In Section 4, we will generalize authority to
arbitrary objects and provide a formal definition.)

Since access to resources is mediated by modules, we can represent the authority of a given
module as the set of resource modules it can access. In Figure 5, if an arrow goes from module A to

8

module B, A imports B and has authority over B. If an arrow is crossed, it means that such authority
is not granted. Thus, wordCloud has authority to access logger, which in turn has authority to
access fileIO, which ultimately has access to the java foreign function interface module. We
want to verify that the transitive extension of these authority relationships does not hold, e.g., the
wordCloud module does not have direct authority to do the file I/O operations supported by the
fileIO module. In effect, we are verifying that wordCloud gets only an attenuated capability to do
file I/O: it can perform the logging operations supported by the logger module, but nothing more.
This facilitates a defense in depth strategy: if an attacker controls the wordCloud module and
somehow subverts the logger module to get a fileIO capability, since fileIO itself attenuates
the java foreign function interface capability, the attacker can do file I/O but cannot make arbitrary
system calls supported by the Java standard library.

To verify that authority is property attenuated (thereby mitigating the attack mentioned above
by ensuring that wordCloud cannot get a fileIO capability), we need to check that the fileIO

module is properly encapsulated by the logger module, and that the logger module provides
operations that are restricted appropriately to the intended semantics of logging and cannot be
used to do arbitrary file I/O.

We can check encapsulation by inspecting the interface of wordCloud as well as the interfaces
of the modules it imports: Logger and ListFactory. Since ListFactory is not a resource module,
we do not have to look any further at its interface. (Note that, in contrast to dynamically typed,
capability-safe languages such as E or Newspeak, Wyvern’s type system aids our inspection here.)
We inspect the interface of logger (lines 8–9 in Figure 2) and immediately observe that none of
the types in logger’s interface are resource types. Thus, we verify that logger cannot leak a
reference to the fileIO module that it uses internally—again, using only the type of the logger

module, not its implementation.
Of course, encapsulation by itself is not enough: if logger provided the same operations as

fileIO, it would essentially provide the same authority despite the actual fileIO being encapsu-
lated. To this end, we check that logger attenuates the authority of fileIO and that logger can
only do logging, instead of arbitrary file operations, by looking at the implementation of logger.
Notably, this inspection is localized: we can use interfaces to reason about where capabilities can
reach and then check the code that uses those capabilities to ensure it enforces the proper invariants.
We do not have to inspect any code if we can show that the capability we are reasoning about does
not reach that code. In this case, if we do inspect logger it is easy to see that it invokes open()
and append() on a specific file, which is characteristic of the intended logging functionality.

This process would be more complicated in a language that is not capability-safe or even in a
language that is capability-safe but does not have Wyvern’s static typing support. In a language
that is not statically typed, we could not so quickly exclude the possibility that a capability of in-
terest is hidden in ListFactory, nor could we be sure that we know all of the operations available
on an object unless we enforce that dynamically by imposing a wrapper. In a language that is not
capability-safe, there is much more to worry about: wordCloud could get access to fileIO by
reading a global variable, a reference to a file object could be smuggled in an apparently innocent
variable of type Object and then downcast to type File, or reflection could be used to extract
a fileIO reference from within the logger object. However, these are not possible in Wyvern:

9

p ::“ md platform x i e

md ::“ h i d
h ::“ module x : τ

| module def xpy : τq : τ
i ::“ import x ras ys
d ::“ defmpx : τq : τ “ e

| var f : τ “ x

e ::“ x

| newspxñ dq
| e.mpeq
| e.f
| e.f “ e
| let x “ e in e
| bind x “ e in e

s ::“ resource | pure

Figure 6: Wyvern’s abstract grammar.

Wyvern does not support arbitrary downcasts but only pattern matching in a hierarchy where the
possible child types are known. In addition, Wyvern’s capability-safe reflection mechanism re-
spects type restrictions [41], so that reflection cannot be used to do anything other than invoke the
public methods of logger. Thus, Wyvern’s capability-safe module system along with its static
types greatly simplify reasoning about the authority of modules.

3 Wyvern Syntax and Semantics
Although modules are at the heart of our work, they are not central to Wyvern’s formal system.
Inspired by the Wyvern core work [29], our modules are syntactic sugar on top of an object-
oriented core language and are available for developers’ convenience. We present the Wyvern
formal system in the following order: first, we describe the abstract grammar for writing modules
in Wyvern, then the object-oriented core language syntax and module translation into it, and finally,
Wyvern’s static and dynamic semantics. This precisely defines our design and lays the groundwork
for the definition and proof of authority safety in Section 4.

3.1 Module Syntax
Wyvern’s abstract grammar is shown in Figure 6. A Wyvern program consists of zero or more
modules followed by the top-level code that includes specifying the back end used to run the
program using the platform keyword, zero or more module imports, and an expression e. Each
module consists of a module header h, a list of imports i, and a list of declarations d. Module
headers can be one of two types depending on whether the module is a resource module or a pure
module. If a module is pure, its header consists of the module keyword, a name x that uniquely
identifies the module, and a module type τ . If a module is a resource module, its header consists
of the module keyword, followed by the def keyword, which signifies that it is a functor, a name
x, which uniquely identifies the module functor, a list of functor parameters and their types, and a
functor return type τ .

The module-import syntax is used for importing instances of pure modules or module functors
for resource modules, and consists of the import keyword followed by the module or functor
name x. In the case of importing an instance of a pure module, for convenience, the instance can

10

e ::“ x

| newspxñ dq
| e.mpeq
| e.f
| e.f “ e
| bind x “ e in e
| l
| l.mplqB e

s ::“ resource | pure

d ::“ defmpx : τq : τ “ e
| var f : τ “ x
| var f : τ “ l

τ ::“ tσus
σ ::“ defmpx : τq : τ

| var f : τ
Γ ::“ ∅ | Γ, x : τ

µ ::“ ∅ | µ, l ÞÑ txñ dus
Σ ::“ ∅ | Σ, l : τ

E ::“ r s

| E.mpeq
| l.mpEq
| E.f
| E.f “ e
| l.f “ E
| bind x “ E in e
| l.mplqB E

Figure 7: Syntax of Wyvern’s object-oriented core.

be renamed using the as keyword.
A module can contain declarations of two kinds: method declarations and variable declarations.

Method declarations are specified using the def keyword followed by the method name m, a list
of method parameters and their types, the method’s return type τ , and the method body e. Variable
declarations are specified using the keyword var followed by the variable name f , the variable
type τ , and the value x. We restrict the form of the initialization expression to simplify translation
into the core, but this is relaxed in our implementation.

Wyvern expressions are common for an object-oriented programming language and include: a
variable, the new construct, a method call, a field access, a field assignment, and the let and bind

constructs. The new construct carries a tag s that indicates whether the object being created is pure
or is a resource, which is at the core of our formalization of authority control. It also contains a self
reference x that is similar to a this, but provides more flexible naming, and is used for tracking
the receiver (discussed in more detail later). Finally, the new construct accepts a list of declarations
d. The bind construct is similar to a let with the difference that expressions in its body can access
only the variables defined in it and nothing outside it (one can think of it as a Scala’s spore [23] or
an AmbientTalk’s isolate [39]). The types of variables defined in a let or bind are inferred.

3.2 Core Language Syntax
For the sake of uniformity and to simplify reasoning about authority safety, Wyvern modules are
translated into objects. The abstract grammar that has modules (Figure 6) is translated into the
object-oriented core of Wyvern that does not have modules (Figure 7). Furthermore, in Wyvern’s
object-oriented core:

• Methods may have only one parameter.
• Expressions do not include the let construct.
• The bind construct may have only one variable.
• Expressions and declarations are extended with runtime forms that cannot appear in the

source code of a Wyvern program.
To represent multiparameter methods, the let construct, and multivariable bind in the object-
oriented core, we use a standard encoding (presented in the next section).

11

transpmd platform z i eq “

$

’

’

’

&

’

’

’

%

let x “ transpmdq if md “ md md1

in transpmd1 platform z i eq

bind z “ xconstResObjy transpiq if md “ ∅
in e

transpmodule x : τ i dq “ bind transpiq in newpurepxñ dq

transpmodule def xpy : τq : τ i dq “ newresourcepxñ def applypy : τq : τ
bind y “ y transpiq

in newresourcep ñ dqq

transpiq “

#

y “ x transpi1q if i “ import x as y i1

∅ if i “ ∅

let x “ e in e1 ” newsp ñ def fpx : τq : τ 1 “ e1q.fpeq
bind x “ e in e ” bind x “ pe1, e2, ..., enq in rx.n{xnse

defmpx : τq : τ “ e ” defmpx : pτ1 ˆ τ2 ˆ ...ˆ τnqq : τ “ rx.n{xnse

Figure 8: Modules-to-objects translation rules, and encodings for let, multivariable bind and
multiparameter methods.

Expressions have two runtime forms: a location and a method-call stack frame. The location l
refers to a location in the store µ (on the heap) that holds an object definition added at object cre-
ation. The method-call stack frame models the call stack and method calls on it, while preserving
information about the receiver of the executing method. The expression l.mpl1q B e means that
we are currently executing the method body e of a method m of the receiver l, and object l1 was
passed as an argument.

Since method bodies are evaluated lazily, i.e., only when an object calls the method, declara-
tions have only one runtime form for object fields. Method bodies can never contain method-call
stack frames. An object field in the source code can contain only a variable, which at runtime
becomes a location in the store. Thus, the runtime form for an object field represents that a field f
is referring to a location l.

A set of types of object fields and methods forms an object type, which is tagged as either pure
or resource. We use standard typing contexts Γ for variables and Σ for the store, and to simplify
Wyvern dynamic semantics, an evaluation context E.

3.3 Translation of Modules into Objects
Figure 8 presents modules-to-objects translation rules and encodings that are used in the translation
but not expanded for brevity. A Wyvern program is translated into a sequence of let statements,
where every variable in a let represents a module (the variable name x is the name of a mod-
ule) and the body of the last let in the sequence is a bind expression containing the top-level
code. The variables in this bind are a special constant resource object, representing the back-end
implementation, and the translation of top-level imports. The body of the bind is the top-level
expression.

In essence, modules are translated into objects: pure modules are translated into pure objects

12

and resource modules and translated into resource objects. The exact translation of a Wyvern
module depends on whether the module is a pure module or a resource module. If the module
is pure, it translates into a bind construct, in which the module’s imports become the bind’s
variables, and the module’s declarations are wrapped into a pure object of type τ in the bind’s
body. If the module is a resource module, it is a functor, and it translates into a new resource object
with a single method apply(). The apply() method takes as arguments the functor’s arguments
and, when called, returns a bind expression. The variables in the returned bind consist of variables
that shadow the functor’s arguments (since a bind’s body can access only the variables defined in
the bind and no other, outside variables) and the imports of the resource module under translation.
The body of the bind contains a resource object that encompasses the declarations of the translated
resource module. The module’s declarations are prohibited from referring to the resource object
itself (as it does not exist in the original code), and therefore we generate a fresh name for the self
variable (in the translation, it is marked with an underscore). The apply() method of a functor’s
translation is invoked whenever the functor is invoked.

Importantly, the bind construct plays a significant role in Wyvern’s module access control.
Module imports are translated into variables in a bind construct. Since the body of a bind is
disallowed to access anything outside the variables defined in the bind, a module can receive
a capability to access a resource only via the import mechanism, as an argument to one of its
methods, or as the return value from a method call on an imported module. This substantially
limits the number of possible paths for acquiring module access.

The let construct, a multivariable bind construct, and multiparameter methods are provided
only for developer convenience and are absent from Wyvern’s core syntax; they are encoded in-
stead. The let construct is encoded as a method call, and the multiplicity of variables in the bind

construct and parameters in methods is achieved by bundling variables and parameters together in
a tuple and then accessing them by their indices in the bind and methods’ bodies.

Figure 9 shows an example of applying the translation rules from Figure 8. On the left is a
code snippet as a developer would write it, and on the right is the same code written in Wyvern’s
core syntax without modules (the encodings are not expanded for conciseness, and we use the type
abbreviations supported by our implementation rather than the less-readable structural types in our
formalism). The snippet is a partial program; the logger and fileIO modules are assumed to be
defined elsewhere.

The listFactory and wordProcessor modules are translated into variables defined in two
nested lets. The outer let defines the listFactory module, which is translated into a bind

expression. Since listFactory does not import any modules, the bind has no variables, and the
bind’s body is a new pure object encompassing the listFactory’s create() method.

The inner let defines the wordProcessor module, which is translated into a resource object
containing an apply() method. Similarly to the wordProcessor functor, the apply() method
takes an object of the FileIO type and returns an object of the WordProcessor type. The body
of the apply() method is a bind expression, the variables of which are the apply()’s argument
io as well as the two wordProcessor’s imports, listFactory and logger. The body of the
bind expression has a resource object encompassing wordProcessor’s declarations. To get an
instance of the logger module, the logger’s apply() method is called on it with an appropriate

13

1 module listFactory : ListFactory
2 def create() : List
3 ...
4 module def wordProcessor(io : FileIO)
5 : WordProcessor
6 import wyvern : listFactory as list
7 import logger
8 var log : Logger = logger(io)
9 var exts : List = list.create()

10 ...
11 // top level
12 platform java
13 import fileIO
14 import wordProcessor
15 let io = fileIO(java) in
16 let wp = wordProcessor(io) in ...

1 let listFactory “ bind in newpurepxñ
2 def createpq : List “ ...q in

3 let wordProcessor “ newresourcepxñ
4 def applypio : FileIOq : WordProcessor
5 bind

6 io “ io
7 list “ listFactory
8 logger “ logger
9 in newresourcep ñ

10 var log : Logger “ logger .applypioq
11 var exts : List “ list .createpq
12 ...qq in

13 // top level
14 bind

15 java “ xconstResObj y
16 fileIO “ fileIO
17 wordProcessor “ wordProcessor
18 in

19 let io “ fileIO .applypjavaq in

20 let wp “ wordProcessor .applypioq in ...

Figure 9: A sample modules-to-objects translation.

argument. Since the body of the bind is limited to access only the variables defined in the bind,
wordProcessor has access to only three modules, fileIO, listFactory, and logger, and no
other modules.

The top-level code is translated in the body of the inner let and is represented by a bind

expression. The bind expression has all top-level imports as variable definitions and the top-level
nested let expression in the body.

3.4 Static Semantics
The Wyvern static semantics are presented in Figure 10. The annotation underneath the turnstile—
in the premise of T-NEW and declaration typing rules—is the same as the tag on the new construct
in the syntax and serves to identify objects and their declarations as pure or resource. The anno-
tation on top of the turnstile represents the current or future (in case of object creation) receiver of
the enclosing method.

Tracking the receiver is used in lieu of making object fields private. Both mechanisms enforce
non-transitivity of authority, but receiver tracking is simpler and is already implemented for au-
thority safety. In the T-NEW rule, the receiver for the new object’s declarations is the new object
itself. In T-FIELD and T-ASSIGN, the receiver is the object whose field is being accessed, which
makes object field accesses private to the object to which they belong. For all declaration typing
rules, the receiver is the object to which the declarations belong.

The T-DECLS rule enforces that each declaration of an object is well-typed. DT-DEFPURE

and DT-DEFRESOURCE typecheck pure and resource object methods respectively. A pure method

14

Γ | Σ $e e : τ

x : τ P Γ
Γ | Σ $e x : τ

(T-VAR)
Γ, x : tσus | Σ $

x
s d : σ

Γ | Σ $e newspxñ dq : tσus
(T-NEW)

Γ | Σ $e1

e : τ1 τ1 ă: τ2

Γ | Σ $e1

e : τ2
(T-SUB)

Γ | Σ $e e1 : tσus def mpx : τ2q : τ1 P σ Γ | Σ $e e2 : τ2

Γ | Σ $e e1.mpe2q : τ1
(T-METHOD)

Γ | Σ $e e : tσus var f : τ P σ

Γ | Σ $e e.f : τ
(T-FIELD)

Γ | Σ $e1 e1 : tσus var f : τ P σ Γ | Σ $e1 e2 : τ

Γ | Σ $e1 e1.f “ e2 : τ
(T-ASSIGN)

Γ | Σ $e e1 : τ1 x : τ1 | Σ $
e e2 : τ2

Γ | Σ $e bind x “ e1 in e2 : τ2
(T-BIND) l : τ P Σ

Γ | Σ $e l : τ
(T-LOC)

Γ | Σ $e1

l1 : tσus def mpx : τ2q : τ1 P σ Γ | Σ $e1

l2 : τ2 Γ | Σ $l1 e : τ1

Γ | Σ $e1

l1.mpl2qB e : τ1
(T-STACKFRAME)

Γ | Σ $z
s d : σ Γ | Σ $z

s d : σ

@j, dj P d, σj P σ, Γ | Σ $z
s dj : σj

Γ | Σ $z
s d : σ

(T-DECLS)

Γresource “ tx : tσuresource | x : tσuresource P Γu

Γpure “ ΓzΓresource Γpure, y : τ1 | Σ $
z e : τ2

Γ | Σ $z
pure defmpy : τ1q : τ2 “ e : defmpy : τ1q : τ2

(DT-DEFPURE)

Γ, x : τ1 | Σ $
z e : τ2

Γ | Σ $z
resource defmpx : τ1q : τ2 “ e : defmpx : τ1q : τ2

(DT-DEFRESOURCE)

Γ | Σ $z x : τ

Γ | Σ $z
resource var f : τ “ x : var f : τ

(DT-VARX)

Γ | Σ $z l : τ

Γ | Σ $z
resource var f : τ “ l : var f : τ

(DT-VARL)

µ : Σ

∅ : ∅ (T-STOREEMPTY)
µ : Σ x : tσus | Σ $

x
s d : σ

µ, l ÞÑ txñ dus : Σ, l : tσus
(T-STORE)

Figure 10: Wyvern static semantics

15

should be able to typecheck in a typing environment without any resource variables, except for the
passed argument. The argument may be a resource, but because all other variables in the context are
pure, it cannot be stored (e.g., be assigned to a variable) inside the method body. If all methods in
an object are pure and the object does not have any fields, the object is pure. DT-DEFRESOURCE

has a standard, much less restrictive premise than DT-DEFPURE. If an object has a field, it is
automatically declared a resource, and its typechecking proceeds as expected depending only on
whether the field’s value is a variable (DT-VARX) or a location (DT-VARL). The T-STORE rule
ensures that the store is well-formed and allocates new objects according to their types.

To summarize, an object is a resource if at least one of the following conditions is true:
1. The object contains a field (e.g., the object representing the wordProcessor module).
2. An object’s method definition needs a resource variable to typecheck (e.g., the object repre-

senting logger needs an object of type FileIO to typecheck).
These conditions are checked statically. If neither of them are true, then the object is pure (e.g.,
the object representing the listFactory module).

The subtyping rules are standard, except for the S-STATE rule, which is used for the conversion
between resource objects and pure objects:

tσeupure ă: tσeuresource
(S-STATE)

A pure object is a subtype of a resource object and, thus, can be used in place of a resource object,
but not the other way around. Subtyping rules are presented in full in Appendix A.

3.5 Dynamic Semantics
Figure 11 shows Wyvern’s dynamic semantics. The E-CONGRUENCE rule subsumes all evaluation
rules with non-terminal forms; the rest of the reduction rules deal with terminal forms. The E-NEW

rule requires that the definition of the new object is closed, which is enforced in the progress the-
orem (below) and guarantees that the authority of the new object can be fully determined at its
creation and onwards. To create a new object, a fresh store location is chosen, and the object
definition is assigned to it. In E-METHOD, when the method argument is reduced to a location,
a method-call stack frame is put onto the stack, the caller and the argument are substituted with
corresponding locations in the method body, and the method body starts to execute. An object field
is evaluated to the location that it holds (E-FIELD), and when an object field’s value is reassigned,
the necessary substitutions are made in the store (E-ASSIGN). Similarly to methods, when the
bind’s variable value is fully evaluated, variables in its body are substituted with their correspond-
ing locations, and the bind’s body starts to execute (E-BIND). Finally, in the E-STACKFRAME

rule, when a method body is fully executed, the method-call stack frame is popped from the stack
and the resulting location is returned.

Notably, pure objects always remain pure, i.e., if a location l maps to a pure object in the store
µ, then it always maps to a pure object in the store µ1. This can be proven by a simple induction
on the reduction rules.

16

xe | µy ÝÑ xe1 | µ1y

xe | µy ÝÑ xe1 | µ1y

xEres | µy ÝÑ xEre1s | µ1y
(E-CONGRUENCE)

l R dompµq newspxñ dq is closed

xnewspxñ dq | µy ÝÑ xl | µ, l ÞÑ txñ dusy
(E-NEW)

l1 ÞÑ txñ dus P µ defmpy : τ1q : τ2 “ e P d

xl1.mpl2q | µy ÝÑ xl1.mpl2qB rl2{ysrl1{xse | µy
(E-METHOD)

l ÞÑ txñ dus P µ var f : τ “ l1 P d

xl.f | µy ÝÑ xl1 | µy
(E-FIELD)

l1 ÞÑ txñ dus P µ var f : τ “ l P d

d
1
“ rvar f : τ “ l2{var f : τ “ lsd µ1 “ rl1 ÞÑ txñ d

1
us{l1 ÞÑ txñ dussµ

xl1.f “ l2 | µy ÝÑ xl2 | µ
1y

(E-ASSIGN)

xbind x “ l in e | µy ÝÑ xrl{xse | µy
(E-BIND)

xl.mpl1qB l2 | µy ÝÑ xl2 | µy
(E-STACKFRAME)

Figure 11: Wyvern dynamic semantics

3.6 Type Soundness
The preservation and progress theorems are stated as follows. The proofs for both the theorems
are fairly standard and are in Appendix B.

Theorem (Preservation). If Γ | Σ $e2 e : τ , µ : Σ, and xe | µy ÝÑ xe1 | µ1y, then DΣ1 Ě Σ, µ1 : Σ1,
and Γ | Σ1 $e2 e1 : τ .

Theorem (Progress). If ∅ | Σ $e2 e : τ (i.e., e is a closed, well-typed expression), then either e is
a value (i.e., a location), or @µ such that µ : Σ, De1, µ1 such that xe | µy ÝÑ xe1 | µ1y.

4 Authority Safety
We use the object-oriented core to prove our language authority-safe. Once modules are translated
into objects, objects become the unit of reasoning, and thus our authority-related formalism is
formulated in terms of objects.

In our system, a principal [5] is a resource object. An object—a principal or a pure object—can
directly access a principal if the object has a reference to the principal, either by capturing it on
object creation or acquiring it via a method call or return. The authority of an entity (an object or
an expression) is the set of principals the entity can directly access, and we say that it has authority
over those principals.

17

The authority safety property states that the authority of an object can only increase due to the
creation of a new object, a method call, or a method return. More precisely, the situations in which
authority can increase are:

1. Object creation: If a resource object A creates a new resource object B, then A gains
authority over B.

2. Method call: If a resource object A does not have authority over a resource object B and
receives B as an argument to one of A’s methods, then A gains authority over B (perhaps
only temporarily, while A’s method is being executed).

3. Method return: If a resource object A does not have authority over a resource object B and
B is returned from a method call that A invoked, then A gains authority over B (perhaps only
temporarily, while A’s method is being executed).

It is important to note that these must be the only situations when authority of an object in-
creases (e.g., authority cannot increase due to side effects). The authority safety property is what
assures us that all we need to reason about the authority of an object is to examine actions at its in-
terface: method calls and returns; the case of object creation is usually not very interesting because
the newly created object is born with no more authority than its creator had.

Note that the third case of authority safety is unique to our non-transitive definition of authority.
In the transitive definitions of authority used in prior work, the caller of a method always already
has the same authority as its callee, or more. This also means that if an object such as the logger is
careful not to return a reference to the underlying file being used, then objects that use the logger

will not have authority over that file, which matches our intuition about the role of the logger

object as a gatekeeper.
For a pure object, an authority increase is inconsequential because a pure object cannot store

mutable state. Thus the definition of authority safety focuses on principals—i.e., resource objects.
On a technical level—as discussed in more detail below—we treat a pure object as being part of
whatever resource object uses it.

4.1 Significance of Authority Safety
If a Wyvern program typechecks, it is authority-safe, i.e., authority gains are possible only in the
three cases specified by the authority safety theorem. The type system automatically, at compile
time enforces that a module cannot gain authority over and access to another module by any other
means (e.g., via side effects). This property allows developers to reason effectively about the
authority of program modules.

Consider reasoning about the authority of the wordCloud module. wordCloud is born with only
the authority to access its required resources: due to the typechecking rule for bind and the way
that modules are translated, these are the only resources in scope when wordCloud is instantiated.
To see whether wordCloud gains any authority, the authority safety theorem tells us we need only
inspect its type (WordCloud) and that of its required resources (Logger). Together the types show
over what resources wordCloud can gain authority via method calls and returns (cases 2 and 3 of
the authority safety theorem). For example, it is easy to verify that no object representing fileIO

can go across this interface and thus ensure that all file access done by wordCloud must go through

18

the logger. Case 1 of authority safety allows wordCloud to create objects of its own that act as
principals, but it cannot thereby gain access to system resources it did not already have. Notice that
we can conclude all of this without even looking at the code in the wordCloud module—which is
a useful property if this module is provided by a third party in compiled form and the source code
is not available.

Authority safety also allows developers to reason about global invariants about the use of re-
sources, while only needing to inspect part of the program. For example, to verify that the entire
program only accesses the file system to write to log files, we first inspect the top-level code and
observe that the fileIO resource is only passed to the wordProcessor module. We then inspect
wordProcessor and observe that it passes the fileIO module exclusively into the logger module.
Examining the logger’s code, we see that it enforces the desired invariant of writing only to log
files, and does not provide clients with any means of accessing fileIO functionality. Since author-
ity is non-transitive and neither wordProcessor nor logger expose fileIO via their methods, it
is guaranteed that, besides wordProcessor and logger, no other program module has authority
over fileIO module. It is unnecessary to inspect any other modules, which could make up an
arbitrarily large fraction of the program, because we can rely on the authority safety property to
ensure that those parts of the program can never acquire authority to fileIO.

Thus, our approach enables reasoning that is impossible in conventional languages, such as
Java, without a global analysis that requires access to all code in the program, or use of the Java
security manager (which is difficult to use correctly due to its excessive complexity [4]).

4.2 Formal Definition of Authority Safety
To formalize authority safety, we must first present a formal notion of authority. Our authority def-
inition is given by two sets of rules—the authpq and pointstopq rules. Intuitively, pointstopq cap-
tures references between objects, while authpq is a higher-level relation that builds on pointstopq
to define authority. We describe the rules, give an example of how the rules are applied, state the
authority safety theorem, and finally prove Wyvern authority-safe.

4.2.1 auth() Rules

The authority of an object is determined according to the functions and rules in Figure 12. Intu-
itively, our definition of authority has two parts. The first part, authstore , captures the principals
that an object has a reference to in the heap, either as one of its fields, or as a location captured in
one of its methods (which act as closures in Wyvern). The second part, authstack , is more subtle:
it captures the principals that an object has a reference to in an on-the-fly execution of one of the
object’s methods. More formally:

• authpl, e, µq takes a location l, an expression e, and a store µ, and returns a set of locations
identifying principals that constitute the total authority of an object identified by l when an
expression e is being executed in the context of memory µ.

• authstorepl, µq takes a location l and a store µ and returns a set of locations identifying
principals to which an object identified by l has direct access by virtue of the object’s static

19

authpl, e, µq authstorepl, µq authstack pl, e, µq

authpl, e, µq “ authstorepl, µq Y authstack pl, e, µq
(AUTH-CONFIG)

l ÞÑ txñ dus P µ

authstorepl, µq “ pointstopl, µq Y pointstopd, µq
(AUTH-STORE)

l.mpl1qB e1 R e

authstack pl, e, µq “ ∅
(AUTH-STACK-NOCALL)

l.m1pl2qB E1 R E

authstack pl, Erl.mpl
1qB e1s, µq “ pointstope1, µq Y authstack pl, e

1, µq
(AUTH-STACK)

Figure 12: Authority rules

state in the store µ. In other words, the function determines the object’s authority that can be
statically deduced by examining the code stored in the object.

• authstackpl, e, µq takes a location l, an expression e, and a store µ, and returns a set of loca-
tions identifying principals to which an object identified by l has direct access by virtue of
the execution state of methods of l executing in e in the context of memory µ. That is, the
function determines the object’s authority gained on the stack.

Since, in the process of evaluation, methods may have received new principals as arguments
and method bodies may have been re-written to include new principals, the sets returned by
authstorepl, µq and authstackpl, e, µq may differ.

The AUTH-CONFIG rule defines the relation between the three functions: the total authority of
an object consists of authority it has statically from the code it stores and authority it gained on
execution. The AUTH-STORE rule defines authstorepl, µq. It requires the object identified by l to be
in the store µ and returns two sets of locations identifying principals to which an object identified
by l has direct access via itself and its declarations.

The AUTH-STACK-NOCALL and AUTH-STACK rules define authstackpl, e, µq. The AUTH-STACK-
NOCALL rule is used when there are no method-call stack frames with the receiver l on the stack
(l.mpl1qB e1 R e) and returns an empty set, as in such cases, l gains no authority from executing
e. If the stack contains method-call stack frames where the receiver is l, the AUTH-STACK rule is
used, and the authority is “collected” from the outermost such method-call stack frame (i.e., the
furthest method-call stack frame from the expression that is being evaluated) up to the expression
being evaluated. The condition l.m1pl2qB E 1 R E means that there must be no method-call stack
frames with l as the receiver preceding the method call in consideration, which assures that, as
we go down the stack, we do not miss any method calls with l as a receiver. The authstackpl, e, µq
returns a set of locations identifying the principals that the method body contains and the principals
that l can access on the rest of the stack.

20

pointstope, µq pointstopd, µq pointstopd, µq

pointstopx, µq “ ∅
(POINTSTO-VAR)

pointstopnewspxñ dq, µq “ pointstopd, µq
(POINTSTO-NEW)

pointstope.mpe1q, µq “ pointstope, µq Y pointstope1, µq
(POINTSTO-METHOD)

pointstope.f, µq “ pointstope, µq
(POINTSTO-FIELD)

pointstope.f “ e1, µq “ pointstope, µq Y pointstope1, µq
(POINTSTO-ASSIGN)

pointstopbind x “ e in e1, µq “ pointstope, µq Y pointstope1, µq
(POINTSTO-BIND)

l ÞÑ txñ duresource P µ

pointstopl, µq “ tlu
(POINTSTO-PRINCIPAL)

l ÞÑ txñ dupure P µ

pointstopl, µq “ ∅
(POINTSTO-PURE)

l ÞÑ txñ duresource P µ

pointstopl.mpl1qB e, µq “ tlu
(POINTSTO-CALL-PRINCIPAL)

l ÞÑ txñ dupure P µ

pointstopl.mpl1qB e, µq “ pointstope, µq
(POINTSTO-CALL-PURE)

pointstopd, µq “ Y
Ť

dPd pointstopd, µq
(POINTSTO-DECLS)

pointstopdefmpx : τ1q : τ2 “ e, µq “ pointstope, µq
(POINTSTO-DEF)

pointstopvar f : τ “ x, µq “ ∅
(POINTSTO-VARX)

pointstopvar f : τ “ l, µq “ pointstopl, µq
(POINTSTO-VARL)

Figure 13: pointstopq rules

4.2.2 pointsto() Rules

Authority functions use pointstopq functions (Figure 13). The pointstopq functions take an ex-
pression e, a declaration d, or a list of declarations d and a store µ, and return a set of locations
identifying principals to which the expression, the declaration, or the list of declarations point (i.e.,
have direct access) in the context of memory µ.

A variable does not point to any location (POINTSTO-VAR). A new expression points to lo-
cations to which the new object’s declarations points (POINTSTO-NEW). A method, an object
field and its assignment, as well as a bind construct (POINTSTO-METHOD, POINTSTO-FIELD,

21

POINTSTO-ASSIGN, and POINTSTO-BIND respectively) point to locations in their subexpressions.
Depending on whether a location is identifying a principal or a pure object, it points to either it-
self (POINTSTO-PRINCIPAL) or nothing (POINTSTO-PURE) respectively. Depending on whether
the method caller is a principal or a pure object, a method-call stack frame points to either itself
(POINTSTO-CALL-PRINCIPAL) or a set of locations pointed to by the method body (POINTSTO-
CALL-PURE) respectively.

POINTSTO-PRINCIPAL and POINTSTO-PURE look similar to authstorepl, µq, but differ seman-
tically: in these pointstopq rules, l is treated as an expression, not as a location identifying a
principal, and so the only location l can access is itself.

A list of declarations points to a union of sets of locations to which each declaration in the list
points (POINTSTO-DECLS). A method declaration points to the locations to which the method body
points (POINTSTO-DEF). A field declaration points to locations to which the field’s value points:
if the field’s value is a variable, the field declaration does not point to any location (POINTSTO-
VARX), and if the field’s value is a location, the field declaration points to the same location as the
value location (POINTSTO-VARL).

In our system, authority is non-transitive for principal objects and transitive for pure objects to
which a principal points. As pure objects do not have fields, they cannot point to any resources and
their methods cannot capture resources. Thus, POINTSTO-PRINCIPAL and POINTSTO-PURE do not
involve declarations of the object identified by the location (cf. POINTSTO-NEW). However, an
executing method of a pure object can have resources in it if they were passed as arguments. Since
the pure object cannot own the resource arguments, in this case, the authority is transitive, and the
resource arguments are owned by the resource caller down the stack. Therefore, POINTSTO-CALL-
PRINCIPAL considers only the principal caller, whereas POINTSTO-CALL-PURE allows a principal
caller down the stack to have authority over principals in a pure callee’s method.

4.2.3 Determining Authority of an Object

To demonstrate how authority of an object is determined, consider the following definition of the
prettyChart module:
module def prettyChart(logger : Logger) : WordCloud
def updateLog(entry : String) : Unit
logger.appendToLog(entry)

Assume that the definition of the logger module is as in Figure 2 and that the last line in the above
code snippet is currently being executed, i.e., the method appendToLog() is called on the logger

object. The logger object in the store µ looks like:
llogger ÞÑ t xñ def appendToLogpentry : Stringq : Unit

lio .openp“„{log .txt”q.appendpentryq uresource

To find the authority llogger has statically, i.e., from the code it contains, we apply AUTH-STORE,
POINTSTO-PRINCIPAL, POINTSTO-DEF, POINTSTO-METHOD, POINTSTO-PRINCIPAL, and POINTSTO-
VAR as follows:

authstorepllogger , µq “ pointstopllogger , µq Y pointstopdef appendToLogp...q ..., µq

“ tlloggeru Y pointstopdef appendToLogpentry : Stringq : Unit

22

lio .openp“„{log .txt”q.appendpentryq, µq

“ tlloggeru Y pointstoplio .openp“„{log .txt”q.appendpentryq, µq

“ tllogger , liou

To find the authority llogger gained on the stack, we use AUTH-STACK, AUTH-STACK-NOCALL,
POINTSTO-METHOD, POINTSTO-PRINCIPAL, and POINTSTO-VAR as follows:
authstack pllogger , Erllogger .appendToLogplentryqB lio .openp“„{log .txt”q.appendpentryqs, µq

“ pointstoplio .openp“„{log .txt”q.appendpentryq, µq

Y authstack pllogger , lio .openp“„{log .txt”q.appendpentryq, µq

“ pointstoplio .openp“„{log .txt”q.appendpentryq, µq

“ tliou

Finally, by AUTH-CONFIG, the total authority of llogger when executing the appendToLog() method
is
authpllogger , Erllogger .appendToLogplentryqB lio .openp“„{log .txt”q.appendpentryqs, µq

“ authstorepllogger , µq

Y authstack pllogger , Erllogger .appendToLogplentryqB lio .openp“„{log .txt”q.appendpentryqs, µq

“ tllogger , liou

As expected, llogger has authority over lio and no other resource object.
This way, the authpq and pointstopq rules allow us to determine authority of every object on

every step of execution, which serves as a basis for our formal system and the authority safety
proof.

4.2.4 Authority Safety Theorem

We now state the authority safety theorem formally.

Theorem (Authority Safety). If
1. Γ | Σ $e2 e : τ ,
2. xe | µy ÝÑ xe1 | µ1y,
3. l0 ÞÑ txñ d0uresource P µ

1,
4. l ÞÑ txñ duresource P µ, and
5. authpl, e1, µ1qzauthpl, e, µq Ě tl0u,

then one of the following must be true:
1. Object creation:

(a) e “ Erl.mpl1qB E 1rnewresourcepxñ d0qss and
(b) e1 “ Erl.mpl1qB E 1rl0ss, where
(c) @la.mapl

1
aqB E2 P E 1, la ÞÑ txñ daupure P µ

2. Method call:
(a) e “ Erl.mpl0qs,
(b) e1 “ Erl.mpl0qB rl0{ysrl{xse2s, and

23

(c) y P e2

3. Method return:
(a) e “ Erl.mpl1qB E 1rla.mapl

1
aqB l0ss and

(b) e1 “ Erl.mpl1qB E 1rl0ss, where
(c) @lb.mbpl

1
bqB E2 P E 1, lb ÞÑ txñ dbupure P µ

The formal statement of authority safety makes the informal statement above more precise, in
that:

1. The principal gaining authority in the given evaluation step must be a receiver of a method-
call stack frame on the stack, but not necessarily the immediate receiver for the expression
under evaluation.

2. Receivers of all method-call stack frames between the principal receiver and the expression
under evaluation must be pure.

These points allow us to define authority safety comprehensively, while treating pure objects
as essentially a part of the principal that uses them. Below is a sketch of the proof of the authority
safety theorem; the full proof is presented in Appendix C.4.

Proof Sketch. The proof is by induction on a derivation of xe | µy ÝÑ xe1 | µ1y. We start by con-
sidering E-CONGRUENCE and rely on the following fact (formally stated and proven in Lemma 8
in Appendix C.3):

• If there are only pure principals after the last method-call stack frame where l is the caller,
i.e., l was the last principal caller on the stack, then
authpl, Ere1s, µ1qz authpl, Eres, µq “ authstorepl, µ

1q Y pointstope1, µ1q Y authstack pl, e
1, µ1q

z authstorepl, µq Y pointstope, µq Y authstack pl, e, µq

• Otherwise, if the last method-call stack frame where l is the caller is followed by a method-
call stack frame with a principal caller that is not l, or if the stack has no method-call stack
frames with principal callers, then
authpl, Ere1s, µ1qz authpl, Eres, µq

“ authstorepl, µ
1q Y authstack pl, e

1, µ1q z authstorepl, µq Y authstack pl, e, µq

This implies that the changes in authority when xEres | µy ÝÑ xEre1s | µ1y depend on expres-
sions in xe | µy ÝÑ xe1 | µ1y. Next, we consider all possible terminal-form reduction steps and,
using the authpq and pointstopq rules, calculate the difference in authority of the principals before
and after the reduction step.

The subcases of E-NEW, E-METHOD, and E-STACKFRAME produce the three situations states
in the theorem. The rest of the reduction rules do not cause any authority gains.

5 Implementation
We have implemented the module system and core theory described in this paper as part of the
open source Wyvern compiler and interpreter, available on GitHub: https://github.com/
wyvernlang/wyvern. Although some features of a full-fledged language are missing, we have

24

https://github.com/wyvernlang/wyvern
https://github.com/wyvernlang/wyvern

implemented examples from Figures 2, 3, and 4. The example code runs as part of the wyvern.
tools.tests.Figures test suite and can be found in the tools/src/wyvern/tools/
tests/figs subdirectory of the project. In ongoing development work, we are continuing to
add features and improve the state of the implementation.

6 Limitations
Our threat model makes an important assumption that the code in the trusted code base of a soft-
ware system is trustworthy. We assume that the security and privacy experts who are in charge of
the trusted code base are honest and do not make mistakes. This may not be true in practice, and
thus our approach is susceptible to insider attacks, which are common to systems that reason about
trusted code bases and involve vulnerabilities inside the trusted code base.

For example, an expert responsible for the trusted code base may have a malicious intent and
subvert the software system by exporting the functionality of system resources via wrapper func-
tions. A wrapper function is a function of a module (e.g., logger) that “wraps” the functionality
of a function of another module (e.g., a module of type FileIO), performing the same operations
as the original function, e.g.:
module def logger(io : FileIO) : Logger

def write(fileName : String, text : String)
io.write(fileName, text)

By calling logger.write(), an extension importing logger could write to any file in the file
system, and this would not be exposed in the logger’s type or interface. In a similar fashion,
the malicious logger module may export functionality of an entire file I/O module, potentially
changing function names to obfuscate the exposure. In such a case, an extension that is allowed to
import logger would, in essence, have authority over a module of type FileIO.

Although insider attacks directed at the trusted parts of a system are beyond our reach, our
approach allows developers to formally reason about the isolation of security- and privacy-related
resources in a software system and gives developers a tool to enforce certain isolation properties.
Also, the described limitations can be mitigated either by using more rigorous software devel-
opment practices, e.g., code reviews, for critical parts of the system, or by complementing our
approach with more complex analyses, e.g., by using an effects system or an information flow
analysis.

7 Related Work
Introduced to secure operating system resources [5], capabilities were later generalized to pro-
tect arbitrary services and resources [43], including programming language resources [28]. The
object-capability model, in which capabilities guard more fine-grained programming language
resources—objects—has recently been advocated by Miller [25]. The two pioneering languages
that used object capabilities are E [24] and W7 [32]. Wyvern carries forward this line of work

25

wyvern.tools.tests.Figures
wyvern.tools.tests.Figures
tools/src/wyvern/tools/tests/figs
tools/src/wyvern/tools/tests/figs

by exploring a statically typed, capability-safe language and providing support for modules as
capabilities.

Our approach to modules was primarily inspired by the capability-passing modules design in
Newspeak [2] and its predecessors, such as MzScheme’s Units [13]. As in Newspeak, Wyvern
modules are first-class. However, Wyvern’s static types support reasoning about capabilities based
on module interfaces (Newspeak is dynamically typed), and Wyvern reduces the overhead of ubiq-
uitous module parameterization by allowing pure modules to be directly imported, rather than
passed in as arguments (in Newspeak, all module dependencies must be passed in as arguments).

Several research efforts limited mainstream, non-capability programming languages to turn
them into capability languages. Typically the imposed restrictions disallow mutable global state
(e.g., static fields), tame the original language’s APIs (e.g., reflection API), and prohibit ambient
authority [40]. Sometimes sandboxing is used to facilitate isolation of program components (e.g.,
add-ons). Programming languages in this category include Joe-E [22] (a restricted subset of Java),
Emily [37] (a performant subset of OCaml), CaPerl [17] (a subset of modified Perl), Oz-E [36]
(a proposed variation of Oz), and Google’s Caja [14, 26] (an enforced subset of JavaScript). In
contrast, our work explores a module system with explicit support for capabilities without the
constraint of adapting an existing language, enabling a cleaner design.

SHILL [27] is a secure shell scripting programming language that takes a declarative approach
to access control. In SHILL, capabilities are used to control access to system resources, contracts
are used to specify what capabilities each script requires, and capability-based sandboxes are used
to enforce contracts at runtime. SHILL supports compositional reasoning by tracing authority
through program invocations and, if necessary, attenuating authority on every transition. The au-
thority of the program’s entry point is ambient, but its transition to other parts of the program is
limited via contracts and sandboxes. SHILL does not include mutable state (e.g., variables), which
are part of Wyvern’s model and make Wyvern’s notion of authority safety more interesting; nor
does SHILL include a module system.

Maffeis et al. [20] formalized the notions of capability and authority safety and proved that ca-
pability safety implies authority safety, which in turn implies resource isolation. They showed that
these semantic guarantees hold in a Caja-based subset of JavaScript and other object-capability
languages. Maffeis et al.’s formal system defines authority topologically (objects are represented
as nodes in a graph, and a path between two nodes implies that the source node can access the des-
tination node) and thus transitive. In contrast, our formal definition of authority is non-transitive,
enabling the important forms of reasoning discussed in Section 4.1.

Devriese et al. [6] presented an alternative formalization of capability safety that is based on
logical relations. They argue that formalizations like Maffeis et al.’s [20] are too syntactic and
the topological definition of authority is insufficient to characterize capability safety as it leads
to over-approximation of authority. Our non-transitive definition of authority is similarly more
precise than prior, transitive topological definitions. However, our focus is on a relatively simple
(compared to logical relations) type system that provides authority safety with respect to this more
refined notion of authority, along with support for modules as capabilities.

Another line of related work assumes a capability-safe base language and develops logics or
advanced type systems to state and prove properties that are built on capabilities. Drossopoulou

26

et al. analyzed Miller’s mint and purse example [25], rewrote it in Joe-E [8] and Grace [30],
and based on their experience, proposed and refined a specification language to define policies
required in the mint and purse example [9–12]. Also, Dimoulas et al. [7] proposed a way to extend
an underlying capability-safe language with declarative access control and integrity policies for
capabilities, and proved that their system can soundly enforce the declarative policies. Dimoulas
et al.’s formalization, like that of Maffeis et al. but unlike ours, formalizes authority transitively.

8 Conclusion
We presented a module system design that allows software developers to limit and control the
authority granted to each module in a software system. Our module system supports first-class
modules and uses capabilities to protect access to security- and privacy-related resource modules.
It simplifies the reasoning for determining the authority of a module down to examining the mod-
ule’s interface, the module’s imports, and the interfaces of the modules it imports, making security
auditing more practical. Furthermore, unlike previous module systems (cf. Newspeak) that put sig-
nificant overhead on developers by requiring all modules to be fully parameterized, in the Wyvern
module system, parameterization is necessary only for resource modules, and the number of non-
resource-module imports is unlimited. Our work also advances theoretical models of capabilities
by modeling authority in a non-transitive way, which allows for attenuating a module’s authority,
such as when a powerful capability (e.g., file I/O) is encapsulated inside an attenuated capability
(e.g., logging). We formally defined what it means for a module system to be authority-safe and
proved that our module system possesses this property.

References
[1] John Boyland, James Noble, and William Retert. Capabilities for Sharing: A Generalisation

of Uniqueness and Read-Only. In European Conference on Object-Oriented Programming,
2001.

[2] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules as Objects in Newspeak. In European Conference on Object-Oriented
Programming, 2010.

[3] Shuo Chen, David Ross, and Yi-Min Wang. An Analysis of Browser Domain-isolation Bugs
and a Light-weight Transparent Defense Mechanism. In Conference on Computer and Com-
munications Security, 2007.

[4] Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and Joshua Sunshine. Evalu-
ating the Flexibility of the Java Sandbox. In Annual Computer Security Applications Confer-
ence, 2015.

[5] Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multiprogrammed Com-
putations. Communications of the ACM, 9(3):143–155, 1966.

27

[6] Dominique Devriese, Frank Piessens, and Lars Birkedal. Reasoning about Object Capabil-
ities with Logical Relations and Effect Parametricity. In European Symposium on Security
and Privacy, 2016.

[7] Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. Declarative Policies
for Capability Control. In Computer Security Foundations Symposium, 2014.

[8] Sophia Drossopoulou and James Noble. The Need for Capability Policies. In Workshop on
Formal Techniques for Java-like Programs, 2013.

[9] Sophia Drossopoulou and James Noble. How to Break the Bank: Semantics of Capability
Policies. In Integrated Formal Methods, 2014.

[10] Sophia Drossopoulou and James Noble. Towards Capability Policy Specification and Verifi-
cation. Technical report, Victoria University of Wellington, 2014.

[11] Sophia Drossopoulou, James Noble, and Mark S. Miller. Swapsies on the Internet: First Steps
Towards Reasoning About Risk and Trust in an Open World. In Workshop on Programming
Languages and Analysis for Security, 2015.

[12] Sophia Drossopoulou, James Noble, Toby Murray, and Mark S. Miller. Reasoning about Risk
and Trust in an Open World. Technical report, Victoria University of Wellington, 2015.

[13] Matthew Flatt and Matthias Felleisen. Units: Cool Modules for HOT Languages. In Pro-
gramming Language Design and Implementation, 1998.

[14] Google, Inc. Caja. https://code.google.com/p/google-caja/.

[15] Michael Homer, Kim B. Bruce, James Noble, and Andrew P. Black. Modules As Gradually-
typed Objects. In Workshop on Dynamic Languages and Applications, 2013.

[16] Darya Kurilova, Alex Potanin, and Jonathan Aldrich. Modules in Wyvern: Advanced Control
over Security and Privacy. In Symposium and Bootcamp on the Science of Security, 2016.

[17] Ben Laurie. Safer Scripting Through Precompilation. In Security Protocols, 2007.

[18] Michael Maass. A Theory and Tools for Applying Sandboxes Effectively. PhD thesis, Carnegie
Mellon University, 2016.

[19] David MacQueen. Modules for Standard ML. In ACM Symposium on LISP and Functional
Programming, 1984.

[20] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object Capabilities and Isolation of Un-
trusted Web Applications. In IEEE Symposium on Security and Privacy, 2010.

[21] Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. A Capability-Based
Module System for Authority Control. In European Conference on Object-Oriented Pro-
gramming, 2017.

28

https://code.google.com/p/google-caja/

[22] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A Security-Oriented Subset of Java.
In Network and Distributed System Security Symposium, 2010.

[23] Heather Miller, Philipp Haller, and Martin Odersky. Spores: A Type-Based Foundation for
Closures in the Age of Concurrency and Distribution. In European Conference on Object-
Oriented Programming, 2014.

[24] Mark S. Miller. The E Language. http://erights.org/elang/.

[25] Mark S. Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, 2006.

[26] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja: Safe Active
Content in Sanitized JavaScript. Technical report, Google, Inc., 2008.

[27] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. SHILL: A Secure Shell
Scripting Language. In USENIX Symposium on Operating Systems Design and Implementa-
tion, 2014.

[28] James H. Morris, Jr. Protection in Programming Languages. Communications of the ACM,
16(1):15–21, 1973.

[29] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, and Jonathan
Aldrich. Wyvern: A Simple, Typed, and Pure Object-Oriented Language. In Workshop on
Mechanisms for Specialization, Generalization and Inheritance, 2013.

[30] James Noble and Sophia Drossopoulou. Rationally Reconstructing the Escrow Example. In
Workshop on Formal Techniques for Java-like Programs, 2014.

[31] Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp
Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel
Schinz, Erik Stenman, and Matthias Zenger. Scala Language Specification. http:
//scala-lang.org/files/archive/spec/2.11/. Last accessed: May 2017.

[32] Jonathan A. Rees. A Security Kernel Based on the Lambda-Calculus. Technical report,
Massachusetts Institute of Technology, 1996.

[33] John M. Rushby. Design and Verification of Secure Systems. In Symposium on Operating
Systems Principles, 1981.

[34] Jerome H. Saltzer. Protection and the Control of Information Sharing in Multics. Communi-
cations of the ACM, 17(7):388–402, 1974.

[35] Z. Cliffe Schreuders, Tanya Mcgill, and Christian Payne. The State of the Art of Application
Restrictions and Sandboxes: A Survey of Application-oriented Access Controls and Their
Shortfalls. Computers and Security, 32:219–241, 2013.

29

http://erights.org/elang/
http://scala-lang.org/files/archive/spec/2.11/
http://scala-lang.org/files/archive/spec/2.11/

[36] Fred Spiessens and Peter Van Roy. The Oz-E Project: Design Guidelines for a Secure Multi-
paradigm Programming Language. In Multiparadigm Programming in Mozart/Oz, 2005.

[37] Marc Stiegler. Emily: A High Performance Language for Enabling Secure Cooperation. In
International Conference on Creating, Connecting and Collaborating through Computing,
2007.

[38] Mike Ter Louw, Prithvi Bisht, and V Venkatakrishnan. Analysis of Hypertext Isolation Tech-
niques for XSS Prevention. Web 2.0 Security and Privacy, 2008.

[39] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: Programming Respon-
sive Mobile Peer-to-peer Applications with Actors. Computer Languages, Systems and Struc-
tures, 40(34):112–136, 2014.

[40] David Wagner and Dean Tribble. A Security Analysis of the Combex DarpaBrowser Ar-
chitecture. http://combex.com/papers/darpa-review/security-review.
pdf, March 2002.

[41] Esther Wang and Jonathan Aldrich. Capability Safe Reflection for the Wyvern Language. In
Workshop on Meta-Programming Techniques and Reflection, 2016.

[42] Robert N. M. Watson. Exploiting Concurrency Vulnerabilities in System Call Wrappers. In
USENIX Workshop on Offensive Technologies, 2007.

[43] William A. Wulf, Ellis S. Cohen, William M. Corwin, Anita K. Jones, Roy Levin, C. Pierson,
and Fred J. Pollack. HYDRA: The Kernel of a Multiprocessor Operating System. Commu-
nications of the ACM, 17(6):337–345, 1974.

30

http://combex.com/papers/darpa-review/security-review.pdf
http://combex.com/papers/darpa-review/security-review.pdf

A Subtyping Rules
τ ă: τ 1

τ ă: τ (S-REFL1)
tσjP1..n

j us is a permutation of tσ
1jP1..n
j us n ě 0

tσjP1..n
j us ă: tσ1jP1..nj us

(S-PERM)

n, k ě 0

tσjP1..n`k
j us ă: tσjP1..n

j us

(S-WIDTH)
@j, σj ă: σ1j n ě 0

tσjP1..n
j us ă: tσ1jP1..nj us

(S-DEPTH)

tσupure ă: tσuresource
(S-STATE)

σ ă: σ1

σ ă: σ (S-REFL2)
τ 11 ă: τ1 τ2 ă: τ 12

defmpx : τ1q : τ2 ă: defmpx : τ 11q : τ 12
(S-DEF)

B Preservation and Progress Proofs

B.1 Preservation
Lemma 1 (Preservation of types under substitution). If Γ, z : τ 1 | Σ $e2 e : τ and Γ | Σ $e2 e1 : τ 1,
then Γ | Σ $e2 re1{zse : τ . Furthermore, if Γ, z : τ 1 | Σ $x1

s d : σ and Γ | Σ $x1 e1 : τ 1, then
Γ | Σ $x1

s re
1{zsd : σ.

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ 1 | Σ $e2 e : τ and
Γ, z : τ 1 | Σ $x1

s d : σ. For a given derivation, we proceed by cases on the final typing rule used in
the proof:

Case T-VAR: e “ x, and by inversion on T-VAR, we get x : τ P pΓ, z : τ 1q. There are two sub-
cases to consider, depending on whether x is z or another variable. If x “ z, then re1{zsx “ e1. The
required result is then Γ | Σ $e2 e1 : τ 1, which is among the assumptions of the lemma. Otherwise,
re1{zsx “ x, and the desired result is immediate.

Case T-NEW: e “ newspxñ dq, and by inversion on T-NEW, we get Γ, x : tσus | Σ $
x
s d : σ. By

the induction hypothesis, x : tσus | Σ $
x
s re

1{zsd : σ. Then, by T-NEW,
Γ | Σ $e2 newspxñ re1{zsdq : tσus, i.e., Γ | Σ $e2 re1{zspnewspxñ dqq : tσus.

Case T-METHOD: e “ e1.mpe2q, and by inversion on T-METHOD, we get
Γ, z : τ 1 | Σ $e2 e1 : tσus; def mpx : τ2q : τ1 P σ; and Γ, z : τ 1 | Σ $e2 e2 : τ2. By the in-
duction hypothesis, Γ | Σ $e2 re1{zse1 : tσus and Γ | Σ $e2 re1{zse2 : τ2. Then, by T-METHOD,
Γ | Σ $e2 re1{zse1.mpre

1{zse2q : τ1, i.e., Γ | Σ $e2 re1{zspe1.mpe2qq : τ1.

31

Case T-FIELD: e “ e1.f , and by inversion on T-FIELD, we get Γ, z : τ 1 | Σ $e1 e1 : tσus and
var f : τ P σ. By the induction hypothesis, Γ | Σ $e1 re1{zse1 : tσus. Then, by T-FIELD,
Γ | Σ $e1 pre1{zse1q.f : τ , i.e., Γ | Σ $e1 re1{zspe1.fq : τ .

Case T-ASSIGN: e “ pe1.f “ e2q, and by inversion on T-ASSIGN, we get
Γ, z : τ 1 | Σ $e1 e1 : tσus; var f : τ P σ, and Γ, z : τ 1 | Σ $e1 e2 : τ . By the induction hypothe-
sis, Γ | Σ $e1 re1{zse1 : tσus and Γ | Σ $e1 re1{zse2 : τ . Then, by T-ASSIGN,
Γ | Σ $e1 re1{zse1.f “ re

1{zse2 : τ , i.e., Γ | Σ $e1 re1{zspe1.f “ e2q : τ .

Case T-BIND: e “ bind x “ e1 in e2 : τ2, and re1{zspbind x “ e1 in e2q “
bind x “ re1{zse1 in e2. By inversion on T-BIND, we get Γ, z : τ 1 | Σ $e2 e1 : τ1, and by
the IH, Γ | Σ $e2 re1{zse1 : τ1. Then, by T-BIND, Γ | Σ $e2 bind x “ re1{zse1 in e2 : τ2, i.e.,
Γ | Σ $e2 re1{zspbind x “ e1 in e2q : τ2.

Case T-LOC: e “ l, re1{zsl “ l, and the desired result is immediate.

Case T-STACKFRAME: e “ l1.mpl2qB e1, and by inversion on T-STACKFRAME, we get
Γ, z : τ 1 | Σ $e2 l1 : tσus; defmpx : τ2q : τ1 P σ; Γ, z : τ 1 | Σ $e2 l2 : τ2; and
Γ, l2 : τ2, z : τ 1 | Σ $l1 e1 : τ1. Locations are not affected by the substitution, and by the induction
hypothesis, Γ, l2 : τ2 | Σ $

e2 re1{zse1 : τ1. Then, by T-STACKFRAME,
Γ | Σ $e2 l1.mpl2qB re1{zse1 : τ1, i.e., Γ | Σ $e2 re1{zspl1.mpl2qB e1q : τ1.

Case T-SUB: e “ e1, and by inversion on T-SUB, we get Γ, z : τ 1 | Σ $e2 e1 : τ1 and τ1 ă: τ2. By
the induction hypothesis, Γ | Σ $e2 re1{zse1 : τ1 and τ1 ă: τ2. Then, by T-SUB,
Γ | Σ $e2 re1{zse1 : τ2.

Case DT-DECLS: By inversion on T-DECLS, we get @j, dj P d, σj P σ, Γ, z : τ 1 | Σ $x1

s dj : σj .
By the IH, @j, dj P d, σj P σ, Γ | Σ $x1

s re
1{zsdj : σj . Then, by T-DECLS, Γ | Σ $x1

s re
1{zsd : σ.

Case DT-DEFPURE: d “ def mpy : τ1q : τ2 “ e. There are two subcases depending on whether
z is in Γpure or not.

Subcase z P Γpure: By inversion on DT-DEFPURE, we get
Γresource “ tx : tσuresource | x : tσuresource P Γu; Γpure “ ΓzΓresource; and
Γpure, y : τ1 | Σ $

x1 e : τ2, and the desired result is immediate.
Subcase z R Γpure: By inversion on DT-DEFPURE, we get

Γresource “ tx : tσuresource | x : tσuresource P Γu; Γpure “ ΓzΓresource; and
Γpure, y : τ1, z : τ 1 | Σ $x1 e : τ2. By the IH, Γpure, y : τ1 | Σ $

x1 re1{zse : τ2. Then, by
DT-DEFPURE, Γ | Σ $x1

pure defmpy : τ1q : τ2 “ re
1{zse : defmpy : τ1q : τ2, i.e.,

Γ | Σ $x1

pure re
1{zspdefmpy : τ1q : τ2 “ eq : defmpy : τ1q : τ2.

Thus, in both cases, the type of d is preserved under substitution.

Case DT-DEFRESOURCE: d “ defmpx : τ1q : τ2 “ e, and by inversion on DT-DEFRESOURCE,

32

we get Γ, x : τ1, z : τ 1 | Σ $x1 e : τ2. By the induction hypothesis, Γ, x : τ1 | Σ $
x1 re1{zse : τ2.

Then, by DT-DEFRESOURCE, Γ | Σ $x1

resource defmpx : τ1q : τ2 “ re
1{zse : defmpx : τ1q : τ2,

i.e., Γ | Σ $x1

resource re
1{zspdefmpx : τ1q : τ2 “ eq : defmpx : τ1q : τ2.

Case DT-VARX: d “ var f : τ “ x, and by inversion on DT-VARX, we get Γ, z : τ 1 | Σ $x1 x : τ .
There are two subcases to consider, depending on whether x is z or another variable. If x “ z, then
Γ, z : τ 1 | Σ $x1 re1{zsx : τ yields Γ, z : τ 1 | Σ $x1 e1 : τ and τ “ τ 1. Thus,
Γ | Σ $x1

resource var f : τ “ e1 : var f : τ as required. If x “ z, then Γ, z : τ 1 | Σ $x1 re1{zsx : τ
yields Γ, z : τ 1 | Σ $x1 x : τ , and the desired result is immediate.

Case DT-VARL: d “ var f : τ “ l, i.e., the field is resolved to a location l. This is not affected
by the substitution, and the desired result is immediate.

Thus, substituting terms in a well-typed expression preserves the typing.

Theorem 1 (Preservation). If Γ | Σ $e2 e : τ , µ : Σ, and xe | µy ÝÑ xe1 | µ1y, then DΣ1 Ě Σ,
µ1 : Σ1, and Γ | Σ1 $e2 e1 : τ .

Proof. The proof is by induction on a derivation of Γ | Σ $e2 e : τ . At each step of the induction,
we assume that the desired property holds for all subderivations and proceed by case analysis on
the final rule in the derivation. Since we assumed xe | µy ÝÑ xe1 | µ1y and there are no evaluation
rules corresponding to variables or locations, the cases when e is a variable (T-VAR) or a location
(T-LOC) cannot arise. For the other cases, we argue as follows:

Case T-NEW: e “ newspx ñ dq, and by inversion on T-NEW, we get Γ, x : tσus | Σ $x
s d : σ.

The store changes from µ to µ1 “ µ, l ÞÑ txñ dus, i.e., the new store is the old store augmented
with a new mapping for the location l, which was not in the old store. From the premise of the
theorem, we know that µ : Σ, and by the induction hypothesis, all expressions of Γ are properly
allocated in Σ. Then, by T-STORE, we have µ, l ÞÑ tx ñ dus : Σ, l : tσus, which implies that
Σ1 “ Σ, l : tσus. Finally, by T-LOC, Γ | Σ $ l : tσus. Thus, the right-hand side is well typed.

Case T-METHOD: e “ e1.mpe2q, and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either xe1 | µy ÝÑ xe11 | µ
1y or e1 is a value and

xe2 | µy ÝÑ xe12 | µ
1y. Then, the result follows from the induction hypothesis and T-METHOD.

Subcase E-METHOD: In this case, both e1 and e2 are values, namely locations l1 and l2 respec-
tively. Then, by inversion on T-METHOD, we get that Γ | Σ $e2 l1 : tσus; def mpx : τ2q : τ1 P σ;
and Γ | Σ $e2 l2 : τ2. The store µ does not change, and since T-STORE has been applied through-
out, the store is well typed, and thus, Γ | Σ $e2

s def mpl2 : τ2q : τ1 “ e : def mpx : τ2q : τ1.
Then, by inversion on both DT-DEFPURE and DT-DEFRESOURCE, we know that
Γ, l2 : τ2 | Σ $

e2 e : τ1, and by T-STACKFRAME, we have Γ, l2 : τ2 | Σ $e2 l1.mpl2q B e : τ1.
Finally, by the preservation under subsumption lemma, substituting locations for variables in e
preserve its type, and therefore, the right-hand side is well typed.

33

Case T-FIELD: e “ e1.f , and by the definition of the evaluation relation, there are two subcases:
Subcase E-CONGRUENCE: In this case, xe1 | µy ÝÑ xe11 | µ

1y, and the result follows from the
induction hypothesis and T-FIELD.

Subcase E-FIELD: In this case, e1 is a value, i.e., a location l. Then, by inversion on T-FIELD,
we have Γ | Σ $l l : tσus and var f : τ P σ. The store µ does not change, and since T-STORE has
been applied throughout, the store is well typed, and thus, Γ | Σ $l

s var f : τ “ l1 : var f : τ .
Then, by inversion on DT-VARL, we know that Γ | Σ $l l1 : τ , and the right-hand side is well
typed.

Case T-ASSIGN: e “ pe1.f “ e2q, and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either xe1 | µy ÝÑ xe11 | µ
1y or e1 is a value and

xe2 | µy ÝÑ xe12 | µ
1y. Then, the result follows from the induction hypothesis and T-ASSIGN.

Subcase E-ASSIGN: In this case, both e1 and e2 are values, namely locations l1 and l2 respec-
tively. Then, by inversion on T-ASSIGN, we get that Γ | Σ $l1 l1 : tσus, var f : τ P σ, and
Γ | Σ $l1 l2 : τ . The store changes as follows: µ1 “ rl1 ÞÑ tx ñ d

1
us{l1 ÞÑ tx ñ dussµ, where

d
1
“ rvar f : τ “ l2{var f : τ “ lsd. However, since T-STORE has been applied throughout and

the substituted location has the type expected by T-STORE, the new store is well typed (as well as
the old store), and thus, Γ | Σ $l1

s var f : τ “ l2 : var f : τ . Then, by inversion on DT-VARL,
we know that Γ | Σ $l1 l2 : τ , and the right-hand side is well typed.

Case T-BIND: e “ bind x “ e1 in e2, and by the definition of the evaluation relation, there are
two subcases:

Subcase E-CONGRUENCE: In this case, xe1 | µy ÝÑ xe11 | µ
1y, and the result follows from the

induction hypothesis and T-BIND.
Subcase E-BIND: In this case, e1 are values, namely locations l1, and the result follows directly

from the inversion on T-BIND and the preservation of types under substitution lemma.

Case T-STACKFRAME: e “ l.mpl1qB e2, and by the definition of the evaluation relation, there are
two subcases:

Subcase E-CONGRUENCE: In this case, xe | µy ÝÑ xe1 | µ1y, and the result follows from the
induction hypothesis and T-STACKFRAME.

Subcase E-STACKFRAME: In this case, e2 is a value, i.e., a location l2, and the result follows
directly from the inversion on T-STACKFRAME.

Case T-SUB: The result follows directly from the induction hypothesis.

Thus, the program written in this language is always well typed.

B.2 Progress
Theorem 2 (Progress). If ∅ | Σ $e2 e : τ (i.e., e is a closed, well-typed expression), then either

34

1. e is a value (i.e., a location) or
2. @µ such that µ : Σ, De1, µ1 such that xe | µy ÝÑ xe1 | µ1y.

Proof. The proof is by induction on the derivation of Γ | Σ $e2 e : τ , with a case analysis on the
last typing rule used. The case when e is a variable (T-VAR) cannot occur, and the case when e is
a location (T-LOC) is immediate, since in that case e is a value. For the other cases, we argue as
follows:

Case T-NEW: e “ newspx ñ dq, and by E-NEW, e can make a step of evaluation if the new

expression is closed and there is a location available that is not in the current store µ. From the
premise of the theorem, we know that the expression is closed, and there are infinitely many avail-
able new locations, and therefore, e indeed can take a step and become a value (i.e., a location l).
Then, the new store µ1 is µ, l ÞÑ txñ dus, and all the declarations in d are mapped in the new store.

Case T-METHOD: e “ e1.mpe2q, and by the induction hypothesis applied to Γ | Σ $e2 e1 : tσus,
either e1 is a value or else it can make a step of evaluation, and, similarly, by the induction hypoth-
esis applied to Γ | Σ $e2 e2 : τ2, either e2 is a value or else it can make a step of evaluation. Then,
there are two subcases:

Subcase xe1 | µy ÝÑ xe11 | µ
1y or e1 is a value and xe2 | µy ÝÑ xe12 | µ

1y: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take a
step.

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and l2 re-
spectively, then by inversion on T-METHOD, we have Γ | Σ $e2 l1 : tσus and
def mpy : τ2q : τ1 P σ. By inversion on T-LOC, we know that the store contains an appropri-
ate mapping for the location l1, and since T-STORE has been applied throughout, the store is well
typed and l1 ÞÑ tx ñ dus P µ with def mpy : τ1q : τ2 “ e P d. Therefore, the rule E-METHOD

applies to e, e can take a step, and µ1 “ µ.

Case T-FIELD: e “ e1.f , and by the induction hypothesis, either e1 can make a step of evaluation
or it is a value. Then, there are two subcases:

Subcase xe1 | µy ÝÑ xe11 | µ
1y: If e1 can take a step, then rule E-CONGRUENCE applies to e,

and e can take a step.
Subcase e1 is a value: If e1 is a value, i.e., a location l, then by inversion on T-FIELD, we have

Γ | Σ $l l : tσus and var f : τ P σ. By inversion on T-LOC, we know that the store contains an
appropriate mapping for the location l, and since T-STORE has been applied throughout, the store
is well typed and l ÞÑ txñ dus P µ with var f : τ “ l1 P d. Therefore, the rule E-FIELD applies
to e, e can take a step, and µ1 “ µ.

Case T-ASSIGN: e “ pe1.f “ e2q, and by the induction hypothesis, either e1 is a value or else it
can make a step of evaluation, and likewise e2. Then, there are two subcases:

Subcase xe1 | µy ÝÑ xe11 | µ
1y or e1 is a value and xe2 | µy ÝÑ xe12 | µ

1y: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take a
step.

35

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and l2 re-
spectively, then by inversion on T-ASSIGN, we have Γ | Σ $l1 l1 : tσus, var f : τ P σ, and
Γ | Σ $l1 l2 : τ . By inversion on T-LOC, we know that the store contains an appropriate mapping
for the locations l1 and l2, and since T-STORE has been applied throughout, the store is well typed
and l1 ÞÑ txñ dus P µ with var f : τ “ l P d. A new well-typed store can be created as follows:
µ1 “ rl1 ÞÑ tx ñ d

1
us{l1 ÞÑ tx ñ dussµ, where d

1
“ rvar f : τ “ l2{var f : τ “ lsd. Then, the

rule E-ASSIGN applies to e, and e can take a step.

Case T-BIND: e “ bind x “ e1 in e2, and by the induction hypothesis, either e1 can make a step
of evaluation or it is a value. Then, there are two subcases:

Subcase xe1 | µy ÝÑ xe11 | µ
1y: If e1 can take a step, then rule E-CONGRUENCE applies to e,

and e can take a step.
Subcase e1 is a value: If e1 are values, i.e., locations l1, the rule E-BIND applies, and e can

take a step.

Case T-STACKFRAME: e “ l.mpl1q B e2, and by the induction hypothesis, either e2 can make a
step of evaluation or it is a value. Then, there are two subcases:

Subcase xe2 | µy ÝÑ xe12 | µ
1y: If e2 can take a step, then rule E-CONGRUENCE applies to e,

and e can take a step.
Subcase e2 is a value: If e2 is a value, i.e., a location l2, the rule E-STACKFRAME applies, and

e can take a step.

Case T-SUB: The result follows directly from the induction hypothesis.

Thus, the program written in this language never gets stuck.

C Authority Safety

C.1 Authority-Related Properties
Property 3. The runtime expression forms l and l.mplq B e do not appear in the program source
code.

Proof. This property is enforced by the syntactic check of the source code of a program.

Property 4. Method-call stack frames (l.mplq B e) do not appear in method definitions and the
bodies of the bind constructs.

Proof. The proof is by induction over execution steps.
Base case: By Property 3, there are no method-call stack frames in the program source code.
Inductive case: The absence of method-call stack frames in the method definitions and the bodies
of the bind constructs is maintained by all evaluation rules. Cases of E-METHOD and E-BIND

involve substitution; however, substituted expression is a value (location), and thus, substitution
preserves the property.

36

Property 5. Object fields are private to the objects they belong to and access to them can occur
only inside methods of the objects to which they belong.

Proof. The typing rules contain information about what object is (or will be, in case of an object
creation) the receiver of the enclosing method. Then, from the T-FIELD and T-ASSIGN rules, it
can be seen that, for a field access to occur, the receiver must be the object to which the field
belongs.

C.2 subexps() Rules
subexpspEq

subexpspr sq “ ∅ (SUBEXPS-EMPTY)

subexpspE.mpeqq “ teu Y subexpspEq (SUBEXPS-METHOD1)

subexpspl.mpEqq “ tlu Y subexpspEq (SUBEXPS-METHOD2)

subexpspE.fq “ subexpspEq (SUBEXPS-FIELD)

subexpspE.f “ eq “ teu Y subexpspEq (SUBEXPS-ASSIGN1)

subexpspl.f “ Eq “ tlu Y subexpspEq (SUBEXPS-ASSIGN2)

subexpspbind x “ E in eq “ teu Y subexpspEq (SUBEXPS-BIND)

subexpspl.mpl1qB Eq “ tl, l1u Y subexpspEq (SUBEXPS-STACKFRAME)

C.3 Lemmas
Lemma 2. If l.mpl1qB E 1 R E, then

pointstopEres, µq “ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq.

Proof. The proof is by induction on E.
Case E “ r s: Eres “ e

pointstopEres, µq “ pointstope, µq

“ pointstope, µq Y
ď

e1Psubexpspr sq

pointstope1, µq pSUBEXPS-EMPTYq

“ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq

Case E “ E 1.mpe2q: Eres “ E 1res.mpe2q

subexpspEq “ subexpspE 1.mpe2qq “ te2u Y subexpspE 1q pSUBEXPS-METHOD1q r1s
pointstopEres, µq “ pointstopE 1res.mpe2q, µq

37

“ pointstopE 1res, µq Y pointstope2, µq pPOINTSTO-METHODq

“ pointstope, µq Y
ď

e1PsubexpspE1q

pointstope1, µq Y pointstope2, µq pby IH q

“ pointstope, µq Y
ď

e1Pte2uYsubexpspE1q

pointstope1, µq

“ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq pby r1sq

Case E “ l.mpE 1q: Eres “ l.mpE 1resq

subexpspEq “ subexpspl.mpE 1qq “ tlu Y subexpspE 1q pSUBEXPS-METHOD2q r2s
pointstopEres, µq “ pointstopl.mpE 1resq, µq

“ pointstopl, µq Y pointstopE 1res, µq pPOINTSTO-METHODq

“ pointstopl, µq Y pointstope, µq Y
ď

e1PsubexpspE1q

pointstope1, µq pby IH q

“ pointstope, µq Y
ď

e1PtluYsubexpspE1q

pointstope1, µq

“ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq pby r2sq

Case E “ E 1.f : Eres “ E 1res.f

subexpspEq “ subexpspE 1.fq “ subexpspE 1q pSUBEXPS-FIELDq r3s

pointstopEres, µq “ pointstopE 1res.f, µq “ pointstopE 1res, µq pPOINTSTO-FIELDq

“ pointstope, µq Y
ď

e1PsubexpspE1q

pointstope1, µq pby IH q

“ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq pby r3sq

Case E “ pE 1.f “ e2q: Eres “ pE 1res.f “ e2q

subexpspEq “ subexpspE 1.f “ e2q “ te2u Y subexpspE 1q pSUBEXPS-ASSIGN1q r4s
pointstopEres, µq “ pointstopE 1res.f “ e2, µq

“ pointstopE 1res, µq Y pointstope2, µq pPOINTSTO-ASSIGNq

“ pointstope, µq Y
ď

e1PsubexpspE1q

pointstope1, µq Y pointstope2, µq pby IH q

“ pointstope, µq Y
ď

e1Pte2uYsubexpspE1q

pointstope1, µq

“ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq pby r4sq

Case E “ pl.f “ E 1q: Eres “ pl.f “ E 1resq

38

subexpspEq “ subexpspl.f “ E 1q “ tlu Y subexpspE 1q pSUBEXPS-ASSIGN2q r5s
pointstopEres, µq “ pointstopl.f “ E 1res, µq

“ pointstopl, µq Y pointstopE 1res, µq pPOINTSTO-ASSIGNq

“ pointstopl, µq Y pointstope, µq Y
ď

e1PsubexpspE1q

pointstope1, µq pby IH q

“ pointstope, µq Y
ď

e1PtluYsubexpspE1q

pointstope1, µq

“ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq pby r5sq

Case E “ pbind x “ E 1 in e2q: Eres “ pbind x “ E 1res in e2q

subexpspEq “ subexpspbind x “ E 1 in e2q

“ te2u Y subexpspE 1q pSUBEXPS-BINDq r6s

pointstopEres, µq “ pointstopbind x “ E 1res in e2, µq

“ pointstopE 1res, µq Y pointstope2, µq pPOINTSTO-BINDq

“ pointstope, µq Y
ď

e1PsubexpspE1q

pointstope1, µq Y pointstope2, µq pby IH q

“ pointstope, µq Y
ď

e1Pte2uYsubexpspE1q

pointstope1, µq

“ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq pby r6sq

Case E “ l.mpl1qB E 1: This case cannot happen as it contradicts the precondition that
l.mpl1qB E 1 R E.

Thus, for all E, if l.mpl1qB E 1 R E, then

pointstopEres, µq “ pointstope, µq Y
ď

e1PsubexpspEq

pointstope1, µq.

Lemma 3. If
1. for 1 ď i ď k, l.mpl1qB E R Ei [no method-call stack frames in Ei]
2. for 1 ď i ď k, li ÞÑ txñ diupure P µ [callers in all method-call stack frames are pure]

then pointstopEkrlk.mkpl
1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“

k
ď

i“1

ď

e1PsubexpspEiq

pointstope1, µq Y pointstope, µq.

Proof. The proof is by induction on the number of method-call stack frames preceding e on the
stack.

39

Base case: k “ 1
pointstopE1rl1.m1pl

1
1qB es, µq

“
ď

e1PsubexpspE1q

pointstope1, µq Y pointstope, µq pLemma 2, POINTSTO-CALL-PUREq

“

1
ď

i“1

ď

e1PsubexpspEiq

pointstope1, µq Y pointstope, µq

Inductive case: k ą 1
pointstopEkrlk.mkpl

1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“
ď

e1PsubexpspEkq

pointstope1, µq pLemma 2, POINTSTO-CALL-PUREq

Y pointstopEk´1rlk´1.mk´1pl
1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“
ď

e1PsubexpspEkq

pointstope1, µq Y
ď

e1PsubexpspEk´1q

pointstope1, µq

Y pointstopEk´2rlk´2.mk´2pl
1
k´2qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

pLemma 2, POINTSTO-CALL-PUREq

“

k
ď

i“1

ď

e1PsubexpspEiq

pointstope1, µq Y pointstope, µq

ppLemma 2, POINTSTO-CALL-PUREq ˆ pk ´ 2qq

Lemma 4. If
1. for 1 ď i ď k, l.mpl1qB E R Ei [no method-call stack frames in Ei]
2. Dj, such that 1 ď j ď k, lj ÞÑ txñ djuresource P µ

[there is at least one method-call stack frame that has a principal caller]
then pointstopEkrlk.mkpl

1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“

k
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y tlpu,

where 1 ď p ď k and p is the greatest index, such that lp ÞÑ txñ dpuresource P µ.
[lp is the first (furthest from e) principal method caller on the stack]

Proof. The proof is by induction on the number of method-call stack frames preceding e on the
stack.
Base case: k “ 1, and since l1 is the only method-call stack frame, l1 ÞÑ txñ d1uresource P µ and
p “ 1.
pointstopE1rl1.m1pl

1
1qB es, µq

“
ď

e1PsubexpspE1q

pointstope1, µq Y tl1u pLemma 2, POINTSTO-CALL-PRINCIPALq

40

“

1
ď

i“1

ď

e1PsubexpspEiq

pointstope1, µq Y tl1u

Inductive case: k ą 1
pointstopEkrlk.mkpl

1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“
ď

e1PsubexpspEkq

pointstope1, µq pLemma 2, POINTSTO-CALL-PUREq

Y pointstopEk´1rlk´1.mk´1pl
1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“
ď

e1PsubexpspEkq

pointstope1, µq Y
ď

e1PsubexpspEk´1q

pointstope1, µq

Y pointstopEk´2rlk´2.mk´2pl
1
k´2qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

pLemma 2, POINTSTO-CALL-PUREq

“

k
ď

i“p`1

ď

e1PsubexpspEiq

pointstope1, µq

Y pointstopEprlp.mppl
1
pqB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

ppLemma 2, POINTSTO-CALL-PUREq ˆ pk ´ p´ 2qq

“

k
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y tlpu

pLemma 2, POINTSTO-CALL-PRINCIPALq

Lemma 5. If l.mpl1qB E 1 R E, then authstackpl, Eres, µq “ authstackpl, e, µq.

Proof. Depending on whether l.mpl1qB E 1 P e or not, there are two possibilities.
Case l.mpl1qB E 1 P e: e “ E2rl.mpl1qB e1s, where l.mpl1qB E 1 R E2, and
Eres “ E3rl.mpl1qB e1s, where E3 “ ErE2s and l.mpl1qB E 1 R E3.

authstackpl, Eres, µq “ authstackpl, E
3
rl.mpl1qB e1s, µq

“ pointstope1, µq Y authstackpl, e
1, µq pAUTH-STACKq

authstackpl, e, µq “ authstackpl, E
2
rl.mpl1qB e1s, µq

“ pointstope1, µq Y authstackpl, e
1, µq pAUTH-STACKq

Case l.mpl1qB E 1 R e: l.mpl1qB E 1 R Eres.

authstackpl, Eres, µq “ ∅ pAUTH-STACK-NOCALLq

authstackpl, e, µq “ ∅ pAUTH-STACK-NOCALLq

Thus, authstackpl, Eres, µq “ authstackpl, e, µq.

Lemma 6. If

41

1. for 1 ď i ď k, l1.mpl2qB E R Ei [no method-call stack frames in Ei]
2. l ÞÑ txñ duresource P µ [l is a principal]
3. @i, such that li “ l, i P tq1, q2, . . . , qr1u, where 0 ď r1 ď k

[the set of indices of all method-call stack frames where l is the caller; this set can be empty]
4. @i P tq1, q2, . . . , qr1u, if Dj, such that

(a) lj ÞÑ txñ djuresource P µ and [lj is a principal]
(b) @t, such that i ą t ą j and lt ÞÑ txñ dtupure P µ

[all receivers between li and lj are pure]
j P tp1, p2, . . . , pr2u where 0 ď r2 ď r1
[the maximal set of indices of principal callers immediately after method-call stack frames
where l is the caller; this set can be smaller than the one above only by one element; this set
can also be empty; such principals can be l itself]

then
authstackpl, Ekrlk.mkpl

1
kqBEk´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨BE2rl2.m2pl

1
2qBE1rl1.m1pl

1
1qBes . . . s, µq

“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e1PsubexpspEiq
pointstope1, µq if r2 ă r1

Y
Ť

jPtp1,p2,...,pr2u
tlju Y

Ťqr2`1´1

i“1

Ť

e1PsubexpspEiq
pointstope1, µq

Ypointstope, µq Y authstackpl, e, µq

Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e1PsubexpspEiq
pointstope1, µq if r2 “ r1

Y
Ť

jPtp1,p2,...,pr2u
tlju Y authstackpl, e, µq

[If r2 ă r1, then there are only pure callers after the last method-call stack frame where l is the
caller. In other words, l was the last principal caller on the stack.
If r2 “ r1, then the last method-call stack frame where l is the caller is followed by a method-call
stack frame with a principal caller that is not l. If r2 “ r1 “ 0, then there are no method-call stack
frames with principal callers on the stack.
Since the set in 4(b) can include indices of method-call stack frames where the caller is l, the
difference between r1 and r2 is at most 1, i.e., r2 ď r1 ď r2 ` 1.]

Proof. The proof is by induction on the number of method-call stack frames preceding e on the
stack.

Base case: k “ 1. Depending on the values of r1 and r2, there are two possibilities.
Case r2 ă r1: r1 “ 1, r2 “ 0, l1 “ l, q1 “ 1, and Ep1.

authstackpl, E1rl1.m1pl
1
1qB es, µq “ pointstope, µq Y authstackpl, e, µq pAUTH-STACKq

Case r2 “ r1: r1 “ r2 “ 0, l1 ‰ l, and Eq1, p1.

authstackpl, E1rl1.m1pl
1
1qB es, µq “ authstackpl, e, µq pLemma 5q

Inductive case: k ą 1
authstackpl, Ekrlk.mkpl

1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

42

“ authstackpl, lq1 .mq1pl
1
q1
qB Eq1´1rlq1´1.mq1´1pl

1
q1´1

qB ¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pLemma 5q
“ pointstopEq1´1rlq1´1.mq1´1pl

1
q1´1

qB Eq1´2rlq1´2.mq1´2pl
1
q1´2

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

Y authstackpl, Eq1´1rlq1´1.mq1´1pl
1
q1´1

qB Eq1´2rlq1´2.mq1´2pl
1
q1´2

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pAUTH-STACKq

“

q1´1
ď

i“p1

ď

e1PsubexpspEiq

pointstope1, µq Y tlp1u

Y authstackpl, Eq1´1rlq1´1.mq1´1pl
1
q1´1

qB Eq1´2rlq1´2.mq1´2pl
1
q1´2

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pLemma 4q

“

q1´1
ď

i“p1

ď

e1PsubexpspEiq

pointstope1, µq Y tlp1u

Y authstackpl, lq2 .mq2pl
1
q2
qB Eq2´1rlq2´1.mq2´1pl

1
q2´1

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pLemma 5q

“

q1´1
ď

i“p1

ď

e1PsubexpspEiq

pointstope1, µq Y tlp1u

Y pointstopEq2´1rlq2´1.mq2´1pl
1
q2´1

qB Eq2´2rlq2´2.mq2´2pl
1
q2´2

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

Y authstackpl, Eq2´1rlq2´1.mq2´1pl
1
q2´1

qB Eq2´2rlq2´2.mq2´2pl
1
q2´2

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pAUTH-STACKq

“

q1´1
ď

i“p1

ď

e1PsubexpspEiq

pointstope1, µq Y tlp1u Y
q2´1
ď

i“p2

ď

e1PsubexpspEiq

pointstope1, µq Y tlp2u

Y authstackpl, Eq2´1rlq2´1.mq2´1pl
1
q2´1

qB Eq2´2rlq2´2.mq2´2pl
1
q2´2

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pLemma 4q
...

“
ď

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

q´1
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y
ď

jPtp1,p2,...,pr2u

tlju

43

Y authstackpl, Eqr2´1
rlqr2´1.mqr2´1

pl1qr2´1qB ¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

Depending on the values of r1 and r2, there are two possibilities.
Case r2 ă r1: There is no other resource callers after lqr2`1 , i.e.,
@l0.m0pl

1
0q B E3 P Eqr2`1´1rlqr2`1´1.mqr2`1´1pl

1
qr2`1´1

q B ¨ ¨ ¨ B E1rl1.m1pl
1
1q B es . . . s,

l0 ÞÑ txñ d0upure P µ, which implies that there are also no method-call
stack frames with l as the caller after lqr2`1 , i.e.,
l1.m

1pl2qB E2 R Eqr2`1´1rlqr2`1´1.mqr2`1´1pl
1
qr2`1´1

qB ¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s. Then,

authstackpl, Ekrlk.mkpl
1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“
ď

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

q´1
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y
ď

jPtp1,p2,...,pr2u

tlju

Y authstackpl, lqr2`1 .mqr2`1pl
1
qr2`1

qB Eqr2`1´1rlqr2`1´1.mqr2`1´1pl
1
qr2`1´1

qB . . .

¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pLemma 5q

“
ď

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

q´1
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y
ď

jPtp1,p2,...,pr2u

tlju

Y pointstopEqr2`1´1rlqr2`1´1.mqr2`1´1pl
1
qr2`1´1

qB ¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

Y authstackpl, Eqr2`1´1rlqr2`1´1.mqr2`1´1pl
1
qr2`1´1

qB ¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pAUTH-STACKq

“
ď

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

q´1
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y
ď

jPtp1,p2,...,pr2u

tlju

Y

qr2`1´1
ď

i“1

ď

e1PsubexpspEiq

pointstope1, µq Y pointstope, µq

Y authstackpl, Eqr2`1´1rlqr2`1´1.mqr2`1´1pl
1
qr2`1´1

qB ¨ ¨ ¨B E1rl1.m1pl
1
1qB es . . . s, µq

pLemma 3q

“
ď

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

q´1
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y
ď

jPtp1,p2,...,pr2u

tlju

Y

qr2`1´1
ď

i“1

ď

e1PsubexpspEiq

pointstope1, µq Y pointstope, µq Y authstackpl, e, µq

pLemma 5q

Case r2 “ r1: There are no method-call stack frames with l as the caller after lqr2`1 , i.e.,
l.m1pl2qB E2 R Eqr2´1

rlqr2´1.mqr2´1
pl1qr2´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s

44

authstackpl, Ekrlk.mkpl
1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl1.m1pl

1
1qB es . . . s, µq

“
ď

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

q´1
ď

i“p

ď

e1PsubexpspEiq

pointstope1, µq Y
ď

jPtp1,p2,...,pr2u

tlju

Y authstackpl, e, µq

pLemma 5q

Lemma 7. If xEre0s | µy ÝÑ xEre10s | µ
1y, then

ď

ePsubexpspEq

pointstope, µ1q “
ď

ePsubexpspEq

pointstope, µq.

Proof. The proof is by induction on the subexpspEq rules.

Case SUBEXPS-EMPTY: Since the subexpspEq returns an empty set, the desired result is immedi-
ate.

Case SUBEXPS-METHOD1:
Ť

ePsubexpspE.mpe2qq pointstope, µq “ pointstope2, µq Y
Ť

ePsubexpspEq pointstope, µq, and similarly,
Ť

ePsubexpspE.mpe2qq pointstope, µ
1q “ pointstope2, µ1q Y

Ť

ePsubexpspEq pointstope, µ
1q.

Since we are considering small-step semantics and e2 is evaluated only after E is fully evalu-
ated, there were no changes to e2 at this evaluation steps, and pointstope2, µ1q “ pointstope2, µq.
By the induction hypothesis,

Ť

ePsubexpspEq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µq.
Thus,

Ť

ePsubexpspE.mpe2qq pointstope, µ
1q “

Ť

ePsubexpspE.mpe2qq pointstope, µq.

Case SUBEXPS-METHOD2:
Ť

ePsubexpspl.mpEqq pointstope, µq “ pointstopl, µq Y
Ť

ePsubexpspEq pointstope, µq, and similarly,
Ť

ePsubexpspl.mpEqq pointstope, µ
1q “ pointstopl, µ1q Y

Ť

ePsubexpspEq pointstope, µ
1q.

By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointstopl, µ1q “ pointstopl, µq. By the in-
duction hypothesis,

Ť

ePsubexpspEq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µq.
Thus,

Ť

ePsubexpspl.mpEqq pointstope, µ
1q “

Ť

ePsubexpspl.mpEqq pointstope, µq.

Case SUBEXPS-FIELD:
Ť

ePsubexpspE.fq pointstope, µq “
Ť

ePsubexpspEq pointstope, µq, and simi-
larly,

Ť

ePsubexpspE.fq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µ
1q. By the induction hypothesis,

Ť

ePsubexpspEq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µq, and thus,
Ť

ePsubexpspE.fq pointstope, µ
1q “

Ť

ePsubexpspE.fq pointstope, µq.

Case SUBEXPS-ASSIGN1:
Ť

ePsubexpspE.f“e2q pointstope, µq “ pointstope2, µq Y
Ť

ePsubexpspEq pointstope, µq, and similarly,
Ť

ePsubexpspE.f“e2q pointstope, µ
1q “ pointstope2, µ1q Y

Ť

ePsubexpspEq pointstope, µ
1q.

45

Since we are considering small-step semantics and e2 is evaluated only after E is fully evalu-
ated, there were no changes to e2 at this evaluation steps, and pointstope2, µ1q “ pointstope2, µq.
By the induction hypothesis,

Ť

ePsubexpspEq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µq.
Thus,

Ť

ePsubexpspE.f“e2q pointstope, µ
1q “

Ť

ePsubexpspE.f“e2q pointstope, µq.

Case SUBEXPS-BIND:
Ť

ePsubexpspbind x“E in e2q pointstope, µq “ pointstope2, µq Y
Ť

ePsubexpspEq pointstope, µq and
Ť

ePsubexpspbind x“E in e2q pointstope, µ
1q “ pointstope2, µ1q Y

Ť

ePsubexpspEq pointstope, µ
1q.

Since we are considering small-step semantics and e2 is evaluated only after E is fully evalu-
ated, there were no changes to e2 at this evaluation steps, and pointstope2, µ1q “ pointstope2, µq.
By the induction hypothesis,

Ť

ePsubexpspEq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µq.
Thus,

Ť

ePsubexpspbind x“E in e2q pointstope, µ
1q “

Ť

ePsubexpspbind x“E in e2q pointstope, µq.

Case SUBEXPS-ASSIGN2:
Ť

ePsubexpspl.f“Eq pointstope, µq “ pointstopl, µq Y
Ť

ePsubexpspEq pointstope, µq, and similarly,
Ť

ePsubexpspl.f“Eq pointstope, µ
1q “ pointstopl, µ1q Y

Ť

ePsubexpspEq pointstope, µ
1q.

By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointstopl, µ1q “ pointstopl, µq. By the in-
duction hypothesis,

Ť

ePsubexpspEq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µq.
Thus,

Ť

ePsubexpspl.f“Eq pointstope, µ
1q “

Ť

ePsubexpspl.f“Eq pointstope, µq.

Case SUBEXPS-STACKFRAME:
Ť

ePsubexpspl.mpl1qBEq pointstope, µq “ pointstopl, µqYpointstopl1, µqY
Ť

ePsubexpspEq pointstope, µq,
and similarly,

Ť

ePsubexpspl.mpl1qBEq pointstope, µ
1q “ pointstopl, µ1q Y pointstopl1, µ1q

Y
Ť

ePsubexpspEq pointstope, µ
1q.

By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointstopl, µ1q “ pointstopl, µq and
pointstopl1, µ1q “ pointstopl1, µq. By the induction hypothesis,
Ť

ePsubexpspEq pointstope, µ
1q “

Ť

ePsubexpspEq pointstope, µq.
Thus,

Ť

ePsubexpspl.mpl1qBEq pointstope, µ
1q “

Ť

ePsubexpspl.mpl1qBEq pointstope, µq.

Lemma 8. If
1. xe | µy ÝÑ xe1 | µ1y [e can make a step of evaluation]
2. for 1 ď i ď k, l1.mpl2qBE R Ei [no method-call stack frames in Ei]
3. l ÞÑ txñ duresource P µ [l is a principal]
4. @i, such that li “ l, i P tq1, q2, . . . , qr1u, where 0 ď r1 ď k

[the set of indices of all method-call stack frames where l is the caller; this set can be empty]
5. @i P tq1, q2, . . . , qr1u, if Dj, such that

(a) lj ÞÑ txñ djuresource P µ and [lj is a principal]
(b) @t, such that i ą t ą j and lt ÞÑ txñ dtupure P µ

[all callers between li and lj are pure]
j P tp1, p2, . . . , pr2u where 0 ď r2 ď r1
[the maximal set of indices of principal callers immediately after method-call stack frames

46

where l is the caller; this set can be smaller than the one above only by one element; this set
can also be empty; such principals can be l itself]

then
authpl, Ekrlk.mkpl

1
kqBEk´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨BE2rl2.m2pl

1
2qBE1rl1.m1pl

1
1qB e1s . . . s, µ1q

z authpl, Ekrlk.mkpl
1
kqBEk´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨BE2rl2.m2pl

1
2qBE1rl1.m1pl

1
1qB es . . . s, µq

“

$

’

’

’

’

&

’

’

’

’

%

authstorepl, µ
1q Y pointstope1, µ1q Y authstackpl, e

1, µ1q if r2 ă r1

z authstorepl, µq Y pointstope, µq Y authstackpl, e, µq

authstorepl, µ
1q Y authstackpl, e

1, µ1q if r2 “ r1

z authstorepl, µq Y authstackpl, e, µq

[If r2 ă r1, then there are only pure callers after the last method-call stack frame where l is the
caller. In other words, l was the last principal caller on the stack.
If r2 “ r1, then the last method-call stack frame where l is the caller is followed by a method-call
stack frame with a principal caller that is not l. If r2 “ r1 “ 0, then there are no method-call stack
frames with principal callers on the stack.
Since the set in 5(b) can include indices of method-call stack frames where the caller is l, the
difference between r1 and r2 is at most 1, i.e., r2 ď r1 ď r2 ` 1.]

Proof. The proof is by induction on the number of method-call stack frames preceding e and e1 on
the stack.

Base case: k “ 1. Depending on the values of r1 and r2, there are two possibilities.
Case r2 ă r1: r1 “ 1, r2 “ 0, l1 “ l, q1 “ 1, and Ep1.
authpl, E1rl1.m1pl

1
1qB es, µq

“ authstorepl, µq Y authstackpl, E1rl1.m1pl
1
1qB es, µq pAUTH-CONFIGq

“ authstorepl, µq Y pointstope, µq Y authstackpl, e, µq pAUTH-STACKq

Similarly, authpl, E1rl1.m1pl
1
1qB e1s, µ1q “ authstorepl, µ

1qY pointstope1, µ1qY authstackpl, e
1, µ1q.

Then, authpl, E1rl1.m1pl
1
1qB e1s, µ1q z authpl, E1rl1.m1pl

1
1qB es, µq

“ authstorepl, µ
1
q Y pointstope1, µ1q Y authstackpl, e

1, µ1q

z authstorepl, µq Y pointstope, µq Y authstackpl, e, µq

Case r2 “ r1: r1 “ r2 “ 0, l1 ‰ l, and Eq1, p1.
authpl, E1rl1.m1pl

1
1qB es, µq

“ authstorepl, µq Y authstackpl, E1rl1.m1pl
1
1qB es, µq pAUTH-CONFIGq

“ authstorepl, µq Y authstackpl, e, µq pLemma 5q

Similarly, authpl, E1rl1.m1pl
1
1q B e1s, µ1q “ authstorepl, µ

1q Y authstackpl, e
1, µ1q. Then,

authpl, E1rl1.m1pl
1
1qB e1s, µ1q z authpl, E1rl1.m1pl

1
1qB es, µq

“ authstorepl, µ
1
q Y authstackpl, e

1, µ1q z authstorepl, µq Y authstackpl, e, µq

47

Inductive case: k ą 1
authpl, Ekrlk.mkpl

1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl.m1pl

1
1qB es . . . s, µq

“ authstorepl, µq Y authstackpl, Ekrlk.mkpl
1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB . . .

¨ ¨ ¨B E1rl.m1pl
1
1qB es . . . s, µq

pAUTH-CONFIGq

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

authstorepl, µq if r2 ă r1

Y
Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e2PsubexpspEiq
pointstope2, µq

Y
Ť

jPtp1,p2,...,pr2u
tlju Y

Ťqr2`1´1

i“1

Ť

e2PsubexpspEiq
pointstope2, µq

Ypointstope, µq Y authstackpl, e, µq

authstorepl, µq if r2 “ r1

Y
Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e2PsubexpspEiq
pointstope2, µq

Y
Ť

jPtp1,p2,...,pr2u
tlju Y authstackpl, e, µq

pLemma 6q

Similarly, authpl, Ekrlk.mkpl
1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl.m1pl

1
1qB e1s . . . s, µ1q

“ authstorepl, µ
1
q Y authstackpl, Ekrlk.mkpl

1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB . . .

¨ ¨ ¨B E1rl.m1pl
1
1qB e1s . . . s, µ1q

pAUTH-CONFIGq

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

authstorepl, µ
1q if r2 ă r1

Y
Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e2PsubexpspEiq
pointstope2, µ1q

Y
Ť

jPtp1,p2,...,pr2u
tlju

Y
Ťqr2`1´1

i“1

Ť

e2PsubexpspEiq
pointstope2, µ1q Y pointstope1, µ1q

Yauthstackpl, e
1, µ1q

authstorepl, µ
1q if r2 “ r1

Y
Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e2PsubexpspEiq
pointstope2, µ1q

Y
Ť

jPtp1,p2,...,pr2u
tlju

Yauthstackpl, e
1, µ1q

pLemma 6q

48

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

authstorepl, µ
1q if r2 ă r1

Y
Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e2PsubexpspEiq
pointstope2, µq

Y
Ť

jPtp1,p2,...,pr2u
tlju

Y
Ťqr2`1´1

i“1

Ť

e2PsubexpspEiq
pointstope2, µq Y pointstope1, µ1q

Yauthstackpl, e
1, µ1q

authstorepl, µ
1q if r2 “ r1

Y
Ť

pq,pqPtpq1,p1q,pq2,p2q,...pqr2 ,pr2 qu

Ťq´1
i“p

Ť

e2PsubexpspEiq
pointstope2, µq

Y
Ť

jPtp1,p2,...,pr2u
tlju

Yauthstackpl, e
1, µ1q

pLemma 7q

Then, authpl, Ekrlk.mkpl
1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl.m1pl

1
1qB e1s . . . s, µ1q

z authpl, Ekrlk.mkpl
1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E1rl.m1pl

1
1qB es . . . s, µq

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

authstorepl, µ
1q Y pointstope1, µ1q Y authstackpl, e

1, µ1q if r2 ă r1

z authstorepl, µq Y pointstope, µq Y authstackpl, e, µq

authstorepl, µ
1q Y authstackpl, e

1, µ1q if r2 “ r1

z authstorepl, µq Y authstackpl, e, µq

Lemma 9. If l ÞÑ txñ dus P µ and l1.m1pl2qB E R e, then

pointstoprl{zse, µq “

#

pointstopl, µq Y pointstope, µq if z P e
pointstope, µq if z R e

Proof. There are two cases depending on whether z is in e or not.

Case z P e: We prove this case by simultaneous induction on the pointstopd, µq, pointstopd, µq,
and pointstope, µq rules.
Case POINTSTO-DEF: pointstoprl{zspdefmpx : τ1q : τ2 “ e1q, µq

“ pointstopdefmpx : τ1q : τ2 “ rl{zse
1, µq

“ pointstoprl{zse1, µq pPOINTSTO-DEFq

“ pointstopl, µq Y pointstope1, µq pby IHq

“ pointstopl, µq Y pointstopdefmpx : τ1q : τ2 “ e1, µq pPOINTSTO-DEFq

Case POINTSTO-VARX: Since there is only one variable, x “ z.
pointstoprl{zspvar f : τ “ xq, µq

“ pointstopvar f : τ “ l, µq

49

“ pointstopl, µq pPOINTSTO-VARLq

“ pointstopl, µq Y pointstopvar f : τ “ x, µq pPOINTSTO-VARXq

Case POINTSTO-VARL: Since there are no variables, the substitution cannot take place, and the
case is true by contradiction.
Case POINTSTO-DECLS: pointstoprl{zsd, µq

“
ď

dPd

pointstoprl{zsd, µq pPOINTSTO-DECLSq

“ pointstopl, µq Y
ď

dPd

pointstopd, µq pPOINTSTO-DEF, POINTSTO-VARX, POINTSTO-VARLq

“ pointstopl, µq Y pointstopd, µq pPOINTSTO-DECLSq

Case POINTSTO-VAR: Since there is only one variable, x “ z.

pointstoprl{zsx, µq “ pointstopl, µq “ pointstopl, µq Y pointstopx, µq pPOINTSTO-VARq

Case POINTSTO-NEW: pointstoprl{zspnewspxñ dqq, µq

“ pointstopnewspxñ rl{zsdq, µq

“ pointstoprl{zsd, µq pPOINTSTO-NEWq

“ pointstopl, µq Y pointstopd, µq pby case POINTSTO-DECLSq

“ pointstopl, µq Y pointstopnewspxñ dq, µq pPOINTSTO-NEWq

Case POINTSTO-METHOD: pointstoprl{zspe.mpe1qq, µq

“ pointstopprl{zseq.mprl{zse1q, µq

“ pointstoprl{zse, µq Y pointstoprl{zse1, µq pPOINTSTO-METHODq

“ pointstopl, µq Y pointstope, µq Y pointstope1, µq pby IHq

“ pointstopl, µq Y pointstope.mpe1q, µq pPOINTSTO-METHODq

Case POINTSTO-FIELD: pointstoprl{zspe.fq, µq

“ pointstopprl{zseq.fq, µq

“ pointstoprl{zse, µq pPOINTSTO-FIELDq

“ pointstopl, µq Y pointstope, µq pby IHq

“ pointstopl, µq Y pointstope.f, µq pPOINTSTO-FIELDq

Case POINTSTO-ASSIGN: pointstoprl{zspe.f “ e1q, µq

“ pointstopprl{zseq.f “ rl{zse1, µq

“ pointstoprl{zse, µq Y pointstoprl{zse1, µq pPOINTSTO-ASSIGNq

“ pointstopl, µq Y pointstope, µq Y pointstope1, µq pby IHq

“ pointstopl, µq Y pointstope.f “ e1, µq pPOINTSTO-ASSIGNq

50

Case POINTSTO-BIND: pointstoprl{zspbind x “ e in e1q, µq

“ pointstopbind x “ rl{zse in rl{zse1, µq

“ pointstoprl{zse, µq Y pointstoprl{zse1, µq pPOINTSTO-BINDq

“ pointstopl, µq Y pointstope, µq Y pointstope1, µq pby IHq

“ pointstopl, µq Y pointstopbind x “ e in e1, µq pPOINTSTO-BINDq

Case POINTSTO-PRINCIPAL or POINTSTO-PURE: Since there are no variables, the substitution
cannot take place, and the case is true by contradiction.
Case POINTSTO-CALL-PRINCIPAL or POINTSTO-CALL-PURE: Since both the cases have method-
call stack frames and the premise prohibits that, the cases are true by contradiction.

Case z R e: rl{zse “ e and pointstoprl{zse, µq “ pointstope, µq.

C.4 Authority Safety Theorem
Theorem 6 (Authority Safety). If

1. Γ |Σ $e2 e : τ , [e is well-typed]
2. xe | µy ÝÑ xe1 | µ1y, [a step of evaluation is made]
3. l0 ÞÑ txñ d0uresource P µ

1, [l0 is a principal]
4. l ÞÑ txñ duresource P µ, and [l is a principal]
5. authpl, e1, µ1q z authpl, e, µq Ě tl0u, [between the two states, l’s authority increases by l0]

then one of the following must be true:
1. Object creation:

(a) e “ Erl.mpl1qB E 1rnewresourcepxñ d0qss and [a new principal was created
(b) e1 “ Erl.mpl1qBE 1rl0ss, where in this evaluation step]
(c) @la.mapl

1
aqB E2 P E 1, la ÞÑ txñ daupure P µ

[there are only pure callers after the last method-call stack frame where l is the caller]
2. Method call:

(a) e “ Erl.mpl0qs, [a method argument was fully evaluated
(b) e1 “ Erl.mpl0qB rl0{ysrl{xse2s, and in this evaluation step]
(c) y P e2 [the passed-in argument y is used in the method body e2]

3. Method return:
(a) e “ Erl.mpl1qB E 1rla.mapl

1
aqB l0ss and [a method call returned

(b) e1 “ Erl.mpl1qB E 1rl0ss, where in this evaluation step]
(c) @lb.mbpl

1
bqB E2 P E 1, lb ÞÑ txñ dbupure P µ

[there are only pure callers after the last method-call stack frame where l is the caller.]

Proof. The proof is by induction on a derivation of xe | µy ÝÑ xe1 | µ1y. For a given derivation,
we proceed by cases on the last evaluation rule used:

Case E-CONGRUENCE: xEres | µy ÝÑ xEre1s | µ1y

51

Let us enumerate method-call stack frames in E:
Eres “ Ekrlk.mkpl

1
kqB Ek´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨B E2rl2.m2pl

1
2qB E1rl1.m1pl

1
1qB es . . . s

Ere1s “ Ekrlk.mkpl
1
kqBEk´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨BE2rl2.m2pl

1
2qBE1rl1.m1pl

1
1qB e1s . . . s

where
1. for 1 ď i ď k, l1.mpl2qBE 1 R Ei [no method-call stack frames in Ei]
2. @i, such that li “ l, i P tq1, q2, . . . , qr1u, where 0 ď r1 ď k

[the set of indices of all method-call stack frames where l is the caller; this set can be empty]
3. @i P tq1, q2, . . . , qr1u, if Dj, such that

(a) lj ÞÑ txñ djuresource P µ and [lj is a principal]
(b) @t, such that i ą t ą j and lt ÞÑ txñ dtupure P µ

[all callers between li and lj are pure]
j P tp1, p2, . . . , pr2u where 0 ď r2 ď r1
[the maximal set of indices of principal callers immediately after method-call stack frames
where l is the caller; this set can be smaller than the one above only by one element; this set
can also be empty; such principals can be l itself]

Then,
authpl, Ekrlk.mkpl

1
kqBEk´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨BE2rl2.m2pl

1
2qBE1rl1.m1pl

1
1qB e1s . . . s, µ1q

z authpl, Ekrlk.mkpl
1
kqBEk´1rlk´1.mk´1pl

1
k´1qB ¨ ¨ ¨BE2rl2.m2pl

1
2qBE1rl1.m1pl

1
1qB es . . . s, µq

“

$

’

’

’

’

&

’

’

’

’

%

authstorepl, µ
1q Y pointstope1, µ1q Y authstackpl, e

1, µ1q if r2 ă r1

z authstorepl, µq Y pointstope, µq Y authstackpl, e, µq

authstorepl, µ
1q Y authstackpl, e

1, µ1q if r2 “ r1

z authstorepl, µq Y authstackpl, e, µq

pLemma 8q

[If r2 ă r1, then there are only pure callers after the last method-call stack frame where l is the
caller. In other words, l was the last principal caller on the stack.
If r2 “ r1, then the last method-call stack frame where l is the caller is followed by a method-call
stack frame with a principal caller that is not l. If r2 “ r1 “ 0, then there are no method-call stack
frames with principal callers on the stack.
Since the set in 3(b) can include indices of method-call stack frames where the caller is l, the
difference between r1 and r2 is at most 1, i.e., r2 ď r1 ď r2 ` 1.]
Thus, the changes in authority when xEres | µy ÝÑ xEre1s | µ1y depend on what expressions are
in xe | µy ÝÑ xe1 | µ1y. Let us consider all possible e and e1.

Subcase E-NEW: e “ newspxñ daq, e1 “ la, and xErnewspxñ daqs | µy ÝÑ xErlas | µ
1y,

where µ1 “ µ, la ÞÑ txñ daus.
By AUTH-STORE, authstorepl, µq “ pointstopl, µq Y pointstopd, µq and

authstorepl, µ
1q “ pointstopl, µ1q Y pointstopd, µ1q. By POINTSTO-PRINCIPAL and

POINTSTO-PURE, pointstopl, µ1q “ pointstopl, µq. By POINTSTO-DECLS and the pointstopd, µq
rules, pointstopd, µq depends only on what is in d and whether it is resource. Then, since the only
change to the store was the addition of a new object la, and by inversion on E-NEW, la R dompµq
and newspxñ daq is a closed term, i.e., it is fully defined and all objects in da must be in the

52

store at the time of the object creation (T-STORE), pointstopla, µq R pointstopd, µ1q. Thus,
authstorepl, µ

1q “ authstorepl, µq.

Case r2 ă r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstopla, µ
1
q Y authstackpl, la, µ

1
q

z pointstopnewspxñ daq, µq Y authstackpl, newspxñ daq, µq

“ pointstopla, µ
1
q z pointstopnewspxñ daq, µq pAUTH-STACK-NOCALL ˆ 2q

“ pointstopla, µ
1
q z pointstopda, µq pPOINTSTO-NEWq

There are two possibilities depending on whether la is a principal or not.
Case la is a principal:

authpl, Ere1s, µ1q z authpl, Eres, µq “ tlau z pointstopda, µq pPOINTSTO-PRINCIPALq

Since la points to a fresh memory location and our language requires an object to be allocated in
memory before it can be used, tlau R pointstopda, µq, the authority of l increases, which is in
accordance with the object creation case, and the theorem holds.
Case la is pure: authpl, Ere1s, µ1q z authpl, Eres, µq “ ∅ z pointstopda, µq pPOINTSTO-PUREq

Thus, the authority of l does not increase, and the theorem holds.

Case r2 “ r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ authstackpl, la, µ
1
q z authstackpl, newspxñ daq, µq “ ∅ pAUTH-STACK-NOCALL ˆ 2q

Thus, the authority of l does not increase, and the theorem holds.

Subcase E-METHOD: e “ la.mplbq, e1 “ la.mplbqB rlb{ysrla{xsea, µ1 “ µ, and
authstorepl, µ

1q “ authstorepl, µq. Since ea is a method definition, by Property 4, ea has no
method-call stack frames.

Case r2 ă r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstopla.mplbqB rlb{ysrla{xsea, µq Y authstackpl, la.mplbqB rlb{ysrla{xsea, µq

z pointstopla.mplbq, µq Y authstackpl, la.mplbq, µq

“ pointstopla.mplbqB rlb{ysrla{xsea, µq Y authstackpl, la.mplbqB rlb{ysrla{xsea, µq

z pointstopla.mplbq, µq

pAUTH-STACK-NOCALLq

There are three possibilities depending on whether la “ l and whether it is a principal or not.
Case la “ l: Since l is a principal, la is a principal too.
authpl, Ere1s, µ1q z authpl, Eres, µq

“ tlau Y authstackpl, la.mplbqB rlb{ysrla{xsea, µq pPOINTSTO-CALL-PRINCIPALq

53

z pointstopla, µq Y pointstoplb, µq pPOINTSTO-METHODq

“ tlau Y pointstoprlb{ysrla{xsea, µq Y authstackpl, rlb{ysrla{xsea, µq pAUTH-STACKq

z pointstopla, µq Y pointstoplb, µq

“ tlau Y pointstoprlb{ysrla{xsea, µq pAUTH-STACK-NOCALLq

z pointstopla, µq Y pointstoplb, µq

“ pointstopla, µq Y pointstoprlb{ysrla{xsea, µq pPOINTSTO-PRINCIPALq

z pointstopla, µq Y pointstoplb, µq

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pointstopla, µq Y pointstoplb, µq Y pointstopea, µq if x, y P ea
z pointstopla, µq Y pointstoplb, µq

pointstopla, µq Y pointstopea, µq if x P ea and y R ea
z pointstopla, µq Y pointstoplb, µq

pointstopla, µq Y pointstoplb, µq Y pointstopea, µq if x R ea and y P ea
z pointstopla, µq Y pointstoplb, µq

pointstopla, µq Y pointstopea, µq if x, y R ea
z pointstopla, µq Y pointstoplb, µq

pLemma 9ˆ 2q

“

$

’

’

’

&

’

’

’

%

pointstopea, µq if x, y P ea
pointstopea, µq z pointstoplb, µq if x P ea and y R ea
pointstopea, µq if x R ea and y P ea
pointstopea, µq z pointstoplb, µq if x, y R ea

Ď pointstopea, µq

“ authstorepl, µq Y pointstopea, µq z authstorepl, µq

By AUTH-STORE, POINTSTO-DECLS, and POINTSTO-DEF, authstorepl, µq Ě pointstopea, µq, and
therefore, authpl, Ere1s, µ1q z authpl, Eres, µq “ ∅. Thus, the authority of l does not increase, and
the theorem holds.
Case la ‰ l and la is a principal: authpl, Ere1s, µ1q z authpl, Eres, µq

“ tlau z pointstopla, µq Y pointstoplb, µq pPOINTSTO-CALL-PRINCIPALq

“ pointstopla, µq z pointstopla, µq Y pointstoplb, µq “ ∅ pPOINTSTO-PRINCIPALq

Thus, the authority of l does not increase, and the theorem holds.
Case la ‰ l and la is pure: authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstoprlb{ysrla{xsea, µq z pointstopla, µq Y pointstoplb, µq pPOINTSTO-CALL-PUREq

54

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

pointstopla, µq Y pointstoplb, µq Y pointstopea, µq if x, y P ea
z pointstopla, µq Y pointstoplb, µq

pointstopla, µq Y pointstopea, µq if x P ea and y R ea
z pointstopla, µq Y pointstoplb, µq

pointstopla, µq Y pointstoplb, µq Y pointstopea, µq if x R ea and y P ea
z pointstopla, µq Y pointstoplb, µq

pointstopla, µq Y pointstopea, µq if x, y R ea
z pointstopla, µq Y pointstoplb, µq

pLemma 9ˆ 2q

“

$

’

’

’

&

’

’

’

%

pointstopea, µq if x, y P ea
pointstopea, µq z pointstoplb, µq if x P ea and y R ea
pointstopea, µq if x R ea and y P ea
pointstopea, µq z pointstoplb, µq if x, y R ea

Ď pointstopea, µq

“ authstorepl, µq Y pointstopea, µq z authstorepl, µq

By AUTH-STORE, POINTSTO-DECLS, and POINTSTO-DEF, authstorepl, µq Ě pointstopea, µq, and
therefore, authpl, Ere1s, µ1q z authpl, Eres, µq “ ∅. Thus, the authority of l does not increase,
and the theorem holds.

Case r2 “ r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ authstackpl, la.mplbqB rlb{ysrla{xsea, µq z authstackpl, la.mplbq, µq

“ authstackpl, la.mplbqB rlb{ysrla{xsea, µq pAUTH-STACK-NOCALLq

There are two possibilities depending on whether la “ l or not.
Case la “ l: Since l is a principal, la is a principal too.
authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstoprlb{ysrla{xsea, µq Y authstackpl, rlb{ysrla{xsea, µq pAUTH-STACKq

“ pointstoprlb{ysrla{xsea, µq pAUTH-STACK-NOCALLq

“

$

’

’

’

&

’

’

’

%

pointstopla, µq Y pointstoplb, µq Y pointstopea, µq if x, y P ea
pointstopla, µq Y pointstopea, µq if x P ea and y R ea
pointstoplb, µq Y pointstopea, µq if x R ea and y P ea
pointstopea, µq if x, y R ea

pLemma 9ˆ 2q

55

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

authstorepl, µq Y pointstopla, µq if x, y P ea
Ypointstoplb, µq Y pointstopea, µq

z authstorepl, µq

authstorepl, µq Y pointstopla, µq Y pointstopea, µq if x P ea and y R ea
z authstorepl, µq

authstorepl, µq Y pointstoplb, µq Y pointstopea, µq if x R ea and y P ea
z authstorepl, µq

authstorepl, µq Y pointstopea, µq z authstorepl, µq if x, y R ea

Since la “ l and by AUTH-STORE, POINTSTO-DECLS, and POINTSTO-DEF,
authstorepl, µq Ě pointstopla, µq Y pointstopea, µq. Then, authpl, Ere1s, µ1q z authpl, Eres, µq

“

$

’

’

’

&

’

’

’

%

authstorepl, µq Y pointstoplb, µq z authstorepl, µq if x, y P ea
authstorepl, µq z authstorepl, µq if x P ea and y R ea
authstorepl, µq Y pointstoplb, µq z authstorepl, µq if x R ea and y P ea
authstorepl, µq z authstorepl, µq if x, y R ea

“

#

pointstoplb, µq if y P ea
∅ if y R ea

“

#

tlbu if y P ea and lb is a principal pPOINTSTO-PRINCIPALq

∅ otherwise

Thus, if y P ea and lb is a principal, the authority of l increases, which is in accordance with the
method call case, and the theorem holds.
Case la ‰ l: authpl, Ere1s, µ1q z authpl, Eres, µq “ ∅ pAUTH-STACK-NOCALLq

Thus, the authority of l does not increase, and the theorem holds.

Subcase E-FIELD: e “ la.f , e1 “ lb, µ1 “ µ, and authstorepl, µ1q “ authstorepl, µq.
By Property 5, the object field that is being accessed must belong to the caller of the last

method-call stack frame on the stack. Then, l1 “ la. Considering that e is well-typed, since l1 has
a field, by definition, l1 is a principal.
Case r2 ă r1: Since l1 is a principal, l “ l1 “ la.
authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstoplb, µq Y authstackpl, lb, µq z pointstopl.f, µq Y authstackpl, l.f, µq

“ pointstoplb, µq z pointstopl.f, µq pAUTH-STACK-NOCALL ˆ 2q

“ authstorepl, µq Y pointstoplb, µq z authstorepl, µq Y pointstopl.f, µq

By inversion on E-FIELD, var f : τ “ lb P d. Then, by AUTH-STORE,
POINTSTO-DECLS, and POINTSTO-VARL, authstorepl, µq Ě pointstoplb, µq, and

56

authpl, Ere1s, µ1q z authpl, Eres, µq “ authstorepl, µq z authstorepl, µq Y pointstopl.f, µq

“ ∅

Thus, the authority of l does not increase, and the theorem holds.

Case r2 “ r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ authstackpl, lb, µq z authstackpl, la.f, µq “ ∅ pAUTH-STACK-NOCALL ˆ 2q

Thus, l’s authority does not increase, and the theorem holds.

Subcase E-ASSIGN: e “ pla.f “ lbq, e1 “ lb, and by inversion on E-ASSIGN,
la ÞÑ txñ daus P µ, var f : τ “ lc P da, da

1
“ rvar f : τ “ lb{var f : τ “ lcsda, and

µ1 “ rla ÞÑ txñ da
1
us{la ÞÑ txñ daussµ.

By Property 5, the object field that is being accessed must belong to the caller of the last
method-call stack frame on the stack. Then, l1 “ la. Considering that e is well-typed, since l1 has
a field, by definition, l1 is a principal.
Case r2 ă r1: Since l1 is a principal, in this case, l “ l1 “ la.

Since in this step of evaluation, the only change to the store is the substitution of
lc with lb in one of l’s fields, by AUTH-STORE, POINTSTO-DECLS, and POINTSTO-VARL,
authstorepl, µ

1q z authstorepl, µq Ď pointstoplb, µ
1q. [1]

By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointstoplb, µ1q “ pointstoplb, µq. [2]
authpl, Ere1s, µ1q z authpl, Eres, µq

“ authstorepl, µ
1
q Y pointstoplb, µ

1
q Y authstackpl, lb, µ

1
q

z authstorepl, µq Y pointstopl.f “ lb, µq Y authstackpl, l.f “ lb, µq

“ authstorepl, µ
1
q Y pointstoplb, µ

1
q z authstorepl, µq Y pointstopl.f “ lb, µq

pAUTH-STACK-NOCALL ˆ 2q

“ authstorepl, µ
1
q Y pointstoplb, µ

1
q z authstorepl, µq Y pointstopl, µq Y pointstoplb, µq

pPOINTSTO-ASSIGNq

Ď pointstoplb, µ
1
q z pointstopl, µq Y pointstoplb, µq pby r1sq

“ ∅ pby r2sq

Thus, the authority of l does not increase, and the theorem holds.

Case r2 “ r1: Since l1 is a principal and l1 “ la, in this case, l ‰ la and r2 “ r1 ‰ 0.
Since l ‰ la and, in this step of evaluation, the only change to the store is the substitution

of lc with lb in one of l1’s fields, by AUTH-STORE, POINTSTO-DECLS, and POINTSTO-VARL,
authstorepl, µ

1q “ authstorepl, µq. [3]
authpl, Ere1s, µ1q z authpl, Eres, µq

“ authstorepl, µ
1
q Y authstackpl, lb, µ

1
qz authstorepl, µq Y authstackpl, la.f “ lb, µq

“ authstorepl, µ
1
q z authstorepl, µq

57

pAUTH-STACK-NOCALL ˆ 2q

“ ∅ pby r3sq

Thus, the authority of l does not increase, and the theorem holds.

Subcase E-BIND: e “ bind x “ la in ea, e1 “ rla{xsea, µ1 “ µ, and
authstorepl, µ

1q “ authstorepl, µq. Since ea is a method definition, by Property 4, ea has no
method-call stack frames.

Case r2 ă r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstoprla{xsea, µq Y authstackpl, rla{xsea, µq

z pointstopbind x “ la in ea, µq Y authstackpl, bind x “ la in ea, µq

“ pointstoprla{xsea, µq z pointstopbind x “ la in ea, µq

pAUTH-STACK-NOCALL ˆ 2q

“ pointstoprla{xsea, µq z pointstopla, µq Y pointstopea, µq pPOINTSTO-BINDq

“

#

pointstopla, µq Y pointstopea, µq z pointstopla, µq Y pointstopea, µq if x P ea
pointstopea, µq z pointstopla, µq Y pointstopea, µq if x R ea

pLemma 9q
“ ∅

Thus, the authority of l does not increase, and the theorem holds.

Case r2 “ r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ authstackpl, rla{xsea, µq z authstackpl, bind x “ la in ea, µq

“ ∅ pAUTH-STACK-NOCALL ˆ 2q

Thus, l’s authority does not increase, and the theorem holds.

Subcase E-STACKFRAME: e “ la.mplbqB lc, e1 “ lc, µ1 “ µ, and
authstorepl, µ

1q “ authstorepl, µq.

Case r2 ă r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstoplc, µq Y authstackpl, lc, µq

z pointstopla.mplbqB lc, µq Y authstackpl, la.mplbqB lc, µq

“ pointstoplc, µq z pointstopla.mplbqB lc, µq Y authstackpl, la.mplbqB lc, µq

pAUTH-STACK-NOCALLq

There are three possibilities depending on whether la “ l and whether it is a principal or not.
Case la “ l: Since l is a principal, la is a principal too.
authpl, Ere1s, µ1q z authpl, Eres, µq

58

“ pointstoplc, µq z pointstopla.mplbqB lc, µq Y authstackpl, la.mplbqB lc, µq

“ pointstoplc, µq pAUTH-STACKq

z pointstopla.mplbqB lc, µq Y pointstoplc, µq Y authstackpl, lc, µq

“ ∅

Thus, the authority of l does not increase, and the theorem holds.
Case la ‰ l and la is a principal: authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstoplc, µq z pointstopla.mplbqB lc, µq Y authstackpl, la.mplbqB lc, µq

“ pointstoplc, µq z tlau Y authstackpl, la.mplbqB lc, µq pPOINTSTO-CALL-PRINCIPALq

“ pointstoplc, µq z tlau pAUTH-STACK-NOCALLq

“

#

tlcu z tlau if lc is a principal pPOINTSTO-PRINCIPALq

∅ if lc is pure pAUTH-STACK-NOCALLq

Thus, if la ‰ l, la is a principal, and lc is a principal, then the authority of l increases, which is in
accordance with the method return case, and the theorem holds. If la ‰ l, la is a principal, and lc
is pure, then the authority of l does not increase, and the theorem holds.
Case la ‰ l and la is pure: authpl, Ere1s, µ1q z authpl, Eres, µq

“ pointstoplc, µq z pointstopla.mplbqB lc, µq Y authstackpl, la.mplbqB lc, µq

“ pointstoplc, µq z pointstoplc, µq Y authstackpl, la.mplbqB lc, µq

“ ∅ z authstackpl, la.mplbqB lc, µq pPOINTSTO-CALL-PUREq

Thus, the authority of l does not increase, and the theorem holds.

Case r2 “ r1: authpl, Ere1s, µ1q z authpl, Eres, µq

“ authstackpl, lc, µq z authstackpl, la.mplbqB lc, µq

“ ∅ z authstackpl, la.mplbqB lc, µq “ ∅ pAUTH-STACK-NOCALLq

Thus, l’s authority does not increase, and the theorem holds.

59

	1 Introduction
	2 Wyvern Module System
	2.1 Threat Model
	2.2 Resource Modules
	2.3 Pure Modules
	2.4 Authority Analysis

	3 Wyvern Syntax and Semantics
	3.1 Module Syntax
	3.2 Core Language Syntax
	3.3 Translation of Modules into Objects
	3.4 Static Semantics
	3.5 Dynamic Semantics
	3.6 Type Soundness

	4 Authority Safety
	4.1 Significance of Authority Safety
	4.2 Formal Definition of Authority Safety
	4.2.1 auth() Rules
	4.2.2 pointsto() Rules
	4.2.3 Determining Authority of an Object
	4.2.4 Authority Safety Theorem

	5 Implementation
	6 Limitations
	7 Related Work
	8 Conclusion
	A Subtyping Rules
	B Preservation and Progress Proofs
	B.1 Preservation
	B.2 Progress

	C Authority Safety
	C.1 Authority-Related Properties
	C.2 subexps() Rules
	C.3 Lemmas
	C.4 Authority Safety Theorem

