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Abstract

Many object-oriented libraries require their clients to follow state machine protocols, and
typestate analyses have been developed to check conformance to these protocols. Prior
work on typestate specification and analysis, however, has been divorced from the static
and dynamic semantics of the language. This results in duplicated mechanisms in the
type system and typestate checker, complicates reasoning, and prevents programmers from
directly expressing their state-based designs in the language.

In this paper we present Plaidcore, a core calculus that embodies typestate-oriented
programming by integrating typestate directly into the programming language and its type
system. Plaidcore’s typestate change operator allows the representation of objects to change
at run time, and uses a type system based on access permissions to statically guarantee
that clients use object protocols correctly. We introduce the features of the calculus with
examples, formally define its static and dynamic semantics, and prove type soundness.
Based on this firm typing foundation, typestate-oriented programming has the potential to
help engineers more easily specify and enforce protocol constraints, leading to more reliable
software.





1 Introduction

As object-oriented programming has entered the mainstream, the widespread availability
of high-quality reusable libraries and frameworks has enabled an unprecedented degree of
reuse. While programmers in the past often focused on algorithm and data structure details,
today’s developers are more often focused on stitching together components such as libraries
and framework APIs with application specific logic. In order to gain maximum leverage from
component reuse, it is important that programmers use components correctly.

Many reusable object-oriented components are stateful and define protocols on their
usage. A recent case study on protocol usage in the wild [12] suggests that approximately
15-20% of all Java classes either define a protocol or use a protocol defined in another class.
Not only is this a significant number of classes but often these protocols are unintuitive and
hard to use. For example JDBC, a popular Java database connectivity library, has a state
space that contains 33 states and multiple transitions which makes it difficult and error prone
to use in practice.

In previous work we proposed typestate-oriented programming [1] as an extension to the
object paradigm that models objects not with classes but in terms of their changing state.
An object’s typestate [14] is like its class with its own interface, representation and behavior.
But unlike object-oriented programming where the class never changes, in typestate oriented
programming an object’s typestate is allowed to change over its lifetime.

For example, a File object has states open and closed, and we can only write to or read
from it when it is open. In the open state a call to close causes a state transition to closed,
and in the closed state the only operation available is to (re-)open the file. In today’s
languages such protocols are mostly implicit and/or documented informally. However, in
Plaidcore protocols can be enforced by the type system. For the same object, methods such
as read, write, close are available in the open state and the only method available in the
closed state is open.

There have been various typestate-based analyses written in the recent past [7, 3]. These
checkers have been successful in checking reasonably large programs [4] in languages like Java.
However, there are compelling reasons to carry the idea of typestate into the programming
language (summarized from [1]):

• Language influences how programmers think and go about their tasks. By explicitly
including typestate in the programming language we encourage programmers to think
in terms of states, which should ultimately lead to more effective designs.

• Having typestate in the programming language can lead to simplicity of reasoning.
Alluding again to the file example, in a regular language an invariant of the closed
state is that the file pointer must point to null. As we will see in Section 2, in Plaidcore

a file pointer simply does not exist in the ClosedFile state, thus making reasoning
about programs simpler.

In this paper we present a core calculus called Plaidcore for typestate-oriented program-
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ming1. Unlike most previous work on typestate, we make states a first class element of the
language and allow the state of an object to change. Depending on the current state of an
object, only methods that were defined in the state can be called. Statically tracking the
changing state of an object is notoriously hard in the presence of aliasing. In order to achieve
this we make use of a permission [5] based type system.

The contributions of this paper are as follows:

• A novel language design called Plaidcore, which supports typestate-oriented program-
ming, and examples that illustrate its usefulness. Plaidcore models objects as records
and provides a novel state change operation to change the typestate of objects.

• A type system that statically tracks the typestate of objects. Unlike prior type systems
for typestate, our type system is structural. Like [15] we adapt a subset of access
permissions [3] to the setting of the lambda calculus.

• We prove soundness for the language using conventional progress and preservation
theorems.

The rest of this paper is organized as follows — In section 2 we introduce the language
with an example. Section 3 describes the syntax of the language, while section 4 describes
its type system. We conclude with related work in section 5.

2 Language by Example

In this section, we describe the features of Plaidcore using an example. Plaidcore is an
extension of the lambda calculus with states (modeled using records), references, permissions,
state change operations and has a structural type system. A structural type system provides
many benefits [13], one among them being unanticipated code reuse. To provide such benefits
to programmers we envision the full Plaid language to be structurally typed and hence it is
a natural choice for us to model a structurally typed core calculus.

2.1 File example

The first example1 is a simple encoding of files, where a file can either be in the open or
closed state (Figure 1). Each state is represented with a type that contains only relevant

1An earlier version of this paper was presented in the FTfJP 2010 workshop with the goal of gathering
informal feedback. That version omitted important details due to space limitations, and the system presented
had not been proved sound. The FTfJP workshop is high-quality but has limited visibility compared to
POPL.

1In describing the example we take certain liberties for making it easier to understand. For instance, even
though Plaidcore does not explicitly support statement sequences or return statements, we will use them.
We also use type abbreviations that are not part of Plaidcore.
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Figure 1: States of a File

fields2 as shown in listing 1. An object is allowed to change its type (state) over its lifetime,
and only those fields that are defined for its current type are available to clients.

1 type OpenFile =

2 state of {

3 read : (imm of) → imm int
4 close : (of � ClosedFile) → unit
5 ptr : imm CFilePtr

6 }

7

8 type ClosedFile =

9 state cf {

10 open : (cf � OpenFile) → unit
11 }

Listing 1: File States in Plaidcore

State definitions. Listing 1 declares two states OpenFile and ClosedFile. A similar
File example was discussed in [1], but here we adapt it to the prototype-based, structurally-
typed setting of Plaidcore. These type abbreviations abstractly capture the open and closed
states of a file.

The OpenFile state has three fields: read and close, which have functions inside them,
and ptr. The read function takes as argument an immutable OpenFile and returns an int.
In the close function, the � symbol separates the input and output types of the function’s
argument. In this case, the close function of OpenFile accepts its argument (conceptually
the method receiver) in state of (the recursively bound name for OpenFile), but when the
function returns, the object will be in state ClosedFile. ptr returns an immutable operating
system level file pointer.

Access Permissions. Like the language presented in [1] Plaidcore supports changing
the state of objects and tracks state changes using access permissions. For simplicity we
restrict ourselves to the unique and immutable kinds of permissions. A unique permission
means that we have the only reference and we are allowed to change its state. An immutable

2As a modeling choice, objects in Plaidcore do not contain methods but only fields; methods are wrapped
inside fields as functions.
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permission means that there may be other aliases to this reference but no one is allowed to
change the state of the reference.

When we specify the type of a function, therefore, we need to describe both the type and
permission required for each of its arguments. We provide defaults to ease the burden of
specifying permissions on the programmer. An unspecified permission to an object defaults
to unique, while the default for function types is immutable . A missing � means that the
function does not change permissions to the arguments and returns them unchanged. Thus,
the fully expanded type of the open method in ClosedFile is

imm (uni cf � uni OpenFile) → unit

State Change Operations. Listing 23 describes how states can be defined in Plaidcore.
Given that the definitions of OpenFile and CloseFile are mutually recursive, we must define
a member function that changes the state of a ClosedFile to an OpenFile using a letrec-
like4 construct. We start by defining a function openf that takes a ClosedFile and changes
it to an OpenFile using the state change operator← (line 2). The close function recursively
uses openf for its open field.

1 letrec openf = λthis : ClosedFile ⇒
2 this← state of {

3 read = //use ptr to read the file

4

5 close = λthis : OpenFile ⇒
6 this← state cf {

7 open = openf
8 }

9

10 ptr = //return low-level file pointer

11 }

Listing 2: Defining states in Plaidcore

Listing 3 describes how Files can be used by a client in Plaidcore. We first create a new
object f and change its state to ClosedFile. While defining the ClosedFile state we use
the previously defined openf function. To actually read from the file we allude to a helper
function readFromFile that takes an OpenFile and returns an integer. To call readFromFile,
we pass an open file to it (line 19).

The call to computeBase in readFromFile presents a potential source for an error. Since
f is in scope, it is possible that computeBase can close the file, rendering the call to read

erroneous. In a Java-like language a similar situation could arise if there were a global
reference to f . Even worse, such an error would only be flagged at runtime. In Plaidcore

however, access permissions help us catch such errors at compile time.

3Type annotations for fields have been elided to reduce clutter.
4letrec is not a primitive in the language but can be encoded using recursive types
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1 f = new
2 f =

3 f ← state cf {

4 open = openf
5 }

6

7 computeBase =

8 λ : unit [f: OpenFile � ClosedFile] ⇒
9 i = //...some computation

10 f.close(f)
11 return i
12

13 readFromFile =

14 λf : OpenFile

15 ⇒ i = computeBase() + f.read(f) // error!

16 return i

17

18 f.open(f)
19 readFromFile(f)

Listing 3: Using Files in Plaidcore

The code in listing 3 does not typecheck in Plaidcore because read requires f to be in
the OpenFile state, but computeBase closes f before read is called. To rectify the situation
we change the signature of readFromFile to accept an immutable OpenFile. Now we are
guaranteed that there is no unique permission passed to computeBase and hence it cannot
close the file.

Instead of explicitly passing the parameter f to
readFromFile we could also write a function that uses variables currently in scope (like the
code for computeBase in Listing 3). Such a function is described in Listing 5. readFromFile2
uses permissions to variables that occur free in its body.

1 readFromFile2 =

2 λ : unit [f: OpenFile]

3 ⇒ i = f.read(f)
4 return i;

Listing 5: Accessing in scope permissions

We write type of such a function with permissions to free variables in [ ]. So the type of
readFromFile2 is

imm (unit) [f : imm OpenFile � f : imm OpenFile] → imm int
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1 computeBase =

2 λ : unit ⇒
3 i = //...some computation

4 // cannot close the file!

5 return i
6

7 readFromFile =

8 λf : imm OpenFile

9 ⇒ i = computeBase() + f.read(f)
10 return i;

Listing 4: Fixed readFromFile

Figure 2: States of an Iterator

2.2 Iterator example

The second example is that of an iterator. In the case study we cited earlier[12], the authors
identified eight different kinds of protocols that occur in Java code in the wild. Iterators fell
into a category of protocols that represents 7.9% of all protocols. In this category (called
Boundary), a method can only be called a specific number of times and this number is
determined dynamically. Since iterators are used commonly in practice it we codify them in
Plaidcore.

An iterator has two states available and end, signifying whether or not more elements
exist in the collection to iterate over. Typically while iterating over a collection every call to
the next() method is preceded by a call to the hasNext() method. This is a dynamic state
test to check the state of the iterator. If hasNext() returns true then the state is available
and it is safe to call next(); otherwise, the state is end and a call to next() now could lead
to a runtime exception.

1 type Available =

2 state av {

3 coll : imm Collection

4 iterate : (av � End, int → unit) → unit
5 }

6

7 type End =

8 state e {}
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Listing 6: Iterator States in Plaidcore

1 c = // get collection

2

3 iter = new
4 iter = iter ← state av {

5 coll = c
6

7 iterate =

8 λi : av, foo : int → unit
9 ⇒ for (int j = 0; j < coll.size(); ++j)

10 foo coll[j]
11 i← state e {}

12 }

13

14 fun = λx : int ⇒ ...

15

16 fun2 = λx : int ⇒ ...

17

18 iter.iterate(iter, fun)
19

20 iter.iterate(iter, fun2) // error!

Listing 7: Iterator implementation and use in Plaidcore

To codify iterators in Plaidcore we define two typestates, Available and End, as shown
in listing 6. The Available typestate contains two fields: coll, which is the collection to
be iterated over, and iterate, which is a two-argument function that takes the iterator and
a function to be invoked on each element of the collection. We require that the field coll

is immutable because this allows us to create more than one iterator for the collection. If it
were unique an iterator would capture the unique permission precluding further creation of
iterators. Also, it is safe to pass a unique permission whenever an immutable is required.

The implementation and usage of an iterator is described in listing 75. The variable c
contains the collection we would like to iterate over. We create a new object iter and change
its state to Available. Doing this requires that we supply values to its fields. We provide
coll with the value c and implement iterate. iterate applies the supplied function to each
element in the collection and subsequently changes the state of the iterator from Available

to End (line 11). Calling iterate the first time with the function fun iterates over the
collection and applies fun to each element, but the subsequent call to iterate on line 20
results in an error since the iterate is now in the state End.

5In this example we assume for loops in the language. How to add looping constructs to a language is
well-known, hence we avoid adding unnecessary complexity to the core calculus.
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3 Formal Language

The syntax6 of the formal language is summarized in Figure 3. In place of a simple typing
context containing just the types of variables, we use a linear context ∆. Later while defining
the dynamic semantics, we will extend the same context to contain permissions to memory
locations. The linear context differs from a conventional context in two ways:

1. As opposed to just types, ∆ contains both the permission kind perm and the type T
(together called the Permission) of variables

2. Each Permission can only be used once during typing. As typing proceeds Permissions
are consumed and produced by typing rules.

Expressions. The language is restricted to A-normal form [9]. All expressions must be
bound to variables using the let syntactic form, since the type system relies on sequencing to
track the state of variables. Both variables and function abstractions are values and appli-
cation is written using juxtaposition vv. A function abstraction is of the form λx:P,∆⇒e,
where P is the Permission to the argument x, and ∆ contains permissions to other free
variables in e (our concrete syntax placed this in [ ] brackets, but we omit this from the for-
malism). This allows e to refer to other variables in scope, for instance curried arguments.

States are modeled using records where each record is a set of declarations of the form
state s {D} 7. Each field of the record is written as f : P = v where f represents the name
of the field, P the Permission and v the value. The variable s can occur free in D, making
the definition recursive. For simplicity, we choose to model methods by wrapping them as
lambdas inside fields. The new expression is used to create a new empty record.

v.f and v!f are ways to deference a field depending on the permission kinds of v and f .
If both v and f are unique then in order to get a unique permission to the expression result,
we must remove the unique permission from the field. This is denoted with the destructive
field read expression v!f , which removes the field f entirely from the record v, thereby
changing v’s state. In other cases, if f is immutable, the non-destructive immutable field
read expression v.f returns an immutable reference to the object f points to. In this case
the field permission within v is unaffected and hence v’s state remains unchanged. In the
case when v is immutable and f is unique we disallow a call to v.f . This is because such
a case unnecessarily complicates this particular type system without providing any greater
expressive power. If such a call is allowed, we have two options — on the one hand, we
can remove the unique field from v, but that would be inconsistent with the semantics of
immutable and on the other, we can return an immutable permission to f , but then a unique
permission to it will still remain inside v. If we go with the latter, the overall invariant of the
system must take this into account, which would otherwise have been that for any unique
permission there must be no other permissions and for an immutable permission there must

6We interchangeably use uni for unique and imm for immutable to save space.
7At different points in the formalism we use the standard convention of an overbar to represent a list of

items. Also, to distinguish different lists of the same kind in a rule we use an apostrophe. If an apostrophe
is absent then the lists are considered identical.
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be no other unique permissions. If it is required to store the unique field inside v then it
must first be made immutable (as will become evident in section 4.1, this can be done using
a let-binding).

v ← state s {D} is the state change operation that changes the state of v from what it
was before to state s {TD}. As we will see in section 4, state s {TD} can be derived from
state s {D} in a straightforward manner. Essentially we drop all the fields that were part of
v before the state change was initiated and replace them with D.

Types. The type of a record is of the form state s {TD} where the variable s can occur
free in TD. Each type declaration TD is written as f : P . A permission P is the combination
of a permission kind and the type.

The arrow type Πx.(P,∆ � P ′,∆′ → Pr) is the type of a lambda abstraction, where P
and P ′ are the input and output permissions of the argument, ∆ and ∆′ are the input and
output permissions to the free variables in e (they were in brackets [ ] in the concrete syntax,
which we omit here) and Pr is the permission of the return value. We use a dependent type
here to facilitating currying. A curried function takes several arguments; all but the last of
which come with no permissions. The dependent type allows us to bind a variable (in Pr)
so that curried functions to the right of the → can refer to it in their permissions list.

We also have the unit type for uninteresting values.
Permissions. Access permissions are a flow-sensitive mechanism to track typestate

changes to aliases. They are modeled in the type system as linear resources. In this for-
malization we support two kinds of access permissions — unique and immutable. A unique
permission to a variable means that there exists only one permission to that variable in the
context ∆ and the variable is allowed to change state. An immutable permission to a variable
means that other immutable permissions to the same variable are allowed to co-exist in ∆
but the variable is not allowed to change state. So for instance if x was a unique ClosedFile,
we could write a statement x ← state of {. . .} to change its state to an OpenFile. On the
other hand if x was an immutable ClosedFile, a statement such as x← state of {. . .} would
be flagged by the type checker as erroneous.

In other formalizations [3], permissions such as shared, full and pure have been used.
A real language should ideally support some or all of these permissions, but for this initial
formalization effort we have decided to keep the system simple and only support two different
permission kinds.

4 Type System

In this section we describe the static and dynamic semantics of the language.

4.1 Static Semantics

The typing rules for the language are summarized in Figure 4. The typing judgment is of
the form

∆ ` e : P a ∆
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Expressions e ::= let x = e in e
v
vv
new
v.f
v!f
v ← state s {D}

Values v ::= x | o
λx:P,∆⇒e
()

Types T ::= s
state s {TD}
Πx.(P,∆� P ′,∆′ → Pr)
unit

Declarations D ::= f :P = v
Type Declarations TD ::= f :P

Permissions P ::= perm T
Perm. kinds perm ::= unique | immutable

Perm. Contexts ∆ ::= ∆, x | o : P | ∅
Stores µ ::= µ, (o→ D) | ∅

Figure 3: Syntax

The ∆ to the left of the ` represents the incoming context for typing expression e and
the ∆ to the right of the a represents the outgoing context that remains after typing e, while
P is the Permission (permission kind and type) of e. The incoming context may contain
many more permissions than are required to type e. We thread these unused permissions to
the outgoing context for subsequent expressions. This is one of the reasons why we insist
our language be in the A-normal form.

The T-Var rule returns the permission to the variable x from the context (∆, x : P ) and
threads through ∆.

The T-Abs rule is for typing a lambda abstraction. Defining a lambda requires no
permissions, so the context ∆ is passed through unchanged. The body of the function,
however, is allowed to assume a permission for the argument as well as other permissions
to free variables in the function body. Assuming ∆1, x : P , if we can type the expression e
such that e : Pr, the outgoing context is ∆′

1 and e changes the permission P to P ′ then we
say that the function is well-typed. We also insist that all free variables in ∆1 are present
in ∆, although permissions to them at the time of definition maybe different from when the
function is called. This is to prevent any accidental dynamic scoping of these permissions.
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Finally, we give the function an immutable permission kind because every expression or value
must have a permission kind and a type.

The T-App rule is for typing a lambda application. The initial incoming context ∆
is used to type the value v2. Given the remaining context ∆′ we type the value v1 such
that it has an arrow type and ∆1 is a subset of ∆′. The output context of the rule are
the permissions that the abstraction returns (∆′

1, P
′) in addition to the part of ∆′ it didn’t

require (∆2).
The T-Let rule is for typing a let expression. Before the let binding happens, the

incoming context ∆1 can be relaxed through the judgment ∆1 ` ∆′
1 (defined in Figure 6).

This is required because a unique permission can be passed where ever we need an immutable
. We perform permission relaxation in the let rule because that prevents us from having
to worry about it any place else, since we can always let-bind an expression if permission
splitting is required. The resulting context ∆′

1 is used to type e1 which results in ∆2 as the
output context. The let expression is well typed if assuming permissions ∆2, x : P we can
type e2 and thread through ∆3. We require that ∆3 does not contain a permission for x as
x goes out of scope after the let.

The T-Update rule is for typing state change operations. We first check if we have a
unique permission to v. For the state change operation to work we must make sure that we
have appropriate permissions to all values declared in D. For this we use the helper function
typecheck (Figure 5). For every declaration f : P = v in D, the typecheck function checks
if v : P . The result of the state change operation is a unique permission to state s {f : P},
where f : P is straightforwardly derived from D by taking away values. Note that the input
to the typecheck function is D with state s {D} substituted for s. This is done because
D can contain declaration types of the form f : s.

The T-New rule returns a new unique permission to an empty record without disturbing
the incoming context.

The T-Call-Field-Imm rule is for typing a field deference of an immutable field of a
value v. We first check if we have a permission to v in ∆, followed by checking if f is an
immutable field of v. The resulting type is an immutable permission to f . Also, the incoming
context is threaded through undisturbed. As mentioned earlier, we disallow calling v.f is v
is immutable and f is unique .

The T-Call-Uni-Uni rule is for typing a field deference of a unique field of a unique v,
and is interesting because it leads to changing the type of v. We syntactically distinguish
such a dereference from the other, since it also has different dynamic semantics (rule E-
Call-Uni, Figure 7). For type-checking, we first check if we have a unique permission to v
and f is one of its members. The resulting type is the type of f . Note that unlike the previous
rule the outgoing context is different since the permission to v is now unique state s {TD′},
where TD′ are the original type declarations minus f . Note that any occurrences of s in the
signature should be replaced with the original definition of s (i.e. before f is removed); this
ensures, for example, that methods which depend on the field cannot be called until the field
is restored.
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4.2 Dynamic Semantics

In this section we describe the dynamic semantics of the language. We augment values
with references o and the linear context to hold typing information for references as well as
variables. This leads to addition of a new T-Loc rule to the static semantics. We use µ to
represent the heap where each reference o points to a list of declarations D.

Values v ::= x | o
λx:P,∆⇒e

Perm. Contexts ∆ ::= ∆, (x | o : P ) | ∅
stores µ ::= µ, (o→ D) | ∅

∆, o : P ` o : P a ∆
T-Loc

The dynamic semantics are summarized in Figure 7. The E-App, E-Let and E-Let-
Cong rules are similar to those found in the simply typed lambda calculus.

The E-Update rule is for the state change operation. Given that a reference o exists in
the heap, we update its declarations to point to the new D given in the expression. Note
that we substitute s in the declarations just as the declarations are added to the heap. This
ensures that when we look them up later we do not encounter an undefined recursive type
variable s.

The E-New rule adds a fresh o to the heap and o points to an empty set of declarations.
The E-Call rule is used for field dereferencing. We first look-up o in the heap and make

sure f is a member of the resulting declarations D. The rule returns the value is stored in
f and leaves µ undisturbed.

The E-Call-Uni rule is used for dereferencing a unique field of a unique o. Since this
is a destructive read, we must remove the field from the heap just like we do in the static
semantics. This is to make sure that the type of o on the heap still matches the type of o
in the context ∆. Given that a reference o exists in the heap, we update its declarations to
D

′
, which has all the original declarations but f . Note that since we already substituted s

in the recursive declarations when we added them (E-Update) we don’t have to worry about
substitution during removal of f . The rule returns the value that is stored in f .

4.3 Heap Invariant

To prove soundness for the simply typed lambda calculus with references it is required that
all locations on the heap have exactly the same type as given by the store typing. Similarly
to prove that our language is sound we need to guarantee certain consistency properties
between the heap and the permission context ∆. Not only should objects on the heap have
the same type as they have in ∆, but there should never be another reference to a unique
object. In addition, there should never be a unique reference to immutable objects. We call
this property the heap invariant and it is summarized in figure 8.

We know that each location (object) on the heap points to a set of fields, where each
field contains a value. The heap invariant guarantees the following properties:
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1. The heap is well formed with respect to itself.

2. The heap is well formed with respect to the permission context ∆.

Definitions.

1. range(µ) is used to compute all the values and their permissions that are contained in
fields of all objects that are currently on the heap (Figure 9).

2. dom(∆) is used to compute all the locations and their permissions that are in the
permission context ∆ (Figure 9).

For the heap to be well-formed with respect to itself, every field of every object must
be consistent with its declared permission kind. For instance, if a field contains an object
o and it is declared unique then there must be no other field on the heap that points to o.
Similarly, if a field contains an object o and is declared immutable , then there must be no
other field on the heap that points to o and is declared unique , there may however be other
fields that point to o but are declared immutable .

The rules to enforce the property described above are summarized by the µ wf judgment
in figure 9. The Heap-Wf-Empty rule says that an empty heap is well-formed. The Heap-
Wf-Rec-1 rule allows us to add a new location o with no fields provided o does not already
exist in the heap.

The Heap-wf-rec-uni rule allows us to add a unique field f that points to o′ to object
o to an existing heap given that:

• the existing heap is well-formed

• there is no other field that points to o′ in the entire heap

• o 6= o′, to prevent self-reference

The Heap-wf-rec-imm rule allows us to add an immutable field f that points to o′ to
object o to an existing heap given that:

• the existing heap is well-formed

• there is no other unique f ield that points to o′ in the entire heap

• o 6= o′, to prevent self-reference

Figure 8 summarizes the requirements for the heap to be consistent with respect to
the permission context ∆. The rule Heap-inv-empty says that a well-formed heap µ is
consistent with an empty permission context.

The rule Heap-inv-rec allows us to add a location perm o to ∆ provided the location
already exists in µ and has the same type in both ∆ and µ. Also, we require that µ is
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well-formed with respect to itself and consistent with the existing ∆. In addition, we require
that o satisfy the check loc(perm o,∆, µ) judgement.

Depending on the value of perm, check loc(perm o,∆, µ) specifies the requirements for
adding o to ∆. If perm is unique , then there must be no other permission to o in dom(∆)
and perm o cannot be in the range of µ. In other words, if a unique location exists in ∆,
then no field can point to it in µ.

If on the other hand perm is immutable , then there must be no unique permission to o
in dom(∆) and unique o cannot be in the range of µ. In other words, no unique field can
point to o on the heap, but there can be other immutable fields that point to o.

The heap invariant above gives us enough leverage to prove soundness for the language.

4.4 Type Safety

Our proof of soundness consists of the conventional progress and preservation theorems. The
theorems are as follows.

Preservation. The preservation theorem is stated as follows: If
∆1 ` e : P a ∆2

e@µ 7−→e′@µ′

∆1;µ wf

then there exists ∆ such that
∆ ` e′ : P a ∆2

∆;µ′ wf

Progress. The progress theorem is stated as follows: If
∆1 ` e : P a ∆2

then either e is a value or there exists µ such that ∆1;µ wf; e@µ 7−→e′@µ′

4.5 Discussion

Extending the Lambda calculus. We have envisioned the full Plaid language as multi-
paradigm which supports both object-oriented and functional programming. Since Plaidcore

is the foundational basis for Plaid, it is important that it can model both first-class functions
and objects in the presence of access permissions. This is the reason we chose to extend the
lambda calculus with records, permissions and state change operations. Note that the state
change operation subsumes assignment. To change the value of a field in a state we just
change the state to one with the new value. This is a slight departure from the traditional
notion of assignment, where the type of the new value must match the type of the expression
it is being assigned to.

Structural Types. Plaidcore’s structural type system simplified the formalization of
the language. Previous work on typestate included expressions for packing and unpacking
objects [7], mainly to deal with reentrant methods. For every field dereference operation, an
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object is first unpacked, transitioning it to an invalid state until a pack operation is called,
which makes it valid again. But our structural type system precludes the need for unpacking
objects before dereferencing fields. Dereferencing a unique field from a unique object results
in that field leaving the object and the object immediately changes its type. This way the
object is never in an invalid state, though after such a “destructive field read” it may have
fewer fields than it was initially declared with.

5 Related Work

There have been languages in the past that allowed changing the type of objects in a first-
class way. State change can be modeled in Smalltalk [11] using the become method, which
results in one object exchanging state and behavior with another object. Also, in the Self
[17] language an object can change the objects it delegates to (i.e. inherits from), thereby
providing a way to model state changes. In addition, Self allows addition and removal of
slots form objects at runtime; a feature that can be used to model protocols by changing rep-
resentation of objects much like in our system. However, both these languages are dynamic
whereas we model state changes in the type system.

Statically typed languages such as Ego [2] provide a related notion of changing the struc-
ture of objects. Ego managed change via lower-level field addition and removal operations,
as well as delegation change operations; Plaidcore’s more structured state change operation,
together with a more advanced permission system, simplifies the language and makes it more
expressive.

In the Fickle [8] language it is possible to declare distinguished “state classes” inside a
class which describe the different states objects of that class can be in. Fickle, however, is
unable to accurately track the state of fields. An alternative approach to checking typestate
before calls is to suspend a call until the receiver is in an appropriate state [6]. In addition,
there have been many typestate based analyses [3, 7] and related session type systems [10] in
the past, but none of these allow state changes to objects in the run-time system like we do
(by changing the representation). Since we change representation of objects we help simplify
reasoning in many cases. Also, our setting is different in that we extend the lambda calculus
and we have structural types compared to nominal.

From the object modeling point of view, the closest work to ours is Taivalsaari’s proposal
to extend class-based languages with explicit definitions of logical states (modes), each with
its own set of operations and corresponding implementations [16]. Our proposed object
model differs in providing explicit state transitions (rather than implicit ones determined by
fields) and in allowing different fields in different states.

Overall, our paper contributes the first sound, static type system for typestate-oriented
programming. A related research project, which was begun after an initial version of our type
system was developed, builds on our work to support a gradual type system for typestate-
oriented programming [18]. Their work also differs in supporting a different set of permis-
sions, supporting state guarantees, and working in a nominal setting.
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6 Conclusion and Future Work

In conclusion, we presented the core calculus Plaidcore for the Plaid programming language8.
Our type system introduced a novel approach to adapting Bierhoff’s access permissions to
the lambda calculus, in addition to modeling states and state changing operations on objects.
Next we plan to incorporate the share permission kind into the system. A share permission
suggests that there may be several aliases to a reference and anyone is allowed to change its
state. A share permission also introduces the concept of state guarantees, where each shared
reference is guaranteed to never transition out of a hierarchy of states.

7 Acknowledgments

We would like to thank the Plaid group, Ronald Garcia and the anonymous reviewers for
their feedback on earlier versions of this work.

8 Proof of Soundness

8.1 Preservation

The preservation theorem is stated as follows: If

(P.1) ∆1 ` e : P a ∆2

(P.2) e@µ 7−→e′@µ′

(P.3) ∆1;µ wf

then there exists ∆ such that

(P.4) ∆ ` e′ : P a ∆2

(P.5) ∆;µ′ wf

Proof. Proof by induction on (P.2)

8http://www.plaid-lang.org
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case
(E.1) (λx:P0,∆5⇒e1)v2@µ 7−→[v2/x]e1@µ

E-App

By inversion for typing we have:

(T.1) ∆0 ` v2 : P0 a ∆5 (T.2) ∆1 = ∆0,∆3

(T.3) ∆3 ` λx:P0,∆5⇒e1 : immutable (Πx.(P0,∆5 � P ′
0,∆

′
5 → P ′′)) a ∆3

(T.4) ∆1 ` (λx:P0,∆5⇒e1)v2 : P ′′ a ∆′
5,∆3, v2 : P ′

0

T-App

So,

• e is λx:P1,∆5⇒e1)v2

• e′ is [v2/x]e1

• ∆1 is ∆1

• ∆2 is ∆′
5,∆3, v2 : P ′

0

• P is P ′′

• µ′ is µ

Let ∆ be ∆3,∆5, v2 : P0, then to show:

• ∆3,∆5, v2 : P0 ` [v2/x]e1 : P ′′ a ∆2

• ∆3,∆5, v2 : P0;µ wf

Proof.

(a) By case analysis on (T.3)
(a.1) ∆5, x : P0 ` e1 : P ′′ a ∆′

5, x : P ′
(a.2) domain(∆1) ⊂ domain(∆)

(a.3) ∆3 ` λx:P0,∆5⇒e1 : immutable (Πx.(P0,∆5 � P ′
0,∆

′
5 → P ′′)) a ∆3

T-Abs

(b) ∆5, v2 : P0 ` [v2/x]e1 : P ′′ a ∆′
5, v2 : P ′ by lemma (substitution)

(c) ∆0 = ∆5, v2 : P0 by set theory

(d) ∆0;µ wf by lemma (l.9) on (T.2), (P.3)

(e) ∆3;µ wf by lemma (l.9) on (T.2), (P.3)

(f) ∆3,∆5, v2 : P0 ` [v2/x]e1 : P ′′ a ∆3,∆
′
5, v2 : P ′ by lemma (l.8) on (d), (e), (b)

(g) ∆1 = ∆3,∆5, v2 : P0 by set theory

(h) ∆3,∆5, v2 : P0;µ wf since ∆1;µ wf
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case
(E.2) let x = v in e2@µ 7−→[v/x]e2@µ

E-Let

By inversion for typing we have:

(T.1) ∆1 `∆ ∆′
1 (T.2) ∆′

1 ` v : P ′ a ∆3 (T.3) ∆3, x : P ′ ` e2 : P a ∆2

(T.4) ∆1 ` let x = v in e2 : P a ∆2

T-Let

So,

• e is let x = v in e2

• e′ is [v/x]e2

• ∆1 is ∆1

• ∆2 is ∆2

• P is P

• µ′ is µ

Let ∆ be ∆3, v : P ′, then to show:

• ∆3, v : P ′ ` [v/x]e2 : P a ∆2

• ∆3, v : P ′;µ wf

Proof.

(a) ∆3, v : P ′ ` [v/x]e2 : P a ∆2 by lemma (substitution) on (T.3), (T.2)

(b) ∆′
1;µ wf by lemma (l.6) on (T.1), (P.3)

(c) ∆′
1 = ∆3, v : P ′

(d) ∆3, v : P ′;µ wf
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case
(E.1) e1@µ 7−→e′

1@µ′

(E.2) let x = e1 in e2@µ 7−→let x = e′
1 in e2@µ′ E-Let-Cong

By inversion for typing we have:

(T.1) ∆1 `∆ ∆′
1 (T.2) ∆′

1 ` e1 : P ′ a ∆3 (T.3) ∆3, x : P ′ ` e2 : P a ∆2

(T.4) ∆1 ` let x = e1 in e2 : P a ∆2

T-Let

So,

• e is let x = e1 in e2

• e′ is let x = e′
1 in e2

• ∆1 is ∆1

• ∆2 is ∆2

• P is P

• µ′ is µ′

Let ∆ be ∆, then to show:

• ∆ ` let x = e′
1 in e2 : P a ∆2

• ∆;µ′ wf

Proof.

(a) ∆′
1;µ wf by lemma (l.6) on (T.1), (P.3)

(b) By induction hypothesis on (T.2), (E.1), (a), we have

(1) ∆ ` e′
1 : P ′ a ∆3

(2) ∆;µ′ wf

(c) ∆ `∆ ∆ by rule Same

(d) ∆ ` let x = e′
1 in e2 : P a ∆2 by rule T-Let on (c), (1), (T.3)
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case
(E.1) D = f : P = v (E.2) o→ {D′} ∈ µ (E.3) µ′ = µ\o

(E.4) o← state s {D}@µ 7−→o@µ′, o→ {D[state s {f : P}/s]}
E-Update

By inversion for typing we have:

(T.1) ∆1 ` o : unique T a ∆3

(T.2) D = f : P = v (T.3) ∆3 ` typecheck(D[state s {f : P}/s]) a ∆′
2

(T.4) ∆1 ` o← state s {D} : immutable unit a ∆′
2, o : unique (state s {f : P})

T-Update

So,

• e is o← state s {D}

• e′ is ()

• ∆1 is ∆1

• ∆2 is ∆′
2, o : unique (state s {f : P})

• P is immutable unit

• µ′ is µ′, o→ {D[state s {f : P}/s]}

Let ∆ be ∆′
2, o : unique (state s {f : P}), then to show:

• ∆′
2, o : unique (state s {f : P}) ` () : immutable unit a ∆′

2, o : unique (state s {f : P}

• ∆′
2, o : unique (state s {f : P});µ′, o→ {D[state s {f : P}/s]} wf

Proof.

(a) ∆′
2, o : unique (state s {f : P}) ` () : immutable unit a ∆′

2, o : unique (state s {f : P} by
rule T-Unit

(b) ∆3 = ∆1 \ o by lemma (l.3) on (T.1)

(c) o : unique Type ∈ ∆1 by lemma (l.3) on (T.1)

(d) ∆3;µ′ wf by lemma (l.2) on (P.3), (c), (b), (E.3)

(e) ∆′
2;µ′, o→ {D[state s {f : P}/s]} wf by lemma (l.1) on (T.3), (d)

(f) Since o /∈ ∆3 by (b) and ∆′
2 ⊆ ∆3 ⇒ o /∈ ∆′

2

(g) o /∈ range(µ) since o is unique and ∆1;µ wf

(h) o /∈ range(µ′) since µ′ ⊂ µ and (h)
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(i) o /∈ D[state s {f : P}/s] by lemma (l.4) on (T.3) and (b)

(j) o /∈ range(µ′, o→ {D[state s {f : P}/s]) by (h), (i)

(k) check loc(unique o,∆′
2, (µ

′, o → {D[state s {f : P}/s])) by rule Check-Loc-Uni on (f),
(j)

(l) µ{o} : Type is vacuously true since D is same in both E-Update and T-Update

(m) ∆′
2, o : unique (state s {f : P});µ′, o→ {D[state s {f : P}/s]} wf by rule Heap-Inv-Rec

on (k), (l), and (e)
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case
(E.1) ofresh

(E.2) new@µ 7−→o@µ, o→ {}
E-New

By inversion for typing we have:

(T.1) ∆1 ` new : unique (state s {}) a ∆1

T-new

So,

• e is new

• e′ is o

• ∆1 is ∆1

• ∆2 is ∆1

• P is unique (state s {})

• µ′ is µ, o→ {} where o fresh

Let ∆ be ∆1, o : unique (state s {}), then to show:

• ∆1, o : unique (state s {}) ` o : unique (state s {}) a ∆1

• ∆1, o : unique (state s {});µ, o→ {} wf

Proof.

(a) ∆1, o : unique (state s {}) ` o : unique (state s {}) a ∆1 by rule T-Loc

(b) µ wf by inversion of rule Heap-Inv-Rec on (P.3)

(c) µ, o→ {} wf by rule Heap-wf-Rec-1 on (b)

(d) ∆1, o : unique state s {};µ wf by lemma (l.11) on (P.3), (c), where o fresh
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case

(E.1) f : unique T ′ = v ∈ D
(E.2) o→ D ∈ µ (E.3) µ′ = µ\o (E.4) D′ = D \ f

(E.5) o!f@µ 7−→v@µ′, o→ D′
E-Call-Uni

By inversion for typing we have:

(T.1) ∆1 ` o : unique (state s {TD}) a ∆′
2

(T.2) (f : unique T ′) ∈ TD (T.3) TD
′
= (TD[state s {TD}/s] \ f)

(T.4) ∆1 ` o!f : unique T ′ a ∆′
2, o : unique (state s {TD′})

T-Call-uni-uni

So,

• e is o!f

• e′ is v

• ∆1 is ∆1

• ∆2 is ∆′
2, o : unique (state s {TD′})

• P is unique T ′

• µ′ is µ′, o→ D′

Let ∆ be ∆′
2, o : unique (state s {TD′}), v : unique T ′, then to show:

• ∆′
2, o : unique (state s {TD′}), v : unique T ′ ` v : unique T ′ a ∆′

2, o : unique (state s {TD′})

• ∆′
2, o : unique (state s {TD′}), v : unique T ′;µ′, o→ D′ wf

Proof.

(a) ∆′
2, o : unique (state s {TD′}), v : unique T ′ ` v : unique T ′ a ∆′

2, o : unique (state s {TD′})
by rule T-Loc-Uni (only applicable case is when v is some o′)

(b) ∆′
2, o : unique (state s {TD});µ′, o → D wf since ∆1 = ∆′

2, o : unique (state s {TD})
and µ = µ′, o→ D

(c) ∆′
2;µ′, o→ D wf by lemma (l.9) on (b) since ∆′

2 ⊂ (∆′
2, o : unique (state s {TD}))

(d) ∆′
2;µ′, o→ D

′
wf by lemma (l.10) on (c) since D

′
= D \ f

(e) µ′, o→ D
′
wf by inversion of rule Heap-Inv-Rec on (d)

(f) p o /∈ ∆′
2 since unique o ∈ (∆′

2, o : unique (state s {TD′}) and (∆′
2, o : unique (state s {TD})); (µ′, o→

D) wf, where p ∈ {unique , immutable }
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(g) check loc(unique o,∆′
2, o : unique (state s {TD}), µ′, o→ D) by inversion of rule Heap-

Inv-Rec on (b)

(h) p o /∈ range(µ′, o→ D) by inversion of rule Check-Loc-Uni on (g), where p ∈ {unique , immutable }

(i) p o /∈ range(µ′, o→ D
′
) since D

′ ⊂ D, where p ∈ {unique , immutable }

(j) check loc(unique o,∆′
2, µ

′, o→ D
′
) by rule Check-Loc-Uni on (f), (i)

(k) TD = typeof(D) by (b)

(l) TD \ f = typeof(D \ f) by (k)

(m) (µ′, o→ D
′
){o} = D

′
by simple lookup and TD

′
= typeof(D

′
)

(n) ∆′
2, o : unique (state s {TD′});µ′, o→ D

′
wf by rule Check-Loc-Uni on (f), (i), (m)

(o) ∆′
2, o : unique (state s {TD});µ′, o→ D wf by (b)

(p) Consider the case that p v ∈ ∆′
2, o : unique (state s {TD}), then it must follow that

v /∈ range(µ′, o→ D) by rule Check-Loc-Uni, but we know that v ∈ range(µ′, o→ D) by
(E.1). Hence, p v /∈ ∆′

2, o : unique (state s {TD}) (the only applicable case is when v is
some o′), where p ∈ {unique , immutable }

(q) p v /∈ ∆′
2, o : unique (state s {TD′}) since p v /∈ ∆′

2, o : unique (state s {TD′}) ⊂ p v /∈
∆′

2, o : unique (state s {TD}), where p ∈ {unique , immutable }

(r) p v /∈ range(µ′, o→ D) by rule Heap-Wf-Rec-Uni on (e), where p ∈ {unique , immutable }

(s) p v /∈ range(µ′, o→ D
′
) since µ′, o→ D

′ ⊂ µ′, o→ D and (r), where p ∈ {unique , immutable }

(t) check loc(unique v, p v /∈ ∆′
2, o : unique (state s {TD′}), µ′, o→ D

′
) by rule Check-Loc-

Uni on (q), (s), where p ∈ {unique , immutable }

(u) ∆′
2, o : unique (state s {TD′}), v : unique T ′;µ′, o→ D′ wf by rule Heap-Inv-Rec on (t),

(n), (e)
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case
(E.1) µ(o) = D (E.2) f : P = v ∈ D

(E.3) o.f@µ 7−→v@µ
E-Call

By inversion for typing we have:

(T.1) ∆1 ` v : perm (state s {TD}) a ∆′
2 (T.2) (f : immutable T ′) ∈ TD

(T.3) ∆1 ` v.f : immutable T ′ a ∆1

T-Call-field-imm

So,

• e is o.f

• e′ is v

• ∆1 is ∆1

• ∆2 is ∆1

• P is immutable T ′

• µ′ is µ

Let ∆ be ∆1, v : immutable T ′, then to show:

• ∆1, v : immutable T ′ ` v : immutable T ′ a ∆1

• ∆1, v : immutable T ′;µ wf

Proof.

(a) By case analysis on v:
case o

(b) ∆1, o : immutable T ′ ` o : immutable T ′ a ∆1 by rule T-Loc

(c) Consider the case that unique o ∈ ∆1, then it must follow that o /∈ range(µ) but we know
that o ∈ range(µ) by (E.2). Hence unique o /∈ ∆1

(d) µ wf by inversion of rule Heap-Inv-Rec on (P.3)

(e) unique o /∈ range(µ) by inversion of rule Heap-Wf-Rec-Imm on (c)

(f) check loc(immutable o,∆1, µ) by rule Check-Loc-Imm on (c), (e)

(g) ∆1, o : immutable T ′;µ wf by rule Heap-Inv-Rec on (f), (P.3), (c)
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8.2 Helper Lemmas

(l.0) Substitution
Given:
∆, x : P ` e : P ′ a ∆′

v : P
then
∆, v : P ` [v/x]e : P ′ a [v/x]∆′

Proof by induction on the typing derivation

(l.1) Given:
∆1 ` typecheck(D) a ∆2

∆1;µ wf
ofresh
then
∆2;µ, o→ D wf

Proof by induction on ∆1 ` typecheck(D) a ∆2

(l.2) Given:
∆;µ wf
o : unique Type ∈ ∆
∆′ = ∆ \ o
µ′ = µ \ o
then
∆′;µ′ wf

(l.3) Given:
∆1 ` o : unique Type a ∆2

then
(∆2 = ∆1 \ o) ∧ (o : unique Type ∈ ∆1)

Straightforward from the definition of T-Loc

(l.4) Given:
∆1 ` typecheck(D) a ∆2

o /∈ ∆1

then
o /∈ D

(l.5) Given:
∆1 ` v : P a ∆2

then
∃∆′

1 such that ∆1 = ∆′
1, v : P
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(l.6) Given:
(G.1) ∆1 `∆ ∆2

(G.2) ∆1;µ wf
then
∆2;µ wf
Proof by induction on ∆1 `∆ ∆2

(a) case
(T.2) ∆ `∆ ∆′

(T.1) ∆, v : P `∆ ∆′, v : P
Split-Rec

(b) So ∆1 is ∆, v : P and ∆, v : P ;µ wf by (G.2)

(c) ∆;µ wf by inversion of rule Heap-Inv-Rec on (b)

(d) ∆′;µ wf by induction hypothesis on (T.2), (c)

(e) To show ∆′, v : P ;µ wf by case analysis on v, only applicable case is when v is
some o

(f) ∆, o : P ;µ wf by (G.2)

(g) By inversion of rule Heap-Inv-Rec on (f), we have (g.1)check loc(perm o,∆, µ) and
(g.2)∆;µwf and (g.3)µwf and (g.4)µ{o} = f ′ : P ′ = v′ where P is perm state s {f : P}

(h) check loc(perm o,∆′, µ) by lemma (l.12) on check loc(perm o,∆, µ), (c) and (T.2)

(i) ∆′, o : P ;µ wf by rule Heap-Inv-Rec on (h), (d), (g.3), (g.4)

(j) case
∆, v : uni Type `∆ ∆, v : imm Type, v : imm Type

Split-Uni

(k) ∆, v : unique Type;µ wf by (G.2)

(l) To show ∆, v : imm Type, v : imm Type;µ wf by case analysis on v, only applicable
case is when v is some o

(m) By inversion of rule Heap-Inv-Rec on (k), we have (k.1)check loc(unique o,∆, µ)
and (k.2)∆;µwf and (k.3)µwf and (k.4)µ{o} = f ′ : P ′ = v′ where P is unique Type

(n) check loc(immutable o,∆, µ) by lemma (l.13) on (k.1)

(o) ∆, o : imm Type;µ wf by rule Heap-Inv-Rec on (n), (k.2), (k.3), (k.4)

(p) ∆, o : imm Type, o : imm Type;µ wf by lemma (l.14) on (o)

(q) case
∆, v : imm Type `∆ ∆, v : imm Type, v : imm Type

Split-Imm

(r) straightforward application of lemma (l.14)
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(s) case
∆, v : perm Type `∆ ∆,∅

Drop

(t) ∆, v : perm Type;µ wf by (G.2)

(u) By inversion of rule Heap-Inv-Rec on (t), we have (t.1)check loc(perm o,∆, µ) and
(t.2)∆;µwf and (t.3)µwf and (t.4)µ{o} = f ′ : P ′ = v′ where P is perm state s {f : P}

(v) Proved by (t.2)

(w) case
∆ `∆ ∆

Same

(x) ∆;µ wf by (G.2)

(l.7)

(l.8) Given:
weakening
∆1;µ wf
∆2;µ wf
∆1 ` e : P a ∆
then
∆1,∆2 ` e : P a ∆,∆2

(l.9) Given:
∆1 ⊂ ∆2

∆2;µ wf
then
∆1;µ wf

Proven as case Drop of Lemma (l.6)

(l.10) Given:
∆;µ, o→ D wf
D

′
= D \ f

then
∆;µ, o→ D

′
wf

Proof
Straightforward induction on ∆;µ, o→ D wf

(l.11) Given:
∆;µ wf
µ, o→ {} wf
o fresh
then
∆, o : unique state s {};µ, o→ {} wf
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Proof
Straightforward induction on ∆;µ wf

(l.12) Given:
(G.1) check loc(perm o,∆, µ)
(G.3) ∆ `∆ ∆′

then
check loc(perm o,∆′, µ)

Proof by induction on (G.3)

(a) case
(T.2) ∆1 `∆ ∆2

(T.1) ∆1, o
′ : P `∆ ∆2, o

′ : P
Split-Rec

(b) check loc(perm o, (∆1, o
′ : P ), µ) by (G.1)

(c) Case analysis on perm
case unique

i. By inversion of rule Check-Loc-Uni on (b), we have (b.1) p o /∈ dom(∆1, o
′ : P )

and (b.2) p o /∈ range(µ) where p ∈ {unique , immutable }
ii. p o /∈ dom(∆1) by (b.1) where p ∈ {unique , immutable }

iii. p o /∈ range(µ) by (b.2) where p ∈ {unique , immutable }
iv. check loc(unique o,∆1, µ) by rule Check-Loc-Uni on (ii), (iii)

v. check loc(unique o,∆2, µ) by induction hypothesis on (iv) and (T.2)

vi. p o /∈ dom(∆2, o
′ : P ) since o 6= o′ by (b.1) where p ∈ {unique , immutable }

vii. check loc(unique o,∆2, o
′ : P, µ) by rule Check-Loc-Uni on (vi), (iii)

case immutable

i. By inversion of rule Check-Loc-Imm on (b), we have (b.1) unique o /∈ dom(∆1, o
′ :

P ) and (b.2) unique o /∈ range(µ)

ii. unique o /∈ dom(∆1) by (b.1)

iii. unique o /∈ range(µ) by (b.2)

iv. check loc(imm o,∆1, µ) by rule Check-Loc-Imm on (ii), (iii)

v. check loc(imm o,∆2, µ) by induction hypothesis on (iv) and (T.2)

vi. unique o /∈ dom(∆2, o
′ : P ) since o 6= o′ by (b.1)

vii. check loc(immutable o,∆2, o
′ : P, µ) by rule Check-Loc-Imm on (vi), (iii)

(d) case
(T.1) ∆1, o

′ : uni Type `∆ ∆1, o
′ : imm Type, o′ : imm Type

Split-Uni

(e) check loc(perm o,∆1, o
′ : uni Type, µ) by (G.1)
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(f) case analysis on perm
case unique

i. By inversion of rule Check-Loc-Uni on (e), we have (e.1) p o /∈ dom(∆1, o
′ :

uni Type) and (e.2) p o /∈ range(µ) where p ∈ {unique , immutable }
ii. p o /∈ dom(∆1, o

′ : imm Type) by (e.1) where p ∈ {unique , immutable }
iii. p o /∈ dom(∆1, o

′ : imm Type), o′ : imm Type since o 6= o′ by (e.1) where
p ∈ {unique , immutable }

iv. check loc(unique o,∆1, o
′ : imm Type), o′ : imm Type, µ) by rule Check-Loc-

Uni on (iii), (e.2)

case immutable

i. By inversion of rule Check-Loc-Imm on (e), we have (e.1) unique o /∈ dom(∆1, o
′ :

uni Type) and (e.2) unique o /∈ range(µ)

ii. unique o /∈ dom(∆1, o
′ : imm Type) by (e.1)

iii. unique o /∈ dom(∆1, o
′ : imm Type), o′ : imm Type since o 6= o′ by (e.1)

iv. check loc(immutable o,∆1, o
′ : imm Type), o′ : imm Type, µ) by rule Check-

Loc-Imm on (iii), (e.2)

(g) case
(T.1) ∆1, o

′ : imm Type `∆ ∆1, o
′ : imm Type, o′ : imm Type

Split-Imm

(h) Similar to the case above

(i) case
(T.1) ∆1, o

′ : P `∆ ∆1

Drop

(j) Similar to the case above

(k) case
(T.1) ∆1 `∆ ∆1

Same

(l) Proved by (G.1)

(l.13) Given:
(G.1) check loc(unique o,∆, µ)
then
check loc(immutable o,∆, µ)

Proof.

(a) By inversion of rule Check-Loc-Uni on (G.1), we have (g.1) p o /∈ ∆ and (g.2)p o /∈
µ, where p ∈ {unique , immutable }

(b) unique o /∈ ∆ by (g.1)

(c) unique o /∈ µ by (g.2)

(d) check loc(immutable o,∆, µ) by rule Check-Loc-Imm on (b), (c)
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(l.14) Given:
(G.1) ∆, o : immutable Type;µ wf
then
∆, o : immutable Type, o : immutable Type;µ wf

Straightforward from inversion of rule Heap-Inv-rec on (G.1)

(l.15) Given:
∆;µ wf
o ∈ ∆
then
o→ D ∈ µ
True due to form of judgment ∆;µ wf
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8.3 Progress

The progress theorem is stated as follows: If

(P.1) ∆1 ` e : P a ∆2 (e is a closed expression)

(P.2) ∆1;µ wf

then one of the following is true:

(P.3) e is a value

(P.4) e@µ 7−→e′@µ′, for some e′, µ′

Proof by induction on (P.1)

case T-Var does not apply since e is closed

case T-Loc, o is a value

case T-Abs, λx:P,∆⇒e′ is a value

case

(T.1) ∆ ` v2 : P a ∆′
(T.2) ∆′ = ∆1,∆2

(T.3) ∆′ ` v1 : immutable (Πx.(P,∆1 � P ′,∆′
1 → P ′′)) a ∆′

(T.4) ∆ ` v1v2 : P ′′ a ∆2,∆
′
1, v2 : P ′ T-App

Proof.

(a) By canonical forms v1 is λx:P,∆⇒e′

(b) (λx:P,∆⇒e′)v2@µ 7−→ [v2/x]e@µ by rule E-App

case
(T.1) ∆1 `∆ ∆′

1 (T.2) ∆′
1 ` e1 : P a ∆3 (T.3) ∆3, x : P ` e2 : P ′ a ∆2

(T.4) ∆1 ` let x = e1 in e2 : P ′ a ∆2

T-Let

Proof.

(a) Case analysis on e1

(b) case value
let x = e1 in e2 7−→ [e1/x]e2 by rule E-Let

(c) case e1 takes a step

(d) ∆′
1;µ wf by lemma (l.6) on (T.1) and (P.2)

(e) e1@µ 7−→ e′
1@µ′ by induction hypothesis on (T.2) and (d)

(f) let x = e1 in e2 7−→ let x = e′
1 in e2 by rule E-Let-Cong
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case

(T.1) ∆1 ` o : unique T a ∆3

(T.2) D = f : P = v (T.3) ∆3 ` typecheck(D[state s {f : P}/s]) a ∆′
2

(T.4) ∆1 ` o← state s {D} : immutable unit a ∆′
2, o : unique (state s {f : P})

T-Update

Proof.

(a) ∆1 = o : unique P,∆3 by math

(b) o→ D
′ ∈ µ by lemma (l.15) on (P.2), (a)

(c) µ′′ = µ \ o by math

(d) o← state s {D}@µ 7−→ ()@µ′′, o → {D[state s {f : P}/s]} by rule E-Update on (T.2),
(b), (c)

case
(T.1) ∆1 ` new : unique (state s {}) a ∆1

T-new

Proof.

(a) Let o fresh

(b) new@µ 7−→ o@µ, o→ {} by rule E-New

case

(T.1) ∆1 ` o : perm (state s {TD}) a ∆′
2

(T.2) (f : immutable T ′) ∈ TD
(T.3) ∆1 ` o.f : immutable T ′ a ∆1

T-Call-field-imm

Proof.

(a) ∆1 = o : perm state s {TD},∆′
2

(b) ∆1 = ∆′
2, o : perm state s {TD} by exchange

(c) ∆′
2, o : perm state s {TD};µ wf by (P.2) and (b)

(d) By inversion of rule Heap-Inv-Rec on (c), we have (c.1)check loc(perm o,∆′
2, µ) and

(c.2)∆′
2;µwf and (c.3)µwf and (c.4)µ{o} = f ′ : P ′ = v′ where P is some perm state s {f ′ : P ′}

and TD = f ′ : P ′ and D = f ′ : P ′ = v′

(e) f : P = v ∈ D by (T.2)

(f) o.f@µ 7−→ v@µ by rule E-Call on (c.4) and (e)

case

(T.1) ∆1 ` o : unique (state s {TD}) a ∆′
2

(T.2) (f : unique T ′) ∈ TD (T.3) TD
′
= (TD[state s {TD}/s] \ f)

(T.4) ∆1 ` o!f : unique T ′ a ∆′
2, o : unique (state s {TD′})

T-Call-uni-uni

Proof.

(a) ∆1 = o : unique state s {TD},∆′
2
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(b) ∆1 = ∆′
2, o : unique state s {TD} by exchange

(c) ∆′
2, o : unique state s {TD};µ wf by (P.2) and (b)

(d) By inversion of rule Heap-Inv-Rec on (c), we have (c.1)check loc(unique o,∆′
2, µ) and

(c.2)∆′
2;µwf and (c.3)µwf and (c.4)µ{o} = f ′ : P ′ = v′ where P is some unique state s {f ′ : P ′}

and TD = f ′ : P ′ and D = f ′ : P ′ = v′

(e) let µ′′ = µ \ o by math

(f) let D′ = D \ f by set theory

(g) f : P = v ∈ D by (T.2)

(h) o!f@µ 7−→ v@µ′′, o→ D′ by rule E-Call-Uni on (g), (c.4), (e), (f)
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∆ ` e : P a ∆

∆, x : P ` x : P a ∆
T-Var

∆, o : P ` o : P a ∆
T-Loc

∆1, x : P ` e : Pr a ∆′
1, x : P ′ domain(∆1) ⊂ domain(∆)

∆ ` λx:P,∆1⇒e : immutable (Πx.(P,∆1 � P ′,∆′
1 → Pr)) a ∆

T-Abs

∆ ` v2 : P a ∆′

∆′ = ∆1,∆2 ∆′ ` v1 : immutable (Πx.(P,∆1 � P ′,∆′
1 → P ′′)) a ∆′

∆ ` v1v2 : P ′′ a ∆2,∆
′
1, v2 : P ′ T-App

∆′
1 `∆ ∆1 ∆1 ` e1 : P a ∆2 ∆2, x : P ` e2 : P ′ a ∆3

∆′
1 ` let x = e1 in e2 : P ′ a ∆3

T-Let

∆1 ` v : unique T a ∆2

D = f : P = v ∆2 ` typecheck(D[state s {f : P}/s]) a ∆3

∆1 ` v ← state s {D} : immutable unit a ∆3, v : unique (state s {f : P})
T-Update

∆ ` new : unique (state s {}) a ∆
T-new

∆1 ` v : perm (state s {TD}) a ∆2 (f : immutable T ′) ∈ TD
∆1 ` v.f : immutable T ′ a ∆1

T-Call-field-imm

∆1 ` v : unique (state s {TD}) a ∆2

(f : unique T ′) ∈ TD TD
′
= (TD[state s {TD}/s] \ f)

∆1 ` v!f : unique T ′ a ∆2, v : unique (state s {TD′})
T-Call-uni-uni

Figure 4: Static Semantics
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∆ ` typecheck(D) a ∆

∆ ` typecheck(∅) a ∆
TC-emp

∆1 ` v : P a ∆2 ∆2 ` typecheck(D) a ∆3

∆1 ` typecheck(D, f : P = v) a ∆3

TC-Rec

domian(∆) = {x}

domain(∅) = ∅
domain-empty

domain(∆, x : P ) = x, domain(∆)
domain-rec

Figure 5: Static semantics Helpers

∆ `∆ ∆

∆ `∆ ∆
Same

∆, x : perm Type `∆ ∆,∅
Drop

∆, x : uni Type `∆ ∆, x : imm Type, x : imm Type
Split-Uni

∆, x : imm Type `∆ ∆, x : imm Type, x : imm Type
Split-Imm

∆ `∆ ∆′

∆, x : P `∆ ∆′, x : P
Split-Rec

Figure 6: Permission splitting
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e@µ 7−→e@µ

(λx:P,∆⇒e)v2@µ 7−→[v2/x]e@µ
E-App

e1 value

let x = e1 in e2@µ 7−→[e1/x]e2@µ
E-Let

e1@µ 7−→e′
1@µ′

let x = e1 in e2@µ 7−→let x = e′
1 in e2@µ′ E-Let-Cong

D = f : P = v o→ {D′} ∈ µ µ′ = µ\o

o← state s {D}@µ 7−→()@µ′, o→ {D[state s {f : P}/s]}
E-Update

o fresh

new@µ7−→o@µ, o→ {}
E-New

µ(o) = D f : P = v ∈ D
o.f@µ 7−→v@µ

E-Call

f : P = v ∈ D o→ D ∈ µ µ′ = µ\o D′ = D \ f
o!f@µ 7−→v@µ′, o→ D′

E-Call-Uni

Figure 7: Dynamic semantics

∆;µ wf

µ wf

∅;µ wf
Heap-Inv-Empty

check loc(perm o,∆, µ) ∆;µ wf µ wf µ{o} = f : P = v

∆, o : perm state s {f : P};µ wf
Heap-Inv-Rec

Figure 8: Heap Invariant
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µ wf

∅ wf
Heap-wf-empty

µ wf o fresh

µ, o→ ∅ wf
Heap-wf-rec-1

µ, o→ D wf o 6= o′ perm o′ /∈ range(µ, o→ D) perm ∈ {unique , immutable }
µ, o→ (D, f : unique Type = o′) wf

Heap-wf-rec-uni

µ, o→ D wf o 6= o′ unique o′ /∈ range(µ, o→ D)

µ, o→ (D, f : immutable Type = o′) wf
Heap-wf-rec-imm

check loc(perm o,∆, µ)

perm o /∈ dom(∆) perm o /∈ range(µ) perm ∈ {unique , immutable }
check loc(unique o,∆, µ)

Check-loc-uni

unique o /∈ dom(∆) unique o /∈ range(µ)

check loc(immutable o,∆, µ)
Check-loc-imm

range(µ) = {perm o}

range(∅) = ∅
range-empty

v is a location

range(µ, o→ (D, f : perm Type = v)) = perm v, range(µ, o→ D)
range-rec

dom(∆) = {perm o}

dom(∅) = ∅
dom-empty

dom(∆, o : perm Type) = perm o, dom(∆)
dom-rec

Figure 9: Heap Invariant Helpers
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