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Abstract
Network Science provides a framework to understand the large-scale discussions that hap-
pen on social media and their impact on society. However, a standard network model of
a conversational network destroys the context that users are interacting within. First, the
interactional context is destroyed. The interactional component of context includes the
content of the conversation in which the users are interacting. When interactional context
is not accounted for, separate discussions are combined into one big network, artificially
inflating the number of nodes and edges in the network. This leads to inaccurate infor-
mation about conversation structure and important actors. Next, the personal context
is destroyed. The personal component of context includes the attributes of the users in-
volved, as observed through their self-descriptions. Long-standing social theory of offline
social communities such as self-categorization place great importance on personal context.
Thus, this context needs to be accounted for to test these theories in the social media
setting.

This thesis provides the theory and methodologies needed to account for both interac-
tional and personal contexts which were previously lost in network analysis of social media
conversations. Specifically, I study the importance of these contexts as they relate to
community dynamics. I find that network structure is indeed dependent on interactional
context, indicating that existing non-contextualized analyses could be improved. When
investigating personal context, I find that the long-standing theory of self-categorization
can be extended from offline social communities to massive online communities, with some
important limitations. Taken together, the dynamic contextualized analysis outlined in
this thesis furthers our understanding of attribute salience in online interactions. Each of
these analyses is performed on multiple case studies, providing both validation and a set
of examples used to detail a list of best practices for contextualized network analysis.
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Chapter 1

Introduction and Motivation

1.1 Overarching Thesis Goal

Many of the central questions regarding social media and its impact on our society boil
down to questions about conversational networks. How polarized are online communities?
What makes fake news spread, and does it spread faster than real news? How does the
incentive structure change how people communicate? These are just some of the many
important questions surrounding social media, but to answer these questions and more we
need to study conversational networks.

Conversational networks are social structures of users who interact with each other as
they communicate online. On platforms like Twitter, Facebook, Reddit, Tiktok, Snapchat,
and Instagram, users interact with each other by sending text or multi-media content in
various forms, including direct messages and replies. The conceptualization of this social
activity as a network enables researchers to quantitatively study the large scale behavior
of users on the platforms. From these networks, clusters of users can be derived, users
can be ranked by their importance, and much can be learned through the structure of the
network itself. These analyses are made possible by the decades of development within the
field of Network Science, which seeks to understand networks, social or otherwise.

Of particular importance is the study of user clusters, which are frequently considered to
be online “communities” among many network scientists. Some scholars, like Tönnies and
Webber, distinguish communitiy from society on the basis of personal versus non-personal
ties. On social media, however, these are indistinguishable. Often only communication
ties are observed, which do contain enough data to make an inference on the type of tie
between the individuals. Many social platforms have a “following” feature, which is more
likely to indicate a personal tie, but this is a noisy measure especially on information
sharing platforms like Twitter. On these platforms, accounts are followed so that users can
obtain information from them, rather than to indicate a social relationship. Thus, social
media studies cannot differentiate community from society. With that in mind, there are
many ingredients that must be met to form a community, depending on the theoretical
framing. These include a shared place, norms, values, beliefs, interests, and frequent social
interaction. The notion that communication clusters can be considered communities is
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built first off of the fact that it gives groups which have frequent social interaction, but
also the assumption that networks are homophilous so that these groups are also likely to
have shared norms, values, or beliefs. Some scholars, such as Wellman, ague that shared
place a requirement for community [239, 240]. The network cluster approach, and the
present work, also take this position. However, the intuition that communication clusters
will also have shared norms, interests, or beliefs based on homophily does not always hold
true on social media. In this dissertation we seek to develop a set of tools that can deal
with these issues arising from online social interaction data.

While the Network Science toolkit has grown to be a vast and powerful set of scientific
analyses, their application to social media data remains a challenge. The underlying as-
sumption in a network analysis, stated or otherwise, is that all interactions are equivalent.
In many scenarios, this assumption is easily satisfied, in others this assumption is met by
careful experimental design. For example, a needle-sharing network may be used to study
risk of HIV in a community of people who use drugs. There, each instance of sharing a
needle-sharing is seen as equivalent in that they are equally able to spread HIV provided
the initial user has it.

However, this assumption is not easily met on social media. Because of this violation,
our analyses are corrupted while we are looking to answer important questions like those
about polarization or the spread of fake news. This dissertation seeks to demonstrate why
this is a problem and to provide a some ways forward.

A classic social network model assumes that an interaction between two people can
be recorded by a simple edge, or a connection between the two. However, interactions on
social media are complex and by reducing this complexity to a simple edge, information
is lost. Throughout this dissertation, the “information” that is being lost is referred to as
the context of discussion. Specifically, we define context as the information surrounding
a social interaction that sheds light on its meaning. We break context down into two
components: the interactional context and the personal context, as illustrated in Figure
1.1.

The interactional context refers to the information about the nature of a specific interac-
tion that helps shed light on its meaning. This dissertation is concerned with conversational
networks, so we also refer to this as the conversational context. Thus, the conversational
context captures what is being said when two users interact though conversation. In figure
1.1, we see two very different types of interactions. In the first, one user asks another
about a soccer game, while in the second the first user accuses the other of attempting
to steal an election. The different interactional contexts give us a different understanding
of why the interaction is taking place and the relationship between the two users. While
this is an extreme example, it should be clear that considering these two interactions to be
equivalent is problematic.

If conversational context is a fitting definition and is easier to understand, why call it
interactional context? The tools and analyses provided in this dissertation apply to more
than just conversational networks. For example, an online community may be centered
around users sharing images with each other. There, the interactional context refers to the
information encoded in the images being shared. The same logic applies, that very different
contexts shouldn’t be combined. Thus, the use of the more general term, interactional
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Figure 1.1: Cartoon illustration of the two types of contexts. Interactional context is shown
on the right, with two very different exchanges between the users. On the left, personal
context is shown. Both types of contexts are dynamic.

context, serves to be a reminder that the problems and solutions identified in this work go
beyond just conversational networks.

Figure 1.2 details a simple example to show how the presence of different interactional
contexts in your dataset can corrupt a network analysis. In this example, we consider
a Twitter dataset collected on the discussion of the Reopen America Protests of 2020,
which sought to end COVID restrictions. In each network, nodes represent users who
are connected to each other when they interact through replies, quotes, or retweets. For
example if one user replies to another’s Tweet, they are connected in the network. We see
that there are three discussions, or three conversational contexts, in the dataset; one about
the protests, one about strategies to reopen, and one about Black Lives Matter, which was
a trending topic at the same time.

The “mixed” view of the network corresponds to the current way of doing network
analysis on social media; all of the interactions from different contexts are combined into a
single network. Within this network, there is no discernible structure. However, when we
consider each interactional context as a separate network, we see interesting structure. In
the case of the protests and the strategy discussions, nodes are roughly grouped in a left
community and a right community. In the case of Black Lives Matter discussion, there is
top-and-bottom structure.

We refer to the networks on the right, those that each correspond to a single discussion,
as contextualized networks, since they control for the interactional context. The first major
goal of this dissertation is to develop a set of tools for uncovering these networks, which give
a much more accurate view of the data compared to the “mixed” networks that current
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Figure 1.2: Cartoon illustration of how contextual mixing can hide community structure.
Networks represent users connected through conversation. Nodes are colored by their
network community. The “mixed” network includes links from all three contexts. This lack
of contextualization hides the community structure seen in the contextualized networks.
After contextualization, we understand that Reopen Protests and Reopen Strategy have
similar structure, while the BLM conversation is very different.

studies operate with. This toolset is developed in Chapter 2. From there, we further
develop a set of tools for understanding the relationship between contexts in Chapter 3.
These tools could tell us, for example, how the conversation about the protests is related
to the conversation about strategies to reopen. These tools also prevent the contextual
mixing illustrated in Figure 1.2 from occurring, which can thus give a better picture of
online communities who are more likely to have shared interests in conversation.

The second component of context in online interactions is the personal context, which
refers to the information about the users themselves which may shed light on their inter-
actions. For example, in Figure 1.1, the users are members of the same political party but
are fans of different soccer teams. This new layer of information can paint interactions in a
new light. As we will see, there is a wide body of work in sociology and social psychology
about how these attributes and their alignment colors interactions. For example, the ques-
tion “what did you think of the soccer match?” seems innocent, but when we know that
the users are fans of opposite teams, we see that this could be a taunting question. Again,
ignoring this information when analyzing conversational networks will limit our analyses.
Thus, it is the second major goal of this work to develop a set of analyses to understand
the personal context of individuals interacting online, and how it relates to the broader
view of online communities. These tools are developed in Chapter 4.

At the community level, the personal context analyses test the extent to which com-
munities found under the shared interaction framework also have shared identity. We find
that these clusters do in fact have shared identity in the form of community prototypes,
which are identity attributes which not only bind the community together, but also distin-
guish it from other groups. While the traditional approach, which clusters mixed-context
data, is shown to give communities with shared identities, we also demonstrate that com-
munities built on conversation-specific ties also have shared identities. That is, we show
that frequency of interaction is in fact correlated with other shared values, despite this not
necessarily being the case. Controlling for the conversations that individuals have gives an
even stricter view of these communities with shared interests and identity.

To summarize, online conversations are complex, and interactions between users are
colored by the interactional context (what they are discussing) and the personal context
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(who they are). Current network analyses do not take this context into account, and as a
result their conclusions are corrupted. In this dissertation, a series of tools and analyses
are developed to properly account for both types of context. This begins in Chapter 2,
where methods for extracting the interactional contexts are developed in order to perform
the network separation observed in Figure 1.2. From there, methods for analyzing the
social dynamics within and between these contexts are developed in Chapter 3. Following
this, a method for studying the relationship between self-descriptions and online social
communities is given in Chapter 4, shedding light on the applicability of offline sociological
theories to the online domain. Lastly, Chapter 5 details a pipeline that demonstrates how
all the tools developed in this work fit together.

1.2 Literature Review

1.2.1 Social Cybersecurity
Perhaps the most pressing area of research relying on a solid understanding of online
communities is the area of social cybersecurity, which is defined in [41] as follows:

Social Cyber-security is an emerging scientific area focused on the science
to characterize, understand, and forecast cyber-mediated changes in hu-
man behavior, social, cultural and political outcomes, and to build the cyber-
infrastructure needed for society to persist in its essential character in a cyber-
mediated information environment under changing conditions, actual or im-
minent social cyber-threats.

Thus, this area of work encompasses a number of important challenges in the information
environment including the spread of disinformation and the measurement of polarization
[40]. Early work on the science of “fake news,” for example, calls for further work to under-
stand its spread and how it is received [84, 128]. At the individual level, network centrality
measures are often used to determine important actors in a conversation. However, these
centrality measures have been found to be sensitive to the quality of the observed network
compared to the underlying network; thus, a de-contextualized network adds “noise” edges
to the point which centrality analysis may be unreliable [27]. These problems are typically
studied at the community-level, and as such, community-detection is often including in
information operation analysis pipelines [228].

Analysis of polarization, too, often relies on analysis of interaction networks and could
thereby benefit from a contextualized approach. Specifically, distinct communities within
retweet networks are often used as evidence of polarization [50, 72, 215]. However, these
analyses do not contextualize the observed retweets. Without this contextualization, it is
difficult to distinguish if communities are polarized because they are supporting opposing
ideas, or they are simply involved in different discussions.

A final example is the problem of stance-detection, where social media data is used to
label users’ position on a topic, e.g., pro or anti-gun control. Note that stance detection
is closely related to the study of polarized communities, however it is methodologically
distinct in that it uses content-based approaches to label users before performing network
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analysis [126]. Stance detection methods such as that in [126], assume that all observed
data is on-topic enough to leverage, however early results of the contextualization process
developed in this thesis suggests that this is not the case. The contextual mixing that
occurs in social media datasets could be harming results of these analyses, and thereby
could be improved by this work.

1.2.2 Community Detection and Clustering
Community detection is the problem of dividing a network into sub-networks, or “commu-
nities” where nodes are more closely related to other nodes within the community than
they are to nodes in other communities [238]. Community detection is a core problem in
the study of network analysis, and as such many methods have been developed in the space
with the dominant approaching being modularity maximization [23, 164, 223].

Two sub-areas of community detection are of particular relevance to this thesis. First, is
the application of community detection to spatial networks, or those where nodes are fixed
at a location in space [62, 169]. Spatial networks are relevant but distinct from contex-
tualized networks. While spatial networks have nodes embedded in space, contextualized
networks can be modeled to have edges embedded in space, where their spatial position
indicates the context occurring in that interaction. Thus, the methods from spatial net-
works will not be directly applicable, but may be worth considering in the development of
new contextualized methods. When it comes to edges embedded in a vector space, classic
clustering techniques such as DBSCAN and its variants are applicable [60, 70, 148, 149, 202]

More directly related is the area of multi-view, multi-layer, or multi-slice networks,
which expands upon traditional networks with the addition of distinct edge types [6, 155].
A contextualized conversation could be modeled as a multi-view network where users are
nodes and edge types represent interactions within different contexts. For example, two
users might have one edge indicating their conversation about sports, and another edge
indicating their conversation about politics. A series of specialized techniques for clus-
tering multi-view networks have been developed that give a single definition of commu-
nities that combines information from all views [51, 109, 157]. This is a useful approach
to incorporating contextual information to improve the quality of detected communities.
This is particularly important due to work that indicates that multi-layer cluster struc-
ture drives the diffusion of information over a multi-layer network [252, 254]. In our case,
this could mean that decomposing social media conversations into a multi-layer network
could uncover diffusion patterns that were obscured through contextual mixing. However,
multi-view clustering’s output of a single definition of communities will not allow for the
comparison of contextualized communities or the analysis of communities shifts between
contexts, as is the focus of this thesis.

All of the methods discussed thus far are traditional in the sense that each node is as-
signed a single community. A more complex approach is overlapping community detection,
or fuzzy clustering, wherein each node can be assigned to multiple clusters [244]. This can
be done extending approaches used in the traditional setting, such as matrix factorization,
or by alternative approaches like link clustering [4, 246]. In the case of link clustering, links
are partitioned into communities rather than edges, which naturally leads to nodes being
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associated with all the communities their connections are. The idea of assigning a node
to multiple communities is no doubt useful for online social networks; users have different
social groups online. For example, a Twitter user might have connections to a group of
friends he talks about sports with and a group of coworkers he talks about the economy
with. Overlapping community detection may be able to sort out this distinction, but we
take a different approach. We control for the context of interaction such that nodes should
only be present in a single community. Using the previous example, if the discussion about
sports and the economy was analyzed as two separate networks, overlapping community
detection is not needed.

Regardless of the community detection algorithm applied to a dataset, the results
must be scrutinized. Different algorithms that maximize different heuristics are likely to
lead to poor results in at least some scenarios. Modularity maximization methods have
found particular scrutiny. Because of the glassy structure of modularity, different runs
on a stochastic modularity maximization can lead to very different network partitions
[81]. Further, because modularity maximization methods are heuristic-based and not built
off a generative model, they are unable to determine scenarios where there are no valid
communities in a dataset [179]. Even when considering other approaches, the structure of
large-scale communities has been called into question with a large study that suggests that
much of the community structure in very large networks is occurring on a scale too small
for methods like modularity maximization to pick up [131].

With this said, modularity-maximization methods like Louvain and Leiden remain the
dominant approach to studying large-scale community structure because they are some
of the only methods that can be easily run on networks with millions of nodes. Instead
of applying more complex and less scalable approaches to find communities, we simply
ask: are the communities obtained from methods like Leiden clustering valid? In terms
of validity, we turn to an aspect of the social media data independent of the clustering:
the identity attributes of the members of the community. As Turner has argued, shared
self-definition through social attributes is more important for group membership than the
structure of the group’s interactions when understanding communities [224]. Thus, by
showing that the conversational clusters have a shared sense of social identity, we provide
validity to the clusters.

1.2.3 Dynamics of Network Communities
Understanding the dynamics of network communities is another core area of work in Net-
work Science, however the prevailing models are difficult to apply to social media data. A
popular approach to modeling network dynamics is to use network snapshots, which model
the dynamic network as a sequence of static networks, usually constructed from the edges
occurring within fixed time windows [180, 181, 218]. Snapshot-based approaches have also
been developed on temporal networks [104, 105, 145]. These approaches then compare the
snapshots, either at the network level or based on community structure. Such comparison
is not possible in social media datasets, where there may be little overlap in the users
present in different snapshots, and where adjacent snapshots may have networks that dif-
fer in size by orders of magnitude. While snapshot-based approaches have some, but not
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enough, tolerance for the transience of nodes seen on social media, statistical methods are
even more restrictive. Many statistical approaches, such as the stochastic actor-oriented
model assume near perfect knowledge of node connections, measured at regular intervals,
which is far from the data seen on social media [168, 211, 212].

Trails are another approach to understanding network community dynamics that is
relevant for this thesis [16, 38]. Trails can be used to model nodes’ transitions between
semantic states while accounting for the time between these states. For example, in [38],
trails modeled how terrorist organizations transitioned between different types of attacks.
In this thesis, trails will be used to understand how users transition between contexts.

1.2.4 Story and Topic Detection
For the problem of content-based contextualization, the areas of topic detection and story
detection are very relevant as they both make use of social media text to better understand
the context of a post. These methods are slightly different than the notion of context that
I will use in this thesis, as will be explained. Also, there is little work that goes beyond the
detection and analysis of a topic or a story to understand how they relate to community
dynamics.

Topic detection seeks to uncover patterns, or “topics” in a collection of text documents
[21]. These topics are typically characterized by their most prominent and frequent words.
There are many topic detection models that have been developed, including a number of
methods that have been designed specifically for social media by leveraging the brief nature
of social media posts and the presence of hashtags [9, 46, 63, 107, 140, 233, 236, 255].

While topics can be distilled to a series of words stories often have a notion of a topic
tied to a specific event. Story detection methods build on topic-based approaches to find
temporally prominent topics corresponding to events that occur during data collection
[7, 8, 58, 172, 213]. Again, these models predominantly leverage social media text, but also
use temporal patterns.

For this thesis, a method of accounting for context will be developed similar to the
techniques used in topic and story detection. However, the method will expand on the
usage of text by including both hashtags and URLs, as well as the conversational structure
directly.

1.2.5 Machine Learning on Networks
Recent developments in machine learning will enable the content-based contextualization
method developed in this thesis. The machine learning community has seen increasing
interest in deep learning methods applicable to graphs. These approaches work by con-
verting network-based data into vector-based data. Some approaches use random walks to
generate sequences of nodes which can then be fed to a skip-gram architecture to embed
nodes in a vector space based on network structure alone [85, 182] More commonly, node
attributes (in vector form) are required. Nodes can then aggregate information from their
local neighborhoods to obtain their vector embedding [39, 43, 160, 234]. This has led to a
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large area of research into what type of aggregation scheme nodes should adopt in different
scenarios [31, 90, 122, 230].

A graph-based framework can be used to model Twitter posts, as each post may be
connected to other posts (replies or quotes), hashtags, and URLs. Thus, a twitter dataset
can be seen as a heterogeneous network connecting tweets, hashtags, and URLs. Repre-
senting this network in a vector space enables contextualization of interactions observed in
Tweets. The majority of information in a tweet is encoded in the tweet’s text, which could
be represented by a vectorized node-feature using a variety of different natural language
techniques [24, 55, 115, 152].

Until recently, feature-based methods required supervision or some labeled training
data to work with. However, Deep Graph Infomax has been developed as a framework for
learning feature-based representations of graphs in an unsupervised manner using mutual
information [231]. Further, this has been expanded to heterogeneous networks [191, 231].
These methods will be at the core of the contextualization model developed in Chapter 2.

1.2.6 Networks and Identity
For the other type of context considered in this thesis, personal descriptions, there is a
wide area of prior work. Sociology has long been concerned with how internal processes
play out at the community level. The specific theories most relevant to the connection
between individual attributes and community dynamics are social identity theory and
self-categorization theory [19, 92, 96, 100, 101, 102, 108, 176, 225, 226]. These theories
posit that the concept of self is defined in terms of attributes and these attributes are
selected with respect to the community that an individual is or wants to be a member of.
Self-categorization theory outlines the idea of a “community prototype” or a collection of
attributes that would belong to a prototypical member of that community.

Social theory states that members are aware of these prototypes and are aware of how
their attributes compare to it. The theory posits that these relationships are key factors in
tie formation and group dynamics. Specifically, people with prototypical attributes have
higher potential for leadership roles. Conversely, community members who are poorly
aligned with the group prototype will seek to conform to the group to improve their status.
The theory of prototype adoption is quite similar to models of correlated information
spread, where abstract bits of information are spreading along a network, but the adoption
of these bits of information can be correlated [253]. This is similar to prototype adoption
in that a number of attributes are potentially being adopted across a network, pairs of
attributes within a prototype are positively correlated, while those between prototypes are
negatively correlated.

It has been found that Twitter users do signal their social identity in their biogra-
phy [176]. Further, there is evidence that user self-description alignment is associated with
content propagation on Tumblr [249]. These studies provide evidence that community pro-
totypes may exist on large social media platforms like Twitter, but they offer no method
for directly testing this hypothesis, as I outline in Chapter 4. Beyond testing the pres-
ence of community prototypes, further tenets of the social theory can then be tested and
connections between personal attributes and contextual dynamics can be explored.
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1.2.7 Community-Aware Centrality
An emerging area of research of relevance to the study of networks and identity is that of
community-aware centrality [141, 186]. Traditional centrality measures, such as Pagerank,
are concerned with quantifying the importance of nodes in a network [25, 173, 238]. These
measures are a function of network structure only. However, it is well understood that
community structure is an important feature of real-world networks. Thus, community-
aware centrality quantifies each node’s importance with respect to the given definition of
the network’s community structure [75, 76, 88, 186].

This field within Network Science is relevant to the thesis as it can allow for the
measurement of how important attributes are relative to communities of users. Exist-
ing community-aware centrality measures, however, do not allow for the measurement of
contribution (a signed quantity), and do not allow for the measurement of importance
with respect to a specific community, instead giving a single score for the full network.
Thus, Chapter 4 in part develops modularity vitality to solve these issues, building on the
concepts of network vitalities and the key-player problem [25, 26]. Modularity vitality has
since been published and has been verified as an important quantity by outside researchers
[141, 187].

1.3 Data
This thesis makes use of 5 core datasets throughout its chapters. These each offer unique
features meant to best test the methods being developed. Further, the use of multiple
datasets results in multiple case studies of the community dynamics under investigation,
providing a more robust understanding of the phenomena being examined. Each dataset
and its purpose are now explained.

1.3.1 Reopen America
The Reopen Twitter dataset was collected from April 1 to June 22 in 2020 to understand the
discussion of the reopen America protests [13]. The dataset was collected using a keyword
search using terms such as “reopen” and “openup,” including each US state’s abbreviation
appended to the terms, e.g., “reopenNY.” One year after collection, the reply trees were
crawled to get a better view of the full conversation. The resulting dataset has 10 million
unique tweets across 3.3 million users. At the time of the collection, the Black Lives Matter
movement became a major point of discussion and resulted in significant context mixing.
The context mixing occurring in this dataset makes is a prime candidate for analysis,
both to test the developed method’s ability to distinguish context and to demonstrate its
importance. Thus, this dataset is used in all analysis chapters of the thesis, Chapters 2-5.

1.3.2 2020 US Elections
The Election Twitter dataset captures online discussion of the most contentious elections in
recent US history. False claims of voter fraud and a stolen election were rife on Twitter and
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are present in this dataset. These claims have since been named “The Big Lie” and have
had a lasting impact on American politics 1. The dataset was captured using a keyword-
based stream of Twitter’s API from November 2 2020 to November 8 2020. This allowed for
the capture of data one day before election night, which was November 3 2020, and one day
after major news outlets declared Joe Biden the winner on November 7 2020. The keywords
2 were selected in order to maximize conversation around the election. This includes general
hashtags, campaign hashtags, and mentions of prominent figures in the election such as
Trump, Pence, Biden, and Harris. It also includes hashtags relating to anticipated election-
related issues, such as the Black Lives Matter movement, US Sanctions on Iran, issues with
voting-by-mail, and claims of voter fraud. The collection resulted in 4.5M tweets. Unlike
the reopen dataset, there is no competing discussion present. Thus, the election dataset
presents the “normal” scenario where keywords search alone provides moderately successful
contextualization. Also, this dataset spans a much shorter time period than the Reopen
dataset, which can give examples of dynamics occurring on different time scales. Because
this dataset offers contrast to the Reopen America dataset, it is also used in all analysis
chapters of the thesis, Chapters 2-5.

1.3.3 Ukraine Legislature
The Ukrainian Legislature dataset is the record of all Ukrainian legislative votes cast in the
22-month span of the 7th convocation of the Rada. The Ukrainian revolution of 2014 occurs
midway through the convocation, drastically changing the political allegiances observed.
While this network is extremely different than the data seen on social media, it provides
an example of a large, ground-truth change in communities to detect. As such, it is used
to validate the community dynamics method developed in Chapter 3.

1.3.4 Captain Marvel
The Captain Marvel Twitter dataset was originally collected by Babcock and Carley, and
aims to capture discussion around the premier of Captain Marvel, Marvel’s first female-led
superhero movie [14]. The main keywords used for dataset collection include: #Captain-
Marvel, Captain Marvel, Brie Larson, Alita, SJW, Feminazi, #BoycottCaptainMarvel, and
#AlitaChallenge. The initial goal of this dataset collection was to study the development
of misinformation and counter-narratives around the movie. Because of this, the collection
procedure is more complex than that of the other datasets, and we refer to the original
paper for those details. This dataset was included for the purpose of demonstrating an

1https://www.npr.org/2022/01/05/1070362852/trump-big-lie-election-jan-6-families
2Keywords used for data collection: #election2020, #presidentialelection, #democrats, #republi-

cans, #JoeBiden, #BidenHarris2020, #Biden, #MAGA, #KAG, #VoteByMai, #USPS, #SaveTheUSPS,
#voterfraud, #BlackLivesMatter, #BLM, #reopen, #reopenamerica, #IranSanctions, #QAnon,
#WWG1WGA, ”natural born”, @JoeBiden, @realDonaldTrump, @POTUS, @Mike_Pence, @VP, @Ka-
malaHarris, @SenKamalaHarris, @USPS, @CoryGardner, @SenCoryGardner, @Hickenlooper, @Perduesen-
ate, @sendavidperdue, @ossoff, @joniernst, @SenJoniErnst, @GreenfieldIowa, @SenSusanCollins, @Senator-
Collins, @SaraGideon, @SteveDaines, @stevebullockmt, @GovernorBullock, @ThomTillis, @SenThomTillis,
@CalforNC
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implicitly political dataset. While other datasets contains discussion on topics that were
overtly political, such as the 2020 election and how the government should handle the
pandemic, this dataset contains more of a mixture of political and non-political content.
Thus, this dataset potentially provides a different set of communities to observe in Chapter
4.

1.3.5 Coronavirus
The COVID Twitter dataset is the largest dataset examined in this Thesis. It was col-
lected using a keyword-based stream of the Coronavirus discussion resulting in 77 million
tweets from the following keywords: coronaravirus, coronavirus, wuhan virus, wuhanvirus,
2019nCoV, NCoV, NCoV2019, covid-19, covid19, covid 19. The Twitter API does not
allow for retroactive collection of a user’s profile information. Instead, a user’s profile
information can only be obtained by direct query or by observation when a user’s tweet
enters a collection. This makes tracking the evolution of a collection of a group of users’
attributes over time difficult. It is also effectively impossible to track the evolution of
attributes over an unexpected event.

The long-standing collection of the Coronavirus discussion, however, resulted in a lon-
gitudinal picture of users’ profiles who were active in the discussion of the virus. The
coronavirus discussion was general enough to include users across many different interests.
Further, the dataset spans the murder of George Floyd and the subsequent rise of the Black
Lives Matter Movement. Thus, this dataset is uniquely positioned to study the dynamics
of user attributes at the community level, and to specifically study the adoption or lack
of adoption of attributes in support of Black Lives Matter, a highly polarizing issue. This
will be studied in Chapter 4.

1.3.6 Specialized News Discussion
As part of the analysis pipeline detailed in Chapter 5, a series of best practices in data
collection will be provided. The first goal is to provide a set of procedures that researchers
can follow to yield the best results from the tools outlined in the previous chapters. The
second goal of this dataset is to directly demonstrate the robustness of the methods as
well. The collection will maximize the conversational connections between Twitter users
through the new Conversation Collection feature of Twitter’s V2 API 3. This feature en-
ables the collection of full reply trees, which were previously unobtainable. With more of
the conversational structure available, it is expected that this specialized dataset will be
contextualized in a clearer way than the other datasets, providing a useful case study to
demonstrate the full contextualized analysis pipeline.

Initially, all tweets containing news links from 6 news agencies will be collected within
one day. The six agencies have been chosen to represent different types of popular news
agencies, which may drive different types of conversations, thereby acting as a robustness

3https://blog.twitter.com/developer/en_us/topics/tools/2020/introducing_new_twitter_a
pi
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test for the analyses. The news agencies are as follows: two direct reporting agencies
(Reuters and Associated Press), one American left-leaning (CNN), one American right-
leaning (Fox), and two state-sponsored agencies (CGTV and RT). The conversation col-
lection will then be used to obtain the full threads surrounding news-related posts on that
day. This will result in large number of conversations talking about different topics from
different points of view. This dataset will be collected and used in Chapter 5 which will
cover application of all the tools developed in preceding chapters.

1.4 How to Read This Dissertation
This dissertation was intended to be read in a linear fashion, proceeding from one chapter
to the next, where each chapter investigate the types of contexts shown in Figure 1.1.
However, there are alternatives depending on the interests of the reader. Interactional
context is considered in Chapters 2 and 3. Chapter 3 directly builds off of the methods
developed in Chapter 2, so if interactional context is of interest to the reader these chapters
should be read as a pair. Personal context is considered in Chapter 4, and can be read as
a standalone chapter. Chapter 5 gives the full contextualized pipeline, which details how
all of the analyses fit together. So, for those interested in applying contextualized network
analysis to their own research problems, or those looking for a high-level overview of the
work, it could be beneficial to start with Chapter 5 and visiting the previous chapters for
more details, as needed.
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Chapter 2

Contextualizing Social Media
Conversational Networks

In this chapter, we demonstrate that standard social media analysis mixes many different
types of interactions together, even on clean datasets. This introduces tremendous amounts
of noise to the derived social networks, and network analysis is notoriously sensitive to noise
[27, 68]. We propose two methods of reversing this problem, which not only provides a
more accurate view of online communities, but also gives insights into the dynamics of
large-scale conversations to be explored in the following chapter. The different types of
interactions considered in this chapter are a result of differing interactional context, which
refers to the data surrounding an interaction between users which gives that interaction
meaning. We will use this term interchangeably with conversational context, since all of
the data we consider are from social media conversations.

Historically, social network analysis has always relied on proper contextualization of
social interactions, however this contextualization has typically been done as part of ex-
perimental design and data collection [110, 153, 250]. By the time the network analysis
takes place, the contextualization has been taken for granted. For offline social networks,
contextualization has been traditionally done by scoping the measurement of social inter-
actions within a physical space: a conference, an office, a school, etc. Situating a social
network within a single context provides a clean dataset and allows for interpretable anal-
ysis.

Consider a network of coworker interactions. Central members in the a network can be
seen as information brokers within the office. Including information about how the workers
interact outside of the office provides more information but can also muddy the analysis.
Adding out-of-office connections to the initial network is likely to affect who the central
actors are, what the community structure is, and the general topology of the network.
While this denser network encodes more information, it also conflates two types of edges;
workers will interact with each-other differently according to where they are. Thus, it
is more appropriate to study the contextualized networks and the relationship between
them. This may include studying changes in centrality and community structure from one
context to another. Contextualization not only improves the specificity of the claims that
can be made from the original network analysis, but also adds new information about the
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relationship between contexts.
This problem is illustrated in Figure 1.2. This simple scenario details 3 different social

contexts with one having much different community structure than the others. A stan-
dard or decontextualized analysis mixes all of the edges together and hides all community
structure. Networks analyses are known to be sensitive to data quality, making this an
important problem [27, 68]. A contextualized network, on the other hand, will recognize
that these ties are in fact multi-plex. Our goal, then, is to determine the classes of these
ties and to give them interpretable labels.

Methods for contextualizing social networks to date have leveraged simple property of
offline networks: people can only be in one place at one time [145]. The result of this
obvious fact is that offline social contexts occur in sequences. For example, someone might
go to work, then go to a restaurant to meet their friends, and finally return home to their
family. This then creates 3 sequential social contexts: interactions among co-workers,
friends, and family. Dynamic network analysis methods have leveraged this sequential
structure can be leveraged to identify network “states,” effectively contextualizing these
interactions.

Online communication is different. Social media platforms such as Twitter are designed
for users to engage in vastly different discussions simultaneously1, ruining the sequential
structure of contexts. Without this sequential structure, existing dynamic network ap-
proaches are inapplicable.

Differing interactional context for social media data is illustrated in Figure 2.1. In
typical models of Twitter networks, one user mentioning another user is modeled as an
edge between the two. However, not all mentions are the same; they can differ both in the
content and in the information they reveal about the relationship between users. In this
example, the first interaction is discussing sports in a way which may indicate a friendly
relationship between the users while the second interaction is discussing an election, where
there is a power differential and hostile relationship between the users. Typical models
collapse this rich information into a simple edge, making these wildly different interactions
look equivalent.

Here, we only consider the content of interactions, leaving the implication about the
pair’s relationship for future work. Though interactional context can be thought of as the
topic at hand, “topic” has a fairly narrow connotation for computer scientists who are
familiar with topic models applied to textual data. On social media, the context of an
interaction goes beyond words. Users often interact with others using emojis, images, and
videos as well.

Researchers attempt to account for this by scoping the data collection to a specific topic
or event. On Twitter, the available filters for data collection include keywords, specific
users, and geographical bounding boxes. After applying these filters, researchers assume
that the data are reasonably contextualized about a certain event or topic. However, a

1Technically, people can only send one Tweet at a time, so they are actually oscillating between conver-
sations rather than simultaneously being engaged in them. The distinction for online interactions is the
time-scale of state changes. Online discussions play-out over hours, while users switch between conversa-
tions within minutes. This mismatch in timescales creates the ability for users to be in multiple discussions
“simultaneously”
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Figure 2.1: An example of two interactions with wildly different interactional contexts.

related area of research, story-detection, has demonstrated that multiple events or “stories”
have separate discussions occurring even within filtered datasets [213]. We will further show
that contextual mixing is still a problem in keyword filtered datasets. A cursory proof of
this issue is given by visualizing the top hashtags in the Reopen dataset in Figure 2.2. While
many hashtags are related to the reopen discussion and protests, there are also many Black
Lives Matter hashtags, indicating that there is a major contextual mixing problem.

Figure 2.2: Hashtag cloud of the Reopen dataset with hashtags sized by their frequency.

Properly contextualizing online conversational networks is critical given their impor-
tance within the field of Social Cybersecurity [40, 41]. Online conversational networks are
deeply integrated into the methods for studying and understanding information operations
[84, 128, 228]. Thus, accurate representations of the conversational networks are necessary
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to understand the information space.
In the following sections, we propose a simple labeling approach for contextualizing

Twitter networks from first principles. We then propose an unsupervised deep learning
approach, which would enable the contextualization of social media conversations without
requiring hours of work from human annotators. Different configurations of the model are
experimentally compared so that the most expressive model configuration is chosen. Then,
the results are validated against our simple labeling approach. Lastly, we demonstrate that
contextualization has major impacts on network analysis in two major areas. First the
nodesets of contexts are compared, where we show that the most fundamental attribute of
networks can have significant differences between contexts. Then, we compare the results
of contextualized vs. mixed-context centrality analysis. There, we see the detection of
central nodes is severely corrupted when two different conversational contexts are mixed.

For robustness of results, we apply our methods to both the Election and the Reopen
dataset throughout the chapter.

2.1 Related Work
Social connections must occur in the same context for social network analysis to work
effectively. What constitutes the “same context” depends on the study. For example,
if a study seeks to understand the spread of information in the workplace, the inclusion
of connections outside the workplace may be inappropriate. If the study instead was
looking to measure epidemic spreading, all interactions are appropriate to include. In many
settings, and particularly for offline networks, this is an extremely easy requirement to meet
which is easily satisfied though data collection processes such as observing connections in
a specific place.

For offline networks, dynamic analysis methods have been developed to detect sequences
of network states, finding that datasets observed over longer time periods contain multiple
contexts [139, 145, 181]. In one example, changes can be observed from how students inter-
act at lunch compared to in the classroom [145, 181]. Students interact differently in the
lunch context than they can in the classroom context. In another example, changes are ob-
served in how Ukrainian legislatures cooperate before and after the Euromaidan revolution
[139]. An upheaval in socio-political context disrupted friendships and rivalries between
politicians. These studies find that the community structure and central actors can be
very different from context to context, and that combining contexts leads to an inaccurate
representation of the network. Accounting for contexts has also led to improvements in
the modeling of processes occurring on the networks [180].

For online social networks, however, contextualization is not an easy task. Two related
fields have shown that social media data often contains multiple entangled contexts: topic
modeling and story detection. Topic modeling seeks to uncover a selection of different
semantic contexts, or “topics” which occur within a collection of documents [21]. Tradi-
tional topic models such as LDA are poorly suited for the extremely short documents in
Twitter data, leading to topic models specifically designed for short texts [46, 107, 255].
Alvarez-Melis and Saveski found Tweets can aggregate information from their conversa-
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tional context to improve topic representation [9]. Other topic detection models have been
developed which specifically leverage the hashtag feature of Twitter data to obtain topics
[63, 140, 236]. Methods differ, but all of these works successfully demonstrate the presence
of multiple semantic contexts in Twitter conversations.

Topic modeling demonstrates that entirely different things may be discussed in the
same Twitter dataset, while story-detection shows that different contexts can occur even
within very similar topics. Story detection seeks to uncover “stories” or discussions tied to
specific events [7, 8, 183, 213]. First-story detection and event-detection are very related,
as they seek to identify the first Tweets breaking the news of a story developing, compared
to more general story-detection, which detects all the Tweets in the discussion of that story
[172, 183, 233]. In any case, detected stories are separate contexts which could otherwise
be considered the same topic. For example, story detection applied to Donald Trump’s
twitter timeline can distinguish within-party arguments from between-party arguments,
which both belong to the topic of federal US politics [58]. Another example applies story
detection to the Twitter discussion following the police killing of Michael Brown [213]. Here,
fine distinctions of context are made, such as the difference in discussion of the police-lead
smear campaign against Michael Brown from the discussion of the robbery that Brown
committed early in the day of the shooting. This is to say that both topic modeling and
story detection develop methods of uncovering discrete conversational contexts on social
media, and thereby demonstrate that these contexts exist. These works do not, however,
investigate the implications of this finding for social network analytics.

While dynamic analysis can leverage the sequential structure of human movement in
offline networks, this is not possible with online networks. The studies in topic modeling
and story detection show that conversations within these conflicts can occur simultaneously,
with users rapidly switching between contexts. And while methods from topic modeling
and story detection can be used to uncover conversational contexts, existing methods
don’t typically leverage all of the available indicators of context simultaneously: Tweet
text, hashtags, URLs, and the conversational graph.

Advancements in graph neural networks enable us to develop a new architecture for
unsupervised Tweet representation which leverages all of the available data and places
Tweets in a continuous space. Older methods of unsupervised node representation relied
on random walks or “surfs” to obtain local information which can be encoded in node
vectors [39, 85, 182]. These methods do not rely on node features to obtain their repre-
sentations, in contrast to the graph convolutional networks that are typically used in the
semi-supervised or supervised setting [90, 122]. Node features are necessary for Tweet rep-
resentation because they are used to represent the actual contents of a tweet, the tweet’s
text.

Methods leveraging node features have been used applied to model social media users in
a number of supervised settings, including the detection of hateful users, and the prediction
of locations. [57, 175, 193]. Perhaps the closest related model to ours is that of Nguyen et
al., who used unsupervised embedding methods such as BigGraph for users, hashtags, and
URLs, before combining them in a supervised Retweet prediction model [130, 167].

While models leveraging node features have been developed for social media, a mecha-
nism for training them in an unsupervised manner was not available. Deep Graph Infomax
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(DGI) filled this gap by outlining an unsupervised training procedure for feature-leveraging
approaches through the principle of mutual information [231]. Similar to Structural Deep
Network Embedding (SDNE), DGI derives an objective function in the unsupervised set-
ting so that the architecture has something to optimize [234].

Because DGI is a methodology for training, the specific architecture for node embedding
is customizable, similar to the HARP procedure [43]. Later in this chapter, we develop
a custom GCN-based architecture for representing Tweets, which uses the conversational
context, hashtags, and URLs, which is then trained with DGI on a real dataset. We use the
obtained Tweet representations to contextualize user-to-user interactions and demonstrate
the importance of contextualized network analysis.

2.2 Simple Labeling Approach
Before diving into a complicated model with many parameters, we consider a simple initial
approach. First, content is manually categorized into different contexts. Next, labels are
propagated to Tweets referencing the label content. Label propagation continues until no
more Tweets can be labeled.

Manual content annotation begins with URLs. URLs contain rich information about
the makeup of large Twitter discussions, as they often report on the top events that are
being discussed. Annotation of URLs will give the analyst a quick understanding of what
the major conversational contexts are in the data. We assume that any Tweet linking a
URL is a part of the same conversational context as that URL. Based on this assumption,
URL labels are propagated to all Tweets that use the labeled URLs. For example, if a
URL is labeled as part of the “Reopen Protest” conversation, a Tweet linking to that URL
is also labeled as part of the “Reopen Protest” conversation. This assumption enables us
to quickly label contexts across user communities. To most efficiently label data, URLs
are sorted based on the number of times they appear in the dataset. As the annotator
goes through the sorted list, dataset coverage will be increased, though there is diminishing
returns since most datasets have many URLs that are posted by few users. Tweets which
post URLs with conflicting labels are not considered, though they are flagged for the
annotator as an indicator that some labels may need to be reconsidered.

Next, the dataset’s top Tweets are annotated. While URLs capture much of the dis-
cussion, viral Tweets are essential to label to truly understand a dataset. For example,
President Donald Trump’s Tweets in support of the Reopen Protests generated a lot of
the discussion surrounding the protests. While there are URLs linking to news stories that
discuss his Tweets, the Tweets themselves are in the dataset and should be labeled. Similar
to URLs, Tweets are sorted according to the number of likes or Retweets they received,
and are then labeled.

The question of how annotators should label data is unfortunately subjective. However,
the process is not too dissimilar from interview coding, and so we can draw from the
best-practices available there [242]. These seem like separate problems, however both
consider data where users are free to enter their responses how they see fit and the outcome
categories are not predefined. In our case, we know that categories can generally be thought
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of as a conversation.
So, like in interview coding, the annotation should be done in multiple phases. In the

first phase, content is annotated in the most specific form. For example, an article about
the implications of Trump tweeting “LIBERATE MINNESOTA!” is taken to be a conver-
sation about just that. Next, an article about the implications of his Tweet “LIBERATE
MICHIGAN!” will be taken as a separate annotation. The process continues. In the sec-
ond phase, the annotator reviews their categories and looks for patterns to combine and
resolve. In our example, clearly the two Tweet contexts are related, so they can be merged
into a general “Trump’s Liberate Tweets” category. The process continues until the an-
notator feels that the right balance is struck between the expressiveness of the categories
and their ability to combine related conversational contexts. This criteria’s vagueness feels
unsatisfactory, however conversational context’s hierarchical nature makes it difficult to do
much better. Researchers working on sub-story detection recognize that no matter how a
“story” is defined, sub-stories can be derived [213]. It is up to the analyst to draw these
lines and deal with the implications. This issue provides some motivation for the deep
learning approach detailed in Section 2.3, which seeks to automatically discover contexts,
leaving the decision making up to the clustering algorithm.

Lastly, the hand-labeled and URL-labeled Tweets are propagated through the con-
versational network. As a reminder, the conversational network connects Tweets to other
Tweets when they Retweet, quote, or reply to them. Thus, if we begin with a single labeled
Tweet, in the next step, all the Tweets that Retweet, quote or reply to our labeled Tweet
will obtain the same label. In the next step, the propagation will continue from all the
labeled Tweets. Again, Tweets with conflicting labels are permanently not labeled. The
propagation terminates when labeled Tweets have no remaining neighbors to propagate to.

Label propagation is not guaranteed to reach all nodes, so in most cases a portion of the
dataset remains unlabeled. To see why this is the case, consider a single Tweet which does
not include a URL, and is never Retweeted, quoted, or replied to. This Tweet is an isolate
in the conversational graph, so the only way for it to receive a label is if it was manually
annotated, which is unlikely since it had such little engagement. More generally, if a
component in the conversational graph does not have any seed labels, all of its nodes will
remain unlabeled. Large but disconnected components are not common on Twitter, where
linking Tweets is pervasive and a giant component forms quickly. However, it is possible
when there are extremely isolated communities or there are communities with structural
isolation such as those that speak different languages. In those cases, more sophisticated
annotation schemes may be required than the simple rank-and-annotate method detailed
here.

The approach assumes that a interacting Tweets (Retweets, quotes or replies) are part of
the same context as the initial Tweets. This assumption is based on the inherent nature of a
conversation, where one party responds to another. However, over time conversational drift
(or topic drift) may be a problem [98]. Drift occurs between interlocutors when interactions
slightly change the topic of discussion. The small changes add up over the course of many
interactions, leading to an entirely different topic of discussion. This concept is familiar
to those of us whose conversations with relatives, no matter the starting point, end in a
discussion about politics. Label propagation is unable to account for drift unless one of the
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new-context-interactions is in the set of manual annotations. However, empirical analysis
of our datasets show that they are shallow. In the Reopen dataset, for example, 90% of
Tweets are within 2-hops from root Tweets, or those which post original content not linking
to other Tweets. Thus, there are not enough back-and-forth interactions in these shallow
conversations for conversational drift to be a problem, so our propagation is valid.

2.2.1 Interactional Contexts in the Reopen Dataset
For the analysis of the Reopen dataset, the 150 URLs that were Tweeted the most and 200
Tweets with the most likes2 were hand annotated according to their conversational context.
President Donald Trump’s Tweets garnered especially high interaction, so his 25 Tweets
with the most likes were also annotated, including those which fell into the top 200. This
procedure resulted in 39 conversational contexts, the top 5 of which were Petitions, Liberate
Tweets, Lowes Donation, Reopen Strategy, and Black Lives Matter, in terms of number of
Tweets labeled. The explanations of all contexts are provided in Appendix A. Through
this exercise alone it is clear that there were multiple conversations mixed together in the
data that need to be filtered out to perform proper network analysis. Finally, the label
propagation method was applied resulting in 2.1 million labeled Tweets.

2.2.2 Interactional Contexts in the Election Dataset
For the analysis of the Election dataset, the 100 URLs that were Tweeted the most and 100
Tweets with the most likes were hand annotated according to their conversational context.
This procedure resulted in 38 conversational contexts, the top 5 of which were Claims of
Fraud, Spam, Election Updates Biden Campaign and Trump Campaign. The explanations
of all contexts for this dataset are also provided in Appendix A. Again, there are clearly
distinct contexts present in the data. Finally, the label propagation method was applied
resulting in 756k labeled Tweets.

2.3 A Deep Learning Approach
While the previous method results in interpretable labels derived from first principles,
there is a substantial burden on the annotator in terms of the time and cognitive load
that manually uncovering contexts requires. An automated approach could relieve this
burden by categorizing Tweets without human input. Automation also could remove the
ambiguity of decide how content falls within closely related contexts.

While there are many approaches that can be taken to automating this problem, a deep
learning approach has some distinct benefits. To be clear, a deep learning approach to this
problem would learn a vector representation of content (e.g., Tweets), which can then be
clustered into discrete contexts. The primary benefit is that a deep learning approach
has the power to acknowledge that contexts can be closely related. Because content is

2Sorting by Retweets gave nearly the same ranking, though Tweets are liked more than they are
Retweeted, making them a more sensitive measure.
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represented in a vector space comparisons between contexts can be quantified through a
distance function. A secondary benefit of a deep learning approach is that the methodology
provided in this section can be used as deep learning approaches continue to advance. Thus,
we can piggy-back off of advancements in deep learning to improve our representation of
online conversational communities.

It should be noted that there is no free lunch here. Automation in the discovery
of contexts does not free analysts from manual investigation into what the uncovered
contexts represent. However, the task of interpretation is more straightforward than that
of annotation and we provide some simple tools to help analysts quickly interpret contexts.

In the following subsections we will introduce a deep learning approach to automatically
contextualize Twitter data.

2.3.1 Data Cleaning
Tweet text was cleaned by first removing all URLs, hashtags, and mentions. Next, punc-
tuation was removed. Finally, text was tokenized in preparation for the text embedding
discussed in the Methodology section.

The procedure for URL normalization was as follows. First, text before the domain
name was removed. Next, URL parameters were removed for links with domains other
than “facebook”, “google”, and “youtube.” These parameters commonly store information
about the user who shared the link, among other things. The presence of these parameters
prevents direct matching between URLs. For “facebook”, “google”, and “youtube,” how-
ever, these parameters are used to point to the actual destination, so cannot be removed.
“Amp” links were converted to non-amp links. Lastly, youtube.com and yout.be links were
all converted to the yout.be format.

All links to twitter.com were not considered to be typical URLs, as they are either links
to media or quotes of other Tweets. Links to media were not included, while the metadata
from quote-links was used to add the appropriate quote-edges in the tweet-Tweet network
discussed below. Hashtags were lower-cased, as case does not affect their functionality.

2.3.2 Heterogeneous Network Construction
The presented approach relies on building a heterogeneous conversational network from the
data and using a deep learning approach to represent all of the nodes. Clearly, we want
to include Tweets as they are what we are trying to contextualize. Next, we know that
URLs are powerful differentiators of context, so they are also included. Lastly, hashtags are
pervasive on Twitter, allowing users to connect related Tweets [63, 140, 236, 248]. Hashtags
were too general to be useful in the manual annotation step, however they are a useful way
of collecting related Tweets, so they are also included in the network.

Now, we construct our heterogeneous Twitter network with three node types (tweet,
hashtag, and URL) and three edge types (tweet-URL, tweet-hashtag, and tweet-tweet).
When a URL or hashtag is used in a tweet, an undirected edge is drawn between them. The
selection of an undirected edge allows for URLs (and hashtags) to aggregate information
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from all the Tweets they appear in, while allowing Tweets to aggregate information from
the URLs (and hashtags) they contain.

The third relationship, tweet-tweet, occurs through replies or quotes. While these are
slightly different operations, they both create the effect of continuing the conversation
with a new Tweet connected to the original. Edges between Tweets can be modeled as
directed or undirected, as a setting within the model. A directed edge allows the reply or
quote’s representation to be affected by the original tweet’s representation while keeping the
original tweet’s representation isolated. This is an intuitive modeling approach; however,
modeling this relation with an undirected edge allows for base Tweets to obtain some
context, which can push similar but disconnected conversations closer together. The two
approaches (directed or undirected), are tested and quantitatively compared in Section
2.3.4.

Retweets are simply copies of Tweets, so they will provide no additional information
from a tweet-representation point of view. Worse, they are such a large fraction of the
dataset that they could have adverse effects on the training process. Instead, we give
Retweets the same representation as their original Tweet. Thus, Retweets will always be
considered in the same context as the original tweet.

2.3.3 Deep Tweet Infomax

This sub-section develops the deep learning architecture used to automatically contextu-
alize Tweets.

Initial Tweet Embedding

Graph convolutional networks require some form of node-features. We derive features for
Tweets using the Tweet’s text. To limit the scope of analysis to our proposed architecture
and to enable the use of multi-language text embedding, we used the pre-trained3 and
language-aligned vectors trained using fastText on the Wikipedia corpus [24, 115]. The
use of language-aligned vectors allows us to place similar Tweets in the same discussion,
even if they are tweeting in different languages.

We rely on the Twitter language detection output for the classification of Tweet lan-
guage. Many Tweets, however, do not have an available language label. This often occurs
when Tweets do not have text, but instead only have URLs, emojis, images, and sometimes
hashtags. In our case, 15.6% of Tweets in the dataset do not have an available label, and
therefore cannot be embedded with this approach. We will revisit these Tweets later.

For each Tweet with a label, we perform a normalized tf-idf (term frequency × inverse
document frequency) weighting of the fastText word vectors to obtain a 300-dimensional

3https://fasttext.cc/docs/en/aligned-vectors.html
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tweet-text embedding:
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where left-superscript, l, indicates the language, vi is the vector representation of node
i, D is the document for node i containing all its associated tokens, t, cD,t indicates the
counts of token t in document D, and lD indicates the set of all documents in language
l. A power-term p is introduced and set to p = 1 to retain the classic tf-idf weighting
scheme. Lastly, the final vectors are L2-normalized, since they will be compared using
cosine similarity: vi = ‖vi‖2

We use this procedure to embed Tweets in Arabic, English, French, German, Hebrew,
Italian, Portuguese, Romanian, Russian, Spanish, and Turkish, covering over 95% of the
reachable Tweets.

Finally, we use feature propagation to obtain a feature vector for the remaining Tweets
[199]. Feature propagation holds known feature vectors fixed while iterative updating
unknown feature vectors. In each iteration, each node with an unknown feature vector
updates its vector by taking the average features of its neighbors. Nodes with unknown
features which have not been reached by the propagation are not counted in the update step.
After few iterations, all features converge. Rossi et al. demonstrate that this approach
yields good results in downstream tasks such as node classification even in the face of
extreme missing data, when 99% of nodes are featureless. The task of filling in features
for approximately 15% of nodes is much less formidable. Feature vectors converged within
40 iterations on our datasets.

Initial Hashtag and URL Embedding

Now that Tweets have an initial vector representation, we need initial representations of
hashtags and URLs. A straightforward approach would be to allow each hashtag or URL
to learn its representation from all of the Tweets that use it. This could be done using
a graph convolution and would nicely fit into the rest of the architecture, which will also
leverage graph convolution. However, the structure of the heterogeneous conversational
graph inhibits this strategy from working well.

The problem is that the average hashtag or URL in the dataset is used by many
Tweets. So many tweets, in fact, that the majority of them are not informative as to
what the node’s representation should be. Out of the potentially thousands of tweets that
use a hashtag, for example, the top 10 or so would likely be the most useful to inform
the representation. However, graph convolutions aggregate from the entirety of the nodes
neighborhood. Graph attention recognizes this problem and attempts to solve it by taking
a weighted aggregation. However, even this is not enough with the extreme node degrees
of hashtags and URLs.
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We will now illustrate this problem with a text-based approach. One way of under-
standing a URL or hashtag is to aggregate all of the tweets that use it into a single
document. These aggregated documents have been proved helpful for topic modeling on
Twitter [9, 214]. With these documents, use a tf-idf-weighted word vectors, as was done in
the previous section. This is a very similar procedure to that of using graph-convolution
on the Tweets, however this procedure should provide better results because it allows us to
aggregate word-level information, and the tf-idf is a well validated method of determining
weights in a non-learnable way.

To investigate this weighting scheme, Figure 2.3 shows the tf-idf distribution of terms
for #election2020, a popular hashtag in the Election dataset. We see that that only the
tf-idf weights drop dramatically, with only around 25 terms having high weights. However,
there is a very long tail with over 17000 terms having near-zero weights. The crux of the
problem is that the top 25 terms have a much higher score than the rest, but there are so
greatly outnumbered that a weighted sum washes them out. The effect is illustrated by
showing the cumulative weights in Figure 2.4.

Since only the top 25 terms have a high weight, we would expect them to make up
a high percentage of the final representation. This percentage is shown as the height in
Figure 2.4. We see that using the normal weighting, the top 25 terms make up less than
20% of the representation. Essentially, this approach is learning a good representation
(with the top 25 terms), and then averaging that with noise where the noise vector gets 4
times more weight! So, while the classic tf-idf in Figure 2.3 looks to be heavily skewed, it is
actually not skewed enough. This is related but distinct from the oversmoothing problem
in graph convolutional networks where nodes approach the same representation as depth
is increased [42, 133, 245]. Here, nodes are approaching the same representation because
of the high-degrees.

We introduce more skew by raising the weights to a higher power, p > 1 in Equation
2.1. The higher the power, the higher the skew, because the small terms in the distributions
tail will be shrunk most aggressively. The affect is illustrated by the other lines in Figure
2.4. We assess that p = 3 strikes the best balance of weighting the top 25 terms heavily
while not entirely removing the remaining terms.

Hashtags and URLs can be Tweeted in multiple languages. To account for this, separate
tf-idf weighted vectors are obtained for each language, and the average is taken.

The aggregation problem outlined in this subsection is a due to the degree distribution
of the underlying network. So any further attempts to learn aggregations for these nodes
will run afoul, even though we are beginning with strong representations. Thus, we fix the
hashtag and URL representations during training.

Heterogeneous Graph Neural Network Design

Now that initial feature representations are given for all nodes, we propose an unsupervised
approach for Tweet representation. The flow of information in 1 step of the graph neural
network architecture can be seen in Figure 2.5. As previously described, hashtags and
URLs, obtain information by aggregating from the Tweets that they are used in. A Tweet
aggregates information from the hashtags and URLs that it uses, as well as all of the
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Figure 2.3: The distribution of tf-idf weights for #election2020 in the Election Dataset is
shown. The top 25 and 100 terms are marked for reference.

Figure 2.4: The cumulative distribution of tf-idf weights for #election2020 in the Election
Dataset is shown at different powers. The top 25 and 100 terms are marked for reference.
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Figure 2.5: The flow of information in one layer of DTI. The Tweet being represented is
shown at the bottom. It contains a hashtag, a URL, and is connected to two Tweets via
reply or mention. First, the Hashtag and URL obtain a representation by aggregating
from Tweets that the Hashtag and URL appear in, respectively. Then, the target Tweet
aggregates information from all its neighbors, the Tweets, the hashtag, and the URL, to
obtain its representation.

Tweets that it is connected to via replies, or quotes. This model is trained using Deep
Graph Infomax, leading to the informal name of our approach of Deep Tweet Infomax
(DTI). The architecture will now be described in detail.

Let t, u, and h represent nodes of the type tweet, URL, and hashtag, respectively.
They will be indexed using subscripts, e.g., ti corresponds to the ith Tweet. Feature
vectors are represented with the letter x, using subscripts to indicate the corresponding
node and superscripts to indicate the layer. For example, x0

ti
, represents the 0th-layer

vector (otherwise known as the feature vector) for the ith Tweet. We will make use of
a neighborhood function N , which takes in a node and returns the set of its neighbors.
Subscripts of the neighborhood function allow for the return of only a specific type of
neighbor. For example, Nu(ti) returns all of the URLs connected to the ith Tweet.

Tweets aggregate from their heterogeneous neighborhoods. Separate aggregation func-
tions are learned for the Tweets, hashtags, and URLs that a Tweet is connected to, which
are then averaged, an activation function is applied, and the L2 norm is taken as seen in
Equation 2.3, where AGG is a potentially learnable aggregation function, and σ is an acti-
vation function. Although that Equation 2.3 appears to weight all terms equally, weighting
is actually learned, it is just absorbed in the aggregation functions.

x1
ti
= ‖σ(1

3
(AGG({x0

hi
,∀hi ∈ Nh(ti)})

+ AGG({x0
ui
,∀ui ∈ Nu(ti)})

+ AGG({x0
ti
,∀ti ∈ Nt(ti) ∪ {ti}})))‖2

(2.3)

The process thus far defines the network over which features are passed, and the order
in which to pass them. The selection of the aggregation function, AGG, is the main topic
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of debate within graph neural network research. As research develops on this front, AGG,
can be substituted for the new state-of-the-art aggregation schemes. Here, we employ
the GraphSAGE aggregation, which is the initial aggregation scheme applied in the Deep
Graph Infomax work [90]. This aggregation scheme is detailed for the tweet-to-Tweet
relationship in Equation 2.4, where W are trainable weight matrices, and b is a trainable
bias vector.

x1
ti
= W1x

0
ti
+

1

|N (ti)|
∑

tj∈N (ti)

W2x
0
tj
+ b (2.4)

GraphSAGE is a relatively simplistic aggregation scheme, where all neighbors are
treated equally. More recent aggregation schemes add attention, which allows for a weighted
average of neighbors. Graph attention, initially developed by Veličković et al and im-
proved by Brody, Alon, and Yahav is a popular alternative which may add expressive
power[31, 230]. We add this comparison to our experiments in model selection.

Finally, we must select a nonlinear activation function. Again following the original
Deep Graph Infomax work, we use the PReLU, activation function [94].

The process up to here details a single-layer of the architecture. Tweets will only obtain
information from 1-hop away, and hashtags and URLs will only receive information from
the initial feature vectors. Stacking these layers enables further information spread between
Tweets, URLs, and hashtags. Here, we stack three of these layers. Classically, a depth of
3 is very shallow. However, in our case, Tweet networks themselves are shallow. The vast
majority of Twitter replies are replies to a base-tweet, rather than replies to replies.

Lastly, we need to ensure that hashtags and URLs are embedded in the same space
as tweets. This can be accomplished by applying the linear transform in the aggregation
function to each of the hashtags in URLs. For example, if GraphSage is the aggregation
function we have:

x̃hi
= ‖W2xhi

+ b‖2 (2.5)

where x̃hi
is the transformed representation and W2 and b are given in Equation 2.4.

The architecture has now been fully defined. To train this architecture, we use Deep
Graph Infomax (DGI), an approach for learning unsupervised node representations by
maximizing mutual information between patch representations and corresponding high-
level summaries of graphs [231]. We note that a version of DGI has been developed
specifically for heterogeneous networks [191]. Because of our focus on Tweet representations
and the lack of features available for URLs and hashtags, we proceed with the original
formulation of DGI.

The DGI training process involves four steps. First, a normal forward pass on the data
is performed, giving Tweet representations, xt. Next, a readout function is applied to give
a graph-level summary vector, s. Velickovic et al. applied a sigmoid function to a simple
averaging of the node vectors but suggest that more sophisticated methods such as the
Set2Vec method developed by Vinyals et al. could perform better on larger graphs [232].
We test both. In the case of Set2Vec we use 5 processing steps: s = σ(Set2Vec({xti∀ti})),
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where σ is the sigmoid function. Third, a forward pass is performed on corrupted data,
giving corrupted Tweet representations, x̃t. We use the same corruption function as the
original work, a shuffling of the Tweet features while keep edges intact. Finally, to classify
Tweets as corrupted or not a scoring function is given as dti = σ(xT

ti
Ws), where W is a

trainable scoring matrix and σ is the sigmoid function, providing a score between 0 and
1. Binary cross entropy loss was used on the score, d, and the label (corrupted or not) to
train the model.

The model was implemented using the PyG library [65]. All hidden and output layer
dimensions were set to 300 to match the FastText embeddings. The model was trained
using minibatches of size 2500 due to limited GPU memory. PyG’s “NeighborLoader” was
used to handle the neighborhood sampling within minibatches, where 20 neighbors of each
edge-type were sampled for 3 iterations. The ADAM optimizer was used during gradient
descent with an initial learning rate of α = 0.00001 for 25 epochs with early stopping4

[121].

Clustering

Once Tweets are represented in a continuous space through DTI, they can be clustered
with a variety of clustering algorithms. Tweet clusters, then, are the discrete contexts that
conversational networks can be studied within.

For extremely large datasets, like the ones we use here, k-Means clustering is one of the
only available approaches [138]. Given a set number of clusters, k, the algorithm partitions
the data based on their distance to k reference points, which are updated throughout
the process. Though the algorithm is extremely efficient, the number of clusters must be
manually selected. The “elbow method” heuristic is a useful way of selecting this number,
wherein the mean cluster distance is plotted against the number of selected clusters, and
the “elbow” or point of diminishing returns is selected [221]. The number of clusters can
also be determined externally, such as if the clusters were previously hand labeled as is our
case.

For smaller datasets, density-based approaches like DBSCAN can automatically deter-
mine the number of clusters [60]. Despite criticism of DBSCAN [70], the algorithm has
proved flexible enough to work well under many scenarios, provided the parameters are
well-selected [202]. Even for medium-sized Twitter datasets it can be extremely costly to
run density-based clustering many times to select appropriate parameters, as was done in
Schubert et al. To minimize the need for parameter tuning when clustering, the hierar-
chical version of DBSCAN, HDBSCAN, which requires less parameters, is a reasonable
alternative [148, 149].

Model Selection

We have detailed 4 levels of design choices: directed vs. undirected edges, GraphSage
vs. GAT aggregation, and mean vs. set2vec summarization. This leads to 8 possible
configurations for our model. We evaluate these configurations based on their ability to

4For reference, the model trained in about 12 hours on an Intel E5-2687W v3 CPU.
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capture the relationships in the heterogeneous conversation network. This ability can
be quantitatively evaluated by first calculating the cosine similarity of neighbors in the
network. Then, non-edge pairs are sampled and the cosine similarity of these pairs is
calculated. Finally, the average difference is taken from edge pair similarity and non-
edge pair similarity; the higher the difference the better the model. This capture our
intuition that pairs of nodes that are connected in the network should have more similar
relationships than those which are not connected. For example, a tweet should have a
similar relationship to a hashtag that is in the tweet compared with a hashtag that is not
in the tweet. This is obviously true for hashtags and URLs. This is less clear for Tweets,
due to the prevalence of spam and broadcasting5 neighboring tweets may not need to have
such a similar relationship [64, 197]. However, it is no doubt still useful for neighboring
Tweets to have a more similar representation than non-neighboring Tweets. So we proceed
searching for model configurations that score highly across nodesets.

S-D-M S-D-S S-U-M S-U-S A-D-M A-D-S A-U-M A-U-S
Tweet 0.013 -0.002 0.278 0.006 0.599 0.273 0.293 0.192

Hashtag 0.095 0.065 0.110 0.067 0.084 0.086 0.081 0.094
URL 0.248 0.152 0.249 0.158 0.216 0.215 0.185 0.223

Table 2.1: The model selection results are shown for the Election Dataset. For each model
configuration, the mean difference the cosine similarity of edges and non-edges are shown
for each nodeset. Higher numbers are better. The best results are emboldened. The
configuration keys are as follows: S is GraphSage, A is GraphAttention, D is Directed, U
is Undirected, M is Mean, and S is Set2Set.

S-D-M S-D-S S-U-M S-U-S A-D-M A-D-S A-U-M A-U-S
Tweet -0.005 0.005 0.384 0.152 0.432 0.197 0.397 0.213

Hashtag 0.115 0.101 0.160 0.101 0.237 0.147 0.131 0.130
URL 0.187 0.175 0.311 0.173 0.330 0.264 0.244 0.221

Table 2.2: The model selection results are shown for the Reopen Dataset. For each model
configuration, the mean difference the cosine similarity of edges and non-edges are shown
for each nodeset. Higher numbers are better. The best results are emboldened. The
configuration keys are as follows: S is GraphSage, A is GraphAttention, D is Directed, U
is Undirected, M is Mean, and S is Set2Set.

The results are given for the Election and Reopen datasets in Table 2.1 and Table 2.2,
respectively. Across model nodesets, configuration and datasets, mean summarization out-
performs Set2Set summarization. Next, GAT outperforms GraphSage in nearly all cases.
The choice of directed or undirected edges is less clear. When considering the GraphSage
models, the choice has little affect on the hashtag and URL edges, but has a large affect on
Tweet edges, where undirected gives better results. For GraphAttention, however, directed

5Broadcasting is where users latch on to a popular post to gain views on their mostly unrelated post
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(a) (b)

Figure 2.6: Cosine Similarity for edge-pairs (Blue) and non-edge-pairs (Orange) for the
Election and Reopen Datasets using the trained Graph Attention model with directed
edges and mean-summarization.

edges provide better results. Perhaps GraphAttention’s additional expressive power makes
it capable of deriving strong representation from directed edges. Thus, we continue with
GraphAttention, mean summarization. The full distributions of similarity scores for our
selected model are shown in Figure 2.6.

2.3.4 Validation
Moving forward with the model selected in the previous section, we further validate our
approach on the Election dataset in two steps. First, we use a simplistic data annotation
scheme and see how 5 categories of Tweets fall within the embedded space. We find that
the clusters in the tweet-embedding space are well-correlated with the annotated groups.
Second, we detail some of the URL and hashtag’s nearest-neighbors to demonstrate that
intermediate steps within the model are working.

Cross-Validation with Simple Annotation Method

The simple approach that we outlined earlier was built on first principles, validating the
results. Therefore, we test the validity of the unsupervised approach by testing its correla-
tion with the simple label propagation. The intuition is that Tweets falling under the same
conversational context should, on average, be near to each other in the embedding space.
To visually inspect distance in the embedding space, the embeddings were projected into
2-dimensions using t-SNE [229].

Each Tweet with a label-propagation label was plotted in the embedding space as
a dot and was colored by its label. The results are shown in Figure 2.7. For a baseline
comparison, the initial untrained embeddings are shown in Figure 2.8, as these embeddings
only accounted for Tweet text.

The text embedding in Figure 2.8, is similar to Sia et al.’s approach to topic modeling
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(a) Election

(b) Reopen

Figure 2.7: 2-dimensional t-SNE representation of DTI Tweet embeddings on the Election
and Reopen Datasets. These are the Tweets within 2-hops of a hand-annotated URL or
Tweet. The Tweets are colored with their associate hand-annotation.
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(a) Election

(b) Reopen

Figure 2.8: 2-dimensional t-SNE representation of un-trained DTI Tweet embeddings for
Comparison with Figure 2.7. Again, these these are the Tweets within 2-hops of a hand-
annotated URL or Tweet. The Tweets are colored with their associate hand-annotation.
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and is used as a baseline [208]. We observe that the text embedding is unable to recover
the conversational contexts we set out to find. This is likely due to the facts that these
contexts have similar word distribution, and that a text-only approach cannot leverage
replies, hashtags, or URLs. Next, we observe in Figure 2.7 that there are a number
of well-formed Tweet clusters which correspond to different conversational contexts. We
observe that some of these clusters form tight balls, almost perfect circles in the embedded
space. Investigation into these regions finds that this occurs when many Tweets reply or
quote a popular Tweet. The original Tweet anchors the conversation, while the additional
information in replies or quotes move these secondary quotes in different directions within
the embedded space, but not far from their neighboring Tweet. We also see that not all of
the clusters are so simple, pointing to more interesting contextual structure.

Importantly, the majority of Tweet clusters have homogeneous labels. We see many
clusters with 100% label agreement labeled with “Vote Trump,” and “Vote Info.” There
are clusters with noticeably higher than average density of “Election Updates” and “Vote
Biden” Tweets, but they are surrounded by “Pro-Trump Conspiracy” Tweets, and occa-
sionally “Vote Trump” Tweets. This follows from the observation that many Tweets about
the election or statements in support of Biden were replied or quoted with lies about voter
fraud and the Democrat’s efforts to steal the election. At the same time, there are often
multiple clusters with the same homogeneous labels. That is, there are multiple clusters all
labeled with the Trump Campaign context. This shows that the unsupervised approach can
operate with a different level of granularity than a human annotator, for example saying
that two parts of a human-annotated context are actually distinct sub-conversations.

Nearest Neighbor Evaluation

To dive deeper into the specifics of the embeddings, node’s nearest neighbors were analyzed.
Specifically, the top-5 closest pairs of hashtags and URLs are displayed in Tables 2.3 and
2.5, respectively for the Election dataset, and in Tables 2.4 and 2.6, respectively for the
Reopen dataset. The nearest-neighbor analysis only considers the top-500 nodes in terms
of their cumulative Retweets in the dataset. Distance is calculated as cosine distance in
the 300-dimensional space.

In both datasets, we observe tight triangles of nodes with very similar representations.
For hashtags, there is a trio of hashtags, #returnoftheusa, #japanisready, and #presi-
denttrumpwins that were used in a Japanese discussion about how Trump won and Japan
has prepared for the moment. Other than this, we see pairs of hashtags that are used
very similarly. For example #jewsfortrump and #womenfortrump are both discussing
groups of people beyond Trump’s base supporting him. Similarly, #bidencrimesyndicate
and #laptopfromhell are both discussing conspiracy theories related to Biden.

For URLs, we also see tight triangles. In the Election dataset, for example, there is
a trio of NBC news election dashboards, each showing the live results for different states
(Arizona, Arkansas, and California). It is natural for these to be represented together since
they are from the same source and reporting on very similar information. In a similar vein,
there are two pairs in the Election dataset which are different links to the same place.
First, there is a pair of links to a petition for Justice for Tamir Rice. Second, thre is a
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Hashtag 1 Hashtag 2 Distance
#bidencrimesyndicate #laptopfromhell 5.96 ∗ 10−8

#jewsfortrump #womenfortrump 5.96 ∗ 10−8

#wethepeople #wwg1wgaworldwide 5.96 ∗ 10−8

#japanisready* #returnoftheusa 1.19 ∗ 10−7

#presidenttrumpwins #returnoftheusa 1.19 ∗ 10−7

Table 2.3: Pairs of hashtags that are closest in the embedded space in the Election Dataset.
Only the top 500 hashtags are considered, as they are the most important for Tweet repre-
sentation and are the cleanest. Perfect matches are excluded. A star indicates translation
from Japanese.

Hashtag 1 Hashtag 2 Distance
#americaortrump #trumpdictatorship 1.79 ∗ 10−7

#americaortrump #trumpmustresign 1.79 ∗ 10−7

#trumpmustresign #trumpdictatorship 1.79 ∗ 10−7

#antifa #seattle 1.79 ∗ 10−7

#wwg1wgaworldwide #opencalifornianow 2.38 ∗ 10−7

Table 2.4: Pairs of hashtags that are closest in the embedded space in the Reopen Dataset.
Only the top 500 hashtags are considered, as they are the most important for Tweet repre-
sentation and are the cleanest. Perfect matches are excluded. A star indicates translation
from Japanese.

pair of links to an AP article about the Trump administration hiding the CDC’s reopening
advice. The other closest-pairs are also similar in content.

The neighbors in both URL and hashtag space are observered to be well-matched
pairs. This gives further validity to the methods ability to represent information using the
network’s connections. It also gives indirect validity to the Tweet embeddings, because
they rely on the representations of URL and hashtags.

Lastly, the closest pairs of different language Tweets in the embedding space are given
in Tables 2.7 and 2.8, for the Election and Reopen datasets, respectively. Off-language
pairs were chosen to highlight the method’s ability to work in the multi-lingual setting.

In the case of the Election dataset, all the closets off-language tweets occur around
the same source Tweet. That initial tweet, in the upper-left on the Table, details an
accusation of mail fraud. Then, a someone quoted this in Japanese. Other quote Tweets
then received a very similar representation to the Japanese Tweet, despite being written in
English. Similarly, the off-language pairs in the Reopen dataset were due all due to quote-
tweet interactions with 3 of the 5 pairs quoting a Tweet about the Bomboclate music
festival.

These tables highlight the methods ability to give similar representations to Tweets
that are close in the conversational graph, even when source languages are differing.
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URL 1 URL 2 Distance
https://www.nbcnews.com/
politics/2020-elections/ar
izona-results?cid=sm_npd_n
n_fb_ma

https://www.nbcnews.com/po
litics/2020-elections/arka
nsas-results?cid=sm_npd_n
n_fb_ma

1.19 ∗ 10−7

https://www.nbcnews.com/po
litics/2020-elections/cali
fornia-results?cid=sm_npd
_nn_fb_ma

https://www.nbcnews.com/po
litics/2020-elections/arka
nsas-results?

1.19 ∗ 10−7

https://www.nbcnews.com/po
litics/2020-elections/cali
fornia-results?cid=sm_npd
_nn_fb_ma

https://www.nbcnews.com/
politics/2020-elections/ar
izona-results?cid=sm_npd_n
n_fb_ma

1.19 ∗ 10−7

https://www.vote.org/polli
ng-place-locator/

https://vote.gop/ 1.19 ∗ 10−7

https://www.newsweek.com/w
hy-i-will-vote-trump-opini
on-1543803

https://vote.gop/ 1.19 ∗ 10−7

Table 2.5: Pairs of URLs that are closest in the embedded space in the Election Dataset.
Only the top 500 URLs are considered, as they are the most important for Tweet repre-
sentation, and are the cleanest. Perfect matches are excluded.

2.4 Automatic Labeling of Contexts

Now that the unsupervised model has been selected, trained, and validated in comparison
to the human annotated model, this section will close the loop by providing a computer-
assisted interpretation of the unsupervised contexts.

The first step is to determine discrete contexts from the DTI embeddings. Due to the
size of the datasets, this is done with k-Means clustering. Our hand-labeling approach
converged on roughly 40 clusters for each dataset. We leverage this expert knowledge and
set k = 40 to obtain the conversational contexts.

As with any cluster classification, our goal is to label the contexts based on their
distinguishing attributes. Here, we distinguish contexts based on their n-grams, due to
their well-knwon expressive power [195, 209, 235]. N-grams are sequences of n tokens
or phrases separated by punctuation or whitespace. Specifically, we consider 3-grams, as
3-grams are significantly more interpretable than 2-grams, but are still computationally
tractable compared to 4-grams.

For each English-language tweet in each context, we count the instances of each 3-
gram. We only consider the English-language tweets, in order to get English-language.
The counts are denoted as fi,g, which indicates the count of 3-gram g in context i. The
total counts of g are given as fg =

∑
i fi,g. The total number of 3-grams are also useful

and are denoted as di =
∑

g di,g and d =
∑

i di.
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URL 1 URL 2 Distance
https://www.change.org/p/d
epartment-of-justice-inves
tigate-the-killing-of-tami
r-rice?recruiter=945350819
&recruited_by_id=80cbaad0
-4f2b-11e9-a703-ab4db1866a
60

https://www.change.org/p/d
epartment-of-justice-inves
tigate-the-killing-of-tami
r-rice?recruiter=849468015
&recruited_by_id=aa29a640
-f85e-11e7-b19d-75c2813284
8a

2.07 ∗ 10−2

https://www.washingtonpost
.com/world/asia_pacific/c
hina-signals-plan-to-take-
full-control-of-hong-kong-
realigning-citys-status/20
20/05/21/2c3850ee-9b48-11e
a-ad79-eef7cd734641_story
.html

https://www.bbc.com/news/w
orld-asia-china-52759578

2.73 ∗ 10−2

https://apnews.com/article
/virus-outbreak-health-us-
news-ap-top-news-politics-
7a00d5fba3249e573d2ead4bd3
23a4d4

https://apnews.com/article
/virus-outbreak-health-us-
news-ap-top-news-politics-
7a00d5fba3249e573d2ead4bd3
23a4d4

4.48 ∗ 10−2

https://www.justice.gov/op
a/page/file/1271456/downlo
ad

https://www.washingtontime
s.com/news/2020/apr/27/wil
liam-barr-orders-legal-act
ion-against-governors/

5.35 ∗ 10−2

https://txdshs.maps.arcgis
.com/apps/opsdashboard/ind
ex.html

https://thehill.com/homene
ws/coronavirus-report/4975
09-texas-sees-1000-new-cor
onavirus-cases-for-5-days-
in-a-row/

5.86 ∗ 10−2

Table 2.6: Pairs of URLs that are closest in the embedded space in the Reopen Dataset.
Only the top 500 URLs are considered, as they are the most important for Tweet repre-
sentation, and are the cleanest. Perfect matches are excluded.

Lastly, a method is needed to balance the popularity of a 3-gram with how well it
distinguishes a context. This is accomplished by subtracting the frequency within the
context by the expected frequency given its popularity in other contexts:

ri,g = fi,g − λdi
fg − fi,g
d− di

(2.6)

where λ is a parameter that that analyst to balance popularity and the ability to distinguish
contexts; the higher the λ value, the less popularity is weighted. We only consider λ = 1.
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Tweet 1 Tweet 2
Breaking: QT: BREAKING: Michigan
USPS Whistleblower Details Directive
From Superiors: Back-Date Late Mail-In-
Ballots As Received November 3rd, 2020
So They Are Accepted “Separate them
from standard letter mail so they can
hand stamp them with YESTERDAY’S
DATE & put them through” #MailFraud

At a post office in Michigan, a bureau
clerk said, Whistleblowing. My boss in-
structed me to postmark the ballot that
arrived at the post office today with yes-
terday’s date. In this regard, it looks like
an investigation will begin. As soon as I
called my boss, I was cut off. (ja)

this is outright voter fraud. twitter will
no doubt block direct video evidence.

”

where is the doj??? ”
this is outright voter fraud. twitter will
no doubt block direct video evidence.

”

President Trump needs to talk about this.
Game changer.

”

election fraud alleged by whistleblower in
michigan. btw, do we still have a justice
department?

”

Table 2.7: Pairs of different-language Tweets that are closest in the embedded space in the
Election Dataset. Only the top 1000 Tweets which had did not have “undefined” language
were considered. Translated with Google Translate from languages codes appended to the
quote. The ” symbol indicates the cell is the same as that above it.

The top 3-gram according to ri,g can be taken as a context’s label, though the top 3 are
reported for the Reopen and Election datasets in Tables 2.9 and 2.10, respectively.

Tables 2.9 and 2.10 show the top 3-gram is a useful way of understanding the context.
However, looking at the next one or two 3-grams can provide additional context to give
an even better label. For example, context 29 in the Reopen dataset could be labeled by
Liberate the White House, the counter-movement to Trump’s “liberate” tweets, calling for
him to be voted out of office. However, given the second and third 3-grams are about calls
to reopen investigations of Sandra Bland’s death in a Texas jail, we see that the context is
more specifically a rebuke of the current government’s issues with racism. Another example
is context 20 in the Election dataset, which details calls to stop the vote due to claims of
fraud, and refers to the Prime Minister of Slovenia’s move to prematurely call the election
in Trump’s favor6. Additionally, there is a need interpret the 3-grams and fill-in the stop
words or characters that were removed to achieve clean results. This way “Want Schools
Reopen” can be translated to “Calls for Schools to Reopen.”

Recently, there has been a rapid expansion in the use of pre-trained large language
models to tackle difficult language related tasks like summarization [171]. ChatGPT7, a

6https://twitter.com/JJansaSDS/status/1323913419200864256
7https://openai.com/blog/chatgpt
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Tweet 1 Tweet 2
i feel like uni students are dying for uni-
versities to reopen. i know right now we
are doing classes from the comfort of our
own homes tapi interaction from lectur-
ers first hand tu is more effective. taknak
cakap odl ni susah tapi itulah itu kshd-
jska

agree (in)

i need a group of friends that’s down to
do stuff like this

bomboclate (du)

And Vietnam did. Extraordinary. (in) if everyone stayed home... we could be in
the same place

kids: “what happened in 2020??” us: bomboclate (du)
my tia coming up to me at a family party
trying to get me to dance with her

bomboclate (du)

Table 2.8: Pairs of different-language Tweets that are closest in the embedded space in the
Reopen Dataset. Only the top 1000 Tweets which had did not have “undefined” language
were considered. Translated with Google Translate from languages codes appended to the
quote.

Context 1 2 3
5 need reopen economy want reopen economy people want reopen
2 want schools reopen safe reopen schools reopen social distancing
26 liberate hong kong hong kong revolution gym stop corona
29 liberate white house sandra bland case reopen sandra bland

Table 2.9: Top 3-grams for select contexts in the Reopen dataset.

Context 1 2 3
4 mail ballots counted electoral college votes votes registered voters
20 stop counting votes voter fraud claims prime minister slovenia
29 proven putin puppet trump proven putin putin puppet vote
24 ballot drop box polling place ballot voting plan election2020

Table 2.10: Top 3-grams for select contexts in the Election dataset.

chat-bot based on a variant of GPT 3.5, has made this technology widely accessible. It
would be possible to feed a bot like this the top Tweets, and ask it to summarize the
categories. It may also be used to translate the top 3-grams into an interpretable label. It
is very likely that this process would give very interpretable labels at scale, which would
save a researcher the time and effort it takes to perform this task. However, Generative
Pretrained Transformers are known to “hallucinate” or make facts that sound correct [17].
This could be a major issue when domain knowledge is needed to understand a 3-gram. For
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example, it takes some knowledge to understand why “Liberate White House” and “Sandra
Bland Case” are related, but a GPT-based system could make up an erroneous reason, and
therefore an erroneous label as to why these are related. Though this technology could
be helpful in this space, we conclude with a quote from Salvagno et al.: “ChatGPT work
should not be used as a replacement for human judgment, and the output should always
be reviewed by experts before being used in any critical decision-making or application”
[201].

2.5 Impact of Contextualization on Networks
Now that the contextualization approach has been introduced and validated, we apply it to
the datasets to demonstrate the impact that contextualization has on Networks. Referring
again to the context cartoon in Figure 1.2, we expect the separation of networks to have
major impacts on the network analysis. To assess this impact, we consider two basic aspects
of a network: its nodeset and its central nodes working with the automatically extracted
contexts from Deep Tweet Infomax.

2.5.1 Nodeset Overlap in Tweet Contexts
Perhaps the most basic aspect of a network is its nodeset. For social media analysis, the
nodeset tells us which users are active in a conversation. Mixing conversational contexts
likely means that we are mixing our nodesets. This means that a traditional analysis would
say that some users are active in a conversation when they were talking about something
else entirely. This could have important implications for critical conversations. For ex-
ample, a researcher interested in misinformation could collect a dataset on misinformation
hashtags. As we have seen, this dataset is likely to have very different conversations embed-
ded within it due to the shortcomings of data filtration techniques. A traditional analysis,
then, could say that some users were engaged in a misinformation discussion when they
actually were not. In this section, we quantify the extent of the impact that context has
on the nodesets.

We consider users to be active within a conversational context if their Tweet is in the
context, or they Retweet one that is. For the each dataset, we calculate the pairwise
percentage of overlap in membership and plot the results in Figure 2.9, normalizing levels
to that of the smaller context. We note that this analysis simply reflects the overlaps
observed in the data. It does not control for random effects, or account for what we
would expect to see given randomization. This could be accomplished by comparing the
displayed intersection with the expected intersection if the users were randomly distributed
in the conversations. First, the probability that a user is placed in a conversation could
be represented as pi, where i indicates the conversation. This quantity could be estimated
using the proportion of users active in the conversation compared to those in the entire
dataset. Assuming that users are randomly distributed, the expected number of users
active in two conversations, i and J , is given by Npipj, where N is the number of users in
the entire dataset. This procedure could be a useful way of comparing conversations and
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(a) Election (b) Reopen

Figure 2.9: Overlap of active users in the conversational contexts. The diagonal is set to
0% for readability.

finding which ones are related. However, the purpose of the initial overlap comparison is
to demonstrate the damage done to the data because of contextual mixing, so we proceed
with the raw overlap analysis.

We see that the overall levels of overlap are low across both datasets, often below 20%.
However, both datasets have a small cluster of contexts with high overlap with many other
contexts (40-60%). Further investigation shows that these are smaller contexts, where it
is simply easier to have high overlap.

This finding has important ramifications for conversational network analysis. The pres-
ence of non-overlapping contexts highlight that global properties of conversational networks
are being affected by context. Placing users from one context in the same network as those
in another context is a misleading representation of the data, which could affect the vast
majority of nodes in each context. It is possible that users from these different contexts
may even be placed in the same component of a decontextualized network. As the number
of active users increases, it becomes more likely that the two contexts will be merged into
a single component under decontextualized analysis.

More importantly, most of the context-pairs have low but not negligible overlap, around
15%. This means that the local properties of the de-contextualized network are affected.
With 15% overlap, we can expect that about 15% of users will have connections from
users in both contexts with no way of distinguishing them. This has negative effects on
every aspect of network analysis. Path-based centralities, for example, will be calculated
on paths that could not occur in the data because they span contexts. The impact of this
is further studied in the following section.

2.5.2 Influencer Overlap in Tweet Contexts
Next, we study the impact of contextualization when analyzing central nodes. We do so by
comparing the centrality rankings of different contextualized networks. To be clear, these
are user-user networks, where connections are drawn if a user is mentioned, Retweeted,
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(a) Election (b) Reopen

Figure 2.10: Kendall-Tau correlation of PageRank-sorted users across contexts.

replied-to, or quoted within Tweets of a specific context.
To fairly compare across contexts, we only consider the intersection of the nodesets.

This is important especially given the results of the previous section. If context A has a
network with 10000 nodes, and context B has a network with 10000, and there is only 5000
nodes in both, we account for that by taking the subgraphs of each context so that only
the 5000 overlapping nodes are considered. We note that this is a generous comparison.
Because we are removing the variability in the nodesets, the results will indicate that the
networks are more similar than we know them to be. We will show that even under these
conditions contextualized networks have considerable differences.

Given two contextualized network subgraphs with matching nodesets, we rank the
nodes in each based on their weighted and directed PageRank centrality [173]. We add a
small tolerance parameter, ε = 10−9 to ensure that ranking comparison is not affected by
noise. To quantify the similarity between the rankings, we calculate using Kendall’s Tau
ranking correlation [118]. In each case, non-significant results (those with p < 0.05 were
set to 0. The results are given in Figure 2.10.

The mean correlation between contexts is 0.472 for the Election dataset and 0.784 for
the Reopen dataset. Clearly, these are substantial correlations, which is intuitive. The
most influential users are those with verified badges and many followers. This influence
should carry across contexts. Still, the frequent correlations below 0.5 show that non-
contextualized analysis is severely corrupting centrality rankings, especially when we con-
sider the fact that our results already control for the potentially vastly different nodesets
and the additional edges that come with them.

To illustrate how this corruption plays out for the most central nodes a dataset, we
consider a simplified example. First, we take the two largest contexts in a dataset. Within
each contextualized network, we find the 10 highest ranked nodes, again according to
weighted and directed PageRank. Then, for each of these nodes, we calculate their ranking
in the mixed-context network, which is that constructed from Tweets in both contexts. The
point is to show how highly ranked users may move down in rankings when other contexts
are mixed in. The results are shown in Table 2.11.
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Election Reopen
True Rank Corrupted Rank True Rank Corrupted Rank

11 1 11 31
21 5 21 50
31 2 31 43
41 4 41 79
51 21 51 75
61 26 61 82
71 24 71 78
81 27 81 86
91 29 91 84
101 31 101 71
12 1 11 1
22 2 21 2
32 4 31 6
42 18 41 3
52 7 51 4
62 8 61 5
72 9 71 7
82 10 81 8
92 11 91 9
102 12 101 10

Table 2.11: Pagerank centrality ranking for the top-10 most central users in two contexts.
True rank indicates their contextualize rank, with the subscript indicating the correspond-
ing context they belong to. Corrupted rank indicates their rank in the uncontextualized
setting.

From this experiment we see 4 key ways that centralities are corrupted from context
mixing. First, we see that important users within a context can be relegated to much lower
rankings when contexts are mixed. For example the 10th node in context 1 of the Election
dataset moves to 31st, while the 8th node in context 1 of the Reopen dataset moves to 86th.
Second, we see that the relative rankings are not preserved within-context. For example,
the 10th node in the context 1 of the Reopen dataset is ranked higher than nodes 4-9 in
that context when the data is mixed. Third, we see that the rankings from one context can
dominate another. The second context of the Reopen dataset are consistently ranked above
that of the first context, forcing all of their rankings downwards. And lastly, we see that
bridge nodes, which are not highly central within contexts, can have inflated importance
in a mixed network. This can be seen by what is not shown in Table 2.11. There are many
nodes that do not appear in the top 10 of either context but appear in the top 20 of the
mixed context. It is likely that these nodes are less important within discussions, but can
gain importance by acting as bridge nodes across conversations.

Taken together with the overall correlations, we see that the deviations in node ranking

43



from contextualized networks to non-contextualized networks are considerable and can arise
in multiple ways. Especially given that real-world non-contextualized data is mixing many
contexts of varying size, there is no straightforward way of understanding how the overall
centrality rankings are affected. Thus basic network analyses like centrality analysis are
severely corrupted when context is ignored, and the best way to account for these errors
is to study the underlying contextualized network instead.

2.6 Limitations
There are a few key limitations to consider for this work. First, the initial feature repre-
sentation of Tweets are derived from a relatively simple language embedding scheme which
does not include attached images or video. The scheme was selected due to its scalabil-
ity and its ability to embed Tweets written in different languages within the same vector
space. This approach embedded Tweets from 11 languages, but 4% of the reachable Tweets
were still not reached. The lack of image or video representation is the more important
limitation, particularly because many Tweets with images or video do not have text. While
this is largely the case for replies and not original Tweets, the full space is affected due
to the transfer of information from reply to base Tweet and vice-versa. Even though a
pre-trained model can be used to obtain image or video representations, the process of
including this information in initial Tweet feature representation is unclear. Most Tweets
lack images, so feature concatenation will not be effective. Combining the feature vectors
is also not straightforward because the vector spaces are not aligned. A process which
gives a feature representation of both text and images is an open but active area of work
within multi-modal learning [45].

All Tweets are treated equally in current methods, however, social signals such as the
number of Retweets or favorites a Tweet gets could inform more sophisticated aggregation
schemes for GNNs. This is left for future work. Further, methods which incorporate URLs
domain name could improve embeddings but are also left for future work.

Another limitation of the current analysis is the lack of mention representation. Men-
tions are a core feature of Twitter, allowing for users to directly tag other users in their
Tweets. Incorporating mention nodes into Deep Tweet Infomax should improve Tweet
representation, since mentions are so commonly used to tag major players in a discussion.
This was not done in the present work because of the quality of the data available. In the
first version of Twitter’s API, replying to a Tweet adds a “mention” of the user that is
being replied to, and often adds “mentions” to several other user higher in the conversation
tree. These are not actual “mentions,” just artifacts of the already modeled Tweet-Tweet
graph, so their inclusion could harm our results.

The last major limitations of the approach are that the method still derives discrete
conversational contexts and that these are compared with noisy human annotations. Specif-
ically, the fact that our annotations were given by a single annotator poses a limitation.
Next, we have seen that interactions can be represented as occurring in a continuous context
space. However, all existing network approaches assume discrete context spaces. Given
the appropriate methods, the continuous context space could be used to measure things
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such as conversational drift and contextual persistence of links. Thus, methods directly
operating in continuous space are of interest, and are considered in Appendix B.

Another aspect of the inter-related aspect of conversational contexts is their poten-
tially heirarchical nature. As we have seen, we can break down the “Reopen” discus-
sion into many related sub-conversations. This break-down could go further to find sub-
conversations within those derived here. In some sense, the methods derived here could be
used iteratively to find this hierarchical structure. That is, the labeling approach could be
re-done while only considering the data from a conversation of interest. A better approach
would be to specifically look for hierarchical structures, rather than forcing them after
the fact. For example, Deep Tweet Infomax could be used with a hierarchical clustering
algorithm to obtain nested context structure. The inter-relation between different levels of
conversational structure is out of scope for this work, but is a rich space to explore in the
future.

2.7 Discussion
The first major finding of this Chapter is that keyword-based data collection is too coarse
to achieve properly contextualized social media data. In both of the cases studied, there
were several major discussions present in the dataset that were distinct from the topics of
interest. Perhaps most notably, a substantial portion of the Reopen dataset was actually
discussion about Black Lives Matter, mostly due to the use of “reopen” as in “reopen this
investigation”. Even for the discussion that is related to the topics of interest, we observe
several inter-related conversational contexts. For example, in the Election dataset there
are distinct discussions about information on how to vote versus who to vote for.

The Tweet representation method, Deep Tweet Infomax, automatically uncovers these
contexts. The multi-step validation procedure shows that this model follows our intuition
by clustering Tweets of the same hand-annotation8 together. The validation efforts also
show that the model gives similar representation to similar hashtags, similar URLs, and
similar Tweets. Lastly, the model’s representations are capable of differentiating edges
from non-edges in the heterogeneous conversational network.

The second major finding was that conversational contexts extracted with Deep Tweet
Infomax have largely different nodesets. Often, pairs of contexts in the two datasets only
shared 20-40% of their users, though this was occasionally as high as 60%. This means, for
two different discussions going on in the same dataset, only about a third of the users can
be expected to be active in both discussions. This findings has major implications for how
we analyze social media datasets. The lack of overlap between conversations indicate that
a non-contextualized approach will mislead analysts into thinking that users are active in
discussions that they never Tweeted in, and possibly never even read. When analyzing
critical discussions, such as those about disinformation, hate speech, or extremism, this
can have major consequences. Further, the nodeset is the most fundamental part of a
network; such drastic differences in the nodesets of contextualized networks indicate that

8and those annotated with label propagation from hand annotations.
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there will be even more drastic results for network analysis such as community detection
or centrality ranking.

Lastly, we find that there are major differences in centrality rankings of users between
conversational contexts. This analysis was performed after controlling for the differences
in nodesets, so the true differences in rankings are likely to be much larger. The rankings
were positively correlated, with τ = 0.472 for the Election dataset and τ = 0.784 for the
Reopen dataset, on average. However, the lack of one-to-one, or even close to one-to-
one ranking of central actors between conversations demonstrate that non-contextualized
analysis will give misleading results about who is most important in a dataset. We further
show that these results can be corrupted in a number of ways, including central actors
from one conversation dominating the others, mixed central actors, and even re-orderings
of the within-context rankings. The fact that the central actor rankings can be corrupted in
several ways makes the non-contextualized rankings even harder to interpret appropriately..

Contextualizing data allows for more accurate representation of user’s importance
within a discussion. Social media analysis can have high stakes when it is used to deter-
mine the importance, or presence, of users within information operations. While this work
moves closer to properly attributing users to the conversations that they are actually active
in, there is a question of interpretability. The move towards deep graph neural networks
makes interpretability challenging, though the computer-assisted techniques developed in
this chapter make this easier. Considerable validation steps have been taken, however if
this work were to be applied to qualitative work looking to attribute accounts a high-stakes
setting, much more in-depth checks about how specific users fit into a conversation must
be taken.

In the following chapter we will build off static contextualized network analysis by
exploring the dynamics within and between contexts.

46



Chapter 3

Contextual Dynamics of Social
Media Discussions

In Chapter 2, we demonstrated that Twitter data collections attempting to study a con-
versation actually contain many conversational contexts. We saw that mixing these many
contexts together harmed our network analysis because fundamental network properties
like the nodesets differed greatly between contexts. The initial solution is to use the meth-
ods in Chapter 2 to separate out contexts so that they can be properly analyzed using
static network techniques.

Now, we demonstrate that contextualized network analysis can help us discover new
aspects of our data, not simply enable classic analyses with greater precision. Specifically,
we show that the interactional context dynamics give new insights into the nature of online
communities and the conversations they have. We break down these dynamics into four
parts. The first division is between activity dynamics and network dynamics. We consider
activity dynamics to be those which are primarily characterized by the number or order of
posts (i.e. activity) over time. On the other hand, network dynamics consider the structure
of conversational networks, paying attention to the dynamic relationships between users
and contexts. The second division is between intra-context and inter-context dynamics.
Taken together, these four dynamic analyses give a rich portrait of online communities
previously inaccessible with a non-contextualized approach.

3.1 Related Work
With the initial detection of conversational contexts being so closely related to the literature
on event and story detection, it is natural that contextual dynamics are related to event
and story dynamics. Prior work in both of these areas consider the activity dynamics, and
are not interested in networks. For event dynamics, the focus on primary start times in
order to construct a timeline in the dataset, is a central starting point for our work, where
we similarly construct context-based timelines [63, 233, 241]. However, the overlapping and
inter-related nature of contexts makes them more similar to that of story and sub-story
analysis [58, 213]. Within that analysis, we rely heavily on the “Dynamical Classes of
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Collective Attention” of Lehmann et al., which enables us to categorize activity dynamics
based on the shape of the activity curve [129].

When considering the intra-context network dynamics, the most important literature
to draw on is that of dynamic community detection. The problem of community detection
in complex networks has received a tremendous amount of attention, resulting in many
popular algorithms that have been empirically verified [23, 162, 166]. However, these
algorithms all assume that the network being analyzed is static. If this assumption is
violated, different communities may have been averaged together over time, resulting in
obscured or misleading results. While dynamic aspects of communities are still often
ignored in practice, many potential methods of dynamic community detection have been
proposed. Rossetti and Cazabet posit that this is due to a disconnect between researchers
in the field, and a lack of visibility [198]. Here, we discuss how prior work in dynamic
community detection has motivated our approach.

Using the terminology of Rossetti and Cazabet, there are two types of dynamic network
models: snapshots, and temporal networks. Snapshots segment the data into networks
that are assumed to be static, while temporal networks assign a birth and death time-
stamp to each edge. The temporal network model is pure in that it does not aggregate
links, and the network is never assumed to be static. While this is more accurate than
the snapshot approach, it comes with limitations. Namely, the analysis for such objects
require more computational power, and a set of tools separate from those created for
static networks. Network snapshots, however, have access to the large toolset of network
science. Furthermore, it is critical that community detection can extend to streaming
data. Snapshots are a natural way of handling this: aggregate links in the stream until the
snapshot length has been reached, then analyze it.

Snapshots are limited, however, when the goal is to find fine-grained evolutions in a
network. In this case, temporal networks are more appropriate. Here, we are looking for
events, or large changes in communities, rather than evolution patterns, so we have chosen
to use the snapshot modeling approach. Given this, our partitioning techniques will work
best under the assumption that network communities undergo rapid change, meaning in
few time slices, rather than communities undergoing constant structural evolution. This
assumption is often met when major events occur in the network’s timeline.

Using network snapshots, it is common to take an “instant optimal” or a “two-step”
approach, wherein snapshots are grouped statically and then compared [12, 198]. Some
others have criticized this approach, claiming that it is too vulnerable to noise and the
snapshot groups do not use valuable historical data [136, 137]. These concerns have merit.
It has been shown that static grouping algorithms are unstable, and can give very different
result under only small perturbations to a network [11]. Given that slice groupings are
expected to be noisy, we compute pairwise comparison for all time slices. Comparing all
slices addresses both of the concerns voiced in [136, 137]; historical data is used when
finding similar segments, and pairwise-noise will be present, but should average out when
considering an entire block of similarities. It seems that only Goldberg et al. have used all
slices in the comparison step of a two-step approach [80]. Our work differs from Goldberg
et al.’s in two ways. First, our goals are different. They sought to identify evolutionary
patterns in groups, while we aim to find disruptive events with respect to communities, in
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hopes of aggregating network snapshots into a smaller series of networks with meaningful
divisions. Second, our approaches differ. They identified common community cores across
time, while we calculate the overall correlation between communities.

A very similar approach is given by Masuda and Holme, who use hierarchical clustering
to label slices as “states” of the system, which are expected to recur [145]. Their work differs
from ours in two major ways. First, they take a “one step” approach, where states are
decided based on the network rather than its communities. Second, no temporal continuity
is imposed for states. For our purposes, this is essential. Without temporal continuity,
states cannot be collapsed and analyzed as a static network. Also, we rely on a different
comparison mechanism: product-moment correlation. The fact that pairwise temporal
similarity operations find success in network aggregation (our work) and chain-like state
changes (Masuda and Holme), shows the power of the approach for solving new problems
in temporal networks.

Our approach is a special form of link aggregation. The problem of link aggregation
has been studied in [219]. Taylor, Caceres, and Mucha examine the effect that aggregation
has on community detection. They look at both aggregation over network modes and
over time slices. It was concluded that aggregation can enhance or obscure communities
depending on their size and persistence. Matias and Miele recognize a similar problem,
questioning the assumption that most nodes do not change groups [146]. While Taylor et
al suggest analysis on multiple scales and Matias and Miele attempt to control for short
term group-switching, we take a different approach: only aggregate slices that have similar
community structure.

In summary, work has been done on simplistic community-based event detection, how-
ever the focuses has been on community evolution patterns, rather than shocks to the
overall structure. We develop a method for uncovering such events to better understand
intra-context network dynamics.

Turning to intra-context dynamics, we draw on work from sequence and trail analysis.
In both cases, there are a number of states in which the unit of analysis can travel between.
In our case, we are studying users (unit of analysis) traveling between contextual contexts
(states). Sequence analysis, then, is concerned with uncovering patterns in the transitions
between states [1, 32]. Methods of sequence analysis have been developed from researchers
across scientific disciplines due to the near universal emergence of sequential data. Some of
the biggest impacts have come from sociology, demographic science, and biology [20, 49].
The primary methodology of interest here is the Markovian model of sequence generation,
which assumes that the next step in a sequence is only determined by the current state.
Analysis of this model applied to conversational contexts enables us to show the overall
flow of users in a conversation, and further characterize the contexts.

While sequence analysis is a powerful lens for analyzing contextual dynamics, it omits
part of the dynamic data: the time that states are activated in. The analysis of time-
dependant sequences is known as trail analysis [16]. The added level of detail can help
uncover behaviors that are specific to a moment in time. For example, this approach
has been used to study the actions of Jihadist groups, whose next action depends on
their previous action, but also the timing between actions [37]. Trail analysis applied to
conversational data will show when users or groups of users move between conversations,
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Figure 3.1: The rough start and end times are shown for the top interactional contexts in
the Reopen Dataset.

giving us a more granular view of dynamics than that given from the sequential models.

3.2 Intra-Context Activity Dynamics
In this and the following section, we explore the activity dynamics within contextualized
social media data, which refers to the number of Tweets posted within a context over time.
We begin by studying the intra-context activity dynamics, which we distinguish from the
intra-context network dynamics studied in Section 3.3. The patterns in the activity time
series can help understand the timeline of discussions in the dataset, and can help categorize
each of the contexts.

First, the high-level activity dynamics can be uncovered by calculating the approximate
start and end time of a conversational context. In a strict sense, the start time is the time
that the first Tweet in that context was posted. Similarly, the end time is the time that
the last Tweet in that context was posted. In practice, it may make sense to set a small
threshold to determine when a context starts and ends, to avoid outliers from skewing the
data. For contexts with many Tweets, we exclude the first and last 100 Tweets to calculate
these times.

The start and end times of the top contexts in the Reopen Dataset are shown in Figure
3.1. This diagram highlights the fact that the start and end time of the full dataset obscures
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Figure 3.2: An example of an activity curve with the three major sections labeled.

the fact that there are many conversations which are starting and stopping within the full
timeline. We also see that conversations vary in length. For example, discussion about
COVID and schools is a relatively short conversation in the dataset while discussion and
dissemination of COVID information (infection rates, best practices, etc.) is carried out
through most of the dataset.

A more powerful analysis goes beyond the start and end time of each context. Here,
we study the shape of the activity curve (time time series of the number of Tweets posted)
to categorize the type of conversation based on the “Dynamical Classes of Collective At-
tention” [129]. Curves are categorized based on there shape at the start, peak, and end.
An example of such a curve with the its three sections labeled is given in Figure 3.2. As is
indicated in the cartoon, what is considered the “peak” is up to some subjective interpre-
tation. In practice, some percentage of the maximum of the curve could be taken to find
times that have near-peak activity, but the selection of that percentage is also somewhat
arbitrary. Nevertheless, each section of the curve is visually inspected to match one of the
potential patterns. We will outline these patterns now.

The start of the curve can have one of two behaviors. First, there can be a gradual
slope upwards over a prolonged period of time. This indicates a building of user interest
in the discussion. As time goes on, more people enter the discussion. In terms of events,
this pattern occurs when events are anticipated. For example, a major sporting event like
the World Cup is planned in advance, so people start to talk more and more about it in
the days leading up to the start of the event. Outside of events, this pattern may occur
when an idea or concept gradually builds interest over time.

Alternatively, there may be an abrupt or sudden burst of activity. The lack of build up
indicates that the topic of discussion was unanticipated, usually because of an unexpected
event. We can consider this contrast in the case of natural disasters. Certain natural
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disasters, like hurricanes, are forecast in advance, so it is expected that users will Tweet
about it in the days leading up to the event. Others, like earthquakes, are unanticipated
so there will be no build-up and once the event takes place there will be a burst of activity.

The activity peak has two characteristics of interest: the length of the peak and its
magnitude. The length of the peak, or the amount of time that the context sustains
maximum engagement, gives insight into how much sustained attention the conversation
received, which can help distinguish transient discussions from those that are long-lasting.
At the same time, the magnitude, or number of Tweets, at the peak can indicate how
important or far-reaching the conversation is overall. Typically the peak analysis does not
change the category of the discussion, but nevertheless helps to understand it.

Lastly, the tail of the activity curve indicates the impact of the conversation at hand.
Mirroring the start of the curve, the tail will either have a short and sudden drop, or a slow
descent. A slow descent indicates lasting impact where users are interested in participating
in the conversation after the peak, though this interest wanes. On the other hand, a short
or sudden drop indicates that the discussion at hand had a limited impact. This is often
the case with conversations surrounding scheduled events which may generate discussion
during but not after the event.

3.2.1 Categories of Intra-Context Dynamics
Now that the general patterns have been described we will piece them together to show
the full set of categories. We will also show actual examples of each category using con-
versational contexts in the Reopen and Election datasets. These distinctions will be based
off of the empirical analysis of the activity data for the Reopen and Election Datasets as
shown in Figures 3.3 and 3.4, respectively. The activities are shown as raw counts and as
log-counts, which have different advantages. It is easier to identify peak behavior in the
raw count plots, whereas it is easier to identify tail behavior in the log-count plots. Now,
contexts can derived from either of the methods developed in Chapter 2. Generally, the
automated method was developed for use in scenarios where there are not resources to use
human annotation. Because we have already expended these resources, we proceed with
the human annotated data, which are generally more interpretable. Through this exercise,
we demonstrate how activity categorizations can be used to understand more about the
types of conversational contexts we derive from social media discussions.

Build to Peak With Sudden Drop

This category is defined by its gradual gain in interest followed by a sudden drop. The
combination of these characteristics is usually met for discussions of scheduled events that
do not have lasting importance, or where the implications of the event itself do not warrent
much discussion. The classic example given by Lehmann et al. is a sporting event like
the Masters [129]. Fans’ excitement build leading up to an event, peaks during the event
itself and perhaps during the award ceremony. After the event, however, there is not much
left to discuss. Neither of the datasets contained events that we would expect to follow
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(a) Tweets

(b) Log Tweets

Figure 3.3: Detailed activity plots for the Reopen Dataset.
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(a) Tweets

(b) Log Tweets

Figure 3.4: Detailed activity plots for the Election Dataset.
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this behavior, so naturally none of the conversations found in the datasets neatly fit this
category.

Build to Peak With Gradual Decay

Starting out in a similar way to the previous category, this category finishes with a gradual
decay. This is an extremely common pattern for discussions on social media around events
with lasting implications, like elections. The distinction from the previous category comes
from the gradual decay, indicating that the conversation still warrants discussion after
the peak, however interest naturally dies out eventually. In the Reopen dataset, we see
this pattern most clearly in the Reopen Strategy conversation, which gained interest as the
protests went on, and faded out of interest afterwards. This behavior can also be seen in the
Schools, Reopen Updates, and Working Precautions contexts which follow similar patterns.
The Claims of Fraud context in the Election dataset also falls under this category. Fraud
claims built as the votes were being tallied, resulting in increased interest, especially as
results tilted towards Biden. These waned after the election was officially called, but the
discussion did not die out immediately and clearly had a lasting impact.

Sudden Peak With Sudden Drop

Here, the sudden peak is characteristic of an unexpected event, while the sudden drop
indicates a lack of impact. However, the sudden peak can also be an artifact of an event
that is not important enough to garner attention before it is actually occurring. Often,
this occurs in conversations surrounding trivial time-related events. For example this might
happen on holidays or days of the week. A common example is #MondayMotivation, where
users post motivational Tweets to start their week. The discussion is isolated on Monday,
since it does not make sense for users to post before or after the day itself. A clear example
of this is the Florida Data Scientist context, which was unexpected and quickly garnered
a lot of attention, however it was also quickly abandoned as its own conversation, though
it may have transitioned to become a talking point in other conversations. The Trump
Refuses CDC context follows the same pattern.

Sudden Peak With Gradual Decay

A sudden peak with gradual decay is one of the most popular categories of activity on
Twitter, as it is indicative of viral moments. These moments are unexpected, so achieve
quick acceleration in interest, the length of the peak is typically longer for more important
viral moments, but the length of time that it takes for attention to decay is also a good
indicator. The primary example of this in the Reopen dataset is the Liberate Tweets
conversational context. No one could anticipate that Trump would Tweet in support of
the protests, however once he did it generated a tremendous amount of discussion. This
discussion naturally decayed until he followed up with additional Tweets of support. The
Black Lives Matter context is another clear example, where the murder of George Floyd
was an unexpected event with massive implications for the country. In the Election dataset,
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the best example is the Election Updates context, which drastically rose as the polls closed,
and then slowly declined afterward.

Sustained Peak

The word “peak” is used for continuity with the other categories, however this could also
be described as a lack of peak. The activity curve in this category appears to be a flat line;
steady interest is shown. The magnitude of the curve differentiates pervasive and important
conversations from low-level background conversations. Generally, this category is often
seen around non-event focused discussions, like those about ideas or problems. In the
Reopen dataset, COVID Information and General Politics are examples of this category.
The overall level of activity in the COVID Information category is much higher than that
of General Politics indicate its relative importance.

3.3 Intra-Context Network Dynamics
We when we first considered intra-context network dynamics in Chapter 3.2, we recognized
that there are rich dynamics within a conversational network, but limited the analysis of
these dynamics to that of activity charts. Here, we will dive deeper to explore how these
dynamics take place at the network level, and how they may be accounted for to get a
clearer view of communities. This section can be seen as dynamic community detection
applied to a contextualized network.

While a vast body of literature addresses the problem of community detection in net-
works, only a small portion considers their dynamic aspects. Recently, this problem has
received more attention. The majority of networks are truly time-varying, and community
detection should reflect that. Often, large periods of time are aggregated into a static net-
work, or they are aggregated at regular intervals and analyzed individually. At best, this
smooths over any interesting temporal features of the network data, at worst, combining
links from old and new communities can yield misleading results. This problem is quite
similar to the original network context problem detailed with the cartoon in Figure 1.2,
except now, the different networks being combined are those from different time periods.

Although infrequently used in practice, there has been work in this area which is well
summarized by Aynaud et. al and Rossetti and Cazabet [12, 198]. Much of this work
focuses on community evolution, or how communities change in time [3, 83]. However,
an easier problem has been understudied. In the first part of this chapter, we seek to
answer the question: “How can we segment a dynamic network, such that static analysis of
the segments will be representative of the underlying dynamic communities?” Effectively,
temporal partitions should be change points for community structure. This problem is
easier in that we assume communities are static until an event changes them noticeably.
Segmenting the network in this way gives us access to all the tools of static network
science, and simplifies the interpretation of results. “Partitions” are also used to describe
the grouping of nodes into communities. In this work, we are describing temporal partitions,
which define the ends of time segments.
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We compare with one of the main methods of segmenting networks in practice: General-
ized Louvain. The first shortcoming is its dependence on a spacific grouping algorithm. As
is well known, each grouping algorithm has strengths and weaknessess, and should there-
fore not be used as a universal tool. It also has the disadvantages of relying on user-defined
parameters, and needing a static nodeset.

We propose a simple method for placing temporal partitions in dynamic networks
such that static community analysis accurately represents the dynamic communities. This
method is parameter free, works with any grouping algorithm, and is somewhat robust to
noise, as demonstrated through trials with synthetic datasets and a case study.

The initial framing of the method relies on static nodesets, where the Ukrainian Parlia-
mentary voting network is analyzed as a case-study. The Ukrainian Parliamentary voting
network is for two reasons: it provides an example of a fixed nodeset, and it has a known
change-point (the Euromaidan Revolution). Known change-points are rare for online so-
cial media datasets, making an outside dataset required for validation. After validation,
the static nodeset assumption is relaxed to semi-static, and the approach is applied to the
contextualized communication networks derived in Chapter 2.

3.3.1 Methods: Snapshot-Based Change Detection

Informally, the goal of this section is to partition the time dimension of a network such
that each segment forms cohesive groups, and adjacent segments are noticeably different
from each other. This section will formalize a procedure that achieves this goal.

We start with a fairly restrictive assumption: the nodeset is static. That is, every
node is present in every time slice. While many datasets violate this assumption, this is a
natural starting point. Dynamic nodesets introduce complications such as the problem of
comparing groups with different nodes. We relax this assumption to semi-static nodesets
(those where the majority of nodes are present in every time slice) after validation of the
initial approach.

Each community detection algorithm has strengths and weaknesses, and is thus more
or less suitable for certain types of networks. For example, Louvain grouping has proved
to be extremely successful, but is ill-defined for dense weighted networks. Further a “no
free lunch theorem” for community detection networks has been proven, stating that no
algorithm is optimal for all community structures [177]. As such, a temporal partitioning
procedures which are independent of grouping algorithm are preferred over those that rely
on a specific method, such as Generalized Louvain [156].

A partitioning method independent of community detection algorithm can be con-
structed using the co-group network. That is, the network between nodes where links
represent shared group membership. After calculating the co-group matrices, we will com-
pare them to find natural partitions in time. This way, the user can choose any algorithm
they like to group the slices before the temporal analysis begins. It is important to note
that comparing co-group networks relies heavily on the static nodeset assumption. One
way of comparing two networks is through the Product-Moment Correlation [124]. The
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correlation, ρ, between two co-group matrices A, and B is given by:

ρ(A,B) =
cov(A,B)√

cov(A,A)cov(B,B)
(3.1)

cov(A,B) =
∑
i,j

(Ai,j − µA)(Bi,j − µB). (3.2)

Throughout the work we define Ai,i = 1 in co-group matrices, to indicate that a node is
always in its own group.

We take what is known as a “snapshot” approach to dynamic networks in the language
of Rossetti and Cazabet [198]. That is, the initial temporal network can be defined as
a series of adjacency matrices, A1, ...AT , at every time step, 1, ..., T . After these are
all grouped there is a series of co-group matrices, CG1, ..., CGT . Pairwise similarity is
calculated between all of these slices to obtain the similarity matrix, S:

St1,t2 = ρ(CGt1 , CGt2). (3.3)

Under the assumption that community change occurs rapidly, S will have near block-
diagonal structure. Communities will remain roughly unchanged between events, causing
diagonal blocks in S with high similarity. After changes, two segments will be fairly
different, resulting in low similarity in S’s off-diagonal blocks. We now formally define
a method for locating each block’s boundaries, which correspond to community change
points.

Now that similarity is defined for our temporal network, we can formalize the goal of
“cohesive groups” as high internal similarity. For example, if a time segment begins at
t = 10 and ends at t = 20, the values within the square similarity matrix S10:20,10:20 should
be high. As such, we define the time partitioning problem to maximize this term. The
general temporal partitioning problem is to find a list, b, which contains start and stop
points, or boundaries, of time segments. We will assume there are P partitions, and b
is strictly increasing with fixed ends b1 = 0 and bP = T , so that the partitions are well
defined. Then, the problem is stated as:

argmax
P b

sinternal(S,
Pb) (3.4)

sinternal(S, b) =
1

ni

P−1∑
k=1

bk+1−1∑
i=bk

bk+1−1∑
j=bk

Si,j, (3.5)

where ni is the number of entries in all the internal blocks, and i, j are the indices of
the sub-matrices, and Pb enforces that b be length P . The left-superscript indicating the
length of Tb is dropped in other calculations for convenience. Given P , this problem can
be solved quickly, especially considering that P will typically be small in practice. This
could potentially be written as a dynamic program, though with the scale of data used
here such an improvement is unnecessary.
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However, P should not have to be given. Domain knowledge might give a reasonable
guess as to what P should be, but there is no telling whether or not the structure of groups
would have actually changed due to outside events. There could also be unknown events.

A natural criteria for determining P comes from the second stated goal: find adjacent
segments which are noticeably different from each other. Now, P can start at its minimal
possible value, 3, and be iteratively increased to meet both goals. Just as segment similarity
is encoded in S, so is segment difference. Using the example from before, where a segment
begins at t = 10 and ends at t = 20, add the fact that the next segment ends at t = 30. If
these segments are very different the values within S10:20,20:30 should be low. Calculating
this difference for a full time segment with length P , the external similarity is:

sexternal(S, b) =
1

ne

P−2∑
k=1

bk+1−1∑
i=bk

bk+2−1∑
j=bk+1

Si,j, (3.6)

where ne is the number of entries in all the external blocks, and i, j are the indices of
the similarity matrix, and k indexes the boundary list b. Naturally, there is a tradeoff
between these values. We can expect the internal similarity to increase even beyond the
optimal partitions, albeit more slowly. This happens by splitting already cohesive sections
into more cohesive segments. When this happens, the external similarity should begin to
increase. Since similarities will be calculated iteratively, a subscript will be used to denote
which iteration the similarity was calculated on. For example, s1internal is the initial internal
similarity.

Increasing external similarity is a sign of over-partitioning, so is naturally a good stop-
ping criteria. However, we cannot expect real-world data to exhibit perfect block-diagonal
structure. Thus, we propose a stopping criteria based on the rate at which each similarity
changes: ∆stinternal,∆stexternal:

∆stinternal =
stinternal − st−1

internal
s1internal

, (3.7)

replacing “internal” with “external” yields the equation for ∆stexternal. If ∆sinternal > −1 ∗
∆sexternal, too many partitions have been placed. The negative sign is due to the expectation
that ∆sexternal is negative. Thus, the final algorithm is given as Algorithm 1.

This two-step procedure first ensures that the segments are as similar as possible, and
then stops when increasing P fails to yield additional segments that are meaningfully differ-
ent. Combining the two goals into a single objective function sometimes led to inaccurate
partitions, since segments were blended in order obtain low external similarity.

The algorithm could be forced to continue, which will give more breakpoints. These
could also be interesting but it should be remembered that they are breaking the trade-off
that we set out to balance, that between internal and external similarity, so they are likely
to be less meaningful than initial break-points.

Adjustments for Semi-Static Nodesets

As stated, the above method of finding optimal time segments requires that nodes be
present in each time slices. However, many datasets do not meet this requirement. In
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Algorithm 1: Dynamic Partitioning
Result: List of temporal partitions, b

1 P ← 3 the number of partitions, including endpoints;
2 Pb← argmaxP b sinternal(S,

Pb);
3 while ∆sinternal > ∆sexternal do
4 P ← P + 1 ;
5 Pb← argmaxP b sinternal(S,

Pb) ;
6 end
7 b← P−1b;

some datasets, such those derived from social media, key actors are present in most of the
time slices. Before applying the methodology, we will now make changes that allow nodes
to be missing in some slices.

Again, each time-slice is grouped, and the co-group matrix is calculated. However, now
that nodes in our nodeset can be “out of the network” completely, isolate nodes should
not be allowed. Instead isolate nodes will be entered as “not a number” in the co-group
matrix. Then, the correlation function is adjusted to ignore these values in calculation.
Basically, the correlation now is calculating the similarity between groups of nodes present
in both time slices.

Additionally, an added assumption can fill in some missing data: nodes do not change
group affiliations in slices they are not present for. That is, if a node is not present until
t = 4, is present in t = 5, and then is not present again, it will have “not a number”
co-groupings until time t = 5, then it will retain the time t = 5 co-group ties for the rest of
the dataset. To be clear the assumption is that nodes only change group through forming
other links, or the lack of a link cannot be used to change a node’s group. Theoretically
this seems like reasonable way to fill in missing data. In practice, however, this added
assumption actually blends the time slice networks together, making it harder to establish
temporal partitions. Thus, this assumption is not made in this work.

Now, nodes can enter and leave the dataset. However, large sets of infrequent nodes
can disrupt results. For example, if many nodes are present in an early slice, but never
return, it is possible that subsequent slices appear more correlated than they should. Issues
like this can be resolved in two steps. The first part of this issue stems from the concept
of time slices itself. What is a time slice? It depends on the dataset, but often it is up to
the user to define a sensible time slice. Slices are arbitrarily selected as regular intervals
like days, weeks, or months. Ideally, the length of the time slices should be 4-10 times
shorter than that which meaningful change might occur for that network [216]. Given the
somewhat arbitrary nature of the current slice length choice practices, we suggest that the
node frequency should also be taken into account. Again considering an email network,
it is not reasonable that everyone emails every single day, but most people send at least
an email a week, so this may be a better time slice. A month would include even more
users over a frequency minimum, but offers less resolution for temporal changes. These
trade-offs must be looked at on a case-by-case basis.
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In the case of semi-static nodesets, many nodes in the network may appear infrequently.
If a researcher would like to answer the question “how do core members of this network
change their community structure?” Infrequent nodes may want to be filtered out. This is
not a necessary step, as nodes will only have an impact on results when they are present,
however, large numbers of less important nodes can obscure results and make analysis more
challenging. As such, a node frequency threshold can be introduced. After the network
slices are created, define ni as the number of slices node i is present for. Then, a define λ
as a threshold such that all nodes with ni < λ are removed from the analysis. For example,
λ = 3

4
T retains nodes that are present three quarters of the time. This node-filtering step

is prevents large numbers of sporadic nodes from skewing the analysis of our segments.
This is not a parameter to be tuned or adjusted to get better results. Rather, it is an

optional pre-processing step which may be helpful for researches interested in the evolution
of nodes that are frequently present. In the case of social media discussions, we are most
interested in how communities change around influencers or those central to the discussion
at hand.

3.3.2 Validation
Synthetic Networks

Network datasets with ground truth communities are rare. Rarer still, are network datasets
with ground-truth community disruption. Therefore, we test the validity of our approach
using a series of experiments on synthetic datasets. With synthetic datasets, we can impose
change points and access our ability to recover them. Throughout these experiments we
chose a nodeset size of 500. Additionally, we are only considering Erdös-Rényi random
networks of varying density between experiments. Random networks typically have low
modularity, and as such are a good test case. Further, Peel et al. have concluded that
verification on embedded communities is flawed, so we do not rely on manually embedded
communities here [177]. If our algorithm can detect changes in weak communities, it should
perform well in the easier case of strong communities. For all tests, a temporal network
with 20 slices was considered. The ground-truth breaks were placed at t = 4, 8, 17. Every
experiment was repeated 100 times.

First, a very basic set of tests were performed. At time t = 0, a random network was
constructed. Then, each slice up until the first break was set to this network. When a break
occurs, a new random network was generated and the process repeats. Basically, slices are
identical within breaks, but completely different random networks between breaks. In this
case, then, the ideal internal similarity score is 1, and the external similarity will likely be
close to 0. This construction method was tested with density 0.2, 0.1, and 0.5. For each
experiment the algorithm gave the exact set of breaks for all 100 repetitions.

Second, a more realistic set of tests were performed. Again, a random network was
generated and slices were set to that network up until a break. This time, when a break
occurred some fraction, f , of the links were randomly rewired. In these experiments,
internal similarity is still 1, but the network is retaining some of its original structure
throughout the timeline, giving higher external similarity. For these experiments, density
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was held to a constant 0.1, but f was varied: f ∈ [0.5, 0.1, 0.05, 0.01], to measure how the
algorithm performs on changes of varying scales. For f ∈ [0.5, 0.05] the exact partitions
were recovered in all 100 trials. For f ∈ [0.1, 0.01], the partitions were recovered in 99
trials. In the remaining trial the break at t = 4 was not detected, while the other breaks
were. As f decreases, it is increasingly likely that the underlying communities do not
change, so it is expected in some instances we will not see breaks. Given our results up to
changes in only 1% of links, it seems that our method is extremely accurate in a noiseless
environment.

Lastly, two additional experiments were conducted to study the effect of noise. Now,
since the networks in question have low modularity, random changes in links can potentially
have a large impact in group structure. To test this we followed the same procedure as in
the second step of experiments, but adding the additional set of swapping some fraction,
n, of the links at each time slice. In these experiments we held density to a constant 0.1, f
to a constant 0.5, and tested n values of 0.01 and 0.05. The exact partitions were recovered
in 88 and 66 trials, for 1% and 5% rewiring, respectively. Typically, the algorithm had
only one of the following errors: one of the partitions was misplaced by 1 slice, one of the
partitions was missing, or an additional partition was added.

Given the extremity of the experimental conditions (testing on networks with low com-
munity structure and high sensitivity to noise), and the results (>99% accuracy in noiseless
scenario, >65% accuracy under extreme noise), these results bolster the method’s validity.

Ukrainian Legislature

It is known that the Ukrainian Parliament, the Verkhovna Rada, has interesting political
groups within it called “factions” [116]. Factions are interesting as they extend beyond
party boundaries and change dynamically. Prior work shows that factions can be obtained
from network analysis of voting data [184, 185]. Further, there is known to be a large
disruption of alliances in convocation 7, spanning from 2012 to 2014, in which a revolution
took place.

Thus, in this validation case study we analyze the Rada voting data from convocation
7, which is available publicly1. The dataset from this convocation analyzed included 493
bills, over 91 time slices. Time slices are defined using the day in which bills are registered.
Some time slices may have multiple bills, some may not. There are six voting options
in the Rada: for, against, did not vote, no vote, absence, and abstain. Domain experts
have suggested that votes other than for and against are all used to mean the same thing:
they are not in favor of the bill, but do not want to send a strong signal against it. As
such, these votes are not considered as ties between MPs. The voting network, then, is
the network constructed so that nodes are parliamentarians and the weighted links are the
instances of co-voting between two parliamentarians in the given time period.

One method of determining factions from this network is using Louvain grouping [23].
Thus, we use Louvain grouping at each of the 91 slices, and obtain the similarity matrix.
Note that this procedure can lead to a significant number of isolates at each time slice.

1http://rada.gov.ua/en
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It was determined that there is only 1 partition in the networks timeline, occurring
on February 6, 2014. Figure 3.5a shows the similarity matrix with the induced temporal
partitions. It can be seen that the “internal similarity” of the partitions is high, often
around 0.8, and the “external similarity is low, often around 0; specifically, the average
value internal similarity is 0.25, and the average external similarity is 0.03. While there are
many entries in S with low similarity during segment 2, they are not pervasive. Meaning,
since the overall block has high similarity, these intermittent entries of lower similarity are
normal variations in the communities. If a meaningful change was occurring, slices would
not be highly similar to entries within the block on average, i.e. a new diagonal block
would form in the matrix.

The Ukrainian revolution started in February of 2014, culminating in the overthrow of
the Ukrainian government and the removal of President Victor Yanukovych. As expected,
our algorithm returns this as the most significant change point. Forcing our partitioning to
continue revealed another date: May 15, 2014. This is interesting in that it is the last slice
before the presidential election, occurring on May 25. Again, groups are highly correlated
before and after these events, so there was not much of an impact on the communities
overall.

We compare results to a popular alternative method, Generalized Louvain [156]. Gen-
eralized Louvain requires two resolution parameters: ω, γ. Currently, there is no way
of objectively selecting these parameters. So, we perform a grid search over the param-
eters suggested in their initial work, adding additional values making the total space:
ω ∈ [0.25, 0.5, ..., 4, 5, 6, ..., 10], γ ∈ [0, 0.1, 1, 1.5, 2, ..., 6]. Out of these 286 possible combi-
nations, only 14 partitioned the data less than 10 times. Finally, one partition was best
in terms of all score metrics (internal similarity, external, ratio, difference), which was ob-
tained from γ = 2.5, ω = 8. This parameter combination yields one partition in the voting
data, on April 4, 2018. This partition is visualized in Figure 3.5b. Clearly, this result is
sub-optimal and does not accurately correspond to the known disruption to the network.

Now that the temporal network has been segmented, we can analyze the resulting two
static networks statically. First, we visualize the network in Figure 3.6. This figure shows
that the initial two communities within the Rada relied on only a few parliamentarians to
bridge the gap between them. Then, we see that after the event, the community structure
cannot be discerned visually, indicating poor grouping after the event. This result is con-
firmed quantitatively using Louvain modularity; the initial time segment had modularity
0.139 while the second only had 0.024.

To better understand how the groups have changed, a Sankey Diagram is displayed in
Figure 3.7. We see that group A transitions from holding a majority to holding only a
third of the seats. This is due to a large number of its constituents joining members from
group B to form a third group, and a smaller number of constituents joining the opposing
group. Both before and after there is a small number of MP’s failing to cast a significant
vote in each time period. Here, significant refers to the fact that “co-voting” relies on
non-abstention, and some MP’s strictly cast abstention-type votes.

This validation examples highlights the need for dynamic community detection: ag-
gregating the entire convocation 7 data into one network would have lost the two very
different behaviors seen in the data. Our methodology partitions the temporal network at
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(b) Best Generalized Louvain

Figure 3.5: The Rada’s temporal similarity matrix for convocation 7, created using Louvain
grouping. The temporal partitions are drawn in black. The partition found with our
method occurs on February 6, 2014, which is the start date of the Ukrainian Revolution.
The best-fit partition found with Generalized Louvain occurs on April 4, 2014.

(a) Time 1 - Pre-Revolution (b) Time 2- Post-Revolution

Figure 3.6: Network visualization of the Rada in the first time segment in (a) and the
second in (b). Links below the mean link value are not shown, nodes are colored by
Louvain grouping for the individual time segment. The initial time segment shows clear
group structure in the first time segment, with a minority group detached from a central
core. The second time segment does not have clear groups, because the groups found are
all inter-related.
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Figure 3.7: Sankey visualization of the flow from Rada groups in time segment 1 to time
segment 2. Groups in the “z” category are isolate nodes that were lumped together for con-
venience. The main finding here is the birth of a third group, which drains the controlling
faction of its majority, giving the opposing faction the most power after the revolution.

exactly the point that the legislature Ukrainian revolution began, giving empirical valida-
tion to our results. Additionally, allowing our algorithm to over-partition the data revealed
two other change points, centering around the election. Finally, we show that performing
Generalized Louvain with 286 parameter combinations led to only 14 usable partitions, all
still with sub-optimal results. Additionally, the results from Generalized Louvain could not
easily be compared without introducing some similarity measures, as we have done here.

3.3.3 Results
We now apply the dynamic partitioning approach to the contextualized networks. The first
major point is that dynamic partition quickly proves to be inappropriate for contextualized
networks in the Reopen dataset. The contexts in that dataset were either spread out
too thinly across time, or too concentrated. The largest context, Liberate Tweets, was
heavily concentrated within 6 days, 3 days in April and 3 days in May. Clearly, these
sections should be considered separately, but within those two blocks, there was not enough
data to warrant a full dynamic partitioning. On the other hand, discussions like COVID
Information were spread out over nearly the full timeline, and had very few persistent
nodes, which also made dynamic partitioning inappropriate.

On the other hand, the contexts in the Election dataset were concentrated over the 7
days surrounding the election, making them ripe for dynamic partitioning. The temporal
similarity matrices for the two largest contexts, Biden Campaign and Claims of Fraud, are
given in Figure 3.8. There, we see that the group structure similarity between snapshots in
both contexts is quite low, with values from 0.1-0.2, though correlation is generally higher
in the Biden Campaign context, indicating that group structure was more stable there,
though it was still unstable.
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(a) (b)

Figure 3.8: Temporal similarity matrices are shown for the Biden Campaign and Claims
of Fraud contexts. In each case, the optimal partition considers each day independently.

A visual inspection of the dynamic partitions in Figure 3.8 would suggest that the
snapshots are too unrelated to be grouped together. That is, every day should be considered
its own network. The partitioning algorithm confirms this intuition by selected the optimal
partition as each day in its own snapshot.

Clearly there is different network structure in each of the network snapshots in the
contextualized networks, since their similarity is typically very low. To further emphasize
this point, the network snapshots for the Biden Campaign context are visualized in Figures
3.9 and 3.10. Each snapshot shows a user-user network, where users are connected on
the basis of any interactions they had within the Biden Campaign context. Network
communities were uncovered on each snapshot using the Leiden method, and are used to
color the nodes.

Visual investigation of the network snapshots show that there are major differences in
network structure from one day to the next. All days have a large sub-graphs with hub-
spoke structure, which is extremely common on social media and occur when many users
interact with only one or two viral posts. However, the number of hubs, their size, and
their membership clearly changes from day to day. For example the largest community in
Day 2 is much larger than all the other communities, while there are 3 large communities
of similar size on Day 3. We also see changes in network sparsity. Day 1 has not nearly the
same amount of activity as Days 2-6. Even within the high-density days there is variability;
density decreases from Day 4 to Day 5, before increasing again.

Visualizations of the snapshots from the Claims of Fraud context are not shown, but
their correlation tells the same story; different days have very different network structure.
Through our dynamic partitioning approach we can now separate these structures out and
more accurately analyze them. If we were to mix these snapshots together, the underlying
community structure would be harmed, in much the same way as contextualized mixing
harms our view of networks.
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(a) Day 1 (b) Day 2 (Election Day)

(c) Day 3 (d) Day 4

Figure 3.9: Snapshots 1-4 of the dynamic all communication network in the Biden Cam-
paign context. Each node is a user, colored by its Leiden community for that snapshot.
Similar colors do not indicate similar community across snapshots. Users are connected on
the basis of all communication.
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(a) Day 5 (b) Day 6 (Election Called)

(c) Day 7

Figure 3.10: Snapshots 5-7 of the dynamic all communication network in the Biden Cam-
paign context. Each node is a user, colored by its Leiden community for that snapshot.
Similar colors do not indicate similar community across snapshots. Users are connected on
the basis of all communication.
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3.4 Inter-Context Activity Dynamics

We now move to an exploration of inter-context activity dynamics, which we distinguish
this from the inter-context network dynamics studied in Section 3.5. Here, we demon-
strate that the movement of users between contexts uncovers a roadmap of the datasets
conversational dynamics, showing how users flow from one context to another.

The inter-context activity dynamics are analyzed by calculating the probability that a
user will move from one state to another. We model this as a Markov chain. The Markov
chain model makes two assumptions. First, it assumes that the probability of changing
from one state to another state is constant in time. Next, it is “memoryless,” meaning
that the user’s next move only depends on the current position, not where they came from.
The probabilities are stored in a transition matrix, P , where Pi, j gives the probability
of a user transition from context i to context j. Note that the probability matrix is not
symmetric.

The transition matrix is calculated on real data by the following process. First, the
time-ordered sequence of Tweets is constructed for all users in the dataset. Next, the Tweet
labels are used to convert the previous sequence to a sequence of conversational contexts
for each user. Following this, the total sum of transitions is calculated and stored in a
total-transition matrix, T , where Ti,j indicates the number of instances that a user began
in the i context and transitioned to the j context. Finally, the total-transition matrix is
row-normalized to give the transition probability matrix, P .

Self-loops indicate the probability that users continue tweeting in the context that they
are in. Thus, the strength of a self-loop in the transition matrix can be considered the
“stickiness” of a conversational context. While this may be useful information, self-loops
make it harder to illustrate the between-context dynamics, which are of primary interest
here. Thus, we exclude self-loops in the following analysis. By excluding self-loops, the
transition matrix indicates the probability that a user transitions from one state to another,
given that they are forced to transition somewhere (they cannot stay put).

The conversational context transition matrices for the Reopen and Election datasets
are shown in Figure 3.11. For a large dataset, there is usually some low but non-zero
probability that a user will transition from any given context to any other. This creates a
fully-connected graph that is hard to interpret. Trimming the low probability transitions
from the network provides a much more useful diagram of the dynamics. Note how this
compares to the static nodeset relationships between contexts shown in Figure 2.9.

3.4.1 Categories of Inter-Context Dynamics

We will explore the categories, or motifs, of inter-context dynamics. For each category, the
transition networks of the Reopen and Election dataset, as shown in Figure 3.11, will be
referenced to demonstrate the real examples of each pattern.
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(a) Reopen

(b) Election

Figure 3.11: The transition networks are shown. Arrow width indicates the probability
that a user will transition from one conversation to another. So, if a user is actively
Tweeting in one conversation, the arrows will indicate which conversation they are most
likely to start Tweeting in next. Probabilities below 0.1 are removed
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Sinks

Conversational sinks, or attractors, are conversational contexts with a high in-degree in
the transition network. That is, many contexts have a high probability of transitioning to
the sink. They are visually identified by having many strong arrows pointing to them in
transition diagrams like that in those in Figure 3.11. Sinks occur when a conversational
context is so important that they draw many users to it from different conversations.

In the Reopen dataset, we see that Reopen Strategy, COVID Information, and Lib-
erate Tweets, are all sinks. These discussions are all core aspects of the larger Reopen
discussion, as they draw user from many periphery conversations to more centralized ones.
For example, we see that the discussion about strategy for reopening draws in users from
discussions about politics, anti-mask violence, schools, worker unemployment, and many
other discussions.

Conversational sinks are even more clear in the Election dataset, with Claims of Fraud
being the dominant sink, but Election Updates and Spam also showing the behavior. While
the votes were being counted, Trump supporters made claims of fraud while other debunked
them. Because there were no results, there was not much else to discuss, allowing the fraud
conversation to pull many different users into it.

Sources

Conversational sources play a similar role to conversational sinks. Sources are contexts
with a high out-degree in the transition network. This means they are conversational
contexts that disperse users to many different contexts. At first, this appears to be a very
different behavior than sinks. It may seem that sources are less important, because they
appear to be repelling users. However, this is just an artifact of the ordering of discussions.

Consider a simple example. If a very compelling conversation develops at the end of
a dataset’s timeline it is likely to draw in users from all sorts of conversations. Thus, it
will appear as a sink. However, if that same conversation occurred at the beginning of the
dataset the diverse set of users would begin at the conversation of interest before dispersing
to many other side discussions. In this case, it would appear as a source.

This problem means that we must be very careful when attributing importance based
on a context’s status as a source or sink. The simple fact that a context occurs at the
beginning or end of a dataset’s timeline makes it more likely to be a source or sink,
respectively. This is to say that consideration of the qualitative details of a context must
be taken in conjunction with its position within the transition matrix to fairly assess its
role in the greater discussion.

Both of our example datasets start out dispersed and become more centralized, as
observed by the general flow of conversational contexts with low in-degree to those with
higher and higher in-degree. So, in this dataset, strong examples of sources are not present.

Cycles

A conversational cycle occurs when users bounce back and forth between two or more
discussions. This occurs because two conversations are active at the same time and they
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are related. They are observed in the transition network as graph-theoretic cycles. In
simple terms, they are observed when you can start on one context, follow certain arrows,
and end up on the original context.

In the Reopen dataset, the strongest cycle is between the Black Lives Matter and
Petitions conversations. This pattern shows us that users are oscillating back and forth
between these related discussions.

Splits

Splits in the transition network occur when a context has a high probability of transi-
tioning to two other contexts. Three-way or higher-level splits could be of interest, but
this behavior is hard to distinguish from that of a source. Splits are notable because they
indicate a conversational context that have users with different priorities or interests.

For example, the Project Veritas context splits to Election Updates and Claims of Fraud.
This split indicates that there is a joint interest in the two conversations by those in the
Project Veritas conversation. As more events unfold and the original discussion fizzles out,
the groups split to conversational contexts that are more interesting to them. Similarly,
Reopen Criminal Case splits into Petitions and Black Lives Matter. Often, the ends of a
split will themselves be related, as is the case in both of our examples. If the two ends
were observed to be unrelated, that would indicate that the initial conversation had two
distinct groups that were only temporarily engaging with each other.

Sequences

Lastly, sequences appear as “lines” in the transition network, where one context only
transitions to the next context. The simple and linear nature of this pattern indicates that
it represents a single, evolving conversation. Users are likely to continue on interacting as
the conversation drifts to other topics.

The dynamics in each of the datasets are too complex to show sequences greater than
length 2. With that said, an example sequence is the transition from Trump to Declare
Early to Claims of Fraud, as the users who were sounding the alarm about these claims
before hand turned to discussing them as they happened.

3.4.2 Sequences and the Temporal Order of Contexts
As was briefly discussed while introducing conversational sources, the order of contexts
does affect the potential roles that contexts take on in the transition network. Because
contexts overlap, there is not necessarily a clear ordering. However, there may be contexts
which have much more activity later in the dataset compared to those earlier. Referring
to the simplified timeline in Figure 3.1, we could see that the Black Lives Matter context
generally occurs after the others. Thus, Black Lives Matter can’t have out-transitions to
the bulk of conversations in the dataset, because they are already over.

This is to say that, to some extent, the ordering of events is built-in to the transition
networks, and they can be accessed through the dominant flow of transitions. Combining
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this analysis with that of the activity plots should give the best results.
The transition diagrams shown presuppose that a user makes a transition. That is the

continue to be active in the conversation. It is possible that many users in one conversation
are only active in that one conversation, though this cannot be accessed from the transition
plots shown. Instead, a null or empty state can be added to the transition network,
indicating when users are likely to leave the discussion. By definition this is a sink, since
you cannot leave the empty state. The probabilities of leaving a dataset are generally
very high due to the heavy-tailed engagement of users in discussion. Because of this,
the inclusion of a empty state does not yield transition networks that are as visually
interpretable, so they are excluded here.

3.4.3 Timescales of Conversational Transitions
The sequence model described in this section does not account for time scales that the
transitions occur within. That is, the model can show you that many users transition
from one conversation to another, but it cannot say if that transition occurred within
an hour or a week, nor can it say if the transition occurred all at one time, or within
groups. Methods that specifically address this are left for future work, but the intra-
context activity dynamics previously studied give some insight onto why transitions might
occur within different time scales. These intuitions are summarized in Table 3.1.

3.5 Inter-Context Network Dynamics
The inter-context network dynamics are the last aspect of the interactional contexts dy-
namics left to consider. While we previously looked at the inter-context activity dynamics
to understand more about the contexts themselves, here we will learn more about the rela-
tionships between users. Specifically, we will look to find users that make similar transitions
between contexts.

Users making similar transitions between contexts can be useful for two primary rea-
sons. At a high level, this can be seen as a form of dynamic topic groups [18]. In previous
work, topic groups have been seen as groups of users who engage with similar topics of
discussion. Expanding on this, groups of users who transition between discussions together
could be seen as more tightly related. The second use case is in the identification of co-
ordinated actors. Prior work has shown that some groups seek to manipulate discussions
by synchronizing their actions [142], though this work only considered simple actions like
tweeting a specific hashtag. Here, sets of users making similar transitions could be a group
that is working together, deliberately moving from conversation to conversation. This is
our primary use-case.

We study these dynamics under the trails framework detailed by Bartulovic, where
a trail is a sequence of state-time tuples [16]. Trails capture the sequences studied in
the previous section, while adding a dynamic component which indicates that the time a
transition is made is important. The trail data considered in the literature were relatively
slow moving, where transitions between states took days or sometimes weeks. This allowed

73



Time
Scale

Potential Reasons

Fast
• Deadline - If there is a distinct time element to the discussion at

hand, it may transition quickly to a new discussion. For example,
there is discussion about whether or not something will happen on
a certain date, the conversation will quickly end after that date.
Similarly, if there is a time-related discussion, such as talk about
Firday the 13th, there will be a quick transition when it is over.

• New Event - When major stories break or viral moments occur,
they can quickly draw attention away from other discussions.

• Inconsequential initial conversation - If a conversation does not
have much importance, it will be easy to quickly draw others away
from it.

Medium
• Call to action - Calls to action can, at some level, act as a deadline

which force some action to occur and will thus cause a transition
in conversation. At the same time, calls to action generally do not
have a specific date in the call.This lack of hard deadline can cause
slower transitions than the Fast category.

Slow
• Importance of initial conversation - If the initial conversation has

high stakes or major importance, it will be hard to draw users away
from it. Thus, users will only trickle out of these discussions.

• Related events occurring - When new events occur that are related
to the current discussion, they can increase the persistence of the
discussion. For example, if there is a discussion about gun violence
and another shooting occurs, this discussion will have even more
activity, and users will be less likely to transition to other conver-
sations. This will lead to a slower overall transition.

Table 3.1: Potential explanations of transitions between conversations occuring at different
time scales.

for the assumption that multiple transitions would not occur within the same time window,
which is clearly not the case for our data.

To get around this assumption, we construct hyper-states, another concept from Bar-
tulovic. Now, we consider a context-day pair as a state, meaning “Biden Campaign - 11 /
2” is a distinct state from “Biden Campaign - 11 / 3.” Because of this difference, transitions
between these states also encode information about when they occurred. Specifically, the

74



occurred on the date of the target state.
To find clusters of users with similar trails, we need to formally define trail similarity.

To do so, we make use of Normalized Trail Similarity, or NTS [16]. For convenience, the
NTS equation is given here as:

NTS(u1, u2) =

∑
i,j∈s min [Φu1(si → sj),Φu2(si → sj)]

max(|Au1 |, |Au2|)− 1
, (3.8)

where u1 indicates user 1, s indicates the set of all states, Φu1(si → sj) indicates the
number of transitions from state i to j for user 1, and |Au1| indicates the length of the full
trail for user 1. Trails were constructed for each user in the same manner as sequences in
the previous section, except now the hyper-states were considered instead of the original
contexts. With trail similarity in place, we take 1−NTS to be a distance and use DBSCAN
to find clusters [60]. Lastly, we only consider users with at least 10 transitions in order to
make stronger conclusions about their grouping.

We now propose that cluster behavior can be analyzed by considering the frequency
of transitions within the cluster. So, for all transitions made by members of a cluster, we
count the number of cluster members making that transition. For example, a cluster of 30
users might have 5 members who transitioned from “Liberate Tweets 4-17” to “Liberate
Tweets 4-18”, so that transition will be recorded with weight 5/30. This decision prioritizes
collective action over total action. Meaning, if two members of the group make the same
transition 100 times, it is no different than if they did so once. For other applications
this decision might be inappropriate. However we are predominantly concerned with the
behavior of the group, so we proceed.

We note that there are other clustering methods available, such as that proposed by
Bartuolvic or by Cadez et al [34]. The goal of these methods is to find overall classes of
transition behaviors, which is different from our purpose. Here, we are interested with
tight clusters, or groups of users with very high similarity. As we will show, classes of
transitions are less likely to be uncovered due to each user’s fairly unique trails. Density-
based clustering is all that is needed for us to find groups of suspicious users.

We apply this methodology to the Reopen dataset, due to its more interesting transition
structure as seen in Figure 3.11. We construct hyper-states at the week level. The above
procedure lead to 498 clusters of 13175 users. 10206 users were not clustered, and there
were only 7 clusters with above 10 users. The largest cluster had 1698 users and a mean
NTS similarity of only 0.10 The mean NTS similarities of the remaining clusters were
0.25, 0.26, 0.37, 0.34, 0.49, and 0.36, with the largest having only 17 members.

Following our intuition, the vast majority of users are not transition from contexts in a
synchronized or even correlated way. Our approach correctly separates out this behavior
from the small groups of users who are moving together. To dig deeper into the behavior
of these groups, the group transition diagrams for the two most well-clustered groups in
Figure 3.12.

We see that there are a number of very strong transitions for both clusters. In the first
cluster, we see that the users are transitioning back and forth between Petitions and Black
Lives Matter, first on the 23rd week and then the 24th, with over two thirds of the group
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(a) Cluster 1

(b) Cluster 2

Figure 3.12: The transition networks are shown where arrow width indicates the fraction
of cluster members making that transition. Fractions below below 0.1 are removed
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making all of these transitions. In the second cluster, we see more complicated behavior,
but nonetheless strong transitions stick out. These strong transitions make a backbone
that we can use to track the group through both context and time. While there are many
less frequent transitions, the dominant pattern of the group was oscillate between Trump’s
Job Reopening-16 and Liberate Tweets-16 before moving to Protest Coordination-17, to
General Politics-17, to COVID Information-18, to Trump’s Job Reopening-18, to COVID
Information-19. Given the large fraction of the group making all of these transitions
and the fact that that these movements take place over multiple weeks, the behavior is
suspicious and possibly coordinated.

Alternatively, trail clusters may be visualized using Loom plots, as demonstrateed in
Figure 3.13. These plots show the trails of the individual users. While the cluster transition
plots better demonstrate aggregate behavior, the loom plots are better for understanding
what the trails actually look like. The loom plot is a powerful tool for understanding which
users specifically are making movements together and when. For example, in Figure 3.13,
we can see that many of the cluster’s user begin Week 19 in different conversations, but
they converge on COVID Information, and then nearly all of them transition together to
the Reopen Strategy conversation in the following week. While the Loom diagrams are
very useful, they are best used in scenarios like these that have a relatively small number
of users and small number of states. Otherwise, they become difficult to interpret with
many lines crossing over one another

In summary, the trail clustering method developed and tested in this section allows us
to go being sequences and consider when transition occurred. Further, we now relate this
to users, where we identify clusters of users who create similar contextual trails according
to NTS. Investigating the tightest of clusters points to suspicious groups who make highly
coordinated moves through conversational contexts. Relaxing the investigation to less-
similar clusters may give insight into dynamic topic groups. However, our results indicate
that the majority of users show unique trail patterns indicating that the presence of such
dynamic topic groups may be rare.

3.6 Discussion
In four parts, we have detailed methods to uncover the rich interactional context dynamics
on social media. Specifically, we have detailed methods to understand network and activity
dynamics both within and between contexts. We have further shown that these dynamical
analyses are inter-related, where the results from one can be used to help understand the
others and vice versa. In doing so, we have shown that contextualized network analysis
not only gives us a clearer view of conversational networks, but they also allow us to
characterize large online discussions in ways previously unavailable.

The initial building block of this dynamic analysis is the activity curve of a contextu-
alized discussion, which we showed can be used to categorize them by relating them to the
categories of collective attention. Specifically, this highlight whether or not conversations
were based on anticipated or unanticipated events, and enabled us to quantify the impact
of the discussion. This analysis allowed us to break down the dataset into sub-timelines
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Figure 3.13: Loom plot of a trail cluster’s activity. An alternative visualization of a trail
clusters. Each line indicates one user’s activity within the cluster.
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and to categorize each sub-timeline. The categories of each sub-timeline were useful in the
next phases of dynamic analysis.

The categories of context based on the intra-context activity analysis were used to
identify contexts suitable for intra-context network dynamics. Specifically, we needed those
which had consistently high levels of activity for at least a few days. In the language of
activity curve analysis, these are contexts with prolonged peak periods. Our first finding
was that very few of the contexts met this criteria. Thus, while dynamic community
detection is often applied to longitudinal social media data, our findings suggest that much
of the dynamics are really occurring due to users movements between contexts. Within
these contexts, static network analysis is often appropriate.

For the cases where dynamic network analysis is appropriate, we proposed a partitioning
algorithm which models the network as a series of static network snapshots, and looks to
combine snapshots together. Applying the approach to contextualized networks in the
Election dataset showed that, for long-lasting contextualized discussions, there can be
many phases of discussion. In both of the cases we studied, each day’s snapshot had very
different density and social structure. Thus, we have uncovered two dimensions in which
a simple static network analysis will misrepresent network structure: context and time.

Moving to the analysis of inter-context dynamics, we first see that Markovian models
of contextual sequences, or lists of the contexts that users are active in over time, detail
a conversational map. With this map, the overall flow of large scale conversations can
be seen. Additionally, each context’s structural position in the transition network gives
further insight to its role in the discussion. For example, conversational sinks (those with
many in-connections), draw users in from many conversations and often occur later in the
overall timeline. Combining these insights with the intra-context activity dynamics gives
a full picture of a conversation.

Lastly, we demonstrated that contextual trail clustering can be used to identify groups
of user which not only participate in similar discussions, but move through those discussions
in a correlated manner. We saw that the contextual trails of typical users are not correlated
with others. That is, most users are fairly unique in how they move about through a
conversation. Those who are not unique, then, become interesting. Through trail clustering
we identified small groups of users who were making very similar transitions between
contexts. The highly related transitions, especially in contrast with the normal user’s
lack of trail similarity, is suspicious and could be indicative of coordinated behavior more
complex than current methods have been able to detect.

Overall, it is clear that not only are each of these dynamic analyses useful on their
own, but that they work together to characterize a large online discussion. The simple
activity curves enable dynamic network analysis within contexts, which in turn color our
understanding of contexts while analyzing the transition network. The methods outlined
in this chapter provide a framework for linking the dynamics both on and between contex-
tualized discussions. Through this framework, we have obtained a more nuanced view of
social structure and how it relates to the dynamically changing discussions. This powerful
approach has multiple potential areas of extended investigation, which are discussed in the
concluding chapter of this dissertation.
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Chapter 4

Dynamics of Online Community
Prototypes

In this chapter, we turn our focus to a different type of context in social interaction:
personal or identity context. Personal context refers to the social identities of the users
interacting, which in turn refers to qualities, beliefs, personality traits, appearance, and/or
expressions that characterize a person or group. Figure 4.1 illustrates this concept. In this
simple example, the two users belong to the same political party, the US Republican party,
but they are supporters of different soccer clubs, Chelsea and Arsenal.

There is a rich literature on social identity and how it relates to social interactions.
Much of this theory focuses on the how these interactions lead to group-level behavior
known as group processes.

While there is much to learn from the wide literature in this field, there has been a lack of
methodology for applying and testing the theories to large scale social media communities.
In this chapter, we begin to fill this gap. We do so by providing a method of measuring
the presence of community prototypes, a key ingredient guiding group processes. This
measurement can also be thought of as a measurement of community-level assortativity.
From there, we uncover the prototypes in real datasets and show that they shed light
on the nature of online communities beyond just their membership. Finally, we test the
theoretical claims that members of social groups who conform to a groups prototype tend
to have higher status, and as a result non-prototypical members attempt to become more
prototypical.

We operational expressions of social identity through Twitter biographies, the part of a
user’s profile that enables them to signal who they are. Again, we consider conversational
communities by clustering the communication network. Although the previous chapters
uncovered the importance of interactional context, this chapter takes the standard non-
contextualized approach in order to show how personal identity plays out in communities
in terms of the standard approach for their study. In the following chapter, however, we
will investigate the interplay between interactional and personal context.
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Figure 4.1: Illustration of personal context. The interacting users have differing social
identities, which provides insight into their interaction.

4.1 Related Work
Group-level processes are at the heart of many pressing problems on social media such
as polarization [111, 158], radicalization [59, 147], and the diffusion of misinformation
[54, 77, 151]. For offline networks, the social identity perspective has been taken to make
headway on these problems. Social identity theory and self-categorization theory have
been validated and used to understand intergroup conflict in organizations [95], Islamic
Extremism [5], American political polarization [91, 102, 112], and hostile media perceptions
[190, 203]. These successes suggest that the social identity perspective has great potential
for understanding these pressing issues in the social media setting. However, the social
identity perspective relies on an understanding of the relationship between individuals’
social identity and the communities they are a part of. While prior work has found that
social media users signal their social identity, the connection to online communities has
thus far been unclear.

The core idea of the social identity perspective is that people construct their self-
concept in part from the communities and categories that they belong to [103, 217]. Group-
level processes then arise from individuals’ social cognitive processes based on their social
identities, which in turn are operationalized through community prototypes. Specifically,
individuals’ feelings about themselves and others are functions of their alignment with the
group prototype. Thus, if the social identity perspective is to be applied to understand
the behavior of online communities, we must first demonstrate that community prototypes
exist within online communities.

Community prototypes are fuzzy sets of attributes which define a group and distinguish
it from others [108, 227]. Attribute’s maximization of in-group similarity and out-group
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difference is known as the meta-contrast principle. In this way, community prototypes are
the outcome of community-level assortativity. Assortativity is the tendency for connected
nodes in a network to exhibit similar attributes [161]. If a network is assortative, that is,
individuals are more likely to be connected to those that they share identity attributes with,
we would expect to see community prototypes. However, identity attributes can be noisy
and sparse and may be displayed at different rates for different communities. Motivated
by some of these issues, Peel, Delvenne, and Lambiotte expanded on the widely-used
assortativity coefficient to measure assortativity at different scales [178]. Because we are
specifically interested in quantifying assortativity at the community-scale for this work, we
follow a similar line of reasoning to expand the classic assortativity coefficient approach to
this case. We note that investigations into the generating mechanisms behind assortativity,
e.g. homophily, are out of scope of this work, but are discussed in more detail later in this
Chapter.

At the individual level, a large body of prior work has shown that social media users
signal their social identity on their profiles, and that that use multiple mechanisms to do
so. We will consider these different modes of identity expression to be different attribute
types. Hashtags are perhaps the most popular attribute type, enabling users to signal
parts of their social identity and community membership in a searchable way [56, 97, 210].
Their searchable nature allows users to find others aligned with their social identity, and
form online communities [79, 248]. Beyond hashtags, Twitter users have been observed
to signal their social identity in their profile descriptions using “personal identifiers” or
phrases that refer to an individual’s social group, category, or role [176, 196, 249]. Users
also commonly use emojis to indicate their political beliefs and interests [82, 89, 117, 134].
Subtleties in emoji usage such as emoji sequencing and the use of skin color modifiers have
been observed to signal user identity with greater granularity [73, 194].

While these works have observed social media users signaling social identity through
a variety of mechanisms, they have not tied these identity attributes to specific online
communities, short of communities that are themselves defined through the use of a single
hashtag. These works could, for example, identify users describing themselves as “moth-
ers”, however, they cannot identify whether or not the social attribute of “mother” is
salient for some observed community. Meaning they cannot say if there is a community of
mothers or if there happen to be mothers in communities that are divided based on other
attributes. In other words, identity attributes have been used to understand individual
users, but have not been used to understand communities at scale.

The missing link has been a mechanism for quantifying an identity-based attribute’s
meta-contrast, or its ability to distinguish a particular community. We develop a multi-
view network methodology to tackle this problem. First, we propose using multi-view
projected modularity to quantify the overall strength of prototypes in the dataset. This
metric can be viewed as a community-level assortativity coefficient. A low modularity value
indicates poor separation between user communities based on their attributes, implying
that prototypes are not present. On the other hand, a high value indicates that attributes
strongly separate communities and a prototype is present. Then, we develop modularity
vitality for bipartite projections in order to quantify an individual attribute’s meta-contrast
for each community. For a given community, the set of attributes with the highest values are
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considered the community’s prototype, because those are the attributes which maximally
contribute to the community’s in-group similarity and out-group differentiation. The multi-
view approach enables the detection of prototypes across the different modalities that users
have been observed to signal their social identity such as putting hashtags, emojis, and
personal identifiers in their biography. The multi-view approach enables the study of the
different mechanisms or modalities of identity signaling seen in prior work.

One of the main outcomes under the social identity perspective is a strong relationship
between social identity and within-group status. Under this perspective one of the core
internal driver of an individual’s behaviour is their self-esteem, or their self-evaluation [2].
More specifically, they are driven by a need for positive self-esteem. The display of in-group
cohesion and out-group distinctiveness increases the positive perception of the individual
by the other group members [99]. The positive perception of prototypical individuals makes
them more likely to be within-group leaders, or those with higher status within the group.
Conversely, those who go against the group’s prototype are treated harshly by the group,
often even more harshly than out-group members. This social-control dynamic is referred
to as the “Black Sheep Effect” [143].

We seek to measure the relationship between a social media user’s prototypicality and
their within-group status empirically. Methods of measuring within-group status have be-
gun to be developed by Network Scientists under the sub-field of “community-aware cen-
trality” [188]. While classic centrality measures are invariant to the partition of a network,
community-aware centrality measures give a ranking for a specific partition. While much
of the development in this space has been from a theoretical perspective, these measures
have shown promise in identifying spreaders of disease and for understanding metabolic
networks [76, 87]. A thorough review of these measures is given in Appendix C.2.3. The
specifics of how we use community-aware centrality to quantify within-group status are
given in the Methods section.

4.2 Methods

4.2.1 Network Construction and Community Detection
Communities can be defined in several ways. For the investigation of personal context on
social media, we are again interested in conversational communities, or groups of users who
are more frequently engaged in conversation with each other than with users outside of their
community. Following communities, or communities based on following-relationships could
also be studied, and there is evidence that these communities hold similar interests and
beliefs [19, 113, 134, 135, 251]. However, these communities are roughly static compared
to conversational communities, making the salience of attributes difficult to demonstrate.
Further, conversational communities are commonly studied when measuring polarization
and information diffusion making them most relevant to study for future applications
[50, 86, 154, 247].

Communication communities were derived as follows. First, a communication network
between users was constructed. This network recorded each interaction between users,
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with the following actions counting as interactions: reply, mention, retweet, and quote.
Combinations of actions were also considered. For example, if a user retweets a reply, that
user is connected to both the original author, and the user that was being replied to. These
interactions were combined into an undirected user-to-user network, where edge weights
indicate the number of interactions between a pair of users. Network statistics for each
dataset can be found in Table 4.1. Finally, the Leiden algorithm maximizing modularity
was used to uncover communication communities [223]. We note that while the practice of
modularity maximization is an extremely popular method it has been criticized from the
point of view of inferential network analysis due to its inability to distinguish statistically
significant communities from noise, and due to its glassy nature as an objective function
[81, 127, 179]. The size of the communication networks prohibits the use of some powerful
inferential techniques developed to tackle these problems. Because we are not aiming to
make statistical claims about the structure of the online communities, only about their
prototypes, we continue with the Leiden approach.

Dataset Tweets Users Edges
Reopen 10,131,537 3,495,506 11,032,399
Election 4,248,125 1,814,513 7,611,473
COVID 29,498,233 9,888,775 35,288,357

Captain Marvel 5,455,142 1,642,434 4,981,094

Table 4.1: Basic networks statistics for each dataset.

4.2.2 Prototype Measurement with Projected Modularity
The classical approach to quantifying the correlation between network structure and node
attributes is with the assortativity coefficient, which compares the proportion of edges
sharing the same attribute-values relative to those expected by chance [161]. Note that
simple measures of attribute similarity such as the number of shared attributes between
connected nodes fail to account for the same-attribute connections that individuals will
have due to the popularity of certain attributes and the number of attributes displayed by
each user. The assortativity coefficient is computed at the dyadic level, meaning that same-
attribute users must be directly connected to be counted towards the coefficient. However,
prototypes occur on the community level, meaning that we require same-attribute users
in the same community to be counted positively towards our metric whether or not their
share a direct connection.

The work of Peel, Delvenne, and Lambiotte expand on the assortativity coefficient to
quantify assortativity within a local neighborhood [178]. Using their approach would better
approximate the presence of prototypes, since local neighborhoods are correlated with
community structure. However, using an observation in their paper, we develop a method
to quantify the presence of prototypes directly. They noted that the assortativity coefficient
is very similar to the modularity metric used in community detection. We will show that
by using the formulation of modularity commonly used in community detection, we can
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quantify community-level assortativity. This metric thus accounts for the heterogeneity of
attribute popularity and in community’s propensity to display attributes.

We begin by modeling the user-attribute relationship as a multi-view network. Each
view of the network corresponds to a different attribute-type. Based on the literature on
Twitter users’ ability to signal social identity through multiple modalities, we consider 6
attribute types. From a user’s free-text biography we consider hashtags, mentions, personal
identifiers [176], and emojis. We also extract hashtags within a user’s name, and unigrams
in their location field. For each attribute type, a user-attribute bipartite network is con-
structed, where users are connected to the attributes they exhibit. Each bipartite view is
projected onto the user nodeset, such that a user-to-user network is obtained. Connections
in these views indicate the number of attributes that a pair of users have in common.

More formally, we begin with a bipartite network G. This network connects users to
the attributes that the exhibit, only considering a single “attribute-type” for now. The
information from this network is encoded in the adjacency matrix, B, where Bi,j = 1 if
user i exhibits attribute j and is 0 otherwise. We fold this network to obtain a user-to-user
network where edges are weighted by the number of attributes that the two users have
in common. This network’s information is encoded in an adjacency matrix, A = BBT .
Examining the folded network allows us to study the relationship between attributes and
user communities without clustering the attributes. This process is repeated for each
attribute type, v, which results in a multi-view network which each attribute type’s view
encoded in an adjacency matrix, Av.

This framework enables us to quantify the presence of prototypes with the well-known
network measure, modularity. While other measures have been proposed to understand
the community structure in networks, such as the map equation, modularity uniquely
fits the theory from which we are working [200]. More specifically, modularity in this
case quantifies the meta-contrast exhibited by the communities. Under self-categorization
theory, community prototypes are constructed with attributes maximizing meta-contrast,
referring to the dual goal of simultaneously maximizing in-group similarity and minimizing
out-group similarity [227]. The higher the meta-contrast, the stronger the prototypes.

From a network perspective, in-group similarity can be quantified by the number of
shared-attribute connections within a community, known as internal edges. Internal edges
represent pairs of same-community users sharing an attribute; the more of them there
are, the higher the group’s cohesiveness. Given a vector of node communities c, where ci
indicates the community of node i, the number of internal edges in the network is given
by 1

2

∑
i,j Ai,jδ(ci, cj), where δ is an indicator function equaling one if the two arguments

are equal and equaling zero otherwise. Similarly, out-group similarity can be quantified by
the number of edges falling between communities, known as external edges.

The balance between internal and external edges can be captured by using the fraction
of internal edges. For the fraction to be high, there must be many internal edges and
few external edges. Thus, the the higher the fraction, the larger the meta-contrast, and
the stronger the evidence for prototypes. Figure 4.2 illustrates this. It shows that user
communities which are well-separated by attributes will have a high fraction of internal
links in the projected networks, while user communities which are poorly separated will
have a low internal link fraction.
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(a) Attributes distinguish communities.

(b) Attributes shared across communities.

Figure 4.2: An illustration that modularity of shared-attribute networks is indicative of
how well-separated user communities are by their attributes. Users are represented by
blue squares while attributes are represented by orange circles. The dotted circle around
clumped squares indicates that they belong to the same community; there are two user com-
munities in each example. The black arrow indicates the process of projecting the bipartite
user-attribute network into a user-to-user network based on shared attributes. When at-
tributes distinguish communities, as in Figure 4.2a, the communities are still well-defined
in the projected shared-attribute network. This can be seen by the strong links within
the community boundaries in Figure 4.2a, and the absence of links between communities.
Figure 4.2b illustrates the case where attributes are shared across communities. This is
easily seen in the shared-attribute network, where there are many inter-community edges
and few intra-community edges. Projected modularity can quantify this phenomenon, re-
sulting in a perfect score for Figure 4.2a, and a low score for Figure 4.2b.

Modularity was developed to quantify the fraction of internal edges appearing in a
network while accounting for those that would be expect by chance under a null model
[164, 165]. The most common form of modularity is Newman Modularity, which considers
a unipartite network (not a projection) and using the configuration model as a null model.
Though multiple instantiations of the configuration model exist, the attribute networks
studied here are considered “simple” where these differences are inconsequential [67]. Bar-
ber adapted this to bipartite networks, and Arthur built on this adaptation to develop a
modularity for bipartite projections, which is given in Equation 4.1 [10, 15]. The set of
communities is given by C, F is the number of bipartite edges F =

∑
i,j Bi,j, M is the sum

of weighted projected edges M = 1
2

∑
i,j Ai,j, the sum of weighted internal edges for a given
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community is calculated as M int
c =

∑
i,j Ai,jδ(c, ci)δ(c, cj), and strength of a community is

given by lc =
∑

i,j Bi,jδ(c, ci).

QP (G,C) =
∑
c∈C

(
M int

c

M
−
(
lc
F

)2
)

︸ ︷︷ ︸
QP

c

(4.1)

A high value of QP means that a high fraction of edges in the projected network are
falling within the communities, after accounting for those which would fall there by chance
under the bipartite configuration model [10]. Applying this to the user-attribute network,
a high QP indicates that many more of the shared-attribute relationships are happening
between users that are in the same community than we would expect by chance. The
underlying mechanism here is the same as assortativity coefficient, though aggregated at
the community level. Thus, high values of QP are indicative of communities exhibiting
prototypes.

We calculate QP for each user-attribute network using the communities obtained by
community detection in the interaction network. Again, this chapter considers the stan-
dard, non-contextualized edges, while the following chapter will add that layer of com-
plexity. The value observed for each user-attribute network indicates the extent to which
prototypes are observed using that type of attribute. Along with classic interpretation of
modularity, we consider values above 0.3 to give moderate evidence for the observation or
prototypes, and values above 0.5 to give strong evidence [165]. We note that we are not
performing modularity maximization in this step, as the communities have been derived
separately on data that does not explicitly include any attributes.

4.2.3 Community-Level Visualizations
To visually depict the modularity values, we plot the expected number of shared attributes
from members of different communities (subtracted those expected due to chance) for the
top 20 communities of all datasets in Figure 4.4. The process to construct these diagrams
is as follows.

For every attribute type, a community-to-community shared attribute network was
constructed, after filtering 2% of the non-salient attributes according to the Modularity
Filtering method discussed later in this Section. The adjacency matrix, Av for each view
v of the network was calculated as Av = (CTBv)

T (CTBv), where C is the user-community
indicator matrix (Ci,j = 1 when user i belongs to community j and is 0 otherwise), and
where Bv is the filtered user-attribute bipartite adjacency matrix for attribute type v
(Bv,i,j = 1 when user i exhibits attribute j and is 0 otherwise).

Next, the expected number of shared attributes across communities under the config-
uration null model was calculated for each view. The expected adjacency matrix, E‖Av‖,
was calculated as E‖Av‖ = 2MvL

T
v Lv/Fv, where Lv is the vector of community strengths lc

for view v as previously defined, and Mv and Fv are the sum of edge weights in for view v
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in the projected network and the bipartite network, respectively. This is the same number
of expected internal links as used in Equation 4.1.

Then, the total number of shared-attributes between communities, above which is ex-
pected by chance, was calculated as: A =

∑
v∈V Av − E‖Av‖. This collapses the views of

the network, while accounting for the differing degree distributions of each of the views.
Lastly, the total number of shared-attributes between communities was normalized to

indicate the number of expected shared-attributes (above chance) between any pair of
users in the two communities. This is accomplished by divided the number of shared-
attributes by the number of users in community 1 times that of community 2. The number
of users in community c, Nc, can be calculated as

∑
iCi,j. The normalization matrix is then

NNT . This normalization is applied element-wise to obtain the final adjacency matrix:
Ā = A � (NNT ). To be clear, the symbol � indicates element-wise division, such that
Āi,j = Ai,j/(NNT )i,j. The community-to-community visualization is finally drawn using
edge weights corresponding to the entries in Ā. Edge weights below zero, indicating that
there are less shared attributes between users of the communities than expected by chance,
are not drawn.

4.2.4 Prototype Construction with Projected Modularity Vital-
ity

Prototypical attributes are defined to be those which maximize meta-contrast; that is,
attributes that help define the group and differentiate it from others. In network terms,
prototypical attributes are those which maximally contribute to community structure.
We have quantified the overall level of attributes association with group structure using
projected modularity. Now, we develop projected modularity vitality to quantify the con-
tribution of individual attributes to community structure. Sorting attributes by this value
then gives prototypical attributes, or those which are signaled by many members within
a community and few outside of it. This process works similarly to the term frequency
inverse document frequency (tf-idf) score, which can quantify the distinctiveness of an at-
tribute based on relative frequency. However, our approach properly normalizes for the
overall popularity of attributes and propensity of communities to exhibit attributes while
controlling for the connections observed by chance, while tf-idf does neither of these things.

Network vitalities, or induced centrality measures, are used to quantify a nodes contri-
bution to a global network value [61, 123]. Initially, we developed modularity vitality to
quantify node contribution to community structure in the unimodal case. That develop-
ment is detailed in Appendix C.

Now, we develop projected modularity vitality to quantify how much a node in the pro-
jected nodeset of a bipartite network contributes to communities in the opposing nodeset.
This projected network is equivalent to the user-to-user shared-attribute network. Applied
to our data, this will measure each attribute’s contribution to each user community. Vital-
ities of other community-based network metrics such as the map equation vitality could be
used, however they would not correspond to the meta-contrast theory as well as modularity
[22].
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Network vitalities simply compare the original global network value to what it would be
if a node and all its associated edges are removed from a network, as shown in Equation 4.2
where G is the network, i is the node to be removed, F is the function giving the quantity
of interest and G− {i} is the network with node i and its associated edges removed.

VF (G, i) = F (G)− F (G− {i}) (4.2)

We select F in equation 4.2 to be QP from equation 4.1. Similar to [141], we need to
derive a computationally efficient form of Projected Modularity Vitality in order to apply
it to large real-world network data. We do so by simply recognizing the impact of removing
a node on the four terms in QP

c .
First, we define an attribute’s degree in the bipartite network as dj =

∑
i Bi,j, where

j indicates the attribute of interest. The total number of edges in the bipartite network
goes from F to F − dj when node j is removed. We also define the community degree,
dj,c =

∑
i Bi,jδ(c, ci), which gives the number of users in community c displaying the

attribute of the network. The strength of community lc becomes lc − dj,c when node j is
removed. A property of network projection is that a node with degree dj will yield edges
whose weights sum to 1

2
d2j in the projection. Thus, M becomes M− 1

2
d2j after the removal of

node j. Similarly, M int
c becomes M int

c − 1
2
d2j,c. These results give the equation for projected

modularity vitality and its computation in Equations 4.3 and 4.4, respectively.

VQP (G,C, j) = QP (G,C)−QP (G− {j},C− {j}) (4.3)
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∑
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M − 1
2
d2j
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(
lc − dj,c
F − dj

)2
)

(4.5)

Finally, we note that projected modularity vitality is naturally broken up into com-
munity terms, allowing for the quantification of a node’s contribution to each community
individually. This contribution, for a node j is given in Equation 4.5. For each community,
the terms with the highest values of VQP

c
are taken to be prototypical.

The modularity vitality approach identifies attributes which are mostly exhibited by a
single community, and which are popular within that community. This is a necessary im-
provement over, for example, relative frequencies, which are likely to identify less common
attributes.

Modularity Filtering

We previously stated that if communities exhibit prototypes, “members within a commu-
nity will share a set of attributes with each other and they will not share these attributes
with other communities.” We note that it is still possible for a set of non-prototypical
attributes to be shared among members of all communities.
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Consider the social circles on a college campus. Each social circle has its own set of
prototypical attributes, yet all people involved share the attribute that they are a student of
the same college. This is not a salient attribute in the present definition of communities, so
it does not affect whether or not prototypes are present. However, under our modularity
framework, the inclusion of the college attribute would decrease the fraction of internal
edges and thus lower the perceived strength of prototypes. If many of non-salient attributes
are present, prototypes may be effectively drowned out. An illustration of the effect is given
in Figure 4.3.

(a) Original network. (b) Original network with the addition of a pop-
ular but non-salient attribute.

Figure 4.3: An illustration that the addition of a non-salient attribute can lower the per-
ceived modularity. In Figure 4.3a, the communities are well-separated by attributes. In
Figure 4.3b, an additional attribute has been introduced (red circle). This attribute is
shared by all members, so is non-salient, however results in many external connections in
the projected network, thereby lowering the modularity.

We can identify non-salient attributes as those with negative modularity vitality scores,
which are known as “community-bridges” because they create shared-attribute edges be-
tween users of differing communities. Removing the top non-salient attributes is akin to
the modularity filtering approach applied in [140, 141] or the modularity-vitality backbone
approach in [189]. It can also be seen as an “initial” network attack when viewed from a
network robustness perspective [106].

We apply this procedure to the top 2% of non-salient nodes to uncover a more accurate
measurement of the presence of prototypes in the data. We have shown the top 5 attributes
removed in each category, as well as the top 5 most salient attributes in each category.
Unlike the previous analysis, this is a type of modularity-maximization procedure, so needs
to be statistically tested against a null model. Thus, we used the bipartite configuration
model as our null model using the real degree sequences observed in our dataset and
performed filtering on each one of these randomly generated networks. The process was
completed 250 times to provide confidence similar to that of using p-values at the value of
p < 0.004. The filtered modularity value on the real data was compared to the distribution
of scores obtained from the generated networks.

90



4.2.5 Multi-Modal Analysis

The previous methods detail our approach for a single attribute type. We extend this
to the analysis of multiple attribute types through multi-view modularity [52]. Under
this framework, each attribute type creates a “view” in a multi-view user-to-user shared
attribute network. Multi-view modularity simply takes a weighted average of the modu-
larities of individual views: Q = 1∑

v∈V wv

∑
v∈V wvQ

v, where V is the set of views, Qv is
the modularity for view v and wv is the weight of view v. The weights may be manually
set to enforce the importance of some views over others. In our case, we equally weight
views with wv = 1. Using this framework, quantifying the contribution of attributes across
attribute types is now possible and attributes can be directly compared across views. To
make values more comparable across communities, they are normalized according to their
multi-view modularity, which is just the average of the modularity values across all views

MV c,j =
‖V‖∑
v∈VQ

P,v
c

VQP
c,j
, (4.6)

where V is the set of attribute views.

4.2.6 Computation

While mathematically we are operating on the projected shared-attribute networks, this is
often not computationally feasible. Though real-world networks tend to be sparse, this is
not necessarily the case with real-world projected networks. Consider an example where
1 million users share a single attribute. The bipartite network only has 1 million links,
whereas the projected network will be fully-connected and contain 1 trillion links. The
COVID dataset is the largest dataset we examine, making it the most computationally
expensive to analyze. The sum of projected edge weights ranges from roughly 6.5 million
(name hashtags) to to 167 billion (location unigrams).

Thus, all computation is performed on underlying bipartite networks. This is made
possible by the fundamental property of projection: an attribute exhibited by d users
(attribute has degree d in the bipartite network), will result in 1

2
d2 in the projected network.

This property allows for the computation of M and M int
c without the construction of the

projected network: M =
∑

j
1
2
d2j and M int

c =
∑

j
1
2
d2j,c. This trick makes the computation

of QP feasible even in the case that the projection yields an extremely large and dense
network. Computation of modularity vitality is even more costly than modularity. Thus,
the same computational trick is used and all calculations are made on the underlying
bipartite networks. Refer to the accompanying code for full details1.

1Prototype construction of Twitter conversation communities has been implemented in the ORA-Pro
network analysis software https://netanomics.com/ora-pro/. The original code for this work will be
made available at https://github.com/tmagelinski
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4.2.7 Relating Prototypicality and Status

To quantitatively assess the theoretical relationship between prototypicality and status, we
first need a method of quantifying both. A simple method of determining the prototypi-
cality of an individual is by summing the prototypicality of all of their attributes, where
the prototypicality of a user’s attribute is dependent on the community that the user is in,
as is given in Equation 4.5. For example, if a user has two attributes, “Republican” and
“Arsenal Fan” with corresponding scores of 0.2 and 0.001, their prototypicality score will
be 0.201 = 0.2 + 0.001. The purpose of this approach is to account for the fact that some
attribute signals are much more meaningful than others, but also that signaling multiple
prototypical attributes is more meaningful than signaling one. It also enables us to bal-
ance users who have conflicting signals. For example if a user had attributes “Republican,”
“Gun-Owner,” “MAGA” and “Union”, with scores 0.2, 0.1, 0.3, and -0.1, their overall score
(0.5) would still reflect their strong prototypicality.

While a weighted sum is intuitive, it is less intuitive to use that sum to dictate com-
parisons between individual’s prototypicality. For example, if a user displays 100 items in
their biography, they have much more potential to score well than someone who has only
2. This could be handled by an average, but then a user who displays attributes for 2
unrelated and unopposed groups would be penalized. There are other complexities as well,
even if two individuals receive the same score. If one individual has a high prototypicality
by using 10 attributes with weak signal for the group, and another individual has the same
prototypicality score from using a single strong signal, can they be considered the same?
For another example, if two users use a disjoint set of attributes to achieve the same pro-
totypicality score, is that a meaningful difference? The answers are not clear. Rather than
a one-size-fits-all approach, we suggest that these questions are carefully considered in the
context of the specific research question at hand. For our analysis, we are concerned with
whether or not a user is prototypical more than we are concerned with the magnitude, so
we binarize the scores based on their sign. That is, users whose prototypicality-weighted
sum of their attributes is greater than 1 are considered prototypical, and others are not.

We consider 2 methods of quantifying of status. A classic indicator of status is the
number of followers that a user has. This indicates their popularity and reach on the
platform. Unlike network-level measures, the number of followers metric is not subject
to data quality issues. However, the followers metric measures overall status, not status
with respect to their in-group for the discussion at hand. To measure in-group status, we
turn to the community-aware-centrality literature. Ghalmane et al. proposed that in-group
centrality and out-group centrality can be measured by applying classic centrality measures
to the sub-graphs of a network that only consider in-community and out-community edges
[75, 76]. Following this approach, we consider the weighted degree of a node in the within-
community sub-graph to be a measure of in-group status. This corresponds to the number
of interactions that a user has with members of their community.

For the dynamic analysis, we take a snapshot approach, with each snapshot being one
day. On the first day, we record each users prototypicality and status. On the next day,
we record any changes they made to their account, and record their new prototypicality
according to the prototypes on the previous day. For example, consider a community has
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2 attributes, “Vote Blue” and “Biden2020.” On day 1 these attributes have prototypicality
scores of 0.1, and 0.2, respectively. On day 1 a user has “Vote Blue” in their biography,
giving them a score of 0.1. On day 2, they substitute this attribute for “Biden2020” to give
them a score of 0.2. Note that the day 1 scores are used to evaluate the change because
we assume that users are reacting to the information they have at hand, and they do not
know how the prototype will change. This is computed on a rolling basis, so the changes
in day 3 will be calculating using the prototypes from day 2, and so on.

Lastly, this analysis requires a specialized dataset. Users update their profiles, but
they do so infrequently. To ensure that we have enough data to draw conclusions from,
we turn to data we have one of the largest Twitter movements, Black Lives Matter. The
resurgence of the Black Lives Matter movement started on May 25th 2020 with the murder
of George Floyd. This sparked wide-spread discussion, including many people updating
their biographies with signals like #blm. A portion of this discussion was captured within
the COVID dataset. So, for this analysis we consider the COVID dataset beginning on
May 25th 2020, and continuing for one week.

4.3 Results

4.3.1 The Presence of Prototypes
Results for each dataset are presented in Table 4.2. First, we consider the raw, or unfil-
tered data in column 3. Across all datasets, we see that user communities are strongly
separated by attributes, at least across some attribute types. Hashtags and mentions in
user biographies are the strongest indicators of community, with modularity values ranging
from roughly 0.18 to 0.63. Hashtags in usernames are also strong indicators of community.
Personal identifiers, emojis, and location unigrams have low to moderate values.

The surprisingly low modularity values of signals like bio personal identifiers and loca-
tion unigrams can be explained and accounted for by considering the salience of attributes.
Personal identifiers and location unigrams are free-text attributes, naturally resulting in
a less unified presentation of attributes and creates far more non-salient attributes than
attributes like hashtags, which have a mechanism for seeing people and content using the
same exact indicator as you. Thus, we consider the results on the filtered network, given
in the fourth column of Table 4.2.

Now, personal identifiers have reasonably high modularity values, around 0.2 for all
datasets except Captain Marvel. We also see large gains in the location unigrams at-
tributes. A statistical test of the results was performed by performing the procedure on
network generated from the configuration null-model 250 times. All results were found to
be significant to p <= 0.004. Overall, we see even stronger evidence that conversational
communities differentiate themselves via multi-modal prototypes.

To understand the attributes that were filtered, the most and least salient (highest
and lowest modularity vitality) attributes of each type for the Election dataset are given
in Tables 4.3 and 4.4. Tables for the other datasets are given in the Appendix. In this
dataset, personal pronouns were not salient overall. We also see that affiliation or support
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Dataset Attribute Modularity 2% Filtered Modularity

Reopen

Bio Personal Identifiers 0.1717 0.2655
Bio Mentions 0.3794 0.6862
Bio Hashtags 0.5655 0.7168
Bio Emojis 0.1011 0.1768

Name Hashtags 0.4299 0.5132
Location Unigrams 0.0859 0.2426

Election

Bio Personal Identifiers 0.0795 0.2294
Bio Mentions 0.3323 0.4509
Bio Hashtags 0.2909 0.3987
Bio Emojis 0.1385 0.2116

Name Hashtags 0.1008 0.2216
Location Unigrams 0.0885 0.1607

COVID

Bio Personal Identifiers 0.1326 0.1988
Bio Mentions 0.3648 0.6981
Bio Hashtags 0.6304 0.7631
Bio Emojis 0.0368 0.0796

Name Hashtags 0.5860 0.7476
Location Unigrams 0.2770 0.5633

Captain Marvel

Bio Personal Identifiers 0.0522 0.0863
Bio Mentions 0.1889 0.4385
Bio Hashtags 0.3542 0.5755
Bio Emojis 0.0173 0.0346

Name Hashtags 0.3005 0.3470
Location Unigrams 0.0562 0.2301

Table 4.2: Projected Modularity Values for each dataset. Filtered Modularity values were
found to be significant p <= 0.004

of different soccer teams was not salient. Neither were were less-politically charged emojis
like the heart emojis. Attributes associated with support for Donald Trump are salient,
including personal identifiers like maga and patriot, hashtags like #maga, and the Ameri-
can flag emoji, . Politically liberal attributes like #resist, and #blacklives matter, are
not often not salient. This could indicate that Trump-supporting users are isolated in a
small number of communities while Biden-supporting or otherwise left-leaning users are
dispersed in many conversational communities.

We observe that, paradoxically, #bidenharris2020 is one of the most salient hashtags
when displayed within a name, but one of the least when displayed in a biography. This is
counterintuitive but could be indicative of subtle usage differences across sub-communities.
This outcome is consistent with a scenario where a hashtag is widely used in a biography,
but only a specific community of users puts it in their name. Given that putting a hashtag
in your name is a more prominent display than in your bio, it is plausible that these more
extreme users would be more concentrated in communities and less dispersed throughout
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Personal ID Mention Hashtag Emoji
S NS S NS S NS S NS

maga she @genflynn @manutd #maga #blacklivesmatter
patriot her @realdonaldtrump @arsenal #kag #blm

conservative he @potus @bts_twt #fbpe #resist
christian him @joebiden @chelseafc #trump2020 #bidenharris2020

wife writer @kamalaharris @lfc #noafd #fbr

Table 4.3: The most salient (S) and least salient (NS) attributes of each attribute derived
from user biographies within the Election Dataset

Name Hashtag Location Unigram
S NS S NS

#fbpe #blm usa england
#maga #endsars france new

#bidenharris2020 #blacklivesmatter india ca
#stopthesteal #biden brasil the
#trump2020 #biden2020 venezuela united

Table 4.4: The most salient (S) and least salient (NS) attributes of each attribute not
derived from user biographies within the Election Dataset

the network.
Hashtags in favor of Black Lives Matter or the Democratic Party are typically not

salient in the overall network. A possible explanation for this is that there are pro-Democrat
conversational communities. Under this scenario, attributes like #resist will form many
cross-cutting connections between these aligned communities. On the other hand, the over-
all salience of pro-Trump and pro-Republican attributes suggests that Trump supporters
are concentrated in fewer conversational communities. We see that this is the case in the
following section studying the prototypes of individual communities.

Lastly, the attribute-projection procedure illustrated in Figure 4.2 was carried out on
the top 20 communities in each of the datasets, ranked by their contribution to modularity,
QP

c . For the Election dataset, these communities contain 83.9% of the users. The coverage
in other datasets is similar. After filtering the same 2% of attributes, the result was
visualized in Figure 4.4. The resulting corresponding diagram for the unfiltered data is
shown in the Appendix. We make four observations. First, the strong within-community
edges (or loops) and the thin between-community edges illustrate the presence of prototypes
for all datasets. Second, we see that prototype strength varies by community. In the
Reopen dataset, for example, community 10 has a strong prototype, while community 14
does not. Third, some community prototypes are related, which can happen when two
communities are related or sub-communities of a larger group. For example, communities
4 and 6 in the Reopen dataset share many attributes. Lastly, there are differences across
datasets. Communities in the COVID and Reopen datasets have strong prototypes which
are generally isolated, there is a cluster of communities with inter-related prototypes in
the Election dataset, and communities in the Captain Marvel dataset tend to have some
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common attributes with many other communities. We will now explore the underlying
attributes which lead to these effects.

4.3.2 The Construction of Prototypes
For a given community, c, the collection of attributes with highest values of MV c,j in
Equation 4.6 are taken to be the community’s prototype. Again, the top 20 communities
are analyzed for each dataset, ranked by their contribution to modularity, VQP

c
. The

prototypes for the top four communities are displayed in Figure 4.5, and while those of
the remaining communities and remaining datasets are displayed in Appendix D. Results
are shown with all attributes, including those filtered in the previous analysis. While an
attribute may not be salient in the overall network, it can still belong to a community’s
prototype.

We observe that prototypes are coherent representations of communities’ multi-faceted
identities which can be categorized into four dominant types: political, location or lan-
guage, interest, and artificial. Political communities are those centered around specific
politicians, political parties, or political ideologies. Examples of this include communities
1, 2, and 4 of the Election dataset, shown in Figure 4.5. Community 1 is a made up of
Trump supporters, which predominantly differentiates itself with and #maga, but also
shows support by mentioning General Flynn and Donald Trump directly. Community 2
is made up of Biden supporters which predominantly uses #resist and direct mentions of
Joe Biden to differentiate itself, though it also uses hashtags like #bidenharris2020 and
#blm. Its support of the Democratic Party is further shown with the use of , which
indicates a “blue-wave,” or a large Democratic turnout in the election. While the use of

is consistent with previous work documenting its usage in the American left, that work
found that was a non-differentiator among pro and anti white-nationalist ideology [89].
However, previous work studying flag emojis specifically have found that the American flag
is more popular among Republicans than Democrats [117]. Community 4 is made up of
Black Lives Matter supporters, who often display she/her pronouns.

Using the Election prototypes in conjunction with the attribute-block diagram in Figure
4.4, it becomes clear that the cluster of related community prototypes (communities 1,
7, 9, 18, and 20), are all MAGA-related. While all are similar, each community tends
to have a different focus. Community 7 is most defined by , community 9 focuses
on support of General Flynn, community 18 on the restart-leader account (a pro-MAGA
Iranian political group), and community 20 on QAnon. The strength and prevalence of pro-
MAGA community prototypes are greater than that of communities supporting Joe Biden
or the Democratic party, especially in datasets that are less-directly political (Captain
Marvel and COVID). This suggests that pro-MAGA users tend to be more isolated into
conversational communities of similar users, even if they have multiple sub-communities.

The second type of prototypes are those based on location and language. These pro-
totypes are typically formed with country or city-based location unigrams, the flag of the
country, and mentions of accounts which are related to the location. Two examples are
communities 5 and 6 of the Election dataset, which are centered around India and France,
respectively. In the case of Community 5, community members signal their Indian identity

96



using “India” in their location, mentioning Prime Minister Modi’s Twitter handle, and
using in their biography. We observe that many of the communities with extremely
strong prototypes, as visualized in Figure 4.4, are based on location or language. This
could be because of the unified way of signaling identity (the names of countries and cities
are agreed upon, unlike political hashtags), and because location-specific topics of discus-
sion may be generating the communities. Communities in the COVID dataset are mostly
of this type, explaining its strong and well-separated communities in Figure 4.4.

Third, many prototypes based on shared interests. The most common of such proto-
types are K-pop fan groups, as seen in Election community 16, Captain Marvel communities
3 and 4, COVID communities 5 and 12, and Reopen community 17. Other interest-based
groups include gamers, soccer fans, and TV show fans. The previously observed strong
association between communities 4 and 6 in the Reopen dataset can now be understood.
Community 4 is an interest-based community supporting the Indian actor, Vijay. Mem-
bers of this community also tend to be Indian, creating attribute overlap with members of
Community 6, a more general Indian-location-based community.

Lastly, there are “artificial” communities, wherein users signal their intention to create
a community that can inflate the popularity and reach of its members. These may also
be referred to as “follow-back” communities, since the users signal that if a member of the
community follows them, they will reciprocate. The #fbpe (follow-back Pro-EU) commu-
nity is present in all datasets (Community 3 in Election, Community 10 in Captain Marvel,
Community 2 in COVID, and Community 5 in Reopen). Members of the community use
hashtags in their username. This makes it easier for members to identifier each other,
because name-hashtags can be seen without clicking into a users’ biography. Generally,
these communities do not have much in common beyond the community-signal itself. The
recurrence of this community in all four datasets along with the size of the communities
signal the prevalence of artificial communities in large Twitter discussions.

4.3.3 Relationship Between Prototypicality and Status
Over the course of the week following George Floyd’s murder in the COVID dataset, we
observe 3.1 million data points indicating a user’s current and previous prototypicality and
status. Note that the dataset contains repeated observations of users when users are active
in the discussion for multiple days.

We first ask: who is prototypical? Social theory suggests that prototypical users are
more likely to have high status or become leaders. To test this, we perform an independent
t-test comparing prototypical users with non-prototypical users to see if their status differs.
For both types of status, followers and community-degree, we find that prototypical users
are of higher status, in agreement with the theory. Prototypical users, on average have 21%
more followers and 39% more communication connections with their community, p < 0.001
in both cases.

With this in mind, we turn to changes in prototypicality, studying how users update
their profiles. Changes to one’s Twitter profile are rare, but in 2.05% of the data points,
users update their profile. This gives 64,701 data points to study how users adjust their
personal identity signals. Now we ask: who changes their identity signals in the first
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place? Social theory would suggest that non-prototypical users would be more likely to
change their identity signal, in hopes of becoming more prototypical and thereby gaining
status and self-esteem. We compare prototypical to non-prototypical users and use a chi-
square test to confirm whether or not they change their biography at a different rate. The
prototypical users are 10.8% more likely to make profile changes than non-prototypical
users, p < 0.001., going against our expectations. A possible explanation for this difference
is based on the savviness of prototypical users. This explanation states that prototypical
users are those who recognize prototypicality and its importance, since they have already
signaled it and achieved high status. Because of this recognition, they are more likely to
update their identity signals in the future. It is not possible to assess the meaning behind
this relationship or the validity of this possible explanation without doing qualitative user
studies, which are beyond the scope of this work. The point is that because we only observe
identity signals deliberately made by users, it is not too surprising that results differ from
theory based on the latent user identity.

Lastly, we consider how users updated their profiles, were they making themselves more
or less prototypical? Clearly, theory suggests that users should make themselves more pro-
totypical. We see that 63.1% of profile changes resulted in higher user prototypicality. We
would also expect that non-prototypical users would be the ones most likely to make posi-
tive changes. To test this, we perform another chi-squared test on the frequency of positive
versus negative profile updates for prototypical and non-prototypical users. Surprisingly,
we see that prototypical users were more likely to increase their prototypicality, p < 0.001,
where 68.0% of updates among prototypical users increased their prototypicality compared
to 57.0% among non-prototypical users. We see that both groups are increasing their pro-
totypicality more often than not. The higher rate of positive moves the the prototypical
group gives further evidence to the savviness hypothesis, though again verifying this theory
is beyond the scope of our work.

4.3.4 Time Scales of Changes in Identity Signals
In the previous analysis, we considered changes in identity signals that occur from one
day to the next. While in-depth studies of how communities change their identity signals
at different time scales is left for future work, the previous section provides some initial
suggestions to guide that work. These intuitions are given in Table 4.5. Note that we
are observing identity signals, which are data from conscious user decisions to update
their biographies. Changes in these signals may reflect: changes in their social identity,
changes in priorities (importance of different parts of their identity given their social media
activity), or changes in the specific signals used to signify the same identity. These three
categories are very different behaviors that occur on the different possible time scales.

4.4 Discussion
The main finding is that communication communities on Twitter do differentiate them-
selves via prototypes, as evidenced by the high levels of bipartite projected modularity
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Time Scale Associated Dynamics
Fast (Hours or
Days) • Changes in identity priority. Important events can drive

a rapid change in identity signals at the community level.
These changes can occur so quickly because individuals
are not changing their identity itself, they are simply sig-
naling a specific part of it, and because they are respond-
ing to a viral moment with urgency. Two examples of this
are the Murder of George Floyd and the 2020 election. In
the former, a group of people politically inclined to sup-
port Black Lives Matter suddenly had a reason to signal
their support in their biography and name with urgent
calls to action. Similarly, supporters of Donald Trump in-
correctly believed that the election was being stolen while
the votes were being tallied, causing them to urgently up-
date their profiles with stop-the-steal hashtags.

Medium (Weeks
or Months) • Signal jockeying - This process naturally occurs as a com-

munity tries to resolve the “best” signal for one aspect of
their identity. Trump supporters, for example, exhibited
signal jockeying between “maga” and “kag” after he was
elected. There is less urgency for this type of update, but
changes are still made at the community level.

Slow (Months or
Years) • Changes in identity - Individuals change their identity

over time, however this process occurs slowly. For ex-
ample, people may change their political beliefs or their
hobbies. These changes take time, and are highly individ-
ualized.

Table 4.5: Associated dynamics for each time scale of identity signal updates.

in the multi-view attribute network. In the language of network science, Twitter net-
works exhibit community-level assortativity. Further, we observe that these prototypes are
multi-modal. That is, they are constructed using multiple types of attributes, including
hashtags, mentions, and emojis in their biography, hashtags in their name, and unigrams
in their location. It has been known that these types of attributes are used to signal users’
social identity [56, 82, 97, 134, 176, 196, 210], but these findings indicate that this identity
signaling is part of a larger group process which plays out within discourse communities.

This finding also strengthens the notion that automatically extracted clusters of users
within Twitter communication networks can in fact be communities. While network clus-
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tering algorithms are often referred to as tools for community detection, a cluster of users
which interact with themselves more than others is not necessarily a community in the
psychological sense. As Turner has argued, shared self-definition through social attributes
is more important for group membership than the structure of the group’s interactions
[224]. While clustering algorithms extracts groups who have interactional cohesion, they
might not have shared interests, beliefs, or identities. In the datasets we examined, mem-
bers of communication clusters do signal beliefs, interests, and identities which help form a
stronger basis of community. Recent work has suggested that the follower network can be
partitioned into interest-based groups or “flocks” which can be used to understand public
opinion [251]. Our findings suggest that this may also be done using communication clus-
ters, which are more dynamic and can be collected on specific discussions. At the same
time, modularity-based methods of community detection have been criticized for numerous
reasons. While we do not dispute their shortcomings, our results indicate that they tend
to give meaningful results when applied to Twitter conversational networks.

Although the clusters within datasets that we examined have cohesive beliefs, interests
and identities, it is likely that there are exceptions. With the methods and code that we
develop in this work, the cases when this does and does not occur can be distinguished.
Studies beyond the scope of political discussion are called for to understand the factors
which affect the exhibition or strength of community prototypes.

Our analysis also shows that the prototypes of individual communities shed light on
their membership’s identities and beliefs. Because we are studying political datasets, it is
natural that the prototypes are political in nature. However, the strength of prototypes
and their starkly opposed political affiliations point at a form of political polarization
not typically measured. Polarization is often studied using either the stance of users on
specific issues [50, 86, 154], or the content that they retweet [71]. Here, we see polarization
in terms of identity: the presence of political community prototypes indicates that the
discussions between users who identity as MAGA Republicans and those who identify as the
Democratic Resistance are largely separated. Future work using this framework to study
interactions between users across polarized communities is of interest. More generally,
using this framework to quantify a community member’s alignment with their prototype is
of interest, given this alignment’s crucial role within the social identity perspective [217].
Studies in this direction could add granularity to the recent finding that identity cues
have significant effects on users’ comment voting behavior on a social media site similar to
Reddit [220]. Identity cues encoded in Twitter community prototypes are much stronger
than those seen on sites like Reddit, and the ability to measure identity alignment could
distinguish between different types of effects.

We further see that prototypicality is associated with status. Users who exhibit pro-
totypical identity signals tend to have more followers and interact with their community
more. They are also more likely to update their profile, and it is more likely that those
updates result in increased prototypicality, relative to non-prototypical users. The later of
these findings goes against existing theory, where we would expect non-prototypical users
to increase their prototypicality more. A possible explanation for this difference is based
on user savviness, where prototypical users are more likely to recognize the importance
of aligning with their community and are more capable at doing so. Our data does not
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have any insight into the thought process of users making profile changes, so we limited to
reporting the phenomenon.

An important limitation is the inability to attribute the causal mechanism behind these
community prototypes. There is a large body of work on the generating mechanisms of
assortativity in social networks, with the primary mechanisms being homophily (the for-
mation of social ties on the basis of matching individual traits) and social influence or
contagion [33, 69, 150]. Both of these processes are important under the social identity
perspective. However, disentangling the effects from these complementary processes is ex-
tremely difficult in the observational setting of social media [205]. This problem is even
more challenging in the online setting, as there are other non-trivial dynamics at play.
First, the effect of the follower network must be considered, since it naturally biases the
interaction network. It has recently been shown that users who follow political elites on
Twitter overwhelmingly follow those from only their ideological in-group [243]. Further,
users may also choose to follow or unfollow users based on their displayed attributes; it
has been shown that users may choose to unfollow, block, or mute users outside of their
ideological in-group during times of polarization [28]. Finally, the recommendation algo-
rithms that Twitter employs must be considered. This is particularly challenging to study
due to the proprietary nature of the platform’s design, though the recent efforts to open-
source their recommendations are a positive step. It is possible that Twitter’s following
recommendation algorithm leverages profile attributes to recommend that users with sim-
ilar profiles follow each other. Such an algorithm could strengthen community prototypes
and explain the higher status of prototypical individuals. Further, the utilization of user
profile similarity in content recommendation could encourage users with similar profiles to
engage with each other, which would also strengthen community prototypes.

Thus, the development of algorithms leveraging identity-information to influence so-
cial behavior could have large impacts on the structure and dynamics of online discourse
communities. Such an algorithm could increase level of polarization in political discourse.
This social process with algorithmic feedback could be driving the recently-named partisan
sorting phenomena, where previously separate social divisions have become aligned on the
basis of individual’s social identity [222]. Investigations into the usage of such recommen-
dation and their interplay with the group processes governing the creation and adoption
of community prototypes is of interest for future work.

The remaining question regarding the identity context is whether or not community
prototypes exist due to the interactional contexts studied in Chapters 2 and 3. In the
following chapter, we consider the interplay between the interactional and personal context
by constructing a joint contextual-network analysis pipeline and applying it to a specialized
dataset.
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(a) Reopen (b) Election

(c) COVID (d) Captain Marvel

Figure 4.4: Following the process in Figure 4.2, observations for each dataset are shown.
Each node is a community of users and the strength of connection between two nodes
indicates the probability that users from those communities will share an attribute. If the
probability of same-community members sharing attributes is higher than that of chance,
the community is marked with a star. If the probability of a community member sharing
attributes with non-community members is lower than that of chance, it is also marked with
a star. If both are true, it is marked with two stars. Node size corresponds to the number
of users in that community. For readability, a logarithmic scale is used, meaning that
subtle node size differences correspond to drastic differences in community membership.
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(a) (b)

(c) (d)

Figure 4.5: Prototypes of the top four communities in the Election dataset. Colors em-
phasize different modalities. Prefixes are representative as follows: b#: bio hashtag, n#:
name hashtag, l: location unigram.
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Chapter 5

Pipeline for Contextualized
Conversation Dynamic Analysis

In this chapter, we aim to detail how the dynamical analyses developed in previous chapters
fit together. The hope is that this chapter can act as a guide for performing dynamic
contextualized network analysis on a new dataset. As such, we begin by detailing a data
collection strategy that maximizes our ability to detect contexts. After following this
strategy to collect the News dataset, we demonstrate the contextualized pipeline using it.

The only remaining research question we look to address in this chapter is as follows.
It has now become clear that keyword-collected datasets contain many different conver-
sational contexts. At the same time, we see that the communities within these datasets
display community prototypes. Are community prototypes simply artifacts of mixed in-
teractional contexts? We answer this question when demonstrating prototype analysis on
contextualized networks.

5.1 Best Practices for Data Collection

5.1.1 Guiding Principles
There are two dominant factors which determine how well an online discussion dataset can
be contextualized. The first factor is the presence of URLs. URLs provided a mechanism
for connecting discussion across groups, while providing a signal that was just specific
enough to label the context. This contrasts with hashtags, which also connect discussions
but are too vague to help label discussions on their own. For example, almost the entirety
of the Reopen dataset uses #Reopen, or could. So, a data collection strategy should ensure
that many URLs will be captured, perhaps by directly querying them.

The second factor is the presence of conversational connections. These connections,
seen as replies and quotes on Twitter, are the backbone of discussion, enabling us to label
more of the dataset and to construct more accurate conversational networks. On Twitter, a
keyword-based approach only inadvertently captures these connections. A key-word query
on Twitter returns all of the Tweets matching the keywords. In the case of a quote tweet or
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Figure 5.1: Example of a conversation Tree where each node is a Tweet connected to
Tweets it replies to. The green nodes are those which match a key-word based query. The
orange are those which could be obtained by crawling up from the keyword Tweets. The
remaining Tweets, in blue, are those which can only be captured using the Conversation
ID.

a retweet, the original tweet will also be contained. It will not the Tweets that a returned
Tweet is replying to, nor will it return replies to it. There are two ways to rectify this.

The first method is useful for the V1 Twitter API, but does not capture all of the data.
While a Tweet does not contain the full information for the Tweets that it references, it
does contain their ID. For example, if a Tweet will tell you the ID of the Tweet it is replying
to. These IDs can be queried directly with Twitter’s API. If the newly collected Tweets are
also replies, there will be a new set of IDs to query. This operation can be done recursively
to crawl up the branches of the conversation that contain Tweets matching the original
keyword query. This approach fills in much, but not all, of the conversational structure
surrounding keyword queries.

The second approach, available using the V2 Twitter API, is to query the full conver-
sational tree, using the conversation ID. Thus, for a keyword based dataset, the next step
is to query all of the returned conversation IDs, which give the full trees. This approach
gives all of the conversational structure surrounding the initial Tweets.

The differences in methods are visualized in Figure 5.1. The standard keyword ap-
proach only obtains nodes in green. The V1 crawling procedure can be used to obtain all
the up-tree Tweets, which are given in orange. Clearly, much of the conversation is still
missing. The rest of the conversation, shown in Blue, is can only be captured using the V2
conversation ID approach. The full conversational collection yields much more data than
the other approaches, which may force analysts to consider shorter time periods or more
targeted keywords.

Finally, it is important to consider the contexts that you expect to observe in your
dataset. For small or targeted, research questions, it is sensible to be as strict as possible
with the available data filters to obtain a dataset that has minimal contextual mixing
before processing it. For larger dataset, such as those examined in this thesis, it might
be helpful to deliberately capture more varied conversations, which can then be analyzed
with the methods provided by this work.
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5.1.2 Collection of the News Dataset
We now demonstrate a data collecting following these practices which we will call the News
dataset. The purpose of this section is to give the details on how a high-quality dataset
with varying contexts can be collected.

We are agnostic about the topic being collected on because we aim to collect various
conversations. Content agnostic datasets are often collected on Twitter using their 1%
random sample of Tweets1. However, we have already stated the need for maximizing
the presence of URLs in our data. Towards this end, we aim to collect the discussion
around news articles. To make sure that our data contains discussions from different
communities, we consider 6 major news sources of different types. Those are Reuters and
AP (direct reporting), CNN and Fox (American with political bias), and RT and CGTN
(state-sponsored).

To find the conversational trees discussing news from these sources, we query the Twit-
ter API for all Tweets linking to one of the 6 websites. We further query the API on the
timelines of the official Twitter accounts for these 6 sources. Lastly, the full conversations
were collected for all of the Tweets obtained from the first 2 steps. Do to the large volume
of data and the rate-limited API, data collection was limited to a 24 hour period, which
could not be selected retroactively. This window was selected to be the entirety of October
28, 2022.

Note that this procedure does not obtain retweets, which are heavily restricted by the
API. Because of this heavy restriction, researchers aiming to follow these guidelines may
need to narrow the scope of their search even further to be able to fully collect their dataset
in a reasonable amount of time. Retweets do not affect the conversational trees, nor do
they affect their representation using Deep Tweet Infomax. Their main affect is in the
conversational networks themselves, which are much bigger when retweets are considered.
The presence of retweets also makes it slightly easier to assess user importance, though this
is still possible only using replies and quotes. This is possible because replies and retweets
are roughly proportional, thought there are some differences in the factors that lead to
both actions such as the type of account (e.g., news versus celebrity) and the sentiment of
the Tweet’s text [120]. The added benefit of obtaining retweets is inconsequential for our
purposes, so we proceed without them.

The collection resulted in 5233570 Tweets from 1482034 Users. Tables 5.1 and 5.2 give
the top 5 URLs from each collected source in terms of their number of instances in the
dataset. From this table we see that there are various conversations taking place, though
there is clearly a large focus on the attack of Nancy Pelosi’s husband, and on the closing of
Elon Musk’s acquisition of Twitter, both of which occurred during collection. The counts
provided in the tables give insights into the number of Tweets that each URL is able
to directly label, and are a limited quantification of popularity. This measure does not
account for how many followers the users who posted the URLs have, or the number of
replies they generated. Still we see that the state-sponsored sources get significantly less
traction than those of the other sources.

1https://developer.twitter.com/en/docs/twitter-api/tweets/volume-streams/introduction
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Source URL Count

Reuters

https://www.reuters.com/world/us/us-house-speaker-pelo
sis-husband-violently-assaulted-pelosi-statement-2022-
10-28/

216

https://www.reuters.com/markets/deals/elon-musk-comple
tes-44-bln-acquisition-twitter-2022-10-28/

109

https://www.reuters.com/business/energy/exxons-record-
smashing-q3-profit-nearly-matches-apples-2022-10-28/

68

https://www.reuters.com/business/energy/exxons-record-
smashing-q3-profit-nearly-matches-apples-2022-10-28/

60

https://www.reuters.com/business/energy/exxons-record-
smashing-q3-profit-nearly-matches-apples-2022-10-28/

56

AP

https://apnews.com/article/paul-pelosi-assaulted-156ec
e77186eb11b97260af3c5122f67

141

https://apnews.com/article/california-donald-trump-san
-francisco-47c103cfe696df9faf0e57e1c7dd4f10

103

https://apnews.com/article/fact-check-texas-identifica
tion-kits-104242791947

70

https://apnews.com/article/virus-outbreak-race-and-eth
nicity-suburbs-health-racial-injustice-7edf9027af18782
83f3818d96c54f748

43

https://apnews.com/article/156ece77186eb11b97260af3c51
22f67

22

CNN

https://www.cnn.com/2022/10/28/politics/pelosi-attack-
suspect-conspiracy-theories-invs/index.html

400

https://www.cnn.com/2022/10/28/politics/paul-pelosi-at
tack/index.html

344

https://www.cnn.com/politics/live-news/nancy-pelosi-hu
sband-paul-attack/index.html

198

https://www.cnn.com/2022/10/27/politics/kfile-tudor-di
xon-conspiracy-democrats-topple-america/index.html

95

https://www.cnn.com/2022/10/27/tech/elon-musk-twitter/
index.html

88

Table 5.1: Top URLs from the first 3 targeted news sources in the News dataset.
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Source URL Count

Fox

https://www.foxnews.com/politics/nancy-pelosi-husband-
paul-assaulted-home-invasion-spokesman-says

218

https://www.foxnews.com/video/6314469432112 179
https://www.foxnews.com/politics/nancy-pelosi-husband-
paul-pelosi-assaulted-san-francisco-suspect-david-depa
pe-police-say

111

https://foxnews.com/video/6314469432112 94
https://www.foxnews.com/politics/republicans-demand-an
swers-biden-officials-report-china-opened-police-arm-n
yc

77

RT

https://www.rt.com/russia/565476-putin-valdai-club-tak
eaways/

33

https://www.rt.com/russia/565460-west-sit-out-crises-c
aused-putin/

24

https://www.rt.com/russia/565472-russia-enemy-west-put
in/

23

https://www.rt.com/news/565561-china-washington-nuclea
r-blackmail/

18

https://www.rt.com/russia/565466-putin-values-tens-gen
ders/

17

CGTN

https://news.cgtn.com/news/2022-10-28/U-S-is-fast-runn
ing-out-of-diesel-and-that-s-disastrous-1etnHBoeWL6/in
dex.html

5

https://news.cgtn.com/news/2022-10-28/German-Chancello
r-Scholz-to-visit-China-1ev8NuF5ELm/index.html

2

https://newseu.cgtn.com/news/2022-10-23/Protests-aross
-Europe-as-anger-builds-over-cost-of-living-crisis--1e
lvzxYsPmw/index.html

2

https://news.cgtn.com/news/2022-10-28/Diplomatic-effor
ts-should-be-made-to-ease-Russia-Ukraine-tension-1ev38
kZF6P6/index.html

2

https://arabic.cgtn.com/news/2022-10-28/15858159810366
62786/index.html

1

Table 5.2: Top URLs from the second 3 targeted news sources in the News dataset.
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Figure 5.2: Full Contextualized Analysis Pipeline

5.2 Full Contextualized Analysis
A visual representation of the contextualized analysis pipeline is given in Figure 5.2. The
flow of the pipeline closely follows the order in which these processes were developed in
this dissertation. The steps are as follows:

1. Contextualization (Label-Based or Deep Tweet Max) - Chapter 2
2. Characterization of Contexts - Chapter 3

(a) Activity Plot Analysis
(b) Conversational Transition Analysis

3. Contextualized Dynamic Community Detection - Chapter 3
4. Contextualized Prototype Analysis - Chapter 4

The only step of this pipeline that has not been previously demonstrated is the use of
prototypes on contextualized networks. Previously, we analyzed the prototypes of online
communities derived from a non-contextualized approach. Now, we perform the analysis
on a contextualized network broken down into snapshots where community structure is
stable in time using the dynamic community detection method developed in Chapter 3.
We will now walk through this pipeline on the News dataset.

5.2.1 Identifying Interactional Contexts
The unsupervised representation model was trained on the News dataset, using directed
Tweet edges, Graph Attention aggregation, and mean summarization as that model con-
figuration was determined to perform best in Chapter 2. To determine the appropriate
number of clusters, the elbow method was applied with DB-SCAN, as shown in Figure
5.3. This method entails clustering the dataset multiple times, increasing the number of
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Figure 5.3: Cluster quality analysis to select the number of clusters in the News dataset.

clusters each time. Specifically, we test values of 2, 3, 4, 5, 10, 15, 20, 25, 50, 100, 150,
and 200. Larger numbers were not tested due to the observed diminishing returns. Then,
the cluster evaluation metric is plotted against the number of clusters. Here, we evaluate
the clusters with the Calinski-Harabasz Index [35], where higher is better. This selection
process recognizes that a model with more clusters should have a large increase in cluster
quality to justify the complexity that a higher number of clusters brings. Evaluating Figure
5.3, see that the elbow method is actually not needed, because cluster quality decreases
after increasing the number of clusters beyond 2. It seems that the data is largely split
into two conversations, and breaking these out further introduces unnecessary complexity.

Now we move to label the two identified clusters. After applying the initial 3-gram
approach developed in Chapter 2, it becomes clear that the dataset contains a notable
amount of spam. The downside to collecting the full conversation trees is that there is no
filtering mechanism for removing Tweets from spammers. The spam is evident from the
top 3-grams, which include “uniswap exploited dude.” Further examination of this 3-gram
show that it occurs due to spammers replying “I Wish I discovered this earlier. Uniswap
is being exploited by this dude. More than $200k so far (redacted URL) leaked in alpha
group” over and over again to different conversations. To remove this noise, two changes
were made. First, instances of 3-grams were weighted based on the number of likes they
received, as spam is unlikely to receive likes. Specifically, they were weighted according
to the fourth root of 1 plus their number of likes, such that Tweets with 1000 likes were
approximately 5.6 times more important than those with none. The fourth root was used
so that popular Tweets were weighted more without letting the 3-grams be entirely washed
out by the few extremely viral Tweets in each cluster. Next, full text that was exactly
replicated was only counted once, to remove the effect of direct copy-and-paste quotes.

The 3-gram with highest relative frequency in the first cluster is “let door hit.” In-
vestigation into the raw tweets shows that this 3-gram stems from Elon Musk supporters
using the phrase “don’t let the door hit you on your way out” and its variants to users
saying they plan on leaving Twitter due to Musk’s purchase of it. The top Tweets in terms
of likes in this cluster are from Elon Musk talking about the deal closing and changes he
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Figure 5.4: Activity curves in the News dataset.

plans on implementing. In the second cluster, the 3-gram with highest relative frequency is
“speaker Nancy Pelosi,” which indicates that this cluster is dominated by discussion about
the attack on Nancy Pelosi’s husband, Paul Pelosi. The top Tweets in terms of likes in this
cluster are often talking about the attack, though there is noise. While there is noise in
the dataset, we proceed referring to the clusters as Elon’s Acquisition of Twitter and Paul
Pelosi Attack.

5.2.2 Characterization of Contexts
Activity Curves

The activity curves for the two contexts are displayed in Figure 5.4. We see that both
curves follow the same pattern, though there is less overall activity in the conversation
surrounding Paul Pelosi. There is a lull in activity, measured in Tweets per hour, in the
early morning hours, when much of the country is asleep. As the news breaks on both
accounts, the number of Tweets rapidly rises. In both cases, the number of Tweets per
hour doubles in under 5 hours. From there, the discussion around Twitter’s acquisition
continues to rise in popularity, while the Paul Pelosi discussion holds a steady peak. Both
discussions hold near-peak activity going into the late hours of the 28th, though the activity
does begin to taper off.

From these curves we can draw two conclusions. First, that both of these events were
unanticipated, but important. While the Twitter acquisition was discussed previously, it
was not known that it would go through or that there would be any updates of its status
on the 28th. Paul Pelosi’s attack was completely unanticipated. Although the dynamics
are collapsed to a single day within the News dataset, the activity curves are still useful
to characterize the conversations within it.

Second, we note that there is a key difference in the News dataset activity curves
compared to those seen earlier for the Reopen and Election datasets. Specifically, the
transition from daily to hourly data introduces temporal cycles related to the sleeping
patterns of the users in the dataset. Thus, dataset with long enough timelines to use day-
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Figure 5.5: The contextual transition network of the News dataset.

level aggregation have the advantage of being easier to directly interpret. For hourly curves,
the affect of discussions sparked in early morning hours may be hard to distinguish that
from naturally increasing or decreasing activity due to users sleeping patterns. Luckily,
this is not an issue for our current dataset, but is important to keep in mind.

Conversational Transitions

The analysis of conversational transitions is most interesting when there are many states
in which users flow between. Still, for demonstration purposes, we proceed by showing the
transition matrix between the two states in our dataset. The transition network is given
in Figure 5.5.

Even with only two contexts, we can perform basic analysis. We see that both dis-
cussions are “sticky” in that people who are in the discussion are fairly unlikely to leave
it. Users active in the Twitter acquisition conversation had an 82% chance of staying in
that discussion if they were to tweet again, while those in the Paul Pelosi conversation had
a 69% chance. We also see that users are more likely to transition from the Paul Pelosi
discussion to that of the Twitter acquisition. This differential in transition probability
combined with the higher level of overall activity seen in Figure 5.4 suggests that users
have more interest in the acquisition, though both were important conversations. This is
an intuitive result, as the change in ownership could have a direct effect on users of the
platform.

5.2.3 Contextualized Dynamic Network Analysis
Now that the contexts have been identified an analyzed, we turn to their dynamic network
analysis. Because the dataset has been collected within a 24 hour window, we select
snapshot lengths of 4 hours. Shorter snapshots could be used, however they will not
carry much network information in the early hours, as seen in Figure 5.4. The dynamic
partitioning algorithm was run for both contexts, with the results shown in Figure 5.6.

We see that community structure is weekly correlated among snapshots, but it is still
worth combining some snapshots into larger periods. Specifically, we the hours of 4am-
12pm in the Pelosi context should be considered as one network, while the hours of the
8am-8pm should be considered one network in the Twitter discussion. Due to the size of
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(a) Paul Pelosi Attack (b) Elon’s Acquisition of Twitter

Figure 5.6: The dynamic partitioning algorithm results are given for the two contexts in
the News dataset. The partitions are given as a white border in the similarity matrices.
The diagonals are filled with the mean correlation for visualization purposes.

the networks, they are not visualized here. Instead, the network statistics are given in
Tables 5.3 and 5.4.

Start End Nodes Edges Nodes in LC Communities Modularity
0 4 44970 66031 29733 5755 0.95
4 12 86558 131347 63132 9494 0.94
12 16 103754 173166 77191 10963 0.92
16 20 123609 220896 94574 12046 0.90
20 24 117353 197149 84871 13089 0.91

Table 5.3: Network snapshot statistics for snapshots within the Paul Pelosi Attack con-
versation. LC stands for largest component. Start and end indicate the hours of October
28th included for the snapshot.

We observe that the number of nodes and edges differs drastically between snapshots.
In the Pelosi discussion, the community structure is strong and stable over time, whereas
in the Twitter discussion the community structure is weaker and fades as time goes on.
The extremely high values in the Pelosi discussion are inflated due to the many isolates
and small components in the discussion. This is a side affect of using the text and hashtags
to cluster data into conversations, Tweets which may not be directly interacting with the
largest component of users can still be participating in the same discussion.

These contextualized snapshots have now controlled for variation in both interactional
context and network dynamics, so they are appropriate for use by analysts looking to
answer questions about this discourse. Along those lines, these snapshots could be used in
a social cybersecurity pipeline [228].
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Start End Nodes Edges Nodes in LC Communities Modularity
0 4 146344 238050 142826 1450 0.75
4 8 134916 214764 129428 2561 0.75
8 20 632684 1449869 626216 2896 0.64
20 24 306098 609431 296209 4433 0.67

Table 5.4: Network snapshot statistics for snapshots within the Elon’s Acquisition of Twit-
ter conversation. LC stands for largest component. Start and end indicate the hours of
October 28th included for the snapshot.

5.2.4 Contextualized Prototype Analysis
The last step of the pipeline is the perform prototype analysis on the contextualized dy-
namic networks. The application of this step enables us to answer one final research
question: are community prototypes just an artifact of conversational context? In Chapter
2, we saw that Twitter datasets have many different discussions going on within them.
In Chapter 4, ignoring these contexts, we saw that communities were well-separated by
their identity attributes. Is this separation simply due to the different conversations in the
dataset? For example, if a dataset has a discussion about politics and a discussion about
news mixed together, it is possible that community detection differentiates a political com-
munity and a sports community, each of which use distinct identity signals. This would
undermine the conclusions we made in Chapter 4. The other possibility in this example
is that within the political discussion there are separate communities who describe them-
selves differently, and the same goes for the sports discussion. This would confirm, if not
strengthen our previous conclusions.

To answer this question we apply prototype analysis to the contextualized networks. We
show prototype analysis for the News dataset for the purposes of pipeline demonstration.
To relate to our findings to those of Chapter 4 the contextualized prototype analysis is
also shown for the Reopen dataset, focusing only on the measurement of the presence of
the prototypes.

News Dataset

For each snapshot in each context, we show the measurements of prototypes in Tables 5.5
- 5.8. Unlike previous analyses, projected modularity values are not high for all modalities.
For the Pelosi discussion, values are only high for biography mentions, while values are
high for biography mentions and location unigrams for the Acquisition discussion. Still,
among these modalities we see evidence for prototypes.

From here, the prototypes for each community within each snapshot can be observed,
much like they were in Chapter 2. For demonstration purposes, we show two such proto-
types in Figure 5.7, one from each context. These were selected to demonstrate the presence
of highly similar prototypes across contexts and across time. These prototype similarities
can be used to understand how large communities relate to different discussions without
the need for matching their exact membership.
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1 2 3 4 5
B-Identifiers 0.0308 0.0253 0.0172 0.0132 0.0130
B-Mentions 0.6082 0.5731 0.4706 0.4186 0.4220
B-Hashtags 0.0268 0.0349 0.0249 0.0162 0.0139
B-Emojis 0.0068 0.0071 0.0062 0.0042 0.0039
N-Hashtags 0.0068 0.0071 0.0062 0.0042 0.0039
L-Unigrams 0.0040 0.0085 0.0051 0.0034 0.0026

Table 5.5: Projected modularity values for different identity attribute modalities and for
snapshots in the Attack of Paul Pelosi contexts within the News dataset. The prepended
characters, B, N, and L represent bio, name, and location attributes, respectively. Values
above 0.2 emboldened.

1 2 3 4 5
B-Identifiers 0.2750 0.2138 0.1389 0.1211 0.1282
B-Mentions 0.9944 0.9950 0.9162 0.9127 0.9126
B-Hashtags 0.1512 0.1656 0.1044 0.1093 0.0847
B-Emojis 0.0199 0.0215 0.0156 0.0126 0.0104
N-Hashtags 0.0199 0.0215 0.0156 0.0126 0.0104
L-Unigrams 0.0203 0.0468 0.0256 0.0222 0.0128

Table 5.6: 2% Filtered projected modularity values for different identity attribute modali-
ties and for snapshots in the Attack of Paul Pelosi contexts within the News dataset. The
prepended characters, B, N, and L represent bio, name, and location attributes, respec-
tively. Values above 0.2 emboldened.

As a last note, we recognize that an identity modality does not have to be very salient
overall for it to be used in a particular community. Both of the #resist communities
use the hashtag in their biography and their name, despite that modality not being a
particularly popular mechanism for distinguishing communities in these contexts. The
biography mentions were more often used, which distinguished people’s preferred news
outlets, among other things. The location unigrams were also used often in the Acquisition
context, which was more of a global discussion.

Results on the Reopen Dataset

To further confirm that the presence of prototypes is not solely a function of varying
interactional contexts, we perform prototype analysis within 5 of the major contexts in the
Reopen dataset. Within each context, the conversational networks were constructed and
communities were extracted using Leiden clustering. From there, the projected modularity
values are calculated for the 6 previously examined identity attribute modalities and are
given in Table 5.9. The 2% filtered values are also given in Table 5.10.

Although the strength of the non-filtered values are lower within contexts than we
observed for the entire dataset, there is still clear evidence for prototypes within contex-
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1 2 3 4
B-Identifiers 0.0330 0.0253 0.0334 0.0247
B-Mentions 0.4337 0.3680 0.2800 0.3080
B-Hashtags 0.0761 0.0715 0.1088 0.0653
B-Emojis 0.0225 -0.0002 0.0377 0.0213
N-Hashtags 0.0225 -0.0002 0.0377 0.0213
L-Unigrams 0.0358 0.0278 0.0549 0.0337

Table 5.7: Projected modularity values for different identity attribute modalities and for
snapshots in the Elon’s Acquisition of Twitter contexts within the News dataset. The
prepended characters, B, N, and L represent bio, name, and location attributes, respec-
tively. Values above 0.2 emboldened.

1 2 3 4
B-Identifiers 0.0934 0.1224 0.0743 0.0773
B-Mentions 0.7354 0.7961 0.7181 0.7429
B-Hashtags 0.1169 0.1632 0.1806 0.1049
B-Emojis 0.0514 0.0182 0.0813 0.0544
N-Hashtags 0.0514 0.0182 0.0813 0.0544
L-Unigrams 0.2472 0.2252 0.3423 0.3751

Table 5.8: 2% Filtered projected modularity values for different identity attribute modali-
ties and for snapshots in the Elon’s Acquisition of Twitter contexts within the News dataset.
The prepended characters, B, N, and L represent bio, name, and location attributes, re-
spectively. Values above 0.2 emboldened.

tualized networks. This is especially clear when we consider the filtered values, where all
contexts have at least two modalities with modularity values above 0.2. In the case of the
“Liberate Tweets” and “COVID Information” contexts, prototypes are constructed using
5 and 4 modalities, respectively.

Considering the results on the Reopen dataset in conjunction with those on the News
dataset, we can conclude that community prototypes exist even when interactional context
is accounted for. Further, we can still conclude that these prototypes are developed using
multiple modalities. This is not to say that context does not affect community prototypes.
It is still expected that certain attributes will only be salient within certain contexts.

5.3 Discussion
By considering the set of analyses developed in this dissertation as a pipeline, we have
demonstrated how they fit together. The key takeaway, other than the procedure itself, is
that the information gained from each step of the contextualized dynamic analysis helps
us in the latter stages. That is to say that the methods developed, the inter- and intra-
activity and network dynamic analyses as well as prototype analysis, are interrelated and
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(a) Paul Pelosi Attack Resist Community (b) Elon’s Acquisition of Twitter Resist
Community

Figure 5.7: Prototypes of #resist communities from each of the contexts in the News
dataset. Both instances occurred in the 2nd snapshot of their respective dynamic networks.

Liberate Tweets Reopen Strategy BLM COVID Info Reopen Protesters
B-Identifiers 0.1633 0.0859 0.0090 0.0893 0.1455
B-Mentions 0.3572 0.2420 0.3103 0.3660 0.0929
B-Hashtags 0.2986 0.1639 0.0517 0.1918 0.0722
B-Emojis 0.1512 0.0968 0.0179 0.0988 0.0478
N-Hashtags 0.2320 0.1901 0.0322 0.1869 0.1264
L-Unigrams 0.0270 0.0356 0.0218 0.0266 0.0114

Table 5.9: Projected modularity values for different identity attribute modalities and for
different contexts in the Reopen dataset. The prepended characters, B, N, and L represent
bio, name, and location attributes, respectively. Values above 0.2 emboldened.

work together to unveil much more information than could be seen from the classic non-
contextualized approach.

Naturally, the pipeline works best when good data is provided. The best-practices
detailed in terms of data collection yield fuller conversation trees that can be better rep-
resented with the approaches developed in Chapter 2. We see that this is not without
problems, however. The depths of conversation trees on Twitter, especially those started
by major celebrities like Elon Musk, are polluted with spam. There is an inherent trade-off
between collecting the whole discussion and collecting a clean discussion. We have shown
that the contextualized network pipeline can work through this issue, however analysts
performing network analysis on the data would still need to perform some sort of filtering,
perhaps with bot and spam detection.

Along the way, the application of prototype analysis to dynamic contextualized net-
works has strengthened our findings in Chapter 4. While Chapter 4 found strong evidence
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Liberate Tweets Reopen Strategy BLM COVID Info Reopen Protesters
B-Identifiers 0.4376 0.1833 0.0785 0.2735 0.3434
B-Mentions 0.5148 0.3084 0.7322 0.4987 0.2478
B-Hashtags 0.4732 0.1927 0.3275 0.3672 0.1335
B-Emojis 0.2092 0.1136 0.0344 0.1434 0.0923
N-Hashtags 0.4449 0.4069 0.0718 0.3559 0.3063
L-Unigrams 0.0936 0.1009 0.0885 0.1019 0.0299

Table 5.10: 2% Filtered projected modularity values for different identity attribute modal-
ities and for different contexts in the Reopen dataset.The prepended characters, B, N, and
L represent bio, name, and location attributes, respectively. Values above 0.2 emboldened.

that Twitter communities differentiate themselves with multi-modal collections of identity-
related attributes, it did so for non-contextualized data. By re-doing the analysis, as part
of the pipeline, to contextualized data, we showed that this finding was not an artifact of
interactional context mixing. This is not to say that community prototypes and interac-
tional contexts are unrelated. Overall, location-based identity signals were weaker in the
contextualized setting. Based on the prototype analysis of Chapter 4, location attributes
were used to distinguish communities in specific locations, often ones that were outside
of the United states. These communities also often had prototypes suggesting they spoke
languages other than English. It seems that contextualization separated these commu-
nities into their own conversations. Within the US-centric contexts that were analyzed
further, these communities, and thus these attributes, were not as important. In conclu-
sion, some communities detected using non-contextualized data may inflate the presence
of community prototypes, however we find that when this is controlled for prototypes are
still present.
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Chapter 6

Thoughts and Conclusions

6.1 Overview of Contributions

This dissertation amounts to a theory of context and online social networks. Under this
theory, social interactions cannot be blindly aggregated into a social network without
compromising the social structure. Instead, the interactonal context, or the contextual
information that enables us to understand why individual interactions are occurring, must
be used to segment the data out into separate but related networks. Given that our data
is conversational, these interactional contexts can be thought of as conversations. From
there, the dynamic patterns of and between conversations can be used to inform us about
the nature of the conversations and the social structure within them. Finally, the personal
context, or the contextual information describing the individual’s social identity, plays
an important role within the social dynamics of contextualized networks. Specifically,
communities exhibit prototypes, or a set of identity-related attributes which bind the
community together and distinguish the community from others. These are the same
community prototypes detailed under the social identity perspective. Just as within that
body of work, the alignment of an individual’s identity signals and their communities
prototype informs social status. Unlike the classic perspective, however, we show that
social media has the added layer of savviness or individual’s skill at signaling their identity
to the rest of the community. Because of this skill differential, the users who conform with
their prototype and thereby achieve higher status are the ones most likely to update their
signals to successfully gain even more status.

The first major contributions within the developent of this theory are two methods
developed in Chapter 2, which enable network models that control for the interactional
context of Twitter conversations. These methods enable us to move from the analysis of
mixed context networks to contextualized networks, which in turn give a more reliable view
of network structure. The analyses provided in that chapter demonstrated that contextu-
alized networks can have radically different nodesets and different centrality rankings of
the nodes they have in common. To that contextual mixing harms the validity of Twitter
network analyses, and these methods provide a way of undoing that harm.

While Chapter 2 provided ways to perform existing network analyses with better ac-
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curacy, Chapter 3 showed that analysis of conversational contexts can help us answer new
research questions. Specifically, we demonstrated that the 4 types of contextual dynamics
(intra- vs. inter- context, and network vs. activity dynamics), work together to paint a rich
portrait of a large online conversation. These analyses can be used to better understand
the conversations that are present in a dataset at a high level, and are useful for better
understanding the relationship between users. Specifically, the dynamic intra-context net-
work analysis enabled us to further break down conversational networks by time periods
of stable structure so that we can see how the network evolves over time. The method
of dynamic community detection was demonstrated to be useful beyond conversational
networks, where a change in the structure of Ukrainian legislator’s co-voting network was
identified. Turning to the dynamics between contexts, we were able to provide a method of
detecting groups of suspicious users who may be coordinating to manipulate a discussion
by moving from conversation to conversation in a synchronized way. In summary, Chapter
3 demonstrated the deep connection between interactional context and social structure. It
did so by enumerate the 4 types of dynamic analyses and showed that they were inter-
related, where results from one can inform the other.

Next, various form of modularity vitality were developed, which links two of the largest
and most active areas of Network Science Research: centrality and community detection.
Specifically, modularity vitality was developed for unipartite, bipartite, and projected net-
works. Previous works considered network vitalities only for functions of a network. At the
same time, there were efforts to develop community-aware centrality measures which also
accounted for a network’s partition. Modularity vitality joined these two efforts by taking
a vitality of modularity, which is a function of both a network and it’s partition. This
expansion in scope of network vitalities provided a community-aware centrality measure
that was better tied to community detection theory than previous works.

In Chapter 4, this new network-based methodology was used to demonstrate the role
of personal context within our theory of networks and context. Specifically, it tested the
applicability self-categorization theory, a long-standing theory of offline social networks,
to large-scale online networks for the first time. There, we found strong evidence that
community prototypes exist, and that they are multi-modal. This means that Twitter
users signal their online community membership using signals like hashtags, mentions,
and emojis in their biography, while also using hashtags in their name and unigrams in
their location field. Previous work had investigated how users signal their social identity
with these modalities, and now we can tie this to a larger social process playing out over
communities.

When considering how people change their identity signals, some results aligned with
social theory of offline networks while others highlighted differences in the online setting.
Specifically, we found that users who aligned with their community’s identity had higher
status, both within their community and on Twitter as a whole. This agreed with existing
theory stating that prototypical users are more accepted by their group, and thus have
higher potential for leadership. Theory also suggests that non-prototypical users should be
more likely to update their identity signals to conform with their group’s identity, since they
should want to gain acceptance within their community. We demonstrated the opposite
happens on Twitter: users who already fit in with their community are more likely to
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update their identity signals and are more likely to have those changes align with their
group. This difference between online behavior and offline theory could be a result of social
media savviness. Under this theory, there may be a difference in social media user’s desires
and their actions due to their understanding of their community and how to be successful
on the platform. It is possible that these differences are a contributing factor to the large
status disparities seen online. Investigation into this possibility is an interesting avenue for
future work.

Next, whether community prototypes exist in the contextualized scenario was tested
by applying the contextualized network analysis pipeline developed in Chapter 5. By
reapplying the prototype study to contextualized data, we demonstrated that community
prototypes are not simply an artifact of the interactional contexts studied in Chapters 3
and 4. After controlling for these contexts, community prototypes still existed. That is,
even within specific discussions, users organize themselves within clusters of other users
that they share identity attributes with.

Lastly, the contextualized pipeline was applied to a new dataset, starting all the way
from data collection. This procedure serves as an example workflow that researchers can
follow to apply these methods to answer their own research questions or to build off of the
methods developed in this work.

6.2 Limitations and Future Directions
Each step of the contextualized analysis pipeline developed in this work made some asump-
tions and simplifications that were necessary for the first development of tools and analyses.
Each of these simplifications pose both a limitation of the present work and an opportunity
for future investigations.

First, interactional contexts were assumed to be discrete and unrelated in their devel-
opment. That is, each conversational network was modeled separately. This discretization
is extremely useful, without this we would be unable to apply any of the classical network
analysis tools to our data. However, the conversations observed in the dataset are in fact
related. Currently, a pair of very related conversations, say the Reopen Protests and the
Reopen Strategy, are treated the same as an unrelated pair, like COVID Information and
Black Lives Matter. We could see the relationship between conversations through network
similarity or the user transitions between the two, though this is a distinct type of simi-
larity. We began to investigate alternative approaches for contextualized network analysis
that account for conversation similarity in Appendix B with the development of vector
contextualized networks. This approach, where each edge is represented in a vector space,
is a powerful model that could be used to understand more complex social media platforms
like TikTok, where interactions take place through multi-media content.

The presence of related conversations suggest the possibility of hierarchical conver-
sations. This mirrors other areas of work, like hierarchical topic modeling or sub-story
detection. The consideration that conversations are hierarchical at the outset could lead
to more powerful contextualization methods. One approach would be to iteratively apply
the methods developed into Chapter 2 to a contextualized dataset to give sub-contexts.
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This could work to identify more finely-grained conversations, but it would be unable to
identify relationships between conversations that we studied in the present work. A better
approach would be to use a hierarchical clustering algorithm with Deep Tweet Infomax.
This is a very simple addition with large theoretical implications. For this extension to be
useful, all of the theoretical and practical analyses in Chapter 3 must be reconsidered with
this added layer of complexity.

A similar line of reasoning can be applied to the analysis of the identity signals in
Chapter 4. Each identity signal was treated individually, though some are clearly related.
However, when it comes to identity signals the meaning of a signal is only part of the
story; its usage is equally important. While we know intuitively that #blacklivesmatter
and #blm are related, their could be subtle differences in connotation or usage between
different communities. It is possible that #blm is more popularly used among people
who are against the movement. Thus, systems which can account for apparent similarities
though co-usage is possible, however it is very difficult for these systems to appropriately
deal with the complexities of social identity signaling. This is a worthwhile challenge to
undertake, as progress in this area could lead to an even better understanding of online
social identity.

Another major limitation is our ignorance to stance and sentiment. Contextualized
networks move from simple frequency-based networks to those that ensure that individuals
are engaging in the same conversation. However, we cannot distinguish when users are
agreeing within a discussion from disagreeing. We further cannot distinguish positive or
supportive interactions from negative, hostile, or even hateful ones. While all types of
interactions are possible within a community, clearly understanding the types of interac-
tions would give a better understanding of the social dynamic and could point to areas
where a cluster of same-conversation individuals is not in fact a community. Advances
in natural language processing in detecting individual’s stance as well as the sentiment
and hatefulness of Tweets could be used to further distinguish these interactions. At the
network level, signed networks may be needed to distinguish these edges.

We considered there to be no discernible distinction between society and community,
as would be expected under the perspective of scholars like Tönnies and Weber. While it
may not be possible to draw a distinction between these online using follower networks,
investigation into their role in generating the social dynamics observed in this work is a clear
direction for future research. Perhaps considering the nature of the interactions between
individuals and their following status could enable the distinction between personal and
non-personal ties. Either way, the follower network biases the conversational network.
So studies of its co-evolution with conversational networks could bring further insights
into why conversational communities are structured the way they are and how community
prototypes arise.

Next, the relationships between the analyses given in this work could be further devel-
oped. For example, the shape of the activity curves were shown to be useful in understand-
ing the nature of a conversation. However, we did not consider what users were active in
different areas of those curves. It is possible that certain users are “early adopters,” or
those who jump into a conversation as it first develops. If this is the case, it would be of
interest to see how the status of an earlier adopter compares to a later adopter. Similarly,
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it would be of interest to know how these behavioral differences relate to differences in
identity signaling. Inversely, the position of high-status or prototypical users within the
user activity curve could further charactize the conversation. The idea of seeing how one
analysis could be used to complement or deepen another could be applied in many places
within this dissertation.

Another major limitation of this work is our inability to draw causal claims from our
analyses. This is pervades much of the work, but is most evident in the considerations
of community prototypes in Chapter 4. Given their implication of identity-related polar-
ization, investigations into the causal mechanisms of prototypes will be important. Self-
categorization theory seeks to make a causal claim: individual’s social desires cause them
to construct community prototypes and signal their prototypicality to the other members
of their community. Our work shows that the outcome of this behavior does occur on
social media: community prototypes do exist; though we cannot say to what extent it
is due to the processes descibed by self-categorization theory. In classic studies of social
networks, assortativity is explained through the complementary forces of homophily and
social influence. Even under just these two forces, it is hard to determine the effect sizes
of each [205]. However, the social media scenario is even more complex. First, the effect
of the follower network must be understood, as was previously discussed. Next, the effect
of Twitter’s design must also be accounted for.

Twitter’s recommendation algorithms dictate the order in which content is shown to
users, influencing their behavior. However, at time time of writing the specifics of these
algorithms are unknown. It is possible, even likely, that the algorithms use the similarity
of user’s biographies to rank content. This choice could also lead to the formation of
prototypes, even in the absence of the social motivations described under the social identity
perspective.

We cannot rule out these scenarios, and so we do not make any causal claims. However,
some of our results provides evidence in favor of the social theory explanation of proto-
types. When considering instances that users change their profile information, they are
more likely to make changes that conform to their prototype. These decisions are totally
up to the individual and are not guided by any recommendation. Because users act in
accordance to social theory in this scenario, it is possible that the theory holds even under
the influence of recommendation. Future work may investigate this by modeling the affects
of recommendation algorithms. As there is more pressure to provide transparency in social
recommendations, hopefully this line of work should have more realistic assumptions to
work with.

All of these avenues of future work point towards prediction. As our knowledge base
of contextualized networks strengthens, prediction becomes more possible. Prediction of
social behavior is notoriously challenging, however that of large-scale aggregate behavior
may be obtainable. The combination of textual analysis and network analytic techniques
has shown to be useful in predicting major social upheavels such as the Arab Spring [114].
A first step in this direction would be the prediction of activity curves. Prediction of
these curves could give early insights into emerging important stories, and which will be
inconsequential. Along with the usual time series analysis and forecasting tools, further
work into the role of early adopters in developing a conversation could help make progress
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on this front. In the context of protests and revolutions, this work could be used to
understand the momentum behind the protests, or to understand which rallying cries or
naratives the proetests will center around.

Another obtainable area for prediction is that for the evolution of community proto-
types. Here, the previously discussed future work into the causal mechanisms of community
prototypes will be essential. Because of the inter-related nature of prototypicality and sta-
tus, forecasts into one may help forecasts in the other. That is, an understanding of how a
community’s prototype should evolve could point to emerging leaders. An extension of this,
though one that is even further out of reach, is the use of these predictions to anticipate
larger changes in social structure, for example the fracturing of a community. Such fore-
casts will require an understanding of the evolution of the prototypes or sub-prototypes,
current and emerging leaders, and how these forces will effect the larger community. Thus,
it is a very challenging problem though one worth striving for.

6.3 Beyond Twitter
Perhaps the biggest limitation of this work is that it has only directly considered Twitter
data. Twitter is a very important social media platform due to its widespread use among
politicians, celebrities, and journalists for first reporting. However it is only the 7th largest
social media platform in the United States, and is not growing as fast as smaller platforms
like Reddit1.

Twitter was selected for analysis because it met two criteria. First, it had both in-
teractional context and personal context. Second, we were able to access the data from
both. Because both of these criteria were met, we were able to fully explore contextualized
analysis of conversations, and study the interaction between personal and interactional
context. This would not have been possible on other platforms. Reddit, for example, does
not have customizable biography attributes, meaning that there is no personal context
on the platform to consider. Other platforms like Facebook and Instagram due have this
feature, but researchers do not have access to the data to study it.

So, while Twitter was chosen out of necessity for our purposes, we cannot draw conclu-
sions from our work beyond the scope of that platform. With that said, the tools developed,
like that for the detection of prototypes and contextualization of Tweets are usable outside
of Twitter, so long as the data is available. The application of these tools to understand
differences in online behavior between other social platforms is of interest for future work.

The limitation that this work relies heavily on Twitter data is compounded by the
fact that Twitter has updated its API prices, making academic research of the platform
prohibitively expensive 2. While there are large archives of old Twitter data available for
researchers to examine, those interested in studying fresh data must turn to new sources.
Although Twitter’s change is a great loss for the academic community, it poses a great
opportunity for researchers to broaden the scope of their study to online conversation
beyond the platform.

1https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/
2https://www.wired.com/story/twitter-data-api-prices-out-nearly-everyone/
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Any website featuring a comment section is ripe for exploration using some of the meth-
ods detailed in this dissertation. Large platforms like YouTube, Reddit, and Tiktok, all
have comment sections, but many other sites do too. A particularly interesting opportunity
presents itself on news websites. Many of the major news sources have active comment
sections below all of their articles.

The primary challenge for network scientists in branching out to these new platforms is
modeling both the content of the comments and the content being discussed. For example,
a network of comments on a collection of videos should capture the fact that both the videos
and comments are related. Hopefully, the framework of vector contextualized network will
provide a way forward in this new line of work.

6.4 Concluding Thoughts
The interactions that we have with each other online are complex. This complexity must
be accounted for if we hope to get accurate answers to our research questions about social
media and its impact on our society. We’ve taken preliminary steps towards this end,
providing general frameworks to account for the personal and interactional context of
these interactions. However, there is much work to be done. The social media landscape
is continuously evolving. While there are plenty of people engaging in online discussion
in comment threads, alternative forms of online social connection are rapidly growing
in popularity. Every day, more and more people are interacting with each other online
by sharing videos and images, joining live streams, and entering virtual environments.
Studying each of these new modalities will require some specialized research methods. We
hope that this work can serve as a guide, and to some extent a unifying approach, for these
future endeavors.
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Appendix A

Manual Interactional Context
Annotation Details

A.1 Reopen

A.1.1 Liberate Tweets
Trump Tweeted in support of the reopen protests, writing tweets like “LIBERATE MICHI-
GAN!” Seed nodes include these Tweets of support and articles discussing their implica-
tions.

A.1.2 Trump’s Job Reopening
A more general discussion formed around tweets and editorials talking about the pros and
cons of Trump’s strategy of reopening the country.

A.1.3 Trump Refuses CDC Guidance
The Trump administration announced it would not implement the Centers for Disease
Control and Prevention’s 17-page draft recommendation for reopening America.

A.1.4 Fauci Critique
Sparked largely from President Trump’s discussion began questioning Fauci’s qualifications,
trustworthiness, and the job that he had done advising the country on COVID saftey.

A.1.5 Recall Whitmer
A push to recall the Governor of Michigan, Gretchen Whitmer, due to her perceived failures
in handling the pandemic. The concerns were primarily economic, though some claimed
without evidence that her lockdown policies caused more to get sick.
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A.1.6 Florida Data Scientist
A Florida data scientist accused state officials of covering up the extent of the pandemic
and was subsequently fired.

A.1.7 Arizona Scientists
Similar to the Florida case, the Governor of Arizona fired a scientist speaking out against
the Governor’s plans to reopen the state.

A.1.8 Reopen Updates
Many articles were posted that various places or businesses were reopening, not reopening,
closing down, or announcing an extended lockdown.

A.1.9 Reopen Commentary
A general discussion about the affects of lockdown, reopening, and the experience.

A.1.10 Reopen Strategy
Opinion pieces and Tweets from major influencers detailing what they think the reopen
strategy should be. The most prominent of which was an editorial from Joe Biden.

A.1.11 Economy
A general discussion about the economy including the state of business and the stock
market.

A.1.12 Worker Unemployment
A more specific discussion about how worker unemployment was related to the lockdowns,
mostly political and separate from the discussion about economic indicators.

A.1.13 Mask Orders
Discussion about masks orders, specifically, which were discussed mostly separately from
lockdowns and things reopening.

A.1.14 Schools
Updates and discussion about school closures, the safety surrounding in-person education
and the alternatives.
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A.1.15 Reopen Satire
Satire about the state of the country and the efforts to reopen.

A.1.16 COVID Information
Information about the latest COVID statistics and safety instructions. Most discussion
centered around URLs to dashboards.

A.1.17 Worker Precautions
Discussion about what workers need, and in some cases were not getting, to safely return
to work.

A.1.18 Lockdown Hypocrisy
Frustration about proponents of COVID-restrictions, particularly politicians, breaking the
rules or guidelines.

A.1.19 Vaccine
Discussion about vaccine development.

A.1.20 Anti-Vaccination
Both discussion about anti-vaccination messages, and meta-discussions about the groups
pushing them.

A.1.21 People Testing Positive
Updates about famous people testing positive for COVID.

A.1.22 Anti-Mask Violence
Stories of people who are anti-mask committing acts of violence because of mask rules.

A.1.23 Punishment for Lockdown Violators
Ethical discussion about consequences for lockdown violators in the form of fines, jail time,
or loss of employment.

A.1.24 Reopen Protesters
Discussion about the many reopen protests across the country, but primarily about Oper-
ation Gridlock in Michigan.
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A.1.25 Protest Coordination
Discussion about how the reopen protests appear to be coordinated, and how things like
Trump’s Tweets may have helped in that coordination.

A.1.26 Black Lives Matter
The resurgence of the Black Lives Matter movement following the murder of George Floyd.

A.1.27 Bot Story
An interview with Kathleen Carley was released implying that a large number of the
accounts tweeting about the Reopen protests were bots.

A.1.28 Reopen Criminal Cases
Calls to reopen various criminal investigations. Those that could be linked to BLM were,
so these are separate discussions of events.

A.1.29 Petitions
Miscellaneous petitions that were not directly linked to BLM.

A.1.30 Lowes Donation
Lowes announced it was donating 25 million dollars in grant money for minority-owned
businesses trying to reopen amid the COVID-19 coronavirus disease pandemic.

A.1.31 Healthcare Workers
Discussion about healthcare workers’ efforts throughout the pandemic, largely on World
Health Day.

A.1.32 Hurricane Support
A joint support effort was announced from the 5 living former presidents.

A.1.33 General Flynn
Discussion surrounding the opening of a legal fund for General Michael Flynn to support
him through the investigations into his actions in the 2016 presidential campaign.
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A.1.34 General Politics
Discussions about politics that were not tied to a specific event and were distinct from the
other contexts.

A.1.35 Boycott China
Calls to boycott Chinese goods and services.

A.1.36 Entertainment
Various news and discussion about art, music, and popular culture.

A.1.37 Memes
Many of the top tweets were memes about the pandemic or the protests but were too
general to be categorized into those contexts.

A.1.38 Oregon Burning Aborted Babies
An energy plant in Oregon was reported to be burning medical waste from Canada to
provide power. Aborted fetuses were included in the tissue, sparking outrage. Though
the primary link discussed was from a questionable pro-life news source, lifenews.com, the
story was later verified on Snopes.

A.1.39 Miscellaneous
A final context for those that did not fit in the others, sometimes personal anecdotes or
jokes.

A.2 Election

A.2.1 Claims of Fraud
A number of false claims that the election was being stolen or that fraud was being com-
mitted were spread during the vote counting period of the election.

A.2.2 Spam
Various promotional URLs that were mass-replied to popular tweets.

A.2.3 Biden Campaign
Campaign videos and messages supporting the Biden and Harris ticket.
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A.2.4 Trump Campaign
Campaign videos and messages supporting the Trump and Pence ticket.

A.2.5 Election Updates
Official updates and live-view voting maps as the votes were being tallied.

A.2.6 Biden Won
Discussion that Biden had won the election starting before the bulk of the mail-in votes
were cast in key states like Pennsylvania, as Biden supporters anticipated the bulk of these
votes would be democratic based on previous partisan differences in mail-in voting.

A.2.7 Trump Won
Discussion that Trump had won the election starting the night of the election when he
lead in early counts prior to the inclusion of mail-in votes. Discussion that Trump won
continued as supporters believed the false claims of election fraud.

A.2.8 Vote Information
Information on how to vote, including the application to register, the location of polls, and
instructions for casting mail-in ballots.

A.2.9 Vote Counting
Chatter about the votes being counted, including calls to count all the votes and to stop
the count.

A.2.10 Trump Has COVID
Tweets about Trump catching COVID in early October of 2020. Discussion stems from
people reflecting on those events in light of the election.

A.2.11 Democrat Comedy
Comedy videos supporting the democrats.

A.2.12 Biden Racism
Discussion centered around videos of racist comments from Joe Biden when he was a
senator.
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A.2.13 Antifa
Unsubstantiated claims about what Antifa was doing during the election.

A.2.14 Democratic Fundraising
Links to raise money for democratic campaigns.

A.2.15 A$AP Rocky
Discussion about Trump’s role in the release of rapper A$AP Rocky from jail in Sweden.

A.2.16 Biden’s Bus
Video and discussion about a Biden campaign bus which was surrounded on the highway
by a caravan of pickup trucks displaying Trump flags. The trucks slowed the bus down
until the cops were called and they intervened.

A.2.17 Hunter’s Laptop
Discussion of Hunter Biden’s laptop, which was abandoned at a Delaware computer shop
in 2019. The laptop sparked controversy when Trump supporters claimed it contained
evidence of corruption.

A.2.18 Attacks on Voting Officials
Instances of attacks or attempted attacks on voting officials, which were carried out under
the belief that election officials were committing fraud.

A.2.19 Kamala Equity
Kamala Harris Tweeted a video explaining the concept of equity, which lead to conservatives
to claim that she was endorsing communism.

A.2.20 Covid and Trump
Discussion of how Trump handeled COVID.

A.2.21 Project Veritas
Discussion of content produced by Project Veritas, an American far-right activist group
founded by James O’Keefe in 2010. The group produces deceptively edited videos of its
undercover operations, which use secret recordings in an effort to discredit mainstream
media organizations and progressive groups
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A.2.22 Voter Purge
Discussion of the removal of voters from the public registry.

A.2.23 Election Memes
Various memes discussing the election in a way that does not fit better into one of the
other contexts.

A.2.24 USPS
Discussion about USPS, efforts to defund it, and its role in the election by delivering mail-in
ballots.

A.2.25 Trump to Declare Early
Early warnings that Trump was likely to declare victory on election night despite knowing
that the results would not be finalized and were likely to move against his favor as mail-in
votes were counted.

A.2.26 Biden’s Health
Speculation about Biden’s health, with many saying he was unfit for office.

A.2.27 Trump Motivation
A collection of motivational videos edited by fans of Trump using his speeches as the
narration.

A.2.28 Suing Trump
Speculation about the lawsuits that Trump would face should he lose the election.

A.2.29 Black Lives Matter
Discussion of the Black Lives Matter movement.

A.2.30 Deported Veteran
Alex Murillo’s story about being deported to Mexico after serving in the United States
Navy.

A.2.31 Medows Gets COVID
White House chief of staff Mark Meadows tested positive for COVID.
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A.2.32 Alex Trebek
The death of Alex Trebek, beloved host of Jeopardy! the game show.

A.2.33 Anti-QAnon
Discussion of the dangers of QAnon, the far-right conspiracy theory and political move-
ment.

A.2.34 Federal Workers
Discussion of Executive Order 13957, which created a new class of federal employees within
the civil service making it easier to hire and fire civil service employees.

A.2.35 NBA White House
Discussion of the tension between NBA players and Trump, specifically surrounding the
traditional invitation of the NBA champions to the White House.

A.2.36 Miscellaneous
A final context for those that did not fit in the others, sometimes personal anecdotes or
jokes.
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Appendix B

Vector-Contextualized Networks

B.1 Development of Vector Contextualized Networks
In Chapter 2, Deep Tweet Infomax was developed to obtain vector-representations of
Tweets, and thereby of interactions. This approach recognized that context can be repre-
sented as a vector, which enables us to compute similarity. Thus, we can use the vectors
to determine interactions that are similar to one another. From there, we clustered the
data into discrete contexts, which can be thought of as conversations. The transition from
a continuous representation of contexts to a discrete one enabled us to apply network and
sequence analyses to the data.

However, the discretization of contexts loses information. How similar are two discus-
sions? After clustering and considering discussions as discrete, we lose the ability to answer
this question directly. In this appendix, we demonstrate a framework for network analysis
on vector-contextualized data that does not require the discretization step.

Vector-contextualized data is that which encodes interactions between entities in a
vector space. This type of data is shown in Figure B.1. A simple example of vector-
contextualized data is a human contact network, where the location of physical of inter-
actions is recorded. Thus, each edge of the network is given a location in a 2-dimensional
vector space. Note the difference from spatial networks, which assign nodes a fixed location
in vector space [62]. Here, nodes are free to move around.

Sticking with the interaction network example, we can think about how to construct a
network. Consider that we want to study the interactions that occur on a college campus.
In this scenario, a boundary in the vector space is drawn, and edges within that boundary
are included while those outside the boundary are excluded. From there, we could tally up
the edges to form a network. We could also imagine cases where the distance of an edge
to a reference point, say the center of the campus, could indicate its importance.

With these intuitions in place, we define vector contextualized networks. The following
are the requirements for vector contextualized networks:

1. Network data (interactions between discrete entities) in a vector space.
2. An inclusion function set by the researcher. This function determines whether or

not edges should be included in the network
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Figure B.1: Schematic of vector-contextualized networks.

3. Optional: a weighting function based on the distance from an edge to a fixed reference
point, set by the researcher. The weighting function determines how much the edge
instance increases the edge weight in the vector contextualized network.

From there, a vector-contextualized network is constructed as follows. The edges deter-
mined irrelevant by the inclusion function are discarded. If an edge weight function is
supplied, it is used to determine the weights of the edges. Finally, the edge weights are
summed over to obtain a single vector-contextualized network. Note that interactions
between entities can re-occur in multiple locations. The weights of these instances are
summed over to give a single weight between the two entities.

This process is illustrated in Figure B.1. A reference point is defined in the space.
From there, the weighting function dictates that the further an edge is from the reference
point, the lower its weight. Eventually the weights are so low, that they are not considered,
as indicated by the radius surrounding the reference point. Thus, the inclusion function
indicates that only those within the radius are to be included. Lastly, the edge-weights are
summed over to obtain a network.

We can see that as the reference point is moved, we obtain a different network specif-
ically centered around that point. This means that different networks can be constructed
for different points in the space. If the reference points are near to each other, than we ex-
pect their networks to be correlated. Thus, the similarity originally encoded in the vector
space will be translated into our contextualized networks.
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B.2 Case Study on the Election Dataset
We now demonstrate a vector-contextualized network analysis on the Election dataset,
where vectors are obtained from Deep Tweet Infomax. The first question, is how do we
set our reference points in vector space? To reference points that are both objective and
interpretable, we use hashtags. Specifically, we pick out important hashtags within the
dataset and construct a vector-contextualized network around each point. To start, the
reference hashtags and their similarity in the vector space are shown in B.2.

Figure B.2: Vector similarity between hashtags in the Election dataset.

Now that the reference points are in place, we move to define an inclusion function. We
define this function to include all edges that have cosine similarity greater than 0.65 with
the reference point in question. The threshold was somewhat arbitrarily selected, though
runs with alternative thresholds lead to similar results. Finally, an edge-weighting function
was selected. Here, we decide to evenly weight all edges that are included in the network.

To summarize, we build a network surrounding a hashtag. We consider all Tweets
which are similar to that hashtag (cosine similarity above 0.65). For those included tweets,
we construct a weighted interaction network between users where the weights indicate the
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number of interactions between them.
Applying this to the Election dataset, our first question is how do the contextualized

network compare in their most basic properties? To answer this, we show the overlap in
each pair of vector-contextualized network’s nodesets and edgesets in Figure B.3a. We
see that for related hashtags, or those that are similar in the vector space, we obtain
similar networks. In our data, this corresponds to a very similar set of networks for the
most prominent hashtags in the data, as shown in the top-left corners of the plots. These
networks contain nearly all the same nodes and edges.

(a) Node overlap. (b) Edge overlap.

Figure B.3: Overlap of nodes and edges in the vector-contextualized networks of the Elec-
tion dataset centered around different hashtags.

In contrast, the more independent hashtags have more independent networks. These
hashtags, like #news, are not similar to the other hashtags because they are talked about
in a different way. Intuitively, we can understand these as different conversations. That is,
the discussion of #news was very different from the discussion of #blacklivesmatter. As a
result, the networks, too, are very different. Specifically, we see that they have very little
overlap in both their nodes and their edges.

Mirroring our analysis in Chapter 2, we also compare the centrality rankings between
contexts. Again, we control for the differences in nodesets, and only rank the nodes based
on their overlapping subgraphs. The nodes are ranked according to their Pagerank, and
the Kendal-Tau correlation is shown between contexts in Figure B.4. Again, we see that
similar contexts have very similar centrality rankings. However, this time, we see that less
similar contexts, such as #trump and #biden, still have high correlation of their centrality
rankings. Part of this result is due to the fact that the same influential people (those with
many followers) are active in both discussions. In other cases, such as the comparison
between #antifa and #coronavirus, the effect is due to the small number of users active
in both discussions.
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Figure B.4: Correlation of centrality ranking of nodes in different vector-contextualized
networks within the Election dataset.
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In summary, this case study has demonstrated that the vector-contextualized network
approach can leverage the tools of standard network analysis, while still incorporating the
vectorized contextual information. Thus, when consider similar contexts, we get similar
networks. The approach is very general, and could be applied to any situation where
vectors can be used to capture the similarity between a set of interactions.
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Appendix C

Modularity Vitality

C.1 Introduction

Modular structure is a key phenomenon in the study of real-world networks. Networks from
a wide array of disciplines exhibit modular structure, meaning that nodes tend to be found
in well-connected groups[78]. Discovery of these clusters have been repeatedly shown to
be meaningful within their context though empirical studies [93, 125, 174]. Further, a “No
Free Lunch” theorem has been proved for community detection, stating that no algorithm
can uniquely solve community detection, and implying that multiple valid community
definitions can exist for a single network [177].

Another fundamental question in Network Science is that of centrality. Put simply,
how important is each node in a network? Many centrality measures have been defined
over the years, each measuring “importance” in a different way. Classically, centrality
measures are defined to be a graph invariant. However, network communities have been
shown to be pervasive in nature, and it has been shown that networks can have multiple
meaningful definitions of communities. So, it is natural to ask the question: how important
is each node in a network given some definition of groups? When group structure is
considered, the relative importance of nodes may change. For example, a fairly average
node in classical terms may be a hub within a small community, boosting its importance
within this context. In this work we refer to centrality measures accounting for community
structure as “community-aware centrality measures.” The question of community-aware
centrality lies at the intersection of the fundamental areas of centrality and community
structure. As such, applications to community-aware centrality are far-ranging. Here, we
show applications to immunization strategies for infectious disease, robustness testing for
large infrastructure networks, and privacy-based data filtering strategies.

Most of the existing community-aware centrality measures extend classic centralities
by considering within-community links and between-community links separately, before
applying a weighted sum to get a single score [75, 76, 88]. This approach acknowledges
the difference between links which fall within communities and those which fall between
them, but ultimately gives no insight into what role a node is playing; hub-nodes and
bridge-nodes can receive similarly high values without a way to distinguish them. Further,
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the weighting schemes to date have been hand-crafted, rather than derived from existing
community theory, making them somewhat subjective. Cherifi et al. have acknowledged
that there is room for improvement on this front [47].

When discussing the modularity matrix, Newman introduced “community-centrality,”
which measures a node’s potential to contribute to group structure [163]. Since the measure
was of potential contribution, community-centrality is a classical centrality-measure, inde-
pendent of any defined partition. To obtain a community-aware centrality from a similar
line of reasoning, we propose to measure a node’s actual contribution to the group struc-
ture encoded in a specific partition. By doing so, we obtain a community-aware centrality
grounded in community detection theory and free from hand-crafted weighting schemes.

For the measure of actual node contributions, we turn to vitalities [123]. In their work,
Koschützki et al. define vitality as the difference between the value of an arbitrary real
function, f , applied to the graph G and the same function’s value when applied to the
graph G with the vertex of interest removed. By doing this, a single node’s contribution
can be measured and the observed value can be positive or negative. This is closely related
to the key-player problem, which roughly asks to what extent a network is relying on a
node’s presence to remain cohesive [26].

If the graph index is chosen to be a cluster quality metric, the vitality, then, measures a
node’s contribution towards group structure. There are many such cluster quality metrics
in the literature to choose from [132]. Vitalities have previously only been applied to
classical centrality measures, thus, they have been defined as functions that only take
graphs as arguments. Since we are interested in community-aware centralities and vitalities,
we will define vitality as a function that takes a graph and its partition as arguments.

Nodes can contribute positively or negatively to community structure. This difference is
encoded in the vitality’s sign, allowing us to to distinguish nodes based on their role. Nodes
which have negative cluster quality vitality are detrimental to group structure, meaning
that they are connecting groups, making them a community bridge. Similarly, positive
cluster quality vitality nodes are community hubs.

The focus of this work is on a specific cluster quality vitality - modularity vitality. New-
man’s modularity is used as the objective function for many popular community detection
algorithms, making it a natural choice to measure cluster quality [23, 30, 48, 164, 223].
Thus, this measure has stronger grounding in community theory than those prior, with
no need for a hand-crafted weighting function. We show that manipulation of the original
modularity function leads to a scalable method of calculating modularity vitality, where
the calculation for all nodes scales as O(M +NC) time, where M is the number of links,
N the number of nodes, and C the number of communities.

Modularity vitality was tested on generated modular networks and on two real-world
networks: the Pennsylvania Road Network, and a large Twitter network collected from
the discussion of the Canadian Election of 2019. In our experiments, modularity vital-
ity out-performs existing community-aware centralities showing potential applications for
immunization strategies, control of diffusion over networks, and for robustness testing.

While other studies have demonstrated the fragility of infrastructure networks, in our
first case study, we show that the road network is over 8 times more fragile than could be
seen with measures only weakly tied to community detection theory [53]. By targeting only
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1.6% of nodes with lowest modularity vitality, the PA road network’s largest component
can be reduced to less than 1% of its original size, effectively destroying the network.

In the second case-study, the social media communication network was extremely ro-
bust, as demonstrated through the ineffectiveness of all community-aware centrality at-
tacks on the network. The robustness of Twitter networks has serious implications for
Social Cybersecurity [41, 170]. One of the core areas in this emerging discipline is develop-
ing counter-measures for the mitigation of fake or misleading news on social media. The
problem of “Fake News” has gotten more attention recently, though many basic questions
in the space are left open [128]. It is often suggested that network metrics can be used
to identify points for stopping the spread of misinformation [207]. However, our results
suggest that this is not the case. The robustness of Twitter networks suggest that even
well-targeted interventions at the user level are unable to hamper the ability of informa-
tion to spread. This result is aligned with the observed phenomena that misinformation
continually resurfaces on social media [206].

Lastly, we show that modularity vitality can be used to perform greedy attacks to de-
crease modularity. This gives an alternate approach to the community-deception problem,
which seeks to obscure communities from detection algorithms by altering network links in
order to preserve privacy. Modularity vitality was used to perform community-deception
on a large twitter network. The method decreased modularity by 41%, however this de-
crease comes at the cost of 2% of nodes and 45% of edges. While a removal of 2% of
nodes leads to a sizable decrease in modularity, this process has diminishing returns. This
suggests that a scalable and effective strategy for community deception is to obscure which
popular accounts a user follows. This differs from the typical strategy, which rewires edges
instead of deleting them.

C.2 Prior Work

C.2.1 Preliminaries
Before describing the prior work, we begin with the notations and definitions that we will
rely on for the remainder of the work.
Definition C.2.1 (Graphs). A graph is a pair G = (V,E) where V is a set of nodes or
vertices, and E of is a set of edges or links. Let us denote N = |V | as the total number
of nodes and M = |E| as total the number of edges. Let vi ∈ V denote a node i and
ei,j = (vi, vj, wi,j) ∈ E denote an edge between nodes i and j with weight wi,j > 0. Finally,
the adjacency matrix A is is an N x N matrix with Ai,j = wi,j if ei,j ∈ E and Ai,j = 0
otherwise. For this work we only consider undirected graphs, that is Ai,j = Aj,i.

Definition C.2.2 (Partitions). A partition of graph G is C = {γ1, γ2, ..., γC} where γi
is the set of nodes within community i s.t. γi ∩ γj = ∅, i 6= j, ∀i, j ∈ {1, . . . , C}, and
γ1 ∪ γ2 ∪ ... ∪ γC = V . We denote C = |C| as the total number of communities. For
convenience, we define a community vector, c = [c1, c2, ..., cN ], where ci indicates the
community of node i.
Definition C.2.3 (Total and Community Degrees). The total degree of a node vi is equal
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to the sum of its edges. Let us denote this by ki =
∑

j Ai,j. Next, define the community-
degree of node vi as the sum of edges towards nodes belonging to community c. We denote
this as

kc
i =

N∑
j=1

Ai,jδ(cj, c)

where the δ(a, b) is an indicator function s.t. δ(a, b) = 1 if a = b, 0 otherwise.
Definition C.2.4 (Internal and External Degrees). The internal degree of node vi is the
sum of edges connected to vi within its community. That is kinternal

i = kci
i . The external

degree of node vi is the sum of edges connected to vi and communities not equal to that
of vi. That is

kexternal
i =

N∑
j=1

Ai,j(1− δ(ci, cj)) = ki − kinternal
i .

The number of internal links in the graph G is given by M internal = 1
2

∑
i,j Ai,jδ(ci, cj).

Definition C.2.5 (Group-Fraction). Let G be a graph and C be a partition of the graph
G. The group-fraction of community c is given by

µc =
∑
vi∈γc

kinternal
i

ki
=
∑
vi∈γc

kc
i

ki
.

Note that this is not equal to the fraction of edges within a community.

C.2.2 Modularity and Grouping
There is no “best” way to evaluate cluster quality and as such, many cluster quality metrics
have been defined [132]. While vitality measures on any of these cluster quality functions
could be an interesting and unique contribution, we focus our work on modularity. We have
chosen modularity for several reasons. First, some of the earliest discussions of community-
aware centrality are given by Newman when exploring modularity [163]. Next, many of the
popular community detection algorithms attempt to maximize modularity. Thus, studying
the vitality of the quantity used to obtain the communities in the first place keeps measures
consistent. Lastly, we will show that modularity vitality in particular has a non-trivial
vitality function which can be calculated efficiently.

The most common definition of modularity is that given by Newman, which is the
fraction of the edges that fall within the given groups minus the expected fraction if edges
were distributed at random [164]. The definition of Newman modularity is as follows.
Definition C.2.6. Given graph G and partition C, let us define modularity as the fraction
of the edges that fall within the given groups minus the expected fraction if edges were
distributed at random [164]. We can write modularity Q of the graph G as:

Q(G,C) =
1

2M

∑
i,j

(
Ai,j −

kikj
2M

)
δ(ci, cj), (C.1)
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Modularity in this form has been studied extensively, and the most commonly used
community detection algorithms seek to maximize this quantity [30]. Because it is an NP-
hard problem, many different methods have been proposed to varying degrees of success
[23, 48, 223]. The Louvain method has prevailed for years, and has repeatedly been shown
to give meaningful communities in empirical studies [23].

However, recently, Traag, Waltman, van Eck have shown a flaw in the Louvain method
[223]. Because of its update step, Louvain does not guarantee that its communities are
internally connected. It was shown that, in fact, many communities are often not connected
when using the method on real-world datasets. To fix this, Traag, Waltman, and van Eck
have proposed Leiden grouping, which is slightly faster than Louvain, guarantees well-
connected communities, and often achieves higher modularity. As such, we proceed using
Leiden grouping.

C.2.3 Network Centrality Measures
Newman began the discussion of centrality based on community structure when studying
the modularity matrix [163]. He defined “community-centrality” based on the eigenvec-
tors of the modularity matrix. Despite its name, this is a classical centrality measure.
Instead of measuring the actual contribution of a node, community-centrality measures a
node’s potential to impact modularity. The derivation from the modularity matrix give
community-centrality a strong theoretical link to communities, but has some drawbacks.

First, potential impact can be very different from actual impact. A related second
point is that methods which only use graph structure are unable to adapt to different
graph partitions, which is significant given that networks can have multiple meaningful
definitions of communities. Lastly, there are some practical issues. The modularity matrix
is dense, making it memory inefficient. Additionally, approximations are typically needed
for computation on large graphs.

Masuda takes an eigenvalue approach to achieve a community-aware centrality, though
not one derived from modularity [144]. Instead, he builds off of the idea of dynamical
importance as defined by Restrepo et al [192]. The largest eigenvalue of a graph’s adjacency
matrix is related to the ease of diffusion over the graph. Based on this fact, dynamical
importance orders nodes based on the change in largest eigenvalue from the node’s removal.
To leverage group structure, Masuda applied this strategy to the group-to-group network,
calling it the “mod-strategy.” This method is computationally efficient since only the largest
eigenvalue is needed, and because it is calculated on the group network, which is far smaller
than the actual network. Formally, nodes were ordered based on the following equation:

Masi = (2ũci − x)
∑
c 6=ci

ũck
c
i (C.2)

x =
1

λ̃

∑
c 6=ci

ũck
c
i , (C.3)

where λ̃ is the group network’s largest eigenvalue, and ~u is its corresponding eigenvector.
Intuitively, the value of the eigenvector corresponds to the importance of that group.
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Thus, Masuda’s method gives importance to nodes based on the group it belongs to, and
its connectivity to other important groups. The more connections to important groups,
the higher the score, meaning that nodes bridging communities will be ranked highly.

More recently, degree-based measures have taken favor, due to their interpretable form
and their scalability. To get at the relationship within and between communities, these
measures use internal degree and external degree.

One of the earlier examples is “commn-centrality,” CC, proposed by Gupta et al [88].
This centrality is defined as follows:

CCi =

(
1− µci

|γci |

)
kinternal
i

maxvj∈γci k
internal
j

×Rci+(
1 +

µci

|γci |

)(
kexternal
i

maxvj∈γci k
external
j

×Rci

)2 (C.4)

where Rci is user-defined, but is commonly chosen as Rci = maxvj∈γci k
internal
j . The group

fraction µ is used so that internal degree takes precedence for weak groups, and out degree
takes precedence for strong groups. One issue with commn-centrality, however, arises when
a community is disconnected from the rest of the graph. In such a case, maxvj∈γc kexternal

j =
0, so commn-centrality is undefined. This commonly occurs, especially during network
robustness testing, so we do not consider commn-centrality in our experiments.

Afterward, Ghalmane et al. have proposed a number of alternatives which are well
defined for community components [75, 76]. The simplest of which is the number of neigh-
boring communities centrality, which just counts the number of communities in a node’s
immediate neighborhood; we will call it bi. Expanding on this, the community hub-bridge
centrality, CHB was defined as:

CHBi = |γci |kinternal
i + bik

external
i (C.5)

where, again, bi is the number of communities neighboring node i. [76]. The num-
ber of neighboring communities centrality was out-performed by the more sophisticated
community-hub-bridge centrality, so we omit it from our results to preserve readability.

Generalizing this approach beyond just degree, Ghalmane et al. introduce “modular-
centrality”. They note that a graph G can be decomposed into Ginternal and Gexternal, where
only the internal or external links are retained, respectively. Then, internal centrality can
be calculated as: Γinternal(G) = Γ(Ginternal), where Γ is a classical centrality measure. The
same logic can be used to obtain external centrality. It can be seen that when Γ is selected
to be the degree, we get the same internal and external degree as we have previously
defined. Modular centrality is a two-dimensional vector encoding internal and external
centrality. Ghalmane et al. note that there are many ways that this vector can be used to
obtain a single number, as is needed for ranking tasks. One of their proposed methods is
the weighted modular centrality, WMC, which takes a weighted sum of the components:

WMCi = µciΓ
internal
i + (1− µci)Γ

external
i (C.6)
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where µci is, again, the group fraction for community ci. Note that this is the opposite
weighting scheme as Gupta’s; when communities are strong, modular-centrality places pref-
erence to internal degrees. We also see Masuda’s weighting giving preference to bridges. To
cover the full spectrum of these previous community-aware centralities, we also consider an
adjusted version of modular-centrality, AMC, where the weighting scheme favors bridges:

AMCi = (1− µci)Γ
internal
i + µciΓ

external
i (C.7)

Note that this has also been previously defined as as “Weighted Community Hub-Bridge”
centrality [76]. Due to the similarity of the measures, we will continue using the name
“Adjusted Modular Centrality.” We also note that Ghalmane’s work has been extended
to overlapping communities, however this work only considers non-overlapping community
structure [74].

With the exception of Masuda’s work, these methods all rely on a weighting scheme
of internal and external centrality. The weightings are not derived from network-theoretic
principles, but are based on observations seen in network studies. Ideally, a centrality
would be derived from established theory, and would eliminate the need for comparison of
subjective weighting. While Masuda’s measure is derived from network theory, it is based
on network connectivity, rather than community detection.

For this work, we will look to vitalities, which measure a node’s contribution to some
global property [123].
Definition C.2.7 (Network Vitality). For an arbitrary real function f : G → R defined
on graph space G we write the associated vitality Vf as:

Vf (G, i) = f(G)− f(G− {i}),

for any G(V,E) ∈ G and i ∈ V . Where G− {i} denotes the graph G after the removal of
node i.

To the best of our knowledge, vitality measures of cluster-quality functions have yet to
be studied. When cluster-quality functions are considered, the graph index must also be a
function of the network partition, C. Here, we select f to be modularity, giving modularity
vitality.
Definition C.2.8 (Community-Aware Vitality). Extending the Definition C.2.7 we can
write the community-aware vitality as:

Vf (G,C, i) = f(G,C)− f(G− {i},C− {i})

Through manipulation of the modularity equation, we show the calculation of modu-
larity vitality for all nodes has time complexity of O(M + NC), providing the scalability
of measures like commn and modular, while maintaining the theoretic link to community
detection. At the same time, our modularity-derived measure is signed. Negative values
indicate nodes are detracting from group structure, and are thus acting like community
bridges. Positive valued nodes are then more hub-like. Thus, unlike other measures, mod-
ularity vitality shows both how central a node is and what way the node is central.
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C.2.4 Evaluation: SIR Models and Network Robustness
Evaluation of centrality measures can be subjective, since different measures may be useful
for different tasks. However, many of the prior community-aware centrality measures have
been evaluated from an immunology perspective [75, 76, 88, 144]. In this scenario, a disease
is spreading over a network. The centrality measure in question is used to determine which
nodes are given immunity. Then, the “best” centrality measure is that which leads to the
smallest outbreak. The fundamental assumption is that central nodes will be spreaders, so
immunizing them should result in smaller outbreaks.

Typically, the most basic epidemic model is used: the SIR model [119]. In this model,
each node is either susceptible, infected, or recovered. After an initial node is infected, it
infects in neighbors with probability p. At the same time, the infected nodes can recover
with probability r. Recovered nodes are no longer susceptible, and can no longer spread
the disease. The simulation is iterated on until there are no infected nodes remaining. The
number of nodes that were ever infected is called the epidemic size. By immunizing nodes,
the epidemic size can be decreased. It is the goal, then, to pick an immunization strategy
that leads to the smallest epidemic size.

Simulations of this type are closely related to the sub-field of Network Robustness
[36, 204]. Network Robustness refers to how a network responds to attacks. Understanding
how networks react with missing nodes or edges has important implications in many fields,
including but not limited to biology and ecology. Attacks typically take the form of removal
of edges or removal of nodes. We will focus on removal of nodes.

One method of evaluating an attack’s effectiveness is through network fragmentation
[53]. Fragmentation σ can be defined as the size of the remaining largest component Nρ

relative to the initial size of the graph, N , where ρ is the fraction of nodes removed.
Fragmentation can then be given as σ(ρ) = Nρ

N
. This is a useful measure because networks

often rely on connectivity to function properly. Disconnected components in biological,
communication, or power-grid networks are in serious danger of failing completely.

Now, we can see that immunization strategies are effectively network attacks. By
immunizing a node, it and its links are removed from the network. Immunizing many
nodes fragments the network, slowing diffusion. In fact, the fragmentation, σ, is the worst-
case scenario for an SIR model. Given the right parameterization, the disease in an SIR
model will infect all nodes in the component the disease initialized in. This behavior is
guaranteed with p = 1, and r = 0, indicating full infection with no possibility of recovery.
The same effect can be achieved with other parameters depending on how the simulated
interactions play out. If the initial node is in the largest component, the worse-case scenario
is that all nodes in the largest component get infected. Thus, σ can be used to measure the
effectiveness of an immunization strategy without the need for expensive SIR simulations.

Replacing simulated network flow with network connectivity also results in a more fair
comparison between network metrics. Centrality measures often make assumptions about
how flow occurs in a network, and are thus favorable when simulated flow matches those
assumptions, and less favorable when they do not [25]. Thus, a fragmentation approach
does not bias the results towards centrality measures which are best aligned with the
assumptions of the simulation.
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From a network robustness perspective, different types of attacks have been developed.
In general, a centrality measure is calculated for each of the nodes, and the node with the
highest centrality is removed, or immunized. Early studies looked at node attacks based
on degree [36]. Later, Holme generalized this idea along with two styles of attacks: initial
and recomputed [106]. In the initial case, centralities are calculated once and the top-k
nodes are removed. In the recomputed case, centralities are recomputed each time a node
is removed. This makes the attack more expensive to compute, but more effective.

In this framework, attacks are defined by two characteristics, the centrality measure and
the style. Common choices of centrality measure are degree and betweenness. Betweenness
has been shown to be much more damaging to a network, but is far more expensive to
compute [53, 106]. The shorthand for these methods are based on the acronym of the
centrality and style; IB means an attack using initial calculation of betweenness centrality,
while RD is recomputed degree.

A connection between the modular structure in networks and their robustness has been
illustrated by da Cunha et al. in [53]. The authors developed a more complex attack
strategy which is able to fragment real-world networks far more quickly than the simple
methods previously described. They achieve this by ensuring that nodes are attacked
only when they are in the largest component and when they are connecting groups. This
strategy is called a Module-Based-Attack, MBA.

Though effective, attacks using betweenness centrality do not scale to the size of net-
works commonly seen on social media. For weighted networks, a single calculation of
betweenness scales as O(NM +N2 logN), making RB scale as O(N2M +N3 logN) [29].
This makes RB intractable for medium-sized networks, which is why da Cunha et al. use
IB as the base for their attack method [53]. However, even IB is intractable for very large
networks. Additionally, the computation of largest component at every step adds to the
method’s complexity. The most scalable methods are those that use an “initial” strategy
with a local measure.

Based on this, we use fragmentation to evaluate our method in comparison to the follow-
ing measures: Masuda (Mas), Community-Hub-Bridge (CHB), Modular-Centrality-Degree
(WMC-D), Adjusted-Modular-Centrality-Degree (AMC-D), and Degree (Deg). Evaluation
is performed in three steps. In the first, networks are generated to measure how different
community-aware centralities perform under varying attack strategies. In this step “ini-
tial,” “repeated,” and “module-based” attacks are performed. Second, the Pennsylvania
road network is studied. This is a large highly modular network, which exemplifies the
power of community-aware centrality measures. Finally, a large Twitter communication
network is studied from the Canadian Elections of 2019. Here, the robustness of social
media networks is demonstrated. In the second and third steps, only “initial” strategies
are taken due to the size of the networks.

C.2.5 Community Deception
Community Deception has recently been formalized by Fionda and Pirro [66]. They argue
community detection is a very powerful tool, and could potentially be too powerful for
privacy-sensitive applications. In order to protect sensitive data that is easily identifiable,
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community structure should be obscured. The goal, then, is to edit a network to prevent
a specific community’s detection. The most relevant framing they provided to the present
work is Modularity-Based Deception. In this framing, the goal is to re-wire edges such
that modularity of a community is minimized. This approach is based on the modularity
equation, similarly to the present work, and is scalable. In a similar line of work, Chen et al.
propose a genetic algorithm to perform a “Q-Attack,” which edits the network to minimize
the modularity of the entire network’s partition, not just that of a single community [44].
Due to the combinatorial nature of genetic algorithms this approach did not scale and was
only tested on nodes with approximately 100 nodes.

Waniek et al. also consider the single-community case [237]. In this work, a modularity-
inspired measure was used to determine how well a community is concealed. The authors
then randomly rewire a specified number of internal edges as external edges. This approach
demonstrated that social network users had the power to conceal their community from
detection. However, the method is non-deterministic, so its effectiveness varies depending
on which edges were selected in each round of simulation. The lack of distinction between
the best edges to add or remove also makes it difficult for users to best select actions to
conceal their community.

Lastly, Nagaraja takes a different view of the problem wherein an adversary is at-
tempting to uncover the community structure of the entire network with a surveillance
strategy [159]. The work proposes several counter-strategies to conceal communities with
edge alterations. Nagaraja concludes that these strategies work based on how they impact
the network’s modularity, without explicitly maximizing for impact on modularity. The
present enables this to be explicitly maximized.

Here, we show that Modularity Vitality can be used to efficiently perform community
deception on the entire network rather than a specific community. Rather than rewiring
edges, we remove all edges attached to nodes with the highest modularity vitality. This
has the benefit of keeping maintaining network accuracy for links that are present, but
ultimately does change the degree distribution. In a social media setting, this amounts to
hiding which popular accounts a user follows, rather than re-wiring individual following
relationships. We demonstrate the power of this approach by performing community de-
ception on a social media communication network with 7.5 million nodes, and 130 million
edges.

C.3 Calculating Modularity Vitality
Newman’s community centrality measured a node’s potential to contribute to modularity.
To calculate the actual contribution, we can calculate the modularity vitality: the difference
between the modularity of the original partition, and the modularity of the partition after
the removal of a specified node. Given that community-aware centralities are commonly
evaluated using the effect of node removals, modularity vitality seems to be a natural
approach. Note that once a node is removed, the network could be re-grouped, and the
group structure could potentially be quite different. Once regrouping is considered, there
is no closed-form solution to what the new modularity would be, since the maximization
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procedure would need to be re-run. Thus, regrouping is typically not considered, and we
do not consider it here [144].

Modularity vitality is defined as:

VQ(G,C, i) = Q(G,C)−Q(G− {i},C− {i}). (C.8)

A naive computation of this expression is quite expensive. Modularity itself has time
complexity O(M). Thus, naively recalculating this in order to calculate the modularity
vitality for all nodes has complexity O(MN). However, there is an efficient way of updating
modularities after the removal of a node.

The modularity after the removal of node i can instead be calculated using the following
expression:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)
2

∑
γc∈C

(dc − hi,c)
2

(C.9)

hi,c = kc
i + kiδ(c, ci). (C.10)

We will now derive this equation.
Theorem C.3.1. If we remove node i from the graph G then the new modularity of the
new graph G− {i} can be written as:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)
2

∑
γc∈C

(dc − hi,c)
2

(C.11)

hi,c = kc
i + kiδ(c, ci). (C.12)

The value hi,c measures the number of edges a node has to that community, and if the node
is a member of said community, its degree is added. The degree must be added because dc
double-counts the number of internal links in a community.

Proof. The removal of node i from graph G results in a new graph denoted by G − {i}.
The same applies to the community vector, which is denoted by C− {i}.
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First, we re-write Modularity as given in Equation C.1:

Q(G,C) =
1

2M

N∑
i,j=1

(
Ai,j −

1

2M
kikj

)
δ(ci, cj)

=
1

2M

∑
γ∈C

∑
vi,vj∈γ

(
Ai,j −

1

2M
kikj

)
=

1

2M

∑
γ∈C

∑
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Ai,j︸ ︷︷ ︸
2M internal

− 1

4M2

∑
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∑
vi,vj∈γ
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=
M internal

M
− 1

4M2

∑
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∑
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=
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M
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4M2

∑
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∑
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∑
vj∈γ
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Let
dc =

∑
vi∈γc

ki =
∑
vj∈γc

kj

Now can express modularity in terms of number of links and total degrees of nodes:

Q(G,C) =
M internal

M
− 1

4M2

∑
γc∈C

d2c (C.13)

This form is easier to derive the new modularities from.
Equation C.13 can then be applied to graph on graphG−{i} to find the new modularity:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)
2

∑
γc∈C

d̃2i,c

Now to calculate d̃i,c we can break this down in two cases:

Case 1. If c 6= ci we have :

d̃i,c =
∑
vj∈γc

kj − kc
i

Case 2. If c = ci we have :

d̃i,c =
∑
vj∈γc

kj − kc
i − ki
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Let :

hi,c = kc
i + kiδ(c, ci)

then finally we have:
d̃i,c = dc − hi,c

Giving us the final expression for the modularity once node i is removed:

Q(G− {i},C− {i}) =

M internal − kinternal
i

M − ki
− 1

4 (M − ki)
2

∑
γc∈C

(dc − hi,c)
2

�

By looking at Equation C.9, we observe that the only new information needed to update
modularity after removing a node is contained in the node’s immediate neighborhood and
the vector of community degrees. The worst-case scenario would be to calculate updated
modularity for the center node of a star-graph, which has degree M . When Equation C.9
is used, the time complexity of calculating the new modularity becomes O(M +C). While
this seems to not be an improvement, the worst-case scenario is far worse than the average
case, since most node degrees are far less than M . In fact, the calculation of Equation
C.9 for all nodes in a network has time complexity of only O(M + NC). Given that
typically C � N , this is a major improvement over the naive implementation’s complexity
of O(MN). This improvement allows for analysis of very large graphs for which O(MN)
operations could be prohibitively expensive if not infeasible.

By studying modularity vitality, rather than just the simple new modularity after a
node is removed, it is easy to identify which nodes are increasing modularity and which
are decreasing it. As Newman noted, “it is entirely possible for individual vertices to si-
multaneously make both large positive and negative contributions to modularity” [163].
A simplistic approach would be to add the absolute value of the two, but Equation C.8
balances them to see which contribution prevails for each node. Since nodes with posi-
tive modularity vitality are contributing positively towards community structure, they can
be thought of as hubs within their community. Their removal decreases the strength of
their communities, thus decreasing modularity. Conversely, nodes negatively contributing
to group structure will have negative modularity vitality. Negative contributions to group
structure are facilitated through connections between groups, so nodes with highly negative
modularity vitality are community bridges. Removing these community bridges increases
modularity. A measure which does not have the issue of large positive and negative con-
tributions balancing out is explored in Section C.5.4, though it does not perform as well
as modularity vitality.

Like many previous measures, modularity vitality is correlated with degree. This corre-
lation is intuitive: nodes with many connections have the most potential to impact group
structure, either positively or negatively. It can be seen in the new modularity equation:
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as node degree increases, the denominator decreases, leading to increase in the magnitude
of modularity vitality. However, modularity vitality is more complex, since it takes into
account which groups a node is connected to. Nodes connected to larger groups have a
bigger impact than those connected to smaller groups. This mirrors Masuda’s measure,
where a node’s importance is based on the importance of its group and the group(s) it is
connected to. The difference here is that modularity vitality measures a group’s impor-
tance with the number of internal links, while Masuda’s uses the eigenvector centrality
with the group to group network.

C.4 Methodology

C.4.1 Fragmentation-Based Evaluation
As discussed in Section C.2.4, evaluation based on network fragmentation is similar to the
SIR evaluation used in other studies, like [75, 76], however is less expensive computationally
and is easier to interpret. Module-based attacks (MBA’s) were tested in such a framework,
where they were shown to effectively fragment networks [53]. Again, fragmentation σ is the
size of the largest component after the attack, divided by the original largest component.
Fragmentation is measured as a function of ρ, the fraction of nodes removed in the attack:
σ(ρ) = Nρ

N
. Similarly, fragmentation can be looked at as a function of the fraction of edges

removed, η. Note that here we are only targeting nodes, not edges, but the fraction of
remaining edges is still an interesting quantity to study, as we see in Section C.5.3.

An immunization or fragmentation strategy’s effectiveness depends on how many nodes
are removed, as seen by the notation σ(ρ). To measure the overall effectiveness, the frag-
mentation function can be integrated. The lower the integral, the more effective the strat-
egy, so we will call this the cost function that we are trying to minimize: Cρ =

∫
ρ
σ(ρ)dρ.

For comparison, the cost with respect to edges can be of interest, though it is not directly
being optimized: Cη =

∫
η
σ(η)dη.

Thus, we will evaluate all of the attack strategies in Section C.4.2, using C. We will
do so in three parts: generated networks, the PA road network, and a Twitter network
obtained from user to user conversations surrounding the Canadian Election of 2019. Each
part highlights different aspects of the proposed method.

C.4.2 Attack Strategies
Attack strategies are the rules that govern which nodes are to be immunized, or removed
from the network. Generally these strategies are independent of centrality measure, so
can be paired with any measure of a researcher’s choosing. Holme outlined two strategies:
initial and repeated [106]. In the initial attack, a centrality measure is calculated for each
of the nodes. Then, the top-k nodes are selected to be attacked. The procedure is outlined
in Algorithm 2.

Perhaps the biggest issue with the initial attack strategy is its redundancy. After
the first node is removed, the centralities of the following nodes change. However, these
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changes go un-detected in the initial attack model, leading to the selection of nodes that
are no longer in central positions. This, to some extent, can happen due to random effects
of node and edge removal in a network. The extent to which random removals impact
centrality values and rankings has been previously studied by Borgatti and others, who
find that the accuracy of centrality measures drops off smoothly as the number of random
changes to the graph increases, though this effect is dependent on the network’s topology
[27, 68]. Perhaps more importantly, there are non-random effects at play. It is known that
certain central nodes are responsible for the centrality of other nodes, and that this can be
measured with exogenous centrality [61].

The redundancy issue of the initial attack strategy is resolved in the recomputed at-
tack strategy wherein the centralities are recomputed after each node removal. The full
algorithm is shown in Algorithm 3. Though effective, the recompute step adds scalability
issues. For a centrality measure that takes O(M) time, the attack takes O(NM) time.
This means for expensive calculations like betweenness, the recompute strategy will be
intractable, O(N3 logN) for weighted networks [29].

A more sophisticated strategy is given by da Cuhna et al, called Module-Based-Attack
(MBA) [53]. The authors find that use of group structure leads to effective fragmentation.
Group-based structure is incorporated by only attacking nodes which bridge communi-
ties. Further, only nodes in the current largest component are attacked. While largest
component is recomputed, the centrality measures are not. The full procedure is given in
Algorithm 4, where

⊕
denotes append operation. While not as complex as the recom-

pute method, the update of the largest component and node bridges makes the method
significantly more computationally expensive when compared to the simple initial attack.

Algorithm 2: Initial Attack
Result: List of removed nodes L

1 L ← ∅;
2 k ← the number of nodes to remove;
3 S ← List of all nodes sorted by a centrality measure (function);
4 while |L| < k do
5 τ ← top node in S;
6 L ← L ∪ τ ;
7 S ← S \ τ ;
8 end

Thus, for small generated networks we take I, R, and MBA. For the PA-Road Network
and Twitter networks, however, only the “initial” attack strategy is computed, as it is
the most scalable. These are combined with degree as well as the previously discussed lo-
cal community-aware centrality measures: Masuda (Mas), Community-Hub-Bridge (CHB),
Modular-Centrality-Degree (WMC-D), Adjusted-Modular-Centrality-Degree (AMC-D), and
Degree (Deg). We compare these existing approaches to modularity vitality in two forms.
First, we take the original modularity vitality (MV), attacking from negative to positive,
in order to target community-bridges. Second, we consider the absolute value of the mod-
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Algorithm 3: Repeated or Recomputed Attack
Result: List of removed nodes L

1 L ← ∅;
2 k ← the number of nodes to remove;
3 G← the initial graph;
4 while |L| < k do
5 S ← List of all nodes in G sorted by a centrality measure

(function);
6 τ ← top node in S;
7 L ← L ∪ τ ;
8 G← G \ τ ;
9 end

ularity vitality (AMV), which targets nodes based on their overall contribution to group
structure, positive or negative. A third form was considered, where nodes were attacked
from positive to negative modularity vitality. This hub-first strategy did performed poorly,
and is omitted from result tables to preserve readability.

C.5 Network Fragmentation

C.5.1 Generated Networks
First, we compared community-aware centralities using generated networks. By using
generated networks we can repeat tests many times. We constructed modular networks
using the cellular network model, similar to that of Masuda [144]. In this model, “cells”
are random sized Erdős-Rényi networks with high density, simulating clusters. Then, the
cell-to-cell network is also modeled as an Erdős-Rényi network. When two cells are linked
in the group-to-group network, random nodes from each are selected and a link is drawn
between them. For this study, cellular networks were created using the parameters shown
in Table C.1. This results in an unweighted, undirected random network with community
structure.

The eight previously discussed community-aware centrality measures were paired with
the three possible attack schemes, initial, recomputed, and MBA, to give 24 attacks. Each
time a network was generated all 24 attacks were performed on the network and the cor-
responding cost functions Cρ and Cη were recorded. The average cost of the 24 attacks
for 100 generated networks is given in Table C.2. The average modularity for these 100
networks when grouped with Leiden grouping was 0.91. The modularity vitality attack
consistently outperforms all other attacks both in terms of node cost and edge cost, sug-
gesting that it is the best community-aware centrality measure for this type of synthetic
network. The fact that attacking nodes with negative modularity vitality is more effective
than nodes that are high in modularity vitality magnitude suggests that community bridge
nodes are more important than community hub nodes in cellular networks. The success of
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Algorithm 4: Module-Based Attack (MBA)
Result: List of removed nodes L

1 L ← ∅;
2 G← the initial graph;
3 B ← the set of nodes bridging communities in G;
4 S ← List of all nodes in G sorted by a centrality measure

(function);
5 LC ← the set of nodes in the largest component of G;
6 while |B ∩ LC| > 0 do
7 τ ← top node in S;
8 if τ ∈ B and τ ∈ LC then
9 G← G \ τ ;

10 LC ← the set of nodes in the largest component of G;
11 B ← the set of nodes bridging communities in G;
12 L ← L ∪ τ ;
13 S ← S \ τ ;
14 else
15 if τ /∈ B then
16 S ← S \ τ ;
17 else
18 S ← S

⊕
τ

19 end
20 end
21 end

Table C.1: Cellular Network Parameters. U(a, b) denotes the uniform random distribution
between numbers a and b; N (µ, σ2) denotes the normal distribution with mean µ and
variance σ2.

Variable Description
N = 1000 Number of nodes
Nc = U(10, 20) Number of cells
ni = N (N/Nc, Nc/5), Number of nodes per cell
pi = U(0.1, 0.25) Density of internal cell relationships
po = U(0, 0.5) Density of the cell-to-cell network

the “adjusted” modular-degree centrality provides further evidence of this, since it places
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Table C.2: Results for attacks on the generated cellular networks. The values shown are
the average over 100 simulations. Methods introduced in this work are on the left of the
double column. The best results are emboldened.

Method MV AMV AMC-D Mas CHB WMC-D Deg
Initial Cρ 0.165 0.211 0.169 0.250 0.383 0.381 0.347
Initial Cη 0.247 0.308 0.268 0.371 0.576 0.599 0.578
MBA Cρ 0.086 0.087 0.088 0.134 0.101 0.103 0.100
MBA Cη 0.157 0.162 0.173 0.235 0.211 0.219 0.216
Recomputed Cρ 0.107 0.126 0.130 0.162 0.331 0.337 0.309
Recomputed Cη 0.188 0.205 0.221 0.266 0.608 0.616 0.586

greater importance on community bridges, while the original modular-degree focuses on
hubs and does not score as well.

C.5.2 PA-Road Network
One particularly well-suited application for community-aware centrality measures is the
analysis of large infrastructure networks. These networks typically have two properties:
very high modularity and low maximum degree. High modularity makes group-based
approaches appropriate. Low maximum degree often means that simple degree-based at-
tacks will be ineffective. Additionally, their large size make effective approaches like MBA
intractable, or at least very costly. Instead, we show that initial-attacks with community-
aware centrality measures are very effective, and that our modularity-based methods are
the most effective by far.

As an example, we use the Pennsylvania Road Network [131]. Roads are represented by
edges, while intersections are represented by nodes. This network has 1,088,092 nodes, and
1,541,898 edges. When grouped with Leiden grouping maximizing modularity, 499 clusters
are obtained with a modularity of 0.990. Its maximum degree is 18. The extremely high
modularity and low maximum degree make it an ideal candidate for community-aware
centrality measures.

In Figure C.1, we see the fragmentation as a function of nodes and edges removed
for each strategy. Here, we see the largest component can be effectively brought to zero
by removing 1.6% of nodes with the highest modularity vitality values. Removing only
positive-valued nodes and removing nodes based on the absolute value of their modularity
vitality value give very similar results. The quantitative results, as measured by Cρ and
Cη are given in Table C.3.

Additionally, we show the plot as a function of edges removed, for the same strategies.
The edge plot shows that while modularity vitality fragments the networks best given a
number of nodes, it is also most efficient in terms of edges.

With just a degree-based attack, it would appear that the Pennsylvania road network
is robust. In fact, the community-aware centrality methods show that it is quite fragile.
Using an I-MV attack, the network can be almost completely fragmented by targeting only
1.6% percent of nodes, bringing the largest component down to less than 1% of its original
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Figure C.1: Fragmentation of the PA-Road Network. Results for modularity-vitality, ab-
solute modularity-vitality, adjusted modular-centrality, and Masuda are extremely similar,
so overlap on both figures. The legend in (b) also applies to the plot in (a), as well as both
plots in Figure C.2.

size. This improves over the previous best measure, modular-degree, by a factor of over
8.5.

C.5.3 Canadian Election Twitter Network
Another relevant application of community-aware centrality is social media networks. Since
social media has become so embedded in everyday life, scalable tools to understand it are
essential. Given the increasing polarization of online discussion, as described in concepts
like filter bubbles, it is not enough to know what actors are important in general. Instead,
it is necessary to understand what actors are important within and between key online
communities. Community-aware centralities make this a measurable problem.

To study the effectiveness of our community-aware centrality measures we again use
network fragmentation, due to its connection with diffusion. Diffusion on social media is
an important phenomena to understand as a way to combat misinformation, among other
things. Users who fragment the network when removed are those who have the most power
to spread information.

For this study, we use the network created from Twitter data collected during 2019
Canadian federal election. The goal was to obtain a user-to-user communication network
where users were active in political discussion. First, we used a keyword search of Twitter’s
API to collect tweets related to the Canadian Election during the month of October. From
here, the unique users were recorded, giving a list of users active in political discussion.
While a user to user network could be constructed with this data, many links would be
missing, since only tweets with our keywords can be used. To construct a more complete
network, Twitter’s API was used to scrape the timelines of all users in our list. This new
collection was then truncated to the week of the election. Finally, the all-communication
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graph was computed from this dataset, where link weights are the sum of the mentions,
retweets, and quotes. The “Election Week” network, has 7,523,125 nodes, and 130,086,491
links. When grouped with Leiden grouping, 557 communities were discovered, with a
modularity of 0.691.

Figure C.2 shows the fragmentation results on the election week network. Again, the
quantitative results are given in Table C.3. The Adjusted-Modular-Degree measure and
the classical degree measure effectively tie for node-based efficiency.

The structure and properties between the PA Roads network and the Election Week
network are very different. This difference is reflected in Figure C.2. Perhaps most striking
is how poorly the modularity vitality method performs in terms of ρ. While other methods
fragment the network removing 10-30% of nodes, the positive modularity vitality method
does not fragment the network until nearly all nodes are removed.
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Figure C.2: Fragmentation of the Election-Week Network. The legend can be found in
Figure C.1(b).

At first this seems like a failure of the modularity vitality method. However, inspection
of Figure C.2 (b), shows otherwise. In terms of links, the modularity vitality method is
actually the most efficient attack strategy. This counter-intuitive result occurs because
none of the methods are very effective at fragmenting the network. The largest component
is small when removing 10-30% of nodes using the other methods, but those nodes account
for over 95% of the networks links. The difference in bridge-first Modularity-Vitality
attacks and all others, however, does highlight the fact that networks with extremely
high-degree nodes will require mixed or hub-first approaches to be efficiently fragmented.
Even accounting for this aspect of the network, the election week network exhibits extreme
robustness to these types of attacks.
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Table C.3: Results for initial attacks on the PA-Road Network and the Canadian-Election
Twitter Network. Methods introduced in this work are on the left of the double column.
The best results are emboldened.

Network MV AMV AMC-D Mas CHB WMC-D Deg
PA-Roads Cρ 0.013 0.016 0.015 0.014 0.162 0.120 0.122
PA-Roads Cη 0.021 0.026 0.026 0.027 0.281 0.262 0.305
Election Cρ 0.430 0.032 0.022 0.070 0.029 0.023 0.022
Election Cη 0.635 0.673 0.656 0.694 0.667 0.654 0.651

C.5.4 Additional Experiments
Community-Degree

Though the signed aspect of modularity vitality is quite useful, it is possible that a node
has high positive and negative components of modularity in Equation C.9, resulting in a
modularity vitality near zero. These nodes may be particularly important for networks
with low modularity. We can adjust Equation C.9 to obtain a measure which credits nodes
for hub and bridge behavior. By changing the subtraction of hi,c to addition, this effect is
achieved. After this adjustment, there is no need for a separate internal term, making the
final measure:

CDi =
1

4 (M − ki)
2

∑
c∈C

(dc + hi,c)
2 (C.14)

Again, attachment to large groups is favored over attachment to small groups. Since this
is just weighting the degree, we will call it Community-Degree (CD). The previous results
including this measure are shown in Tables C.4-C.7, and in Figures C.3 and C.4.

Community-Degree is highly correlated with degree, and so performs similarly. Based
on these results, it seems that the signed centrality is more effective while also conveying
more information.

Results on Other Generated Networks

For completeness, networks lacking strong group structure were generated. Scale-free net-
works were generated using the Barabási-Albert model using parameters n = 1000, m = 8,
and γ = 1.5. Over the 100 iterations tested the average modularity from Leiden grouping
was 0.196. The results are given in Table C.6.

Erdős-Rényi networks with parameters n = 1000, p = 0.015, were also created. These
parameters were chosen to give similar density to the cellular networks previously studied.
Networks were generated until a connected network was reached. Over the 100 connected
networks, the average modularity from Leiden grouping was 0.240. The results are given
in Table C.7.

The results across network types are similar. First, none of the attacks are very effective.
Both the node and edge cost are higher than that seen for the Election network, which
was robust. With that said, the degree and modular-degree attacks were consistently the
most efficient in terms of nodes. This is intuitive; without more meaningful structure,
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Figure C.3: Extended version of Figure C.5 to include Community-Degree. Kendall-Tau
Correlation of the “initial” attack strategies on the PA Roads Network.

the most effective strategy is to look at the node with the most edges. This results in a
high edge-based cost, however. So we see that modularity vitality actually performs best
in terms of edge-cost. Lastly, we see that the adjusted-modular degree that we proposed
performs similarly to the original. Adjusted measure performs much better on highly
modular networks, while performing similarly on less modular networks.

Table C.4: Extended version of Table C.2 to include Community-Degree. Results for
attacks on the generated cellular networks. The values shown are the average over 100
simulations. Methods introduced in this work are on the left of the double column. The
best results are emboldened.

Method MV AMV CD AMC-D Mas CHB WMC-D Deg
Initial Cρ 0.165 0.211 0.361 0.169 0.250 0.383 0.381 0.347
Initial Cη 0.247 0.308 0.560 0.268 0.371 0.576 0.599 0.578
MBA Cρ 0.086 0.087 0.099 0.088 0.134 0.101 0.103 0.100
MBA Cη 0.157 0.162 0.210 0.173 0.235 0.211 0.219 0.216
Recomputed Cρ 0.107 0.126 0.320 0.130 0.162 0.331 0.337 0.309
Recomputed Cη 0.188 0.205 0.599 0.221 0.266 0.608 0.616 0.586
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Figure C.4: Extended version of Figure C.6 to include Community-Degree. Kendall-Tau
Correlation of the “initial” attack strategies on the PA Roads Network.

Table C.5: Extended version of Table C.3 to include Community-Degree. Results for initial
attacks on the PA-Road Network and the Canadian-Election Twitter Network. Methods
introduced in this work are on the left of the double column. The best results are embold-
ened.

Network MV AMV CD AMC-D Mas CHB WMC-D Deg
PA-Roads Cρ 0.013 0.016 0.126 0.015 0.014 0.162 0.120 0.122
PA-Roads Cη 0.021 0.026 0.264 0.026 0.027 0.281 0.262 0.305
Election Cρ 0.430 0.032 0.023 0.022 0.070 0.029 0.023 0.022
Election Cη 0.636 0.673 0.661 0.656 0.694 0.667 0.654 0.651

C.5.5 Discussion
We see that modularity-based methods were very effective in all three studies. The modu-
larity vitality method shows that the PA Road network is over 8.5 times as fragile as could
be seen with degree, weighted modular centrality, and community-hub-bridge centrality,
giving similar results to Masuda and the adjusted modular-centrality.. While the stan-
dard modularity vitality attack was effective on the PA-Road network, it was not on the
Election week network. However, using the absolute-value of modularity vitality resolves
the issue. This implies that attacking community-bridges is not enough. By taking the
absolute value, both community-bridges and community-hubs are attacked, leading to a
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Table C.6: Results for attacks on the generated scale free networks. The values shown are
the average over 100 simulations. Methods introduced in this work are on the left of the
double column. The best results by method are emboldened. The best results overall are
marked with a star.

Method MV AMV CD AMC-D Mas CHB MC-D Deg
Initial Cρ 0.483 0.424 0.263 0.256 0.344 0.361 0.254 0.243
Initial Cη 0.834∗ 0.856 0.882 0.881 0.884 0.879 0.881 0.880
MBA Cρ 0.430 0.364 0.243 0.239 0.277 0.292 0.242 0.235
MBA Cη 0.839 0.859 0.880 0.880 0.881 0.877 0.880 0.880
Recomputed Cρ 0.296 0.305 0.224 0.227 0.256 0.258 0.223∗ 0.223∗

Recomputed Cη 0.878 0.878 0.880 0.880 0.880 0.881 0.880 0.880

Table C.7: Results for attacks on the generated Erdős-Rényi networks. The values shown
are the average over 100 simulations. Methods introduced in this work are on the left of
the double column. The best results by method are emboldened. The best results overall
are marked with a star.

Method MV AMV CD AMC-D Mas CHB WMC-D Deg
Initial Cρ 0.493 0.491 0.479 0.475 0.486 0.492 0.473 0.472
Initial Cη 0.683 0.681 0.715 0.723 0.706 0.675∗ 0.724 0.728
MBA Cρ 0.483 0.484 0.469 0.466 0.474 0.485 0.464 0.462
MBA Cη 0.683 0.681 0.714 0.722 0.706 0.675∗ 0.724 0.727
Recomputed Cρ 0.461 0.482 0.429∗ 0.454 0.451 0.446 0.430 0.430
Recomputed Cη 0.700 0.681 0.739 0.739 0.729 0.718 0.738 0.740

method that is more robust across networks, even if it might not be the top-performer for
specific networks.

As much as the values of a centrality are important, often the ranking of node centrali-
ties takes precedence. This is the case with network attacks studied in this work. So to go
beyond the fragmentation results, the Kendall correlation of each method was calculated
to compare the resulting node-rankings [119]. Figures C.5 and C.6 show the correlations
for the Road network and the Election network, respectively. These correlations allow us
to see the similarity of centrality ranking, regardless of the effectiveness of said ranking.
Though more clearly in Figure C.5, we see that the existing degree-based metrics are highly
correlated. This is intuitive, as they are all alterations on a weighted degree. While con-
necting certain groups might give a node a higher or lower score depending on the metric,
a low degree usually leads to a low score.

Absolute modularity vitality has moderate correlation to the existing methods. Most
notably, it has strongest connections to the modular-degree centrality. However, the stan-
dard modularity vitality has lower correlation. The combination of these observations show
that modularity vitality is leveraging similar information to modular-centrality applied to
degree, while giving those values a sign indicating the type of central role they are playing:
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Figure C.5: Kendall-Tau Correlation of the “initial” attack strategies on the PA Roads
Network.

hub or bridge. The correlation between modularity vitality and its absolute value give
further information about a network’s structure. In the road network, the strong negative
correlation (-0.94) indicates that most nodes are community hubs, not bridges. The same
is seen with the election week network though to a lesser extent since the correlation is
-0.53. This result is consistent with the networks’ high modularities, and that the road
network’s modularity is much higher than election week’s. This added information is a key
contribution of the work, and will be of use for deep dives into network data.

Lastly, we see that our adjusted version of the modular-degree centrality gives im-
provements over the original modular-centrality, and that it has stronger correlations to
the modularity-based methods. Based on these results, it is possible that the generalized
modular-centrality should also be adjusted to favor bridges. In general, it seems that
bridge-favoring methods have performed best in our experiments. This is intuitive from
a diffusion perspective. If a network is highly modular, the groups themselves can act as
silos to contain what is being diffused if the community-bridge nodes are removed. For the
road network, modular-centrality points to areas that need extra redundancy to create a
more robust transportation network.

From the social network, we see that targeting bridges is not always enough. In the
presence of community bridges and large community hubs, an approach that attacks both is
necessary. The absolute modularity vitality method attacks both, but the election network
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Figure C.6: Kendall-Tau Correlation of the “initial” attack strategies on the Election Week
Network.

was robust to even this attack.
In the context of misinformation on social media, both users acting as hubs within

fringe communities and users attempting to bridge communities play key roles. Further,
network robustness is both a strength and a weakness in this context. A robust communi-
cation network means many users have the power to spread information. This allows for
distributed power of information but also means that user-based interventions to hamper
the spread of misinformation will be ineffective. It is commonly stated that network metrics
may identify key points where misinformation diffusion can be stopped [206]. However, we
find that not to be the case. The networks are too robust to have a number of points that
control diffusion. This may explain why disinformation tends to repeatedly resurface [206].
While identifying key users spreading misinformation is useful for characterizing efforts to
share fake news, we must look beyond user-based interventions to actually fight its spread.

C.6 Community Deception
The goal of community deception is to hide a community from detection algorithms [44, 66].
The motivation behind this is typically to protect privacy. Sensitive user data is often
over-mined, and network community information is one of the ways in which identifiable
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information can be discovered. The idea, then, is to alter the network such that community
information is harmed, as measured through modularity of the original grouping on the
altered network.

Previously, modularity vitality attacks were used to maximize fragmentation. However,
fragmentation is only a by-product of the modularity vitality attack. The attack’s true
objective is to maximize modularity. As shown in Figure C.7, the same attack used to
fragment the Election Week network increases its modularity. In fact, all of the fragmen-
tation methods increase modularity. By attacking nodes which bridge communities, the
communities become more separated and modularity increases. The figure shows that the
different attacks give similar change in modularity, though the vitality approach is most
efficient, since it explicitly increases modularity.
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Figure C.7: Changes in modularity due to the fragmentation attacks, all using the initial
strategy.

For community deception, the power of the modularity vitality method is the ability to
select community hubs instead of bridges. Since community deception seeks to minimize
modularity, the attack can simply be reversed by selecting the node with the highest pos-
itive modularity vitality. Thus, a greedy solution to the node-based community deception
problem is a recomputed, reversed, modularity vitality attack. A faster approximation to
this is the initial, reversed, modularity vitality attack.

Previous methods considered edge rewirings. In practice, this may be difficult or prob-
lematic, since links in the altered network may or may not truly exist. An alternate
approach is to remove a small subset of the nodes. While the altered network will have
less links than the original, all links in the altered network are links in the original net-
work. By leveraging the modularity equation itself, we can select the nodes guaranteed to
minimize modularity in a scalable way. As a demonstration of this, community-deception
was performed on the Canadian Election network, and the results are given in Figure C.8,
for both the fast approximation of the greedy approach. For networks of this scale, even
the greedy approach is very expensive. Using the initial attack strategy, modularity can
be dropped from approximately 0.7 to just over 0.4 by removing less than 2% of nodes, as
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shown in Figure C.8 (a). However, Figure C.8 (b) shows that this comes at a cost of 45%
of the nodes edges. Modularity can be decreased further, though with diminishing returns.
Modularity levels out when about 8% of nodes and 50% of edges are removed, resulting in
a final modularity of 0.36, which is a 49% decrease.

We know from the modularity vitality equation that this strategy is attacking hubs,
and this is seen by the fact that the first 2% of nodes targeted are accounting for 45%
of links. Intuitively, this suggests that a user’s connections to Twitter accounts that are
popular within a community reveal that user’s identity as a community member. If this
identity is to be protected, then hiding these key hubs, as measured through modularity
vitality, is the most effective strategy.

This presents a dilemma to social media users wishing to conceal their online commu-
nity: the most effective strategy is to un-friend or un-follow the community’s leaders, which
would undoubtedly harm the community itself. The extent of this harm is dependent on
the platform. On Twitter, for example, users may interact without a following relationship.
On other platforms, like Facebook, the extent of these interactions is more limited. This
leaves it up to the social media companies to protect their users by allowing them to hide
their affiliations to other accounts, or at least to community leaders.
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Figure C.8: Community deception on the Election-Week Network using the initial attack
strategy.

A choice must be made when performing community-deception: At what point is does
the cost of deleting network data outweigh the benefit of decreased modularity? For this
case, if only nodes are of interest, there is only a very small price to pay to decrease mod-
ularity by 41%. If edges are important to consider, the cost is higher. This is only an
approximation of the greedy approach. The greedy approach, recomputed reversed modu-
larity vitality attack, will likely achieve even better results. A study of this comparison on
smaller networks along with non-greedy alternatives is left for future work. Additionally,
this type of attack could be combined with the previously studied edge re-wiring attacks
to give even obscure communities even more effectively. Lastly, explicit modularity maxi-
mization through node removal could have interesting applications, such as node filtering
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to obtain more interpretable groups. This, too, is left for future work.

C.7 Conclusion
Both centrality measures and community detection are core research areas in Network Sci-
ence. At the intersection of these areas, community-aware centrality measures attempt to
quantify how central nodes are given a network partition. Though the areas are closely
related, the current community-aware centralities are not strongly tied to community the-
ory. Here, we examine modularity vitality, which measures the change in modularity of a
network and its partition if a node were to be removed. Thus, modularity vitality measures
each node’s individual contribution to group structure. This measure is directly derived
from the modularity equation, giving the measure a strong link to community detection
theory. We derive a scalable method of calculating modularity vitality, which improves over
the naive method usually by a factor of N , allowing for the analysis of massive networks.

Unlike existing measures, however, modularity vitality not only quantifies how impor-
tant a node is, but in which way it is important. Once groups are introduced, nodes can
take on two central roles: hubs within their community, and bridges between communi-
ties. The role is encoded in the sign of modularity vitality; nodes with negative values are
bridges, while positive-valued nodes are hubs.

Modularity vitality was tested in three settings: generated cellular networks, the Penn-
sylvania Road Network, and a Twitter network capturing conversation around the Cana-
dian Election of 2019. In these tests, we saw that modularity-based methods outperformed
existing community-aware centralities as measured through network fragmentation. Our
results show that the Pennsylvania Road network is over 8.5 times more fragile than mea-
sure only weakly tied to community detection theory would have concluded, and that
community bridges play a more important role than community-hubs.

Further, we saw that the social media conversation network is very robust, and that
both community-hubs and community-bridges play important roles in that robustness.
Additionally, the presence of extremely high-degree nodes lead to bridge-first methods per-
forming worst, since high-degree nodes are typically well-grouped. Robust communication
is aligned with Social Media’s business interests, since they give many users the potential
to “go-viral,” encouraging engagement. The specific source of this robustness remains an
area of future research, though the balance of nodes with positive and negative modularity
vitality nodes suggests that the presence of many community bridges may be a factor. This
theory is in agreement with the results on the PA network, which has very few bridges and
is extremely fragile. A robust communication network suggests that user-based interven-
tions are not an effective strategy to fight the spread of misinformation, since an extreme
intervention like user-removal only has a small impact on potential diffusion.

Many prior community-aware centralities give preference to community-bridges over
community-hubs. Using modularity-vitality without taking the absolute value also targets
bridges instead of hubs. Based on this, we include a modified version of Ghalmane’s gener-
alized community-aware centrality measure where bridges are favored instead of hubs. This
alternate version of their community-aware centrality when applied with degree performed
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better in our experiments. Further studies could explore if this change is an improvement
when combined with classical centrality measures other than degree.

Lastly, we recognize that modularity vitality can be used as a greedy solution to the
community-deception problem. Community-deception seeks to remove nodes or edges to
maximally reduce modularity, which could be important for privacy protection in data dis-
tribution. While previous work uses a genetic algorithm to select nodes or edges which may
reduce modularity, modularity vitality can be used to select the node that will maximally
decrease modularity. Recomputing modularity vitality at each removal provides a greedy
solution to the community-deception problem, but we use the faster approximation: only
calculating modularity vitality once. While the genetic algorithm could scale to networks
with two hundred nodes, the approximation of the greedy method scales to networks with
millions of nodes and hundreds of millions of links, as demonstrated on the election week
network. Through this demonstration we see that modularity can be decreased by 41%
while only removing less than 2% of nodes, but this comes at a cost of 45% of the edges.
Still, community-deception is a combinatorial optimization problem, so there are almost
definitely better solutions. Going forward, the greedy approach using modularity vitality
may be a useful baseline.

The findings suggest that the most effective strategy currently available to users at-
tempting to protect their community identity is to remove their connections to community
leaders. This strategy clearly will negatively impact the community itself, leaving users
with little options to protect their privacy. It is up to social media companies to protect
this privacy by allowing users to hide their connections.

We have demonstrated that modularity vitality is a powerful method of finding nodes
that bridge communities or are hubs within their communities at scale. Modularity is but
one of many cluster evaluation functions. Exploration of vitalities of these other functions
could give an alternative view of nodal contributions to community structure. Community
quality vitalities, and community-aware centralities more generally have many applications
to areas such as infrastructure robustness, traffic improvement, immunization, and social
media. Deeper dives into these application areas using the techniques proposed here could
be fruitful areas of future research.
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Appendix D

Additional Prototype Results

D.1 Extended Results Diagrams and Tables
Here we display the tables and Figures that could not be fit in the main article body.

D.1.1 Community Diagram on Unfiltered Data

D.1.2 Salient Attributes
Tables of the most and least salient biography attributes for the Reopen, COVID, and
Captain Marvel datasets are given in Tables D.1, D.3, and D.5, respectively. Accordingly,
the tables for non-biography attributes are given in Tables D.2, D.4, and D.6.

Personal ID Mention Hashtag Emoji
S NS S NS S NS S NS
she writer @genflynn @manutd #maga #blacklivesmatter
her he @actorvijay @nytimes #kag #blm
maga him @realdonaldtrump @lfc #wwg1wga #resist
they husband @potus @arsenal #trump2020 #resistance

black lives matter wife @salesforce @chelseafc #followbackhongkong #fbr

Table D.1: The most salient (S) and least salient (NS) attributes of each attribute derived
from user biographies within the Reopen Dataset
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(a) Reopen (b) Election

(c) COVID (d) Captain Marvel

Figure D.1: The community-to-community shared-attribute relationships are shown just
as in Figure 4.4, using the unfiltered data.
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Name Hashtag Location Unigram
S NS S NS

#blm #blacklivesmatter england usa
#fbpe #acab india new
#maga #stayhome london united

#wwg1wga #bim uk ca
#kag #junkterrorbill africa the

Table D.2: The most salient (S) and least salient (NS) attributes of each attribute not
derived from user biographies within the Reopen Dataset

Personal ID Mention Hashtag Emoji
S NS S NS S NS S NS
she ig @flamengo @bts_twt #maga #blacklivesmatter
her instagram @vascodagama @manutd #kag #mufc
they writer @fluminensefc @lfc #resist #ynwa
maga music @realdonaldtrump @realmadrid #trump2020 #bernie2020
he fan account @narendramodi @fcbarcelona #wwg1wga #bts

Table D.3: The most salient (S) and least salient (NS) attributes of each attribute derived
from user biographies within the COVID Dataset

Name Hashtag Location Unigram
S NS S NS

#oustduterte #loona1stwin argentina usa
#yoapruebo #fbpe france de
#apruebo #� brasil new

#facciamorete #bernie2020 españa the
#maga #flattenthecurve india ca

Table D.4: The most salient (S) and least salient (NS) attributes of each attribute not
derived from user biographies within the COVID Dataset

Personal ID Mention Hashtag Emoji
S NS S NS S NS S NS
she gamer @weareoneexo @bts_twt #maga #resist
her writer @actorvijay @twitch #kag #blacklivesmatter

fan account music @genflynn @manutd #2a #marvel
fub free ig @b_hundred_hyun @marvel #trump2020 #blm
maga artist @iamsrk @lfc #nra #mufc

Table D.5: The most salient (S) and least salient (NS) attributes of each attribute derived
from user biographies within the Captain Marvel Dataset
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Name Hashtag Location Unigram
S NS S NS

#saveodaat #twoofus malaysia usa
#releasethesnydercut #fightforwynonna brasil the

#maga #renewodaat france ca
#fbpe #saveshadowhunters thailand new

#peoplesvote #savedaredevil indonesia england

Table D.6: The most salient (S) and least salient (NS) attributes of each attribute not
derived from user biographies within the Captain Marvel Dataset
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D.1.3 Prototypical Attributes

(a) (b)

(c) (d)

Figure D.2: Prototypes of the communities 5-8 in the Election dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.3: Prototypes of the communities 9-14 in the Election dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.4: Prototypes of the communities 15-20 in the Election dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.5: Prototypes of the communities 1-6 in the Captain Marvel dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.6: Prototypes of the communities 7-12 in the Captain Marvel dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.7: Prototypes of the communities 13-18 in the Captain Marvel dataset.
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(a) (b)

Figure D.8: Prototypes of the communities 19-20 in the Captain Marvel dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.9: Prototypes of the communities 1-6 in the COVID dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.10: Prototypes of the communities 7-12 in the COVID dataset.

183



(a) (b)

(c) (d)

(e) (f)

Figure D.11: Prototypes of the communities 13-18 in the COVID dataset.
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(a) (b)

Figure D.12: Prototypes of the communities 19-20 in the COVID dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.13: Prototypes of the communities 1-6 in the Reopen dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.14: Prototypes of the communities 7-12 in the Reopen dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure D.15: Prototypes of the communities 13-18 in the Reopen dataset.
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(a) (b)

Figure D.16: Prototypes of the communities 19-20 in the Reopen dataset.
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