
2008 Senior Thesis Project Reports

Iliano Cervesato∗ Majd Sakr∗ Mark Stehlik†
Bernardine Dias∗‡ Lynn Carter∗

May 2008, revised June 2010
CMU-CS-QTR-101

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Qatar campus. †Department of Computer Science. ‡Robotics Institute.

The editors of this report include the members of the Senior Thesis Committee on the
Qatar campus, and the advisors of the students whose theses are included herein.

Abstract

This technical report retrospectively collects the final reports of the undergraduate Computer Sci-
ence majors from the Qatar Campus of Carnegie Mellon University who elected to complete a
senior research thesis in the academic year 2009–10 as part of their degree. These projects have
spanned the students’ entire senior year, during which they have worked closely with their faculty
advisors to plan and carry out their projects. This work counts as 18 units of academic credit each
semester. In addition to doing the research, the students presented a brief midterm progress report
each semester, presented a public poster session in December, presented an oral summary in the
year-end campus-wide Meeting of the Minds and submitted a written thesis in May.

Keywords: Assistive Computing Technology, Technology for the Developing World, Literacy,
Software Engineering, Code Verification.

Contents
Noura Mohammed El-Moughny
Assistive Computing Technology for Learning to Write Braille . 1

Advisor: M. Bernardine Dias

Amer Hasan Obeidah
Design – Code Verification: When Design Deviates from Code . 35

Advisor: Lynn Robert Carter

title-1

1

Assistive Computing
Technology for Learning to

Write Braille

Undergraduate Senior Thesis
 April 24, 2008

By

Noura Mohammed El-Moughny
Computer Science Undergraduate, Senior

Carnegie Mellon University

Advisor
M. Bernardine Dias, Ph. D.

Research Scientist, The Robotics Institute
Founder and Director, TechBridgeWorld (www.techbridgeworld.org)

Carnegie Mellon University

2

ABSTRACT

If they are to play a meaningful role in modern society, people who are visually impaired need to
obtain information in an effective and timely manner. Accessing information requires the ability
to read and write fluently. The Braille language provides a mechanism for the visually impaired
to be fully literate participants in modern-day society. However, learning to write Braille is a
non-trivial process that often involves long hours of tedious work. Learning to write Braille is
even more difficult for young blind children due to many factors such as the required physical
and mental exertion, and the delayed feedback on what was written. To address these needs, the
TechBridgeWorld program at Carnegie Mellon University (www.techbridgeworld.org)
developed an Adaptive Braille writing Tutor (ABT) that uses audio feedback to provide guided
practice for young children learning to write Braille. Through extensive interactions with the Al-
Noor Institute, a school for blind children in Qatar, we extend the capabilities and potential
impact of this Braille tutor.

This honors thesis in Computer Science enhances the ABT in three important dimensions:
Relevance to the Arab world, methodology of software design, and motivational factor for the
students. Our interactions with Al Noor revealed a need for expanding the vocabulary of the
ABT to include Arabic Braille, and also a strong need for increasing the enthusiasm and
learning-efficiency for blind children learning to write Braille. To address these needs we make
three important enhancements to the ABT. First, we enable the tutor to provide guided practice
for the Arabic alphabet characters in Braille and facilitate the interface between the Braille tutor
and the screen reading software used at the Al Noor Institute. Next, we improve on the ad-hoc
design of the ABT software components by combining research methodologies in Assistive
Technology, Intelligent Tutoring Systems, and Artificial Intelligence to propose a principled re-
design of the ABT software. Finally, we study the literature on Educational Game Design and
create an educational ABT-computer game to increase the motivation of children learning to
write Braille. The outcome of this project is an improved Adaptive Braille Writing tutor that
enhances the state of art in educational technology for the visually impaired.

3

4

TABLE OF CONTENTS

1 INTRODUCTION... 1

2 ASSISTIVE TECHNOLOGY AT THE AL-NOOR INSTITUE... 3

2.1 SCREEN READER SOFTWARE .. 3
2.2 BRAILLENOTE.. 3
2.3 KEYBOARDS... 4

3 TECHBRIDGEWORLD’S ADAPTIVE BRAILLE WRITING TUTOR.. 6

4 GUIDED PRACTICE FOR ARABIC BRAILLE LETTERS.. 8

5 INTELLIGENT TUTORING SYSTM... 11

5.1 DOMAIN KNOWLEDGE ... 12
5.2 PEDAGOGICAL MODULE .. 14
5.3 EXPERT MODEL ... 17
5.4 COMMUNICATION MODEL... 18
5.5 STUDENT MODEL .. 18

6 EDUCATIONAL COMPUTER GAMES... 22

6.1 GAME INSPIRATION .. 22
6.2 I/O STRUCTURE.. 23
6.3 GAME STRUCTURE AND RULES.. 23
6.4 PROGRAM STRUCTURE .. 25

7 CONCLUSIONS AND FUTURE WORK .. 26

ACKNOWLEDGEMENTS.. 27

REFERENCES... 27

APPENDIX: Arabic Alphabet Mapping to Braille.. 29

5

1

1 INTRODUCTION

Braille1 is a widely-used language that allows visually impaired people to read and write.
Each Braille character is formed using six dots placed in a cell of two columns and three rows. A
subset of these six dots is embossed to represent each character. Thus, a dot may be raised at any
of the six positions to form sixty-four (26) unique combinations. The positions of the six dots are
universally numbered from one to six. Figure 1 below (presented by Kalra et al [1]) shows
schematics of a Braille cell, and pictures of a slate and stylus used to write Braille and of a
written Braille sample.

Figure 1 [1]: (a) Schematic of a Braille cell (b) The Braille letter “T”: The black circles represent embossed
dots, and the light grey circles represent the positions of the dots that are not embossed (c) A traditional slate
and stylus (d) Written Braille

The Braille language has enabled visually-impaired people to actively participate in modern-
day society. Despite its significance, and the accessibility it brings, learning to write Braille still
has a number of barriers. More than 90% of the world's 161 million visually-impaired people
live in developing communities [2]. The literacy rate of this population is estimated to be below
3% [3]. Unfortunately, poorer areas tend to have both a disproportionately high number of blind
people [2] and fewer resources for educating them [1]. Therefore, the need to improve literacy
for the blind in affordable ways is paramount.

The traditional method of writing Braille itself creates formidable challenges to literacy. In
developed countries, Braille is usually embossed with a six-key typewriter known as a Brailler
which is shown in Figure 2 (a). These devices are fast and easy to use but usually cost over
US$600 each [5]. In developing countries, such devices are prohibitively expensive and Braille
is almost always written with a slate and stylus as shown in Figure 1 (c). Using these tools,
Braille is written from right to left so that the page can be read from left to right when it is
removed from the slate and turned over. Learning to write Braille in this manner can be difficult.
First, children must learn mirror images of all letters, which doubles the alphabet and creates a
disparity between the written and read forms of each letter. Second, feedback is delayed until the
paper is removed and then flipped over and read. For young children, this delay can make Braille
conceptually challenging since the act of writing has no discernable, immediate effect. It also
takes longer for both the student and the teacher to identify and correct mistakes, and this slows
learning. Some of the newest slates, such as the example shown in Figure 2(b), allow the writer
to read the Braille through the back of the slate as they write. However, the cost of these slates is
significantly higher compared to the regular slate and stylus, and hence they are not affordable or
easily available in developing communities [7]. Even with the newest slates or the Braillers the

1 See http://www.learnthat.com/define/view.asp?id=7394 for more information on Braille

2

feedback to students is delayed compared to sighted students since the feedback requires tactile
contact between the student’s fingers and the written Braille. Finally, even the thick paper used
to write Braille may be expensive or in limited supply [9]. In sum, these challenges contribute to
the problem of illiteracy among the blind in both developing and developed communities. Thus,
assistive Braille-writing technology relevant and accessible to developing communities could
have significant impact on millions of lives. To address these needs, the TechBridgeWorld
program at Carnegie Mellon University (www.techbridgeworld.org) developed an Adaptive
Braille writing Tutor (ABT) that uses audio feedback to provide guided practice for young
children learning to write Braille (www.techbridgeworld.org/brailletutor/).

Figure 2: (a) [4] Brailler (b) [6] New slate and stylus allows users to read as they write

This senior honors thesis in Computer Science aims to serve the needs of visually impaired
children learning to write Braille. We are specifically interested in serving the needs of visually
impaired children in developing communities and in Qatar. To this end, we established a strong
partnership with the Al-Noor Institute, a school for blind children in Qatar, and surveyed the
literature to understand the needs and challenges of the visually impaired in developing
communities. Based on our findings, we extend the capabilities and potential impact of the ABT
in three important directions. First, we enable the tutor to provide guided practice for the Arabic
alphabet characters in Braille and facilitate the interface between the ABT and the screen reader
software used at the Al Noor Institute. Our second improvement addresses the ad-hoc design of
the ABT software components by combining research methodologies in Assistive Technology,
Intelligent Tutoring Systems (ITS), and Artificial Intelligence to propose a principled re-design
of the ABT software. Finally, we study the literature on Educational Game Design and create an
educational ABT-computer game to increase the motivation of children learning to write Braille.
The outcome of this project is an improved Adaptive Braille Writing tutor that enhances the state
of art in educational technology for the visually impaired and reduces the number of barriers to
Braille literacy in developing communities and in Qatar.

We organize the remainder of this report as follows. In section 2 we describe the current
technology tools used at the Al-Noor Institute for the Blind in Qatar. In section 3 we provide a
brief introduction to Carnegie Mellon University’s Adaptive Braille Writing Tutor and focus on
the second version of the tutor that is most relevant to our work. Section 4 follows with
implementation details for enabling the tutor to provide guided practice for the Arabic alphabet
in Braille. Section 5 details the re-designed components of the Adaptive Braille Writing Tutor
software according to the ITS methodology. Section 6 discusses the creation of an educational
computer-tutor game for increasing enthusiasm for learning to write Braille. Finally, we
summarize our work in section 7 and conclude the report in section 8 with proposed directions
for future research.

3

2 ASSISTIVE TECHNOLOGY AT THE AL-NOOR INSTITUE

 Before we describe our work with the Adaptive Braille Writing Tutor, we introduce the Al

Noor Institute, our primary source of information for the pedagogy and challenges of teaching
Braille. The Al-Noor Institute for the Blind is a school for visually-impaired children in Qatar.
Inaugurated in 1998 under the support of Her Highness Sheikha Mozah Bint Nasser Al-Missned,
the institute offers many programs and facilities that serve the needs of the visually impaired in
Qatar. The school works to extend educational services to the blind to help them overcome their
disabilities and prepare them to undertake more productive roles in society. We have learned
much about their teaching methods, needs, and challenges through several site visits. During
these visits we observed the abundance of technology available for blind individuals at the
institute. The available assistive technology varies in its use and caters to the different needs of
the visually-impaired. The information we report is primarily based on conversations with Mr.
Yasser Al-Shrafai and Mr. Suleiman M. Abu Azab who are both teachers at the Al-Noor Institute.

2.1 SCREEN READER SOFTWARE
The Al Noor Institute equips its computers with three types of screen reader software that

assist blind individuals to use computer applications. These software programs are “IBSAR,”2
“JAWS” 3, and “HAL”4. These programs help visually impaired users to navigate between
different applications on the computer. They audibly pronounce, in Arabic, the command level,
the content of the computer’s screen, and the different applications browsed by the user.
Therefore, they mainly depend on the hearing ability of the user. Figure 3 shows a blind
individual using Microsoft Word with the assistance of the IBSAR software.

Figure 3: IBSAR software audibly pronounces different commands in Microsoft Word

2.2 BRAILLENOTE
The BrailleNote assistive technology allows blind individuals to read the text written on the

computer screen in Braille format. It translates the text from different applications browsed by

2 See http://www.sakhr.com/products/Ibsar/Default.aspx?sec=Product&item=Ibsar for more information about
IBSAR software
3 See http://en.wikipedia.org/wiki/JAWS_(screen_reader) for more information about JAW software
4 See http://www.synapseadaptive.com/dolphin/hal.htm for more infromation about HAL

4

the user to written Braille. This tool is useful for visually-impaired people who are familiar with
reading Braille and prefer reading to using screen reader software. Figure 4 shows a picture of
BrailleNote being used by a visually impaired user.

Figure 4: A teacher at Al-Noor Institute using BrailleNote

2.3 KEYBOARDS
Students at the Al-Noor Institute are taught to use a standard keyboard from grade one since

it is the main tool that they can use to navigate between different applications on the computer.
Blind individuals can’t use the mouse as sighted people do. Therefore, students are taught to use
certain keys that help them to move easily between browsing different applications on a
computer (such as the arrows, shift, caps lock, and alt keys). These keys are essential for students
to work easily and choose between different commands shown on the computer screen.

Another way of using the keyboard is to make use of only six keys. These keys represent the
Braille cell. Specifically, the keys F, D, and S on the keyboard represent the dots 1, 2, and 3
respectively and the keys J, K, and L represent the dots 4, 5, and 6 respectively. This technique is
practical for users who are not familiar with the configuration of keys on the keyboard. They can
use those six keys to type different letters in Braille and those letters are translated to printed text
on the computer. Then the printed text can be translated back to Braille through the BrailleNote.
Figure 5 shows one of the teachers at the Al-Noor Institute using the BrailleNote and keyboard
with the IBSAR software while working on the computer.

Figure 5: A BrailleNote, the keyboard, and the IBSAR software being used on a computer

5

Along with the assistive technology mentioned above, it is worth mentioning the enhanced
technology used in printing books in Braille for the students. In addition to teaching, Al-Noor
is the only place in Qatar that prints school books in Braille for students from the age of 6
until the final year in college. The printing department is equipped with enhanced technology
that assists in meeting these educational needs of the visually impaired. The Al-Noor Institute
also has an integration program that aims to integrate blind youth aged 12 years and older into
the public schools in Qatar.

6

3 TECHBRIDGEWORLD’S ADAPTIVE BRAILLE WRITING TUTOR

The Adaptive Braille Writing Tutor (www.techbridgeworld.org/brailletutor/) is a tool
designed by Carnegie Mellon University’s TechBridgeWorld program to assist blind children to
learn the art of writing Braille. It consists of an electronic slate and stylus known as the E-slate
which monitors the student’s writing and transmits data in real time to the computer. The tutor’s
software runs on an external PC and translates the data from the E-slate to provide immediate
audio feedback to the user [1]. The original version of this tutor was field tested in the Mathru
School for blind children in Bangalore, India (see Figure 6).

Figure 6: Field-test of the original version of the Braille tutor at the Mathru School in India

Figure 7: Adaptive Braille Tutor developed by the TechBridgeWorld program

Based on feedback from this early field-test, a second version of the tutor (shown in Figure
7) was designed and implemented by several Carnegie Mellon University students and faculty.
Our work is implemented on this second version of the tutor which provides guided practice for
learning to write Braille using a slate and stylus, or six buttons that represent the six dots of the
Braille cell. The E-slate monitors the student’s writing and transmits the data in real time to a
computer linked via a USB cable. The transmitted data is then interpreted to provide immediate
audio feedback to the user via text-to-speech synthesis or the teacher’s recorded voice [1].

7

Further details of the hardware and software implementations for both versions of the tutor are
discussed in prior publications by Kalra et al. ([1] and [12]).

The second version of the Adaptive Braille Writing Tutor consists of two rows of 16 Braille
cells and six buttons placed over the top of the two rows (shown in Figure 8) to work as an input
area on the E-slate. The stylus is a standard Braille stylus that connects to the E-slate by its metal
tip. Moreover, students can press on one of the two additional control buttons placed on the E-
slate to indicate the completion of a character or a word.

Figure 8: Main Features of the Adaptive Braille Tutor

The ABT software is implemented in C++ and both the software and hardware for the two
versions of the tutor will soon be available under Open Source licenses via the TechBridgeWorld
website (www.techbridgeworld.org/brailletutor/downloads.html). Tom Stepleton, a Ph.D. student
in the Robotics Institute at Carnegie Mellon University, developed the software for the second
version of the ABT and created a detailed installation guide for using the tutor and some initial
instructions for developing software for the tutor [8]. Compiling the Braille Tutor library on a
Windows machine (the most commonly available Operating System in the schools for the blind
we have worked with) requires the installation and compilation of several software packages.
(Note that the second version of the ABT software is cross-platform). The instructions for
compiling the ABT software are adapted to use tools that are affordable for programmers in
developing communities. The first key component of the instructions involves downloading the
GNU C++ compiler that is part of MinGW. The GNU C++ compiler is a free compiler for
Microsoft Windows that can be used to compile the Braille Writing Tutor software. The next
requirement is to download and compile the Boost library which is a multiplatform compilation
of C++ libraries used to enable threading in the ABT. Finally, the Braille Tutor interface library
must be downloaded and compiled (using the GNU C++ compiler). Once these three major
components are complete, the tutor hardware is connected to the computer via a USB connector,
enabling the use of the tutor as well as software development and testing.

Three areas for improvement in the second version of the tutor are its limitation to supporting
guided practice for English Braille only, its ad-hoc design of the intelligent tutoring system, and
its limited mechanisms for generating enthusiasm for learning to write Braille. We address these
three limitations in our work and describe the details of our enhancements of the Adaptive
Braille Writing Tutor in the following sections of this document.

6 buttons representing
the 6 dots in the Braille
cell

USB connector
Control buttons

Braille cells

Stylus

8

4 GUIDED PRACTICE FOR ARABIC BRAILLE LETTERS

Our interactions with the Al Noor Institute in Qatar revealed the need for expanding the tutor

capabilities to include guided practice and instructions on writing Arabic Braille. Adding the
functionality of tutoring Arabic Braille letters to the Adaptive Braille Writing Tutor makes the
tutor relevant to visually impaired students learning to write Arabic Braille, and is especially
relevant in Qatar. Further interactions with Al Noor taught us that it is also useful to save the
cumulative output of the student’s writing in a format accessible by their screen reader software.
This allows each student to keep track of his/her progress during a tutoring session. Therefore,
our first task for improving the ABT was to enable the tutor to provide guided practice for the
Arabic alphabet characters in Braille and facilitate the interface between the ABT and the screen
reader software used at the Al Noor Institute. This initial task also provided us with the
opportunity to familiarize ourselves with the ABT software, hardware, and operations.

The underlying structure of the tutor software developed by Tom Stepleton was designed to
allow for easy extension for character maps other than English Braille where the number of
characters was less than 64 (26). Having understood the basic underlying structure of the tutor
software, we were able to extend the tutor capabilities to include tutoring Arabic Braille. Close
coordination with several teachers at the Al-Noor Institute was of great value during this
implementation process, especially in helping us to learn the mapping of the Arabic alphabet to
their corresponding Braille characters.

A flow control diagram illustrating the operation of the tutor when recognizing letters and
providing audio feedback to the student is shown in Figure 9. We implemented the mapping of
dots to Arabic letters by creating a file consisting of a series of pairings between Braille dot
patterns and Arabic characters. This mapping is recorded in a file with each pairing occupying its
own line (shown in the Appendix). We use UTF-8 Unicode encoding5 to capture this mapping.
This character mapping is then uploaded after initializing the Braille Tutor (Figure 9(a)) and the
IOEventParser is informed to wait for user input. The IOEventParser component of the Braille
Tutor interface library can then parse and interpret Braille cell dot patterns into letters based on
the specific mapping provided in the uploaded file. In other words, once the student enters the
letter using the stylus or buttons on the tutor, the IOEventParser uses the UTF-8 file to search for
a match between the combination of “dots” entered in the Braille cell and an Arabic letter. If a
match is found, the tutor prints the appropriate letter to a file and plays the appropriate sound file
as shown in Figure 9(b). The tutor recognizes that a character is complete by satisfying either of
the three conditions which are: the tutor waits for 5 seconds with no events, the student presses
either of the control buttons, or if using the Braille cells, moving to a different cell. Once the
user is done with the tutor, he/she can quit the program as shown in Figure 9(c) by either
disconnecting the tutor, using the computer keyboard key combination of Ctrl+x+c or by filling
in only the 6th Braille dot (which maps to the character ‘ء’).

For the audio component of the tutor, we recorded individual sound files for each Arabic
alphabet character as it was spoken, and saved these sound files with appropriate labeling. We
also integrated an audio player with the source library of the Braille tutor code to play the
recorded sound files. When a student uses the tutor, the software extracts the character that maps

5 UTF-8 is a widely used variable-length character encoding for Unicode supported by most modern text editors.

9

to the combination of dots and plays the corresponding sound file based on matching the
character to the name of the sound file.

The tutor also prints this character to a text file that is saved on the computer. We enabled the
student to keep track of his/her progress during a tutoring session by storing the output of the
written Braille characters into a text file with an intuitive naming convention. These files were
then readable by the “IBSAR” software [9] used at Al Noor. The chosen naming convention for
the text file was BrailleTutor. There is an initial verbal message at the begging to tell the student
what the name of the output text file is. When the student exits, there is a reminder that asks the
student to rename the output text file if they want to access it later, otherwise it will overwrite the
previous created file.

 (a) (b) (c)

Figure 9: Control flow diagram for the Arabic Braille letter tutoring implementation (a) Braille tutor
initialization results in waiting for users to enter letters (b) User enters a letter that interrupts the waiting
process, interprets the entered letter, and outputs the result via audio and to a text file (c) User triggers the
Braille tutor to quit

The pseudo code of this implementation is as follows:

//Before initializing the Braille tutor
Charset mychar(“ ”); // create an object of type charset that takes any string

// load the information of the character mappings into the created object
Mychar.read(path of the file that has all the character mappings UTF-8);

//Create a Voice object
Voice myvoice("path to the sound files");

Initialize
Braille tutor

Upload
character
mappings

Wait for
event

Wait for
event

Trigger event

Parse event

Output to a file

Play sound file

Wait for
event

User triggers
“quit” condition

Exit

User enters
Braille letter

10

Wait for an event
If an event is triggered,

// compare the valid letters outputted into the file with themselves. If this is true, then say
// the sound file that is named according to the outputted letter
If (entered Braille letter == “letter”)

 Myvoice.say(“the entered letter .wav);

 //The tutor will quit if user enters the letter ء
 If (the entered Braille letter == "ء"))
 Exit;

The resulting implementation was successfully able to monitor a user’s Arabic Braille
alphabet writing, and provide immediate audio feedback. We tested this implementation with the
help of Mr. Yasser Al-Shafai, a visually impaired teacher at Al-Noor.

11

5 INTELLIGENT TUTORING SYSTM

The second improvement we undertook addresses the ad-hoc design of the ABT software

components. To overcome this weakness we reviewed the literature on research methodologies
in Assistive Technology, Intelligent Tutoring Systems (ITS), and Artificial Intelligence to
propose a principled re-design of the ABT software. Intelligent Tutoring Systems (ITS) are
interactive learning environments based on instruction and guided practice assisted by
computers. They offer the ability to present educational materials through a communication
interface to the computer and respond intelligently and instructively to the student’s
performance. The intelligent response of the tutor is adapted to the particular student through a
process described in three phases: (i) getting the information from the student, (ii) processing this
information to initialize and update a model of the student, and (iii) using the student model to
provide the customized feedback [10]. Accomplishing these three phases requires collaborative
work between the five core components of an ITS: The Domain Knowledge, the Pedagogical
Module, the Expert Model, the Communication Model, and the Student Model. Figure 10
illustrates the interactions between these components of an ITS.

Figure 10 [11]: The principle components of an ITS and the interaction between them

Each of these components has a specific role in an ITS. The Domain Knowledge contains the

information being taught by the ITS. The Pedagogical Module captures the teaching process and
makes decisions about how to guide the student. The Expert Model captures the skills of an
expert of the knowledge stored in the Domain Knowledge. The Communication Model dictates
the interaction with the learner and addresses the question of how to present the material to the
student in the most effective manner. Finally, the Student Model gathers and stores information
specific to the current student, tracks the progress of the student based on the model, and
provides useful data to the Pedagogical Module. Each of these five components needs to be
customized to fit the needs of the particular ITS being implemented. Based on our survey of the
relevant literature, and based on our observations and interactions with the Al Noor Institute, we
were able to map the five components of an ITS to the corresponding customizations for the
Adaptive Braille Writing Tutor.

In the next few sections we provide detailed recommendations for how each of the five
components should be implemented for the ABT. We also discuss the how the components
exchange information and work together to provide adaptive feedback to a young student
learning to write Braille.

12

5.1 DOMAIN KNOWLEDGE

The first ITS component we discuss is designed to capture the domain knowledge in the
tutor’s area of expertise. For the purpose of the Braille writing tutor, this component will contain
information about Braille character mappings from the alphabet of a given language to the
correct combination of dots in the Braille cell. It also includes basic knowledge on the numbering
of the six dots.

Figure 11: Arabic alphabet written in Braille

 خ ح ج ث ت ب أ

 ر ذ د

 ص ش س ز

 ق ف غ ع ظ ط ض

 ي و ه ن م ل ك

13

Figure 12: English alphabet written in Braille

Note that there are some differences in the British and American Braille systems, especially
when representing math symbols, but for the basic alphabets they both share the same mappings.
In this work, we only include alphabets since we are targeting young kids just starting to learn
the how to write Braille. More advanced concepts such as words, spelling, punctuation, grammar
and contractions can be added at a later stage for more advanced students. The complexity of
dealing with Braille contractions will require significant extensions to the ABT software.

H I K L M N

O P Q R S T U

V W X Y Z

J

A B C D E F G

14

5.2 PEDAGOGICAL MODULE

The Pedagogical Module in the Intelligent Tutoring Systems is derived from the teacher's role in
the classroom. The purpose of this ITS component is to capture the teaching process and make
decisions about how to guide students. This guidance is provided in the form of one-on-one
interaction to maintain the individualized instructions that the Intelligent Tutoring Systems
provides. Intelligent Tutoring Systems use two forms of the individualized instructions, meta-
strategies and instructional strategies [13]. Meta-strategies refer to the overall picture of the
teaching process while instructional strategies refer to the methods used to teach a particular
concept. In a classroom setting at Al-Noor Institute, the teachers tend to adopt the following five
strategies when teaching [14]:

Students’ Trust

Based on their qualifications, the teachers give reasoning and explanations for the
information delivered to students in the classroom, and this gives the students the
confidence in their teacher’s accuracy and wisdom. The teaching process progresses
smoothly once the teacher earns the students’ trust. Therefore, this stage is critical for
successful teaching or tutoring.

Curriculum

Typically, teachers deliver information to students based on a particular curriculum, and
in this case, the curriculum for Grade One is teaching both the English and the Arabic
Braille alphabets and then moving to instructions on writing simple words.

Classroom Activities

Teachers engage with students in the classroom through a mixture of lectures, discussion,
hints, exercises, and other forms of activities.

Continuous Assessment

Teachers often stop after a number of classroom activities to evaluate their educational
outcomes of and the effectiveness of using the activities in the teaching process. For
example, short quizzes can give some indication of whether or not the students
understood the material in that module. This continuous assessment process enhances the
educational outcomes by continuously enriching the teacher’s knowledge about the
students’ strengths and weaknesses, and thus allowing the teacher to adapt instructional
techniques to respond to the students’ needs.

Final Assessment

Final assessment is mostly important in measuring the overall level of understanding of
the entire curriculum for a given class or grade level. This measurement is often a
significant factor in the decision of whether or not to move the student to a more
advanced level.

The following illustration shows the five aforementioned strategies’ categorized as meta-
strategies and instructional strategies in the Intelligent Tutoring System.

15

Figure 13: Categorization of the five strategies of teaching employed by the Al Noor Institute

The meta-strategies include strategies that impact an entire grade level and include earning the
students’ trust, designing and covering all of the material in the curriculum, and assessing the
each student’s ability to continue to the next grade level through a final assessment process. The
instructional strategies include the two strategies used for teaching components of the overall
curriculum; these are classroom activities and continuous assessment. If we map these strategies
back to the pedagogical module, the meta strategies govern the overall strategies used to teach
the domain knowledge, and the instructional strategies are used to update instruction techniques
(exercises and interventions) based on the feedback fro the student model. Thus the ITS is able to
cover the necessary information while providing the most appropriate interventions for a
particular student. Next, we propose a detailed implementation strategy for a Pedagogical
Module relevant to the Braille writing tutor.

Meta-strategies:
Each one of the three meta-strategies (earning student trust, designing a curriculum to cover all
the relevant information, and assessing the skill-level of the student when deciding on
promotions) are next explained in detail.

Earning the Students’ Trust:
Student trust in the tutor depends on two primary factors: robustness of the tutoring mechanism,
and effectiveness of the tutor’s ability to teach. For the first aspect, we can employ a variety of
strategies such as recording the teacher’s (or a trusted person’s) voice for the audio feedback or
using any other “happy sounds” to eliminate the student’s fears of using a new device. We can
improve the trust in the tutor’s ability to teach by implementing a Braille Tutor System that
employs sound pedagogical techniques, reliably produces correct answers, adaptively provides
useful feedback and interventions, and by getting a respected person (such as a teacher) to
endorse the tutor and introduce it to the student.

Meta-strategies Instructional Strategies

Students’ Trust

Curriculum

Final Assessment

Classroom Activities

Continuous Assessment

16

Information Delivered:
Writing Braille in Arabic is based on a one-to-one mapping of characters to Braille patterns.
Thus, the tutor should deliver three types of information:
 Different character mappings in Braille for both English and Arabic alphabets. (The set of

both alphabets in Braille is shown in Figure 11 and Figure 12).
 The structure and the numbering of the six dots in the Braille cell (shown in Figure 1(a)).
 Instructions on how to use the Braille tutor. (These instructions should be either provided

by a teacher when introducing the student to the tutor, or be a part of the tutor’s
initialization process or “welcome” to the student).

Final Assessment:
Final assessment measures the overall understanding of two main aspects of writing Braille:
 Knowledge of the structure and the numbering of the six dots in the Braille cell.

o An example of an exam that could be used to evaluate the student’s knowledge of
the six dot positions could be a sequence of exercises that ask the student to press
on a sequence of dots using the six buttons on the middle of the E-slate (shown in
Figure 8). For example, press on dot 1, 2, 4, 6, 3, 5, 3, 2, 6.

 Knowledge and speed of writing the different mappings in the Braille alphabets.
o An example of an exam to test the student’s knowledge and speed of writing

Braille alphabets could be an assignment that asks the student to write a sequence
of characters (English and/or Arabic) and measure the speed and accuracy of the
student’s solution.

Finally, we need to determine criteria for deciding whether the student can advance to the next
level, should stay in the same level, or should be demoted to a lower level. For example, if the
student passed an exam on the structure and numbering of the Braille dots with a score of 85% or
above he/she can proceed to the higher level of learning characters. If the score is between 85%
and 50% the student should remain at the same level. If the score is lower than 50% the student
could be diagnosed as needing more fundamental help.

Instructional Strategies:
We now examine the two instructional strategies (classroom activities and continuous
assessment) in detail.

Classroom Activities:
Classroom activities are the activities employed by the teacher to instruct the students on how to
write Braille. In Arabic, Braille writing is taught in a number of stages [14]:
 Improving the touch sense

o This involves exercising the touch sense to recognize very detailed objects. This
is important and crucial in writing and reading Braille because Braille letters
could differ from one to another by one dot. Hence, the touch sense is a primary
use in writing Braille. This stage usually takes place during kindergarten through
the first few weeks of grade one.

 Knowing numbers
o Teaching numbers is a crucial stage that comes before starting to teach letters

because each letter in Braille is defined by a number of dots and each dot in the

17

cell of 6 dots has a specific number assigned to it. Therefore, students should be
able to understand numbers and associate the numbers they learn to the number
of dots required for each letter.

 Learning the easy letters
o The easy letters in Braille are defined to be the letters that have one, two, or three

dots embossed in the left column; that is letters that only use the left column. For
example, ل , ب ,أ. (Arabic alphabets in Braille shown in Figure 11)

 Learning the less complex letters
o These letters are defined to have one dot in the left column and another in the

right column, e.g ة.
 Learning the tri-letters

o These are the letters with three embossed dots distributed in the two columns (for
example س).

 The next stage is the letters with four embossed dots.
 The last stage is the fully raised cell except one dot.

Guided instructions that lead the students through the above stages, enables students to write the
basic Arabic alphabet in Braille. Similar stages can be designed for teaching the basic English
alphabet in Braille. These stages can be translated to instruction modules and exercises that lead
the student through the learning process for the six dots and the letters using the ABT.

Continuous Assessment:
The Braille tutor should provide continuous assessment by giving the students short quizzes that
cover different topics as they learn them. These short quizzes can take many forms [14]. For
example, the tutor could ask the student to emboss particular dots or to write specific letters.
Alternately, the tutor could give the student a word constructed from many letters, and then ask
the student to recognize the letters that are familiar. As the students do these exercises, the
Braille tutor needs to evaluate the student performance and detect if the student is demonstrating
particular mistakes (mirroring of characters, misunderstanding of dot numbering, etc.) and
provide appropriate remedial actions such as hints, new exercises, additional instructions, or
encouragement in the form of verbal commentary.

5.3 EXPERT MODEL

The role of the Expert Model component of the ITS is to represent the knowledge and skills of an
expert in the domain. It provides expert solutions to all the exercises and quizzes assigned to the
student thus providing a benchmark for comparison and evaluation of the student’s solutions.
The expert model is commonly implemented using one or both of two approaches [11]:

1. The first approach captures subject matter and expertise in rules. These rules are
combined and applied to solve different problems.

2. The second approach provides information based on different scenario definitions. In this
approach the expert specifies how the student should respond to a specific scenario.

The first approaches would meet our target of implementing the Expert Model. Specifically,
writing Braille is constructed by a set of rules. These rules map out each character to a unique
subset combination of the six dots. Therefore, the expert model will capture expertise in writing

18

Arabic alphabet, and the tutor will use the expert model solution to different exercises for
comparison with the student’s solutions to pinpoint places where the student has difficulties.

5.4 COMMUNICATION MODEL

The communication model determines the interaction between the student and the tutor and
addresses the question of how to present material to the student and receive feedback from the
student in the most effective manner. A key difference between most Intelligent Tutoring
Systems and the Adaptive Braille Writing Tutor is the use of graphical interfaces and visual cues.
Visual feedback is inaccessible to blind students. (Note however that visual output to the screen
can be useful to sighted teachers and to sighted debuggers). Hence, the ABT must rely primarily
on audio feedback to the student. The major drawback of audio feedback is that it prevents the
use of the tutor by the deaf-blind. Another viable interaction method for the ABT is via a tactile
interface. However, this capability is not supported by the tutor hardware and is often much more
expensive because it requires moving mechanical components that must operate robustly.

Deciding what type of audio is best will depend upon the student’s age, culture, and level of
progress. One of the options we have for very young children is recording their teacher’s voice to
provide feedback to the student. A second option that older children might find more exciting or
“cool” is using a synthetic voice. It is also important to make sure that the audio feedback is
relevant to the student’s culture; that is, issues such as language, dialect, and accent need to be
taken into consideration. Finally, it is possible to include “fun sounds” or different audio cues
that might engage the student (such as animal noises or songs) to encourage the student when
he/she provides a correct answer or makes progress.

Currently, the Communication Model is implemented through recording audio wave files for
each letter in the alphabet. This is tractable because the alphabets for both English and Arabic are
relatively small with 26 letters in the English alphabet and 28 letters in the Arabic alphabet.
While audio is the main mode of feedback from the tutor to the student, the communication
model must also include an interface for the student to talk to the tutor. For the ABT the student
communicates with the tutor via a tactile interface; through the buttons and stylus.

5.5 STUDENT MODEL

The student model is crucial to the ITS because it allows the tutor to provide adaptive
customized feedback to each student. This ITS component gathers and stores information
specific to each student, identifies the current level of knowledge of the student, tracks the
progress of each student based on the model, and provides useful data to the Pedagogical
Module. Some Student Models are built to recognize student plans [15], and some are built to
evaluate student performance or problem solving skills [14] depending on the scenario the
student is in and what aspect of the student we are trying to model. The design of a Student
Model depends on the answer to one question: What aspects of the student should we model in a
specific Intelligent Tutoring System? [10]. The answer to this question for the Adaptive Braille
Writing Tutor is that we want to:

19

 Identify the student’s level of competence in writing Braille and initialize the start state of
the Student Model accordingly because this will determine the first level of exercises and
interventions provided to the student)

 Monitor the evolving capability of the student to write Arabic Braille letters and trigger
appropriate transitions to new states in the Student Model. This is important to evaluate
progress (or regression) in the student’s performance.

 Generate sufficient data to accurately determine the skill-level of the student so that the
Pedagogical Module can determine the necessary interventions and instructions.

There are several algorithms that are commonly used to implement the Student Model. In our
literature review we encountered many of the common approaches such as Bayes Nets, Overlay
Models, Case-Based Reasoning, and the Stereotype Model. Bayesian Networks can be used for
long-term knowledge assessment, plan recognition, and prediction of student’s actions during
problem solving [15]. The Overlay Model is defined around the assumption that the student’s
knowledge is a subset of the expert’s knowledge [11]. Case-Based Reasoning is based on the
notion that student’s problem-solving capabilities can be evaluated by looking at how other
students (in previous cases) solved problems which are similar to the current situation [10].
Finally, stereotype-based reasoning builds inferences based on an initial impression of the
student and default assumptions of the stereotype assigned to the student state [16]. Because of
the small number of levels we are dealing with in the ABT applied to teaching alphabet
characters, and because of the small amount of feedback available to the tutor from the student,
we chose the stereotype approach for the Student Model. The stereotype approach allows the
system to make many inferences based on a small set of observations by mapping the
observations to stereotypes, and making many inferences from this classification.

Before proceeding with the implementation strategy for the proposed stereotyped Student
Model for the Braille writing tutor, we present some an introduction to the stereotype apporach.
Suppose we have a stereotype M which is part of the student model in a system. M consists of a
set of components {cj}, where each component represents some aspect of the user. A set of
trigger conditions {tMi} and retractions, composed of individual components or some function
that combines several components, activate and de-activate M. When M is activated, many
inferences can be derived where each inference is governed by a threshold probability.

In summary:
A stereotype M is activated when any of the trigger conditions, tMi, become true:

If i, tMi= true → active (M)

M is deactivated when any of the retraction conditions, rMj, becomes true:
If j, rMj= true → not active (M)

In addition, we have to keep in mind that some of the triggers may be “essential” to a
stereotype being active:

 e, (tMe {tMe}) and (not tMe {rMe})

While a stereotype M is activated, we can derive many inferences {sMk}:
Active(M) → {sMk}

And finally, a probability, PM, thresholds the inclusion of inferences in the stereotype.:

 i, sMi {sMi}, p(sMi) > PM

20

 For example, if M is a stereotype about a student who lacks the fundamental knowledge
about the structure and numbering of the six dots on the Braille cell, and the probability
threshold for M is 90%, then the inclusion of inferences (such as “the student is a beginner” and
“the student doesn’t know the letter mappings yet” and “the student doesn’t know the location of
dot5”) are all governed by the probability of 90%.In other words, on average, we expect 90% of
the people who don’t know the fundamentals of the Braille dots to be governed by the inferences
(or default assumptions) we make. These threshold probabilities are derived using expert
knowledge, observations, or surveys. The power of the stereotyped model is that we can make
many inferences based on a few observations, and use these inferences to guide the Pedagogical
Module in its choice of interventions.
 In our design for the ABT we are using a Hand-Crafted Stereotype model based largely on
the expert knowledge of the teachers at Al Noor. Hand-Crafted Stereotype models make
assumptions about the stereotype groups as well as the triggers based on the designer’s intuitions
or access to expert knowledge. We propose a combination of observing the students interaction
with the tutor and diagnostic tasks to trigger the stereotype groups.
 Next, we describe an implementation strategy for the proposed stereotyped Student Model
framework for the Braille writing tutor. We recommend four stereotypes defined as follows:

M1: The student is considered an expert in writing the alphabet in Braille
M2: The student knows the mapping of the alphabet to Braille but makes careless mistakes
M3: The student does not know the mapping of the alphabet to Braille
M4: The student is a true beginner and lacks the fundamental knowledge of structure and
numbering of the six dots in the Braille cell

 Each stereotype will have its own inferences, components, triggers, retractions and threshold
probabilities that can be crafted based on the expert teachers at Al Noor Institute and student’s
interaction with the tutor.
 We propose two important components that will be of value to these stereotypes. The first is
a distance metric value, which measures the “distance” between the student’s answer and the
expert solution. For example, let’s assume the assignment is to write the letter “A” which
corresponds to the first dot (in the upper left corner of the Braille cell). If the student entered the
mirror image dot (i.e dot 4), then the corresponding distance between the two answers is low. On
the other hand, if the student selects dot 6, then the distance between the solutions is high
Additional penalties could apply for selecting the wrong number of dots or selecting the wrong
row. For example, if a student presses 4 buttons for a letter that only requires 1 dot, it is a clear
indication that the student does not know that letter.
 The second category of components we propose is based more directly on observed
performance of the student. These observations will be chosen based on the knowledge of the
level of difficulty of particular skills or the level of commonality of specific errors. For example,
if a student does well on a set of tri-letters (letters with 3 dots distributed over both columns) we
can assume they understand the fundamentals. In contrast, one of the hardest concepts to get
across to students and retain in their memory is the structure and numbering of the Braille dots.
Perhaps a common mistake is to pick the mirror image of the numbering. This would be an
important component to monitor.

21

 Components for each stereotype can be exclusive or overlap with other stereotypes. These
components, individually or in combination, can form triggers that activate stereotypes or form
retractions that deactivate stereotypes. Then, we start to build inferences based on how well the
student is progressing and therefore which stereotype is activated. The proposed stereotyped
model is illustrated in
Figure 14.

Figure 14: Control flow diagram of the working definition of the student stereotype model

 The default assumption of our stereotype model for the Adaptive Braille Writing Tutor is that
the student does not know the six dots well. This assumption is based on information from the
teachers at Al Noor.

M2 M1 M3 M4

Exercises
Progress

Quiz

Exercises
Progress

Quiz

Exercises
Progress

Quiz

Exercises
Progress

Quiz

22

6 EDUCATIONAL COMPUTER GAMES

The final component of our reported work addresses the need for increasing the enthusiasm

of children when learning to write Braille. Educational computer games have been gaining rapid
acclaim as motivational educational tools for children and youth [17]. However, to the best of
our knowledge, most of the current educational computer games don’t cater to the needs of
visually impaired children. Hence, our third task in this project was to develop an educational
computer game that motivates visually impaired children to learn to write Braille.
The Thorne-EMI puzzles are good examples in the computer educational field [18]. Also,
HANGMAN6, HAMMURABI7 and LUNAR LANDER8 are some early classic entries of
computer games [19]. Educational computer games can assist people, expand concepts, and
teach learners certain subjects as they play. They simulate many elements of traditional media
such as characters, music, plot and sound. Computer games are seen as interactive narratives,
remediated cinema and procedurals stories inspired from the fields of theater, drama and film
studies [19]. They are a host of player challenges on decision-making and problem solving
strategies [20]. Formally, one can think of games as a systematic study of the relationship
between rules, choice and outcomes in competitive situations [21].

Despite the large number of existing educational computer games, we could not discover any
such games that are catered to motivating the visually impaired to learn Braille. However, there
are some games that have been developed for and by visually impaired people9. Some design
constraints for educational games for the visually impaired are very different from the design
constraints for sighted players. Most notably, the constraint of visual components being
disallowed in the game is paramount for blind players. Since the vast majority of popular
computer games are highly dependent on computer graphics and animation, and since most
computer games rely on some form of visual interface, it is a considerable challenge to build an
educational computer game for visually impaired children.

In this section we present a detailed description of an educational computer game designed to
motivate visually impaired students to enjoy learning to write Braille. The game is specifically
targeted towards motivating students to learn the Arabic Braille alphabet. The following section
discusses the environment in which the game will be played by giving concrete conditions and
events in which the abstracted goal of learning the Arabic Braille alphabet is embedded in an
educational computer-tutor game.

6.1 GAME INSPIRATION

This section describes the motivating concept for the computer-tutor Braille alphabet game
we designed. The main inspiration for our game design comes from the game of Dominos [22]
where the domino tile (shown in Figure 15) has a rectangular shape with a line dividing its face
into two square ends; each is marked with a number of black spots or blank. The spots are
generally arranged as they are on six-sided dice. In spite of that, we are structuring our game on

6 See http://www.hangman.learningtogether.net/ for the description of hangman game
7 See http://www.atariarchives.org/basicgames/showpage.php?page=78 for the description of Hammurabi game
8 See http://en.wikipedia.org/wiki/Lunar_Lander_(computer_game) for more description of Lunar Lander game
9 See http://www.tsbvi.edu/technology/games.htm for some examples of accessible computer games

23

the light of the Domino game’s rules and concept. We were inspired by the similarity between
the Braille letters and the tiles of the Domino game, and decided to exploit this similarity in our
game design. Braille letters are formed using six dots placed in a cell of two columns and three
rows; the positions of the six dots are universally numbered from one to six and a subset of these
six dots is embossed to represent each letter. The Arabic Braille alphabet consists of 28 letters;
each represented by a unique subset of the six dots embossed. The construction of domino tiles is
very similar to Braille letters.

Figure 15 [23]: domino tile

The following section of the paper explains a concrete design of our game, Braille Cell

Winner (BCW). Based on the frame work proposed in “The Art of Computer Game Design”
written by Chris Crawford [18], we outline three structures critical to our game design: the I/O
structure, the game structure, and the program structure.

6.2 I/O STRUCTURE

The I/O structure is the system that communicates information between the computer (and in

our case, the tutor) and the player. I/O structure is composed of outputs and inputs. The computer
has two forms of outputs to the players: graphics on the screen for debugging and demonstrating
to sighted people, and sound [18]. So, our target is more oriented towards sighted or visually
impaired people. Making the game comprehensible with only sound output was a one of the most
challenging aspects of the game design. On the other hand, the player’s input is accomplished
through the input device of the Braille writing tutor

6.3 GAME STRUCTURE AND RULES

The game structure is the internal architecture of casual relationships that defines the

obstacles the player must overcome in the course of the game [18]. A key component in this
game is entering Braille letters that can match a single letter from both ends. That is, if a player
is assigned the “left side” he/she must pick a letter where its corresponding dots in the 2nd
column match the dots in the first column of the letter chosen by the computer. This process is
illustrated below in Figure 16.

Rules
 Number of players: two players using one Braille tutor (taking turns)
 The deck: the 28 letters of the Arabic Braille alphabet
 Game environment: the computer randomly picks a letter from the deck and announces

the letter verbally. The computer also announces whose turns it is (that is player 1 or

24

player 2) and which side (left or right) should be attempted for matching the announced
letter. The assigned player then tries to find the “heaviest” letter (the letter with the most
embossed dots) to match the assigned side of the announced letter (as shown in

 Figure 16). In the next round, the second player is chosen to do the same activity to
match the next announced letter on a side (left or right) randomly selected by the
computer. Assigning sides is done randomly each round and players are alternated
sequentially. The challenge is competing against each other to match the heaviest letter
within the constraints and within the allotted time.

 (i) Player 1’s choice (ii) Players 2’s choice

Figure 16: Two consecutive rounds (i) Player’s 1 choice: the player was able to get 5 points by match “ع
"from the right side of the computer’s choice ii) Player’s 2 choice: the player was able to get 4 points by
match “ ث" from the left side of the computer’s choice. Hence, the first player is declared to be the winner.

Example Scenario

 Assume in the first round, the computer announces character “ظ” and assigned player one
the right side randomly. Player one has to think of the heaviest character that can match the right
column of character “ظ
Figure 16Figure 16(i) Players 1’s choice shows that player 1 chose ع to match the computer’s
choice. In the second round, the computer announces character ر and assign the left side to the
player. The player came up with ث which can match the computer’s choice from the left. As
seen, player one was able to get five points whereas player two was able to get only four points.
Thus, player one is declared to be the winner.

Scoring

 Each round a player is assigned a side by the computer. There is a fixed time assigned
as well for entering the matched character. If the player didn’t enter anything within
the time limit, or he entered an invalid character then he will get zero.

 ظ ع ث ر

Computer’s
choice

Computer’s
choice

Player’s
choice

Player’s
choice

25

 If he was able to enter a character within the time limit, and the character was valid,
then the program counts the number of dots embossed for the entered character and
announces that number

 There are 28 rounds, after each round the program announces the sum of the total dots
gained by each player from the rounds played. The winner is declared at the end
based on the higher number of dots

 If both players had the same number of dots at the end, then there is a tie

6.4 PROGRAM STRUCTURE

 Use control button to activate game
 Keep track of whose turn it is (initialize to player A), which side is next (initialize to left),

what the score is for each player (initialize to 0 for each player), and what set of numbers
from 0 to 27 have been used (initialize to empty set)

 End conditions: all numbers have been used or “end of game” is triggered by a player using
one of the control buttons

 While end conditions aren’t true
o Computer picks a random number between 0 and 27 discarding any numbers

already used
o Update used numbers with newly picked number
o Choose letter from alphabet corresponding to number (i.e. first letter is number 0

and last letter is number 27)
o Announce letter, player, and side
o Wait a fixed time for player to response

 End wait if player responds or time elapses
o Announce end condition (i.e. time elapsed or player entered dots 1,5,and 6) via

audio feedback
o Check response

 If the player didn’t respond in time – do nothing
 If the player responded in time

 Check if the response was a valid letter
 If the response was not valid announce it
 If the response was valid, announce it and compute the score
 Update the score for that player

o Switch player
o With a random draw switch sides
o Announce the score for each player

 If end condition is true
o Announce final scores for both players
o Announce winner or tie
o exit

26

7 CONCLUSIONS AND FUTURE WORK

Braille literacy is required for blind people to play a meaningful role in modern society. Our

research on teaching Arabic Braille, and our interactions with the Al-Noor Institute for the Blind
in Qatar have helped us to identify some of the challenges faced by visually-impaired people
during the learning process for writing Braille. These challenges motivated us to improve the
Adaptive Braille writing Tutor (ABT) that provides guided practice using audio feedback for
young children to learn to write Braille. The tutor was developed by the TechBridgeWorld
program at Carnegie Mellon University (www.techbridgeworld.org). We enhanced on the (ABT)
to cover three main dimensions: Relevance to the Arab World, methodology of software design,
and motivational factor for the student. For the first dimension, we enabled the (ABT) to provide
guided practice for the Arabic alphabet characters in Braille and facilitate the interface between
the Braille tutor and the screen reading software used at the Al Noor Institute. Next, we
improved the ad-hoc design of the ABT software components by combining research
methodologies in Assistive Technology, Intelligent Tutoring Systems, and Artificial Intelligence
to propose a principled re-design of the ABT software. Finally, we studied the literature on
Educational Game Design and created an educational ABT-computer game to increase the
motivation of children learning to write Braille. The outcome of this project is an improved
Adaptive Braille Writing tutor that enhances the state of art in educational technology for the
visually impaired.

The experience of working on this honor Senior Thesis has been tremendously rewarding in
many ways. We hope to motivate other students to share in this experience. An important aspect
of future work will be to implement the proposed design of the Intelligent Tutoring Systems
components for the ABT. The tutor should also be extended to provide instruction on numbers,
mathematical operators, words, punctuation, sentences, etc. in Braille. Another important
enhancement to increase the impact of the tutor will be adding the capability to teach new
languages in Braille. Several other extensions such as new games, networked games, additional
voices and sound effects, a set of curricula and exercises, and user studies will all greatly benefit
the tutor’s impact. Finally, systematic longitudinal studies in different parts of the world are also
important to evaluate and document the long-term impact of the tutor on global Braille literacy.

27

ACKNOWLEDGEMENTS

We are grateful to the Qatar National Research Fund (QNRF) Undergraduate Research

Experience Program (UREP) for sponsoring this project. The author also wishes to thank the
TechBridgeWorld team for their help in providing the Adaptive Braille Tutor, and especially
Tom Stepleton for his assistance with navigating the ABT software. We are indebted to the
administrators, teachers, staff, and students at the Al-Noor Institute, and especially to Mr. Yasser
Al-Shafai for the significant time and effort he devoted to providing us feedback. Finally, we
could not have completed this project without the support and encouragement of the Carnegie
Mellon University Qatar (CMUQ) faculty, staff and students.

REFERENCES

[1] Nidhi Kalra, Tom Lauwers, and M. Bernardine Dias, “A Braille Writing Tutor to Combat Illiteracy

in Developing Communities,” accepted paper, Artificial Intelligence in Information
Communication Technology for Development workshop at IJCAI 2007.

[2] A. Nemeth, “Braille: The agony and the ecstasy,” Braille Monitor, pp. 324–328, July 1998.
[3] World Health Organization, “Fact sheet 282: Magnitude and causes of visual impairment,” World

Health Organization, November 2004.
[4] Conventional Support Tools for the Blind and Visually-impaired Students, University Marburg of

Marburg:
http://www.uni-marburg.de/studium-en/specialneeds/visuallyhandicapped/brailler/image_preview

[5] Perkins, “Perkins brailler,” Catalog of Products; Howe Press of the Perkins School for the Blind,
2006.

[6] Image of slate and stylus, March 8, 2008:
http://www.rehabmart.com/resizeimage_send.asp?path=/imagesfromma/202600L.jpg&width=150
&height=150

[7] http://www.brailleslates.org/
[8] http://braille-tutor.livejournal.com/4395.html
[9] http://www.sakhr.com/products/Ibsar/Default.aspx?sec=Product&item=Ibsar
[10] http://www.braillepaper.com/braillepaper.php
[11] Application of AI in Education. Joseph Beck, Mia Stern and Erik Haugsiaa 7 September, 2007

http://www.acm.org/crossroads/xrds3-1/aied.html
[12] Nidhi Kalra, Tom Lauwers, D. Dewey, Tom Stepleton, and M. B. Dias, Iterative Design of A

Braille Writing Tutor to Combat Illiteracy, IEEE/ACM International Conference on Information
and Communication Technologies and Development (ICTD), 2007.

[13] Burns Tom & Sinfield Sandra. Teaching, Learning & Study Skills. SAGE Publications Inc, 2455
Teller Road, Thousand Oaks, California 2004.

[14] Interview with Professor Yasser Mohammed Al-Shafai, Arabic Teacher at Al-Noor Institute
[15] Conati Critina, Gertner Abigail, VanLehn Kurt, Druzdel J. Marek. “On-Line Student Modeling for

Coached Problem Solving Using Bayesian Networks”. University of Pittsburgh, PA, U.S.A.
[16] Kay Judy. Stereotypes, Student Models and Scrutability. Basser Dept of Computer Science.

University of Sydney
[17] http://www.futurelab.org.uk/resources/publications_reports_articles/literature_reviews/Literature_R

eview130

28

[18] http://www.vancouver.wsu.edu/fac/peabody/game-book/Chapter3.html#Educational
[19] http://www.gamestudies.org/0101/eskelinen/
[20] http://gamestudies.org/0701/articles/elnasr_niedenthal_knez_almeida_zupko
[21] http://gamestudies.org/0601/articles/heide_smith
[22] http://www.domino-games.com/
[23] http://www.sfsl.org/animations/domino_tile_21_wobble_md_clr.gif

29

APPENDIX: Arabic Alphabet Mapping to Braille
This appendix shows the UTF-8 Unicode encoding of a series of pairings between Braille dot

patterns and Arabic characters with each pairing occupying its own line. Note that the mapping
of each letter is reversed in this file because the tutor accommodates learning mirror images of
letters when using the slate and stylus, but the students at Al-Noor do not learn the mirror images
of the Arabic Braille characters.

!UTF-8 BEGIN My Arabic character set
 أ 4
 ب 45
 ت 1256
 ث 1234
 ج 125
 ح 234
 خ 1436
 د 124
 ذ 1356
 ر 2456
 ز 2346
 س 156
 ش 134
 ص 13456
 ض 1345
 ط 12356
 ظ 123456
 ع 23456
 غ 345
 ف 145
 ق 12456
 ك 46
 ل 456
 م 146
 ن 1246
 ه 245
 و 1235
 ي 15
 ء 6
!UTF-8 END

 � 睘诲诲诲 睚�睚͓2 ͓″

 i

Design – Code Verification
W h e n D e s i g n D e v i a t e s F r o m C o d e

Student: Amer Hasan Obeidah

aobeidah@qatar.cmu.edu

Advisor: Lynn Robert Carter

LRCarter@cmu.edu

Carnegie Mellon University – Qatar Campus

School of Computer Science

2008

Submitted to School of Computer Science in fulfillment of the requirements for
Undergraduate Research Program

 ii

ACKNOWLEDGEMENT

I am indebted to Professor Lynn Robert Carter for his dedication and constant

mentoring throughout the course of this research paper. He has been one of the

prime motivators to the success of this research paper and he will always remain

one for any future research projects I pursue. I would also like to thank all the people

who have helped me in making this research paper a reality that I will never forget.

 iii

ABSTRACT

In the business of software today, developers have a problem keeping design

and code in synchronization. This thesis covers my research into this topic and

describes an implementation of a tool that speeds up the resynchronization process

of design and code. The resynchronization process requires a comparison process

between code and design, but such comparison is too complex with too many

unsolved problems to be fully covered in just one thesis. As a result, this thesis

focuses on UML Class and Sequence diagrams, since they are the most widely and

commonly used among the different design notations. We also restrict the study to

just the Java programming language. This thesis highlights the key aspects of the

(“in-sync”) problem, proposes the obvious solutions, explains the issues that keep

them from working, and then introduces solutions that do work addressing important

pieces of the problem. Additionally, this thesis proposes an extensible framework to

support people struggling with the “in-sync” problem and populates that framework

with an initial set of analysis modules. The thesis then concludes with an analysis of

the work and explains how others can extend it to cover more pieces of the problem.

 iv

TABEL OF CONTENTS

INTRODCUTION============================= 1

1 THE IN-SYNC PROBLEM =====================... 4

2 MOTIVATION===========================. 4

3 PREVIOUS WORK========================= 5

4 THE OBVIOUS SOLUTIONS====================.. 5

5 SOLVING THE IN-SYNC PROBLEM MANUALLY ===========. 6

6 OUR APPROACH========================= 10

6.1 Differences Between Design and Code Notations=========.. 14

6.1.1 UML Relationships=================== 14

6.1.2 UML Multiplicity...=.==================.. 15

6.2 Methods Overriding and Dynamic Binding============= 15

6.3 Methods Overloading and Sequence Diagrams=========..= 16

6.4 Control Flow Structures===..======.=========..=.. 16

7 JDCV FRAMEWORK: JAVA DESIGN CODE VERIFICATION====== 17

8 CONCLUSIONS=========================.. 23

9 FUTURE WORK========================..= 23

REFERENCES ============================... 25

 1

Introduction:

In software engineering, the system development life cycle is a process of

understanding how the use of technologies and information systems can support

people in different fields to solve the problems they face in their work domain. In

1996, the Standish Group conducted a survey about the Information Systems that

were being built to address problems in different business domains. Unfortunately,

the statistical results of the survey show that 42 percent of those projects were

canceled before completion. Also, the results show that the projects that were

completed are delivered significantly late with fewer features than originally planned

[1].

 Many people would think that the main reason behind software failure is due

to poor design. Therefore, software development companies spend large amounts of

time and resources planning and designing software products before reaching the

implementation phase of development. Design is very important since design

documents can be created more quickly than the code and when they are effective,

they allow professionals to communicate far more quickly and correctly than is

possible with code.

In the design phase, software engineers decide how the system will work.

Specifically, they describe how the system will operate and they address key aspects

of the system in terms of its underlying architecture such as the hardware, software

etc.

In order to produce this detailed description of the modeled system, many

software organizations produce different design notations or modeling languages in

order to facilitate the process of software development. Between 1989 and 1994, the

number of the modeling languages increased from less than 10 to more than 50 [2].

In 1994, Grady Booch, Jim Rumbaugh, and Ivar Jacobson from the Object

Management Group (OMG) merged their own notations to create a Unified Modeling

Language called UML. From an analysis of books [3] and [4] about software design,

we have concluded that UML appears to be the most popular notation to encode the

software design.

The Unified Modeling Language (UML)

diagrams that can be used to portray the des

behavioral, and managerial

above books, we have learned that Class and Sequence Diagrams are the most

commonly used. More specifically, software

creating Class Diagrams. These Diagrams show the major components of the

system and their interrelationships

members such as attributes

second step, the software developer

interact with each other. Also, they will be interested in knowing

of such interactions. For these

Diagrams since they can learn more about the

sequential order.

When the software developers are done with the design, they

phase of the software development process,

phase, software developers concentrate more on code

testing the artifacts and fixing the encountered

developers work under pressure,

important task because they

tendency to become stuck in a

the defects in code, fix them, and start the process

figure (1).

Figure (

The Unified Modeling Language (UML) supports twelve different types of

diagrams that can be used to portray the designed system from structural,

, and managerial points of view [5]. However, from our analysis of

we have learned that Class and Sequence Diagrams are the most

More specifically, software developers start off their design by

creating Class Diagrams. These Diagrams show the major components of the

system and their interrelationships [6]. Also, they show some details about

such as attributes (Fields) and operations (Methods) upon them. As

software developers explain how the system’s objects (classes) will

other. Also, they will be interested in knowing the flow and timing

of such interactions. For these reasons, the software developers will build Seque

Diagrams since they can learn more about the interactions between objects

When the software developers are done with the design, they

re development process, the implementation phase. I

lopers concentrate more on code and they spend a lot of time

testing the artifacts and fixing the encountered defects. Specificall

developers work under pressure, they think that finishing the code is the most

sk because they need to deliver the product. Consequently,

tendency to become stuck in a testing/fixing loop (debugging loop)

in code, fix them, and start the process all over again

Figure (1): Testing/Fixing Loop: (Debugging Loop

Find
Defects

Fix
Defects

Test
Code

 2

supports twelve different types of

igned system from structural,

However, from our analysis of the

we have learned that Class and Sequence Diagrams are the most

start off their design by

creating Class Diagrams. These Diagrams show the major components of the

. Also, they show some details about class

) upon them. As a

how the system’s objects (classes) will

the flow and timing

s will build Sequence

nteractions between objects in

When the software developers are done with the design, they enter the next

the implementation phase. In this

and they spend a lot of time

Specifically, when

think that finishing the code is the most

. Consequently, there is a

ebugging loop) where they find

again as shown in the

Debugging Loop)

 3

As a result of this loop, software developers tend to postpone updating the

design documents. Therefore, the code artifacts start to deviate from the original

design introducing a problem which we call the “in-sync” problem. Moreover, any

changes in the requirements during the implementation phase puts the developers

under great pressure which will eventually lead them to the debugging loop rather

quickly, thus to the “in-sync” problem.

In the first section of this paper, we give a general definition of the “in-sync”

problem. In the second section, we explain our motivation toward solving the “in-

sync” problem. The third section gives a brief overview of previous and related work

done in this area. Then, we talk about the obvious solutions to the “in-sync” problem

and what prevent them from work in the fourth section. The fifth section gives an

example on comparing Class and Sequence diagrams to their code representation

using the manual approach. In the sixth section, we discuss our approach towards

automating the manual approach by building an extensible framework called JDCV.

The seventh section describes the implementation of JDCV, how it applies the

automated approach, and how people can extend it to solve more parts of the “in-

sync” problem. Finally, the paper describes possible future work in the eighth section

and concludes the work in the ninth section.

 4

1- THE IN-SYNC PROBLEM

In actuality, the “in-sync” problem cannot be defined by one specific definition.

This is due to the wide nature of the problem composed of numerous other sub-

problems that will be discussed later in this study. A very general definition of the “in-

sync” problem would be the incompatibility between design and code or vice versa.

More specifically, we can look at the “in-sync" problem as having design documents

that do not reflect the actual code implementation, or equivalently, having a code

implementation that deviates from the original design and does not reflect the intent

of the design.

2- MOTIVATION

As a result of holding a design that is out of sync with its corresponding code,

software developers face hardships adding new functionality and updating the

system. More precisely, when software developers want to change or update certain

aspects of the modeled system, they tend to go back to design documents since an

effective design allows faster communication. However, with the existence of the “in-

sync” problem, design documents become ineffective if not useless.

Developers need to amend the design so as to return it to a state of

synchronization with the code. Nonetheless, if developers where to do the

resynchronization manually, they will deviate from the actual time plan and suffer as

a consequence of the late delivery of the software product. There is therefore a

crucial need for effective tools that are able to automatically capture the differences

between code and design documents. Such tools will ease the resynchronization

process between code and design as well as save a great deal of time and business

resources determining where the code has deviated from design. Thus, studying the

“in-sync” problem carefully and capturing its details support us in building useful tools

that can help software developers get the code back into synchronization with

design. Moreover, there is an increased interest in the “in-sync” problem as the

design process of software development is considered to be the starting point of the

 5

development life-cycle. Therefore, we have realized the importance of having such

tools that ease the process of software development and make it more productive.

3- PREVIOUS WORK

A great deal of work has been done on comparison of programs.

Nevertheless, we have been unable to find work that specifically addresses the “in-

sync” problem of a program and its design documentation. On the one hand, some

CASE1 tools [7] can take design and produce some (if not all) of the code. Also,

some CASE tools [8] can take the source code and produce some of (if not all) the

design documents. On the other hand, none of the CASE tools that we have been

able to find will compare the design documentation against the source code and

point out where there may be in-sync problems.

Furthermore, many papers addressed topics which are related to the “in-sync”

problem but are not equivalent. One of such topics is the Process of Reverse

Engineering of Class Diagrams. In this process, the inspected source code is

converted back into a Class Diagram [9] and manually checked against design

documentation. Another related topic is the concept of design differencing. Here, the

design documents are diffed against each other [10] and different reports are

produced showing the captured differences. However, these topics do not directly

address the comparison between a program’s source code and its design

documents which is the subject of this thesis.

4- THE OBVIOUS SOLUTIONS

Referring to the general definition, many people may have the wrong

perception of the “in-sync” problem solution. They may consider it as an easy thing

to do due to the existence of two unfeasible obvious solutions to this problem. The

first solution is to covert design to code and then compare the two code artifacts. The

second one follows the same conversion principle but in the opposite direction where

code is converted into design and then a comparison of the two designs is performed

to see if they are equivalent. Unfortunately, neither of these solutions can be made to

1
 CASE: Computer Aided Software Engineering

 6

work. The equivalency of two programs has been shown to be reducible to a famous

noncomputable problem, “The Halting Problem.” 2[11]

5- SOLVING THE IN-SYNC PROBLEM MANUALLY

It is really important to understand how a software developer would solve the

“in-sync” problem manually. The reason for this is to understand the approach of this

working but inefficient solution. Building such understanding will help us structure our

automatic approach in a better way.

In order to better understand the manual approach for the comparison

process, we will walk through a simple example that portrays the fundamental ideas

behind the manual approach. Specifically, we will be discussing how to manually

compare UML Class and Sequence diagrams to their code representation.

Example: Bank Account Application

Figure (5.1) shows a class Diagram that represents a very simple Bank Account

Application program.

2
 The Halting problem is a decision problem which belongs to the computability theory. The statement of

the Halting problem is as follows: “Given a description of a program and a finite input, decide whether he

program finishes running or will run forever, given that input.”

 7

Figure (5.1): Bank Account Application – Class Diagram

 The code representation of this Class diagram will be a set of two Java

Source files named (“BankAccount.java” and “Saving.java”). The implementation of

these files is like any regular Java class implementation. Here, we did not include the

full java code for these files. However, we will show the appropriate pieces of code

as we go through the comparison process.

Class Object

Class Name

Class Methods

Class Fields

Generalization Relationship

 8

 Generally, the approach to the “in-sync” problem is to compare elements’

properties (name, visibility, type, etc) in design to elements’ properties in the code. If

the properties match then we have design code compatibility otherwise, the software

developer will record the differences in his/her notes.

 For Class diagrams, the comparison process proceeds as follows:

1. Comparing Packages’ Names:

Code Design

2. Comparing Classes’ Names :

Code Design

3. Comparing the extended classes’ names (if any) and the names of the

implemented interfaces (if any).

Code Design

4. Comparing Fields :

Code Design

Visibility

Type

Name

 9

5. Comparing Methods :

Code Design

 Once the software developer finishes with the Class diagrams, he/she starts

to manually compare the Sequence diagrams. Figure (5.2) shows one of the

Sequence diagrams for our simple application.

Figure (5.2): Bank Account Application – Sequence Diagram

For Sequence diagrams, the comparison process is based on matching

messages that appear in the Sequence diagrams to method calls that appear in

code. However, such comparison is too complex as we will see when we discuss the

automated approach and the problems we faced during the implementation. Figure

(5.3) shows an example of what we mean by complexity.

Method Call

Type

Visibility

Name

Arguments Types and Names

 10

 As we can see from Figure (5.3), we have different method calls to methods

(X) and (Y). If the Sequence diagram shows the following sequence of messages:

(X, Y, X, Y). Then, when the software developer compares design to code, there will

be multiple scenarios that can occur. One scenario is where condition (a) is true and

condition (b) is false, which means that design matches the code. The other

scenarios for values (a) and (b) would result in an “in-sync” problem. Therefore, we

cannot determine statically whether or not the design and code matches.

 Although the manual approach is doable, it is not feasible. Basically, the

manual approach is labor intensive, error prone, and requires a great deal of time in

order to be conducted. Most importantly, we need to do this procedure not only for

every Class and Sequence diagrams, but also for each of the components in these

diagrams. Therefore, the manual approach is a long and tedious process that

requires a lot of patience and attention to details. Accordingly, in the next section we

will discuss our approach which automates the tedious manual one.

6- OUR APPROACH

In general, we can say that the aim of our solution is to help software

developers to close, as much as possible, the gap between a program’s source code

and its design. However, we will not be trying to solve every aspect of the problem

since it is too complicated to be addressed in a single thesis. Instead, in our

approach we will be focusing on Class and Sequence Diagrams because they are

considered to be the heart of design.

Figure (5.3): Control Flow Complexity

Messages in Design

As we have seen in the manual approach, software developers

compare the elements of design and code to check for their compatibility. The

reason why software developers perform the comparison in

modular structure of both Java and UML

paradigm. Figure (6.1) shows the modular structure of java.

Figure (6.1): Java Modular Structure

Our approach to solve this problem is divided into a number of steps. First, we

need to have the design and code in a comparable format.

having formats where we can identify the elements of design and code so that we

can compare these elements.

Metadata Interchange) notation to encode design. XMI is standard notation where

design is serialized in a structured order using XML elements and tags. The usage of

XML in XMI encouraged many CASE tools manufacture

products which makes

representations [13]. Figure (6.

class method.

As we have seen in the manual approach, software developers

compare the elements of design and code to check for their compatibility. The

reason why software developers perform the comparison in this way is due to the

modular structure of both Java and UML which follows from the object

(6.1) shows the modular structure of java.

Figure (6.1): Java Modular Structure

Our approach to solve this problem is divided into a number of steps. First, we

need to have the design and code in a comparable format. Comparable means

here we can identify the elements of design and code so that we

can compare these elements. In order to do that, we have used the [

Metadata Interchange) notation to encode design. XMI is standard notation where

structured order using XML elements and tags. The usage of

XML in XMI encouraged many CASE tools manufacturers to integrate it with their

 it easy to convert design document

]. Figure (6.2) shows an example of the XMI representation of a

 11

As we have seen in the manual approach, software developers need to

compare the elements of design and code to check for their compatibility. The

way is due to the

which follows from the object-oriented

Our approach to solve this problem is divided into a number of steps. First, we

Comparable means

here we can identify the elements of design and code so that we

In order to do that, we have used the [12] XMI (XML

Metadata Interchange) notation to encode design. XMI is standard notation where

structured order using XML elements and tags. The usage of

s to integrate it with their

it easy to convert design documents into textual

ple of the XMI representation of a

 12

Figure (6.2): XMI Encoding of a design Method in a Class diagram

Once we have the XMI file which represents the design, we parse both the

source code and the design (XMI file). We will parse the source code to build a data

structure which stores the needed information about the code elements. For

example, we can store information about classes such as class name, visibility, class

members, method calls etc. Also, we will parse the design to transform the XMI

representation into a data structure storing information about the design and the

elements it represents. The detailed implementation of the data structures will be

discussed in the next section.

<ownedOperation xmi:type="uml:Operation"

xmi:id="Ue1191d38-4e70-4ad5-b720-cd5c17c32d25"

xmi:uuid="e1191d38-4e70-4ad5-b720-cd5c17c32d25"

name="equals" visibility="public">

<ownedParameter xmi:type="uml:Parameter"

xmi:id="U95fdee8a-a9b5-4330-b115- 203c9c51fef4"

xmi:uuid="95fdee8a-a9b5- 4330-b115-203c9c51fef4“

name="return“ direction="return" type=" U14128d57-b7d0-4e69-85b3-5b2bbc91754c "/>

<ownedParameter xmi:type="uml:Parameter“

xmi:id="U80d96380-7413-41bf-8aac-82d995ce3501"

xmi:uuid="80d96380-7413-41bf-8aac-82d995ce3501"

name="o" type="U50c6b38d-0fc1-48ef-9575-cdb5a4cc91f0"/>

</ownedOperation>

<ownedMember xmi:type="uml:DataType"

xmi:id=" U14128d57-b7d0-4e69-85b3-5b2bbc91754c "

xmi:uuid=" 14128d57-b7d0-4e69-85b3-5b2bbc91754c “

name=“boolean" visibility="public"/>

 13

The third step will compare the two data structures created in step two

identifying the three main categories on which our solution is based. The first

category is called “things we know ‘they are correct’”. This category reflects the fact

that what the design represents is compatible with what the code represents. For

instance, having a boolean variable named “stop” in the design and a boolean

variable named “stop” in the code indicated design-code compatibility.

The second category is called “things we know ‘they are wrong’”. This

category itself is divided into three sub categories. The first sub-category represents

those elements that are found in both design and code but are incompatible. For

example, a declaration of an integer variable named balance is not compatible with a

declaration of a double variable named balance. i.e. elements names and types in

the design must agree with those in code. The second sub-category includes

elements that appear in code but not in design. For example, having some variables

declared in the code without equivalents in the design. The last sub-category shows

those elements which appear in design but do not appear in code.

The last main category in the third step is what we call “things we don’t know”

for many reasons that we discuss next. Figure (6.3) below shows the three main

categories we have just discussed.

 Figure (6.3): The three main categories of our approach

 14

There are many reasons why we named the last category of our approach as

“things we don’t know”. These reasons are considered to be the sub-problems of the

“in-sync” problem and they are:

6.1 Differences Between Design and Code Notations

Although both of them follow the object oriented paradigm, Java and UML

represent some common concepts in different ways. On the one hand, one can find

some concepts that are easily represented in UML, but are not allowed or are

indirectly represented in Java. For example, UML allows multiple-inheritance by

allowing a class to have multiple generalization relationships with other classes.

However, multiple-inheritance is not allowed directly in Java. More specifically, Java

does not allow a class to extend multiple classes simultaneously. Nevertheless, Java

allows a class to extend another class and implement many interfaces to achieve the

goal of multiple-inheritance.

On the other hand, some of the concepts that are represented in Java have

just been added to UML. For example, older versions of UML did not have the

elements to represent control flow structure. One could not represent a loop

structure in a Sequence diagram. Instead, the designers need to explicitly write down

the behavior of the loop as many times as the loop executes. This of course made

design documents larger in size and redundant.

In the newer versions of UML such as UML Version 2.1, many of those

differences are addressed and the appropriate notations are integrated into the UML

structure. However, there are still specific notations in UML that cannot be mapped

directly to Java. The most closely related of such notations to the “in-sync” problem

are UML Relationships and UML Multiplicity.

6.1.1 UML Relationships

In a class diagram, designers use different types of arrows to show different

types of relationships. The most commonly used relationships are the Association

and Generalization relationships. On the one hand, in an association relationship,

the designer wants to show the connection between two class objects and why they

should be connected. Also, he/she wants to show the rules that govern this

relationship. However, there is no equivalent or specific notation in code (Java).

 15

More precisely, if a class A is associated with class B in design, then one can

represent this in code in many different ways such as having an instance of class A

declared inside class B or vice versa, or having a list of instances of class A declared

in class B. Such things can be checked, however, we cannot be sure that this is what

the design meant with that specific association relationship.

On the other hand, in a generalization Relationship, the designer wants to

show what properties a specific class inherits from other classes. This kind of

relations is portrayed in code by using the “extends” keyword. However, the problem

here is that Java does not allow multiple-inheritance while design allows a single

class to be related to many other classes using the generalization relationship.

6.1.2 UML Multiplicity

Design allows designers to assign multiplicity values to relationships.

Multiplicity tells the designer how many times each class can instantiate another one.

Due to the different types of multiplicities design offers, some of them cannot be

determined in code. For example, many-to-many multiplicities are impossible to be

statically checked in code because we cannot tell how the system will behave in all

possible scenarios. Therefore, we cannot know beforehand how many times the

system will instantiate a certain class.

6.2 Methods Overriding and Dynamic Binding

Another difficulty that one would encounter trying to get design in-sync with

the code is the problem of method overriding and dynamic binding. To better

understand this problem we will explain it in an example. Suppose we have three

classes (A, B, and C) and that both classes (B and C) extends class (A). Also,

suppose that we define a method called (“equals”) in class (A) and that classes (B)

and (C) have a different implementation of the “equals” method (i.e. they override it).

Now, having a method call to “equals” can be confusing since we cannot tell from

static parsing if a call to the “equals” method is associated with an instance from

class (A), class (B), or class (C). Therefore, if we see in the design a method call to

“equals” then we cannot be sure which one of “equals” methods the design is

referring to.

 16

6.3 Methods Overloading and Sequence Diagrams

Java allows developers to declare multiple methods with the same name, but

with different arguments and/or return type. Methods overloading is considered to be

a problem when we compare the design Sequence diagram to the code

implementation. Specifically, Sequence diagrams represent messages or method

calls by mentioning their names only. Therefore, if we have an overloaded method in

a certain class, then we cannot determine which method the Sequence Diagram is

referring to because in code we will have two or more different methods with the

same name but they are overloaded. So, having the names only prevents us from

being absolutely sure what method the Sequence Diagram is referring to.

6.4 Control Flow Structures

This is the last problem that we will address in this thesis with regards to the

“in-sync” problem. In specific, this problem is related directly to the Sequence

diagrams since they show the behavior of objects (flow) in the modeled system. The

appearance of method calls inside a control flow structure in the code makes it

difficult if not impossible for us to know whether the messages which appear in

design are compatible with those calls that appear in code. For example, we cannot

tell from static parsing if the condition of an if-else statement will evaluate to true or

false. Another example would be having a sequence of messages that shows a call

for a method “X” in the sequence diagram. Equivalently, the code can represent that

in a loop structure which can be guarded by a dynamic condition that cannot be

determined until run-time. These examples show the complexity added by the control

flow structure as depicted in Figure (5.3) in section 5. Therefore, we classified such

issues under the “things we don’t know” category.

However, in our approach, we were able to the use the fact that code

statements such as method calls must appear within a method body. Specifically, we

have identified three main sections when analyzing the body of a method in the

source code. The first section is what we call a “Prefix” includes all the statements

that appear in the method’s body and before the first control structure. In the “Prefix,”

method calls should appear in the sequence diagrams since we are certain that

these method calls will be executed.

 17

The second section is the “Control Structure.” This is the section where we

cannot grantee the compatibility of design and code as a consequence of our

uncertainty regarding the execution of the statements that appear within the control

flow structure.

Lastly, we have the third section which we call the “Suffix.” The “Suffix”

section includes the statements that appear after the last “Control Structure.” Like in

the “Prefix” section, the calls that appear in the “Suffix” section must also appear in

the Sequence diagram for validating the design and code compatibility. Figure (6.4)

shows a clearer view of these three sections.

Figure (6.4): Method Body: Prefix-Control Flow-Suffix

7- JDCV FRAMEWORK: JAVA DESIGN CODE VERIFICATION

JDCV is an extensible Java framework that supports people struggling with

the “in-sync” problem. We have populated the JDCV framework with an initial set of

analysis modules. These modules address different parts of the “in-sync” problem

regarding Class and Sequence diagrams.

In general, the way in which the tool functions is exactly as described in our

proposed approach in section 6. Mainly, the tool has code and design parsing

capabilities in which it parses the code artifacts and the XMI representation of the

 public static void main(String[] args) {

 String output = null;

 ba.AccountNumber();

 if (ba.getBalance() != 0) {

 output = ba.toString();

}

 ba.setBalance(3003.3);

 }

Prefix

Control Flow

Suffix

design into a tree-like 3data structures. Once it finishes the construction of these data

structures, JDCV performs a comparison between them

process, the tool will keep track of the encountered differences. Finally, when the

comparison is finished, the tool will display a report with highlighted (Green, Yellow,

or Red) text according to the three categories to which the m

(7.1) shows the overall design of the JDCV frame work.

3
 We used the term tree-like instead of tree because people usually think of Binary trees when they read the

term tree.

data structures. Once it finishes the construction of these data

structures, JDCV performs a comparison between them. During the comparison

process, the tool will keep track of the encountered differences. Finally, when the

comparison is finished, the tool will display a report with highlighted (Green, Yellow,

or Red) text according to the three categories to which the message belongs. Figure

(7.1) shows the overall design of the JDCV frame work.

Figure (7.1): JDCV Design Overview

like instead of tree because people usually think of Binary trees when they read the

 18

data structures. Once it finishes the construction of these data

During the comparison

process, the tool will keep track of the encountered differences. Finally, when the

comparison is finished, the tool will display a report with highlighted (Green, Yellow,

essage belongs. Figure

like instead of tree because people usually think of Binary trees when they read the

 19

As we can see from the previous figure, JDCV consists of a graphical user

interface that allows the user to interact with the system. Figure (7.2) shows the

GUI of JDCV.

Figure (7.2): JDCV Graphical user Interface

 20

As shown in the figure above, JDCV allows the user to specify the path of the

XMI File that represents the design documents. It also requires the user to specify

the path to the code folder (Package) which represents the code artifacts. At this

point the user has two options: process the whole code package or process the

selected Java files. The first option occurs when the user presses the “RUN” button.

The second option will occur if the user presses “Show Java Files” button which will

instruct JDCV to list the java files inside the specified folder for the user to select

from as shown in Figure (7.2). These options are important because the code may

not be fully described by the design documents.

With the appropriate option selected, when the user presses the “RUN”

button, JDCV will create a “Processor” object as depicted in Figure (7.1). This object

creates a “Data Structures” Object which itself constructs two internal data

structures. The first one is for code and it is called “Code Data Structure”. The other

one is for design and it is called “Design Data Structure”. The reason for creating this

“Data Structures” object is to establish the interfaces to support the extensibility of

the framework.

The way we have constructed the data structures is similar to the modular

structure of java as shown in figure (6.1) in section 6. Basically, for both the design

and the code, we have created a “Package Object” which contains a HashMap of the

classes and another one for the interfaces. We have selected Hashmaps because

they have high performance. Furthermore, for code, we cannot have two classes

with the same name inside the same package. Therefore, we considered the class

name as a unique key for hashing. However in the design, we have used the unique

XMI ID instead of identifiers.

Each class is represented by a “Class Object” which itself contains an

“Extends List”, a list of “Field Object”, a list of “Constructor Object”, and a list of

“Method Object” which itself contains a list of an “Argument Object”. These objects

have different attributes which represent their properties. For example, if we looked

at the implementation of the “Field Object” class, we will see that there are attributes

such as “Type, Name, etc”. The same issue applies to all of the other objects.

After the initialization is finished, the “Processor” object takes the input files

and parses them. On the one hand, the “Processor” object sends the code files to a

 21

Java Parser which was generated by [14]. On the other hand, it sends the XMI file to

a DOM parser [15] which can be found in the Java Development Kit (JDK 6) [16].

During the parsing process [17], both parsers create and insert the obtained

information into appropriate parse tree nodes.

Afterwards, the “Processor Object” invokes the “doAnalysis” method, which

has access to all the available analysis modules to perform the analysis. All of these

modules must extend the abstract class “Analyzer” in which the method “doAnalysis”

is declared. Our initial set of analysis modules implements the straight forward

analysis and matching algorithms. In other words, for each element defined in the

code data structure, the matching algorithm searches for an equivalent element in

the design data structure. Having said that, the JDCV framework allows other people

to extend it by adding their own analysis models and matching algorithms.

Specifically, others need not recompile the whole source code of JDCV. On the

contrary, one of the important features of the JDCV framework is its ability to

integrate external analysis modules during runtime.

The dynamic extendibility feature of JDCV is a result of using Java’s reflection

package during the implementation. The way this feature works is not trivial. In

specific, the “doAnalysis” method scans a predefined folder named “FUNCTIONS”

where the analysis modules must be located. For every module, it studies it to see if

the module extends the “Analyzer” class. If it does, JDCV will use an instance of the

java class “Class” and its byte loading capability in order to load the byte code of the

desired module into the Java Virtual Machine (JVM). However, there are two

important key points that should be mentioned here. First, in order to load an

analysis module, then we need to have the compiled version of that module and all

of the other classes upon which it depends.

Moreover, adding a newer (modified) instance of a class to JDCV during a

single execution requires unloading of all dependent code modules that were

previously loaded.

Secondly, we did not include a dynamic unloading method to unload the

added modules. Precisely, when a module is loaded to the JVM, then any other

changes to that module will not take place. This is because, if we loaded version 1 of

class “A”, and then we modified it to version 2. The “doAsysis” method will keep

 22

loading the old version since it has been saved by the major Class Loader. As a

result, when adding the same class again, the Class Loader by construction will refer

to the cached copy of that class. Moreover, the analysis modules need to use both of

the “CDS” and “DDS” classes to be able to access the code and design data

structures.

Finally, in Figure (7.3) we show snapshot of the output we have obtained

when running JDCV on the code and design of the Bank Account Application we

have mentioned in section 5.

Figure (7.3): JDCV Output

 23

8- CONCLUSIONS

When we started working on this problem, we thought that we can solve the

“in-sync” problem through parsing and direct comparison. Therefore, our vision at the

beginning of the project can be depicted as follows:

The green circle represents “Things We Know ‘are correct’”, the yellow circle

represents “things We don’t Know”, and the red circle represents “Things We Know

‘are wrong’”. However, with the careful analysis of the “in-sync” problem, we

concluded that the actual picture of the “in-sync” problem is as follows:

 Based on this realization we have changed our vision for the application and

learned how to produce a dynamically modifiable extensible framework.

9- FUTURE WORK

 We have not tested the JDCV framework on any large projects. While we are

fairly confident that the tool works, it would be valuable to study its usefulness on

real world sized systems.

 Moreover, we have implemented JDCV as a framework rather than a

standalone tool that addresses just aspects of the “in-sync” problem. The main

reason for this is because there is a huge room for further enhancements and

Y
R G

G
Y

R

 24

improvements. We intend to extend the framework by adding more analysis modules

that address the UML relations in more detailed and effective way.

Additionally, we can add more sophisticated analysis modules that are based

on heuristics in order to diminish the size of the YELLOW zone (“Thing we don’t

know” category) in specific areas. One possible project is to integrate the SOOT

Java Framework in our implementation. This in turn will equip JDCV with the

capability of building Control Flow Graphs (CFGs) which will help us obtain more

information about the methods calls in the code. Also, we can extend the current

analysis modules to address the new UML notations for representing the control flow

structure such as loops and if-statements. Specifically, such work will aid in a better

support for handling Sequence diagrams. Another important issue to be addressed is

when we have incompatibility among the results generated from different analysis

modules examining the same code and design from different analysis tools.

 25

REFERENCES

[1] A.Dennis, B.H.Wixom, and D.Tegarden,System Analysis and Design with UML

Version 2.0, 2nd ed, Hobokens, NJ: WILEY, 2005, pp. 1-2

[2]http://atlas.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/history_of_uml.ht

m

[3] Paul R. Reed, Jr. Developing Applications with JAVA and UML, Boston MA,
Pearson Education, 2001

[4] P.Grassle, H. Baumann, and P. Baumann, UML 2.0 in Action, Birmingham, UK:

Packt, 2005

[5] http://www.pcmag.com/encyclopedia_term/0,2542,t=UML&i=53392,00.asp

[6] http://www.ibm.com/developerworks/rational/library/3101.html; IBM Library
Website

[7] http://office.microsoft.com/en-us/visio/default.aspx ; Microsoft VISIO, CASE tool.

[8] http://www-306.ibm.com/software/rational/ ; IBM Rational Rose, CASE tool

[9] M.Girschick, “Difference Detection and Visualization in UML Class Diagrams”, TU

Darmstadt, 2006

[10] Z.Xing, and S.Eleni, “UML Diff: An Algorithm for Object-Oriented Design
Differencing”, University of Alberta: Edmonton AB

[11] A. Biermann, Great Ideas in Computer Science, , 2nd ed, MIT Pess, 1997

[12] http://www.omg.org/technology/xml/index.htm; Object Management Group, XMI
Technology

[13] http://www.altova.com/products/umodel/uml_tool.html; ALTOVA UModel
Enterprise Edition 2008, CASE tool

[14] https://javacc.dev.java.net/, JAVACC Project

[15] http://www.w3schools.com/Dom/dom_parser.asp, DOM Parsers

[16] http://java.sun.com/javase/6/docs/, Java Development Kit 6 Documentation

[17] https://javacc.dev.java.net/doc/docindex.html, JAVACC Documentation

	CMU-CS-QTR-101
	insertpage
	el-moughny
	obeidah

