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Abstract

Active search studies algorithms that can find all positive examples in an un-
known environment by collecting and learning from labels that are costly to obtain.
They start with a pool of unlabeled data, act to design queries, and get rewarded
by the number of positive examples found in a long-term horizon. Active search is
connected to active learning, multi-armed bandits, and Bayesian optimization.

To date, most active search methods are limited by assuming that the query ac-
tions and rewards are based on single data points in a low-dimensional Euclidean
space. Many applications, however, define actions and rewards in a more complex
way. For example, active search may be used to recommend items that are con-
nected by a network graph, where the edges indicate item (node) similarity. The
active search reward in environmental monitoring is defined by regions because pol-
lution is only identified by finding an entire region with consistently large measure-
ment outcomes. On the other hand, to efficiently search for sparse signal hotspots
in a large area, aerial robots may act to query at high altitudes, taking the average
value in an entire region. Finally, active search usually ignores the computational
complexity in the design of actions, which is infeasible in large problems.

We develop methods to address the disparate issues in the new problems. In a
graph environment, the exploratory queries that reveal the most information about
the user models are different than the Euclidean space. We used a new exploration
criterion called Y-optimality, which is motivated by a different objective, active sur-
veying, yet empirically performed better due to a tendency to query cluster centers.
We also showed submodularity-based guarantees that justify for greedy application
of various heuristics including Y -optimality and we performed regret analysis for ac-
tive search with results comparable to existing literature. For active area search for
region rewards, we designed an algorithm called APPS, which optimizes for one-
step look-ahead expected rewards for finding positive regions with high probability.
APPS was initially solved by Monte-Carlo estimates; but for simple objectives, e.g.
to find region with large average pollution concentrations, APPS has a closed-form
solution called AAS that connects to Bayesian quadrature. For active needle search
with region queries using aerial robots, we pick queries to maximize the informa-
tion gain about possible signal hotspot locations. Our method is called RSI and it
reduces to bisection search if the measurements are noiseless and the signal hotspot
is unique. Turning to noisy measurements, we showed that RSI has near-optimal ex-
pected number of measurements, which is comparable to results from compressive
sensing (CS). On the other hand, CS relies on weighted averages, which are harder
to realize than our use of plain averages. Finally, to address the scalability challenge,
we borrow ideas from Thompson sampling, which approximates near-optimal deci-
sions by drawing from the model uncertainty and using greedy decisions accord-
ingly. Our method is conjugate sampling, which allows true computational benefits
when the uncertainty is modeled with sparse or circulant matrices.
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Introduction

We study the problem of active search for positive instances with desired properties [Garnett
et al., 2012, Wang et al., 2013]]. Active search is like active learning in binary settings [Settles,
2010], but the objective is to recall all positive instances. It assumes a similar paradigm: First,
details about the search domain and the desired properties are provided. Then, an algorithm
or autonomous machine will conduct the search iteratively, where for each step, the algorithm
or machine will select an instance, obtain feedback by querying human or interacting with the
environment at the selected point, and update its internal parameters to improve the next selec-
tions. The iterative process continues until the user quits and, while trials and errors are bound to
happen, the ultimate goal is to maximize the total number of positive instances found in the end.

Autonomous systems operating under this paradigm may be valuable in many applications. For
example, in environmental monitoring, we take samples at various locations to find all polluted
areas and identify their the sources. In an email investigation, we want to retain all emails with
questionable content in order to provide evidence. In social science, we want to find people who
have unique opinions in order to understand them. In search and rescue operations, we want
to locate all human survivors of a disaster in a large area. Active search can help by making
decisions about where to inspect in order to find all relevant information, in a similar manner to
human expert investigations.

Active search focuses on collecting and learning from feedback in a sequential application of
open-loop search. For example, in environmental monitoring by fan-boat, the information from
each search query (i.e., taking measurement at any location) is limited at the chosen location
and maybe its adjacent locations. Therefore, to find all positive readings that indicate pollutions,
we need to actively plan for the next locations to take measurements after obtaining results at
the previous locations. This is different from the passive search in information retrieval context



Figure 1.1: Active search applications: environmental monitoring, aerial search, public opinion
search, and finding all relevant information.

where the ultimate goal is to retrieve all values whose keywords match the search word
et al., 2010, Manning et al., 2008]. For our active search in this context, a more relevant task
would be to interactively refine search results in cases where the initial keyword is ambiguous.
We will visit a similar problem in details in Chapter 2}

Another related but different interpretation of active search is recommender systems
cius and Tuzhilin, 2005, McMabhan et al.,[2013]]. These systems are widely used in online inter-
active marketplaces, where the goal is to provide online customers items that they will likely to
click, i.e. positive items in the prediction of clicks based on the customers’ previous browsing
history. The idea is to model every customer’s preference based on all other customers who have
exhibited similar preferences in their previous browsing history. Even though recommender sys-
tems are built for customer interactions, the algorithms themselves do not usually use interactive
learning or active explorations. As a result, recommender systems are not suitable for use in
active search applications in unknown environments.

2



A slightly more complicated approach is reinforcement learning [[Sutton and Barto, |1998]]. How-
ever, reinforcement learning focuses on finding an optimal strategy after solving many active
search problems in controlled environments, whereas we focus on finding good strategies to
solve new active search problems under lenient assumptions.

1.1 Common Solutions to Active Search Problems

So, how do we solve active search problems? Although active search is a newer concept, there
are many algorithms in related fields that can serve as a good starting point.

Designs of experiments (DOE) [Krause et al., 2008, Montgomery, 2012] are based on the idea that
collecting best quality data is often more useful than collecting more data, especially when data
collection is costly. In our terminology, experiments mean human/environmental interactions.
The goal in experimental designs is usually to reduce the uncertainty in the parameter space of
the model that predicts interaction outcomes (i.e., instance labels in our case). When applied
to active search, once the underlying model is obtained, the positive instances may be directly
observed. In fact, many existing systems are built on the explore-then-commit idea, including
robotic search for radiation sources, a/b testing and adoption of the optimal policy, etc. While
being the most reliable baseline, the idea of explore-then-commit is usually not the most efficient
for finding all positives using as few query interactions as possible.

At the other extreme, Bayesian optimization (BO) [Brochu et al., 2010, Jones et al., 1998,
Mockus, 1974] aims to directly find the global optimum of a black-box function. BO relies
on Bayes priors, which define the scope of the black-box optimization problem (or the active
search problem) via probability distributions that jointly model all possible interaction outcomes
at all queryable instances. The Bayesian view also allows for simulation on the evolution of the
interaction outcomes without interactions actually taking place. This thought process is called
look-ahead modeling. Upon revealing of true interaction outcomes, a posterior model is formed
by reasoning with both empirical evidence and the prior model. Then, new data collection deci-
sions are made based on the current posterior model.

A naive solution to BO chooses queries in order to greedily maximizes the expected improvement
on the maximum value at the query point, in terms of its one-step look-ahead model [Jones
et al., |1998]]. Hennig and Schuler| [2012]], Hernandez-Lobato et al.| [2016]] considered a global
measure of utility also in one-step look-ahead modeling. BO may be used for active search to find
singular positive instances; to further find all positive instances, one must modify the objective
to simultaneously find global optima and stay away from the previously found positive instances
[Vanchinathan et al., 2013].

Further, based on the same Bayesian modeling, active search may be directly approached. Gar-
nett et al.|[2012], Wang et al.|[2013]] use an objective that counts the expected number of positives
in a multi-step look-ahead model, where at every step the algorithm chooses the Bayes-optimal
query according to the look-ahead simulations. A true Bayes-optimal decision is arguably the
best decision, but their computation is often prohibitively slow because they involve infinite-step
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look-ahead modeling. |Garnett et al.| [2012], [Wang et al.| [2013]] used two-step approximations
and showed good empirical results. Branch-and-bound pruning was used to further increase the
decision speed.

Finally, to combine exploratory DOE and greedy BO for long-term rewards without the com-
plexity of multiple-step look-ahead, recent research focuses on a set of statistical models called
multi-armed bandits (MAB) [Auer, 2003} Bubeck! 2012, |Gittins,|1979]. MAB studies the problem
where there is a pool of bandit arms, each of which holds a hidden distribution and can output
a random reward value accordingly if it is chosen to be played. The objective is to accumulate
maximum sums of rewards after finite rounds, assuming each round costs a unit token for any
choice of arm. MAB focuses on guarantees on cumulative regret, which is the gap in expected
cumulative rewards between the optimal choices of arms and the choices from the algorithm.
A meaningful guarantee on cumulative regret should be sub-linear in terms of the number of
play rounds. To obtain guarantees on cumulative regrets, a common solution to MAB problems
usually involves two considerations: exploitation and exploration. Exploitation prefers to greed-
ily choose the best options based on empirical results, similar to the principles in BO, whereas
exploration considers choosing new or under-explored options to reduce model uncertainty like
DOE.

We can adapt MAB strategies for use in active search if we treat each arm as a searchable in-
stance and disallow repeated play of the same arms. We show in [Ma et al., 2015a]] that similar
guarantees are obtainable in our choice of model.

1.2 Limitations on Existing Active Search Solutions

However, current research on active search fails to realize the complexity in real applications.
They typically assume that a search action can only apply to an individual arm or a single point,
the following observation will only cover that single point, and a search reward will be assigned
to the same point. In practice, actions may be allowed on a group of points and the search objec-
tive or reward may also be a global pattern defined on a region. Another real-world complexity is
the search domain. Instead of a Euclidean space, instances can be embedded as nodes in a graph
structure. My research is on intuitive algorithms under these circumstances.

To begin with, we study active search on graphs, where the instances are represented as graph
nodes and the pairwise similarity between instances are recorded as graph edges. The edges are
observed a-priori, but the node labels are hidden and only revealed upon queries. For example,
in an email investigation, the links play an important role for the distribution of questionable
content. Active search aims to find all emails that may be positive evidence for a misconduct,
decided by human investigators. Simple application of linear-bandits [Dani et al., 2008|] and
Gaussian process-bandits [Srinivas et al., 2010b]] will cause undesirable focus on the graph pe-
riphery (i.e., leaf nodes that have long graph traversal distances to most other nodes), where the
uncertainty is the largest according to linearization of the graphical models. However, querying
on the periphery intuitively fails on the promise of model uncertainty reduction.
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Our next application is on active search for patterns defined at a region level. An example is
environmental monitoring by an autonomous fan-boat. While the boat travels and takes point
measurements with its on-board sensors at locations of its choice, identification of real pollution
problems requires consistent measurements in a large region. We label a region as positive if the
mean value in the region exceeds a given threshold with high probability. Another example is
electoral polling where the objective is to find winning states that include a lot of sample points.
We even want to find more complex patterns defined by functionals on regions. However, using
point-based active search may not be the most efficient solution.

We also consider searching for signal hotspots in a large area using aerial robots that take aggre-
gate measurements at high altitudes. Examples of the signal hotspots include radiation sources,
gas leaks, and human survivors of disasters. The measurements are aggregate, taken at high
altitudes with limited spatial resolutions. For simplicity, we consider single-pixel cameras that
record the average values in rectangular regions. Intuitively, a good search algorithm should take
advantage of the increased coverage of measurements at high altitudes, while also pay attention
to the increased noise as the coverage increases. However, the problem of aerial search using
aggregate measurements under rectangular constraints has rarely been discussed before.

Finally, Bayesian approaches for active search and optimization traditionally ignores the com-
plexity of the decision process, assuming that the actual experiments cost much more time and
resources. However, such assumptions may hinder their wider applications in less-expensive ex-
periments. Recent discussions on Thompson sampling suggest that inaccurate, noisy decisions
can also yield reasonable convergence. Despite conceptual simplicity, little real advantage has
been shown for Thompson sampling in either computational or statistical complexity. For exam-
ple, Thompson sampling requires an exact draw from the Bayes posterior distribution, which is
often hard for complex distributions. Can we use Thompson sampling to make fast, inaccurate
draws from approximate posterior sampling, in order to truly speed up the decision process to
choose queries, especially in the above applications?

Table [[.I] summarizes the three components for my PhD thesis.

Table 1.1: Thesis Components

Active search | Point rewards Region rewards
Point actions

e Active search on graphs [Maetal., | ® Active area search and Pointillism
2013, 2015a] [Ma et al., 2014, 2015b]

¢ Conjugate sampling [Ma et al.,
2017b]

G ti
roup actions | Active needle search with region | ® A unified model (future work)

sensing [Ma et al., 2017a]




1.3 Thesis Contributions

1.3.1 Active Search on Graphs

Assume we are given a graph with known edges but unknown node labels; we study the se-
quential design of queries on the node labels for several interconnected problems: to survey the
percentage of positive nodes, to learn (i.e., predict) all the unqueried nodes, and eventually to
search for (i.e., collect) all positive nodes. The objective is to achieve the best task performance
with any query budget, starting with no initial labels and only using information given by the
graph connectivity.

There are many ways to use the information embedded in the graph structure; we assume a prior
distribution on the node values in the family of Gaussian Random Fields (GRFs) [Zhu et al.,
2003al]. For active learning and surveying, we aim to minimize the uncertainty of the posterior
model, using a novel >-optimality criterion [Garnett et al., 2012]. For active search of positive
nodes, we aim to minimize cumulative regret, which is the cumulative gap in the node values
between an optimal sequence of query choices and our query choices, using a method called
GP-SOPT that combines GP-UCB [Srinivas et al., 2010b|] and >:-optimality.

On both active learning and surveying, >:-optimality empirically outperformed a rich set of base-
lines including uncertainty sampling [Settles, 2010], expected error reduction [Zhu et al., 2003b]],
D-optimality [Krause et al., [2008], and V -optimality [Ji and Han, |2012]. One explanation we
found was that >.-optimality tends to query cluster centers, whereas the alternatives tend to query
on the periphery (e.g., leaf nodes) of a graph. We also showed a near-optimal theoretical guar-
antee on the sequential application of D, V', and X-optimality. On active search, GP-SOPT also
outperformed GP-UCB, while having comparable theoretical regret bounds.

1.3.2 Active Area Search and Pointillism

We introduce the problem of active area search, which seek to discover regions of a domain
exhibiting desired behavior with limited observations. Unusually, the patterns we consider are
defined by large-scale properties of an underlying function that we can only observe at a lim-
ited number of points. Given a description of the desired patterns (e.g., the average value in
the regions exceeding a given threshold or patterns defined in the form of a classifier taking
functional inputs), we sequentially decide where to query function values to identify as many
regions matching the pattern as possible, with high confidence. Our naive solution, called Ac-
tive Pointillist Pattern Search (APPS), uses Monte-carlo estimation of the expected rewards in
one-step lookahead. For one broad class of models, including finding regions with high average
values, the expected reward of each unobserved point can be computed analytically, yielding an
analytical solution we call Active Area Search (AAS). We demonstrate the proposed algorithms
on three difficult search problems: locating polluted regions in a lake via mobile sensors, fore-
casting winning electoral districts with minimal polling, and identifying vortices in a fluid flow
simulation.



1.3.3 Active Needle Search with Region Sensing

We consider using aerial robots to search for threats, gas leaks, or human survivors of disas-
ters. Intuitively, search algorithms may increase efficiency by collecting aggregate measurements
summarizing large contiguous regions. However, most existing search methods either ignore the
possibility of such region observations (e.g., Bayesian optimization and multi-armed bandits) or
make strong assumptions about the sensing mechanism that allow each measurement to arbitrar-
ily encode all signals in the entire environment (e.g., compressive sensing), which ignores the
physical limitations of aerial robots with on-board sensors. We model the limitation as region
sensing constraint, which allows only noisy observations of the plain average values in rectan-
gular regions (including single points).

We propose an algorithm that actively collects data to search for sparse signals using region sens-
ing, based on the greedy maximization of information gain. Assuming that the observation noise
is a superstition of standard Gaussian noise at every point in a region, we analyze our algorithm
in 1d and show that it requires O (7/,:2 +k?) measurements to recover all of k signal locations with
small Bayes error, where ;. and n are the signal strength and the size of the (discretized) search
space, respectively. We also show that active designs can be fundamentally more efficient than
passive designs with region sensing, contrasting with the results of |Arias-Castro et al.| [2013]].
We demonstrate the empirical performance of our algorithm on a search problem using satellite
image data and in high dimensions.

1.3.4 Conjugate Sampling

We study conjugate sampling, which is an alternative to Thompson sampling to further speed up
Bayesian decision making by using fast, inaccurate draws from approximate posterior sampling.
Conjugate sampling makes Bayesian optimization decisions in O(y/kt4) time and with O(n)
excess memory at the same time, where « is the condition number of the information matrix of
the posterior distribution, 7 is the dimension of the design space, and ¢ 4 is the time complexity of
matrix-vector multiplications involving the information matrix. While comparable to Thompson
sampling in general cases, our method yields additional computational benefits, in terms of both
space and time complexity, when we use sparse or circulant information models such as Gaussian
random fields [Ma et al., 2015a] or Gaussian processes with Kronecker-decomposable kernels
[Flaxman et al., [2015} [Ma et al., 2014 [Wilson and Nickisch, [2015]].






Active Search on Graphs

2.1 Introduction

As the world gets increasingly digitized and electronically recorded, how to quickly identify
relevant pieces of information becomes a major issue. Internet search engines are an integral
part of modern life, serving as a probe into the diverse, complex and expanding space of human
digital traces. Despite being successful in many information retrieval tasks, the keyword-based
query mechanism in most search engines may fall short when the targets are characterized by
complex patterns or signatures beyond keywords. For example, financial transactions associated
with illegal activities bear signatures involving multiple factors such as time, location, occupation
of the account owner, etc. In the investigation of organizational misconduct, such as the Enron
scandal, the important leads or evidence, oftentimes buried in a sea of diverse electronic and
paper trails, usually involve information exchange among key individuals and their relationship.
In these situations, keyword-based search may serve as a good starting point, but is certainly far
from completing the task.

Such needs of more general search paradigms have recently motivated several efforts [Garnett
et al., 2012, |Vanchinathan et al.l 2013, Wang et al., 2013]], most of which are related to the
active search framework proposed by Garnett et al. [2012]]. Active search is an interactive search
mechanism that begins with the user providing one or few target examples, referred to as seeds,
such as past financial transactions that have been linked to illegal activities. Based on these seeds,
an algorithm figures out what instances the user should examine next and presents them to the
user, who then decides whether the presented instances are relevant or not. Upon receiving this
feedback, the algorithm updates its search strategy accordingly and selects the next instances to
present. The loop continues until the user quits, and the goal is to maximize the total number of
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relevant instances found.

As one can see, active search has close connections to some well-studied machine learning
paradigms. At a first glance, active learning [Settles, [2010] seems the most related because
they both ask for user feedback incrementally and adaptively. However, active learning aims at
improving generalization performances with as few label queries as possible, while active search
is evaluated by how many relevant instances it can find along the way, and therefore must care-
fully balance Exploitation and Exploration (E&E). In contrast, active learning only considers
exploration, which is half of the problem. The E&E trade-off relates active search to stochastic
optimization in the multi-armed bandit setting [Bubeck et al.,|2009, Dani et al., 2008, [Kleinberg
et al., 2008, Robbins, |1985]], where the goal is to find the maximum of an unknown function
using as few function evaluations as possible. However, active search deviates from this setting
in that it selects instances without replacement and is competing with the best subset of instances
rather than the single best.

We investigate active search when the instances are represented by a graph whose edges encode
pairwise similarity among the instances, represented as nodes. Many real-world data are of this
type, such as web pages, citation networks, and e-mail correspondences. For data that are not
naturally represented as graphs, a graph that connects the nearest neighbors of each data point
can still be beneficial because it may reveal useful manifold structures [Belkin and Niyogi, 2001,
Tenenbaum et al., 2000]. We use active search to find positive nodes on the given graph, using
the information that connected nodes tend to have similar labels to improve its efficiency.

2.1.1 Graphs

The main character of graph-based representation of data is that, before collecting actual labels,
all prior features of a data point, represented as a node in the graph, are implicitly characterized
by the connections it has with all other data points, i.e. the graph edges. The graph representa-
tions are, in principle, tangential to the usual tabular representation of data where instances are
separated by rows and features are separated by columns. For simplicity, we only discuss the
graphical properties of data. For example, when making document recommendations, we will
mostly only consider the citation patterns, while ignoring any information on the text of the doc-
uments, such as their topic features. To make the distinctions clear, it is possible to include the
tabular information when building the graphs, i.e., the edges may include the similarity in topics
between two documents, besides their citation links. The difference is that such edge engineer-
ing is done as a preprocessing step, out of the scope of this thesis. A formal treatment may use
Conditional Random Fields (CRFs) [Lafferty et al.,|2001]], which transforms all types of features
into a graphical model.

Example 2.1 (Graphs). Some datasets are naturally represented by graphs. Ji and Jin [2017)]
used coauthorship and citation information to infer communities among statisticians. Figure 2.1
shows a large component in a coauthorship network for statisticians, where an edge is formed if
two authors have coauthored two or more papers in high-profile venues. Names are shown for
nodes with the highest degrees. Nodes are also colored according to a result from community
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detection using Newman’s Spectral Clustering method (NSC) [Newman, 2006|]. The communities
can be explained by the researchers’ academic ties and interests. The example shows that using
the connectivity information alone, one may be able to infer useful properties of the nodes.

() °
e D®id P —g-0—%
.lgunw s |

e () °
t. JHSMP&TID@.Q 0o V" 0

L] onglmZen °
| Sl g.)%z %g 0% s oo 2o
[ ] LY g b é -0
¢ 8o © N oJ'anqu%. '. o °*
8o 020 °
o o o o=O0—RaymbadCargll 0 o o e o
o o O N Hoad *% o "
oOPte@Halloo 6 00 AN * 5
OHQ@‘Q@OI‘ e@o% 19 5 o ° : o
o009 o d P K ‘ 0.
e S o°
| ) i
:WI: o O, 0

Figure 2.1: (Partial) coauthorship network for statisticians by Ji and Jin| [2017].

On the other hand, it is possible to turn a feature-based database into a graph. In Figure we
show the graph constructed from a UCI dataset where the input features are images of 8-by-8-
pixel hand-written digits. The graph is constructed by connecting every data point to its k(= 4)
nearest neighbors, where the distance is taken as the Euclidean distance on the raw pixel values,
represented as 64-dimensional vectors by aligning pixel values in natural sequential orders. In
other words, the weight of the edge between node i and j is

wij = Lenmmy + Lueniy € {0,1,2}

where Ny.(i) is the index set of the k nearest neighbors for data point i. Here a weight of 0
indicates that the corresponding edge does not exist. To better visualize the resulting graph,
we use the scores of the first two principal components of the graph Laplacian (to be defined in
Section[2.3)) as the coordinates of the nodes that represent images. In fact, each cluster represents
a single digit label shown by a small image icon (chosen by our Y:-optimality active learning
criterion).

Besides the demonstrated unsupervised learning results, graphs are also good places to exercise
Semi-Supervised Learning (SSL), which is the problem where part of the graph nodes have actual
class labels, e.g., obtained by active queries. The goal in SSL is to infer the correct labels of the
remaining nodes where the true labels are hidden from the algorithm. While the prediction task
may as well be solved via purely supervised learning, using graphs may improve accuracy by
using the density of the unlabeled data points. A good intuitive solution is label propagation
[Zhu et al., [2003a]], which predicts the label of a node by propagating the labels (or predicted
labels) from its neighbors, until reaching a stable solution.

11



(a) An example unlabeled graph (b) Exploratory queries by Y-optimality.

Figure 2.2: Active learning on graphs: given (a) with no labels to start with, we aim to design an
exploratory set (b) to query for the labels in order to correctly classify the remaining nodes.

Beyond SSL, the true question for active search is how to choose the set of nodes to directly
query for their labels, given a querying budget and an objective (e.g., images of a particular
digit). To optimally design for queries, active systems typically require a definition of the family
of models to be considered or a Bayes prior for probable node label distributions. Here, we use
Gaussian Random Fields (GRFs) [Zhu et al., [2003a]], which is a natural extension to SSL, which
we will discuss in more details in Section

2.1.2 Problems Being Solved

Existing active search approaches [Garnett et al., 2012, [Vanchinathan et al, 2013, Wang et al.,
2013]] either lack theoretical guarantees or ignore certain graph properties, thereby degrading

empirical performances. We improve on the existing systems by analyzing better exploration
designs for GRFs, the Bayesian prior for label distributions. The problem of active search is
decomposed into two subproblems:

Active learning (exploration) on GRFs. We consider the problem of designing a good active
learning strategy that, under labeling budget constraints, selects which data points to query for
labels that are most helpful for classification on a graph-represented database. We assume that
the node label distribution is modeled by a GRF with known hyper-parameters. The performance
of a specific active learning strategy is measured by the classification accuracy using SSL that is
based on label propagation.

Active search (E&E) with GRFs. We assume that the node labels are binary and we aim to find
all positive nodes, in a sequential querying framework, using as few query points as possible.
Unit reward is granted to every positive query outcome. The performance of an algorithm is
measured by the cumulative reward when the sequential process is stopped at any time step. The
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Figure 2.3: Active search problem on a toy graph

performance is measured by cumulative regret, which is the gap between the maximum cumula-
tive outcomes using the optimal designs and the actual cumulative outcomes using our algorithm.
We hope to obtain no-regret guarantees, where the average cumulative regret converges to zero,
as the number of queries grows to infinity.

2.1.3 Main Contributions

Our main contribution is to show X-optimality [Garnett et al., 2012] as a better exploration
criterion with GRFs for active learning, active surveying and active search, with theoretical guar-
antees. We studied in the following aspects to support our claim:

First, a variety of design principles: D-optimality [Krause et al., 2008|], V -optimality [J1 and
Han, 2012]], and > -optimality, can be cast in the framework of greedy Bayes-optimal selection
rules for active learning on GRFs. However, the design principles are global objectives that
measure the entire set of query choices, which may be infeasible to optimize for. We show
that greedy, sequential selection of queries is nearly optimal in the optimality with at least (1 —
1/e)-ratio. This result was previously unknown for V//3-optimality, despite they have better
empirical performance. One key insight is that all of the objective functions are monotone and
submodular (i.e., later inclusion of a node always provides a diminished return, given all other
choices unchanged).

As a corollary, we showed that GRFs are suppressor free. In linear regression, an explanatory
variable is called a suppressor if adding it as a new variable enhances correlations between the
old variables and the dependent variable [Walker, 2003]]. Suppressors are persistent in real-world
data. We show GRFs to be suppressor-free. Intuitively, this means that with more labels acquired,
the conditional correlation between unlabeled nodes decreases monotonously until their Markov
blanket is formed. That GRFs present natural examples for the otherwise obscure suppressor-free
condition may be interesting.

For practical active learning on graphs, each objective optimizes for a different surrogate objec-
tive, which is unanimously an approximation to the true binary classification objective. More-
over, the GRF prior is a linear relaxation of the true prior distribution that allows only binary
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labeling of nodes. Therefore, the best choice of optimality criterion may not be obvious. We con-
ducted thorough experiments on network graphs as well as nearest-neighbor graphs and showed
that greedy application of Y-optimality had the best performance in our experiments. The ex-
periments also included other baselines such as mutual information gain [Krause et al., 2008]],
uncertainty sampling, and expected error reduction [Settles, 2010, |Zhu et al., 2003b]].

Active search aims to collect as many positives as quickly. To perform well, a good acquisition
rule needs to consider both exploitation (choosing near proven positive nodes) and exploration
(finding new areas of positive nodes). The common Gaussian Process-Upper Confidence Bound
(GP-UCB) algorithm [Srinivas et al., 2010b] uses marginal variance as the exploration measure.
However, when applied to graphs, it tends to select nodes at the periphery of the graph (e.g.,
leaf nodes) because they have large predictive variance. Yet, the rewards of these nodes reveal
little information about the reward distribution over the whole graph. Instead, we propose a new
method, GP-SOPT, which uses Y-optimality as the exploration function. The improvement is
visualized in Figure

(a) Choices from UCB (b) Choices by GP-SOPT

Figure 2.4: For the toy graph example, choices from (a) direct application of GP-UCB [Valko
et al., 2014, Vanchinathan et al., [2013]] versus (b) our vanilla GP-SOPT. We observe that our
method (b) tends to select more from cluster centers, which helps reduce variance of the unob-
served values/rewards, whereas the previous method (a) tends to select on the graph periphery.

We further showed theoretical guarantees for GP-SOPT in terms of cumulative regrets. Cumula-
tive regret measures the difference in the number of positives found between our algorithm and
the optimal active search algorithm given the same number of active search steps. Our guaran-
tee used a newer concept called effective dimensions [Valko et al., |2014]] that more accurately
measures the spectral complexity of the graph. Despite better empirical performance, our theo-
retical result is at best comparable to the [Valko et al.,[2014], if not worse for constant terms. We
speculate better results if the complexity assumption is measured in other terms; in the current
analysis, it is measured by Shannon entropy (D-optimality) which is an inferior measure of the
true complexity.

Finally, we discussed the connection between -optimality and spectral norm minimization,
which leads to discussions about choosing other prior models on graphs and possible ongoing
acceleration ideas in Chapter 5]
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2.2 Related Work

Settles| [2010] provided a general introduction to active learning methods in practice. A few
principled solutions were discussed, including uncertainty sampling, expected error reduction,
variance reduction, etc. The paper was written for active learning, but the ideas are general
enough to other similar settings including regressions, with simple modifications. On the other
hand, there was a lack of graph-based solutions.

A more concrete example was considered by |[Krause et al.| [2008] for sensor placement in a
large area. The measurement values are measured by a Gaussian process (GP) [Rasmussen and
Williams, 2006] and information gain (i.e., D-optimality) is used as the design criterion. One
of the reasons for choosing information gain is to have near-optimal global guarantees on the
final design if the sensors are placed in a sequential greedy manner. Despite the theoretical
motivation, Krause et al.| [2008]] noted the issue that the outcomes of plain information gain
criteria tend to select queries at the boundary of the environment and provided a fix by altering
the design criterion to use mutual information gain.

When the Bayes prior is limited to GRFs, Ji and Han| [2012] proposed greedy variance mini-
mization (which we call V -optimality) as a cheap and high profile surrogate active classification
criterion. To decide which node to query next, the active learning algorithm finds the unla-
beled node which leads to the smallest average predictive variance on all other unlabeled nodes.
Experiments on citation networks were used to justify for the greedy algorithm. However, the
motivation of the objective was little discussed, nor were there any theoretical guarantees. In fact,
we show that V-optimality has the same types of near-optimality global guarantees as [Krause
et al., 2008]], when limited to GRFs (as opposed to GPs). Completing the picture, [Krause et al.,
2008] showed a counter-example for similar guarantees of V' -optimality in general GPs.

The problem of active surveying and our contribution of >-optimality were earlier discussed by
[Garnett et al., 2012]]. Here, however, the problems were discussed in low-dimensional Euclidean
spaces where GP priors are more natural choices. Since the solution was based on variance
reduction, like the counter-example in Krause et al. [2008]], no global guarantees were provided.
Instead, the authors used a multiple-step look-ahead method accompanied with subtree-pruning
techniques.

On the global optimality for the greedy approaches, a key result from Nemhauser et al.| [[1978]],
shows that any submodular and monotone set function yields a (1 — 1/e) global optimality
guarantee for greedy solutions. Our proof results coincide with Friedland and Gaubert| [2011]],
but we used different principles and were not restricted to spectral functions.

Garnett et al. [2012] also motivated active search and later Wang et al. [2013] extended the
settings to graphs, where GRF priors were used. Despite decent empirical performance, the so-
lutions, which also used multi-step look-ahead planning with pruning, do not hold any theoretical
guarantees.

Vanchinathan et al.| [2013]] proposed a GP-based algorithm, GP-SELECT, for sequentially se-
lecting instances with high user scores or ratings (rewards). This algorithm extends the popular

15



GP-UCB algorithm [Auer, 2003}, Cox and John, 1997]] for stochastic optimization and inherits
nice theoretical guarantees [Srinivas et al., 2010b].

Valko et al.|[2014] considered bandit problems where arms correspond to nodes on a graph and
the rewards form a smooth function over the graph. Their algorithm can be viewed as a special
case of GP-UCB with a kernel defined by the inverse of a graph Laplacian (augmented with an
identity matrix). To analyze the performance of their GP-UCB-style algorithm, they propose
the notion of effective dimension of a graph, which can be viewed as a measure of the spectral
decay of the graph kernel, thereby determining, the performance of the algorithm [Srinivas et al.
[2010b]]. Our solution is different but we also use the effective dimension to analyze our proposed
methods. Other recent developments on active learning and search include (Chen et al.[ [2014]],
Gadde and Ortega) [2015]], Jun and Nowak [2016], Liu et al. [2015], Wang et al.|[2016]]

2.3 Background

There are many ways to use graph connectivity information. We will explore the idea of using
energy-based models that are generally known as random fields, specifically Gaussian random
fields (GRFs). To build intuitions, we will explain why GRFs naturally leads to label propagation
in Semi-Supervised Learning (SSL) settings. However, our focus in active search requires us to
also pay attention to the uncertainty measures that distinguish GRFs from label propagation.

2.3.1 Gaussian Random Fields (GRFSs)

We use the Gaussian random fields on graphs as described in [Zhu et al., 2003a]. Let G =
(V, W) represent an undirected graph with n nodes, where each node v; has an (either known
or unknown) label value f; and each edge w;; has a fixed nonnegative weight that reflects the
proximity, similarity, etc, between nodes v; and v; (recall the handwritten digits example in
chapter introduction). The value f; is unknown at first and can be revealed only when it is
queried explicitly. There are two ways to model label observations: one assuming that the labels
are directly observable, while the other assuming that the observations have additive Gaussian
noise:

y; = fi, or y; = f; + ¢, where e ~ N(0, 0?). (2.1)
The first observation model is equivalent to the second when taking o — 0.

We relax f; to real values, f; € R,Vi. GRF generates them according to a joint distribution on
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the node values, which we represent by a vector f = (fi,..., f,) ', using the energy function

E(f) = %Z wig(fi = £3)* + %wo >_(fi = o)’ 2.2)
= %(f — ftg) (D — W + woI)(f — fa,)
= %(f = fo) ' L(f — o), (2.3)

9

where “7 ~ 77 indicates that node v; is directly connected to v; on the graph and f is a
prior mean value, set at the average class proportion of positives. Eq (2.3) puts (2.2) in vec-
tor/matrix forms, where W = (w;;)7;_, is the weight matrix such that the (4, j)-th element is
wij, D = diag(W1) = diag(}_, w1y, - - -, 25 Way)s o = (o, - - - Jio)", and T is the identity ma-
trix. Matrix L = D — W + w1 is called augmented graph Laplacian matrix. Define C = L.
GREF prior. The higher the energy F(f) for a choice of f, the more improbable f is to be

generated. This intuition can be modeled by a multivariate normal prior distribution using the
negative energy as its potential,

exp(—E(f))
(2m)% (det(L))?

p(f) = log p(f) =~ —E(f), (2.4)

where “~" hides the normalization constant that turns (2.4)) into a proper probability distribution.

Posterior distribution. GRF describes a world generation process using (2.1)&(2.4). However,
the true values of f is only one draw from the prior distribution. When observations are made
at a set of nodes vy, , vs,, . . ., Us,, Wwe need to update the Bayes belief to a posterior distribution.
Let S; = {s1,..., 8} C V be the index set of node queries and let ys, = (ys,,---,s,) " be the
observation outcomes in the corresponding order; GRF will update its posterior model to

t
log pi(f) = log p(f | Si,ys,) ~ logp(f) + Y logp(ys, | f,)
T=1

o~ —% Zwij(fi — fj)2 — %Wo Z(fz — fio)? — %‘2 Z(ysT — [ )2 (25)

inj i=1 =1

Notice, is a multivariate normal distribution with a different mean vector and a different
covariance matrix.

2.3.2 GREF Posteriors
Posterior Mean Solves Semi-Supervised Learning (SSL)

After obtaining part of the node values, SSL aims to predict the remaining node values. One
natural solution is to use label propagation, which iteratively propagates the known values or
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Figure 2.5: SSL example. Red “+” and blue “()” are the only provided supervisions. The
number on every node is the chance that it belongs to class “+”, predicted by label propagation.

previously propagated values to neighboring nodes. In this way, the final stable node values
will be influenced by the structure of the graph. Mathematically, label propagation uses iterative
assignments to find the stable point in the following,

i = Ys. ifi=s,€9,
dip; = Z wjjit;, otherwise,
i

where : = s, € S indicates that the node v; is queried at step 7 and labeled as y, . Labeled
nodes are not changed during the iterative assignments, whereas the remaining nodes keep up-
dating according to the mean value in their neighbors until convergence. It is intuitive that label
propagation must converge when w;; > 0, V4, 7, and the solution must observe 0 < 1; < 1, V4, if
all labels are within [0, 1].

How does label propagation relates to GRFS?

By setting the gradient in the GRF posterior (2.5)) to zero, we may find that the posterior mean,
i.e., the max-a-posteriori estimate of the GRF posterior, solves an augmented version of label
propagation,

1 1 _ e
(; + wo + dz’)ﬂz’ = ;ysT + Zwijﬂj +woflg, ifi=s.€8,

g~

(wo + d;) s = Z W1 + wollo, otherwise,

i
where if we take 0 — 0 and wy = 0, the solution will be the exact label propagation.

Thus, GRF posterior distribution can be seen as a full Bayesian extension to label propagation.
Moreover, GRFs additionally provides covariance matrices to measure the full model uncertainty.
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Covariance Matrix

When label propagation makes predictions for SSL, it ignores the certainty of the prediction
itself. For example, a prediction value of x; = 0.5 can mean either an approximation error, if
the node directly connects to two nodes with different labels, or an estimation error, if the result
of 0.5 is due to the node being far from all other labeled nodes. There is no easy way to improve
on the former case unless we change the model that describes node value distributions, i.e., by
changing the graph itself. On the other hand, the latter can be improved if we change the label
queries to be close to y;. For general active learning, we want to choose queries to be close to all
unlabeled nodes.

Since GRF posterior model is a multivariate normal distribution, its covariance matrix is an ef-
fective way to measure how far each node is to the labeled nodes. In fact, the marginal posterior
variance on the node variable f; shows the graph commute time from node v; to any of the la-
beled nodes using random walks [Doyle and Snell, 1984]. Another intuitive analogy uses spring
network systems. If all the graph nodes are masses connected by springs according to the graph
edges, after pinning the queried nodes at their label values, the stiffness of the unlabeled nodes,
i.e., the certainty of the prediction mean, will be inversely proportional to the marginal variance
reflected in (2.3). The farther a node is to the labeled nodes, the less stiff the corresponding
mass is and also the larger its posterior marginal variance becomes. The posterior correlation be-
tween any pair of variables f;, f; can also find analogy in the spring mass system, as how much
displacement one node has if the other node is displaced by a unit distance.

Notice, the prior covariance matrix is properly defined if the augmentation coefficient wy >
0. wol is considered an augmentation matrix because it effectively builds a weak connection
between every node and the prior mean fig, such that the prior model has full rank.

Explicit Solutions in Matrix Form

For convenience, we can rewrite (2.3) in matrix form. Recall L = D — W + wI; let e,. =
(0,...,0,1,0,...,0)" be an indicator vector whose nonzero is at index s, the posterior distri-
bution becomes

1, 1
log pi(£) = =5 (f — o) "L(F — o) = > 55 (vs, = fo.)®

T=1

t
_ 1
_—fT <L+ — E €5, €, ) (Lﬂo + ; E ysTeST> f (2.6)
T=1

12

Let 1 and C® be the posterior mean vector and covariance matrix, the explicit solution to
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GREF posterior is

t
_ 1
®—c® L + —
I’l’ - C (LHO + 0_2 Z_:ys‘re‘97>
—1
c® (L + = ZesT e, ) 2.7)

When o — 0, the posterior distribution has zero covariance on queried variables, but is still
properly defined on the remaining variables. Without loss of generality, assume S; corresponds
to the first £ nodes in all nodes V'; the corresponding posterior covariance matrix becomes

) — Vs ct = (0 0 _) 2.8
H <_ (LUtUt) 1LUtStySt>’ 0 (LUtUt) ) ( )

where U, = V' \ S, is the index set of the unlabeled nodes. Notice, u(Utt) remains nonnegative

because Ly, g, is the off-diagonal block whose elements are non-positive. In fact, in the appendix
we show that 4" € [0,1],Vi € U, if the labels allow y,_ € [0,1],Vs, € S,.

(2

Let C = (EUtUt)f1 and C = (Ly,,,0,,,)"" and without loss of generality, suppose s; is po-
sitioned as the last node. By Shur’s Lemma (or GP-regression update rule [Rasmussen and
Williams, 2006])), the following can be verified,

C o 1
(0 0> —C— o .C.,,C,,.. (2.9)

In general, with o > 0, similar incremental update rules can be derived by following GP litera-
ture:

p) = O 4 O (0O 467 (g, — p) (2.10)
ct) —c —c® (¢, +o 2)~ cl. (2.11)
The above rule also applies to increments with multiple observations (ys,, Ys,. ., - - - » Ys,.. ), if one

replaces the element subscriptions with sub-matrix subscriptions.

Finally, for notation convenience, we may also write the posterior mean and covariance as func-

tions, i.e., puy(v;) = ul(-t) and Cy(v;,v;) = CZ( ;- Similarly, the variables or labels may also take

either vector or function forms, i.e., f(v;) = f; and y(v;) = y;.

2.4 Methods for Active Learning and Surveying

We begin introducing new methods with novel exploratory query designs, which solves half of
the problem in active search. Using GRFs, we relax the node labels to real values and build the
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joint distribution of node values as a multivariate normal distribution. Effectively, the problem
is reduced to an optimal design problem, which aims to minimize model uncertainty (using
some measure of the posterior covariance matrix) after collecting a set of queries in a multi-
step lookahead manner. We will examine several surrogate design criteria and motivate our own
version of X -optimality.

2.4.1 Minimization on Surrogate Objectives

All of the following surrogate loss functions are defined as a set function R(S;), whose input is
Sy, the set of node indices for the first ¢ queries, and whose output is an objective to be minimized.
All surrogate objectives take the form:

n}qin R(S;) st. |S| <t,S;cCcV (2.12)

When can be inferred from context, we use U; = V' \ S, to denote the indices of the unlabeled
nodes. Let p;(f) indicate the posterior distribution after selecting the set .S; with size ¢.

D-Optimality for Differential Entropy Minimization

To reduce the overall model uncertainty, a natural idea is to decrease the differential entropy
of the full GRF posterior, which causes the full posterior distribution to concentrate around its
posterior mean, i.e., the SSL predictions via label propagation. Minimizing differential entropy
is also known as D-optimality in regression designs, because it minimizes the determinant of the
posterior covariance matrix. According to (2.6)),

Rp(Sy) = H(p(f)) ~ %logdet(c(t)),

where the normalization constants are ignored. We use subscript D to indicate D-optimality,
which is a popular choice for exploratory measures in [Gotovos et al., 2013} Krause et al., 2008,
Srinivas et al., 2010a, |Valko et al., 2014].

A potential issue is that, while D-optimality aims to reduce the entropy of the paremeters f, its
greedy application is equivalent to selecting nodes with the largest marginal variance:

arg min H (f | YStu{s}) = argmax H(ys | ys,) = argmax Var(ys | ys,)-

Greedy application turns D-optimality to a no-step lookahead algorithm; in the early phase of
queries, the optimal solutions may often be found on the boundary of the environment, where the
marginal variance is the largest. Figure [2.6] shows a “successful” application of D-optimality-
based algorithm, where the initial query points are mostly on the boundary of the environment.

When applied to graphs, the issue is more severe, because graphs usually have a larger bound-
ary due to its high intrinsic dimensionality and very different eigenvalue distribution. Figure
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Figure 2.6: Pathology in D-optimality: many query points are on the boundary of the envi-
ronment before they appear at the center where true exploration should happen. Example from

[[Gotovos et al.|, 2013]).

visualizes the choices of greedy D-optimality on DBLP coauthorship graplﬂ The nodes repre-
sent scholars and the weighted edges are based on the number of papers bearing both scholars’
names. Visualization is due to OpenOrd layout [Martin et al., 2011]], where the dense areas in-
dicate graph clusters. The node colors show the true labels based on the research area of the
authors, which is not used by the designs and shown to visually validate our GRF assumption.
Here, D-optimality focuses on the periphery of the graph, choosing many leaf nodes, which is
not ideal for exploration.

Figure 2.7: D-optimality chooses boundaries (e.g., leaf nodes) in a graph.

http://www.informatik.uni-trier.de/~ley/db/
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V-Optimality for /, Risk Minimization

Another objective is to directly minimize the /5 risk on the independent node predictions. We
use Bayes risk,

n

Rv(S) =E [E | (5= fi)? | ys. | | = (C®), (2.13)

i=1

where, for simplicity, the summation is over all nodes including both labeled and unlabeled.

Notice, when ¢ — 0, the objective is equjvalent to summation only on the unlabeled node set,
because by ([2.8), we have tr(C®) = tr((Ly,r,)7}).

Figure 2.8: V-optimality improves the exploration, but the choices are still not central enough.

Ji and Han| [2012] used a similar objective which they call variance minimization. The optimality
may also be called A-optimality, because f is both the set of model parameters and the prediction
values according to the GRF model.

The greedy application of V-optimality is shown in (2.13)), which evaluates global influence of
queries and thus is a true lookahead measure. However, the visualization in Figure 2.8 does not
seem central enough. Can we do better?

>-Optimality for Survey Risk Minimization

Besides active learning, a different task we also consider is active surveying. Surveying aims to
determine the proportion of nodes belonging to each class. It usually uses fewer queries than
active learning.
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For active surveying, the Bayes risk is:

n n 2
Ro(S)=E|E (D> wi—> fi] |ys||=1"C"1, (2.14)
=1 =1

where, for simplicity, the summation is also over all nodes. When ¢ — 0, the objective is
equivalent to summation only on the unlabeled nodes, because by (2.8), we have 1TC*1 =
].T(]ZUt’Ut)_l]..

Further, we will also consider the application of the Y-optimality in active learning because
(2.14)) is a valid metric on the predictive variance. Surprisingly, although both (2.13)) and (2.14)
are approximations of the real objective (the 0/1 risk), greedy reduction of the >-optimality
outperformed greedy reduction of the V-optimality in active classification, as well as several
other methods including expected error reduction. In Figure 2.9 we may also visualize that
Y-optimality indeed explores at the cluster centers, producing the most amount of information
compared to the alternative D/V -optimality.

Figure 2.9: Y-optimality finally explores at the cluster centers, visually producing the most ef-
fective designs.

2.4.2 Greedy Application of D, V/, and >-Optimality

Calculating the global optimum (2.12)) with any of the objectives may be intractable. As will be
shown later in the theoretical results, all objectives are submodular set functions and the greedy
sequential update algorithm (Algorithm [2.1)) yields a solution that has guaranteed approximation
ratio to the optimum (Theorem 2.2).
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Algorithm 2.1 Greedy subset selection.

Input: Graph Laplacian L, objective function R(-), budget 7.
Output: A subset Sp = {s1,...,s7} C V by greedy selection.
fort=1,2,...,Tdo

Find s; = argmin, G;_(v)

Update posterior distribution by (2.10) and (2.11))
end for

The following applies Algorithm [2.1]to our specific objective functions. At iteration ¢ + 1, with
an already obtained set S;, define

Gi(v) = R({s1,...,8}) — R({s1,..., 8, v})

Notice R(-) is a function on the posterior covariance matrix. Let C = C® = (C,(v;, vj)); i1

and further denote Cy(v;, v;) = pi(vs, v;)o¢(v;)oi(v;). The incremental update rule (2.11)) yields

C—-CH) = ., (c%(v) + %) C,..
For D-optimality, we then have,
1
Gpa(v) = I(£;y(v)) = H(y(v)) — H(y(v) | £) = 5 log det(0” + o7 (v)) — log det(a),

where I (f; ys, ) is the mutual information and all measures are with respect to distribution p; 1 (f).

We can also put (2.9) inside Ryx(-) and Ry (-) to get the following equivalent criteria:

D-optimality : argmax Gp;(v) = logdet(1 + o 207 (v)) — o7 (v)

veUy
" (Cy(v,v;))?
V-optimality : arg max Gyi(v) = ngéév)ti UQJ)) = Z pi(v,0")?a,(v')*(2.15)
vely t v’ el
" Cy(v,v;))?
Y-optimality : arg max Gy (v) = (Z;—;(v)ti— 02])) > Z pi(v, 0oy (V). (2.16)
v ¢ t v' el

where the right side of the mappings take 0 — 0 and are equivalent in terms of having the same
solution for “argmax”.

Remark: Let G,(v) = ¢gZ(v), we may generalize the V- and Y-optimality to a broader class of
Ap-optimalities:

(Ap-optimality) : argmax g} ,(v) = Z (ps(v, 0" )y (V)P

1€l v'eUy
where V -optimality corresponds to p = 2 and X-optimality p = 1 (up to the same optimizer).
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2.4.3 Comparing the Greedy Applications of the > and V-Optimality

Both the V/X-optimality are approximations to the 0/1 risk minimization objective. Unfortu-
nately, we cannot theoretically reason why >.-optimality outperformed V-optimality in our ex-
periments. Nonetheless, some observations may be helpful.

Eq. (2.15)) and (2.16) suggest that both the greedy >./V-optimality selects nodes that (1) have high
variance and (2) are highly correlated to high-variance nodes, conditioned on the labeled nodes.

The difference between V' and X-optimality lies in the measure to evaluate global influence.
While V-optimality naturally chooses />-measure based on the optimal designs for regression
problems, Y-optimality realizes ¢;-measure that may be more robust to large values. Since GRFs
are continuous relaxations to the true binary label distribution, approximation errors can influ-
ence design choices. Specially, at the boundary nodes, the (posterior) marginal variance can be
unbounded large. By taking ¢;-measure for influence, >:-optimality can obtain additional ro-
bustness against the modeling error. Additional visualizations comparing the choice of V' and
>-optimality may be found in Appendix[A.3]

2.5 Methods for Active Search

Algorithm 2.2 General GP-style Active Search

Input: Graph laplacian L, desired number T of nodes to be selected, ay, and o.
Output: Query selections St = {s1,...,Sr}.
fort=1,...,T, do

S 1= arg MaxXyey,_, Hi—1(v) + g1 (v).

Query the label y,, of s;.

Update yi; and C} by (2.10) and (2.11).
end for

We propose active search algorithms follow the general GP-style template in Algorithm [2.2] At
iteration ¢ 4 1, Algorithm selects the next node to query based on a deterministic selection
rule of the form:

argmax fiy—1(5¢) + - gi—1(5¢), (2.17)
st€Ui—1
where y1;_1(s;) is the usual exploitation term and g;_(s;) encourages exploration, with the two
being balanced by a possibly iteration-dependent parameter a; > 0.

Examples from existing literature like the popular GP-UCB algorithm and its extension to active
search, GP-SELECT [Vanchinathan et al., 2013|], amount to setting g;(v) = o4(v), the predictive
variance of node v. Although this is a very reasonable choice in many situations, it may lead to
undesirable exploration behaviors on graphs. Under our model assumption, low-degree nodes,
which usually lie at the periphery of a graph, tend to have high predictive variances. Direct
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applications of GP-UCB may result in the selection of many such outliers, which fail to reveal
much information about the reward values of most other nodes at the core of the graph.

Intuitively, a good exploration criterion should favor nodes that have high influences on other
parts of the graph. That is, the knowledge of the function values at these nodes should reveal a
lot about the function values at other nodes. Under our model assumption, this principle naturally
connects with the predictive covariances of a node with others. Research in active learning on
graphs has already made use of predictive covariances to construct better selection rules. J1 and
Han| [2012] proposed to select nodes based on their sums of squares of predictive covariances
with other nodes, which is derived from the minimization of squared prediction error, known as
V-optimality in experiment design. Our previous section reviewed that /-optimality can still be
undesirably sensitive to outliers and proposed the Y-optimality criterion:

(X ev Cilv,0)?

9:(v) = o2 (v) + o2

, (2.18)

We propose three exploitation-exploration style algorithms with exploration criteria motivated by
Y-optimality, which are vanilla >:-optimality and its two variants with an additional parameter
k for theoretical justifications. All algorithms select the next node to query by the general rule
(2.17), but with different exploration terms:

GP-SOPT (Vanilla X-Optimality):

gi(v) = Z pi(v, v Yo (v

1+0.(U)U€V

GP-SOPT.TT (Thresholded Total Covariance):

g:(v) = min <k:<7t(v), Z pt(v,v’)at(v’)> .

v'ev
GP-SOPT.TOPK (Top-k Covariance):

gi\v) = max E +\ U, U O-t
( BCV,|B|= k p

As one can see from Figure 2.4] the nodes selected by vanilla GP-SOPT indeed reside in more
central parts of the toy graph than the nodes selected by its competitor, GP-UCB. In a large graph
with many peripheral nodes, we believe that the improved exploration criteria of GP-SOPT and
its variants contribute to a better recall rate of search targets in real graphs.

The reason we propose the latter two variants is to both address proof difficulties and increase
practical robustness.
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2.6 Theoretical Properties

2.6.1 Greedy Variance Reduction

For the general GP model, greedy optimization the /5 risk has no guarantee that the solution can
be comparable to the brute-force global optimum (taking exponential time to compute), because
the objective function, the trace of the predictive covariance matrix, fails to satisfy submodularity
in all cases [Krause et al.,|2008]. However, in the special case of GPs with kernel matrix equal to
the inverse of an augmented graph Laplacian, GRFs do provide such theoretical guarantees, both
for V' and X-optimality. The latter is a novel result.

We reuse G(+) as a set function showing the decrease in various criteria, G(S) = R(0)) — R(S)
for either Ry (S) or Ry (.S). The following results concern greedy maximization of G(S):

Theorem 2.2 (Near-optimal guarantee for greedy applications of V/X-optimality). In risk reduc-
tion,
G(S) = (1 —1e) - G(57), (2.19)

where G(S) = R(0) — R(S),VS C V, for either R(S) = Ry(S) or Rx(S), e is Euler’s number,
S is the greedy optimizer, and S* is the true global optimizer under the constraint |5 < ]S | I

According to Nemhauser et al.|[1978]], it suffices to show the following properties of G(S):

Lemma 2.3 (Normalization, Monotonicity, and Submodularity). V.5, C So C Vv € V,

G(0) =0, (2.20)
G(S2) > G(51), (2.21)
G(S1U{v}) — G(S1) > G(S2 U{v}) — G(Ss). (2.22)

Another sufficient condition for Theorem which is itself an interesting observation, is the
suppressor-free condition. Walker [2003]] describes a suppressor as a variable, knowing which
will suddenly suppress a strong correlation between the predictors. An example is y; + y; =
yr. Knowing any one of these will suppress correlations between the others. Walker further
states that suppressors are common in regression problems. Das and Kempe [2008] extend the
suppressor-free condition to sets and showed that this condition is sufficient to prove (2.13).
Formally, the condition is:

‘corr(yi,yj | S U Sg)| < |corr(yi,yj | S1)|, Yu,v; € V,VS;, S, C V. (2.23)
In fact, it may be easier to understand (2.23) as a decreasing correlation property. It is well
known for Markov random fields that the labels of two nodes on a graph become independent
if conditioned on their Markov blanket. Here we establish that GRF boasts more than that: the

2 The results ([2.20)—(2.19) can be extended to nonuniform node costs. Denote ¢, as the node cost of v € V. In
this case, a corresponding greedy algorithm maximizes the marginal risk reduction divided by the marginal cost and

the constraint in (2.19) becomes ) | . c, <> gy
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correlation between any two nodes decreases as more nodes get labeled, even before a Markov
blanket is formed. To summarize, we have:

Theorem 2.4 (Suppressor-Free Condition). (2.23) holds for pairs of nodes in the GRF model.

2.6.2 Regret Analysis

We present an UCB-style analysis for GP-SOPT.TT and GP-SOPT.TOPK, and an analysis based
on Contal et al.[[2014] for GP-SOPT. We combine several results on GP optimization [Contal
et al., 2014, Srinivas et al., 2012, |Vanchinathan et al., 2013]] and the spectral bandit analysis
[Valko et al., 2014]. To be compatible with GP notations, we use the function form f such that
f(v;) = fi. As in these results, our regret bounds depend on the mutual information between f
and observed values yg at a set S of nodes:

Lys; f) = H(ys) — H(ys | f),

where H(-) denotes the entropy. If f is drawn from a GP with observation noise distributed
independently as N (0, o), the mutual information has the following analytical form:

1 _
L(ys; f) = I(ys; fs) = 510g|1+0_205,5|-

Let

i.e., the maximum information about f gained by observing 7" function evaluations. The regrets
of our algorithms depend on the growth rate of 77, which can be linear in 7' for arbitrary graphs.
However, real-world graphs often possess rich structures, such as clusters or communities, and
practical measures of relevance are often highly correlated with these structures, resulting in
slowly-growing 7. To formalize this intuition, we follow Valko et al.| [2014] to consider the
effective dimension:

dp :=max<i| N < — 7 7 :
(Z — 1) log(l + m)

where )\; is the i-th smallest Eigenvalue of L and A1 = wg. The effective dimension is small
when the first few \;’s are small and the rest increase rapidly, as is often the case for graphs with
community or cluster structures. On the contrary, if all the Eigenvalues are small then d;. may be
linear in 7T". The following lemma bounds 7 in terms of d7:

Lemma 2.5. Let T' be the total number of rounds. Then

. T
vr < 2d7 log <1 + JQwo) .

29



Proof. By Lemma 7.6 of Srinivas et al.|[2012] and the fact that ;" ! is the i-th largest Eigenvalue
of the kernel K = L', we have

T
m;
< 1 1+ .
= {mi}?jifﬂizo, Z_; o5 ( ‘72)‘1')
erzl m;=T =

Then by applying the same argument that proves Lemma 6 of Valko et al.| [2014]], we obtain the
desired result. U
Active Search Regret

We bound the cumulative regret of an active search algorithm, which is defined by

where {v;}L_ | is the sequence of unique nodes selected by the algorithm and {v;}Z, is the
set of optimal choices. For the two proposed UCB-style algorithms, GP-SOPT.TT and GP-
SOPT.TOPK, we give the following bound on their cumulative regrets.

Theorem 2.6. Pick 0 € (0, 1). Assume the true function f lies in the RKHS characterized by the
kernel C = (D—W +wol)~! and its RKHS norm is upper-bounded by B, i.e. fTC~'f < B2, As-
sume the observation noise €; has zero-mean conditioned on the past and is bounded by o almost
surely. Let GP-SOPT.TT and GP-SOPT.TOPK use the GP prior with zero mean and covariance

C, the Gaussian observation noise model N'(0, 0%), and o, = \/232 + 3007, log®(t/6). Their
cumulative regrets satisfy

Pr({Rr < kv/eiTapypr VT > 1}) > 1 -6,

. . . 8 . .
where the randomness is over the observation noise and c; := 10g(1/+*2)' This implies

Ry = O(KNT(B?\/d;, + d))

with high probability.

This result is easily derived from the regret analysis of the GP-SELECT algorithm proposed
by Vanchinathan et al.| [2013]] because the exploration terms used by GP-SOPT.TT and GP-
SOPT.TOPK both satisfy o,(v) < s;(v) < koy(v), thereby maintaining the UCB property. Al-
though our regret bounds are k£ times worse than the GP-SELECT bound, the actual regrets tend
to behave more favorably as we observe in our experiments that after a few tens of rounds, s;(v)
becomes smaller than koy(v) for almost all unqueried nodes, and the two proposed algorithms
usually outperform GP-SELECT.
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2.7 Experiments

2.7.1 Active Learning and Surveying

The active learning heuristics to be compared are:

1.
2.
3.

4.
5.
6.

The new X-optimality with greedy one-step lookahead applications.

V-optimality with greedy one-step lookahead [J1 and Han| 2012].

Expected error reduction (EER) [Settles, 2010] with one-step lookahead. Nodes are se-
lected which maximize the average probability margin between the most likely one-vs-all
class and the second most likely one-vs-all class (§") — ) in expectation.

Uncertainty sampling (Unc) with uncertainty measured by the prediction margin.

Mutual information gain (MIG) described in Krause et al. [2008]]

Random selection with 12 repetitions.

We use GRF/BP model with 6 = 0 and § = 1 as our learning model. In such a setting, the
connectivity between different nodes on a graph is strongest and the effect of the outliers is at its
minimum. We feel that these parameters generally yields to better baseline results.

Comparisons are made on the following real-world network graphs or manifold graph embed-
dings.

1.

DBLP coauthorship network (DBLP)E] This is a coauthorship graph from the DBLP database.
The nodes represent scholars and the weighted edges are the number of papers bearing both
scholars’ names. The largest connected component has 1711 nodes and 2898 edges. The
node labels were hand assigned inJi and Han|[2012]] to one of the four expertise areas of the
scholars: machine learning, data mining, information retrieval, and databases. Each class has
around 400 nodes.

Cora citation network (Cora)ﬂ This is a citation graph of 2708 publications, each of which
is classified into one of seven classes by topic. The network has 5429 links. We took its
largest connected component, with 2485 nodes and 5069 undirected and unweighted edges.

. CiteSeer citation network (CiteSeer).* This is another citation graph of 3312 publications,

each of which is classified into one of six classes by topic. The network has 4732 links. We
took its largest connected component, with 2109 nodes and 3665 undirected and unweighted
edges.

. Scikit-learn handwritten digits (digits)E] This is an image classification database published

in the scikit-learn software. The database contains 1797 images of hand written digits (0-9)
with 8 x 8 pixel resolution. Every digit class contains roughly 180 images. We created a
7-nearest neighbor (7-nn) graph using Euclidean distances of raw features and symmetrized
the resulting graph.

. Isolated Letter Speech Recognition (ISOLETe / ISOLET4)E] This is a UCI benchmark

3http://www.informatik.uniftrier.de/Nley/db/

4http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
5http://scikit—learn.org/stable/auto_examples/manifold/plot_lle_digits.html
6http://archive.ics.uci.edu/ml/datasets/ISOLET
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database of human pronunciations of the 26 English letters. For every letter pronunciation,
617 domain-specific features are created. We used the first 4 mini-batches which contain 120
human subjects (ISOLET4). Further, we also looked at a harder problem that distinguishes
letters containing “e” sound (B, C, D, E, G, P, T, V, Z) (ISOLETe). For both problems, we
constructed a 4-nearest neighbor (4-nn) graph using Euclidean distances of raw features and
symmetrized the resulting graph.

6. Face pose recognition (pose) This is a database that regresses semantic information from
images. 687 pictures of the same sculpture face were taken with different face poses and
lighting conditions. The goal is to reconstruct the face poses (2-dimensional: left-right and
up-down). To solve the problem, we constructed a 7-nearest neighbor (7-nn) graph using
Euclidean distances of the first 240 principal components and symmetrized the resulting
graph.

To summarize, our pool of databases aims to cover most of Table [2.1]

Table 2.1: Datasets and Experiments Overview

Model Type \ Task Classification & Survey Regression
Network graphs DBLP, Cora, CiteSeer N/A
Manifold graph embed- | digits, ISOLET4, ISOLETe pose
dings of the Euclidean

space

2.7.2 Network Graphs

Classification. For active classification, Figure [2.10] shows the prediction accuracy of the un-
labeled nodes using only the labels from the nodes that each active learning queries, except for
the first common seed node which was assigned at random. Every curve shows the mean and its
standard error after 12 runs.

On all three datasets, >:-optimality outperforms other methods by a large margin especially dur-
ing the first five to ten queries. The runner-up, EER, catches up to :-optimality in some cases,
but (1) it is an order slower to evaluate, (2) it requires query results immediately before the next
query, whereas both V-optimality and X-optimality do not, and (3) it does not have theoretical
guarantees.

The win of Y-optimality over V-optimality has been intuitively explained as >:-optimality having
better exploration ability and robustness against outliers. That all three active learning algorithms
win over random selection validates the effectiveness of the GRF model which assumes node
labels cluster according to graph clusters.

We also noticed that MIG and Unc methods do not perform significantly better than random.
This is because both heuristics tend to query mostly outliers on the graph.

7http://isomap.stanford.edu/datasets.html
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Figure 2.10: Classification accuracy vs the number of queries. Model is GRF/BP with § = 0.

Surveying. We also performed real-world experiments on the root-mean-square-error (RMSE)
of the class proportion estimations, which is the survey risk that the >:-optimality minimizes. The
Y-optimality beats the V-optimality (Figure [2.11)).

With the survey experiments, the objective is |[E§ — ||s/v/C on unlabeled set u, where ¥ is
the vector of prediction means in different one-vs-alls, C' is the number of classes and 7 is the
(C-dimensional true class distribution of unlabeled nodes. Every curve shows the mean and its
standard error after 12 random initializations.

2.7.3 Manifold Graph Embeddings of the Euclidean Space

Detailed data preprocessing. To embed the Euclidean features from the databases digits, 1SO-
LETe, ISOLET4, and pose in graphs, we used k-nearest neighbor graphs using the Euclidean
distance. In digits, we created a 7-nearest neighbor graph based on the Euclidean distance of
raw features, i.e. the concatenation of 64 image pixel gray values. The graph was further sym-
metrized by removing the direction information (and also doubling the edge weight if an edge
was originally bi-directional). The resulting graph contain 1797 nodes and 8727 edges. Visual
inspection shows that the resulting graph fits the labels well.

In both ISOLETe and ISOLET4, we found the 4-nearest neighbor graph based also on Euclidean
distances of raw features, which is the 617 dimensional domain-specifc features. The graphs
were further symmetrized in the same manner. The resulting graph for ISOLETe contains 2160
nodes and 6337 edges and for ISOLET4 6238 nodes and 18662 edges. Visual inspection shows
that the resulting graphs are moderately difficult: while some classes are separated from other
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Figure 2.11: Survey RMSE, ||E§ — ||5/+/C, on unlabeled set u. Model is GRF/BP with § = 0.

classes by sparse cuts, about half of the nodes are close to nodes of other classes in graph dis-
tances.

Classification results.

Figure [2.12] shows the prediction accuracy of the unlabeled nodes using only the labels from
the nodes that each active learning queries, except for the first common seed node which was
assigned at random. Every curve shows the mean and its standard error after 12 runs. MIG and
EER were excluded in comparison because they are slow to run.

On all three manifold graph embeddings of the Euclidean space, >-optimality again outperforms
other methods by a large margin, while all baseline methods yield to acceptable classification
accuracies. We reason that this result follows the spectral and cut similarity between manifold
graph embeddings and the network graphs in previous experiments. Specifically, we observed
that in the 2D layouts of these manifold graphs, graph clusters have purer labels and there are
also smaller and less important clusters that distract the heuristics.

Regression. Finally, we performed a graph regression experiment on the pose database. To
create a manifold graph embedding, we used the 7-nearest neighbor graph based on the 240
principal components of face images that come with the database we downloaded. Then we
symmetrized the resulting graph. There are 698 nodes and 2562 edges on this graph. The validity
of this graph is checked as we recover a 2-dimensional (2D) Euclidean space layout of our graph
similar to the Isomap method [Tenenbaum et al., [2000]. The relative positions of the recovered
2D coordinates agree with the relative yaws and pitches of the original face poses.

Figure[2.13]show the RMSE of the 2D pose predictors of all unlabeled nodes based on the 2D pose
labels queried by various active learning heuristics. The curves are averaged after 12 runs from
different randomly sampled starting nodes. The error bars show the standard error of the mean.
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V-optimality outperforms >-optimality and both outperformed random selection. The result is
similar to what we have seen in the simulation. An explanation is that for active regression
problems, V-optimality directly minimizes the corresponding risk and thus is the best-performing
heuristic.

2.7.4 Active Search

We conduct experiments on three graph data sets that were studied by Wang et al.| [2013]]. We
briefly summarize them below.

5000 Populated Places. The nodes of this graph are 5000 concepts in the dbpediaﬂ ontology
marked as populated places. Each place is supported by a Wikipedia page, and an undirected
edge is created between two places if either one of their two Wikipedia pages links to the other.
There can be multiple edges between two places. The dbpedia ontology divides populated places
into five categories: administrative regions, countries, cities, towns and villages. The 725 admin-
istrative regions are selected as targets while all the others are considered irrelevant.

Citation Network. This dataset consists of 14,117 papers in top Computer Science venues
available on citeseer. The graph is created by adding an undirected edge between two papers if
either one cites the other. The 1844 NIPS papers are chosen as targets.

Wikipedia Pages on Programming Languages. A total of 5,271 Wikipedia pages related to
programming languages are the nodes of this graph, and an undirected edge exists between two
pages if they are linked together. [Wang et al. [2013]] performed topic modeling and chose the

8www.dbpedia.org
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Figure 2.14: Recall v.s. Percentage of labels queried

202 pages related to objective oriented programming as the targets, treating all the others as
irrelevant.

As demonstrated by Wang et al.|[2013]], the three graphs and their target label distributions exhibit
qualitative differences and thus serve as good benchmarks. The citation network has many small
components and target nodes appear in many of them, while the Wikipedia graph has large hubs
and most target nodes reside in one of them. The graph of populated places lies in between these
two extremes, with components of various sizes containing target nodes.

On all of the three data sets we compare two of the proposed methods: GP-SOPT.TT and GP-
SOPT against GP-SELECT (GP-UCB without replacement) and the active search algorithm
(AS-on-Graph) by Wang et al.| [2013]. We only evaluate GP-SOPT.TOPK on the 5000 pop-
ulated places data due to its heavy computation. For each dataset we perform 5 experiments,
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each with a randomly chosen target node as the seed. For the proposed methods and GP-
SELECT, the main tuning parameters are the exploration-exploitation trade-off parameter oy
and the observation noise variance 0. For GP-SOPT.TT and GP-SOPT.TOPK there is addition-
ally the thresholding parameter £. We consider the following values for them. Populated Places:
a; € {4,2,1,0.1,0.01,0.001}, 0 € {1,0.5,0.25,0.1} and k € {200, 400,800}. Wikipedia:
a; € {0.1,0.01,0.001}, 0% € {1,0.5,0.25,0.1} and k& € {200,400, 800}. Citation Network:
a; € {1,1071,1072,107%,107*}, 0% € {1,0.5,0.25,0.1} and k£ € {400,800, 1600}. Although
in theory «; should be iteration-dependent, we find that a fixed value often performs well in
practice. On all data sets we set the kernel regularization parameter wy = 0.01. The AS-on-
Graph algorithm has several parameters, and we only tune the exploration-exploitation trade-off
parameter «. Itis set to 0.1 on Populated Places and Citation Network, and 0.0001 on Wikipedia,
which are the best performing values. Other parameters are set based on Wang et al. [2013]].

Results are in Figure [2.14] where we plot the recall, i.e., the percentage of targets found by
the algorithms, versus the percentage of the whole data set queried. More specifically, for each
algorithm we obtain its mean recall curve over the top 15% (except for AS-on-Graph) parameter
combinations in each experiment, as judged by the area under the recall curve. We then plot the
median, maximum and minimum over the five experiments in Figure [2.14]

The three proposed methods clearly outperform AS-on-Graph and GP-SELECT on Populated
Places, while all methods perform equally well on Wikipedia. We think this has to do with
the underlying graph structure and target distribution. As mentioned before, target nodes in the
Populated Places graph are spread over sub-graphs of various sizes, and therefore exploration
strategies do make a difference. We observe that the proposed methods tend to select high-
degree nodes in the first few iterations, thereby gaining much information, while GP-SELECT
initially selects low-degree nodes. In contrast, most target nodes in the Wikipedia graph reside
in one large component, and therefore less exploration is needed. In fact, the best values for o
are very small, suggesting that an exploitation-only strategy is good enough for this data. On
Citation Network, most methods perform well except that GP-SELECT performs quite poorly
in one experiment. This may again indicate GP-SELECT is less robust in the presence of many
low-degree nodes.

2.8 Discussions

In this chapter, we discuss active search on a graph with known structure. Each node bears
a reward, which is unknown at first but can be noisily observed upon query. An active search
algorithm aims to accumulate as large a sum of rewards from the queried nodes as possible under
limited budgets. We assume that the node rewards vary smoothly along the graph.

Popular Bayesian UCB-style algorithms [Srinivas et al., 2012, [Valko et al., 2014, Vanchinathan
et al., 2013]] use the marginal standard deviation as their exploration criterion, leading to the
undesirable tendency of selecting peripheral nodes on a graph. Instead, we consider >:-optimality
on graphs, which can more efficiently reduce the variance of the reward function estimate by
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sampling cluster centers. We show the advantage of our method in experiments with real graphs
and provide a theoretical guarantee on the cumulative regret.

One interesting future direction is deriving tighter regret bounds for the proposed methods that
match their empirical performances. We imagine it may be possible to bound the regret directly
by the difference in X-optimality (Bayes survey risks, Ry), which may have better properties
than differential information gain, 77 on graphs. On the other hand, v is based on D-optimality,
which may be have severe issues with graphs (Figure[2.7).

GRFs are only one possible way to extend label propagation in SSL. They connect to unnormal-
ized graph Laplacians. On the other hand, normalized graph Laplacians give different properties
that may be empirically interesting to test. Further, an ideal model of the graph, including both
the edge features and regularizations, should be learned or transferred from experiments in simi-
lar domains. Learning the graph structure is a different but rich topic [Lafferty et al.,| 2001}, Smola
and Kondor, [2003]].

Additionally, we make the following observation on the spectral aspect of X -optimality. An-
alyzing the spectrum of a graph Laplacian may yield even more convincing arguments on the
generalization of active learning. Besides, extracting the smallest eigenvalues and their corre-
sponding eigenvectors is easier to scale than computing the full inverse of an augmented graph
Laplacian.

2.8.1 Spectral Observations

Many exploration heuristics can be written as a function of the spectral difference between the
current model and one-step look-ahead posterior model. Let C; be the covariance matrix with de-
creasingly sorted eigen-values A? = ()\f’(l), VN /\i( )", and C,41 and N7, , to be their posterior
counterparts after observing a node, v. A score based on spectral difference is then,

-1 (zn: h<)\t,(])> — zn: h(>\t+1,(j))>
k=1 k=1
s.t. W'(s) > 0,Vs >0,

where the difference inside 2! (+) is nonnegative, because we can prove using induction and defi-
nition of eigen-vectors, for example with j = 1 and g, (1) being the eigen-vector corresponding

to Ai41,(1) in the posterior model, )\f( )‘t2+1 > (e, eer1(0)? /(02 —02,  (v)) > 0.
Case 1. h(s) = —log(s),si(v) = /1 + 9i()/s2. This heuristic adds biases to maximize the

differential information gain of the joint distribution of node values, turns out to pay too much
attention to the graph periphery, which actually prevents information gathering in the true prob-
lem against intuition. Precisely, differential entropy is sensitive to tails of the distribution, which
happens to be the place of the biggest model mismatch of our GRF models.

Case 2. h(s) = 5%, 8,(v) = \/tr(C;) — tr(Cyy1) = /Iet(®)3/(2(v)+02). This criterion resembles
V-optimality, which though alleviates the situation by adding 1ndependence assumptions on the
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nodes and measuring the sum of the marginal variances, cannot completely address the selection
bias at graph peripheries, because the self-variance term usually dominates the sum of squares of

le: ()15

Case 3. h(s) = sP,p — 00, Amax(Ct) — Amax(Ciy1). This heuristic aims to globally control the
posterior marginal variances of every node, by upper-bounding them by A2 . Indeed, for any

max*
. . o T T o 2
node % and any covariance matrix C, Cy;, = e, Ce,, < maxVv Cv/vTv =\ (C).

Our intuition is that Sigma-optimality connects to this criterion via approximations. First, as-
2
suming that the principal eigen-vector of C; is q;, then A2, (Cyy1 | v) &= N2, (C;) — fayer(v))”

max max (07 (v)+02)
1 ct(v) Ta
Amax(Ct) | [y (v)2 402

and, compounding the square-root operator, s,(v) ~ 3

Realize that C;* = D — A + wol has its smallest eigen-vector (with respect to wp) very close to
%1, that same vector carries to be qq for the largest eigen-value of Cy. At this point, s;(v) is our
Sigma-optimality up to a selection-independent constant.

In fact, this approximation can be valid for larger ¢’s. Further break the graph down to different
(relatively isolated) connected components, where each individual component is relatively un-
explored, and therefore contains a principal eigen-vector, relative to the component, which will
approximate q ) ~ 1¢, where c is the rank of this eigen-vector and C the subset of nodes of
this connected component. The more under-explored the component is, the more likely that q; ()
becomes the principal eigen-vector, g; and also qy () gets close to 1c.

In the meantime, every column on the current covariance matrix c;(v) will also reflect indepen-
dence between these (relatively isolated) components. Thus, the inner product can be roughly
approximated as, q, ¢;(v) ~ 1/ ¢;(v) +10 = 17¢,(v), where C is the complement of C. Again,
Sigma-optimality approximates the difference of the spectral norm between prior and one-step
look-ahead covariance matrices.
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George Seurat, Femmes au bord de I’eau, 1885-86.

Active Area Search and Pointillism

3.1 Introduction

Consider a function containing interesting patterns that are defined only over a region of space.
For example, if you view the direction of wind as a function of geographical location, it defines
fronts, vortices, and other weather patterns, but those patterns are defined only in the aggregate.
If we can only measure the direction and strength of the wind at point locations, we then need to
infer the presence of patterns over broader spatial regions.

Many other real applications also share this feature. For example, an autonomous environmental
monitoring vehicle with limited onboard sensors needs to strategically plan routes around an area
to detect harmful plume patterns on a global scale [Valada et al., 2012]. In astronomy, projects
like the Sloan Digital Sky Survey [Eisenstein et al., 2011] search the sky for large-scale objects
such as galaxy clusters. Biologists investigating rare species of animals must find the ranges
where they are located and their migration patterns [Brown et al., 2014]. We aim to use active
learning to search for such global patterns using as few local measurements as possible.

Traditionally, active learning assumes that a label is associated with each observable data point,
which may be revealed upon querying. Traditional active search then aims to maximize the
number of positively-labeled points that can be collected, given a finite query budget. Here,
however, the labels are instead defined by the presence of specific patterns over broader spatial
regions. While we allow (noisy) observations of the values of the smooth underlying function at
any feasible point locations, the function in fact turns into an auxiliary function because it does
not directly define rewards. Instead, our goal is to identify the most number of positive regions
where positive patterns can be inferred, given any finite budget of point observations.
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Since we aim to search for positive patterns over broader spatial regions, the point query strategy
will be very different from plain active search for positive points. This bears some resemblance to
the artistic technique known as pointillism, where the painter creates small and distinct dots each
of a single color, but when viewed as a whole they reveal a scene. Pointillist paintings typically
use a denser covering of the canvas, but in our setting, “observing a dot” is expensive. Therefore,
we make fewer observations in order to uncover interesting regions as quickly as possible.

To simplify discussions, we assume the pool of regions that are feasible to contain positive pat-
terns are predefined. In the common scenario, it includes a set of sliding windows of equal sizes
that cover the entire navigable space with reasonable overlaps. Some applications use other nat-
ural definition of regions. The patterns, on the other hand, can be either simple or complex,
depending on the application:

Active Area Search (AAS). We search for simple patterns that are defined on the average value
of the smooth auxiliary function in a region. Positive labels are assigned to regions where the
average value is larger than a predefined threshold, with high probabilityE] AAS is useful in the
example of environmental monitoring with mobile sensors. The variability of the sensors and
environmental conditions on a river mean that no single sensor reading will ever be sufficient
to identify a significant pollution issue. Instead, real pollution issues are identified by a set
of regions within a certain region that have a large average value. Although a boat gives us the
capability to take a measurement anywhere, it does not provide the sensing bandwidth to monitor
every location all the time. Besides, sensing cost dominates travel cost in many casesE] Therefore
we need an algorithm to sequentially choose sensing locations with a goal of identifying polluted
regions.

Active Pointillist Pattern Search (APPS). We search for complex patterns that are defined by
a classifier that takes functional inputs. Since the classifier operates under uncertainty when
we have incomplete observation of the function in the region, positive labels are assigned when
the classifier has a sufficiently high probability output. In applications, APPS allows us to find
vortices by selecting point locations to observe the corresponding wind flow vectors. APPS can
be viewed as a generalization of AAS, by allowing arbitrary classifiers rather simple thresholds
of the function average.

Functional Probit Models (FPMs). AAS is a special case of APPS, where the classifier is
formed by a probit link function of a linear functional of the underlying function that produces
observations. We call the family of models Functional Probit Models (FPMs), which is a slight
generalization of AAS.

Mathematically, we assume that the low-level responses of point queries comes from a random
function with a Gaussian process (GP) prior [Rasmussen and Williams, |2006], whose hyperpa-
rameters are externally designed. This assumption allows to infer region patterns with incomplete

! Theoretically, the true average value is never obtainable because it requires complete observation of every point
value in the region using infinite sensing budget.

2 A typical dissolved oxygen sensor requires about one minute for the reading to settle down after moving
[Valada et al., 2012], which is enough time for the small boat to travel end-to-end in the areas we’ve considered so
far. Similarly, any application requiring in situ lab analysis of samples would have this property.
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Figure 3.1: Region patterns with increasing complexity.

observation. We accomplish active area search by sequentially selecting point locations to ob-
serve so as to approximately maximize expected reward for identifying positive patterns. We also
have closed-form solutions and insights when the patterns are simple, such as AAS or FPMs.

3.1.1 Related Work

Our concept of active pattern search falls under the broad category of active learning [Settles,
2010]], where we seek to sequentially build a training set to achieve some goal as fast as possible.
Our focus solely on finding positive (“interesting”) regions, rather than attempting to learn to
discriminate accurately between positives and negatives, is similar to the problem previously
described as active search [Garnett et al., [2012]. In previous work on active search, however, it
has been assumed that the labels of interest can be revealed directly. In active pattern search, on
the other hand, the labels are never revealed but must be inferred via a provided classifier. This
indirection increases the difficulty of the search task considerably.

In Bayesian optimization [Brochu et al., 2010, Osborne et al., [2009], we seek to find the global
optimum of an expensive black-box function. Bayesian optimization provides a model-based
approach where a Gaussian process (GP) prior is placed on the objective function, from which
a simpler acquisition function is derived and optimized to drive the selection procedure. In
[Tesch et al., 2013]], the authors extend this idea to optimizing a latent function from binary
observations. Our proposed active pattern search also uses a Gaussian process prior to model the
unknown underlying function and derives an acquisition function from it, but differs in that we
seek to identify entire regions of interest, rather than finding a single optimal value.

Another intimately related problem setup is that of multi-arm bandits [Auer et al., [2002], with
more focus on analysis of the cumulative reward over all function evaluations. Originally, the
goal was to maximize the expectation of a random function on a discrete set; a variant considers
the optimization in continuous domains [Kroemer et al., 2010, Niranjan et al., 2010]. However,
like Bayesian optimization, multi-arm bandit problems usually do not consider discriminating a
regional pattern.

Level set estimation [[Gotovos et al., 2013, Low et al.| [2012], rather than finding optima of a
function, seeks to select observations so as to best discriminate the portions of a function above
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and below a given threshold. This goal, though related to ours, aims to directly map a portion of
the function on the input space rather than seeking out instances of patterns. LSE algorithms can
be used to attempt to find some simple types of patterns (say, areas with high mean), but even
then its learning goal underperforms in the mismatched search objective, and it does not attempt
more complex models.

3.2 Problem Formulation

There are three key components of the APPS framework: a function f which maps input covari-
ates to data observations, a predetermined set of regions wherein instances of function patterns
are expected, and a classifier that evaluates the salience of the pattern of function values in each
region. We define f: R™ — R to be the function of interest which can be observed at any
location x € R™ to reveal a noisy observation y. We assume the observation model

y = f(z) +e, where £~ N(0,02).

We suppose that a set of regions where matching patterns might be found is predefined, and will
denote these A = {A; C R™: j = 1,...,k}. Finally, for each region A, we assume a classifier
h 4 which evaluates f on A and returns the probability that it matches the target pattern, which
we call salience:
ha(f) = h(f;04) € [0,1],

where 6 4 is the set of parameters including both the location of A and other necessary variables
that define the region pattern classifier. The mathematical interpretation of h 4 is similar to a
functional of f. Classifier forms are typically the same for all regions with different parameters.

In the example of AAS, positive labels are assigned to regions where the average value is above
a predefined threshold 7. In this case, 4 = (A, 7) and the region labels are defined by,

hA(f) - ]1{\7}| fxeAf(fL’)d$>T}' (3.1)

Figure [3.2| demonstrates AAS in a 1d environment where the regions are line segments and the
labels are defined by the average values.

A slight generalization of AAS is a FPM. Here, the classifier is formed by a probit link function of
a weighted integral of the underlying function that produces observations. A probit link function
uses the cumulative distribution function of the standard normal, ®(a) = [ foo \/LQTT exp{— “72} du.
Let the set of classifier parameters be 64 = (wa(+), 7, ¢), where wy(+) is a weight function that
is nonzero only when x € A, 7 is a scalar, ¢ > 0 is a scale variable; the functional probit model
is defined as

() = 03] funtar o) gz ) ). (32)

c
which is equivalent to AAS classifier if we take ¢ — 0.

3For clarity, in this and the next sections we will focus on scalar-valued functions f. The extension to vector-
valued functions is straightforward; we consider such a case in Section
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Figure 3.2: Problem definition given full knowledge of the underlying function f(x). For AAS,
positive labels are given to regions where the average value is above a predefined threshold.

3.2.1 Region Rewards with Incomplete Function Observations

Unfortunately, in general, we will have little knowledge about f other than the limited observa-
tions made at our selected set of points. Classifiers which take functional inputs (such as our
assumed h 4) generally do not account for uncertainty in their inputs, which should be inversely
related to the number of observed data points. We thus must consider the probability that k4 ( f)
is high enough, marginalized across the range of functions f that might match our observations.
As is common in nonparametric Bayesian modeling, we model f with a Gaussian process (GP)
prior; we assume hyperparameters, including prior mean and covariance functions, are set by
domain experts. Given a dataset D = {(x;,v;) : ¢ = 1,...,t}, we define

f~GP(u, K); f1D~GP(usp; 5sp), (3.3)

to be a given GP prior and its posterior conditioned on D, respectively. (Formal discussions are
in Section[3.2.2]) Since f is a random variable, we can obtain the marginal probability that A is
salient,

P(A| D) =E;[ha(f) | D]. (3.4)

We then define a matching region as one whose marginal probability passes a given threshold
1 — . Unit reward is assigned to each matching region A:

r(A| D) = 1ipap)y>1-a}- (3.5)

Similar to active search [Garnett et al.,[2012]], active area search aims to maximize the cumulative
reward at the end of a fixed number of queries. Additionally, we assume that unit reward can be
collected at the same region only once. As soon as a region is flagged as potentially matching
(i.e., its marginal probability exceeds 1 — «), it will be immediately flagged for further review
and no longer considered during the run. Additionally, we assume that the data resulting from
this investigation will not be made immediately available during the course of the algorithm;
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Figure 3.3: Given incomplete observations, true region pattern is never known to us. However,
we may draw smooth functions from GP — shown as the three solid lines inside the shaded
envelope in (b), which allow us to assign rewards 4 = 1 if the probability is sufficiently high.

rather the classifiers h 4 will be trained offline. For example, if the algorithm is being used to run
autonomous sensors and scientists collect separate data to follow up on a matching region, these
assumptions allow the autonomous sensors to continue in parallel with the human intervention,
and avoid the substantial complexity of incorporating a completely different modality of data
into the modeling process. Making different assumptions would lead to interesting extensions to
our algorithms that we do not consider here. As a result, the immediate reward of every point
measurement is

r(Dy) = Y _ r(A|D;), where A ={A:r(A|D;)=0Vr<t}, (3.6)

AcAy

and we aim to maximize the cumulative reward

T k
R(DT) = Zrt(Dt> = Z ]l{argt s.t. P(A;|Dr)>1-a}-

t=1 j=1

Remark 3.1. Active search aims to find all positive subjects instead of the global optimum. If we
allow repeated rewards, as soon as one positive region is found, a greedy solution could simply
refuse to collect more data in the positive regions so as to abuse the current rewards, because
our reward is binary. Although the greedy solution may also choose to collect in other regions in
order to maximize the expected sum of rewards, the pathology in the established positive regions
will unavoidably influence the designs in their neighboring regions in a negative way. We will
show more in our analysis in Section|3.4,

Another issue of reward abuse may happen when we make repeated tests about the label of a
region in different query time steps. This may lead to inferior precision for the discovery of true
positive regions or an increased false discovery rate. A classical fix is to notice that the distribu-
tion of maximum value in a set of variables and to apply O(log(t)) multiplicative corrections to
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the standard deviation at step t as a safety margin. Alternatively, one may choose to use smaller
and different a for each time step. We unfortunately did not consider such rigorousness, but only
showed that the precision in our experiments remain empirically high.

3.2.2 Closed-Form GP Models and Rewards in AAS or FPMs

It is useful to express the GP posterior (3.3) for completeness. Further, when the classifier is as
simple as AAS or FPMs (3.2), we may express the actual reward in closed-form in
terms of the collected data. The way to achieve closed-form solutions is to realize that GP is
closed under linear transformation of variables, including AAS and FPMs.

First, a Gaussian process (GP) is a statistical process to draw smooth random functions, where
the outputs corresponding to every set of inputs (including sets with only one element) have a
joint Gaussian distribution with parameters given by the input. A GP f(z) is characterized by
two (prior) function parameters, a mean function () and a kernel function x(x, z"). The kernel
function is also known as covariance function, because it defines the second moment of a GP. On
the other hand, a GP is fully defined by its first two moments through the prior mean and kernel

functions. Let zy,...,x, € R™,Vn > 1 be any combination of any number of input points.
Define X = (zy,...,,)' and we further overload
w(zy) K(z1,21) ... k(T Ty)
pX)y=1 ... |, and (X, X)= ,
w(xy,) R(Tp, 1) oo K(xp,x,)

the corresponding outputs from a GP always have joint distribution,

(f(@1), s fl2a)) | ~ N ((X), 5(X, X)),
where X = (zy,...,2,)",Vo1,..., 2, € R™, ¥n > 1.

An example of GP would have zero-mean and square-exponential kernel:

_ N o2 exnd T =7
M(I) _Oa Ii(l’,I) _Ufexp{ 202 )

where oy, ¢ > 0 are called hyper-parameters. Other forms of kernel functions are allowed,
as long as the resulting covariance matrix is always symmetric and positive-definite for any
combination of input points x1, . .., Ty.

Next, we aim to derive the closed-form solutions for the reward with incomplete observations.
Notice that (3.1)&(3.2) define the reward by (weighted) integral of the function f and that GP
is closed under any linear functionals, we may extend the input space to allow such linear func-
tionals:

(b = @), (o) = o [ 1@ () = [ua@ @,
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where 0, is a Dirac delta function that represents the original point evaluation in the functional
space. We will only use the more general form of the linear functionals and overload f(A) =

<f? wA>'

Let ¢» € U be a unified representation in the extended space. Now, the GP prior mean and kernel
functions extend to

_ a(x) if Y = 0,
) =4 .
Alwa) = [f(@)wa(z)de if = A
R(I,J)) ifwzéwawlzéwlu
R, Y") = CR(A, 7)) = [R(z, 2 )wa(x )dx if =AY =8,
R(AA) = [[R(z, 2 Ywa(x)wa (2')deds’ ifp=A ¢ =A
After collecting a set of measurements at X = (x1,...,7,)" and observing their outcomes as
y = (y1,- .., Yn), the posterior distribution is a conjugate GP with the following new mean and

kernel functions:

(v | D) = p(v) + &, X)V(X, X) Ny,
W,ID | D) ’_f(@bﬂ/f ) - ’i(?/% ) (X X) (Xaw,)a (37)

where V(X,X) = (X, X) + ¢2I is the prior covariance matrix for the noisy observations.
Define marginal variance o(¢ | D) = k(¢,% | D). When 1) = 1)/ = A, the posterior dis-
tribution can be efficiently computed by reusing (partial) integrals of the kernel function at the
corresponding region:

u(A 1 D) = [popwae) e+ [ [t Xpwata) e[ ix. )

2(A| D) // wa(z') de da’

-| / (&, X)wala >dx}v<x, Sy

Finally, for AAS, the probability of positive outcome is the cumulative density function:

P(A| D) :Pr<|%|/x€Af(x)dx>T D) :@(%).

For FPMs, the probability of positive outcome also has closed-form solutions because of the
conjugacy between probit models and Gaussian distributions. Let u = f wa(x)f(z)de — 7],
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the solution is

P(A| D) :E{@(%{/wA(x)f(x)dx—TD ‘D]

- foun(s MA D)7 A D),

- pA[D) -7
_q)<¢a2(A|D)+c2>' (3.8)

When the linear functional is w4 (z) = ﬁ]l{ Ay (), the FPM reward is effectively the reward of

a noisy observation of the inferred function average, with noise variance ¢. As ¢ — 0, FPMs
become equivalent to AAS. In the later discussions, we will use the more general form of linear
models and define

vi(z| D) =c*(z| D)+ o2 B w(A| D) -7
{VQ(A|D):02(A|D)+C2 - P(AlD)_q)( v(A| D) )

The actual reward is binary depending on the probability output of the inference. Recall (3.5)&(3.6):

T<A ‘ ‘D) = ]l{P(A‘D)>1—Oc}7 and Tt(Dt> — Z T(A ’ Dt)
Ac Ay

3.3 Method: Greedy Maximization of Expected Rewards

An ideal Bayesian solution would attempt to maximize the expected reward at the end of a fixed
number of queries, similar to [Garnett et al., 2012] . Directly optimizing that goal involves an
exponential lookahaed process. However, this can be approximated by a greedy search like the
one we perform. Closed-form solutions may also be derived for AAS and FPM models.

We now write the greedy criterion our algorithm seeks to optimize. In a sequential querying
manner where the first ¢ query steps collect a dataset D, = {(z,,y,) : 7 = 1,...,t}, define the
remaining search subjects as A; = {A : P(A | D;) <1 — a,V7 < t}. We aim to greedily
maximize the sum of rewards over all the regions in .4, in expectation,

Ti11 = arg max E* Z (A | Dy U{(24,94)}) | T, Dt (3.9)
L Ac A,

where D; U {(z., 7.)} is the (random) dataset augmented with z, and its lookahead observation
U+, which is simulated under the GP posterior.

A more careful examination of the GP model can yield a straight-forward sampling method. This
method, in the following, turns out to be quite useful in APPS problems with rather complex
classifiers. Section introduces closed-form solution for simple classifiers.
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At each step, given the collected observations D; and any potential input location x,, we can
assume the distribution of possible observations ¢, as

Ju | @e, Dy~ N(ppip, (2), £pp, (20, 22) + 07). (3.10)

Conditioned on an observation value 7., we can update our GP model to include the new observa-
tion (z., ¥«), which further affects the marginal distribution of region classifier outputs and thus
the probability this region is matching. With D, = D, U {(:v*, g*)} as the updated dataset, we
define r(A | f)*) to be the updated reward of region A. The utility of this proposed location z,
for region A is thus measured by the expected reward function, marginalizing out the unknown
observation value y,:

UA(JJ* | Dt) = EZ}* [T(A | D*) ’ x*7Dt:|
_ Eﬂ*|m*,Dt 1{P(A|Dtu{(:v*,§*)})>1*a} (311)

Finally, in active pointillist pattern search, we select the next observation location x, by consid-
ering its expected reward over the remaining regions:

Ty = argmax u(z, | Dy) = arg max Z ua(zy | Dy). (3.12)
L * Ac A
rga= 1 : 0 : 0 | 0 : Ta= 1 : 0 : 1 | 0 |
3t I I I | 3 I I I I
4+ 1 I +y I + 1 I +y I
= 2 l l i threshold = 2| l l i threshold
= Ie—p———— = I
= 0 I t+  4y.+ s 0! I 1t o+
< | | 1 | C | | 1" |
= =
= -1t I I 1 I = -1 I I 1 I
> 1 1 * I >, 1 ] " I
I I 1 I I I 1 I
-3t I I 1 I -3 I I 1" I
Al 1 AZ 1 A3 Ll A4 | Al 1 A2 1 AS L A4 I
0 1 2 T« 4 1 2 Ty 4
input x input x
(a) Sample the possible observations . (b) Rewards on the lookahead dataset.

Figure 3.4: Sampling-based solution to greedily maximize expected reward. For any point z,:
Step 1. sample possible observations y,. Step 2. for each sampled observation, estimate the
reward assuming that the lookahead dataset D; U {(z., 7.)} is the true collected dataset.

For the most general definition of the region classifier h 4, the basic algorithm is to compute
(3.11) and thus (3.12)) via sampling at two stages:

1. Sample the outer variable ¢, in (3.11)) according to (3.10).
2. For every draw of g, sample enough of (f | D.) to compute the marginal reward P(A | D,)
in (3.4), in order to obtain one draw for the expectation in (3.11).
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To speed up the process, we can evaluate (3.12) for a subset of possible z, € X values as long
as a good action is likely to be contained in the set.

3.3.1 Closed-Form Solutions to Utility Functions with AAS and FPMs

To derive the closed-form solution with AAS and FPMS, we start with the closed-form solution to
the reward function (3.8) on the lookahead dataset, D, = D; U {(z., §«)}, where ¢, is randomly
sampled from GP posterior, as

~ ~ wA| D
T(A ‘ D*) - ]I{P(AID*)>1—04}’ where P(A | D*) = (I)< ( ,|4 ’

W) — T
D.) )

v(
Fix A and D, and let

{12 =BAID). o2 =e(41D). va=td | ) - VT
ﬂA:/'L(A|D*)7 5-A:O-(A|D*)a ﬂA:V(AlD*): 5-12‘1+C2’

the expected utility (3.11)) of a new observation x, on region A is

ua(z, | DY) = E%r(A| D,) = Pr {@(’N‘AV_ T) >1-— a} , (3.13)
A

where we may realize from that /14 is a random variable that depends on the realization of
both x, and 7., whereas 7 4 is fixed and only depends on the choice of x,. In fact, fixing x,,
Eq shows that ji4 has a linear relation with (7. | x.), which leads to a marginal Gaussian
distribution if we integrate out y,. The marginal distribution have the form

[IJA ~ N(MAa 52)’

where the marginal mean equals to the current-step mean and the variance is denoted by 5% =
§*(x., A'| Dy), which depends on z, and A. Before we discuss the closed-form solution for 52,
define inverse cumulative distribution function of the standard normal as Q(1 — ) = inf{x :
®(x) > 1 — a}, we may rewrite the utility as

walz, | D)) = Pr V{_ T Q0 - 04)}

va
_ Prvm j,UA - —MA+T+~I7AQ<1 —04)}
] ||
- @(“A_T_ﬁ‘Q(l_a)). (3.14)
S

To solve for 774 and 5 in (3.14), notice that the lookahead variance 74 (or 6%) given z, can be
computed by (3.7) in the same way that v (or 0%) is computed given the previous collection of
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data points z1, . . ., z;. To express 52, notice the rule of total variance with fixed x, and D; is

Var (f(A)) = EVar [f(A) | g.] + VarE[f(A) | 9.]

& ohi=64+5 o A=04+5F,

where the equivalence is due to 6% (or %) being constant for any realization of ..

As a result, there is only one free parameter between 4 and S in (3.14)), where all the other
variables, ji14, T, V4 are independent of the choice of z,. Further, both 5% and % (or 6%) can be
solved using the same closed-form GP posterior solution (3.7]). For convenience in later analysis,
we define:

K(Z., A | Dy)
v(z. | De)v(A | Dy)

L, Dt> s

where £, ~ N(0, ¢?) results from the margin of probit transformation in FPMs, which is also
an effective additive noise for region integrals (i.e., ¢ = 0 for exact AAS). Straight-forward
computation via (3.7]) shows that

gy = plen A| Dy) =

— Conr (y Jun@rs)ae+e,

72 =(1—-p°)% and §=piva. (3.15)

Then, we may rewrite (3.14) with only one free variable p? that depends on the choice of z,, as

o 1= p*20(1 —
uale, | Dy = o AT AVl P QU= o)
Tren

:@(Q(l—a)RA_ Vl_pf), (3.16)

|04l

where the other variables that are independent of x, are summarized by

R, QPAID) 4
Qi—a) Ql-a)
which is an exploitation measure that indicates how close a region is to positive rewards in its
current state. For any o < 0.5 such that Q(1 — «) > 0, reward is assigned if and only if R4 > 1,

ie, Ry < 1,VA € A,.

3.4 Analysis of the Closed-Form Greedy Solutions

The analytical solution (3.16)) to the greedy maximization of expected rewards (3.11]) with AAS
and FPMs enables us to further study the theory behind the exploration/exploitation tradeoff of
APPS in nontrivial cases, assuming:
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1. the region pattern classifier is defined by AAS or FPMs (3.2));

2. the regions are spatially separated such that every point query only affects the inference
outcome of the region that contains the point;

3. only regions A € A; where positive reward has not been assigned are considered.

Particularly, Assumption 2 allows us to ignore the effect a data point has on regions other than
its own and consider every region independently. We will answer two questions in this case:

1. which region will be explore next, and
2. what location will be queried for that region.

We start with the closed-form solution (3.16)), which depends on R4 and |p%|.

On the one hand, R4 depends only on collected data D; and A, i.e., R4 is a measure of the
current state. Notice that for any 1 — o > 0.5, we have Q(1 — «) > 0, which suggests that
R4 1s positively related to the current mean estimate of the region integral. In fact, 24 is an
exploitation measure which indicates how close a region is to positive reward in its current state,
using the ratio between the quantile statistic of the region classifier output and the minimum
quantile for reward assignment. Given that A € A; has not been assigned positive reward, we
may assume R4 < 1.

On the other hand, p% = p(x., A | D;) further depends on the choice of z, and is a measure of

the quality of z,. By (3.19), p% = /1 — Z—z‘, the measure of point choice only depends on the
A

one-step lookahead variance reduction of the estimate of the region integral [w(z)f(z)dz+e..

Considering every region independently, the design problem then reduces to optimizing p% by

choosing z, so as to maximize (3.16)). At this step, it is possible to take partial derivatives to find

the maximimum p% for (3.16). However, the analysis can be made easier if one realizes that,

assuming R4 < 1, maximizing (3.16)) is equivalent to minimizing the slope of the line joining
the following two points P, R in R?:

P=(lpal.V1-p53%), R=(0,Ra).

In Figure [3.5(a), one can observe that the slope of the line can always be made smaller by either
increasing |p%| = |p(z., A | D;)|, which results in moving the P point to the right along the arc
of the unit circle, or moving R up.

With the help of Figure [3.5] we can conclude for regions that do not currently have a reward that

1. Fix the region A, ua(z,, D) is maximized by simply choosing the location that maximizes
\p4] = |p(z., A| Dy)|. See Figure[3.54]

2. Similarly, if two regions have equal marginal probability of matching the desired pattern 12 4,
then a region with a larger |p% | will be selected. See Figure

3. Comparing different regions, if two regions can be equally explored (i.e. they have the same
|p% | value, e.g., resulting from both region having the same number of collected measure-
ments at the same relative locations), then the region with the larger marginal probability of
a matching outcome 24 will be selected. Figure illustrates the comparison.

53



(a) Same region or same mean (b) Same number of observations (c) General condition

Figure 3.5: Illustration of selection criterion on independent regions. The solid red line with
prime labels is preferred in each plot; it has a smaller slope.

4. In general, APPS will simultaneously consider both point 2 & 3 (i.e., exploitation and explo-
ration), illustrated by Figure

Notice, through Figure it can also be inferred that any region that has already been assigned
reward will have R4 > 1, the optimal solution would take p* = 0 and let the slope to be negative
infinity. L.e., the optimal solution at regions with positive patterns (with at least 1 — « probability
where o < (.5) is to refuse collecting new observations. This observation further suggests that
active search should not allow repeated rewarding of the same region, which is consistent with
our discussion in Remark [3.11

3.4.1 Equivalent Solution for Separated Regions

Since Figure [3.5|suggests that for every region A € A; where R4 < 1, the optimal solution is to
choose observation z, with the largest |p% | in order to reduce the variance in the estimate of the
region integral, we may have the following alternative method that also greedily maximizes the
expected reward (3.9), assuming that the regions are well-separated and the observation inside
one region only affects the inference at the same region.

value f(z)
i
+

Al ||A2

Figure 3.6: When regions are well-separated, maximizer for greedy expected reward must choose
from the points that minimize the variance of the lookahead region integrals.
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The alternative solution has two steps (illustrated in Figure [3.6):

1. For every region, optimize query location to minimize the variance of the region integral;
2. Choose the final design by evaluating (3.16)) at the selected locations from Step 1.

3.4.2 Connection to Bayesian Quadrature, >-Optimality, and GP-SOPT
The problem of choosing locations to minimize the variance of region integral is studied in
Bayesian quadrature, also known as Bayesian Monte Carlo Rasmussen and Ghahramani| [2003]].

Plain region integral is also connected to the problem active surveying (Section [2.4.1)), which
studies how to obtain the average value of a population. In this case, the population is all points
in a region. As a result, minp o?(A, A’ | D) = [[k(z,2’ | D)wa(zx)wa(z’)dxda’ is the
Y-optimality in active surveying problems (2.14).

When ¢ — 0, the solution to lookahead reduction of the variance of region integral uses

K(x, Al Dy) “(x*7x|Dt)w z)dx
v(x, | Dy) _/U(x*‘Dt) Ao d

= /pj‘(x*,x | Dy)o(x | Dy)wa(x)de,

~ *

which is related to the greedy application of Y-optimality, though the original >-optimality fo-
cuses on application in Gaussian random fields where p(z.,z | D;) > 0 is guaranteed. With a
GP, such sign guarantees may not hold.

Finally, even though greedy maximization of expected reward also boasts exploitation/exploration
tradeoff, it has a different from than the tradeoff in multi-armed bandits. A typical solution for
multi-armed bandits is GP-UCB |Srinivas et al. [2010a], or its application with thresholding out-
comes [Locatelli et al.| [2016] and with asynchronous application with variance estimates Zhong
et al. [2017]. The basic greedy criterion is equivalent to

HEXMA | Dy) + Biv(A | Dy). (3.17)

Notice (3.17) cannot be used to select points because the criterion only depends on region statis-
tics. To choose point observations in independent regions, one fix is to measure exploration via
the change in Y-optimality similar to the GP-SOPT algorithm (2.18)), as

T = argmax (A | Dy) + Bi5(xs, A | Dy) = argmaxva(Q(1 — a)Ra + Bipl).  (3.18)

& &

Comparing (3.18)) with the greedy solution to our utility function for region A (3.16)), one may
realize that both criteria are positively related to 124 and p’, yet they take different forms. Direct
application of GP-SOPT ignores the binary observation outcome, which is more important in our
region search problems.
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3.5 Simulations

We used a list of simulated experiments to demonstrate properties and performance of AAS.
More interestingly, we provide intuition about the behavior of AAS in multi-region cases, which
we really care about.

In all simulations, the input space was the 2-dimensional Euclidean space and our function was
generated from a GP whose prior mean was constant zero and whose prior covariance was the
following isotropic square exponential kernel:

(3.19)

K(z, 1) = a}% exp {— s (z — ) (z — 2)}

where UJ% and ¢ were set at different values in different cases to make the simulated problems
interesting. Further, actual observations were simulated with additive noise ¢ ~ N (0, 02).

3.5.1 One Region Synthetic Data
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(a) Sampling locations (b) Posterior estimation

Figure 3.7: One region search. Samples are selected in hope that with posterior distributions, the
integral over the entire unit square is greater than 1 with probability at least 0.8.

The first demonstration/experiment was performed on a 2-dimensional unit square which con-
tains only one region. The parameters used to generate the observations in (3.19) are { =
0.33,07 = e = 1.21%,0° = 0.12. We purposefully made the problem difficult, so that
AAS can run for a longer time period, by keeping the a priori variance of the integral over the
region small, only roughly %(A, A) = 0.737%. As a result, the region is not guaranteed to have
high average values with high probabilities. We kept sampling function values on a 33 x 33 dense
grid until the average value in the unit square region is greater than the threshold 7 = 1. AAS is
expected to sequentially sample observations until it believes that the regional average is greater
than 7 with probability at least 1 — o = 0.8.

Figure (a) visualizes the sampling locations determined by AAS in a sequential order. After
these updates, the posterior marginal bandwidth of every point is shown in (b) and the gray mesh
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at level 1.0 serves as a reference showing that the integral of the function, under posterior distri-
bution, has high possibility to be greater than the threshold. The behavior of AAS is consistent
with our analysis in Section [3.4] Before the algorithm terminates when it verifies that the region
is significantly interesting, AAS explores locations which yield the maximal possible decrease of
the variance of the integral once sampled, similar to experimental designs in BQ. The intuition is
that function values at these points are usually unexplored and may become the best bet to attain
a reward.

3.5.2 Multi-Region Synthetic Data

In this experiment, we simulated random GPs on a 2-D space which is externally split into 10 x 10
unit square regions. The goal was to find as many interesting regions as possible. Similar to
before, a region may be flagged and rewarded if the posterior average function value on this
region is greater than 7 = 1 with probability at least 1 — o = 0.8.

To allow interactions between regions, we chose a larger length scale for the prior GPEI The
parameters selected are £ = 1,07 = 1,07, = 0.1>. The prior variance of the integral over any
region is (A, A) = 0.9242. VA € A (roughly 14% regions are interesting). An illustration is
in Figure [3.8|(a), where the color of a region indicates the average function value in that region.
Level sets of the function value are also plotted in (a).

The rest of Figure |3.8|compare the following algorithms
e Active area search (AAS): Our proposed method.

¢ Level set estimation (LSE): |Gotovos et al.[[2013] proposed this theoretically justified algo-
rithm for level set estimations, which is to determine the region in the input space where the
function value is close to h. We hope that by finding level sets for 1 = 7 and recognizing even
higher/lower regions, interesting regions may be discovered. Several other parameters were
set as ﬁtl/ ? = 3,e = 0.1. (The original paper also set 3, fixed and broke theoretical guarantees
in experiments.)

¢ Uncertainty sampling (UNC): Seo et al.| [2000] used UNC to map the function value over the
entire input space. UNC explores locations that have high marginal variance in the posterior
distribution. The samples are sparse but blind to outcomes.

¢ Random sampling (RAND) serves as a baseline. It picks locations at random.

From these plots, we can see that AAS samples locations that are both sparse yet concentrate in
regions which are more likely to have high average. It favors points on the boundary of multiple
regions. It also explores new locations reasonably. The superiority of AAS in interesting region
discovery is obvious.

“*In reality, training can be done offline with pilot data. We usually match the order of region diameter and GP
length scale when designing regions for preliminary real-world experiments.
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LSE gives the second-best performance. While searching for level sets, LSE can identify positive
regions inside. However, LSE is not aimed for this problem and thus it is hard to pin down which
threshold and tolerance to ask for in LSE. Further, LSE may be too wasteful to precisely map the
level set, and the observations that LSE makes may not lead to discovery of interesting regions.
Finally, LSE may sometimes be pessimistic because of its theoretical guarantees and is sensitive
to boundaries.

Finally UNC and RAND are the worst because they are generic and unspecific to the objective.

3.5.3 Repeated Experiments
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Figure 3.8: Multi-region. Shared color bar. (a) shows both function values and region averages.
(b-e) show the first 25 locations sampled by different strategies (black dots). Gray scale indicate
marginal variance. Red/green curves in region centers show the posterior tail distribution of the
region averages. Red regions are reported.

We repeated our last experiment for 10 times with different functions generated through the same
parameters. We report recall in Figure [3.9] Precision is a function of 1 — « which is the same in
all experiments so it is not reported. The curves indicate the average percent of positive regions
reported given different query budgets. Standard error of the average is also reported.

Figure[3.9]shows that AAS outperformed other methods by a large margin. With 20 observations,
AAS was able to discover half of the interesting regions. Notice in Figure with 25 points,
most parts of the function space remain gray even for UNC. The success of AAS mainly attributes
to its relevancy to the objective.

LSE performed second best, about 60% as efficient as AAS. It can be observed from Figure [3.8
that LSE also biases towards areas near interesting regions. In contrast, neither UNC or RAND
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Figure 3.9: Repeated experiments on 10 x 10 regions

utilize sampling budgets efficiently. RAND is slightly better in the beginning because of its ran-
domness yet UNC improves towards the end because it avoids the “coupon collector’s problem.”

3.6 Empirical Evaluation

We now turn to an empirical evaluation of our framework, in three different settings and with
three different classifiers. Code and data for these experiments is available onlineﬂ

Precision plots are available in the appendix for completeness. Precision is determined primarily
by the classifier and 1 — «, and thus does not vary much across methods.

3.6.1 Environmental Monitoring (Linear Classifier)

In order to analyze the performance of APPS with the MTC, we ran it on a real environmental
monitoring dataset and compared to baseline algorithms. Valada et al. [2012] used small (60 cm)
autonomous fan-powered boats to collect dissolved oxygen (DO) readings in a pond, with the
goal of finding regions that are low in dissolved oxygen, an indicator of poor water quality. The
data used in our experiment comes from a pond approximately 150 meters wide and 50 meters
long. The mobile robots have a cell-phone module that records the time and location of every
measurement. Because of physical limitations, the measurement reading does not stabilize for
about one minute. Therefore, in data collection, the boat was moved back and forth in a single
location, in the hope that the noise would cancel by averaging these measurements.

In order to verify our methods, we borrowed data from |Valada et al. [2012], comprising 16 960
location/DO value pairs, and fit a GP model by maximizing the likelihood of the prior parameters

5https://github.com/AutonlabCMU/ActivePatternSearch/
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Figure 3.10: Illustration of dataset and APPS selections for one run. A point marks the location
of a measurement whose value is also reflected in its color. Every grid box is a region whose
possibility of matching is reflected on gray-scale.

on 500 random samples seven times, taking the median of the learned hyperparameter values. We
used a squared-exponential kernel with a learned length scale. We defined regions by covering
the map with many windows of size comparable to the GP length scale, and used MTC parameters
b= —9, c = —100. Data points and classifier probability outputs for the ground truth are shown
in Figure [3.10a] which also shows the learned length scale (roughly 3 meters).

We then repeated the following experiment: we randomly sampled 6 000 points at a time from
data points not used for GP parameter training, and randomly selected 10 of these 6 000 points
to form an initial training set ). We then used several competing methods to sequentially make
further queries until 300 total observations were obtained. The considered algorithms were: APPS
with analytical solutions, APPS with one draw of z, at each candidate location, AAS in
[2014] with analytical solutions, AAS with sampling, the level set estimation (LSE) algorithm of
Gotovos et al.|[2013] with parameters 3* = 6.25 and € = 0.1, uncertainty sampling (UNC), and
random selection (RAND). Each algorithm chose queries based on its own criterion; the quality
of queried points was evaluated by the MTC classifier with the above parameters and was then
compared with true region labels that were computed by MTC using all 6000 data points. A
70% marginal probability was chosen to be required for a region to be classified as matching
(1—a=0.7).

Figure [3.T1|reports the mean and standard error of the recall of matching regions over 15 repeti-
tions of this experiment. APPS and AAS with both analytical solutions and sampling performed
equally well here. The similarity between APPS and AAS is also expected because in linear
problems, the choice of c is a fine-tuning problem, which does not show its impact on this real
dataset. Notice that AAS is not able to handle any other classifier-based setting; this is the core
contribution of APPS. To understand why analytical solutions were similar to sampling, notice
that the data collection locations have to be constrained to those actually recorded, which makes
it easier to obtain a near-optimal decision.
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Figure 3.11: Recall curves for pond monitoring experiment. Color bands show standard errors
after 15 runs.

The second group in performance ranking is the LSE method. We attempted to boost its perfor-
mance by selecting its parameters to directly optimize the area under its recall curve, which was,
in a sense, cheating. On further analysis of its query decisions, we saw LSE making, for the most
part, qualitatively similar selection decisions to APPS. LSE will stop collecting data in a region if
there is enough confidence, but does not specifically try to push regions over the threshold, and
so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interesting to observe that RAND was initially
better than, but later crossed by UNC. In the beginning, since UNC is purely explorative, its
reward uniformly remained low across multiple runs, whereas in some runs RAND queries can
be lucky enough to concentrate around matching regions. At a later phase, RAND faces the
coupon collector’s problem and may select redundant boring observations, when UNC keeps
making progress at a constant rate.

Figure [3.10D] illustrates the selection locations for our APPS method. This plot shows that our
APPS method can obtain reasonable data to both explore the available space and gain enough
information around the matching regions.

Remark 3.2. In the example of environmental monitoring, we assumed that sensing is expensive
relative to the cost of motion. This is reasonable in this case because of hysteresis in the sensor. It
must remain stationary for awhile to collect an accurate measurement. In the case of our actual
data, it was not collected that way. the boat moved continuously. This brings up two issues:

1. Can we correct for the hysteresis in the data set we used.

2. In cases where the assumption does not hold, how might we correctly choose experiments
when the travel cost is significant. In the case of either assumption (cheap travel, expensive
sensing or expensive travel, expensive sensing) the optimal solution could be written down
as a POMDP (e.g. as is described in \Garnett et al.|[2012]), but that would be intractable to
solve in general. In the case of cheap travel we were able to present a good greedy algorithm
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that is tractable. In the case of expensive travel, it remains an interesting open question
whether a good greedy algorithm exists.

3.6.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official who wishes to determine which races
will be won, lost, or might go either way. As surveying likely voters is relatively expensive, we
would like to do so with as few surveys as possible.

In a simple model of this problem, the problem of finding races which will be won is a natural
fit to a classifier of the form hy(f) = ®(w' f(Zy) + by). Our function f maps from the voting
precincts in the state to the vote share of a given party in that district, with a covariance kernel
defined by demographic similarity and geographic proximity. To account for multiple races
taking place in each district (e.g., state and national legislators), we duplicate each precinct with
a flag for the type of election. If g is the set of all precincts participating in a particular race and
w, is some constant ¢ times the voting population of each precinct, then w' f(Z,) gives ¢ times
the total vote portion for the given party in that election. In a simple model which ignores turnout
effects, the probability of winning a race is essentially 1 if the underlying proportion is greater
than 0.5 and 0 otherwise; this can be accomplished by setting ¢ to some fairly large constant,
say 100, and b = —%c. (An equally simple model that nonetheless more thoroughly accounts for
unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsylvania election returns [[Ansolabehere
and Rodden||. For each voting precinct in the dataset, we used the 2010 Decennial Census [United
States Census Bureau, [2010] to obtain a total population count and percentages of the population
for gender, race, age, and housing type categories; we also added an (z, y) location based on a
Lambert conformal conic projection of point in the precinct, and used these features in a squared-
exponential kernel. The data for each precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representatives, Pennsylvania House of Represen-
tatives, and Pennsylvania State Senate races; the demographic/geographic kernel was multiplied
by a positive-definite covariance matrix amongst the races. We learned the hyperparameters for
this kernel by maximizing the likelihood of the model on full 2008 election data.

Given the kernel, we set up experiments to predict 2010 races based on surveying an individual
voting precinct at a time. For simplicity, we assume that a given voting precinct can be thoroughly
surveyed (and ignore turnout effects, voters changing their minds over time, and so on); thus
observations were made with the true vote share. We seeded the experiment with a random 10
(out of 16226) districts observed; APPS selected from a random subset of 100 proposals at each
step. We againused 1 — a = 0.7.

Figure [3.12] shows the mean and standard errors of 15 runs. APPS outperforms both random
and uncertainty sampling here, though in this case the margin over random sampling is much
narrower. This is probably because the portion of regions which are positive in this problem is
much higher, so more points are informative.
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Figure 3.12: Recalls for election prediction. Color bands show standard errors after 15 runs.

Uncertainty sampling is in fact worse than random here, which is not too surprising because
the purely explorative nature of UNC is even worse on the high dimensional input space of this
problem.

LSE and AAS are not applicable to this problem, as they have no notion of weighting points (by
population).

3.6.3 Finding Vortices (Black-Box Classifier)

We now turn to more complex pattern classifiers by studying the task of identifying vortices in a
vector field based on limited observations of flow vectors. Linear classifiers are insufficient for
this problemﬁ so we will demonstrate the flexibility of our approach with a black-box classifier.

To illustrate this setting, we consider the results of a large-scale simulation of a turbulent fluid in
three dimensions over time in the Johns Hopkins Turbulence Database{] [Perlman et al., 2007].
Following Sutherland et al.| [2012]], we aim to recognize vortices in two-dimensional slices of the
data at a single timestep, based on the same small training set of 11 vortices and 20 non-vortices,
partially shown in Figure[3.13(a).

Recall that h, assigns probability estimates to the entire function class F confined to region
g. Unlike the previous examples, it is insufficient to consider only a weighted integral of f.
Instead, though, we can consider the average flow across sectors (angular slices from the cen-
ter) of our region as building blocks in detecting vortices. We count how many sectors have
clockwise/counter-clockwise flows to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector, we take the integral of the inner
product between the actual flow vectors and a template. The template is an “ideal” vortex,

The set of vortices is not convex: consider the midpoint between a clockwise vortex and its identical counter-
clockwise case.
7http://turbulence.pha.jhu.edu
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but with larger weights in the center than the periphery. This produces a K-dimensional
summary statistic L,( f) for each region.

2. Next, we improve robustness against different flow speeds in the data by scaling L,(f) to
have maximum entry 1, and flip its sign if its mean is negative. Call the result L, (f).

3. Finally, we feed the normalized ig( f) vector through a 2-layer neural network of the form

K

hg(f) =0 | Wout Z o (winfzg(f)i + bin> + bout | 5

i=1
where o is the logistic sigmoid function.

L,(f) | D obeys a K-dimensional multivariate normal distribution, from which we can sample
many possible L,( f), which we then normalize and pass through the neural network as described
above. This gives samples of probabilities h,, whose mean is a Monte Carlo estimate of (3.4).

-

,,,,,,,,,,, SN NN =
L T “oso
SANANMWAAV L] 2 S, © T e =0 r 0.
NN NN “0- - . T \\\\//0// [
NTEEERNNNNNNN A N \o\\\\rr/////fn .
,,,,,, N RN e v WP A B8
BRI ARNSEENY WAL ERE77272000
NSRS ° d
Ranent A I NN H} ;/‘///f////rt 0.7
S I MY RINSN INNSNNNNNENE T
N A B EE A Sat et Prrs7rr s e Bos
\2,10//()@;;?/;;;/;;/
&, .. P/ 7EA |
7 Y \Q\~~~\\\\\f’///(§:/c///50//}’ 0.5
p P YRR \\\\\\\\\\\O"‘///// s Rttt
1oZZsin CIILIIIIITIN 7R S, L 04
N ://///H\kb . \\\\\\\\\\\*"}/q i S
N ToT o 00
- . BTMEINT VNN N NSO S o RO N 10.3
2 SR NN N S Y N N N\ \0%9 ’
4 \:I:j VINEEEEEEEE L NON A N N VoL N\
| L B e e N T T T S O G (S 10.2
AT T T T T W T T W N S W U S0 SR
N BN TR L OV vV N N NN NN NN 10.1
~ TR Ry \ N NS '
AR T T O O O O N N S 0
(a) (b)

Figure 3.13: (a): Positive (top) and negative (bottom) training examples for the vortex classifier.
(b): The velocity field used; each arrow is the average of a 2 x 2 square of actual data points.
Background color shows the probability obtained by each region classifier on the 200 circled
points; red circles mark points selected by one run of APPS initialized at the green circles.

We used K = 4 sectors, and the weights in the template were fixed such that the length scale
matches the distance from the center to an edge. The network was optimized for classification
accuracy on the training set. We then identified a 50 x 50-pixel slice of the data that contains two
vortices, some other “interesting” regions, and some “boring” regions, mostly overlapping with
Figure 11 of Sutherland et al. [2012]; the region, along with the output of the classifier when
given all of the input points, is shown in Figure [3.13|b). We then ran APPS, initialized with 10
uniformly random points, for 200 steps. We defined the regions to be squares of size 11 x 11
and spaced them every 2 points along the grid, for 400 total regions. We again thresholded at
1 — a = 0.7. We evaluate (3.4)) via a Monte Carlo approximation: first we took 4 samples of z,,

64



o
©
T

0.6

1
'S
T

—8— APPS
—¥—Unc
~5—Rand

o
)
T

recall for matching regions

o i i i i i i i
0 20 40 60 80 100 120 140 160 180 200

number of data points collected

Figure 3.14: Mean recalls over the search process on the vortex experiment. Color bands show
standard errors after 15 runs.

and then 15 samples from the posterior of f over the window for each z,.. Furthermore, at each
step we evaluate a random subset of 80 possible candidates x..

Figure [3.14] shows recall curves of active pattern search, uncertainty sampling, and random se-
lection, where for the purpose of these curves we call the true label the output of the classifier
when all data is known, and the proposed label is true if 7, > 1 — « at that point of the search
(evaluated using more Monte Carlo samples than in the search process, to gain assurance in our
evaluation but without increasing the time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and random selection. As in Section|3.6.1]
uncertainty sampling was initially bad but later surpassed random selection, for the same reason.

3.7 Conclusions

We have introduced the general active area pattern search problem, where we seek to discover
specific local patterns exhibited by an underlying smooth function with a limited observation
budget. We proposed a framework built on Bayesian decision theory for the sequential active
selection of observations so as to maximize the expected number of matching locations discov-
ered at termination. We derived analytical forms for the required quantities for a broad class of
models, and demonstrated the method’s efficacy across three very different settings, using two
different analytical classifier forms and one based on sampling.

We assumed that sensing is expensive relative to the cost of motion. In the case of environmental
monitoring, this is reasonable because of hysteresis in the sensor. It must remain stationary for
awhile to collect an accurate measurement. This brings up two future research questions: (1) Can
we correct for the hysteresis in the data set we used? (2) In cases where the assumption does not
hold, how might we correctly choose experiments when the travel cost is significant. It remains
an open question whether a good greedy algorithm exists. One could include travel costs in the
utility function and apply greedy maximization of the augmented utility. However, I speculate
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that such an algorithm would not perform near-optimal, because it requires multi-step lookaheads
and surveying X.-objectives are not known to be submodular for a general GP. Besides, the utility
function is to maximize the sum of expected reward, rather than a single region.
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Active Needle Search with Region Sensing

4.1 Introduction

Active needle search describes the problem where an agent is given a target to search for in
an unknown environment and actively makes data-collection decisions so as to locate the target
as quickly as possible. Examples of this setting include using aerial robots to detect gas leaks,
radiation sources, and human survivors of disasters. The statistical principles for efficient designs
of measurements date back to|Gergonne|[1815]], but the growing trend to apply automated search
systems in a variety of environments and with a variety of constraints has drawn much research
attention recently, due to the need to address the disparate aspects of new applications.

One possibility in such active search scenarios we aim to explore, inspired by the robotic aerial
search setting but with statistical insights that we hope to generalize, is the opportunity to take
aggregate measurements that summarize large contiguous regions of space. For example, an
aerial robot carrying a radiation sensor will sense a region of space whose area depends on its
altitude. How can such a robot dynamically trade off the ability to make noisier observations of
larger regions of space against making higher-fidelity measurements of smaller regions?

To simplify the discussion, we will limit such region sensing observations to reveal the aver-
age value of an underlying function on a rectangular region of space, corrupted by independent
observation noise. Noisy binary search is a simple realization of active search using such an
observation scheme. This mechanism turns out to be sufficiently informative in the cases that we
analyze to offer insights into a variety of search problems.

The ability to make aggregate region measurements in noisy environments has rarely been con-
sidered in previous work. Bayesian optimization, which has been used for localization of sparse
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signals [Carpin et al., 2015, Hernandez-Lobato et al., 2014, Jones et al.,|1998, Ma et al., 2015a],
usually considers only point measurements of an objective function. Notice that point observa-
tions can be considered in our framework if the allowed region sensing actions are constrained
to be arbitrarily small. On the other extreme, compressive sensing [Candes and Wakin, 2008,
Donoho, 2006, Wainwright, 2009], considers scenarios where every measurement can reveal
information about the entire environment through linear projection with arbitrary coefficients.
This is not always a realistic assumption, as for example for an aerial robot, which can only
sense its immediate vicinity. Between the two extremes, Abbasi- Yadkori| [2012], Carpentier and
Munos| [2012], [Haupt et al.| [2009], Jedynak et al.|[2012], Rajan et al.| [2015]], |Yue and Guestrin
[2011] considered policies for search where observations can be made on any arbitrary subset
of the search space, including discontiguous subsets, which is also often incompatible with the
constraints in physical search systems.

Another assumption we make, common for example in compressive sensing, is sparsity. We
assume that there are only a small number of strong signals in the environment; our goal is to re-
cover these signals. Sparsity is necessary for the definition of active search problems; otherwise,
for dense or weak signals, there is usually no better search approach than simply exhaustively
mapping the entire space.

In addition to applicability in real search settings, sparsity has unique mathematical properties
when considered alongside region sensing. In unconstrained sensing, |Arias-Castro et al.|[[2013]]
discovered a paradox that active compressive sensing (that is, the ability to adaptively select
observations based on previously collected data) does not improve detection efficiency beyond
logarithmic terms over random compressive sensing. This limitation is seen also when consid-
ering theoretical detection rates for active compressive sensing methods [[Abbasi-Yadkori, 2012,
Carpentier and Munos, 2012, Haupt et al., 2009]. However, we show that active learning can
in fact offer significant improvements in detection rates when observations are constrained to
contiguous regions.

We propose an algorithm we call Region Sensing Index (RSI) that actively collects data to search
for sparse signals using only noisy region sensing measurements. RSI is based on greedy maxi-
mization of information gain. Although information gain is a classic principle, we believe that its
use in the recovery of sparse signals is novel and a good fit for robotic applications. We show that
RST uses O(7/u2 + k?) measurements to recover all of k true signal locations with small Bayes er-
ror, where 1 and n are the signal strength and the size of the search space, respectively, assuming
unit noise per measurement (Theorem {.4). The number of measurements with RSI is compa-
rable with the rates offered by unconstrained compressive sensing, even though our constraints
seem strong (i.e., region sensing loses all spatial resolution inside the region of measurement).
Furthermore, we show that all passive designs under our contiguous region sensing constraint in
1d search spaces are fundamentally worse, with efficiency no better than sequential scanning of
every point location, however strong the signals are. These results provide evidence to promote
the use of and research into active methods.
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4.1.1 Demo Active Needle Search

To demonstrate the desired properties of an active search algorithm, we simulated an active
search scenario using a satellite image (Figure[4.T)) where the objectives are all of the blue pixels.
This demo directly simulates search and rescue in open areas based on life jacket colors or
communication signals and also share similarities with gas leaks or radiation detection, where
real data is usually sensitive or expensive.

In this demo, the objectives are found as the roof of a building, circled near the center of the
satellite image. We used the scalar values due to an affine transformation from the original RGB
values with a predefined matrix that separates the objective blue color and most other colors. The
distribution of pixel values is shown in Figure @d.T{c).
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(a) Satellite image and target blue pixels (circled) (b) Enlarged (c) Distribution of pixel values, the
goal is to localize the top 10 pixels.

Figure 4.1: Demo active search on a satellite image.

The active search algorithm controls a mobile sensor that is a single-pixel camera that records the
average values in any chosen square regions. For simplicity, the side length of a feasible region
must be a power of 2 and for every region size, we only consider the set of square regions that
cover the entire search space with no gaps or overlaps. As a result, every larger region contains
4 regions of the next smaller size. The construction of the feasible regions resembles a spatial
pyramid [Lazebnik et al.| [2006].

Figure shows the sequential measurement choices of RSI and their outcomes in a blue-to-
yellow color scheme. RSI starts with measurements using region sizes that balances fidelity and
coverage, so as to maximize measurement efficiency. Then, after the 7th measurement where
a large outcome is observed, RSI is expected to investigate at subregion levels which have high
probability to contain the a signal source. However, by the 19th measurement, further evidence
indicates an overall low likelihood for the signal to originate from the subregions and RSI decides
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Figure 4.2: A desirable sequence of measurement designs realized by RSI. Only region averages
are observed and their values are reflected in a blue-to-yellow color scheme.

to continue scanning at the optimal region size. Finally, with merely 36 measurements, RSI
successfully locates one true signal source. In comparison, the image contains 36 000 pixel
points.

As one can see, there are several properties for active needle search with region sensing:

I.

2.

The signals are usually significantly strong to allow information to be generated from aggre-
gate region measurements.

The noise is artificial, used to model the decrease in information one can obtain from a mea-
surement as the region size increases. We can start by approximating the noise as spatially
independent when the region is large, though in the demo, we took the estimated standard
deviation from the true average values at a feasible size (see Table [d.1).

. On the other hand, the noise is constant across time-steps. L.e., repeating a measurement does

not provide any new information. An efficient algorithm should be robust to noise modeling
errors. For example, a Bayesian solution may decide to visit a region with less evidence when
the alternatives are equally bad, due to model errors.

. It is desirable to have upper bounds on the number of experiments. The bounded number

should decrease as the Signal-to-Noise Ratio (SNR) increases, until O(logn), realizable by
noiseless bisection search, where n is the size of the search domain.

We will propose and examine Region Sensing Index (RS1) for these properties.
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Table 4.1: Signal and noise in demo experiment

Region size Ixl 2x2 4x4 8x8 16x16 32x32 64x64

Average in regions with  1.10 095 0.74 0.38 0.14 0.05 0.02
needles (otherwise zero)
Standard deviation of re- 0.06 0.06 0.05 0.04 0.03 0.02 0.01

gion averages
SNR (rowl = row?2) 1773 1630 14.43 9.29 4.71 2.51 1.33

4.1.2 Related Work

Arias-Castro et al. [2013]] proved that the minimax sample complexityﬂ for any (i.e., potentially
adaptive) algorithm to recover £ sparse signal locations is at least Q(/%), analyzing the problem in
terms of the mean-squared error in the recovery of the underlying signal values. The authors also
showed that a passive random design, combined with a nontrivial inference algorithm, e.g., Lasso
[Wainwright, |2009] or the Dantzig selector [[Candes and Tao, 2007], can have similar recovery
rates (up to O(logn) terms). This result was presented as a paradox, suggesting that the folk
statement that active methods have better sample co