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Abstract

Quiality of software in the field is an important concern for producers of seftwéo

often need to predict information about the count or rate of field defects to perform
activities to manage the quality of their software products. To help softwateqars

select appropriate techniques for making such predictions, we provide a catalog of
techniques that are commonly used in the literature for predicting informataom the

count or rate of field defects. This catalog presents information on the intuitiordbehi
each technique and its inputs, outputs, procedures, applicability, cost of use, and quality
of predictions. Finally, we discuss promising research that addresses some of the
problems with the techniques that are commonly used today.
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1. Introduction

Software producers often need to predict information about the count or rate of field
defects to manage the quality of their software products [11]. The count of fietdsde
and the rate of field defects are commonly used measures of the qualitywairsoft the
field, as discussed by Chulani et al. in [9]. Reliability, which is anothenmmmmeasure
of quality, is the inverse of the count of field defects remaining in the soff2@reNe
usefield defecto refer to all the terms used in the literature to describe a softalated
guality problem that occurs after release, such as a fault or a failun@a&oproducers
commonly use the predicted information on the count or rate of field defects to:

» Decide whether to conduct more testing before release [63],

» Allocate resources for maintenance [32], and/or

* Guide process improvement efforts [1].
A patrticularly common kind of software today is multi-release softwareyfich
software producers may need to make predictions for each release of tlaeesoftw

Not all techniques in the literature that predict information about the count or fatel of
defects are likely to be useful to software producers; therefore, we caesideiques
with the following characteristics:

* The techniques use measures of the software, i.e. software metrics, as inputs

o The inputs used by techniques in the literature to make predictions are
software metrics and/or expert opinion. Predictions made using expert
opinion are less reliable than predictions made using software metrics
because expert opinion is subjective, as discussed by Madridakis and
Wheelwright in [57]. Furthermore, predictions made using software
metrics are easier to analyze for decision making than predictions made
using expert opinion, as discussed by Chulani in [8].

* The techniques can make predictions before the time of release.

0 Most activities that require the predicted information, such as deciding
whether to conduct more testing before release and allocating resources
for maintenance, need the information before release.

» The techniques have been used to make predictions for real-world software.

o We only include techniques that have been used to make predictions for
real-world software because techniques that have not been used to make
predictions for real-world software may have unforeseen problems making
predictions.

* The techniques that have users who are not of the group of people that developed
the techniques.

0 We only include techniques that have users who are not of the group of
people that developed the techniques because techniques that have only
been used by the group of people that developed the techniques may have
unforeseen problems making predictions.

The techniques that we consider fall into two general categories: softialpdite

growth model (SRGM)-based modeling techniques and statistical modeling texhniqu
SRGM-based modeling techniques are generally applicable for any sgftwale
statistical modeling techniques are applicable only for multi-releafbeare.



The literature contains many SRGM-based modeling techniques and statistazling
techniques for predicting information about the count or rate of field defects; hpweve

guide that helps software producers to compare techniques and to select appropriate
techniques for their needs is currently unavailable. Prior work by Farr in [55],

Khoshgoftaar and Selyia in [45], and Ebert in [14] suggest that at least faByISR

based modeling techniques and statistical modeling techniques have been proposed in the
literature. However, no prior work has examined the ability of both SRGM-based

modeling techniques and statistical modeling techniques to predict informiationthe

count or rate of field defects.

To help software producers, we provide a catalog of techniques that are comnednly us
in the literature for predicting information about the count or rate of field defacss,

we help software producers understand SRGM-based modeling techniques arzhktatist
modeling techniques by providing a synopsis of the two categories of techniquesd,Sec
we help software producers compare and select techniques by describing individual
techniques. Third, we help software producers anticipate techniques that maebec
commonly used in the future by discussing three promising techniques that adadress s
of the problems with the techniques that are commonly used today.

Our catalog of techniques uses a novel schema to present information on how to use the
techniques and information on actual uses of the techniques in practice. Since users of
SRGM-based modeling techniques and statistical modeling techniques needcto colle
inputs, construct models, and then make predictions, we include information on the
intuition behind each technique, and its inputs, outputs, and procedures (i.e., how the
outputs are produced using the inputs). We incorporate information in previous surveys
on SRGM-based modeling techniques, such as [63] by Musa et al., and on statistical
modeling techniques, such as [40] by Khoshgoftaar et al. In addition, we also include
information on uses of the technique in practice. We include information on applicability,
cost of use, and quality of predictions, which software producers are likely to need in
order to select appropriate techniques for their needs as suggested by lannimo et al
[23]. Prior work that compares techniques does not contain information on applicability,
cost of use, and quality of predictions. We incorporate information in the litecature

uses of the techniques in practice at companies such as IBM [87] and AT&T [71].

In addition to the techniques that we examine in the catalog, many other techingues t
predict information about the count or rate of field defects have been published in the
literature. Even though we discuss a few promising techniques, we generhltjeexc
techniques that do not have all four characteristics that we discussed abovantaegex
we exclude:

» Technigues that use expert opinion to make predictions, such as Bayesian belief
networks discussed in [65] by Neil and Fenton and the Delphi method discussed
in [53] by Linstone and Turoff;

* Technigues that cannot make predictions before the time of release, such as the
recalibration using u-plots technique discussed in [6] by Brocklehurst et al.;



» Technigues that have not been used to make predictions for real-world software in
prior work, such as the architecture-based technique discussed in [73] by
Popstajanova and Trivedi and COQUALMO (COnstructive QUALIity MOdel)
discussed in [8] by Chulani;

» Technigues that have not been used by people who are not of the group of people
that developed the techniques, such as the dynamic weighted linear combination
technique discussed in [56] by Lyu and Nikora.

Furthermore, we do not include techniques that analyze defects but plediot
information about the count or rate of field defects, such as Orthogonal Defect
Classification and Root Cause Analysis, discussed by Clark and Zubrow in [10]. In
addition, since we include techniques that@mamonlyused in the literature as judged
by the author based on a survey of the literature, we provide referenceton S¢o
resources that discuss additional techniques.

Managing the quality of software in the field is important to producers afa@t Since
software consumers can often switch to an alternative software prochey dre not
satisfied with the quality of their current software product, software gushinportant

to the business success of a software producer [9]. Furthermore, software eensume
often report quality problems that software producers must expend resource& oo fix
example, software service contracts typically specify that a saftwraducer must
resolve a customer reported quality problem within a certain amount of timesor fac
penalties [7]. The NIST estimates that poor software quality costs sefpr@tucers
approximately $21.2 billion each year in repair costs [66].

Although the primary audience of this catalog is software producers, consefropen
source software can also use information in this catalog to predict informbatiohthe
count or rate of field defects, which can help them evaluate the software faoadopt
[11]. Since many organizations are electing to use open source software nmssyste
applications that are critical to the business success of the organizatidissuased in
[58] by Mockus et al., the organizations may want to expend resources to evaluate
candidate software. Software consumers can usually obtain the inputs needed by the
techniques in this catalog for open source software as shown by Li et al. in [48].

This catalog serves two primary purposes. First, it helps software preduoarage the
quality of their software products by helping them select techniques to pissltot
information about the count or rate of field defects, which is often needed byreoftwa
producers in order to carryout quality management activities. Second, it supports the
predictive analysis of design (PAD) framework [82]. The techniques that aveiles aid

the evaluation of designs prior to adoption and fit within the PAD framework, discussed
by Shaw et al. in [82], as predictor functions. This catalog demonstratelseiAD
framework can describe predictive techniques that are used in prabigctechniques

that we examine predict information about the count or rate of field defect$) wlain
implementation property. The techniques use information on the design, the development
method, and/or the implementation to make predictions.



Section 2 discusses the common schema that we use to describe the techniques that we
examine. Section 3 gives a synopsis of the techniques. Section 4 presents thetatalo
techniques. Section 5 discusses promising research. Section 6 summarizesldigs cat

2. Description of the common schema

We adapt the schema used to describe predictor functions in the PAD inventory of
predictive techniques [77] to describe the techniques that we examine. Howeeewesinc
have already discussed how the techniques fit within the PAD framework, we do not
include that information in the descriptions. The structure of the schema is:
» Header — states the name and primary output of the technique;
» Abstract — summarizes the purpose, kind, model, and cost of the technique in
succinct form;
* Overview — provides more details, including:
o Inputs — lists information required by the technique,
o Outputs — lists information generated by the technique,
o0 Model — describes the model underlying the technique,
o Applicability — identifies key constraints on where the technique can be

used;
* Procedures — describes the series of successive bindings of inputs within the
technique;
» Cost of use — discusses effort related to applying each procedure within the
technique;

* Quality of predictions — discusses accuracy of the outputs;
* Related techniques — lists techniques that extend or modify this one;
» References — cites sources that describe aspects of the technique ietaibre d

3. Synopsisof the techniques

Many of the techniques that we examine share the same overall approachcfidns se
presents information that can be generalized about the techniques. Informatisn that i
specific to individual techniques is in Section 4.

3.1 Header

Field defects intended to be generic and to encompass all the terms that are used in the
literature to describe software related problems that occur dftaseg such as error [88],
fault [63], failure [33], bug [69], and defect [18]. The techniques that we examine are not
specific to a particular definition; however, when we discuss prior work thaiSkealsa
technique, we use the terminology used by the authors of the prior work.

Three kinds of information about the count or rate of field defects are commonly
predicted in the literature and are described below. We provide examples ofdiow ea
kind of information can help software producers with the process of allocating eesourc
for maintenance.



» The field defect rate: the field defect count in each time intervalrafease.

o For example, if the time interval is one month, then information on the
field defect rate can help software producers evaluate resources needed
each month.

* The field defect count: the count of field defects in one time interval.

o For example, if the time interval is the first year after release, then
information on the field defect count can help software producers
evaluate the total amount of resources needed that year.

* The field defect thresholding: the field defect count is or is not above a pre-set
threshold. Thresholding is a special case of the broader concept of clasaifica
however, we use the term thresholding because prior work usually only considers
two classes, that is, either the field defect count is below a pre-determined
threshold or it is above the threshold.

o For example, if the threshold is zero, then information on the field defect
thresholding can help software producers evaluate if they will need to
allocate resources to deal with field defects.

3.2 Abstract

The techniques that we examine are empirical modeling techniques. Theyaentif

from empirical models, such as the generic COCOMO Il model for preditingffort

and time to implement a software product [3]. For the COCOMO Il model, users of the
model collect the inputs and then use the pre-constructed model to make predictions. For
the techniques that we examine, users of the technique collect the inputs, ctmestruct
models, and then make predictions.

3.3 Overview

3.3.1 Inputs

The techniques that we examine use software metrics as inputs. Softwérs anet
measures of attributes of the software and are discussed in more dettdny &d
Pfleeger in [16]. We briefly discuss the software metrics that are commsad in the
literature to make predictions and how to collect them in Appendix A.

SRGM -based modeling techniques

SRGM-based modeling techniques usually use one of two software process timatrics
measure development defects to make predictions: the occurrence time of each
development defect or the defect count in each time interval during development.

Statistical modeling techniques

Statistical modeling techniques usually use information on field defectspiriom
releases, software metrics from prior releases, and softwaresrfedm the current
release to make predictions. Most statistical modeling techniques can wseesoft
metrics that measure various attributes of the software to make predictidissussion
of how to select the appropriate software metrics to use is in Appendix A.



3.3.2 Outputs

The techniques that we examine predict the field defect rate, the field cedet, and/or
the field defect thresholding at the systems level, that is, for the softevarevlaole. We
focus on making predictions at the systems level because software procunezes!yg
view the software as a whole. However, prior work also makes predictions $oariite
modules.

SRGM -based modeling techniques
Prior work has used SRGM-based modeling techniques to predict the field defectda
the field defect count.

Previous studies that use SRGM-based modeling techniques generally madt@psedi
for the entire software. However, it is likely that the techniques can alse@tdéaumsake
predictions for individual modules as shown by Laprie et al. in [47].

Statistical modeling techniques
Prior work has used statistical modeling techniques to predict the field detexttand
the field defect thresholding.

Previous studies that use statistical modeling techniques usually makeiq@nedir

modules; however, the techniques should scale up. Users of the techniques should be able
to produce predictions for the entire software because prior work has produced

predictions for files, such as in [69] by Ostrand et al., and several filestatati

module or component in the same way that several modules constitute a software

product. Furthermore, users of the techniques should be able to combine predictions for
modules to produce predictions for the entire software as discussed in [88] by Yamada

and Osaki.

3.3.3 Models

The theories behind SRGM-based modeling techniques and statistical modelingueshni
are different, that is, the justifications for their validity are differ8RGM-based modeling
techniques are based on the theory that the occurrence of defects follows some gnderlyin
probability function that varies with time. Statistical modeling techniquebased on the
theory that some characteristics of the software are related to theeoceuof field defects.

SRGM-based modeling techniques

SRGM-based modeling techniques are based on the theory that the probability of a defe
occurrence changes over time as defects are discovered and removed [63]. ASSRGM |
mathematical function of time that captures this changing probability. SB&xed

modeling techniques assume that the defect pattern, i.e. the defect count in each tim
interval, can be modeled using SRGMs. SRGM-based modeling techniques fit SRGMs
using development defect information and then make predictions for future time mterval
using the fitted SRGMs.

SRGM-based modeling techniques are further divided into two sub-categoriesafidi
infinite. Finite SRGM-based modeling techniques assume that the total coweitl of fi

10



defects that are expected to be discovered is finite. This could be due tditsetjadnivth

of the software or user migration to other software (or newer releasessaintiee

software), as discussed by Jones and Vouk in [55]. The Exponential modeling technique,
discussed in Section 4.2, is an example of a finite SRGM-based modeling technique.
Infinite SRGM-based modeling techniques assume that the total count of fiettsdefe

that are expected to be discovered is infinite. This could be due to imperfecofepair
defects, as discussed by Musa et al. in [63]. The Logarithmic modeling technique
discussed in Section 4.4, is an example of an infinite SRGM-based modeling technique.
Infinite SRGM-based modeling techniques are usually not used to predict thediett

count, since the total number of field defects is assumed to be infinite.

For SRGM-based modeling techniques, the independent variable in the constructed
model is usually the value of the time interval, and the dependent variable iy tlsiall
field defect count in the time interval.

Statistical modeling techniques

Statistical modeling techniques are based on the theory that some attrilibtes of

software are related to the occurrence of field defects [79]. Infanmai these attributes

is captured using software metrics. Software metrics that measymothet, such as

lines of code, and the (development) process, such as the number of development defects,
are commonly used in the literature to make predictions and are discussed in Appendix

A. Statistical modeling techniques assume that the software metriceus@ttruct

models are related to field defects. Statistical modeling techniques btidticgtbmodels

using information on field defects and software metrics from historicalseseand then

make predictions using the constructed model and software metrics for theleaser

Statistical modeling techniques are further divided into two sub-categoaiesnetric and
non-parametric. Parametric statistical modeling techniques assuntigethalationships
between characteristics of the software and field defects occurtemee=some structural
form. For example, the Linear regression modeling technique, discussediam Sgit
assumes linear relationships between software metrics and field def@cences. Different
parametric statistical modeling techniques assume different stiuctums. Non-parametric
statistical modeling techniques do not assume that the relationships betwaetecistics
of the software and field defect occurrences have structural forms. &opkx the Trees
modeling technique, discussed in Section 4.7, assumes that similar historasdsdiave
similar field defect occurrences. Different non-parametric sitlsnodeling techniques
differ in how they decide which historical releases are similar.

For statistical modeling techniques, the independent variables in the constructéslar®de
usually the software metrics and the dependent variable is usually the fieltiatefiet or
the likelihood of the field defect thresholding.

3.3.4 Applicability
Applicability of the techniques that we examine is related to the assumtairtbey make.

If an assumption made by a technique is violated in a particular setting, theofukers
technique may not be able to use the technique to make predictions or the predictions made

11



by the technique may not be as accurate as predictions made in other settingeavhere
assumption holds [55]. These assumptions are different from the assumptions required t
obtain the inputs for the techniques, which are discussed in Appendix A.

The literature provides little information on the settings in which a techniaqu is
applicable. Therefore, in this paper, for each technique, we list the assumpmbyrthe
technique and describe settings where prior work has used the technigue to makermedic
that is, where the technique is applicable.

One assumption that is common to all the techniques that we examine is that the model
constructed using a technique is used to make predictions for the same sdcftihare a
software from which the data used to construct the model came from. If thisptissudoes
not hold, then predictions made by the constructed models may not be accurate.

SRGM -based modeling techniques
In addition to the common assumption, SRGM-based modeling techniques make three
groups of assumptions:

» They assume that the defect pattern can be modeled using SRGMs, which leads to
two further assumptions: each defect has the same probability of occurritigeand
defects occur independently of each other. If these assumptions do not hold, then
users of the techniques may not be able to construct the model or the predictions
made by the constructed model may not be accurate.

» They assume that the defect pattern is decreasing at the time of prediwit is,
there is reliability growth. This assumption ensures that it is mathexapossible
to construct SRGMs. If this assumption does not hold, then users of the techniques
will not be able to construct the model.

* They assume that the software is to be operated in a manner similar to thathin w
the predictions are to be made, that is, the deployment and development
environments are similar and the amounts and kinds of usage during testing are
similar to the amounts and kinds of usage in the field. This assumption is the basis
for extending the defect pattern described by a model fitted to development defect
information to future time intervals. If this assumption does not hold, then
predictions made by the constructed model may not be accurate.

Assumptions above and the common assumption are common to the SRGM-based
modeling techniques that we examine. We will refer to thesteaslard applicability
restrictions for SRGM-based modeling techniquethe descriptions of the individual
SRGM-based modeling techniques. Furthermore, finite SRGM-based modeling
techniques assume that the total count of field defects that are expected toveErelisc
is finite and infinite techniques assume that the total count is infinite. & thes
assumptions do not hold then the constructed finite and infinite SRGMs models may not
produce accurate predictions. We will refer to thessiasdard applicability restriction
for finite SRGM-based modeling techniqaesistandard applicability restriction for
infinite SRGM-based modeling techniqueslescriptions of the individual techniques.
Refer to Lyu [55] and Musa et al. [63] for details about these assumptions.

12



SRGM-based modeling techniques are generally applicable for any softinee they

use only development defect information to make predictions. Prior work has used
SRGM-based modeling techniques to make predictions for custom-built softwarassuch

a military command and control systems examined in [62] by Musa, and conimercia
software systems, such as an IBM application system examined in [B@hbyHowever,

Li et al. have found that it is not possible to use several commonly used SRGM-based
modeling techniques to make predictions for an open source software in [48], because the
rate of defects was not decreasing at the time of release.

Statistical modeling techniques
In addition to the common assumption, statistical modeling techniques make three
assumptions:

* They assume that the same software metrics used to construct the moded are us
to make predictions. If this assumption does not hold, then users of the technique
may not be able to make predictions using the constructed model.

* They assume that the software metrics used in the model capture sufficient
information on attributes of the software that are related to field defects to
produce accurate predictions. If this assumption does not hold, then the
predictions made by the constructed model may not be accurate.

» They assume that historical information on software metrics and fieldtslefec
available from at least one historical release. If this assumption does not hold,
then it is not possible to construct models.

Assumptions above and the common assumption are common to the statistical modeling
techniques that we examine. We will refer to theratasdard applicability restrictions

for statistical modeling techniquas descriptions of the individual statistical modeling
techniques. Refer to Hastie [21] for details about these assumptions.

For parametric statistical modeling techniques, the number of releasew/fich

historical information is available has to be greater than the number of softeties

used in the models. Furthermore, depending on the variation in the software meitrics an
field defects, data from more releases may be required. However, aséistuSection
3.2.2, users of the techniques can divide the software into modules, which increases the
amount of information available to construct models, make predictions for the modules,
and then aggregate the predictions to obtain the prediction for the entire softwac. produ

Statistical modeling techniques are specific for multi-releasevaddtsince they use
information on field defects and software metrics from historical redeaseonstruct
models. Prior work has used statistical modeling techniques to make predictions for
custom-built software, such as a military command and control system egam(d4]

by Khoshgoftaar et al., and for commercial software, such as a provisioniagsys
examined in [69] by Ostrand et al.

3.4 Procedures

At an abstract level, the modeling techniques that we examine have the safme set
procedures. First, in the planning procedure, users of the technique decide what to
predict, what techniques to use to make predictions, and what software metricito use

13



make predictions. Then, in the setup procedure, the users compute the softwase metric
In the model-building procedure, the users construct the model. Finally, in the predicti
procedure, the users make predictions using the constructed model.

3.4.1 Procedure 1: Planning procedure

Prospective users of the techniques first need to define field defects foftinars
product, that is, what exactly is a field defect for the software product, anthohete¢he
kinds of information that they want to predict. Then, the users need to decide the
techniques that they want to use to make predictions. Finally, after decidag wh
techniques to use, the users need to decide which software metrics to use to make
predictions. Prior work usually executes this procedure once for each softadwetpr
discussed by Basili and Weiss in [1] and by Donnelly et al. in [55]; however,
organizations sometimes re-evaluate these decisions for each relrage-oflease
software, discussed by Birk et al. in [2].

SRGM-based modeling techniques

Users of SRGM-based modeling techniques must decide which software progess met
that measure development defects to collect: the occurrence time of ealdpaent

defect or the defect count in each time interval during development. Howeverybese t
metrics are usually interchangeable as shown by Lyu in [55]. This proceduredihglec
what to predict, what techniques to use to make predictions, and which metric to use to
make predictions is the same for the SRGM-based modeling techniques thatnireeexa
We will refer to this procedure as tendard planning procedure for SRGM-based
modeling techniquesn descriptions of the individual SRGM-based modeling techniques.

Statistical modeling techniques

Users of statistical modeling techniques must decide what softwaresretdollect.

This procedure of deciding what to predict, what techniques to use to make predictions,
and what metrics to use to make predictions is the same for the statisticahgrode
techniques that we examine. We will refer to this procedure adahdard planning
procedure for statistical modeling techniguesdescriptions of the individual statistical
modeling techniques.

3.4.2 Procedure 2: Setup procedure

In general, software metrics are computed using data that are recordeariasfa
everyday development or maintenance activities, which lowers the costsgsbadth
collecting the metrics, as discussed by Mockus et al. in [59]. For examplearsoft
process metrics that measure development defects are usually eXt@uoted
development defect data that is recorded in the defect tracking systenmut®gm
software metrics is discussed in appendix A. Prior work usually executesitpe se
procedure once for each software or once for each release of a mu#te redd@vare.

SRGM-based modeling techniques

Users of SRGM-based modeling techniques need to extract one of two software proces
metrics that measure development defects for each release. This prosédergaime for

the SRGM-based modeling techniques that we examine. We will refer to thislym®ce

14



as thestandard setup procedure for SRGM-based modeling techniguasscriptions of
the individual SRGM-based modeling techniques.

Statistical modeling techniques

Initially, users of statistical modeling techniques need to extract fiédddidaformation
and software metrics selected in the planning procedure for historicalegl@awell as
the software metrics for the new release. For subsequent releases, aalyathe
software metrics for the new release need to be extracted. This proiseithereame for
the statistical modeling techniques that we examine. We will refer tpriiedure as the
standard setup procedure for statistical modeling techniguegescriptions of the
individual statistical modeling techniques.

3.4.3 Procedure 3: Model-building procedure
Standard statistical software packages, such as R [74], Splus [83], and SAS [76], are
usually used in the literature to construct the models.

In this catalog, we assume that the predictions are made at the timesérélewever,
the techniques that we examine can also be used to construct models and make
predictions earlier in the development process.

SRGM-based modeling techniques

Prior work usually uses non-linear least squares regression or maximuhobkel
estimation to fit SRGMs. These two model-fitting routines are found in rteisdtical
software packages. This procedure is the same for the SRGM-based modkhiguts
that we examine. We will refer to this procedure asthadard model-building
procedure for SRGM-based modeling techniguedescriptions of the individual
SRGM-based modeling techniques.

Users of the techniques need to execute the model-building procedure for eactesoftwar
product or once for each release of multi-release software. This is b&t@G84s are
fitted for each software product or software release.

In general, users of SRGM-based modeling techniques can make predictiong anytim
before the time of release as long as the SRGM can be fitted, as discubteshl®t al.

in [63]. However, the predictions may be inaccurate, since the predictions are based on
incomplete development defect information. Users of the techniques can rexciothstr
model at the time of release to incorporate complete development defect irdormat

[63].

Statistical modeling techniques

For many of the statistical modeling techniques that we examine, the proteturiel
the model differs; therefore, we discuss this procedure in the descriptions of the
individual statistical modeling techniques.

Prior work usually constructs a model and then uses it to make predictions for multiple

subsequent releases without updating the model. Khoshgoftaar and Seliya [4bijctonstr
a model using information from one release and then use the model to make predictions
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for the next three releases. Ostrand et al. [69] construct a model using irdarfrat

two releases and then make predictions for the next ten releases. Howeseof theer
techniques can re-construct the model for each release to incorporate addi#tianal
which can yield a more accurate model, as shown by Karunanithi in [30].

To make predictions before the time of release, users of statistical ngpelhniques
need to construct models using software metrics that are availabldiatehod
prediction. For example, predictions after completion of the design can be nragle usi
software metrics that are available upon completion of the design, as discussed b
Khoshgoftaar and Seliya in [43]. However, to use software metrics thawaitable at
the time of release to make predictions, a separate model has to be constructed.

3.4.4 Procedure4: Prediction procedure

Standard statistical software packages are usually used to make predictiens i
literature. The prediction procedure needs to be executed once for each suftdaot
or once for each release of multi-release software.

SRGM-based modeling techniques
To make predictions, users insert future time interval values into the constructddonode
obtain the predicted field defect count for the future time intervals.

This procedure is the same for the SRGM-based modeling techniques that weeexami
We will refer to this procedure as teandard prediction procedure for SRGM-based
modeling techniquesn descriptions of the individual SRGM-based modeling techniques.

Statistical modeling techniques

For many of the statistical modeling techniques that we examine, the joredict
procedure differs; therefore, we discuss this procedure in the descriptions of the
individual statistical modeling techniques.

3.5 Cost of use

We compare the cost of use of each technique that we examine based on theeelfolt ne
to make a prediction, which we estimate using descriptions of the procedures in prior
work. The cost of use is usually not discussed in the literature. For purposes of
comparison, we assume that all statistical modeling techniques colleahtbessftware
metrics. The cost of use can be:

* Higher than typical,

* Typical, or

* Lower than typical.

We consider the cost of use of the Linear regression modeling technique (s&e Sec
4.6), which is the most widely used modeling technique in the literature, as .tyjseas

of the Linear regression modeling technique need to execute the planning peaoatiur
the setup procedure, and then users use statistical packages to construct thedriodel a
make predictions. The cost of use of techniques like the Neural networks modeling
technique (see Section 4.8), which requires additional effort to format the rgoftwa
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metrics and to manually select the best model, is higher than typical. Ttu ues of
techniques like the Exponential modeling technique (see Section 4.2), which reqgsires les
effort to execute the setup procedure, is lower than typical.

For multi-release software, the cost of use is higher for the initial use dirdadae than

for subsequent uses. This is due to two reasons. First, the planning procedure usually
needs to be executed only once for each software product. Second, users need to execute
one-time tasks to compute software metrics, such as creating prograxustd the data,

as discussed by Fuggeta et al. in [18]. In general, these tasks do not need to & repeat

for subsequent releases. Birk et al. [2] find that, relative to the first eglisaseffort

required for planning and collecting metrics in subsequent releases requyre@2W

of the effort required for the first release.

The cost of use of SRGM-based modeling techniques is usually lower than typisal. Thi
is mainly because SRGM-based modeling techniques require less effortiatistical
modeling technigues to execute the setup procedure, as discussed below.

3.5.1 Procedure 1. Planning procedure

The effort to execute this procedure is likely to vary depending on the goals objewt pr
and the people involved. For example, metrics collection for a project with 6 people to
develop a software development environment required ~103 person-hours to plan [18],
while metrics collection for a retail petroleum systems project with 16 peequired

~346 person-hours to plan [2]. Both organizations used the GQM approach [1]. We note
that the purpose of collecting the software metrics in [18] and [2] is not only tatpredi
information about field defects.

SRGM -based modeling techniques

This procedure is likely to require less effort to execute for SRGM-basddlimg
techniques compared with statistical modeling techniques, since users of SR&M-ba
modeling techniques only need to decide which one of two possible software process
metrics to collect.

Statistical modeling techniques

This procedure is likely to require more effort to execute for statisticallmgde
techniques compared with SRGM-based modeling techniques, since users ofastatistic
modeling techniques have more options about what software metrics to collect.

3.5.2 Procedure 2: Setup procedure
The effort required to execute this procedure varies depending on the number and the
kinds of software metrics collected.

SRGM -based modeling techniques

This procedure is likely to require less effort to execute for SRGM-basddlimg

techniques compared with statistical modeling techniques, since users of SR&M-ba
modeling techniques only need to collect one software metric for eaclerdleamelly

et al. [55] estimate that this procedure usually takes less than 48 person-h@acsite,e

if performed continuously throughout the development process, based on experiences at
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AT&T. The authors do not discuss weather this effort includes effort needed toeexecut
one-time tasks.

Statistical modeling techniques

This procedure is likely to require more effort to execute for statisticallmgde

techniques compared with SRGM-based modeling techniques, since users ofadtatistic
modeling techniques usually need to collect the field defect metric and tvarsoft

metrics selected in the planning procedure for historical release8yinifiaen, for each
subsequent release, users also need to collect the software metrics. Thisrproae

take between ~46 person-hours to ~125 person-hours to execute for each release, based
on experiences using the GQM approach in [18] and in [2]. The authors state that simila
effort is needed to collect the metrics for the initial release.

3.5.3 Procedure 3: Model-building procedure

For many of the techniques that we examine, the effort required to build the model
differs; therefore, the cost of use of this procedure is discussed in the dessritine
individual techniques. However, since the execution of this procedure is usually aided by
statistical software packages, this procedure may take at most sevesaiohexgcute.

3.5.4 Procedure4: Prediction procedure

For many of the techniques that we examine, the effort required to make predicti

differ; therefore, the cost of use of this procedure is discussed in the descoptions
individual techniques. However, like the model-building procedure, the execution of the
prediction procedure is aided by statistical software packages; thetafenerocedure

may take at most an hour to execute.

3.6 Quality of predictions

We present the accuracy of predictions reported in prior work for each techmaduest
examine. However, comparisons of the accuracy of predictions are genetgilyssible.

One major reason is that not enough research has been done to determine howegifferenc
in the context, such as differences in the type of software or the style chpieesit,

affect accuracy of predictions, discussed by Ohlsson and Runeson in [68].

In the catalog, we focus on accuracy of predictions because it is the mosbgrmased
criterion in the literature for assessing the quality of predictions; haywereenote that
other criteria have been used in the literature. For example, Khoshgoftaaaligad43]
and Ebert [14] evaluate the simplicity of the predictions, that is, how easy itusdis
of the technique to identify what predictors are important for making the predictions

SRGM -based modeling techniques

Accuracy of predictions of SRGM-based modeling techniques can vary sigtiifica
between data sets, as discussed by Brocklehurst et al. in [6] and by LyikaradiiN

[56]. The literature suggests not selecting a SRGM-based modeling techipiqae. a

Instead, users of the techniques should construct several SRGMs and then selstt the be
model to use by comparing the goodness of fit to the training data or accuracy of
predictions for historical releases [55]. This comparison does not signiicdfett the
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cost of use of SRGM-based modeling techniques because little additional effeetied
to make such comparisons. The inputs needed by most SRGM-based modeling
techniques are the same and tools are available to automate comparisonsddiscusse
[25] and in [55].

Statistical modeling techniques

Accuracy of predictions using the same technique can vary due to differenoes in t
software metrics used, the amount of historical data used to construct the models, and
details that are specific to a modeling technique, such as the variant of the teciseidjue
or technique specific tuning parameters, as discussed by Ohlsson and Runeson in [68].
Relative to a baseline set of software metrics and amount of historicaisgat#o

construct the model, using additional software metrics that measure diiiréntte of

the software, such as in Jones et al. [29], and/or using more historical data, such as in
Karunanithi [31], are likely to result in more accurate predictions. However, model
specific details are rarely discussed in the literature. In addition, forcpoedi of the

field defect thresholding, comparisons are usually not appropriate becaesis ther
trade-off between the false positive rate and the false negative rate, vehtble &wo
accuracy criteria usually used in the literature to evaluate accofacgdictions.
Khoshgoftaar et al. discuss this issue in [40].

3.7 Related techniques

Since some techniques in the literature are based on the same underlyingmtbdel, i
catalog, we present the most representative modeling techniques, one for edchnmdode
refer readers to their variants.

In addition, for statistical modeling techniques, prior work sometimes usegpplinc
component analysis to pre-process the software metrics, which we discuss in Appendix
B.

3.8 References

Several resources discuss the techniques that we examine in detail and othguésc

that are not examined in the catalog. Additional SRGM-based modeling techniques and
more information on the techniques that we examine can be found in [55] by Lyu, in [64]
by Musa and Okumoto, in [87] by Yamada et al., in [86] by Wood, and in [67] by NIST.
Additional statistical modeling techniques and information on statistical mgdel
techniques that we examine can be found in [40] by Khoshgoftaar et al., in [4 oy Bri

et al., and in [21] by Hastie et al.

4. Catalog of techniques

This section presents the catalog of techniques; however, before we gresadividual
techniques, we summarize the techniques, discuss the accuracy criteaelféind of
information predicted, and discuss the systems examined in the prior work that we
surveyed.
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In table 1, we summarize the techniques that we examine. We present kinds of
information predicted by a technique, the category of modeling techniques tHahg<e

to, cost of use, a research study that has used the technique to make predictiolrs for rea
world software, and the page where detailed information on the technique can be found.

Kinds of Moddin Category of
information i 1Ing modeling Cost of use Research study Page
. echnique :
predicted techniques
Field defect rate Gamma Finite Lower than Yamada et al. 23
and count SRGM-based typical [87]
Field defect rate . Finite Lower than
and count SPOAEE SRGM-based typical FEIIE|72) 28
Field defect rate Weibull Finite Lower than Musa and 30
and count SRGM-based typical Okumoto [64]
Field defect rate Logarithmic Infinite Lower than Musa and 33
and count 9 SRGM-based typical Okumoto [64]
Field defect rate Power Infinite Lower than Lyu and Nikora 36
and count SRGM-based typical [56]
Field defect count Linear rearession Parametric Tvpical Khoshgoftaar et 39
and thresholding 9 statistical yp al. [41]
Field defect count Trees N;)rrz]a-metric Higher Selby and 42
and thresholding param than typical Porter [81]
statistical
Field defect count Neural networks Parametric  Higher Karunanithi 46
and thresholding statistical than typical [31]
Field defect count  Ratios Parfametnc Lovyer than Jalote [26] 50
statistical typical
. L Non-
AEIE defgct D|scr|rr_1|nant parametric  Typical Ebert [14] 52
thresholding analysis -
statistical
Field defect Non- . Lower than Ostrand et al.
. Pareto parametric ' 54
thresholding o typical [69]
statistical

Table 1. Summary of techniques

The most widely used measures of accuracy in the literature for each kindrofatibn
predicted about field defects is below.

The most widely used measure of accuracy in the literature for field dafec
predictions are the mean relative error (MRE), the residual sum of sgR&8}§

N (& 2
and mean square error (MSE). The mean relative er@w, the RSS is

=Y
N A~ 2
y 2|9~y
Z(yi -y.)?, mean square error is-———— wherey; is the actual number of
i=1

Zl',y

field defects in the-th time intervaly is the predicted number of field defects in
thei-th time interval, and N is the number of time intervals in the duration of a
release.
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* The most widely used measure of accuracy in the literature for fielot defaat

predictions is the absolute relative error (ARE). The AeRll:'y' '
Yi
* The most widely used measures of accuracy in the literature for fielct defe
thresholding predictions are the rate of false positives (Type | enditha rate
of false negatives (Type Il error).

We present the systems examined in the prior work that we surveyed in table 2.
Table 2. Summary of systems
System set Description Modeling technique(s)
Yamada et al. [87] predicted software errors for an IBM ons
amma

System set 1  line terminal control program written in structured
programming macros and basic assembler language.
Lyu and Nikora [56] predicted systems test failures and Gamma

Exponential

System set 2 operation failures for three projects at the Rome A'ir Expor?enti'al
Development Center. At least one of the systems is a rei Logarithmic
time command and control system. Power

Gamma

Wood [86] predicted defects found in the first year after

System set 3 release for a software system at Tandem computers. Sﬁ)igzﬁn“al
System set 4 Pant [71] predicted failures for an AT&T electror Exponential

switching system deployed at one test site.
Goel and Okumoto [19] predicted errors for one module olf:_

System set 5 real-time system: the Naval Tactical Data System (NTDS): Xponential
Musa and Okumoto [64] predicted systems test failures :
; . g . Exponential
operation failures for “15 sets of data on a variety Weibull
System set 6  software systems, such as real time command and co Logarithmic
real time commercial, military, and space systems, ! P0\g/ver

system sizes ranging from small, 5.7K, to large, 2.4M.”
Kan [30] and Panlilio-Yap [70] predicted defects for IBNExponential
Application System 400. Weibull
Khoshgoftaar et al. [38], [41], [42], and [39] predicted fai
during systems integration and test phase and during the¢ Linear regression
Systemset 8 year after deployment for a large milita Neural networks
telecommunications system written in Ada. The softw Discriminant analysis
system was divided into modules.
Khoshgoftaar et al. [38] and Karunanithi [31] predicted
changes due to faults for a commercial medical imagml[l%ear regression
System set 9  system written in Pascal and Fortran. Lind and Vairay, 0ral networks
provided the data for this system in [52]. The software
system was divided into modules.
Khoshgoftaar et al. [34] predicted changes due to faults
telecommunications system written in a high-level langL
similar to Pascal. The software system was divided
modules.
Khoshgoftaar and Seliya [43] and [45] predicted problems
leading to code changes for a telecommunications systénear regression
written in PROTEL. The software system was divided infoees
modules.

System set 7

Linear regression
Trees
Neural networks

System set 10

System set 11
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System set

System set 12

System set 13

System set 14

System set 15

System set 16

System set 17

System set 18

System set 19

Description Modeling technique(s)
Khoshgoftaar et al. [35] predicted faults discovered
customers after release for “a very large leg
telecommunications system written in a high level langu
and maintained by professional programmers in a |.
organization”. The software system was divided i
modules.
Jones et al. [29] and Khoshgoftaar et al. [36] predicted fal]J_ltS

) : iNear regression
discovered by customers after release in a very Iagee
€

Linear regression

ural neworks

telecommunications embedded system written in a high-" - . :
Iscriminant analysis

level language with more than 10 million lines of code. T
software system was divided into modules.
Briand et al. [4] predicted errors during system
acceptance testing in a 260 KLOC Ada system at N/ Linear regression
Goddard Space Flight Center. The software system Trees
divided into modules.
Selby and Porter [81] predicted faults for a Hughes system
with 100,000 lines of code. The software system wésees
divided into modules.
Ebert [14] predicted faults for several simil T
telecommunications systems with roughly 1 million lines Nrees

o : eural networks
code. The software systems were divided into modules.
Ohlsson and Runeson [68] predicted faults for a real-time
telecommunications software system. The software sys@iscriminant analysis
was divided into modules.
Ostrand et al. [69] predicted faults in an inventory sysiel
AT&T. The software system was divided into files.
Jalote [26] predict defect for “hundreds of projects” ﬁta
InfoSys.

Pareto

tio
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4.1 Gamma modeling technique for predicting the fiedfedt rate
and the field defect count

Abstract

The Gamma modeling technique is a finite SRGM-based modeling technique. étkor w
uses this technique to fit a SRGM based on the Gamma function using software process
metrics that measure development defects and then uses the fitted model to make
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs
» The occurrence time of each development defect or the defect count in each time
interval during development
Outputs
* The predicted field defect rate
Model
This technique adjusts tlkeandp model parameters of the SRGM based on the Gamma
function so that the SRGM describes the observed development defect information. Two
mathematically equivalent forms of the SRGM, which are used to describelthe f
defect rate and the field defect count, are:

Field defect rate (for theth time interval) =aB%*te™”* , and

Field defect count (aggregated from time O to tijre a (1— (L+ B)e™?).

Thea parameter roughly determines the scale of the model, afidodn@meter roughly
determines the shape of the model. Gamma functions, which are used to predid the fiel
defect rate, and Gamma cumulative functions, which are used to predictditefect

count, with sample parameter values are in figures 1 and 2.
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Figure 1. Gamma functions with sample parameter values

Gamma cumulative functions with sample parameter values
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Figure 2. Gamma cumulative functions with sample parameter values
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Applicability

This technique has tletandard applicability restrictions for SRGM-based modeling
techniguesindthe standard applicability restriction for finite SRGM-based modeling
techniquesdiscussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Gamma function.

This technigue was used to make predictions for System Set 1, System Set 2,e&nd Syst
Set 3.

Procedures

Users of the technique need to executestaedard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniduesse procedures are
described in Section 3.4.

Cost of Use

The cost of use of the Gamma modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages

Quality of Predictions
Yamada et al. find in [87] that the RSS for prediction of the error rate fort tthatdi is
12.6 for 31 errors and the ARE for prediction of the error count is .097 for 41 errors.

Lyu and Nikora find in [56] that the MSE for predictions of the failure rate are 567.7 for
~95 failures for system 1, 246.1 for ~60 failures for system 2, and 2067 for ~145 failures
for system 3. For each system, the authors appear to have used ~30% of failuré to fit
models initially and then made predictions for the remaining failuresMBte of this
technique ranked third among the five techniques examined by the authors.

Wood finds in [86] that the ARE for predictions of the defects was .029 for 34 field
defects.

Related techniquesin the catalog

We use the version of the Gamma modeling technique presented in Yamada et al. [87].
Their model is commonly referred to as the S-shaped model in the literattiesvaod

and Verrall apply Bayesian principles to the Gamma modeling technique in [54]. Their
model is commonly referred to as the Littlewood-Verrall (LV) model. Thairant

allows prior information about the model parameters and about how defect discoveries
affect the model parameters to be incorporated into the model.

References
Additional information on the Gamma modeling technique can be found in [55] by Lyu.
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4.2 Exponential modeling technique for predicting tieédf defect
rate and the field defect count

Abstract

The Exponential modeling technique is a finite SRGM-based modeling technicure. Pri
work uses this technique to fit a SRGM based on the Exponential function using software
process metrics that measure development defects and then uses the fittedd maéel
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

» The occurrence time of each development defect or the defect count in each time

interval during development

Outputs

* The predicted field defect rate
Model
This technique adjusts tlkeandp model parameters of the SRGM based on the
Exponential function so that the SRGM describes the observed development defect
information. Two mathematically equivalent forms of the SRGM that, which adetose
describe the field defect rate and the field defect count, are:

Field defect rate (for thieth time interval) =ate” , and
Field defect count (aggregated from time O to tjre a (L-€™#).

Thea parameter roughly determines the scale of the model, afidogn@meter roughly
determines the shape of the model. Exponential functions, which are used to predict the
field defect rate, and Exponential cumulative functions, which are used to predict the
field defect count, with sample parameter values are in figure 3 and 4.
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Figure 3. Exponential functions with sample par ameter values
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Applicability

This technique has tletandard applicability restrictions for SRGM-based modeling
techniguesandthe standard applicability restriction for finite SRGM-based modeling
techniquesdiscussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Exponential function.

This technigque was used to make predictions for System Set 1, System Setr?, Syste
3, System Set 4, System Set 5, System Set 6, and System Set 7.

Procedures

Users of the technique need to executestardard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniduesse procedures are
described in Section 3.4.

Cost of Use

The cost of use of the Exponential modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages

Quality of Predictions
Yamada et al. find in [87] that the RSS for prediction of the error rate fort tthatdi is
31.5 for 31 errors and the ARE for prediction of the error count is 1.606 for 41 errors.

Lyu and Nikora find in [56] that the MSE for the predictions of the failure rat2 Eké

for ~95 failures for system 1, 1455 for ~60 failures for system 2, and 480 for ~145
failures for system 3. Details are in Section 4.1. The MSE of this technique ratiked fif
among the five techniques examined by the authors.

Wood finds in [86] that the ARE for predictions of the defects was.029 for 34 field
defects.

Pant finds in [71] that “the failure intensity (i.e. the field defect riatep more than the
value at the time of release thereby validating the measurements rsadeoha
verification.”

Goel and Okumoto find in [19] that the 90% confidence bound captures all of the 26
errors used to fit the data, that the ARE of the error count is O for 8 post production

errors, and that “analyses of the NTDS data and of some other data sets ned iregert
indicate that the model provides a good fit to the observed failure phenomenon.”

Musa and Okumoto find in [64] that the technique under-estimates the failupedged
using the median relative error for 15 sets of data.

Kan finds in [30] that the technique is “useful in the development” of the system.
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Related techniquesin the catalog

We use the version of the Exponential modeling technique presented in Goel and
Okumoto [19]. Their model is commonly referred to as the Goel-Okumoto (GO) model in
the literature. Musa also proposes this model in [62]. His model is derived slightly
differently and is commonly referred to as the Musa basic Exponential model. The
Exponential modeling technique is a simplified version of the Weibull modeling

technique in Section 4.3. However, the Exponential modeling technique is usually treated
as a different modeling technique in the literature.

References

Additional information on the Exponential modeling technique can be found in [55] by
Lyu and in [63] by Musa et al.
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4.3 Weibull modeling technique for predicting the fidkefect rate
and the field defect count

Abstract

The Weibull modeling technique is a finite SRGM-based modeling technique. Prior wor
uses this technique to fit a SRGM based on the Weibull function using software process
metrics that measure development defects and then uses the fitted model to make
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

» The occurrence time of each development defect or the defect count in each time

interval during development

Outputs

* The predicted field defect rate
Model
This technique adjusts the &,andp model parameters of the SRGM based on the
Weibull function so that the SRGM describes the observed development defect
information. Two mathematically equivalent forms of the SRGM that, which adetose
describe the field defect rate and the field defect count, are:

Field defect rate (for thieth time interval) :Na,é’[”‘le‘ﬂa , and

Field defect count (aggregated from time O to the tyreN (L-e "),

The N parameter roughly determines the scale of the model plameter roughly
determines the shape of the model, angtharameter roughly determines the location
of the hump in the model. Weibull functions, which are used to predict the field defect
rate, and Weibull cumulative functions, which are used to predict the field detett c
with sample parameter values are in figures 5 and 6.
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Applicability

This technique has tletandard applicability restrictions for SRGM-based modeling
techniguesandthe standard applicability restriction for finite SRGM-based modeling
techniquesdiscussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Weibull function.

This technigue was used to make predictions for System Set 3, System Set 6,&nd Syst
Set 7.

Procedures

Users of the technique need to executestardard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniduesse procedures are
described in Section 3.4.

Cost of Use

The cost of use of the Weibull modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages

Quality of Predictions
Musa and Okumoto find in [63] that the Weibull model under-estimates the fatere r
judged using the median relative error for 15 sets of data.

Wood finds in [86] that the ARE for predictions of the defects was.029 for 34 field
defects.

Kan finds in [30] that the technique is “useful in the development” of the system.

Panlilio-Yap [70] used the technique to model defects for the same system, buhtre aut
does not report the accuracy of predictions.

Related techniquesin the catalog

We use the version of the Weibull modeling technique presented in Farr [55]. A common
variant of the Weibull function is the Raleigh function with is the Weibull functidih w

a=2. The Raleigh function is the basis for the Putnam’s Software Life-bMadke|

(SLIM) model [70]. SLIM is proprietary and uses different software metoicohstruct

the model, including an organization’s productivity index and manpower buildup index.

References
Additional information on the Weibull modeling technique can be found in [55] by Lyu.
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4.4 Logarithmic modeling technique for predicting thed defect
rate

Abstract

The Logarithmic modeling technique is an infinite SRGM-based modeling technique.
Prior work uses this technique to fit a SRGM based on the Logarithmic function using
software process metrics that measure development defects and thigre disiesi model
to make predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

» The occurrence time of each development defect or the defect count in each time

interval during development

Outputs

* The predicted field defect rate
Model
This technique adjusts tifig andp; model parameters of the SRGM based on the
Logarithmic function so that the SRGM describes the observed development defect
information. Two mathematically equivalent forms of the SRGM that, which adetose
describe the field defect rate and the field defect count, are:

Boy
Br+1
Field defect count (aggregated from time 0 to the time S, In(St +1) . (Note that this
is an infinite function of).

The o parameter roughly determines the scale of the model arfid fa@ameter roughly
determines the shape of the model. Logarithmic functions, which are used to pedict t

field defect rate, and Logarithmic cumulative functions, which are used to tpitelic
field defect count, with sample parameter values are in figures 7 and 8.

Field defect rate (for thieth time interval) = and
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Logarithmic functions with sample parameter values

. B, =100, B, = .5
Bo=50,B, = .5
2 B, = 100, B, =.3
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Q
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Time in months

Figure 7. Logarithmic functions with sample parameter values
Logarithmic cumulative functions with sample parameter values
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| | 1 |

Cumulative defects

50
|

Time in months
Figure 8. Logarithmic cumulative functions with sample parameter values
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Applicability

This technique has tletandard applicability restrictions for SRGM-based modeling
techniguesandthe standard applicability restriction for infinite SRGM-based modeling
techniquesdiscussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Logarithmic function.

This technigue was used to make predictions for System Set 2 and System Set 6.

Procedures

Users of the technique need to executestaedard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniduesse procedures are
described in Section 3.4.

Cost of Use

The cost of use of the Logarithmic modeling technique is lower than typical o§heoc

execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages

Quality of Predictions

Lyu and Nikora find in [56] that the MSE for the predictions of the failure raté&fet

for ~95 failures for system 1, 1421 for ~60 failures for system 2, and 253.2 for ~145
failures for system 3. Details are in Section 4.1. The MSE of this technique rankéd four
among the five techniques examined by the authors.

Musa and Okumoto find in [63] that the Logarithmic modeling technique is superior to
other SRGM-based modeling techniques, including the Exponential modeling technique
and the Weibull modeling technique, base on having a better median relatiiererror
predicting fault rates, that is, a median relative error that is closeraofael5 sets of

data.

Related techniquesin the catalog

We use the version of the Logarithmic modeling technique presented in Musa and
Okumoto [63]. Their model is commonly referred to as the Musa-Okumoto (MO) model
in the literature.

Refer ences

Additional information on the Logarithmic modeling technique can be found in [55] by
Lyu and in [63] by Musa et al.
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4.5 Power modeling technique for predicting the fietdeatt rate

Abstract

The Power modeling technique is an infinite SRGM-based modeling technique. Prior
work uses this technique to fit a SRGM based on the Power function using software
process metrics that measure development defects and then uses the fitted maéel
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

* The occurrence time of each development defect or the defect count in each time

interval during development

Outputs

* The predicted field defect rate
Model
This technique adjusts tlkeandp model parameters of the SRGM based on the Power
function so that the SRGM describes the observed development defect information. Two
mathematically equivalent forms of the SRGM that, which are used to descridhe
defect rate and the field defect count, are:

Field defect rate (for theth time interval) =aBt*™, and

Field defect count (aggregated from time O to the timeat” . (Note that this is an

infinite function oft).

Thea parameter roughly determines the scale of the model, afigoirameter roughly
determines the shape of the model. Power functions, which are used to predict the field
defect rate, and Power cumulative functions, which are used to predict theefesttl d
count, with sample parameter values are in figures 5 and 6.
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Defects

Cumulative defects

Power functions with sample parameter values

% 7 a =100, B = .15
a=50,B=.15
c a =100, B = .1
a=50,p=.1
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Time in months
Figure 5. Power functionswith sample parameter values

Power cumulative functions with sample parameter values
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|

a=100,B=.15
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o a=50,p=.1
T T T T T T
0 2 4 6 3 10
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Figure 6. Power cumulative functionswith sample parameter values
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Applicability

This technique has tletandard applicability restrictions for SRGM-based modeling
techniguesindthe standard applicability restriction for infinite SRGM-based modeling
techniquesdiscussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Logarithmic function.

This technigue was used to make predictions for System Set 2 and System Set 6.

Procedures

Users of the technique need to executestaedard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniduesse procedures are
described in Section 3.4.

Cost of Use

The cost of use of the Logarithmic modeling technique is lower than typical o§heoc

execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages

Quality of Predictions

Lyu and Nikora find in [56] that the accuracy of the error rate prediction asireddsy

the log of the prequential likelihood, which is a measure of the accuracy of mmeslicti
based on the probability of experiencing a failure, is -814.3 for ~145 failure, which
ranked & among the ten techniques that the authors examined. The authors used 60
points, ~30%, of 207 failures to fit the models initially and then made predictions for the
remaining failures.

Musa and Okumoto find in [63] that the Power model over-estimates the failure rate
judged using the median relative error for 15 sets of data.

Related techniquesin the catalog

We use the version of the Power modeling technique presented in Lyu [55]. The model is
commonly referred to as the Duane model in the literature. Duane first devdieped t
model at General Electric in 1964, discussed in [13].

References
Additional information on the Power modeling technique can be found in [55] by Lyu.
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4.6 Linear regression modeling technique for predictihg field
defect count and the field defect thresholding

Abstract

The Linear regression modeling technique is a parametric statistockling technique.
Prior work uses this technique to fit a Linear model using historical infamanh
software metrics and field defects and then uses software metrics fwoiralease and
the constructed model to make predictions for the new release. The cost ofhise of t
technique is typical.

Overview
Inputs

» Software metrics for historical releases

» Software metrics for the new release

* The field defect count for historical releases
Outputs

» The predicted field defect count or field defect thresholding
Model
This technique uses least squares regression or maximum likelihood estitoati
construct a Linear model by adjusting model parameters to fit a Lineat.nod@edict
field defect counts, this technique minimizes the difference between itnatest field
defect count and the actual field defect count for historical releasekindss model
[85] is:

i=N
Field defect count 13, + Z,Bi X, , where Xis value the i-th software metric and N is
i=1
the total number of software metrics. To predict field defect thresholdingethisiue
minimizes the difference between the estimated probability field dihfiexsholding and

A i=N
the actual field defect thresholdint‘glg[1 pﬁ} =B+ Z'Bi X, , wherep is the
_ —

probability that the field defect count is above the threshold.

This modeling technique is usually used in conjunction with model selection, which
selects a subset of software metrics to use in the model by examininguige @h the
goodness of fit resulting from adding or subtracting software metrics frermodel
[41].

Applicability
This technique has tletandard applicability restrictions for statistical modeling
techniquesdiscussed in Section 3.4.

This technigue was used to make predictions for System Set 8, System Setr,Syste
10, System Set 11, System Set 12, System Set 13, and System Set 14.
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Procedures
Users of the technique need to exetheestandard planning and setup procedures for
statistical modeling techniquediscussed in 3.3.4.

Procedure 3: Model-building procedure
If the user is predicting the field defect thresholding, then the user needs to use the pr
determined threshold to determine the thresholding of historical releases.

(Optional) Use the collected information and a model selection routine, such as
backwards elimination used by Khoshgoftaar et al. in [39], found in most s#dtistic
software packages to select a subset of the software metrics to use in the model

Use the model fitting routine found in most statistical software packagesstract the
model.

If the user is predicting field defect thresholding, then the user also needstoimete
the probability level, that is, the cut-off, at which to classify a releasbave the
threshold. Prior work usually does this by finding the probability level that edahe
Type | and Type Il errors in the training set [34].

Procedure 4: Prediction procedure
Insert the software metrics’ values for the new release into the condtraotel to
obtain the predicted field defect count.

If the user is predicting the field defect thresholding, then the user also need¢hi® use
probability level determined in the model-building procedure to decide if thesealgh
be above the threshold.

Cost of Use

The cost of use of this technique is typical. The cost to execute the planning procedure
and the setup procedure is discussed in Section 3.5. Users of this technique may be able
to execute the model-building procedure and the prediction procedure in several minutes
using standard statistical software packages.

Quality of Predictions
We summarize the accuracy of the field defect count predictions in table 3 disddthe
defect thresholding predictions in table 4.

Table 3. Accuracy of the field defect count predictions

: Training Accuracy of

Study Metrics used et Test set predictions
Khoshgoftaar et al. 8 software product metrics 188 94
[41] and [42] modules = modules 5877 ARE
Khoshgoftaar et al. 11 software product metrics 226 113
[41] modules modules SRR
Khoshgoftaar et al. = 9* software product metrics, = 1320 660 565 ARE
[34] 2 software process metrics modules = modules  °
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Training Accuracy of

Study Metrics used et Test set predictions
24 software product metrics, 3649 3981
thshgoftaar e . 4 software deployment and modules modules .571 ARE
Seliya [45], release :
usage metrics
24 software product metrics, = 3649 3541
thshgoftaar and ~ 4 software deployment and modules = modules @ .602 ARE
Seliya [45], release 3 )
usage metrics
Khoshgoftaar and 24 software product metrics, 3649 3978
Seliya [45], release ¢ 4 software erloyment and modules modules .584 ARE
usage metrics
* Metrics were processed using Principle Comporertlysis, see Appendix B
Table 4. Accuracy of the field defect thresholding predictions
: - Accuracy of
Study Metrics used Training set Test set predictions Threshold
3 software product Not specified 314 modules
metrics, o
Khoshgoftaar 7 software process 21.71%
. Type | error
et al. [34] metrics, 0 faults
22.96%
1 software Type Il error
deployment and yp
usage metric
24 software Half of “a few Half of “a few  29.06%
Jones etal. product metrics thousand” thousand” Type | error 0 faults
[29] modules modules 30.77%
Type Il error
an unspecified 146:)‘ modules,  all the high-risk 23 44%
: number of an “equal modules and an
Briand et al. . Type | error
software code number of both equivalent 0 errors
[4] ) . 32.88%
metrics low- and high- number of low Tvoe Il error
risk” modules  risk modules yp

Related techniquesin the catalog

We use the Linear regression modeling technique presented in Weisburg [8bjhddre
regression modeling technique is also known as the Multiple regression modeling
technique or the Multiple Linear regression modeling technique. Variants of this
technique use different measures of accuracy in the model-building algoritbogssg#id

in Khoshgoftaar et al. [34]. Variants also use different methods to select tivarsof
metrics to use in the model, such as in Khoshgoftaar et al. [41]. The version of the Line
modeling technique used to predict the field defect thresholding is also known as the
Logistic regression modeling technique.

References

Refer to Weisberg [85] and Khoshgoftaar et al. [41] for details on the Lineassegre
modeling technique.
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4.7 Trees modeling technique for predicting the fiedfliedt count
and the field defect thresholding

Abstract

The trees modeling technique is a non-parametric statistical modelimgdee. Prior
work uses this technique to fit a Trees model using historical information orasaftw
metrics and field defects and then uses software metrics for a neve r@hebthe
constructed model to make predictions for the new release. The cost of use of this
technique is higher than typical.

Overview
Inputs
» Software metrics for historical releases
» Software metrics for the new release
* The field defect count for historical releases
Outputs
» The predicted field defect count or field defect thresholding
Model
This technique constructs a Trees model by iteratively split historicalrdatsimilar
groups as judged by deviance of the data in the same node [45]. To predict field defect

counts, this techniques measures the deviance of d madg(yi -u,)?, wherey; is

ia
the field defect count of the i-th release an@ the mean of thg in the same node. To
predict the field defect thresholding, this technique measures the devianceds as:

1-(p*(x |1) + p*(x, 1)) , wherep(x|l) is the proportion of observations in nddaat is

above the threshold ampgx|l) is the proportion of observations in nddeat is below
the threshold.

Each iteration, the tree-building algorithm selects the softwaremaetd metric value

that can best split the node into two child nodes that minimizes the sum of the deviance
of the left and right child nodes. The splitting finishes when the number of historical
releases in the nodes is less than some preset number. The algorithm then prreees the t
using v-fold cross validation (with v usually being 10) to determine the optimal tree.
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An example trees model is in figure 7.

X, : Software metric 1
m: critical value for X,
X,2m X, : Software metric 2

m: critical value for X,
U_, 5. mean of the
observations in the i-th node

X,<n

Uy

Figure 7. An example tr ees model

Applicability
This technique has tletandard applicability restrictions for statistical modeling
techniquesdiscussed in Section 3.4.

This technique was used make predictions for System Set 10, System Set 1l ,S&yste
14, System Set 15, and System Set 16.

Procedures
Users of the technique first need to exetléestandard planning and setup procedures
for statistical modeling techniquediscussed in 3.3.4.

Procedure 3: Model-building procedure
If the user is predicting the field defect thresholding, then the user needs to use the pr
determined threshold to determine the thresholding of historical releases.

Use the collected information and tree building routine found in most statistitaase
packages to construct several candidate models by varying the model perafedéet
the candidate model that has the best fit to the historical data.

If the user is predicting the field defect thresholding, then the user also needs to
determine the cut-off, that is, the proportion of releases in a leaf node that are above the
threshold at which to classify a node as being above the threshold. Prior work usually
does this by finding the cut-off that balances the Type | and Type |l @nrtire training

set.

Procedure 4: Prediction procedure

Insert software metrics values for the new release into the construatisd tm obtain the
predicted field defect count. To make a prediction for a new release, users of the
technique traverse the tree based on the software metrics’ values of thedesms until
they reach a leaf node.
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If the user is predicting the field defect count, the mean of the field defect cdunés
historical releases in the leaf node is the predicted field defect coune foewhrelease.

If the user is predicting the field defect thresholding, then the user needs to usedtfie c
to determine if the release will be above the threshold.

Cost of Use

The cost of use of this technique is higher than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique
may be able to execute the model-building procedure in one person-hour using standard
statistical software packages and then execute the prediction proceducelpteact

minutes.

Quality of Predictions
We summarize the accuracy of the field defect count predictions in table 5 and the
accuracy of the field defect thresholding predictions in table 6.

Table 5. Accuracy of the field defect count predictions

. - Accuracy of
System Metrics used Trainingset  Test set predictions
Khoshgoftaar and 9 software product 4648 2324
X metrics, .3943 ARE
Seliya [43] ._modules modules
2 software process metric
24 software product
Khoshgoftaar and metrics, 3649 3981 324 ARE
Seliya [45], release 2 4 software deployment  modules modules
and usage metrics
24 software product
Khoshgoftaar and metrics, 3649 3541 391 ARE
Seliya [45], release 3 4 software deployment = modules modules
and usage metrics
24 software product
Khoshgoftaar and metrics, 3649 3978 418 ARE
Seliya [45], release 4 4 software deployment  modules modules
and usage metrics
Table 6. Accuracy of the field defect thresholding predictions
System Metrics used Training set Test set Accu_rapy e Threshold
predictions
24 software , “a few 27.9% Type
product metrics, » p
Khoshgoftaar 14 process metrics thousand a few | error
and Allen [33], P “'modules thousand” 0 faults
4 software ,
Release 2 from the first modules 28.6% Type
deployment and
: release Il error
usage metrics
24 software “a few 30.4% Type
product metrics, ; u
Khoshgoftaar 14 process metrics thousand a few | error
and Allen [33], " PEO5=S * modules thousand” 0 faults
Release 3 from the first modules 34.0% Type
deployment and
release Il error

usage metrics
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Accuracy of

System Metrics used Training set Test set predictions Threshold
24 software , “a few 33.7% Type
product metrics, » p
Khoshgoftaar 14 process metrics thousand a few | error
and Allen [33], 4 sgftware “’'modules thousand” 0 faults
Release 4 from the first modules 27.2% Type
deployment and
: release Il error
usage metrics
all the high-
. 146 modules, iy modules 16.67%
an unspecified an “equal and an Type I error
Briand et al. [4] AUGHIEL ©F AUGHOEL B equivalent 0 errors
software code both low- and number of 17.81%
metrics ILEIHS low risk Type Il error
modules modules
907 modules \?vc;z modules 18.84%
was available T : e |l error Faults in the
Selby and Porter 2 software process available, informatic')n yp top 25% of
[81] metrics information from the 24,3204 the training
from the first 9470 set
next 12 Type Il error
54 months months
8.59% Type
six complexit | Gies
Ebert [14] metricsp y 251 modules 200 modules 1 fault
43.24%
Type Il error

Related techniquesin the catalog

We are using the trees modeling technique used in [45] by Khoshgoftaar and Seéiya. Thi
technique is also known as the Classification and Regression Trees (CARTihgode
technique. Variants of this technique use slightly different measures of detoaribe

field defect count, such a3_|y; = V|, wherey; is the field defect count of the i-th release
[}

andy; is the median of thg in the same node. Other variants do not prune the tree and

uses an additional parameter to determine when to stop splitting. These vagiants ar

discussed in Khoshgoftaar and Seliya [45].

References

Refer to Hastie et al. [21] and Brieman et al. [5] for details on the treesingpdel
technique.
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4.8 Neural networks modeling technique for predicting tield
defect count and the field defect thresholding

Abstract

The Neural networks modeling technique is a parametric statistical motdimgque.

Prior work uses this technique to fit a Neural networks model using historical atform

on software metrics and field defects and then uses software metrics Worelegse

and the constructed model to make predictions for the new release. The cost of @se of thi
technique is higher than typical.

Overview
Inputs

» Software metrics for historical releases

» Software metrics for the new release

* The field defect count for historical releases
Outputs

» The predicted field defect count or field defect thresholding
Model
As explained by Khoshgoftaar et al. in [41], a Neural network is a set of intercetinect
nodes that have some inputs, an output, and a transformation function. The Neural
networks model, arranges the nodes in layers, with one layer for the inputs, otierlayer
the output, and usually only one intermediate layer, known as a hidden layer. Each node
uses its transformation function to compute an output using its inputs. This
transformation function is usually a non-linear equation. The input layer has one node fo
each software metric, and the input to the node is the normalized value of the software
metric. Each node in the intermediate layer receives weighted inpute&dmmode in
the input layer. The output layer receives weighted inputs from each node in the
intermediate layer and then produces the normalized value of the output.
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An example Neural networks model is in figure 8.

Hidden layer

Input layer
X, T &

% — Output layer
@,
Xy —
Xy — Xi=1 4 - Normalized value of

the i-th software metric
O: Normalized value
of the output

Figure 8. An example Neural networ ks model
This technique constructs a Neural networks model by adjusting the weights of tlse input
and the parameters in the transformation function to fit the observed field defect
information. This is usually done using a backwards training algorithm discussed by
Khoshgoftaar et al. in [41].

Applicability
This technique has tletandard applicability restrictions for statistical modeling
techniquesdiscussed in Section 3.4.

This technique was used to make predictions for System Set 8, System Setrf,S®yste
10, and System Set 16.

Procedures
Users of the technique first need to exethéestandard planning and setup procedures
for statistical modeling techniquediscussed in 3.3.4.

Procedure 3: Model-building procedure
If the user is predicting the field defect thresholding, then the user needs to use the pr
determined threshold to determine the thresholding of historical releases.

If the user is predicting the field defect count, then the user needs to normalieédthe f
defect count for historical releases by dividing each field defect counebartest field
defect count in historical releases.

Normalize the software metrics by dividing each metric by the $arngdue of the metric

in historical releases. Use the normalized information and the Neural network mode
fitting routine found in most statistical software packages to construct cediddels

by varying the number of intermediate layer nodes. Select the candidate motakthat
the best fit to historical information. Prior work has constructed candidate snoidelS,

10 through 20, 25, and 30 nodes for data sets with 8 software metrics and 11 software
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metrics, and has found that 16 and 18 intermediate nodes, respectively, had the best fit,
discussed in [41] and [42].

If the user is predicting the field defect thresholding, then the user also needs to
determine the cut-off of the output at which to classify a node as being above the
threshold. Prior work usually does this by finding the cut-off that balances tleel ayl
Type Il errors in the training set.

Procedure 4: Prediction procedure

Normalize the software metrics values for the new release by dividoigseftware

metric by the largest value of the software metric in the training sett th& normalized
values into the constructed model to obtain the normalized field defect count prediction.

If the user is predicting the field defect count, then the user needs to scales up the output
by multiplying the output by the largest field defect count in historical seteto obtain
the predicted output.

If the user is predicting the field defect thresholding, then the user uses thétout-of
determine if the release will be above the threshold.

Cost of Use

The cost of use of this technique is higher than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique
may be able to execute the model-building procedure in several person-hours using
standard statistical software packages and then execute the prediction procedure
several minutes.

Quality of Predictions
We summarize the accuracy of the field defect count predictions in table 7 and the

accuracy of the field defect thresholding predictions in table 8.
Table 7. Accuracy of the field defect count predictions

: Training Accuracy of

Study Metrics used et Test set predictions
Khoshgoftaar et al. 8 software product metrics 188 94
[41] and [42] modules = modules 3980 ARE
Khoshgoftaar et al. 11 software product metrics 226 113
[41] modules modules RIARE
Khoshgoftaar et al. = 9 software product metrics, 1320 660 584 ARE
[34] 2 software process metrics modules = modules  °

24 software product metrics, 3649 3981

4 software deployment and modules modules .620 ARE
usage metrics

24 software product metrics, = 3649 3541

4 software deployment and modules = modules @ .749 ARE
usage metrics

24 software product metrics, 3649 3978

4 software deployment and modules modules .3980 ARE
usage metrics

Khoshgoftaar and
Seliya [45], release :

Khoshgoftaar and
Seliya [45], release 3

Khoshgoftaar and
Seliya [45], release ¢
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System

Karunanithi
[30]

Karunanithi
[30]

Karunanithi
[30]

Karunanithi
[30]

Khoshgoftaar et 11 software

al. [38]

Ebert [14]

Table 8. Accuracy of the field defect thresholding predictions

Metrics
used

8 software
product
metrics

8 software
product
metrics

8 software
product
metrics

8 software
product
metrics

product
metrics

6 software
product
metrics

Training set

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
25% of the modules

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
50% of the modules

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
67% of the modules

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
75% of the modules
188 module, after
removing modules
with between 1-4
faults to improve
fitting, trained using
75% of the modules

251 modules

Related techniquesin the catalog
We are using the Neural networks modeling technique used in [41] by Khoshgoféhar

Refer ences

Test set

75% of
modules

50% of
modules

33% of
modules

25% of
modules

94
modules

200
modules

Accuracy of
predictions
20.19%
Type | error

12.11%
Type Il
error

17.41%
Type | error

15.04%
Type I
error
14.32%
Type | error

14.08%
Type Il
error

9.77% Type
| error

15.47%
Type Il
error

12.50%
Type | error

6.67% Type
Il error

8.64% Type
| error

56.76%
Type Il
error

Threshold

9 faults

9 faults

9 faults

9 faults

4 faults

1 fault

Refer to Hastie et al. [21] for details on the Neural networks modeling tgpehni
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4.9 Ratios modeling technique for predicting the fidédect count

Abstract

The Ratios modeling technique is a parametric statistical modeling techRigrework
uses this technique to fit a Ratios model using historical information on a softetie m
and field defects and then uses the software metric for a new release andttinetedns
model to make predictions for the new release. The cost of use of this technigheis hig
than typical.

Overview
Inputs
* A software metric for historical releases
» A software metric for the new release
* The field defect count for historical releases
Outputs
* The predicted field defect count
Model
This technique computes the ratio of the field defect count to a software metric (e
development effort [60]) for historical releases.

Applicability
This technique has tletandard applicability restrictions for statistical modeling
techniquesdiscussed in Section 3.4.

This technique was used to make predictions for System Set 19.

Procedures
Users of the technique first need to exethéestandard planning and setup procedures
for statistical modeling techniquediscussed in 3.3.4.

Procedure 3: Model-building procedure
Compute the ratio.

Procedure 4: Prediction procedure
Multiply the value of the software metric for the new release by theetad ratio to
determine the field defect count for the new release.

Cost of Use

The cost of use of this technique is lower than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique
may be able to execute the model-building and prediction procedures in a couple of
minutes.
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Quality of Predictions
Jalote [26] and Mohapatra and Mohanty [60] report using this technique on “several
hundred” projects at Infosys, accuracy of predictions is not reported.

Related techniquesin the catalog
We use the Ratios modeling technique used by Mohapatra and Mohanty in[60].

References
Refer to Jalote [26] for details about Ratios modeling technique.
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4.10 Discriminant analysis modeling technique for preitig the
field defect thresholding

Abstract

The Discriminant analysis modeling technique is a non-parametric stdtistodeling
technique. Prior work uses this technique to fit a Discriminant analysis model using
historical information on software metrics and field defects and then usesisoftw
metrics for a new release and the constructed model to make predictions for the new
release. The cost of use of this technique is typical.

Overview
Inputs

» Software metrics for historical releases

» Software metrics for the new release

* The field defect count for historical releases
Outputs

» The predicted field defect thresholding
Model
This technique presorts historical releases into classes, that is, & seabwve the
threshold and a set that is below the threshold. For each class, the technique dheputes
probability that a new release belongs to each class using a distancenfandti@
probability function. The distance function used in [38][@". = (X=X )'Z’l(x—x'j ),
wherex is the vector of software metrics for the new relegsés the vector of the
means of the software metrics in the j-th class,2aisdthe covariance matrix of the
software metrics in both classes. The probability that the new releasegdldhe j-th

—}D-Z(X)
2 ]

class is: P;(X) = 51—
e’
i=1

Applicability

This technique has tletandard applicability restrictions for statistical modeling

techniquesdiscussed in Section 3.4.

This technique was used to make predictions for System Set 8, System Set 13, Syste
Set 16, and System Set 17.

Procedures
Users of the technique first need to exetléestandard planning and setup procedures
for statistical modeling techniquediscussed in 3.3.4.

Procedure 3: Model-building procedure
Place the historical releases into classes.
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Procedure 4: Prediction procedure

Use the Discriminant analysis procedure found in most statistical sefpaakages to
determine the probability that the new release belongs to each clasgshBlaew
release into the class with the higher probability of class membership.

Cost of Use

The cost of use of this technique is typical. The cost to execute the planning procedure
and the setup procedure is discussed in Section 3.5. Users of this technique may be able
to execute the model-building and prediction procedures in several minutes.

Quality of Predictions

We summarize the accuracy of the field defect thresholding predictions irl@able
Table 10. Accuracy of field defect thresholding predictions

: - Accuracy of
System Metrics used Training set Test set predictions Threshold
188 module, after 20.19%
removing modules with Type | error
glf.lc[);g]goftaar ® pl)rlozzf(t:\tlvare petween 14 fault; o |94 9 faults
metrics improve fitting, trained modules 12.11%
using 75% of the Type Il error
modules
15.95%
6 software 200 Type | error
Ebert [14] product 251 modules modules 1 fault
metrics 32.43%
Type Il error
9 software 23.8% Type
Khoshgoftaar et prodgct | error
al. [36] metrics, 1320 modules 660 4 faults
' 2 software modules 12.75%
process Type Il error
metrics
18% Type |
Ohlsson and 10 software The error
Runeson [68] prod_uct 28 modules same 28 10 faults
metrics modules 27% Type I
error

Related techniquesin the catalog
We are using the Discriminant analysis modeling technique used [38] by Khosihgbfta
al.

Refer ences

Refer to Khoshgoftaar et al. [38] for details about the Discriminant anahgsigling
technique.
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4.11 Pareto modeling technique for predicting the fid&fect
thresholding

Abstract

The Pareto modeling technique is a non-parametric statistical modelingjieehRrior
work uses this technique to fit a Pareto model using historical information on softwa
metrics and field defects and then uses software metrics for a neve r@hebthe
constructed model to make predictions for the new release. The cost of use of this
technique is lower than typical.

Overview
Inputs
» Software metrics for historical releases
» Software metrics for the new release
* The field defect count for historical releases
Outputs
* The predicted field defect thresholding
Model
This technique ranks the historical releases based on a software mettiap P86 of
the releases are considered to be above the threshold.

Applicability
This technigue has ttetandard applicability restrictions for statistical modeling
techniquesdiscussed in Section 3.4.

This technique was used to make predictions for System Set 16 and System Set 18.

Procedures

Users of the technique first need to exethéestandard planning procedure for
statistical modeling techniquediscussed in 3.3.4.; however, users only need to
determine which one software metric to collect. Users then executettigeprocedures
for statistical modeling techniquediscussed in 3.3.4.

Procedure 3: Model-building procedure
Select a metric to use to rank the releases, and then rank the releases.

Procedure 4: Prediction procedure
Determine the rank of the new release based on the ranking of historice¢seldae the
ranking to determine the thresholding of the new release.

Cost of Use
The cost of use of this technique is lower than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique
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may be able to execute the model-building and prediction procedures in a couple of
minutes.

Quality of Predictions

Ostrand et al. [69] report the percentage of defects found in files that aesthbov

threshold, that is files ranked in the top 25% of the files. The authors first fit a linea

model using information from two releases and then used the Pareto modeling technique
to make predictions for the next 10 releases. The authors used 4 software prodcgt metr
and 5 software process metrics to fit the model. The authors find that an average of 80%
of the defects is found in the top 25% of the files. The authors then used information from
the first 12 releases to fit another linear model. The authors then used the Pareto
modeling technique to make predictions for the next five releases. The authorstfind tha
an average of 89% of the defects is found in the top 25% of the files. They also examined
using just the lines of code metric and information from the first 2 releasesk®o m
predictions for the next 15 releases. The authors found that 73% of the defects are found
in the top 25% of the files.

Ebert [14] used 6 software product metrics to predict the field defect threshditeng
threshold was 1 fault. Information from 251 modules are used to fit the model and
information from 200 modules are used to test the module. The Type | error was 15.95%
and the Type Il error was 32.43%.

Related techniquesin the catalog
We are using the Pareto modeling technique used in [14] by Ebert.

References
Refer to Ebert [14] for details about Pareto modeling technique.
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5. Promising research

This section helps software producers anticipate techniques that may beconmafomm
used in the future by discussing three promising techniques that address some of the
problems with the techniques that are commonly used today. First, SRGM-based
modeling techniques can help software producers to decide whether to conduct more
testing before release and to allocate resources for maintenancéhetsaftware
product is to be operated in a manner similar to that in which the predictions areamade
discussed by Musa et al. in [63] and Lyu in [55]. However, when there are difference
between the deployment and development environments and between the amounts and
kinds of usage during development and in the field — as is the case for COTS software —
prior work has shown that SRGM-based modeling techniques may not produce adequate
predictions, such as Kenny in [32] and Li et al in [48]. We examine two lines afcase
that address this problem:

* Hybrid modeling technique for predicting the field defect rate, and

» Bayesian calibration modeling technique for predicting the field defect rate.
Second, modeling techniques that can identify software metrics that aeel tel#te
occurrence of field defects and that can prioritize the software metresnas of the
strength of the software metrics’ relationship to the occurrence dfdefects can help
software producers by guiding process improvement efforts. However, cyraeyl the
Linear regression modeling technique and the Trees modeling technique are likely to
produce models that can help software producers as discussed by Li et al. in [a0] and
Selby and Porter in [81]; consequently, software producers may want moreschéece
examine a line of research that provides a statistical modeling techniquestbatlina
identify-ability and prioritize-ability:

» Boolean Discriminant modeling technique for predicting the field defect

thresholding.

We did not discuss these techniques in the catalog because only people who are of the
group of people that developed these techniques have used these techniques.

5.1 Hybrid modeling technique for predicting the fielefect rate

The hybrid modeling technique combines statistical modeling techniques and SR&d1-ba
modeling techniques. Li et al. [49] uses this technique to construct statisbidals to
estimate the model parameters of SRGMs that model only field defects sorichl
information on software metrics and field defect rates. The authors then wesreahetrics
for a new release and the constructed models to predict the field defeot thteriew
release. The authors use two Trees models to estimate the two model parahteée
Exponential model to predict the field defect rate in [49].

The hybrid modeling technique removes the assumption that the software product is to be
operated in a manner similar to that in which the predictions are to be made by using
statistical models to estimate the model parameters of SRGMs. Thd mdmuteling

technique uses statistical modeling techniques that use historical intorrmatsoftware
metrics and field defect rates to determine the relationships betwesarsofhetrics and the
model parameters of SRGMs. Therefore, the constructed models account fenddger
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between the deployment and development environments as well as differeihesgsage
during development and in the field, as discussed in Section 5.1. In addition, the hybrid
modeling technique removes the assumption that the development defect rateasidgat
the time of prediction by not directly using development defect informatibhS& GMs.

5.2 Bayesian calibration modeling technique for preiigtthe
field defect rate

The Bayesian calibration modeling technique is a SRGM-based modeling technique
Jeske and Akber-Qureshi [28] use this technique to construct SRGMs that model only
field defects using historical information on lines of code, development defectsgldnd f
defect rates. The authors then use information on lines of code for a new release,
development defects for a new release, and the constructed model to preditd the fie
defect rate for the new release. The authors use this technique to etentate model
parameters of the Exponential model in [28]. The authors use a formula to edtenate t
model parameter that represents the total number of field defects. Theaf@stimates

the model parameter using information on lines of code added and the effectiveness of
testing, which is the ratio of the count of development defects to the count of totd$ defe
(both development defects and field defects) for the previous release. The autiheet the
the model parameter that represents the rate at which field defectscaneeded for the
previous release as the model parameter for the new release. The authors yhemoappl
distributions to both model parameters to allow the model parameter to batedlibr

using Bayesian methods once field defect data from the new release becaitabtea

The Bayesian calibration technique removes the assumption that the softwac jsrodu

to be operated in a manner similar to that in which the predictions are maded# usin
formula and historical information on actual field defects to estimate modehpters of
SRGMs. The formula accounts for differences between the deployment and dewlopme
environments as well as differences in the amounts and kinds of usage during
development and in the field by using data from development and actual field dédect da
to estimate the model parameter. Similarly, the model parameter tregeeis the rate

at which field defects are discovered also accounts for differences beaailestimated
using actual field defect information. In addition, the Bayesian calibratibnitpee

removes the assumption that the development defect rate is decreasing a tfe tim
prediction by not directly using development defect information to fit SRGMs.

5.3 Boolean Discriminant modeling technique for preitigtthe
field defect thresholding

The Boolean Discriminant modeling technique is a non-parametric statmtcling
technique. Khoshgoftaar and Seliya [44] use this technique to construct a Boolean
Discriminant model using historical information on software metrics ardl dieflect
thresholding, and then uses software metrics for a new release and the tmahstndel
to predict the field defect thresholding for the new release. First, the awghkrthe
software metrics in terms of their Kolomogorov-Smirnov (K-S) test §tatSecond, for
each software metric, the authors determine the critical value for tineas®fhetric,
which is the value of the software metric that has the greatest K-S tessicst@hen,

57



iteratively, the authors add the highest ranked software metric into the moal, whi
identifies a subset of the historical observations as above the threshold. Thestaphors
when the number of historical observations identified as above the threshold no longer
increases with the addition of additional software metrics. For exampleaskat
“Cyclomatic complexity > X” is the top ranked software metric wittical value X and
“Lines of code > Y” is the second highest ranked software metric with ¢trtadze Y,
where X and Y are constants, then “Cylomatic complexity > X OR Linesdé > Y” is

the Boolean Discriminant model using the two highest ranked software metics. Th
Boolean Discriminant modeling technique is similar to the Trees modeling technique
except that in the Trees modeling technique, the critical values are cdnitptagévely

for each subset of historical observations, as discussed in Section 4.7, whereas in the
Boolean Discriminant modeling technique, critical values are computediyndiedr the

set of all historical observations.

The Boolean Discriminant modeling technique is likely to produce models that can help
software producers by guiding process improvement efforts because it prothams

that has identify-ability and prioritize-ability. The Boolean Disénamt modeling

technique identifies the software metrics that are likely to be related te¢herence of

field defects by including only the software metrics that improve the idextidicof
historical releases as above the threshold in the model; furthermore, the technique
prioritizes the software metrics used in the model.

6. Summary

Software producers often need information on the rate or count of field defpet$aion
activities to manage the quality of their software products; thereforeatai®g

techniques that are commonly used in the literature to make such predictions. This
catalog also shows that the PAD framework [82] can be used to describe predictive
techniques that are used in practice because we show how the techniques indligis catal
fit within the framework. Hopefully, software producers will use this cateddagtter
manage the quality of their software products.
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Appendix A.  Software metrics

The techniques that examine use software metrics as inputs. Metricéiraed Og

Fenton and Pfleeger in [16] as outputs of measurements, where measurement is defined
as the process by which values are assigned to attributes of entities &l therle in

such a way as to describe them according to clearly defined rules. Softetaics are

metrics that measure attributes of a software system.

Current practices for selecting software metrics to collect for progycadictions about

the count or rate of field defects are to consider the attributes of the reoftyséem that
could be related to field defects and then to collect metrics that measwattnstes,
discussed by Basilli and Weiss in [1]. This process often involves examintrigskat

have been validated in prior work, that is, metrics that have been shown to be shatistical
associated with field defects, discussed in Scheidewind [78]. However, even a galidate
metric, such as lines of code, may not be statistically associated wdthldielcts for all
systems due to various factors, such as the programming language or the specif
definition of “lines of code” used, discussed by Ohlsson and Runeson in [68]. Therefore,
the literature recommends focusing on the attribute of the software dysitegn

measured, rather than the specific metric used to measure the attribute.

To help practitioners determine what software metrics to collect and howeotcbkm,
we discuss the attribute measured by some commonly used metrics in #beréteghe
data sources commonly used to collect the metric, the procedures commonly used to
collect the metric, and the cost of collection. By commonly used metrics, we mea
metrics that are used in multiple studies. In addition, we describe how eaahfitgetri
within the PAD framework, that is, whether the metric captures informatidimeon
design, the development method, the implementation, or the context.

The two high-level entities that are commonly measured in the lite@t@discussed
below. These entities are discussed in detail by Fenton and Pfleeger in [16], by
Khoshgoftaar et al. in [46], and by the IEEE standard for software qualiticenet
methodology in [24]:

» Software product: metrics that measure this entity meaatirbutes of any
intermediate or final product of the software development procesl,as lines
of code,

» Software process: metrics that measure this entity measdtnbutes of the
development process, such as the number of development defects.

Information on specific attributes and the software metrics that measwatribetes is
in each sub-Section.
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Two data sources are commonly used to compute software metrics in prior work:
* Request tracking system: tracks customer reported and develgpatede
problems, which may not necessarily be software related
» Change management and version control system: tracks changes to the code.
Most of the software metrics used in the literature is collected from tivesgata
sources.

We rate the cost of collection of the software metrics based on the amounttof effo
needed to collect the metric, which we evaluate subjectively using destsipfithe
collection procedures in prior work. The cost of use can be:

* Higher than typical,

» Typical, or

* Lower than typical

The cost of collection of the metric that measures the number of changesadéhe
(deltas), which is a software development metric (see Appendix A.3), isltyygicause

prior work extracts data on changes to the code from the change managemenrdiand ver
control system and then creates programs to compute the number of changes. dhe cost
collection of the metric that measures the lines of code, which is a sofiveahact

metric (see Appendix A.2), is lower than typical because prior work usuaky us
automated tools to compute the lines of code after a snapshot of the code is extracted
from the change management and version control system. Using automated tooks reduce
the amount of effort needed. The cost of collection of the defects during development
metric (see Appendix A.2) is higher than typical because prior work usuallyutesithe
metric by collecting data from two separate data sources and thangmragrams to

parse the data and linking the data together. Collecting and parsingodatavty sources
increases the amount of effort needed.

Appendix A.1 Field defects

Information on field defects is usually computed using data from the requéstdgrac

system and the change management and version control system. Prior work usually
extracts customer reported problem information from the request trackiegisyst

change information from the change management and version control system. Then, prior
work usually creates programs to parse the data based on data fields gpeeaith

software system in order to link the data together and determine which custporéed
problems resulted in code changes. The cost of collection of this metric is thigher

typical.

In the PAD framework, field defect is a property of the implementation.
Appendix A.2 Software product metrics

The most obvious place to look for attributes of the software system that magtbd rel
to field defects is in the software system itself. Software productaneire the most
widely used software metrics in prior work. Many software product metricsbieere
considered in the literature; however, none is significantly better tharolicesle,
discussed by Crawford et al. in [12] and by Fenton and Ohlsson in [17].
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We describe the attributes measured by the software product metria® tbatremonly
used in the literature using the descriptions used in Khoshgotaar and Seliyad45] a
Munson and Khoshgoftaar [61]. We also consider when the metrics are available.
Khoshgoftaar et al. [46] and Troster and Tian [84] identify product metricsdhdie
computed from design documents before coding starts. This way of categorizivaysoft
product metrics is useful when we place software product metrics into the PAD
framework. We summarize the software product metrics commonly used itetaulie

in Appendix table 1.

Appendix table 1. Software product metrics

Attribute Time of Software product metric Data source  Coallection Cost of
measured availability procedure  collection
Post Possible program knot count
coding [51] [45] Prior work
Log of independent paths usually
[45] [15] extracts
Number of exit nodes [15]  Change snapshots
Control flow [45] management of the code
graph metrics = pPost ] - and version and then Lov_ver than
el Cyclomatic complexity [51] control computes typical
[15] [80] [27] [22] [43] system the metrics
Number of loop constructs using
[45] [43] automated
Number of non-loop tools
conditional arcs [45] [43]
Post Unique operand count [51]
coding [15] [80]
Calculated program length
[51] [15] [27]
Program vocabulary [51] [15]
[80] .
Total operand count [51] [15] Prior work
Halstead’s program volume usually
[51] [15] [27] [22] extracts
Total source statements [51]Change snapshots
Statement management of the code
: [80] . Lower than
metrics and version and then :
Total operator count [51] [15] control computes typical
[Pzr;)]gram length [51] [27] system the metrics
Unique operator count [15] :ﬁltggr]nated
[80] tools

Total source input lines of
code [51] [27] [22] [45]
Input source code lines [15]

[45]
Post Distinct include files [45]
design [15]
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Attribute Time of Software product metric Data source  Coallection Cost of
measured availability procedure  collection
Post Number of call statements Prior work
coding [15] [22] [45] usually
Mean nesting depth [80] [15] extracts
Degree of Maximum nesting depth [80] Change t S??r?ShOEjS
o management of the code
modularization Pg;tgn Number of distinct callsto  and vgrsion and then Lov_ver than
of a program others [45] [43] control computes typical
system the metrics
using
Total calls to others [43] [84] automated
tools
Post Prior work
coding usually
extracts
r'\g:m?édeifgrt Change snapshots
, management of the code
generate an Halstead's program effort and version  and then Lower than
implementation [51] [15] [27] [22] control computes typical
from.@ . system the metrics
specification using
automated
tools

In the PAD framework, software product metrics that can be collected pogt-desi
capture properties of the design and software product metrics that can coliebtd
after coding is completed capture properties of the implementation.

Appendix A.3 Software process metrics

Since the software system is the result of a development process, the nekplageto

look for attributes of the software system that may be related to fieldslefec the
development process. The number of development defects and the number of changes to
the code are the two most widely used software process metrics in tharigeEather

the occurrence times of development defects or the number of development defects i
each time interval during development must be collected in order to use SRGM-based
modeling techniques.

We present the software process metrics used in the literature in Appdnelik.td/e

have inferred the attributes intended to be captured by the metrics based oniaescript
of the metrics in the literature.
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Appendix table 2. Softwar e process metrics

Group Software process Data sources Collection procedure Cost of
metrics collection
Problems Number of defects | Request Prior work usually Higher
discovered prior to identified during the = tracking extracts problem report | than
release: previous release [69] systems, data from the request typical
software process [46] change tracking system and code
metrics that The occurrence time Management change information from
mention of development and version  the change management
measuring defects [55] [63] control and version control
attributes of systems. system. Then, prior work
problems found creates programs to parse
prior to release in ggserl]gmn?;: to(;efects the data based on data
the description in a timF:a interval [55] fields specific to each
[63] softwar_e system to
determine which
problems resulted in
Number of changes to the code
development defects
[17] [46]
Changestothe  Amount of reuse [69] Change Prior work usually Typical
product: [72] [84] [3] [46] management extracts data on changes
software process Chanoes made o a and version  to the code and then
metrics that file ( dgltas) [69] [46] control creates programs to parse
mention systems the data based on the
measuring specifics of the data to
attributes of _ determine the kinds and
changes made to Changed lines of numbers of changes
the software code [84] [46]
product in the
description.
People in the Different designers  Change Prior work usually Typical
processsoftware making changes [46] management extracts data on changes
process metrics  [43] and version  to the code and then
that mention Number of updates = control creates programs to pars

measuring
attributes of
people involved in
the development

by designers who has systems
10 or less total updat

in their company

career [46] [43]

process in the
description.

Number of updates
by designers who ha
between 11 and 20
total update in their
company career [46]
[43]

Number of updates
designers had in thei
company career [46]
[43]

the data based on the
specifics of the data to
obtain information on the
people who made the
changes
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Group Software process Data sources Collection procedure Cost of

metrics collection
Process efficiency: Design effort [81] Time sheets Prior work uses Higher
software process [58] engineer’s time sheets t¢ than
metrics that compute effort typical
mention Coding effort [81]

measuring [58]
attributes of the
maturity of the
process or the Total effort [81] [58]
effort in the

description.

In the PAD framework, software process metrics that measure problerogerext

before release and changes to the product capture properties of the implementati
Software process metrics that measure information on people in the process assl proc
efficiency capture properties of the method.

Appendix B.  Principal component analysis

Principal component analysis (PCA) constructs variables that are loreaimations of
existing variables (i.e. software metrics) to capture most of the inflermiatthe original
variables while reducing the number of variables, discussed by Khoshgoftaaligad Se
[45]. PCA has been used with many parametric and non-parametric statistiting
techniques. This is done by first constructing PCA variables and then using the PCA
variables in the modeling techniques. PCA increases the cost of use of a techn&ue sinc
additional effort is needed to construct the PCA variables. Some studies have reported
increased accuracy using PCA, such as Briand et al. [4], while a study by Kftaahg

and Seliya in [45] has reported that differences in accuracy are not sthyistic

significant.
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