

A Catalog of Techniques that
Predict Information about

the Count or Rate of Field Defects

Paul Luo Li
December 2006

CMU-ISRI-06-122

Institute for Software Research, International
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

This work has been funded in part by the EUSES Consortium via the National Science Foundation (ITR-
0325273), by the National Science Foundation under Grant CCF-0438929, by the Sloan Software Industry
Center at Carnegie Mellon, and by the High Dependability Computing Program from NASA Ames
cooperative agreement NCC-2-1298.

 2

Keywords: Software engineering, management, measurement, metrics, software quality
assurance, reliability, risk management, planning, software reliability growth models,
reliability modeling, statistical models, defect prediction.

 3

Abstract
Quality of software in the field is an important concern for producers of software, who
often need to predict information about the count or rate of field defects to perform
activities to manage the quality of their software products. To help software producers
select appropriate techniques for making such predictions, we provide a catalog of
techniques that are commonly used in the literature for predicting information about the
count or rate of field defects. This catalog presents information on the intuition behind
each technique and its inputs, outputs, procedures, applicability, cost of use, and quality
of predictions. Finally, we discuss promising research that addresses some of the
problems with the techniques that are commonly used today.

 4

Table of contents
1. Introduction .. 5
2. Description of the common schema.. 8
3. Synopsis of the techniques ... 8

3.1 Header.. 8
3.2 Abstract.. 9
3.3 Overview ... 9

3.3.1 Inputs .. 9
3.3.2 Outputs.. 10
3.3.3 Models .. 10
3.3.4 Applicability ... 11

3.4 Procedures.. 13
3.4.1 Procedure 1: Planning procedure .. 14
3.4.2 Procedure 2: Setup procedure ... 14
3.4.3 Procedure 3: Model-building procedure ... 15
3.4.4 Procedure 4: Prediction procedure .. 16

3.5 Cost of use ... 16
3.5.1 Procedure 1: Planning procedure .. 17
3.5.2 Procedure 2: Setup procedure ... 17
3.5.3 Procedure 3: Model-building procedure ... 18
3.5.4 Procedure 4: Prediction procedure .. 18

3.6 Quality of predictions .. 18
3.7 Related techniques ... 19
3.8 References.. 19

4. Catalog of techniques ... 19
4.1 Gamma modeling technique for predicting the field defect rate and the field defect count 23
4.2 Exponential modeling technique for predicting the field defect rate and the field defect count 26
4.3 Weibull modeling technique for predicting the field defect rate and the field defect count 30
4.4 Logarithmic modeling technique for predicting the field defect rate... 33
4.5 Power modeling technique for predicting the field defect rate .. 36
4.6 Linear regression modeling technique for predicting the field defect count and the field defect
thresholding .. 39
4.7 Trees modeling technique for predicting the field defect count and the field defect thresholding
 42
4.8 Neural networks modeling technique for predicting the field defect count and the field defect
thresholding .. 46
4.9 Ratios modeling technique for predicting the field defect count ... 50
4.10 Discriminant analysis modeling technique for predicting the field defect thresholding............52
4.11 Pareto modeling technique for predicting the field defect thresholding 54

5. Promising research ... 56
5.1 Hybrid modeling technique for predicting the field defect rate ... 56
5.2 Bayesian calibration modeling technique for predicting the field defect rate............................ 57
5.3 Boolean Discriminant modeling technique for predicting the field defect thresholding 57

6. Summary .. 58
7. References .. 58

 5

1. Introduction
Software producers often need to predict information about the count or rate of field
defects to manage the quality of their software products [11]. The count of field defects
and the rate of field defects are commonly used measures of the quality of software in the
field, as discussed by Chulani et al. in [9]. Reliability, which is another common measure
of quality, is the inverse of the count of field defects remaining in the software [20]. We
use field defect to refer to all the terms used in the literature to describe a software related
quality problem that occurs after release, such as a fault or a failure. Software producers
commonly use the predicted information on the count or rate of field defects to:

• Decide whether to conduct more testing before release [63],
• Allocate resources for maintenance [32], and/or
• Guide process improvement efforts [1].

A particularly common kind of software today is multi-release software, for which
software producers may need to make predictions for each release of the software.

Not all techniques in the literature that predict information about the count or rate of field
defects are likely to be useful to software producers; therefore, we consider techniques
with the following characteristics:

• The techniques use measures of the software, i.e. software metrics, as inputs.
o The inputs used by techniques in the literature to make predictions are

software metrics and/or expert opinion. Predictions made using expert
opinion are less reliable than predictions made using software metrics
because expert opinion is subjective, as discussed by Madridakis and
Wheelwright in [57]. Furthermore, predictions made using software
metrics are easier to analyze for decision making than predictions made
using expert opinion, as discussed by Chulani in [8].

• The techniques can make predictions before the time of release.
o Most activities that require the predicted information, such as deciding

whether to conduct more testing before release and allocating resources
for maintenance, need the information before release.

• The techniques have been used to make predictions for real-world software.
o We only include techniques that have been used to make predictions for

real-world software because techniques that have not been used to make
predictions for real-world software may have unforeseen problems making
predictions.

• The techniques that have users who are not of the group of people that developed
the techniques.

o We only include techniques that have users who are not of the group of
people that developed the techniques because techniques that have only
been used by the group of people that developed the techniques may have
unforeseen problems making predictions.

The techniques that we consider fall into two general categories: software reliability
growth model (SRGM)-based modeling techniques and statistical modeling techniques.
SRGM-based modeling techniques are generally applicable for any software, while
statistical modeling techniques are applicable only for multi-release software.

 6

The literature contains many SRGM-based modeling techniques and statistical modeling
techniques for predicting information about the count or rate of field defects; however, a
guide that helps software producers to compare techniques and to select appropriate
techniques for their needs is currently unavailable. Prior work by Farr in [55],
Khoshgoftaar and Selyia in [45], and Ebert in [14] suggest that at least forty SRGM-
based modeling techniques and statistical modeling techniques have been proposed in the
literature. However, no prior work has examined the ability of both SRGM-based
modeling techniques and statistical modeling techniques to predict information about the
count or rate of field defects.

To help software producers, we provide a catalog of techniques that are commonly used
in the literature for predicting information about the count or rate of field defects. First,
we help software producers understand SRGM-based modeling techniques and statistical
modeling techniques by providing a synopsis of the two categories of techniques. Second,
we help software producers compare and select techniques by describing individual
techniques. Third, we help software producers anticipate techniques that may become
commonly used in the future by discussing three promising techniques that address some
of the problems with the techniques that are commonly used today.

Our catalog of techniques uses a novel schema to present information on how to use the
techniques and information on actual uses of the techniques in practice. Since users of
SRGM-based modeling techniques and statistical modeling techniques need to collect
inputs, construct models, and then make predictions, we include information on the
intuition behind each technique, and its inputs, outputs, and procedures (i.e., how the
outputs are produced using the inputs). We incorporate information in previous surveys
on SRGM-based modeling techniques, such as [63] by Musa et al., and on statistical
modeling techniques, such as [40] by Khoshgoftaar et al. In addition, we also include
information on uses of the technique in practice. We include information on applicability,
cost of use, and quality of predictions, which software producers are likely to need in
order to select appropriate techniques for their needs as suggested by Iannino et al. in
[23]. Prior work that compares techniques does not contain information on applicability,
cost of use, and quality of predictions. We incorporate information in the literature on
uses of the techniques in practice at companies such as IBM [87] and AT&T [71].

In addition to the techniques that we examine in the catalog, many other techniques that
predict information about the count or rate of field defects have been published in the
literature. Even though we discuss a few promising techniques, we generally exclude
techniques that do not have all four characteristics that we discussed above. For example,
we exclude:

• Techniques that use expert opinion to make predictions, such as Bayesian belief
networks discussed in [65] by Neil and Fenton and the Delphi method discussed
in [53] by Linstone and Turoff;

• Techniques that cannot make predictions before the time of release, such as the
recalibration using u-plots technique discussed in [6] by Brocklehurst et al.;

 7

• Techniques that have not been used to make predictions for real-world software in
prior work, such as the architecture-based technique discussed in [73] by
Popstajanova and Trivedi and COQUALMO (COnstructive QUALity MOdel)
discussed in [8] by Chulani;

• Techniques that have not been used by people who are not of the group of people
that developed the techniques, such as the dynamic weighted linear combination
technique discussed in [56] by Lyu and Nikora.

Furthermore, we do not include techniques that analyze defects but do not predict
information about the count or rate of field defects, such as Orthogonal Defect
Classification and Root Cause Analysis, discussed by Clark and Zubrow in [10]. In
addition, since we include techniques that are commonly used in the literature as judged
by the author based on a survey of the literature, we provide references in Section 3 to
resources that discuss additional techniques.

Managing the quality of software in the field is important to producers of software. Since
software consumers can often switch to an alternative software product if they are not
satisfied with the quality of their current software product, software quality is important
to the business success of a software producer [9]. Furthermore, software consumers
often report quality problems that software producers must expend resources to fix. For
example, software service contracts typically specify that a software producer must
resolve a customer reported quality problem within a certain amount of time or face
penalties [7]. The NIST estimates that poor software quality costs software producers
approximately $21.2 billion each year in repair costs [66].

Although the primary audience of this catalog is software producers, consumers of open
source software can also use information in this catalog to predict information about the
count or rate of field defects, which can help them evaluate the software for adoption
[11]. Since many organizations are electing to use open source software in systems and
applications that are critical to the business success of the organizations, as discussed in
[58] by Mockus et al., the organizations may want to expend resources to evaluate
candidate software. Software consumers can usually obtain the inputs needed by the
techniques in this catalog for open source software as shown by Li et al. in [48].

This catalog serves two primary purposes. First, it helps software producers manage the
quality of their software products by helping them select techniques to use to predict
information about the count or rate of field defects, which is often needed by software
producers in order to carryout quality management activities. Second, it supports the
predictive analysis of design (PAD) framework [82]. The techniques that we examine aid
the evaluation of designs prior to adoption and fit within the PAD framework, discussed
by Shaw et al. in [82], as predictor functions. This catalog demonstrates that the PAD
framework can describe predictive techniques that are used in practice. The techniques
that we examine predict information about the count or rate of field defects, which is an
implementation property. The techniques use information on the design, the development
method, and/or the implementation to make predictions.

 8

Section 2 discusses the common schema that we use to describe the techniques that we
examine. Section 3 gives a synopsis of the techniques. Section 4 presents the catalog of
techniques. Section 5 discusses promising research. Section 6 summarizes this catalog.

2. Description of the common schema
We adapt the schema used to describe predictor functions in the PAD inventory of
predictive techniques [77] to describe the techniques that we examine. However, since we
have already discussed how the techniques fit within the PAD framework, we do not
include that information in the descriptions. The structure of the schema is:

• Header – states the name and primary output of the technique;
• Abstract – summarizes the purpose, kind, model, and cost of the technique in

succinct form;
• Overview – provides more details, including:

o Inputs – lists information required by the technique,
o Outputs – lists information generated by the technique,
o Model – describes the model underlying the technique,
o Applicability – identifies key constraints on where the technique can be

used;
• Procedures – describes the series of successive bindings of inputs within the

technique;
• Cost of use – discusses effort related to applying each procedure within the

technique;
• Quality of predictions – discusses accuracy of the outputs;
• Related techniques – lists techniques that extend or modify this one;
• References – cites sources that describe aspects of the technique in more detail;

3. Synopsis of the techniques
Many of the techniques that we examine share the same overall approach. This section
presents information that can be generalized about the techniques. Information that is
specific to individual techniques is in Section 4.

3.1 Header
Field defect is intended to be generic and to encompass all the terms that are used in the
literature to describe software related problems that occur after release, such as error [88],
fault [63], failure [33], bug [69], and defect [18]. The techniques that we examine are not
specific to a particular definition; however, when we discuss prior work that has used a
technique, we use the terminology used by the authors of the prior work.

Three kinds of information about the count or rate of field defects are commonly
predicted in the literature and are described below. We provide examples of how each
kind of information can help software producers with the process of allocating resources
for maintenance.

 9

• The field defect rate: the field defect count in each time interval after release.
o For example, if the time interval is one month, then information on the

field defect rate can help software producers evaluate resources needed
each month.

• The field defect count: the count of field defects in one time interval.
o For example, if the time interval is the first year after release, then

information on the field defect count can help software producers
evaluate the total amount of resources needed that year.

• The field defect thresholding: the field defect count is or is not above a pre-set
threshold. Thresholding is a special case of the broader concept of classification;
however, we use the term thresholding because prior work usually only considers
two classes, that is, either the field defect count is below a pre-determined
threshold or it is above the threshold.

o For example, if the threshold is zero, then information on the field defect
thresholding can help software producers evaluate if they will need to
allocate resources to deal with field defects.

3.2 Abstract
The techniques that we examine are empirical modeling techniques. They are different
from empirical models, such as the generic COCOMO II model for predicting the effort
and time to implement a software product [3]. For the COCOMO II model, users of the
model collect the inputs and then use the pre-constructed model to make predictions. For
the techniques that we examine, users of the technique collect the inputs, construct the
models, and then make predictions.

3.3 Overview

3.3.1 Inputs
The techniques that we examine use software metrics as inputs. Software metrics are
measures of attributes of the software and are discussed in more detail by Fenton and
Pfleeger in [16]. We briefly discuss the software metrics that are commonly used in the
literature to make predictions and how to collect them in Appendix A.

SRGM-based modeling techniques
SRGM-based modeling techniques usually use one of two software process metrics that
measure development defects to make predictions: the occurrence time of each
development defect or the defect count in each time interval during development.

Statistical modeling techniques
Statistical modeling techniques usually use information on field defects from prior
releases, software metrics from prior releases, and software metrics from the current
release to make predictions. Most statistical modeling techniques can use software
metrics that measure various attributes of the software to make predictions. A discussion
of how to select the appropriate software metrics to use is in Appendix A.

 10

3.3.2 Outputs
The techniques that we examine predict the field defect rate, the field defect count, and/or
the field defect thresholding at the systems level, that is, for the software as a whole. We
focus on making predictions at the systems level because software producers generally
view the software as a whole. However, prior work also makes predictions for files and
modules.

SRGM-based modeling techniques
Prior work has used SRGM-based modeling techniques to predict the field defect rate and
the field defect count.

Previous studies that use SRGM-based modeling techniques generally make predictions
for the entire software. However, it is likely that the techniques can also be used to make
predictions for individual modules as shown by Laprie et al. in [47].

Statistical modeling techniques
Prior work has used statistical modeling techniques to predict the field defect count and
the field defect thresholding.

Previous studies that use statistical modeling techniques usually make predictions for
modules; however, the techniques should scale up. Users of the techniques should be able
to produce predictions for the entire software because prior work has produced
predictions for files, such as in [69] by Ostrand et al., and several files constitute a
module or component in the same way that several modules constitute a software
product. Furthermore, users of the techniques should be able to combine predictions for
modules to produce predictions for the entire software as discussed in [88] by Yamada
and Osaki.

3.3.3 Models
The theories behind SRGM-based modeling techniques and statistical modeling techniques
are different, that is, the justifications for their validity are different. SRGM-based modeling
techniques are based on the theory that the occurrence of defects follows some underlying
probability function that varies with time. Statistical modeling techniques are based on the
theory that some characteristics of the software are related to the occurrence of field defects.

SRGM-based modeling techniques
SRGM-based modeling techniques are based on the theory that the probability of a defect
occurrence changes over time as defects are discovered and removed [63]. A SRGM is a
mathematical function of time that captures this changing probability. SRGM-based
modeling techniques assume that the defect pattern, i.e. the defect count in each time
interval, can be modeled using SRGMs. SRGM-based modeling techniques fit SRGMs
using development defect information and then make predictions for future time intervals
using the fitted SRGMs.

SRGM-based modeling techniques are further divided into two sub-categories: finite and
infinite. Finite SRGM-based modeling techniques assume that the total count of field

 11

defects that are expected to be discovered is finite. This could be due to reliability growth
of the software or user migration to other software (or newer releases of the same
software), as discussed by Jones and Vouk in [55]. The Exponential modeling technique,
discussed in Section 4.2, is an example of a finite SRGM-based modeling technique.
Infinite SRGM-based modeling techniques assume that the total count of field defects
that are expected to be discovered is infinite. This could be due to imperfect repair of
defects, as discussed by Musa et al. in [63]. The Logarithmic modeling technique,
discussed in Section 4.4, is an example of an infinite SRGM-based modeling technique.
Infinite SRGM-based modeling techniques are usually not used to predict the field defect
count, since the total number of field defects is assumed to be infinite.

For SRGM-based modeling techniques, the independent variable in the constructed
model is usually the value of the time interval, and the dependent variable is usually the
field defect count in the time interval.

Statistical modeling techniques
Statistical modeling techniques are based on the theory that some attributes of the
software are related to the occurrence of field defects [79]. Information on these attributes
is captured using software metrics. Software metrics that measure the product, such as
lines of code, and the (development) process, such as the number of development defects,
are commonly used in the literature to make predictions and are discussed in Appendix
A. Statistical modeling techniques assume that the software metrics used to construct
models are related to field defects. Statistical modeling techniques build statistical models
using information on field defects and software metrics from historical releases and then
make predictions using the constructed model and software metrics for the new release.

Statistical modeling techniques are further divided into two sub-categories: parametric and
non-parametric. Parametric statistical modeling techniques assume that the relationships
between characteristics of the software and field defects occurrences have some structural
form. For example, the Linear regression modeling technique, discussed in Section 4.6,
assumes linear relationships between software metrics and field defect occurrences. Different
parametric statistical modeling techniques assume different structural forms. Non-parametric
statistical modeling techniques do not assume that the relationships between characteristics
of the software and field defect occurrences have structural forms. For example, the Trees
modeling technique, discussed in Section 4.7, assumes that similar historical releases have
similar field defect occurrences. Different non-parametric statistical modeling techniques
differ in how they decide which historical releases are similar.

For statistical modeling techniques, the independent variables in the constructed models are
usually the software metrics and the dependent variable is usually the field defect count or
the likelihood of the field defect thresholding.

3.3.4 Applicability
Applicability of the techniques that we examine is related to the assumptions that they make.
If an assumption made by a technique is violated in a particular setting, then users of the
technique may not be able to use the technique to make predictions or the predictions made

 12

by the technique may not be as accurate as predictions made in other settings where the
assumption holds [55]. These assumptions are different from the assumptions required to
obtain the inputs for the techniques, which are discussed in Appendix A.

The literature provides little information on the settings in which a technique is not
applicable. Therefore, in this paper, for each technique, we list the assumptions made by the
technique and describe settings where prior work has used the technique to make predictions,
that is, where the technique is applicable.

One assumption that is common to all the techniques that we examine is that the model
constructed using a technique is used to make predictions for the same software as the
software from which the data used to construct the model came from. If this assumption does
not hold, then predictions made by the constructed models may not be accurate.

SRGM-based modeling techniques
In addition to the common assumption, SRGM-based modeling techniques make three
groups of assumptions:

• They assume that the defect pattern can be modeled using SRGMs, which leads to
two further assumptions: each defect has the same probability of occurring and the
defects occur independently of each other. If these assumptions do not hold, then
users of the techniques may not be able to construct the model or the predictions
made by the constructed model may not be accurate.

• They assume that the defect pattern is decreasing at the time of prediction, that is,
there is reliability growth. This assumption ensures that it is mathematically possible
to construct SRGMs. If this assumption does not hold, then users of the techniques
will not be able to construct the model.

• They assume that the software is to be operated in a manner similar to that in which
the predictions are to be made, that is, the deployment and development
environments are similar and the amounts and kinds of usage during testing are
similar to the amounts and kinds of usage in the field. This assumption is the basis
for extending the defect pattern described by a model fitted to development defect
information to future time intervals. If this assumption does not hold, then
predictions made by the constructed model may not be accurate.

Assumptions above and the common assumption are common to the SRGM-based
modeling techniques that we examine. We will refer to them as standard applicability
restrictions for SRGM-based modeling techniques in the descriptions of the individual
SRGM-based modeling techniques. Furthermore, finite SRGM-based modeling
techniques assume that the total count of field defects that are expected to be discovered
is finite and infinite techniques assume that the total count is infinite. If these
assumptions do not hold then the constructed finite and infinite SRGMs models may not
produce accurate predictions. We will refer to these as standard applicability restriction
for finite SRGM-based modeling techniques and standard applicability restriction for
infinite SRGM-based modeling techniques in descriptions of the individual techniques.
Refer to Lyu [55] and Musa et al. [63] for details about these assumptions.

 13

SRGM-based modeling techniques are generally applicable for any software since they
use only development defect information to make predictions. Prior work has used
SRGM-based modeling techniques to make predictions for custom-built software, such as
a military command and control systems examined in [62] by Musa, and commercial
software systems, such as an IBM application system examined in [30] by Kan. However,
Li et al. have found that it is not possible to use several commonly used SRGM-based
modeling techniques to make predictions for an open source software in [48], because the
rate of defects was not decreasing at the time of release.

Statistical modeling techniques
In addition to the common assumption, statistical modeling techniques make three
assumptions:

• They assume that the same software metrics used to construct the model are used
to make predictions. If this assumption does not hold, then users of the technique
may not be able to make predictions using the constructed model.

• They assume that the software metrics used in the model capture sufficient
information on attributes of the software that are related to field defects to
produce accurate predictions. If this assumption does not hold, then the
predictions made by the constructed model may not be accurate.

• They assume that historical information on software metrics and field defects is
available from at least one historical release. If this assumption does not hold,
then it is not possible to construct models.

Assumptions above and the common assumption are common to the statistical modeling
techniques that we examine. We will refer to them as standard applicability restrictions
for statistical modeling techniques in descriptions of the individual statistical modeling
techniques. Refer to Hastie [21] for details about these assumptions.

For parametric statistical modeling techniques, the number of releases from which
historical information is available has to be greater than the number of software metrics
used in the models. Furthermore, depending on the variation in the software metrics and
field defects, data from more releases may be required. However, as discussed in Section
3.2.2, users of the techniques can divide the software into modules, which increases the
amount of information available to construct models, make predictions for the modules,
and then aggregate the predictions to obtain the prediction for the entire software product.

Statistical modeling techniques are specific for multi-release software since they use
information on field defects and software metrics from historical releases to construct
models. Prior work has used statistical modeling techniques to make predictions for
custom-built software, such as a military command and control system examined in [41]
by Khoshgoftaar et al., and for commercial software, such as a provisioning system
examined in [69] by Ostrand et al.

3.4 Procedures
At an abstract level, the modeling techniques that we examine have the same set of
procedures. First, in the planning procedure, users of the technique decide what to
predict, what techniques to use to make predictions, and what software metrics to use to

 14

make predictions. Then, in the setup procedure, the users compute the software metrics.
In the model-building procedure, the users construct the model. Finally, in the prediction
procedure, the users make predictions using the constructed model.

3.4.1 Procedure 1: Planning procedure
Prospective users of the techniques first need to define field defects for the software
product, that is, what exactly is a field defect for the software product, and determine the
kinds of information that they want to predict. Then, the users need to decide the
techniques that they want to use to make predictions. Finally, after deciding what
techniques to use, the users need to decide which software metrics to use to make
predictions. Prior work usually executes this procedure once for each software product,
discussed by Basili and Weiss in [1] and by Donnelly et al. in [55]; however,
organizations sometimes re-evaluate these decisions for each release of multi-release
software, discussed by Birk et al. in [2].

SRGM-based modeling techniques
Users of SRGM-based modeling techniques must decide which software process metric
that measure development defects to collect: the occurrence time of each development
defect or the defect count in each time interval during development. However, these two
metrics are usually interchangeable as shown by Lyu in [55]. This procedure of deciding
what to predict, what techniques to use to make predictions, and which metric to use to
make predictions is the same for the SRGM-based modeling techniques that we examine.
We will refer to this procedure as the standard planning procedure for SRGM-based
modeling techniques, in descriptions of the individual SRGM-based modeling techniques.

Statistical modeling techniques
Users of statistical modeling techniques must decide what software metrics to collect.
This procedure of deciding what to predict, what techniques to use to make predictions,
and what metrics to use to make predictions is the same for the statistical modeling
techniques that we examine. We will refer to this procedure as the standard planning
procedure for statistical modeling techniques, in descriptions of the individual statistical
modeling techniques.

3.4.2 Procedure 2: Setup procedure
In general, software metrics are computed using data that are recorded as a part of
everyday development or maintenance activities, which lowers the costs associated with
collecting the metrics, as discussed by Mockus et al. in [59]. For example, software
process metrics that measure development defects are usually extracted from
development defect data that is recorded in the defect tracking systems. Computing
software metrics is discussed in appendix A. Prior work usually executes the setup
procedure once for each software or once for each release of a multi-release software.

SRGM-based modeling techniques
Users of SRGM-based modeling techniques need to extract one of two software process
metrics that measure development defects for each release. This procedure is the same for
the SRGM-based modeling techniques that we examine. We will refer to this procedure

 15

as the standard setup procedure for SRGM-based modeling techniques, in descriptions of
the individual SRGM-based modeling techniques.

Statistical modeling techniques
Initially, users of statistical modeling techniques need to extract field defect information
and software metrics selected in the planning procedure for historical releases as well as
the software metrics for the new release. For subsequent releases, usually, only the
software metrics for the new release need to be extracted. This procedure is the same for
the statistical modeling techniques that we examine. We will refer to this procedure as the
standard setup procedure for statistical modeling techniques, in descriptions of the
individual statistical modeling techniques.

3.4.3 Procedure 3: Model-building procedure
Standard statistical software packages, such as R [74], Splus [83], and SAS [76], are
usually used in the literature to construct the models.

In this catalog, we assume that the predictions are made at the time of release; however,
the techniques that we examine can also be used to construct models and make
predictions earlier in the development process.

SRGM-based modeling techniques
Prior work usually uses non-linear least squares regression or maximum likelihood
estimation to fit SRGMs. These two model-fitting routines are found in most statistical
software packages. This procedure is the same for the SRGM-based modeling techniques
that we examine. We will refer to this procedure as the standard model-building
procedure for SRGM-based modeling techniques, in descriptions of the individual
SRGM-based modeling techniques.

Users of the techniques need to execute the model-building procedure for each software
product or once for each release of multi-release software. This is because SRGMs are
fitted for each software product or software release.

In general, users of SRGM-based modeling techniques can make predictions anytime
before the time of release as long as the SRGM can be fitted, as discussed by Musa et al.
in [63]. However, the predictions may be inaccurate, since the predictions are based on
incomplete development defect information. Users of the techniques can re-construct the
model at the time of release to incorporate complete development defect information
[63].

Statistical modeling techniques
For many of the statistical modeling techniques that we examine, the procedure to build
the model differs; therefore, we discuss this procedure in the descriptions of the
individual statistical modeling techniques.

Prior work usually constructs a model and then uses it to make predictions for multiple
subsequent releases without updating the model. Khoshgoftaar and Seliya [45] construct
a model using information from one release and then use the model to make predictions

 16

for the next three releases. Ostrand et al. [69] construct a model using information from
two releases and then make predictions for the next ten releases. However, users of the
techniques can re-construct the model for each release to incorporate additional data,
which can yield a more accurate model, as shown by Karunanithi in [30].

To make predictions before the time of release, users of statistical modeling techniques
need to construct models using software metrics that are available at the time of
prediction. For example, predictions after completion of the design can be made using
software metrics that are available upon completion of the design, as discussed by
Khoshgoftaar and Seliya in [43]. However, to use software metrics that are available at
the time of release to make predictions, a separate model has to be constructed.

3.4.4 Procedure 4: Prediction procedure
Standard statistical software packages are usually used to make predictions in the
literature. The prediction procedure needs to be executed once for each software product
or once for each release of multi-release software.

SRGM-based modeling techniques
To make predictions, users insert future time interval values into the constructed model to
obtain the predicted field defect count for the future time intervals.

This procedure is the same for the SRGM-based modeling techniques that we examine.
We will refer to this procedure as the standard prediction procedure for SRGM-based
modeling techniques, in descriptions of the individual SRGM-based modeling techniques.

Statistical modeling techniques
For many of the statistical modeling techniques that we examine, the prediction
procedure differs; therefore, we discuss this procedure in the descriptions of the
individual statistical modeling techniques.

3.5 Cost of use
We compare the cost of use of each technique that we examine based on the effort needed
to make a prediction, which we estimate using descriptions of the procedures in prior
work. The cost of use is usually not discussed in the literature. For purposes of
comparison, we assume that all statistical modeling techniques collect the same software
metrics. The cost of use can be:

• Higher than typical,
• Typical, or
• Lower than typical.

We consider the cost of use of the Linear regression modeling technique (see Section
4.6), which is the most widely used modeling technique in the literature, as typical. Users
of the Linear regression modeling technique need to execute the planning procedure and
the setup procedure, and then users use statistical packages to construct the model and to
make predictions. The cost of use of techniques like the Neural networks modeling
technique (see Section 4.8), which requires additional effort to format the software

 17

metrics and to manually select the best model, is higher than typical. The cost of use of
techniques like the Exponential modeling technique (see Section 4.2), which requires less
effort to execute the setup procedure, is lower than typical.

For multi-release software, the cost of use is higher for the initial use of a technique than
for subsequent uses. This is due to two reasons. First, the planning procedure usually
needs to be executed only once for each software product. Second, users need to execute
one-time tasks to compute software metrics, such as creating programs to extract the data,
as discussed by Fuggeta et al. in [18]. In general, these tasks do not need to be repeated
for subsequent releases. Birk et al. [2] find that, relative to the first release, the effort
required for planning and collecting metrics in subsequent releases required only ~22%
of the effort required for the first release.

The cost of use of SRGM-based modeling techniques is usually lower than typical. This
is mainly because SRGM-based modeling techniques require less effort than statistical
modeling techniques to execute the setup procedure, as discussed below.

3.5.1 Procedure 1: Planning procedure
The effort to execute this procedure is likely to vary depending on the goals of the project
and the people involved. For example, metrics collection for a project with 6 people to
develop a software development environment required ~103 person-hours to plan [18],
while metrics collection for a retail petroleum systems project with 16 people required
~346 person-hours to plan [2]. Both organizations used the GQM approach [1]. We note
that the purpose of collecting the software metrics in [18] and [2] is not only to predict
information about field defects.

SRGM-based modeling techniques
This procedure is likely to require less effort to execute for SRGM-based modeling
techniques compared with statistical modeling techniques, since users of SRGM-based
modeling techniques only need to decide which one of two possible software process
metrics to collect.

Statistical modeling techniques
This procedure is likely to require more effort to execute for statistical modeling
techniques compared with SRGM-based modeling techniques, since users of statistical
modeling techniques have more options about what software metrics to collect.

3.5.2 Procedure 2: Setup procedure
The effort required to execute this procedure varies depending on the number and the
kinds of software metrics collected.

SRGM-based modeling techniques
This procedure is likely to require less effort to execute for SRGM-based modeling
techniques compared with statistical modeling techniques, since users of SRGM-based
modeling techniques only need to collect one software metric for each release. Donnelly
et al. [55] estimate that this procedure usually takes less than 48 person-hours to execute,
if performed continuously throughout the development process, based on experiences at

 18

AT&T. The authors do not discuss weather this effort includes effort needed to execute
one-time tasks.

Statistical modeling techniques
This procedure is likely to require more effort to execute for statistical modeling
techniques compared with SRGM-based modeling techniques, since users of statistical
modeling techniques usually need to collect the field defect metric and the software
metrics selected in the planning procedure for historical releases initially. Then, for each
subsequent release, users also need to collect the software metrics. This procedure can
take between ~46 person-hours to ~125 person-hours to execute for each release, based
on experiences using the GQM approach in [18] and in [2]. The authors state that similar
effort is needed to collect the metrics for the initial release.

3.5.3 Procedure 3: Model-building procedure
For many of the techniques that we examine, the effort required to build the model
differs; therefore, the cost of use of this procedure is discussed in the descriptions of the
individual techniques. However, since the execution of this procedure is usually aided by
statistical software packages, this procedure may take at most several hours to execute.

3.5.4 Procedure 4: Prediction procedure
For many of the techniques that we examine, the effort required to make predictions
differ; therefore, the cost of use of this procedure is discussed in the descriptions of the
individual techniques. However, like the model-building procedure, the execution of the
prediction procedure is aided by statistical software packages; therefore, this procedure
may take at most an hour to execute.

3.6 Quality of predictions
We present the accuracy of predictions reported in prior work for each technique that we
examine. However, comparisons of the accuracy of predictions are generally not possible.
One major reason is that not enough research has been done to determine how differences
in the context, such as differences in the type of software or the style of development,
affect accuracy of predictions, discussed by Ohlsson and Runeson in [68].

In the catalog, we focus on accuracy of predictions because it is the most commonly used
criterion in the literature for assessing the quality of predictions; however, we note that
other criteria have been used in the literature. For example, Khoshgoftaar and Seliya [43]
and Ebert [14] evaluate the simplicity of the predictions, that is, how easy it is for users
of the technique to identify what predictors are important for making the predictions.

SRGM-based modeling techniques
Accuracy of predictions of SRGM-based modeling techniques can vary significantly
between data sets, as discussed by Brocklehurst et al. in [6] and by Lyu and Nikora in
[56]. The literature suggests not selecting a SRGM-based modeling technique a-priori.
Instead, users of the techniques should construct several SRGMs and then select the best
model to use by comparing the goodness of fit to the training data or accuracy of
predictions for historical releases [55]. This comparison does not significantly affect the

 19

cost of use of SRGM-based modeling techniques because little additional effort is needed
to make such comparisons. The inputs needed by most SRGM-based modeling
techniques are the same and tools are available to automate comparisons, discussed in
[25] and in [55].

Statistical modeling techniques
Accuracy of predictions using the same technique can vary due to differences in the
software metrics used, the amount of historical data used to construct the models, and
details that are specific to a modeling technique, such as the variant of the technique used
or technique specific tuning parameters, as discussed by Ohlsson and Runeson in [68].
Relative to a baseline set of software metrics and amount of historical data used to
construct the model, using additional software metrics that measure different attribute of
the software, such as in Jones et al. [29], and/or using more historical data, such as in
Karunanithi [31], are likely to result in more accurate predictions. However, model
specific details are rarely discussed in the literature. In addition, for predictions of the
field defect thresholding, comparisons are usually not appropriate because there is a
trade-off between the false positive rate and the false negative rate, which are the two
accuracy criteria usually used in the literature to evaluate accuracy of predictions.
Khoshgoftaar et al. discuss this issue in [40].

3.7 Related techniques
Since some techniques in the literature are based on the same underlying model, in the
catalog, we present the most representative modeling techniques, one for each model, and
refer readers to their variants.

In addition, for statistical modeling techniques, prior work sometimes uses principal
component analysis to pre-process the software metrics, which we discuss in Appendix
B.

3.8 References
Several resources discuss the techniques that we examine in detail and other techniques
that are not examined in the catalog. Additional SRGM-based modeling techniques and
more information on the techniques that we examine can be found in [55] by Lyu, in [64]
by Musa and Okumoto, in [87] by Yamada et al., in [86] by Wood, and in [67] by NIST.
Additional statistical modeling techniques and information on statistical modeling
techniques that we examine can be found in [40] by Khoshgoftaar et al., in [4] by Briand
et al., and in [21] by Hastie et al.

4. Catalog of techniques
This section presents the catalog of techniques; however, before we present the individual
techniques, we summarize the techniques, discuss the accuracy criteria for each kind of
information predicted, and discuss the systems examined in the prior work that we
surveyed.

 20

In table 1, we summarize the techniques that we examine. We present kinds of
information predicted by a technique, the category of modeling techniques that it belongs
to, cost of use, a research study that has used the technique to make predictions for real-
world software, and the page where detailed information on the technique can be found.

Table 1. Summary of techniques
Kinds of

information
predicted

Modeling
technique

Category of
modeling

techniques
Cost of use Research study Page

Field defect rate
and count

Gamma
Finite
SRGM-based

Lower than
typical

Yamada et al.
[87]

23

Field defect rate
and count

Exponential
Finite
SRGM-based

Lower than
typical

Pant [71] 26

Field defect rate
and count

Weibull
Finite
SRGM-based

Lower than
typical

Musa and
Okumoto [64]

30

Field defect rate
and count

Logarithmic
Infinite
SRGM-based

Lower than
typical

Musa and
Okumoto [64]

33

Field defect rate
and count

Power
Infinite
SRGM-based

Lower than
typical

Lyu and Nikora
[56]

36

Field defect count
and thresholding

Linear regression
Parametric
statistical

Typical
Khoshgoftaar et
al. [41]

39

Field defect count
and thresholding

Trees
Non-
parametric
statistical

Higher
than typical

Selby and
Porter [81]

42

Field defect count
and thresholding

Neural networks
Parametric
statistical

Higher
than typical

Karunanithi
[31]

46

Field defect count Ratios
Parametric
statistical

Lower than
typical

Jalote [26] 50

Field defect
thresholding

Discriminant
analysis

Non-
parametric
statistical

Typical Ebert [14] 52

Field defect
thresholding

Pareto
Non-
parametric
statistical

Lower than
typical

Ostrand et al.
[69]

54

The most widely used measures of accuracy in the literature for each kind of information
predicted about field defects is below.

• The most widely used measure of accuracy in the literature for field defect rate
predictions are the mean relative error (MRE), the residual sum of squares (RSS),

and mean square error (MSE). The mean relative error is ∑
=

−N

i i

ii

y

yy

1
2

2)ˆ(
, the RSS is

∑
=

−
N

i
ii yy

1

2)ˆ(, mean square error is

∑

∑

=

=
−

N

i
i

N

i
ii

y

yy

1

1

2ˆ
,where yi is the actual number of

field defects in the i-th time interval,
ŗ

i is the predicted number of field defects in
the i-th time interval, and N is the number of time intervals in the duration of a
release.

 21

• The most widely used measure of accuracy in the literature for field defect count

predictions is the absolute relative error (ARE). The ARE is:
i

ii

y

yy −ˆ
.

• The most widely used measures of accuracy in the literature for field defect
thresholding predictions are the rate of false positives (Type I error) and the rate
of false negatives (Type II error).

We present the systems examined in the prior work that we surveyed in table 2.

Table 2. Summary of systems
System set Description Modeling technique(s)

System set 1
Yamada et al. [87] predicted software errors for an IBM on-
line terminal control program written in structured
programming macros and basic assembler language.

Gamma
Exponential

System set 2

Lyu and Nikora [56] predicted systems test failures and
operation failures for three projects at the Rome Air
Development Center. At least one of the systems is a real-
time command and control system.

Gamma
Exponential
Logarithmic
Power

System set 3
Wood [86] predicted defects found in the first year after
release for a software system at Tandem computers.

Gamma
Exponential
Weibull

System set 4
Pant [71] predicted failures for an AT&T electronic
switching system deployed at one test site.

Exponential

System set 5
Goel and Okumoto [19] predicted errors for one module of a
real-time system: the Naval Tactical Data System (NTDS).

Exponential

System set 6

Musa and Okumoto [64] predicted systems test failures and
operation failures for “15 sets of data on a variety of
software systems, such as real time command and control,
real time commercial, military, and space systems, with
system sizes ranging from small, 5.7K, to large, 2.4M.”

Exponential
Weibull
Logarithmic
Power

System set 7
Kan [30] and Panlilio-Yap [70] predicted defects for IBM
Application System 400.

Exponential
Weibull

System set 8

Khoshgoftaar et al. [38], [41], [42], and [39] predicted faults
during systems integration and test phase and during the first
year after deployment for a large military
telecommunications system written in Ada. The software
system was divided into modules.

Linear regression
Neural networks
Discriminant analysis

System set 9

Khoshgoftaar et al. [38] and Karunanithi [31] predicted
changes due to faults for a commercial medical imagining
system written in Pascal and Fortran. Lind and Vairavan
provided the data for this system in [52]. The software
system was divided into modules.

Linear regression
Neural networks

System set 10

Khoshgoftaar et al. [34] predicted changes due to faults for a
telecommunications system written in a high-level language
similar to Pascal. The software system was divided into
modules.

Linear regression
Trees
Neural networks

System set 11

Khoshgoftaar and Seliya [43] and [45] predicted problems
leading to code changes for a telecommunications system
written in PROTEL. The software system was divided into
modules.

Linear regression
Trees

 22

System set Description Modeling technique(s)

System set 12

Khoshgoftaar et al. [35] predicted faults discovered by
customers after release for “a very large legacy
telecommunications system written in a high level language,
and maintained by professional programmers in a large
organization”. The software system was divided into
modules.

Linear regression

System set 13

Jones et al. [29] and Khoshgoftaar et al. [36] predicted faults
discovered by customers after release in a very large
telecommunications embedded system written in a high-
level language with more than 10 million lines of code. The
software system was divided into modules.

Linear regression
Neural neworks
Discriminant analysis

System set 14

Briand et al. [4] predicted errors during system and
acceptance testing in a 260 KLOC Ada system at NASA
Goddard Space Flight Center. The software system was
divided into modules.

Linear regression
Trees

System set 15
Selby and Porter [81] predicted faults for a Hughes system
with 100,000 lines of code. The software system was
divided into modules.

Trees

System set 16
Ebert [14] predicted faults for several similar
telecommunications systems with roughly 1 million lines of
code. The software systems were divided into modules.

Trees
Neural networks

System set 17
Ohlsson and Runeson [68] predicted faults for a real-time
telecommunications software system. The software system
was divided into modules.

Discriminant analysis

System set 18
Ostrand et al. [69] predicted faults in an inventory system at
AT&T. The software system was divided into files.

Pareto

System set 19
Jalote [26] predict defect for “hundreds of projects” at
InfoSys.

Ratio

 23

4.1 Gamma modeling technique for predicting the field defect rate
and the field defect count

Abstract
The Gamma modeling technique is a finite SRGM-based modeling technique. Prior work
uses this technique to fit a SRGM based on the Gamma function using software process
metrics that measure development defects and then uses the fitted model to make
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

• The occurrence time of each development defect or the defect count in each time
interval during development

Outputs
• The predicted field defect rate

Model
This technique adjusts the and model parameters of the SRGM based on the Gamma
function so that the SRGM describes the observed development defect information. Two
mathematically equivalent forms of the SRGM, which are used to describe the field
defect rate and the field defect count, are:

Field defect rate (for the t-th time interval) = tte βαβ −2 , and

Field defect count (aggregated from time 0 to time t) =))1(1(tet ββα −+− .
The parameter roughly determines the scale of the model, and the parameter roughly
determines the shape of the model. Gamma functions, which are used to predict the field
defect rate, and Gamma cumulative functions, which are used to predict the field defect
count, with sample parameter values are in figures 1 and 2.

 24

Figure 1. Gamma functions with sample parameter values

Figure 2. Gamma cumulative functions with sample parameter values

 25

Applicability
This technique has the standard applicability restrictions for SRGM-based modeling
techniques and the standard applicability restriction for finite SRGM-based modeling
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Gamma function.

This technique was used to make predictions for System Set 1, System Set 2, and System
Set 3.

Procedures
Users of the technique need to execute the standard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniques. These procedures are
described in Section 3.4.

Cost of Use
The cost of use of the Gamma modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages.

Quality of Predictions
Yamada et al. find in [87] that the RSS for prediction of the error rate for the fit data is
12.6 for 31 errors and the ARE for prediction of the error count is .097 for 41 errors.

Lyu and Nikora find in [56] that the MSE for predictions of the failure rate are 567.7 for
~95 failures for system 1, 246.1 for ~60 failures for system 2, and 2067 for ~145 failures
for system 3. For each system, the authors appear to have used ~30% of failures to fit the
models initially and then made predictions for the remaining failures. The MSE of this
technique ranked third among the five techniques examined by the authors.

Wood finds in [86] that the ARE for predictions of the defects was .029 for 34 field
defects.

Related techniques in the catalog
We use the version of the Gamma modeling technique presented in Yamada et al. [87].
Their model is commonly referred to as the S-shaped model in the literature. Littlewood
and Verrall apply Bayesian principles to the Gamma modeling technique in [54]. Their
model is commonly referred to as the Littlewood-Verrall (LV) model. Their variant
allows prior information about the model parameters and about how defect discoveries
affect the model parameters to be incorporated into the model.

References
Additional information on the Gamma modeling technique can be found in [55] by Lyu.

 26

4.2 Exponential modeling technique for predicting the field defect
rate and the field defect count

Abstract
The Exponential modeling technique is a finite SRGM-based modeling technique. Prior
work uses this technique to fit a SRGM based on the Exponential function using software
process metrics that measure development defects and then uses the fitted model to make
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

• The occurrence time of each development defect or the defect count in each time
interval during development

Outputs
• The predicted field defect rate

Model
This technique adjusts the and model parameters of the SRGM based on the
Exponential function so that the SRGM describes the observed development defect
information. Two mathematically equivalent forms of the SRGM that, which are used to
describe the field defect rate and the field defect count, are:

Field defect rate (for the t-th time interval) = tte βαβ − , and

Field defect count (aggregated from time 0 to time t) =)1(te βα −− .

The parameter roughly determines the scale of the model, and the parameter roughly
determines the shape of the model. Exponential functions, which are used to predict the
field defect rate, and Exponential cumulative functions, which are used to predict the
field defect count, with sample parameter values are in figure 3 and 4.

 27

Figure 3. Exponential functions with sample parameter values

Figure 4. Exponential cumulative functions with sample parameter values

 28

Applicability
This technique has the standard applicability restrictions for SRGM-based modeling
techniques and the standard applicability restriction for finite SRGM-based modeling
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Exponential function.

This technique was used to make predictions for System Set 1, System Set 2, System Set
3, System Set 4, System Set 5, System Set 6, and System Set 7.

Procedures
Users of the technique need to execute the standard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniques. These procedures are
described in Section 3.4.

Cost of Use
The cost of use of the Exponential modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages.

Quality of Predictions
Yamada et al. find in [87] that the RSS for prediction of the error rate for the fit data is
31.5 for 31 errors and the ARE for prediction of the error count is 1.606 for 41 errors.

Lyu and Nikora find in [56] that the MSE for the predictions of the failure rate are 2117
for ~95 failures for system 1, 1455 for ~60 failures for system 2, and 480 for ~145
failures for system 3. Details are in Section 4.1. The MSE of this technique ranked fifth
among the five techniques examined by the authors.

Wood finds in [86] that the ARE for predictions of the defects was.029 for 34 field
defects.

Pant finds in [71] that “the failure intensity (i.e. the field defect rate) is no more than the
value at the time of release thereby validating the measurements made based on
verification.”

Goel and Okumoto find in [19] that the 90% confidence bound captures all of the 26
errors used to fit the data, that the ARE of the error count is 0 for 8 post production
errors, and that “analyses of the NTDS data and of some other data sets not reported here
indicate that the model provides a good fit to the observed failure phenomenon.”

Musa and Okumoto find in [64] that the technique under-estimates the failure rate judged
using the median relative error for 15 sets of data.

Kan finds in [30] that the technique is “useful in the development” of the system.

 29

Related techniques in the catalog
We use the version of the Exponential modeling technique presented in Goel and
Okumoto [19]. Their model is commonly referred to as the Goel-Okumoto (GO) model in
the literature. Musa also proposes this model in [62]. His model is derived slightly
differently and is commonly referred to as the Musa basic Exponential model. The
Exponential modeling technique is a simplified version of the Weibull modeling
technique in Section 4.3. However, the Exponential modeling technique is usually treated
as a different modeling technique in the literature.

References
Additional information on the Exponential modeling technique can be found in [55] by
Lyu and in [63] by Musa et al.

 30

4.3 Weibull modeling technique for predicting the field defect rate
and the field defect count

Abstract
The Weibull modeling technique is a finite SRGM-based modeling technique. Prior work
uses this technique to fit a SRGM based on the Weibull function using software process
metrics that measure development defects and then uses the fitted model to make
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

• The occurrence time of each development defect or the defect count in each time
interval during development

Outputs
• The predicted field defect rate

Model
This technique adjusts the N, , and model parameters of the SRGM based on the
Weibull function so that the SRGM describes the observed development defect
information. Two mathematically equivalent forms of the SRGM that, which are used to
describe the field defect rate and the field defect count, are:

Field defect rate (for the t-th time interval) =
αβααβ tetN −−1 , and

Field defect count (aggregated from time 0 to the time t) =)1(
ateN β−− .

The N parameter roughly determines the scale of the model, the parameter roughly
determines the shape of the model, and the parameter roughly determines the location
of the hump in the model. Weibull functions, which are used to predict the field defect
rate, and Weibull cumulative functions, which are used to predict the field defect count,
with sample parameter values are in figures 5 and 6.

 31

Figure 5. Logarithmic functions with sample parameter values

Figure 6. Logarithmic functions with sample parameter values

 32

Applicability
This technique has the standard applicability restrictions for SRGM-based modeling
techniques and the standard applicability restriction for finite SRGM-based modeling
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Weibull function.

This technique was used to make predictions for System Set 3, System Set 6, and System
Set 7.

Procedures
Users of the technique need to execute the standard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniques. These procedures are
described in Section 3.4.

Cost of Use
The cost of use of the Weibull modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages.

Quality of Predictions
Musa and Okumoto find in [63] that the Weibull model under-estimates the failure rate
judged using the median relative error for 15 sets of data.

Wood finds in [86] that the ARE for predictions of the defects was.029 for 34 field
defects.

Kan finds in [30] that the technique is “useful in the development” of the system.

Panlilio-Yap [70] used the technique to model defects for the same system, but the author
does not report the accuracy of predictions.

Related techniques in the catalog
We use the version of the Weibull modeling technique presented in Farr [55]. A common
variant of the Weibull function is the Raleigh function with is the Weibull function with
=2. The Raleigh function is the basis for the Putnam’s Software Life-cycle Model

(SLIM) model [70]. SLIM is proprietary and uses different software metrics to construct
the model, including an organization’s productivity index and manpower buildup index.

References
Additional information on the Weibull modeling technique can be found in [55] by Lyu.

 33

4.4 Logarithmic modeling technique for predicting the field defect
rate

Abstract
The Logarithmic modeling technique is an infinite SRGM-based modeling technique.
Prior work uses this technique to fit a SRGM based on the Logarithmic function using
software process metrics that measure development defects and then uses the fitted model
to make predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

• The occurrence time of each development defect or the defect count in each time
interval during development

Outputs
• The predicted field defect rate

Model
This technique adjusts the 0 and 1 model parameters of the SRGM based on the
Logarithmic function so that the SRGM describes the observed development defect
information. Two mathematically equivalent forms of the SRGM that, which are used to
describe the field defect rate and the field defect count, are:

Field defect rate (for the t-th time interval) =
11

10

+tβ
ββ

, and

Field defect count (aggregated from time 0 to the time t) =)1ln(10 +tββ . (Note that this

is an infinite function of t).
The 0 parameter roughly determines the scale of the model and the 1 parameter roughly
determines the shape of the model. Logarithmic functions, which are used to predict the
field defect rate, and Logarithmic cumulative functions, which are used to predict the
field defect count, with sample parameter values are in figures 7 and 8.

 34

Figure 7. Logarithmic functions with sample parameter values

Figure 8. Logarithmic cumulative functions with sample parameter values

 35

Applicability
This technique has the standard applicability restrictions for SRGM-based modeling
techniques and the standard applicability restriction for infinite SRGM-based modeling
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Logarithmic function.

This technique was used to make predictions for System Set 2 and System Set 6.

Procedures
Users of the technique need to execute the standard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniques. These procedures are
described in Section 3.4.

Cost of Use
The cost of use of the Logarithmic modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages.

Quality of Predictions
Lyu and Nikora find in [56] that the MSE for the predictions of the failure rate are 687.4
for ~95 failures for system 1, 1421 for ~60 failures for system 2, and 253.2 for ~145
failures for system 3. Details are in Section 4.1. The MSE of this technique ranked fourth
among the five techniques examined by the authors.

Musa and Okumoto find in [63] that the Logarithmic modeling technique is superior to
other SRGM-based modeling techniques, including the Exponential modeling technique
and the Weibull modeling technique, base on having a better median relative error for
predicting fault rates, that is, a median relative error that is closer to zero, for 15 sets of
data.

Related techniques in the catalog
We use the version of the Logarithmic modeling technique presented in Musa and
Okumoto [63]. Their model is commonly referred to as the Musa-Okumoto (MO) model
in the literature.

References
Additional information on the Logarithmic modeling technique can be found in [55] by
Lyu and in [63] by Musa et al.

 36

4.5 Power modeling technique for predicting the field defect rate

Abstract
The Power modeling technique is an infinite SRGM-based modeling technique. Prior
work uses this technique to fit a SRGM based on the Power function using software
process metrics that measure development defects and then uses the fitted model to make
predictions. The cost of use of this technique is lower than typical.

Overview
Inputs

• The occurrence time of each development defect or the defect count in each time
interval during development

Outputs
• The predicted field defect rate

Model
This technique adjusts the and model parameters of the SRGM based on the Power
function so that the SRGM describes the observed development defect information. Two
mathematically equivalent forms of the SRGM that, which are used to describe the field
defect rate and the field defect count, are:

Field defect rate (for the t-th time interval) = 1−βαβt , and

Field defect count (aggregated from time 0 to the time t) = βαt . (Note that this is an
infinite function of t).
The parameter roughly determines the scale of the model, and the parameter roughly
determines the shape of the model. Power functions, which are used to predict the field
defect rate, and Power cumulative functions, which are used to predict the field defect
count, with sample parameter values are in figures 5 and 6.

 37

Figure 5. Power functions with sample parameter values

Figure 6. Power cumulative functions with sample parameter values

 38

Applicability
This technique has the standard applicability restrictions for SRGM-based modeling
techniques and the standard applicability restriction for infinite SRGM-based modeling
techniques, discussed in Section 3.3.4. In addition, this technique assumes that the defect
pattern can be modeled using the Logarithmic function.

This technique was used to make predictions for System Set 2 and System Set 6.

Procedures
Users of the technique need to execute the standard planning, setup, model-building, and
prediction procedures for SRGM-based modeling techniques. These procedures are
described in Section 3.4.

Cost of Use
The cost of use of the Logarithmic modeling technique is lower than typical. The cost to
execute the planning procedure and the setup procedure is discussed in Section 3.5. Users
of this technique may be able to execute the model-building procedure and the prediction
procedure in several minutes using standard statistical software packages.

Quality of Predictions
Lyu and Nikora find in [56] that the accuracy of the error rate prediction as measured by
the log of the prequential likelihood, which is a measure of the accuracy of predictions
based on the probability of experiencing a failure, is -814.3 for ~145 failure, which
ranked 8th among the ten techniques that the authors examined. The authors used 60
points, ~30%, of 207 failures to fit the models initially and then made predictions for the
remaining failures.

Musa and Okumoto find in [63] that the Power model over-estimates the failure rate
judged using the median relative error for 15 sets of data.

Related techniques in the catalog
We use the version of the Power modeling technique presented in Lyu [55]. The model is
commonly referred to as the Duane model in the literature. Duane first developed the
model at General Electric in 1964, discussed in [13].

References
Additional information on the Power modeling technique can be found in [55] by Lyu.

 39

4.6 Linear regression modeling technique for predicting the field
defect count and the field defect thresholding

Abstract
The Linear regression modeling technique is a parametric statistical modeling technique.
Prior work uses this technique to fit a Linear model using historical information on
software metrics and field defects and then uses software metrics for a new release and
the constructed model to make predictions for the new release. The cost of use of this
technique is typical.

Overview
Inputs

• Software metrics for historical releases
• Software metrics for the new release
• The field defect count for historical releases

Outputs
• The predicted field defect count or field defect thresholding

Model
This technique uses least squares regression or maximum likelihood estimation to
construct a Linear model by adjusting model parameters to fit a Linear model. To predict
field defect counts, this technique minimizes the difference between the estimated field
defect count and the actual field defect count for historical releases. The Linear model
[85] is:

Field defect count = ∑
=

=

+
Ni

i
ii X

1
0 ββ , where Xi is value the i-th software metric and N is

the total number of software metrics. To predict field defect thresholding, this technique
minimizes the difference between the estimated probability field defect thresholding and

the actual field defect thresholding: ∑
=

=

+=��
�

�
��
�

�

−

Ni

i
ii Xp

p

1
0ˆ1

ˆ
log ββ , where p is the

probability that the field defect count is above the threshold.

This modeling technique is usually used in conjunction with model selection, which
selects a subset of software metrics to use in the model by examining the change in the
goodness of fit resulting from adding or subtracting software metrics from the model
[41].

Applicability
This technique has the standard applicability restrictions for statistical modeling
techniques, discussed in Section 3.4.

This technique was used to make predictions for System Set 8, System Set 9, System Set
10, System Set 11, System Set 12, System Set 13, and System Set 14.

 40

Procedures
Users of the technique need to execute the standard planning and setup procedures for
statistical modeling techniques, discussed in 3.3.4.

Procedure 3: Model-building procedure
If the user is predicting the field defect thresholding, then the user needs to use the pre-
determined threshold to determine the thresholding of historical releases.

(Optional) Use the collected information and a model selection routine, such as
backwards elimination used by Khoshgoftaar et al. in [39], found in most statistical
software packages to select a subset of the software metrics to use in the model.

Use the model fitting routine found in most statistical software packages to construct the
model.

If the user is predicting field defect thresholding, then the user also needs to determine
the probability level, that is, the cut-off, at which to classify a release as above the
threshold. Prior work usually does this by finding the probability level that balances the
Type I and Type II errors in the training set [34].

Procedure 4: Prediction procedure
Insert the software metrics’ values for the new release into the constructed model to
obtain the predicted field defect count.

If the user is predicting the field defect thresholding, then the user also needs to use the
probability level determined in the model-building procedure to decide if the release will
be above the threshold.

Cost of Use
The cost of use of this technique is typical. The cost to execute the planning procedure
and the setup procedure is discussed in Section 3.5. Users of this technique may be able
to execute the model-building procedure and the prediction procedure in several minutes
using standard statistical software packages.

Quality of Predictions
We summarize the accuracy of the field defect count predictions in table 3 and the field
defect thresholding predictions in table 4.

Table 3. Accuracy of the field defect count predictions

Study Metrics used
Training

set Test set
Accuracy of
predictions

Khoshgoftaar et al.
[41] and [42]

8 software product metrics 188
modules

94
modules

.5877 ARE

Khoshgoftaar et al.
[41]

11 software product metrics 226
modules

113
modules

.9998ARE

Khoshgoftaar et al.
[34]

9* software product metrics,
2 software process metrics

1320
modules

660
modules

.565 ARE

 41

Study Metrics used
Training

set Test set
Accuracy of
predictions

Khoshgoftaar and
Seliya [45], release 2

24 software product metrics,
4 software deployment and
usage metrics

3649
modules

3981
modules .571 ARE

Khoshgoftaar and
Seliya [45], release 3

24 software product metrics,
4 software deployment and
usage metrics

3649
modules

3541
modules .602 ARE

Khoshgoftaar and
Seliya [45], release 4

24 software product metrics,
4 software deployment and
usage metrics

3649
modules

3978
modules .584 ARE

* Metrics were processed using Principle Component Analysis, see Appendix B

Table 4. Accuracy of the field defect thresholding predictions

Study Metrics used Training set Test set
Accuracy of
predictions Threshold

Khoshgoftaar
et al. [34]

3 software product
metrics,
7 software process
metrics,
1 software
deployment and
usage metric

Not specified 314 modules

27.71%
Type I error
22.96%
Type II error

0 faults

Jones et al.
[29]

24 software
product metrics

Half of “a few
thousand”
modules

Half of “a few
thousand”
modules

29.06%
Type I error
30.77%
Type II error

0 faults

Briand et al.
[4]

an unspecified
number of
software code
metrics

146 modules,
an “equal
number of both
low- and high-
risk” modules

all the high-risk
modules and an
equivalent
number of low
risk modules

23.44%
Type I error
32.88%
Type II error

0 errors

Related techniques in the catalog
We use the Linear regression modeling technique presented in Weisburg [85]. The Linear
regression modeling technique is also known as the Multiple regression modeling
technique or the Multiple Linear regression modeling technique. Variants of this
technique use different measures of accuracy in the model-building algorithm, discussed
in Khoshgoftaar et al. [34]. Variants also use different methods to select the software
metrics to use in the model, such as in Khoshgoftaar et al. [41]. The version of the Linear
modeling technique used to predict the field defect thresholding is also known as the
Logistic regression modeling technique.

References
Refer to Weisberg [85] and Khoshgoftaar et al. [41] for details on the Linear regression
modeling technique.

 42

4.7 Trees modeling technique for predicting the field defect count
and the field defect thresholding

Abstract
The trees modeling technique is a non-parametric statistical modeling technique. Prior
work uses this technique to fit a Trees model using historical information on software
metrics and field defects and then uses software metrics for a new release and the
constructed model to make predictions for the new release. The cost of use of this
technique is higher than typical.

Overview
Inputs

• Software metrics for historical releases
• Software metrics for the new release
• The field defect count for historical releases

Outputs
• The predicted field defect count or field defect thresholding

Model
This technique constructs a Trees model by iteratively split historical data into similar
groups as judged by deviance of the data in the same node [45]. To predict field defect

counts, this techniques measures the deviance of a node l as: ∑
∈

−
li

ii uy 2)(, where yi is

the field defect count of the i-th release and ui is the mean of the yi in the same node. To
predict the field defect thresholding, this technique measures the deviance of a node l as:

))|()|((1 2
2

1
2 lxplxp +− , where p(x1|l) is the proportion of observations in node l that is

above the threshold and p(x2|l) is the proportion of observations in node l that is below
the threshold.

Each iteration, the tree-building algorithm selects the software metric and metric value
that can best split the node into two child nodes that minimizes the sum of the deviance
of the left and right child nodes. The splitting finishes when the number of historical
releases in the nodes is less than some preset number. The algorithm then prunes the tree
using v-fold cross validation (with v usually being 10) to determine the optimal tree.

 43

An example trees model is in figure 7.

Figure 7. An example trees model

Applicability
This technique has the standard applicability restrictions for statistical modeling
techniques, discussed in Section 3.4.

This technique was used make predictions for System Set 10, System Set 11, System Set
14, System Set 15, and System Set 16.

Procedures
Users of the technique first need to execute the standard planning and setup procedures
for statistical modeling techniques, discussed in 3.3.4.

Procedure 3: Model-building procedure
If the user is predicting the field defect thresholding, then the user needs to use the pre-
determined threshold to determine the thresholding of historical releases.

Use the collected information and tree building routine found in most statistical software
packages to construct several candidate models by varying the model parameters. Select
the candidate model that has the best fit to the historical data.

If the user is predicting the field defect thresholding, then the user also needs to
determine the cut-off, that is, the proportion of releases in a leaf node that are above the
threshold at which to classify a node as being above the threshold. Prior work usually
does this by finding the cut-off that balances the Type I and Type II errors in the training
set.

Procedure 4: Prediction procedure
Insert software metrics values for the new release into the constructed model to obtain the
predicted field defect count. To make a prediction for a new release, users of the
technique traverse the tree based on the software metrics’ values of the new release until
they reach a leaf node.

 44

If the user is predicting the field defect count, the mean of the field defect counts of the
historical releases in the leaf node is the predicted field defect count for the new release.

If the user is predicting the field defect thresholding, then the user needs to use the cut-off
to determine if the release will be above the threshold.

Cost of Use
The cost of use of this technique is higher than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique
may be able to execute the model-building procedure in one person-hour using standard
statistical software packages and then execute the prediction procedure in a couple of
minutes.

Quality of Predictions
We summarize the accuracy of the field defect count predictions in table 5 and the
accuracy of the field defect thresholding predictions in table 6.

Table 5. Accuracy of the field defect count predictions

System Metrics used Training set Test set
Accuracy of
predictions

Khoshgoftaar and
Seliya [43]

9 software product
metrics,
2 software process metric

4648
modules

2324
modules

.3943 ARE

Khoshgoftaar and
Seliya [45], release 2

24 software product
metrics,
4 software deployment
and usage metrics

3649
modules

3981
modules

.324 ARE

Khoshgoftaar and
Seliya [45], release 3

24 software product
metrics,
4 software deployment
and usage metrics

3649
modules

3541
modules

.391 ARE

Khoshgoftaar and
Seliya [45], release 4

24 software product
metrics,
4 software deployment
and usage metrics

3649
modules

3978
modules

.418 ARE

Table 6. Accuracy of the field defect thresholding predictions

System Metrics used Training set Test set
Accuracy of
predictions

Threshold

Khoshgoftaar
and Allen [33],
Release 2

24 software
product metrics,
14 process metrics,
4 software
deployment and
usage metrics

“a few
thousand”
modules
from the first
release

“a few
thousand”
modules

27.9% Type
I error

28.6% Type
II error

0 faults

Khoshgoftaar
and Allen [33],
Release 3

24 software
product metrics,
14 process metrics,
4 software
deployment and
usage metrics

“a few
thousand”
modules
from the first
release

“a few
thousand”
modules

30.4% Type
I error

34.0% Type
II error

0 faults

 45

System Metrics used Training set Test set
Accuracy of
predictions Threshold

Khoshgoftaar
and Allen [33],
Release 4

24 software
product metrics,
14 process metrics,
4 software
deployment and
usage metrics

“a few
thousand”
modules
from the first
release

“a few
thousand”
modules

33.7% Type
I error

27.2% Type
II error

0 faults

Briand et al. [4]

an unspecified
number of
software code
metrics

146 modules,
an “equal
number of
both low- and
high-risk”
modules

all the high-
risk modules
and an
equivalent
number of
low risk
modules

16.67%
Type I error

17.81%
Type II error

0 errors

Selby and Porter
[81]

2 software process
metrics

907 modules
was
available,
information
from the first
54 months

907 modules
was
available.
information
from the
next 12
months

18.84%
Type I error

24.32%
Type II error

Faults in the
top 25% of
the training
set

Ebert [14]
six complexity
metrics

251 modules 200 modules

8.59% Type
I error

43.24%
Type II error

1 fault

Related techniques in the catalog
We are using the trees modeling technique used in [45] by Khoshgoftaar and Seliya. This
technique is also known as the Classification and Regression Trees (CART) modeling
technique. Variants of this technique use slightly different measures of deviance for the

field defect count, such as ∑
∈

−
li

ii yy ~ , where yi is the field defect count of the i-th release

and � i is the median of the yi in the same node. Other variants do not prune the tree and
uses an additional parameter to determine when to stop splitting. These variants are
discussed in Khoshgoftaar and Seliya [45].

References
Refer to Hastie et al. [21] and Brieman et al. [5] for details on the trees modeling
technique.

 46

4.8 Neural networks modeling technique for predicting the field
defect count and the field defect thresholding

Abstract
The Neural networks modeling technique is a parametric statistical modeling technique.
Prior work uses this technique to fit a Neural networks model using historical information
on software metrics and field defects and then uses software metrics for a new release
and the constructed model to make predictions for the new release. The cost of use of this
technique is higher than typical.

Overview
Inputs

• Software metrics for historical releases
• Software metrics for the new release
• The field defect count for historical releases

Outputs
• The predicted field defect count or field defect thresholding

Model
As explained by Khoshgoftaar et al. in [41], a Neural network is a set of interconnected
nodes that have some inputs, an output, and a transformation function. The Neural
networks model, arranges the nodes in layers, with one layer for the inputs, one layer for
the output, and usually only one intermediate layer, known as a hidden layer. Each node
uses its transformation function to compute an output using its inputs. This
transformation function is usually a non-linear equation. The input layer has one node for
each software metric, and the input to the node is the normalized value of the software
metric. Each node in the intermediate layer receives weighted inputs from each node in
the input layer. The output layer receives weighted inputs from each node in the
intermediate layer and then produces the normalized value of the output.

 47

An example Neural networks model is in figure 8.

Figure 8. An example Neural networks model

This technique constructs a Neural networks model by adjusting the weights of the inputs
and the parameters in the transformation function to fit the observed field defect
information. This is usually done using a backwards training algorithm discussed by
Khoshgoftaar et al. in [41].

Applicability
This technique has the standard applicability restrictions for statistical modeling
techniques, discussed in Section 3.4.

This technique was used to make predictions for System Set 8, System Set 9, System Set
10, and System Set 16.

Procedures
Users of the technique first need to execute the standard planning and setup procedures
for statistical modeling techniques, discussed in 3.3.4.

Procedure 3: Model-building procedure
If the user is predicting the field defect thresholding, then the user needs to use the pre-
determined threshold to determine the thresholding of historical releases.

If the user is predicting the field defect count, then the user needs to normalize the field
defect count for historical releases by dividing each field defect count by the largest field
defect count in historical releases.

Normalize the software metrics by dividing each metric by the largest value of the metric
in historical releases. Use the normalized information and the Neural network model
fitting routine found in most statistical software packages to construct candidate models
by varying the number of intermediate layer nodes. Select the candidate model that has
the best fit to historical information. Prior work has constructed candidate models with 5,
10 through 20, 25, and 30 nodes for data sets with 8 software metrics and 11 software

 48

metrics, and has found that 16 and 18 intermediate nodes, respectively, had the best fit,
discussed in [41] and [42].

If the user is predicting the field defect thresholding, then the user also needs to
determine the cut-off of the output at which to classify a node as being above the
threshold. Prior work usually does this by finding the cut-off that balances the Type I and
Type II errors in the training set.

Procedure 4: Prediction procedure
Normalize the software metrics values for the new release by dividing each software
metric by the largest value of the software metric in the training set. Insert the normalized
values into the constructed model to obtain the normalized field defect count prediction.

If the user is predicting the field defect count, then the user needs to scales up the output
by multiplying the output by the largest field defect count in historical releases to obtain
the predicted output.

If the user is predicting the field defect thresholding, then the user uses the cut-off to
determine if the release will be above the threshold.

Cost of Use
The cost of use of this technique is higher than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique
may be able to execute the model-building procedure in several person-hours using
standard statistical software packages and then execute the prediction procedure in
several minutes.

Quality of Predictions
We summarize the accuracy of the field defect count predictions in table 7 and the
accuracy of the field defect thresholding predictions in table 8.

Table 7. Accuracy of the field defect count predictions

Study Metrics used
Training

set Test set
Accuracy of
predictions

Khoshgoftaar et al.
[41] and [42]

8 software product metrics 188
modules

94
modules

.3980 ARE

Khoshgoftaar et al.
[41]

11 software product metrics 226
modules

113
modules

.5467 ARE

Khoshgoftaar et al.
[34]

9 software product metrics,
2 software process metrics

1320
modules

660
modules

.584 ARE

Khoshgoftaar and
Seliya [45], release 2

24 software product metrics,
4 software deployment and
usage metrics

3649
modules

3981
modules .620 ARE

Khoshgoftaar and
Seliya [45], release 3

24 software product metrics,
4 software deployment and
usage metrics

3649
modules

3541
modules .749 ARE

Khoshgoftaar and
Seliya [45], release 4

24 software product metrics,
4 software deployment and
usage metrics

3649
modules

3978
modules .3980 ARE

 49

Table 8. Accuracy of the field defect thresholding predictions

System
Metrics

used Training set Test set
Accuracy of
predictions Threshold

Karunanithi
[30]

8 software
product
metrics

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
25% of the modules

75% of
modules

20.19%
Type I error

12.11%
Type II
error

9 faults

Karunanithi
[30]

8 software
product
metrics

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
50% of the modules

50% of
modules

17.41%
Type I error

15.04%
Type II
error

9 faults

Karunanithi
[30]

8 software
product
metrics

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
67% of the modules

33% of
modules

14.32%
Type I error

14.08%
Type II
error

9 faults

Karunanithi
[30]

8 software
product
metrics

203 modules, after
removing modules
with between 1-9
faults to improve
fitting, trained using
75% of the modules

25% of
modules

9.77% Type
I error

15.47%
Type II
error

9 faults

Khoshgoftaar et
al. [38]

11 software
product
metrics

188 module, after
removing modules
with between 1-4
faults to improve
fitting, trained using
75% of the modules

94
modules

12.50%
Type I error

6.67% Type
II error

4 faults

Ebert [14]
6 software
product
metrics

251 modules
200
modules

8.64% Type
I error

56.76%
Type II
error

1 fault

Related techniques in the catalog
We are using the Neural networks modeling technique used in [41] by Khoshgoftaar et al.

References
Refer to Hastie et al. [21] for details on the Neural networks modeling technique.

 50

4.9 Ratios modeling technique for predicting the field defect count

Abstract
The Ratios modeling technique is a parametric statistical modeling technique. Prior work
uses this technique to fit a Ratios model using historical information on a software metric
and field defects and then uses the software metric for a new release and the constructed
model to make predictions for the new release. The cost of use of this technique is higher
than typical.

Overview
Inputs

• A software metric for historical releases
• A software metric for the new release
• The field defect count for historical releases

Outputs
• The predicted field defect count

Model
This technique computes the ratio of the field defect count to a software metric (e.g.
development effort [60]) for historical releases.

Applicability
This technique has the standard applicability restrictions for statistical modeling
techniques, discussed in Section 3.4.

This technique was used to make predictions for System Set 19.

Procedures
Users of the technique first need to execute the standard planning and setup procedures
for statistical modeling techniques, discussed in 3.3.4.

Procedure 3: Model-building procedure
Compute the ratio.

Procedure 4: Prediction procedure
Multiply the value of the software metric for the new release by the computed ratio to
determine the field defect count for the new release.

Cost of Use
The cost of use of this technique is lower than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique
may be able to execute the model-building and prediction procedures in a couple of
minutes.

 51

Quality of Predictions
Jalote [26] and Mohapatra and Mohanty [60] report using this technique on “several
hundred” projects at Infosys, accuracy of predictions is not reported.

Related techniques in the catalog
We use the Ratios modeling technique used by Mohapatra and Mohanty in[60].

References
Refer to Jalote [26] for details about Ratios modeling technique.

 52

4.10 Discriminant analysis modeling technique for predicting the
field defect thresholding

Abstract
The Discriminant analysis modeling technique is a non-parametric statistical modeling
technique. Prior work uses this technique to fit a Discriminant analysis model using
historical information on software metrics and field defects and then uses software
metrics for a new release and the constructed model to make predictions for the new
release. The cost of use of this technique is typical.

Overview
Inputs

• Software metrics for historical releases
• Software metrics for the new release
• The field defect count for historical releases

Outputs
• The predicted field defect thresholding

Model
This technique presorts historical releases into classes, that is, a set that is above the
threshold and a set that is below the threshold. For each class, the technique computes the
probability that a new release belongs to each class using a distance function and a

probability function. The distance function used in [38] is:)'()''(12
jjj xxxxD −Σ−= − ,

where x is the vector of software metrics for the new release, x’ j is the vector of the
means of the software metrics in the j-th class, and is the covariance matrix of the
software metrics in both classes. The probability that the new releases belongs to the j-th

class is:

∑
=

−

−

=
2

1

)(
2

1

)(
2

1

2

2

)(

i

xD

xD

j
i

j

e

e
xp .

Applicability
This technique has the standard applicability restrictions for statistical modeling
techniques, discussed in Section 3.4.

This technique was used to make predictions for System Set 8, System Set 13, System
Set 16, and System Set 17.

Procedures
Users of the technique first need to execute the standard planning and setup procedures
for statistical modeling techniques, discussed in 3.3.4.

Procedure 3: Model-building procedure
Place the historical releases into classes.

 53

Procedure 4: Prediction procedure
Use the Discriminant analysis procedure found in most statistical software packages to
determine the probability that the new release belongs to each class. Place the new
release into the class with the higher probability of class membership.

Cost of Use
The cost of use of this technique is typical. The cost to execute the planning procedure
and the setup procedure is discussed in Section 3.5. Users of this technique may be able
to execute the model-building and prediction procedures in several minutes.

Quality of Predictions
We summarize the accuracy of the field defect thresholding predictions in table 10.

Table 10. Accuracy of field defect thresholding predictions

System Metrics used Training set Test set
Accuracy of
predictions

Threshold

Khoshgoftaar et
al. [38]

11 software
product
metrics

188 module, after
removing modules with
between 1-4 faults to
improve fitting, trained
using 75% of the
modules

94
modules

20.19%
Type I error

12.11%
Type II error

9 faults

Ebert [14]
6 software
product
metrics

251 modules
200
modules

15.95%
Type I error

32.43%
Type II error

1 fault

Khoshgoftaar et
al. [36]

9 software
product
metrics,
2 software
process
metrics

1320 modules
660
modules

23.8% Type
I error

12.75%
Type II error

4 faults

Ohlsson and
Runeson [68]

10 software
product
metrics

28 modules
The
same 28
modules

18% Type I
error

27% Type II
error

10 faults

Related techniques in the catalog
We are using the Discriminant analysis modeling technique used [38] by Khoshgoftaar et
al.

References
Refer to Khoshgoftaar et al. [38] for details about the Discriminant analysis modeling
technique.

 54

4.11 Pareto modeling technique for predicting the field defect
thresholding

Abstract
The Pareto modeling technique is a non-parametric statistical modeling technique. Prior
work uses this technique to fit a Pareto model using historical information on software
metrics and field defects and then uses software metrics for a new release and the
constructed model to make predictions for the new release. The cost of use of this
technique is lower than typical.

Overview
Inputs

• Software metrics for historical releases
• Software metrics for the new release
• The field defect count for historical releases

Outputs
• The predicted field defect thresholding

Model
This technique ranks the historical releases based on a software metric. The top 20% of
the releases are considered to be above the threshold.

Applicability
This technique has the standard applicability restrictions for statistical modeling
techniques, discussed in Section 3.4.

This technique was used to make predictions for System Set 16 and System Set 18.

Procedures
Users of the technique first need to execute the standard planning procedure for
statistical modeling techniques, discussed in 3.3.4.; however, users only need to
determine which one software metric to collect. Users then execute the setup procedures
for statistical modeling techniques, discussed in 3.3.4.

Procedure 3: Model-building procedure
Select a metric to use to rank the releases, and then rank the releases.

Procedure 4: Prediction procedure
Determine the rank of the new release based on the ranking of historical releases. Use the
ranking to determine the thresholding of the new release.

Cost of Use
The cost of use of this technique is lower than typical. The cost to execute the planning
procedure and the setup procedure is discussed in Section 3.5. Users of this technique

 55

may be able to execute the model-building and prediction procedures in a couple of
minutes.

Quality of Predictions
Ostrand et al. [69] report the percentage of defects found in files that are above the
threshold, that is files ranked in the top 25% of the files. The authors first fit a linear
model using information from two releases and then used the Pareto modeling technique
to make predictions for the next 10 releases. The authors used 4 software product metrics
and 5 software process metrics to fit the model. The authors find that an average of 80%
of the defects is found in the top 25% of the files. The authors then used information from
the first 12 releases to fit another linear model. The authors then used the Pareto
modeling technique to make predictions for the next five releases. The authors find that
an average of 89% of the defects is found in the top 25% of the files. They also examined
using just the lines of code metric and information from the first 2 releases to make
predictions for the next 15 releases. The authors found that 73% of the defects are found
in the top 25% of the files.

Ebert [14] used 6 software product metrics to predict the field defect thresholding. The
threshold was 1 fault. Information from 251 modules are used to fit the model and
information from 200 modules are used to test the module. The Type I error was 15.95%
and the Type II error was 32.43%.

Related techniques in the catalog
We are using the Pareto modeling technique used in [14] by Ebert.

References
Refer to Ebert [14] for details about Pareto modeling technique.

 56

5. Promising research
This section helps software producers anticipate techniques that may become commonly
used in the future by discussing three promising techniques that address some of the
problems with the techniques that are commonly used today. First, SRGM-based
modeling techniques can help software producers to decide whether to conduct more
testing before release and to allocate resources for maintenance when the software
product is to be operated in a manner similar to that in which the predictions are made, as
discussed by Musa et al. in [63] and Lyu in [55]. However, when there are differences
between the deployment and development environments and between the amounts and
kinds of usage during development and in the field – as is the case for COTS software –
prior work has shown that SRGM-based modeling techniques may not produce adequate
predictions, such as Kenny in [32] and Li et al in [48]. We examine two lines of research
that address this problem:

• Hybrid modeling technique for predicting the field defect rate, and
• Bayesian calibration modeling technique for predicting the field defect rate.

Second, modeling techniques that can identify software metrics that are related to the
occurrence of field defects and that can prioritize the software metrics in terms of the
strength of the software metrics’ relationship to the occurrence of field defects can help
software producers by guiding process improvement efforts. However, currently, only the
Linear regression modeling technique and the Trees modeling technique are likely to
produce models that can help software producers as discussed by Li et al. in [50] and by
Selby and Porter in [81]; consequently, software producers may want more choices. We
examine a line of research that provides a statistical modeling technique that has both
identify-ability and prioritize-ability:

• Boolean Discriminant modeling technique for predicting the field defect
thresholding.

We did not discuss these techniques in the catalog because only people who are of the
group of people that developed these techniques have used these techniques.

5.1 Hybrid modeling technique for predicting the field defect rate
The hybrid modeling technique combines statistical modeling techniques and SRGM-based
modeling techniques. Li et al. [49] uses this technique to construct statistical models to
estimate the model parameters of SRGMs that model only field defects using historical
information on software metrics and field defect rates. The authors then use software metrics
for a new release and the constructed models to predict the field defect rate for the new
release. The authors use two Trees models to estimate the two model parameters of the
Exponential model to predict the field defect rate in [49].

The hybrid modeling technique removes the assumption that the software product is to be
operated in a manner similar to that in which the predictions are to be made by using
statistical models to estimate the model parameters of SRGMs. The hybrid modeling
technique uses statistical modeling techniques that use historical information on software
metrics and field defect rates to determine the relationships between software metrics and the
model parameters of SRGMs. Therefore, the constructed models account for differences

 57

between the deployment and development environments as well as differences in the usage
during development and in the field, as discussed in Section 5.1. In addition, the hybrid
modeling technique removes the assumption that the development defect rate is decreasing at
the time of prediction by not directly using development defect information to fit SRGMs.

5.2 Bayesian calibration modeling technique for predicting the
field defect rate
The Bayesian calibration modeling technique is a SRGM-based modeling technique.
Jeske and Akber-Qureshi [28] use this technique to construct SRGMs that model only
field defects using historical information on lines of code, development defects, and field
defect rates. The authors then use information on lines of code for a new release,
development defects for a new release, and the constructed model to predict the field
defect rate for the new release. The authors use this technique to estimate the two model
parameters of the Exponential model in [28]. The authors use a formula to estimate the
model parameter that represents the total number of field defects. The formula estimates
the model parameter using information on lines of code added and the effectiveness of
testing, which is the ratio of the count of development defects to the count of total defects
(both development defects and field defects) for the previous release. The authors then set
the model parameter that represents the rate at which field defects are discovered for the
previous release as the model parameter for the new release. The authors then apply prior
distributions to both model parameters to allow the model parameter to be calibrated
using Bayesian methods once field defect data from the new release becomes available.

The Bayesian calibration technique removes the assumption that the software product is
to be operated in a manner similar to that in which the predictions are made by using a
formula and historical information on actual field defects to estimate model parameters of
SRGMs. The formula accounts for differences between the deployment and development
environments as well as differences in the amounts and kinds of usage during
development and in the field by using data from development and actual field defect data
to estimate the model parameter. Similarly, the model parameter that represents the rate
at which field defects are discovered also accounts for differences because it is estimated
using actual field defect information. In addition, the Bayesian calibration technique
removes the assumption that the development defect rate is decreasing at the time of
prediction by not directly using development defect information to fit SRGMs.

5.3 Boolean Discriminant modeling technique for predicting the
field defect thresholding
The Boolean Discriminant modeling technique is a non-parametric statistical modeling
technique. Khoshgoftaar and Seliya [44] use this technique to construct a Boolean
Discriminant model using historical information on software metrics and field defect
thresholding, and then uses software metrics for a new release and the constructed model
to predict the field defect thresholding for the new release. First, the authors rank the
software metrics in terms of their Kolomogorov-Smirnov (K-S) test statistic. Second, for
each software metric, the authors determine the critical value for the software metric,
which is the value of the software metric that has the greatest K-S test statistic. Then,

 58

iteratively, the authors add the highest ranked software metric into the model, which
identifies a subset of the historical observations as above the threshold. The authors stop
when the number of historical observations identified as above the threshold no longer
increases with the addition of additional software metrics. For example, assume that
“Cyclomatic complexity > X” is the top ranked software metric with critical value X and
“Lines of code > Y” is the second highest ranked software metric with critical value Y,
where X and Y are constants, then “Cylomatic complexity > X OR Lines of code > Y” is
the Boolean Discriminant model using the two highest ranked software metrics. The
Boolean Discriminant modeling technique is similar to the Trees modeling technique
except that in the Trees modeling technique, the critical values are computed iteratively
for each subset of historical observations, as discussed in Section 4.7, whereas in the
Boolean Discriminant modeling technique, critical values are computed initially over the
set of all historical observations.

The Boolean Discriminant modeling technique is likely to produce models that can help
software producers by guiding process improvement efforts because it produces models
that has identify-ability and prioritize-ability. The Boolean Discriminant modeling
technique identifies the software metrics that are likely to be related to the occurrence of
field defects by including only the software metrics that improve the identification of
historical releases as above the threshold in the model; furthermore, the technique
prioritizes the software metrics used in the model.

6. Summary
Software producers often need information on the rate or count of field defects to perform
activities to manage the quality of their software products; therefore, we catalog
techniques that are commonly used in the literature to make such predictions. This
catalog also shows that the PAD framework [82] can be used to describe predictive
techniques that are used in practice because we show how the techniques in this catalog
fit within the framework. Hopefully, software producers will use this catalog to better
manage the quality of their software products.

7. References
[1] V. Basili and D. Weiss. A Methodology for Collecting Valid Software Engineering Data, In IEEE

Trans. on Software Engineering, Vol 10, No 6, Nov 1984, pp 728-738.
[2] A. Birk, R. van Solingen, J. Jarvinen. Business impact, benefit, and cost of applying GQM in industry:

an in-depth, long-term investigation at Schlumberger RPS. In Proc. Metrics, Bethesda, MD, Nov 20-
21, 1998, pp 93-96.

[3] B. Boehm et al. Software Cost Estimation with COCOMO II, Prentice-Hall 2000.
[4] L. Briand, V. Brasili, C. Hetmanski. Developing interpretable models with optimized set reduction for

identifying high-risk software components. In IEEE Trans. on Software Engineering, Vol 19, No 11,
Nov 1993, pp 1028-1044.

[5] L. Brieman, J. Friedman, R. Olshen, C Stone. Classification and Regression Trees 2nd Edition.
Wadsworth International Group, 1984.

[6] S. Brocklehurst, P. Chan, B. Littlewood, and J. Snell. Recalibrating Software Reliability Models. In
IEEE Trans on Software Engineering. Vol 16, No 4, Apr 1990, pp 458- 470.

[7] M. Buckley and R. Chillarege. Discovering Relationships between Service and Customer Satisfaction.
Proc. ICSM, Opio, France, Oct 17-20, 1995, pp 192-201.

 59

[8] S. Chulani. Bayesian Analysis of Software Costs and Quality Models. Ph.D. Dissertation, May 1999.
University of Southern California.

[9] S. Chulani, P. Santhanam, D. Moore, B. Leszkowicz, G. Davidson. Deriving a Software Quality View
from Customer Satisfaction and Service Data. http://citeseer.ist.psu.edu/chulani01deriving.html, 2001.

[10] B. Clark and D. Zubrow. How good is the software: a review of defect prediction techniques. CMU-
SEI. 2001. http://www.sei.cmu.edu/sema/pdf/defect-prediction-techniques.pdf

[11] CMMI product team. CMMI for Development, Version 1.2. CMU/SEI-2006-TR-008, 2006.
[12] S. Crawford, A. McIntosh, D. Pregibon. An Analysis of Static Metrics and Faults in C. In The Journal

of Systems and Software, Vol 5, No 1, Feb 1985, pp 37-48.
[13] J. T. Duane. Learning Curve Approach to Reliability Monitoring. In IEEE Trans. on Aerospace. Vol 2,

No 2, 1964, pp 563-566.
[14] C. Ebert. Experiences with Criticality Predictions in Software Development. In Proc. FSE, Zurich,

Switzerland, Sep 22-25, 1997, pp 278-293.
[15] J. Elshoff. Characteristic of Program Complexity Measures. Proc. ICSE, Orlando, Fl, Mar 26-29, 1984,

pp 188-293.
[16] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and Practical Approach, second ed. PWS,

1997.
[17] N. Fenton and N. Ohlsson. Quantitative Analysis of Faults and Failures in a Complex Software

System. In IEEE Trans. on SWE, Vol 26, No 8, Aug 2000, pp797-814.
[18] A. Fuggetta, L. Lavazza, S. Morasca, S. Cinti, G. Oldano, F. Orazi. Applying GQM in an industrial

software factory. In TOSEM. Vol 7, No 4, Oct 1998, pp 411-448.
[19] A. Goel and K Okumoto. Time-dependent Error-Detection Rate Model for Software and Other

Performance Measures. In IEEE Trans. on Reliability, Vol 28, No 3, Aug 1979, pp 206-211.
[20] S. Gokhale, M. Lyu, K. Trivedi. Analysis of Software Fault Removal Policies Using a Non-

Homogeneous Continuous Time Markov Chain. In Software Quality Journal, Vol 12, No 3, pp 211-
230, 2004.

[21] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning Data Mining, Inference,
and Prediction Springer Series in Statistics 1st ed., 2001.

[22] S. Henry, C. Selig. A Metric Tool for Predicting Source Code Quality from PDL Design. In Proc. of
the Software Design Metrics Workshop, 1988, pp 28-43.

[23] A. Iannino, J. Musa, K. Okumoto, B. Littlewood. Criteria for Software Reliability Model Comparisons.
In ACM/Sigsoft Software Engineering Notes, Vol 8, No 3, Jul 1984, pp 12-16.

[24] IEEE standard for a software quality metrics methodology. In IEEE Std 1061-1998, 1998.
[25] Information Society Technologies. Software Reliability Tools. http://www.ist-pets.com/SRE_tools.htm
[26] P. Jalote. Software Project Management in Practice. Addison-Wesley Professional. 2002.
[27] H. Jensen and K Vairavan. An Experimental Study of Software Metrics for Real-Time Software. IEEE

Trans. on SWE. Vol 11, No 2. Feb 1985, pp 231-234.
[28] D. Jeske, M. Akber-Qureshi. Estimating the failure rate of evolving software systems. In Proc. ISSRE,

San Jose, CA, Oct 8-11, 2000, pp52-61.
[29] W. Jones, P. Hudepohl, T. Khoshgoftaar, E. Allen. Application of a usage profile in software quality

models. In Proc. 3rd European Conference on Software Maintenance and Reengineering, Amsterdam,
Netherlands, Mar 3-5, 1999, pp148-157.

[30] S. H. Kan. Modeling and software development quality. In IBM Systems Journal, Vol 30, No 3, 1991,
pp 351-362.

[31] N. Karunanithi. Identifying Fault-Prone Software Modules Using Feed-Forward Networks: A Case
Study. In Proc. Advances in Neural Information Processing Systems, Denver, CO, 1993, pp 793-800.

[32] G. Kenny. Estimating Defects in Commercial Software during Operational Use. IEEE Trans. on
Reliability, Vol 42, No 1, Mar 1993, pp 107-115.

[33] T. Khoshgoftaar, E. Allen. Predicting Fault-Prone Software Modules in Embedded Systems with
Classification Trees. In Proc. the 4th IEEE international Symposium on High-Assurance Systems
Engineering, Washington, DC, Nov 17-19, 1999, pp 105-112.

[34] T. Khoshgoftaar, E. Allen, W. Jones, J. Hudepohl. Return on investment of software quality
predictions. In Proc. IEEE Workshop on application-Specific Software Engineering Technology,
Richardson, TX, Mar 26-28 1998, pp 145-150.

 60

[35] T. Khoshgoftaar, E. Allen, K. Kalaichelvan, N. Goel. Predictive modeling of software quality for very
large telecommunications systems. In Proc. International Conference on Communications, Dallas, TX,
Jun 23-27, 1996, pp 214-219.

[36] T. Khoshgoftaar, E. Allen, K. Kalaichelvan, N. Goel. Early Quality Prediction: A Case Study in
Telecommunications. In IEEE Software. Vol 13, No 1, Jan 1996, pp 65-71.

[37] T. Khoshgoftaar, E. Allen, A. Naik, W. Jones, J. Hudepohl. Using classification trees for software
quality models: lessons learned. In Proc. International High-Assurance Systems Engineering
Symposium, Washington, DC, Nov 13-14 1998, pp 82-89.

[38] T. Khoshgoftaar, D. Lanning, A. Pandya. A neural network modeling methodology for detection of
high-risk programs. In Proc. ISSRE, Denver, CO, Nov 3-6, 1993, pp 302-309.

[39] T. Khoshgoftaar, D. Lanning, A Pandya. A comparative study of pattern recognition techniques for
quality evaluation of telecommunications software. In IEEE Journal on Selected Areas in
Communications, Vol 12, No 2, Feb 1994, pp279-291.

[40] T. Khoshgoftaar, J. Munson, D. Lanning. A comparative study of predictive models for program
changes during system testing and maintenance. In Proc. CSM, Montreal, Canada, Sep 27-30, 1993, pp
72-79.

[41] T. Khoshgoftaar, A. Pandya, D. Lanning. Application of Neural Networks for Predicting Program
Faults. In Annals of Software Engineering, Vol 1, No 1, Dec 1995, pp 141-154.

[42] T. Khoshgoftaar, A. Pandya, H. More. A neural network approach for predicting software development
faults. In Proc. ISSRE, RTP, NC, Oct 7-10, 1992, pp 83-89.

[43] T. Khoshgoftaar and N. Seliya. Tree-Based Software Quality Estimation Models for Fault Prediction.
In Proc. Metrics, Jun 4-7, 2002, pp 203-214.

[44] T. Khoshgoftaar and N. Seliya. Improving usefulness of software quality classification models based
on Boolean discriminant functions. In Proc. ISSRE, Nov 2002, pp 221-230.

[45] T. Khoshgoftaar and N. Seliya. Fault Prediction Modeling for Software Quality Estimation:
Comparing Commonly Used Techniques. In Empirical Software Engineering, Vol 8, No 3, Sep 2003,
pp 255-283.

[46] T. Khoshgoftaar, R. Shan, E. Allen. Using product, process, and execution metrics to predict fault-
prone software modules with classification trees. In Proc. HASE, Nov 2000, pp 301-310.

[47] J-C. Laprie, K, Kanoun, C, Beounes, M. Kaaniche . The KAT (knowledge-action-transformation)
approach to the modeling and evaluation of reliability and availability growth. In IEEE Trans. on
Software Engineering, Vol 17, No 4, Apr 1991, pp 370 - 382.

[48] P. Li, J. Herbsleb, M. Shaw. Finding Predictors of Field Defects for Open Source Software Systems in
Commonly Available Data Sources: A Case Study of OpenBSD. In Proc. Metrics, Como, Italy, Sep
19-22, 2005, pp 22-32.

[49] P. Li, J. Herbsleb, M. Shaw. Forecasting Field Defect Rates Using a Combined Time-Based and
Metrics-Based Approach: A Case Study of OpenBSD. In Proc. ISSRE, Chicago, Nov 8-11, 2006, pp
193-202.

[50] P. Li, J. Herbsleb, M. Shaw, B. Robinson. Experiences and results from initiating field defect
prediction and product test prioritization efforts at ABB Inc. In Proc. ICSE, Shanghai, China, May 20-
28, 2006, pp 413-422.

[51] H. Li and W. Li. An Empirical Study of Software Metrics. In IEEE Trans. on Software Engineering,
Vol 13, No 6, Jun 1987, pp 697-708.

[52] R. Lind and K Vairavan. An Experimental Investigation of Software Metrics and Their Relationship to
Software Development Effort. In IEEE Trans. on Software Engineering, Vol 15, No 5, May 1989, pp
649-653.

[53] H. Linstone and M. Turoff (eds.): The Delphi Method: Techniques and Applications, Addison-Wesley,
1975.

[54] B. Littlewood and V. Verrall. A Bayesian Reliability Model with a Stochastically Monotone Failure
Rate. In IEEE Trans. on Reliability, Vol 23, No 2, Jun 1974, pp 108-114.

[55] M. Lyu. Handbook of Software Reliability Engineering. McGraw-Hill, 1996.
[56] M. Lyu and A. Nikora. Applying reliability models more effectively. In IEEE Software, Vol 9, No 4,

Jul 1992, pp 43-52.
[57] S. Madridakis and S.C. Wheelwright, S.C. Interactive Forecasting. Univariate and Multivariate

Methods. Second Edition. Holden-Day. San Francisco. 1978.

 61

[58] A. Mockus, R.T. Fielding, J. Herbsleb. Two Case Studies of Open Source Software Development:
Apache and Mozilla. In Trans. on Software Engineering and Methodology, Vol 11, No 3, Jul 2002, pp
309-346.

[59] A. Mockus, P. Zhang, P. Li. Drivers for Customer Perceived Quality. In Proc. ICSE, St. Louis, MO,
May 15-21, 2005, pp 225-233.

[60] S. Mohapatra, B. Mohanty. Defect prevention through defect prediction: a case study at Infosys. In
Proc. Software Maintenance, Florence, Italy, Nov 7-9 2001 pp 260-272 .

[61] J.C. Munson and T.M. Khoshgoftaar. The Dimensionality of Program Complexity. Proc. ICSE,
Pittsburgh, PA, May 1989, pp 245-253.

[62] J. Musa. A Theory of Software Reliability and Its Application. In IEEE Trans. on Software
Engineering, Vol 1, No 3, Sep 1975, pp 312-327.

[63] J. Musa. A. Iannino, K. Okumoto. Software Reliability: Measurement, Prediction, Application.
McGraw-Hill Book Company, 1987.

[64] J. Musa and K. Okumoto. A Logarithmic Poisson Execution Time Model for Software Reliability
Measurement. In Proc. ICSE, Orlando, FL, Mar 26-29, 1984, pp230-238.

[65] M. Neil and N.E. Fenton, Predicting Software Quality using Bayesian belief networks, In Proc. of the
21st Annual Software Engineering Workshop, Washington DC, Dec 4-5 1996, pp 217-230.

[66] NIST. The Economic Impact of Inadequate Infrastructure for Software Testing.
http://www.nist.gov/director/prog-ofc/report02-3.pdf , 2002.

[67] NIST. NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/, 2006.

[68] M. Ohlsson and P. Runeson. Experience from Replicating Empirical Studies on Prediction Models. In
Proc. Metrics, Ottawa, Canada, Jun 4-7 2002, pp 217-226.

[69] T. Ostrand, E. Weyuker, T. Bell. Where the Bugs Are. Proc. ISSTA, Boston, MA, Jul 11-14 2004, pp
86-96.

[70] Panlilio-Yap. Software Estimation Using the SLIM Tool. In Proc. Conference of the Centre for
Advanced Studies on Collaborative Research, Toronto, Canada, Nov 9-12, 1992, pp 439-475.

[71] H. Pant. Tracking quality: from verification to customer. In Proc. GLOBECOM . Phoenix, AZ, Dec 2-
5 1991, pp 158-161.

[72] M. Pighin and A. Marzona. An empirical analysis of fault persistence through software releases. In
Proc. ISESE, Sep 30-Oct 1 2003, pp 206-212.

[73] K.Popstajanova and K. Trivedi. Architecture based approach to reliability assessment of software
systems. In Performance Evaluation, Vol 45, No 2-3, Jul 2001, pp 179-204.

[74] R. R Project for Statistical Computing, http://www.r-project.org/
[75] D. Rumelhart, G. Hinton, R. Williams. Learning Internal Representations by Error Propagation. MIT

Press, Cambridge, MA, 1986.
[76] SAS. SAS http://www.sas.com/
[77] C. Scaffidi and M. Shaw. An Inventory of Techniques that Predict Value from Design. In CMU-ISRI-

06-, 2006.
[78] N. F. Schneidewind. Methodology for Validating Software Metrics. In IEEE Trans. on Software

Engineering, Vol 18, No 5, May 1992, pp 410-421.
[79] N.E. Schneidewind. Body of knowledge for software quality measurement. In IEEE Computer, Vol 35,

No 2, Feb 2002, pp 77-83.
[80] A. Schroeder. Integrated Program Measurement and Documentation Tools. Proc. ICSE, Orlando, CA,

March 26-29, 1984, pp 304-311.
[81] R. Selby and A. Porter. Software metric classification trees help guide the maintenance of large-scale

systems. In Proc. Conference on Software Maintenance, Miami FL, Oct 16-19, 1989, pp 116-123.
[82] M. Shaw, A. Arora, S. Butler, V. Poladian, C. Scaffidi, In Search of a Unified Theory for Early

Predictive Design Evaluation for Software. Technical Reports CMU-CS-05-139 and CMU-ISRI-05-
114, May 2005.

[83] Splus. Splus http://www.insightful.com/
[84] J. Troster and J. Tian. Measurement and Defect Modeling for a Legacy Software System. In Annals of

Software Engineering, Vol 1, No 1, Dec 1995, pp 95-118.
[85] S. Weisberg. Linear Regression, 3rd Ed. Wiley/Interscience, 2005.
[86] A. Wood. Predicting Software Reliability. In IEEE Computer, Vol 29, No 11, Nov 1996, pp 69-77.

 62

[87] S. Yamada, M. Ohba, S. Osaki. S-Shaped Reliability Growth Modeling for Software Error Detection.
In IEEE Trans. on Reliability, Vol 33, No 2, 1983, pp 475-478.

[88] S. Yamada and S. Osaki. Software Reliability Growth Modeling: Models and Assumptions. In IEEE
Trans. on Software Engineering, Vol 11, No 12, Jan 1985, pp 1431-1437.

Appendix A. Software metrics
The techniques that examine use software metrics as inputs. Metrics are defined by
Fenton and Pfleeger in [16] as outputs of measurements, where measurement is defined
as the process by which values are assigned to attributes of entities in the real world in
such a way as to describe them according to clearly defined rules. Software metrics are
metrics that measure attributes of a software system.

Current practices for selecting software metrics to collect for producing predictions about
the count or rate of field defects are to consider the attributes of the software system that
could be related to field defects and then to collect metrics that measure those attributes,
discussed by Basilli and Weiss in [1]. This process often involves examining metrics that
have been validated in prior work, that is, metrics that have been shown to be statistically
associated with field defects, discussed in Scheidewind [78]. However, even a validated
metric, such as lines of code, may not be statistically associated with field defects for all
systems due to various factors, such as the programming language or the specific
definition of “lines of code” used, discussed by Ohlsson and Runeson in [68]. Therefore,
the literature recommends focusing on the attribute of the software system being
measured, rather than the specific metric used to measure the attribute.

To help practitioners determine what software metrics to collect and how to collect them,
we discuss the attribute measured by some commonly used metrics in the literature, the
data sources commonly used to collect the metric, the procedures commonly used to
collect the metric, and the cost of collection. By commonly used metrics, we mean
metrics that are used in multiple studies. In addition, we describe how each metric fits
within the PAD framework, that is, whether the metric captures information on the
design, the development method, the implementation, or the context.

The two high-level entities that are commonly measured in the literature are discussed
below. These entities are discussed in detail by Fenton and Pfleeger in [16], by
Khoshgoftaar et al. in [46], and by the IEEE standard for software quality metrics
methodology in [24]:

• Software product: metrics that measure this entity measure attributes of any
intermediate or final product of the software development process, such as lines
of code,

• Software process: metrics that measure this entity measure attributes of the
development process, such as the number of development defects.

Information on specific attributes and the software metrics that measure the attributes is
in each sub-Section.

 63

Two data sources are commonly used to compute software metrics in prior work:
• Request tracking system: tracks customer reported and developer reported

problems, which may not necessarily be software related
• Change management and version control system: tracks changes to the code.

Most of the software metrics used in the literature is collected from these two data
sources.

We rate the cost of collection of the software metrics based on the amount of effort
needed to collect the metric, which we evaluate subjectively using descriptions of the
collection procedures in prior work. The cost of use can be:

• Higher than typical,
• Typical, or
• Lower than typical

The cost of collection of the metric that measures the number of changes to the code
(deltas), which is a software development metric (see Appendix A.3), is typical because
prior work extracts data on changes to the code from the change management and version
control system and then creates programs to compute the number of changes. The cost of
collection of the metric that measures the lines of code, which is a software product
metric (see Appendix A.2), is lower than typical because prior work usually uses
automated tools to compute the lines of code after a snapshot of the code is extracted
from the change management and version control system. Using automated tools reduces
the amount of effort needed. The cost of collection of the defects during development
metric (see Appendix A.2) is higher than typical because prior work usually computes the
metric by collecting data from two separate data sources and then creating programs to
parse the data and linking the data together. Collecting and parsing data from two sources
increases the amount of effort needed.

Appendix A.1 Field defects

Information on field defects is usually computed using data from the request tracking
system and the change management and version control system. Prior work usually
extracts customer reported problem information from the request tracking system and
change information from the change management and version control system. Then, prior
work usually creates programs to parse the data based on data fields specific to each
software system in order to link the data together and determine which customer reported
problems resulted in code changes. The cost of collection of this metric is higher than
typical.

In the PAD framework, field defect is a property of the implementation.

Appendix A.2 Software product metrics

The most obvious place to look for attributes of the software system that may be related
to field defects is in the software system itself. Software product metrics are the most
widely used software metrics in prior work. Many software product metrics have been
considered in the literature; however, none is significantly better than lines of code,
discussed by Crawford et al. in [12] and by Fenton and Ohlsson in [17].

 64

We describe the attributes measured by the software product metrics that are commonly
used in the literature using the descriptions used in Khoshgotaar and Seliya [45] and
Munson and Khoshgoftaar [61]. We also consider when the metrics are available.
Khoshgoftaar et al. [46] and Troster and Tian [84] identify product metrics that can be
computed from design documents before coding starts. This way of categorizing software
product metrics is useful when we place software product metrics into the PAD
framework. We summarize the software product metrics commonly used in the literature
in Appendix table 1.

Appendix table 1. Software product metrics

Attribute
measured

Time of
availability

Software product metric Data source Collection
procedure

Cost of
collection

Possible program knot count
[51] [45]
Log of independent paths
[45] [15]

Post
coding

Number of exit nodes [15]
[45]

Cyclomatic complexity [51]
[15] [80] [27] [22] [43]

Number of loop constructs
[45] [43]

Control flow
graph metrics

Post
design

Number of non-loop
conditional arcs [45] [43]

Change
management
and version
control
system

Prior work
usually
extracts
snapshots
of the code
and then
computes
the metrics
using
automated
tools

Lower than
typical

Unique operand count [51]
[15] [80]
Calculated program length
[51] [15] [27]
Program vocabulary [51] [15]
[80]
Total operand count [51] [15]
Halstead’s program volume
[51] [15] [27] [22]
Total source statements [51]
[80]
Total operator count [51] [15]
Program length [51] [27]
[22]
Unique operator count [15]
[80]
Total source input lines of
code [51] [27] [22] [45]

Post
coding

 Input source code lines [15]
[45]

Statement
metrics

Post
design

Distinct include files [45]
[15]

Change
management
and version
control
system

Prior work
usually
extracts
snapshots
of the code
and then
computes
the metrics
using
automated
tools

Lower than
typical

 65

Attribute
measured

Time of
availability

Software product metric Data source Collection
procedure

Cost of
collection

Number of call statements
[15] [22] [45]
Mean nesting depth [80] [15]

Post
coding

Maximum nesting depth [80]

Number of distinct calls to
others [45] [43]

Degree of
modularization
of a program

Post
design

Total calls to others [43] [84]

Change
management
and version
control
system

Prior work
usually
extracts
snapshots
of the code
and then
computes
the metrics
using
automated
tools

Lower than
typical

Mental effort
required to
generate an
implementation
from a
specification

Post
coding

Halstead’s program effort
[51] [15] [27] [22]

Change
management
and version
control
system

Prior work
usually
extracts
snapshots
of the code
and then
computes
the metrics
using
automated
tools

Lower than
typical

In the PAD framework, software product metrics that can be collected post-design
capture properties of the design and software product metrics that can only be collected
after coding is completed capture properties of the implementation.

Appendix A.3 Software process metrics

Since the software system is the result of a development process, the next logical place to
look for attributes of the software system that may be related to field defects is in the
development process. The number of development defects and the number of changes to
the code are the two most widely used software process metrics in the literature. Either
the occurrence times of development defects or the number of development defects in
each time interval during development must be collected in order to use SRGM-based
modeling techniques.

We present the software process metrics used in the literature in Appendix table 2. We
have inferred the attributes intended to be captured by the metrics based on descriptions
of the metrics in the literature.

 66

Appendix table 2. Software process metrics
Group Software process

metrics
Data sources Collection procedure Cost of

collection
Number of defects
identified during the
previous release [69]
[46]
The occurrence time
of development
defects [55] [63]

The number of
development defects
in a time interval [55]
[63]

Problems
discovered prior to
release:
software process
metrics that
mention
measuring
attributes of
problems found
prior to release in
the description

Number of
development defects
[17] [46]

Request
tracking
systems,
change
management
and version
control
systems.

Prior work usually
extracts problem report
data from the request
tracking system and code
change information from
the change management
and version control
system. Then, prior work
creates programs to parse
the data based on data
fields specific to each
software system to
determine which
problems resulted in
changes to the code

Higher
than
typical

Amount of reuse [69]
[72] [84] [3] [46]

Changes made to a
file (deltas) [69] [46]

Changes to the
product:
software process
metrics that
mention
measuring
attributes of
changes made to
the software
product in the
description.

Changed lines of
code [84] [46]

Change
management
and version
control
systems

Prior work usually
extracts data on changes
to the code and then
creates programs to parse
the data based on the
specifics of the data to
determine the kinds and
numbers of changes

Typical

Different designers
making changes [46]
[43]
Number of updates
by designers who had
10 or less total update
in their company
career [46] [43]
Number of updates
by designers who had
between 11 and 20
total update in their
company career [46]
[43]

People in the
process: software
process metrics
that mention
measuring
attributes of
people involved in
the development
process in the
description.

Number of updates
designers had in their
company career [46]
[43]

Change
management
and version
control
systems

Prior work usually
extracts data on changes
to the code and then
creates programs to parse
the data based on the
specifics of the data to
obtain information on the
people who made the
changes

Typical

 67

Group Software process
metrics

Data sources Collection procedure Cost of
collection

Design effort [81]
[58]

Coding effort [81]
[58]

Process efficiency:
software process
metrics that
mention
measuring
attributes of the
maturity of the
process or the
effort in the
description.

Total effort [81] [58]

Time sheets Prior work uses
engineer’s time sheets to
compute effort

Higher
than
typical

In the PAD framework, software process metrics that measure problems discovered
before release and changes to the product capture properties of the implementation.
Software process metrics that measure information on people in the process and process
efficiency capture properties of the method.

Appendix B. Principal component analysis
Principal component analysis (PCA) constructs variables that are linear combinations of
existing variables (i.e. software metrics) to capture most of the information in the original
variables while reducing the number of variables, discussed by Khoshgoftaar and Seliya
[45]. PCA has been used with many parametric and non-parametric statistical modeling
techniques. This is done by first constructing PCA variables and then using the PCA
variables in the modeling techniques. PCA increases the cost of use of a technique since
additional effort is needed to construct the PCA variables. Some studies have reported
increased accuracy using PCA, such as Briand et al. [4], while a study by Khoshgoftaar
and Seliya in [45] has reported that differences in accuracy are not statistically
significant.

