

Forecasting Field Defect Rates Using
a Combined Time-based and

Metric–based Approach
a Case Study of OpenBSD

Paul Luo Li, Jim Herbsleb, Mary Shaw

May 2005
CMU-ISRI-05-125

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

Pittsburgh PA, 15213

This paper is an expanded version of the paper titled: Forecasting Field Defect Rates Using a Combined Time-
based and Metric–based Approach: a Case Study of OpenBSD, in Proc. ISSRE, Nov 2005.

This research was supported by the National Science Foundation under Grants ITR-0086003 and CCF-0438929,
by the Carnegie Mellon Sloan Software Center, and by the High Dependability Computing Program from NASA
Ames cooperative agreement NCC-2-1298.

 2

Keywords: reliability, statistical methods, metrics, process metrics, product metrics, software science, management, cost
estimation, software quality assurance, measurement, experimentation, metrics-based modeling, time-based modeling,
deployment and usage metrics, software and hardware configurations metrics, comparative study, open source software

 3

ABSTRACT
Open source software systems are critical infrastructure for many applications; however, little has been precisely
measured about their quality. Forecasting the field defect-occurrence rate over the entire lifespan of a release
before deployment for open source software systems may enable informed decision-making. In this paper, we
present an empirical case study of ten releases of OpenBSD. We use the novel approach of predicting model
parameters of software reliability growth models (SRGMs) using metrics-based modeling methods. We consider
three SRGMs, seven metrics-based prediction methods, and two different sets of predictors. Our results show that
accurate field defect-occurrence rate forecasts are possible for OpenBSD, as measured by the Theil forecasting
statistic. We identify the SRGM that produces the most accurate forecasts and subjectively determine the
preferred metrics-based prediction method and set of predictors. Our findings are steps towards managing the
risks associated with field defects.

 4

1 INTRODUCTION
Many software applications, including mobile applications, depend upon open source software systems to provide
critical computing infrastructure. The quality of the infrastructure (e.g. operating system) may affect the quality of
the application. In this paper, we present a case study of the open source operating system OpenBSD, which is a
key component of several commercial network security products [29].

Quantitatively-based decision making regarding open source systems is often difficult, because the quality of
open source software systems is often not known quantitatively. Being able to forecast field defect-occurrence
rates (i.e. the rates of customer reported software problems requiring developer intervention to resolve) over the
entire lifespan of a release (i.e. as long as there are field defect occurrences) before deployment (i.e. at the time of
release) may allow existing quantitatively-based decision-making methods to be used to:

• Help organizations seeking to adopt open source software systems to make informed choices between
candidates

• Help organizations using open source software systems to decide whether to adopt the latest release

• Help organizations that adopt a release to better manage resources to deal with possible defects

• Insure users against the costs of field defect occurrences

Prior work by Li et al. [17] has shown that it is not possible to forecast field defect-occurrence rates (i.e. the field
defect-occurrence pattern over time) by fitting a SRGM to development defect information. In this paper, we
report results using the novel approach of using metrics-based modeling methods to predict model parameters of
time-based models (i.e. SRGMs).

We conduct empirical experiments comparing combinations of SRGMs, metrics-based modeling methods, and
sets of predictors to forecast field defect-occurrence rates before release. We construct combinations along the
following dimensions:

1) Type of SRGM: Which SRGM yields the most accurate field defect-occurrence rate forecasts?
a. Weibull model, described in Kenny [4]
b. Gamma model, described in Lyu [19]
c. Exponential model, described in Musa et al. [23]

2) Modeling methods: Which metrics-based modeling method predicts model parameters that produce the most
accurate field defect-occurrence rate forecasts?
a. Moving averages, used in Li et al. [15]
b. Exponential smoothing, used in Li et al. [15]
c. Linear regression with model selection, used in Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8]
d. Principal component analysis, clustering, and linear regression, used in Khoshgoftaar et al. [10]
e. Trees, using used in Khoshgoftaar and Seliya [13]
f. Non-linear regression, used in Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8]
g. Neural networks, used in Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11]

3) Predictors: Do more predictors and more categories of predictors yield more accurate forecasts?
a. The same kinds of predictors as the referenced work (e.g. product metrics only)
b. A superset of predictors that includes 145 predictors (product metrics, development metrics, deployment

and usage metrics, and software and hardware configurations metrics)
We empirically compare the accuracy of forecasts for nine releases of OpenBSD. We use the Theil forecasting
statistic to measure the accuracy of forecasts. Theil statistics lower than 1 are considered accurate (discussed in
section 5). We subjectively determine the best model, modeling method, and set of predictors by considering the
accuracy of predictions and the amount of information needed before a prediction can be made

Our results show that the simple Exponential model produces more accurate forecasts (i.e. forecasts with lower
Theil statistics) than the more complex Gamma and Weibull models. The trees method is the best metrics-based
prediction method because it predicts model parameters that yield forecasts ranked in the top 10 in terms of

 5

accuracy and because the trees method is able to make predictions with limited data. Our results show that it is
possible to make predictions ranked in the top 10 in terms of accuracy without using the superset of predictors.

Theil statistics of our forecasts indicate that our approach yields accurate forecasts. Our results enable future work
to examine the adequacy of forecasts for quantitatively-based decision making methods.

We present prior work, which serves as motivation for our work, in section 2. We describe OpenBSD in section 3.
Our data collection and data analysis techniques are discussed in sections 4 and 5. Section 6 presents our results.
We present a discussion in section 7 and conclude in section 8.

2 PRIOR WORK AND EXPERIMENTAL DESIGN
We motivate our work and our experimental design by discussing prior work.

We define a field defect as a user-reported problem occurring after release requiring developer intervention to
resolve. Our operational measure of a field defect for OpenBSD is a user submitted problem report in the request
tracking system of the class software bugs occurring after the official release date (discussed more in sections 3
and 4). Each problem report is counted. For example, two user-reported problems traced to the same underlying
defect are counted as two field defects. These software related problem reports require developer intervention to
resolve. A field defect occurrence is the occurrence of a field defect. A similar definition is used in Li et al. [15].

2.1 Fixed dimensions in our experimental design
Granularity of observation, types of prediction, defect modeling approaches, and forecasting approaches are
dimensions of variation we do not vary in our study. The dimensions listed in the introduction are dimensions we
vary in out study and are discussed in section 2.2.

2.1.1 Granularity of observation
In this paper, we examine field defect occurrences for the entire system as a whole. This is the correct level of
granularity because we are focused on helping software consumers; and, software consumers generally view the
software system as a whole.

Prior work has predicted field defects for individual software changes (e.g. in Mockus et al. [20]), files (e.g. in
Ostrand et al. [25]), modules (e.g. in Khoshgoftaar et al. [12]), and entire systems (e.g. in Kenney [4]).

2.1.2 Types of predictions
In this paper, we predict the rate of field defect occurrences over time because effective quantitatively-based
decision making requires knowing the rate of field defect occurrences over time as discussed by Li et al. [15].

Predictions regarding field defects in prior work generally belong to one of four categories:

• Relationships: These studies establish relationships between predictors and field defects. For example, Harter et
al. [2] establish a relationship between an organization’s CMM level and the number of field defects.

• Classifications: These studies predict if the number of field defects is above a threshold for an observation. For
example, Khoshgoftaar et al. [6] classify software modules as risky (will contain at least one field defect) or not
risky (no field defects).

• Quantities: These studies predict the number of field defects. For example, Khoshgoftaar et al. [11] predict the
number of defects for software modules.

• Rates of occurrences over time: These studies predict the field defect-occurrence rate. For example, Kenny [4]
predicts the defect occurrence pattern as captured by the Weibull model for two IBM systems.

2.1.3 Defect modeling approaches
In this paper, we use a novel approach of using metrics-based modeling methods to predict model parameters of a
SRGM, which captures the field defect-occurrence pattern of a software release over the entire lifetime of the
release (i.e. until there are no more field defect occurrences).

Field defect predictions generally belong to one of two classes: time-based approach and metrics-based approach.
Schneidewind [27] distinguishes between these two approaches:

 6

1. Time-based approach: This approach uses defect occurrence times or the number of defects in time intervals
during testing to fit a SRGM. The field defect–occurrence rate is forecasted using the fitted SRGM. Musa [19]
and Lyu [23] describe this approach in detail.

2. Metrics-based approach: This approach uses historical information on metrics available before release
(predictors) and historical information on field defects to fit a predictive model. The fitted model and
predictors’ values for a new observation are used to predict classifications or quantities; however, metrics-based
models have not been used to predict model parameters of SRGMs. Examples of this approach are in Mockus
[21] and Khoshgoftaar et al. [11]

Li et al. [17] show that it is not possible to use the time-based approach of fitting a SRGM to development defects
to predict field defect-occurrence rates for OpenBSD. The authors find that the field defect-occurrence rates are
generally increasing at the time of release; therefore, the authors cannot fit a meaningful model. Other studies
(e.g. [16] and [4]) reach similar conclusions.

Furthermore, in order for the defect-occurrence pattern to continue from testing into the field, the software has to
be operated in a similar manner as that in which reliability predictions are made (as stated by Farr in [19]).
However, we are interested in widely-used systems such as COTS and open source software systems. The
similarity of testing and deployment environments assumption does not necessarily hold for these systems.
Therefore, it may not be appropriate to forecast field defect-occurrence rates using a SRGM fitted using testing
information.

Unlike the time-based approach, the metrics-based approach uses historical information on predictors and actual
field defects to construct a predictive model. Since there is no assumption about the similarity between testing and
field environments, metrics-based models are more robust against differences between how the software is tested
and how it is used in the field.

2.1.4 Forecasting approaches
In this paper, we simulate a real world situation by forecasting field defect-occurrence rates using only
information available at the time of release (i.e. before deployment) for multiple releases.

Prior work in metrics-based modeling either inadequately addresses multiple releases or does not account for
multiple active releases. Some studies (e.g. Khoshgoftaar et al. [11]) split data from the same release into fitting
and testing sets. This approach ignores possible differences between releases that are not accounted for in the
model. A better approach is to use a model fitted using data from a historical release to predict for future releases.
This is the approach taken by Khoshgoftaar et al. in [6] and by Ostrand et al in [25]. However, previous studies
assume that complete defect information is available for historical releases; yet, complete field defect information
is often not available for historical releases that are still active in the field.

In this study, we estimate model parameters for active historical releases using field defect information available
at the time of release. An example prediction situation for a typical release is illustrated in Figure 1.

 7

Figure 1. Example fitting situation

At the time of release of release 2.7, predictor information is available for releases 2.4-2.7 and complete field
defect information (i.e. model parameters of the fitted model) is available for release 2.4. However, releases 2.5
and 2.6 are still active (i.e. field defects are still occurring); therefore, we use the estimated model parameters for
the two releases. Predictor information and model parameters for releases 2.4-2.6 are then used to predict model
parameters for release 2.7.

2.2 Dimensions of variation in our experimental design
The SRGMs, the modeling methods, and the predictors are the dimensions we vary in our study.

2.2.1 Software reliability growth models (SRGMs)
Prior work by Li et al. [15] has compared the ability of SRGMs from the literature to model the rate of defect
occurrences (including defects during development) of OpenBSD based on post-facto fits and has concluded that
the Weibull model is better than other models, as judged by the AIC model selection criterion. We have replicated
the experiment using only field defects and have arrived at the same conclusions (i.e. the Weibull model is better).
The details are in Appendix A.

Prior work is based on post-facto fits evaluated using the AIC model selection criterion [15]. Even though AIC
penalizes for extra model parameters, Weibull model parameters may be much harder to predict compared with
model parameters of other models. Therefore, in this paper, we also consider the Gamma model (also known as
the S-shaped model [19]) and the Exponential model (also known as the Goel-Okumoto model [19]), which have
been shown to be the next most effective models in Appendix A. We have also examined the Logarithmic (also
known as the Musa-Okumoto model [23]) and Power (also known as Duane’s model [19]) models; however, their
post-facto fits are worse than the models we consider for releases of OpenBSD.

The models’ forms are in table 1. The model parameters (highlighted) dictate the rate of field defect occurrences.
We predict the model parameters using metrics-based modeling methods. Interpretations of the models and
discussions of the match between the SRGMs and the field defect-occurrence phenomenon (e.g. in Musa [23] and
in Kenny [4]) are beyond the scope of this paper. This dimension of variation addresses the question:

 8

Which SRGM yields the most accurate field defect- occurrence rate forecasts?
Table 1. Software reliability models

Model type Model form
Exponential (t) = N e

– � t

Weibull (t) = N t
� -1

 e
–

�
 t

�

Gamma (t) = N
�

 t
� -1

 e
–

�
 t

2.2.2 Metrics-based modeling methods
Prior work has explored using metrics-based modeling methods to predict quantities (e.g. the total number of field
defects). It may be possible to use these methods to predict model parameters that describe the field defect-
occurrence pattern. We consider metrics-based modeling methods that have been used in previous studies to
predict quantities. We discuss these methods in detail in section 5.

Many studies have compared the accuracy of predicted classifications of various metrics-based models (e.g.
Khoshgoftaar et al. [7]). Few studies have compared the accuracy of predicted quantities of various metrics-based
models (e.g. Khoshgoftaar et al. [11]). No work has compared the accuracy of predicted field defect-occurrence
rates of various metrics-based methods. This dimension of variation addresses the question:

Which metrics-based modeling method predicts model parameters that produce the most accurate field
defect-occurrence rate forecasts?

2.2.3 Predictors
Metrics available before release are predictors, which can be used by metrics-based modeling methods to predict
model parameters.

We categorize predictors used in prior work using an augmented version of the categorization schemes used by
Fenton and Pfleeger in [1] and by Khoshgoftaar and Allen in [5]:

• Product metrics: metrics that measure attributes of any intermediate or final product of the software
development process. Product metrics have been shown to be important predictors by studies such as
Khoshgoftaar et al. [6].

• Development metrics: metrics that measure attributes of the development process. Development metrics have
been shown to be important predictors by studies such as Mockus et al. [20].

• Deployment and usage metrics (DU): metrics that measure attributes of deployment of the software system and
usage in the field. DU metrics have been shown to be important predictors by studies such as Jones et al. [3].

• Software and hardware configurations metrics (SH): metrics that measure attributes of the software and
hardware systems that interact with the software system in the field. SH metrics have been shown to be
important predictors by Mockus et al. [21].

Prior work has only examined commercial software systems, and no prior work has examined predictions using
predictors in all the categories simultaneously. In this paper, we compare using only predictors in the referenced
work (e.g. product metrics only) and using a superset of predictors (i.e. predictors in all the categories). This
dimension of variation addresses the question:

Do more predictors and more categories of predictors yield more accurate forecasts?

3 SYSTEM DESCRIPTION
OpenBSD is an open source Unix-style operating system written primarily in C. The OpenBSD project uses the
Berkley copyrights. The Berkley copyrights retain the rights of the copyright holder, while imposing minimal
conditions on the use of the copyrighted material; therefore, OpenBSD has been incorporated into several
commercial products.

 9

The OpenBSD project puts out a release approximately every six months. The release dates are published on the
web. The OpenBSD project manages its source code using a CVS code repository, uses a problem tracking
system, has multiple mailing lists. The project dates back to 1995 and is described in more detail in Li et al. [17].

We examined the project between approximately 1998 and 2004. During that time, there were 11 releases (of
which we examine 10, as we explain below).

4 DATA COLLECTION
We consider the published date of release (announced on the OpenBSD website) rounded to the nearest month to
be the release date for the release. We round the release date to the next month (i.e. a ceiling function) due to the
time it takes to install the system, use the system, discover a problem, and the report the problem. Someone
reporting a bug right after the un-rounded release date is unlikely to be using the latest release. Mockus et al. use
the same approach in [21].

4.1 Data extraction
We briefly discuss our data extraction process. A detailed description is in Li et al. [17].

We wrote Java and perl programs to download problem reports from the OpenBSD website and to extract the
number of messages in the mailing lists archives.

There was one anomaly. Three months of field defect-occurrence data were missing between August 2002 and
October 2002. We verified this by examining the bugs mailing list archive (i.e. the mailing lists that records
messages to the request tracking system). The mailing list archive showed no bugs recorded during that time
interval even though there was activity on the bugs mailing list, which indicated that problems did occur. This
happened during development and deployment of release 3.2. As a result, we did not examine release 3.2.

We used the CVS checkout command to download the source code from the CVS repository for releases 2.4 to
3.4 (except release 3.2). We then used five metrics tools and several scripts to compute product metrics for the C
source files. We computed predictors for each file then summed the predictors for all files in the system.

4.2 Predictor computation
We briefly discuss the predictors we collect. A detailed description of the predictors is in Li et al. [17].

We attempted to collect the same metrics as the referenced studies (discussed in section 5). We collected the same
metrics when possible and collected metrics that capture the same intent otherwise. All the predictors used in
previous studies were product metrics. We computed product metrics (106 metrics) and development metrics (22
metrics) that capture each sources of variance in product and development metrics identified by Munson and
Khoshgoftaar in [22] and by Khoshgoftaar et al. in [14]. Furthermore, we computed metrics that capture
information about deployment and usage (9 metrics) and software and hardware configurations in use (7 metrics).

We collected deployment and usage metrics in two categories: mailing list predictors and request tracking system
predictors. Mailing list predictors counted the number of messages to non-hardware related mailing lists during
development. We believed our mailing list predictors were valid because they quantified the amount of interest in
OpenBSD, which might be related to deployment and usage. Request tracking predictors counted the number of
problem reports during development that were not defects (e.g. documentation problems). We believed our
request tracking system predictors were valid because users had to install OpenBSD and use the system before
they could report a problem. An example of a deployment and usage metric is TechMailing, which is the number
of messages to the technical mailing list during the development period.

We collected software and hardware configuration metrics in two categories: mailing list predictors and request
tracking system predictors. Mailing list predictors counted the number of messages to hardware specific mailing
lists during development. We believed our mailing list predictors were valid because they reflected the amount of
interest/activity related to the specific hardware, which might be related to how many of the specified hardware
machines had OpenBSD installed. Request tracking predictors counted the number of defects (field defects and
development defects) during development that identified the type of hardware used. We believed our request
tracking system predictors were valid because users had to install OpenBSD on the specified HW before they
could report a problem. An example of a software and hardware configurations metric is AllDefectHWSparc,

 10

which is the number of field defects reported against all active release during the development period that identify
the machine as of type Sparc.

5 DATA ANALYSIS
In this section, we describe the modeling methods in each referenced work as well as the adjustments we had to
make. A more detailed discussion is in the Appendix.

We predicted model parameters using each of the metrics-based modeling method (the same method for all model
parameters). Accuracy of the resulting field defect-occurrence rate forecast was evaluated using the Theil
forecasting statistic. Analysis was preformed using the open source statistical package R [26].

The Theil statistic compares the forecast for each time interval i against a no-change forecast based on the
previous time interval's value [28].

The Theil statistic U is greater or equal to zero. The term Pi is the projected change and Ai is the actual change in
interval i. A Theil statistic of zero indicates perfect forecasts with Pi = Ai. A Theil statistic of one indicates that
forecasts are no better than no-change forecasts with Pi = 0. Values greater than 1 indicate forecasts are worse
than no-change forecasts. We consider forecasts accurate if the resulting Theil statistic is less than 1.

5.1 Principal component analysis, clustering, and linear regression
We roughly replicated (explained below) the principal component analysis (PCA), clustering, and linear
regression method in Khoshgoftaar et al. [10]. PCA constructs new predictors that capture all the variation in the
original predictors using linear combinations of the original predictors. Clustering groups observations together
based on predictors’ values.

Khoshgoftaar et al. [10] constructed principal components and then clustered observations using the principal
components. They fitted linear models to the observations in each cluster. To predict for a new observation, the
observation was placed into one of the clusters based on its predictors’ values. The fitted linear model for the
cluster was then used to predict for the new observation.

Khoshgoftaar et al. [10] predicted field defects for modules using 11 product metrics. They fitted models using
260 observations in four clusters. Since we only had 9 observations, we modified the process to use two clusters
and to fit a null linear model for each cluster (i.e. an average of the observations). In addition, we did not have
enough observations to perform a PCA. Therefore, when using the same predictors as the original study, we used
the linear coefficients of the referenced work to construct principal components. When using all the predictors, we
did not conduct a PCA. We used the popular K-means clustering method, since Khoshgoftaar et al. [10] did not
identify the clustering method used.

5.2 Linear regression with model selection
We replicated the linear regression with model selection method in Khoshgoftaar et al. [11] and in Khoshgoftaar
et al. [8]. Linear regression models the predicted value using a linear combination of predictors’ values. Model
selection keeps predictors that improve the fit significantly as judged by a model selection criterion (e.g. AIC).

Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8] used backwards and stepwise model selection techniques to
select a subset of predictors. They fitted a linear regression model using the selected predictors and the least
squares method. To predict for a new observation, the predictors’ values and the fitted model were used to
estimate the value.

Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8] predicted field defects for modules of two systems using 8
product metrics for one system and 11 product metrics for the other system. They used 188 and 226 observations
to fit models for the two systems. Due to data constraints, we modified our model selection method to select only
one predictor (to prevent over fitting). Since no model selection criterion was identified in Khoshgoftaar et al.
[11] and Khoshgoftaar et al. [8], we used the popular AIC model selection criterion.

U 2 =

�
 (Pi – Ai)

2

�
 Ai

2

 11

5.3 Non-linear regression
We replicated the non-linear regression method used in Khoshgoftaar and Munson [9] and in Khoshgoftaar et al.
[8]. Non-linear regression models the predicted value using a non-linear combinations of the predictors’ values.

Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8] used non-linear least squares regression to construct
non-linear models of the form:

y = b0 + b1 * (LOC)
b2

y = number of faults, b0, b1, b2 were modeling parameters, LOC was lines of code

For a new observation, the value of the lines of code predictor was inserted into the fitted model to produce a
prediction.

Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8] used 15 observations to train the model. We found that
it was not possible to fit a model with three parameters using 9 observations; therefore, we simplified the model
by dropping a modeling parameter. Our model was:

y = b1 * (LOC)
b2

5.4 Trees
We replicated the Classification and Regressions Trees (CART) method in Khoshgoftaar and Seliya [13]. The
trees method iteratively splits observations into similar groups as judged by the predicted value using predictors’
values.

Khoshgoftaar and Seliya [13] built a regression tree using training observations and a minimum node size of 10.
To predict for a new observation, the observation traversed the tree until it reached a leaf node. The mean of the
training observations in the leaf node was the predicted value of the new observation.

Khoshgoftaar and Seliya [13] predicted field defects in modules using 9 product metrics. They fitted models using
4648 observations. Since we had at most 9 training observations, we built trees with varying minimum node sizes
of between 2 to 7.

5.5 Neural networks
We replicated the feed-forward neural networks method used in Khoshgoftaar et al. [12] and Khoshgoftaar et al.
[11]. Neural networks use non-linear functions to combine predictors’ values to produce an output.

A neural networks model is a multi-layer perceptron model that produces a value between 0 and 1. The predictors
are in one layer, with each predictor as one neuron, and the output is in one layer. A non-linear function is used to
combine values to connect layers and to produce the output. For a new observation, the predictors’ values are
placed on the outer layer and the predicted value between 0 and 1 is produced at the output neuron.

Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11] scaled all values (predictors and the predicted value) to be
between 0 and 1 by dividing by the value of the maximum element in each set. The data were then used to fit a
neural network. To predict for a new observation, the predictors’ values were used to produce a value between 0
and 1. The value was then scaled up according to the range of the predicted value in the training set.

Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11] predicted field defects for the same two systems as the
linear regression with model selection method. They used 16 and 18 hidden layer neurons for the two systems.
We modified the process by fitting separate neural networks for each predictor (i.e. one input neuron) using one
hidden layer neuron. For each release, we selected the best model by evaluating fitted values. The most accurate
model was then used to make predictions for the next release.

5.6 Exponential smoothing and moving averages
We replicated the moving averages and exponential smoothing methods used in Li et al. [15].

To predict for the next release, a weighted average of the values from historical releases was used. For the moving
averages method, each historical release received equal weight. For exponential smoothing method, releases
closer in time received more weight, since recent releases might be more similar to the current release. Li et al.
[15] considered averaging 2-7 releases. We made no modifications to the method.

 12

6 RESULTS
This section summarizes results of our 99 forecasting experiments. The top 10 SRGM, prediction method, and
predictors combinations based on the average Theil statistic are in table 2. Complete results are in Appendix B.

No training data was available for the first release (R2.4) and we excluded release 3.2; therefore, we predicted for
nine releases. Many combinations were not able to predict for all releases because the modeling methods required
additional data.

Our approach yields accurate forecasts, as measured by the Theil statistic (discussed in section 5). The accuracy is
also evident upon a visual inspection of our forecasts. A plot of the nine releases and forecasts of the top three
combinations are in figure 2.

Table 2. Theil forecasting statistics

Model, method, predictor combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 Avg
Exponential model using the moving averages
method of 2 releases using no predictors

 .7520 .5911 .5267 .3099 .5982 .6925 .6142 .4360 .5651

Exponential model using the non-linear regression
method using lines of code (same predictors as
referenced work)

 .7017 .3172 .7830 .6788 .4023 .5079 .5651

Exponential model using the trees method
splitting with six observations using all
predictors

.7048 .7520 .4407 .6978 .2984 .5713 .6745 .6754 .2991 .5682

Exponential model using the exponential
smoothing method of five releases using no
predictors

 .2973 .6795 .6795 .6858 .6058 .6547 .5846

Gamma model using the non-linear method using
lines of code (same predictors as referenced work)

 .6690 .4052 .7056 .6590 .4393 .6412 .5866

Exponential model using the exponential
smoothing method of four releases using no
predictors

 .6462 .3222 .3222 .6469 .6890 .6117 .6180 .5890

Exponential model using the moving averages
method of four releases using no predictors

 .6978 .3047 .3047 .6418 .6883 .5264 .6854 .5907

Exponential model using the exponential
smoothing method of two releases using no
predictors

 .6436 .6436 .5365 .3577 .6202 .6926 .6746 .4386 .5908

Exponential model using trees method splitting on
with 7 releases using all predictors

.7048 .7520 .4407 .6978 .2983 .7854 .6745 .6754 .2991 .5920

Exponential model using the moving averages
method of three releases using no predictors

 .4407 .6504 .6166 .3695 .6610 .6926 .6834 .6207 .5932

 13

Figure 2. Predicted defect-occurrence rates at the time of release

 14

The trees method splitting with a minimum of six observations using the Exponential model and
all predictors is the best combination (highlighted in table 2). It is able to predict for all releases
and its average Theil statistic is within .0032 of the best Theil statistic. In addition, of the top ten
combinations, it has the best Theil statistics for 6 out of the 9 releases (more than any other
combination) and its Theil statistics is within .401 of the best Theil statistics for all releases. The
predictors used in the trees are in table 3. The fitted trees for the two parameters of the
Exponential model for Release 3.4 (the most recent release) are in figures 3 and 4.

Table 3. Predictors used

Metric Definition Prediction used
AllDefectHWSpa
rc

Field defects reported during the development period that
identify the machine as of type Sparc

parameter N for
R3.0 and R3.3

LOC Lines of code
parameter for R3.0
and N for R3.1

CommentInline Inline comments
parameter for R3.1
and R3.3

TechMailing
Messages to the technical mailing list during the
development period

parameter N for
R3.4

NotCUpdate
Updates (deltas) to non-c-source-files during the
development period

parameter for R3.4

Figure3. Fitted CART for Exponential parameter N for release 3.4

Figure 4. Fitted CART for Exponential parameter � for release 3.4

7 DISCUSSION
In this section, we present our conclusions regarding SRGMs, modeling methods, and predictors
based upon our results.

7.1 Reliability models
Our results indicate that the simple Exponential model is better than more complex models like
Gamma and Weibull models when forecasting field defect-occurrence rates before deployment.

Post facto fits had shown the Weibull model to be the best model based on AIC, which penalized
for extra model parameters. However, in our experiments, nine out of the top ten combinations
used the Exponential model. The Exponential model had only two model parameters that needed

 15

to be predicted. The Weibull and Gamma models each had three. In addition, the model form of
the exponential model was simpler. The Exponential model did not have a power term, thus
errors in parameter predictions were not magnified. These factors might have contributed to better
forecasts using the Exponential model.

7.2 Modeling methods
Our results indicate that the trees method can predict model parameters that result in accurate
forecasts even when data are scarce.

We had at most 9 training observations (in a real world setting, more data is unlikely to be
available). Other metrics-based modeling techniques might not have been effective because they
did not have enough training data. For example, the neural network method in Khoshgoftaar et al.
[12] and Khoshgoftaar et al. [11] had ~20x more training observations. If more data were
available, other metrics-based methods might have produced better results. However, the trees
method was effective even though Khoshgoftaar and Seliya [13] had ~500x more training
observations. This supported our conclusion that the trees method was the best method.

7.3 Predictors
Our results indicate that accurate forecasts (i.e. forecasts that are in the top ten in terms of the
Theil forecasting statistic) are possible even with few (e.g. only lines of code) or no predictors.

Six out of ten combinations in the top ten were moving averages or exponential smoothing
methods. They did not use any predictors. Of the other four methods in the top ten, two used all
the predictors (trees methods) and two used only lines of code (non-linear regression methods).

First, since we collected 145 predictors and had at most 9 observations in the training set,
spurious fits (i.e. fits that are better by chance) might have occurred. This might have reduced the
benefits of having more predictors.

When all the predictors were used, the important predictors included predictors capturing
characteristics of the development process (NotCUpdates), of the deployment and usage pattern
(TechMailings), and of the software and hardware configurations in use (AllDefectHWSparc).
Out findings supported previous findings that non-product related metrics are important
predictors of field defects (e.g. Mockus et al. [21]).

Secondly, as evident in figure 2, the field defect-occurrence patterns of OpenBSD releases were
very similar and thus changes in predictors did not correspond to changes in model parameter
values. The developers of OpenBSD might have been able to evaluate their ability to implement
features and to fix defects. Thus, the releases were released with similar quality and similar field
defect occurrence patterns. The field defect-occurrences rates peaked within 3 months of the
release date for all but two of the releases,.

8 CONCLUSION
In this case study, we have forecasted field defect occurrence rates over the entire lifespan of
releases using only information available before release for OpenBSD using a novel approach of
combining the time-based approach and the metrics-based approach. The results are interesting
and appropriate for a case study; however, they need to be replicated to show general
applicability. We envision replicating our experiment for commercial systems to examine
differences due to development methods, as well as for other open source software systems.

We have shown that accurate forecasts are possible, as measured by the Theil forecasting
statistic; however we have not determined if the forecasts are accurate enough for quantitatively-
based decision making methods. Future work needs to address the issue. Confidence bounds and
intervals also need to be considered.

 16

We have tried to replicate modeling methods and to collect the same metrics as in previous
studies. However, there may be differences due to specific definitions and modeling tuning
parameters. These differences are acceptable for empirical replications as discussed by Ohlsson
and Runeson in [24].

Our field defect-occurrence rates forecasts are steps towards quantitatively-based decision
making, which can lower the risks associated with field defect occurrences.

9 ACKNOWLEDGMENTS
This research was supported by the National Science Foundation under Grants ITR-0086003 and
CCF-0438929, by the Carnegie Mellon Sloan Software Center, and by the High Dependability
Computing Program from NASA Ames cooperative agreement NCC-2-1298. We would like to
thank the developers of OpenBSD for their insight and tool vendors who gave us trial licenses.

10 REFERENCES
[1] Norman Fenton and Martin Neil. Software metrics: road map. Proc. ICSE, May 2000, pp.

357-370.
[2] Donald E. Harter and Mayuram S. Krishnan and Sandra A. Slaughter. Effects of Process

Maturity on Quality, Cycle Time, and Effort in Software Product Development. Management
Science, vol. 46 no. 4, Apr 2000, pp. 451-466.

[3] Wendell Jones, John Hudepohl, Taghi Khoshgoftaar, and Edward Allen. Applications of a
Usage Profile in Software Quality Models. Proc. 3rd European Conference on Software
Maintenance and Reengineering, Mar 1999, pp. 148-157.

[4] Garrison Kenny. Estimating Defects in Commercial Software during Operational Use. IEEE
Tr. on Reliability, vol. 42 no. 1, Mar 1993, pp. 107-115.

[5] Taghi M. Khoshgoftaar and Edward B. Allen. Predicting fault-prone software modules in
embedded systems with classification trees. Proc. HASE, Nov 1999, pp. 105-112.

[6] Taghi Khoshgoftaar, Edward Allen, and Jianyu Deng. Controlling Over-fitting in Software
Quality Models: Experiments with Regression Trees and Classification. Proc. METRICS, Apr
2001, pp. 190-198.

[7] Taghi M. Khoshgoftaar and Edward B. Allen and John P. Hudepohl and Stephen J. Aud.
Application of Neural Networks to Software Quality Modeling of a Very Large
Telecommunications System. IEEE Tr. on Neural Networks, vol. 8 no. 4, Jul 1997, pp. 902-
909.

[8] Taghi Khoshgoftaar, Bibhuti Bhattacharyya, and Gary Richardson. Predicting Software
Errors, During Development, Using Nonlinear Regression Models: A Comparative Study.
IEEE Tr. On Reliability, vol. 41 no. 3, Sep 1992, pp. 390-395.

[9] Taghi Khoshgoftaar and John Munson. Predicting Software Development Errors using
Software Complexity Metrics. IEEE J. Selected Areas in Communications, vol. 8 no. 2, Feb
1990, pp. 253-261.

[10] Taghi Khoshgoftaar, John Munson, and David Lanning. A Comparative Study of Predictive
Models for Program Changes during System Testing and Maintenance. Proc. ICSM, Sep
1993, pp. 72-79.

[11] Taghi Khoshgoftaar, Abhijit Pandya, and David Lanning. Application of Neural Networks for
Predicting Program Fault. Annals of Software Engineering, vol. 1, 1995, pp. 141-154.

[12] Taghi Khoshgoftaar, Abhijit Pandya, and Hamant More. A Neural Networks Approach for
Predicting Software Development Faults. Proc. ISSRE, Oct 1992, pp. 83-89.

[13] Taghi Khoshgoftaar and Naeem Seliya. Tree-based Software Quality Estimation Models for
Fault Prediction. Proc. METRICS, Jun 2002, pp. 203-214.

 17

[14] Taghi Khoshgoftaar, Vishal Thaker, and Edward Allen. Modeling Fault-prone Modules of
Subsystems. Proc. ISSRE, Oct 2000, pp. 259-267.

[15] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P. Santhanam. Empirical
Evaluation of Defect Projection Models for Widely-deployed Production Software Systems.
Proc. FSE, vol. 29 no. 6, Oct 2004, pp.263-272.

[16] Paul Luo Li, Mary Shaw, Jim Herbsleb, Bonnie Ray, and P. Santhanam. Empirical
Evaluation of Defect Projection Models for Widely-deployed Production Software Systems.
CMU Tech Report CMU-ISRI-04-130, 2004

[17] Paul Luo Li, Jim Herbsleb, and Mary Shaw. Finding Predictors of Field Defects for Open
Source Software Systems in Commonly Available Data Sources: a Case Study of OpenBSD.
Proc. METRICS, Sep 2005, (to appear).

[18] Zhaohui Liu, Nalini Ravishanker, and Bonnie Ray. Modeling Dynamic Reliability Growth
Using Bayesian Methods. Reliability Review, vol. 23 no. 1, Mar 2003, pp. 5-9.

[19] Michael Lyu. Handbook of Software Reliability Engineering. McGraw-Hill, 1996.
[20] Audris Mockus, David Weiss, and Ping Zhang. Understanding and Predicting Effort in

Software Projects. Proc. ICSE, May 2003, pp. 274-284.
[21] Audris Mockus, Ping Zhang, and Paul Luo Li. Predictors of Customer Perceived Quality.

Proc. ICSE, May 2005, pp. 225-233.
[22] John Munson and Taghi Khoshgoftaar. The Dimensionality of Program Complexity. Proc.

ICSE, May 1989, pp. 245-253.
[23] John Musa and Anthony Iannino and Kazuhira Okumoto. Software Reliability. McGraw-Hill,

1990.
[24] Magnus Ohlsson and Per Runeson. Experience from Replicating Empirical Studies on

Prediction Models. Proc. METRICS, Jun 2002, pp. 217-226.
[25] Thomas Ostrand, Elaine Weyuker, and Thomas Bell. Where the Bugs are. Proc. ISSTA, vol.

29 no. 4, Jul 2004, pp. 86-96.
[26] The R project for statistical computing. www.r-project.org
[27] Norman F. Schneidewind. Body of Knowledge for Software Quality Measurement. IEEE

Computer, vol. 35 no. 2, Feb 2002, pp. 77-83.
[28] Henri Theil. Applied Economic Forecasting. North-Holland Publishing Company

Netherlands, 1966.
[29] OpenBSD www.openbsd.org

 18

APPENDIX A
In this section, we present results of comparing the suitability of SRGMs used in literature to
model field defect-occurrence patterns for 10 releases of OpenBSD. We replicate the experiments
in Li et al.[16] by using the same set of models and using the same model comparison criterion
(i.e. AIC). The difference is that Li et al. [16] considered the date of the first defect reported
against a release as the release date. In this study, we consider the published date of release as the
release date. Our results show that the Weibull model is still the preferred model.

We consider the Exponential model, the Gamma model, the Logarithmic model, the Power
model, and the Weibull model. These models are promising because prior research in software
reliability engineering has shown each model to be effective at modeling defect-occurrence
patterns at a software development organization. Each model is parametric. The number of defect
occurrences during the t-th time interval is determined by the model parameterization and the
current time interval. The number of defect occurrences within a time interval is modeled as a
binomial process with a stationary non-homogenous Poisson defect rate (t). Table A1 lists the
models. Lyu [19] provides details about the models, including researchers who have developed
and applied the models in practice.

Table A1. Candidate models

We fit the best set of parameters for each candidate model for each release using Non-linear Least
Squares (NLS) regression then compare the candidate models using the Akaike Information
Criterion (AIC) model selection criterion [26].

NLS is a well-established model fitting procedure that selects model parameters by minimizing
the square of the difference between fitted values and actual values [26]. We use the open source
statistical computing package R [26]. After we select the best parameters for each candidate
model for a given release, we use the AIC model selection criterion to evaluate the fit of the
different candidate models; lower AIC scores are better. The AIC score is defined as:

AIC = n log 2 + 2 |S|

where 2 is the residual squared error divided by the difference of the number of observations, n,
and the number of model parameters, S [28]. The AIC model selection criterion penalizes models
with more parameters to offset the advantage models with more parameters have in comparisons.
Furthermore, since the AIC is a measure of deviance, it roughly follows a 2 (chi-squared)
distribution, which makes 4 a rough 95% confidence band around an AIC score.

Li et al. [16] found that the Weibull model had the best AIC score for 81.8% of the open source
software system releases and was within the rough 95% CI for 90.9% of the open source software
system releases. In this experiment, we found that the Weibull model had the best AIC score for
80% of the releases and was within the rough 95% CI for 100% of the releases. The second best

Model type Model name Model form
Researchers/users of the

model

Exponential
Non-homogenous Poisson

process model
�
(t) = N � e – � t Goel & Okumoto [23]

Weibull Weibull �
(t) = N � � t � -1 e – � t �

 Schick-Wolverton [19]

Gamma
S-shaped reliability growth

model
�
(t) = N � � t � -1 e – � t Yamada, Ohba & Osaki [19]

Power Duane Model
�
(t) = � � e – � t Duane [19]

Logarithmic
Musa-Okumoto logarithmic

Poisson model
�
(t) = � (� � t +1) – 1 Musa-Okumoto [23]

 19

models, based on being within the 95% CI, was the Gamma model, which had the best AIC score
for 10% of the releases and was within the rough 95% CI for 90% of the releases. The second
best models, based on having the best AIC score, was the Exponential model, which had the best
AIC score for 30% of the releases and was within the rough 95% CI for 50% of the releases.

We conclude that Weibull is better than the other models at modeling the field defect-occurrence
pattern of OpenBSD. The AIC scores are presented in table A2, with the best AIC score(s)
highlighted for each release. Plots of the fitted models are in figures A1-A10.

Table A2. AIC scores for open source OS using general availability

Release \ Model Exponential Model Weibull Model Gamma Model Power Model
Logarithmic

Model

2.4 81 67 70 89 87

2.5 84 81 82 93 90

2.6 125 115 118 137 134

2.7 84 67 68 122 120

2.8 116 109 110 135 132

2.9 64 65 65 86 85

3.0 73 40 45 81 79

3.1 158 159 159 161 160

3.2 88 84 85 101 99

3.3 48 48 48 54 53

Figure A1. Field defects release 2.4 Figure A2. Field defects release 2.5

 20

Figure A3. Field defects release 2.6 Figure A4. Field defects release 2.7

Figure A5. Field defects release 2.8 Figure A6. Field defects release 2.9

Figure A7. Field defects release 3.0 Figure A8. Field defects release 3.1

 21

Figure A9. Field defects release 3.2 Figure A10. Field defects release 3.3

 22

APPENDIX B
In this section, we present the Theil forecasting statistics for all 99 forecasting experiments. The
results are in table B1. The combinations are in ranked order (from best to worst) according to
their average Theil statistic (i.e. in ascending order). For each combination, we show the Theil
statistics for each release that a combination is able to forecast, the average Theil statistics, as
well as the difference between the best prediction and the worst prediction (an estimate of
variability). The different between best prediction and the worst prediction indicates the
variability of predictions. The idea is to consider a combination that produces consistently
accurate forecasts.

The preferred trees combination has slightly higher variability than other combinations in the top
ten (.1 worse than the combination with the best variability). However, it is better than 81 (82%)
combinations. The best combination with the best variability is the Exponential model using the
exponential smoothing method of six releases (variability of .1365 and an average Theil statistic
of .6469).

We encode the combinations as follows:

1. Type of reliability model
c. Weibull model (W)
d. Gamma model (G)
e. Exponential model (E)

2. Modeling methods:
f. Moving averages (M#). The number (2-7) indicates the number of releases in the moving

average.
g. Exponential smoothing (X#). The number (2-7) indicates the number of releases being

smoothed.
h. Linear modeling (L)
i. Clustering (C)
j. Trees (T#). The number (2-7) indicates the minimum number of releases before splitting.
k. Nonlinear modeling (R)
l. Neural networks (N)

3. Predictors:
m. Using the same set of predictors as the referenced work (S)
n. Using the complete set of predictors collected (A)
o. Not using any predictors (-)

Table B1. Theil forecasting statistics

Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4
Average

Theil
Variability

E(M2)- 0.7520 0.5911 0.5266 0.3099 0.5982 0.6925 0.6142 0.4360 0.5651 0.4422

ERS 0.7017 0.3172 0.7830 0.6787 0.4023 0.5079 0.5651 0.4657

E(T6)A 0.7048 0.7520 0.4407 0.6978 0.2983 0.5713 0.6745 0.6754 0.2991 0.5682 0.4537

E(X5)- 0.2973 0.6795 0.6858 0.6058 0.6547 0.5846 0.3884

GRS 0.6641 0.4105 0.7642 0.6614 0.4844 0.6167 0.5866 0.3537

E(X4)- 0.6462 0.3222 0.6469 0.6890 0.6116 0.6180 0.5890 0.3668

 23

Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4
Average

Theil
Variability

E(M4)- 0.6978 0.3047 0.6418 0.6883 0.5264 0.6854 0.5907 0.3931

E(X2)- 0.7623 0.6436 0.5365 0.3577 0.6202 0.6926 0.6746 0.4386 0.5908 0.4046

E(T7)A 0.7048 0.7520 0.4407 0.6978 0.2983 0.7854 0.6745 0.6754 0.2991 0.5920 0.4871

E(M3)- 0.4407 0.6504 0.3459 0.6651 0.6925 0.6477 0.7104 0.5932 0.3645

E(X3)- 0.5135 0.6165 0.3695 0.6610 0.6926 0.6834 0.6207 0.5939 0.3231

E(M7)- 0.6789 0.3954 0.7073 0.5939 0.3119

E(T5)A 0.7048 0.7520 0.4407 0.6978 0.5193 0.5713 0.6745 0.6754 0.3276 0.5959 0.4245

E(M5)- 0.2983 0.7268 0.6819 0.5331 0.7587 0.5998 0.4603

WRS 0.6690 0.4052 0.7056 0.6590 0.4392 0.6412 0.6002 0.3004

G(M2)- 0.5183 0.5325 0.4775 0.3143 0.5035 0.6748 0.5951 1.2602 0.6095 0.9459

WCS 0.7643 0.4657 0.3151 0.5794 0.6754 0.5108 0.9638 0.6106 0.6487

WCA 0.7643 0.4657 0.3151 0.5794 0.6754 0.5108 0.9638 0.6106 0.6487

E(X7)- 0.6799 0.5381 0.6454 0.6211 0.1418

G(X2)- 0.5211 0.5525 0.4899 0.3579 0.5422 0.6727 0.6606 1.1748 0.6215 0.8170

W(M2)- 1.0132 0.5454 0.4657 0.3151 0.4966 0.6830 0.5891 0.8896 0.6247 0.6981

ECS 0.9689 0.5266 0.3099 0.6651 0.6883 0.5264 0.7002 0.6265 0.6591

ECA 0.9689 0.5266 0.3099 0.6651 0.6883 0.5264 0.7002 0.6265 0.6591

E(T4)A 0.7048 0.7520 0.4407 0.7593 0.5757 0.5713 0.6811 0.8357 0.3208 0.6268 0.5149

W(T4)A 0.8087 1.0132 0.5155 0.4470 0.5035 0.3210 0.6995 0.5621 0.7850 0.6284 0.6921

W(X4)- 0.6099 0.3908 0.5433 0.6760 0.5972 0.9785 0.6326 0.5878

W(M4)- 0.6695 0.4099 0.5193 0.6754 0.5108 1.0268 0.6353 0.6169

GCS 0.7773 0.4775 0.3143 0.5832 0.6704 0.5141 1.1380 0.6393 0.8236

GCA 0.7773 0.4775 0.3143 0.5832 0.6704 0.5141 1.1380 0.6393 0.8236

W(X3)- 0.5242 0.5823 0.4169 0.5824 0.6787 0.6743 1.0306 0.6413 0.6137

W(X2)- 1.0318 0.5602 0.4791 0.3582 0.5366 0.6814 0.6554 0.8558 0.6448 0.6735

 24

Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4
Average

Theil
Variability

E(X6)- 0.7009 0.6812 0.5645 0.6409 0.6469 0.1365

W(T6)A 0.8087 1.0132 0.5155 0.6695 0.4273 0.2271 0.6779 0.5695 0.9285 0.6486 0.7861

W(X5)- 0.3889 0.5895 0.6702 0.6002 0.9956 0.6489 0.6067

E(M6)- 0.7854 0.6761 0.4474 0.7002 0.6523 0.3380

E(T4)S 0.7048 0.7520 0.4407 0.4858 0.3464 0.5083 0.6952 0.8312 1.1547 0.6577 0.8083

W(M3)- 0.5155 0.6252 0.4208 0.5794 0.6781 0.6391 1.1518 0.6586 0.7310

E(T6)S 0.7048 0.7520 0.4407 0.6978 0.2983 0.6237 0.7268 0.8914 0.8007 0.6596 0.5931

W(T5)A 0.8087 1.0132 0.5155 0.6695 0.5035 0.2271 0.6886 0.5937 0.9285 0.6609 0.7861

W(M5)- 0.4273 0.6518 0.6639 0.5415 1.0535 0.6676 0.6262

W(T3)A 0.8087 1.0132 0.7273 0.4470 0.4530 0.5444 0.7190 0.6001 0.7412 0.6727 0.5662

G(M4)- 0.6525 0.3777 0.5326 0.6704 0.5141 1.3043 0.6753 0.9266

G(T7)A 0.6794 0.5183 0.4446 0.6525 0.3897 0.6875 0.8317 0.9896 0.8890 0.6758 0.5999

G(X4)- 0.6025 0.3718 0.5531 0.6696 0.6021 1.2676 0.6778 0.8958

G(X3)- 0.4752 0.5809 0.4081 0.5862 0.6718 0.6798 1.3728 0.6821 0.9648

E(T7)S 0.7048 0.7520 0.4407 0.6978 0.2983 0.7854 0.7268 0.8914 0.8617 0.6843 0.5931

W(M7)- 0.6612 0.4467 0.9559 0.6879 0.5092

W(M6)- 0.6937 0.6587 0.4705 0.9638 0.6967 0.4933

G(T3)S 0.6794 0.5183 0.7518 0.4517 0.2660 0.5035 0.6770 0.9686 1.4574 0.6971 1.1915

G(X5)- 0.3673 0.5942 0.6646 0.6039 1.2603 0.6981 0.8931

W(X6)- 0.6016 0.6647 0.5581 0.9703 0.6987 0.4122

W(T2)A 0.8087 0.9847 0.7643 0.5906 0.5339 0.5661 0.7190 0.6001 0.7412 0.7009 0.4509

G(M5)- 0.3897 0.6465 0.6594 0.5400 1.2737 0.7018 0.8841

G(M3)- 0.4446 0.6191 0.4078 0.5832 0.6722 0.6439 1.5466 0.7025 1.1388

W(T7)A 0.8087 1.0132 0.5155 0.6695 0.4273 0.6937 0.6779 0.5695 0.9579 0.7037 0.5859

G(T6)A 0.6794 0.5183 0.4446 0.6525 0.3897 0.9647 0.8317 0.9896 0.8890 0.7066 0.5999

 25

Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4
Average

Theil
Variability

E(T3)S 0.7048 0.7520 0.9906 0.4858 0.2440 0.5139 0.6952 0.8312 1.1547 0.7080 0.9107

E(T5)S 0.7048 0.7520 0.4407 0.6978 0.3464 0.6237 0.7268 0.8914 1.2020 0.7095 0.8556

G(T6)S 0.6794 0.5183 0.4446 0.6525 0.3897 0.5393 0.7068 0.6378 1.8959 0.7182 1.5063

G(T5)A 0.6794 0.5183 0.4446 0.6525 0.4979 0.9647 0.8317 0.9896 0.8890 0.7186 0.5450

ELS 1.1607 0.4800 0.5003 0.5592 0.7074 0.8625 0.7702 0.7200 0.6808

W(X7)- 0.6633 0.5407 0.9709 0.7250 0.4302

G(M7)- 0.6568 0.4292 1.0890 0.7250 0.6598

G(M1)- 0.6794 1.0505 0.7773 0.5902 0.5842 0.7301 0.6794 0.9813 0.4654 0.7264 0.5851

E(T3)A 0.7048 0.7520 0.9906 0.6053 0.5757 0.7867 0.6751 1.1547 0.3208 0.7295 0.8340

W(M1)- 0.8087 0.9847 0.7643 0.5906 0.5857 0.7281 0.6880 0.9851 0.4618 0.7330 0.5233

G(T7)S 0.6794 0.5183 0.4446 0.6525 0.3897 0.6875 0.7068 0.6378 1.8959 0.7347 1.5063

G(M6)- 0.6875 0.6560 0.4594 1.1380 0.7352 0.6786

G(T4)A 0.6794 0.5183 0.4446 0.7644 0.5161 0.9946 0.9013 1.1035 0.7524 0.7416 0.6589

E(M1)- 0.7048 0.9874 0.9689 0.6015 0.5913 0.7448 0.7005 0.9437 0.4504 0.7437 0.5371

G(T5)S 0.6794 0.5183 0.4446 0.6525 0.3530 0.5393 0.7387 0.9168 1.8959 0.7487 1.5429

W(T7)S 0.8087 1.0132 0.5155 0.6695 0.4273 0.6937 0.6759 0.5278 1.4505 0.7536 1.0232

W(T3)S 0.8087 1.0132 0.7273 0.4672 0.2629 0.4842 0.6798 0.9599 1.4033 0.7563 1.1404

W(T6)S 0.8087 1.0132 0.5155 0.6695 0.4273 0.5442 0.6759 0.5278 1.6533 0.7595 1.2259

G(X6)- 0.6069 0.6609 0.5629 1.2170 0.7619 0.6541

E(T2)S 0.7048 0.9874 0.9689 0.6015 0.2174 0.5139 0.7005 0.9437 1.2431 0.7646 1.0257

G(T4)S 0.6794 0.5183 0.4446 0.5341 0.3530 0.5035 0.6770 0.9686 2.2266 0.7672 1.8736

W(T2)S 0.8087 0.9847 0.7643 0.5906 0.2311 0.4842 0.6798 0.9599 1.4033 0.7674 1.1723

E(T2)A 0.7048 0.9874 0.9689 0.6053 0.6904 0.7867 0.6970 1.1547 0.3220 0.7686 0.8327

G(T3)A 0.6794 0.5183 0.7518 0.5703 0.5161 1.0784 0.9120 1.1508 0.7817 0.7732 0.6347

WRA 0.3281 1.0245 0.5511 0.7316 0.7418 1.2653 0.7737 0.9372

 26

Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4
Average

Theil
Variability

G(T2)S 0.6794 1.0505 0.7773 0.5902 0.2718 0.5035 0.6770 0.9686 1.4574 0.7751 1.1857

W(T5)S 0.8087 1.0132 0.5155 0.6695 0.3429 0.5442 0.6928 0.7780 1.6533 0.7798 1.3103

ERA 0.5137 0.8010 0.7034 0.8968 1.4322 0.4018 0.7915 1.0304

ENA 0.6971 1.5209 0.5322 0.4369 0.6063 0.5160 0.7706 1.0484 1.0113 0.7933 1.0840

G(X7)- 0.6591 0.5429 1.2015 0.8012 0.6586

GNS 0.6752 0.9831 0.7273 0.4661 0.5570 0.7033 0.7861 0.9302 1.3823 0.8012 0.9162

ENS 0.6981 1.4260 0.9601 0.4795 0.4274 0.5931 0.7700 1.0711 0.7892 0.8016 0.9986

W(T4)S 0.8087 1.0132 0.5155 0.4109 0.3429 0.3670 0.6798 0.9599 2.1853 0.8093 1.8424

WLS 1.4809 0.5154 0.5113 0.5166 0.6982 0.9966 0.9706 0.8128 0.9696

G(T2)A 0.6794 1.0505 0.7773 0.5902 0.5936 0.9154 0.9120 1.1508 0.7817 0.8279 0.5605

GLS 1.4459 0.6055 0.5414 0.5549 0.6548 0.7702 1.4023 0.8536 0.9045

GRA 0.7156 0.6909 0.6438 0.6583 1.3167 1.2572 0.8804 0.6729

GNA 0.6762 1.1480 0.5588 0.4391 0.6101 1.6885 0.8696 0.9845 1.1715 0.9051 1.2494

WLA 1.4684 0.5578 1.6376 0.7179 0.7576 0.5660 1.0427 0.9640 1.0798

ELA 1.8061 0.5866 0.9652 0.7136 1.0071 1.2956 0.4422 0.9738 1.3639

GLA 1.0194 1.4242 1.1384 0.5002 0.7702 1.0481 1.0032 0.9862 0.9240

WNA 0.8077 1.4169 1.4571 1.3449 0.5797 0.4837 0.6952 1.1036 0.9975 0.9874 0.9734

WNS 0.8083 1.4967 0.7267 1.4135 0.8596 0.8276 0.8382 1.0616 1.1159 1.0165 0.7700

 27

APPENDIX C
In this section, we discuss the differences between the predictors used in the referenced studies
and the predictors in this study. In general, we use the same predictors when possible and
predictors that capture the same intent otherwise. In each reference work, the metrics are
collected at the module level. In this study, we collect metrics at the program level; therefore,
metrics are collected for each file then summed across files.

In addition to the set of metrics discussed in detail in [17], we collected the following metrics for
this study:

Program length: Estimated program length in C source files calculated by adding the total
number of operators and the total number of operands calculated by the metrics tool Metrics

Jenson’s program length: Estimated program length in C source files calculated using unique
operators and unique operands calculated by the metrics tool Metrics

Calls to procedures: Calls to procedures calculated using the metrics tool Understand

Calls within files: Calls to procedures within files using the metrics tool Understand

Calls to other files: Calls to procedures in other files using the metrics tool Understand

The metrics tools we used were:

• RSM by M Squared Technologies

• SourceMonitor by Campwood Software

• c_count written by Thomas E. Dickey

• metrics written by Brian Renaud

• Understand by STI

C.1 Principal component analysis, clustering, and linear
regression
We replicated the principal component analysis (PCA), clustering, and linear regression method
in Khoshgoftaar et al. [10]. The referenced work predicted field defects for modules using 11
product metrics shown in table C1.

First, we define terms:

N1= Total number of operators

N2= Total number of operands

1= Unique operators

 2= Unique operands

L i = Number of nodes at level i
Table C1. Metrics mapping

Predictor used in referenced paper Predictor used in this study

Lines of code including comments
Total number of lines in C source files calculated by the
metrics tool C_Count

Lines of code excluding comments
Lines with code in C source files calculated by the
metrics tool C_Count

Number of characters
Total number of characters in C source files calculated
by the metrics tool C_Count

 28

Predictor used in referenced paper Predictor used in this study

Number of comments
Lines with comments in C source files calculated by the
metrics tool C_Count

Number of comment characters
Total number of comment characters in C source files
calculated by the metrics tool C_Count

Number of code characters
Statement characters in C source files calculated by the
metrics tool C_Count

Program length:

N = N1 + N2

Estimated program length in C source files calculated by
adding N1 and N2 calculated by the metrics tool Metrics

Halstead’s estimated program length:

N = 1log2 1 + 2log2 2
Halstead’s estimated program length in C source files
calculated by the metrics tool Metrics

Jenson’s estimated program length:

N = log2 1!+ log2 2!
Estimated program length in C source files calculated
using 1 and 2 calculated by the metrics tool Metrics

McCabe’s Cyclomatic complexity
Cyclomatic complexity calculated by the metrics tool
RSM

Belady’s bandwidth metrics:

BW= 1/n i iL i

Modified bandwidth metric calculated using statements
and nesting depth information from the metrics tool
Source Monitor. Source Monitor only count nesting up
to 10 levels. Therefore, the modified metric clip counts
the statements at nesting of 10 levels as 10 levels.

C.2 Linear regression with model selection
We replicated the linear regression with model selection method fitted using the least squares
used in Khoshgoftaar et al. [11] and in Khoshgoftaar et al [8].

The referenced work predicted field defects for modules of two systems using 8 product metrics
for one system and 11 product metrics for the other system. Both [11] and [8] used the metrics
presented in the table C2, only [11] use the metrics presented in table C1. We considered the
union of the sets of metrics as metrics used in the referenced studies.

Table C2. Metrics mapping

Predictor used in referenced paper Predictor used in this study

Unique operators (1)
Unique operators in C source files calculated by the
metrics tool Metrics

Unique operands (2)
Unique operands in C source files calculated by the
metrics tool Metrics

Total operators (N1)
Total operands in C source files calculated by the
metrics tool Metrics

Total operands (N2)
Total operators in C source files calculated by the
metrics tool Metrics

Halstead’s estimated program length:

N = 1log2 1 + 2log2 2
Halstead’s estimated program length in C source files
calculated by the metrics tool Metrics

Halstead’s effort metric:

E = 1N2 (N1+N2)log2 (1 + 2) /2 2
Halstead’s effort metric for C source files calculated by
the metrics tool Metrics

 29

Predictor used in referenced paper Predictor used in this study

Halstead’s program volume:

V= N log2 (1 + 2)
Halstead’s program volume in C source files calculated
by the metrics tool Metrics

McCabe’s Cyclomatic complexity
Cyclomatic complexity calculated by the metrics tool
RSM

Extended McCabe’s Cyclomatic
complexity:

Cyclomatic complexity + number of
logical operators

Cyclomatic complexity calculated by the metrics tool
RSM plus the number of logical decisions as indicated
by the key word ‘ if’ calculated by the metrics tool RSM

Number of procedures
Calls to procedures calculated using the metrics tool
Understand

Number of comment lines
Lines with comments in C source files calculated by the
metrics tool C_Count

Number of blank lines
Blank lines in C source files calculated by the metrics
tool C_Count

Lines of code
Lines with code in C source files calculated by the
metrics tool C_Count

Executable source lines of code
Statements in C source files calculated by the metrics
tool C_Count

C.3 Non-linear regression
We replicated the non-linear regression method fitted using non-linear least squares used in
Khoshgoftaar and Munson [9] and in Khoshgoftaar et al. [8]. The referenced studies used lines of
code. We used the lines of code calculated by the metrics tool Source Monitor.

C.4 Trees
We replicated the Classification and Regressions Trees (CART) method in Khoshgoftaar and
Seliya [13]. The referenced work predicted field defects in modules using 9 product metrics. The
exact same predictors were not available in our setting. We tried to use predictors that captured
the same intent as the predictors in [13].We show the metrics used in [13] and the metrics we
used in table C3.

Table C3. Metrics mapping

Predictor used in referenced paper Predictor used in this study

Unique procedure calls

Total calls to others

Calls to procedures calculated using the metrics tool
Understand

Calls to procedures within files using the metrics tool
Understand

Calls to procedures in other files using the metrics tool
Understand

Distinct files included Number of “ include” calculated by the metrics tool RSM

McCabe’s Cyclomatic complexity
Cyclomatic complexity calculated by the metrics tool
RSM

 30

Predictor used in referenced paper Predictor used in this study

Number of loops

Number of if-then structures

Number of occurrence of the key word “ if” calculated by
the metrics tool RSM

Number of occurrence of the key word “else” calculated
by the metrics tool RSM

Number of occurrence of the key word “do” calculated
by the metrics tool RSM

Number of occurrence of the key word “while”
calculated by the metrics tool RSM

Number of occurrence of the key word “ for” calculated
by the metrics tool RSM

Total nesting level

Total number of vertices within the
span of loops or if-then structures

Total edges plus vertices within loop
structures

Modified bandwidth metric calculated using statements
and nesting depth information from the metrics tool
Source Monitor.

Statements at nesting level greater than 10 calculated
using the metrics tool Source Monitor

Effective lines of code calculated by the metrics tool
RSM

C.5 Neural networks
We replicated the feed-forward neural networks method trained using backward error propagation
used in Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11]. The referenced work predicted field
defects for modules of two systems using 8 product metrics for one system and 11 product
metrics for the other system. These were the same metrics used for linear regression with model
selection (shown in table C1 and table C2).

