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ABSTRACT 
Open source software systems are critical infrastructure for many applications; however, little has been precisely 
measured about their quality. Forecasting the field defect-occurrence rate over the entire lifespan of a release 
before deployment for open source software systems may enable informed decision-making. In this paper, we 
present an empirical case study of ten releases of OpenBSD. We use the novel approach of predicting model 
parameters of software reliability growth models (SRGMs) using metrics-based modeling methods. We consider 
three SRGMs, seven metrics-based prediction methods, and two different sets of predictors. Our results show that 
accurate field defect-occurrence rate forecasts are possible for OpenBSD, as measured by the Theil forecasting 
statistic. We identify the SRGM that produces the most accurate forecasts and subjectively determine the 
preferred metrics-based prediction method and set of predictors. Our findings are steps towards managing the 
risks associated with field defects. 
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1 INTRODUCTION 
Many software applications, including mobile applications, depend upon open source software systems to provide 
critical computing infrastructure. The quality of the infrastructure (e.g. operating system) may affect the quality of 
the application. In this paper, we present a case study of the open source operating system OpenBSD, which is a 
key component of several commercial network security products [29]. 

Quantitatively-based decision making regarding open source systems is often difficult, because the quality of 
open source software systems is often not known quantitatively. Being able to forecast field defect-occurrence 
rates (i.e. the rates of customer reported software problems requiring developer intervention to resolve) over the 
entire lifespan of a release (i.e. as long as there are field defect occurrences) before deployment (i.e. at the time of 
release) may allow existing quantitatively-based decision-making methods to be used to: 

• Help organizations seeking to adopt open source software systems to make informed choices between 
candidates 

• Help organizations using open source software systems to decide whether to adopt the latest release 

• Help organizations that adopt a release to better manage resources to deal with possible defects 

• Insure users against the costs of field defect occurrences 

Prior work by Li et al. [17] has shown that it is not possible to forecast field defect-occurrence rates (i.e. the field 
defect-occurrence pattern over time) by fitting a SRGM to development defect information. In this paper, we 
report results using the novel approach of using metrics-based modeling methods to predict model parameters of 
time-based models (i.e. SRGMs).  

We conduct empirical experiments comparing combinations of SRGMs, metrics-based modeling methods, and 
sets of predictors to forecast field defect-occurrence rates before release. We construct combinations along the 
following dimensions: 

1) Type of SRGM: Which SRGM yields the most accurate field defect-occurrence rate forecasts? 
a. Weibull model, described in Kenny [4] 
b. Gamma model, described in Lyu [19] 
c. Exponential model, described in Musa et al. [23] 

2) Modeling methods: Which metrics-based modeling method predicts model parameters that produce the most 
accurate field defect-occurrence rate forecasts?  
a. Moving averages, used in Li et al. [15] 
b. Exponential smoothing, used in Li et al. [15] 
c. Linear regression with model selection, used in Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8] 
d. Principal component analysis, clustering, and linear regression, used in Khoshgoftaar et al. [10] 
e. Trees, using used in Khoshgoftaar and Seliya [13] 
f. Non-linear regression, used in Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8] 
g. Neural networks, used in Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11] 

3) Predictors: Do more predictors and more categories of predictors yield more accurate forecasts?  
a. The same kinds of predictors as the referenced work  (e.g. product metrics only) 
b. A superset of predictors that includes 145 predictors (product metrics, development metrics, deployment 

and usage metrics, and software and hardware configurations metrics)  
We empirically compare the accuracy of forecasts for nine releases of OpenBSD. We use the Theil forecasting 
statistic to measure the accuracy of forecasts. Theil statistics lower than 1 are considered accurate (discussed in 
section 5). We subjectively determine the best model, modeling method, and set of predictors by considering the 
accuracy of predictions and the amount of information needed before a prediction can be made  

Our results show that the simple Exponential model produces more accurate forecasts (i.e. forecasts with lower 
Theil statistics) than the more complex Gamma and Weibull models. The trees method is the best metrics-based 
prediction method because it predicts model parameters that yield forecasts ranked in the top 10 in terms of 
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accuracy and because the trees method is able to make predictions with limited data. Our results show that it is 
possible to make predictions ranked in the top 10 in terms of accuracy without using the superset of predictors.   

Theil statistics of our forecasts indicate that our approach yields accurate forecasts. Our results enable future work 
to examine the adequacy of forecasts for quantitatively-based decision making methods.   

We present prior work, which serves as motivation for our work, in section 2. We describe OpenBSD in section 3. 
Our data collection and data analysis techniques are discussed in sections 4 and 5. Section 6 presents our results. 
We present a discussion in section 7 and conclude in section 8.  

2 PRIOR WORK AND EXPERIMENTAL DESIGN  
We motivate our work and our experimental design by discussing prior work.  

We define a field defect as a user-reported problem occurring after release requiring developer intervention to 
resolve. Our operational measure of a field defect for OpenBSD is a user submitted problem report in the request 
tracking system of the class software bugs occurring after the official release date (discussed more in sections 3 
and 4). Each problem report is counted. For example, two user-reported problems traced to the same underlying 
defect are counted as two field defects. These software related problem reports require developer intervention to 
resolve. A field defect occurrence is the occurrence of a field defect. A similar definition is used in Li et al. [15].  

2.1 Fixed dimensions in our experimental design 
Granularity of observation, types of prediction, defect modeling approaches, and forecasting approaches are 
dimensions of variation we do not vary in our study. The dimensions listed in the introduction are dimensions we 
vary in out study and are discussed in section 2.2.  

2.1.1 Granularity of observation 
In this paper, we examine field defect occurrences for the entire system as a whole. This is the correct level of 
granularity because we are focused on helping software consumers; and, software consumers generally view the 
software system as a whole.  

Prior work has predicted field defects for individual software changes (e.g. in Mockus et al. [20]), files (e.g. in 
Ostrand et al. [25] ), modules (e.g. in Khoshgoftaar et al. [12]), and entire systems (e.g. in Kenney [4]).  

2.1.2 Types of predictions 
In this paper, we predict the rate of field defect occurrences over time because effective quantitatively-based 
decision making requires knowing the rate of field defect occurrences over time as discussed by Li et al. [15].  

Predictions regarding field defects in prior work generally belong to one of four categories:  

• Relationships: These studies establish relationships between predictors and field defects. For example, Harter et 
al. [2] establish a relationship between an organization’s CMM level and the number of field defects.  

• Classifications: These studies predict if the number of field defects is above a threshold for an observation. For 
example, Khoshgoftaar et al. [6] classify software modules as risky (will contain at least one field defect) or not 
risky (no field defects).  

• Quantities: These studies predict the number of field defects. For example, Khoshgoftaar et al. [11] predict the 
number of defects for software modules.  

• Rates of occurrences over time: These studies predict the field defect-occurrence rate. For example, Kenny [4] 
predicts the defect occurrence pattern as captured by the Weibull model for two IBM systems.  

2.1.3 Defect modeling approaches 
In this paper, we use a novel approach of using metrics-based modeling methods to predict model parameters of a 
SRGM, which captures the field defect-occurrence pattern of a software release over the entire lifetime of the 
release (i.e. until there are no more field defect occurrences).  

Field defect predictions generally belong to one of two classes: time-based approach and metrics-based approach. 
Schneidewind [27] distinguishes between these two approaches: 
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1. Time-based approach: This approach uses defect occurrence times or the number of defects in time intervals 
during testing to fit a SRGM. The field defect–occurrence rate is forecasted using the fitted SRGM. Musa [19] 
and Lyu [23] describe this approach in detail.  

2. Metrics-based approach: This approach uses historical information on metrics available before release 
(predictors) and historical information on field defects to fit a predictive model. The fitted model and 
predictors’  values for a new observation are used to predict classifications or quantities; however, metrics-based 
models have not been used to predict model parameters of SRGMs. Examples of this approach are in Mockus 
[21] and Khoshgoftaar et al. [11] 

Li et al. [17] show that it is not possible to use the time-based approach of fitting a SRGM to development defects 
to predict field defect-occurrence rates for OpenBSD. The authors find that the field defect-occurrence rates are 
generally increasing at the time of release; therefore, the authors cannot fit a meaningful model. Other studies 
(e.g. [16] and [4]) reach similar conclusions.  

Furthermore, in order for the defect-occurrence pattern to continue from testing into the field, the software has to 
be operated in a similar manner as that in which reliability predictions are made (as stated by Farr in [19]). 
However, we are interested in widely-used systems such as COTS and open source software systems. The 
similarity of testing and deployment environments assumption does not necessarily hold for these systems. 
Therefore, it may not be appropriate to forecast field defect-occurrence rates using a SRGM fitted using testing 
information. 

Unlike the time-based approach, the metrics-based approach uses historical information on predictors and actual 
field defects to construct a predictive model. Since there is no assumption about the similarity between testing and 
field environments, metrics-based models are more robust against differences between how the software is tested 
and how it is used in the field.  

2.1.4 Forecasting approaches 
In this paper, we simulate a real world situation by forecasting field defect-occurrence rates using only 
information available at the time of release (i.e. before deployment) for multiple releases. 

Prior work in metrics-based modeling either inadequately addresses multiple releases or does not account for 
multiple active releases. Some studies (e.g. Khoshgoftaar et al. [11]) split data from the same release into fitting 
and testing sets. This approach ignores possible differences between releases that are not accounted for in the 
model. A better approach is to use a model fitted using data from a historical release to predict for future releases. 
This is the approach taken by Khoshgoftaar et al. in [6]  and by Ostrand et al in [25]. However, previous studies 
assume that complete defect information is available for historical releases; yet, complete field defect information 
is often not available for historical releases that are still active in the field. 

In this study, we estimate model parameters for active historical releases using field defect information available 
at the time of release. An example prediction situation for a typical release is illustrated in Figure 1. 
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Figure 1. Example fitting situation 

At the time of release of release 2.7, predictor information is available for releases 2.4-2.7 and complete field 
defect information (i.e. model parameters of the fitted model) is available for release 2.4. However, releases 2.5 
and 2.6 are still active (i.e. field defects are still occurring); therefore, we use the estimated model parameters for 
the two releases. Predictor information and model parameters for releases 2.4-2.6 are then used to predict model 
parameters for release 2.7.   

2.2 Dimensions of variation in our experimental design 
The SRGMs, the modeling methods, and the predictors are the dimensions we vary in our study. 

2.2.1 Software reliability growth models (SRGMs)  
Prior work by Li et al. [15] has compared the ability of SRGMs from the literature to model the rate of defect 
occurrences (including defects during development) of OpenBSD based on post-facto fits and has concluded that 
the Weibull model is better than other models, as judged by the AIC model selection criterion. We have replicated 
the experiment using only field defects and have arrived at the same conclusions (i.e. the Weibull model is better). 
The details are in Appendix A.  

Prior work is based on post-facto fits evaluated using the AIC model selection criterion [15]. Even though AIC 
penalizes for extra model parameters, Weibull model parameters may be much harder to predict compared with 
model parameters of other models. Therefore, in this paper, we also consider the Gamma model (also known as 
the S-shaped model [19]) and the Exponential model (also known as the Goel-Okumoto model [19]), which have 
been shown to be the next most effective models in Appendix A. We have also examined the Logarithmic (also 
known as the Musa-Okumoto model [23]) and Power (also known as Duane’s model [19]) models; however, their 
post-facto fits are worse than the models we consider for releases of OpenBSD.  

The models’  forms are in table 1. The model parameters (highlighted) dictate the rate of field defect occurrences. 
We predict the model parameters using metrics-based modeling methods. Interpretations of the models and 
discussions of the match between the SRGMs and the field defect-occurrence phenomenon (e.g. in Musa [23] and 
in Kenny [4]) are beyond the scope of this paper. This dimension of variation addresses the question: 
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Which SRGM yields the most accurate field defect- occurrence rate forecasts?  
Table 1.  Software reliability models 

Model type Model form 
Exponential (t) = N  e 

– �  t 

Weibull  (t) = N   t 
� -1

 e 
–  

�
 t 

�
 

Gamma  (t) = N   
�

 t 
� -1

 e 
–  

�
 t
 

2.2.2 Metrics-based modeling methods 
Prior work has explored using metrics-based modeling methods to predict quantities (e.g. the total number of field 
defects). It may be possible to use these methods to predict model parameters that describe the field defect-
occurrence pattern. We consider metrics-based modeling methods that have been used in previous studies to 
predict quantities. We discuss these methods in detail in section 5. 

Many studies have compared the accuracy of predicted classifications of various metrics-based models (e.g. 
Khoshgoftaar et al. [7]). Few studies have compared the accuracy of predicted quantities of various metrics-based 
models (e.g. Khoshgoftaar et al. [11]). No work has compared the accuracy of predicted field defect-occurrence 
rates of various metrics-based methods. This dimension of variation addresses the question:  

Which metrics-based modeling method predicts model parameters that produce the most accurate field 
defect-occurrence rate forecasts? 

2.2.3 Predictors 
Metrics available before release are predictors, which can be used by metrics-based modeling methods to predict 
model parameters. 

We categorize predictors used in prior work using an augmented version of the categorization schemes used by 
Fenton and Pfleeger in [1] and by Khoshgoftaar and Allen in [5]: 

• Product metrics: metrics that measure attributes of any intermediate or final product of the software 
development process. Product metrics have been shown to be important predictors by studies such as 
Khoshgoftaar et al. [6]. 

• Development metrics: metrics that measure attributes of the development process. Development metrics have 
been shown to be important predictors by studies such as Mockus et al. [20]. 

• Deployment and usage metrics (DU): metrics that measure attributes of deployment of the software system and 
usage in the field. DU metrics have been shown to be important predictors by studies such as Jones et al. [3]. 

• Software and hardware configurations metrics (SH): metrics that measure attributes of the software and 
hardware systems that interact with the software system in the field. SH metrics have been shown to be 
important predictors by Mockus et al. [21].  

Prior work has only examined commercial software systems, and no prior work has examined predictions using 
predictors in all the categories simultaneously. In this paper, we compare using only predictors in the referenced 
work (e.g. product metrics only) and using a superset of predictors (i.e. predictors in all the categories). This 
dimension of variation addresses the question:  

Do more predictors and more categories of predictors yield more accurate forecasts? 

3 SYSTEM DESCRIPTION  
OpenBSD is an open source Unix-style operating system written primarily in C. The OpenBSD project uses the 
Berkley copyrights. The Berkley copyrights retain the rights of the copyright holder, while imposing minimal 
conditions on the use of the copyrighted material; therefore, OpenBSD has been incorporated into several 
commercial products.  
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The OpenBSD project puts out a release approximately every six months. The release dates are published on the 
web. The OpenBSD project manages its source code using a CVS code repository, uses a problem tracking 
system, has multiple mailing lists.  The project dates back to 1995 and is described in more detail in Li et al. [17].  

We examined the project between approximately 1998 and 2004. During that time, there were 11 releases (of 
which we examine 10, as we explain below).  

4 DATA COLLECTION  
We consider the published date of release (announced on the OpenBSD website) rounded to the nearest month to 
be the release date for the release. We round the release date to the next month (i.e. a ceiling function) due to the 
time it takes to install the system, use the system, discover a problem, and the report the problem. Someone 
reporting a bug right after the un-rounded release date is unlikely to be using the latest release. Mockus et al. use 
the same approach in [21].  

4.1 Data extraction  
We briefly discuss our data extraction process. A detailed description is in Li et al. [17].  

We wrote Java and perl programs to download problem reports from the OpenBSD website and to extract the 
number of messages in the mailing lists archives.  

There was one anomaly. Three months of field defect-occurrence data were missing between August 2002 and 
October 2002. We verified this by examining the bugs mailing list archive (i.e. the mailing lists that records 
messages to the request tracking system). The mailing list archive showed no bugs recorded during that time 
interval even though there was activity on the bugs mailing list, which indicated that problems did occur. This 
happened during development and deployment of release 3.2. As a result, we did not examine release 3.2.  

We used the CVS checkout command to download the source code from the CVS repository for releases 2.4 to 
3.4 (except release 3.2). We then used five metrics tools and several scripts to compute product metrics for the C 
source files. We computed predictors for each file then summed the predictors for all files in the system. 

4.2 Predictor computation 
We briefly discuss the predictors we collect. A detailed description of the predictors is in Li et al. [17]. 

We attempted to collect the same metrics as the referenced studies (discussed in section 5). We collected the same 
metrics when possible and collected metrics that capture the same intent otherwise. All the predictors used in 
previous studies were product metrics. We computed product metrics (106 metrics) and development metrics (22 
metrics) that capture each sources of variance in product and development metrics identified by Munson and 
Khoshgoftaar in [22] and by Khoshgoftaar et al. in [14]. Furthermore, we computed metrics that capture 
information about deployment and usage (9 metrics) and software and hardware configurations in use (7 metrics).  

We collected deployment and usage metrics in two categories: mailing list predictors and request tracking system 
predictors. Mailing list predictors counted the number of messages to non-hardware related mailing lists during 
development. We believed our mailing list predictors were valid because they quantified the amount of interest in 
OpenBSD, which might be related to deployment and usage. Request tracking predictors counted the number of 
problem reports during development that were not defects (e.g. documentation problems). We believed our 
request tracking system predictors were valid because users had to install OpenBSD and use the system before 
they could report a problem. An example of a deployment and usage metric is TechMailing, which is the number 
of messages to the technical mailing list during the development period.  

We collected software and hardware configuration metrics in two categories: mailing list predictors and request 
tracking system predictors. Mailing list predictors counted the number of messages to hardware specific mailing 
lists during development. We believed our mailing list predictors were valid because they reflected the amount of 
interest/activity related to the specific hardware, which might be related to how many of the specified hardware 
machines had OpenBSD installed. Request tracking predictors counted the number of defects (field defects and 
development defects) during development that identified the type of hardware used. We believed our request 
tracking system predictors were valid because users had to install OpenBSD on the specified HW before they 
could report a problem. An example of a software and hardware configurations metric is AllDefectHWSparc, 
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which is the number of field defects reported against all active release during the development period that identify 
the machine as of type Sparc.  

5 DATA ANALYSIS  
In this section, we describe the modeling methods in each referenced work as well as the adjustments we had to 
make.  A more detailed discussion is in the Appendix. 

We predicted model parameters using each of the metrics-based modeling method (the same method for all model 
parameters). Accuracy of the resulting field defect-occurrence rate forecast was evaluated using the Theil 
forecasting statistic. Analysis was preformed using the open source statistical package R [26].  

The Theil statistic compares the forecast for each time interval i against a no-change forecast based on the 
previous time interval's value [28].      

 
The Theil statistic U is greater or equal to zero. The term Pi is the projected change and Ai is the actual change in 
interval i. A Theil statistic of zero indicates perfect forecasts with Pi = Ai. A Theil statistic of one indicates that 
forecasts are no better than no-change forecasts with Pi = 0. Values greater than 1 indicate forecasts are worse 
than no-change forecasts. We consider forecasts accurate if the resulting Theil statistic is less than 1. 

5.1 Principal component analysis, clustering, and linear regression 
We roughly replicated (explained below) the principal component analysis (PCA), clustering, and linear 
regression method in Khoshgoftaar et al. [10]. PCA constructs new predictors that capture all the variation in the 
original predictors using linear combinations of the original predictors. Clustering groups observations together 
based on predictors’  values. 

Khoshgoftaar et al. [10] constructed principal components and then clustered observations using the principal 
components. They fitted linear models to the observations in each cluster. To predict for a new observation, the 
observation was placed into one of the clusters based on its predictors’  values. The fitted linear model for the 
cluster was then used to predict for the new observation. 

Khoshgoftaar et al. [10]  predicted field defects for modules using 11 product metrics. They fitted models using 
260 observations in four clusters. Since we only had 9 observations, we modified the process to use two clusters 
and to fit a null linear model for each cluster (i.e. an average of the observations). In addition, we did not have 
enough observations to perform a PCA. Therefore, when using the same predictors as the original study, we used 
the linear coefficients of the referenced work to construct principal components. When using all the predictors, we 
did not conduct a PCA. We used the popular K-means clustering method, since Khoshgoftaar et al. [10] did not 
identify the clustering method used.  

5.2 Linear regression with model selection 
We replicated the linear regression with model selection method in Khoshgoftaar et al. [11] and in Khoshgoftaar 
et al. [8]. Linear regression models the predicted value using a linear combination of predictors’  values. Model 
selection keeps predictors that improve the fit significantly as judged by a model selection criterion (e.g. AIC).  

Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8] used backwards and stepwise model selection techniques to 
select a subset of predictors. They fitted a linear regression model using the selected predictors and the least 
squares method. To predict for a new observation, the predictors’  values and the fitted model were used to 
estimate the value. 

Khoshgoftaar et al. [11] and Khoshgoftaar et al. [8] predicted field defects for modules of two systems using 8 
product metrics for one system and 11 product metrics for the other system. They used 188 and 226 observations 
to fit models for the two systems. Due to data constraints, we modified our model selection method to select only 
one predictor (to prevent over fitting). Since no model selection criterion was identified in Khoshgoftaar et al. 
[11] and Khoshgoftaar et al. [8], we used the popular AIC model selection criterion. 

U 2 = 

�
 (Pi – Ai )

2 

�
 Ai 

2 
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5.3 Non-linear regression  
We replicated the non-linear regression method used in Khoshgoftaar and Munson [9] and in Khoshgoftaar et al. 
[8]. Non-linear regression models the predicted value using a non-linear combinations of the predictors’  values.  

Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8] used non-linear least squares regression to construct 
non-linear models of the form: 

y = b0 +  b1 *  (LOC) 
b2

 

y = number of faults, b0, b1, b2 were modeling parameters, LOC was lines of code 

For a new observation, the value of the lines of code predictor was inserted into the fitted model to produce a 
prediction.  

Khoshgoftaar and Munson [9] and Khoshgoftaar et al. [8] used 15 observations to train the model. We found that 
it was not possible to fit a model with three parameters using 9 observations; therefore, we simplified the model 
by dropping a modeling parameter. Our model was: 

y = b1 *  (LOC) 
b2

 

5.4 Trees  
We replicated the Classification and Regressions Trees (CART) method in Khoshgoftaar and Seliya [13]. The 
trees method iteratively splits observations into similar groups as judged by the predicted value using predictors’  
values. 

Khoshgoftaar and Seliya [13] built a regression tree using training observations and a minimum node size of 10. 
To predict for a new observation, the observation traversed the tree until it reached a leaf node. The mean of the 
training observations in the leaf node was the predicted value of the new observation. 

Khoshgoftaar and Seliya [13] predicted field defects in modules using 9 product metrics. They fitted models using 
4648 observations. Since we had at most 9 training observations, we built trees with varying minimum node sizes 
of between 2 to 7.  

5.5 Neural networks 
We replicated the feed-forward neural networks method used in Khoshgoftaar et al. [12] and Khoshgoftaar et al. 
[11]. Neural networks use non-linear functions to combine predictors’  values to produce an output.  

A neural networks model is a multi-layer perceptron model that produces a value between 0 and 1. The predictors 
are in one layer, with each predictor as one neuron, and the output is in one layer. A non-linear function is used to 
combine values to connect layers and to produce the output. For a new observation, the predictors’  values are 
placed on the outer layer and the predicted value between 0 and 1 is produced at the output neuron.  

Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11] scaled all values (predictors and the predicted value) to be 
between 0 and 1 by dividing by the value of the maximum element in each set. The data were then used to fit a 
neural network. To predict for a new observation, the predictors’  values were used to produce a value between 0 
and 1. The value was then scaled up according to the range of the predicted value in the training set.  

Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11]  predicted field defects for the same two systems as the 
linear regression with model selection method. They used 16 and 18 hidden layer neurons for the two systems. 
We modified the process by fitting separate neural networks for each predictor (i.e. one input neuron) using one 
hidden layer neuron. For each release, we selected the best model by evaluating fitted values. The most accurate 
model was then used to make predictions for the next release.  

5.6 Exponential smoothing and moving averages 
We replicated the moving averages and exponential smoothing methods used in Li et al. [15].  

To predict for the next release, a weighted average of the values from historical releases was used. For the moving 
averages method, each historical release received equal weight. For exponential smoothing method, releases 
closer in time received more weight, since recent releases might be more similar to the current release. Li et al. 
[15] considered averaging 2-7 releases. We made no modifications to the method.  
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6 RESULTS  
This section summarizes results of our 99 forecasting experiments. The top 10 SRGM, prediction method, and 
predictors combinations based on the average Theil statistic are in table 2. Complete results are in Appendix B. 

No training data was available for the first release (R2.4) and we excluded release 3.2; therefore, we predicted for 
nine releases. Many combinations were not able to predict for all releases because the modeling methods required 
additional data.  

Our approach yields accurate forecasts, as measured by the Theil statistic (discussed in section 5). The accuracy is 
also evident upon a visual inspection of our forecasts. A plot of the nine releases and forecasts of the top three 
combinations are in figure 2. 

Table 2.  Theil forecasting statistics 

Model, method, predictor combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 Avg  
Exponential model using the moving averages 
method of 2 releases using no predictors 

  .7520 .5911 .5267 .3099 .5982 .6925 .6142 .4360 .5651 

Exponential model using the non-linear  regression 
method using lines of code (same predictors as 
referenced work) 

      .7017 .3172 .7830 .6788 .4023 .5079 .5651 

Exponential model using the trees method 
splitting with six observations using all 
predictors  

.7048 .7520 .4407 .6978 .2984 .5713 .6745 .6754 .2991 .5682 

Exponential model using the exponential 
smoothing method of five releases using no 
predictors  

      .2973 .6795 .6795 .6858 .6058 .6547 .5846 

Gamma model using the non-linear method using 
lines of code (same predictors as referenced work) 

      .6690 .4052 .7056 .6590 .4393 .6412 .5866 

Exponential model using the exponential 
smoothing method of four releases using no 
predictors 

    .6462 .3222 .3222 .6469 .6890 .6117 .6180 .5890 

Exponential model using the moving averages 
method of four releases using no predictors  

    .6978 .3047 .3047 .6418 .6883 .5264 .6854 .5907 

Exponential model using the exponential 
smoothing method of two releases using no 
predictors  

  .6436 .6436 .5365 .3577 .6202 .6926 .6746 .4386 .5908 

Exponential model using trees method splitting on 
with 7 releases using all predictors  

.7048 .7520 .4407 .6978 .2983 .7854 .6745 .6754 .2991 .5920 

Exponential model using the moving averages 
method of three releases using no predictors 

  .4407 .6504 .6166 .3695 .6610 .6926 .6834 .6207 .5932 
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Figure 2. Predicted defect-occurrence rates at the time of release 
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The trees method splitting with a minimum of six observations using the Exponential model and 
all predictors is the best combination (highlighted in table 2). It is able to predict for all releases 
and its average Theil statistic is within .0032 of the best Theil statistic. In addition, of the top ten 
combinations, it has the best Theil statistics for 6 out of the 9 releases (more than any other 
combination) and its Theil statistics is within .401 of the best Theil statistics for all releases. The 
predictors used in the trees are in table 3. The fitted trees for the two parameters of the 
Exponential model for Release 3.4 (the most recent release) are in figures 3 and 4.  

Table 3.  Predictors used 

Metric Definition Prediction used 
AllDefectHWSpa
rc 

Field defects reported during the development period that 
identify the machine as of type Sparc 

parameter N for 
R3.0 and R3.3 

LOC Lines of code 
parameter  for R3.0 
and N for R3.1 

CommentInline Inline comments 
parameter  for R3.1 
and R3.3 

TechMailing 
Messages to the technical mailing list during the 
development period 

parameter N for 
R3.4 

NotCUpdate 
Updates (deltas) to non-c-source-files during the 
development period 

parameter  for R3.4 

 

 
Figure3. Fitted CART for Exponential parameter N for release 3.4 

 
Figure 4. Fitted CART for Exponential parameter �  for release 3.4 

7 DISCUSSION  
In this section, we present our conclusions regarding SRGMs, modeling methods, and predictors 
based upon our results.  

7.1 Reliability models 
Our results indicate that the simple Exponential model is better than more complex models like 
Gamma and Weibull models when forecasting field defect-occurrence rates before deployment. 

Post facto fits had shown the Weibull model to be the best model based on AIC, which penalized 
for extra model parameters. However, in our experiments, nine out of the top ten combinations 
used the Exponential model. The Exponential model had only two model parameters that needed 
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to be predicted. The Weibull and Gamma models each had three. In addition, the model form of 
the exponential model was simpler. The Exponential model did not have a power term, thus 
errors in parameter predictions were not magnified. These factors might have contributed to better 
forecasts using the Exponential model. 

7.2 Modeling methods 
Our results indicate that the trees method can predict model parameters that result in accurate 
forecasts even when data are scarce.   

We had at most 9 training observations (in a real world setting, more data is unlikely to be 
available). Other metrics-based modeling techniques might not have been effective because they 
did not have enough training data. For example, the neural network method in Khoshgoftaar et al. 
[12] and Khoshgoftaar et al. [11] had ~20x more training observations. If more data were 
available, other metrics-based methods might have produced better results. However, the trees 
method was effective even though Khoshgoftaar and Seliya [13] had ~500x more training 
observations. This supported our conclusion that the trees method was the best method.  

7.3 Predictors  
Our results indicate that accurate forecasts (i.e. forecasts that are in the top ten in terms of the 
Theil forecasting statistic) are possible even with few (e.g. only lines of code) or no predictors.  

Six out of ten combinations in the top ten were moving averages or exponential smoothing 
methods. They did not use any predictors. Of the other four methods in the top ten, two used all 
the predictors (trees methods) and two used only lines of code (non-linear regression methods).  

First, since we collected 145 predictors and had at most 9 observations in the training set, 
spurious fits (i.e. fits that are better by chance) might have occurred. This might have reduced the 
benefits of having more predictors.  

When all the predictors were used, the important predictors included predictors capturing 
characteristics of the development process (NotCUpdates), of the deployment and usage pattern 
(TechMailings), and of the software and hardware configurations in use (AllDefectHWSparc). 
Out findings supported previous findings that non-product related metrics are important 
predictors of field defects (e.g. Mockus et al. [21]).    

Secondly, as evident in figure 2, the field defect-occurrence patterns of OpenBSD releases were 
very similar and thus changes in predictors did not correspond to changes in model parameter 
values. The developers of OpenBSD might have been able to evaluate their ability to implement 
features and to fix defects. Thus, the releases were released with similar quality and similar field 
defect occurrence patterns. The field defect-occurrences rates peaked within 3 months of the 
release date for all but two of the releases,.  

8 CONCLUSION  
In this case study, we have forecasted field defect occurrence rates over the entire lifespan of 
releases using only information available before release for OpenBSD using a novel approach of 
combining the time-based approach and the metrics-based approach. The results are interesting 
and appropriate for a case study; however, they need to be replicated to show general 
applicability. We envision replicating our experiment for commercial systems to examine 
differences due to development methods, as well as for other open source software systems.  

We have shown that accurate forecasts are possible, as measured by the Theil forecasting 
statistic; however we have not determined if the forecasts are accurate enough for quantitatively-
based decision making methods. Future work needs to address the issue. Confidence bounds and 
intervals also need to be considered. 
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We have tried to replicate modeling methods and to collect the same metrics as in previous 
studies. However, there may be differences due to specific definitions and modeling tuning 
parameters. These differences are acceptable for empirical replications as discussed by Ohlsson 
and Runeson in [24].    

Our field defect-occurrence rates forecasts are steps towards quantitatively-based decision 
making, which can lower the risks associated with field defect occurrences. 
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APPENDIX A 
In this section, we present results of comparing the suitability of SRGMs used in literature to 
model field defect-occurrence patterns for 10 releases of OpenBSD. We replicate the experiments 
in Li et al.[16]  by using the same set of models and using the same model comparison criterion 
(i.e. AIC). The difference is that Li et al. [16] considered the date of the first defect reported 
against a release as the release date. In this study, we consider the published date of release as the 
release date. Our results show that the Weibull model is still the preferred model. 

We consider the Exponential model, the Gamma model, the Logarithmic model, the Power 
model, and the Weibull model. These models are promising because prior research in software 
reliability engineering has shown each model to be effective at modeling defect-occurrence 
patterns at a software development organization. Each model is parametric. The number of defect 
occurrences during the t-th time interval is determined by the model parameterization and the 
current time interval. The number of defect occurrences within a time interval is modeled as a 
binomial process with a stationary non-homogenous Poisson defect rate (t). Table A1 lists the 
models. Lyu [19] provides details about the models, including researchers who have developed 
and applied the models in practice.  

Table A1. Candidate models 

We fit the best set of parameters for each candidate model for each release using Non-linear Least 
Squares (NLS) regression then compare the candidate models using the Akaike Information 
Criterion (AIC) model selection criterion [26]. 

NLS is a well-established model fitting procedure that selects model parameters by minimizing 
the square of the difference between fitted values and actual values [26]. We use the open source 
statistical computing package R [26]. After we select the best parameters for each candidate 
model for a given release, we use the AIC model selection criterion to evaluate the fit of the 
different candidate models; lower AIC scores are better. The AIC score is defined as: 

AIC =  n  log  2   + 2  |S| 

where 2 is the residual squared error divided by the difference of the number of observations, n, 
and the number of model parameters, S [28]. The AIC model selection criterion penalizes models 
with more parameters to offset the advantage models with more parameters have in comparisons. 
Furthermore, since the AIC is a measure of deviance, it roughly follows a 2 (chi-squared) 
distribution, which makes 4 a rough 95% confidence band around an AIC score. 

Li et al. [16] found that  the Weibull model had the best AIC score for 81.8% of the open source 
software system releases and was within the rough 95% CI for 90.9% of the open source software 
system releases. In this experiment, we found that the Weibull model had the best AIC score for 
80% of the releases and was within the rough 95% CI for 100% of the releases. The second best 

Model type Model name Model form 
Researchers/users of the 

model 

Exponential 
Non-homogenous Poisson 

process model 
�
(t) = N �  e – �  t Goel & Okumoto [23] 

Weibull Weibull �
(t) = N �  �  t � -1 e –  �  t �

 Schick-Wolverton [19] 

Gamma 
S-shaped reliability growth 

model 
�
(t) = N  �  �  t � -1 e –  �  t Yamada, Ohba & Osaki [19] 

Power Duane Model 
�
(t) = �  �  e – �  t Duane [19] 

Logarithmic 
Musa-Okumoto logarithmic 

Poisson model 
�
(t) = �  (�  �  t +1) – 1 Musa-Okumoto [23] 
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models, based on being within the 95% CI, was the Gamma model, which had the best AIC score 
for 10% of the releases and was within the rough 95% CI for 90% of the releases. The second 
best models, based on having the best AIC score, was the Exponential model, which had the best 
AIC score for 30% of the releases and was within the rough 95% CI for 50% of the releases.  

We conclude that Weibull is better than the other models at modeling the field defect-occurrence 
pattern of OpenBSD. The AIC scores are presented in table A2, with the best AIC score(s) 
highlighted for each release. Plots of the fitted models are in figures A1-A10.  

Table A2. AIC scores for open source OS using general availability 

Release \ Model Exponential Model Weibull Model Gamma Model Power Model 
Logarithmic 

Model 

2.4 81 67 70 89 87 

2.5 84 81 82 93 90 

2.6 125 115 118 137 134 

2.7 84 67 68 122 120 

2.8 116 109 110 135 132 

2.9 64 65 65 86 85 

3.0 73 40 45 81 79 

3.1 158 159 159 161 160 

3.2 88 84 85 101 99 

3.3 48 48 48 54 53 
 

 
Figure A1. Field defects release 2.4   Figure A2. Field defects release 2.5               
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Figure A3. Field defects release 2.6             Figure A4. Field defects release 2.7 

 
Figure A5. Field defects release 2.8             Figure A6. Field defects release 2.9 

 
Figure A7. Field defects release 3.0             Figure A8. Field defects release 3.1 
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Figure A9. Field defects release 3.2             Figure A10. Field defects release 3.3 
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APPENDIX B 
In this section, we present the Theil forecasting statistics for all 99 forecasting experiments. The 
results are in table B1. The combinations are in ranked order (from best to worst) according to 
their average Theil statistic (i.e. in ascending order). For each combination, we show the Theil 
statistics for each release that a combination is able to forecast, the average Theil statistics, as 
well as the difference between the best prediction and the worst prediction (an estimate of 
variability). The different between best prediction and the worst prediction indicates the 
variability of predictions. The idea is to consider a combination that produces consistently 
accurate forecasts.  

The preferred trees combination has slightly higher variability than other combinations in the top 
ten (.1 worse than the combination with the best variability). However, it is better than 81 (82%) 
combinations. The best combination with the best variability is the Exponential model using the 
exponential smoothing method of six releases (variability of .1365 and an average Theil statistic 
of .6469).  

We encode the combinations as follows: 

1. Type of reliability model 
c. Weibull model (W) 
d. Gamma model (G) 
e. Exponential model (E) 

2. Modeling methods:  
f. Moving averages (M#). The number (2-7) indicates the number of releases in the moving 

average.  
g. Exponential smoothing (X#). The number (2-7) indicates the number of releases being 

smoothed. 
h. Linear modeling (L) 
i. Clustering (C) 
j. Trees (T#). The number (2-7) indicates the minimum number of releases before splitting. 
k. Nonlinear modeling (R) 
l. Neural networks (N) 

3. Predictors:  
m. Using the same set of predictors as the referenced work (S) 
n. Using the complete set of predictors collected (A) 
o. Not using any predictors (-) 

Table B1. Theil forecasting statistics 

Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 
Average 

Theil 
Variability 

E(M2)-   0.7520 0.5911 0.5266 0.3099 0.5982 0.6925 0.6142 0.4360 0.5651 0.4422 

ERS    0.7017 0.3172 0.7830 0.6787 0.4023 0.5079 0.5651 0.4657 

E(T6)A 0.7048 0.7520 0.4407 0.6978 0.2983 0.5713 0.6745 0.6754 0.2991 0.5682 0.4537 

E(X5)-      0.2973 0.6795 0.6858 0.6058 0.6547 0.5846 0.3884 

GRS    0.6641 0.4105 0.7642 0.6614 0.4844 0.6167 0.5866 0.3537 

E(X4)-     0.6462 0.3222 0.6469 0.6890 0.6116 0.6180 0.5890 0.3668 
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Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 
Average 

Theil 
Variability 

E(M4)-     0.6978 0.3047 0.6418 0.6883 0.5264 0.6854 0.5907 0.3931 

E(X2)-   0.7623 0.6436 0.5365 0.3577 0.6202 0.6926 0.6746 0.4386 0.5908 0.4046 

E(T7)A 0.7048 0.7520 0.4407 0.6978 0.2983 0.7854 0.6745 0.6754 0.2991 0.5920 0.4871 

E(M3)-    0.4407 0.6504 0.3459 0.6651 0.6925 0.6477 0.7104 0.5932 0.3645 

E(X3)-    0.5135 0.6165 0.3695 0.6610 0.6926 0.6834 0.6207 0.5939 0.3231 

E(M7)-        0.6789 0.3954 0.7073 0.5939 0.3119 

E(T5)A 0.7048 0.7520 0.4407 0.6978 0.5193 0.5713 0.6745 0.6754 0.3276 0.5959 0.4245 

E(M5)-      0.2983 0.7268 0.6819 0.5331 0.7587 0.5998 0.4603 

WRS    0.6690 0.4052 0.7056 0.6590 0.4392 0.6412 0.6002 0.3004 

G(M2)-   0.5183 0.5325 0.4775 0.3143 0.5035 0.6748 0.5951 1.2602 0.6095 0.9459 

WCS   0.7643 0.4657 0.3151 0.5794 0.6754 0.5108 0.9638 0.6106 0.6487 

WCA   0.7643 0.4657 0.3151 0.5794 0.6754 0.5108 0.9638 0.6106 0.6487 

E(X7)-        0.6799 0.5381 0.6454 0.6211 0.1418 

G(X2)-   0.5211 0.5525 0.4899 0.3579 0.5422 0.6727 0.6606 1.1748 0.6215 0.8170 

W(M2)-   1.0132 0.5454 0.4657 0.3151 0.4966 0.6830 0.5891 0.8896 0.6247 0.6981 

ECS   0.9689 0.5266 0.3099 0.6651 0.6883 0.5264 0.7002 0.6265 0.6591 

ECA   0.9689 0.5266 0.3099 0.6651 0.6883 0.5264 0.7002 0.6265 0.6591 

E(T4)A 0.7048 0.7520 0.4407 0.7593 0.5757 0.5713 0.6811 0.8357 0.3208 0.6268 0.5149 

W(T4)A 0.8087 1.0132 0.5155 0.4470 0.5035 0.3210 0.6995 0.5621 0.7850 0.6284 0.6921 

W(X4)-     0.6099 0.3908 0.5433 0.6760 0.5972 0.9785 0.6326 0.5878 

W(M4)-     0.6695 0.4099 0.5193 0.6754 0.5108 1.0268 0.6353 0.6169 

GCS   0.7773 0.4775 0.3143 0.5832 0.6704 0.5141 1.1380 0.6393 0.8236 

GCA   0.7773 0.4775 0.3143 0.5832 0.6704 0.5141 1.1380 0.6393 0.8236 

W(X3)-    0.5242 0.5823 0.4169 0.5824 0.6787 0.6743 1.0306 0.6413 0.6137 

W(X2)-   1.0318 0.5602 0.4791 0.3582 0.5366 0.6814 0.6554 0.8558 0.6448 0.6735 
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Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 
Average 

Theil 
Variability 

E(X6)-       0.7009 0.6812 0.5645 0.6409 0.6469 0.1365 

W(T6)A 0.8087 1.0132 0.5155 0.6695 0.4273 0.2271 0.6779 0.5695 0.9285 0.6486 0.7861 

W(X5)-      0.3889 0.5895 0.6702 0.6002 0.9956 0.6489 0.6067 

E(M6)-       0.7854 0.6761 0.4474 0.7002 0.6523 0.3380 

E(T4)S 0.7048 0.7520 0.4407 0.4858 0.3464 0.5083 0.6952 0.8312 1.1547 0.6577 0.8083 

W(M3)-    0.5155 0.6252 0.4208 0.5794 0.6781 0.6391 1.1518 0.6586 0.7310 

E(T6)S 0.7048 0.7520 0.4407 0.6978 0.2983 0.6237 0.7268 0.8914 0.8007 0.6596 0.5931 

W(T5)A 0.8087 1.0132 0.5155 0.6695 0.5035 0.2271 0.6886 0.5937 0.9285 0.6609 0.7861 

W(M5)-      0.4273 0.6518 0.6639 0.5415 1.0535 0.6676 0.6262 

W(T3)A 0.8087 1.0132 0.7273 0.4470 0.4530 0.5444 0.7190 0.6001 0.7412 0.6727 0.5662 

G(M4)-     0.6525 0.3777 0.5326 0.6704 0.5141 1.3043 0.6753 0.9266 

G(T7)A 0.6794 0.5183 0.4446 0.6525 0.3897 0.6875 0.8317 0.9896 0.8890 0.6758 0.5999 

G(X4)-     0.6025 0.3718 0.5531 0.6696 0.6021 1.2676 0.6778 0.8958 

G(X3)-    0.4752 0.5809 0.4081 0.5862 0.6718 0.6798 1.3728 0.6821 0.9648 

E(T7)S 0.7048 0.7520 0.4407 0.6978 0.2983 0.7854 0.7268 0.8914 0.8617 0.6843 0.5931 

W(M7)-        0.6612 0.4467 0.9559 0.6879 0.5092 

W(M6)-       0.6937 0.6587 0.4705 0.9638 0.6967 0.4933 

G(T3)S 0.6794 0.5183 0.7518 0.4517 0.2660 0.5035 0.6770 0.9686 1.4574 0.6971 1.1915 

G(X5)-      0.3673 0.5942 0.6646 0.6039 1.2603 0.6981 0.8931 

W(X6)-       0.6016 0.6647 0.5581 0.9703 0.6987 0.4122 

W(T2)A 0.8087 0.9847 0.7643 0.5906 0.5339 0.5661 0.7190 0.6001 0.7412 0.7009 0.4509 

G(M5)-      0.3897 0.6465 0.6594 0.5400 1.2737 0.7018 0.8841 

G(M3)-    0.4446 0.6191 0.4078 0.5832 0.6722 0.6439 1.5466 0.7025 1.1388 

W(T7)A 0.8087 1.0132 0.5155 0.6695 0.4273 0.6937 0.6779 0.5695 0.9579 0.7037 0.5859 

G(T6)A 0.6794 0.5183 0.4446 0.6525 0.3897 0.9647 0.8317 0.9896 0.8890 0.7066 0.5999 
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Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 
Average 

Theil 
Variability 

E(T3)S 0.7048 0.7520 0.9906 0.4858 0.2440 0.5139 0.6952 0.8312 1.1547 0.7080 0.9107 

E(T5)S 0.7048 0.7520 0.4407 0.6978 0.3464 0.6237 0.7268 0.8914 1.2020 0.7095 0.8556 

G(T6)S 0.6794 0.5183 0.4446 0.6525 0.3897 0.5393 0.7068 0.6378 1.8959 0.7182 1.5063 

G(T5)A 0.6794 0.5183 0.4446 0.6525 0.4979 0.9647 0.8317 0.9896 0.8890 0.7186 0.5450 

ELS   1.1607 0.4800 0.5003 0.5592 0.7074 0.8625 0.7702 0.7200 0.6808 

W(X7)-        0.6633 0.5407 0.9709 0.7250 0.4302 

G(M7)-        0.6568 0.4292 1.0890 0.7250 0.6598 

G(M1)-  0.6794 1.0505 0.7773 0.5902 0.5842 0.7301 0.6794 0.9813 0.4654 0.7264 0.5851 

E(T3)A 0.7048 0.7520 0.9906 0.6053 0.5757 0.7867 0.6751 1.1547 0.3208 0.7295 0.8340 

W(M1)-  0.8087 0.9847 0.7643 0.5906 0.5857 0.7281 0.6880 0.9851 0.4618 0.7330 0.5233 

G(T7)S 0.6794 0.5183 0.4446 0.6525 0.3897 0.6875 0.7068 0.6378 1.8959 0.7347 1.5063 

G(M6)-       0.6875 0.6560 0.4594 1.1380 0.7352 0.6786 

G(T4)A 0.6794 0.5183 0.4446 0.7644 0.5161 0.9946 0.9013 1.1035 0.7524 0.7416 0.6589 

E(M1)-  0.7048 0.9874 0.9689 0.6015 0.5913 0.7448 0.7005 0.9437 0.4504 0.7437 0.5371 

G(T5)S 0.6794 0.5183 0.4446 0.6525 0.3530 0.5393 0.7387 0.9168 1.8959 0.7487 1.5429 

W(T7)S 0.8087 1.0132 0.5155 0.6695 0.4273 0.6937 0.6759 0.5278 1.4505 0.7536 1.0232 

W(T3)S 0.8087 1.0132 0.7273 0.4672 0.2629 0.4842 0.6798 0.9599 1.4033 0.7563 1.1404 

W(T6)S 0.8087 1.0132 0.5155 0.6695 0.4273 0.5442 0.6759 0.5278 1.6533 0.7595 1.2259 

G(X6)-       0.6069 0.6609 0.5629 1.2170 0.7619 0.6541 

E(T2)S 0.7048 0.9874 0.9689 0.6015 0.2174 0.5139 0.7005 0.9437 1.2431 0.7646 1.0257 

G(T4)S 0.6794 0.5183 0.4446 0.5341 0.3530 0.5035 0.6770 0.9686 2.2266 0.7672 1.8736 

W(T2)S 0.8087 0.9847 0.7643 0.5906 0.2311 0.4842 0.6798 0.9599 1.4033 0.7674 1.1723 

E(T2)A 0.7048 0.9874 0.9689 0.6053 0.6904 0.7867 0.6970 1.1547 0.3220 0.7686 0.8327 

G(T3)A 0.6794 0.5183 0.7518 0.5703 0.5161 1.0784 0.9120 1.1508 0.7817 0.7732 0.6347 

WRA    0.3281 1.0245 0.5511 0.7316 0.7418 1.2653 0.7737 0.9372 
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Combination R2.5 R2.6 R2.7 R2.8 R2.9 R3.0 R3.1 R3.3 R3.4 
Average 

Theil 
Variability 

G(T2)S 0.6794 1.0505 0.7773 0.5902 0.2718 0.5035 0.6770 0.9686 1.4574 0.7751 1.1857 

W(T5)S 0.8087 1.0132 0.5155 0.6695 0.3429 0.5442 0.6928 0.7780 1.6533 0.7798 1.3103 

ERA    0.5137 0.8010 0.7034 0.8968 1.4322 0.4018 0.7915 1.0304 

ENA 0.6971 1.5209 0.5322 0.4369 0.6063 0.5160 0.7706 1.0484 1.0113 0.7933 1.0840 

G(X7)-        0.6591 0.5429 1.2015 0.8012 0.6586 

GNS 0.6752 0.9831 0.7273 0.4661 0.5570 0.7033 0.7861 0.9302 1.3823 0.8012 0.9162 

ENS 0.6981 1.4260 0.9601 0.4795 0.4274 0.5931 0.7700 1.0711 0.7892 0.8016 0.9986 

W(T4)S 0.8087 1.0132 0.5155 0.4109 0.3429 0.3670 0.6798 0.9599 2.1853 0.8093 1.8424 

WLS   1.4809 0.5154 0.5113 0.5166 0.6982 0.9966 0.9706 0.8128 0.9696 

G(T2)A 0.6794 1.0505 0.7773 0.5902 0.5936 0.9154 0.9120 1.1508 0.7817 0.8279 0.5605 

GLS   1.4459 0.6055 0.5414 0.5549 0.6548 0.7702 1.4023 0.8536 0.9045 

GRA    0.7156 0.6909 0.6438 0.6583 1.3167 1.2572 0.8804 0.6729 

GNA 0.6762 1.1480 0.5588 0.4391 0.6101 1.6885 0.8696 0.9845 1.1715 0.9051 1.2494 

WLA   1.4684 0.5578 1.6376 0.7179 0.7576 0.5660 1.0427 0.9640 1.0798 

ELA   1.8061 0.5866 0.9652 0.7136 1.0071 1.2956 0.4422 0.9738 1.3639 

GLA   1.0194 1.4242 1.1384 0.5002 0.7702 1.0481 1.0032 0.9862 0.9240 

WNA 0.8077 1.4169 1.4571 1.3449 0.5797 0.4837 0.6952 1.1036 0.9975 0.9874 0.9734 

WNS 0.8083 1.4967 0.7267 1.4135 0.8596 0.8276 0.8382 1.0616 1.1159 1.0165 0.7700 
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APPENDIX C 
In this section, we discuss the differences between the predictors used in the referenced studies 
and the predictors in this study. In general, we use the same predictors when possible and 
predictors that capture the same intent otherwise. In each reference work, the metrics are 
collected at the module level. In this study, we collect metrics at the program level; therefore, 
metrics are collected for each file then summed across files.  

In addition to the set of metrics discussed in detail in [17], we collected the following metrics for 
this study: 

Program length: Estimated program length in C source files calculated by adding the total 
number of operators and the total number of operands calculated by the metrics tool Metrics 

Jenson’s program length:  Estimated program length in C source files calculated using unique 
operators and unique operands calculated by the metrics tool Metrics 

Calls to procedures: Calls to procedures calculated using the metrics tool Understand 

Calls within files: Calls to procedures within files using the metrics tool Understand 

Calls to other files: Calls to procedures in other files using the metrics tool Understand 

The metrics tools we used were: 

• RSM by M Squared Technologies  

• SourceMonitor by Campwood Software 

• c_count written by Thomas E. Dickey 

• metrics written by Brian Renaud  

• Understand by STI 

 

C.1 Principal component analysis, clustering, and linear 
regression 
We replicated the principal component analysis (PCA), clustering, and linear regression method 
in Khoshgoftaar et al. [10]. The referenced work predicted field defects for modules using 11 
product metrics shown in table C1.  

First, we define terms: 

N1= Total number of operators 

N2= Total number of operands 

1= Unique operators 

 2= Unique operands 

L i = Number of nodes at level i 
Table C1. Metrics mapping 

Predictor used in referenced paper Predictor used in this study 

Lines of code including comments 
Total number of lines in C source files calculated by the 
metrics tool C_Count  

Lines of code excluding comments 
Lines with code in C source files calculated by the 
metrics tool C_Count 

Number of characters 
Total number of characters in C source files calculated 
by the metrics tool C_Count 
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Predictor used in referenced paper Predictor used in this study 

Number of comments 
Lines with comments in C source files calculated by the 
metrics tool C_Count 

Number of comment characters 
Total number of comment characters in C source files 
calculated by the metrics tool C_Count 

Number of code characters 
Statement characters in C source files calculated by the 
metrics tool C_Count 

Program length:  

N = N1 + N2 

Estimated program length in C source files calculated by 
adding N1 and N2 calculated by the metrics tool Metrics 

Halstead’s estimated program length: 

N = 1log2 1 + 2log2 2 
Halstead’s estimated program length in C source files 
calculated by the metrics tool Metrics 

Jenson’s estimated program length: 

N = log2 1!+ log2 2! 
Estimated program length in C source files calculated 
using 1 and 2 calculated by the metrics tool Metrics 

McCabe’s Cyclomatic complexity 
Cyclomatic complexity calculated by the metrics tool 
RSM 

Belady’s bandwidth metrics: 

BW= 1/n i iL i 

Modified bandwidth metric calculated using statements 
and nesting depth information from the metrics tool 
Source Monitor. Source Monitor only count nesting up 
to 10 levels.  Therefore, the modified metric clip counts 
the statements at nesting of 10 levels as 10 levels. 

 
C.2 Linear regression with model selection 
We replicated the linear regression with model selection method fitted using the least squares 
used in Khoshgoftaar et al. [11] and in Khoshgoftaar et al [8].   

The referenced work predicted field defects for modules of two systems using 8 product metrics 
for one system and 11 product metrics for the other system. Both [11] and [8] used the metrics 
presented in the table C2, only [11] use the metrics presented in table C1. We considered the 
union of the sets of metrics as metrics used in the referenced studies.  

Table C2. Metrics mapping 

Predictor used in referenced paper Predictor used in this study 

Unique operators ( 1) 
Unique operators in C source files calculated by the 
metrics tool Metrics 

Unique operands (  2) 
Unique operands in C source files calculated by the 
metrics tool Metrics 

Total operators (N1) 
Total operands in C source files calculated by the 
metrics tool Metrics 

Total operands (N2) 
Total operators in C source files calculated by the 
metrics tool Metrics 

Halstead’s estimated program length: 

N = 1log2 1 + 2log2 2 
Halstead’s estimated program length in C source files 
calculated by the metrics tool Metrics 

Halstead’s effort metric: 

E = 1N2 (N1+N2)log2 ( 1 + 2) /2 2 
Halstead’s effort metric for C source files calculated by 
the metrics tool Metrics 
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Predictor used in referenced paper Predictor used in this study 

Halstead’s program volume: 

V= N log2 ( 1 + 2) 
Halstead’s program volume in C source files calculated 
by the metrics tool Metrics 

McCabe’s Cyclomatic complexity 
Cyclomatic complexity calculated by the metrics tool 
RSM 

Extended McCabe’s Cyclomatic 
complexity: 

Cyclomatic complexity + number of 
logical operators 

Cyclomatic complexity calculated by the metrics tool 
RSM plus the number of logical decisions as indicated 
by the key word ‘ if’  calculated by the metrics tool RSM 

Number of procedures 
Calls to procedures calculated using the metrics tool 
Understand 

Number of comment lines 
Lines with comments in C source files calculated by the 
metrics tool C_Count  

Number of blank lines 
Blank lines in C source files calculated by the metrics 
tool C_Count 

Lines of code 
Lines with code in C source files calculated by the 
metrics tool C_Count 

Executable source lines of code 
Statements in C source files calculated by the metrics 
tool C_Count 

C.3 Non-linear regression  
We replicated the non-linear regression method fitted using non-linear least squares used in 
Khoshgoftaar and Munson [9] and in Khoshgoftaar et al. [8]. The referenced studies used lines of 
code. We used the lines of code calculated by the metrics tool Source Monitor. 

C.4 Trees  
We replicated the Classification and Regressions Trees (CART) method in Khoshgoftaar and 
Seliya [13]. The referenced work predicted field defects in modules using 9 product metrics. The 
exact same predictors were not available in our setting. We tried to use predictors that captured 
the same intent as the predictors in [13].We show the metrics used in [13] and the metrics we 
used in table C3.  

Table C3. Metrics mapping 

Predictor used in referenced paper Predictor used in this study 

Unique procedure calls 

Total calls to others 

Calls to procedures calculated using the metrics tool 
Understand 

Calls to procedures within files using the metrics tool 
Understand 

Calls to procedures in other files using the metrics tool 
Understand 

Distinct files included Number of “ include”  calculated by the metrics tool RSM 

McCabe’s Cyclomatic complexity 
Cyclomatic complexity calculated by the metrics tool 
RSM 
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Predictor used in referenced paper Predictor used in this study 

Number of loops 

Number of if-then structures 

Number of occurrence of the key word “ if”  calculated by 
the metrics tool RSM 

Number of occurrence of the key word “else”  calculated 
by the metrics tool RSM 

Number of occurrence of the key word “do”  calculated 
by the metrics tool RSM 

Number of occurrence of the key word “while”  
calculated by the metrics tool RSM 

Number of occurrence of the key word “ for”  calculated 
by the metrics tool RSM 

Total nesting level 

Total number of vertices within the 
span of loops or if-then structures 

Total edges plus vertices within loop 
structures 

Modified bandwidth metric calculated using statements 
and nesting depth information from the metrics tool 
Source Monitor. 

Statements at nesting level greater than 10 calculated 
using the metrics tool Source Monitor 

Effective lines of code calculated by the metrics tool 
RSM 

C.5 Neural networks 
We replicated the feed-forward neural networks method trained using backward error propagation 
used in Khoshgoftaar et al. [12] and Khoshgoftaar et al. [11]. The referenced work predicted field 
defects for modules of two systems using 8 product metrics for one system and 11 product 
metrics for the other system. These were the same metrics used for linear regression with model 
selection (shown in table C1 and table C2). 


