
Construct User Guide

Kathleen M. Carley, Kenny Joseph, Michael Kowalchuck,
 Michael J. Lanham, Geoffrey P. Morgan

{kathleen.carley, kjoseph, kf3cr, mlanham, gmorgan}@cs.cmu.edu

December 2014
CMU-ISR-14-105R

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Center for the Computational Analysis of Social and Organization Systems:
CASOS technical report

This report/document supersedes the following CMU-ISR Technical Reports:

CMU-ISR-14-105, "Construct User Guide", May 2014

This work was supported in part by the IRS project in Computational Modeling, the Air Force Office of
Sponsored Research (MURI FA9550-09-1-001 mathematical methods for assisting agent-based computation), and
the NSF IGERT in CASOS (DGE 997276). In addition support for Construct was provided in part by Office of
Naval Research (N00014-06-1-0104 and MURI N000140-81-1-186 a structural approach to the incorporation of
cultural knowledge in adaptive adversary models), and the National Science Foundation (SES-0452487). Additional
support was provided by the Air Force Office of Sponsored Research (MURI N00014-08-1-1186 cultural modeling
of the adversary). Further support was provided by CASOS - the Center for Computational Analysis of Social and
Organizational Systems at Carnegie Mellon University. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Internal Revenue Service, the National Science Foundation, the Office of Naval Research, the Air Force Office
of Sponsored Research, or the U.S. Government.

Keywords: Construct, multi-agent simulation, dynamic network analysis, agent-based

modeling, information diffusion, belief diffusion, agent-based simulation, modeling and
simulation,

Abstract
This technical report provides users and researchers information on the configuration and

use of the newest version of Construct, the CASOS dynamic network, agent-based, information
and belief diffusion simulation of complex socio-technical systems. The report provides a Quick
Start Guide to Construct, a detailed discussion of its configuration, and use through a sample
problem and virtual experiment configuration exemplar, and a set of appendices with additional
useful information. This document is both an introduction to Construct for casual modelers as
well as a reference guide for researchers, modelers, and simulationists.

i

Table of Contents
Abstract .. Error! Bookmark not defined.

Table of Contents ... i

Table of Figures ... viii

Table of Tables .. ix

Table of Equations ... ix

Introduction ... 1

Introduction to the Report ... 5

Construct Versions and this Report ... 5

Conventions Used in this Document ... 5

Organization of this Overall Report .. 6

A Motivating Example .. 6

Construct’s Core Mechanisms .. 7

A Scenario ... 8

PART ONE Quick-Start Guide ... 1

The Objects ... 1

Agents .. 1

Knowledge ... 2

Tasks .. 3

Beliefs .. 3

Time ... 3

Their Relations .. 3

The Interaction Sphere ... 4

The Knowledge Network ... 7

Transactive Memory .. 8

Thoughts on Experimentation ... 12

Outputs .. 12

High Level Diagrams of Construct Program Flow ... 14

PART TWO: Construct in Detail .. 22

Variables.. 22

ii

Declaring, defining, and casting variables ... 22

Evaluating Variables .. 26

Variables, Macros, and with Statements ... 27

Using variables .. 29

Common Gotchas .. 31

Parameters ... 31

Activation Threshold Agent .. 32

Activation Threshold Group .. 32

Agent Annealing halflife ... 32

Group Annealing Halflife .. 32

Active models .. 32

Active Mechanisms ... 32

Belief Model .. 33

Communication weights .. 33

Default Agent Type ... 33

Dynamic Environment ... 34

Forgetting and Learning .. 34

Interaction Requirements ... 34

Out of Sphere Communication Allowed ... 34

Seed ... 35

IRS Special Agents Begin ... 35

Social Network Interaction Initialization Model ... 35

Thread count .. 35

Transactive Memory .. 35

Use mail ... 36

Verbose Initialization .. 36

Verbose Interaction Weights ... 36

Operation Output Working Directory .. 37

Required Networks for “standard interaction model” for agent interactions (29) 38

Optional Networks for “standard interaction model” for agent interactions (29) 39

Required networks for “NetworkModification” ... 40

iii

Required networks for “Subscription” .. 40

Required networks for “TaskCompletion” ... 40

Required networks for “TaxErrorModel” ... 40

Nodes .. 41

Agent node class.. 42

Agent group node class ... 44

Agent_type .. 44

Belief node class + belief formation equations ... 47

Binary task node class ... 47

CommunicationMedium.. 48

Dummy node class .. 50

Energy task node class .. 50

Knowledge node class ... 51

Knowledge group node class... 51

Time period node class .. 51

Other node classes ... 52

Networks ... 52

Access Network.. Error! Bookmark not defined.

Agent Active Time Period... 56

Agent Belief Network ... 56

Agent Forgetting Rate ... 57

Agent Forgetting Mean .. 57

Agent Forgetting Variance ... Error! Bookmark not defined.

Agent Group Membership ... 57

Agent Initiation Count ... 58

Agent Interaction Dependency Network ... 59

Agent Knowledge Interaction Dependency network .. 59

Agent Learn by Doing Rate .. 59

Agent Learning Rate ... 60

Agent Message Complexity .. 60

Agent Reception Count ... 61

iv

Agent Selective Attention Effect... 61

Agent Type .. 62

beInfluenced Network ... 63

Belief Knowledge Weight ... 63

Binary Task Assignment ... 63

Binary Task Requirements .. 63

Binary Task Similarity Weight ... 64

Binary Task Truth ... 64

Communication Medium Access .. 65

Communication Medium Preferences ... 65

Communication Medium Preferences Network 3d ... 65

Dynamic Environment Reset Time Periods .. 65

Fact Group Membership.. 66

Influentialness ... 66

Interaction Knowledge Weight ... 66

Interaction Network... 67

Interaction Sphere Network .. 67

Knowledge – Binary and non-Binary ... 67

Knowledge Expertise Weight.. 68

Knowledge Group Membership .. 68

Knowledge Priority ... 69

Knowledge Similarity ... 69

Knowledge Similarity Weight ... 69

Learnable Knowledge ... 69

Medium Knowledge Group ... 70

Physical Proximity .. 70

Physical Proximity Weight ... 71

Public Message Propensity ... 71

Social Proximity .. 71

Social Proximity Weight Network .. 72

Socio-Demographic Proximity .. 72

v

Socio-Demographic Proximity Weight ... 72

Susceptibility (beInfluenced) .. 72

Transmission Knowledge Weight ... 73

Network Generators .. 73

CSV ... 75

CSV_binarize... 77

constant .. 78

constant3D ... 76

dynetml .. 77

randombinary ... 80

Transactive Memory ... 81

Knowledge transactive memory .. 85

Belief transactive memory .. 87

Binary Task transactive memory... 88

References ... 89

Appendices .. 91

Appendix A The Sample Input File (aka Input Deck) .. 91

Appendix B A History of Construct .. 101

Appendix C Construct ‘Operations’ and ‘Decisions’ ... 103

Turn 0 .. 103

Operations .. 103

General Operation Syntax .. 104

ReadGraphByName .. 105

ActivateAltersForAgents .. 106

AgentReport ... 106

AvgCommunicationOverRuns .. 106

AvgProbInteractOverRuns ... 106

AutomaticDunetmlOutput ... 106

BeliefThresholdTest ... 106

BetweennessCentrality .. 106

vi

binop .. 106

BonacichPowerCentrality ... 106

CliqueCount .. 106

ClosenessCentrality .. 106

CommunicationMediumsSent ... 107

CommunicationMediumsReceived .. 107

Connectedness ... 107

DeltaFeed ... 107

Diameter .. 107

EigenVectorCentrality .. 107

ForceLossyIntersection .. 107

Fragmentation ... 107

GlobalEfficiency.. 107

GraphMeasure ... 107

InformationCentrality .. 108

InverseClosenessCentrality .. 108

LocalEfficiency .. 108

MissionCompletionSpeed .. 108

Nodeset_dump .. 108

ReadAgentActivatedGroupMatrix ... 108

ReadAgentCoreTies .. 108

ReadAgentBeliefOfGroupKnowledgeMatrix .. 109

ReadAgentMisrepresentationProbability .. 109

ReadAgentsWhoDoNotInteractWithAnyone ... 109

ReadBinaryTaskAccuracy ... 109

ReadDynamicEnvironment .. 110

ReadDynamicEnvironmentAccuracy .. 110

ReadDynamicEnvironmentEnergyTask .. 110

ReadDynamicEnvironmentEnergyTask_summary ... 110

vii

ReadEnergyTask ... 110

ReadEnergyTask_summary .. 110

ReadInteractionMatrix ... 110

ReadInteractionMatrix_Sparse .. 111

ReadKnowledgeDiffusion ... 111

ReadKnowledgeDiffusionByAgentGroup ... 112

ReadKnowledgeDiffusionByFactGroup .. 112

ReadKnowledgeDiffusion_summary.. 112

ReadKnowledgeGain .. 112

ReadKnowledgeLearningHistory .. 112

ReadKnowledgeLearningHistorySum ... 113

ReadKnowledgePriorityMatrix ... 113

ReadKTMMatrix ... 113

ReadNodesetAttributeOutput ... 113

ReadSphereMatrix ... 113

ReadSphereMtrix_Sparse .. 113

ReadTaskCompletion ... 113

SimmelianTies .. 113

TaskCompletionStartStopTimes... 113

TaskCompletionSpeed ... 113

TotalDegreeCentrality .. 113

Transitivity .. 113

TriadCount ... 113

WeakBoundarySpanner ... 113

Decisions ... 113

ReadDecisionOutput .. 114

Specifying Decisions ... 115

Decisions using with statements ... 117

Common Gotchas with Operations.. 117

Appendix D Additional Construct ‘Generators’ ... 118

viii

Group to Group Generators ... 118

Appendix E Scripting .. 122

Reserved Words in the Construct Scripting Language and Input File 122

Testing Construct Scripts... 123

General Syntax .. 123

Logical Expressions ... 126

Generating Random Numbers ... 127

Conditional Statements - IF ... 128

Looping - foreach .. 131

Return .. 131

Macros ... 132

Get/Set network values .. 133

ReadFromCSVFile .. 134

Appendix F Construct in High Performance Computing (HPC) Environments 135

Appendix G Construct in Research Literature .. 139

Index ... 141

Table of Figures
Figure 1. A graphical depiction of the interior workings of a Construct simulation 7
Figure 2. A depiction of two ‘clean-room’ teams of product developers 8
Figure 3. Bob's Transactive Memory .. 9
Figure 4. Construct's process has three main components. ... 14
Figure 5. Construct's intialization process starts by reading the deck, then initializes

nodes and networks, then goes through model specific setup. ... 15
Figure 6. Stables of models can be run each turn in Construct. They run linearly, in an

order defined by the user... 16
Figure 7. Operation Runner allows for various operations to take place. Operations can be

ordered by the user. ... 17
Figure 8. The Interaction Model is a core part of the Construct. 18
Figure 9. The probability network for "who talks to who" is an output of a variety of

factors, some static, and some dynamic. ... 19
Figure 10. Interactions are created through matching up available initiators and receivers.

... 20
Figure 11. Information Exchange relies on both medium and message. 21

ix

Table of Tables
Table 1. Mechanism for evaluating variables in Construct. ... 26
Table 2. Variables as evaluated. ... 28
Table 3. List of required networks for four standard Construct Models 38
Table 4. List of optional networks for four standard Construct Models 39
Table 3. List of other Construct Models ... 39
Table 6 Required and optional node classes for Construct Error! Bookmark not defined.
Table 7. Network relations to node classes ... 52
Table 8 Types of network generators available .. 74
Table 9. Key transactive memory networks in the demo input deck 82
Table 10. Examples of foreach loops ... 130
Table 11. Examples of macros .. 132

 Table of Equations
Equation 1 Number of messages per interaction calculation for a given medium 49

1

Construct User Guide

Introduction
Construct is an agent-based network-centric simulation. Construct can be used to

examine the co-evolution of agents and the socio-cultural environment (Carley, 1990, 1991).
Using Construct, one can examine the evolution of networks and the processes by which
information moves around a social network (Carley, 1995; Hirshman, Carley & Kowalchuck,
2007a, 2007b). Construct captures dynamic behaviors in groups, organizations and populations
with different cultural and technological configurations (Schreiber & Carley, 2004a). In
Construct, groups and organizations are complex systems. The variability of human,
technological and organizational factors among such systems are captured through heterogeneity
in information processing capabilities, knowledge, and resources. Multiple non-linearities in the
system generate complex temporal behavior on the part of the agents.

Construct is the embodiment of constructuralism, a mega-theory which states that the
socio-cultural environment is continually being constructed and reconstructed through individual
cycles of action, adaptation and motivation. Many social science theories and findings are part
of the constructural theoretical approach including structuration theory (Giddens, 1984), social
information processing theory (Salancik & Pfeffer, 1978), symbolic interactionism (Manis and
Meltzer, 1978; Stryker, 1980), social influence theory (Friedkin, 1998), cognitive dissonance
(Festinger, 1957), and social comparison (Festinger, 1954). In addition a number of cognitive
processes are embedded such as transactive memory (Wegner, 1986).

Construct has several advantages as an agent-base model. First, the experiment designer
has complete control over which sub-agent models are used for interaction over the course of a
run. Second, Construct contains a suite of agent models which enable diverse socio-technical
conditions to be modeled. Third, general agent characteristics can be easily configured a priori
using empirical data or they can be based on hypothetical data. To use Construct, the researcher
specifies both the relevant agents (Hirshman, Carley & Kowalchuk, 2007a) and the social and
knowledge networks (Hirshman, Carley & Kowalchuk, 2007b). Additional information about the
Construct interaction model can be found elsewhere (e.g., Carley 1991, Hirshman, Carley &
Kowalchuk, 2007a).

Agent Based Models
One of the most commonly used and intuitive approaches to SNS is Agent Based Models

(ABM). ABMs employ a bottom up approach in which a set of heterogeneous agents, their
behavioral properties, the “rules” of interaction, the environment and the interaction topology

2

that the agent populates is explicitly modeled. Complex social behavior emerges from simple
individual level processes. In ABMs many computational entities, with varying levels of
cognitive complexity, interact with one another in a manner similar to the real world entities they
represent. These agents are simplified versions of their real life counterparts (e.g., ants, people,
robots, or groups), only retaining elements salient to the phenomena being studied. Agents
interact in a virtual world and can be constrained and enabled by the network position they
occupy.

In most ABMs the topology of the virtual world is a simple 2-D grid and agents form
“networks” as they occupy the same or neighboring spaces or the agent’s network is prescribed
as the set other agents within so many spaces of ego. Networks generated from grid-based
interactions or defined in terms of grid-nearness tend not to have the same properties as true
social networks; i.e., the distribution of ties, the method of tie formation and dissolution, and the
relation of ties to physical space are not realistic. Most ABM toolkits support this type of grid-
based modeling of the social topology.

There is, however, a growing interest in and a growing number of ABMs where the
agents exist and move in a socio-demographic or network topology rather than a grid topology.
An example here is the Construct model. In these models the agents occupy a social network
position defined in terms of which other agents ego can interact with. In other words, rather than
physical adjacency, social adjacency is used. This network topology may be static or dynamic.
This latter type of model where agents exist in dynamic social networks rather than on grids is
where most research on SNS is focusing. This approach, referred to as agent-based dynamic-
network modeling, is the approach we found to be most valuable for modeling the adversary and
it is embodied in Construct.

ABMs vary in how the environment is represented. This could be as simple as a single
dimension or array and so ego interacts with those other agents that are within so many squares
left or right of ego. This is the case in Kaufman’s NK model. Traditionally, however, the
environment was a grid and the agents interacted with other agents in and/or could move to those
squares that surrounded them. Most early studies explored the relative impact of von Neuman
(squares left, right, up, down of ego) or Moore (eight squares around ego) or extended Moore
neighborhoods (squares within some distance of ego). In these traditional approaches the
structure of the social network is directly tied to the physical position of the agents. Examples of
such models are the game of life, the original Schelling segregation model and the more recent
SugarScape models developed by Epstein and Axtell. In general, it is difficult to get realistic
social networks in this representation of the environment. Further, as early results showed,
unless the grid is bent into a torus, the resultant social behavior is largely dictated by “edge
effects”; i.e., restrictions on activity caused by being at the edge of the physical grid.

More advanced models place agents in a socio-demographic space and separate the
physical and the social space. In such models, very few have explicitly modeled the social

3

network. Increasingly, however, researchers are incorporating more realistic network
representations, such as small-world, scale-free, or other types of network generators. The most
advanced of these models are the dynamic-network ABMs in which the networks and the agents
co-evolve (the first model of this type was Construct). In some cases, the models are instantiated
with networks that are actually derived from real data. These models will often generate or
import an appropriate graph before the simulation agents are initialized, and then assign each
agent to a graph position when the simulation starts. Other models use a social network gathered
from empirical studies. These networks have the advantage of being as realistic as possible, but
may potentially bias the simulation results due to the structure and nature of the particular social
network gathered. Correctly specifying the topology of a social network in an agent-based model
has important implications for the conclusions drawn. In modeling the adversary it is valuable to
use the social network of the adversarial group.

The quality of the social network modeling can have important effects on simulation
outcomes. For instance, in the Construct model, the social network topology has a non-linear
effect on knowledge and belief diffusion rates in the system. Construct uses sophisticated agents
that have the ability to interact and choose partners with which to exchange knowledge and
belief. A stylized meta-network, which specifies the pattern of potential partners with which an
agent can interact, can be imposed to limit the form of the evolved networks. We use Construct
to model the adversary. Our results indicate that the most effective type of intervention depends
on how the adversary is structured; e.g., Al Qaeda and Hamas have different structures and the
same intervention, such as isolation of the top leader, in the two cases can lead to performance
decrements in one and performance improvements in the other.

Although frequently lumped together, ABMs vary widely in complexity and
computational cost – some are extremely inexpensive (e.g., Swarm) and allow hundreds of
thousands or even millions of agents to operate in the same simulation, while others are rather
expensive and often require the support of an entire processor per agent (e.g., SOAR or ACT-R).
This increase in computational expense, however, is matched by construct validity to the actions
of cognitively bounded humans: the least computationally expensive (per agent) simulations
replicate the behavior of insects (specifically ants) while ACT-R has been able to replicate the
brain activation patterns of children solving algebra problems and SOAR has replicated fighter
pilot operations in concert with human pilots.

Although economics are an important consideration in picking an agent-based simulation,
they should not be the only consideration; the specific phenomena of interest should impose its
own set of criteria. For problems of traffic analysis or collision avoidance, swarm agents are
particularly appropriate. However, in phenomena with significant cultural freight, such as those
involving deception, leadership, participation in group activities, and/or compliance with group
norms, these swarm-based technologies offer little useful insight to the policy analyst without
additional (expensive) modification and incurring significant increases in computational cost. At
the same time, not all group-based phenomena require the detail and expense imposed by high-

4

fidelity models of individual agents. Construct, which can support hundreds and thousands of
agents, supports an appropriate middle-ground. It is also one of the only agent-based models
which explicitly unites (Herb) Simon’s dual requirement of bounded rationality, that rationality
should be bounded both cognitively, and socially. Most of the highest-fidelity models constrain
interaction to explicit messages, if at all, and many work entirely in isolation from other agents.
Construct, thus, is less expensive and yet more useful for studying group phenomena.

A common query is to which specific theory of group behavior does Construct adhere?
Construct does not subscribe to a specific theory of group behavior. Indeed, the question can
reflect a fundamental misunderstanding of interesting modeling work – rather, the level at which
a simulation is specifically coded/designed is its least interesting level of analysis. Analysis at
the level in which a model is coded suggests merely how well the simulation programmers did
their work, this is an important verification question, but not of practical application interest to
model consumers. It is necessary, but not sufficient, for a model to be correctly coded. Instead,
the more interesting question, available to be asked of agent-based simulations, is what are the
larger implications with how these agents interact. We call this principle “emergence”, what
larger phenomena “emerge” from the interactions of these modeled agents. Construct is, as
previously said, an agent-based simulation, and thus represents a theory of individuals and how
they choose to interact. Construct makes a claim based on research that people tend to interact
with other people based on two competing drives. One, that people tend to interact with others
because they believe they are similar (the drive for homophily), and two, that people tend to
interact with others who they believe have valuable knowledge they do not have (the drive for
knowledge expertise). Both of these human drives are cross-cultural.

Emergent properties of the simulation, then, are much more interesting to the agent-based
simulation modeler than the direct consequences of their modeling decisions. Based on agents
interacting with others due to knowledge expertise and homophily, Construct has been able to
replicate many group-level behaviors found in people: the S-Shaped curve of diffusion, yes, but
also that beliefs are more durable than the information used to support a belief. Construct has
examined cultural norms in organizations, belief-changes in national decision-makers, and group
stability. In practice, Construct is a valuable support for group-level behavioral theories because
it provides an explanation rooted in individuals for the origin of these phenomena. These
emergent properties, however, may not always be intuitive to the model consumer or model
developer. At such points, it is important to recheck questions of verification, that some bug in
the model process is not to blame for the errant results. But more interesting is when the model’s
code is not in error but the results are still surprising.

Although not directly attributable to programming error, there may be other sources of
surprising results that should be described. One, the model simulation is, at its core, not a
sufficiently good model of the atomic primitive it represents; this is often the case when
extending swarm agents beyond issues of traffic and navigation. Two, the experimental approach
was not well-matched to the empirical reality – if, for example, 75% of adults in the population

5

are internet-literate, but the model assumes that only 10% of the agents will receive information
from internet sources, the model will significantly underestimate the prevalence of information
from internet sources, and there may be further cascading effects of that error. Three, the results
may simply not be well-communicated. Relating accurately (and conservatively) the implications
of models is itself a skill that must be polished.

But sometimes, the results are non-intuitive and yet none of these errors appears to be
present. In such a case, this is the value and joy in modeling counter-factual scenarios – we can
place our simulated humans in situations that do not exist and will never exist, and be surprised
and intrigued by how they behave.

Introduction to the Report

Construct Versions and this Report
Construct is, like all but end-of-life software, undergoing continuing development in both

its capabilities and its implementation. Experiment developers and designers should ensure they
are using the most current version of Construct available on the CASOS public web site at
www.casos.cs.cmu.edu. They should also ensure they are referencing the most current set of
documentation to reduce the probability of a disconnect between the documentation and the
application. Finally, experiment developers and designers should consider subscribing to the
CMU-CASOS Google group for ad-hoc and peer-to-peer assistance as well as assistance from
students, staff, and faculty of CASOS.

Conventions Used in this Document
Where feasible, this document quotes a provided example of a Construct experiment

configuration file. The sample file is in Appendix A , in a 2-up printed format, using courier new
in a smaller font. The sample file is also available for download at the Training and Sample Data
page on the Construct page of CASOS’s website. To help you follow along, this report uses a
few conventions in type face:

Code snippets will also be written in the courier new, 11 pt text. These snippets are
quotes from the demonstration input file. We’ll also frequently call the input file the input deck,
or shorten the name to deck, throughout the document. The origins of this use of ‘deck’ will
deliberately remain in the mists of our collective memory lest the authors prove how old they
really are.

Construct keywords, will also use the courier_new, 11pt font (the Code style in MS
Word). Additionally, variables and network names, will use the same style.

http://www.casos.cs.cmu.edu/projects/construct/software.php
https://groups.google.com/forum/?fromgroups#!forum/cmu-casos
http://www.casos.cs.cmu.edu/projects/construct/sample.php
http://www.casos.cs.cmu.edu/projects/construct/sample.php

6

A blue box and text inside the box indicates information the
experiment developer and designer, researcher and simulationist should
be particularly aware of when using Construct.

We’ll reduce that string of potential audience members from “experiment developer and
designer, researcher and simulationist” in most cases, to “researcher” and/or “simulationist”
throughout the document.

Egos and Alters are common referents in social science literature that we will use
throughout this report. Their use simplifies establishing frames-of-reference and scoping of
interaction possibilities. When we refer to a single agent, it will most often have the label of ego.
When we refer to the agents or other entities that the ego is connected (in any sense of the word),
they will most often have the label of alter or alters. Agents in the simulation not connected to an
ego are beyond the scope of awareness of the ego, and do not directly impact the ego.

Organization of this Overall Report
The report has three main components and does not need to be read or referred to in

front-to-back sequence. The three parts are below:

PART ONE Quick-Start Guide- for a relative quick movement from introduction to
execution

PART TWO: Construct in Detail - for an in depth explanation of Construct, complex
inputs and outputs and complex experiments

Appendices - for additional useful sets of information ranging from additional exemplar
input decks, to the use of Construct in High Performance Computing (HPC) environments such
as Condor, to brief synopsis of peer-reviewed projects within which Construct played a role.

A Motivating Example
One method of introducing a set of concepts and the application of those concepts to

problem solving is through the use of a motivating example. In this report, we adopt this method
and present a motivating example for both the questions of interest (QoI) as well as an
experimental configuration that can help answer the QoI.

Like all scientists, if we are not attempting to answer a specific QoI, or even a set of QoI,
it behooves the reader to take some amount of time to focus the upcoming effort. It is appropriate
at this time to remind the experimenter that Constructs roots lie in social network, information
diffusion and belief diffusion modeling. This motivating example will stay with this core
capability and defer discussions of additional capabilities and experimental purposes to PART
TWO: Construct in Detail.

7

Construct’s Core Mechanisms
Figure 1 offers one depiction of the interior workings of a Construct simulation that helps

us scope our motivating example to enable a researcher to rapidly move from introduction to
experimentation. Starting at the ten o’clock position and moving clockwise, the reader will note
agents without which the remainder of this report and use of Construct is pointless. At the eleven
o’clock position, each agent is capable of having mental models (often referred to as transactive
memory (Wegner, 1987) of what the agent knows, what the agent believes, and perhaps most
importantly, what its alters know and believe. This perception is, also importantly, error prone,
personal, and both learned and forgotten over the course of a simulation. The one o’clock
position depicts agents embedded in social, communication, and other networks with other
agents. Some alters may be as cognitively robust as the egos, while others may represent
Information Technology (IT) resources, or mass media (e.g., newspapers, TV, radio). Agents are
also potentially aware of stylized representations of social and social-demographic information
about themselves and their alters, which shape the agent’s decisions during the interaction and
knowledge cycle. At the three o’clock position, agents have culture as a consequence of their
learning knowledge. Technology, at the five o’clock position, is most often modeled as agents
capable of receiving, storing, retrieving, and transmitting knowledge to other agents in the
simulation. The five and six o’clock positions in Figure 1 represent the ability of Construct to
incorporate such stresses as personnel turnover and time-dependent task-completion modeling,
though we’ll defer discussion of those capabilities to PART TWO: Construct in Detail.

Figure 1. A graphical depiction of the interior workings of a Construct simulation

8

In the center of the diagram are two blue circles that are, after the calculations to
determine which alter, if any, each ego will interact with, the most important components of
Construct. The interaction and knowledge cycle represents the process each ego goes through in
its decision to interact, or not, with its alters. Each agent’s decision takes into account that
agent’s current knowledge, its current perception of similarity to its egos (knowledge
homophily), its current perception of unique knowledge each alter has that the ego does not, as
well as the social, physical, and socio-demographic similarity of the ego and alter. On a
probabilistic basis, should interaction occur, each agent will exchange messages. The ego and
alter both build their message from their own knowledge or beliefs sets or their perception of
their own alters’ knowledge or belief sets. After message exchange, agents may learn, with and
without error, the contents of those messages as well as forget previously learned knowledge that
has not been referenced recently.

A Scenario
We, the researchers, are analysts that Acme, Inc. has hired to help Acme design two

software development teams in a ‘clean room’ configuration. Acme wants the two teams to be
co-developing a product. Acme also wants structural mechanisms in place to control how much
information flows between the two groupsits a deliberate choice to help reduce the probability of
unintentional release of Acme’s intellectual property. One way of visualizing this scenario is in
Figure 2. In this figure, we also call each team a cluster, aligning with the social network analysis
literature when groups of entities are meaningfully connected to each other.

Figure 2. A depiction of two ‘clean-room’ teams of product developers

In the figure above, possible questions of interest that are appropriate for the model to
help forecast answers could be:

Without direct modeling, is there any leak of knowledge from one team/cluster to the
other? If so, how fast does the information flow?

9

Assuming no friendship networks or other communication networks not modeled, how
fast does specific knowledge or specific beliefs within each team spread?

Assuming a requirement to have a controlled mechanism to support the teams passing
limited information back-and-forth, to whom would such an intermediary best talk in each team
for rapid spread of information or beliefs?

Does either team have any organizational weak point that can be structurally overcome?

After stability is reached within teams for knowledge saturation/diffusion, what kinds and
how large are impacts of personnel turnover of various sizes and frequencies have on the group?
How long, if at all, does the team take to return to pre-turnover levels for specific measures of
interest?

These and other questions can be explored within the Construct framework. In Part 1, we
will describe the entities and key relationships between those entities. The treatment in Part 1 is
intended to be useful towards further orienting a potential model builder or a model consumer.
Part 2 describes mechanisms at a high-level of detail, and is suitable to act as a reference even to
a regular user of Construct.

1

PART ONE Quick-Start Guide
This is an introduction to core mechanisms of Construct, introduces three of the most

important networks to understand, and suggests a set of experiments that may be of some interest
to the model consumer. It is intended to provide an initial suggestion of how Construct may be
useful to the model developer. More detail is provided in the second part of this report. We
assume that the example deck included in this technical report is available to the reader of this
guide.

We begin this guide by providing a summary of key objects within Construct and provide
examples of the various semantics between these key entities. We then describe, in more detail,
the more precise semantics of three critical networks in Construct. We will then conclude with a
suggestion of some experiments that could be done using only those key networks, referencing
the motivating scenario.

The Objects
There are five classes of objects in Construct. These are 1) agents, 2) knowledge, 3)

tasks, 4) beliefs, and 5) time. A singleton example of each of these object classes is referred to
(respectively) as 1) an agent, 2) a knowledge bit, 3) a task, 4) a belief, and 5) a turn.

Agents

Agents are the most important class of objects in Construct. Agents have, appropriately,
agency, and thus make choices that can potentially affect other agents. Typically, agents
represent human-like entities, but researchers can also represent other types of entities such as
sources of information (e.g., newspapers, radio programs, or television ads) and information
technology (IT) systems (e.g., databases, data-stores). Agents have various critical capacities and
capabilities that we’ll address briefly here and more thoroughly throughout the report.

Individual agents possess different bits of knowledge and they are aware of other agents.
Each person has a unique, error-prone perception of those other agents’ knowledge and beliefs
that they learn throughout the course of a simulation from some starting condition. This guide
discusses how to manipulate both what agents know, who they know, and what they think other
people know.

People may be members of groups. At least one agent group must be explicitly defined in
Construct—this group is the generalized other. The experiment designer has the option of
defining additional groups. This can be useful for labeling and categorizing outputs and making
per-group analysis easier than without such additional groups. Group members, like in our
motivating example, tend to have many more connections within the group than outside of it. It
can often be easier, but not semantically important, to define groups of agents contiguously. If I
were, for example going to group my digits by which hand they’re on, it’d be easier on me to

2

simply count them off, so that my right hand’s digits were 0,1,2,3, and 4, while my left hand’s
digits were 5,6,7,8, and 9. Then, all I need to remember is that my right hand’s digits start at 0
and end at 4, while my left hand’s start at 5 and end at 9. Alternatively, I could count them off by
functional role (right thumb 0, left thumb 1, right pointer 2, left pointer 3, etc), but that’d quickly
confusing if their membership in my hand groups was their most salient characteristic.

Individuals can also have beliefs, and work to do (as described by tasks), and they may
not remain unchanged by time. Information on this is out of scope on this portion of the guide,
but will be discussed in Part 2.

Just as with people, some agents may have more capacity than others to send or receive
information. As with people, they may have more or less retentive memories than others. And as
with people, they may have more or less social reach than others. Specifics on how to implement
any of these (and other) characteristics is included in Part 2.

Knowledge

Knowledge represents information. Construct represents real-world knowledge through a
stylized and simplified series of bits (0 or 1). Any particular knowledge bit should represent a
single atomic piece of information, such as “Sol is the name of the star at the center of our solar
system”, or “Each water molecule is comprised of two hydrogen and one oxygen atom.” It is
incumbent on a researcher to try and keep the stylized representation consistent in their
experiments--one bit should not represent “How to pilot a 747 jumbo jet” while another bit
represents ‘flight departed.’

Collections of knowledge, which we characterize as expertise, can be assembled by
labeling a range of bits as relevant to that larger expertise. The relative size of each range is
intended to be representative of the amount of effort required to achieve a given level of
expertise. For example, a child’s understanding of the solar system may be represented some 30
facts (the names of the planets, names of interesting moons, relative distances of the planets to
the sun, and some representation of relative size), while the requirements of celestial navigation
(the role of seasons, star identification, etc) requires a significantly larger set of facts, one that
may be estimated usefully if not precisely. We call this form of knowledge specification
“stylized knowledge.” Another example of this sizing decision would be if a simulation involves
agents with knowledge about recent movies, and also recent literature – a researcher may decide
that, because there are fewer movies made than books written in most years, that there is
correspondingly less to know and correspondingly fewer bits in the one expertise collection than
the other. These sizing decisions may end up being poor modeling decisions, but the researcher
must make them and communicate them to the model consumer.

Knowledge can be used to inform the quality of decision-making tasks agents can
perform, and also used as evidence in support of or opposed to a belief, but these connections are
outside the scope of this guide.

3

When a researcher links knowledge to one or more beliefs, the possession of knowledge
will impact the strength of the held beliefs as well as the likelihood of changing those beliefs.
Beliefs have a more in-depth discussion below as well as in Part 2.

Tasks

Tasks in Construct represent, appropriately, tasks. Specifically, these tasks can best be
thought of “decision tasks”, where agents (see previous) need information (see previous) to
perform the task adequately.

Tasks are outside the explicit purview of this quick-start guide, see Part 2.

Beliefs

Beliefs in Construct represent, also appropriately, beliefs. These differ from information
because beliefs cannot, it is presumed, be judged for their inherent truth. Also, agents may or
may not possess any particular knowledge bit, but they may have believe or disbelieve a belief
more or less strongly. Beliefs may or may not be linked to information. Beliefs linked to
information are sometimes labeled “Evidence-Based Beliefs”.

Beliefs are outside the scope of this guide, see Part 2.

Time

Turns, in Construct, represent chunks of discrete time. Agents each have some
opportunity to interact with other agents during each turn. Agent order is randomized each turn,
to avoid agents early in a static order having an unfair primacy advantage. Agents interacting
with other agents may not be able to support further interaction. It is usually good practice to
attempt to identify, loosely, a length of time with each turn. Turns may be minutes, days, weeks,
or months. This mapping of turns to time periods should be chosen relative to the knowledge
being transmitted during each turn – it is unrealistic for highly complex knowledge, such as
“Civilian Flight Operations”, to be conveyed in less than some number of months or years. Thus,
either the number of knowledge bits that represents Civilian Flight Operations is very large, or
turns are likely to represent weeks or months in this model (or both).

Time is part of every model, but a detailed discussion of Time is out of scope of this
guide.

Their Relations
In Construct, we note how each of these various objects are related to each other through

the use of dense matrices. Each matrix, usually referred to as a network, represents a meaningful
and distinct tie between objects. Matrix values may be binary (either 0 or 1) or weighted (any
real number). These networks can represent relationships between objects of the same class

4

(Single-Mode), or between objects of different classes (a multi-mode matrix). The objects listed
down the rows are always listed first, then the objects in each column.

‘0’ is usually a safe default value for matrices. Non-zero values usually indicate that the
two entities (represented by the row-column pair) are “connected”. There are exceptions,
discussed in Part 2, for the various ‘weight’ networks.

For example, a binary (0 or 1s) Agent x Knowledge multi-mode matrix might look like
so:

 Biology Physics Sociology

Aba 1 1 0

Jane 0 1 1

Lu 0 1 1

Raj 1 0 1

Fred 1 0 0

In practice, each of these large areas would be represented by a range of knowledge bits,
since none of these sciences are single atomic facts, but as an example we hope it suffices.

Part 2 will discuss all of the different matrices present in Construct, their real-world
meaning, and their practical impact within Construct. This guide will focus on three key
matrices: the interaction sphere, the knowledge network, and transactive memory. It will also
show you the snippet of XML code required to specify each of these key networks.

The Interaction Sphere

The interaction sphere defines “who may know who”. It is a single-mode, Agent x Agent,
binary matrix.

If two agents in the interaction matrix have no connections, they
will never be able to interact directly with each other. Agents that have
connects in the interaction matrix may never interact due to random
number generation and probabilities.

Because agents must be able to interact to pass information, it is easy to see how changes
to the interaction sphere can change how the experiment will play out. Generally, agents should
not be connected in the interaction sphere if it is unlikely they would ever have reason to interact.
Separate organizations, for example, may not have any connections to each other, save perhaps
through explicit liaison personnel.

5

Here is the code required to specify the interaction sphere:
<network src_nodeclass_type="agent" target_nodeclass_type="agent"
id="interaction sphere network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="nodeclass::agent::count_minus_one"/>
 <param name="mean" value="1"/>
 <param name="symmetric_flag" value="false"/>
 <param name="mean" value="1"/>
 </generator>
</network>

This is your first jolt of Construct XML, so it may seem a little daunting at first, but let’s
attempt to parse this XML line by line.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

The network at the beginning indicates we are defining one of the matrices used in
Construct. The argument src_nodeclass_type tells us that the matrix we’re defining should have
rows defined by agents, and the target_nodeclass_type argument tells us that the columns should
also be defined by agents.

id="interaction sphere network" link_type="bool"

The “id” argument gives us the name of this network, this name is important to
Construct. The “link_type” argument tells us that this network is boolean (stored as a binary
value), either a link exists (1/True/T), or it does not (0/False/F).

network_type="dense">

Typically, most networks will have this argument network_type set to dense. This means
that every possible cell combination should be defined.

<generator type="randombinary">

The generator is a new object, it’s being defined to help us fill in the values of the
interaction sphere. There are different generator types - this one, a randombinary generator, will
generate only 1s or 0s. It generates 1s at a given rate. A more complete discussion of the various
generator types is under the Generating Random Numbers heading.

<rows first="0" last="nodeclass::agent::count_minus_one"/>

All numbers used to count things in Construct XML use cardinal
numbers, also known as “computer science counting”, where the first
index value is 0, not 1.

6

Thus, the last digit on my right hand is digit number 4, not 5, even though I have five
digits. I have, after all, counted out five numbers (0,1,2,3,4). The rows object tells the generator
in what parts of the matrix it should assign numbers. You can (and often will) use multiple
generators for one network. In this case, the generator should assign values for all rows of the
matrix - 0 is the first agent, and agent::count_minus_one is a built in mechanism for construct to
identify the number of nodes in a node set. It works with all defined node sets in the input file.
It’s handy shorthand so you don’t need to keep track of how many agents exist.

All generators assume (except one) that they should fill in all values inclusive of and
between the first and last of both the row and column arguments. The one exception, not
discussed in detail here, is reading in a network from a file. Thus, if you want two or more
groups of agents, you may want to keep track of the start and end of those groups. This is why
it’s easier, almost always, to number your agents contiguously by their most important group
affiliation, as discussed previously with hands and digits in the Agents section above.

<cols first="0" last="nodeclass::agent::count_minus_one"/>

This serves the same purpose as the previous line, except it defines what columns the
generator will be assigning values to. As you can probably guess, we are assigning values (either
1 or 0s) to all columns as well. This means this generator will provide a value for every cell in
the matrix.

<param name="mean" value="1"/>

This is the parameter that defines how often a “1” is likely to come up. In this case, a 1
should populate every cell in this matrix. What does that mean for our simulation? Think about it
for a second. Done? In this case, it means that every agent can talk to every other agent. If you
were going to modify this code for use in our motivating example, how might you go about it?

<param name="symmetric_flag" value="false"/>

The symmetric_flag is very important, and important to understand. Not all relationships
go both ways. My boss, for example, may have access to me, but I don’t alway have access to
the boss. If the president wants to see me, he will, but I can’t bully my way into the Oval Office.
If the symmetric flag is set to the true, then none of the relationships in your group will be
asymmetric - they will all go both ways. If it is set to false, then some asymmetries may arise,
but not necessarily. Would there be any asymmetrical relationships in this network, given the
generator as you understand it to date? Multi-mode matrices should not have the symmetric_flag
set to true.

<param name="mean" value="0.20"/>

7

The parameter mean is essential for the randombinary generator as it sets the threshold
for when the generator outputs a zero or a one. If the random number generator generates a value
less than 0.2, it will generate a one, otherwise it will generate a zero--of course this mean is as
accurate as any mean when evaluated in the context of the Law of Large Numbers, not
necessarily true for a particular set of generated numbers.

</generator>

This indicates that the generator definition is complete, and closes the object.
</network>

This closes the definition of the network, remember, you may have multiple generators in
a single network definition. I include the entire XML snippet again for easy review, we hope it is
easier to understand the second time, beneath it, I give my read-aloud version of how I parse this
network and relate it verbally.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"
id="interaction sphere network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="nodeclass::agent::count_minus_one"/>
 <param name="mean" value="1"/>
 <param name="symmetric_flag" value="false"/>
<param name="mean" value="0.20"/>
 </generator>
</network>

 “This is the interaction sphere network, it is an agent by agent network with
boolean/binary links. It uses a random-binary generator, which will define values for every
agent to every agent. This random-binary generator will put 1’s in approximately 20% of the
cells of this matrix. The generator is not explicitly symmetric.”

The Knowledge Network

The knowledge network defines “who knows what”. It is a multi-mode, Agent x
Knowledge, non-binary matrix. A ‘1’ in this matrix indicates the agent “knows” the fact
represented by that bit. Construct updates the knowledge network throughout the run of a
simulation.

Agents can only communicate knowledge that they “know,” or have access to, when they
interact with other agents. Thus, changes in the knowledge network will have strong effects on
how the simulation proceeds.

This is the Construct XML used to define the knowledge network in our example deck
and how I would read it aloud:

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"
id="knowledge network" link_type="float" network_type="dense">

 <generator type="randombinary">

8

 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="nodeclass::knowledge::count_minus_one"/>
 <param name="mean" value="0.1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

“This is the knowledge network, it is an agent by knowledge network with non-binary
links. It uses a random-binary generator, which will define values for every agent to every
knowledge bit. The random-binary generator uses a probability of ‘.1’ to place a 1 in each cell.
The generator is not, both explicitly and functionally, symmetric.”

Most of the XML looks very similar to the previous example.

Transactive Memory

Transactive Memory is how Construct implements perceptional differences from reality.
In simulation, if agents receive state information directly from the simulation, then they have no
“perceptual filter”, rose-colored or any other shade. Humans, however, must perceive signals
from their senses and grapple with that signal to make sense of it, to turn it into symbols. For
example, if my stomach feels empty and I hear it growling, I may eventually realize that I am
hungry. Retreating from larger philosophical issues, perception is an important source of human
error. Thus, most simulations that attempt to address human-like behavior have some sort of
perceptual mechanism. In Construct, that perceptual mechanism is transactive memory. The
following figure displays an example of transactive memory.

9

Figure 3. Bob's Transactive Memory

But what is transactive memory? It is a three dimensional matrix, representing what every
agent (A) thinks every other agent (A) knows (K) or believes (B). There are, currently, three
separate transactive memory matrices: a knowledge transactive memory (A x A x K); a belief
transactive memory (A x A x B), a binary task transactive memory (A x A x BT).

In Construct’s implementation of Transactive Memory, each ego
maintains transactive memory only of alters it is connected to in the
interaction sphere.

Agents do not necessarily (and often do not) have a good grasp of what other agents
actually know. You have probably met people that thought you knew things you did not, or,
conversely, you may have assumed that somebody else did not know much about a topic dear to
your heart, but they actually knew quite a lot about it. Both of these real-life experiences can be
approached via appropriate modification of Transactive Memory.

These perceptual processes are important because these agents use their perceptions, not
the ground-truth of the simulation (who “actually” knows what) to inform their twin primary
motivations for interaction. Those twin drives are homophily and knowledge expertise. While
defering a more detailed conversation about homophily and knowledge expertise to Part 2, a
brief discussion about both these drives is appropriate.

10

Homophily, in its most general description, is the tendency for people to prefer to interact
with people who are like themselves. This perception of ‘like themselves’ is, in Construct, a
function of the amount of knowledge an ego and an alter share. In the real social world, people
may assume that others people are like themselves, even when that is not true. These egos may
interact with their alters, because of the perceived similarity. In the actual event the ego is not
like alter, through the exchange of information, both could end up changing their knowledge and
end up being more similar to each other than when they started.

The second primary interaction motivation is knowledge expertise. This motivation
reflects human’s tendency to seek out knowledge they do not have from others--in the real social
world, this behavior is most frequently seen when needing knowledge to successfully complete
one or more tasks. In Construct, an ego with a perception that an alter has knowledge the ego
does not, will have a higher probability of interacting with the alter than it might otherwise have.

This guide focuses on knowledge transactive memory (AAK), and this is the Construct
XML required to define the knowledge transactive memory in our example deck:

<network id="'knowledge transactive memory network'"
 ego_nodeclass_type="agent"
 src_nodeclass_type="agent"
 target_nodeclass_type="knowledge"
 link_type="bool" network_type="TMBool"
 associated_network="knowledge network">

<generator type="perception_based">
 <ego first="0" last="nodeclass::agent::count_minus_one"/>
 <alter first="0" last="nodeclass::agent::count_minus_one"/>
 <transactive first="0"

 last="nodeclass::knowledge::count_minus_one"/>
 <param name="false_positive_rate" value="0.0"/>
 <param name="false_negative_rate" value="0.5"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="true"/>
 <param name="name" value="Belief_TM_Generator"/>
 </generator>
</network>

Whew! Well, it might seem intimidating at first, but much of it is very similar to things
we’ve seen before, but carried to the third dimension.

It is essential that this network id contain the single quotation
marks (‘) inside the double quotation marks.

The argument ego_nodeclass indicates the agents that have these perceptions, the set of
egos in the network. The argument src_nodeclass indicates the agents for which the ego have
perceptions, and the argument target_nodeclass shows that, further, the perceptions are about

11

what these other agents know. The associated_network indicates that the ground-truth network
these perceptions will be based on is the knowledge network. A specific example with named
agents could be Mike thinks Geoff knows about dancing. In more generalized form, this is a
matrix that stores what each ego believes their connected alters know.

The associated_network particularly matters for this special type of generator -
perception_based. Again, it’s very similar to the other generator, taken to a third dimension. The
arguments ego, alter and transactive are parallel to the Node classes defined in the network:
ego_nodeclass, src_nodelcass, and target_nodeclass, respectively. The parameter
false_positive_rate indicates how likely egos are to perceive that their alters know things they do
not, in this case, not at all likely. The parameter false_negative_rate indicates how likely agents
are to assume that agents do not know things they actually do - this happens approximately 50%
of the time in this example. The parameter rounding_threshold is useful when knowledge bits are
not integer values. Values other than integer zero and integer one represent a knowledge bit that
is partially known. This “sorta known” state is, for the purposes of transactive memory, binarized
using the parameter as the cut-off point--values below the threshold will become zero and values
equal to or greater than the threshold will become one. This parameter is necessary but not useful
in this example. Part 2 will discuss its utility in depth. The final parameter verbose, if defined
and set to true, will cause Construct to write a set of progress indicators to the console’s standard
out informing a researcher how far along the initialization process has progressed. If the
parameter is undefined, Construct defaults to it being false.

The full snippet of XML, and how it could be read aloud, follows:
<network id="'knowledge transactive memory network'"
 ego_nodeclass_type="agent"
 src_nodeclass_type="agent"
 target_nodeclass_type="knowledge"
 link_type="bool" network_type="TMBool"
 associated_network="knowledge network">

<generator type="perception_based">
 <ego first="0" last="nodeclass::agent::count_minus_one"/>
 <alter first="0" last="nodeclass::agent::count_minus_one"/>
 <transactive first="0"

last="nodeclass::knowledge::count_minus_one"/>

<param name="false_positive_rate" value="0.0"/>
 <param name="false_negative_rate" value="0.5"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="true"/>
 <param name="name" value="Belief_TM_Generator"/>
 </generator>
</network>

“This is the knowledge transactive memory network, it is an agent by agent by knowledge
network with binary links. It uses the knowledge network as its ground-truth. It uses one

12

perception-based generator and will populate values for all egos and how they perceive all
alters and all of their associated knowledge. Egos will be pessimistic, they never assume agents
have knowledge they do not, and often assume agents do not have knowledge they actually do.
The name of the generator, only important for console related output, is Belief_TM_Generator
and will be output to the console because the verbose parameter is set to true. ”

Thoughts on Experimentation
In this guide, we have discussed a set of primitive objects in Construct and three key

networks. These networks are:

• the interaction sphere networks--which defines “who could ever know who”,
• the knowledge network, which defines “who knows what”, and
• knowledge transactive memory, which defines “what people think other people know”.

The deck, as provided, does not quite the serve the needs of the scenario as given. This is
intentional. The changes required are relatively minor, and can be confronted with a variety of
approaches, but should be explored directly. The motivating scenario suggests:

• Two groups of agents
• Each group has unique knowledge to their group
• The two groups are, initially, completely isolated from each other.

Whereas, the deck, as shown here says that:

• All agents connected to all other agents
• All agents have similar knowledge

Obviously, some effort will need to be made to reconfigure the interaction-sphere and the
knowledge network so that groups can be isolated and also that groups may have unique
knowledge. We leave it up to the reader to consider how such a change may be achieved.
Remember that multiple generators can be used to define values for portions of the matrice
space.

Outputs
Researchers and simulations usually compare outputs of Construct simulations by

examining files written over the course of the simulation. It’s outside the scope of this quick start
guide to offer in-depth suggestions on how to deal with large quantities of simulation data, but
the deck comes prepared with a set of handy outputs. A brief English summary of each output is
below.

13

When Construct writes matrices to file(s), as in this example to a
comma separated value file, it will separate each row from the others
with a line termination symbol appropriate for the host operating
system (Carriage Return/Line Feed for Windows-type OS). If a researcher
has Construct write multiple time periods to a single file, each time
period is separated from others with a single empty line. With the use of
a <param name=”print_run_and_timeperiod” value=”true” />,
Construct will print a “Run: 0 TimePeriod: x” line as the first line for each
time period.

• The knowledge network at every time period, with each agent separated by a new line
from other agents. Each time period is separated by a blank line, but is otherwise un-
numbered.

• Per-Agent diffusion values (# of bits agent has/# of all knowledge bits)
• Who interacted with whom every time period.
• Who was likely to interact with whom every round

Use these outputs (particularly the diffusion values) to examine questions of interest, see
how they change (going up or down) as you manipulate the construction of the interaction sphere
and the knowledge network. Do so, and you will quickly become comfortable with Construct.

14

High Level Diagrams of Construct Program Flow
The set of figures below show Construct’s program flow. It is helpful for the user to keep

track of what is set up for the simulation and these figures aid in describing the overall picture.
They are intended for both Consruct users and also as a helpful referent for Construct developers.

Figure 4. Construct's process has three main components.

This illustrates the three main components to a Construct run. They are an initialization
section, then a loop with all models and output operations running repeatedly until the simulation
ends. It is important to know that certain processes take place only within the Constuct
initialization phase, such as setting up Transactive Memory and determining possible interactions
partners for each ego.

Construct developers can create multiple models – this tech report focuses on the
standard interaction model, but this model can be extended or amplified with special case
models. Many, but not all, special case extensions are then folded into the larger simulation as
appropriate.

15

Figure 5. Construct's intialization process starts by reading the deck, then initializes

nodes and networks, then goes through model specific setup.

Here we see a list of the components of the initialization section of Construct. They are
run from top to bottom. The input deck is read. Nodes are created, and then relationships
between nodes ae defined. All models enabled in the Construct deck are then initialized.

16

Figure 6. Stables of models can be run each turn in Construct. They run linearly, in an

order defined by the user.

Here we see that models can be arranged in different orders and that they run in sequence
from top to bottom. The order of models in the Construct Deck specifices the order in which they
run in the simulation. Also, new models can be introduced into the stack at any point by
including them in the input-deck.

17

Figure 7. Operation Runner allows for various operations to take place. Operations can be

ordered by the user.

Just as with the models, the output operations are run in order from top to bottom and can
be reordered in the same way. They run in order based on their order of appearance (from top to
bottom) in the Construct Deck. This can include model-specific operations, but often involves
outputting networks.

18

Figure 8. The Interaction Model is a core part of the Construct.

The Interaction Model is the most widely used Construct model. It has two parts. First,
the system is initialized. Certain networks (specifically the Interaction Sphere) are read during
this process and not again, changes to those networks after initialization will not produce useful
change. Afterwards, this model is responsible for determining the likelihood of interaction with
all available partners, and tracks information gained to update those interactions over time.

19

Figure 9. The probability network for "who talks to who" is an output of a variety of

factors, some static, and some dynamic.

The probability that two agents will form a communication pair is dictated by similarity
and expertise. Some of these values will change as a result of interaction. These changes will
also influence future interaction. Together the influence of interaction on the similarity and
expertise values as well as the similarity and expertise influence on interaction creates a feedback
loop inside the Interaction Model.

20

Figure 10. Interactions are created through matching up available initiators and receivers.

Agents are placed into pools of communication initiators and receivers. Agent pairs are
drawn from these pools and placed in communication queues. The Interaction Probability
Network influences which pairs are created.

21

Figure 11. Information Exchange relies on both medium and message.

During Information Exchange, three important things occur. One, the information chosen
to exchange is determined. Two, the medium over which the information will be sent is
determined. Three, the actual exchange of information takes place.

22

PART TWO: Construct in Detail
This section of the report is, to some degree repetitive to the information in Part 1:

Construct Essentials. This is a deliberate choice by the authors.

Part 2 provides in-depth details of the workings of Construct. Topics include the
operations of an example deck, the outputs of an example deck, agents, knowledge, Binary
Knowledge, Non-Binary Knowledge, Forgetting, Transactive Memory of Knowledge, Beliefs,
Belief Formation equations, Tasks, Binary Task Selection, Energy Tasks, Biased Binary Task
Selection, Interactions, and additional special topics will be included in the appendix.
Throughout this portion of the report and the appendices, we make an assumption that readers
have some familiarity with general programming concepts and terminology--which may lead us
to skip details that an introduction to programming text would include but would seem pedantic
here.

Variables

Declaring, defining, and casting variables

Variables in Construct are generally user specified constants for a specific simulation.
Modifying the values of Construct variables is part of the Scripting Language support which
Appendix E discusses in detail. Researchers frequently use variables to make the input file easier
to read and adjust for future simulations--changing a value in a single place makes maintaining
consistency easier than relying on ‘Search and Replace.’ Examples of variable use include
setting the total number of agents, changing agent group sizes as a function of the number of
agents, and many other uses. Construct expects variables to be at the top of the input file
enclosed in a <construct_vars></construct_vars> ConstructML tags. Modelers declare and
define assign variables once, and then reference that variable whenever needed throughout the
input deck. Below is a sample of ConstructML showing the four ways a modeler can declare and
define variables. The four ways are: declare and define as a constant (var1, var2, var3 below);
declare and define in terms of other, prior-declared, variable (var4 below); to declare and define
in terms of a mathematical or logical operation on other prior-declared variables or constants
(var4 and var5 below), and finally to declare them and assign constant values read from a
Comma Separated Variable (CSV) file (time_count below).

Modelers must declare variables prior to using them, or
Construct’s parser will fail.

<construct_vars>
<var name="[name]" value="[value]"

with="[delay_interpolation|verbose|details|stop_at_commas|interpreting_parame
ters|preserve_white_space_is_comment]"/>

...

23

<!-- examples of var declarations and definitions -->
<var name=”var1” value=”1” />
<var name=”var2” value=”’var2 as string’” />
<var name=”var3” value=”var3 as another string” />
<var name=”var4” value=”construct::intvar::var1” />
<var name=”var5” value=”construct::intvar::var1+1” />
<var name=”var6”

value=”construct::intvar::var1+construct::intvar::var1” />
<var name="param_file_name" value="params.csv"/>
<var name="param_name_column" value="0"/>
<var name="param_value_column" value="1"/>
<var name="time_count"
 value="readFromCSVFile[construct::stringvar::param_file_name,
 construct::intvar::num_turns_param_row,
 construct::intvar::param_value_column]"/>
</construct_vars>

The keywords that a modeler can insert into the with attribute of the var tag cause
Construct to perform in specific ways.

• delay_interpolation causes Construct to not evaluation variables or expressions while
conducting the first pass of parsing

• verbose causes Construct to be verbose as it evaluates the name and value attributes. The
value of the parameter both before parser initialization, after parser completion, and after
evaluation are printed for diagnostic and debugging purposes. Additionally, should the parser
encounter an error, this keyword tells the parser to provide a more verbose error message.

• details causes Construct can be used in conjunction with the verbose parameter in order to
determine the values of macro substitution parameters. While the verbose keyword can be
used to debug a simple math expression, it may be necessary to see additional information
about the state of the parser as it evaluates macro expressions. The details parameter prints
out any information about variables in use, in addition to some very specific information
about the internal state of the parser as it examines the input string. Should the parser
encounter an error, it should also provide more information about the parameter value.

• stop_at_commas
• interpreting_parameters
• preserve_white_space causes Construct to treat all white spaces as important to the

expression. Construct will not remove tabs, returns, spaces, and comments as the expression
is evaluated. By default, all white space is removed during the creation of variables. If
included as a keyword, however, any white space in the value will be preserved when the
parser is run.

• preserve_spaces_only causes Construct to treat only spaces as important to the
expression. Thus Construct will preserved spaces but ignore returns, tabs, and comments.
Using this parameter will allow for newlines to be placed in scripts which must preserve
spaces.

• is_comment

24

Construct variables are not case sensitive. Construct converts
variables to lowercase for internal use.

Like many programming languages, Construct requires variables start with an
alphabetical letter. Variables can use ASCII alphanumerics and the underscore; other special
characters while cause the parser to fail. Variable names are globally accessible throughout a
simulation’s input file, and must therefore be unique across the simulation’s input file; there is no
lexigraphical scoping or overloading. Construct supports the multiple variable types though the
astute reader will note the above ConstructML has no explicit typing associated with each
variable. The supported variable types are floats/decimal values, integer values, strings,
booleans, and even expressions that can be evaluated as scripts. Appendix E discusses scripts,
scripting, and evaluation of script segments in detail. To reference a variable, a modeler would
type the following as a general syntax:

construct::[type]::[variable name]

And an example of a specific variable would be:
construct::boolvar::short_experiment

While the [variable name] field can refer to any variable defined within the simulation,
there are a limited number of [type] values that Construct accepts. The use of [type] helps
Construct cast the [variable name] to the C++ type for processing.

If a modeler omits construct::[type]:: as a preface to [variable
name], Construct will attempt to deduce the variable type.

Modelers that rely on Construct’s built-in type heuristics for type guessing may get
unexpected results and the authors highly encourage the verbose method of referring to variables
in input decks! The five acceptable values for [type] are shown, in alphabetical order, below.

§ boolvar, defines the variable as a boolean (true or false). Construct follows the C
convention that zero is false, non-zero is true. The authors highly recommend modelers to stick
with the newer convention of zero is false, and one is true. If the modeler is attempting to cast a
variable to a float, the following casting rules are in place.

• If casting from an non-zero integer or float, Construct casts the value as true.
• If casting an zero-valued integer or float, Construct casts the value as false.
• If casting from a string, if the string is “true” (case insensitive) or evaluations to a non-

zero integer or float, Construct casts the value as true, otherwise it casts the value as
false.

25

§ floatvar, defines the variable as a float (sometimes refered to as double in this report).
Construct supports positive and negative floats. If the modeler is attempting to cast a variable to
a float, the following casting rules are in place.

• If casting from an integer, Construct simply adds a decimal place and zeros.
• If casting from a bool, Construct treats false as 0.0 and true as 1.0.
• If casting from a numeric string (e.g., ‘2’, ‘2.15’), Construct will cast to a float and

maintain or add decimal place digits as appropriate.
• If a mathematical function uses an integer value as a float variable, the result will be a

float value.
• If casting from a non-numeric string or other variable that cannot be cast as an number,

Construct silently casts the value as 0.0. There is no mechanism to warn a modeler of this
situation in the deck during parsing, nor during execution.

§ intvar, defines the variable as an integer. Construct supports positive and negative
integers. If the moder is attempting to cast a variable to an integer, the following casting rules are
in place.

• If casting from float/double to integer, Construct silently truncates the original value.
There is no mechanism to warn a modeler of this situation in the deck during parsing, nor
during execution.

• If casting from a bool, Construct treats false as 0 and true as 1.
• If casting from a numeric string (e.g., ‘2’, ‘2.15’), Construct will cast to an int, and

silently truncate, as it does with floats/doubles.
• If casting from a non-numeric string or other variable that cannot be cast as an number,

Construct silently casts the value as 0. There is no mechanism to warn a modeler of this
situation in the deck during parsing, nor during execution.

§ stringvar, defines the variable as a string.

Construct can cast all variable types to strings.

If the modeler decides to omit the single quotation marks in the variable declaration (e.g,
var3 above), Construct may still treat the variable as a string. It does this if the first white-space
separated word in the string is not a Construct-reserved word. This behavior is silent. There is no
mechanism to warn a modeler of this situation in the deck during parsing, nor during execution.

§ expressionvar, defines a variable as an expression. Construct evaluates the expression
and returns it. An expression can evaluate to any of the other four [type] though it may require
the modeler to cast the result to the desired final [type].

There are at least two ways of casting a variable, or an expression composed of variables.
The first is to cast within the value attribute of a var tag. Some examples are below. The second

26

is to assign the value of one variable to another variable and cast it during the assignment
process.

<var name="cast_example1" value="(4/2):bool"/>
<var name="cast_example2" value="(4/2):string"/>
<var name="cast_example3" value="(4.0/2.0):int"/>
<var name="cast_example4" value="(4/2):float"/>
<var name=”cast_example5” value=”construct::stringvar::cast_example1”

/>
<var name=”cast_example6” value=”construct::intvar::cast_example2” />

Evaluating Variables

Like many programming languages and applications, Construct reads its input deck from
top to bottom, left to right. Variable names are read and stored before variable values.

Construct evaluates mathematical and logical expressions, as
well as casting between variable types, from right to left, though
modelers can make use of parentheses to specify a different evaluation
ordering.

The example mathematical expressions below in Table 1 provides another mechanism to
allow this important point to be retained by modelers

Table 1. Mechanism for evaluating variables in Construct.

Variable Declaration Actual
Value

Expected
Value Warning! Non-Intuitive Explanation

<var name=”var1” value=”3/5.0+1” /> 0.5 1.6 X
5.0 + 1 happens first

<var name=”var2” value=”(3/5.0)+1” /> 1.6 1.6

<var name=”var3” value=”3-1-1” /> 3 1 X
1-1 happens first

<var name=”var4” value=”3-1+1” /> 1 3 X
1+1 happens first

<var name=”var5” value=”(3/5):float” /> 0 .6 X
Integer division
happens first

<var name=”var6” value=”(3/5.0)” /> 0.6 .6

<var name=”var7” value=”(3.0/5)” /> 0.6 “0.6” X if either operand in
division is a float,

27

the result is a float

<var name=”var8” value=”(3/5.0):string” /> “0.6” “0.6”

<var name=”var9” value=”(3/5.0)”
with=”delay_interpolation/> “3/5.0” “3/5.0”

See section on
Variables, Macros,
and with Statements

Variables, Macros, and with Statements

Construct supports the use of a macro language. With macros, users can automate the
creation and use of variables to make their simulation input decks more flexible--at the expense
of adding a level of complexity.

With dollar sign ($) delimited macro variables, a modeler can create a complex set of
variables for use. With the use of dollar sign macros, a modeler must also use a with attribute in
the var tag that declares the variable. Examples of macro use to declare and define variables are
below.

<construct_vars>
<var name=”letters” value=”x,y,z” />
<var name=”numbers” value=”2,3” />
<var name=”var_i” value=”i”
with “i=construct::stringvar::numbers” />

<var name=”$letters$_$numbers$” value=”$letters$$numbers$”
with “$letters$=construct::stringvar::letters,
 $numbers$=construct::stringvar::numbers”/>

<var name=”variable_1” value=”i” with i=1 />
<var name=”variable_2” value=”construct::intvar::variable_i”
with i=1 />

<var name=”variable_I”
value=”construct::intvar::variable_$I:int$ + 1”
 with “I=3” />

<var name=”variable_i” value=”i”
with “i=construct::stringvar::letters” />

<var name=”variable_4” value=”j”
with “i=3, j=construct::intvar::variable_i,verbose”/>

<var name="attacktime_list"

value="construct::intvar::attack_start_time..construct::intvar::attack_end_ti
me" />

<var name="attacktime_output_list" value="

28

 $currTime$ = construct::intvar::attack_start_time - 1; /* start output
at timer period: attack-1 */

 $step$ = 1;
 $result$ = '' + $currTime$;
 foreach i (attacktime_list){
 if (i:int == ($currTime$ + $step$)){
 $result$ = $result$ + ',' + ($currTime$ + $step$);
 $currTime$ = i:int;
 } else {
 $currTime$ = $currTime$; /* non-harm else statement, since

'else' is not optional in construct if then else statements */
 }
 }
 $result$ = $result$ + ',' + ($currTime$ + $step$); /*stop output at

attack + 1*/
 return $result$;"
 with="$result$" />
 <!-- with="$result$,verbose" /> --> <!-- verbose here forces lexer
 to dump to screen the

processed
 results of the scripting-->
</construct_vars>

Table 2. Variables as evaluated.

Variable Name Value

Letters “x,y,z”

Numbers “2”

var_2

var_3

2

3

x_2

y_2

z_2

x_3

y_3

z_3

x2

y2

z2

x3

y3

z3

variable_1 1

29

variable_2 1

variable_3 4

variable_x

variable_y

variable_z

X

y

z

variable_4 4

Like non-macro variables, variables defined using macros must start with an alphabetic
character. A macro of i is lexicographically distinct from I. Additionally, no macro should
use a reserved word from the scripting language discussed in Appendix E. The declaration of a
macro is valid only within the var tag it is in. Attempting to reuse a macro, such as i in a new
var tag will create a new macro, not reuse the previous instance of i. Macro’s are expanded
before any further evaluation of the variable occurs. Modelers that attempt to use macros without
the with statement will receive a Construct error when parsing the input deck.

Construct macro variables are case sensitive.

The with attribute within a var tag can accept several pre-defined values as shown below.

• verbose - will print to the console standard out the evaluation of the parameter. Values
will reflect the value before the Construct initializes the parser, after the parser complete,
and after the evaluation is complete. It will also cause Construct to provide additional
error information if there is an error during parsing the input file.

• details - when the modeler uses this value inside the with attribute within a var tag in
conjunction with the verbose value, to allow the modeler to see the values of the macro
substitutions. It will also cause Construct to provide additional error information if there
is an error during parsing the input file.

• preserve_all_white_space - will cause Construct’s parser to retain all white space (e.g.,
tabs, linefeeds, carriage returns, spaces) when evaluating the expression.

• preserve_spaces_only - will cause Construct’s parser to retain all spaces.
• delay_interpolation - will cause Construct to not evaluate the value of the variable during

its declaration and definition. Instead, Construct will evaluate the value of the variable
each time the simulation deck includes it in an construct::expressionvar::[variable name].

Using variables

30

When introducing variables earlier we provide a few examples of uses of variables within
a Construct input deck. Below, we’ll discuss these uses more to provide examples of the ways
researchers within CASOS have used variables.

Variables as logical flags. One common use for variables is to create logical flags in the
input deck. An example of changing values to the variable time_count variable, which is
dependent on short_experiment, is below:

<var name="short_experiment" value="true"/>
<var name="time_count" value="if(construct::boolvar::short_experiment)
 {
 50
 } else {
 100
 }"/>

This is telling Construct to change time_count value to 50 if short_experiment is true,
otherwise set time_count to 100.

Another example could be to declare a debug variable that allows deck-wide enabling
verbose output or not. Putting such a variable near the top of the deck would supporting making
the change quickly and easily.

<var name="debug_output" value="true"/>

Variables for important or key quantities. Another use is to specify values that control the
experiment. Examples of such values could be the number of agents, the number of knowledge
facts, the number of beliefs, as well as the size of other Node classes. An example of changing
such a quantity, as a function of whether debug is enabled.

<var name="debug" value="true"/>
<var name=”agent_count”
value=”if (construct::boolvar::debug) {15} else {150}” />
<var name="num_groups" value="4"/>

Variables for defining bounds. Another example could be setting up the start and end
values for agents in adjacent groups, assuming groups of agents are important to the modeler’s
experimental design.

<var name="group_size" value="15"/>
<var name="group0_start" value="0"/>
<var name=”group0_end”
value=”construct::intval::group0_start + group_size - 1” />
<var name="group1_start" value=”construct::intval::group0_end + 1 />
<var name=”group1_end”
value=”construct::intval::group1_start + group_size - 1” />

31

Redefinitions of key values for logical clarity. A modeler may thing about the average
degree, or the average number of connections, per agent. The various network generators require
an average density as a parameter. Both measures are related, so using a variable and a bit of
math, allows the modeler to keep their concepts while meeting the input expectations of
Construct.

 Common Gotchas

In no particular order are lessons from the authors, both as modelers and as developers.

Construct’s parser will silently ignore any XML tags within the <construct_vars>
</construct_vars> pair that are not <var> tags.

Using an editor that can check for well-formed XML will generally save a modeler
significant amounts of time in avoiding Construct parser errors. Use of scripting support
throughs most such editors for a loop, so we are still looking for viable ways others have used to
help reduce non-well-formed-XML errors.

ConstructML requires both the name and value attributes of a
var tag to be non-empty strings. Empty strings (e.g., “”) will cause
Construct’s parser to fail.

Networks within Construct represent connections between nodes of the various node
classes (e.g., agents, tasks, knowledge, time). Most networks have names that include spaces
(e.g., “interaction sphere network”). If a modeler needs to store the name of a network in a
stringvar, the authors strongly recommend using the with=”preserve_spaces_only”
attribute when declaring the variable.

Parameters
Parameters are global values that control how construct operates, and are used to modify

the experiment. All parameters should be set within the parameters tag of the input deck, and
syntaxed as follows:

<construct_parameters>
 <param name=“[name]” value=“[value]”>
</construct_parameters>

32

Parameter names must be valid like the parameters listed below and the values for
parameters must be valid depending on the type of parameter, otherwise Construct will yield
errors. The following are common parameters used in Construct simulations.

Activation Threshold Agent
<param name="activation_threshold_agent"

value="construct::floatvar::individual_memory_rate"/>

Kenny or Geoff need to write something here.

Activation Threshold Group
<param name="activation_threshold_group"

value="construct::floatvar::group_memory_rate"/>

Kenny or Geoff need to write something here.

Agent Annealing halflife
<param name="agent_annealing_halflife"

value="construct::floatvar::individual_annealing_hl"/>

Kenny or Geoff need to write something here.

Group Annealing Halflife
<param name="group_annealing_halflife"

value="construct::floatvar::group_annealing_hl"/>

Kenny or Geoff need to write something here.

Active models

This parameter specifies the models that are active in the simulation to govern
interaction. There are three main models. The first is the Standard interaction model which uses
homophily and expertise to guide interaction among agents. The Standard influence model
contains influence and influencibility networks that determine how an agent’s beliefs are
influenced. The Standard belief model updates beliefs based on an agen’ts knowledge, belief
weights, and beliefs of others. Below, Table 3 lists the required networks for all three standard
models.

Active Mechanisms
<param name="active_mechanisms" value="none"/>
<param name="active_mechanisms" value="literacy|internet

access|newspaper access"/>

33

Active Mechanisms serve the function of attenuating message transmission and receipt.
The value of this parameter can be ‘none’ or a comma separated list of values. Construct, as of
August 2014, can handle the following mechanisms to attenuate message transmission: literacy,
internet access, and newspaper access. Modelers have used these mechanisms in the past to help
model the dissemination of information in cities and towns where literacy, internet access, and
newspaper access interact with each other.

Belief Model
<param name="belief_model" value="disable"/>
<param name="belief_model" value="belief_only_mode"/>
<param name="belief_model" value="jian_wu_mode"/>
<param name="belief_model" value="mask_mode"/>

These parameters, when used in conjuction with the standard belief model, the standard
interaction model, and the standard influence model, control how Construct incorporates agents’
beliefs into their interactions, belief changes, and knowledge absorption. In the mask mode the
__

Communication weights

These parameters determine what kinds of messages are sent whenever agents
communicate with each other. Agents can communicate complex messages with multiples
components, including knowledge, belief, binary task assignment,, and transactive memory of all
three. The communication weights set the type of content of the message. Belief Weight is set as
the probability that an agent chooses to include its belief on any belief in the message.
Transactive memory Belief weight is set as the probability that an agent decides to send its
perception of any third party’s belief in the message. Fact Weight is set as the probability that an
agent chooses to include a fact in the message. Transactive memory belief weight is set as the
probability that an agent decides to send its perception of any third party’s knowledge in the
message. These weights need to sum to a value of 1, otherwise Construct will normalize their
sum to values between [0,1].

<param name="communicationWeightForBelief" value="0.2"/>
<param name="communicationWeightForBeliefTM" value="0.1"/>
<param name="communicationWeightForFact" value="0.5"/>
<param name="communicationWeightForKnowledgeTM" value="0.2"/>
<param name="communicationWeightForBinaryTaskAssignment" value="0.2"/>
<param name="communicationWeightForBinaryTaskAssignmentTM"

value="0.1"/>

Default Agent Type

This parameter determines which kind of agent is set to be the default type agent. The
default type is set to human.

<param name="default_agent_type" value="human"/>

34

Dynamic Environment

This parameter determines whether or not to include an “outside world” agent that
possesses different knowledge and can exchange information each turn of the simulation, which
would introduce new information to agents in the simulation. The default value is false.

<param name="dynamic_environment" value="false"/>

Forgetting and Learning

These parameters determine how an agent gains or loses information during the
simulation. There are various forms of forgetting and learning that agents can take on.

Forgetting determines if agents can lose facts that they learned and is a boolean
parameter. If true, forgetting can decay at a set rate under binary forgetting network. Binary
Forgetting determines if agents are to lose the fact entirely or not. The agent either loses the
entire fact or loses nothing based on the value in the agent x forgetting rate network for
that agent.

Binary Learning determines if agents can either learn the entire fact at once or not at all
or learn part of the fact. When true, the agent either learns the entire fact at once or not at all.
When false, the agent can learn a portion of the knowledge fact.

<param name="forgetting" value="false"/>
<param name="binary_forgetting" value="true"/>
<param name="binary_learning" value="true"/>

Interaction Requirements
<param name="interaction_requirements" value="false"/>
<param name="interaction_requirements" value="disable"/>
<param name="interaction_requirements" value="true"/>
<param name="interaction_requirements" value="enable"/>

Specifies whether Construct will require the presence of the “agent interaction
dependency network” and the “agent knowledge interaction dependency network.” If the
parameter is set to true/enable, both networks must be present. Both networks then establish
prerequisites that an intiating agent must satisfy before it can communicate with its desired alter.
See also the descriptions of these networks on page 59.

Out of Sphere Communication Allowed
<param name="out_of_sphere_comm_allowed" value="true"/>
<param name="out_of_sphere_comm_allowed" value="false"/>

This parameter specifies whether an agent can, usually based on a received referral,
initiate an interaction with an agent outside of its interaction sphere.

35

Seed

Seed is a parameter used to control the random seed for the simulation. For a time
dependant seed, set this parameter value to 0, otherwise set to an integer value to get constant
results if the experiment were to be run multiple times.

<param name="seed" value="1"/>

The seed parameter must be the first parameter to ensure its
loading and use!

IRS Special Agents Begin

This parameters is a custom parameter for previous research and modeling. Discussion of
that research is beyond the scope of this user guide. Readers may send specific questions about
the research to casos@cmu.edu.

<param name="IRS_Special_Agents_Begin" value="1"/>

Social Network Interaction Initialization Model
<param name="social_network_interaction_initialization_model"

value="fixed"/>
<param name="social_network_interaction_initialization_model"

value="evolving"/>

When the researcher wants the interaction sphere reset at the beginning of each Construct
turn to the starting condition, the ‘fixed’ option is the value to use. When the researcher desires
the interaction sphere to evolve during the entirety of the simulation, the ‘evolving’ option is the
value to use.

As of August 2014, the exisiting Construct developers are not
clear how exactly this parameter effects simulations, their outcomes, or
performance.

Thread count

The thread count parameter sets the number of threads construct can use to parallelize a
construct process. It is best to keep this set to 1 and seperate the processes and runs rather than to
increase the threads.

<param name="thread_count" value="1"/>

Transactive Memory

If the modeler enables transactive memory, the parameter value must be ‘enabled.’ If the
transactive memory is active, the modeler must pick one or the other of the transactive memory

mailto:casos@cmu.edu

36

paradigms. The first paradigm is the original used by Construct, while the second is an addition
from circa 2012 and futher discussed in (Joseph, Morgan, Martin, & Carley, 2013).

In short the original paradigm allowed an ego to maintain transactive memory for every
agent to which it had connections. This was true if the ego had connections to one (1) alter, or
1,000 alters. To make Construct’s modeling paradigm more aligned with how humans true
maintain perceptions of others, the multi-level exists.

In the multi-level paradigm, egos’ perceptions of specific others’ knowledge slowly
decays without interaction, while interaction keeps the information activated in the ego’s store of
knowledge. If the ego interacts with an alter for which it has no perceptual store, the ego
generates a perception based on the ego’s knowledge of what group(s) the alter belongs to. This
is akin to a person in an organization making assumptions about what a person in a Human
Resource department would know, because the person has a perception of what HR people do
and know.

<param name="transactive_memory" value="enable"/>
<param name="transactive_memory" value="disable"/>
<param name="tm_model" value="evolving" />
<param name="tm_model" value="multi_level" />

Use mail

The Use_mail parameter enables or disables mail communication, which allows agents to
send a message at one period that agents can read at a later period and acquire knowledge. For
agents to use mail, they must use the communicationMechanism called mail, and must employ
various additional networks and parameters. For more detail on the mail system, reference CMU-
ISR-08-114.

<param name="use_mail" value="false"/>

Verbose Initialization

Verbose initialization is used to determine values of every construct variable and every
value when defining nodes and networks. It is recommended to enable this parameter as true to
aid in debugging a simulation.

<param name="verbose_initialization" value="true"/>

Verbose Interaction Weights

This parameter causes Construct to save homophily and expertise values separately
instead of a sum of the two values. This can be useful if the research question(s) of interest need
the distinct values.

<param name="verbose_interaction_weights" value="true"/>
<param name="verbose_interaction_weights" value="false"/>

37

Operation Output Working Directory

This parameter specifies working directory the <operations> tag will use throughout the
simulation. If not set, Construct defaults to using the operating system current working directory.

38

Table 3. List of required networks for four standard Construct Models

Required Networks for “standard
interaction model” for agent interactions (29)

Required Networks
for “standard influence

model” for agent influence (3)

Required Networks
for “standard belief model” for

agent beliefs

Required Networks for
“standard task mode”l (aka

“binary task model”) for agent
binary task execution

The Core Networks (always required, regardless of model)
1. access
2. agent active timeperiod
3. agent group
4. interaction sphere
5. knowledge group

1. access network
2. agent active timeperiod
3. agent_group_membership
4. agent initiation count
5. agent learning rate
6. agent message complexity
7. agent reception count
8. agent selective attention effect
9. communication medium access
10. communication medium preferences OR

communication medium preferences network
3d

11. interaction knowledge weight
12. knowledge
13. knowledge expertise weight
14. knowledge group membership OR

 fact group membership
15. knowledge priority
16. knowledge similarity weight
17. learnable knowledge
18. medium knowledgegroup
19. physical proximity
20. physical proximity weight
21. public message propensity network
22. social proximity
23. social proximity weight
24. sociodemographic proximity

1. agent belief
2. beInfluenced
3. influenceability

1. agent belief
2. beInfluenced
3. belief knowledge weight
4. knowledge

1. agent learn by doing rate
2. binarytask assignment
3. binarytask requirement
4. binarytask similarity weight
5. binarytask truth

39

25. sociodemographic proximity weight
26. transmission knowledge weight

note: the word “network” has been omitted from the end of all network names

Table 4. List of optional networks for four standard Construct Models

Optional Networks for “standard
interaction model” for agent interactions (29)

Required Networks
for “standard influence

model” for agent influence (3)

Required Networks
for “standard belief model” for

agent beliefs

Required Networks for
“standard task model (aka “binary
task model”) for agent binary task

execution
1. agent forgetting mean1
2. agent forgetting rate2
3. agent forgetting variance 3
4. agent interaction dependency4
5. agent knowledge interaction dependency5
6. knowledge similarity weight6
7. knowledge transactive memory

 1. binarytask dependency
network

2. binarytask transactive
memory

Table 5. List of other Construct Models

Required networks for
“dynamic environment model”

Required networks for
“isolation model:

Required networks for
“knowledge learning difficulty
model”

Required networks for
Movement

dynamic environment reset
timeperiods network
dynamic environment means
network
dynamic environment knowledge
requirement network

agent active timeperiod network
binarytask assignment network

 _agent_timeperiod_prob_net

1 Ignored when the “forgetting” parameter is set to false. Mandatory when the “forgetting” parameter is set to true.
2 Ignored when the “binary_forgetting” parameter is set to false. Mandatory when the “binary_forgetting” parameter is set to true .
3 Ignored when the “forgetting” parameter is set to false. Mandatory when the “forgetting” parameter is set to true.
4 Ignored when the “interaction_requirements” parameter is set to false. Mandatory when the “interaction_requirements” parameter is set to true or

enable.
5 Ignored when the “interaction_requirements” parameter is set to false. Mandatory when the “interaction_requirements” parameter is set to true or

enable.
6 If the modeler does not provide this network, Construct creates the network automatically. The network stores the calculated similarity values that

Construct calculates, stores, and uses—there is no good reason for the modeler to specify it.

40

Required networks for
“NetworkModification”

Required networks for
“Subscription”

Required networks for
“TaskCompletion”

Required networks for
“TaxErrorModel”

"network modifications" "subscribable agents network" binarytask dependency network

41

Nodes
Nodes are the entities that Construct simulates. Nodes are grouped into classes of nodes,

called Node classesnode classes, and are related to each other in terms of networks. This section
describes some of the nodes and Node classesnode classes in Construct: specifically, the nodes
and Node classesnode classes in the demo input deck.

The Construct simulation system uses the idea of “nodes” and “networks”, as opposed to
the more common formulation of “agents” in the agent-based modeling community. This is
because Construct grew out of the social and dynamic network analysis tradition (Carley 1991;
Carley & Reminga 2004) and PCANS framework (Krackhardt & Carley 1998). Groups of
similar nodes are Node classesnode classes, which can be seen on the top and left of Figure 4.
Thus, all agent nodes are in the agent node class. Classes of nodes can be associated with other
classes of nodes to create networks, examples of which can be seen in the remainder of Figure 4.
Links in these networks are then manipulated when Construct is running. New links in the
network can be added or modified: for instance, if the agent learns knowledge, a new link
between the specific agent node and the relevant knowledge node can be created. Thus, as a
Construct simulation runs, the relationship among different nodes will be modified.

Node classes specify the node’s behavior in the simulation. For instance, agent nodes are
the nodes that interact, learn, and hold beliefs. While all agent nodes are alike in the sense that
they are in the same nodeclass, each agent node can be associated with (have links to) different
knowledge or have different influentialness values. Agents in Construct are just one class of
node. Another example Node class is the knowledge nodeclass. As with the agent nodeclass,
different nodes in the knowledge Node class are alike in the sense that they represent knowledge
from the simulation’s perspective, but are different in the way that they represent different
knowledge bits. Other Node classesnode classes include beliefs, timeperiods, groups, and other
entities.

Nodes are grouped into classes called node classes. All agent nodes are within agent node
classes, and all nodes of the same type are in the same node class. Node classes can be associated
with each other to create networks through node links. Node links are manipulated within
construct and can be added or modified. An example of this would be agents learning
knowledge. There is a node link between the agent node and the knowledge node that is now
created as the agent learns. Below in Table 6 are some common node classes with some
important networks that contain links between nodes, in an input deck.

The general XML code segment for declaring a node class in Construct is show below.
The type attribute must be one of the types supported by Construct. The id attribute also serves
as the prefix to the node identifier with an incremented integer used as the suffix of the identifier
(e.g., agent_01, agent_02). The <attributes> and <attribute> tags support modelers defining

42

attributes of nodes of any type. The alternate formulation of storing nodes attributes uses the
dummy node class as the section entitled “Dummy node class” starting on page 50 discusses.

Modelers should refrain from having attribute tags with the same name as networks built
from dummy node classes to store the same attribute values.

Construct will search attribute networks for named attributes
before it searches attributes stored with each node.

<nodeclass type="[agent | binarytask | …]" id="prefix">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count | dynetml"/>
 <property name=“generator_count" value=
 “construct::intvar::agent_count"/>
 <!-- optional property specifying a prefix for agent ids -->
 <property name=”generator_node_id_prefix” value=”OrgA” />
 </properties>
 <attributes> <!-- optional -->
 <attribute name=”attribute1” value=”true” />
 <attribute name=”attribute2” value=”true” />
 </attributes>
 <names> <!-- optional -->
 <name id="0" value="mr_aims"/>
 <name id="1" value="Winston"/>
 </names

</nodeclass>

Table 6. Common node classes in Construct

Node
Class

Agent
Agent_type
Agentgroup
Belief
Binary Task
Knowledge
Knowledgegroup
Timeperiod
Dummy

Agent node class
The agent node class represents the actors in the simulation. Agents interact with each

other, exchange messages that contain beliefs and facts, and make decisions based on interaction.
Many networks in the input deck are associated with agents as shown in Table 6 above. Some
common types include agent by knowledge and agent by belief networks. The agent node class

43

must be present in the simulation and must have at least one node, otherwise the experiment has
nothing to model. Agent nodes also have an associated agent type, which determines things that
an agent can do, such as give and receive knowledge. Most agents are set as human, however this
is not always the case. In some cases, a user may want to simulate an intervention as a source of
information such as a website from which human agents can gain knowledge.

Agent classes are groups of agents with similar properties, some of which the
agent_type node class specifies. Modelers specify other agent class properties using a variety
of Construct networks. Node classes, on the other hand, are collections of nodes treated in a
similar manner by the simulation.

There are two ways of specifying the contents of an agent node set and those ways are
below. The first method will automatically generate agent_count agents in the node set. There
is an optional property called generator_node_id_prefix the experiment designer can specify
that will prepend the value to all agent IDs. In the example shown, all agents will start with
“OrgA” and then have a number, starting with 0, added to the agent name (e.g., OrgA0, OrgA1,
OrgA2, …, OrgA100).

<nodeclass type="agent" id="agent">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 “construct::intvar::agent_count"/>
 <!-- optional property specifying a prefix for agent ids -->
 <property name=”generator_node_id_prefix” value=”OrgA” />
 </properties>
</nodeclass>

The slight modification to this first method is shown below. The <names> tag allows an
experimenter to explicity name individual nodes, despite those nodes having been generated by
Construct itself.

<nodeclass type="agent" id="agent">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 “construct::intvar::agent_count"/>
 <!-- optional property specifying a prefix for agent ids -->
 <property name=”generator_node_id_prefix” value=”OrgA” />
 </properties>
 <names>
 <name id="0" value="mr_aims"/>
 <name id="1" value="Winston"/>
 </names
</nodeclass>

The second method will read the agents in from a DynetML file. All the property tags are
necessary for proper use and parsing of the input file. In the example shown, the input file is in

44

the same working directory as the construct.exe executable, and there is no path information
preceding the file name.

<nodeclass type="agent" id="agent">
 <properties>
 <property name="generate_nodeclass" value="true" />
 <property name="generator_type" value="dynetml" />
 <property name="generator_doc_path"
 value="agentNodeSetDefinition.xml" />
 <property name="generator_nodeclass_id" value="agent" />
 <property name="generator_nodeclass_type" value="agent" />
 </properties>
</nodeclass>

If the generator_doc_path is absolute and not relative, quote
the entire path with single quotes (‘) to force Construct to treat the
value as a long string and prevent the Construct lexxer from failing with
less than transparent errors. The colon and back slashes in Windows
paths will simply cause the lexer to believe it is parsing a Construct script
instead of a long string. In Unix environments the slash will equally
cause the lexer to believe it is processing a math operator.

Construct does not, as of this writing, support multiple generators within a single
nodeclass.

Agentgroup node class
The agentgroup node class keeps track of collections of similar agents. Construct can use

these node classes to calculate network metrics and for simulation analysis. For example,
Construct can determine how many agents have learned a fact within a group of agents.

<nodeclass type="agentgroup" id="agentgroup">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 “construct::intvar::agentgroup_count"/>
 </properties>
</nodeclass>

Agent_type
This node type sets the type of agent nodes within the simulation. The agent node type

has the folllowing attributes that the modeler needs to set:

• communicationMechanism - this attribute determines how an agent communicates. The
agent can communicate with others either directly or via mail. Direct communication is

45

where agents exchange messages face to face during a current time period, while mail
communication delays the information exchange.

Construct’s parser and model still acecepts the mail option, but
CASOS has deprecated its use in favor of the communicationMedium
functionality.

• canSendCommunication - this determines whether nodes are able to send information to
other nodes of this type. Most agents should be able to send information regardless if they
are human or not. Agents who can’t send information cannot influence knowledge or
beliefs of other agents.

• canReceiveCommunication - this determines which nodes can receive information.
Agents who cannot receive information can’t learn new knowledge or change beliefs and
transactive memory.

• canSendKnowledge - this determines whether nodes can send knowledge when
communicating. This mostly has to do with content of messages that agents send.

• canReceiveKnowledge- this determines whether nodes can receive knowledge when
communicating. The content of the message received depends on the knowledge of the
sender if this is enabled. Agent’s who can’t receive knowledge will ignore knowledge
bits within a message.

• canSendBeliefs - this determines whether nodes can send beliefs.
• canReceiveBeliefs - this determines whether nodes can receive beliefs.
• canSendBeliefsTM - this determines whether or not nodes can send transactive memory

about third party beliefs.
• canRecieveBeliefsTM - this determines whether nodes can receive transactive memory

about third party beliefs.
• canSendBinaryTask - this determines whether nodes can send binary task assignment

information.
• canReceiveBinaryTask - this determines whether nodes can receive binary task

assignment information.

Modelers should be wary of enabling this functionality.
Transmitting a BinaryTask assignment is analogous to task assignment
sharing. That functionality may be useful to a modeler, but the
implications of agents’ randomly assigning tasks among each other,
while retaining the task assignment themselves, is probably not the
default expected behavior for task assignment.

46

• canSendBinaryTaskTM - this determines whether nodes can send transactive memory
about binary task assignment. Enabling this capability, when the standard task model is
active, allows agents to share their perception of task assignments among their connected
alters.

• canReceiveBinaryTaskTM - this determines whether nodes can receive transactive
memory about binary task assignment. Enabling this capability, when the standard task
model is active, allows agents to receive their alters’ perception of task assignments.

• canSendKnowledgeTM - this determines whether nodes can send transactive memory
about third party knowledge.

• canReceiveKnowledgeTM- this determines whether nodes can receive transactive
memory about third party knowledge.

• canSendReferral - this determines if agents can send referrals to other agents in addition
to knowledge and beliefs. An example of a referral would be if an agent is seeking a
specific piece of information and the sender has transactive memory about someone else
who has the information desired, the sender can then refer the agent seeking information
to the agent with information. In other words, the sender agent can recommend an expert
to the receiver agent.

• canReceiveReferral - this attribute determines if agents can receive referrals from agents
in addition to knowledge and beliefs. If the receive wants information and can receive
referrals, an agent with transactive memory about an expert agent can send the referall to
the receiving agent, directing them to the source of information that they seek.

• ignoresReceptionCount – this attribute allows an agent to have no constraints on the
number of interactions it can receive.

<nodeclass>
 <node id="human" title="human">
 <properties>
 <property name=“canSendCommunication" value="true"/>
 <property name=“canReceiveCommunication" value="true"/>
 <property name=“canSendKnowledge" value="true"/>
 <property name=“canReceiveKnowledge" value="true"/>
 <property name=“canSendBeliefs" value="true"/>
 <property name=“canReceiveBeliefs" value="true"/>
 <property name=“canSendBeliefsTM" value="true"/>
 <property name=“canReceiveBeliefsTM" value="true"/>
 <property name=“canSendKnowledgeTM" value="true"/>
 <property name=“canReceiveKnowledgeTM" value="true"/>
 <property name=“canSendReferral" value="true"/>
 <property name=“canReceiveReferral" value="true"/>
 </properties>
 </node>
</nodeclass>

Construct has several built in agent type labels. Default behaviors for these classes are
deprecated so a modeler must define the attributes. The specific and built-in types are below.

47

Though capitalized below, when used in the input deck, the agent types should be in all
lowercase!

• advertisement
• avatar
• book
• broadcast
• database
• dynamicenvironment
• human, the default agent type.
• promoter
• seminar
• webpage

Belief node class + belief formation equations
Beliefs represent whether or not an agent agrees or disagrees with a principle. These

principles are represented by nodes in the belief node class. Agents are associated with these
beliefs through the agent belief network, either with positive beliefs (agreements) or negative
beliefs (disagreement). The standard belief model defines complete agreement with a value of
1.0, and complete disagreement with a value of -1.0. Neutral belief is set at 0.0. These values are
set for a single belief, however in some cases multiple beliefs rather than one single belief will be
criteria for a decision that an agent makes. In terms of agents’ perception on other agents’
beliefs, their perception is not perfect, i.e they don’t always know exactly what another agent
believes. Their perceptions are stored in the belief transactive memory network and agents will
refer to this when determining social influence. So in essence, an agent’s belief as well as their
perception of what other agents believe, will play a role in their decision making and will show
the effects of social influence on decisions. The number of beliefs in the input deck is set by
modifying belief_count.

<nodeclass type="belief" id="belief">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 "construct::intvar::belief_count"/>
 </properties>
</nodeclass>

Binary task node class
Binary tasks are actions that agents can perform during the simulation. These actions are

represented by nodes in the belief class. To perform these tasks, knowledge relevant to the task is
required by the agent and can be attempted multiple times throughout an experiment time period.

48

An example of this would be an agent having to pass a test; with insufficient knowledge during
the first time period, the agent would not pass, but throught the second time period the
experiment could be set up to allow that agent to gain enough knowledge bits to perform the task
of passing the test. If an agent is able to perform a binary task, which is set in binary task
assignment network, agents will use a subset of their knowledge related to the task. This
knowledge is set in the binary task requirement network. That subset is then matched up against
the true values that confirm the task to be performed. This is set in binary task truth network.

Agents will perform binary tasks in the following manner:

1. The agent is assumed to be able to complete the task correctly
2. All required knowledge bits are checked relevant to the agent’s knowledge in the binary

task truth network. If the agent’s knowledge matches the required knowledge, the agent’s
accuracy is unchanged. If it doesn’t match, the agent guesses with 50% probability. If
correct, the next knowledge bit is checked, and if guessed incorrectly, the agent does not
perform the task accurately.

3. There is a chance that an agent can misrepresent information. This is set in the
misrepresentation probability network and inverts the decision that would be made based
on knowledge and guessing. For example, an agent who should be able to pass a test,
won’t pass the test with a probability equal to the misrepresentation rate.

4. If misrepresentation is not set, the agent will always guess when their knowledge does
not match the knowledge bits in the truth network. Agents that are assigned the same
binary task will become more similar to each other. Similarity can be changed via the
binary task similarity network. Agents who are assigned the same binary task would
typically have similar knowledge bits, however they do not gain transactive memory
through through binary tasks.

<nodeclass type="binarytask" id="binarytask">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 "construct::intvar::binarytask_count"/>
 </properties>
</nodeclass>

CommunicationMedium
<nodeclass type="CommunicationMedium" id="CommunicationMedium">
 <node id="facetoface" title="facetoface">
 <properties>
 <property name="maxMsgComplexity"
 value="construct::intvar::maximum_message_complexity" />
 <property name="msgCost" value="1.0" /> <!-- a 0.0 to 1.0

value -->
 <property name="maximumPercentLearnable" value="1.0" />
 <property name="time_to_live" value="1" />
 <property name="time_to_send" value="0" />

49

 <property name="passive" value="false" />
 </properties>
 </node>
 <node id="phone_lvl1" title="phone_lvl1">
 <properties>
 <property name="maxMsgComplexity"
 value="if((construct::intvar::maximum_message_complexity*0.75) <

1.0) {1.0} else {(construct::intvar::maximum_message_complexity*0.75):float}"
/>

 <property name="msgCost" value="0.5" />
 <property name="maximumPercentLearnable" value="0.75" />
 <property name="time_to_live" value="1" />
 <property name="time_to_send" value="0" />
 <property name="passive" value="false" />
 </properties>
</node>

Communication Mediums are abstractions of information exchange capabilities and their
connections to other elements within the simulation. Each node requires a unique identifier as
well as several other attributes. maxMsgComplexity is the maximum number of information
pieces (e.g., knowledge bits, belief bits) that the medium can support when used by an agent to
communicate with another agent—this supports the notion that there are some ‘rich’ mediums
such as face-to-face that support much more information per interaction than other mediums
such as SMS messaging.

msgCost is another property for communications mediums. This is a [0.0,1.0] value that
acts as a limiter to the number of messages one agent sends per interaction. The limitation is a
simple inverse function combined with a uniform random number generator shown below in .

0 1
1.0messageCount 1.0,1.0msgCost uniformrandom

msgCost<= <=

= +

Equation 1 Number of messages per interaction calculation for a given medium

The maximumPercentLearnable and other properties shown in the code segment above
are self-explanatory and provide the modeler with constraints on the efficacy of the
communication medium for passing information.

This class can also be read in from a DynetML file, presuming the modeler has the
appropriate attributes just discussed. An example of a code snippet that would read the
CommunicationMedium in is below.

<nodeclass type="CommunicationMedium" id="CommunicationMedium">
 <properties>
 <property name="generate_nodeclass" value="true" />
 <property name="verbose" value="true" />
 <property name="generator_type" value="dynetml"/>
 <property name="generator_doc_path"

value="construct::stringvar::ora_input_fname" />
 <property name="generator_nodeclass_id" value="comms_media" />
 <property name="generator_nodeclass_type" value="Resource" />

50

 </properties>
</nodeclass>

Dummy node class
The dummy node class is designed to act as a placeholder node class to create column

vectors for other node classes. One of the principle ways Construct works is by manipulating two
dimensional input and internal networks, and with the dummy node class, one can create an
agent by dummy node class network that acts as a one dimensional network. This essentially
makes visualization of networks much easier, as well as data manipulation.

This capability is particularly important for creating attributes for nodes in the various
node classes. However, it is very important that the modeler remember that each attribute is not
stored with the node as it might be in an Object Oriented Programming paradigm. Construct
instead stores each attributes created with the dummy node class as its own network of agent x
dummy_nodeclass (e.g., agent forgetting mean network).

<nodeclass type="dummy_nodeclass" id="dummy_nodeclass">
 <node id="constant" title="constant"/>
</nodeclass>

Recall from the node class discussion, that a modeler can store attributes in a Node itself,
but either has to read those attributes in from a file or has to enumerate them manually.

Energy task node class
Energy tasks, represented as nodes in Construct, are actions that require a specific

amount of effort rather than knowledge. Agents’ ability to complete an energy task are setup in
the energy task assignment network, and will expend energy on the task until they meet the
required amount of energy to complete the task, which is set in the energy task requirement
network. Similar to binary tasks, energy tasks can be attempted through different time periods in
the simulation, however they are completely independent of binary tasks and knowledge.

The following procedure is used for an energy task:

1. An energy task instance is created and set by the energy task time network for a given
agent.

2. The total number of energy task instances is tallied for the agent, which determines the
total number of instances which an agent can devote energy.

3. For all incomplete energy tasks, the total amount of energy devoted to completion is
equal to the reciprocal of the total number of tasks. So if an agent has three tasks, the
amount of energy added to each task is equal to ⅓. Once the agent has spent the required
amount of energy on the task, the task is complete and the agent will no longer spend
time working on the task.

4. Any energy not spent on the task is lost and isn’t saved for future time periods.

51

5. There is no measurement of accuracy with energy tasks. Instead, the total number of
energy tasks completed is measured following a simulation.

<nodeclass type="energytask" id="energytask">
 <properties>
 <property name="generate_nodeclass" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value=
 “construct::intvar::energytask_count"/>
 </properties>
</nodeclass>

Knowledge node class
The knowledge node class represents knowledge that can be exchanged between agents.

Each knowledge bit is represented by one node. There are two types of knowledge, stylized and
specific knowledge. Stylized knowledge would be something that drives interaction between
agents while specific knowledge would have specific meaning such as an agent knowing how to
pass a certification exam. Agents are associated with knowledge through the knowledge network.
Agents can have knowledge of entire bits or partial knowledge by adjusting knowledge link
weight in the knowledge network. Agents keep track of other agents’ knowledge through
knowledge transactive memory network. In the input deck, there are knowledge count
knowledge bits within the node class.

<nodeclass type="knowledge" id="knowledge">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 "construct::intvar::knowledge_count"/>
 </properties>
</nodeclass>

Knowledge group node class
The knowledge group node class keeps track of collections of similar knowledge bits.

Construct can also use these to calculate a number of metrics. For example, Construct can
determine how many knowledge bits have been learned by agents in a particular agent group.

<nodeclass type="knowledgegroup" id="knowledgegroup">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 “construct::intvar::knowledgegroup_count"/>
 </properties>
</nodeclass>

Time period node class

52

Nodes in the time period node class represent one simulated time period in the
simulation. The length of the simulation is represented by the number of nodes in this node class.
The experimenter can decided whether agents are active during a time period by changing values
in the agent active time period network. Some models treat the first period as a baseline and may
alter some algorithms due to a lack of a previous time period to calculate a change from. For this
reason it is better to run simulations for larger time periods.

<nodeclass type="timeperiod" id="timeperiod">
 <properties>
 <property name=“generate_nodeclass" value="true"/>
 <property name=“generator_type" value="count"/>
 <property name=“generator_count" value=
 “construct::intvar::time_count"/>
 </properties>
</nodeclass>

Other node classes
While the ten node classes listed above are standard node classes in construct models,

Construct is not limited to these ten node classes. Users can define their own node classes if
desired, as long as they follow the same syntax as the node classes above and are unique names.

Networks
Networks are the main data structures in Construct. Since construct is a network based

simulation, most of the data that goes into input for simulation are in the form of network.
Networks are the relationships between node classes listed in the section above. The algorithms
in Construct reference these networks to perform tasks. For example the agent by agent
knowledge network represents which knowledge is known by which agents.

Table 7 shows specific networks with their relationship to node class as well as a brief
description.

Table 7. Network relations to node classes

NetworkName
Source &

Target node classes
Function or Purpose in

Demo Input Deck

agent type name agent x
dummy

specifies the agent type for each agent,
thereby identifying key behavior

agent initiation count agent x
timeperiod

number of times agent can seek a
partner, actively initiating communication

53

agent reception count agent x
timeperiod

number of times agent can be sought
out, passively receiving communication

agent message complexity agent x
timeperiod

amount of info an agent can send when
communicating

beInfluenced agent x
dummy

how resistant an agent is to changing
its belief

influentialness agent x
dummy

how strongly an agent can influence
the beliefs of others

agent selective attention
effect

agent x
dummy

percentage of agent knowledge that an
agent will examine when communicating

agent learning rate agent x
knowledge

how quickly an agent will learn new
knowledge when communicating

agent forgetting rate agent x
knowledge

how quickly an agent will forget
old knowledge when binary forgetting

is enabled

agent learn by doing rate agent x
dummy

how quickly an agent will learn new
knowledge when performing tasks

knowledge agent x
knowledge

the knowledge associated with an
agent,

i.e. what an agent currently knows

agent belief agent x belief the beliefs associated with an agent,
i.e. what an agent currently believes

belief knowledge weight knowledge x
belief

the impact that each
knowledge bit has on belief

interaction sphere agent x agent which agents are able to potentially
interact with, and keep TM, of which

access agent x agent which agents have access to which
(supplement to interaction sphere)

agent active timeperiod agent x
timeperiod

which agents are active
during which timeperiods

physical proximity agent x agent how close each pair of agents are
physically

sociodemographic
proximity

agent x agent how close each pair of agents are
socio-demographically

54

social proximity agent x agent how close each pair of agents are
socially

Network Name
Source & Target

node classes
Function or Purpose in

Demo Input Deck

physical proximity
weight

agent x timeperiod weight placed on physical proximity
when choosing interaction partner

sociodemographic
proximity weight

agent x timeperiod weight placed on s-d proximity
when choosing interaction partner

social proximity
weight

agent x timeperiod weight placed on social proximity
when choosing interaction partner

binarytask similarity
weight

agent x timeperiod weight placed on shared binary tasks
when choosing interaction partner

binarytask
assignment

agent x binarytask which agents are assigned
to which binary tasks

binarytask
dependency requirement

binarytask x
binarytask

which tasks (rows) are dependent on
which other tasks (cols) to complete which
binary tasks

binarytask
requirement

knowledge x
binarytask

which knowledge bits are required
to complete which binary tasks

binarytask truth knowledge x
binarytask

what values knowledge bits must have
to complete which binary tasks

knowledge similarity
weight

agent x timeperiod weight placed on shared knowledge
when choosing interaction partner

knowledge expertise
weight

agent x timeperiod weight placed on different knowledge
when choosing interaction partner

interaction
knowledge weight

agent x knowledge weight placed on knowledge bits
when choosing interaction partner

transmission
knowledge weight

agent x knowledge weight placed on knowledge bits
when sending a message

knowledge priority agent x knowledge priorities placed on knowledge bits
when sending a message

learnable knowledge agent x knowledge what knowledge bits can or cannot
be ever be learned

55

agent group
membership

agent x agentgroup what agents are associated with
which agent groups

knowledge group
membership

knowledge x
knowledgegroup

what knowledge bits are associated
with

which knowledge groups

It is quite possible for a user to create more networks than there are listed in Figure 6.
Networks are specified within the <networks> ConstructML tag.

<networks>
 <!-- Put all networks here -->
</networks>

Each networks tag must have five attributes: network id, source nodeclass, target
nodeclass, link type, and network type.

<network src_nodeclass_type="[nodeclass]"
 target_nodeclass_type="[nodeclass]"
 id="[name]" link_type="[type]" network_type="dense">
 <!-- Set links and generators here -->
</network>

Network ID is the name that refers to a given network. The source Node class type and
target Node class type indicate the node classes that are related by the network. Relationships
between networks are weighted and unweighted relations between node classes. Network type
specifies the storage mechanism used to represent the network. The link type defines the type of
relation stored in the network. There are boolean link types, integer link types, floating number
link types, and string link types. The link type must be the same for all links in the network i.e it
is not possible to have a boolean relationships in integer networks. Links can be specified either
through the <link> tag or the <generator> tag.

The syntax for link generation is listed below:
<link src_node_name="[id]" target_node_name="[id]" value="[value]"/>

The following sections are more detailed descriptions of the networks listed above in
Table 7.

Knowledge expertise weight network
The access network is an addition to the interaction sphere and can restrict which alters

agents can communicated with. This network prevents agents from potentially interacting rather
than absolute prevention from interacting. A use case for this network could include the
temporary restriction of communication by an agent by making its row full of zeros (0).

<network src_nodeclass_type="agent" target_nodeclass_type="agent"
 id="access network" link_type="float" network_type="dense">

56

 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="nodeclass::agent::count-1"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 </generator>
</network>

Agent Active Time Period
The agent active time period network determines which agents are active during time

periods. Active agents during a time period can interact and exchange messages as well as
beliefs.

<network src_nodeclass_type="agent" target_node
 class_type="timeperiod"
nowledge expertise weight network network_type="dense">
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_A_start"
 last="construct::intvar::agentgroup_A_end"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_B_start"
 last="construct::intvar::agentgroup_B_end"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_C_start"
 last="construct::intvar::agentgroup_C_end"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value"
 value="construct::boolvar::bridging_agents_active"/>
 </generator>
</network>

Agent Belief Network
The agent belief network specifies how strongly an agent holds a particular belief. During

the simulation, agent beliefs can change based on what they learn and what agents around them
believe.

<network src_nodeclass_type="agent" target_nodeclass_type="belief"
 id="agent belief network" link_type="float" network_type="dense">
 <generator type="constant">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="nodeclass::belief::count-1"/>
 <param name="constant_value" value="0"/>
 </generator>
</network>

57

Agent Forgetting Rate
The agent forgetting rate network specifies how quickly agents forget knowledge that

they learned. Construct uses this network in two slightly different ways that depends on whether
binary forgetting is enabled—if all forms of forgetting are disabled, Construct ignores any values
in this network.

When binary forgetting is enabled via Construct Parameter, the float values in this
network represent the probability of knowledge bit being set to 0. Since this is an agent x
knowledge network, agent agent can forget at various rates for various knowledge bits. A
researcher can set knowledge to be ‘unforgettable’ by setting the respective agent x knowledge
cells to 0.0.

When partial forgetting is enable (via the Construct Parameter for forgetting being true,
and binary forgetting being false), the float values in this network represent the numerical
reduction in knowledge if the bit is to be effected by the stochastic forgetting process. If a
particular bit has not been used in the current turn, and if the bit is known to the agent (unknown
bits cannot be forgotten), and the application of a random number generator drives a ‘bit’to be
forgotten, the float value in the agent x knowledge cell is subtracted from the agent’s current
knowledge score for that bit.

<network src_nodeclass_type="agent" target_node
 class_type="knowledge"
 id="agent forgetting rate network" link_type="float"
 network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="nodeclass::knowledge::count-1"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 </generator>
</network>

Agent Forgetting Mean
Attribute Network, implemented as an Agent x dummy_nodeclass network.

The agent forgetting mean network specifies the mean that Construct uses when creating
a random uniform distribution from which to draw a random number to determine the probability
an agent will ‘forget’ a bit of knowledge. This network supports the implementation of non-
binary forgetting, but must still be present and conain values when binary forgetting is enabled.

Agent Group Membership
The agent group membership network is used to identify related sets of agents.
<network src_nodeclass_type="agent" target_node
 class_type="agentgroup"
 id="agent group membership network" link_type="bool"

58

 network_type="dense">
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_A_start"
 last="construct::intvar::agentgroup_A_end"/>
 <cols first="0" last="0"/>
 <param name="constant_value" value="1"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_B_start"
 last="construct::intvar::agentgroup_B_end"/>
 <cols first="1" last="1"/>
 <param name="constant_value" value="1"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_C_start"
 last="construct::intvar::agentgroup_C_end"/>
 <cols first="2" last="2"/>
 <param name="constant_value" value="1"/>
 </generator>
</network>

Agent Initiation Count
The agent initiation count network specifies the number of times each agent can select

other agents to interact with. Agents can either initiate communication with others by calculating
a probability of interaction and choosing a partner based on this probability, or can wait until an
agent choose to initiate interaction with them. Initiation count specifies the number of times
agents initiate communication.

The process for agent initiation is as follows:

1. The probability of interaction is first computed between all pairs of agents that are within
their respected interaction sphere.

2. Initiation count network is examined and each agent that can initiate interaction is added
to a vector.

3. While there are agents remaining in the vector, a random agent is chosen and named the
ego agent. Using the ego agent’s interaction sphere, all possible partners are examined
and potential partners are kept. The pre computed probabilities of interaction are then
normalized for these potential partners by the total absolute probability. An interaction
partner is then selected from this set of probabilities with a probability equal to that of its
relative probability of interaction.

4. If the agent can’t find a partner it will interact with itself.

Below is the syntax for initiation count:
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"
id="agent initiation count network" link_type="int"
network_type="dense">

<generator type="constant">

59

 <rows first="construct::intvar::agentgroup_A_start"
 last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
</generator>
<generator type="constant">
<rows first="construct::intvar::agentgroup_B_start"
 last="construct::intvar::agentgroup_B_end"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
</generator>
<generator type="constant">
 <rows first="construct::intvar::agentgroup_C_start"
 last="construct::intvar::agentgroup_C_end"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
</generator>
</network>

Agent Interaction Dependency Network
The agent interaction dependency network is an agent x agent network. It requires the

initiator (row) agent(s) to have previously interacted with the column agents (as sender or
receiver) before being allowed to interact with the desired agent. This is akin to organizational
policies that subordinates must interact with an immediate supervisor (at least once) before the
subordinate can interact with the supervior’s boss(es). This is a 2D boolean network. Construct
uses this network only if the parameter “interaction_requirements” has the value of ‘true’ or
‘enable.’ Construct ignores the network if the parameter is set to ‘disable,’ ‘false,’ or does not
existent in the input deck.

Agent Knowledge Interaction Dependency network
This agent x knowledge network helps the researcher stage or stagger the interaction of

agents based on the existing knowledge of the initiating agent. This is akin to an organizational
rule that requires an agent be aware of a set of specific rules before interacting with a specific
individual—say be aware of accounting rules before interacting with the accountants. This is a
2D static network. Construct uses this network only if the parameter “interaction_agents” is set
to ‘true’ or ‘enable.’ Construct ignores the network if the parameter has the value of ‘disable,’
‘false,’ or does not exist in the input deck.

Agent Learn by Doing Rate
Attribute Network, implemented as an Agent x dummy_nodeclass network.

The agent learn by doing network specifies how quickly agents learn particular bits of
knowledge when performing binary tasks. This allows agents to learn more about knowledge bits

60

that are partially known. This can allow agents to hone knowledge they already have to perform
a task more accurately, without interacting with other agents to gain the knowledge.

<network src_nodeclass_type="agent" target_node
class_type="dummy_nodeclass" id="agent learn by doing rate network"
link_type="float" network_type="dense">

<generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
</generator>
</network>

Agent Learning Rate
The agent learning rate network specifies how quickly agents learn knowledge. This

network also allows agents to partially learn facts.
<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"
 id="agent learning rate network" link_type="float"
 network_type="dense">

<generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="nodeclass::knowledge::count-1"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
</generator>
</network>

Agent Message Complexity
Agent message complexity specifies the number of items an agent can include in its

message when communicating with others. The process for message creation is as follows:

1. As long as the agent’s message is less than the message complexity, the type of message
item to include according to communication weights is randomly chosen. If the agent
can’t send that message item, another is chosen.

2. An item is selected of the appropriate type and verified whether it has not already been
added to the message.

Below is the syntax for message complexity:
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"
id="agent message complexity network" link_type="int"

network_type="dense">

<generator type="constant">
<rows first="construct::intvar::agentgroup_A_start"

last="construct::intvar::agentgroup_A_end"/>
<cols first="0" last="nodeclass::timeperiod::count-1"/>

61

<param name="constant_value" value="1"/>
</generator>
<generator type="constant">
<rows first="construct::intvar::agentgroup_B_start"

last="construct::intvar::agentgroup_B_end"/>
<cols first="0" last="nodeclass::timeperiod::count-1"/>
<param name="constant_value" value="1"/>
</generator>
<generator type="constant">
<rows first="construct::intvar::agentgroup_C_start"
last="construct::intvar::agentgroup_C_end"/>
<cols first="0" last="nodeclass::timeperiod::count-1"/>
<param name="constant_value" value="1"/>
</generator>
</network>

Agent Reception Count
The agent reception count specifies the number of times each agent can be chosen as an

interaction partner. The reception count is the maximum number of times each agent can be
selected as an interaction partner each time period.

Below is the syntax for agent reception count.
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"
id="agent reception count network" link_type="int"
network_type="dense">

<generator type="constant">
 <rows first="construct::intvar::agentgroup_A_start"
 last="construct::intvar::agentgroup_A_end"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
</generator>
<generator type="constant">
 <rows first="construct::intvar::agentgroup_B_start"
 last="construct::intvar::agentgroup_B_end"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
</generator>
<generator type="constant">
 <rows first="construct::intvar::agentgroup_C_start"
 last="construct::intvar::agentgroup_C_end"/>
<cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>
</generator>
</network>

Agent Selective Attention Effect
Attribute Network, implemented as an Agent x dummy_nodeclass network.

The agent selective attention effect network will determine how much of an agent’s
knowledge it will examine when deciding which knowledge bit to to use in a message. The size

62

of the selective attention effect determines how much of an agent’s knowledge it will examine
when choosing knowledge to communicate.

<network
src_nodeclass_type="agent"target_nodeclass_type="dummy_nodeclass"

id="agent selective attention effect network" link_type="float"
network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="0"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>
</generator>
</network>

Agent Type
Attribute Network, implemented as an Agent x dummy_nodeclass network .

The agent type network determines which agents are of which types. While the agent
nodes are definedi n the nodeclass, their role in the simulation is not yet defined. To determine
which properties an agent has, it must be associated with an agent type. Agent type will
determine agent behaviors such as communication mode and what can be communicated. For
simplicity, a string network was chosen to represent the agent type.

The following is syntax for setting up an agent type network via <generator> that sets
agents to be human and allows direct communication:

<network src_nodeclass_type="agent" target_node
 class_type="dummy_nodeclass" id="agent type name network"
 link_type="string" network_type="dense">

 <generator type="constant">
 <rows first="construct::intvar::agentgroup_A_start"

last="construct::intvar::agentgroup_A_end"/>
 <cols first="0" last="nodeclass::dummy_nodeclass::count-1"/>
 <param name="constant_value" value="human"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_B_start"

last="construct::intvar::agentgroup_B_end"/>
 <cols first="0" last="nodeclass::dummy_nodeclass::count-1"/>
 <param name="constant_value" value="human"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::agentgroup_C_start"

last="construct::intvar::agentgroup_C_end"/>
 <cols first="0" last="nodeclass::dummy_nodeclass::count-1"/>
 <param name="constant_value" value="human"/>
 </generator>
</network>

63

beInfluenced Network
Attribute Network, implemented as an Agent x dummy_nodeclass network .

This network allows a modeler to assign float values from [0f, 1.0f] for each agent’s
susceptibility to being influenced by others. A 0 value indicates no such susceptibility while a
+1.0 indicates complete susceptibility.

<network src_nodeclass_type="agent"
target_nodeclass_type="dummy_nodeclass" id="beInfluenced network"
link_type="float" network_type="dense">

 <!-- a generator needs to go here, unless there is evidence for a by-
agent

 assignment of values -->
</network>

Belief Knowledge Weight
The belief knowledge weight network specifies how much impact a fact has on an agent’s

belief. This weight allows the user to associate beliefs with particular knowledge bits.
<network src_nodeclass_type="belief" target_node
 class_type="knowledge"
 id="belief knowledge weight network" link_type="float"
 network_type="dense">

 <generator type="constant">
 <rows first="0" last="nodeclass::belief::count-1"/>
 <cols first="0" last="nodeclass::knowledge::count-1"/>
 <param name="constant_value" value="0"/>
 </generator>
</network>

Binary Task Assignment
The binary task assignment network specifies which agents are assigned to which binary

tasks. Agents can learn knowledge by performing the binary task and also increase their
similarity with others who are performing the same tasks.

<network src_nodeclass_type="agent" target_node
 class_type="binarytask"
 id="binarytask assignment network" link_type="bool"
 network_type="dense">

 <generator type="randombinary">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="nodeclass::binarytask::count-1"/>
 <param name="mean" value="0"/>
 </generator>
</network>

Binary Task Requirements

64

The binary task requirement network specifies which knowledge bits are examined when
an agent attempts to complete a binary task. For each knowledge bit required for the task, if the
agents knowledge value doesn’t equal the value specified in the binary task truth network, the
agent will guess and possibly complete the task incorrectly.

<network src_nodeclass_type="knowledge" target_node
 class_type="binarytask"
 id="binarytask requirement network" link_type="bool"
 network_type="dense">

 <generator type="randombinary">
 <rows first="0" last="nodeclass::knowledge::count-1"/>
 <cols first="0" last="nodeclass::binarytask::count-1"/>
 <param name="mean" value="0"/>
 </generator>
</network>

Binary Task Similarity Weight
The binary task similarity weight network specifies how much weight agents place on

shared tasks. Agents are more likely to interact if they have more similar tasks that they need to
perform.

<network src_nodeclass_type="agent" target_node
 class_type="timeperiod"
 id="binarytask similarity weight network" link_type="float"
 network_type="dense">

 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="nodeclass::timeperiod::count-1"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 </generator>
</network>

Binary Task Truth
The binary task truth network specifies what the values of the required bits must be for an

agent to complete a task without guessing.
<network src_nodeclass_type="knowledge" target_node
 class_type="binarytask"
 id="binarytask truth network" link_type="bool"
 network_type="dense">

 <generator type="randombinary">
 <rows first="0" last="nodeclass::knowledge::count-1"/>
 <cols first="0" last="nodeclass::binarytask::count-1"/>
 <param name="mean" value="0"/>
 </generator>
</network>

65

Communication Medium Access
This network determines which agents have access to which communication mediums.

Set the value to zero (0) for the agent to not have access to the specified medium.
<network src_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="communication medium access
network" link_type="float" network_type="dense">

 <generator type="constant">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>
 <param name="constant_value" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

Communication Medium Preferences
Need to say something about this network

Communication Medium Preferences Network 3d
This network shows what medium is prefered when communicating with a given agent.

This network is a 3d network. It is agent x agent x medium. One way to view it is a
collection of agent x medium networks. There is one of these agent x medium networks for
every agent, so each agent has a custom agent x medium network that shows what mediums he
prefers to use when communicating with any given agent.

<network src_nodeclass_type="agent" inner_nodeclass_type="agent"
target_nodeclass_type="CommunicationMedium" id="communication medium
preferences network 3d" link_type="float" network_type="dense3d">

 <generator type="constant3d">
 <rows first="1" last="nodeclass::agent::count_minus_one"/>
 <inners first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>
 <param name="constant_value" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

Dynamic Environment Reset Time Periods
Need to say something about this network
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="dynamic environment reset timeperiods network" link_type="bool"
network_type="dense">

 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>

66

 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="0"/>
 <param name="max" value="0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

Fact Group Membership
This network is redundant to the Knowledge Group Membership network discussed latter

in this section. While not explicitly deprecated as of August 2014, future modelers should be
aware this name does not follow the other network naming conventions. As such, it is a
candidate for deprecation in the future.

<network src_nodeclass_type="knowledge" target_node
class_type="knowledgegroup" id="fact group membership network"
link_type="bool" network_type="dense">

 <generator type="constant">
 <rows first="construct::intvar::knowledgegroup_K1_start"
 last="construct::intvar::knowledgegroup_K1_end"/>
 <cols first="0" last="0"/>
 <param name="constant_value" value="1"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::knowledgegroup_K2_start"
 last="construct::intvar::knowledgegroup_K2_end"/>
 <cols first="1" last="1"/>
 <param name="constant_value" value="1"/>
 </generator>
</network>

Influentialness
Attribute Network, implemented as an Agent x dummy_nodeclass network. This is how a

modeler enumerates the numeric influentialness of agents in the simulation.
<network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="influentialness network"
link_type="float" network_type="dense">

<!-- generator of somekind here, or specific values if evidence exists
for such -->

</network>

Interaction Knowledge Weight
The interaction knowledge weight network specifies how much weight agents will put on

particular knowledge bits when computing probabilities of interaction.
<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"
id="interaction knowledge weight network" link_type="float"
network_type="dense">

67

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::knowledge::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>
</generator>
</network>

 Interaction Network
Construct maintains this network as an Agent x Agent matrix of interactions in a

particular turn. It is not available for manipulation by the modeler and is reset by Construct at the
end of each turn in preparation for the upcoming turn. This network is available for reading and
providing output via Construct operations.

Interaction Sphere Network
The interaction sphere is the starting point for the modeler to enumerate which agents

have an interaction link to other agents.
<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="interaction sphere network" link_type="bool" network_type="dense">
 <generator type="constant">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="nodeclass::agent::count_minus_one"/>
 <param name="constant_value" value="1.0"/>
 <param name="symmetric_flag" value="true"/>
 </generator>
</network>

Knowledge – Binary and non-Binary
The knowledge network specifies which agents have what knowledge. Knowledge is

used to select interaction partners, perform tasks, and form beliefs. Agents learn and forget
knowledge as the simulation runs.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"
id="knowledge network" link_type="float" network_type="dense">

<generator type="randombinary">
<rows first="construct::intvar::agentgroup_A_start"

last="construct::intvar::agentgroup_A_end"/>
<cols first="construct::intvar::knowledgegroup_K1_start"

last="construct::intvar::knowledgegroup_K1_end"/>
<param name="mean" value="0.20"/>
</generator>
<generator type="randombinary">
<rows first="construct::intvar::agentgroup_B_start"

last="construct::intvar::agentgroup_B_end"/>
<cols first="construct::intvar::knowledgegroup_K2_start"

last="construct::intvar::knowledgegroup_K2_end"/>
 <param name="mean" value="0.20"/>

68

</generator>
<generator type="randombinary">
<rows first="construct::intvar::agentgroup_C_start"

last="construct::intvar::agentgroup_C_end"/>
<cols first="construct::intvar::knowledgegroup_K1_start"

last="construct::intvar::knowledgegroup_K1_end"/>
<param name="mean" value="0.10"/>
</generator>
<generator type="randombinary">
<rows first="construct::intvar::agentgroup_C_start"

last="construct::intvar::agentgroup_C_end"/>
<cols first="construct::intvar::knowledgegroup_K2_start"

last="construct::intvar::knowledgegroup_K2_end"/>
<param name="mean" value="0.10"/>
</generator>
</network>

Knowledge Expertise Weight
The knowledge expertise network specifies how much weight ego agents place on

knowledge known only by the alter when calculating probabilities of interaction.
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"
id="knowledge expertise weight network" link_type="float"

network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::timeperiod::count-1"/>
<param name="min" value="0.2"/>
<param name="max" value="0.2"/>
</generator>
</network>

Knowledge Group Membership
The knowledge group membership network is used to identify related sets of knowledge

bits.
<network src_nodeclass_type="knowledge" target_node
class_type="knowledgegroup" id="knowledge group membership network"
link_type="bool" network_type="dense">

 <generator type="constant">
 <rows first="construct::intvar::knowledgegroup_K1_start"
 last="construct::intvar::knowledgegroup_K1_end"/>
 <cols first="0" last="0"/>
 <param name="constant_value" value="1"/>
 </generator>
 <generator type="constant">
 <rows first="construct::intvar::knowledgegroup_K2_start"
 last="construct::intvar::knowledgegroup_K2_end"/>
 <cols first="1" last="1"/>
 <param name="constant_value" value="1"/>
 </generator>

69

</network>

Knowledge Priority
The knowledge priority network specifies the priority level of a particular fact when

building a message.
<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"
id="knowledge priority network" link_type="int" network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::knowledge::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>
</generator>
</network>

Knowledge Similarity
The knowledge similarity network is an agent x agent network Construct uses to stored

calculated similarity scores between agents. If it does not exist in the input deck, Construct will
create the network when it initializes the standard interaction model.

Knowledge Similarity Weight
The knowledge similarity weight network specifies how much weight agents place on

shared knowledge when calculating probabilities of interaction. It is measured by comparing an
agent’s knowledge against its perception of another agent’s knowledge. Knowledge similarity is
increased when the ego knows a knowledge bit and perceives that an alter also knows the same
knowledge bit. The increase will be equal to the agent’s knowledge of the bit.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"
id="knowledge similarity weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::timeperiod::count-1"/>
<param name="min" value="0.8"/>
<param name="max" value="0.8"/>
</generator>
</network>

Learnable Knowledge
The learnable knowledge network specifies which agents are able to learn what

knowledge bits. An experimenter may want to restrict which groups of agents are capable of
learning knowledge bits and can do so using this network.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"

70

id="learnable knowledge network" link_type="bool" network_type="dense">

 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count-1"/>
 <cols first="0" last="nodeclass::knowledge::count-1"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 </generator>
</network>

Medium Knowledge Group
This network limits what knowledge a given medium may send by limitingwhat

knowledgegroups the medium may use. An example use case is classified knowledge in an
organization (e.g., the Department of Defense) should not go across unclassified mediums.
Continuing the same use case, there is no possibility of ‘spillage’ on the unclassified mediums.

 <network src_nodeclass_type="CommunicationMedium"
target_nodeclass_type="knowledgegroup" id="medium knowledgegroup network"
link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>
 <cols first="0" last="nodeclass::knowledgegroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 <!--
 DEFAULT all mediums can use all knowledge groups
 <generator type="randombinary">
 <rows first="0" last="nodeclass::knowledge::count_minus_one"/>
 <cols first="0"

last="nodeclass::knowledgegroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
-->
 </network>

Physical Proximity
The physical proximity network specifies how close two agents are to each other

physically. Physical distance is a factor in how likely two agents are to interact. With weights put
on sociodemographic proximity as well as other forms of proximity, an experimenter can limit
interaction between groups of agents.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"
id="physical proximity network" link_type="float" network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::agent::count-1"/>
<param name="min" value="0.0"/>

71

<param name="max" value="0.0"/>
</generator>
</network>

Physical Proximity Weight
Physical proximity weight network specifies how strongly agents will value physical

proximity when deciding who to interact with.
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"
id="physical proximity weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::timeperiod::count-1"/>
<param name="min" value="0.0"/>
<param name="max" value="0.0"/>
</generator>
</network>

Public Message Propensity
Attribute Network, implemented as an Agent x dummy_nodeclass network .

Need to say something about this network
<network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="public message propensity
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

Social Proximity
Social proximity network determines how close two agents are socially. This serves as a

way of making agents more or less likely to interact based on social factors, such as career type
or personality type.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"
id="social proximity network" link_type="float" network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::agent::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>
</generator>

72

</network>

Social Proximity Weight Network
Need to say something about this network
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="social proximity weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

Socio-Demographic Proximity
The socio-demographic proximity network specifies how close agents are physically

based on sociodemographic distance, and thus determines probability of interaction based on this
metric.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"
id="sociodemographic proximity network" link_type="float"
network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::agent::count-1"/>
<param name="min" value="0.0"/>
<param name="max" value="0.0"/>
</generator>
</network>

Socio-Demographic Proximity Weight
Need to say something about this network
<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="sociodemographic proximity weight network" link_type="float"
network_type="dense">

 <generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

Susceptibility (beInfluenced)
Attribute Network, implemented as an Agent x dummy_nodeclass network.

73

The beInfluenced network specifies how susceptible an agent is to influence. This
network affects how strongly other alter agents can affect an ego’s beliefs. Egos with a high
susceptibility to influence will be more likely to change their beliefs.

<network src_nodeclass_type="agent" target_node
class_type="dummy_nodeclass" id="beInfluenced network"
link_type="float" network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="0"/>
<param name="min" value="0.0"/>
<param name="max" value="1.0"/>
</generator>
</network>

Transmission Knowledge Weight
The transmission knowledge weight network specifies how much weight agents will put

on particular knowledge bits when sending a message to a chosen interaction partner.
<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"
id="transmission knowledge weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">
<rows first="0" last="nodeclass::agent::count-1"/>
<cols first="0" last="nodeclass::knowledge::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>
</generator>
</network>

Network Generators
For using a generator to specify links, use the following syntax:
<generator type="[type]">
 <!—
 additional attribute for rows, inners, and cols can be values="",

where values is a comma separated list
 additional attribute for rows, inners, and cols can be groups="",

where groups is a comma separated list
 additional attribute for rows, inners, and cols

group_membership_network="", where group_membership_network is a string that
names the group membership network for this row/col/inner

 -->
 <rows first="[firstrow]" last="[lastrow]"/>
 <cols first="[firstcol]" last="[lastcol]"/>
 <param name="[name1]" value="[value1]"/>
 <param name="[name2]" value="[value2]"/>
 ...
</generator>

74

Table 8 summarizes each of the network generators available to an experiment designer.
Below Table 8 is a detailed example and description of how to use and invoke each generator.

Table 8 Types of network generators available

Type What does it do?
cellular Creates a network with a set of sub-groups each

of which have near all to all connections within, and
each of which is connected to one or two other groups
by a single link.

cellular_density Alias for cellular network generator
cellular_fractional Used to constrain the extent to which there are

multiple cells.
constant Used to create a 2D matrix with a constant

value in al cells of the network.
constant3d Used to create a 3D matrix with a constant

value in all cells of the matrix.
csv Import from a comma separated value file. If

the load_style parameter is used, construct only
understands the value sparse_to_dense_convert
and will treat any other values as if it needed to load a
dense network. With this parameter, construct will load
a sparse network, where only the cells with values are
represented in the csv file.

csv_binarize Import from a comma separated value file, but
dichotomize the values imported based on the specified
cut-off. All values less than or equal to the cut off are
converted to zero (0) and all values greater than cut off
are converted to one (1).

csv3d Import a 3d network for use initializing
Transactive Memory from a comma separated value file.

do_nothing Useful for debugging an input file. To disable
a generator one must comment it out, delete it or change
its type to do_nothing. For large generators with many
lines of xml it can be more convenient to change the
type to do_nothing than finding the beginning and end of
the xml code to comment it out.

dynetml Import from a DynetML input file specified
with a path and a network name.

gen_from_text Retrieve generator parameters from text file
instead of from within xml of the input file.

group_to_group Store generator parameters in one network and
use them in generating a different network

erdos_renyi Generate Erdos Renyi networks
filter_generator Deprecated generator replaced by

group_to_group generator.
lexer_based Program a custom generator from within the

xml file.

membership_based Generate belief values based on other people in
the same group.

model_based When a model comes with its own custom
generators for its networks, they can be accessed from
here.

75

multi_dimensional_preprocess_based Use a collection of networks to create a
probability distribution function for agents being
associated with any value found in the networks. From
this values are chosen for each agent.

periodic Set cells to a constant value based on given
period.

perception_based Generate Knowledge Transactive Memory
based on an agent’s sphere of interaction, false positive
rate and false negative rate.

preprocessor_based Use a given network to find probabilities that
an agent will have one of the values found in the
network, then use these probabilities to generate call
values.

randombinary Given a mean, generate a sequence of 0,1 with
the approximate number of 1’s defined by the mean.

Randomnormal Given a mean and a standard deviation,
generate a sequence of values in a normal (Gaussian)
distribution with the specified mean and standard
deviation

randomuniform Given a max and min value, generate a
sequence of values between the two in a uniform
distribution

randomvalue Given a list of possible values and their
weights, one is chosen for each cell.

scale_free Generate a scale free network
small_world Generate a small world network

sociodemographic_similarity Generate a network where links are created if
the sociodemographic similarity between the source and
target node is within a minimum and maximum bound.

tied Set values equal to the corresponding values in
a different part of the network.

xy_direct_input Directly enter the values for the network in the
xml in the generator. This is useful if you want to do
direct entry mixed with other generators.

xml_generator_loader Load a generator from a separate xml file.

cellular_density
<generator type="cellular_density">
 <param name="inner_density" value="0.1" />
 <param name="outer_density" value="0.1" />
 <param name="number_of_cells" value="16" />
 <param name="sequential" value="true" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

cellular_fractional
<generator type="cellular_fractional ">
 <param name="density" value="0.1" />
 <param name="inner_density" value="0.1" />
 <param name="outer_density" value="0.1" />
 <param name="number_of_cells" value="16" />
 <param name="sequential" value="true" />

76

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

constant
<generator type="constant">
 <!-- additional attribute for rows, inners, and cols can be values="",

where values is a comma separated list
 additional attribute for rows, inners, and cols can be groups="",

where groups is a comma separated list
 additional attribute for rows, inners, and cols

group_membership_network="", where group_membership_network is a string that
names the group membership network for this row/col/inner

 -->
 <rows first="0" last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>
 <param name="constant_value" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
</generator>

constant3D
<generator type="constant3d">
 <!-- additional attribute for rows, inners, and cols can be values="",

where values is a comma separated list
 additional attribute for rows, inners, and cols can be groups="",

where groups is a comma separated list
 additional attribute for rows, inners, and cols

group_membership_network="", where group_membership_network is a string that
names the group membership network for this row/col/inner

 -->
 <rows first="1" last="nodeclass::agent::count_minus_one"/>
 <inners first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>
 <param name="constant_value" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
</generator>

CSV

Import from a comma separated value file. If the load_style parameter is used,
construct only understands the value sparse_to_dense_convert and will treat any other values
as if it needed to load a dense network. With this parameter, construct will load a sparse network,
where only the cells with values are represented in the csv file.

<generator type="csv">
 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />
 <param name="filesystem_path"
 value="agent_initiation_count_network_fname" />
 <param name="csvrow" value="construct::stringvar::agent_list" />
 <param name="csvcol" value="construct::stringvar::timeperiod_list" />

77

 <!-- optional parameters that default to false -->
 <param name="load_style" value="sparse_to_dense_convert" />
 <param name="skip_first_row" value="true" />
 <param name="subtract_one_from_indices" value="true" /> -->
</generator>

CSV_binarize
<generator type="csv_binarize">
 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::agent::count_minus_one" />
 <param name="filesystem_path"
 value="interaction_sphere_network_fname" />
 <param name="csvrow" value="construct::stringvar::agent_list" />
 <param name="csvcol" value="construct::stringvar::agent_list" />
 <param name="symmetric" value="true" />
 <param name="binarization_threshold" value="0.0" />

 <!-- optional parameters that default to false -->
 <param name="skip_first_row" value="true" />
 <param name="load_style" value="sparse_to_dense_convert" />
 <param name="subtract_one_from_indices" value="true" />
</generator>

csv3d
<generator type="dynetml">
 <param name="filesystem_path" value="my_file.xml" />
 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <inner first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

dynetml
<generator type="dynetml">
 <!-- @warning note the use of single quotes to force construct to

treat
 the 'value' as an entire string, else the : and \ cause the

Construct lexer fits ! -->
 <param name="filesystem_path" value="'C:\Users\some.user\ \inputDir\

DynetML_file.xml'" />
 <param name="network_name" value="agent x task" />
 <param name="transpose" value="false" /> <!-- transpose after reading?

optional param, default = false -->
 <param name="verbose" value="false" /> <!—print to console values read

from file and set in memory. optional param, default = false -->

 <!-- additional attribute for rows, inners, and cols can be values="",

where values is a comma separated list
 additional attribute for rows, inners, and cols can be groups="",

where groups is a comma separated list
 additional attribute for rows, inners, and cols

group_membership_network="", where group_membership_network is a string that
names the group membership network for this row/col/inner

 -->

78

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::binarytask::count_minus_one" />
</generator>

gen_from_text
<generator type="gen_from_text">
 <param name="filename" value="my_file.txt" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

group_to_group
<generator type="group_to_group">
 <param name="row_grp_membership_net" value="agent membership

network"/>
 <param name="col_grp_membership_net" value="knowledge membership

network"/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

erdos_renyi
<generator type="erdos_renyi">
 <param name="density" value="0.3" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

filter_generator
<generator type="filter_generator">
 <param name="src_nodeclass_type" value="agent" />
 <param name="target_nodeclass_type" value="knowledge" />
 <param name="row_grp_pass" value="1,2,3,20,21,22" />
 <param name="row_grp_network" value="agent membership net"/>
 <param name="col_grp_pass" value="1,2,3,20,21,22" />
 <param name="col_grp_network" value="knowledge membership net"/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

lexer_based
<generator type="lexer_based">
 <param name="lexer_string" value="insert_program_here" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

79

membership_based
<generator type="membership_based">
 <param name="value_network" value="membership_value_net1" />
 <param name="weight_network" value="membership_weight_net1" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

model_based
<generator type="model_based">
 <param name="model_name" value=”my_custom_model" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

multi_dimensional_preprocess_based
<generator type=”multi_dimensional_preprocess_based">
 <param name="mechanism_names" value=”age,race,gender,occupation" />
 <param name="filesystem_path" value=”my_probability_file.csv" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

periodic
<generator type=”periodic">
 <param name="constant_value" value=”10" />
 <param name="period" value=”2" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

perception_based
<generator type=”perception_based">
 <param name="false_negative_rate" value=”0.1" />
 <param name="false_positive_rate" value=”0.1" />
 <param name="rounding_threshold" value=”0.1" />
 <param name="perceived_network" value=”knowledge network" />

 <ego first="0" last="nodeclass::agent::count_minus_one" />
 <alter first="0" last="nodeclass::agent::count_minus_one" />
 <transactive first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

preprocessor_based
<generator type=”preprocessor_based">
 <param name="mechanism_names" value=”age" />

80

 <param name="filesystem_path" value=”my_probability_file.csv" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::knowledge::count_minus_one" />
</generator>

randombinary
<generator type="randombinary">
 <rows groups="agent_grp1,agent_grp2" group_membership_network="'agent

group membership network'"/>
 <cols groups="agent_grp3" group_membership_network="'agent group

membership network'"/>
 <param name="mean" value="0.7" />
</generator>

randomnormal
<generator type="randomnormal">
 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />
 <param name="mean" value="0.6" />
 <param name="variance" value="0.06" />
</generator>

randomvalue
<generator type="randomvalue">
 <param name="values" value="1,2,3,4,5" />
 <param name="weights" value="0.1,0.2,0.4,0.5 " />

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />
</generator>

scale free
<generator type="scale_free">
 <param name="density" value="0.1”/>
 <param name="initial_nodes" value="1,3,5,7”/>
 <param name="initial_density" value="0.1”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />
</generator>

small world
<generator type="small_world">
 <param name="density" value="0.1”/>
 <param name="prob_of_removing_close_neighbor" value="0.4”/>
 <param name="prob_of_adding_far_neighbor " value="0.1”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />
</generator>

81

sociodemographic similarity
<generator type="sociodemographic_similarity ">
 <param name="minsimilarity" value="0.1”/>
 <param name="maxsimilarity " value="0.6”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>
</generator>

tied
<generator type="tied">
 <param name="tiedrow" value="1”/>
 <param name="tiedcol" value="6”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>
</generator>

xy_direct_input
<generator type="xy_direct_input">
 <param name="xyrow" value="2”/>
 <param name="xycol” value="1”/>
 <param name="xyvalue” value="0”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>
</generator>

xml_generator_loader
<generator type="xmlloader">
 <param name="fileystem_path" value="my_xml_file.xml”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>
</generator>

Transactive Memory
Transactive memory, a term often associated with the work of Wegner (1987) in group

process literature, is the term used to refer to an agent’s perception of the knowledge and beliefs
of those around them. Transactive memory networks are the way in which Construct allows
agents within the simulation to be “boundedly rational”, meaning that they do not have a perfect
perception of the knowledge and beliefs of the people around them. Because perception is often
imperfect, it will often be the case that an agent’s perception of the knowledge or beliefs of those
around him differ from the truth. This notion of bounded rationality (Carley & Newell 1994;
Simon 1957) is what allows Construct to be different than most other social simulation tools,

82

which simply allow agents to be homophilous based on the current state of the system, rather
than a perception of the environment.

Transactive memory networks store not just networks but each ego agent’s perception of
a network. Thus, while most networks in Construct are two dimensional, transactive memory
data structures have three dimensions: each agent has a perception of the knowledge or skills of
each other agent they are connected to. It is important to note here that this does not mean each
agent has a perception of all others, which would be highly memory intensive, but rather only of
those agents that it is connected to in the interaction sphere network.

An agent’s transactive memory of others, or their imperfect knowledge of the world
around them, is used when computing their probability of interacting with others and when
computing the effect of social influence on their beliefs. The existence of this divide between
reality and perception allows Construct agents to better match social theory and real-world
behaviors. For example, Ren et al (Ren et al, 2001) use Construct’s transactive memory
mechanisms to show evidence that people trained on a task in a group setting are better able to
solve a problem than those trained individually and then forced into a group setting. Below,
Table 9 shows the transactive memory networks used in the demo input deck. Currently,
Construct supports perception (or transactive memory) of knowledge and beliefs- though there
are other cases where perception may make sense (such as the perception of tasks one agent has
of another agent), such mechanisms do not currently exist within Construct.

Table 9. Key transactive memory networks in the demo input deck

Network
Name

Source & Target
node classes

Function or Purpose in
Demo Input Deck

knowledge transactive
memory network

agent x agent x
knowledge

store agent perceptions ofother
agents’ knowledge

belief transactive
memory network

agent x agent x belief store agent perceptions ofother
agents’ beliefs

Binary task transactive
memory network

Agent x agent x binary
task assignment

Store agent perceptions of tasks
assigned to other agents

Transactive memory networks in Construct are specified within a <transactivememory>
ConstructML tag in the input deck. Within this tag, we use the <network> tag to define the
different types of networks that we will use for transactive memory - in this implementation of
Construct, the two networks will be the knowledge transactive memory network and the belief
transactive memory network.

So, the outline of our transactive memory network looks like the following
<transactivememory>
 <network id=”knowledge transactive memory network”>
 ...
 </network>

83

 <network id=”belief transactive memory network”>
 ...
 </network>
</transactivememory>

Within the <network> tag, we need to specify seven different attributes: the network id
(name), ego nodeclass, source nodeclass, target nodeclass, link type, network type, and
associated network, as seen below.

<network id="[name]"
 ego_nodeclass_type="agent" src_nodeclass_type="[nodeclass]"
 target_nodeclass_type="[nodeclass]" link_type="[ltype]"
 network_type="[ntype]" associated_network="[network]">
 ...(Generator code, defined below)...
</network>

The network ID [name] is the name that refers to the transactive memory network - as we
have seen, each network within Construct has a specific name that must be used to refer to it - if
the name is, for example, misspelled, Construct will behave as though it does not exist and will
likely exist with an error saying so.

In the present implementation of Construct, the ego_nodeclass_type is assumed to be the
agent Node class - any other value is expected to behave in a non-obvious fashion, and will
likely exit with an error. As we have stated, only agents in Construct are designed to have
transactive memory, and they are only designed to have it for the knowledge and beliefs of
others. It is also important to note that while certain agents may not use transactive memory in
advanced models, it is still necessary to initialize their transactive memory. This is done to
simplify certain internal mechanisms in Construct and actually happens to decrease run-time of
the model.

While only agents are allowed to have transactive memory, Construct allows for them to
have it of varying types of other node classes in the model. Thus, the src_nodeclass_type does
not strictly have to be defined as an agent, though models otherwise may be hard to justify. The
src_nodeclass_type and target_nodeclass_type are related in the fact that each ego has a
perception of how these two node classes relate. One can think of a transactive memory network
as a three-dimensional array, where the first index refers to the ego, the second to some source,
and the third to what the ego percieves the source to have of the target node class. So, for
example, in the knowledge transactive memory network, an ego has, for each other agent they
are connected to, a perception of whether or not that alter has the given knowledge.

The associated_network network is the underlying two-dimensional network that the ego
perceives the source as having. For example, the knowledge transactive memory network is
associated with the underlying knowledge network (The Knowledge Network). Specifying this
network helps to initialize the network, particularly with certain types of generators we will
discuss below.

84

The network_type specifies the storage mechanism used within Construct for each
transactive memory network. The current implementation provides two options for this storage
mechanism - the TMBool mechanism will store boolean values (either true or false), while the
TMFloat mechanism will store the values -1, 0 and +1. While these methods have been
optimized for large numbers of agents, the storage of these values is a chief reason why
Construct runs can consume large amounts of RAM. Future iterations of the model hope to
alleviate these issues.

The link_type parameter ltype defines the way in which Construct stores the data - as of
the present implementation, the link type parameter can be either bool or float. Note, however,
that this need not coincide with the value set for network_type, though it is often of interest to
the user to specify the link_type as bool if the network_type is of kind TMBool. This is because
bool links are boolean values, which allow certain specially designed storage mechanism for
binary values to be utilized within Construct. Float links are stored as two-bit values representing
either -1, 0, or +1. Note that the typical definition of floating point integers is really extended to
significantly larger numbers of bits. However, an implementation decision was made to store
only -1,0, or +1 to conserve large amounts of RAM during runs.

Given this description of the network tag within transactive memory tags, we now move
to defining how these networks can be initialized. It is important to note that transactive memory
networks, unlike other networks in Construct must be set using <generator> tags (other networks
can be set using the explicit <link> command).

The general syntax for a transactive memory network generator, similar to the network
generators described in Appendix D, is shown below.

<generator type="[type]">
<ego first="[efirst]" last="[elast]"/>
 <alter first="[afirst]" last="[alast]"/>
 <transactive first="[tfirst]" last="[tlast]"/>
 <param name="[name1]" value="[value1]"/>
 <param name="[name2]" value=="[value1]"/>
...
 <param name="verbose" value="[verbose]"/>
 <param name="name" value="Generator_Name_for_console_IO_purposes"/>
</generator>

The [type] attribute specifies the type of network that is to be generated - as in previous
sections, many different types of generators exist. The <ego> tag specifies the range of egos (the
first column of our three-dimensional matrix), the <alter> tag the second, and the <transactive>
tag the third. Thus, for the knowledge transactive memory network, to specify all agents and all
knowledge bits, we would specify the first and last of <ego> and <alter> to be the ranges of the
agent nodeclass, and the transactive as the ranges of the knowledge nodeclass. Note that the
same generator-specific <param>s must be supplied in order for the generator to function

85

correctly, as in other network generators. Finally, if desired, a <verbose> parameter can be given
to have Construct print out a message indicating every hundredth agent that has been initialized.

Below, we give an example of how to use a constant generator for a transactve memory
network:

<generator type="constant">
 <ego first="[efirst]" last="[elast]"/>
 <alter first="[afirst]" last="[alast]"/>
 <transactive first="[tfirst]" last="[tlast]"/>
 <param name="constant_value" value="[value]"/>
</generator>

Certain generators exist that are specific to the three-dimensional networks that are
implied by the structure of transactive memory. In particular, the perception_based generator is
specific to transactive memory, and the one used in the sample deck is provided below:

<generator type="perception_based">
 <ego first="[efirst]" last="[elast]"/>
 <alter first="[afirst]" last="[alast]"/>
 <transactive first="[tfirst]" last="[tlast]"/>
 <param name="false_negative_rate" value="[fnrate]"/>
 <param name="false_positive_rate" value="[fprate]"/>
 <param name="rounding_threshold" value="[threshold]"/>
 <param name="verbose" value="[verbose]"/>
 <param name="name" value="Generator_Name_for_console_IO_purposes"/>
</generator>

This generator will create a “perception” for each agent of the associated_network
specified as an attribute in the network tag described above. The accuracy of the values of these
perceptions can be modified by the false_negative_rate, false_positive_rate,and the
rounding_threshold. These are three different ways to specify perception errors- note, however,
that they have certain meanings for the different implementations of network_type, and will only
be described as they exist in the demo input deck.

There are three additional points which are important to note about transactive memory
generators. First, like other network tags, generators will be run in sequence, and thus any
generator code placed after a previous generator will overwrite what has been done previously.
Second, if the value for a given piece of the three dimensional transactive memory network is not
specified, the value will default to false in TMBool networks or 0 in TMFloat networks. Finally,
after all generator code in the model, Construct will internally make sure that agents have a
perfect perception of their own knowledge - thus, for example any perception_based generator
used to initialize an agent’s perception of themselves that initializes the agent to having
imperfect knowledge of themself will be overwritten before the simulation begins.

 Knowledge transactive memory

86

The knowledge transactive memory network is the way in which a user specifies what
each agent perceives the knowledge of each of his alters to be. Thus, it is an agent x agent x
knowledge network, or as we have referred to it, a three dimensional array. This array, once
initialized, cannot be modified by the scripting mechanisms in Construct, introduced in
Appendix E. As noted, agents will use this perception to calculate probabilities of interaction -
thus, in combination with the other networks of the standard interaction model (of which the
knowledge transactive memory is a piece), perceptions will evolve and change probabilities of
interaction as the simulation runs.

As we have discussed, because transactive memory network store perceptions, they can
be either correct or incorrect. Incorrect perceptions can occur during intialization, via
miscommunication, or because of other Construct mechanisms that affect the spread of
information. In addition, because the ego can tell an alter about the knowledge of a different
alter, incorrect perceptions can actually be learned in Construct through traditional means of
knowledge diffusion.

The knowledge transactive memory network is updated when an agent learns a new fact.
In the current implementation of Construct, the previous perception an agent has is always
overwritten by the newest information they obtain. The only exception to this rule is that an
agent will always perceive their own knowledge correctly- thus, they cannot be told something
that they know. Agents are therefore always trusting other completely and assuming that
information received from others is more up-to-date than the agent’s own knowledge.

The knowledge transactive memory network is of network_type TMBool, meaning
values can be either 0 (false) or 1 (true). This allows the knowledge transactive memory network
to utilize the perception_based generator - given the fact that value can be either 0 or 1, the
parameters of this generator are relatively straightforward. The only exception to this is the
rounding_threshold parameter, which is used to round values coming from the knowledge
network - values that are below the rounding threshold are rounded down to 0, while values
above the rounding threshold are rounded up to 1. This is one more point at which misperception
can occur, if the knowledge network used is implemented with floating point values. The
false_negative_rate is the rate at which the ego perceives an alter having a knowledge bit as not
having the knowledge bit, and the false_positive_rate the percentage of time that the ego is
initialized to believe an alter has a knowledge bit when they actually do not.

The demo input deck uses a perception_based generator to generate the knowledge
network with a rounding threshold of 0.0 (only 0s will be interpreted as having no knowledge), a
false negative rate of 50% (egos incorrectly “assume” alters do not have knowledge bit when
they actually do 50% of the time) and a false positive rate of 0%. Note that each draw for false
negative rates and false positive rates are independent and identically distributed ~Uniform(0,1),
and therefore errors can be assumed to be uncorrelated.

The code to initialize is given below.

87

<network id="knowledge transactive memory network"
ego_nodeclass_type="agent" src_nodeclass_type="agent"
target_nodeclass_type="knowledge" link_type="bool"
network_type="TMBool" associated_network="knowledge network">

<generator type="perception_based">
 <ego first="0" last="nodeclass::agent::count-1"/>
 <alter first="0" last="nodeclass::agent::count-1"/>
 <transactive first="0" last="nodeclass::knowledge::count-1"/>
 <param name="false_negative_rate" value="0.50"/>
 <param name="false_positive_rate" value="0.0"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="false"/>
 <param name="name" value="Generator_Name_for_console_IO_purposes"/>
</generator>
</network>

Belief transactive memory
The belief transactive memory network is analogous to the knowledge transactive

memory network with only a few, but important, differences. First, agents will use the belief
transactive memory network when computing social influence, and it is thus a part of the
standard influence model (and not the standard interaction model). Second, instead of an agent x
agent x knowledge network, the belief transactive memory network is, of course, an agent x
agent x belief network. Similar to the knowledge transactive memory network, scripting
mechanisms cannot be used to change these values once initialized.

Similar to the knowledge transactive memory network, the belief transactive network can
be correct or incorrect, and can be incorrect due to initialization, miscommunication, other active
Construct mechanisms or via diffusion from other agents. Furthermore, like the knowledge
transactive memory network, agents will update their transactive memory of others beliefs by
overwriting any of their perceptions with information coming from other agents. The single
exception is that the agent cannot have a misperception of its own beliefs. Note, however, that
any and all updates described here will only occur when the standard belief model is active and
in mask_mode.

The chief difference between the two transactive memory networks described in this
report (besides their reference to different associated_networks) is the difference in how they are
stored and, consequently, how values are generated for them. The values in the belief transactive
memory network are stored as TMFloats, which can take on three values: -1, 0 and +1. A value
of -1 indicates the ego perceives that the alter does not support the belief, a +1 that the alter does,
and a 0 the perception that the alter is neutral on the belief. Because of this difference in storage
mechanism, the perception_based generator for belief transactive memory works slightly
differently than that for knowledge transactive memory. In particular, the rounding_threshold
value is used as an absolute value- thus, for example, a value of .3 for the rounding threshold
would mean that -.4 is rounded to -1, .4 is rounded to 1, and .2 or -.2 are rounded to 0. The

88

false_positive_rate becomes the rate at which negative values actually are interpreted as positive
values (e.g. -.4 misinterpreted as .4) and vice versa for false_positve_rate.

The specification for the belief transactive memory in the input deck is given below:
<network id="belief transactive memory network"

ego_nodeclass_type="agent"
src_nodeclass_type="agent" target_nodeclass_type="belief"
link_type="float" network_type="TMFloat"
associated_network="belief network">

<generator type="perception_based">
 <ego first="0" last="nodeclass::agent::count-1"/>
 <alter first="0" last="nodeclass::agent::count-1"/>
 <transactive first="0" last="nodeclass::belief::count-1"/>
 <param name="false_negative_rate" value="0.25"/>
 <param name="false_positive_rate" value="0.25"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="false"/>
 <param name="name" value="Generator_Name_for_console_IO_purposes"/>
</generator>
</network>

Binary Task transactive memory
This form of transactive memory is new to Construct as of this writing. The fundamentals

of this transactive memory are identical to the knowledge and belief transactive memory.
Namely that agents can have perceptions of other agents’ assignment to binary tasks that may or
may not be accurate with respect to the simulation’s omniscient truth. Agents may also transmit
their transactive memory during their interactions with other agents in the simulation.

The breath of each agent’s perception is controlled by the parameter to use either
full_tm or multi_level as shown in the snippet below of the parameters section of a construct
input deck. A reminder to the use is that full_tm does not support agent-level stereotyping and
activation while multi_level mode does support those two characteristics of human agents.

<param name="tm_model" value="full_tm"/>

The construction of interaction messages also takes into account the task similarity of
agents—that is if the task model is active, agents will consider task similarity as an addend in
determining interaction probabilities with other agents. In this context, the passing of
BinaryTask transactive memory messages supports the obvious use case of agents (egos)
desiring to interact with other agents (alters) who share tasks with the ego—at least within the
confines of the ego’s perception of its world.

89

References
Carley, K. M. (1990). Group stability: A socio-cognitive approach. Advances in group processes,

7, 1-44.
Carley, K.M. 1991. A theory of group stability. American Sociology Review, 56(3):331–354,

June 1991.
Carley, K., & Newell, A. (1994). The nature of the social agent*. Journal of mathematical

sociology, 19(4), 221-262.
Carley, K.M. 1995. Communication technologies and their effect on cultural homogeneity,

consensus, and the diffusion of new ideas. Sociological Perspectives, 38(4):547–571.
Carley, K. M. (2002). Computational organization science: A new frontier. Proceedings of the

National Academy of Sciences of the United States of America, 99(Suppl 3), 7257-7262.
Carley, K. M. (2006). A dynamic network approach to the assessment of terrorist groups and the

impact of alternative courses of action. CARNEGIE-MELLON UNIV PITTSBURGH PA
INST OF SOFTWARE RESEARCH INTERNAT.

Carley, K. M., Robertson, D., Martin, M., Lee, J. S., St Charles, J., & Hirshman, B. (2010).
Predicting Intentional and Inadvertent Non-compliance. Recent Research on Tax
Administration and Compliance.

Festinger, L., 1954. A Theory of Social Comparison Processes, Human Relations, 7: 117-140.
Festinger, L., 1957. A theory of cognitive dissonance. Evanston, IL: Row, Peterson.
Friedkin, N., 1998, A Structural Theory of Social Influence, New York, NY, Cambridge

University Press.
Giddens, A. The constitution of society: Outline of the theory of structuration. Berkeley, CA:

University of California Press. 1984
Hirshman, B.R., K.M. Carley & M.J. Kowalchuck, 2007a, “Specifying Agents in Construct,”

Carnegie Mellon University, School of Computer Science, Institute for Software Research,
Technical Report, CMU-ISRI-07-107.

Hirshman, B.R., K.M. Carley & M.J. Kowalchuck, 2007b. “Loading Networks in Construct,”
Carnegie Mellon University, School of Computer Science, Institute for Software Research,
Technical Report, CMU-ISRI-07-116.

Joseph, Kenneth & Morgan, Geoffrey & Martin, Michael & Carley, Kathleen M. (2013). On the
Coevolution of Stereotype, Culture, and Social Relationships: An Agent-Based Model.
Computer Science Social Review, Published online before print December 13, 2013.

Manis , J. G. and B. N. Meltzer. Symbolic interaction: A reader in social psychology. Boston:
Allyn & Bacon. 1978.

Ren, Y., Carley, K. M., & Argote, L. (2001). Simulating the role of transactive memory in group
training and performance. Pittsburgh, PA: CASOS, Dept. of Social and Decision Sciences,
Carnegie Mellon University.

Salancik, G. R. and J. Pfeffer. A social information processing approach to job attitudes and task
design. Administrative Science Quarterly, v.23, p.224-253. 1978.

90

Schreiber, C., & Carley, K. (2003). The impact of databases on knowledge transfer: simulation
providing theory. In NAACSOS conference proceedings, Pittsburgh, PA (p. 2).

Schreiber, C., Singh, S., & Carley, K. M. (2004). Construct-a multi-agent network model for the
co-evolution of agents and socio-cultural environments (No. CMU-ISRI-04-109).
CARNEGIE-MELLON UNIV PITTSBURGH PA INST OF SOFTWARE RESEARCH
INTERNATIONAL, TECHNICAL REPORT.

Schreiber, C., & Carley, K. M. (2007). Agent interactions in construct: An empirical validation
using calibrated grounding. In 2007 BRIMS Conference Proceedings, Norfolk, VA.

Simon, H. A. (1957). Administrative Behavior: A study of decision-making processes in
administrative organization.

Stryker S. (1980). Symbolic Interactionism. Menlo Park, CA: Benjamin Cummings.
Tsvetovat, M., & Carley, K. M. (2004). Modeling complex socio-technical systems using multi-

agent simulation methods. KI, 18(2), 23-28.
Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind.

Theories of group behavior, 185, 208.

91

Appendices

Appendix A The Sample Input File (aka Input Deck)
<construct>
 <construct_vars>
 <var name="time_count" value="100"/>
 <var name="agent_count" value="200"/>
 <var name="knowledge_count" value="100"/>
 <var name="knowledgegroup_count" value="0"/>
 <var name="agentgroup_count" value="1"/>
 </construct_vars>
 <construct_parameters>
 <param name="seed" value="1"/>
<!--
 <param name="operation_output_working_directory"

value=""/>
-->
 <param name="verbose_initialization" value="false"/>
 <param name="default_agent_type" value="human"/>
 <param name="out_of_sphere_comm_allowed"

value="false"/>
 <param name="forgetting" value="false" />
 <param name="use_mail" value="false" />
 <param name="belief_model" value="mask_mode" />
 <param name="interaction_requirements"

value="disable" />
 <param name="communicationWeightForBelief"

value="0.2" />
 <param name="communicationWeightForBeliefTM"

value="0.1" />
 <param name="communicationWeightForFact" value="0.5"

/>
 <param name="communicationWeightForKnowledgeTM"

value="0.2" />
 <param name="thread_count" value="1" />
 <param name="transactive_memory" value="enable"/>
 <param name="active_models"
value="standard interaction model,standard task model"
with="delay_interpolation"/>
<param name="active_mechanisms" value="none"/>
 </construct_parameters>

 <nodes>
 <nodeclass type="agent_type" id="agent_type">
 <node id="human" title="human">

 <properties>
 <property name=“canSendCommunication"

value="true"/>
 <property name=“canReceiveCommunication"

value="true"/>
 <property name=“canSendKnowledge"

value="true"/>
 <property name=“canReceiveKnowledge"

value="true"/>
 <property name=“canSendBeliefs"

value="true"/>
 <property name=“canReceiveBeliefs"

value="true"/>
 <property name=“canSendBeliefsTM"

value="true"/>
 <property name=“canReceiveBeliefsTM"

value="true"/>
 <property name=“canSendKnowledgeTM"

value="true"/>
 <property name=“canReceiveKnowledgeTM"

value="true"/>
 <property name=“canSendReferral"

value="true"/>
 <property name=“canReceiveReferral"

value="true"/>
 <property name=“communicationMechanism"

value="direct"/>
 </properties>
 </node>
 </nodeclass>

 <nodeclass type="CommunicationMedium"

id="CommunicationMedium">
 <node id="facetoface" title="facetoface">
 <properties>
 <property name=“maxMsgComplexity"

value="1"/>
 <property name=“msgCost" value="1.0"/>
 <property name=“maximumPercentLearnable"

value="1.0"/>
 <property name=“time_to_live" value="1"/>
 <property name=“time_to_send" value="1"/>

92

 <property name=“passive" value="0"/>
 </properties>
 </node>
 </nodeclass>

 <nodeclass type="agent" id="agent">
 <generator type="count">
 </generator>
 <properties>
 <property name=“generate_nodeclass"

value="true"/>
 <property name=“generator_type"

value="count"/>
 <property name=“generator_count"

value="agent_count"/>
 </properties>
 </nodeclass>

 <nodeclass type="knowledge" id="knowledge">
 <generator type="count">
 </generator>
 <properties>
 <property name=“generate_nodeclass"

value="true"/>
 <property name=“generator_type"

value="count"/>
 <property name=“generator_count"

value="knowledge_count"/>
 </properties>
 </nodeclass>

 <nodeclass type="binarytask" id="binarytask">
 <node id="t1" title="ttt1" />
 <node id="t2" title="ttt2" />
 <node id="t3" title="ttt3" />
 <node id="t4" title="ttt4" />
 </nodeclass>

 <nodeclass type="belief" id="belief">
 <node id="b1" title="b1"/>
 <node id="b2" title="b2"/>
 <node id="b3" title="b3"/>
 </nodeclass>

 <nodeclass type="agentgroup" id="agentgroup">
 <properties>
 <property name=“generate_nodeclass"

value="true"/>

 <property name=“generator_type"
value="count"/>

 <property name=“generator_count"
value="agentgroup_count"/>

 </properties>
 </nodeclass>

 <nodeclass type="knowledgegroup" id="knowledgegroup">
 <node id="FG1" title="FG1"/>
 <node id="FG2" title="FG2"/>
 <node id="FG3" title="FG3"/>
 </nodeclass>

 <nodeclass type="timeperiod" id="timeperiod">
 <properties>
 <property name=“generate_nodeclass"

value="true"/>
 <property name=“generator_type"

value="count"/>
 <property name=“generator_count"

value="time_count"/>
 </properties>
 </nodeclass>

 <nodeclass type="dummy_nodeclass"

id="dummy_nodeclass">
 <node id="dummy1" title="dummy1"/>
 </nodeclass>

 </nodes>

 <networks>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="agent message complexity
network" link_type="unsigned int" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1"/>
 <param name="max" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

93

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="agent initiation count
network" link_type="int" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="10"/>
 <param name="max" value="10"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="beinf network"
link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0" last="0"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="0.5"/>
 <param name="max" value="0.8"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 <generator type="randomuniform">
 <rows first="1" last="1"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="0.5"/>
 <param name="max" value="0.8"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="knowledge network"
link_type="float" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <param name="mean" value="0.1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="access network"
link_type="float" network_type="dense">

 <generator type="constant">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::agent::count_minus_one"/>
 <param name="constant_value" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="knowledge"

target_nodeclass_type="binarytask" id="binarytask requirement
network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <cols first="0"

last="nodeclass::binarytask::count_minus_one"/>
 <param name="mean" value="0.5"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="knowledge"

target_nodeclass_type="binarytask" id="binarytask truth network"
link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <cols first="0"

last="nodeclass::binarytask::count_minus_one"/>
 <param name="mean" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="binarytask" id="binarytask assignment
network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::binarytask::count_minus_one"/>
 <param name="mean" value="1.0"/>

94

 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="knowledge similarity
weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="knowledge expertise weight
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="binarytask similarity
weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="interaction knowledge
weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"
last="nodeclass::agent::count_minus_one"/>

 <cols first="0"
last="nodeclass::knowledge::count_minus_one"/>

 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="transmission knowledge
weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="physical proximity weight
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="social proximity weight
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

95

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="sociodemographic proximity
weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="belief"

target_nodeclass_type="knowledge" id="belief knowledge weight
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::belief::count_minus_one"/>
 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="belief" id="agent belief network"
link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::belief::count_minus_one"/>
 <param name="min" value="0.3"/>
 <param name="max" value="0.3"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="physical proximity network"
link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"
last="nodeclass::agent::count_minus_one"/>

 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="social proximity network"
link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::agent::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="sociodemographic proximity
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::agent::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="agent active timeperiod
network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

96

 <network src_nodeclass_type="agent"
target_nodeclass_type="agent" id="interaction sphere network"
link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::agent::count_minus_one"/>
 <param name="mean" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agentgroup" id="agent group membership
network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::agentgroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="public message
propensity network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="knowledge"

target_nodeclass_type="knowledgegroup" id="fact group membership
network" link_type="bool" network_type="dense">

<!-- medium -->
 <!-- This group has ALL facts -->
 <generator type="randombinary">
 <rows first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <cols first="0" last="0"/>

 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 <!-- This group contains first 5 facts -->
 <generator type="randombinary">
 <rows first="0" last="5"/>
 <cols first="0" last="0"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 <!-- This group contains facts after the first 5 -->
 <generator type="randombinary">
 <rows first="5"

last="nodeclass::knowledge::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

<!--
 DEFAULTS HERE
 <generator type="randombinary">
 <rows first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <cols first="0"

last="nodeclass::knowledgegroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
-->

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="agent reception count
network" link_type="int" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="mean" value="10.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

<!--

97

 This is the state of the art in my filter work. Have to
get this working properly!

 <generator type="randombinary">
 <rows groups="agent_grp1,agent_grp2"

group_membership_network="'agent group membership network'"/>
 <cols groups="agent_grp3"

group_membership_network="'agent group membership network'"/>
 <param name="mean" value="1.0" />
 </generator>

-->
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="agent selective
attention effect network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="knowledge priority network"
link_type="unsigned int" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <param name="min" value="1"/>
 <param name="max" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="dynamic environment reset
timeperiods network" link_type="bool" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>
 <param name="min" value="0"/>
 <param name="max" value="0"/>

 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="beInfluenced network"
link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="influentialness
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="agent learning rate
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="learnable knowledge
network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

98

 <cols first="0"
last="nodeclass::knowledge::count_minus_one"/>

 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="agent forgetting rate
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="agent learn by doing
rate network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="agent forgetting mean
network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="agent forgetting
variance network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"
last="nodeclass::agent::count_minus_one"/>

 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="interaction network"
link_type="bool" network_type="dense">

 <generator type="constant">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::agent::count_minus_one"/>
 <param name="constant_value" value="0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="interaction probability
network" link_type="float" network_type="dense">

 <generator type="constant">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::agent::count_minus_one"/>
 <param name="constant_value" value="0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <!--
 This network determines which agent has access to

which mediums.
 Set access to zero if you do not want the agent to

have access to that medium.
 -->
 <network src_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="communication
medium access network" link_type="float" network_type="dense">

 <generator type="constant">
 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

99

 <cols first="0"
last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <!--
 This network shows what medium is prefered when

communicating with a
 given agent.

 This network is actually a 3d network. It is agent x

agent x medium. One
 way to view it is a collection of agent x medium

networks. There is one of
 these agent x medium networks for every agent, so

each agent has a custom
 agent x medium network that shows what mediums he

prefers to use when
 communicating with any given agent.
 -->
 <network src_nodeclass_type="agent"

inner_nodeclass_type="agent"
target_nodeclass_type="CommunicationMedium" id="communication
medium preferences network 3d" link_type="float"
network_type="dense3d">

 <generator type="constant3d">
 <rows first="1"

last="nodeclass::agent::count_minus_one"/>
 <inners first="0"

last="nodeclass::agent::count_minus_one"/>
 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>
 <param name="constant_value" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 </network>

 <!--
 This network limits what knowledge a given medium

may send by limiting
 what knowledgegroups the medium may use.
 -->
 <network src_nodeclass_type="CommunicationMedium"

target_nodeclass_type="knowledgegroup" id="medium knowledgegroup
network" link_type="bool" network_type="dense">

 <generator type="randombinary">

 <rows first="0"
last="nodeclass::CommunicationMedium::count_minus_one"/>

 <cols first="0"
last="nodeclass::knowledgegroup::count_minus_one"/>

 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
<!--
 DEFAULT all mediums can use all knowledge groups
 <generator type="randombinary">
 <rows first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <cols first="0"

last="nodeclass::knowledgegroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
-->
 </network>
 </networks>

 <transactivememory>
 <network id="'knowledge transactive memory network'"

ego_nodeclass_type="agent" src_nodeclass_type="agent"
target_nodeclass_type="knowledge" link_type="bool"
network_type="TMBool" associated_network="knowledge network">

 <generator type="perception_based">
 <ego first="0"

last="nodeclass::agent::count_minus_one"/>
 <alter first="0"

last="nodeclass::agent::count_minus_one"/>
 <transactive first="0"

last="nodeclass::knowledge::count_minus_one"/>
 <param name="false_positive_rate" value="0.0"/>
 <param name="false_negative_rate" value="0.5"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="true"/>
 <param name="name" value="KTM_Generator"/>
 </generator>
 </network>
 </transactivememory>

<operations>
 <operation name="ReadGraphByName">
 <parameters>
 <param name="output_filename" value="km.csv"/>
 <param name="output_format" value="csv"/>

100

 <param name="time" value="'all'"/>

 <param name="graph_name" value="'knowledge

network'"/>

 </parameters>
 </operation>

 <operation name="ReadKnowledgeDiffusion">
 <parameters>
 <param name="output_filename" value="diff.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>
 <param name="no_empty_lines" value="true"/>
 </parameters>
 </operation>

 <operation name="ReadGraphByName">
 <parameters>
 <param name="output_filename" value="prob.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>

 <param name="graph_name" value="'interaction

probability network'"/>

 </parameters>
 </operation>

 <operation name="ReadGraphByName">
 <parameters>
 <param name="output_filename" value="im.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>

 <param name="graph_name" value="'interaction

network'"/>

 </parameters>
 </operation>

 <operation name="DeltaFeed">
 <parameters>
 <param name="output_filename"

value="deltafeed.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>
 </parameters>
 </operation>

</operations>
</construct>

101

Appendix B A History of Construct
The foundational research from which Construct was built upon lies within the fields of

sociology and cognitive sciences, particularly in research done on human interaction and
information exchange. Construct is based on Constructural theory, which states that social
groups create concepts and actions based on reality, learning, and knowledge(a b Beaumie Kim;
et al "Social Constructivism" Association for Educational Communications and Technology).
Construct was designed to apply this theory computationally.

In 1990, research done by Kathleen M. Carley on group stability initiated early model
designs for Construct. In her paper, Group Stability: A socio-cognitive approach, she created a
socio-cognitive model based on nonstructural theory to predict changes in interaction patterns
among workers in a tailor shop in Zambia (Carley, 1990). The model tested behaviors that
occurred on individuals, such as social change or stability changes that were derived from
interaction, as well as the exchange of information between the workers. The resulting
observation and analysis of these behaviors provided an explanation for why the workers were
able to go on strike successfully after an aborted first strike (Carley, 1990). The first basic
principle of the model is that in every social group, there are facts within the group that have the
potential to be learned by members in the group (Carley, 1990). Information can be broken down
into individual facts, which can then be measured quantitatively for a social group. The second
basic principle of the model states that there is a probability that certain individuals will interact
with one another and exchange facts, which then leads to shared knowledge (Carley, 1990). The
third basic principle states that similar individuals who share common knowledge are more likely
to interact (Carley, 1990). This implies that individuals consider how much in common they have
with others before they choose to interact and communicate information. The combination of
these three principles leads to the interaction/knowledge cycle, which is what Construct is
designed to simulate. This model initially takes a description of a particular society in terms of
culture and structure, and predicts the ways in which the society can evolve (Carley, 1990). With
these concepts in place, the Construct model continued to evolve.

With advancements in computing throughout the 1990’s, the Construct model gained
more opportunities and capabilities for real world application. The ability to process large
amounts of data to predict outcomes on large scaled populations, was critical in construct’s
development. One of the key developments for the Construct model computationally was
research done on knowledge transfer, and its effect on an organization or social group. In 2003,
Carley and Schreiber explored data base technology and its support of knowledge transfer.
Virtual experiments using the construct model were run using two group conditions, task
complexity and experience, to examine how task and referential data types differ when
simulating knowledge transfer (Schreiber and Carley, 2003). Transactive memory is also
represented by the model to incorporate perception of other’s knowledge in the social group
(Schreiber and Carley, 2003). Each agent in the model is assigned task and transactive
knowledge which are then represented by task databases and referential databases (Schreiber and

102

Carley, 2003). The virtual experiment showed that these databases have an effect on task
complexity as well as experience, and that knowledge transfer can be represented in different
forms to effectively simulate transfer within an organization. Task data was shown to be most
useful for knowledge transfer of simple to moderate level tasks, while referential data was shown
to be more useful for complex tasks (Schreiber and Carley, 2003).

In 2004 Schreiber, Carley, and Singh, described a more complex version of the original
Construct-TM model. In addition to having the ability to interact with other human agents, in this
model agents could interact with objects that contain information, such as a book or an
advertisement. Agents were given several types of capabilities and limitations; examples
included control over the ability to communicate and receive information (Schreiber 2004). The
number of agent groups was limited to 3 and the number of agents limited to 101 (Schreiber
2004). The interaction mechanism allowed agents to interact based on proximity, perception of
others, referrals, access to information, and the ability of forgetting (Schreiber 2004). Knowledge
was represented as binary strings, which determined an agent’s decision as well as perception of
other agents’ knowledge. (Schreiber 2004). Knowledge was limited to 500 facts and up to 25
tasks were assigned for each particular knowledge bit (Schreiber 2004).

103

Appendix C Construct ‘Operations’ and ‘Decisions’
At the end of each simulation turn, Construct executes each of the

<operation></operation> tags within the <operations></operations> tag of the simulation
input file. There are numerous operations, only some of which are shown in the sample input file
of Appendix A. This appendix discusses each of the <operation></operation> tags supported
by Construct. Construct will ignore any <operation></operation> tag that is outside the
<operations></operations> tags with no indicator of error to the modeler.

Its important for a modeler to keep in mind the processing sequence of Construct.
Construct does not process any operation until all agents have finished their interactions, finished
learning and task execution efforts, and are otherwise poised for the next turn.

Turn 0

Turn zero (0) is a special turn in that Construct uses as the
initialization turn. There are no interactions and no simulation driven
changes to the inputs at turn 0.

One way a modeler can increase their confidence that their nodes and node relationships
(networks) are correct is to use the ReadGraphByName operation at time zero (0) or using the
keyword first for the time value.

Operations

All the operations discussed in this section provide mechanisms for having Construct
provide output to the modeler and simulationist. Modelers can use operations to debug the
simulation, both at time point 0 and at other time points, as well as provide ways of
communicating simulation behavior to consumers of the model’s outputs.There are three general
ways of having Construct output data.

Entire Networks - At specified timepoints, Construct writes the contents of the specified
network(s) to file. Once written, post-processing can occur which presumably turns the dense
matrix outputs into a meaningful measure or set of measures.

Entire network outputs can take up significant amounts of disk
space, and inflict network congestion when Construct is operating in a
high performance computing environment.

104

Process Outputs / Measures - Construct has several in-built matrix analytics that the
modeler can use. These include various information diffusion metrics and task accuracy metrics.
A primary caveat is that Construct may be applying these measures to agents or knowledge not
of interest to a modeler or simulation.

Scripted Outputs - Using the capabilities of Construct’s scripting language, modelers can
build customized output operations.

General Operation Syntax
The general syntax for a Construct <operation></operation> is shown below. Each of

the specific [name] values that Construct supports are addressed in sub-sections below.
<operation name="[name]">
 <parameters>
 <param name="’output_filename’"
 value="[filename][.extension]"/>
 <!—- construct supports dynetml output only when 1) compiled
 with the USE_NSP preprocessor variable defined and 2)
 For one and only one time period per operation -->
 <param name="output_format" value="[csv|dynetml]"/>
 <param name="run" value="all"/>
 <param name="time" value="[first|last|all| csv timeperiod
 list]"/>
 <!-- the following params are optional with default=all -->
 <param name=”first_row” value=”” />
 <param name=”last_row” value=”” />
 <param name=”first_col” value=”” />
 <!-- the following params are optional with default=false
 if omitted, construct uses default values-->
 <param name="print_run_and_timeperiod" value="true" />
 <param name="print_row_numbersnumbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="print_run_and_timeperiod" value="true" />
 </parameters>
</operation>

Construct will place the output file in the same directory as the input file by default.
Modelers can prepend path information to the file name and Construct will write the output to
the directory specified by the path name. Users should ensure that if they have opened any output
files (e.g., in Excel to view the files), they should either close the file or use an application that
does not place a file-level lock on the file (e.g., Notepad++).

Construct silently overwrites pre-existing files with no warning.

The output_format supports two values, csv and dynetml. The dynetml format is an
XML based format that CASOS uses in its Organizational Risk Analyzer (ORA) network
analytic software package. The csv format is the only format that allows the modeler to output
multiple time periods to a single file.

105

The run parameter remains necessary to support legacy input decks. The time parameter
shown above is directing Construct to provide output at all time periods. Additional valid values
for the time parameter are: first, last, and a comma separated list of positive integers that
are less than the length of the simulation (first is equivalent to 1). The verbose parameter,
when true, will print additional information about the decision during parsing of the input deck.
The boolean header_row tells Construct to print a header row in the output file if the value is
true.

The <ListExpr> is a comma separated list of node ids (e.g., 1,2,55,99). A modeler can
also use the agent group reference syntax. (i.e. construct::agentgroup::<name> to provide the
comma delimited list of agents. For each value in the <ListExpr> for the decision_names
parameter, the modeler must add a parameter using that value as a decision name and define the
decision using scripting syntax. If the value attribute does not define the decision (as it does for
d1 and d2 below), the modeler must include a type attribute with a decision_name_list value
to tell Construct that the definitions of the decisions appear later in the input deck (see also
decision d3 below, which is composed of 2 1-bit decisions, d4 and d5). A more specific example
of this syntax is shown below.

ReadGraphByName
This is a general purpose operation that allows a modeler to read an output any specified

network. An important syntax issue to remember is to always include the name of the graph
within single quotes (‘). If the modeler mis-spells the name, does not include a proper name in
single quotes (‘), or Construct cannot otherwise find the named graph, it will fail during it’s first
attempt to execute the operation with an error message.

<operation name="ReadGraphByName">
 <parameters>
 <param name="graph_name"
 value="'interaction probability network'"/>
 <param name="output_filename" value="prob.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="print_run_and_timeperiod" value="true" />
 <!—- below prints at times 0,1,2,3,4 and then
 Every ten percent (10%) of the run length
 And then the last turn -->
 <param name="time" value="0,1,2,3,4,
 (construct::intvar::time_count *10)/100,
 (construct::intvar::time_count *20)/100,
 (construct::intvar::time_count *30)/100,
 (construct::intvar::time_count *40)/100,
 (construct::intvar::time_count *50)/100,
 (construct::intvar::time_count *60)/100,
 (construct::intvar::time_count *70)/100,
 (construct::intvar::time_count *80)/100,
 (construct::intvar::time_count *90)/100,

106

 construct::intvar::time_count-1"/>
 </parameters>
</operation>

In the example above, Construct will print the probability of interaction matrix for all
agents with row and column headers. Construct will print at time points 0,1,2,3, and 4. It will
also print at time points that are in 10% increments of the total simulation run time as defined
using the construct::intvar::time_count variable.

The remainder of the Construct supported operations will be in alphabetical order

ActivateAltersForAgents
<!-- Used to make agents aware of a new/old set of alters with some
 probability the new awareness will stick. Use Case: A message to
 all agents of who the 'chain of command' is -->
<operation name="ActivateAltersForAgents">
 <parameters>
 <param name="output_filename" value="activateAlters.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>
 <param name="activation_network_filename"
 value="edgelist.csv"/>
 <param name="symmetric_flag" value="false"/>
 <param name="load_style" value="sparse_to_dense_convert" />
 <param name="skip_first_row" value="false" />
 <param name="probability_of_activation" value=".5"/>
 </parameters>
</operation>

AgentReport

AvgCommunicationOverRuns

AvgProbInteractOverRuns

AutomaticDunetmlOutput

BeliefThresholdTest

BetweennessCentrality

binop

BonacichPowerCentrality

CliqueCount

ClosenessCentrality

107

CommunicationMediumsSent
<operation name="CommunicationMediumsSent">
 <parameters>
 <param name="output_filename"
 value="Communications_Mediums_Sent.csv" />
 <param name="output_format" value="csv" />
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="print_run_and_timeperiod" value="true" />
 <param name="time" value="0,1" /><!--pre and post meeting(s)

times --><!-- Leave the previous comment as a marker for the network
generator jar to correct the times-->

 </parameters>
</operation>

CommunicationMediumsReceived
<operation name="CommunicationMediumsReceived">
 <parameters>
 <param name="output_filename"
 value="Communications_Mediums_Received.csv" />
 <param name="time" value="0,1" /><!--pre and post meeting(s)

times --><!-- Leave the previous comment as a marker for the network
generator jar to correct the times-->

 </parameters>
</operation>

Connectedness

DeltaFeed

Diameter

EigenVectorCentrality

ForceLossyIntersection
<!-- Allows experimenter to force a recalculation by ego's of their
 transactive memory of groups in the sim
 Use Case: Can be used if some substantional change has occurred
 and simulator needs to tell all agents
 to reassess their understanding of the world -->
<operation name="ForceLossyIntersection">
 <parameters>
 <param name="time" value="all"/>
 </parameters>
</operation>

Fragmentation

GlobalEfficiency

GraphMeasure

108

InformationCentrality

InverseClosenessCentrality

LocalEfficiency

MissionCompletionSpeed

Nodeset_dump
The modeler/researcher uses this method to print the contents of any of the nodesets

resident in the construct simulation. Previous versions of Construct (pre-2014) supported only
printing ‘agent’ nodesets. That limitation no longer exists. There are no output options other than
CSV at the time of this manual (2014).

The print_col_names property, when set to true, will print column headings in the first
row of the output; the property defaults to false. Column headings are taken from the names of
the nodes which each column represents.

The print_row_ _numbers property, when set to true, will print row numbers (zero
indexed) as row identifiers.

<operation name="Nodeset_dump">
 <parameters>
 <param name="nodeset_name" value="agent"/>
 <param name="output_filename" value="agent.csv"/>
 <param name="print_col_names" value="true" /> <!-- default=false-

->
 <param name="print_row_numbers" value="true" /> <!--

default=false-->
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="0"/>
 <param name="verbose" value="false"/> <!-- optional,

default=false-->
 </parameters>
</operation>

ReadAgentActivatedGroupMatrix

ReadAgentCoreTies
<!-- Read/Print the contents of each ego's core ties in multi-level

construct -->
<operation name="ReadAgentCoreTies">
 <parameters>
 <param name="output_filename"
 value="agent_core_ties_by10Percentiles.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="output_by_percentiles"/>
 <!-- when activation_score_as_edge_weight is set to true, prints

activation score of alter as opposed to a '1' -->
 <param name="print_run_and_timeperiod" value="true" />

109

 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="print_run_and_timeperiod" value="true" />
 <param name="activation_score_as_edge_weight" value="true"/>
 </parameters>
</operation>

ReadAgentBeliefOfGroupKnowledgeMatrix
<!-- Prints per agent perception of groups' knowledge -->
<operation name="ReadAgentBeliefOfGroupKnowledgeMatrix">
 <parameters>
 <param name="output_filename"
 value="AvgAgentBeliefOfGroupKnowledge.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>
 </parameters>
</operation>

ReadAgentMisrepresentationProbability

ReadAgentsWhoDoNotInteractWithAnyone
This will print a report to standard out of agents who did not interact with anyone at the

end of each time period. It does not support writing the outputs to file. Changing the
output_to_stdout to false will turn this operation off, but still consume processing time.

<operation name="ReadAgentsWhoDoNotInteractWithAnyone">
 <parameters>

 <!-- dump to stdout if true, default is false, and could be
 Omitted. Alternately, the output can go to stdout, and omit
 The file name, format, and whether to print row/col headers
 And the run & time period info -->
 <param name="output_to_stdout" value="true"/>
 <param name="output_filename"
 value="AgentsWhoDoNotInteractWithAnyone.csv"/>
 <param name="output_format" value="csv"/>
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="print_run_and_timeperiod" value="true" />
 <param name="run" value="all"/>
 <param name="time" value="all"/>
 </parameters>
 </operation>

ReadBinaryTaskAccuracy
This operation prints out an Agent vector with each entry specifying the agent's accuracy

across all assigned binary tasks. To use this operation, a “binarytask truth network” and a
“binarytask requirement network” must be specified.For each task the agent is assigned to,
Construct assigns a 1 if accurate and a 0 if inaccurate.

<operation name="ReadBinaryTaskAccuracy">
 <parameters>
 <param name="output_filename" value="binaryTaskAccuracy.csv"/>

110

 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="all" />
 <param name="print_run_and_timeperiod" value="true" />
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="print_run_and_timeperiod" value="true" />

 </parameters>
</operation>

ReadDynamicEnvironment

ReadDynamicEnvironmentAccuracy

ReadDynamicEnvironmentEnergyTask

ReadDynamicEnvironmentEnergyTask_summary

ReadEnergyTask

ReadEnergyTask_summary

ReadGraphByMatrix
This specific operation prints any 2D graph Construct uses.
<operation name="ReadGraphByName">
 <param name="graph_name" value="'interaction probability network'"

/>
 <param name="output_filename"

value="interaction_probability_network_0.csv" />
 <param name="output_format" value="csv" />
 <param name="run" value="all" />
 <param name="time" value="0" />
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
</operation>

ReadInteractionMatrix
This specific operation has been deprecated by CASOS. Instead, below is the appropriate

way of accessing and printing the values of the interaction matrix. Recall the interaction matrix is
an Agent x Agent matrix whose cells store integer counts of the number of times the row agent
and column agent have interact during the specified turn. The matrix is reset to all zero’s at the
end of each turn. This example uses the scripting support within construct to automate the
comma separated value list of time values that construct will use to read the graph. Specifcally, it
will generate a list starting with 0, then every ten percent of the run (as an integer, where any
decimal portion of the value is simply dropped), and the last value.

<construct_vars>
. . . <!--other vars omitted from documentation example -->

111

 <var name="output_by_percentiles" value="
 $currTime$ = 0;
 $step$ = construct::intvar::time_count / 10; /* 10% step value,

ASSUMES time_count >= 10 so $step$ >= (int)1 */
 $result$ = '' + $currTime$;
 foreach i (timeperiod_list){
 if (i:int == ($currTime$ + $step$)){
 $result$ = $result$ + ',' + ($currTime$ + $step$);
 $currTime$ = i:int;
 } else {
 $currTime$ = $currTime$; /* non-harm else statement, since

'else' is not optional in construct if then else statements */
 }
 }
 /* now add the last time period to the list */
 $result$ = $result + ',' + (construct::intvar::time_count - 1)
 return $result$;"
 with="$result$,verbose" />
. . .
. . . <!--other vars omitted from documentation example -->
</construct_vars>
. . . <!-- more intervening input deck not shown -->

<operation name="ReadGraphByName">
 <parameters>
 <param name="graph_name" value="'interaction network'"/>
 <param name="output_filename" value="interaction.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="time" value=" output_by_percentiles "/>
 </parameters>
</operation>

ReadInteractionMatrix_Sparse

ReadKnowledgeDiffusion
This will print an Agent x PercentKnowledgeDiffused vector at time period 0, time

period 1, time periods that correspond to 20%, 40%, 60%, and 80%, and the last time period.
Construct will separate each time period from the others by a blank line. To determine the
number of knowledge facts that an agent has, Construct simply sums the number of bits set to 1
for that agent’s index into the knowledge network.

<operation name="ReadKnowledgeDiffusion">
 <parameters>
 <param name="graph_name" value="'knowledge network'"/>
 <param name="output_filename" value="diffusion.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="0,first,
 (construct::intvar::time_count *20)/100,
 (construct::intvar::time_count *40)/100,

112

 (construct::intvar::time_count *60)/100,
 construct::intvar::time_count *80)/100,
 construct::intvar::time_count-1" />
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

ReadKnowledgeDiffusionByAgentGroup
This will print a Knowledge x AgentGroup matrix at all time periods to a single file.

Construct will print row and column headers. Construct will separate each time period from the
others by a blank line. For this operation to operate, the modeler must have defined an Agent x
AgentGroup matrix. The ReadKnowledgeDiffusionByAgentGroup operation will output a
matrix where each row is an agent group, and each column is a fact. The value at a particular
row-column cell in this matrix is the percentage of agents who know that fact.

<operation name="ReadKnowledgeDiffusionByAgentGroup">
 <parameters>
 <param name="output_filename"
 value="KnowledgeDiffusionByAgentGroup.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="all"/>
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

ReadKnowledgeDiffusionByFactGroup
This will print an Agent x Percentage of Facts per FactGroup matrix at all time periods to

a single file. Construct will print row and column headers. Construct will separate each time
period from the others by a blank line. Each cell of the matrix at a given time period will output
the percentage of facts in the given FactGroup that the agent at that row of the matrix knows.

<operation name="ReadKnowledgeDiffusionByFactGroup">
 <parameters>
 <param name="output_filename"
 value="KnowledgeDiffusionByFactGroup.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="all"/>
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

ReadKnowledgeDiffusion_summary

ReadKnowledgeGain

ReadKnowledgeLearningHistory

113

ReadKnowledgeLearningHistorySum

ReadKnowledgePriorityMatrix
This specific operation has been deprecated by CASOS. Instead, below is the appropriate

way of accessing and printing the values of the knowledge priority matrix. This network does not
normally change during the execution of the run unless the modeler uses scripting to do so. As
such, printing out time periods other than the first is probably not useful.

<operation name="ReadGraphByName">
 <parameters>
 <param name="graph_name" value="'knowledge priority network'"/>
 <param name="output_filename" value="interaction.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="print_row_numbers" value="true" />
 <param name="print_col_names" value="true" />
 <param name="time" value="first"/>
 </parameters>
</operation>

ReadKTMMatrix

ReadNodesetAttributeOutput

ReadSphereMatrix

ReadSphereMtrix_Sparse

ReadTaskCompletion

SimmelianTies

TaskCompletionStartStopTimes

TaskCompletionSpeed

TotalDegreeCentrality

Transitivity

TriadCount
WeakBoundarySpanner print_row_numbers

Decisions

Construct is capable of generating arbitrary computable output through the use of
expressions and scripting on a per-agent, per-turn basis. When an agent executes a ‘Decision,’
the agent is not only able to generate additional non-in-built output, but can modify its internal

114

state in ways the original developers had not necessarily contemplated. In the
<operations></operations> portion of a construct input file, a modeler can create an
operation that supports this functionality. A modeler can also make a ‘decision’ that can affect
the entire simulation, and not just single agents or nodes.

ReadDecisionOutput
The modeler will use the <ReadDecisionOutput></ReadDecisionOutput> tags when

creating an arbitrary decision. The complete syntax is shown in the example below and the name
of the tag is case sensitive. Construct will place the output file in the same directory as the input
file; there is no capability to write to a different directory or path. The output_format, similarly
to other output options, supports two values, csv and dynetml.

<operation name="ReadDecisionOutput">
 <parameters>
 <param name="output_filename" value="[filename]"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="all"/>
 <param name="verbose" value="<BoolExpr>"/>
 <param name="header_row" value="<BoolExpr>"/>
 <param name="applicable_agents" value="<ListExpr>"/>
 <param name="decision_names" value="<ListExpr>"/>
 <param name="<decision name value 1>" value="<ListExpr>"/>
 <param name="<decision name value 2>" value="<ListExpr>"/>
 <param name="<decision name value ...>" value="<ListExpr>"/>
 <param name="<decision name value n>" value="<ListExpr>"/>
 <parameters>
</operation>

Unlike other operations, the ReadDecisionOutput gets executed at the end of every turn.
The time parameter shown above is directing Construct to provide output at all time periods,
though how frequently a modeler wants that output is situation dependent. Note the additional
valid values for the time parameter: first, last, all, and a comma separated list of positive
integers that are less than the length of the simulation (first is equivalent to 1). The run
parameter remains necessary to support legacy input decks. The verbose parameter, when true,
will print additional information about the decision during parsing of the input deck. The boolean
header_row tells Construct to print a header row in the output file if the value is true.

The <ListExpr> is a comma separated list of node ids (e.g., 1,2,55,99). A modeler can
also use the agent group reference syntax (i.e. construct::agentgroup::<name> to provide the
comma delimited list of agents). For each value in the <ListExpr> for the decision_names
parameter, the modeler must add a parameter using that value as a decision name and define the
decision using scripting syntax. If the value attribute does not define the decision (as it does for
d1 and d2 below), the modeler must include a type attribute with a decision_name_list value
to tell Construct that the definitions of the decisions appear later in the input deck (see also

115

decision d3 below, which is composed of 2 1-bit decisions, d4 and d5). A more specific example
of this syntax is shown below.

<operation name="ReadDecisionOutput">
 <parameters>
 <param name="output_filename" value="decision_outputs.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="first,10,20,30,last"/>
 <param name="verbose" value="false"/>
 <param name="header_row" value="true"/>
 <param name="applicable_agents" value="1,15,99"/>
 <param name="decision_names" value="d1,d2,d3"/>
 <param name="d1” value="getKnowledgeNetwork[agent,1]"
 with="agent"/>
 <param name="d2" value="getKnowledgeNetwork[agent,20]"
 with="agent"/>
 <param name="d3" value="d4,d5" type=”decision_name_list"/>
 <param name="di" value="getKnowledgeNetwork[agent,i]"
 with="agent,i=(4,5),i"/>
 <parameters>
</operation>

Reading the decision above, would sound like the following:

“This is an operation to get the decision from agents 1, 15, and 99 for decision 1, decision
2, and decision 3, and to print the results of that retrieval at time 1 (the first time period), time 10,
20, 30 and the last time period of the simulation. Decision 1 is a represented by a single bit of
knowledge, in column 1 of the Agent x Knowledge Network. Decision 2 is also a single bit of
knowledge, in column 20. Decision3 is ____________. Decision 4 & 5, defined with a macro
variable, are also single bits in the AxK network, and are with respect to Agents 4 & 5 only. The
output format will be CSV with decision 1 in the first column, and decision 5 in the fifth
column.”

Specifying Decisions
Construct does not have a defined limit on the number of decisions a modeler can define.

Experience within CASOS and developmental testing indicate that no more than 200 decisions
be created per simulation.

Modelers must define their decisions in the decision_names parameter or within a chain
of decisions. One way of ensuring reachability is to have the header_row parameter set to true.
If the decision of interest is in the header row, Construct is attempting to evaluate it.

A modeler can use all the scripting language capabilities and features available when
specifying variables. The practical result is that a decision can use constants, mathematical and
logical expressions, string operations, and conditional statements. There are an additional five (5)
scripting features available to modelers when declaring and specifying decisions:

network getters

116

network setters

agent references

time period references

decision references

Network Getters

A very important part of the decision system in Construct is its ability to read and return a
set of values from any network within the simulation. The general syntax is
getSomeNetworkName [row, col]. The complete syntax to accomplish this functionality is in
Appendix E Scripting in the Network Operations section.

Network Setters

A very important part of the decision system in Construct is its ability to a set of values
within any network within the simulation. An example use case of this functionality could be an
agent in the simulation learns of the existence of a web site from an interaction partner. This
functionality could then set the interaction network row+column value to 1 between the agent
and the website--knowledge of existence preceded ability to interact. The general syntax is
setSomeNetworkName [row, col, value]. The complete syntax to accomplish this
functionality is in Appendix E Scripting in the Network Operations section.

Agent References

Construct processes decisions iteratively for each of the agent values in the
applicable_agents parameter. The modeler may frequently need to refer to the specific agent
under evaluation, and can accomplish this by using the reserved word, agent, in the decision
declaration.

Time Period References

The modeler may need Construct to refer to the current time period when processing
decisions. This is possible using the reserved word timeperiod as part of the with=”” attribute.

Decision References

It is possible that a modeler needs to evaluate decisions both independently and in some
form of combined output. Construct supports the chaining of decisions to allow a modeler to
meet this need. In the example below the modeler has two independent decisions (XX, YY) and
needs to also model the combined XX || YY. Specifically, the modeler is trying to determine if
agent ever talked with agent 0, or if agent 0 ever talked with agent, or if either happened in
previous execution of this decision script.

<operation name="ReadDecisionOutput">

117

<parameters>

<param name="decision_names" value="everTalkedTo0" type="decision_name_list"/>

<param name="everTalkedTo0"

value="getInteractionNetwork[agent,0] ||

 getInteractionNetwork[0,agent] ||

 previousResult:bool}" with="agent"/>

</parameters>

</operation>

The previousResult reserved word shown above allows a modeler to retrieve, as a
construct::stringvar the result of this decision during the previous time period.

Decisions using with statements
A modeler can use all the with functionality described in Part 2 Variables. The authors in

fact strongly encourage the use of the with=”verbose” attribute and value to help enable more
effective debugging of input decks.

The example script above shows one example of the with=”agent” attribute that allows
Construct to move through the applicable_agents list.

The example script at the top of this section also shows an example of the use of macros
inside the with=”” attribute. In this example, Construct creates decisions d4 and d5 as a result of
the i macro in the with attribute.

The decision parsing differs slightly from the parsing of regular Construct variables.
Construct can interpret regular variables that contain non-reserverd words, not contained in
single quotation marks (‘) as stringvars. This is not true for decisions, and modelers must use
single quotation marks (‘) stringvars to delimit string variables.

Common Gotchas with Operations

If Construct is unable to open an input file, it will exit and close. There are times when an
error message is not present to the user in this situation! Users should ensure that if they have
opened any output files (e.g., in Excel to view the files), they should either close the file or use
an application that does not place a file-level lock on the file (e.g., Notepad++).

118

Appendix D Additional Construct ‘Generators’

Group to Group Generators
Generators are created for a network based on a mapping between groups of nodes

instead of mappings between nodes.

Nodes in node groups do not have to be contiguous.

Box generator only works on contiguous nodes, if they aren’t contiguous you must use
multiple BoxGenerators

This can require thousands of BoxGenerators

Thinking in terms of groups is more intuitive

Uses a reference to a second network for the mappings as well as references to the two
group networks

The above xml shows the group to group generator in use. Note that this generator is the

only generator for the knowledge network. The common rows/cols values are set to zero, but are
not actually used. Instead the following parameters are used:

src_net_name

This tells the generator where the group to group mapping is found. It refers to another
network that should already be loaded. In the example, the network is called
“ag_to_kg_gen_net”.

Note that you can call this network whatever you want, but src_net_name must have
correct name, whatever you choose.

119

 row_grp_membership_net

• This tells the generator where the membership network for the row groups is at. In this
case the network’s name is “agent group membership network”.

• A membership network is a mapping of nodes to groups. In this case it maps agents to
agentgroups.

• Construct uses the “agent group membership network” for its own purposes, and you
can use it in this case, but you can also use your own node to nodegroup network. Just make sure
you give the correct name in the row_grp_membership_net.

 col_grp_membership_net

• This tells the generator where the membership network for the col groups is at. In this
case the network’s name is “knowledge group membership network”.

• This is a knowledge to knowledgegroup network.

• It is just like the row_grp_membership_net, but it applies to the column node set type,
which in this case is knowledge instead of agent.

The above xml shows the mapping between the agent group and knowledge group

nodesets.

• Note the value string: gen_typeXXXrandombinary,meanXXX0.0.

• This is parsed to find the parameters for the generator for the mapping between
agentgroup: ag0 and knowledgegroup: fg0.

120

• Once parsed, the gen_type will be randombinary and its sole parameter “mean” will be
0.0.

• If there should be more parameters, just follow the pattern and use XXX between
parameter name and its value, and use a comma between individual parameters.

• Unfortunately limitations in our xml parser preclude the use of more sensible
delimiters. Once fixed, we will change from XXX to something like “||” or “:”.

• Maps nodes to groups.

• Groups must exist in their own node set.

• Typically the group nodeset’s name has the name of the nodes it will be associated with
followed by the word “group”.

• Example: agentgroup is a node set of agent groups

• Example groups: finance_dept, advertising_dept, friendlist

• Example: knowledgegroup is a node set of knowledge groups.

• Normal generators can be used so csv, dynetml, and constant generators are typical for
membership networks.

121

• Usually the bounds of each group are critical

• Example: finance has 10 agents in it, advertising has 3 agents, etc.

• If groups are not contiguous then generators can specify those agents too.

122

Appendix E Scripting

Reserved Words in the Construct Scripting Language and Input File

Variables and ‘Decisions’ are subsets of the more general concept of scripting within
Construct. In this section, we will discuss in more detail the parts of the scripting system. We
first begin on a rather important note by stating that when using the scripting functionality of
Construct, it is important that the modeler does not use any of the following words, which are
reserved for certain uses and, if used incorrectly, may provide unexpected results.

agent
bool
construct
delay_interpolation
details
else
error
get*
if
preserve_all_white_space
preserve_spaces_only
preserve_white_space

random*
randomBinary
randomNormal
randomUniform
return
set*
spaces_only
static_if
timeperiod
verbose
..

123

Note that any string beginning with the word “get” or “set” is reserved for use with
referencing networks, and thus the remaineder of the network reference must be one of the
networks that Construct is aware of, specified in CamelCase. Strings that begins with the word
“get” or “set” will be treated as a network reference. In addition, any and all words beginning
with “construct” or “random” should not be used – though the list above specifies all current
reserved words, anything beginning with either of these two words may become a reserved word
at some point during future development. Finally, one should note that all words beginning with
an alphabetic character will be considered variables, though in many cases it will only be a valid
variable with the use of with.

Having stated what a researcher should not use when doing scripting in Construct, we
now define the lexemes that are possible within Construct’s scripting system. Note in the
sections below that an expression surrounded by angled brackets, such as <text>, indicates an
expression can be used in place of it. One other note is that in all cases below, square brackets
([]) and curly braces ({}) are deliberate and must be included.

Testing Construct Scripts

Construct has a built-in mechanism to help lexigrapphically check the validity of a Script.
To do this, the researcher should include the “lexxy_test” parameter in the input file. The
researcher then inserts the script into the value attribute. Construct will parse and process the
script and the modeler can increase their confidence it is executing as they intended.

<param name="lexxy_test" value="[insert the script here]" />

General Syntax

§ comment: /* <This is an example comment> */

Comments within scripts occur within /* */, as shown above. It is important to note that
the user not put commas or quotes within comments. Beyond this, however, users should feel
free to use comments as desired, including the use of newlines, e.g.

/* <This is another

 example comment> */

§ quoted literal: '<Text>'

To specify a string of text to be used, the user can enclose it within two single quotes.
Again, as with comments, the user should refrain from putting other single quote characters or

124

commas into quoted literals. To avoid errors where quoted literals are mistakenly not closed
being too confusing, there is a limit of 100 characters per literal – to create literals with more
than 100 characters, concatenate multiple literals together.

§ numbers: <Number> or <Number>.<Number>

It is important to note two things when specifying numbers. First, Construct will attempt
to represent the number using the smallest type possible- that is, if the user does not explicitly
(via :float) or implicitly (via adding a .0) cast a number to a float, it will be stored as an integer.
Construct supports up to sixteen-bit, twos complement signed integers in addition to C-style
floats.

§ white space: <space> or <tab> or <newline>

All whitespace is ignored by the Construct parser- please be aware that under certain
conditions, this may produce unexpected results. If the user wishes to specify a variable
addressing networks in Construct, which often have spaces, the user must refer to them within a
quoted literal.

Mathematical Expressions

§ sub-expression: (<Expr>)

Parentheses are used for two reasons. The first, as discussed in the variables section, is to
specify order of operations. The second is to specify subexpressions – for example, when writing
an if statement, it is necessary to use parentheses.

§ addition: <Expr>+<Expr>

§ subtraction: <Expr>-<Expr

§ multiplication: <Expr>*<Expr>

125

§ division: <Expr>/<Expr>

§ exponentiation: <Expr>**<Expr>

The five mathematical operators are presented here together, for clarity. There are some
differences between these – chiefly, the addition operation performs a concatenation if either of
the operands used are strings; for instance, adding “test” and “1” will create the string “test1”. If
both operands are numeric or Boolean, then a standard addition will be performed – note that in
addition, as in all cases, the result will be a float if one at least one operand is a float and will be
an integer otherwise. Subtraction, multiplication, division and exponentiation (which evaluates to
the C function pow()) can be used as expected, and cannot be used with string

§ concatenation: <Expr>,<Expr>

Not to be confused with string concatenation, the concatenation operator is used to
separate two values in a sequence. This can be used to 1) create a list of entries, or 2) internally
by the parser to separate parameters from other scripting commands.

§ subsequence: <StringExpr>/<StringExpr> or

<StringExpr>|<StringExpr>

The subsequence (/or |) operator is specifies a group of related items within a single
sequence, and can be used to specify a list within a list. It is important to note that the
subsequence operator is the same as the division and or operators, and will be used if one or
more of the expressions involved are strings. For example, 1/2/3 will be evaluated as a numerical
division operation, while 1/2/3:string will utilize the subsequence operator.

§ enumeration: <Min>..<Max>

(aka list operator or .. operator)

The enumeration operator is used to create a sequence of integers between the values of
<Min> and <Max>. The primary use for the enumeration operator is to quickly and concisely
create comma-separated lists of integers without having to utilize a loop. An example of its usage
is 1..5, which will generate the sequence 1,2,3,4,5. Further examples, re-illustrating the principle
of left-to-right evaluation, are provided below:

 3+1..5 -> 31,2,3,4,5

126

 (3+1)..5, -> 4,5.

Logical Expressions

§ logical and: <Expr>&&<Expr>

§ logical or: <Expr>||<Expr>

§ exclusive or: <Expr>^<Expr>

§ negation: !<Expr >

The logical operators are defined here for convenience. In the case that one of the
operands is a string, all of the given operations will fail. Otherwise, all values will first be
converted to Booleans and then the expression will be applied. In all cases, if the expression
evaluates to true, the Boolean value 1.0 is returned, otherwise 0.0 is returned.

It is important to note that although Construct will be able to interpret it, the && operator
is not a standard XML token, and thus certain text and XML editors may warn that your syntax
is incorrect.

§ equality: <Expr>==<Expr>

§ inequality: <Expr>!=<Expr>

§ less than: <Expr> < <Expr>

§ greater than: <Expr> > <Expr>

§ less than or equal to: <Expr> <= <Expr>

§ greater than or equal to: <Expr>>=<Expr>

The comparison operators are provided here together for convenience. If either value the
equality or inequality operations is a string, both sides of the equation are first converted to
strings, and then the comparison occurs. The less than, greater than, less than or equal to and
greater than or equal to operations will all fail if one or more of the operators are a string. If one
or more of the values are a float for any of these operations, then all values are converted to
floating point values before the comparison is completed. Finally, if both operands are integers,
then an integer comparison will be applied.

In all cases, it is important to keep in mind two things. First, if the expression evaluates to
true, a Boolean value of 1.0 is returned, otherwise, 0.0 is returned. Second, recall that Construct
does not implement operator precedence, and continues with right-to-left evaluations. Thus,
evaluating the expression 2+1==3 will result in a value of 2, because the script will compare 3

127

and 1, generating a value of 0, and then add this amount to 2. Though we only show this for the
== operator, the same holds for all others here.

As with the expression && above, standard XML editors do not allow for the use of < or
> (less than or greater than) in places outside of tags, and thus including these expressions in
your ConstructML may cause your editor to warn you that you have an error.

Generating Random Numbers

§ generate random number from a uniform distribution:

randomUniform(<MinExpr>,<MaxExpr>)

§ generate random number from a normal distribution:

randomNormal(<MeanExpr>,<VarianceExpr>,<MinExpr>,<MaxExpr>)

§ generate random binary values of 0 or 1:

randomBinary

These two functions allow for the creation of random numbers. In both cases, a new
value is generated each time a call to this expression is made, and thus, for example, would
generate a unique value for each turn if placed within an expression evaluated on each turn. The
random number generator utilized is the same one used by Construct, and hence utilizes the same
seed. dom number generator generates a new random number each time it is invoked, meaning
that the expression is evaluated as Construct is executed and not when the statement is parsed.

The randomUniform expression generates a randomly drawn floating point value
from the uniform distribution defined by the parameters <MinExpr> and <MaxExpr>, which
can be any values that evaluate to either integer or float values. If they are not supplied, (e.g. if
the expression is written as randomUniform(), the default values assumed are 0 and 1.
Thus, a call will generate a value inclusive of the minimum and maximum values given. If an
integer is desired, for example, between two and five, the user can utilize a call of the form
randomUniform(2,6):int.

The randomNormal number generator generates a float value from a normal distribution
with mean MeanExpr and variance VarianceExpr, and the MeanExpr, VarianceExpr,
MinExpr, and MaxExpr expressions can be anything evaluating to either a float or an int. If
no minimum or maximum values are specific, the range of possible values can theoretically go
from negative infinity to infinity. Note that these need not be symmetric, but that because there is
usually little need to evaluate infinity, it is often desirable to bound the distribution by
something. To adhere to the bounds, Construct uses post-processing – that is, it repeatedly draws
random numbers from a normal with the specified mean and variance until it finds values within

128

the desired range set by the minimum and maximum values, inclusive. Note that in certain cases,
this may be a very slow process.

Conditional Statements - IF

§ if expression:
if(<BoolExpr>) { < Expr> } else { <Expr> }

or
if(<BoolExpr>) { < Expr> } else if(<BoolExpr>) { < Expr> }
else { <Expr> }

The if (and subsequent else ifs and else statements) allow the scripting language to
evaluate a series of Boolean expressions. These expressions are evaluated sequentially, starting
with the first expression (which must be an if) through zero or more else if conditions and to a
final (and necessary) else command. If any of the <BoolExpr> within one of these is true, then
the statement within the curly brackets is executed, and the rest of the conditions are ignored.
Thus, if expressions will execute only a single expression (or set of expressions) enclosed within
curly brackets.

Note that there are two significant departures from C-like syntax
in Construct’s version of an if statement.

First, the researcher must use curly brackets when expressing a
statement to be executed after an if or an else (note in C-like languages,
this is not necessary for single-line expressions).

Second, there cannot be an if statement without an else
statement – all curly brackets in an if expression that are not part of the
final else must be followed by an else (which may be part of an else if).

Thus, in the case that the user wants to test a single condition, the syntax would look
something like the following:

if(<BoolExpr>) { < Expr> } else { < Expr> }

When testing a conditional inside the parentheses, it is necessary to have as output an
explicitly Boolean value. Thus, implicit conversion will not occur for floats or integers, to reduce
the possibility of user error. If a user wishes to use an integer, float or string for the conditional,
they must explicitly cast with :bool. Finally, the returned types of all expressions executed
should match

129

§ static if expression:
static_if(<BoolExpr>) { <Expr> } else { <Expr> }

or
static_if(<BoolExpr>) { <Expr> }
else if(<BoolExpr>) { <Expr> } else { <Expr> }

The static_if expression differs from the standard if expression in that it is evaluated
statically – while if conditional is considered when the statement is executed, the static_if is
executed at the time at which it is parsed. This can be used in cases where the experimenter is
sure that the conditional statement will never change, and in these cases will dramatically speed
up execution time, as a static_if will be evaluated only once. Such a situation might occur if the
user were to test for some constant variable that may be changed once, by the user, in the file, but
will stay constant throughout the simulation.

The second use if the static_if is that if utilized, only the expressions within the brackets
{} of the conditional evaluating to true will be evaluated. Thus, one can introduce whole sections
of code conditional on whether or not a variable is initialized to a certain value, where if it is not,
that code will never be utilized by Construct. Simply put, however, the difference between if
statement and a static_if is portrayed best in the following example: Consider the two

 if(timeperiod > 0)…
 static_if(timeperiod > 0)…

In the case of the if statement, the condition would be evaluated each turn of the
simulation – thus at every time period after the first, the code within the if statement would be
run. In contrast, the static_if would be checked one time, when it was parsed. Because it
evaluates to false in that case

§ assignment: $variable$ = <Expr>;

The assignment operator, or the equals sign, allows the assignment of the value on the
right hand side to the variable on the left, which must be surrounded by dollar signs. The right
hand side of the equation can be any expression, though note that it must end with a semicolon
(;). This expression can include any variables declared previously that have already had values
assigned to them.

Upon assignment, the variable with name variable will be given the type of the type for
whatever the right hand side evaluates to. Assignments take on a global scope within the
ConstructML attribute they are defined in – thus, unlike, for example, C, a variable defined as
such inside a loop can be utilized outside of it. However, once outside of an attribute, the

130

variable loses that definition – even within the same element, a variable declared in its “name”
attribute will be different than one defined in its “value” attribute.

When a variable is used, it is given a variable type. If the right-hand side expression is a
Boolean the first time the variable is initialized, the variable will be type as a Boolean.
Otherwise, if it is an integer, float, or string, the variable will be typed as an integer, float, or
string (respectively). The most specific type that can be used for a variable will be used to type
the variable. If a specific variable type is to be used, the right-hand side can be cast to the desired
type using the cast (:) operation.

An additional point to note is that it is necessary to declare any variable first declared on
the left-hand side of an assignment using a with variable, as is done in the example in Table 10
below with the variable result. As can also be seen in Table 10 below, it is necessary to include
a return statement in the script to specify which result will be returned. If the end of a script does
not contain a return statement, the parser will error.

Table 10. Examples of foreach loops

Variable Val
ue

<var name="loop1" value="
$result$ = ''; /* init return var */
foreach i ('a', 'b', 'c', 'd') {
 $result$ = $result$ + i;
}
return $result$;"
with=“$result$”/>

"abc
d"

<var name="loop2" value="
$result$ = ''; /* init return var */
foreach i ('e', 'f', 'g', 'h') {
 $result$ = $result$ + i;
}
return $result$" /* as last command in script, semi-colon

optional */
/> <! - with optional in this case -->

"efgh
"

<decision name="loop2" value="foreach col (0..10) {
setKnowledgeNetwork[row:int,col:int,0]
}"
with=”row=2”/>

(sets

network row
[2,0-10] cells
to zero)

131

§ error: error(<StringExpr>)

The error expression will force Construct to output the string given and then exit
immediately after being evaluated. Typically, one will want to use this to debug code to make
sure that “impossible” conditions within the code are actually never hit. If a string expression is
not give, a default message of “<no error message provided>”) will be returned. Note that the
string expression can, of course, be a quoted literal, but can also be a dynamically evaluated
string variable.

 Looping - foreach

§ foreach expression: foreach $iterator$ (<IterableExpr>)

{ <Expr> }

The foreach loop allows the user to give a list that can be iterated over to produce an
aggregated result. To use a foreach loop, one must specify the foreach keyword, then the name of
the parameter while will be used to iterate over the list enclosed by dollar signs, followed by the
parentheses enclosing what is to be iterated over, and then finally the statements to be run for
each element in the list within the brackets {}. For example, the expression “foreach val
(1,2,3)” will generate a parameter, val, which will be given a value of 1, 2 and then 3 on the first,
second and third iterations of the loop, respectively.

Within the brackets, a sequences of any number of statements can be written-in most
cases, these statements will include reference to the iterator parameter, and in many other cases
will use variables, such as an aggregate variable, outside the loop as well. However, loops can
also use the set* operations and therefore will not always need such an aggregate value.

In the case that the user does not, under certain conditions, want to iterate through the
entire loop, a return statement, which will break the loop and return a value from the script
immediately, can be used within an if statement. In addition, it is important to note that foreach
loops can be embedded within other results, and that results coming from a foreach can be used
outside of the loop.

 Return

§ return: return <Expr>;

The return statement allows for a script to return a value at any point during its execution-
it is mostly intended for use with complicated scripts. All return statements must begin with the

132

word return, but must only have a trialing semicolon if they are not placed at the end of a
script. Perhaps most importantly, the user must note that in ignoring whitespaces, Construct will
interpret something of the form “return_val” as meaning the need to return the variable _val, and
thus should not be used. However, expressions after the return statement, such as return
$count$+1; will evaluate correctly (i.e. in this case will return the value stored in count plus one).

Another important point is that statements which contain assignments, if statements or
foreach must contain a return statement so that the script in its entirety returns a value. In the
case where this does not happen, Construct should error. Finally, values evaluated as part of an
expressionvar are considered to be part of the script- thus, any return statements in the expression
variable will serve as returns for the entire script.

Macros

§ macro variable expression: $<Name>$

Macros may be the most important tool in developing an extendible and maintainable
deck, but also may be the most confusing to the reader. A macro is defined in two parts – see
Figure 18 below for examples. First, within the script, an identifier (name) for the macro is
placed within two dollar signs. Like in all cases in Construct, this identifier should be limited to
alphanumeric characters. Second, the variable value for the macro should be specified – in most
cases, this will occur in the with tag of the enclosing piece of ConstructML. The with tag must
address the same identifier, and the second dollar sign must be immediately followed with an
assignment operator.

The results of macro expansion directly effect the text of the expression. So, for example,
in Table 11, the expansion of the variable i is converted to an integer and incremented in
variable x1. In contrast, the substituted variable can also create a new lexeme – in variable x2 the
expansion will substitute in the value 1 for i, creating a new variable, construct::intvar::x1.In
turn, when this is expanded and evaluated, x2 will then take on the value of x1.

Table 11. Examples of macros

Variable Varia
ble of interest

Value

<var name="x1" value="i:int+1"
with="i=1"/> x1 "2"

<var name="x1" value="i:int+1"
with="i=1"/>

<var name="x2"
x2

"2"

133

value="construct::intvar::xi"
with="i=1"/>

<var name="x1" value="i:int+1"
with="i=1"/>

<var name="x2"
value="construct::intvar::xi"

with="i=1"/>
<var name="x3" value=" construct::intvar::x

$2*i:int$+1" with="i=1"/>

x3 "3"

<var name="xi" value="i"
with="i=(4,5)"/> x4, x5 "4", "5"

<var name="timeperiod_list" value="0..9" /> “0,1,2,3,4,5,6,
7,8,9”

In most cases, variables should be defined inside of the with tag, as is the case with x1,
x2, x3.Note that the value of the macro variable must be written as a string, but can easily be cast
to any desired type. Also, note that it is possible to have several macro variables each having
separate variable lists –thus, if there are three values for macro i and four for macro j, then
twelve different expansions will be performed.

It is important to remind the reader that not all values surrounded by dollar signs are
macros – for example, variables used in assignment operators may be modified dynamically as
the script is evaluated, and such variables are thus usually specified as with parameters to ensure
that they are recognized by the parser. The difference here is that macros, being defined by the
parser, are static and cannot change during the course of execution, but may be embedded in
more complex variable names. Finally, note that variables created via macros can be accessed in
the standard way- for example, we see that the last example of Figure 18 above gives us x4 and
x5, not a variable with the name xi.

Get/Set network values

§ get network value: get<NetworkName>[<RowExpr>,<ColExpr>]

§ set network value: set<NetworkName>[

<RowExpr>,<ColExpr>,<ValueExpr>]

The word get, when followed immediately by the name of a network in CamelCase (e.g.
getKnowledgeNetwork) retrieves the given value from a specific location in a network. The
location is indexed by two integers in brackets, where network value operation retrieves the
value as a specific location in a network. In order for this expression to function, the network
must exist, the row and column values given must be integers, be enclosed by bracket characters

134

([]) and be separated by a comma (,). The returned value will have the type of the network the
call is made to. Also, it is important to note that these calls are somewhat time intensive, and thus
the user should take care when making such calls repeatedly, such as making them inside loops
or at every turn of the simulation. Finally, note that variables cannot yet be initialized in this
way, as variables are currently initialized before networks.

Similarly, the word set, followed immediately by the name of a network in CamelCase,
can be used to change the value at a given row and column in a network. In this case, it is
importatnt to verify that the value given in <ValueExpr>, which will be the value that this row
and column are set to, is of the same type as the network it is being set in. Otherwise, Construct
will exit with an error. Note that this is the case even where an implicit cast would make sense-
i.e. from integer to Boolean. It is also important to note that the set command returns a value,
which is equal to ValueExpr.

§ aggregate network values: get<NetworkName>[

<RowExpr>,<ColExprString>]

§ set aggregate network values: set<NetworkName>[

<RowExpr>,<ColExprString>,<ValueExpr>]

This version of the get expression will simply call get on a single row in a table and a
series of columns, given by the indicies listed in the list ColExprString, a string containing a
series of comma-separated integers. The value treturned by this function is the sum or
concatenation of these values. A common usage of the aggregate get call is to get the network
values for a specific group of agents or facts- for example, we can get the number of facts in the
knowledge group G that agent 0 knows with the call getKnowledgeNetwork[0,
construct::knowledgegroupvar::G].

The set aggregate network values operation analogous to the set expression, except with a
list of columns. In this case, the value returned is the summation or concatenation of all values
set. Additionally, one should note that if the expression ValueExpr references a dynamic value,
such as a call to a uniform random number generator, then the value will be recomputed for each
element in ColExprString.

 ReadFromCSVFile

Get value from csv file: readFromCSVFile[<FileExpr>,<RowExpr>,<ColExpr>]
<var name=”param_val_col” value=”1” />
<var name="attack_prob" value="readFromCSVFile[params.csv,0,
 construct::intvar::param_val_col]:float" />

135

This command reads a value from a CSV file named params.csv in the example above.
The file location is relative to the location of the Construct execution directory. The file must
also have a value at location <RowExpr>,<ColExpr> (row 0,column 1 in the example above). If
all of these conditions are true, then Construct will return the value at the given row and column
of the CSV, otherwise, it will exit with a failure. Note that file IO is extremely time-intensive,
and thus should be used with care.

Appendix F Construct in High Performance Computing (HPC) Environments
In many ways, the resource we are concerned when we do simulation shifts from man-

hours necessary to complete surveys and in-depth interviews to computational complexity in
both time and space. In particular, the goal is to be able to complete a large-scale simulation
project with the idea of “single-click” from starting the simulation through result generation, and
with an implementation which allows us to quickly tweak simulation parameters and rerun all
simulations.

To understand the difficulties associated with simulation in a large-scale project, we now
present the scenario we faced in a previous experiment, described in more detail in
[IRS_Intervention]. In this project, we were faced with approximately 2,000 runs, each of a
population of 4,000 agents, along with their attributes, their initial knowledge, and the associated
social network. This model, perhaps one of the most complex social simulation models run in
Construct, took nearly five hours per run. Thus, the sequential cost of running these simulations
for a single researcher on a single processor is just about enough time for a research grant to
expire. Luckily, a series of innovations in computing over the past fifty or so years, with which
most of us are familiar have saved us from such a fate. In this section, we detail such innovations
for the interested user, and then give examples of how to utilize the tools for HPC environments
employed at CASOS.

The first innovation, of course, is the ability for computers to talk to each other. This
allows us to use a single terminal to run simulations on other computers at our disposal and have
them return the results. The second innovation was the development of multi-core processors and
computers with multiple processors. Because Construct, by default, runs on a single core of a
processor, we have the ability to not only run our simulations on other computers, but to run
multiple simulations on each of them at the same time, independently of each other. The
computing power of our center is likely better than most settings, but by no means ideal. Upon
the running of simulations for [IRS_Intervention], our center possessed 234 processor cores upon
which simulation runs could be done, though many of these cores were being intermittently used
by other members of our research center.

The final innovation of computer science, the “map-reduce” framework [Map_Reduce],
answers the question of how we can “black-box” both the distribution of simulations and the
coallation of their output to various machines which can be potentially interrupted at any time. In
its most basic definition, the map-reduce framework “maps” out simulations to different

136

machines, ensuring in some way that we will receive output from each machine, and “reduces”
all of out output to a single format which we can specify.

Several open-source packages exist to rapidly install the map-reduce framework on
computers that researchers have available to them. Importantly, such a framework allows for the
researcher to be ignorant of the number of processors he or she has available – the map-reduce
concept works exactly the same (though with obvious time increases) on a single core as it does
on the millions of cores used by companies such as Google. We use the CONDOR cluster
software [Condor] to connect machines in our center, and their DAGMan [Dagman] application,
along with some straightforward scripting, to implement the map-reduce framework.

The map-reduce framework, along with some well known interventions, allow our
workflow to have two vital properties. First, the given workflow maximizes the resources
available to the researcher. A problem which could have naively taken, even under ideal
computing circumstances on a single machine, months to complete, has been reduced to a few
days at most. Indeed, a researcher need not even obtain more machines, as with the advent of
cloud computing, they can access technologies which hide all implementation details of the map-
reduce framework and give cheap access to an unlimited supply of machines, such as Amazon’s
EC2 cluster. Indeed, workflow technologies like SORACS [SORACS] are rapidly evolving to
allow for this full workflow to be completed without a research having acess to anything other
than a single computer and the Internet. If the researcher does have a large supply of machines
available, such speedup has been achieved with free, open-source, easy-to-install technologies.

Having explained, at a high level, the concepts incorporated in running Construct in
parallel on multiple machines, it is now useful to describe in more detail how such tools can be
utilized. The first objective, of course, is to obtain some way of submitting Construct runs to
multiple machines. Here, we will discuss the CONDOR cluster framework [Condor]
implemented at CASOS. The first step, of course, is to install CONDOR onto machines in your
cluster- this step is not covered here, but is described in detail in the CONDOR setup manual,
located at [Condor].

Once installed properly, a machine with CONDOR installed on it and a user with
submission priviledges from that machine can submit jobs from that machine onto the cluster in
a series of simple steps. First, the user should set up a CSV file with the parameters indicating
the conditions of the experiment they would like to have changed. From here on out, we will
refer to this file as the conditions file, to represent the fact that it holds all of the conditions
necessary for the entire experiment. We will differentiate this later with a parameter file, which
holds the conditions necessary to run a single cell of the experiment. In a trivial experiment,
where the goal is to test an effect on different population sizes, the conditions file would look
something like this:

 AgentSize,10,100,100

137

The first column of the file simply labels the condition being changed - though this is not
necessary (we will never tell Construct to look at this value), it is naturally useful in keeping
track of which lines of your parameters file refer to which condition. Once this parameter file has
been specified, we need some way to submit (in this case) three different runs to multiple
machines via CONDOR. to do so, we need to complete three further steps.

The first step is to create three different parameter files - one for each of the different
conditions. This can be done using your favorite scripting language. Below, we give a simple
example, in python, which reads a conditions file and generates a parameter file (recall that a
parameter file is simply a set of conditions necessary to run a single experiment) in a directory
who’s name specifies the conditions for that directory. (Note that If you are not comfortable
doing such programming, for small experiments, it is quite easy to do this step manually).

import csv, itertools, os
with open("conditions_file.csv", "r") as condFile:
 reader = csv.reader(condFile)
 values = []
 conditionTitles = []
 for line in reader:
 conditionTitles.append(line[0])
 values.append([val for val in line[1:] if val != ""])
 experimentalSet = list(itertools.product(*values))
 numVals = len(conditionTitles)
 for experiment in experimentalSet:
 condsString = '_'.join(str(i) for i in experiment)
 os.mkdir(condsString);
 with open(os.path.join(condsString,"params.csv"), "w") as

paramFile:
 for i in range(numVals):
 paramFile.write(conditionTitles[i]+ "," + experiment[i] + '\n')

To run this script, place it in the same directory as your conditions file, name the
conditions file “conditions_file.csv”, and use python (version 2.7) to run the script. For
information on how to download python version 2.7 and run a script, consult the Python
documentation at [Python].

Assuming you use the same methodology suggested in the script above, you will now
have the following in the directory in which you placed your conditions file and ran the script:
your conditions file (conditions_file.csv), the python script
(your_naming_of_python_script_above.py) and three Folders 10, 100, and 100, each with one
file called params.csv. The second step to submit to condor is to develop your model (i.e. the
XML file described above) and to allow the model to read in as a parameter from a CSV file the
conditions you are interested in. In this case, we would change the “agent_count” variable to be
instantiated as follows:

<var name="agent_count" value="readFromCSVFile[“params.csv” ,0,1]/>

138

As we know from the above sections, this tells Construct to read the agent_count variable
from the first (zeroth) row and the second (zero-indexed) column of the csv file “params.csv”.
Once we have done this, we can add our XML file to the directory we are working in (i.e. at the
same level as conditions_file.csv). Note that this implementation will only require us to have a
single model file, which is desirable with respect to man-hours required to change the model and
the amount of space needed to store results.

The final step is to create a submission file that CONDOR will use. Though we do not
detail in depth the details of CONDOR submission, below is a file that, placed at the same level
of the directory as your XML model file, will allow you to run the simple experiment described
here. Note that you should replace YOUR_MODEL_FILE_NAME.xml with the name of your
XML file, and include a construct executable with the name “Construct.exe” in your directory as
well.

universe = vanilla
requirements = ((ARCH == "INTEL" || ARCH=="X86_64") &&
((OPSYS == "WINNT51") ||(OPSYS == "WINNT52") || (OPSYS == "WINNT61") ||

(OPSYS == "WINDOWS"))
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
executable = Construct.exe
transfer_executable = true
notification = Never
arguments = YOUR_MODEL_FILE_NAME.xml
output = out_setup_to_construct.txt
error = err_setup_to_construct.txt
log = condor.log
transfer_input_files = params.csv
initialdir = 10
queue
initialdir = 100
queue
initialdir = 1000
queue

The file, generally, tells CONDOR where to find your executable and model file, and
then to run three times in each of your experimental directories, using the parameter file within
that directory. This file also contains requirements for what operating system to run on, and
specifies that all files written out by Construct (e.g. in ReadGraph operations) should be
transferred back to your machine after they are run. Putting the text above into a file called
“condor_submission.sub” and assuming the PATH variable on your machine includes the condor
executables, opening a command prompt, changing to the directory we have discussed here, and
typing in the following will run the given experiment.

THIS_DIRECTORY> condor_submit condor_submission.sub

You can use other CONDOR programs, such as condor_q to check the status of your
runs - for full details, see [Condor].

139

Appendix G Construct in Research Literature
Below are some brief descriptions of projects that used Construct. Links to the full

publications and project sites are below the project title and authors.

Predicting Intentional and Inadvertent Non-compliance

By: Kathleen M. Carley, Dawn C. Robertson, Michael K. Martin, Ju-Sung Lee, Jesse L.
St. Charles, Brian R.Hirshman

http://www.irs.gov.edgesuite-staging.net/pub/irs-soi/10rescon.pdf#page=162

Models for predicting intentional and inadvertent errors on tax returns were developed
using two approaches: the first was metamodeling using literature on errors, and the second was
using statistical machine learning to derive a model from tax audits. The reliability of the models
is dependent on the amount of data, the quality of the data, and whether the learning techniques
are supervised or unsupervised. IRS audit data does have some reliability issues; the taxpayer’s
motives are unknown at the time of filing, and the standard is high for proving intentional
misreporting. The models take these biases into account through an ensemble modeling
approach. The methods shown in this study are useful in creating a predictive model of taxpayer
behavior.

Agent Interactions in Construct: An Empirical Validation using Calibrated Grounding

By: Kathleen M. Carley, Craig Schreiber

http://brimsconference.org/archives/2007/papers/07-BRIMS-054.pdf

 Carley and Schreiber conducted a validation study for Construct. The focus of the
study was on the ability of Construct to produce an initial state of agent interactions which
resemble how a real world network communicates. The Calibrated grounding technique was
used to validate the model. Construct was shown to produce a valid initial state of interactions.

Computational organization science: A new frontier

By: Kathleen M. Carley

http://www.pnas.org/content/99/suppl.3/7257.short

According to synthetic adaptation, any entity that is composed of intelligent, adaptive,
and computational agents, is also an intelligent, adaptive, and computational agent.
Organizations are inherently computational because of synthetic adaptation. The behavior of
groups and organizations can be explained by using multi agent computational models that are
composed of intelligent adaptive agents. Construct is an example of such a model; by combining
a network with a multi-agent approach, the model becomes more realistic. A series of virtual
experiments use this model to show the power of this approach for analysis of societies and
organizations.

http://www.irs.gov.edgesuite-staging.net/pub/irs-soi/10rescon.pdf%23page=162
http://brimsconference.org/archives/2007/papers/07-BRIMS-054.pdf
http://www.pnas.org/content/99/suppl.3/7257.short

140

A Dynamic Network Approach to the Assessment of Terrorist Groups and the Impact of
Alternative Courses of Action

By: Kathleen M. Carley

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA47711
6

Dynamic network analysis is based on the collection, analysis, understanding, and
prediction of dynamic relations amongst various entities such as actors, events, and resources,
and their impact on individual and group behavior. Using dynamic network analysis, terrorist
groups were examined as complex dynamic networked systems that evolve over time. The use of
dynamic network analysis tools to analyze a terrorist group is demonstrated. Techniques that are
demonstrated include identifying sphere of influence amongst actors, determining emergent
leaders in the network, and how using network metrics can assess the impacts of various actions
within the group.

Modeling Complex Socio-technical Systems using Multi-Agent Simulation Methods

By: Maksim Tsvetovat, Kathleen M. Carley

http://www.css.gmu.edu/~maksim/pdf/TsvetovatCarley_2003_OfficialReprint.pdf

To study complex social and technological systems, underlying psychological and
sociological principles, as well as communication patterns and technologies within these systems
must be measured and understood. The creation of high fidelity models of these systems requires
a combination of analytical models with empirically grounded simulation, to form multi agent
systems. These multi agent systems incorporate learning algorithms as well as other social
network phenomena. The power of these methods are demonstrated by creating a multi-agent
network model of networks such as terrorist organizations. This ultimately creates a
generalizable and valuable process for analyzing complex social systems, by using AI algorithms
combined with an analytic approach.

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA477116
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA477116
http://www.css.gmu.edu/~maksim/pdf/TsvetovatCarley_2003_OfficialReprint.pdf

141

Index
ACT-R... 1
Alters ... 3
bounded rationality 1, 36
boundedly rational 36
brain activation.. 1
CASOS .. 3
CASOS’s ... 3
cognitively bounded 1
collision avoidance...................................... 1
computational cost 1
continuing development 3
cultural norms ... 2
deception ... 1
diffusion .. 2
economics ... 1
Egos... 3
emergent properties 2
group norms .. 1

insects .. 1
keywords ... 3
Newell ... 36
probability of interacting........................... 36
Ren .. 36
Simon .. 1, 36
SOAR .. 1
social simulation 36
social theory .. 36
S-Shaped curve ... 2
Swarm ... 1
theory .. 1
three dimensions 36
traffic analysis ... 1
transactive memory 36
two transactive memory 36
verification .. 2

References

Joseph, K., Morgan, G. P., Martin, M. K., & Carley, K. M. (2013). On the Coevolution of
Stereotype, Culture, and Social Relationships: An Agent-Based Model. Social Science
Computer Review. doi: 10.1177/0894439313511388

	Table of Contents
	Table of Figures
	Table of Tables
	Table of Equations
	Introduction
	Agent Based Models
	Introduction to the Report
	Construct Versions and this Report
	Conventions Used in this Document
	Organization of this Overall Report

	A Motivating Example
	Construct’s Core Mechanisms
	A Scenario

	PART ONE Quick-Start Guide
	The Objects
	Agents
	Knowledge
	Tasks
	Beliefs
	Time

	Their Relations
	The Interaction Sphere
	The Knowledge Network
	Transactive Memory

	Thoughts on Experimentation
	Outputs

	High Level Diagrams of Construct Program Flow
	PART TWO: Construct in Detail
	Variables
	Declaring, defining, and casting variables
	Evaluating Variables
	Variables, Macros, and with Statements
	Using variables
	Common Gotchas

	Parameters
	Activation Threshold Agent
	Activation Threshold Group
	Agent Annealing halflife
	Group Annealing Halflife
	Active models
	Active Mechanisms
	Belief Model
	Communication weights
	Default Agent Type
	Dynamic Environment
	Forgetting and Learning
	Interaction Requirements
	Out of Sphere Communication Allowed
	Seed
	IRS Special Agents Begin
	Social Network Interaction Initialization Model
	Thread count
	Transactive Memory
	Use mail
	Verbose Initialization
	Verbose Interaction Weights
	Operation Output Working Directory

	Nodes
	Agent node class
	Agentgroup node class
	Agent_type
	Belief node class + belief formation equations
	Binary task node class
	CommunicationMedium
	Dummy node class
	Energy task node class
	Knowledge node class
	Knowledge group node class
	Time period node class
	Other node classes

	Networks
	Knowledge expertise weight network
	Agent Active Time Period
	Agent Belief Network
	Agent Forgetting Rate
	Agent Forgetting Mean
	Agent Group Membership
	Agent Initiation Count
	Agent Interaction Dependency Network
	Agent Knowledge Interaction Dependency network
	Agent Learn by Doing Rate
	Agent Learning Rate
	Agent Message Complexity
	Agent Reception Count
	Agent Selective Attention Effect
	Agent Type
	beInfluenced Network
	Belief Knowledge Weight
	Binary Task Assignment
	Binary Task Requirements
	Binary Task Similarity Weight
	Binary Task Truth
	Communication Medium Access
	Communication Medium Preferences
	Communication Medium Preferences Network 3d
	Dynamic Environment Reset Time Periods
	Fact Group Membership
	Influentialness
	Interaction Knowledge Weight
	Interaction Network
	Interaction Sphere Network
	Knowledge – Binary and non-Binary
	Knowledge Expertise Weight
	Knowledge Group Membership
	Knowledge Priority
	Knowledge Similarity
	Knowledge Similarity Weight
	Learnable Knowledge
	Medium Knowledge Group
	Physical Proximity
	Physical Proximity Weight
	Public Message Propensity
	Social Proximity
	Social Proximity Weight Network
	Socio-Demographic Proximity
	Socio-Demographic Proximity Weight
	Susceptibility (beInfluenced)
	Transmission Knowledge Weight
	Network Generators
	cellular_density
	cellular_fractional
	constant
	constant3D
	CSV
	CSV_binarize
	csv3d
	dynetml
	gen_from_text
	group_to_group
	erdos_renyi
	filter_generator
	lexer_based
	membership_based
	model_based
	multi_dimensional_preprocess_based
	periodic
	perception_based
	preprocessor_based
	randombinary
	randomnormal
	randomvalue
	scale free
	small world
	sociodemographic similarity
	tied
	xy_direct_input
	xml_generator_loader

	Transactive Memory
	Knowledge transactive memory
	Belief transactive memory
	Binary Task transactive memory

	References
	Appendices
	Appendix A The Sample Input File (aka Input Deck)
	Appendix B A History of Construct
	Appendix C Construct ‘Operations’ and ‘Decisions’
	Turn 0
	Operations
	General Operation Syntax
	ReadGraphByName
	ActivateAltersForAgents
	AgentReport
	AvgCommunicationOverRuns
	AvgProbInteractOverRuns
	AutomaticDunetmlOutput
	BeliefThresholdTest
	BetweennessCentrality
	binop
	BonacichPowerCentrality
	CliqueCount
	ClosenessCentrality
	CommunicationMediumsSent
	CommunicationMediumsReceived
	Connectedness
	DeltaFeed
	Diameter
	EigenVectorCentrality
	ForceLossyIntersection
	Fragmentation
	GlobalEfficiency
	GraphMeasure
	InformationCentrality
	InverseClosenessCentrality
	LocalEfficiency
	MissionCompletionSpeed
	Nodeset_dump
	ReadAgentActivatedGroupMatrix
	ReadAgentCoreTies
	ReadAgentBeliefOfGroupKnowledgeMatrix
	ReadAgentMisrepresentationProbability
	ReadAgentsWhoDoNotInteractWithAnyone
	ReadBinaryTaskAccuracy
	ReadDynamicEnvironment
	ReadDynamicEnvironmentAccuracy
	ReadDynamicEnvironmentEnergyTask
	ReadDynamicEnvironmentEnergyTask_summary
	ReadEnergyTask
	ReadEnergyTask_summary
	ReadGraphByMatrix
	ReadInteractionMatrix
	ReadInteractionMatrix_Sparse
	ReadKnowledgeDiffusion
	ReadKnowledgeDiffusionByAgentGroup
	ReadKnowledgeDiffusionByFactGroup
	ReadKnowledgeDiffusion_summary
	ReadKnowledgeGain
	ReadKnowledgeLearningHistory
	ReadKnowledgeLearningHistorySum
	ReadKnowledgePriorityMatrix
	ReadKTMMatrix
	ReadNodesetAttributeOutput
	ReadSphereMatrix
	ReadSphereMtrix_Sparse
	ReadTaskCompletion
	SimmelianTies
	TaskCompletionStartStopTimes
	TaskCompletionSpeed
	TotalDegreeCentrality
	Transitivity
	TriadCount

	Decisions
	ReadDecisionOutput
	Specifying Decisions
	Network Getters
	Network Setters
	Agent References
	Time Period References
	Decision References

	Decisions using with statements

	Common Gotchas with Operations

	Appendix D Additional Construct ‘Generators’
	Group to Group Generators
	Appendix E Scripting
	Reserved Words in the Construct Scripting Language and Input File
	Testing Construct Scripts
	General Syntax
	Logical Expressions
	Generating Random Numbers
	Conditional Statements - IF
	Looping - foreach
	Return
	Macros
	Get/Set network values
	ReadFromCSVFile

	Appendix F Construct in High Performance Computing (HPC) Environments
	Appendix G Construct in Research Literature

	Index

