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1 IntroductionThere have been recent attempts to produce trainable models of human-language syntax and semantics [4, 6] as well as morphology [12].Some immediate applications of an unsupervised syntax- semantics- mor-phology acquisition engine are stemming and word clustering by allomorphs.Disambiguation and inference (at all levels) can be a natural precursor tomore complex tasks, such as information retrieval and machine translation.The problem of morphology is typically swept under the rug in NLP ap-plications. One can get away with treating words as indivisible units in alanguage like English, with a relatively simple morphology; however, somelanguages are highly in
ected and have many millions of possible words, ne-cessitating some sort of morphological analysis. But even in English, one canpro�t by treating the words assume, assuming, assumption as variationson a common element as opposed to distinct and separate entities.Previous approaches to this problem have ranged from ad-hoc heuris-tics [1, 11, 13] to principled approaches [4, 6]. However, to our knowledge,there has not been an attempt to produce a generative model that encor-porates semantic, syntactic, and morphological elements. We claim thatsyntax and semantics are indispensible in acquiring a morphology, whereambgiuties abound both in the synthesis (e.g., past tense of hang can behanged or hung) and analysis (resent can be a present tense verb, or thepast tense of resend). Yarowsky and Wicentowski [13] indeed take syntac-tic information into account, but their model requires human supervision orlanguage-speci�c knowledge.This paper is organized as follows. In Section 2 we motivate payingattention to the issue of morphology and illustrate some of the diÆcultiesinvolved. Section 3 reviews LDA and PSTs and describes our generativemodel. We present the variational inference calculations in Section 4 andgive the learning updates in 5. Some preliminary results are given in Sec-tion 6, and we conclude with some future directions in Section 7.As a notational convention, a boldfaced w will denote a document (se-quence of words), and jwj its length, whilew and jwj denote a word (sequenceof characters) and its length. The nature of the problem requires us to referto characters i through j of the tth word of the dth document in the corpus;we use the (admittedly cumbersome) notation w(d)t;[i:j] for this purpose. Mer-cifully, we will seldom need all the super/sub-scripts in a given expression,and will omit them if possiblele. We use 1 for the indicator function and "for the null string. We will sometimes refer to topics as \semantic states".1



1. battera. [batter] � liquidy doughb. [bat][er] � one who bats (in baseball)2. runga. [rung] � a horizontal bar in a ladderb. [ring][PP] � past participle of `ring'3. dicea. [dice][PRES] � to chop �nelyb. [die][PLU] � the plural form of `die'4. rearrangea. [re][arrange][PRES] � to arrange anewb. [rear][range] � the range of the rear5. resenta. [resent][PRES] � to dislikeb. [re][send][PAST] � past tense of `resend' - to send againFigure 1: Morphological ambiguity: analysis2 Problem overviewWithout getting into an involved discussion of linguistic phenomena or thecomputational issues that plague NLP research, we brie
y illustrate the in-terdependence of syntax, semantics and morphology, and exhibit ambiguitiesat all of these levels. The problem is even more severe in the languages (ofwhich there are many) whose morphology is richer than that of English.Informally, to \parse" or \analyze" a word means to break it up into itssemantic and morphological constituents. Figure 1 illustrates that analysisdepends on the semantic and syntactic features of the word.In the same informal sense, to \generate" or \synthesize" a word is tocombine semantic components, along with grammatical features into a validword-string. Figure 2 illustrates that the \inverse" direction of analysis {synthesis { also cannot be done independently of the syntax and semantics.
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� English:dream + PAST ! fdreamed, dreamtgtread + PAST ! ftreaded, trodg� Russian:pulja + INSTR ! f gljubov' + GENTV ! f g� Hebrew:GLH + 3pers SNG MSC PAST REFL ! f g$MR + 3pers PLU FEM FUTR ACT ! f g� Latin:ama + 2pers SNG PERF IND ACT ! famavisti, amastigama + 3pers PLU PERF IND ACT ! famaverunt, amaveregFigure 2: Morphological ambiguity: synthesis3 Models3.1 Latent Dirichlet allocationLatent Dirichlet allocation (LDA) is the �rst fully generative topic modelfor text corpora1. Proposed in 2003 by Blei, Ng and Jordan [4], LDA is anelegant model that takes the assumption of word and document exchange-ability (implicit in just about every approach, with the exception of [6]) totheir logical conclusions. Understanding LDA is a prerequisite for makingsense of our model; a detailed description is provided in [4]. In what follows,we assume a working familiarity with LDA, and limit ourselves to mappingthe notation and terminology of Blei et al. to the present work.In standard LDA, the vocabulary is a �xed set of V words, and eachdocument is a bag of words, generated from a Dirichlet mixture of A top-ics. More explicitly, we equip the (A� 1)-dimensional topic simplex with aDirichlet distributionD(� j�) = ��PAa=1 �a�QTa=1 �(�a) ��1�11 ��2�12 : : : ��A�1Aparametrized by � 2 RA . The other set of parameters is an A � V matrix1Papadimitriou et al. [8] proposed in 1998 a generative model to explain the perfor-mance of latent semantic analysis (LSA). However, LSA [5] was in use as a heuristicmethod years before the post-hoc generative-model analysis became available.3



Figure 3: LDA graphical model� for generating words from topics:�aw = prob of generating word w from topic a:For a �xed �, the document generation process is described below (andillustrated as a graphical model in Figure 3).1. draw T according to some distribution on the naturals, such as T �Poisson(�)2. draw � = (�1; �2; : : : ; �A) � D(�)3. for each of the T words wt:(a) draw a topic zt � Mult(�)(b) draw a word wt � p(wt j zt; �)The corresponding marginal distribution of a document isp(w j�; �) = Z� d�D(� j�) TYt=1 AXa=1 p(zt = a j�)p(wt j zt; �) (1)The inference problem for LDA is to compute the posteriorP fat = a jw;�; �g,which requires computing the intractable integralp(w j�; �) = �(PAa=1 �a)QTa=1 �(�a) Z� d� AYa=1 ��a�1a ! TYt=1 AXa=1 �a�awt! : (2)One way of getting around the intractability is via a mean-�eld approxima-tion; this, in fact, is the approach taken by Blei et al. This leads directly toa simple learning algorithm: 4



1. compute q(d)(a jwt) � Pnat = a jw(d)t ovia mean-�eld for each document d2. update � (normalized pseudo-counts):�newaw / DXd=1 jw(d)jXt=1 q(d)(a jwt)1nw(d)t =wo3. update � (maximize lower bound on Qd p(w(d))):�new = argmax� Yd Qa �(�a +Pt q(d)(a jwt))�(Pa �a + jw(d)j) �(Pa �a)Qa �(�a)(via Newton-Raphson)3.2 Adding syntaxThe top-level idea for combining the \semantics" of LDA with syntax andmorphology is as follows. A document is generated by �rst sampling asequence of syntactic states ` = `1 : : : `T from a Markov chain. In parallel,a topic mixture � is sampled from a Dirichlet prior (parametrized by �)over the topic simplex. Each word wt comes from a semantic topic a anda syntactic state `, according to a morphological probability Pmorph(w j `; a)(illustrated as a graphical model in Figure 4).The probability of a document w = w1w2 : : : wT is given byp(w) = Z�A d�D(� j�) X`=`1:::`T Yt p(`t j `t�1)Xa �aPmorph(wt j `; a): (3)This is a strict generalization of LDA and therefore is also intractable. InSection 4 we calculate a variational mean-�eld approximation to the infer-ence problem.3.3 Morphological modelThe crux of the modeling diÆculty turned out to lie in choosing a good mor-phological model Pmorph(w j `; a). The intuition is that most words have botha \syntactic" and a \semantic" component. Thus, in the word reassignment,5



Figure 4: The graphical model for document generation; here Pmorph is a\black box" plug-in modulethe suÆx ment can be assigned a syntactic role2, while the root assign car-ries the semantics.Since it is not obvious which parts of the word are semantic and whichare syntactic, it makes sense to model this as a hidden Markov \microstate,"taking on the binary values m 2 fSYN; SEMg. This forcesPmorph(w j `; a) = Xm1:::mjwj jwjYi=1 p(mi jmi�1)Pchr(w[i] jw[1:i�1];mi; `; a): (4)We further assume a particular form of the character model Pchr(�):Pchr(w[i] jw[1:i�1];mi; `; a) = � Pchr(w[i] jw[1:i�1]; `); mi = SYNPchr(w[i] jw[1:i�1]; a); mi = SEM : (5)A natural way to model bounded-memory sequences is via N -grams,which forces Pchr(w[i] jw[1:i�1]; �) = PNGRM(w[i] jw[i�N :i�1]; �). Thus, if thereare L syntactic and A semantic states, we train L + A di�erent N -grammodels, as described below. Given the trained models, Pmorph(w j `; a) can beeÆciently computed using forward-backward. The semantic N -grams model2In English, pre�xes are almost never dictated by syntax, and thus are almost entirelysemantic. There are numerous languages, however, in which a pre�x is obligatory, forexample, in changing verb tense (cf, Russian, Latin, Greek, German). English suÆxes,however, are frequently syntactic; thus, the suÆx ment turns a verb into a noun.6



Figure 5: The word precondition generated from a sequence of microstatesword roots, while the syntactic N -grams model pre�xes and suÆxes. Ob-serve that this model extends naturally to non-concatenative (e.g., Semitic)morphologies.This model, though intuitively appealing, su�ers from a subtle but seri-ous drawback. N -grams always predict the next character based on a �xed-length history { there is no pressure to be \parsimonious" or sparse. Sincetransitions between microstates incur a probabilistic cost of p(mi jmi�1), alikelihood-maximizing algorithm based on N -grams will prefer not to incurthis cost, and always to predict from either the syntactic or the semanticmodel. Nor does taking N to be small (�3) solve the problem, as thisuniformly short context prevents the model from capturing word structure.3.4 Probabilistic SuÆx TreesOne way to encourage sparsity is to force the model to condition the nextcharacter on a variable-length histories, choosing a context length based onits informativeness. This desideratum lends itself naturally to a ProbabilisticSuÆx Tree (PST), �rst introduced in [10]. A PST exploits the sparsity ofthe data and only grows long contexts when this signi�cantly improves next-character predictability.We follow the PST building algorithm of Bejerano and Yona [3]. As thedetails may be found in their paper, we give only a schematic presentationhere. Let A be a �nite alphabet and S � A� a �nite collection of strings. Toeach s 2 S associate a distribution 
s : A ! [0; 1]. Then, modulo smoothingissues, a PST assigns probabilities to strings byPTREE(w) = jwjYi=1 
s(i)(w[i]) (6)where s(i) is the longest of fw[1:i�1]; w[2:i�1]; : : : ; w[i�2:i�1]; "g s.t. w[j:i�1] 2S; this is illustrated in Figure 6.A rough sketch of the Bejerano-Yona PST building algorithm is as fol-lows. We ignore all smoothing and some pruning issues here (but not in our7



� A = fa; b; c; d; rg� S = f"; r; a; ca; ra; brag
� PTREE(abracadabra)= 
"(a)
a(b)
"(r)
r(a)
bra(c)
"(a)
ca(d)
"(a)
a(b)
"(r)
r(a)Figure 6: Bejerano and Yona's illustration of how a tree assigns probabilitiesto wordsimplementation) { for details, consult [3]. The algorithm takes two mainparameters: the maximal tree depth, N , and the sparsity, r � 1. This latterparameter controls tree pruning: setting r = 1 results in a full jAj-ary treeof depth N , and increasing r results in sparser trees. For s 2 A�, de�ne �sto be the number of times the contiguous substring s occurs in the data.De�ne also �s� = X�02A�s�0and ~P (� j s) = �s��s� :Initialize S to ; and for each s 2 A�N , include s in S if~P (� j s)~P (� j s[2:jsj]) 2 (0; 1=r] [ [r;1)for some � 2 A. (Bejerano and Yona do this eÆciently via a pruningscheme.) The resulting character prediction probabilities, 
s(�), are ob-tained by smoothing ~P (� j s).3.5 Putting it togetherHaving de�ned Pchr in terms of PTREE, we've speci�ed a generative modelfor documents at the character level. A document w is generated by thefollowing process: 8



Figure 7: A graphical model representation of the document generationprocess1. generate sequence of topics a1; : : : ; aT as in LDA2. generate sequence of syntactic states `1; : : : ; `T Markovially3. for each word wt:(a) sample a Markov sequence of microstates (mi)jwji=1 2 fSEM; SYNg(b) generate wt;[i] according to � PTREE(w[i] jw[1:i�1]; `); mi = SYNPTREE(w[i] jw[1:i�1]; a); mi = SEM :This process is represented graphically in Figure 7.4 Variational InferenceSince our model is hierarchical, our inference will be also. The �rst stepis, given a document w = w1w2 : : : wT , to compute the posterior p(`; a jwt)9



over the syntactic and semantic states.Our likelihood p(w j �) is given by (3), where the parameters � are� the Dirichlet parameters �a� the syntactic state transition probabilities p(` j `0)� the microstate transition probabilities p(m jm0) (see (4) and (5)).� the morphological character transition probabilities� the character models, Pchr(�), derived from the smoothed string countsBecause � is sampled for each document, di�erent documents can exhibitthe aspects in di�erent proportions. However, the integral in (3) does notsimplify and must be approximated; we do this by adapting the approachof Blei et al. [4]To approximate the integral of a function, variational inference lowerbounds the function and then integrates the lower bound. A simple lowerbound for (3) comes from Jensen's inequality. The bound is parameterizedby a vector q(a jw):Xa �a p(w j `; a) � Ya ��a p(w j `; a)q(a jw) �q(a jw) (7)Xa q(a jw) = 1 (8)The vector q(a jw) can be interpreted as a soft assignment or \responsibility"of word w to the ath aspect. While q(a jw) doesn't explicitly depend on thesyntactic state `, it will be estimated in such a way that takes into accountthe posterior distribution of ` at w.We will derive an approximate posterior for a document in the formp(�; `) = q(�) q(`) which can be expressed in terms of the variational pa-rameters q(a jw). Although � and ` = `1; : : : ; `T are independent under thisapproximation, q(`) is used to estimate q(�), and vice-versa.Given bound parameters q(a jw) for all a and w, the integral is nowexpressed asp(w j �) � (9) Yt;a � 1q(a jwt)�q(a jwt)! X`1;:::;`T Yt p(`t j `t�1)Ya p(wt j `t; a) q(a jwt)DD = Z�D(� j�)Ya �Pt q(a jwt)a d� = Qa �(�a +Pt q(a jwt))�(Pa �a + T ) �(Pa �a)Qa �(�a) :10



Now we �nd the best variational parameters by maximizing the value ofthe bound using EM. The \parameter" in the EM algorithm is q(a jw) andthe \hidden variables" are � and `.E-step: 
a = �a +Xt q(a jwt) (10)M-step: q(a jw) / exp(	(
a)) Yt:wt=w p(wt j a; `) q(` j t)nw (11)where 	 is the digamma function and nw is the number of times the word woccurs in the given document. Here q(` j t) denotes the posterior probabilitythat the state for wt is `, under the modelq(w; `) / Yt p(`t j `t�1) Ya p(wt j `t; a) q(a jwt): (12)This posterior can be computed exactly using the forward-backward algo-rithm for HMMs (see [9]). The variables 
a used in this algorithm can beinterpreted as de�ning an approximate Dirichlet posterior D(� j
) on �.It remains to compute the posteriors p(m jw[i]; `; a) over the microstates,but this is done via the standard forward-backward algorithm.5 LearningGiven a set of documents C indexed by d = 1; :::;D, the learning problem isto maximize the likelihood as a function of the parameters �; the likelihoodis given by p(C j �) = Qd2C p(w(d) j �), the latter probability given in (3).Notice that each document has its own integral over �. Standard EM,where we regard � as a hidden variable for each document is impossible,since the E-step requires expectations over the posterior for � and `, whichis an intractable distribution.Using the variational estimate of the likelihood function for each docu-ment derived in the previous section, we can set the parameters to try tomaximize the value of the estimate. This is the approach taken by Blei etal. in [4]. Using the variational bound (9), we apply an EM-like algorithmto estimate the parameters �.Let us write q(d)(` j t) and q(d)(a j t) for approximate posterior over syn-tactic and semantic states conditioned on the tth word of the dth document,as computed in was computed in Section 4.11



The updates for the Dirichlet parameters � are as in [4]: 3�new = argmax� Yd Qa �(�a +Pt q(d)(a j t))�(Pa �a + jw(d)j) �(Pa �a)Qa �(�a) : (13)The update equation for the syntactic state transition probabilities arep(` j `0)new /Xd E q(d) 24jw(d)jXt=1 1f`t=`)g1f`t�1=`0g35 ; (14)where Eq(d) is the expectation under the posterior distribution q(d)(` j t),computed using the forward-backward variables, as for HMMs. An analo-gous HMM-type update is used for the microstate transition probabilities:p(m jm0)new / Xd jw(d)jXt=1 Xa q(d)(a j t)X̀ q(d)(` j t)E 264jw(d)t jXi=1 1fmi=m)g1fmi�1=m0g375 :(15)Finally, we must update the character probabilities PTREE(� j `) and PTREE(� j a),which are based on substring counts. We use the setup outlined in [3]. TheBejerano-Yona PST building algorithm takes as raw input �s { the numberof times the contiguous substring s has in the data. Instead of these, wesupply it with the pseudo-counts, based on the posteriors q(d)(a jwt) andq(d)(` jwt) for each document, as well as p(mi jw(d)t ; `; a) for each word inthe corpus. The pseudo-counts are�as =Xd jw(d)jXt=1 q(d)(a jwt) jw(d)t jXi=jsj+1 p(mi = SEM jw(d)t;[i�jsj:i�1]; `; a) (16)and �s̀ =Xd jw(d)jXt=1 q(d)(` jwt) jw(d)t jXi=jsj+1 p(mi = SYN jw(d)t;[i�jsj:i�1]; `; a): (17)We then use the pseudo-counts just as if they were ordinary counts to builda semantic PST for each topic a and a syntactic PST for each state `.3In our experiments we did not update �, keeping it �xed at �a = 1.12



As in the Blei et al. algorithm [4], once the parameters are changed, theoptimal bound parameters q(a jw) and q(` jw) also change, so we simplyalternate between optimizing the bound and applying these updates. Notethat this \alternating maximization" algorithm is not an EM algorithm inthe usual sense. It can only be understood as EM if we introduce additionalhidden variables, so that the hidden variables are `, �, mi, and the \aspectassignments" to each word. An alternative approach is described in Section5.2 of [7].6 Preliminary results6.1 Training dataOur corpus consisted of approximately 2000 documents of length around200 words each, taken from part-of-speech tagged Wall Street Journal newsarticles. We collapsed the POS tags into 15 syntactic categories and set thenumber of topics at 25.Additionally, we generated a synthetic corpus of 2000 documents withword-length 200, with 4 syntactic states and 10 topics. The topic zt foreach document were sampled from a Dirichlet mixture, just as in LDA.The syntactic states were sampled from a Markov chain. The words weregenerated from a simple (semantic pre�x) + (syntactic suÆx) morphologicalmodel, via multinomial distributions on small set of pre�xes (for each topic)and a small set of suÆxes (for each syntactic state).6.2 Recovering LDAWe have not performed extensive, quantitative experiments with our model,so the results in this section will be of tentative qualitative nature. The �rst\sanity check" is that our model is able to recover the topics of ordinaryLDA (see [4] for an illustration of the topics learned by LDA). It is indeedable to do so, with a performance indistinguishable (as subjectively judgedby humans) from regular LDA, both on the WSJ and the synthetic corpus.6.3 Word segmentationSince the main innovation of this work is an encorporation of morphologyinto the generative model, it seems natural to examine our model's behavioron word segmentation tasks. We took words with common noun suÆxes:tion, ness, ism, etc., and plotted the posterior probability p(mi = SEM jw)13



Figure 8: Posterior semantic-character probability for assumptionof each character coming from the semantic state. We intuitively expectthis quantity to increase as more of the \semantic" pre�x has been tra-versed and sharply plummet once the \syntactic" suÆx has been reached.A representative example is given in Figure 8.The drop in the semantic probability is not as sharp as we would like;see Section 7 for ideas on improving this.We computed the posterior semantic probabilities for the synthetic dataas well, and averaged these over the words ending in a given suÆx. Theseaverages are plotted in Figure 9, for the suÆxes ism, ist, ness, tion.There is clearly some sort of word segmentation taking place, roughly atthe correct location in the word. However, the transitions from the \seman-tic" segment to the \syntactic" one are not as crisp as we had expected, norcan we explain the slight increase at the end of the ness and tion plots.7 Future directionsAlthough the results seem to indicate that the proposed model is at leastplausible, there are some immediate directions for improvement. Our tree-building procedure, borrowed from [3], is not a true EM step. Additionally,this procedure has several tuning parameters, most importantly the sparsityparameter r. The empirical trials show that the results are highly sensitive to14



Figure 9: Averaged posterior semantic probability for the synthetic corpusthis r parameter, which was more or less hand-tuned for the results shownhere. Both of these issues can be addressed by de�ning a Bayesian priorover the PSTs, and growing the trees in a MAP update. We look forwardto attending to these in forthcoming work.References[1] M. Baroni, J. Matiasek, H. Trost. \Unsupervised discovery of morpho-logically related words based on orthographic and semantic similarity."ACL Workshop on Morphological and Phonological Learning, 2002.[2] M. J. Beal and Z. Ghahramani. \The Variational Bayesian EM Algo-rithm for Incomplete Data: with Application to Scoring Graphical ModelStructures." Bayesian Statistics 7, 2003.[3] G. Bejerano and G. Yona. \Variations on probabilistic suÆx trees: sta-tistical modeling and the prediction of protein families." Bioinformatics,17(1), pp 23-43, 2001. 15
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